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Preface

The International Workshop on Complex Networks series — CompleNet
(www.complenet.org) was initially proposed in 2008 with the first workshop tak-
ing place in 2009. The initiative was the result of efforts from researchers from the
BioComplex Laboratory in the Department of Computer Sciences at Florida Insti-
tute of Technology, USA, and the Dipartimento di Ingegneria Informatica e delle
Telecomunicazioni, Universita‘ di Catania, Italia. CompleNet aims at bringing to-
gether researchers and practitioners working on areas related to complex networks.
In the past two decades we have been witnessing an exponential increase on the
number of publications in this field. From biological systems to computer science,
from economics to social systems, complex networks are becoming pervasive in
many fields of science. It is this interdisciplinary nature of complex networks that
CompleNet aims at addressing. CompleNet 2012 was the third event in the series
and was hosted by the BioComplex Laboratory, Department of Computer Sciences
at the Florida Institute of Technology, USA from March 7-9, 2012.

This book includes the peer-reviewed list of works presented at CompleNet 2012.
We received 98 submissions from 22 countries. Each submission was reviewed by
at least 3 members of the Program Committee. Acceptance was judged based on the
relevance to the workshop themes, clarity of presentation, originality and accuracy
of results, and proposed solutions. After the review process, 9 papers and 18 short
papers were selected to be included in this book.

The 27 contributions in this book address many topics related to complex net-
works and have been organized in seven major groups: (1) Network Measures and
Models, (2) Agents, Communication and Mobility, (3) Communities, Clusters and
Partitions, (4) Emergence in Networks, (5) Social Structures and Networks, (6) Net-
works in Biology and Medicine, and (7) Applications of Networks.

We would like to thank to the Program Committee members for their work in
promoting the event and refereeing submissions. We deeply appreciate the efforts
of our keynote speakers: Albert-Laszl6 Barabdsi (Northeastern University), Sinan
Aral (New York University), and Robert Bonneau (Air Force Office of Scientific
Research); their presentation is one of the reasons CompleNet 2012 was such a suc-
cess. We are grateful to our invited speakers who enriched CompleNet 2012 with



VI Preface

their presentations and insights in the field of Complex Networks (in alphabetical or-
der): Julia Poncela Casasnovas (Northwestern University), Gourab Ghoshal (North-
eastern University), Neil Johnson (University of Miami), Sune Lehmann (Technical
University of Denmark), Nathalie “Henry” Riche (Microsoft Research), and My
Thai (University of Florida).

Special thanks also go to Marco Carvalho, Eraldo Ribeiro, Ryan Stansifer and
William Shoaff from the Florida Institute of Technology for their help in organiz-
ing CompleNet 2012. The next edition of CompleNet will be hosted by the Freie
Universitit Berlin, Germany, from March 13-15, 2013.

March 2012 Ronaldo Menezes
Melbourne, Florida Alexandre Evsukoff
Marta C. Gonzalez
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Hybrid Centrality Measures for Binary
and Weighted Networks

Alireza Abbasi and Liaquat Hossain

Abstract. Existing centrality measures for social network analysis suggest the im-
portance of an actor and give consideration to actor’s given structural position in
a network. These existing measures suggest specific attribute of an actor (i.e.,
popularity, accessibility, and brokerage behavior). In this study, we propose new
hybrid centrality measures (i.e., Degree-Degree, Degree-Closeness and Degree-
Betweenness), by combining existing measures (i.e., degree, closeness and bet-
weenness) with a proposition to better understand the importance of actors in a
given network. Generalized set of measures are also proposed for weighted net-
works. Our analysis of co-authorship networks dataset suggests significant corre-
lation of our proposed new centrality measures (especially weighted networks)
than traditional centrality measures with performance of the scholars. Thus, they
are useful measures which can be used instead of traditional measures to show
prominence of the actors in a network.

1 Introduction

Social network analysis (SNA) is the mapping and measuring of relationships and
flows between nodes of the social network. SNA provides both a visual and a ma-
thematical analysis of human-influenced relationships. The social environment can
be expressed as patterns or regularities in relationships among interacting units [1].
Each social network can be represented as a graph made of nodes or actors (e.g. in-
dividuals, organizations, information) that are tied by one or more specific types of
relations (e.g., financial exchange, trade, friends, and Web links). A link between
any two nodes exists, if a relationship between those nodes exists. If the nodes
represent people, a link means that those two people know each other in some way.

Alireza Abbasi - Liaquat Hossain

Centre for Complex Systems Research, Faculty of Engineering and IT,
University of Sydney, NSW 2006, Australia

e-mail: alireza.abbasi@sydney.edu.au
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Measures of SNA, such as network centrality, have the potential to unfold ex-
isting informal network patterns and behavior that are not noticed before [2]. A
method used to understand networks and their participants is to evaluate the loca-
tion of actors within the network. These measures help determine the importance
of a node in the network. Bavelas [3] was the pioneer who initially investigates
formal properties of centrality as a relation between structural centrality and influ-
ence in group process. To quantify the importance of an actor in a social network,
various centrality measures have been proposed over the years [4]. Freeman [5]
defined centrality in terms of node degree centrality, betweenness centrality, and
closeness, each having important implications on outcomes and processes.

While these defined measures are widely used to investigate the role and im-
portance of networks but each one is useful based on especial cases, as discussed
below:

(1) Degree centrality is simply the number of other nodes connected directly to
a node. It is an indicator of an actor’s communication activity and shows populari-
ty of an actor;

(i1) Closeness centrality is the inverse of the sum of distances of a node to oth-
ers (‘farness’). A node in the nearest position to all others can most efficiently ob-
tain information;

(iii) Betweenness centrality of a node is defined as the portion of the number
of shortest paths that pass through the given node divided by the number of short-
est path between any pair of nodes (regardless of passing through the given node)
[6]. This indicates a node’s potential control of communication within the network
and highlights brokerage behavior of a node;

(iv) Eigenvector centrality is a measure of the importance of a node in a network.
It assigns relative scores to all nodes in the network based on the principle that con-
nections to high-scoring nodes contribute more to the score of the node in question
than equal connections to low-scoring nodes. Bonacich [7] defines the centrality of a
node as positive multiple of the sum of adjacent centralities.

For detail explanations and equations for the centrality measures please refer to [8].
In this study, we propose new centrality measures (i.e., Degree-Degree, De-
gree-Closeness and Degree-Betweenness), which combines existing measures
(i.e., degree, closeness and betweenness) for improving our understanding of the
importance of actors in a network. To show the significance of proposed new
measure in evaluating actors’ importance in the network, we first compare our
proposed measures with a sample simple network and then we test it with a real
co-authorship network having performance measure of nodes (scholars).

2 Hybrid Centrality Measures

To investigate the role and importance of nodes in a network, the traditional (pop-
ular) centrality measures could be applied in especial cases. By developing
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hybrid (combined) centrality measures, we are expecting to have a better under-
standing of importance of actors (nodes) in a network which can assist in explor-
ing different characteristics and role of the actors in the network.

The proposed new measures work in combining (at least) two of the most popu-
lar and basic existing centrality measures of each actor. Thus, to achieve our goal,
we propose three measures with an emphasis on degree, closeness and between-
ness centralities of the direct neighbors of an actor. This will support in identifying
the nodes which are central themselves and also connected to direct central nodes,
which demonstrates strategic positions for controlling the network.

To define new hybrid centrality measures, we consider a network having cen-
trality measures of each node as the attribute of the node. Then, we define hybrid
centrality measures of a node as sum of centrality measure of all directly con-
nected nodes. Thus, the Degree-Degree (DD), Degree-Closeness (DC) and De-
gree-Betweenness (DB) centralities of node a is given by:

1t 1

"
DD (@)= 3 G, DE@= D E), DE (@)= Y Call)

i="

=1 =

[t

Where 7 is the number of direct neighbors of node a (degree of node a) and Cp(i)
is the degree centrality measure, Cc(i) is the closeness centrality measure and
Cp(i) is the betweenness centrality measure of node i (as a representation of direct
neighbors of node a).

To have generalized measures, considering weighted networks which their
links have different strengths, we can extend definitions by considering the weight
of the links. Thus, the general hybrid centrality measures of node a are given by:

¥ i t
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Where r is the number of direct neighbors of node a and w(a,i) is the weight of the
link between node a and its neighbors i.

Degree-Degree (DD) centrality indicates the actors who are connected better to
more actors. It reflects the theory that connecting to more powerful actors will
give you more power. So, it indicates the popularity of an actor based on populari-
ty of its direct neighbors. Degree-Closeness (DC) centrality indicates not only an
actors’ power and influence on transmitting and controlling information but also
efficiency for communication with others or efficiency in spreading information
within the network. It indicates popularity and accessibility of an actor simulta-
neously. Also, Degree-Betweenness (DB) centrality indicates not only an actors’
power and influence on transmitting and controlling information but also potential
control of communication and information flow within the network. It shows pop-
ularity and brokerage attitude of an actor in the network simultaneously.
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4 Applicability of New Measures for Analyzing Nodes in
Networks

4.1 Simple Examples

To compare our new proposed centrality measures and traditional centrality meas-

ures, we consider a simple network (Figure 1) and calculate nodes centrality

measures (Table 1) and show the different ranks of the nodes based on each cen-
trality measures in Table 2.

Fig. 1. An example @
simple network for @
comparing traditional

and new centrality
measures @ @ @ @

Table 1. Nodes’ centrality measures for example network in Figure 1

No Co Cc Cs Ck DD DC DB
1 429 438 0 671 1.429 1.458 0.571
2 429 438 0 671 1.429 1.458 0.571
3 429 438 0 671 1.429 1.458 0.571
4 571 583 571 739 1.571 1.896 0.571
5 286 583 571 280 1.000 1.083 1.048
6 429 .500 476 130 0.857 1.320 0.571
7 286 368 0 .062 0.714 0.868 0.476
8 286 368 0 062 0.714 0.868 0.476

Table 2. Ranking nodes based on different centrality measures for network in Figure 1

Rank [ Cc Cs Ce DD DC DB
1 4 4,5 4,5 4 4 4 5
2 1,2,3,6 6 6 1,2,3 1,2,3 1,23 1,2346
3 5,7,8 1,23 1,2378 5 5 6 7,8
4 7,8 6 6 5
5 7,8 7,8 7,8

As we expect the results and even ranks between traditional centrality measures
are different except for eigenvector centrality (Cg, DD and almost DC). That
is because the hybrid centralities can be considered as variants of eigenvector
centrality.
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4.2 A Real Co-authorship Network

Several studies have been shown the applicability of centrality measures for co-
authorship networks for demonstrating how centrality measures are useful to reflect
the performance of scholars (i.e., scholars’ position within their co-authorship net-
work) [8-10]. Here, also in another attempt, to assert the applicability of new hybrid
centrality measures, we study a real co-authorship network having performance
measure of actors (scholars) and their centrality measures, and test the correlation
between centrality measures and performance measures.

4.2.1 Data

We analyzed the dataset which has been used in [8-9], publication list of five in-
formation schools: University of Pittsburgh, UC Berkeley, University of Mary-
land, University of Michigan, and Syracuse University. The data sources used are
the school reports, which include the list of publications of researchers, DBLP,
Google Scholar, and ACM portal. Citation data has been taken from Google Scho-
lar and ACM Portal. Our data covered a period of five years (2001 to 2005), ex-
cept for the University of Maryland iSchool, which had no data for the year 2002
in their report. We followed Google Scholars approach and did not differentiate
between the different types of publications. After the cleansing of the publication
data of the five iSchools, 2139 publications, 1806 authors, and 5310 co-
authorships were finally available for our analysis.

4.2.2 Measuring Scholars’ Performance

To assess the performance of scholars, many studies suggest quantifying scholars’
publication activities (mainly citations count) as a good measure for the perfor-
mance of scholars. Hirsch [11] introduced the h-index as a simple measure that
combines in a simple way the quantity of publications and the quality of publica-
tions (i.e., number of citations). The h-index is defined as follows: “A scientist has
an h-index of A, if h of her Np papers have at least & citations each, and the other
(Np - h) papers have at most 4 citations each” [11]. In other words, a scholar with
an index of & has published & papers, which have been cited at least 4 times.

4.2.3 Results

The result of Spearman correlation rank test between centrality measures and
scholars’ performance (e.g., sum of citations and h-index) has been shown in Ta-
ble 3. As it shows all traditional and new centrality measures are significantly cor-
related to performance measure except for eigenvector centrality and closeness
which have weak or not significant correlations.
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Table 3. Spearman correlation rank test between scholars’ network centrality measures and
their performance

Centrality Measures (N=1806) Scholars Performance

Sum_Cit. h-index

Cp 332 ** 311 **
Cc -.012 052 *
Cp 388 ** 501 **
Cg .060 * .041

DD 296 ** 261 **
DC .303 295 ik
DB 203 ** 255 **
DDy 304 426 **
DCyw 385 ** 432 **
DBy 304 ** .503 %

*, Correlation is significant at the .05 level (2-tailed).
#*_Correlation is significant at the .01 level (2-tailed).

All new hybrid centrality measures of scholars have high positive significant
association with their performance rather than traditional centrality measures. That
is because the new measures combined two centrality measures’ attributes and
highlights the importance of the nodes in the network more than traditional ones.
The new centrality measures considering weighted links have higher correlation
coefficients. This is due to taking into account scholar’s repeated collaborations.

Another outcome of this result is that new centrality measure are different from
eigenvector centrality and to support this we also applied non-parametric indepen-
dent t-test (Mann-Whitney U test) to compare the distribution of eigenvector cen-
trality measure between two groups (lower than mean of h-index and above mean)
and it was not significant while the t-test was significant for new centrality meas-
ures. So, this also supports that new centrality measures are different from eigen-
vector centrality.

5 Conclusions

In this paper, we proposed a new class of hybrid centrality measures (i.e., DD,
DC, DB). We illustrated similarities and dissimilarities with respect to the tradi-
tional (standard) measures considering a sample network and a real co-authorship
network. Our analysis showed that they are good indicators of the importance of
an actor in a social network by combing traditional centrality measures: degree of
each node with degree, closeness and betweenness of its direct contacts for De-
gree-Degree, Degree-Closeness, Degree-Betweenness measures respectively. As
each of them combines two different attributes (characteristics) of traditional
measures, they could be a good extension of traditional centrality measures.

To demonstrate that the new measures are useful in practice to evaluate actors’
importance in the network, we test it with having performance measures (e.g., sum
of citations, h-index) of scholars. The results highlighted that Degree-Degree
(DD), Degree-Closeness (DC) and Degree-Betweenness (DB) centralities have
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significant correlation with performance of the actors. Based on the results, we
suggest that DD, DC and DB centralities of an actor are good measures to demon-
strate the importance of an actor (e.g., performance, power, social influence) in a
network.

It has been shown that in complex networks, Betweenness centrality of an ex-
isting node is a significantly better predictor of preferential attachment by new en-
trants than degree or closeness centrality [12]. We expect that the new proposed
measure may be a better driver of attachment of new added nodes to the existing
ones during the evolution of the network.

The computational complexity for calculating the proposed measure can be
considered as one of the limitations of these new proposed measures which needs
more research in future works. Also to generalize the applicability of the new hy-
brid measures, it is needed to apply them in different (complex) networks in future
works.

Acknowledgments. We appreciate Dr. Kenneth Chung’s feedback on the earlier version of
this work.
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A Growing Model for Scale—Free
Networks Embedded in Hyperbolic
Metric Spaces*

Giuseppe Mangioni and Antonio Lima

Abstract. Some results by Krioukov et al. show how real world networks
are produced by hidden metric spaces. Specifically, scale-free networks can
be obtained from hyperbolic metric spaces. While the model proposed by
Krioukov can produce a static scale-free network, all nodes are created at
one time and none can be later added. In this work we propose a growing
model which leverages the same concepts and allows to gradually add nodes
to a scale-free network, obtained from a discretised hyperbolic model. We
also show how nodes are correctly positioned relying on local information
and how greedy routing builds optimal paths in the network.

1 Introduction

Complex networks provide a natural abstraction for many processes which
happen everyday [1, [0, [], in all areas of human life and knowledge, making
it possible to study them more easily and more deeply, sometimes opening
the path to new groundbreaking discoveries. For this reason, it is fundamen-
tal to fully understand their structure, their dynamic behaviour and all the
underlying mechanics.

Many complex networks observed from real world exhibit a well-defined
property, known as scale-free topology [3]. Scale—free topology is characterised

Giuseppe Mangioni
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by two aspects: the node degree distribution P(k) follows a power law distri-
bution P(k) ~ k=7 and the network has a high clustering coefficient, which
means you can find many triangles in the graph. One of the most important
functions of a complex network is the transport function, which for com-
puter networks represents the information transmission, for transportation
networks the movement of people or goods, for social networks the spreading
of news or gossips, and so on. It is interesting to analyse how the network
builds a path from the source to the target, or in other words how it solves the
routing request, without having a global view of the network, but having only
local informations to take its routing decision at each step. Surprisingly, real
world networks can solve this problem very efficiently, due to their topological
properties [5] [6].

Krioukov et al. [7] have proposed to consider complex networks on a dif-
ferent prospective, stating that they exist in some so-called hidden metric
spaces, which directly influence the topology of the related complex net-
works. More in detail, the hidden metric space defines a distance function
between two entities in the hidden space, and in turn the distance influences
the probability that the two nodes related to the entities will be connected in
the resulting network. Krioukov et al. also show how hyperbolic spaces ([2])
naturally form networks with scale-free topology and, as a consequence of
this, greedy routing can be used on these and it achieves very high efficiency.

While this result is extremely important, the Krioukov model is a static
model and for this reason it cannot be used as-it-is for real-world applications.
In this paper we propose a growing model which leads to a scale-free network
by using Krioukov model in a discretised fashion. The paper is structured
as follows: we will first introduce Krioukov model, then we will describe our
discretised version and at last we will show our results and draw our conclu-
sions.

2 The Model of Krioukov et al [7]

Krioukov et al. [7] propose a model of networks embedded in hyperbolic
spaces showing that it gives naturally a network with a power—law degree
distribution. The idea behind this model is to build a network whose nodes
are more likely connected if they are near in the sense of the distance metric
defined in the hyperbolic space. So, the first thing to do is the choice of the
hyperbolic space. The second step is the decision about the nodes distribu-
tion function. The third is about the choice of the connection probability as
function of the hyperbolic distance between nodes.

In the model they propose, the following choices have been made: 1) to use
the hyperbolic plane, 2) to distribute non-uniformly N nodes over a disc of
radius R and 3) to use the step function on [0, R] as connection probability
function. In particular, given a target number of nodes N and average degree
k, they generate a network as follows:



A Growing Model for Scale-Free Networks Embedded 11

e Set the radius R of the hyperbolic disc according to N = xef*/? (k is a
parameter used to tune k).

e Assign to each node an angular coordinate 6 uniformly distributed in
[0, 27).

e Assign to each node a radial coordinate r € [0, R] with a probability
p(r) = ae (e — 1)1 a € [1/2,1].

e Connect every pair of nodes whenever the hyperbolic distance between
them is smaller than R. Given two nodes with polar coordinates (r, §) and
(r',0"), the hyperbolic distance x between them is defined as:

cosh(z) = cosh(r)cosh(r') — sinh(r)sinh(r")cos(A) (1)
where A0 = min(|0 — ¢'|,2m — |0 — ¢'|).
Using such a model, the generated network has a power—law degree distribu-

tion that, for large k, can be approximately given by P(k) ~ k~7, where:

_J2a+1lifa>
T2 if a <

(2)

[SE R

Moreover, in [7] it is shown that on such a kind of networks a greedy routing
algorithm achieves both 100% reachability and optimal path lengths. In other
words, starting from a node of the network it is possible to find any other
node using a greedy routing strategy based only on local information. More
specifically, a node selects as the next hop the neighbour that is closest (in
terms of hyperbolic distance) to the destination in the hyperbolic space. This
is a very interesting feature that can be exploited in order to perform optimal
message routing without needing a, sometimes heavy, routing protocol.

3 A Model of Networks that Grow over an Hyperbolic
Space

Our idea is to use the results presented in [7] to build a synthetic network
which topology is congruent with an hidden hyperbolic space. For doing that,
the model presented in [7] is not immediately applicable, since it generates
a whole network at once. Instead, what we need is a model of networks that
grow over an hyperbolic space.

As proposed in [10], a natural way to deal with network growing is to
consider a model where the radius of the hyperbolic disk grows as nodes join
the network. In this case the disk radius should grow with a rate given by:
R = 2In(N/k). Unfortunately, such a kind of model requires that a node
joining the network knows the number of nodes already present in it. Even if
in [I0] an algorithm to find the number of nodes of the network is proposed,
in general, in a distributed environment the computation of such a kind of
information is costly. Our work is devoted to develop a distributed network
growing model that can be efficiently used in a variety of applications, such
as to build overlay networks [§] in distributed computing environment.
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Fig. 1. Hyperbolic disk of radius R.
The grey shaded area is the annulus
i. The blue shaded shape is the area
containing all the nodes whose hyper-
bolic distance from the node p is less
than or equal to R.

In the model we propose, nodes are mapped into a hyperbolic disc having
a radius R = 2in(Nyaz/K), where Ny, is the maximum number of nodes
of the network. Moreover, nodes can be placed on the hyperbolic disc only
at certain fixed distances from the disc centre (see figure[D]). To explain this,
we suppose to divide the hyperbolic disc into Ny, annuli (or levels) having
outer and inner radii respectively of R; and R;_;, where i € {1,2,... N},
and defined as: R
Ri= i ()
The number of nodes N; placed on each level i, is the expected number of
nodes in the interval [R;_1, R;] (i.e. the expected number of nodes in the
annulus 7), computed using the distribution function p(r). It is given by:

o R
1—e No o B

Ni:Nmaz eaR _ 1 e VL (4)

In our model the N; nodes of the level i are positioned only along the circum-

ference placed in the middle of the annulus ¢ and having radius R;. Therefore,

the hyperbolic polar coordinates of a generic node p placed at the level i are

p(ri, 0x) where:

~ R (. 1 .
ri = R; = Ny (l* 2) ZE{].,...NL} (5)
ek:i?k ke{0,.. N, —1} (6)

In the following, a node p with coordinates p(r;, 8x) will be referred to as p; k.
As can be seen from equations B and [, both the radial coordinate r and the
angular coordinate 6 of a node can assume only a given number of discrete
values or slot, so our model can be considered as a sort of discretisation of
the model proposed in [7].
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Once a node is placed in the hyperbolic disc, it is connected to those nodes
having a hyperbolic distance from it smaller than R, i.e. all those nodes
within the blue shaded shape in figure [Il Given the nodes placing strategy
implemented in our model, it is quite easy to implement an algorithm able to
find the neighbourhood of a given node, as will be explained later in detail.

4 Model Analysis

To study the topological characteristics of our model, firstly we calculate
the average degree k(i) of nodes located at level i. To do so, let consider a
node p; i placed at the level ¢ and whose angular coordinate is, for the sake
of simplicity, 0 (i.e. & = 0). In figure [I] the blue shaded area is the region
containing all the points whose hyperbolic distance from the point p; . is less
than or equal to R. The average degree of the node p; j, is given by:

k(i) =Y fiN; (M)

where N; is the number of nodes placed at level j, computed using equation [
and f; is the fraction of the N; nodes whose hyperbolic distance from p; ;. is
less than or equal to R (i.e. those nodes that are within the blue shaded area
in figure [Il). A simple formulation of f; can be derived noting that such a
number is equal to the fraction of circular angle within the blue shaded area;
it is given by:

_ Pig
fi=7" (8)

Looking at the figure[Ilit is possible to note that ; ; is equal to 27 for those
j for which i+j < Nz +1 (i.e. all nodes at level j at hyperbolic distance from
Dik smaller than R)E; in the other cases it is given by the following equation:

cosh(R) = cosh(R;)cosh(R;) — sinh(R;)sinh(R;)cos(pi,;/2) (9)
Therefore:
2w i+7 < Np+1
Pig = { 2aco0s (CDShi?i;?gjﬁi?;Lz;ijh(R>) i+j>Np+1 (10)

Substituting equations M and [§ in equation [ we obtain:

—a 2 N
— YN L R .
k‘(?,) _ Nmaz 1 e L thiy]‘ea NL] (11)
j=1

27 exlt — 1

Putting in evidence that ; ; is equal to 27 for each ¢,j such that i + j <
Ny + 1, we can rewrite equation [I1] as:

! From now on, we will refer to these levels as fully contained levels.
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_a R Np+1—i Np
. Nmaz 1—e NL a R j a B j
k(i) = 27 eaR _ 1 2m Z "Nt + Z Pij€ NL? (12)

j=1 J=Np—i+2

The first sum in the equation is a finite power series, then it can be
rewritten as:

Np+1-i oy eaRe—a;‘; (-1 _ 4
Z e "= o R (13)
j=1 1—e Mo

Equation [[3] shows an exponential decreasing trend, meaning that the con-
tribution on this term in equation [[2] decreases as j approaches the value of
Ny, corresponding to the last circumference. This behaviour is easy to explain
since that term is related to the fully contained levels, and its contribution
tends to 0 as the target node moves to the level Np.

In figure we show the average degree k(i) as a function of the level
1 and the contribution of the first and second term of equation for a
network of 1000 nodes. It is possible to note that the average degree decreases
exponentially with the distance from the disc centre.

k(i)
— k(i) - first term
—— k(i) - second term

k(i)

(a) (b)

Fig. 2. For a network of 1000 nodes and 10 levels, (a) average degree at level i (in
semi-log plot) and (b) degree distribution

By definition the degree distribution Pj of a network is the fraction of
nodes in the network with degree k. Therefore, in order to derive the degree
distribution Py in our model, we need to get two values for every level i: 1)
the fraction of nodes inside level i and 2) their degree. The former is given by
the ratio N;/Nyaq (N; is computed by using equation M), whereas the latter
is computed by equation[I2l We omit here the analytic expression for Py, but
it follows a power-law, as shown in figure for a network with 1000 nodes.
Such an analytic result matches simulations as detailed in the next section.
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5 Growing Model and Results

Now that we have assessed the structure of the network, i.e. the positions
nodes can be placed in, let’s discuss the growing model or, in other words,
how the position of every single node joining the network is determined.
Our final aim is to maintain a degree distribution consistent with the model,
throughout network dynamical changes. Also, we want to rely only on lo-
cal information for deciding where a next node can be placed. Since in the
hyperbolic model we have shown that the position of each node is directly
correlated with its degree, the task of maintaining a given degree distribution
can be translated in terms of maintaining a given spatial node distribution
over the hyperbolic space. If we assure this condition, the working model
continues to be valid despite the changes in the network. The joining phase
consists of four steps.

