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Abstract. Hybrid discontinuous Galerkin methods are popular discretization meth-
ods in applications from fluid dynamics and many others. Often large scale linear
systems arising from elliptic operators have to be solved. We show that standard
p-version domain decomposition techniques can be applied, but we have to de-
velop new technical tools to prove poly-logarithmic condition number estimates, in
particular on tetrahedral meshes.

1 Introduction

In this paper we are concerned with discontinuous Galerkin (DG) finite element
methods for elliptic problems [4, 12, 24]. The motivation might be to have dominant
convection, or one wants to build exactly divergence free finite element spaces for
incompressible flows [11, 31], or other. We think of operator splitting methods,
where one has to solve a large scale symmetric matrix equation in each time-step.

In recent years hybridization methods appeared, which allow to reduce the
discrete system to the element interfaces [10]. This paper is concerned with the
construction and analysis of domain decomposition methods for the Hybrid Dis-
continuous Galerkin (HDG) method. We consider one element as sub-domain, and
the coarse grid problem consists of mean values on element interfaces. We prove
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robustness with respect to the mesh-size, and a poly-logarithmic growth of the con-
dition number with the polynomial order p.

There is now an established literature on high order finite element methods, from
the more theoretical point of view as well as from an applied one [13, 26, 41, 43].

We consider two strategies for domain decomposition algorithms [45], non-
overlapping Schwarz type methods [15, 20, 21] and balancing domain decompo-
sition with constraints (BDDC) [14, 33]. There is a big literature, in particular high
order methods and three dimensional problems are treated in [2, 5, 7, 8, 9, 19, 23,
27, 28, 30, 30, 36, 37, 38, 40, 42]. There is a classical paper on multi-level analy-
sis for h-version DG methods by Gopalakrishnan and Kanschat [18], and a recent
one studying higher order methods by Antonietti and Houston [3] showing a poly-
nomial growth of the condition number in p. We will see that the conditioning is
significantly improved by hybridization, namely to a poly-logarithmic growth. We
are not aware of particular analysis for preconditioners for high order HDG meth-
ods, even not in 2D.

The main result of the present paper is Theorem 3 proving that optimal extension
from faces to elements with Dirichlet constraints is nearly as good as extension
without constraints. With this result condition number estimates follow with the
usual techniques.

The main difficulty is to build optimal extension operators from an edge to a tetra-
hedron. This problem was solved for hexahedral elements by multiplying with fast
decaying functions by Pavarino and Widlund [38]. Polynomial extension operators
for simplicial elements are usually based on smoothing operators [5, 34]. Heuer and
Leydecker have analyzed such operators also for boundary elements, i.e, for three
dimensional edge to face extension.

We cannot use the existing simplicial extension operators to prove quasi-
optimality of HDG methods since they do not decay fast enough in the jump-norm.
We give a new construction of discrete edge-to-tetrahedron extension operators
which are motivated by the multiplication with low-energy functions of Pavarino
and Widlund, but are contained in the polynomial space on tetrahedra.

We declare some notation. With a � b we mean the existence of a generic con-
stant c such that a ≤ cb, where c is independent of parameters h and p. Otherwise,
we denote the dependence as c(p). The space of univariate polynomials of order p is
Pp, and Pp(T ) is the space of multivariate polynomials of total order p on a simplex
T . To simplify notation we redefine log p := 1 for p ∈ {0,1}.

In Sect. 2 we give the hybrid DG formulation, in Sect. 3 we prove the main result,
Theorem 3, and show how to apply it to analyze domain decomposition algorithms
for HDG. Technical lemmas are shifted to Sect. 4, 5, and 6. In Sect. 4 we collect
properties of orthogonal polynomials, and prove one dimensional trace estimates
and construct one-dimensional extension operators with respect to different norms.
The short Sect. 5 gives the proofs for extension from vertices, the technical proofs
for the extension from edges are in Sect. 6.
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2 HDG Discretization

Let Ω ⊂ R
3 be a polyhedral domain. Let T = {T} be a conforming triangulation

ofΩ consisting of shape regular tetrahedral elements. With F = {F} we denote the
set of all faces, and FT are the faces of the element T . As usual hT = diamT is the
local mesh-size.

We consider the Dirichlet problem of the Poisson equation problem, namely

−Δu = f in Ω , u = 0 on ∂Ω ,

with the source f ∈ L2(Ω). We define the pth order hybrid discontinuous Galerkin
finite element space

VN := Pp(T )×Pp(F) := ∏
T∈T

Pp(T )× ∏
F∈F

Pp(F),

its subspace VN,0 = {(u,λ ) ∈ VN : λ = 0 on ∂Ω}, and the hybrid discontinuous
Galerkin (HDG) method as: find (uN ,λN) ∈VN,0:

A(uN ,λN ;v,μ) = ( f ,v)L2(Ω) ∀(v,μ) ∈VN,0.

The HDG bilinear-form is

A(u,λ ;v,μ) = ∑
T∈T

AT (u,λ ;v,μ)

with the element contributions

AT (u,λ ;v,μ) :=
∫
T

∇u∇v+
∫

∂T

∂u
∂n

(μ− v)+
∫

∂T

∂v
∂n

(λ − u)+α (u−λ ,v− μ) j,∂T

with a fixed α > 4 = |FT |. We choose the stabilization similar to the stabilized
Bassi-Rebay method [4, 6, 25] as

(u−λ ,v− μ) j,∂T = ∑
F∈FT

(rF(u−λ ),rF(v− μ))L2(T ).

The discrete lifting operator rF : Pp(F)→ [Pp(T )]3 is defined by

(rF (μ),v)L2(T ) = (μ ,v ·n)L2(F) ∀v ∈ [Pp(T )]3.

The norm
‖u−λ‖ j,F = ‖rF(u−λ )‖L2(T )

is realized by

‖u−λ‖ j,F = sup
σ∈[Pp(T )]3

(u−λ ,σ ·n)L2(F)

‖σ‖L2(T )
= sup
σ∈Pp(T )

(u−λ ,σ)L2(F)

‖σ‖L2(T)
. (1)
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The last equality holds since the normal vector n is constant on F .
We define the norm

‖(u,λ )‖2
1,HDG := ∑

T∈T

{
‖∇u‖2

L2(T )
+ ‖u−λ‖2

j,∂T

}

with ‖u−λ‖2
j,∂T =∑F∈FT

‖u−λ‖2
j,F . We note that more general elliptic equations,

with mixed boundary conditions, variable coefficients as well as variable polynomial
orders can be treated the same way.