1. The node randomly chooses, according to a uniform distribution, an angle
© € [0, 27]. This angle will define an ideal point P = (R, ¢) with maximum
radius and random angle. Ideally, the node wants to place itself in the free
slot that has the minimum distance to this P.

2. The node queries the network (through an arbitrarily-chosen node, which
doesn’t need to be close to the ideal point). Such query drives the newcomer
node to the closest real node to the ideal point.

3. The closest node has total knowledge about the nodes (and the free slots)
which have hyperbolic distance smaller than R, so he can effectively assign
the right slot for the newcomer.

4. The newcomer places itself in the assigned slot and notifies all its neigh-
bours (i.e. nodes who are at distances smaller than R from its position)
the slot is now occupied.

It may be useful to remark that the fourth step is fundamental in order to keep
the network up to date and to allow every node to have total knowledge of
his local neighbours (i.e. which nodes and which free slots are present within
hyperbolic distance R from it), as it is required by the joining phase itself,
in step three. Since every joining phase goes through the fourth step, every
node in the network is kept up to date with local knowledge of its neighbours.
We developed a network simulator which grows according to the proposed
model, in order to analyse its structure and verify whether it conserves the
same scale-free property of its counter part. Figure shows the degree
distribution for a full network of 5000 peers in 20 levels. Figure shows
average clustering coefficient for networks with different sizes and values of
a. Both graphs are compatible with the scale-free model.

We also analysed the average path length (APL), while varying the maxi-
mum size of the network, for different values of «, from 0.5 to 1.0. To assess
this measurement we saturated completely the networks, this means they
were almost at full capacity. APL does not primarily depend upon the size
of the network, but mainly upon the parameter «, that affects directly =,
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Fig. 3. (a) Degree distribution and average clustering coefficient (b) for a full
network of 5000 peers, 20 levels, « = 0.8 = v = 2.6

as shown before. The unique APL variation is for & = 1.0, but it should be
considered an outlier, since the network behaves strangely at that limit value
(that corresponds to v = 3). Another limit-case situation is network obtained
for a = 0.5: each node can be reached in just 2 hops because all nodes are
connected to a central hub. The model structure allows to reach each node
in a relatively low number of hops, regardless of the real network size. In ad-
diction, we analysed the paths used by greedy routing and we checked them
against the shortest paths. All paths were coincident to the shortest path,
confirming that greedy routing in the model always chooses the best path.

6 Conclusion

We have presented a growing model for a hyperbolic graph, which naturally
produces a scale-free network. Starting from a static model which relies on
a continuous hyperbolic space, we have designed a discretised version which
conserves the desirable properties of the static model (scale-free topology and
extremely efficient and cheap greedy routing), while allowing the network to
grow based only on local information and local greedy routing algorithm.

Future works will be focused on deeper discovery of static and dynamic
properties of the network and analysis of network robustness against failure
and targeted attack.
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The Robustness of Balanced Boolean Networks

Ming Liu and Elena Dubrova

Abstract. One of the characteristic features of genetic regulatory networks is their
inherent robustness, that is, their ability to retain functionality in spite of the intro-
duction of random errors. In this paper, we focus on the robustness of Balanced
Boolean Networks (BBNs), which is a special kind of Boolean Network model of
genetic regulatory networks. Our goal is to formalize and analyse the robustness of
BBNs. Based on these results, applications using Boolean network model can be
improved and optimized to be more robust.

We formalize BBNs and introduce a method to construct BBNs for 2-singleton
attractors Boolean networks. The experiment results show that BBNs have a good
performance on tolerating the single stuck-at faults on every edge. Our method im-
proves the robustness of Boolean networks by at least 13% in average, and in some
special case, up to 61%.

1 Introduction

A living cell could be considered as a molecular digital computer that configures
itself as a part of the execution of its code. The core of a cell is the DNA, which
represents the information for building the basic components of cells as well as
encodes the entire process of assembling complex components.

The most attractive feature of living organisms is the robustness [2], which is
always an important topic of biology research. Especially after Kauffman modelled
the genetic process using Boolean Networks [11]] in 1969, the research of robustness
has been highly promoted. Recently, a lot of researches on the robustness of genetic
regulatory networks (GRNs) focus on the effect of shape and size of basin of certain
attractor [8]]. In a view of biologist, almost all cells in one living organism have
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the same copy of DNAs or the same GRNs; and the different functions of these
cells right represent the different attractors [[10, (13, [12]. The more basin states of an
attractor means the higher probability for a cell to perform in this function mode;
so, many researchers defined their robustness as the probability of a GRN settled
down into one attractor in a random environment [14]. However, we believe that
robustness is one important characteristic of GRNs, and it’s necessary to treat the
robustness of a GRN as a whole. In this paper, our research is about the robustness
of Balanced Boolean Networks(BBNs), a special kind of Boolean Network model
of GRNs.

A real GRN can be modelled by a Boolean network [1l [3, O]l. State Transition
Graphs (STGs) are used to illustrate the dynamic behaviour of these Boolean net-
works, and it is a common view that almost every attractor has a large basin, no mat-
ter if it is a singleton attractor or a cycle attractor. A large basin makes the Boolean
network more robust and stable [14]. However, when we construct Boolean net-
works for our own applications, the models are always not so natural and are greatly
unstable. One easy way to solve this problem is to construct Balanced Boolean Net-
works by making every attractor to have the same number of basin states.

In this paper, we start with the synchronous 2-singleton-attractors Boolean net-
work model. In the next section, we formalize BBNs, and introduce a method for
constructing BBNs. Then in Sect.[3l we present a definition of robustness for stuck-
at faults on every edge in Boolean network. In Sect. ] experiment is performed.
The results show that BBNs have good performance on tolerating the single stuck-at
faults on every edge, and the robustness of BBNs built in our method improve by at
least 13% in average, and in some special case, up to 60%. Section[3 concludes the
paper and discusses open problems.

2 Balanced Boolean Networks

In this section, we formalize Balanced Boolean Networks and introduce a method
to construct them.

2.1 Definition

A Balanced Boolean Network (BBN) is a special genetic regulatory network, which
is defined as G(V,F) with a set of nodes V = {x1,...,x,},x; € {0,1}, and a set of
Boolean functions F = {f,..., fa}, fi : {0,1}% — {0,1}. Each node x; represents
the expression state of the gene x;, where x; = 0 means that the gene is OFF, and
x; = 1 means it is ON. Each Boolean function fi(x;,,... 7)c,-k’v) with k; specific input
nodes is assigned to node x; and is used to update its value. Under the synchronous
updating scheme, all genes are updated simultaneously according to their corre-
sponding update functions. The state of a network is a vector of values of its state
variables (x1,x2,...,x,). Time is viewed as proceeding in discrete steps. For the syn-
chronous type update, at every time step, the next state of a network, ()cf,xz+ b X)),
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is determined from the current state, (x,x,...,%,), by updating the values of the
state variables of all nodes simultaneously to the values of the corresponding f;s:

j_:fl'(xilaxizv"'axik[) (1)

where x;,,x;,,. .. Xy, are the state variables associated to the predecessors of node i.

Since a synchronous Balanced Boolean Network is deterministic and finite, any
sequence of its consecutive states eventually converges to either a singleton state,
or a cycle of states, called attractor. The basin of attractor A, denoted by B(A), is
the set of all states from which A can be reached. When we draw all these states
using circles and directed arrows, we get the state transition graphs. An example of
a 2-nodes Boolean network and its BBN is shown in Fig.[Il

'o=0Y% T

state: ab
(a) A 2-nodes Boolean network

%%\79’9

(b) A BBN for Boolean network in (a)

Fig. 1. A 2-nodes Boolean networks and its BBN

These two networks both have 2-singleton attractors. Figure [[l(a) shows the
network structure of a 2-nodes Boolean network and the state transition graphs.
Figure Il (b) shows one BBN for (a). The left side of Fig. [l shows the network
structures, and the dashed circle in (b) shows the additional node inserted to make
the original 2-nodes Boolean networks balance. The right side of Fig.[Il shows the
STGs. The attractors in BBN, which have the same number of basin states, are bal-
anced, while the 2-nodes Boolean network is not.

2.2 Properties

Suppose that we have a Balanced Boolean Network G with n vertices vy,...,V,
and m-single attractors A1, A»,...,A,, such that the attractor A; is given by the state
(ai1,aiz, ... am) € {0,1}"i € {1,2,...,m}. As all the m attractors are single at-
tractors and have the same number of basin states, the number of basin states for
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every attractor will be znr;’". The basin B;(A) partition the Boolean space {0, 1}"
into m connected components via a dynamic process. We assume that the set of all
points of the Boolean space corresponding to the states in the basin of attraction of
A; is mapped into the state of the attractor A;. Then, G defines a set of n Boolean
functions of type g;: {0,1}" — {0, 1}of variables xy,...,x, , where the variable x;
corresponds to the variable associated to the vertex i. More formally:

Definition 1. A Balanced Boolean Network with n vertices and m single attractors
Ay,Ay, ..., Ay, such that the attractor A; is given by the state (a;1,apn,...,ain) €
{0,1}"ie{1,2,...,m}, represents a set of n Boolean function of type g; : {0,1}" —
{0,1}, which are defined as follows:

8i(s1,...,8n) = aij, if and only if (s1,...,sn) € B(Ai),

Sforall (s1,...,sn) € {0,1}", and alli,j € {0,1,...,m—1}

2.3 Construct BBNs

As it described above in Sect. we need only to make the attractors have the same
amount of basin states to build a BBN. It’s a good idea to find all possible BBNs, but
it is not feasible for large networks. One real question is finding a best BBN from the
point of view of robustness. It’s a NP-hard problem and it is impossible to search
in the entire space of all BBNs for large Boolean networks. Even for small Boolean
networks, the computation will be extremely heavy.

Here, we introduce a simple method, in which we can build BBNs from any 2-
singleton-attractors Boolean networks. Experiment results in Sect.[.3]show that this
method is useful for finding the best BBNs, and is practical to avoid huge compu-
tation for large Boolean networks. Considering the Boolean network in Fig.[Il we
present the Boolean functions of the 2-nodes Boolean network and its BBN in Fig.
using the Definition[Il

xcxaxbgﬁgZé’Z
000O0O0°1

Xa Xp 8a &b 001001
0001 010010
0101 011001
1010 100010
1101 101010
(a) 110001
111010

(b)

Fig. 2. The Boolean functions for networks in Fig.[Il
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The 2-nodes Boolean network represents the Boolean function g,, g, specified by
the table in Fig.[2(a), and the the BBN represents the Boolean functions g7, g%, 5
specified by the table in Fig. 2l(h). With some knowledge of logic synthesis [7],
these Boolean functions can be synthesised as follows:

P 8a=C®D(ab') =c®g D ga
{ g aped g =cd(d b)) =chgdg
o=@ g:=0

In this format, the BBN can be viewed as adding an additional XOR-gate to ev-
ery node. Suppose the Boolean functions of a Boolean network G(V, F) are g;,i €

{1,2,...,n}, and the Boolean function of the additional node ¢ is g%. Then we can
get the Boolean functions of a BBN in equation,
«_ ) &i ,ifgi:O,orl
§i = { chgrdg, ,otherwise. &

And for different g7, there will be many different BBNs. In this paper, four dif-
ferent g¥ are found and used in our experiment in Sect. d which are {0,1,c®

Fxayeex0), @ fxq,. o xn)

2.4 Basin Type

There are many different basin types for Boolean networks [19], such as star-type,
string-type, .. .. As we use De finition[Ilto describe Boolean networks and construct
BBNs, the most proper basin type is star-type. The STGs for a star-type basin shows
in Fig.[3l We see that all the basin states of attractor A; connect directly to A;, which
just look like stars around the attractor state.

Basin of A;
Qe D .// -

Fig. 3. The STGs for star-type basin

3 Robustness of BBNs

Living organisms can sustain a wide variety of genetic changes. Gene regulatory
networks and metabolic pathways self-organize and re-accommodate to make the
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organism continue performing under many point mutations, gene duplications and
gene deletions [[18]]. The amazing robustness capability of surviving and keeping the
species stability under certain changes in the environment is always an important
subject of fault-tolerance, which has been desired by the electronic industry for a
long time.

A single stuck-at fault in a circuit can cause serious results. Although we already
have some methods to check it out, it becomes harder and harder to check every
bit as the system becomes more complex than we can image. However, BBNs show
a good performance on these faults in Sect. ] of which the whole state space can
be split into several small equal components by attractors as showing in Fig. [l ().
In the following parts of this section, we first define a yardstick for robustness, and
then compare the real GRNs with random Boolean network models to insure our
idea of constructing BBNs to improve the fault-tolerance ability for single stuck-at
faults.

3.1 Definition

Suppose that we have a Boolean network G(V,F), in which V represents a set

of nodes {vi,...,v,},vi € {0,1} and F represents a set of Boolean functions
{fi,.... fu},fi : {0,1}k — {0,1} . Each node v; represents the state of the vertex
v; in the Boolean network. Each Boolean function f;(v;,, ... 7v,-kv) with k; specific in-

put nodes are assigned to node v; and used to update its value. If we draw a directed
graph for G, there will be totally n vertices and Y| k; edges.

When a stuck-at fault happens in Boolean network G, there will be two different
cases: fault on node, and fault on edge. If this fault takes place on vertex v;, then the
state of v; will be stuck at 0 or 1. The network model will degenerate to a smaller
Boolean network by removing node v;. However, this will be inconsistent with our
objective — tolerating this fault. If the fault takes place on edge e;;, which points
from vertex j to vertex i, then the change will only influence vertex i and other
vertices still work well. So all the stuck-at faults discussed for Boolean networks in
this paper take place on the edge.

Definition 2. A Boolean network G(V,F) is constructed with a set of nodes
V ={vi,...,w},vi € {0,1} and a set of Boolean functions F={f1,...,fu},fi
{0,1}% — {0,1}. And tolerating a fault is defined as when a fault happens in the
Boolean network, the attractors still keep the same as the normal case. Then robust-
ness R can be defined as the ratio of tolerating faults and the total faults, which can

be expressed as:
NumFT
= ; (3)
Numfault
for Numpt represents the number of faults can be tolerated by Boolean network G,

and Numy,,;; represents the total number of all possible faults.
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According to De finition[2 when we consider only the single stuck-at faults, the
robustness of a Boolean network Rsy can be expressed as:

NumFT NumFT
Rsy = = e @)
Numfault 221 ki

3.2 Comparisons

In order to show an intuitive understanding of robustness, we compare the robust-
ness of real GRNs with our random models. The results are shown in Table[Il

Table 1. Robustness for real GRNs and (16,4)-random Boolean networks

Real GRNs (16,4)-random models

Name nodes faults Rgr Name nodes faults Rgr
Ap-1 10 32 0.656 Rdml 16 128 0.016
Arabidopsis 15 88 0.352 Rdm2 16 128 0.016

MammalianCell 10 78 0372 Rdm3 16 128 O
BuddingYeast2009 18 120 0.375 Rdm4 16 128 0.078
BuddingYeast2004 12 74 0.257 Rdm5 16 128 0.016
BY2004Modified 11 58 0.603 Rdm6 16 128 0.023
BuddingYeast2008 9 38 0.263 Rdm7 16 128 0
DrosophilaCellCycle 14 84 0.655 Rdm8 16 128 0.336
ERBB2 20 102 0.784 Rdm9 16 128 O
FissionYeast 10 54 0.167 Rdml0 16 128 O
T-cellReceptor 10 78 0.372Rdmll 16 128 O
ThBoolean 40 116 0.379 RdmlI2 16 128 0.25

All the 12 real GRNs are taken from [3]], and the (16,4)-random Boolean net-
works are produced by our random Boolean network generating program. We can
see that the robustness of real GRNs is much higher than the one of random Boolean
networks. ERBB2 [16] is the best model in the table with the highest robustness of
78%, which means ERBB2 can tolerate as high as 78% single stuck-at faults hap-
pen on every edge. As a contrast, random models performe so poor that there are
only two models with the robustness higher than 20%. These comparisons truly re-
flecte the objective facts that real GRNs and cells are the results of natural evolution,
and the most robustness system is cell itself. The only way for the robust design is
learning from nature.

4 Experiment Results

Experiment is designed to evaluate the robustness of balanced Boolean networks
and the performance of our BBNs constructing method. All the BBN models are
built using the model generating program for the two logic gates — AND and XOR.
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They are not only simple and useful for every logic circiut, but also very convenient
for constructing the Boolean function g in Eq.[2l The SAT-based attractor comput-
ing program BNS is used to compute the attractors, and also the synchronous
hardware synthesis and verification program abc is used to calculate the cost of
2-inputs AND gates [15]] in the implementation.

4.1 BBN Models

Choosing proper models are always important for the success of any experiment. To
study and evaluate the robustness Rgy of BBNs, we need lots of BBN models and
consider all the stuck-at faults for them. However, these requirements are conflicting
with the poor performance of computers for solving this NP-hard problem. For these
reasons, the 2—5 inputs AND and XOR gates are chosen in our experiment.

Taking the 2-inputs AND gate as an example, we know that this gate has only
two output values — 0 and 1. When we use different singleton attractors to represent
them, a 2-nodes Boolean network and the BBNs can be constructed via Eq.[2l The
whole process of constructing a BBN is shown in Fig.[dl

a
— x abx  state
— 000 01
b 010 01
(a) 2-inputs AND 100= 01
gate 111 11
(b) Truth table
for AND
=Y
fr=coab

fr=1

/
\O=CY 4+
— =1

(¢) A 2-nodes Boolean network (d) A BBN for 2-inputs AND

Fig. 4. The whole process for constructing a BBN

In Fig.[l(b), we using attractors 01 and 11 to represent 0 and 1 in the truth table,
a 2-nodes Boolean network can be built as it shows in Fig.[l(c). So we can easily
get a balanced Boolean network as it shows in Fig. dl(d). The robustness Rgr of
this BBN is 33.3%, a little higher than the 2-nodes Boolean network, which is only
25%.
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Fig. 5. The Best BBN for 2-inputs AND

A BBN is uniquely determined by the original Boolean network and gi. When
we use different combinations of attractors and g7, a lot of BBNs can be generated.
In the way, the best BBN for 2-inputs AND can be found. Figure [ shows the STGs
and Boolean functions of the best BBN, which has the highest Rsy for 66.7%.

4.2 Results for AND and XOR Gates

With the BBNs built in Sect. 4.1l we get the results of robustness Rgy and cost for
2-5-inputs AND and XOR gates, which are separately listed in TableRland Table[Bl
From these tables, BBNs for AND gates perform much better than XOR gates. All
the maximum Rgr of BBNs for AND gates are larger than (.65, but they are all
below 0.45 for XOR. Also, there is a very interesting phenomenon in Table 3 that
the results for BBNs are always the same with the Boolean networks with one more
node. One explanation is the method used for constructing BBNs. We use XOR in
Eq.Dlfor BBNs.

Table 2. Experimental results for AND gate

Boolean Networks BBNs
Name RsT max oSt Rg7 max cost Risegg, Risecost

2-inputs AND  0.25 1 067 4 1.67 3.00
3-inputs AND  0.50 2 075 6 050 2.00
4-inputs AND  0.50 3 080 6 060 1.00
S5-inputs AND  0.50 4 083 7 067 0.5

Column Riseg,, shows that BBNs are much more robust than the original Boolean
networks. However, this improvement of robustness is made by the high cost of re-
dundancy in the network structure [6]. While the increasing of nodes in Boolean
networks, the increase of Riseg,, for AND is much more obvious than XOR. How-
ever, the decrease of column Rise.,s is much more attractive. This trend in Rise o
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Table 3. Experimental results for XOR gate

Boolean Networks BBNs
Name RsT max  cost RST max cost Riseg,, Risecost

2-inputs XOR  0.25 3 033 9 033 2.00
3-inputs XOR 0.33 9 038 15 0.13 0.67
4-inputs XOR  0.38 15 040 21 0.07 040
5-inputs XOR  0.40 21 042 27 004 029

means that in large Boolean networks, there are more common components, which
can be used to construct BBNs. This result will be useful for improving the robust-
ness of large Boolean networks.

4.3 Advantages of Our Method

In this subsection we present results demonstrating advantages of our method for
constructing BBNs. Table ] shows the results of the average robustness during the
experiment in Sect. The first row shows the average robustness for all the origi-
nal Boolean networks; and the second row is for BBNs. From the values in the third
row, we see that the robustness Rgr of BBNs improve at least 13% in average.

Table 4. Comparisons of average Rgr

AND gate XOR gate
Number of inputs 2 3 4 5 2 3 4 5
RsT average 0.25 0.38 0.44 0.47 0.25 0.17 0.19 0.20
RsT average for BBNs 0.39 0.47 0.51 0.53 0.33 0.27 0.26 0.25
RiS€RGr 1yerape 56% 25% 17% 13% 33% 61% 38% 27%

Table 5 shows the results of the best BBNs, all of which have the same value of
robustness Rgr, no matter which method is used. The first row shows the number of
best BBNs found by using Eq.[2] and the second row shows the result found by the
easy method mentioned in Sect.[2.3]— construct all possible BBNs and search for the
best. Although we do not find all the best BBNs using Eq. 2] this result is still as
good as we expect.

Table 5. Comparisons for the best BBNs

AND gate  XOR gate

Number of inputs 2 3 4 5 2 3 4 5
Best BBNsby Eq.211 4 11 26 123280 192
Best BBNsof all 110 67 406 12 32 80 192
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5 Conclusion and Open Problems

The paper formalizes BBNs and introduces a method for constructing BBNs for 2-
singleton attractors Boolean networks. Using BBNs to improve the robustness of
Boolean networks is a new idea. The experiment results show that BBNs are capable
to tolerate the single stuck-at faults on every edge, and the robustness for the BBNs
constructed in our method improves at least 13% in average. Although this increase
is not so high, it’s still useful for large models to avoid huge computations. However,
the research of BBNs is just in its beginning. Much more issues should be considered
to make it complete, such as string basin, mixed basins, and cycle attractors. The
effect of these factors demands a further study.
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Structural Evolution in Knowledge Transfer
Network: An Agent-Based Model

Haoxiang Xia, Yanyan Du, and Zhaoguo Xuan

Abstract. We use an agent-based model to study the effect of knowledge transfer
on the structural evolution of a social network. In the proposed model, the agents
exchange knowledge with their network neighbors; and simultaneously they adjust
their neighbors by edge-rewiring in order seek better chance for knowledge trans-
fer. This gives rise to the coevolution of the population’s knowledge state and the
network topology. Through computational simulations, interesting phenomena are
observed, most notably the disassembly and reassembly of the network connec-
tivity and the emergence of the small-world structure that is self-organized from
the initial random network. The underlying mechanisms are partly analyzed.

1 Introduction

With the growing research interests on complex networks, the collective dynamics
on complex social networks have also been extensively studied [Castellano et al.
2009]. One noticeable sub-area is the dynamics of knowledge transfer, which can
essentially be traced back to the studies on the diffusion of innovations and tech-
nologies in economics and management science [Coleman et al. 1957], and in pa-
rallel on social cognition and social learning in social psychology [Fiske & Taylor
1991]. The attentions on knowledge transfer have become more widespread with
the prominence of knowledge management since the 1990s [Argote & Ingram
2000]. In the context of social networks, the studies on the dynamics of know-
ledge transfer are mostly focused on the effect of the network properties on the
performance of knowledge transfer [Reagans & McEvily 2003]. As the network
topology is one key network property that has great impact on knowledge transfer,
knowledge transfer on different types of network structures has also been exten-
sively studied [Cowan & Jonard 2004, Kim & Park 2009].
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These researches are doubtlessly valuable, as they greatly contribute to improve
our understandings on how the network properties influence the performance of
knowledge transfer. However, there is another side of the coin that the network
can in turn be influenced by the collective action of knowledge transfer. General-
ly, this reverse problem of the effect of the collective action on the structural evo-
lution of the network has partially been tackled in some recent work on the “adap-
tive coevolutionary networks” [Gross & Blasius 2008]. In the community of
knowledge transfer, nevertheless, this issue is less well-addressed. Although some
authors have conceptually and empirically discussed the coevolution of the social
and knowledge networks [Palazzolo et al. 2006, Roth & Cointet 2010], in those
contributions there was an insufficiency of in-depth analysis about the underlying
mechanisms that boost such coevolution. In particular, it was not well-explained
how the collective knowledge activities affect the structural evolution of the social
network.

Based on the above observations, we in this paper give a primitive attempt, by
using an agent-based computational model, to explore the coevolutionary dynam-
ics of social network and knowledge, especially to study the structural evolution
of the social network that is affected by the knowledge transfer activities between
the participating actors. We hope our virtual experiments in the computer world
may give implications to understand the underlying mechanisms that govern the
structural evolution of the knowledge transfer networks in the real world.

2 Model Description

The proposed model is about a set of agents that interact with one another to ex-
change knowledge. Each agent contains ‘“knowledge”. The knowledge level of
agent i is denoted as a real value v;~U[0.0,10.0]. The agents are then intercon-
nected with one another to form a social network, in which the vertices are the
participating agents and the edges are the social relations between the agents. The
overall executive procedure of the proposed model can be described as follows:

1. Configure the initial network as a random network with given N vertices and M
edges; and initialize each vertex (i.e. agent) and its knowledge vector.

2. Arbitrarily select an agent from the network as the focal agent;

3. The focal agent either exchanges knowledge with a neighbor or adjusts its
neighborhood in the network. With probability p, the agent exchanges know-
ledge with one of the neighbors using a Knowledge Transfer or KT rule; oth-
erwise, a Neighborhood Adjustment or NA rule is applied so that the focal
agent rewires one existing link to a new agent.