Theorem 1. The bilinear-form A(., .) is continuous and coercive on (VN,0,‖·‖1,HDG).

Proof. Continuity and coercivity are proven element-wise, i.e.,

‖∇u‖2
L2(T )

+ ‖u−λ‖2
j,∂T � AT (u,λ ;u,λ )� ‖∇u‖2

L2(T)
+ ‖u−λ‖2

j,∂T

is shown for all u ∈ Pp(T ),λ ∈ Pp(FT ), and for all T ∈ T . For F ∈ FT we use
Young’s inequality ab ≤ 1

2γ a2 + γ
2 b2 with 4 < γ < α to obtain

∫
F

∂u
∂n

(u−λ ) ≤ ‖∇u‖L2(T ) sup
σ∈[Pp]3

∫
σn(u−λ )
‖σ‖L2(T )

≤ 1
2γ

‖∇u‖2
L2(T )

+
γ
2
‖u−λ‖2

j,F.

Summing over the 4 faces of T we obtain

AT (u,λ ;u,λ ) = ‖∇u‖2
L2(T )

+ 2 ∑
F∈FT

∫
F

∂u
∂n

(u−λ )+α (u−λ ,u−λ ) j,T

≥ ‖∇u‖2
L2(T )

− 4
γ
‖∇u‖2

L2(T )
− γ∑

F

‖u−λ‖2
j,F +α ‖u−λ‖2

j,∂T

� ‖∇u‖2
L2(T )

+ ‖u−λ‖2
j,∂T ,

continuity is verified similar. �
Theorem 1 allows to reduce the analysis of preconditioners for A(., .) to the form
generated by the norm ‖(u,λ )‖1,HDG. Theorem 1 is also the basis for a-priori error
estimates, for example the h-version estimate

‖(u− uN,u−λN)‖1,HDG � hs‖u‖H1+s(Ω)

for 1 ≤ s ≤ p, see [31].

Theorem 2. For F ∈ FT let Pk denote the L2(F)-orthogonal projector onto Pk(F),
with P−1 = 0. For λ ∈ Pp(F) there holds

‖λ‖2
j,F � h−1

T

p

∑
k=0

p(p− k+ 1)‖(Pk−Pk−1)λ‖2
L2(F)

.
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Proof. By an affine-linear transformation to the reference tetrahedron and reference
face

T = {(x,y,z) : y ≥ 0,z ≥ 0, |x|+ y+ z ≤ 1}, (2)

F = {(x,y,0) : y ≥ 0, |x|+ y ≤ 1} (3)

one obtains the scaling in the mesh-size. By means of Jacobi and Legendre polyno-
mials (see Sect. 4), the Dubiner basis polynomials [16, 26]

ϕi j(x,y) = Pi

( x
1− y

)
(1− y)iP(0,2i+1)

j (1− 2y) for i+ j ≤ p

form an L2(F)-orthogonal basis for Pp(F). Expand

λ (x,y) = ∑
i+ j≤p

λi jϕi j(x,y)

σ(x,y,z) = ∑
i+ j≤p

ϕi j

( x
1− z

,
y

1− z

)
(1− z)i+ jσi j(z)

with σi j ∈ Pp−i− j. By the change of variables

g : F × [0,1]→ T : (ξ ,η ,z) �→ (x,y,z) := ((1− z)ξ ,(1− z)η ,z)

with detg′ = (1− z)2 we express

‖σ‖2
L2(T )

=

∫
F

1∫
0

(1− z)2σ((1− z)ξ ,(1− z)η ,z)2 dzd(ξ ,η).

Due to orthogonality there holds

‖σ‖2
L2(T )

= ∑
i+ j≤p

‖ϕi j‖2
L2(F)

1∫
0

(1− z)2i+2 j+2σ2
i j(z)dz

and
(λ ,σ)L2(F) = ∑

i+ j≤p

‖ϕi j‖2
L2(F)

λi jσi j(0).

There holds

sup
σ∈Pp(T )

(λ ,σ)2
L2(F)

‖σ‖2
L2(T )

= ‖σ∗‖2
L2(T )

,

where σ∗ ∈ Pp(T ) solves

(σ∗,τ)L2(T ) = (λ ,τ)L2(F) ∀τ ∈ Pp(T ).
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The components σ∗
i j ∈ Pp−i− j of the L2(T )-orthogonal decomposition

σ∗(x,y,z) = ∑
i+ j≤p

ϕi j

( x
1− z

,
y

1− z

)
(1− z)i+ jσ∗

i j(z)

solve
1∫

0

(1− z)2i+2 j+2σ∗
i j(z)τ(z)dz = λi jτ(0) ∀τ ∈ Pp−i− j,

and there holds

1∫
0

(1− z)2i+2 j+2σ∗
i j(z)

2 dz = sup
σi j∈Pp−i− j

(λi jσi j(0))2

∫ 1
0 (1− z)2i+2 j+2σ2

i j(z)dz
.

From Lemma 1 below we get

|σi j(0)|2 � p(p− i− j+ 1)

1∫
0

(1− z)2i+2 j+2σ2
i j(z)dz

is sharp, and thus

1∫
0

(1− z)2i+2 j+2σ∗
i j(z)

2 dz � p(p− i− j+ 1)λ 2
i j.

Thus there holds

sup
σ∈Pp(T )

(λ ,σ)2
L2(F)

‖σ‖2
L2(T )

� ∑
i+ j≤p

p(p− i− j+ 1)λ 2
i j‖ϕi j‖2

L2(F)

=
p

∑
k=0

p(p− k+ 1) ∑
i+ j=k

λ 2
i j‖ϕi j‖2

=
p

∑
k=0

p(p− k+ 1)‖(Pk −Pk−1)λ‖2
L2(F)

. �

We observe that

p
h
‖u−λ‖2

L2(F) � ‖u−λ‖2
j,F � p2

h
‖u−λ‖2

L2(F)
. (4)

Often α p2

h ‖u − λ‖2
L2(F) with a sufficiently large parameter α is chosen as

penalty term. Usually α is chosen on the safe side. We will see in the numerical
examples that the condition number does increase with α . In this paper we prove
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quasi-optimal condition numbers for the presented stabilization, it does not carry
over to the weighted L2-stabilization.

The benefit is two-fold, on one side the method is guaranteed to be stable, for any
α > |FT |, on the other side the condition number is proven to have only
poly-logarithmic growth.