4. Update the knowledge status of each agent and the entire network structure;

5. Repeat steps 2), 3), and 4) until the count of the iterations reaches the pre-
specified upper-limit 7,,,,.

In this procedure, the KT and NA rules need to be specified in more detail.
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The key idea behind the Knowledge Transfer or KT rule is that the transfer of
knowledge is most effective when the “knowledge diversity” between the two inte-
racting agents is neither too large nor too small [Scholl 1996]. The great diversity be-
tween communicating partners would lead to ineffective learning due to the commu-
nication difficulties. On the contrary, the amount of transferred knowledge would
also be small in the case of small diversity due to the small potential in knowledge
transfer. Following this view, we define a “knowledge-exchange threshold”, which is
denoted as d, as a measure for the upper limit of knowledge diversity for the success
of knowledge transfer. When the knowledge diversity is beyond this threshold, we
predict no knowledge is transferred. Based on this threshold, the knowledge transfer
between two interacting agents i and j can then be specified. Suppose agent i is with
lower knowledge level and the difference in their knowledge levels is d;=v;-v;. Then,
the amount of knowledge that agent i can learn from agent j is determined by the fol-
lowing equation:

{mﬂﬂnmxh%*@j—mxkshdy<d
i = )
i

0.d,>d

In equation (1), a is the knowledge transfer rate, and ks is the upper-bound of
knowledge that can be transferred within one interaction. The knowledge level of
agent i updates accordingly, namely vi(t+1)=v(f)+k;(t), whereas that of agent j
keeping unchanged.

We then turn to the Neighborhood Adjustment or NA rule. The basic idea is
that the agents tend to remove the links that are disadvantageous for knowledge
transfer so as to seek better knowledge transfer possibilities in the population. The
neighborhood adjustment process is then accomplished by the following steps.

e With probability w, agent i is rewired to a randomly-selected neighbor of its
original neighbors, or otherwise (i.e. with probability 1-w) to a random one se-
lected from the whole population except for its current neighbors.

e If agent i has been successfully rewired to a new neighbor, one of its original
links is to be removed. If there is at least one neighbor whose knowledge diver-
sity to agent i is larger than the threshold d, remove the link to the neighbor
with the largest knowledge diversity; otherwise, remove the link to the neigh-
bor with the smallest knowledge diversity with agent i.

To sum up, in the proposed model, three parameters, namely d, p, and w, are the
key factors that influence the structural evolution of the network as well as the
performance of knowledge transfer on the network. In the next section, we report
the computational simulations that examine the effects of these three parameters.

3 Simulation Results and Analyses

With the previous model, we conduct computational simulations to investigate the
coevolutionary dynamics of network and knowledge, in particular to examine how
the knowledge status of the agents and the actions of knowledge transfer affect the
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network structure. In our simulations, we set the agent population N=500 and the
edge account M=5,000; the upper-limit of amount of knowledge to be transferred
in one interaction, ks, is set to 0.4. The knowledge transfer rate a is set to 1.0. Ow-
ing to the upper limit of knowledge level is 10, we let the knowledge exchange
threshold d range from 0 to 7.

The initial network is set to be a random network, the connectivity of which is
basically guaranteed since the mean edges per vertex are enormously greater than
In(N) [Watts & Strogatz 1998]. In the proposed model, the structural evolution of
the network is through an edge-rewiring process. In general, the network would
still be random if the edge-rewiring process is fully-random. In this case, the
process is trivial since the network structure keeps statistically unchanged in a
high-entropy state. However, as the rewiring process is not fully-random in the the
proposed model, we may anticipate the emergence of some nontrivial structure
during the evolution of the network.

First, we can examine the dynamics of the network connectivity. It is obvious
that the value of parameter w is negatively related the network connectivity, as lo-
cal clusters are easier to form through neighborhood adjustment when w is high.
The entire population is then prone to split into multiple local clusters that are iso-
lated with one another. However, the influences of parameters d and p are not
straightforward. Hence, we test the influences of these two parameters by keeping
parameter w fixed in our simulations. Fig.1. plots the network connectivity, which
is measured by the fraction G of agents that belong to the largest connected sub-
graph of the whole graph, and the average knowledge level V of all the agents,
within the d-p parameter space. Parameter w is fixed to 0.3, and the iteration time
T is 100,000. The plotted data is based on the averaging of 10 simulation results
under the same initial conditions.
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Fig. 1. Parameters d and p influence network connectivity (left) and the average knowledge
level (right) of the entire population (w=0.3, iteration time 7=100,000)

From the left part of Fig. 1, it can be observed that parameter p is positively re-
lated to the connectivity of the entire network except for some small areas in the
d-p space. This phenomenon is reasonable since the low p value indicates high
probability of edge-rewiring; and this increases the risk for the network to separate
as there is the local-grouping factor in the rewiring mechanism.
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It can also be observed in Fig. 1. that parameter d is another positive factor for
network connectivity. This is not so straightforward but we can partly explain this
phenomenon by examining the NA rule. A bifurcation structure is implicitly con-
tained in the NA rule. When d is high, the agent-pairs with low knowledge diversi-
ty are more likely to be disconnected; consequently, the strongly-connected local
cliques tend to dissolve and the long-range links that connect agents with diverse
knowledge levels have more chance to survive. On the contrary, for small d, the
agent-pairs with high knowledge diversity are more likely to be disconnected. The
strongly-connected local clusters are more likely to survive; and the entire popula-
tion is more likely to be separated into multiple small clusters.

Comparing the left and right parts of Fig.1, it can be seen that the average
knowledge level V also increases as parameters d and p increase. This indicates
that the increase of the network connectivity may augment the transfer of know-
ledge and vice versa. Another interesting observation is that in the connected re-
gime in the d-p space (i.e. the area of G=1.0 in the left part), the final average
knowledge levels are not identical. This indicates in the network structure and the
knowledge transfer patterns may diverge in the connected regime. Subsequently
we attempt to give further analysis on the network dynamics in this regime.

Our experiments show that, when d>=4 and p>=0.7, the network connectivity is
guaranteed in the whole process of simulation, regardless of the value of w. To the
other extreme, when d<=2 and p<=0.2, the network becomes unconnected through
edge-rewiring even when w=0. Between the two extremes, the value of w has sig-
nificant impact on the network connectivity. One interesting phenomenon is the
disassembly and reassembly of the connectivity in various d-p combinations. Fig.
2 illustrates this process when d=3 and p=0.2.

0 20000 40000 60000 80000 100000 120000
Timestep

Fig. 2. The fraction G as a function of time for d=3, p=0.2 and different values of w

As shown in Fig.2, in our simulations the network connectivity is descending at
the early stage of simulation, for each w&[0,1]. However, an inflexion point oc-
curs at around a time-step between 30,000 and 40,000, when G stops decreasing
and turn to increase for any w that is less than 1. The connectivity of the entire
network is reestablished at around the 80,000™ time-step. The exception is the case
of w=1, where the network connectivity does not reestablish; instead, the declining
of G rapidly slows down and a steady-state at around G=0.65 is eventually
reached, indicating that the whole network is formed by a giant connected sub-
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group and various smaller groups. This process of disassembly and reassembly
shows that in some areas in the d-p parameter space, although the final state of the
network is connected, the connectivity does not persist in the whole process of the
structural evolution. When the values of parameters d and p are small, the network
is likely to form local clusters of low knowledge diversity; and the entire network
tends to be fragmented at the early stage of simulation when the overall know-
ledge diversity is high. With the simulation continues, the overall knowledge di-
versity diminishes and the reestablishment of the links between the previously-
isolated clusters becomes feasible. The chance of global or remote linking is en-
sured by the condition w<1. If w=1.0, the isolated local clusters are stabilized by
the strong social cohesion, i.e., the rewiring only takes place in local groups.

What’s more, we can also observe the emergence of a “small-world” during
network evolution in the regime of G=1. When the parameters d and p are greater
than the situation as Fig.2 shows, it is common that the network self-organize to
form a small-world for a period of time during the whole process of network evo-
lution. This phenomenon is illustrated in Fig.3.
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Fig. 3. Emergence of a “small-world” in the proposed model (d=6, p=0.5, w=0.5), with no
knowledge creation (left), and with repetitive knowledge creation (right)

The left part of Fig.3 show the time-evolution of the network structure in terms
of the cliquishness and the characteristic path length. It can be seen that a “small-
world” gradually shapes in the first 60,000 time-steps, since it is with relatively
high cliquishness measured by C (the clustering coefficient) and simultaneously
short path lengths measure by L (the characteristic path length). After around
80,000 time-steps, nonetheless, the small-world diminishes and the network be-
comes a random network once more. In comparison, our computational experi-
ments also show that such “small-world” phenomenon is not observed if setting p
to zero. This means that the edge-rewiring itself does not generates the small
world from a random network, without the transfer of transfer.

What’s more, when we add a knowledge creation mechanism into our model,
by letting a fixed small set of agents increase their knowledge level every 1,000
steps and proportionally increasing the knowledge exchange threshold according
to the average knowledge level of the entire population, we find that the small-
world phenomenon sustains, as shown in the right part of Fig.3. The major differ-
ence between the situations represented in the left and right parts of Fig. 3 lies in
that the overall knowledge diversity is maintained by the repetitive addition of
new knowledge. It is then natural to conjecture that the maintenance of knowledge
diversity is critical for the sustaining of the small-world.
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Putting the prior results together, we can draw a rough picture for the overall
evolutionary dynamics of the network. In particular, the influence of the key pa-
rameter d can partly be analyzed. In the proposed model, the knowledge diversity
within local groups and at the global level plays a vital role for network evolution.
The parameter d leverages the agents’ tendency of “homophily” and “heterophily”
[Rogers & Bhowmik 1970] for neighbor selection. For low d, the homophily me-
chanism dominates the neighborhood adjustment and local clusters that are com-
prised of agents with low knowledge diversity are likely to form; for high d, by
contrast, the influence of heterophily becomes more prominent so that the edges
between diverse agents are more stable. Thus, in the early stage of a simulation,
when the average knowledge diversity between agents is high, the network struc-
ture may evolve through different routes in accordance with the value of parame-
ter d. For high d, the overall connectivity can easily retain and the network is gen-
erally random. When d is low, the network tends to split into isolated cliques due
to the dominance of homophily, this is a fragmentation state of the network. Be-
tween the connected random network state and the fragmentation state, a small-
world network state may emerge when d is at a middle level. In this “small-world”
state, the agents are generally clustered into local groups; but the local groups are
not extremely homogenous in terms of knowledge so that long-range edges that
connect different cliques persist. With the continuing transfer of knowledge, all
the agents may reach a high knowledge level (up to 10.0 in the model) and the
overall he knowledge diversity diminishes, correspondingly there is a reestablish-
ment of the random network as the rewiring becomes fully arbitrary. If the net-
work becomes highly fragmented, the isolation between the local clusters hinders
further knowledge transfer and the connectivity of the whole network is not able
to reassemble. If the knowledge diversity is maintained by continual addition of
new knowledge, the network would not return to the state of the connected ran-
dom network and the small world persists, as shown in the right part of Fig.3.

4 Concluding Remarks

In this paper we develop an agent-based model for testing the effects of know-
ledge transfer on the structural evolution of the social network. Some interesting
phenomena can be observed in our computational experiments. Most notably,
starting from a connected random network, we observe the network can for a pe-
riod of time in the evolutionary process be fragmented into isolated cliques or be-
come a “small-world”, depending on the parameter setting. The small world sus-
tains if the overall knowledge diversity is maintained by repetitive creation of new
knowledge. The results obtained in this work may imply more general mechan-
isms for the dynamics of social networks. We are now underway to generalize our
model and to give more thorough analysis, in order to examine how the mechan-
isms of homophily-and-heterophily and clustering-and-randomization work in
combination to shape the dynamics of social network. In particular, we hope our
work will improve the understandings of the small-world dynamics, by enriching
Watts and Strogatzs’s [1998] classic model on this subject.
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Using Network Science to Define a Dynamic
Communication Topology for Particle Swarm
Optimizers

Marcos A.C. Oliveira Junior, Carmelo J.A. Bastos Filho, and Ronaldo Menezes

Abstract. We propose here to use network sciences, specifically an approach based
on the Barabdsi-Albert model, to define a dynamic communication topology for
Particle Swarm Optimizers. We compared our proposal to previous approaches, in-
cluding a simpler Barabdsi-Albert-based approach and other most used approaches,
and we obtained better results in average for well known benchmark functions.

1 Introduction

Particle Swarm Optimization (PSO) is a swarm intelligence technique that has been
widely used to solve optimization problems in hyper-dimensional search spaces
with continuous variables. PSO was first proposed by Kennedy and Eberhart in
1995 and it was inspired by the social behavior of flocks of birds working
together to find food. In the PSO paradigm, each particle in the swarm represents a
candidate solution in the fitness function domain. During the algorithm execution,
each particle adjusts its velocity and position based on the current position, the cur-
rent velocity, the best position achieved by itself during the search process so far
and the best position obtained by the particles among a pre-determined neighbor-
hood during the search process so far.

There are a few important issues that influence on the convergence velocity and
on the quality of the final solution returned at the end of the algorithm execution.
Among them are: the equation used to update the velocities of the particles, the
mechanisms deployed to avoid explosion states, the quality of the Pseudo Random
Number Generator (PRNGs) and the communication scheme adopted to exchange
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information among the particles. There are several works that tackle the three for-
mer issues [11} 8, [4]]. The latter has been been widely discussed since it defines the
neighborhood of the particles and, as a consequence, determines how the informa-
tion flows through the whole swarm [6} [16].

Previous works have shown that less connected topologies slow down the infor-
mation flow, since the information about the convergence is transmitted indirectly
through intermediary particles [16]. On the other hand, highly connected topologies
diminish the average distance between any pair of individuals. As a consequence,
there is a tendency for the whole swarm to move quickly toward the first local opti-
mum found by any particle of the swarm when the average distance between nodes
is too short (e.g. a small-world topology). Unfortunately, in simple and static com-
munication schema, fast convergence generally means premature convergence to a
local optimum, specially in multimodal search spaces [6].

Recently, many efforts have been made to analyze how to link components in
complex systems [[17]. Some examples are social networks, World Wide Web, power
grids [20] and biochemical networks [[18]]. In all these systems, there are several as-
pects that can be analyzed, such as the way these components can interact with
themselves, or the pattern of connections between the components, which is in gen-
eral highly correlated with the system behavior.

Until the last decades, perhaps due to the lack of deeper analysis or because of the
limited processing capacity of computer, real-world networks were usually seen as
a result of a completely random process [2]]. Indeed, the study of real networks has
gained relevance since they present many interesting features, such as fast spread of
information through the network compounds, robustness, reliabilty [9, [10, [7]].

Barabdsi and Albert showed that large real networks follow a scale-free power
law distribution. They pointed out that this feature was a consequence of two under-
lying mechanism: (i) networks expand continuously by addition of new vertices; and
(ii) new vertices usually attach to nodes that are already well connected [3]]. Thus,
they proposed a model, known as Barabdsi-Albert model (BA model), consisting
of an algorithm for generating random scale-free networks using a preferential at-
tachment mechanism [[I]]. A variation of the BA model, called Bianconi-Barab4si
model, that the probability of a node to connect to one another is given by a term
that depends on the fitness of the involved node [3].

The idea of preferential attachment and complex networks was already proposed
to define the PSO communication topology, as in the work of Godoy and von Zuben
[13]]. In this approach, the PSO starts with a scale-free topology generated by the
BA model, and then, the particles are connected or disconnected along the itera-
tions depending on the fitness of the particles. One may notice that there are some
undesired outcomes from this approach: (i) since the swarm is initiated with a small-
world topology, probably the swarm will present a high probability to be stuck in a
local minima, specially in multimodal search spaces; (ii) the algorithm is not quick
for connecting and disconnecting particles, and this behavior is not a desired feature
for dynamic or multimodal problems; and (iii) the mechanism used to reconnect the
particles does not take into account the past of the particle, it solely depends on the
current fitness of the particle.
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In this paper, we propose a novel approach to define the dynamic topology based
on preferential attachment. The proposal aims to balance information flow in the
swarm. The topology is initiated as a local topology and evolves to allow the parti-
cles to increase the communication capability when it is necessary. Besides, it also
considers if the particles are improving or not their solutions. The paper is organized
as follows: we briefly review the Particle Swarm Optimization in the next section.
In Section 3, we present our proposal to define a dynamic communication topol-
ogy. The simulation setup and results are given in Section 4. Finally, we present our
conclusions and suggest some future works in the last section.

2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is composed by a swarm of particles, where
each particle has a position within the search space x;(¢) and each position repre-
sents a possible solution for the optimization problem. The particles fly through the
search space of the problem searching for the best solution. Each particle updates its
position according to the current velocity v;(¢), the best position found by the parti-
cle itself [Py, ()] and the best position found by the neighborhood of the particle i
during the search so far [Npg;, ()]

Therefore, the velocity and the position of every particle are updated iteratively
by applying the following update equations for each particle in each dimension d:

Vi(t+ 1) = vi(t) + ric1 [Ppeg; (1) — Xi(t)] + r2c2[Npeg, (1) — xi(t)], (1)

Xi(t+ 1) =xi(t) +vi(r + 1), 2

where r; and r, are numbers randomly generated by an uniform distribution in the
interval [0, 1]. ¢; and ¢, are the cognitive and the social acceleration constants, re-
spectively. The original PSO updates the velocities of the particles considering the
current value for the velocity of the particles, as presented in equation (1). Clerc
performed a study on the dynamic of the particles and stated a parameter known as
the constriction factor () that avoids the explosion state. y is defined in equation
(3). The velocity update equation is depicted in equation (4).

X , @ =c1+ca, (3)

_ 2
2—p— /9> —4¢|
vi(t +1) = x - {Vi(t) + ric1[Pesy; (1) — Xi(2)] + 7202 [Npeg, (1) = xi(1)]}. (4)

The way the information flows through the particles is determined by the commu-
nication topology used by the swarm [12]. The topology of the swarm defines the
neighborhood of each particle, that is the subset of particles which the particle is
able to communicate with [6]. In the context of social networks, there are many
factors that influence the flow of information between nodes [19, 20]. These as-
pects include the degree of connectivity among the nodes, the average number of
neighbors in common per node and the average shortest distance between nodes.
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Kennedy and Mendes analyzed these factors on the particle swarm optimization
algorithm [[16]. It has been shown that the presence of intermediaries slows the in-
formation flow down. On the other hand, the information moves faster if more pairs
of individuals are connected. Thus, when the average distance between nodes are
too short, there is a tendency for the population to move quickly toward the best
solution found in earlier iterations. For simple unimodal problem, it usually im-
plies in a faster convergence to the global optimum. However, this fast convergence
might means a premature convergence to a local optimum, specially in multi-modal
problems [[6]]. In this case, communication topologies with intermediaries, i.e. with
a lower number of connections, could help to reach better results.

A first communication model proposed by [14] to model the natural behavior
of flocks of birds presented a dynamic topology based on the distance between the
particles. However, due to the high computational cost, it was discarded, albeit the
similar behavior of flocks of birds [6]. The global topology, which is often known
as Gy, 1s a static topology proposed in the PSO white paper [13]]. In the Gy,
all the particles of the swarm are neighbors of each particle of the swarm. This
means that the social memory of the particles is shared by the entire swarm. This
topology leads to a fast convergence, since the information spreads quickly. On the
other hand, in less connected topologies, each particle only shares information with
a subset of the swarm. Thus, the social memory is not the same for the whole swarm.
The most used local topology is called Ly, In the Ly, approach, each particle has
two neighbors and the neighbor is based on the index. For example, the neighbors
of particle #2 are particles #1 and #3. The Ly, helps to avoid a premature attraction
of all particles to a single spot of the search space, once the information is spread
slowly and the swarm has more chances to explore different regions of the search
space. Nevertheless, it presents a slower convergence. The two extreme behaviors
of the Gy, and Ly, topologies have encouraged efforts to propose approaches
that can present fast convergence while avoiding local minima. Indeed, many other
topologies were already proposed, such as von Neumann, Focal, Four Clusters, Clan
PSO, among others.

Godoy and von Zuben proposed to use a scale-free based topology, called Com-
plex Neighborhood based Particle Swarm Optimization (CNPSO)[13]. The evolu-
tion of the topology is based on the Barabdsi-Albert model and it tries to maintain
the scale-free characteristic of the topology, while the optimization is being per-
formed. In the CNPSO, the swarm topology starts with a scale-free topology gen-
erated by the BA-model and it does not take into account any particle information.
Thus, it is possible to have a bad particle as a hub in the swarm. Moreover, the ini-
tial topology has a small mean-shortest path length. This feature is not desirable in
the initial stages of the algorithm because it can attract the swarm to a local opti-
mum in earlier iterations, since the information flows fast. The CNPSO reconnecting
mechanism also does not take into account the fitness information through the iter-
ations. For example, it does not matter if the particle has stagnated or not in a local
optimum. After times number of iterations, random particles will have its connec-
tions mutated even if they are having success or not. Therefore, this approach is not
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dynamic in the sense that its mechanism is not based on the swarm condition but
rather it is based on random particles in any state.

3 Our Proposal

We aim to create a dynamic topology which can balance the search behavior of
the swarm. It begins with the swarm being less connected. As a consequence, the
swarm will present a high capacity to explore along the entire search space. Besides,
it is desirable to change the communication scheme of the particles as they reach a
stagnation state. Thus, in order to state when a particle k is stagnated, a new attribute,
named Pyfailures, is included to the particles. If the particle £ does not improve its
position in the current iteration, Pyfailures is incremented, otherwise Pyfailures is set
to zero.

As each particle tries to find better particles to be connected with, there is a pref-
erential attachment connecting mechanism based on the particles fitness. Therefore,
to have this mechanism, we used a roulette wheel based on a rank that depends on
the fitness of the particles. The best particles have more chances to be chosen for
new connections. The proposed algorithm is shown in Algorithm![Il

Algorithm 1. Pseudocode of our proposal

1 Generate the neighborhood of particles with a ring topology

2 Initialize position, velocity and personal best position of the N particles
3 while stop criterion is not satisfied do

4 fork=1to N do

5 Update Particle k
6 if Particle k improved its position then
7 Update pi best position vector
8 prfailures < 0
9 else
10 prfailures < py failures + 1
11 if py failures > failures threshold then
12 for n =1to N do
13 A particle r is chosen by using a roulette wheel based on the rank of
the particles
14 if n = r and py, is better than py then
15 Connect Particle n to Particle £
16 else
17 Disconnect Particle n and Particle &
18 Update Particle k

The algorithm begins with a ring topology with N particles. For all PSO iter-
ations, each particle k has Pifailures updated according to the fitness evolution.
When the threshold of failures ( failures threshold) is reached, the particle searches
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for better particles to follow. The selection of new neighbors is based on a roulette
wheel with a fitness-based rank.

The threshold of failures is crucial to the algorithm performance. If it has a low
value, the particles will easily try to reconnect. Otherwise, particles will maintain
the previous behavior for a long time.

4 Simulation Setup and Results

We used four well-known benchmark functions to evaluate our proposal and com-
pare it to the previous approaches [6]]. The functions are used for minimization prob-
lems. Two of them are unimodals, Rosenbrock and Ackley, and two are multimodal,
Rastrigin and Griewank. The global optimum of all of them is at (0, ...,0).

In all experiments, all functions were implemented in 30 dimensions. We have
executed the PSO algorithm 30 times with 3,000 iterations in all functions. The
threshold of failures for the particles was set to 100. The particles were updated
according to the Equationd We used ¢; = 2.05 and ¢, = 2.05.

Table [I] presents the mean value and the (standard deviation) of the best fitness
found for each function by each tested topology. One can observe that the results
achieved by our proposal are similar to the Local topology for the functions Ackley,
Rosenbrock and Griewank, but we obtained the best performance for the Rastrigin
function. One can also notice that we far outperformed the Global topology and the
CNPSO approach (static complex topology).

Table 1. Mean value and (standard deviation) of the best fitness found for each function

PSO Topology Rastrigin Ackley Rosenbrock Griewank
Global topology 38.1401 7.4857 0.0011 0.0134
(9.2908) (9.3576) (0.0015) (0.0189)
Local topology 34.5914 0.0000 6.2587x1078 0.0025
(9.0085) (0.0000) (1.6376x1077) (0.0052)
Static complex topology 33.1985 0.7740 0.0017 0.0119
(8.6007) (2.2623) (0.0023) (0.0148)
Our proposal 14.0476 0.0000 1.7766x 1077 0.0037
(Dyn. Complex Topology) (5.2370) (0.0000) (2.7928x1077) (0.0063)

The average values of the best fitness achieved along the iterations by the PSO
algorithm using the four different topologies for the functions Rastrigin, Ackley,
Rosenbrock and Griewank are shown in Figure 2. As can be seen, our proposal con-
verges faster for Rosenbrock and Ackley functions. Besides, our approach does not
get stuck in local minima in the Rastrigin function, while all other tested approaches
quickly stagnate.
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Fig. 1. The average value of the best fitness achieved in each function through the iterations
by the PSO algorithm using different topologies

5 Conclusions and Future Works

In this paper, a novel dynamic communication topology based on the Barabdsi-
Albert model for the Particle Swarm Optimization is proposed. In this approach, the
particles explore the search space at the beginning and, as the particles get stagnated,
they try to seek for better particles to follow. This search for new neighbors is based
on the preferential attachment of the Barabdsi-Albert model.

The simulation results showed that the proposed approach is in average better
than other well known topologies and outperforms a simpler previously proposed
topology based on the Barabdsi-Albert model.

For the future, we intend to test this approach in dynamic problems. We also
intend to investigate the impact of the failures threshold of the particles in the opti-
mization process and the impact of the initial topology as well.
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Weak Ties in Complex Wireless Communication
Networks*

Amanda Leonel, Carlos H.C. Ribeiro, and Matthias R. Brust

Abstract. Hundreds of millions of devices—from book-sized notebooks to tiny
hand-held mobile phones—are equipped with wireless communication adapters that
are able to form a network among themselves. The spontaneous creation of this kind
of network and the unpredictable joining and leaving of devices bring forward new
challenges on network and topology organization. Network Science has proven to
deliver a fruitful methodology to investigate systems such as complex communica-
tion networks, and new insights and solutions can be gained by understanding and
imitating the function and structure of social networks. Following this line, this pa-
per initially focuses on the development of models that reveal characteristics found
to be inherent to social networks. In particular, we consider the finding that social
networks can contain a diversity of links: we create clusters of friends, connected by
strong links and, additionally, there are links to acquaintances, the so-called weak
ties which, despite the name, have been hypothesized as essential for finding jobs
or disseminating rumors when strong ties fail. As such links seem to be highly im-
portant to deal with the requirements of a complex network such as our own social
network, we argue that bringing these structures to the design principles of complex
communication networks may result in an increase of efficiency and robustness, and
we describe the implementation of two algorithms for wireless communication net-
works using only local neighborhood information and producing features of com-
plex social networks (weak ties in particular). The results imply that local removing
promotes the emergence of weak ties, which we found by using a recently proposed
link clustering algorithm for identifying link communities.
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1 Introduction

In the last years, it has become clear that the increasing number of wireless commu-
nication devices such as notebooks, hand-held mobile phones or even tiny sensors
is generating an enormous impact in our daily lifes [6} [13]]. The design of wire-
less networks such as an ad hoc or sensor network that consists of a diversity of a
large number of devices is a hard task, since the paradigm of self-organization ap-
plies: these devices can join and leave the network unpredictably and form networks
spontaneously.

These characteristics create new challenges on how to handle the emerging com-
plex communication topologies that potentially can consist of thousands of devices.
In order to deal with these challenges, we have to look for networks, which are used
to naturally and inherently deal with the problems, and learn design principles by
analogy. In fact, understanding the structure of our own social network might help
finding answers of how to design a complex communication network and which
patterns we have to evoke in a man-made communication network to deal with its
own complexity [9].

This work focuses on the findings that our social network consists not of a sin-
gle type of ties or links, rather it is built on a diversity of links. The human social
network is actually a highly complex structure that is tied by different types of inter-
dependency, such as histories, interests, trades, neighborhood, and communications.
These ties or links are neither randomly nor uniformly distributed, and the character-
istics of the links vary considerably. As a matter of fact, Granovetter reports on
the difference between friends and acquaintances, and points out that acquaintances
are more useful for certain tasks such as finding a job and disseminating news or ru-
mors. Granovetter calls the links between acquaintances as weak ties. The difference
between a weak and a strong tie can be understood in different ways. For a wire-
less communication network, this can be interpreted by the fact that clusters should
concentrate on processing information, while weak ties should dedicate mostly on
information dissemination.

In this paper, we focus on the problem of evoking weak ties in ad hoc networks
where devices communicate over a wireless medium without using any immediate
router. This kind of wireless network belongs to the class of spatial graphs, where
the links between nodes depend on the radio transmission range, which is a spatial
relation between nodes [3[8]. The main problem of emerging weak ties is that there
is no formal definition available that could be used. Nevertheless, Kumpula et al [7]
suggest a network model for emerging community-like structures, including strong
and weak ties. Additionally and more restrictively, the introduction of new links
is explicitly not allowed. This corresponds to the reality of self-organizing wire-
less networks since links can only be created if nodes are within their respectives
transmission ranges. As in Kumpula et al. [[7]], our model also requires 2-hop neigh-
borhood information for execution. On the other hand and in contrast to Kumpula
et al. [[1l], our approach considers a localized topology control algorithm that does
not rely on network evolution for the creation of weak ties.
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Despite the significant limitations regarding link creation, we show that it is pos-
sible to build a distinction between strong and weak ties. This is accomplished for
example with spatial graphs, but the algorithms work for relational graphs as well.
We use (i) the clustering coefficient and (i1) similarities between links to
control the topology, and promote the emergence of weak ties in a network. The
objective is to create highly clustered regions with low average shortest path by re-
moving superfluous links. To identify weak ties, we use a recently proposed link
clustering algorithm for identifying link communities [I]]. Link communities fo-
cuses on grouping links rather than nodes, and the algorithm incorporates overlap
and reveals multiscale complexity in networks.

The remainder of this paper is organized as follows. Section2lpresents the system
model. Section [3] describes topology control algorithms. Experiments and analysis
of topological properties are in Sectiond] Finally, Section 5 concludes this work.

2 System Model for a Wireless Network

We define an ad hoc sensor network consisting of a set of devices connected by
wireless network links. We consider here that the initial network topology is a spa-
tial graph such as a unit disk graphs [3]. The resulting wireless network can be
represented as G = (N, L) that is a graph with |[N| nodes and |L| links. All nodes
have the same transmission range r. Two nodes « and v can only form a link when
they are in a spatial neighborhood, i.e. when their Euclidean distance d is smaller
than the transmission range: d(u,v) < r. We abstract away the details of the MAC
and network layer. Nodes are static, i.e. they keep their initial position and they are
deployed uniformly at random in a squared simulation area with an edge length /.
Thus, all possible links are already given from the initial configuration.
Furthermore, we assume that every node is aware of its current 2-hop neighbors,
listed in a device neighbor list data type. We assume that, in practice, a neighbor
discovery service on each device updates the neighbor list at particular time inter-
vals, such that the neighbor list represents—with a minor delay—the current local
topology of the network. Geographical positions of the nodes are not considered.

3 Topology Control: Clustering and Weak Ties

Kumpula et al. shows a model where a sparse network evolves to a dense net-
work. Since our system model does not allow such a procedure of link addition,
we researched for a method that increases the clustering and keeps low the average
shortest path by removing links. It turned out that the clustering coefficient indicates
clustered nodes, and it can be increased by removing links. Our hypothesis is that the
links that keep the clustered regions connected should then be weak ties. The clus-
tering coefficient can be used for measuring the efficiency regarding the clustering
behavior. Since the clustering coefficient is locally defined we counter the challenge
to implement a solution that is localized [10].
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The definition of the clustering coefficient might suggest that more links in each
node neighborhood result in a higher clustering coefficient. Our approach, however,
is based on the observation that this statement does not hold in general. Thus, we
found that even the removal of dedicated links can increase the global clustering
coefficient. Our algorithm is built on this observation and provides a generic ap-
proach. We argue that since the links can only be removed, weak ties have to appear
naturally in the network topology.

Unfortunately, there is no formal definition in the literature that could be used to
identify weak ties. Granovetter produces an informal idea of the impact of weak
ties on the network structure. We propose to use a link communities algorithm re-
cently reported in the literature [1]] to identify weak ties. Our final analysis consists
of three steps:

e calculate the similarities between pairs of links (i.e. Jaccard index),
e cluster the ties, using a single-linkage hierarchical clustering [1]], and then
e classify link communities as strong or weak ties.

In link communities, the Jaccard index can be used to calculate the similarity S
between links from an undirected and unweighted network [[I]. Link communities
use single-linkage hierarchical clustering to find hierarchical community structures
due to simplicity and efficiency, even on large-scale networks. Initially each link
builds one community. The pairs of ties with higher similarity and common ties
between them are grouped simultaneously. The algorithm ends when all links are
clustered.

As the similarity S measures the strength of the merged community, we consider
that weak ties appear, in the link cluster, as single communities, i.e., with low or
no similarity to other link communities. Thus, the set of weak links in a network is
represented by the union of these unitary link communities.

3.1 A Link Removal Algorithm Based on Clustering Coefficient
(Rec)

The first proposed algorithm verifies if a link ¢, is inefficient in terms of the clus-
tering coefficient, i.e. if its removal increases the clustering coefficient. In the case
of inefficiency, the link e, , is considered as a candidate for removal. It is not re-
moved immediately because removal in this stage would be in accordance with the
criterion of that particular node only. However, since removing a link affects the
local clustering coefficients of the 2-hop neighborhood of the set u«, v, an additional
removal confirmation phase must be performed, when nodes exchange the removal
candidate information with their corresponding neighbors. Connectivity is guaran-
teed by the fact that removing e, ,, requires at least one neighbor of u to be connected
to one neighbor of v. Thus, the resulting topology is connected, and the algorithm is
therefore connectivity-preserving.

The algorithm requires 2-hop synchronization to remove a link, since 2-hop topo-
logical information is required in order to plan the action. Then again, this local link
removal affects the 2-hop neighbors. For reasons of simplicity the algorithm has
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been implemented in a synchronous network, and a desynchronization procedure is
not detailed here. We notice, however, that any synchronous algorithm (i.e. an algo-
rithm for synchronous networks) can be transformed in its asynchronous counterpart
by using synchronizers [2]].

3.2 A Link Removal Algorithm Based on Link Similarity (Ry;,,i;)

The second proposed algorithm verifies if a link e, ,, is inefficient in terms of similar-
ity, i.e. if the link has a very high average similarity between its neighboring links. In
this case, we propose that e, can be considered a strong or redundant link because
its removal should not considerably affect the average shortest path. Otherwise, if
the link e, , has a low average similarity between its neighboring links, e, , can be
a weak tie, since removing this link may significantly increase the average shortest
path.

An approach for the removing decision is based on a variable probability p that is
proportional to the average similarity between the link ¢, , and its neighboring links.
This means that links with high average similarity are strong removal candidate with
probability p. On the other hand, links with low average similarity, or weak ties, may
be preserved in the network due to its low probability of removal.

As in the previous algorithm, the connectivity is guaranteed and the resulting
topology is connected. In both algorithms, the stop condition is given by the choice
of a percentage of links removed from the initial spatial network.

4 Simulation Study

The first experiments were run on a set of 200 nodes uniformly deployed at random
in a square with edge length / = 450 units and transmission range » = 60 units. The
initial topology was created using the unit disk graph model described in Section[3l
An example is shown in Fig. 1(a). Table[[lshows statistics from 50 spatial networks.
Fig. 1(b) shows an example of a resulting network using the link removal algorithm
based on clustering coefficient. Each color represents different link communities.
Fig. 1(c) shows an example of a resulting network using the link removal algorithm
based on link similarities. Each dotted line represents an unitary link communities.

Fig. 2(a) reveals that the clustering coefficient increases approximately 30% us-
ing the algorithm based on clustering coefficient after removing 25% of links. Our
experiments have indicated that this algorithm reaches its stop condition in 25%
removed links. However, with the same percentage of removal, the clustering coef-
ficient decreases approximately 30% using the algorithm based on link similarities.
The working principle of the first model is the optimization of the clustering coeffi-
cient by selectively removing links. We observe that link removals are more likely
to occur in sparse regions, while highly clustered regions are mostly unaffected (see
Fig. 1(b)).

The average path length is showed in Fig. 2(b). The link removal algorithm based
on link similarities increases the APL in only 20% after removing half of links in the
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Table 1. Statistics from 50 spatial networks with n = 200 nodes, / = 450 u, r = 60

Metric

|L] initial links
Clustering Coefficient
Average Shortest Path

Average

979.7037
0.6309
5.6571

Standard Deviation

43.0071
0.0152
0.2432

Fig. 1. Examples: (a) Spatial network with n = 200 nodes, [/ =450 u, r =60 u, |L| = 1,226
links; (b) Network with 20% nodes removed by the link removal algorithm based on clus-
tering coefficient R.; (c) Network with 30% nodes removed by the link removal algorithm
based on link similarities Ry,
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coefficient (R..) and link similarities (R;i;)
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network. This means that Ry;,,; keeps weak ties in the network. However, the link
removal algorithm based on clustering coefficient increases the APL up to 125%
after removing only 25% of links in the network. In this case, R.. removes mainly
weak ties, that significantly increase the average shortest path.

The removal of strong vs. weak ties is clearer in Fig. 2(c). R.. significantly in-
creases the median similarity of networks, since removing weak ties. However, R
decreases the median similarity of networks after removing strong ties.

These algorithms aim at increasing the clustering coefficient and at keeping low
the average shortest path, but as a side effect, isolated links that connect clustered
regions may appear. These isolated links seem to have the same functions and struc-
tures as weak ties have in social networks. If the resulting network topology is pow-
erful in terms of information dissemination, action taking (information processing
etc.) as a complex social network, but using less resources than the initial network
(because links have been removed), then the presented algorithm can be used to
release efficiency reserves of complex communication network design.

After calculating similarities between pairs of links and clustering links, single
communities — i.e., unitary communities with low similarity to other sets of links
— were classified as weak ties. See Fig. 2(d) for results. The algorithm Rj;,,; trans-
forms about 30% of network connections in weak ties, after removing half of links
in the network. However, the link removal algorithm based on clustering coefficient
decreases the number of weak ties. As a matter of fact, the resulting topologies for
the experiments based on similarities reveal visible dotted links where weak ties
start to dominate (see Fig. 1(c)).

5 Conclusions

The link removal algorithm based on clustering coefficient and introduced in this
paper shows that clustering does not lead to the emergence of weak ties. On the
other hand, the control based on link similarities efficiently creates weak ties, but
significantly decreases the clustering coefficient.

Weak ties appear to be important for the transfer of certain information that is
filtered by a clustered set of nodes. And these links can be successfully classified by
the link communities algorithm. Importantly, our approaches do not allow addition
of new links, so our approaches rely on a procedure by removing dedicated links.

Whereby our work focuses on manipulation of an existing network to form weak
ties, human social networks seem to apply different principles: they are driven by
the joining and leaving of nodes and thus, use network evolution as the driving
force for emerging patterns. For example, the likelihood for two persons with a
common friend to become friends is higher than the possibility for two persons with
no common friend to become friends [11]].

In spite of these interesting considerations, it is important to keep in mind that
the results were obtained for spatial networks such as unit disk graphs. We expect
similar results for relational graphs, studies and analysis on network composed of
dynamic nodes, and combination between link removal algorithms, but these are
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subjects of further investigations. In an extended version, weights can be assigned
to links to conduct the removing process.

Finally, it remains an open question if weak ties can be produced with a micro-

scopic or localized model that does not make use of more than one-hop neighbor-
hood information.
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Vulnerability-Aware Architecture for a Tactical,
Mobile Cloud

Anne-Laure Jousselme, Kevin Huggins, Nicolas Léchevin, Patrick Maupin,
and Dominic Larkin

Abstract. Currently light infantry soldiers do not have access to many of their cy-
ber resources the moment they depart the forward operating base (FOB). Com-
manders with recent combat experience have reported on the dearth of computing
abilities once a mission is underway [14]. To address this, our group seeks to de-
velop a tactical, mobile cloud implemented on a swarm of semi-autonomous
robots. We provide two contributions with this work. First, provide a formal de-
finition of the problem followed by a description of our approach to vulnerable
state identification based on pattern recognition techniques. Second, we present
an awareness definition as it pertains to our domain.

1 Problem Statement and Formalization

This is in essence a coverage problem. A robot is responsible for providing com-
munication coverage to the set of clients in its area. Additionally, each robot must
maintain communications with at least one other robot to ensure that the global
network remains connected, see Figure 1.

First, we consider the elements of our domain. Let R={r,, ..., ry} be the set of
robots and C={cy, ..., ¢y} the set of clients. The set C combined with their spatial
location is a configuration. We denote p as a robot’s unique communications
range, which could be adjusted based on environmental demands. Next, E={ey, ...,
ey} 1s the set of communication links between the robots and G.=(R, E) is the cor-
responding communication graph. Let N, be the set of node coordinates. Two ro-
bots r; and r; are separated by a distance of d;; and are connected if their distance is
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less than pl . In later sections of this work, d;; will denote the distance between two
robots, two clients, or one robot and one client. We assume that (i) indirect links
are possible through intermediate nodes acting as relays, and (i7) at least one of the
nodes is connected to an external communication node such as a satellite or UAV.
In other words, we assume that there exists a communication resource capability
within the network to ensure that clients’ messages are handled properly through
the mobile cloud via an external wide range communication relay.

The environment is represented by a navigation graph, where each node
represents a possible position for the robots or clients and each edge between
nodes is a possible path [15].

Fig. 1. A tactical mobile cloud for communi-
cation coverage. Black circles are robot o
nodes r; and light blue circle represent their
coverage. pis the communication range and
d;; is the distance between robot 7; and 7;. O

Our formal objective is to provide continuous communications coverage for all
clients while simultaneously maintaining sufficient connectivity within the net-
work of robots. Accordingly, our research hypothesis is the following: an early
identification of network vulnerabilities will prevent catastrophic events.

1.1 Coverage and Connectivity

Central to our work is a precise definition of coverage. Clients need to have cov-
erage in the mobile communications architecture in order to access the tactical
cloud. Similarly, robots need to provide global coverage to ensure all clients are
fully connected to the cloud. For simplicity, we provide a binary definition of
coverage: covered or not covered. However, this definition can be easily ex-
tended to other models, such as probabilistic ones. We now consider a robot r;
with a communications range p and a client ¢; separated by a distance dj;.
We define coverage provided by robot 7; to client ¢; as

cov(ri,cj) =1 ifdij <p

ey
=0 otherwise
The global coverage for the network of robots at a given client c; is
N
cov(R,c:)= Y. cov(r,,c ) )
J iZ1 i J

! For simplicity, obstacles that modify the communication links will not be considered.
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which is the number of robots that cover client ¢;. In (3) we describe the inverse,
i.e., a definition of set of clients covered by robot r;.

M
cov(r,C)= . cov(r.,c.) 3)
1 j -1 |2

Given the coverage definitions from the perspectives of both the client and the ro-
bot, equation (4) describes the global coverage of the network relative to the set of
clients.

N M N M
cov(R,C) = Z cov(r,,C) = Z cov(R,c ) = Z > cov(r.,c.) %)
i=1 ! j=1 Jooi=1j=1

The other notion crucial to our work is that of network connectivity. We say that
two robots are connected if they are in their respective range of communication.
We define then:

con(rl-,rj) =1 if dij <p 5)

=0 otherwise

A value of 1 means then that a link exists between the two robots.
We say then that the global network connectivity holds if for each pair of ro-
bots (r;,r;) there exists a path linking r; to r;:

. 2
con(R) = 1if V(ri,rj) € R™,3(rjry) € Rm;(ri,rl),(rl,rz)...,(rm,rj) e E (6)

Alternative definitions could easily replace these binary definitions and define dif-
ferent connectedness indices such as the algebraic connectivity [6]. Indeed, allow-
ing real values for the connectivity would increase our flexibility in the definition
of vulnerable states and lead to different cost functions (see Section 3.3). This
kind of approach would lead to a multi-class problem rather a binary one and will
be considered in future work.

1.2 Vulnerability

The vulnerability V of a system S can be understood as a mapping, Vs: T— &, be-
tween an initiating threat 7, whether intended or not, and a resulting consequence
Ccharacterized by a degree of loss [16] and related to system inoperability or state
unreachability. Depending on how the threat uncertainty is characterized, the cost
function may be aggregated, giving rise to an expected cost, or equivalently to a
risk function [1]. Vulnerability thus corresponds to the susceptibility of a system
or to the manifestation of the inherent state of a system, which can be severely af-
fected when threatened [7]. Following the classification proposed by Klibi et al.
[10], uncertain initiating events such as threats can be classified as either random,
hazardous, or deeply uncertain events. Depending on the event model adopted,
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various approaches can be used to deal with uncertainties arising in a decision-
making problem. For instance, the approach advocated by Brown et al. [2], which
is based on worst-case bi-level or simplified tri-level programming, is to be con-
trasted with risk analysis involving probability and event trees [5], [1]. Indeed, the
fault trees used to locate the single point of failure or the minimal cut set® that
maximizes the probability of disruption relies on the probabilistic modeling of
events such as random failures [22].

In this paper, a mobile network vulnerable state can be defined as an instance
of the network’s state that may evolve in time until it affects the network’s func-
tions and the completion of its goals. Endogenous and exogenous threats to the
network include the robots’ inability to precede as intended, possibly due to hard-
ware-software failures or malevolent acts, electronic warfare, obstacles, or unex-
pected client moves that cause some robots to move beyond their neighbors’
communication range. Consider a sample set of possible clients configurations Cj
and a corresponding robot deployment represented by graph Gy=(R, Ej)). Include
also the set N.o of nodes’ coordinates at time instant 7, (encoded as attributes of
the nodes). Various experiments can be conducted by triggering the loss of a ro-
bot or a subset of robots or by repositioning clients. The occurrence at #; of this
triggering event may give rise to an adaptive robot deployment, whereby commu-
nication links can be either permanently lost or re-established, depending on the
relative distance to neighboring robots. This hybrid dynamical system is characte-
rized by switching time instants {#, t,, ..., t,,}, where #;,>t;,. At t;, the edge set
jumps from E; to E;,;. An edge (i,j) is lost whenever the distance between robots r;
and r; is greater than the communication range. It is assumed that the node set R
remains invariant whether or not a robot is able to operate. The final time instant
t,, is defined by the absence of any future triggering events such as a robot failure
or a client move.

As further explained in Section 2.3, a component of the network (i.e., edge,
node, or sub-network) is classified as vulnerable when a graph-connectedness-
related cost associated to this component is above a prescribed threshold.

1.3 Vulnerability Awareness

The notion of awareness considered in this work is derived from the concept of
limited system resources [9],[8]. Intuitively, awareness is an epistemic state, close
to knowledge, referring to a limited view and a limited capacity of the agents to
reach a perfect state of knowledge, the one that would be reached by perfect logi-
cally omniscient reasoners. When defining situational awareness, one must con-
sider the concepts of attention, vigilance, intelligence and stress within the context
of resource-bounded agents. Therefore, we adopt the following definition of
awareness: “an agent is aware of a proposition y if it can compute the truth value
of y before time r”. The vulnerability awareness of one robot r; * is thus directly

% A set of edges of a graph which, if removed (or "cut"), disconnects the graph (Wolfram,
Mathworld, http://mathworld.wolfram.com/CutSet.html).

3 This is a local definition but a global definition would concern a central instance having
access to the global swarm’s state.
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linked to its ability to come with an answer the question y =“Am I vulnerable?” by
means of an algorithm (to be detailed in the upcoming section) given its limited
resources (memory, computation, move, etc). Particularly challenging is the fea-
ture selection process as (1) the more features, the higher the computation and
memory costs; and (2) some feature may require a complete map of the swarm in-
volving higher memory needs while other may be evaluated locally.

2 A Pattern Recognition Approach to Vulnerability Assessment

2.1 Principle

In [13], the authors proposed a toolbox with the goal of detecting and predicting
the vulnerabilities in complex networks. These principles rely on pattern recogni-
tion techniques that leverage structural, dynamical, and functional features se-
lected to sensitize the classifier to potential vulnerabilities in abnormal situations.
Such an approach is expected to yield fast vulnerability prediction when compared
with a simulation using a first-principle-based model of the network. The problem
of complex systems vulnerability assessment has already been interpreted as a
classificatory problem, which includes such applications as disease surveillance
systems [20] and the crisis recognition [11]. Our approach integrates pattern rec-
ognition techniques applied to a time series and a network’s structural and dynam-
ical properties.

To determine vulnerability, we reason over the network using pattern recogni-
tion. With it, we design by training a mapping ¥ such that:

v:G—{yy}

(7
X yx) =y

where x is a representation of an element of ¢ (e.g. a node, link or sub-graph) and
y is an estimate of the detrimental effect of that element on the network, either 1

if vulnerable or O otherwise. Note that we use the term “vulnerable” for qualify-
ing a node although this is extended to the network. Typically, x is a vector of k
network features identified as relevant by feature selection pre-processing. As
mentioned in Section 1.3, one of the crucial tasks consists in identifying the set of
candidate features for the problem.

y Classifier
. — J\'_“ . '._'l“) z eneration
Trainin l 3 g
datasaetg b * &, IFl‘:b-"] —e iz}
Classifier " Emor Trained
- classifier
adaptation astimation

Fig. 2. Training of the network vulnerability classifier. F aims to yield a classifier y that
minimizes the error estimation given the training data set z=(x ",y ").
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The training data set z'=(x",y") consists of n instances of R, that is a set of n
samples x" of k features together with a label y (see Table 1). 7" feeds a classifier
generation mechanism F, as shown in Fig. 2, which seeks a classifier that mini-
mizes the error estimate between the set of estimated class labels and their corres-
ponding ground truth.

2.2 Features

In [1], the authors proposed four network feature categories. The first pertains to
the structural properties of a labeled, weighted graph. These include centrality,
similarity connectivity, shortest path metrics, clustering coefficient, spectral prop-
erties, vertex coreness, graph density, average nearest neighbor degree, among
others [3]. The second category considers flow dynamic changes by exploiting in-
formation on signals and systems such as Fourier transform, spectral monitoring
[12], bifurcation analysis [4] and efficiency measures [17]. Indicators pertaining
to complex system science and statistical physics described the third category of
features with examples including the exponent of the power-law distribution of
failure occurrences at a crossover [18], the local shape factor of a sand pile
adapted to networks [19], the Cavahlo-Rodrigues entropy, the spatial entropy, the
fractal dimension, the symmetropy, the Hurst coefficient, and the self-similarity
parameter [21]. The final feature group concerns functional information on key
components of the network. This fourth category includes the notions of coverage
introduced in Section 2.2. Our example features were drawn from this latter group
as well as the structural features from the first category.

2.3 Training

The purpose of feature extraction is to build a representation that is particularly
suited to vulnerability recognition problems specific to networks. Indeed, features
are naturally geared to the modeling of classificatory problems. Once this model
is derived, fast and efficient recognition is expected when compared to physics-
based models of large interconnected networks. A parallel between pattern-
recognition-based and game-theoretic approaches is proposed in [13].

Given an initial clients configuration C, and a corresponding robot deployment
Gy, (including the robots’ coordinates N,,), the training data set z used to derive
the classifier in (7), is obtained from the disturbance sample set ©={D,...,D,}. D;
stands for a set of sequence of disturbances { 1, .. ..., }. This sequence is in
a one-to-one correspondence with the occurrence time set { #; ,t, ..., t,,}, ti1>t:
O; represents a random realization of the ;™ disturbance of the sequence applied to
the network of robots at time #, and for experiment i. The first disturbance J, cor-
responds to a robot failure and is followed by a series of new client configuration
Cj, { dyj1,- -0y} It assumed that the first triggering event (first disturbance) dj is
a robot failure occurring at ¢, and that all J;; span R, the set of robots. The follow-
ing disturbances are a series of new client configuration Cj {J;,...,0m}
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representing new client configurations arising from clients adjusting their posi-
tions. In order to evaluate each robot’s vulnerability, they will be removed suc-

cessively. D; is then defined as the following union Ujer{ 01, Jjn,..., Fjm}. D;is
instrumental in defining experiment i. Indeed, sequence D; generates the sequence
of edge sets {{E\y,..., Ein}s.-s{Eri15---» Eigim}}, where IR| denotes the total num-
ber of robots. The state of G,, is used to determine the cost “,(con;,cov;) asso-
ciated with a disturbance sequence j of experiment i. This cost depends on the
connectedness of the graph through a disconnectedness index, con(G,,), derived
from equation (6), and the coverage cov(G,,,C,,) of the set of clients by the robot
network at time 7,,. In the binary case, when G,, is disconnected, con; is equal to 1
and when G,, is connected, con; is set to zero. Sequence j of experiment i is thus
associated with the following mapping

Each experiment i is characterized by the set of labels {y;,..., yir}. The classifier
used to analyze the vulnerability of the robot network’s dynamics in response to
the occurrence of possible contingencies is obtained by exploiting the data of Ta-
ble 1 established for each experiment i€ {1,...,N}.

Table 1. Table of features excerpt from Experiment i. Features are divided into two classes
depending on whether each robot is able or not to compute the features from local
information, which is sent by adjacent nodes.