3 Domain Decomposition Preconditioning

The analysis of non-overlapping DD preconditioners is based on stable decompo-
sitions of finite element functions. For that, quasi-optimal extension procedures are
essential. The main result of our work is to construct an extension operator, and
bound its norm.

For F ∈ F and a fixed T ∈ T such that F ⊂ T we define the trace semi-norm

‖λ‖2
F = inf

u∈Pp(T )

{
‖∇u‖2

L2(T )
+ ‖u−λ‖2

j,F

}

and the trace norm

‖λ‖2
F,0 = inf

u∈Pp(T )

{
‖∇u‖2

L2(T )
+ ‖u−λ‖2

j,F + ∑
F′∈FT
F′ �=F

‖u− 0‖2
j,F′

}
.

The semi-norm ‖λ‖F mimics the H1/2(F) semi-norm, i.e. the trace semi-norm cor-
responding to arbitrary H1-optimal extension onto the element T , while the norm

‖λ‖F,0 mimics the H1/2
00 -norm, i.e., the trace norm corresponding to H1-optimal

extension under Dirichlet constraints on ∂T \F . Note that for continuous finite ele-
ment spaces ‖λ‖

H
1/2
00

is defined only for λ = 0 on ∂F . For hybrid DG, both norms

‖λ‖F and ‖λ‖F,0 are defined for the same space Pp(F).

Theorem 3. Let λF ∈ Pp(F) with
∫

F λ = 0. Then here holds

‖λ‖2
F,0 � (log p)γ ‖λ‖2

F

with γ = 3.

Proof. It is enough to consider the reference element T . Let u be the minimizer
corresponding to ‖λ‖F . Thanks to a Poincare-type inequality and Theorem 2 there
holds

‖u‖2
H1(T) � ‖∇u‖2

L2(T )
+
(∫

F

u
)2

� ‖∇u‖2
L2(T )

+
(∫

F

u−λ
)2

+
(∫

F

λ
)2

� ‖∇u‖2
L2(T )

+ ‖u−λ‖2
j,F.
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We modify the function u by subtracting vertex and edge contributions:

u2 = u− ∑
V⊂F

EV→T u(V ),

u3 = u2 − ∑
E⊂F

EE→T u2|E .

In Theorem 6 and Theorem 7 below we prove that the function u3 is in Pp, vanishes
on ∂F , and satisfies

‖∇u3‖2
L2(T )

+ ‖u− u3‖2
j,F � log p ‖u‖2

H1(T ).

There holds [8, Lemma 4.7]

‖u3‖2
H

1/2
00 (F)

� (log p)2 ‖u3‖2
H1/2(F)

.

Now take
ũ := E MS

F→T u3|F
as the Muñoz-Sola extension [34]. Finally we get

‖∇ũ‖2
L2(T )

+ ‖ũ−λ‖2
j,F � (log p)γ‖λ‖2

F ,

and together with ũ = 0 on ∂T \F we have proven the result. �

We note that in [8, 37, 38] and others estimates with (log p)2 have been obtained
for continuous finite elements. It might be that our result can also be improved to
(log p)2. One approach would be to directly estimate the

∫
F

1
dist(x,∂F)u(x)

2 dx term

of the H1/2
00 (F)-norm. If one succeeds with that estimate, then that improved γ can

be used immediately in the following condition number estimates.

3.1 Schwarz Type Domain Decomposition

To analyze Scharz-type domain decomposition methods one has to prove stable de-
compositions into sub-spaces [32].

For λ ∈ Pp(F) we define the Schur-complement norm

‖λ‖2
S = inf

u∈Pp(T )
‖(u,λ )‖2

1,HDG.

Theorem 4. Let λ ∈ Pp(F). Define the coarse grid component as

λH ∈ P0(F) such that
∫
F

λH =
∫
F

λ ,
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and for F ∈ F define the local components λF as

λF =

{
λ|F −λH|F on F,

0 for F ′ �= F.

Then there holds
‖λH‖2

S + ∑
F∈F

‖λF‖2
S � (log p)γ‖λ‖2

S.

Thus, the additive Schwarz preconditioner CASM applied to the facet Schur-
complement SA of A leads to a condition number estimate

κ(C−1
ASMSA)� (log p)γ .

Proof. From the definitions of the norms there follows

∑
F∈F

‖μ |F‖2
F � ‖μ‖2

S � ∑
F∈F

‖μ |F‖2
F,0 ∀μ ∈ Pp(F).

Since
∫

F λF = 0 we have

∑
F∈F

‖λF‖2
S � ∑

F∈F
‖λF |F‖2

F,0 � (log p)γ ∑
F∈F

‖λF |F‖2
F

= (log p)γ ∑
F∈F

‖λ |F‖2
F � (log p)γ‖λ‖2

S,

and

‖λH‖2
S = ‖λ − ∑

F∈F
λF‖2

S � ‖λ‖2
S + ‖ ∑

F∈F
λF‖2

S

� ‖λ‖2
S + ∑

F∈F
‖λF|F‖2

F,0 � (log p)γ‖λ‖2
S.

Due to finite overlap of the sub-spaces, the largest eigenvalue of C−1
ASMS is bounded

by a constant, and thus the condition number is bounded by (log p)γ . �

3.2 BDDC Preconditioners

To define a BDDC preconditioner one sub-divides degrees of freedom into primal
and dual, see [14, 33]. The dual ones are treated discontinuous, and thus can be
eliminated on the element-level. In our case we choose the mean value on the face
as primal, all others are dual degrees of freedom. Thus, the remaining global system
involves only one degree of freedom per face.

Theorem 5. The BDDC preconditioner with mean values on faces leads to a condi-
tion number

κ(C−1
BDDCSA)� (log p)γ .
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Proof. Let λ be double-valued on faces with consistent mean-values, this means

λ = (λT )T∈T ∈ ∏
T∈T

Pp(FT ),

such that ∫
F

λT =

∫
F

λT ′ for F = T ∩T ′.

Define the average λ̃ ∈ Pp(F) as

λ̃ =
∑T :F⊂T λT |F

∑T :F⊂T 1
.

We have to prove continuity of the averaging operator, i.e.

‖λ̃‖2
S ≤ c(p) ∑

T∈T
‖λT‖2

S,T ,

where ‖λT‖2
S,T := infu∈Pp(T )

{
‖∇u‖2

L2(T)
+ ‖u−λ‖2

j,∂T

}
.

We use
∫

F λ̃ =
∫

F λT to apply Theorem 3 for estimating

‖λ̃‖2
S = ∑

T∈T
‖λ̃|∂T‖2

S,T � ∑
T∈T

{
‖λT‖2

S,T + ‖λ̃|∂T −λT‖2
S,T

}

≤ ∑
T∈T

{
‖λT‖2

S,T + ∑
F∈FT

‖λ̃∂T −λT‖2
F,0

}

� (log p)γ ∑
T∈T

{
‖λT‖2

S,T + ∑
F∈FT

‖λ̃∂T −λT‖2
F

}

� (log p)γ ∑
T∈T

{
‖λT‖2

S,T + ∑
F∈FT

‖λT‖2
F

}

� (log p)γ ∑
T∈T

‖λT‖2
S,T .

The condition number κ(C−1
BDDCA) is given by the continuity bound

c(p) = (log p)γ . �

4 Traces and Polynomial Extensions on the Interval

In this section we collect some properties of Jacobi polynomials which can be found
in [44, Chapter 4], or [1], then we prove trace and extension estimates on the interval.
Let w = (1−x)α(1+x)β be the weight function, for us α,β ∈N0 is sufficient. The
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nth-order Jacobi polynomial P(α ,β )
n is defined by Rodrigues’ formula as

P(α ,β )
n (x) :=

1
(−2)nn!w(x)

dn

dxn

(
w(x)(1− x2)n

)
.

There holds the orthogonality relation

1∫
−1

wP(α ,β )
n P(α ,β )

m dx = δn,m
2α+β+1

2n+α+β + 1
(n+α)!(n+β )!
n!(n+α+β )!

,

and boundary values are

P(α ,β )
n (1) =

(
n+α

n

)
.

The Legendre polynomials are Pn :=P(0,0)
n , and the integrated Legendre polynomials

are defined as

Ln(x) =

x∫
−1

Pn−1(s)ds.

We often use

‖Pn‖2
L2([−1,1]) =

2
2n+ 1

,

and we need
(2n+ 1)Ln+1 = Pn+1 −Pn−1.

Parameters can be shifted by

(2n+α+β )P(α−1,β )
n = (n+α+β )P(α ,β )

n − (n+β )P(α ,β )
n−1 ,

and by telescoping one obtains for the particular choice α = 1

(m+β + 1)P(1,β )
m =

m

∑
n=0

(2n+β + 1)P(0,β )
n . (5)

Differentiating Jacobi polynomials gives

d
dx

P(α ,β )
n =

1
2
(n+α+β + 1)P(α+1,β+1)

n−1 . (6)

Lemma 1 (Trace inequality 1D). For v ∈ Pn there holds

v(0)2 ≤ S(α,β ,n)
1∫

0

yα(1− y)βv(y)2 dy, (7)
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and for every n there exists an l(α ,β )n ∈ Pn such that l(α ,β )n (0) = 1 and

1∫
0

yα(1− y)β l(α ,β )n (y)2 dy ≤ S(n,α,β )−1,

with

S(n,α,β ) =
(n+α+ 1)!(n+α+β + 1)!

α!(α+ 1)!n!(n+β )!
.

For a fixed α there holds

S(n,α,β )� (n+ 1)α+1(n+ 1+β )α+1.

Proof. Estimate (7) is sharp for the solution of the constrained minimization
problem

min
v(0)=1

1∫
0

yα(1− y)βv(y)2 dy.

By choosing the representation

v(y) =
n

∑
k=0

ckP(α ,β )
k (1− 2y),

the minimization problem can be rephrased as

min
c∈Rn+1

b�c=1

c�Dc

with b ∈ R
n+1 and D ∈ R

(n+1)×(n+1) diagonal with components

bk = P(α ,β )
k (1) =

(k+α)!
α!k!

,

Dk,k =

1∫
0

yα(1− y)βP(α ,β )
k (1− 2y)2 dy =

1∫
−1

(1− z
2

)α(1+ z
2

)β
P(α ,β )

k (z)2 1
2

dz

=
1

2k+α+β + 1
(k+α)!(k+β )!
k!(k+α+β )!

.

Using the method of Lagrange multipliers we obtain
(

D b
b� 0

)(
c
λ

)
=

(
0
1

)
.

With the Schur complement

S = b�D−1b =
n

∑
k=0

b2
k

Dk,k
=

n

∑
k=0

(2k+α+β + 1)
(k+α)!(k+α+β )!
(α!)2 k!(k+β )!

,

the solution is given by λ = −1
S and c = 1

S D−1b. The value of the minimum is S−1.
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By means of the Paule/Schorn implementation [35] of Gosper’s algorithm,
V. Pillwein computed

S =
(n+α+ 1)!(n+α+β + 1)!

α!(α+ 1)!n!(n+β )!
.

More on computer algebra techniques in finite element methods is found in [39].
We continue with a hand-proof for the asymptotic behavior:

S � c(α)
n

∑
k=0

(k+ 1)α(k+β + 1)α+1

= c(α)
n

∑
k=0

(k+ 1)α
α+1

∑
j=0

(
α+ 1

j

)
(k+ 1) jβα+1− j

� c(α)
α+1

∑
j=0

(
α+ 1

j

)
(n+ 1) j+α+1βα+1− j

= c(α)(n+ 1)α+1(n+β + 1)α+1. �

Lemma 2. For v ∈ Pn there holds

(v(0)− v(1))2 � logn

1∫
0

y(1− y)v′(y)2 dy, (8)

v(0)2 � logn

1∫
0

y(1− y)(v′(y)2 + v(y)2)dy. (9)

Proof. To verify (8) we follow the lines of Lemma 1. Now we expand

v(y) =
n

∑
k=0

ckP(0,0)
k (1− 2y),

from (6) there follows

v′(y) =−
n

∑
k=1

ck(k+ 1)P(1,1)
k−1 (1− 2y),

and now

bk = P(0,0)
k (1)−P(0,0)

k (−1) = 1+(−1)k,

Dk,k = (k+ 1)2

1∫
0

y(1− y)P(1,1)
k−1 (1− 2y)2 dy = (k+ 1)2 k

(2k+ 1)(k+ 1)
,



40 J. Schöberl and C. Lehrenfeld

and thus

S =
p

∑
k=0

b2
k

Dk,k
=

n

∑
k=0

k even

4(2k+ 1)
(k+ 1)k

�
n

∑
k=0

1
k+ 1

� logn.