Features Label
Local Gilobal
Robot 1 fr he fior fip Yin
Robot 2 By Iy fopr Top Yo
Experiment i
Robot IRl 7., fg, fapt  fap ViRt

3 Conclusion

In this paper, we have described a formal definition of a vulnerability-aware mo-
bile, tactical cloud architecture designed to support dismounted soldiers. We de-
veloped a problem formalization that described the network as well as a definition
of coverage and vulnerability. In addition, we provided a formal definition of
awareness as it pertains to our domain. We applied a novel pattern-recognition
approach to vulnerability assessment, which enables robot nodes in the network to
efficiently detect when they are in a vulnerable state. Future work consists of im-
plementing and benchmarking the architecture as well as exploring multi-class
problems for more robust connectivity definitions.
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Migration, Communication and Social Networks
— An Agent-Based Social Simulation

Hugo S. Barbosa Filho, Fernando B. Lima Neto, and Wilson Fusco

Abstract. Due to the high dynamics present on several social phenomena, it is ex-
tremely difficult to carry out scientific investigations on social sciences. This is true
especially for those phenomena most relevant for social sciences (e.g., human mi-
gration) which significantly increase the difficulty to perform an objective scientific
investigation. To overcome such constraints, social scientists have been using mod-
eling and simulation as a new approach to carry out experimental investigations on
different social phenomena. In this work a multi-evolutionary agent model (MEAM)
devised for social simulations was used in an experimental investigation about a
plausible correlation involving migration, communication and social networks. Re-
sults suggest that the proposed model was able to outcome macroscopic behaviors
adherent to actual social phenomena.

1 Introduction

Several studies pointed out that social networks play a significant role in migrants’
lives. However, such aspect is treated as a complementary component for migratory
phenomena, less important than other concepts (such as job market or difference
in wages) [4]]. Moreover, how social networks do affect migratory behaviors is a
question that remains open.

Most social phenomena with scientific interest are complex in nature and have
emergent behaviors of some higher orders (i.e., when individuals detect the presence
of emergent features and act accordingly [5]]).
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In a previous work, the authors investigated how the widespread of communica-
tion technologies affected migratory flows [1]]. In this work, we advance that inves-
tigation, including also elements such as short distance communication and infor-
mation exchange within social networks. Our objective is to prove that the MEAM
is also able to reproduce migratory phenomena even in a more complex scenario,
helping social scientist to gain a deeper understanding regarding migratory flows
and social networks.

2 Background

2.1 Computer Simulation of Social Phenomena

Agent-based computational modeling has become an increasingly important tool in
conducting experiments in social sciences. Phenomena such as acculturation, migra-
tion, spread of disease, groups formation, wars, among others, have been modeled
successfully using this approach [6].

Only with the increased processing power of computers in recent decades and with
advances in software tools and programming languages that Agent-Based Social Sim-
ulations could gain greater scalability, complexity and plausibility. Theoretical and
technical advances in artificial intelligence should be listed also as an important as-
pect in this true paradigm shift that is observed today in social simulations.

Although social simulations are a relatively new area of research, social scientists
already have important tools at their disposal to carry out their investigations. These
tools allow the social scientist to represent phenomena and social behavior through
computational models and investigate the dynamics of these models over time (e.g.,
PAX, Netlogo, Repast etc.).

2.2 Concepts on Demography and Human Migration

In demography, scientific studies are mostly related to human population and its
dynamics. It encompasses features such as structures, sizes, distributions, behaviors
or phenomena which can change those aspects over space or time[8]].

Ravenstein, in 1885, published the first work proposing a well empirically
grounded description of general aspects regarding human migration [9]. In that
work, Ravenstein stated that international migration might be described according
to 11 laws, which were latter named as “Ravenstein’s Laws of Migration”. Given
that in this work we are not focusing only on international migration but on general
aspects of the phenomena, four of those most relevant to this work are listed below:

every migration flow generates a return or countermigration;.

the majority of migrants move a short distance.

migrants who move longer distances tend to choose big-city destinations.
urban residents are often less migratory than inhabitants of rural areas.
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After Revenstein, several quantitative models of migration flows and the variables
that affect those flows were proposed. More on classical models of migration can be
seen in .

In last decades other social factors are also being investigated as related to mi-
gration flows such as social networks [3} 2]]. However, scientific researches carried
out in order to establish the role played by social networks on migration flows are
mostly based on surveys, census and official immigration data, which has problems
and limitations [[7, [10].

2.3 MEAM - A Multievolutionary Agent Model for Social
Simulations

The agent model applied here first appeared in a previous work by the authors [1]]
and it was conceived as an alternative to other agent models found in literature. In
the model, a multilayered architecture makes an agent able to perceive and interpret
external stimuli from different perspectives. Each evolutionary layer can represent
one trait of the agent’s perception and of the environment comprehension. In other
words, multievolutionary agents are able to observe, analyze and react to stimuli
even when available actions lead the agent to conflicting situations.

Each layer has its own evolutionary process that is guided by the behavior of the
agent according to the actual problem to be studied. The phenotypic and social evo-
Iutionary processes will be influenced by outcomes resulting from agent’s actions
throughout its existence while the genetic evolution will occur from the crossings
between the players over the generations.

The cognitive module determines the actions to be performed by the agent, under
the influence of phenotypic module (responsible for determining the physical and
behavioral expression of the agent) and their perceptions about the environment and
itself.

The phenotype evolution will occur as the outcome produced by the following
factors:

e Observation and interpretation of agents’ surroundings, more precisely, all enti-
ties that that may be there (e.g.,other agents and objects).

e Evaluation of the overall performance based upon an objective function (depend-
ing on the phenomena to be modeled)

e Impact of previous actions on the agents performance

The architecture of the cognitive apparatus can be seen in the form of three different
modules, each one with a specific role to be played during a cognitive activity (e.g.,
learning or judging).

More on the inner details, processes and dynamics regarding the Multievolution-
ary Agent Model can be seen in the paper where it was proposed [
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3 Experiments and Results

In this section we describe in details how the proposed agent model was applied
to a social phenomenon modeling task. To test whether our model is able to pro-
duce plausible outcomes (from social sciences point of view) we carried out several
experiments related to internal human migration.

The artificial society created for this experiment may be described as follows:

e two regions in a country are distant from each other enough to not allow daily
flows;

each region has its own citizens, workplaces, houses and social places;

citizens may work, interact and establish new social ties;

according to socio-economic attributes, citizens’ happiness will may affected.
low happiness levels may trigger different actions;

Results presented here are the average over 30 runs for all configurations. Moreover,
the following parametric setup were applied:

Table 1. Simulation parameters used in all experiments

Parameter Value
R1 average wages 15
R2 average wages 10
Initial unemployment rate 20%
Interaction probability 5%
Migration cost 5
Minimum happiness 5

Scenario 1 - No Communication

In this scenario, agents are not allowed to communicate to other agents their wages
or possible job opportunities. Thus, they are not using social information in their
decision-making although social interactions are still occurring. When communica-
tion is disabled, agents cannot share information with each other. Figure [Tal depicts
how population sizes changed over time when the experiment was executed with
non-evolutionary agents.

It is noticed that right after first iterations, few agents from R2 (which have av-
erage wages lower than R1) migrated to R1 and settled down there. Comparing
the behavior produced by non-evolutionary agents (Figure[Ia) and the MEAM with
10% of crossover rate (Figure [Tb), we can observe slight differences in both plots.
In Fig.[IBlwe can distinguish a oscilatory behavior starting approximtely after 200th
iteration.

Almost the same behavior may be seen in the scenario with the MEAM with
25% of crossover rate (Fig. [Id). However, the fluctuation also observed in Fig.
was intensified and strengthened.



Migration, Communication and Social Networks 71

— R1 Population — R1 Population
— R2 Population — R2 Population

302.0 304

301.5‘ MMWWWM v 303%

301.0 302 T Mgyt
53005 5 301
g 300.0 % 300}
£ 299.5 299

299.0! W 598 W M‘.M,wvw”\”‘WM”‘V“J_‘WM SN

208.5 WMWMWM . 207

298.05 100 200 300 400 500 2965 100 200 300 400 500

Iteration Iteration
(a) Non-evolutionary agent (b) crossover rate of 10%

— R1 Population
— R2 Population
302.0
301.5
301.0 N
My Mo
5 300.5 Mmu HA*HM
E W
£300.0 !
o,

82995 I}r.W"‘M
I
f

o
> o s W T
298.5 \

298.00

100 200 300 400 500
Iteration

(c) crossover rate of 25%

Fig. 1. Population on each region for non-communicating agents

Scenario 2 - Short Distance Communication

In this scenario, agents are able to communicate with surrounding agents. Thus they
are able to share social information and use them in their decision-making. In this
scenario, information is exchanged within the social network but only both agents
are in the same place. This scenario can be mapped to an environment with any kind
of telecommunication.

Figure 24l portraits the evolution in population sizes for both regions over time
when the experiment was executed with non-evolutionary agents. Similarly to the
behavior observed in Fig. [[al right after the initial iterations, few agents from R2
migrated to R1 and also settled down there.

Comparing the behavior produced by the non-evolutionary agent(Fig.2a) and the
MEAM with 10% of crossover rate (Fig.[2B), we can observe now that differences
between both models are widening. MEAM now is able to quickly perceive and act
accordingly to environmental changes.

In both experiments here carried out with MEAM (Fig. and Fig. 2d), fol-
lowing the initial flow, a secondary population movement emerges. This behavior
means that even those agents that are already settled down and stable in its region
are responding to a subtle change in the job market and trying to find a better op-
portunity.
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Fig. 2. Population on each region with local communication

Scenario 3 - Social Networks

In this scenario we are investigating the influence of social networks on human
migratory flows. In this experiment, agents are able to exchange information even
with those agents that are in the other region. However, this information will flow
only inside the social network. This scenario can be seen as an environment in which
people can obtain from their acquaintances information regarding wages paid in
other regions as well as possible job opportunities.

In this scenario we can observe few important changes in the overall migration
dynamic. From the Fig. [3al we can see that the information flow inside the social
network changed significantly the way in which the non-evolutionary agent behave.
As soon as the agents from R2 obtained information regarding the better wages
offered in R1, they started to migrate to there.

However, like in the previous scenario, those experiments were the MEAM was
applied, agents were able to give quick responses to environment changes. Fig.
and Fig.[3d depict this behavior.
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Fig. 3. Population on each region with long-distance communication

4 Conclusion

The hypothesis tested in this paper was that MEAM is also able to reproduce migra-
tory phenomena even in more complex scenarios, helping social scientist to gain a
deeper understanding regarding migratory flows and social networks. In fact, from
results shown in here, we can conclude that the multilayer architecture endowed the
agent with behaviors not shown by the other model. That means that agent-based
models are suited for social simulation of migratory phenomena.

The proposed model, despite having presented high-order behaviors, validating
our main hypothesis, it may still contribute to investigations on social sciences. A
detailed analysis of individual actions of the agent can provide important data related
to several factors (still imponderable) of human behavior. This, we listed here a sort
of possible future steps in this research:

e Compare this agent-based approach against analytical models.

e Investigate how cultural aspects may influence migratory behaviors

e Apply this model in investigations on other social contexts such as urban violence
and cultural transmission
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To carry out a quantitative analysis comparing results produced by this model
with data from 2010 Brazilian Demographic Census which can provide important
informations regarding migratory flows.
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A Comparison of Methods for Community
Detection in Large Scale Networks

Vinicius da Fonseca Vieira and Alexandre Gongalves Evsukoff

Abstract. The modeling of complex systems by networks is an interesting approach
for revealing the way that relationships occur and an increasing effort has been spent
in the study of community structures. The main goal of this work is to show a com-
parative study of some of the state-of-art methods for community detection in large
scale networks using modularity maximization. In this sense, we take into account
not just the quality of the provided partitioning, but the computational cost asso-
ciated to the method. Hence, we consider many aspects related to the algorithms
efficiency, in order to provide the suitability to real scale applications. The results
presented in this work are obtained from the literature, in a preliminar sense, and
form a solid basis for the implementation and application of efficient algorithms for
community detection in large scale networks.

1 Introduction

Many complex systems can be represented through networks, where the elements
are "nodes" and the connections between them are "edges". Human societies are an
example of complex systems, where persons (nodes) are related through affinities
or some kind of social interaction (edges). Understanding the way the relationships
among the elements occur helps to reveal the behavior of the entire system. In a
network of social interactions, for example, the way the relationships among people
occur can directly determine how news are spread or how opinions are formed [13]].
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Currently, there is a great interest in researching methods that deal with real scale
networks [21}, 5, [10]]. Particularly, the popularity of the web has led to a widespread
use of social networks attracting the attention of large companies that have focused
their marketing actions on them. A study released by the research-based advisory
firm Altimeter Group among the 100 most valuable companies showed that compa-
nies with a deep engagement with consumers through social media channels grew
18% average in a year while the revenue of those that invested little in networks was
6% down [3]]. Nowadays Facebook stands out with about 800 million active users
estimated reaching over 50% of the population in developed markets such as U.S.
and Canada [2], [T]]. It is also worth to mention Twitter, with more than 200 million
users sending over one billion tweets a week [].

One of the most important characteristics of network interactions is the formation
of communities, i.e. a division of the network in groups that show a great density
of internal connections and a low density of external connections [16]]. Moreover
a large number of methods to detect such communities can be found in literature.
Community detection in large scale complex networks is a challenge and many stud-
ies focusing this subject can be found in literature [10, 211,12, 7,3, 23]]. We can also
find in the literature a number of works that aim on the comparison of community
detection methods. In [13], the authors present a comparison among methods for
community detection based on the so called spectral graph theory. The work pre-
sented in shows a comparison of a set of greedy algorithms for community
detection. In [8], the author presents an extense comparison among methods for
community detection in networks, based in different approaches.

This paper focuses on the study of state-of-the-art methods for the detection of
communities concerning in the application in large scale complex networks. Based
on this study, the methods are compared regarding two main aspects: the quality of
the partitions they generate and the computational efficiency of each one of them.
Some aspects of the methods that might allow the detection of communities in in-
creasingly larger networks are also approached.

In SectionPlconcepts related to the detection of communities in networks through
modularity are presented, as well as the spectral approach which offers good results
for the partitioning of networks into communities. Section 3] shows algorithms that
can solve the problem of detection of communities in large scale networks. A com-
parison of these algorithms is shown in Section Ml where relevant aspects of each
method and their suitability to large networks are pointed out. Finally, Section
presents final considerations and suggestions for further work.

2 Community Detection in Networks

The sense of community becomes more evident when the difference between inter-
nal and external connection density increases, being necessary to define the criteria
for measuring the quality of the partitioning of a network into communities. From
the analysis of such criteria, it is possible to define methods that, without any pre-
vious information on the structure of the network, are able to differentiate networks
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with a well defined community structure from those that present a structure basically
formed by random connections [16].

To this end, we consider a graph G(V,E) where V represents the set of n
nodes and E the set of m edges and k; is de degree of node i. We also con-
sider C as a community structure, i.e. a partition of V in ¢ communities, such
that C = {Cy,...,C.}, where V = | Ji_, C; and Ni_, C; = 0. Taking nc, the number
of nodes in C;, mc, the number of intra-community connections in C;, such that
me, = |{(u,v) :u € C;,v € C;}| and b¢, the number of inter-community connections,
such that be, = |{(u,v) 1 u € C;,v ¢ G;}|.

2.1 Modularity

The most frequently used metrics for community structure assessment is modu-
larity [16], which is based on the idea that a vertex subset may be considered a
community if the number of internal connections is greater than expected in a ran-
dom formation. Considering that the chance of a connection of i be one of the k;
connections of j is k;/2m the modularity Q of a partitioning can be calculated by:

1

1 kik
o=, %Aiﬁ(%q) “om l

> b(circj), (1)
T 2m 1

where the first term is the number of connections between vertices of the same
community and the second one is the expected for a random version. §(a, b) returns
1, if a = b and 0 otherwise. A modularity matrix B can then be defined as:
T
B=A- kk . (2)
2m
Based on this definition, it is expected that a community structure that corresponds
to the maximum modularity value is the best division scheme, or, at least a very
good one. This leads to the need of modularity metrics maximization and several

studies are described in literature[10, 6} (14, 211 [7, [5 [T1]].

2.2 Spectral Optimization of Modularity

An efficient way of modularity optimization in networks derives from the spectral
partitioning of graphs and the relationship between its structural properties and the
eigenvectors of its adjacency matrix. Given a matrix A of dimension n X n, the eigen
problem is defined as the search for a scalar A and a non-zero vector v:

Av = Ay, (3

where the scalar A is the eigenvalue and v is the correspondent eigenvector.



78 V. da Fonseca Vieira and A. Gongalves Evsukoff

Considering the division of a network in only two communities, such division
may be represented by a vector s € {—1,1}", where, for each vertex v; of the net-
work, we associate a value +1,if v; € C and —1,if v; ¢ C. Thus:

0= 41msTBs. 4)

The objective then is to find the value of s that maximizes the Equation H] for a
certain matrix B. The elements of s are restricted to the values 1, but relaxing this
restriction, it points to any direction and an approximate solution of the optimization
problem Q is given by:

Bs = Bs, (%)

where s is one of the eigenvectors of the modularity matrix B. Considering that
sTs=3,; sl-2 = n, we obtain

n
Q= 4m[5- (6)

For modularity maximization, we choose the value s as the eigenvector u; corre-
sponding to the highest eigenvalue of the modularity matrix. However, we cannot
choose s = u1, because the elements of s are subjected to the restriction s; = £1. But
s may be approximated adopting the values +1, if [u1]; > 0 and —1, if [u]; <O.
In summary, the eigenvector of the modularity matrix corresponding to the largest
eigenvalue is calculated and then vertices are assigned to the communities according
to the signs of the elements: elements with positive signs are assigned to a commu-
nity and elements with negative signs are assigned to another.

It is assumed that the nodes can be divided into ¢ groups and there is no as-
sumption about the value of c. For this reason, the original formulation of the
algorithm, proposed by Newman, must be adapted, allowing detecting several
communities[13]], and this can be done through a process of successive bipartitions
. In this way, a division of a community is only performed if it results in some gain
in modularity and the possibility of division into smaller groups is analyzed in each
one of both parts until it is accepted that a further division will not result in any gain.

To this end, Newman defined the measure AQ that assess the modularity variation
of the network generated by the bipartition of a community C [15]):

11 1
AQ = S Bij(sisi+1)— Y Bij| = sTBUs, (7
2m | 2 i,jeC ijeC 4m

3 Algorithms for Community Detection in Large Scale
Networks

A negative aspect of the Newman’s spectral optimization algorithm is that the cal-
culation of modularity AQ (Equation [7)) involves the resolution of an eigenvalue
problem, computationally very expensive. This section presents some methods for
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community detection aiming at overcoming this inconvenience, enabling the solu-
tion of the problem in large scale networks.

3.1 Clauset, Newman and Moore (CNM)

The algorithm proposed by Clauset, Newman and Moore (CNM) uses a greedy strat-
egy for community detection. As described in [6] and [12], it initially associates
each vertex of the network to a community and then, repeatedly merges the commu-
nities the union of which produces the highest elevation of Q, given by Equation[Il
Considering a network with n vertices, after n — 1 combinations the result is just a
big community containing all the vertices and the algorithm stops. Given a vertex v
belonging to a community c,, e;; can be defined as:
1 . .

eij = 2 ZAVWS(CVJ)S(CwJ)v 3
m W
the fraction of the edges that connect the vertices in community i to the vertices in
community j. We can also define g; as

1 .
a; = ngkVS(CWZL (9)

the fraction of the extremities of the edges associated to the vertices in the commu-
nity i.
Modularity Q is then written as

1 _ kvkyy . N 9
Q—Zmz Ay o ;5(61,,1)5(@,,1) —2(6” as). (10)

vw i

The algorithm aims at finding the combination of communities i and j that results
in a greater increase in Q and, then, perform that operation, thereby joining commu-
nities with higher affinity [7].

The CNM method performs well in time, reaching up to O(n log? n) and, there-
fore, can be used in the detection of communities in large scale networks [15]]. On
the other hand, being a greedy algorithm, the CNM method often results in modu-
larity values worse than other methods, such as the spectral. The following sections
present some variations of CNM found in literature aiming at detecting and improv-
ing its deficiencies, to ensure better modularity values. Some of these alterations are
also intended to improve the execution time of the CNM.

3.2 Danon, Diaz and Arenas (DDA)

Danon, Diaz and Arenas (DDA) identified that when there are inhomogeinities in
sizes of the communities being processed, the CNM algorithm presents a big trend
for the detection of the largest communities, sacrificing the smaller communities and
considerably impairing the quality of the community structure found [[7]. Starting
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from the original CNM formulation, in [[7] they propose a modification of CNM
which treats communities of different sizes on an equal footing.

To this end, they normalized the modularity variation AQ, dividing it by k;, which
represents the fraction of all the edges with vertices in community i. Thus, the cal-
culation of modularity variation AQ is given by

AQ;;

AQ?J’ Tk
1

(1)

3.3 Wakita and Tsurumi (WT)

Another modification of the CNM algorithm proposed by Wakita and Tsurumi
(WT) is based on the observation that merging communities of very different sizes
greatly impacts the computational efficiency of the CNM algorithm [21]]. From this
idea, merging communities in a balanced way should improve the efficiency of the
algorithm.

In the modification proposed by WT, a heuristics is defined that attempts to merge
community structures in a balanced manner consequently improving the compu-
tational efficiency of the CNM method. The heuristics, called consolidation ratio
rcons(ci,cj) can be defined as:

rcons(ci,cj) = min ( il , |CJ|> ) (12)
lejl " feil
where ¢; may be interpreted in terms of the degree of the community in process or
in terms of the number of vertices.
Thus, the modification of the CNM algorithm is performed choosing the com-
munity pair (i, j). Instead of choosing the pair with maximum value of AQ;;, as in
CNM, the pair with maximum value AQ;; X rcons(c;,¢;) is chosen.

3.4 Leon-Suematsu and Yuta Method (LY)

Leon-Suematsu and Yuta (LY) analyzed the CNM algorithm and identified possible
forms of vertex incorporation when merging communities in process i and j for
updating AQ [10].

Through computational experiments, in it was observed that when there is a
great number of combinations of communities with one vertex linked to community
i and not-linked to community j (approximated by the number of interconnected
communities nci), the behavior of the execution is seriously harmed. The following
factor was defined to reduce this effect:

1

o (13)
max(nci;, nci;)

factor(i, j) =
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Initially, maxz A Qy is identified for a community i and then the factor is applied just
to maxAQyi, different from WT modification that applies the consolidation ratio to
all the elements. The selection of the community pairs to be operated is performed
through

max[(maxAQ;;) X factor(ci,cy;)); ki = arg max AQ;;. (14)
i J J

3.5 Blondel, Guillaume, Lambiotte and Lefebvre (BGLL)

Blondel, Guillaume, Lambiotte and Lefebvre (BGLL) proposed a hierarchical
method for community detection based on modularity maximization performed in
two phases [3]]. In the first phase, the BGLL algorithm assigns a community to each
vertex of the network, thus generating n unary communities. Then, for each vertex
i of the network, the algorithm takes into consideration its neighbor j and places
i in the community where the result is the maximum modularity value. This pro-
cess is iteratively applied to all the vertices until the modularity cannot be further
improved. The second phase of the algorithm starts creating a new network where
each new vertex represents a community found in the previous phase. The iterative
process defined in the first phase is applied on this new network. The simulations
performed by the authors suggest that the execution time presents an almost linear
complexity, but it is not possible to exactly assess this statement.

3.6 Parallel Computing Applied to Community Detection

The algorithms for community detection in complex networks found in literature,
although being potentially applied to large scale complex networks, present bot-
tlenecks that prevent the scalability of their use, due to high execution time or the
impossibility of storing data structures in memory.

According to [21]], the WT method was not applied to larger networks due to
processing issues. Besides the limitation of the execution time, it was pointed out
that a possible limitation on the size of the network was the capacity of storing data
structures in memory. The BGLL method was executed in a network with 118 mil-
lion nodes in only 9120 seconds. However, the scalability of the BGLL method was
limited by the storage in memory. In these cases, an approach widely used to reduce
execution time is parallelism, i.e. the simultaneous use of the computing power of
several processing cores for executing an algorithm [19]. Currently, there is a strong
tendency to use personal computers with multi-core processors spreading the use of
parallelism to solve computational problems. It is, thus, a powerful tool for reducing
the execution time of large scale applications such as community detection in real
complex networks [19]. There are several studies in literature which successfully
apply parallel computing to problems involving large scale networks [18}, 4].

In the methods based on greedy heuristics, the analysis of the nodes to assess the
best way of community merging may be divided among several processors, reduc-
ing the global processing time. Besides, the graph storage may be divided among
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several memory units, enabling processing increasingly larger networks. The main
bottleneck of the spectral optimization methods is the solution of the eigenvalue
problem. Using the power method [9], the process is reduced to iterative multiplica-
tions matrix-vector, which is a very important operation in numerical methods and
has motivated the application of parallelism to this kind of operation [22} 20]. This
strategy applied to the solution of the eigenvalue problem turns feasible the usage
of spectral approaches in large scale networks.

4 Algorithm Comparison

This section presents a comparison of the methods previously presented in two
ways: in terms of the modularity of their results and in terms of their computational
efficiency. Through these comparisons, some aspects which allow an implementa-
tion of these methods more suitable for large scale networks are enhanced.

4.1 Quality of Community Division

The quality of community partition by the methods addressed here was compared
through results found in literature [13, [10]. Table [I] summarizes the comparison
between the CNM and Newman’s spectral method (refered below as Newman) in
networks of up to 27 000 nodes, found in and a comparison of the methods
based on greedy heuristics in larger scale networks, found in [10].

Table 1. Algorithm Comparison

Modularity Q

Network n CNM Newman DDA2 WT LY
Karate 34 0.381 0.419 - - -
Jazz musicians 198 0.439 0.442 - - -
Metabolic 453 0.402 0.435 - - -
E-mail 1133 0.494 0.572 - - -
Key signing 10680 0.733  0.855 - - -
Physicists 27519 0.668 0.723 - - -
Mixi 360,802 0.601 - 0.666 0.466 0.615
YouTube 1,138,499 0.705 - 0.703 0.552 0.646
LiveJournal 5,204,176 0.686 - 0.737 0.433 0.648
Orkut 3,072,441 - - 0.663 0.380 0.540
Facebook 63,731 0.606 - 0.592 0.385 0.500

The Newman’s spectral method offers results with better modularity values in
all the networks where it was applied. When compared to other methods based
on greedy heuristics, the DDA method presents the best modularity values, indi-
cating that the concern in avoiding the trend of attraction of larger communities
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really results in a better partitioning quality. Although of fundamental importance
for the understanding of the methods, the analysis of the results found in literature
shows the need to conduct a more comprehensive study on the same execution con-
ditions. Thus, we could compare the methods in a more complete and therefore more
conclusive way.