Estimate (9) follows from (8) as follows: for ṽ(y) := (1 − y)v(y) we apply (8) to
obtain

v(0)2 = ṽ(0)2 � logn

1∫
0

y(1− y)ṽ′(y)2 dy

= logn

1∫
0

y(1− y)[−v(y)+ (1− y)v′(y)]2 dy

� logn

1∫
0

y(1− y)
(
v(y)2 + v′(y)2)dy. �

Next we prove that the minimal energy extension in certain norms is also quasi-
optimal in related norms:

Lemma 3. We define for n,β ∈N0

lβn := argmin
v∈Pn,v(0)=1

1∫
0

y(1− y)βv(y)2 dy.

Then there holds

1∫
0

y(1− y)β lβn (y)
2 dy � 1

(n+ 1)2(n+β + 1)2 , (10)

1∫
0

(1− y)β lβn (y)
2 dy � 1

(n+ 1)(n+β+ 1)
, (11)

1∫
0

y(1− y)β+1((lβn )′(y))2 dy � 1. (12)

Proof. The optimizer lβn was calculated in the proof of Lemma 1 with α = 1, namely

lβn (y) =
n

∑
k=0

ckP(1,β )
k (1− 2y),
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with bk = k+ 1 and Dk,k =
1

2k+β + 2
k+ 1

k+β + 1
. We get

ck =
bk

Dk,kS
=

(2k+β + 2)(k+β + 1)
S

,

and S � (n+ 1)2(n+ β + 1)2. Inequality (10) was proven in Lemma 1. To verify

(11) we utilize (5) to re-expand lβn in terms of Jacobi-polynomials P(0,β )
n :

lβn (y) =
n

∑
k=0

ck

k

∑
j=0

2 j+β + 1
k+β + 1

P(0,β )
j (1− 2y)

=
n

∑
j=0

n

∑
k= j

2 j+β + 1
k+β + 1

ckP(0,β )
j (1− 2y)

=
1
S

n

∑
j=0

n

∑
k= j

(2k+β + 2)(2 j+β + 1)P(0,β )
j (1− 2y)

=
1
S

n

∑
j=0

(n+ j+β + 2)(n− j+ 1)(2 j+β+ 1)P(0,β )
j (1− 2y). (13)

Thus there holds
1∫

0

(1− y)β lβn (y)
2dy =

=
n

∑
j=0

1∫
0

(1− y)β (P(0,β )
j (1− 2y))2dy

(n+ j+β + 1)2(n− j+ 1)2(2 j+β + 1)2

S2

�
n

∑
j=0

1
2 j+β + 1

(n+ j+β+ 1)2(n− j+ 1)2(2 j+β + 1)2

(n+ 1)4(n+β + 1)4

� 1
(n+ 1)(n+β+ 1)

.

From (13) and (6) we get

(lβn )
′(y) =

1
S

n

∑
j=1

j+β + 1
2

(n+ j+β + 2)(n− j+ 1)(2 j+β+ 1)P(1,β+1)
j−1 ,

and thus with similar arguments as above

1∫
0

y(1−y)β+1(lβn )
′(y)2 dy � 1. �

We construct a family of minimal extensions {ep
i : 0 ≤ i ≤ p} similar to Lemma 3,

such that the differences between two consecutive functions is small. We obtain this
by weighted averaging of the previously defined lβn .
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Lemma 4. For i such that p/2 ≤ i ≤ p we define the weighted average

ep
i (y) =

1

∑p
k=i wk

p

∑
k=i

wk(1− y)k−il2k−1
p−k (y) with wk = (p− k+ 1)

and for i < p/2 we set

ep
i (y) := (1− y)�p/2�−iep

�p/2�(y).

There holds ep
i ∈ Pp−i, it satisfies the boundary condition ep

i (0) = 1 and the esti-
mates

1∫
0

y(1− y)2i−1ep
i (y)

2 dy � 1
p2(p− i+ 1)2 , (14)

1∫
0

(1− y)2i−1ep
i (y)

2 dy � 1
p(p− i+ 1)

, (15)

1∫
0

y(1− y)
( d

dy

(
(1− y)iep

i (y)
))2

dy, � 1. (16)

We define differences of consecutive functions as

d p
i (y) := ep

i (y)− (1− y)ep
i+1(y),

they satisfy d p
i ∈ Pp−i, d p

i = 0 for i < p/2, and

1∫
0

(1− y)2i−1d p
i (y)

2 dy � i2

p3(p− i+ 1)3 , (17)

1∫
0

y(1− y)
( d

dy

(
(1− y)id p

i (y)
))2

dy � i2

p2(p− i+ 1)2 . (18)

Proof. We apply the triangle inequality, use (10), and
p
∑

k=i
wk � (p− i+1)2 to prove

(14):

( 1∫
0

y(1− y)2i−1ep
i (y)

2 dy
)1/2

≤ 1

∑p
k=i wk

p

∑
k=i

wk

( 1∫
0

y(1− y)2i−1((1− y)k−il2k−1
p−k (y)

)2
dy
)1/2
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� 1

∑wk

p

∑
k=i

(p− k+ 1)
1

(p− k+ 1)(p− k+1+2k−1)
� 1

p(p− i+ 1)
.

The estimates (15) and (16) follow similarly.
The differences d p

i vanish for i < p/2, and (17) is trivially fulfilled for i < p/2.
Thus we assume i ≥ p/2. We realize that

d p
i (y) = ep

i (y)− (1− y)ep
i+1(y)

=
1

∑p
k=i wk

p

∑
k=i

wk(1− y)k−il2k−1
p−k (y)− 1

∑p
k=i+1 wk

p

∑
k=i+1

wk(1− y)k−il2k−1
p−k (y)

=
wi

∑p
k=i wk

(
l2i−1
p−i (y)− (1− y)ep

i+1(y)
)
.

Since
wi

∑p
k=i wk

� 1
p− i+ 1

,

we get

1∫
0

(1− y)2i−1d p
i (y)

2 dy

� 1
(p− i+ 1)2

( 1∫
0

(1− y)2i−1l2i−1
p−i (y)

2 dy+

1∫
0

(1− y)2i−1ep
i+1(y)

2 dy
)

� 1
(p− i+ 1)3p

.

The additional factor i2

p2 follows trivially since p/2 ≤ i ≤ p. Estimate (18) follows
similarly. �

5 Extension from a Vertex

In this section we define and analyze minimal extensions from a vertex of the refer-
ence tetrahedron T .