4.2 Computational Efficiency

The calculation of the dominant eigenvector, performed in the methods based on
spectral approaches is conducted in O(mn), i.e. O(n?) on a sparse matrix and O(n*)
on a dense matrix. Thus, a big problem emerges from the fact that the modularity
matrix B is not spase. Nevertheless, [13] presents a way to explore special properties
of B, enabling to take advantage of the network sparsity. The power method applied
to the matrix B corresponds to iterative multiplications Bx, where x is the vector that
will converge to the eigenvector. Applying the multiplication Bx to Equation 2] we
obtain:

k(k” x)

Bx=Ax—
X X m

(15)
The term Ax is a sparse matrix-vector multiplication, executed on time O(m + n).
The second term corresponds to an inner product (O(n)). Thus, the multiplication Bx
is O(m+ n) and, considering O(n) multiplications, the total time to find the domi-
nant eigenvector is O[(m+n)n], although in practice, this value is much lower. Then,
in a sparse matrix, the execution time tends to O(n?). Considering the division of
the network into several communities, that, in a real case is of order log n, we obtain
a total time for the execution of the algorithm to unfold communities in networks is
of order O(n’log n) for a sparse network.

An application of the spectral optimization method in a network of 27 000 nodes,
executed in about 20 minutes can be found in [[13]. However, the author states that
the method is reasonable only for networks of up to 100 000 nodes on personal com-
puters. It is known that real situations present networks on larger scales than those
approached by and thus heuristics need to be frequently used for modularity
optimization.

The CNM algorithm uses a greedy heuristics to merge communities and thus, it
does not ensure optimality of the partitioning, which is one of the main disadvan-
tages of this method when compared to the spectral approach. On the other hand,
its ability to work with large scale networs allows the application to real scale net-
works. The CNM method was formulated with O(n?), and reduced to O(n log® n)
in following studies[[T5]]. Therefore, it is capable of dealing with networks on a scale
impossible for other methods, such as Newman’s spectral method.

Some methods based on CNM aim on reducing the computation time while being
suitable for large scale networks. By the application of the WT method, it has been
noticed, empirically, the execution time reduction of the CNM method [21]], and so,
it could be applied to a network of about 5.5 million nodes. However, the authors
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could not determine the causes of such improvement and besides, and a weak point
of the WT method is the low quality of the communities found, as observed in Ta-
ble[ll LY method was proposed in order to control the combination of communities,
which can directly affect the performance of the CNM [10]. The BGLL method is
enhanced because of its application to larger scale networks than those found in
other studies, and was applied to a network of about 118 million nodes [3]]. In [5],
the authors indicate that the order in which the vertices of a network are analyzed
can affect the time of execution of the method, although this was concluded based
on empirical results.

With the purpose of comparing the efficiency of methods based on greedy heuris-
tics in relation to time, Table [2] presents a comparison of CNM based methods, as
seen in [10]. In that work, the methods, implemented in C++, were executed in a
CPU Xeon 2.8 GHz with 64 GB Ram PC running a Red at Linux. It can be ob-
served that in Table 2] only some of the networks presented in Table [Il were used.
The reason is the absence of such results in the original study [13]].

Table 2. Comparison between the execution time of the greedy algorithms in seconds

Time (s)
Network n CNM DDA2 WT LY
Mixi 360,802 4,747 417 639 288

YouTube 1,138,499 11,892 2,091 3,852 2,631
LiveJournal 5,204,176 810,302 114,898 56,767 43,059
Orkut 3,072,441 - 275,154 41,691 26,960
Facebook 63,731 72 15 11 11

In Table[lit can be observed that the LY method presented good results in relation
to execution time when compared to the other methods.

From the analysis of the results we can notice that the LY modification allowed a
drastic reduction in the number of chain-like operations, which reached 81 times in
some cases. Also, there is a great reduction in the execution for the LY modification
when compared to the original CNM method. In the experiments, the execution time
was reduced in a factor between 3 and 45 when compared to the original CNM. In
respect to the modularity, comparing the LY and the CNM methods, LY presented
better results than CNM in about 40% of the tests. When the results are compared
with the DDA modification, better results are obtained in about 60% of the cases;
CNM presented better results in about 40% tests. When Tables[IlandRlare analyzed
together, we can observe that the LY method presents a good execution time while
preserving the quality of the partitioning which makes its use very attractive. Again,
it is important to enhance that a more detailed study is necessary to be conducted,
which allows a more solid base of comparison of the methods presented. It is partic-
ularly important to compare directly CNM based methods with spectral approaches
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and BGLL, because results of a wide application of these methods to benchmark
large scale networks could not be found.

5 Conclusions and Future Directions

The formation of communities is one of the properties most frequently observed in
complex networks and the study of methods for the partitioning of networks into
communities has received great attention. The present paper presents a study of
some of the main methods for community detection in large scale networks and a
comparison of these methods using results found in literature.

The study was conducted focusing on two aspects: partitioning quality and com-
putational cost. The partitioning quality was assessed through the modularity value
obtained and it was observed that the Newman’s spectral optimization approach pre-
sented better results than the heuristics methods. However, the high computational
cost associated to the eigenvalue problem makes its application difficult in real scale
networks. In these cases, the use of algorithms based on heuristics proves to be more
efficient. We pointed out several features which, when properly worked, can reduce
the execution time of the algorithms.

The comparison of the methods enabled the formation of a solid base for the
understanding of the characteristics of each one of them. However, we intend to in-
clude in future studies, the implementation of each one of the methods considering
characteristics that lead to a reduction of the computational cost. Then, the methods
should be compared in equal experimental conditions, applied on networks with dif-
ferent characteristics, so as to obtain an exact knowledge of the suitability of each
method to each context. Additionally, we intend to extend the range of methods
compared, including different approaches, such as the particle competition method
[17], which proved to be an efficient approach for dealing with the community de-
tection problem. In future works, we also intend to use parallel computing, enabling
the best use of multiprocessor computers, very popular nowadays.
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Stable Community Cores in Complex
Networks

Massoud Seifi, Ivan Junier, Jean-Baptiste Rouquier, Svilen Iskrov,
and Jean-Loup Guillaume

Abstract. Complex networks are generally composed of dense sub-networks
called communities. Many algorithms have been proposed to automatically
detect such communities. However, they are often unstable and behave non-
deterministically. We propose here to use this non-determinism in order to
compute groups of nodes on which community detection algorithms agree
most of the time. We show that these groups of nodes, called community cores,
are more similar to Ground Truth than communities in real and artificial
networks. Furthermore, we show that in contrary to the classical approaches,
we can reveal the absence of community structure in random graphs.

1 Introduction

Complex networks appear in various contexts such as computer science
(networks of Web pages, peer-to-peer exchanges), sociology (collaborative net-
works), biology (protein-protein interaction networks, gene regulatory net-
works). These networks can generally be represented by graphs, where vertices
represent entities and edges indicate interactions between them.For example,
a social network can be represented by a graph whose nodes are individuals
and edges represent a form of social relationship. Likewise, a protein-protein
interaction network can be modeled by a graph whose nodes are proteins and
edges indicate known physical interactions between proteins.
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An important feature of such networks is that they are generally composed
of highly interconnected sub-networks called communities [6]. Communities
can be considered as groups of nodes which share common properties and/or
play similar roles within the graph. The automatic detection of such com-
munities has attracted much attention in recent years and many community
detection algorithms have been proposed, see [I1] for a survey. Most of these
algorithms are based on the maximization of a quality function known as
modularity [I4], which measures the internal density of communities. Mod-
ularity maximization is an NP-complete problem [3], and most algorithms
use heuristics. For several reasons related to the modularity, as well as the
non-determinism of the algorithms or randomness in initial configuration,
such algorithms may produce different partitions of similar quality and there
is no reason to prefer one above another. Besides, such algorithms may find
communities with a high modularity in networks which have no community
structure, e.g. random networks [§]. This is related to the instability of al-
gorithms as shown in [I]: small perturbations of the input graph can greatly
influence the output.

Here, we assume that, if several community detection algorithms, or mul-
tiple executions of a non-deterministic algorithm agree on certain sets of
nodes, then these sets of nodes are certainly more significant. On this basis,
we study the tendency of pairs of nodes to belong to the same community
during multiple executions of a non-deterministic community detection al-
gorithm. Experimental results on both artificial and real networks show the
performance of this concept and we show in particular that it allows to dis-
tinguish random from non-random networks.

We provide a general description of algorithms used for detecting consensus
communities in Section We then present our previous contributions in
Section [Bl Finally, we describe the experimental results on artificial and real
networks in Section @ and on random networks in Section B before concluding
in Section [6

2 Algorithms for the Identification of Consensus
Communities

Two main methods have been used to combine different partitions into a set
of consensus communities. One is based on network perturbations. The other
one takes advantage of changing the initial configuration of the algorithms.

Network perturbations: Since most community detection algorithms are
deterministic, small perturbations can be made on the network to obtain dif-
ferent results. Then, communities are found in each modified network and
compared to the partition of the original network to obtain consensus com-
munities. Several methods of network perturbations are proposed in the lit-
erature. For example in [9] the method involves removing a fraction of links
and putting them back between randomly selected pairs of vertices. Another
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technique consists in adding noise to the weight of links, i.e. slightly change
them in order to influence the algorithm. For example, in [I7] it is proposed
to change the weight of links using a Poisson distribution whose parameter
is the average weight of links in the original graph. In [5], the noise added to
the weight of a link between nodes ¢ and j, initially equal to wj;, is given by
a distribution between —ow;; and ow;;, where o is a constant parameter. A
weakness of this method is that it needs an additional parameter o, whose
value is in principle arbitrary. In addition, these studies consider only pairs
of adjacent nodes. We will see later that we may identify nodes with a strong
tendency to be in the same community even if there is no direct link between
them. Also, in these studies, the comparison was made with the partition of
the original network, whose significance is not obvious.

Changing the initial configuration of an algorithm: Most algorithms
start with an initial partition which is modified many times until a high
quality partition is obtained. In general, the algorithms are very sensitive to
the initial partition and modifying it may lead to different outcomes. This
method is used in [16], to identify overlapping communities by identifying
stable and unstable nodes. In [I0] this method is used in order to detect
communities in multi-scale networks.

There are also similar methods in ensemble clustering like [19] but here
we study networks, i.e. structured data, not an unordered set of vectors. In
this article, we use the second approach by randomizing the order in which
nodes are considered. In addition, we consider all pairs of nodes and not only
connected pairs of nodes.

3 Community Cores

Given a graph G = (V, E) with n = |V vertices, we apply N times a non-
deterministic community detection algorithm A to G. In the following we use
the non-deterministic algorithm known as Louvain method [2]. At the end
of an execution, each pair of nodes (i,7) C V x V can be classified either in
the same community or in different communities. We keep track of this in a
matrix of size n x n, which we denote by P{J\f = [pi;]N,,, where p;; represent
the fraction of the A/ executions in which 7 and j were classified in the same
community. Note that p;; = pj;;, and we set p; = 0. From PZJJ\/ , we create
a complete weighted graph G’ = (V, E', W), where the weight of the link
(¢,7) is pi;. Finally, given a threshold a € [0, 1], we remove all links having
pi; < a from G’ to obtain the thresholded virtual graph, G”,. The connected
components in G”, obtained with a given « are called a-cores, which are
non-overlapping sets of nodes.. A pseudo-code version of this algorithm is
given in Algorithm [Il We now analyze the impact of the parameters on the
results.
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Algorithm 1. Core detection

1. Input: a graph G = (V, E), a threshold «, a number of executions A/, a non-
deterministic community detection algorithm A

2. Apply N times the algorithm A to G

3. Create a matrix PZJJ\[ = [pij]ﬁfxn where p;; is the proportion of times that ¢ and
7 belonged to the same community

4. Create a complete weighted graph G’ = (V, E’, W) with |V| nodes and p;; as
weights

5. Remove all edges ij where p;; < a from G’ to obtain G"',

6. The connected components of G, are a-cores

Number of executions: We can estimate the variation of p;; after each
execution of algorithm A by calculating the Euclidean distance between p;;
values as a function of the number of executions N. As shown in [I6], the
variation of p;; converges when the number of executions N increases. It is
therefore possible to terminate the iteration when the variation of p;; is small
enough. We derive no theoretical bound on the minimum number of execu-
tions to ensure good statistical significance on the estimators p;;. However,
we observe that even with an order of magnitude larger of the number of
executions, the results do not change much.

Threshold: The threshold « has a strong influence on the results of the
algorithm. The proposed algorithm does not aim at finding the largest sets
of nodes that are all connected to each other with a p;; > a. There are two
reasons for this: (i) the calculation of cores in this case would consists in
finding the largest cliques in G’, which is an NP-complete problem and (ii)
cores could then overlap, which is not allowed in our case. More precisely,
given a threshold «, a core may contain pairs of nodes connected with a
probability smaller than a.

3.1 Hierarchical Structure of Cores

The parameter « has a strong influence on the size of the cores, it furthermore
allows to obtain a hierarchical structure of cores. Indeed «1-cores are included
in ag-cores if a; > g, i.e. ap-cores are sub-cores of as-cores. Let us discuss
this on an example.

The Algorithm []is applied to the famous friendship network of Zachary’s
karate club [21]. Figure[[lshows the dendrograms of this network for A = 102
and N = 10%, while Figure [ shows the cores identified by our algorithm.
We can see that the division found by the algorithm with A/ = 102 and
a = 0.32 corresponds almost perfectly to the Ground Truth and only node
10 is misplaced. Note that the number and size of cores is greatly influenced
by the choice of a.
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Fig. 1. Hierarchical structure of cores of Zachary’s network for A/ = 10? and
5
N =10

We also applied our algorithm to graphs of different sizes from differ-
ent domains, including a collaboration network [13], an email network [7]
and a snapshot of the Internet (created by M. Newman, unpublished). As
Figure shows, with a threshold close to zero we obtain very large cores
(even larger than the communities) and a strict threshold e.g. o = 1 will lead
to tiny cores, most of which consisting in only one single node (called trivial
cores). We also observe in Figure that with an o < 0.5, we have a gi-
ant core containing the majority of nodes. When the threshold increases, the
cores will split quickly into small cores. But in the Internet or email network
we still have a giant core containing 10% of the nodes even with an « equal
to 1. Note that community partitions also contain a giant community.

1 T T 1
Email network
0.9 Collaboration network

Internet

09
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07
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08
07}
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04 04

0.3 03

02t 02t

Size of giant core / network size

Email network

Average size of cores / network size
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0 . . : 0 . ! ;
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Threshold Threshold

(a) Average size of cores vs threshold a (b) Size of giant core vs threshold «

Fig. 2. Impact of threshold to the size of the cores

It must be noted that, as explained above, the nodes inside a core
are not necessarily connected in the original network. For example, in
Figure a core containing the nodes 18, 20 and 22 is identified with
a threshold o = 1, however, there is no direct link between these three nodes
in the original graph. As Figure illustrates, these nodes were always to-
gether either in the community ¢, = {1, 18,20,22,...} or in the community
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(¢) a = 1.00

Fig. 3. and Cores for Zachary’s network using three different thresholds.
The shape of the nodes (circle/square) is the manual classification made by Zachary.
@ A subgraph of the virtual graph of Zachary’s network.

¢y = {2,18,20,22,...}. This property is interesting and shows that we can
identify groups of nodes with a strong tendency to be together even if they
have no direct link.

We studied the distribution of p;; in the matrices. The Figure shows
the p;; distributions of the Zachary’s network for A' = 102 and N = 10°.
As we can see, most pairs are nearly always grouped or separated, but there
are some pairs of nodes in the middle which are sometimes together and
sometimes separated. The nodes constituting those pairs are less stable. We
observe on Figure that even on large graphs the majority of pairs are
never classified together, and that a significant number of pairs of nodes are
always in the same cluster. A large fraction of these pairs are linked in the
original network.

ail ——
Collaboration -
Internet

0.1

Proportion of pairs of nodes (ccdf)
Proportion of pairs of nodes (ccdf)

0.1

L L L L L i 0.001 L L L L L
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Fig. 4. p;; distribution for@ Zachary’s network and |(b)|three real-world networks
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4 Significance of Cores

We now apply our method to some artificial and real networks having a known
community structure, to evaluate the significance of the identified cores.

A classical approach to evaluate the quality of a cluster partition con-
sists in comparing the similarity of the clusters with known communities (or
Ground Truth). Various measures of similarity between two clusterings have
been proposed [I5], and the most widely used is the mutual information, from
information theory. It counts the number of bits shared by two random vari-
ables. Despite the popularity of mutual information, there are many ways
to normalize it, which lead to different values, without definitive solution.
Also, it is shown that the mutual information depends on the size of the
partitions [20], therefore we used an adjusted version of this metric, called
AMI [20]. We also used the edit distance presented in [I] which gives similar
results and in some cases is simpler to interpret (data not shown).

Girvan and Newman artificial network [6]: Each graph is constructed
with 128 vertices in 4 groups of 32 vertices each. Vertices of the same group
are linked with a probability p;,, whereas vertices of different groups are
linked with a probability p,.:. Each subgraph corresponding to a group is
therefore an Erdos-Rényi random graph [4] with connection probability pj,.
The probabilities are chosen so as to obtain an average degree z = 16. With
Pin > Dout the intra-cluster edge density exceeds the inter-cluster edge density
and the graph has a community structure. Figure shows a comparison
of the similarity of cores and communities to Ground Truth for z,,; = 8
which is a value of z,y for which most community detection algorithms fail
to identify communities. As we can see, for some «, cores are more similar to
Ground Truth than communities.

American College football: This network is also a popular test network
with a known community structure [6]. We compare our results with the
known partitioning and we find that our algorithm reliably detects the known
structure: cores are more similar to known community structure than com-
munities for a wide range of « (see Figure .

Another metric that we have used to evaluate the significance of cores is
the p-value. The p-value is the probability of obtaining a test statistic at least
as extreme as the observed one, assuming that the null hypothesis is true,
i.e. assuming that the observed structure is only due to chance. The p-value
varies between 0 and 1. The lower the p-value, the stronger the test rejects
the null hypothesis, i.e. confirms the significance of the results.

Proteome network: We used this metric to evaluate the significance of iden-
tified cores on the Baker’s yeast proteome network [I8]: nodes are proteins
and there is a link when two proteins have been shown to interact. Proteins
can work together to achieve a particular function and we used these func-
tions (for instance metabolism or replication) as Ground Truth: a correlation
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between the clustering and the functions would validate the clustering. We
define the null hypothesis as stating that a core is a random subset of the
nodes, of a given size. Thus, for a given function, the number of proteins (or
nodes) in the core having this function should follow a hypergeometric law. A
small p-value thus denotes the fact that many more proteins than expected
have the mentioned function: the nodes have not been chosen at random, but
with a bias towards this function.

In Table[], by comparing the lines having the same label, e.g.” GO:0070478”,
between the cores and communities, one can see that cores have smaller p-
values, except for a few big groups with extremely small p-values, where our
method removes some nodes from the group yielding a slightly worse p-value.
Also, in cores table, the p-values are smaller when a@ < 1, which means that
there is a higher correlation between cores and functions. These findings show
that our methodology helps to find relevant sets of cofunctional nodes.

5 Random Graphs

We have shown that cores are efficient at finding a Ground Truth on real and
artificial networks. In random graphs, the nodes are linked independently to
each other so a strong inhomogeneity in the density of links on these graphs
is not expected. Therefore random graphs should not have communities. But,
as shown in [8], due to fluctuations it is possible to find a partition which
has a high modularity for random networks. A good algorithm should in-
dicate both the presence and the absence of community structure. In the
following we show that cores cannot be found in random graphs, using two
different random graphs model: the classical Erdés-Rényi model [4] and the
configuration model [12], which is a construction model that has the degree
distribution as an input but is random in all other respects.

First of all, Figure shows the impact of the number of execution N on
the distribution of the p;; for a random graph G(n, M). While there are some
high values of p;;, there is a high concentration of p;; at an average value
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Table 1. Table of p-values for Baker’s yeast proteome network . The parameters
to compute the p-value are: g,: total number of nodes in the network, gs: number
of proteins having this function among all the nodes of the network. cs: size of the
core cy: number of protein in the present core having this function

(a) Cores (b) Communities
function p-value gs ¢y c¢s ¢y  function p-value gs g5 ¢ cf

GO:0016021 3e-134 5033 927 332 258 GO:0016021 8e-170 5033 927 456 338
GO:0055085 3e-58 5033 244 332 100 GO:0055085 9e-075 5033 244 456 129
GO:0005763 1le-45 5033 28 30 21 GO:0005730 2e-050 5033 180 343 82
£ GO:0005847 7e-36 5033 15 20 14 GO:0005789 le-044 5033 187 456 88
—~ GO:0005789 8e-36 5033 187 332 69 GO:0000398 6e-044 5033 58 345 46
I'GO:0016455 7e-35 5033 23 19 15 GO:0005680 3e-031 5033 16 14 12
SG0:0016592 1e-34 5033 24 19 15 GO:0046540 3e-031 5033 28 345 27
GO:0051123 1e-33 5033 17 15 13 GO:0008054 3e-030 5033 12 14 11
GO:0032040 1e-33 5033 41 22 17 GO:0031145 2e-029 5033 13 14 11
GO:0000176 2e-33 5033 13 14 12 GO:0007091 2e-029 5033 13 14 11
GO:0030687 5e-029 5033 35 343 29
GO:0071004 6e-028 5033 29 345 26
GO:0045449 6e-028 5033 167 352 59
G0:0016455 1e-027 5033 23 352 23
GO:0006350 1e-026 5033 308 352 79
GO:0005847 2e-026 5033 15 107 15
G0:0016592 3e-026 5033 24 352 23
GO:0006406 5e-026 5033 53 632 40
GO:0006378 8e-026 5033 18 107 16

G0:0016021 4e-161 5033 927 398 307
GO:0055085 2e-67 5033 244 398 116
GO:0005730 1le-51 5033 180 180 65
%GO:0000398 6e-50 5033 58 164 41
< GO:0005763 1le-47 5033 28 32 22
I'GO:0005762 2e-41 5033 36 31 21
S GO:0005789 3e-41 5033 187 398 80
GO:0046540 2e-40 5033 28 164 27

OO0 BoraT 08 25 142 23 GO:0004298 16025 5083 14 92 14
10071004 9e-37 5033 29 164 26 (5.0000022 3¢-025 5033 23 14 11

G0:0016021 2e-161 5033 927 407 311 GO:0005762 7e-025 5033 36 345 27

GO:0055085 3e-66 5033 244 407 116 GO:0005484 1e-024 5033 24 212 20
GO:0005730 5e-51 5033 180 223 70 GO:0005763 1e-024 5033 28 356 24

gGO:OOOOSQS 9e-51 5033 58 173 42 GO:0000070 2e-023 5033 31 14 11
S G0:0005763 le-47 5033 28 32 22 GO:0005666 7e-023 5033 18 160 16

I GO:0005789 1le-42 5033 187 407 82 GO:0006611 1e-022 5033 31 632 28
S @0:0005762 2e-41 5033 36 31 21 GO:0032040 1e-022 5033 41 343 27

G0:0046540 1e-39 5033 28 173 27 GO:0005886 5e-021 5033 222 456 68
GO0:0071004 4e-36 5033 29 173 26 GO:0005685 1e-020 5033 17 345 17
GO0:0070478 2e-35 5033 17 18 14 GO:0070478 1e-020 5033 17 128 14

(0.1 with the selected parameters: 1000 nodes, 20000 links). We obtain similar
results with a wide range of parameters, see Figure [l This means that even
if we can find partitions with a good modularity, algorithms cannot choose
between these partitions.

These results can be explained by the fact that using low values of thresh-
old, our algorithm finds a single core comprising all nodes and since there is
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nearly no high values in random networks, there is no core with high values of
the threshold, while real-world networks have high threshold cores (see Fig-
ure . Interestingly, in random networks there is a sharp transition (as
shown by the cusp at a threshold value around 0.3) between the situation
where one single core is present and the intermediate threshold values where
several cores are present, which is not present in real-world networks.

To further validate these results, we compared the cores of two real-world
networks with random graphs that have the same size (and same degree
distribution for the configuration model), see Figure Bl In the case of the
Erdos-Rényi model, there is no pair of nodes with p;; = 0, which means
that all pairs of nodes have been grouped together at least once during 1000
execution of the Louvain algorithm. Conversely, there is nearly no pair of
nodes which are always grouped together, but for the leaves (nodes of degree
1) of the network which are always grouped with their only neighbor.

All these results show that random and real-world network behave very
differently from a core perspective, while both can exhibit a “classical” com-
munity structure, as measured by the modularity. This result gives a strong
advantage to cores versus communities.
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6 Conclusion

In this paper, we have investigated community structure of complex networks,
using community cores which may improve the significance and the stability
of groups of nodes detected by current community detection algorithms. We
showed that community detection algorithms use heuristics methods which
lead to different partitions of similar quality and there is no reason to prefer
one above another. Furthermore, community detection algorithms are highly
unstable and can find communities in graphs that have none.

If multiple executions of a non-deterministic community detection algo-
rithm agree on certain sets of nodes, then these sets of nodes can be consid-
ered as more significant. We showed that cores have a hierarchical structure
which can be obtained using different thresholds in our proposed algorithm.
We applied our method to both artificial and real networks and showed the
performance of our approach when comparing cores to Ground Truth. More
particularly, in random networks we find an absence of cores for high enough
values of the parameter «. This might provide a robust way to distinguish
random networks from real-world networks.

The perspectives of our work are to find a meaningful way to select the
threshold, even if the whole hierarchy can be useful as it gives a multi-scale
view of the network, and to study the dynamical networks and the evolution
of cores in such networksl.
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An Empirical Study of the Relation between
Community Structure and Transitivity

Keziban Orman, Vincent Labatut, and Hocine Cherifi

Abstract. One of the most prominent properties in real-world networks is the
presence of a community structure, i.e. dense and loosely interconnected groups of
nodes called communities. In an attempt to better understand this concept, we
study the relationship between the strength of the community structure and the
network transitivity (or clustering coefficient). Although intuitively appealing, this
analysis was not performed before. We adopt an approach based on random mod-
els to empirically study how one property varies depending on the other. It turns
out the transitivity increases with the community structure strength, and is also af-
fected by the distribution of the community sizes. Furthermore, increasing the
transitivity also results in a stronger community structure. More surprisingly, if a
very weak community structure causes almost zero transitivity, the opposite is not
true and a network with a close to zero transitivity can still have a clearly defined
community structure. Further analytical work is necessary to characterize the ex-
act nature of the identified relationship.