Lemma 5. We define

ẽV = argmin
v∈Pp−1,v(0)=1

1∫
0

y2v(y)2 dy

and
eV (y) = (1− y)ẽV (y).
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Then eV ∈ Pp with eV (0) = 1 and eV (1) = 0, and there holds

1∫
0

y2eV (y)
2 dy � p−6,

1∫
0

yeV (y)
2 dy � p−4,

1∫
0

y2e′V (y)
2 dy � p−2.

Proof. With Lemma 1 there follows

1∫
0

y2eV (y)
2 dy ≤

1∫
0

y2ẽV (y)
2 dy � p−6.

With, see [41, Theorem 3.96],

1∫
0

v(y)2 � p2

1∫
0

y(1− y)v(y)2 dy,

we get

1∫
0

yeV (y)
2 dy =

1∫
0

y(1− y)2ẽV (y)
2 dy � p2

1∫
0

y2(1− y)3ẽV (y)
2 dy � p−4,

and with
1∫

0

y(1− y)v′(y)2 dy � p2

1∫
0

v2(y)dy,

which is [41, Theorem 3.95], we get

1∫
0

y2e′V (y)
2 dy =

1∫
0

y2((1− y)ẽ′V (y)− ẽV (y))
2dy

�
1∫

0

y2(1− y)2ẽ′V (y)
2 +

1∫
0

y2ẽV (y)
2 dy

� p2

1∫
0

y(1− y)ẽV (y)
2 dy+ p−6 � p−2. �

Theorem 6 (Extension from a vertex). Let V be a vertex of the reference tetra-
hedron T , and λV the corresponding barycentric coordinate. Define the vertex-to-
element extension EV→T : R→ Pp(T ) as

EV→T v := eV (1−λV)v.
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Then u := EV→T v(V ) vanishes on the face opposite to V and satisfies

‖∇u‖2
L2(T )

+ ∑
F∈FT

‖u‖2
j,F � ‖v‖2

H1(T).

Proof. We recall the inverse estimate |v(V )| � p2‖v‖2
H1(T)

. There holds

‖∇eV (1−λV)‖2
L2(T )

�
1∫

0

(1−λV)
2e′V (1−λV)

2 dλV � p−2,

and for a face F containing V we have

‖eV‖2
j,F � p2‖eV‖2

L2(F) � p2

1∫
0

(1−λV )eV (1−λV)
2 dλV � p−2,

and thus the powers of p cancel out. �

6 Extension from an Edge

In this section we analyze trace operator on edges, and define edge-to-element ex-
tension operators. We consider the edge E = {(x,0,0) : |x| ≤ 1} of the reference
tetrahedron T defined by (2). We split the construction into two pieces, one is face-
to-element extension, the other one is edge-to-face extension.

Lemma 6. Define the face-to-element extension EF→T and the element-to-face re-
striction operator RT→F between the reference tetrahedron T and the reference face
F from (2), (3) as

(EF→T u)(x,y,z) = u(x,y+ z), (19)

(RT→F w)(x,y) =

1∫
0

w(x,sy,(1− s)z)ds. (20)

These operators are mappings between Pp(T ) and Pp(F), preserve the function on
the edge y = z = 0, and are continuous with respect to the norms

‖RT→F w‖L2(F),y � ‖w‖L2(T ), ‖RT→F w‖H1(F),y � ‖w‖H1(T ),

‖EF→T u‖L2(T ) � ‖u‖L2(F),y, ‖EF→T u‖H1(T) � ‖u‖H1(F),y

with the norms

‖u‖2
L2(F),y :=

∫
F

yu(x,y)2 d(x,y), ‖u‖2
H1(F),y := ‖u‖2

L2(F),y + ‖∇u‖2
L2(F),y

.
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Proof. The proof follows from change of variables via

g : [0,1]×F → T : (s,x,y) �→ (x,sy,(1− s)y)

with |detg′|= y, and thus

∫
T

u(ξ ,η ,ζ )2 d(ξ ,η ,ζ ) =
1∫

0

∫
F

yu(x,sy,(1− s)y)2 d(x,y)ds. �

Next we study trace and extension operators between the face F and the edge E .
Continuity is proven with respect to the weighted norm ‖ · ‖H1(F),y, and a proper
norm on the edge ‖ · ‖E .

Expand u ∈ Pp(F) as

u(x,y) =
p

∑
i=2

Li

( x
1− y

)
(1− y)iui(y)+ xu1(y)− u0(y), (21)

where ui ∈ Pp−i. Utilize Li =
1

2i−1(Pi − Pi−2), define ui = 0 for i > p, and shift
indices

u(x,y) =
p

∑
i=2

1
2i− 1

Pi(·)(1− y)iui(y)−
p

∑
i=2

1
2i− 1

Pi−2(·)(1− y)iui(y)

+xu1(y)− u0(y)

=
p

∑
i=2

Pi(·)(1− y)i
( ui

2i− 1
− ui+2(1− y)2

2i+ 3

)

−1
3
(1− y)2u2 −

1
5

x(1− y)2u3 + xu1(y)− u0(y)

=
p

∑
i=0

Pi

( x
1− y

)
(1− y)i

( ui(y)
2i− 1

− (1− y)2ui+2(y)
2i+ 3

)
.

Thus, u can be re-expanded as

u(x,y) =
p

∑
i=0

Pi

( x
1− y

)
(1− y)ivi(y), (22)

where the vi ∈ Pp−i are given as

vi(y) =
ui(y)
2i− 1

− (1− y)2ui+2(y)
2i+ 3

. (23)
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Lemma 7. Let u ∈ Pp(F), and ui,vi ∈ Pp−i be the expansion coefficients in (21) and
(22). Then there holds

‖u‖2
L2(F),y

�
p

∑
i=0

1
i+ 1

1∫
0

y(1− y)2i+1vi(y)
2 dy

and

‖∇u‖2
L2(F),y �

p

∑
i=1

1
i

1∫
0

y(1− y)2i−1u2
i (y)dy

+
p

∑
i=0

1
i+ 1

1∫
0

y(1− y)
( d

dy

(
(1− y)ivi(y)

))2
dy.

Proof. Use the Duffy transform

g : [−1,1]× [0,1]→ F : (ξ ,y) �→ (x,y) = (ξ (1− y),y)

with detg′ = (1− y) to transform the norm

‖u‖2
L2(F),y =

∫
F

yu(x,y)2 d(x,y) =

1∫
0

1∫
−1

y detg′ u(ξ ,y)2 dξ dy

=

1∫
0

1∫
−1

y(1− y)
( p

∑
i=0

Pi(ξ )(1− y)ivi(y)
)2

dξdy

=
p

∑
i=0

1∫
−1

Pi(ξ )2 dξ
1∫

0

y(1− y)2i+1vi(y)
2 dy.

To transform the gradient-norm we calculate

(g′)−� =

(
1

1−y 0
ξ

1−y 1

)

and note that
|(g′)−�v|2 � (1− y)−2v2

1 + v2
2 ∀v ∈ R

2.

Then we get

‖∇u‖2
L2(F),y =

1∫
0

1−y∫
−1+y

y |∇(x,y)u|2 dxdy =

1∫
0

1∫
−1

y detg′ |(g′)−T∇(ξ ,y)u|2 dξdy
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�
1∫

0

1∫
−1

y(1− y)−1

∣∣∣∣ ∂u
∂ξ

(ξ ,y)
∣∣∣∣
2

dξdy+

1∫
0

1∫
−1

y(1− y)

∣∣∣∣∂u
∂y

(ξ ,y)
∣∣∣∣
2

dξdy.

For the first term we use representation (21):

1∫
0

1∫
−1

y(1− y)−1
( p

∑
i=2

L′
i(ξ )(1− y)iui(y)+ u1(y)

)2
dξ dy

=

1∫
0

1∫
−1

y(1− y)−1
( p

∑
i=1

Pi−1(ξ )(1− y)iui(y)
)2

dξ dy

=
p

∑
i=1

1∫
−1

Pi−1(ξ )2 dξ
1∫

0

y(1− y)2i−1ui(y)
2 dy.

For the second term we use representation (22):

1∫
0

1∫
−1

y(1− y)
( ∂
∂y

p

∑
i=0

Pi(ξ )(1− y)ivi(y)
)2

dξ dy

=
p

∑
i=0

1∫
−1

Pi(ξ )2 dξ
1∫

0

y(1− y)
( d

dy

(
(1− y)ivi(y)

))2
dy. �

For

u(x) =
p

∑
i=2

uiLi(x)+ u1x− u0 =
p

∑
i=0

viPi(x) ∈ Pp(E)

we define the norm

‖u‖2
E :=

p

∑
i=1

u2
i

ip2(p− i+ 1)2 +
p

∑
i=0

v2
i

i+ 1
. (24)

We note that
p

∑
i=0

v2
i

i+ 1
� ‖u‖2

L2(E)
.

Numerical tests indicate that the first sum in (24) is bounded by log p‖u‖2
L2(E)

, and
we decided to keep it in the definition of the norm ‖ · ‖E instead of loosing another
log-factor.

Lemma 8 (Trace theorem on edges). Let u ∈ Pp(F). Then there holds

‖u|E‖2
E � log p ‖u‖2

H1(F),y.



DD Preconditioning for High Order Hybrid DG Methods 49

Proof. Follows immediately from the definition of ‖·‖E , trace inequalities, Lemma 1
and Lemma 2, and the representation Lemma 7:

‖u‖2
E =

p

∑
i=1

u2
i (0)

ip2(p− i+ 1)2 +
p

∑
i=0

v2
i (0)

i+ 1

�
p

∑
i=1

1
ip2(p− i+ 1)2 p2(p− i+ 1)2

1∫
0

y(1− y)2i−1ui(y)
2 dy

+
p

∑
i=0

1
1+ i

log p

1∫
0

y(1− y)
[( d

dy

(
(1− y)ivi(y)

))2
+
(
(1− y)ivi(y)

)2]
dy

� log p‖u‖2
H1(F),y. �

Lemma 9 (Extension from edges). For u(x) =∑p
i=2 uiLi(x)+u1x−u0 ∈ Pp(E) and

the functions ep
i from Lemma 4 we define the extension operator as

(EE→F u)(x,y) :=
p

∑
i=2

uiLi

( x
1− y

)
(1− y)iep

i (y)+ u1xep
1(y)− u0ep

0(y).

Then here holds
‖EE→F u‖H1(F),y � ‖u‖E.

Proof. We convert the extended function into the Legendre basis as

EE→F u =
p

∑
i=0

Pi

( x
1− y

)
(1− y)ivi(y),

where vi ∈ Pp−i are

vi(y) =
uie

p
i (y)

2i− 1
−

ui+2(1− y)2ep
i+2(y)

2i+ 3
.

We rewrite

vi(y) =
( ui

2i− 1
− ui+2

2i+ 3

)
ep

i (y)+
(
ep

i (y)− (1− y)2ep
i+2(y)

) ui+2

2i+ 3

= vi(0)e
p
i (y)+

ui+2

2i+ 3

(
d p

i (y)+ (1− y)d p
i+1(y)

)
. (25)

Note that there holds u(x) = ∑p
i=0 vi(0)Pi(x).

From Lemma 4 and Lemma 7 there follows

‖EE→Fu‖2
L2(F),y

�
p

∑
i=0

1
i+ 1

1∫
0

y(1− y)2i+1
(

ep
i (y)vi(0)+

(
d p

i (y)+ (1− y)d p
i+1(y)

) ui+2

2i+ 3

)2
dy
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�
p

∑
i=0

vi(0)2

i+ 1
1

p2(p− i+ 1)2 +
p

∑
i=0

u2
i+2

(i+ 1)3

i2

p3(p− i+ 1)3 � ‖u‖2
E

and

‖∇EE→F u‖2
L2(F),y =

p

∑
i=1

u2
i

i

∫
y(1− y)2i−1ep

i (y)
2 dy

+
p

∑
i=0

1
i+ 1

1∫
0

y(1− y)
( d

dy

(
(1− y)i(ep

i (y)v0

+
(
d p

i (y)+ (1− y)d p
i+1(y)

) ui+2

2i+ 3

)))2
dy

�
p

∑
i=1

u2
i

i

∫
y(1− y)2i−1ep

i (y)
2 dy+

p

∑
i=0

v2
i

i+ 1

∫
y(1− y)

( d
dy

(
(1− y)iep

i (y)
))2

dy

+
p

∑
i=0

u2
i+2

(i+ 1)3

∫
y(1− y)

( d
dy

(
(1− y)i(d p

i (y)+ (1− y)d p
i+1(y)

))2
dy.