1 Introduction

In a complex network, a community is a cohesive subset of nodes with denser in-
ner links, relatively to the rest of the network [1]. The presence of such groups is a
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common feature in networks modeling different types of real-world systems, in-
cluding biological, social, information or technological ones [2]. When a network
takes the form of a set of interconnected communities, it is said to possess a com-
munity structure.

The presence of a community structure is presumably related to other topologi-
cal properties of the network. Uncovering what causes a community structure to
appear, and what its effects are, would be valuable for a better understanding of
the complex networks structure and dynamics. In particular, it would allow im-
proving or explaining the existing community detection methods, and provide
tools to interpret the communities identified in real-world networks. This angle
was adopted in a few studies, with different objectives and/or in different contexts.

Pastor-Satorras et al. [3] showed how the presence of a hierarchical community
structure and a power law degree distribution are sufficient conditions to cause a
high transitivity (also called clustering coefficient). For this matter, they defined a
generative model implementing these properties and studied the obtained net-
works. Moreover, they derived a new use for the transitivity measure, by utilizing
its distribution to characterize the network hierarchical structure. Clauset et al. [4]
proposed a different hierarchical approach: they defined a parameterized hierar-
chical model which they fit to various real-world data. The obtained hierarchical
structures possess various properties present in real-world networks, including be-
ing scale-free (power law distributed degree) and having a high transitivity. This
seems to indicate the hierarchical structure alone is enough to get both a scale-free
and highly transitive network. Lie & Hu [5] proposed a model able to generate
networks with community structures of various strengths, and showed the transi-
tivity of the resulting networks depend on this strength. They used their model to
study the effect of community structure on the network epidemic threshold. Inte-
restingly, the generated networks are neither scale-free nor have a hierarchical
structure, which seems to indicate these are sufficient, but not necessary condi-
tions. Wang and Qin [6] had the same objective, but used a different model. It is a
mixture of Watts-Strogatz’s small-world model [7] and Newman’s community
structure model [1]. It is therefore not hierarchical either, nor is it scale-free.

The previous studies intended at studying the effects of the community struc-
ture on some topological properties of interest. In the works by Jin et. al [8] and
Boguifid et. al [9], the community structure is, on the contrary, a byproduct. The
authors focused on social networks and designed their models as multi-agent sys-
tems mimicking social interaction. The generated networks turned out to possess
some properties observed in real-world social networks, including hierarchical
community structure and high transitivity. Interestingly, the degree is not power
law-distributed in social networks, which seems to confirm the scale-free property
is not a prerequisite to get highly transitive and/or community structured networks.

In this article, our goal is to study how transitivity and community structure can
mutually affect each other in realistic networks. Contrarily to the first cited studies
[3, 4], we consider non-hierarchical networks, since this property does not seem to
be a necessary condition to the presence of a community structure. The obvious
difference with studies [5, 6] is our focus on transitivity, which intuitively seems
to be a good candidate to explain the presence of a community structure (cf.
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section 3 ). Another important difference is our aim of evaluating not only the ef-
fect of the community structure on this property, like in [3-6], but also the effect
of the property on the community structure. Finally, we are not interested in the
specific process resulting in the network structure, like in [8, 9], but rather in the
general relationships between community structure and transitivity.

To study this relationship, we adopt an empirical approach based on several ge-
nerative models. First, we use an existing model to generate realistic networks
possessing a community structure with a controlled strength, [10] and study its
transitivity. Second, an existing model [11] and a new model of our own are used
to generate networks with a high or controlled transitivity, and we study the
strength of their community structure. The rest of the document is structured as
follows. In the next two sections, we review the notion of community structure
and justify our choice of the transitivity as a property of interest relatively to its
study. Section 4 is dedicated to the description of our methods, and more particu-
larly the models we are using. We then present the results of our simulation and
discuss the nature of the uncovered relationships in sections 5.1 and 5.2 . Finally,
we conclude by highlighting our contributions and the possible extensions of our
work.

2 Community Structure

The concept of community can be formally defined in several ways: mutually ex-
clusive vs. overlapping, hierarchical vs. flat, local vs. global, etc. [12]. The nature
of the community structure directly depends on the considered definition of a
community. Independently from this choice, stating the presence or absence of a
community structure is itself an ambiguous task. For this matter, one can clearly
distinguish two extreme cases: on the one hand, the complete absence of any
community structure (e.g. a complete network, in which all nodes are connected to
each others), and on the other hand a perfect community structure (a network
made up of several disconnected components). Between these two extremes lies a
continuum of networks exhibiting community structures of various strengths. It
makes therefore more sense to measure this strength rather than the presence or
absence of a community structure.

In this article we selected the modularity [1] for this matter. It is certainly the
most widely spread measure to assess the strength of a community structure. It is
based on the numbers of intra- and inter-community links, and consists in compar-
ing the proportion of intra-community links present in the network of interest, to
the expectation of the same quantity for a randomly generated network of similar
size and degree distribution. It is worth noticing some limits have been identified
since the creation of this measure [12]. The most important seems to be its resolu-
tion limit, causing it to fail identifying communities considered as small relatively
to the network size and community interconnection pattern [13]. However, we
considered it to be sufficient for this exploratory work.

Let us note e;; the proportion of links connecting nodes in community i to
nodes in community j. Then the proportion of intra-community links for the whole
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network is Y; e;;. Let us note e;, = e,; the proportion of links connecting at least
one node from community i. For the same community, Newman defines the ex-
pected number of inter-community links as e?., in a network whose links are dis-
tributed randomly. The modularity is therefore: Q = Y;(e;; — e?.).

3 Transitivity

The transitivity (also called clustering coefficient) of a network is the relative pro-
portion of triangles among all connected triads it contains [14]: C = n,/n, where
n, and n, are the numbers of triangles and connected triads, respectively. A trian-
gle is a set of three completely connected nodes, whereas a triad can be either a
triangle, or a set of three nodes connected by only two links (instead of three). The
transitivity can be interpreted as the probability of finding a direct connection be-
tween two nodes having a common neighbor. The measure therefore ranges from
0 to 1. Besides this global version, a local one exist, defined at the level of some

- 6'
node i [7]: C; = m

gles containing this node. The denominator corresponds to the number of combi-
nations of two neighbors of i, in other words: the number of connected triads
centered on i. The ratio can therefore be interpreted as the probability of finding a
direct connection between two neighbors of i. The local transitivity can be aver-
aged over the whole network to obtain a global measure. Real-world networks are
characterized by a high transitivity, whatever the considered version [2].

Transitivity and community structure are frequently jointly observed in real-
world networks. Let us consider for instance the comparative study conducted in
[15]. The authors classify networks depending on the systems they model, and
analyze their community structures. According to our processing, the transitivity
values associated to these community-structured networks are significantly higher
than for same-sized random networks, by several orders of magnitude and for all
considered classes.

The relationship between transitivity and community structure may seem trivial
at first. Intuitively, a high transitivity appears to be the natural consequence of a
community structure: links are concentrated in communities and should therefore
form many triangles. Reciprocally, it seems a high transitivity indicate the links
are form clusters, and therefore communities. However, it is relatively easy to find
counter-examples to refute these propositions. First, consider a network whose
communities are fully connected multipartite networks: the community structure
can be very strong, with dense communities, but the transitivity is nevertheless ze-
ro. One could alternatively consider communities taking the form of connected
stars, for the same result. Second, consider a fully connected network: the transi-
tivity is maximal, but there is no community structure (just a single community).

To avoid this kind of situation, we based our analysis on randomly generated
networks with realistic properties. When possible, we selected generative models
able to mimic the topological properties consensually considered to be present in
real-world networks.

, Where k; is the degree of i, and §; the number of trian-
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4 Methods

The empirical approach we adopted to study the relationship between community
structure and transitivity is two-stepped. First, we generate artificial realistic net-
works with controllable community structure and analyze how changes in the
community structure affect the transitivity. Second, we use two different models
able to generate transitive networks, and analyze how changes in the transitivity
affect the community structure. The identification of the community structures is
performed by applying two different and complementary algorithms. In this sec-
tion, we describe all three generative models, and summarize the principle of both
community detection algorithms.

4.1 Community Structure Model

To generate networks possessing a community structure, we used a modified ver-
sion of the LFR model [10]. This model applies a three-stepped generative process
based on the use of a more basic model, i.e. one not supposed to produce a com-
munity structure. First, the basic model is used to generate an initial network.
Second, virtual communities are randomly drawn so that their sizes follow a pow-
er law distribution. Third, an iterative process takes place to rewire certain links,
in order to make the community structure appear while preserving the degree dis-
tribution of the initial network.

The strength of the community structure is controlled by a specific parameter
called the mixing coefficient u. This parameter allows us to produce networks
with various community structure strengths and analyze how this affects the tran-
sitivity. The mixing coefficient represents the desired average proportion of links
between a node and nodes located outside its community, called inter-community
links. Consequently, the proportion of intra-community links is 1- u.

By construction, the LFR model guaranties to obtain power law-distributed
community sizes, which is a property present in community-structured real-world
networks [10]. Since the degree distribution is preserved during the rewiring step
of the generative process, the rest of the topological properties depend mainly on
the basic model used at the first step. The original LFR process relies on the Con-
figuration Model (CM) [16], which is able to produce networks with a specified
degree distribution. In LFR, it was used to obtain a power law-distributed degree,
also a well identified feature of many real-world networks [2]. To detect any po-
tential effect the basic model could have on the transitivity measured in the final
networks, we selected two alternatives to the CM, both able to produce scale-free
networks too. Barabdsi—Albert’s model (BA) [17] implements a completely differ-
ent, more realistic, generative process based on preferential attachment. The
Evolutionary Preferential Attachment model (EV) [18] is a variant of BA able to
produce networks with a higher transitivity.
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4.2 Transitive Models

We used two different models to study the effect of the transitivity on the commu-
nity structure. We first selected a model by Newman [11] (NM), which could be
considered as an adaptation of the CM able to produce networks with a controlled
transitivity. Instead of specifying the degree k; of each node i like in the CM, one
has to define both the number of single links s; and the number of distinct trian-
gles t; attached to the node. In other words, a distinction is made between the links
depending on their belonging to a triangle. Both are mutually exclusive, meaning
one link is either a single link or appears in only one triangle. In the end, the total
degree is k; = s; + 2t;. For our study, we wanted to obtain scale-free networks for
matters of realism, and we therefore needed to control k;. We consequently intro-
duced in our implementation of NM a parameter called transitivity coefficient
T € [0,1], in order to control the proportion of the degree dedicated to triangles
(vs. single links). Let [ ] denote the round function, then we have t; = [T k;/2]
and s; = [(1 — 1)k;].

The main advantage of NM is it allows artificially changing the transitivity of
the generated networks. However, for our study, it also has an important limita-
tion: the obtained transitive structure is not very realistic. Indeed, the created tri-
angles are all distinct, i.e. they cannot share more than one node. Put differently, it
is not possible for them to have a common side. This also limits the transitivity
(both the global and local versions). The maximal local transitivity some node i
canreachis 1/(k; — 1) when s; = 0.

In order to overcome this disadvantage, we developed our Highly Transitive
model (HT). It is able to randomly generate networks with both a specified degree
distribution and a high transitivity. The process starts with a ring network, in order
to avoid isolated nodes or components in the final network. Links are then ran-
domly added while respecting the desired degree distribution and favoring the
connection of nodes with common neighbors (in order to increase the transitivity).

Our model allows obtaining networks whose transitivity is much higher than in
NM networks. However, we are not able to control it with a parameter like we did
for NM. Both models are therefore complementary: NM allows us to test for the ef-
fect of various level of transitivity, even if the maximal transitivity obtained is not
very high (greater than in random networks though, so still realistically high). HT al-
lows us to test for the effect of a very high transitivity on the community structure.

4.3 Community Detection

In the first part of our experiment, the community structure of the generated net-
works is known, because it is defined by construction. However, this is not the
case in the second part, and we therefore need to identify it. For this purpose, we
used two recent algorithms: Louvain [19] and Infomap [20].

Louvain (LV) is an optimization algorithm proposed by Blondel et a/ [19]. It
uses a two-stepped hierarchical agglomerative approach. During the first step,
the algorithm performs a greedy optimization of the modularity (cf. section 2 ) to



An Empirical Study of the Relation between Community Structure and Transitivity 105

identify small communities. During the second step, it builds a new network whose
nodes are the communities found during the first step. In this new network, the intra-
community links are represented by self-loops, whereas the inter-community links
are aggregated and represented as links between the new nodes. The process is re-
peated on this new network, and stops when only one community remains.

Infomap (INP) is an algorithm developed by Rosvall and Bergstorm [20]. The
task of finding the best community structure is expressed as a compression prob-
lem. The authors want to minimize the quantity of information needed to represent
the path of some random walker traveling through the network. The community
structure is represented through a two-part nomenclature based on Huffman cod-
ing: the first part is used to distinguish communities in the network and the second
to distinguish nodes in a community. With a partition containing few inter-
community links, the walker will probably stay longer inside communities, there-
fore only the second level will be needed to describe its path, leading to a compact
representation. The authors optimize their criterion using simulated annealing.

As mentioned in section 2 , many different definitions of the concept of com-
munity exist. Louvain optimizes directly the modularity, whereas Infomap relies
on a completely different definition of what a community is. The first is from far
the most widely spread, and the second proved to be very efficient [21]. From this
point of view, these two algorithms are complementary, which is why we selected
them. This allows us to detect if the community structure induced by a high transi-
tivity favors one definition or the other.

5 Results

5.1 Effects of Community Structure on Transitivity

By applying the LFR rewiring process to the three basic models (CM, BA and
EV), we generated three different sets of community structured networks. We se-
lected our parameters values based on previous experiments regarding artificial
networks generation [10], and descriptions of real-world networks measurements
from the literature [2, 22], so that the produced networks were the most realistic
possible. Some parameters are common to all three processes: we fixed the size
n = 5000 and the power law exponent for the community sizes distribution f =
2, and made the mixing coefficient u range from 0.05 to 0.95 with a 0.05 step.
Other parameters are model-dependent. CM allows a precise control of the degree,
since it is possible to specify the desired power law exponent y for the degree dis-
tribution, and the average (k) and maximal degrees k,,,,. We used the values
y = 3, (k) € {15,30} and k,,,, € {45,90}. Both other models do not let as much
control, and we had to adjust their parameters so that the resulting networks had
approximately the same degree-related properties. Preferential attachment does
not give any control on y, which tends towards 3 by construction. We produced
25 networks for each combination of parameters, and averaged the transitivity, as
shown in Fig. 1 (left). Results were very similar for (k) = 15 and 30, so we only
present the latter here, but comments apply to both.
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Fig. 1. Effect of the mixing coefficient ¢ on the transitivity. Each point corresponds to an
average over 25 networks generated with y = 3 and f = 2. Left: for each LFR variant,
with n = 5000, ny,q, = 700 and (k) =~ 30. Right: for several values of 1,4, on LFR-CM,
withn = 1000 and (k) ~ 15.

The transitivity of the networks generated by the basic models before rewiring
are 0.020, 0.008 and 0.030 for CM, BA and EV, respectively. After rewiring, CM
leads to the highest transitivity, with values around 0.6 for u =~ 0, but it reaches
almost zero for ¢ = 1, exhibiting a serious sensitiveness to changes in the commu-
nity structure strength. Both other models also show a decreasing transitivity when
U increases, but the range is much smaller, partly because their values for u = 0 are
significantly smaller: around 0.25 and 0.45 for BA and EV, respectively. Like CM,
their transitivity is close to zero when p = 1. In the literature, real-world networks
with a 0.3 transitivity are considered highly transitive [22], so we can state all three
models exhibit a realistic transitivity for a small u (clearly separated communities).
The fact the transitivity decreases when the communities become more and more
difficult to discern, for all three models, supports the assumption that a realistic
community structure causes a high transitivity.

Besides its strength, a community structure can be characterized by its commu-
nity size distribution. For realism matters, we chose a power law with fixed expo-
nent f = 2, but the practical draw of the community sizes requires specifying the
size of the largest community n,,,,. In order to study the effect of this limit on the
transitivity, we generated another batch of networks with n = 1000, (k) = 15 and
Nmax € £200,300,600}, the other parameters being the same than before. Transi-
tivity values for different largest community sizes are shown on Fig. 1 (right).
When using a smaller n,,,,, the size difference between the smallest and the larg-
est communities decreases, making the community size distribution more homoge-
neous (or rather: less contrasted, since it still follows a power law). It also affects
the number of communities, which decreases when n,,,, increases: the numbers of
communities are 40, 30 and 15 for n,,,, = 200, 300 and 600, respectively.

It turns out the transitivity measured on the obtained networks decreases when
Nnax increases. In other words, the number of triangles increases when there are
less communities, with more similar sizes. This makes sense considering the links
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constituting triangles have more chance to fall between communities when there
are more of them, especially if they are smaller. This is confirmed by the fact the
observed effect is stronger for clearly separated communities (4 = 1).

5.2 Effects of Transitivity on Community Structure

We specified the parameter values for our HT model so that they were the most
similar possible to what was used with LFR. We consequently generated 25 net-
works with n = 5000 and (k) € {5,15,30}, and a power law-distributed degree
(y = 3). We obtained an average transitivity of 0.5, 0.45 and 0.3 for (k) =5, 15
and 30, respectively. This is consistent with the values observed in real-world
networks. Both community detection algorithms return modularities close to 0.90,
0.72 and 0.74, respectively, indicating a strong community structure. This obser-
vation support the assumption a high transitivity allows obtaining a community
structure.

As mentioned before, on the one hand NM does not reach a very high density,
but on the other hand it can control it through the transitivity coefficient t, allow-
ing to analyze how changes in this parameter affects the community structure. It is
therefore complementary to our model. Because of the local transitivity limit men-
tioned in section 4.2 , we had to use different parameters (compared to HT) to ob-
tain a relatively high transitivity. We generated 6 networks with n = 1000,
(k) =5, 10, and made T range from O to 1 with 0.1 steps. Although sparse, the
generated networks are connected.

We first focus on the networks obtained for (k) = 5. Fig. 2 (left) shows how
the modularity obtained by both community detection algorithms varies in func-
tion of 7. They differ in the amplitude of the measured modularity, which is higher
for Louvain than for Infomap. This might be due to the fact Louvain directly op-
timizes this criterion. However, and more importantly, the trend is the same for
both algorithms: the detected community structures get stronger when the transi-
tivity increases. This is particularly true when t > 0.4. It turns out below this val-
ue, the actual transitivity does not change very much (C < 0.05), as shown in Fig.
2 (right), certainly due to the rounding performed during the generative process
(cf. section 4.2 ).

The highest modularity is obtained for T = 1, i.e. when most links are used to
create triangles. However, because of the model characteristics, this does not nec-
essarily translates into a very high transitivity value, as shown in Fig. 2 (right).
More surprisingly, even the smallest modularity values (close to 0.5), obtained for
T = 0, are still considered as large in the literature, and reveal a clear community
structure. The networks generated for 7 = 0 are not supposed to contain many tri-
angles (only those obtained by chance, i.e. a negligible number [11]), as confirmed
by the measured transitivity (C < 0.05). This indicates a high transitivity is not a
prerequisite to the existence of a strong community structure, at least when consi-
dering the definition implemented by the modularity measure.
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Fig. 2. Effect of the transitivity coefficient on the modularity. Each point corresponds to an
average over 6 networks generated by NM with n = 1000 and (k) = 5.

For the denser networks ((k) = 10), the evolution of both the transitivity and
modularity are similar to what was observed with (k) = 5. However, as men-
tioned before, due to the local transitivity limit present in NM, the transitivity
reaches a much lower value of only 0.12: this cannot be considered as high. The
modularity is also lower, ranging from 0.33 to 0.41, however these values are still
considered as relatively high, even those obtained when t is close to zero. This
confirms our previous remark regarding the coexistence of both a low transitivity
and a significant community structure.

6 Conclusion

In this study, we took advantage of several generative models to investigate the re-
lation between the community structure and the transitivity of complex networks.
We first applied three variants of the LFR model [10] to generate artificial net-
works with known community structures. We observed similar results for all three
variants: the rewiring process allowing the community structure to appear also
causes a large increase in the transitivity. Moreover, the obtained transitivity is di-
rectly affected by the strength of the community structure and the distribution of
the community sizes. So for this model, transitivity seems to be an offspring of
community structure. Secondly, we used two models HT and NM [11] to generate
transitive networks. The first, designed by us, produces a very high transitivity,
but cannot control it. The transitivity is clearly lower with the second, but a specif-
ic parameter allows controlling it. Besides this point, the models are also comple-
mentary in the sense they produce networks with very different topologies. We
used two state-of-the-art algorithms, Louvain [19] and Infomap [20], to identify
the community structures in the generated networks. It turns out the strength of the
modularity structure, expressed in terms of modularity, increases with the transi-
tivity, for both generative models and according to both community detection
algorithms. This also supports our point concerning the relationship between
community structure and transitivity. More surprisingly, according to the obtained
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modularity, the networks with almost zero transitivity also have a clear (although
not as strong) community structure. For NM, it therefore seems the transitivity af-
fects the community structure strength, but is not a prerequisite.

Our main contribution was to study the relationship between community struc-
ture and transitivity, which, although intuitively trivial, was not objectively ana-
lyzed before. For this purpose, we developed a new random generative model able
to produce highly transitive networks with a desired degree distribution. We also
modified the other models used in this article, in order to adapt them to our objec-
tives. Our work can be extended in various ways. It would be possible to develop
our model, in order to generate more realistic networks, and allow controlling the
transitivity. We could also use alternative models, for the production of both
community structure and controlled transitivity, in order to ensure our results are
not model-dependent. The quality and nature of the community structures could be
assessed in a deeper way, through various additional tools like community profile
[23] or some alternative to the modularity [12]. There also are generalized ver-
sions of the transitivity, dealing with cycles of higher order. But a more important
point would be to characterize the nature of the relationship between transitivity
and community structure. Complementarily to our empirical study, an analytical
work would allow identifying the necessary and/or sufficient conditions for the
existence of a community structure. This might require to consider other topologi-
cal properties, especially the network density and degree distribution.
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Detecting Overlapping Communities
in Complex Networks Using Swarm Intelligence
for Multi-threaded Label Propagation

Bradley S. Rees and Keith B. Gallagher

Abstract. We propose a unique approach to finding overlapping communities
within complex networks that leverages swarm intelligence, for decentralized
multi-threading processing, with label propagation, for its fast identification of
communities. The combination of the two technologies offers a high performance
approach to overlapped community detection that allow for the processing of very
large networks in tractable time.

Keywords: Community detection, complex networks, multi-agent system.

1 Introduction

Complex Networks are a popular way to capture the relationship between objects.
Social networks are a key example, but other real-world networks come from bi-
ology, physics, and computer science, to name a few [12]. One property exhibited
by complex networks is a tendency for nodes to collect in groups, or communities.
The discovery of these communities helps provide insight into group formation
and social structures.

Algorithms for community detection have garnered significant interest in the
past decade [2], however problems still remain. Namely, that the development of a
detection algorithm requires a rigorous mathematical definition of community
and no such definition exists [4, 15]. Furthermore, many of the algorithms assume
that communities are disjointed and limit nodes to a single community. Addition-
ally, as the size of the networks increase, the runtime complexity of many algo-
rithms becomes prohibitive. Performance and scalability is further limited when
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algorithms’ require a central control step that looks across the whole network.
Divisive hierarchical algorithm, based on edge-between centrality [3] for example,
requires that a metric score be computed for each edge and then the edge with the
highest score selected for removal.

In this paper we present a different approach to community detection that al-
lows individual nodes’ to negotiate with its neighbors to determine community
membership, including multiple overlapping memberships. Additionally, we use
Swarm Intelligence as a means to remove the need for a central control processes
while providing the ability to multi-thread the algorithm.

Due to page limitations, we are not presenting a review of related works in this
paper. Instead we point interested readers to: Fortunato’s [2] extensive survey of
community detection algorithms; Xie, Kelley, and Szymanski’s [19] survey of
overlapping community detection algorithms; for label propagation, work by Rag-
havan, Albert, and Kumara [16] and also by Gregory’s [4]; lastly, Ant Colony Op-
timized swarm work by Liu et al. [10] and by Leung, Kothari, and Minai [9].

2 Our Algorithm

The term Swarm defines a multi-agent system [1] where the behavior is common
across all agents and the end goal of the algorithm is an emergent behavior. In our
case, the detection of overlapping communities is an emergent behavior and not
the goal of the agents. Additionally, each agent is reactive, able to respond to its
environment, and social, able to communicate with other agents [18]. For the rest
of this paper we will use the term agent, node, and vertex interchangeably.

2.1 Processing Sequence

The algorithm executes in four distinct sequential stages, with each agent keeping
track of which stage it is in, and determines when it should move to the next stage.
The stages are:

Initialize each agent

Building egonets and identify friendship-groups

Find non-propagating nodes within each friendship-group
Propagate

i N

Initialization: At start-up, each agent is assigned a unique integer identifier (ID).
The ordering of the agents is not important, only that each is uniquely identified.

Egonets and Detecting Friendship-Groups: an agent can only see and communi-
cate with its neighbors. Therefore, its view of a community, or multiple communi-
ties, is limited to just those parts visible within an egonet. From the viewpoint of
an agent, communities appear as disjoint components, which we term friendship-
groups. We define a friendship-group [17] to be the local view of communities
within an egonet from the perspective of the ego node, adhering to the principle
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that communities have multiple paths [11]. A distinction is made between com-
munities and friendship-groups since a friendship-group can be only a small por-
tion of a community, and one or more friendships-groups can be combined to form
a community.

For example, given the simple network in Figure 1(a), the egonet for vertex D
is just those vertices connected to D and any edges between the neighbors of D, as
highlighted in Figure 1(b). From the viewpoint of vertex D, B and C are friends
and E and F are friends. The removal of D, grayed out in Figure 1(c), creates the
disjointed view of the two components. The friendship-groups are then the sets
{B, C, D} and {D, E, F}. This was a simple example; in real networks a friend-
ship-group can range in size from a minimum of 3 nodes to a maximum of (n -1)
nodes.