Now we apply Lemma 4 to estimate

‖∇u‖2
L2(F),y

�
p

∑
i=1

u2
i

i
1

p2(p− i+ 1)2 +
p

∑
i=0

v2
i (y)

i+ 1
� ‖u‖2

E . �

Next we estimate the contributions from the jump - norms. For this, we prove a
face-to-edge trace lemma in weighted L2-norms:

Lemma 10. Let D = {(y,z) : y ≥ 0,z ≥ 0,y+ z ≤ 1}. For v ∈ Pn(D) there holds

1∫
0

yα(1− y)βv(y,0)2 dy � (n+ 1)(n+α+β + 1)
∫
D

yα(1− y− z)βv(y,z)2 d(y,z).

Proof. We expand

v(y,z) =
n

∑
j=0

P(α ,β )
j

(
2

y
1− z

− 1
)
(1− z) jv j(z)

with v j ∈ Pn− j, and calculate

1∫
0

yα(1− y)βv(y,0)2 dy =
n

∑
j=0

1∫
0

yα(1− y)βP(α ,β )
j (2y− 1)2 dy v j(0)

2,
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and with the change of variables (y,z) = (η(1− z),z)∫
D

yα(1− y− z)βv(y,z)2 d(y,z)

=

1∫
0

1∫
0

ηα(1−η)β (1− z)α+β+1v(η(1− z),z)2 dηdz

=
p

∑
j=0

1∫
0

ηα(1−η)αP(α ,β )
j (2η− 1)2 dη

1∫
0

(1− z)α+β+1+2 jv j(z)
2 dz.

The estimate follows with Lemma 1, i.e.

v j(0)2 � (n− j+ 1)(n− j+α+β + 1+ 2 j)

1∫
0

(1− z)α+β+1+2 jv j(z)
2 dz,

for 0 ≤ j ≤ n. �

Lemma 11. For u ∈ Pp(E) there holds

‖EE→Fu‖ j,F � ‖u‖E .

Proof. By characterization (1) we have to prove the estimate

(EE→F u,σ)L2(F) � ‖u‖E ‖σ‖L2(T ) ∀u ∈ Pp(E),∀σ ∈ Pp(T ).

We recall

EE→F u =
p

∑
i=0

vi(y)Pi

( x
1− y

)
(1− y)i

with (25)
vi(y) = vi(0)e

p
i (y)+

ui+2

2i+ 3
(d p

i (y)+ (1− y)d p
i+1).

We expand σ as

σ =
p

∑
i=0

Pi

( x
1− y− z

)
(1− y− z)iσi(y,z)

with σi ∈ Pp−i(D). By the change of variables (x,y,z) = (ξ (1− y− z),y,z) we have

‖σ‖2
L2(T )

=
∫
D

1−y−z∫
−1+y+z

σ(x,y,z)2 dxd(y,z)

=
∫
D

1∫
−1

(1− y− z)σ(ξ (1− y− z),y,z)2 dξ d(y,z)

=∑
i
‖Pi‖2

0

∫
D

(1− y− z)2i+1σi(y,z)
2 d(y,z).
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We expand the inner product, use Lemma 4 and Lemma 10 to estimate

(EE→F u,σ)L2(F)

=

1∫
0

1−y∫
−1+y

( p

∑
i=0

Pi

( x
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)
(1− y)ivi(y)

)( p

∑
j=0

Pi

( x
1− y

)
(1− y)iσi(y,0)

)
dxdy

=
p

∑
i=0

‖Pi‖2

1∫
0

(1− y)2i+1vi(y)σi(y,0)dy

≤
p

∑
i=0

‖Pi‖2
( 1∫

0

(1− y)2i+1vi(y)
2 dy
)1/2( 1∫
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2 dy
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�
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≤
( p

∑
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‖Pi‖2
(
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i

p2(p− i+ 1)2
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( p

∑
i=0

‖Pi‖2
∫
D

(1− y− z)2i+1σi(y,z)
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)2

� ‖u‖E ‖σ‖L2(T ). �

Finally we define the edge to element extension EE→T : Pp(E)→ Pp(T ) as

EE→T := EF→T EE→F .

Theorem 7. For v ∈ Pp(T ) define

u := EE→T v|E .

Then u|E = v|E and there holds

‖u‖2
H1(T ) + ∑

F:E⊂F
‖u‖2

j,F � log p‖v‖2
H1(T ).

If in addition v vanishes at the end-points of the edge E, then u vanishes on faces
not containing E, and there holds

‖u‖2
H1(T) + ‖u‖2

j,∂T � log p‖v‖2
H1(T).

Proof. Follows from the construction of EF→T and EE→F , and Lemmas 6, 8, 9,
and 11. �
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7 Numerical Results

In this section we give some computational results for different versions of stabi-
lization terms. The first one is the facet-wise Bassi-Rebay stabilization as we have
analyzed. The second one is an element-wise Bassi-Rebay stabilization where

‖u−λ‖ j,∂T := sup
σ∈[Pp(T )]3

∫
∂T (u−λ )σn ds

‖σ‖L2(T )
.

Here it is enough to choose the stabilization factor α > 1. The norm is equivalent
to the analyzed one (the proof is at some point tricky, and not given here). The
developed theory carrys over. The third one is weighted L2-stabilization with

‖u−λ‖2
j := α

p2

h
‖u−λ‖2

L2(∂T )

Here, the choice of a sufficiently large α is not trivial.
We have chosen Ω = (0,1)3, and used Netgen to generated an unstructured

mesh consisting of 184 tetrahedral elements. The condition numbers using a
BDDC preconditioner are given in Table 1. Choosing α < 3 for the method with
L2-stabilization does not lead to a coercive discrete problem.

It is clearly seen that the condition number depends on the stabilization term,
and it is an advantage of having a method for which small stabilization factors are
guaranteed to be stable. As we have proven, the condition numbers show a poly-
logarithmic growth for the BR-facet method. It is left the reader to interpret the
numbers for L2-stabilization, from our analysis there follows only κ � p(log p)γ

due to norm equivalence (4).

Table 1 Condition numbers of the BDDC preconditioned system depending on p and the
stabilization method.

pol deg BR - facet BR - element L2-stab L2-stab L2-stab L2-stab
α = 5 α = 1.5 α = 5 α = 10 α = 20 α = 40

2 24.91 10.62 12.91 23.74 45.50 88.96
4 41.41 18.64 23.62 41.19 75.63 144.65
8 59.44 33.16 42.27 67.20 116.47 214.49
16 80.70 54.78 65.97 94.73 152.47 268.62
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