F F /D

Fig. 1. Friendship-Groups @ () (©)

Each friendship-group detected is assigned a unique ID (label) based off the ID
of the agent. For this work we append a decimal value to the agents integer ID
value.

Finding Non-Propagating Nodes: Not all members of a friendship-group are
treated equally. Neighbors can have a different view of the friendship-group. This
difference in view is what allows us to reconstruct the full community, additional-
ly it allows for determining where potential overlap occurs. The process consists
of each agent asking each of its neighbors for their view of the friendship-group
and then comparing the two views. If the sets are outside an acceptable threshold,
then information being propagated from that neighbor is not further propagated,
and the agent flagged as “non-propogating”. A discussion of similarity thresholds
is presented in section 2.2.

Label Propagating: labels are not propagated to all neighbors as typically done.
Instead, labels are only propagated within friendship-groups. The propagation of
labels (friendship-group IDs) needs to be presented from the perspective of the
agent publishing the ID and from the view of an agent being informed of the ID
value.

Propagating Agent: if any of the friendship-groups belonging to this agent have
their IDs changed - initially setting the value counts as a change - then notify each
agent within that friendship-group of the new ID.
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Neighboring Agent: if the passed in friendship-group ID value is lower than the
currently value, then the friendship-group value is updated. The indication of
whether or not that update is considered a change is dependent on the status of the
calling agent. If the calling agent is considered non-propagating, then the update
in value is not considered as a change; hence the value is not further propagated.
Otherwise the friendship-group value is marked as being changed and the value
further propagated.

The process is repeated until all agents reach a steady state and no longer need
to propagate information: e.g. the assigned values on the friendship-groups do not
change.

Obtaining the Communities: Once propagation has stabilizes, communities can be
determined simply by asking each agent for a list of its assigned communities.
Communities will be all agents that share a common ID value.

2.2 Options for Determining Non-propagation Agents

Without the inclusion of additional information, the selection of non-propagating
nodes is the only way to influence community boundaries. As stated, selection is
based on the similarity between friendship-groups. That comparison is performed
using the Overlap Coefficient, a variant of the Jaccard Index that is better suited
for comparing sets of different sizes. Overlap Coefficient returns a value between
0.0 and 1.0, with a score of 1 indicating that the smaller set is a proper subset of
the larger. The problem with using the Overlap Coefficient is that the threshold
value needs to be selected a priory. Setting the threshold to 1.0 causes a large
number of very small overlapping communities to be detected. While, setting the
value of 0.0 causes the detection of a few large communities.

X Y|
min(‘X ,YD
The appropriate threshold between the two extremes is unknown. For this work
we have selected to use two similarity settings: the first is a very restrictive meas-
ure where the sets can only differ by a maximum of one node (off-by-one); the
second allow the sets to differ by up to 25% (75%-overlap).

Overlap Coefficient O, =

2.3 Complexity

Runtime complexity of our algorithm is tied to the density of the network. The
reason being that an egonet needs to evaluate for each node and the size of the
egonet is tied to the average degree of the network. For this work, we use the es-
timate that the average degree in a spare network is log n [5]. Complexity for each
stage is:

1. Initialization involves setting a unique value on each agent and specifying
neighbors: O(n log n).
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2. Finding friendship-groups requires: (a) building an egonet, O(log n); and
(b) finding friendship-groups, which is done using union-find O(log n).
Since the process is done for each node, complexity is O(n log n).

3. Finding non-propagating nodes involves each agent asking its neighbors,
log n, for a set and doing set intersection, log n. Complexity: O(n log” n).

4. Label propagation involves pushing a label to neighbors: O(n log n).

Complexity reduces to just O(n log” n ) on sparse networks. Since the algorithm
can be multi-threaded, we define time complexity as: O( (n log2 n)/T).

3 Application

3.1 Zachary

The Zachary karate club dataset [20] is a widely studied real-world network
representing club members that interacted. By chance, a dispute broke out be-
tween two members that caused the club to splinter into two smaller groups.

Figure 2 shows the network with the splintering indicated by the dashed line.
Our algorithm detected four communities within the dataset using the off-by-one
threshold, as illustrated by the diamonds, circles, squares, and hexagons.

Fig. 2. Zachary Karate
Club Dataset

Community A: {1, 5,6,7, 11, 17} - diamonds

Community B: {1, 2, 3,4,8,9, 13, 14, 18, 22, 20, 33} - squares

Community C: {1, 3,9, 15, 16, 19, 21, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34} - circles
Community D: {25, 26, 32} - hexagons

Not a member of a community: 10, 12 - triangles

The detection of four communities, versus two, might seem to contrast the find-
ings of Zachary. However, the Zachary paper addressed group fission and not
community detection. Detection of more than two communities has been ad-
dressed by Zhang et al. [21], who used a variant of k-means clustering to uncover
three communities. Since Zhang’s algorithm does not including overlapping
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communities, a true comparison cannot be performed. Nevertheless, we can do a
comparison with special treatment given to overlapping nodes. Ignore overlap, we
match on Community A. Community B is close, except we identified node 12 as
not belonging to any community rather than community B. Lastly, the Zhang algo-
rithm merged Communities C and D into a single set.

Looking at overlapping community results from the CFinder algorithm, Palla et
al. [14], that algorithm identifies three communities. We achieved 100% match us-
ing the 25% similarity setting (Overlap Coefficient set to 0.75).

3.2 Other Datasets

A number of other well-studied datasets were run through our algorithm and re-
sults are shown in Table 1. Results are for using the off-by-one threshold setting
and single threaded execution.

3.3 Generated Datasets

We used the LFR network generator1 [6] to create a number of artificial networks
for both performance and scale testing, and for evaluation against the Girvan and
Newman (GN) benchmark [3]. For performance testing, we set the average degree
to 7, the max degree to 100, and the mixing ratio to 10%, allowing the LFR algo-
rithm determined the number of edges. The following two tables show runtime
performance on networks from 1,000 nodes to 50,000 nodes, Table 2, and on
100,000 to 400,0002 node, Table 3.

Against the GN benchmark, Figure 3, we were not expecting our algorithm to
have reasonable performance since the benchmark does not consider overlapping
communities and is biased towards producing centrality based graphs. The results,
however, are in-line with what was achieved by the Cfinder algorithm [8].

1.000 -~
-~ w— (O f By One
0.900
\ - 75% Overlap
\ Coefficient
\
8
£ \
8 000 ——
'§ 0.4D0
5 =<
£ 0300 -~
& 0.200 ~ ~ \
0.100 =S - -
0.000
. . ) 0.1 0.2 03 0.4 0.5 0.6 07
Fig. 3. Results of our algorithm Miving parameter

against the GN Benchmark

! http://sites.google.com/site/santofortunato/inthepress?2
2 Due to hardware limitations, 400,000 nodes was the max we could test.
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Table 1. Additional Datasets
Dataset Nodes Edges Avg. Density | Communities | Runtime
Degree Detected (seconds)
Dolphins (a) 62 159 5.1 0.08 5 0.04
Zachary [20] 34 78 4.6 0.14 4 0.02
Football [3] 115 613 10.7 .094 18 0.11
Jazz (b) 198 2,742 27.69 0.14 2 0.62
Email (¢) 1,133 5,452 9.6 0.01 40 0.83
PGP (d) 10,680 24,316 4.55 0.00043 791 2.37
Cond-mat-2003 [13] 31,163 120,029 7.70] 0.00025 4065 8.24
Cond-mat-2005 (e) 40,421 175,693 8.69| 0.00022 4794 14.23

(a) D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, The bottlenose
dolphin community of Doubtful Sound features a large proportion of long-lasting associations, Be-

havioral Ecology and Sociobiology 54, 396-405 (2003).

(b) Gleiser, P. M. and Danon, L. (2003). Community structure in jazz. Advances in Complex Systems

(ACS), 6(04):565-573

(c) Guimera, L. Danon, A. Diaz-Guilera, F. Giralt and A. Arenas, Physical Review E, vol. 68,

065103(R), (2003).

(d) M. Boguiia, R. Pastor-Satorras, A. Diaz-Guilera and A. Arenas, Models of social networks based
on social distance attachment. Physical Review E, vol. 70, 056122 (2004)
(e) Newman, M. E. J. The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA

98, 404-409 (2001).

Datasets from http://deim.urv.cat/~Eaarenas/data/welcome.htm

Table 2. Runtimes on Artificial Networks from 1,000 to 50,000 Nodes
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4 Conclusion

The detection of communities within complex networks is a challenging problem
[7, 8], made even more difficult when nodes are allowed to exist in multiple over-
lapping communities. In this work we presented a unique approach to the problem
that uses each individual’s view of the communities, allowing the network to be
analyzed in pieces. The aggregation of individual perspective engenders an algo-
rithm that shifts away from the traditional requirement of viewing the graph as a
whole. That paradigm change allowed us to leverage swarm intelligence to further
remove the need for a central control mechanism. The combination of those two
items allows for overlapping communities to be detected with good performance,
O(n log” n), while being scalable to large data set sizes.
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A Genetic Algorithm to Partition Weighted
Planar Graphs in Which the Weight of Nodes
Follows a Power Law

Rodrigo Palheta and Vasco Furtado

Abstract. This research makes use of evidence that the distribution of crime by
census tracts in large cities follows a Power Law. This means that there are few
places that concentrate many crimes and many places that concentrate few crimes.
In this article we investigate how modeling complex networks and genetic algo-
rithms can help to understand the behavior of samples representing views of part
of the map of crimes of a large metropolis. The representation of the network is a
planar graph where the nodes are the centroids of census tracts, the edges
represent the adjacency between the tracts, and each node has a weight
representing the number of crimes recorded in the census tract. The problem of
this research lies in the context of the study of sampling distributions that have
long tails (e.g. the weight of the nodes of the graph follows a Power Law). In par-
ticular, we describe a genetic algorithm to explore the space of possible samples of
the initial distribution (plotted crimes throughout the city) so that the maximum
number of samples holds features to follow a Power Law with an exponent close
to the original distribution.

1 Introduction

This research is based around a system for collaborative crime mapping, called
WikiCrimes (Furtado et al. 2010) (www.wikicrimes.org). WikiCrimes subverts the
traditional logic of the handling of information about crimes that have occurred,
because it allows citizens to build their own map of crime. Wikis, in general, and
WikiCrimes in particular, are based on the concept of radical trust, i.e., it is be-
lieved that individual participation mostly includes correct information. Neverthe-
less, the identification of fraud or attempted vandalism is necessary. The challenge
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imposed on WikiCrimes and collaborative maps in general is to ensure the credi-
bility of the information recorded on the map.

This challenge is the main motivation that brings us to consider the use of in-
formation that can be modeled as a complex network. The distribution of crime by
census tract is one type of such information. Previous studies (Melo 2008)
(Cangado 2005) show that this distribution follows a Power Law. In this context,
there are few places that concentrate many crimes and many places that concen-
trate few crimes.

This finding is very useful because it can support the identification of a mali-
cious activity by identifying abnormalities in the original Power Law distribution.
However, the problem in doing this is that the most prejudicial and difficult mali-
cious activity to identify in this kind of maps is specific to a local area (in short, a
local geographical trend). These localized activities typically do not affect the
original distribution (e.g. the crime distribution for an entire city).

The perception of the trends on a digital map is typically made via kernel densi-
ty algorithms, which identify areas that have a high concentration of crimes. Ker-
nel Density Estimation or kernel smoothing is a statistical method for determining
the density of crimes at different locations. The method is used to produce a conti-
nuous event density surface from crime point data. Kernel smoothing results in a
continuous ‘heat map’ that shows geographic variation in the density or intensity
of the crimes, also called hot spots (McLafferty 2000).

Note that a hot spot computed via kernel density methods depends on the num-
ber of crimes being analyzed, which in turn depends on the geographical area and
the period to be considered. Whenever a user is viewing a digital map, the screen
is the limitation for perceiving the events on the map. The manner the user has to
vary the view of a geographical area is by regulating the zoom level. Therefore,
the identification of hot spots must be done for different zoom levels, and for each
one of these levels, the configuration of hot spots can be different.

More broadly, the problem of this research requires an understanding of sample
analysis of distributions that are stable and have a long tail (Pickering et al. 1995),
(Gatterbauer 2011). As in the present context, in order to identify malicious activi-
ty, we need to explore a set of data at different zoom levels; this equates to explor-
ing a network and then, successive divisions thereof. These subdivisions or
subnets are actually samples of the larger network.

In particular, in this article we describe and evaluate a genetic algorithm to ex-
plore the space of possible samples of the initial distribution (plotted crimes
throughout the city) to optimize the samples, in the sense that they follow a Power
Law with a similar exponent to the original distribution.

2 Related Work

2.1 Sampling of Power Law Distributions

Works on complex networks have identified properties of samples of the network,
a very current theme and explored in various fields. Understanding the impact of
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measuring a sample rather than a complete distribution attracts the attention of re-
searchers who intend to characterize the network of links that form the Web, for
example. It is known that, due to the size and dynamism of the Web, any analysis
of the properties of the network of links and pages can only be done by sampling.
The impact of how samples are collected is investigated in (Clauset and Moore
2005). In this work it is shown that the strategy of sampling used by crawlers,
called traceroute, tends to underestimate the exponent of the Power Law of the de-
gree distribution of the graph representing the links on the web. This is particular-
ly true when the sample has more edges than vertices. Another relevant work in
this context is (Pickering et al. 1995), which examines the impact of deficiencies
in sampling and collecting data on earthquakes in the magnitude distribution of
earthquakes in regions where they occur. A categorization of the types of sam-
pling problems is performed, as well as an analysis of the impact of the difference
in scale between the original distribution and the samples. Although it is known
that the samples of random networks (Erdos and Renyi 1959) retain the properties
of the initial distribution, the same does not seem to occur in networks where the
distribution of degree of connectivity of the vertices is free of scale. Similar results
were identified (Stumpf 2005), which showed that sub-networks of scale-free
networks (scale-free nets) do not maintain the same properties as the original
distribution.

2.2 Genetic Algorithm

The main steps of a basic genetic algorithm are shown in Fig. 1. The basic ele-
ments are the encoding of the solution (chromosome), the operators (mutation,
crossover and selection), initial population, and fitness function.

Randomly generate an
initial population P(0)

!

Calculate individual fitnesses f(i)
for current population P(t)

Select parents for reproduction
based on individual fitness f(i)

Until stopping t
criterion satisfied l

Crossover

Fig. 1. Basics steps of a genetic algorithm 4[ -t
according to (Cole 1998)

| N S " S — S —

Several works in evolutionary computing have sought to define methods for
partitioning graphs and discovering communities using genetic algorithms as in
(Tavares-Pereira et al. 2007), (Datta et al. 2008) and (Semaan et al. 2009). The
evolutionary approach allows one to create specific algorithms for any problem by
modifying the representation of the solution or operators. In (Datta et al. 2008)
several uses are cited, such as circuit design, gene ontology, simulation and other
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products. In particular, it is worth mentioning (Tavares-Pereira et al. 2007) and
(Semaan et al. 2009), where genetic algorithms are applied to district problems, in
which a planar graph representing a geographic area is divided into districts that
maintain similarity between them. Although several constraints have been
considered in this process of planar graph partitioning in the literature, none of
them refers to keeping the same distribution of the weight of nodes as the original
distribution.

Typically the encoding for representing partitions is based on group-number
(Cole 1998) in which each node receives a label indicating the partition to which it
belongs. However, this representation for graph partitioning problems suffers to
keep the constraint of connectivity. (Semaan et al. 2009) proposed an alternative
solution for this, by using a Spanning Minimum Tree (SMT) generated from the
original graph. From the SMT, an individual is created from the adjacent nodes of
two nodes selected at random. The idea is to walk around the path from these
nodes by adding the nodes to the partitions (until the maximum number is
reached). The size of the partition is driven by a restriction defined a priori. Fig.
2(a) shows an SMT in which nodes A and B were randomly selected, and the
maximum number of nodes per partition is six. Starting from A, an initial partition
P1 is created. The nodes connected to A and that are not in the path to B are added
to P1 (just A is added). Then C is visited and Y and W are added to P1. Z and Y
are also added and the maximum number is reached. The process goes on, with Z
and V being added to another partition (P2) and so on. The final partitions are
shown in Fig. 2(b).

Fig. 2. An SMT and partitions generated
from the methods of (Seeman et al. 2009)

The purpose of a crossover operator is to generate offspring by exploiting a
search space, where some beneficial portion between two chromosomes is ex-
changed. Typically this is done randomly, but (Datta et al. 2008) has proposed a
crossover operator that generates a new chromosome by inserting a random zone
from one chromosome into another chromosome. It also takes care of any over-
lapping during this insertion by redefining the partially overlapped zones, as well
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as other zones, if required. The mutation is developed by altering the sizes of vari-
ous zones. The operator shifts a random boundary node of a zone to one of its ad-
jacent zones, thereby reducing the size of the first zone and increasing that of the
second zone.

3 A Genetic Algorithm for Partitioning a Weighted Planar
Graph

Here we are going to describe the genetic algorithm (GA) capable of partitioning a
weighted planar graph. As we work with graphs in which the distribution of the
node weights follow a Power Law, the algorithm tries to partition the initial graph
in a way such that the weight distribution of the nodes for each partition also fol-
lows a Power Law with a similar exponent. In addition, other restrictions also
must be obeyed during the creation of individuals of the initial population and at
the end of a mutation or crossover. There are three restrictions for checking integr-
ity (each partition must have nodes that belong to only one partition), connectivity
(the nodes of a partition must be connected), and minimum and maximum number
of nodes per partition.

The proposed evolutionary algorithm is based on the canonical structure de-
scribed in Section 2.2, but has modifications in the solution representation, cros-
sover operator, and fitness function. Below we describe these modified elements.

3.1 Solution Representation

The representation of the solution is the following: an individual 7 = { y;, y,, ..., ¥
} represents a set of partitions, y;, where each partition is an undirected graph
G=(V.E). In Fig. 3 it is possible to see a schema of a graph G and two possible
partitions y; and y,. Nodes represent a geographic area (e.g. census tract) with an
associated weight (reported crimes), edges connect the regions, and the partitions
are subgraphs of G. A chromosome of an individual is I={y},y,,3..,yx}, where y is
a subgraph (or partition) of G. Each y is represented by a pair of sets. The first set
represents the nodes of a partition. The second set represents the set of edges,
which in turn is also represented by a pair describing the nodes to which the edge
connects. The chromosome representation of y;, for example, is as follows:

y1={{12,3,4,5,6,7,8,9,10,11,12,13,14,15,16},{(1,3),(3.2),(3,4),(3,11),(11,16),(11,4),(11,5
),(11,10),(5,7),(10,8),(10,9),(10,12),(9,14),(14,15),(14,13) } }

One can also see, in Fig. 3, that the nodes have a weight and that the distribution
of the frequency thereof follows a Power Law.

The procedure to generate an initial population is inspired by (Semaan et al.
2009), but we had to adapt the original idea to cope with the fact that we would al-
so like to guarantee the restriction of minimum and maximum number of nodes
per partition. Therefore, during the process of generating the initial population, we
did not generate individuals that do not satisfy these constraints.
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3.2 Fitness Function: Taking into Account the Power Law
Distribution of the Weight of the Nodes

The main feature of our proposal is that it maximizes the number of partitions in
which the distribution of the weight of the nodes follows a Power Law with an ex-
ponent close to the exponent of the Power Law of the initial graph (slopeGlobal).
A distribution follows a Power Law when:

Pk) = ksore (D

Where k represents the weight of the node. Two functions have been defined to
guide the algorithm in the exploitation of the space of possible partitions. The first
one is F,, as follows:

partitions

Z(slopePartﬁtioni - slopeGlogal)2
F = i=l

N

@)

partitions

Where partitions represents the number of partitions of each individual, slopePar-
tition is the slope of the distribution of weights of each partition 7, and slopeGlobal
is the slope of the distribution of the weights of the whole graph. F; tends to zero
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when all of the slopes of the distribution of weights of the partitions are close to
the slope of the Power Law of the distribution of the initial graph (slopeGlobal).

The fitness function, FY, is the inverse of F; multiplied by the ratio between the
number of partitions (goodpartitions) in which slopePartition is greater or less
than a predefined threshold (typically 10%) and the number of partitions. The
greater Fy, the better the individual is.

E = (1 /F. s)>< ( goodpartitons/ partitions) 3)

3.3 Mutation and Crossover Operators

Mutation consists basically of distributing a node into a partition. The crossover
operator we have defined is inspired by (Datta et al. 2008), but we take into ac-
count knowledge about how strong the variability of the partitions is after the ap-
plication of the operators. Given two individuals, we search for partitions in one
individual that are already present in the other individual. We then keep this parti-
tion, and all the other nodes that exceed it are spread out to other partitions. The
algorithm used for the crossover is shown below:

Crossover
Input: /7, 12
Output: New Individual
1. Select randomly a partition of 1/
2. Say Ix is I2’s partition that I/ is inserted into.
3. Insert Ix’s nodes that are not in /] into Ix’s adjacent partitions.
4. Return New Individual if the other constraints are satisfied.

The proposed algorithm will get the initial population and iterate until is reach-
es the stop condition (maximum number of generations defined by the user). For
each iteration, the GA uses the selection wheel to choose the two individuals that
will be used to generate a new individual by crossover, and eventually this new
individual will be modified in mutation.

4 Results

We evaluated our approach with one dataset synthetically generated using
(Devroye 1986). The dataset has an exponent equal to 1.48. The size of the distri-
bution is 2194. This is the same as the number of census tracts of the city of Forta-
leza, Brazil. To each node we randomly attributed a value of the distribution. The
number of edges is 6801, representing the adjacency of the census tracts. The
initial population was 80 individuals. The mutation probability is 0.012 and cros-
sover 1. The number of generations was 100. Empirical tests indicate that the min-
imum and maximum number of nodes should be 34 and 200, respectively.
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The first evaluation was aimed at measuring the number of partitions the GA
discovered with weights following the Power Law. Therefore, we ran the GA with
an initial population having individuals with at least 20, 30 and 40 partitions. Ta-
ble 1 indicates the results and allows a comparison with a GA that uses the same
operators as those proposed by (Seeman et al. 2009). For the best case, 27 out of
35 partitions follow a Power Law.

Table 1. Comparison of the GA using our operators against Datta’s operators with the syn-
thetic dataset

Initial population with % Parti- at least 20 parti- at least 30 par-  at least 40 par-
tions follows a PL tions titions titions

Our approach 70% 77% 61%

Using Seeman’s operators 62% 57% 59%

The other way we evaluated our approach was to plot a graphic showing
whether the GA is evolving. Fig. 4 shows how the similarity function (Fs) behaves
in the 90 generations. It is possible to see that the GA evolves until generation 40.
The graphic also shows the peaks representing the moment in which the fitness
function prefers the number of partitions following a PL rather than continuing to
approach the distribution of the original graph.
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10 20 30 40 50 60 7

Fig. 4. Evolution of the GA

We realized that the number of partitions of the individuals that form the initial
population of the GA determines the final number that the GA can reach. This is
due to the fact that the fitness function considers two aspects: the number of parti-
tions following a PL and how close the exponent of the distributions of the parti-
tions is to the exponent of the original graph. We plan in the future to evaluate this
using a multi-objective GA in order to cope with this particularity.
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5 Conclusion

In this paper we characterize the problem of crime reporting by means of concepts
from complex networks. We investigated how genetic algorithms can assist in
finding samples of an original graph in which the distribution of the weights of the
nodes follows a Power Law with an exponent close to the distribution of the origi-
nal graph. The best result we found thus far was to partition the initial graph in
which 77% of the partitions having the distribution of the node’s weights follow a
Power Law with an exponent close to the exponent of the distribution of the entire
graph. We have also shown that the variation in the crossover operator that we
implemented leads to better results compared to another approach that uses a typi-
cal operator used for graph partitioning in general.

We intend to continue this research by trying to improve the method, in particu-
lar, the genetic operators. We are going to insert knowledge about how a mutation
and crossover disturbs a partition in which the weights follow a Power Law. We
also intend to test the approach using a multi-objective GA (Deb et al. 2002) for
considering the fact that we have two goals to consider, namely, to have the max-
imum number of partitions following the PL and to have these partitions with an
exponent close to the original graph exponent. Tests with other datasets in order to
evaluate the generality of the results are also necessary.
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Measuring a Category-Based Blogosphere

Priya Saha and Ronaldo Menezes

Abstract. Blogs form an essential part of the Web and they are one of the main
sources of information to millions of people around the world. Blogs such as Giz-
modo, Slashdot, and many others, receive a very large number of daily visitors and
consequently are a main force on driving what information becomes known to the
public. Furthermore, information in blogs have become crucial to established news
agencies such as CNN and NBC, which have dedicated programs and reporters to
discuss information in the Blogosphere. This paper looks at the structure the blogo-
sphere using Blogspot—Google’s blog hosting service—as a case study. We created
networks for 12 different blog categories and a combined network. We show that
these networks are very similar to the structure of the whole WWW and that the
blogosphere is highly connected regardless of category divisions.

1 Introduction

The argument about the ubiquity of the Web has become redundant nowadays be-
cause the Web has become so important to our lives that it is inconceivable to
think of our world without it. According to the latest numbers from the Internet
World Statistics, 2.1 billion people (or about 30% of the world’s population) are
connected to the Internet and have access to Web content[]. Web Logs, popularly
known as Blogs, are personal journals published on the Web. However, the interest in
blogs has gone mainstream given its wide adoption. Today most news agencies have
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reporters dedicated to the scouting of information in blogs to bring interesting posts
to people watching TV. But the effect is not limited to news, blogs are being used
for group mobilization such as the Egyptian uprising (in January 2011), London
Riots (in August 2011) and even the Occupy Wall Street (in October 2011). Blogs
and micro-blogs enable these movements to become “viral” influencing millions of
people worldwide.

The number of blogs worldwide has grown rapidly from a total of 50 blogs in
1999 to about 4.1 million just 5 years later. At the time of writing of this paper,
BlogPulse indicated that there were 170 million active blogs on the Web with about
70 thousand being created everydayE Today, blogging has become part of our online
activities [10]; we can connect to our friends, families, co-workers, but more impor-
tantly we can discuss subjects of different categories using an open-forum format.
Blogs are partially responsible for the globalization of news because they even help
us to overcome geographical barriers [4]].

Let us use one example to make the motivation of this work clearer. We built
a network of blogs based on physical links that exist in blog sites. That is, a blog
is connected to another if one has a hyperlink to the other. However, the flow of
information may not be the same for every hyperlink because the blogs have dif-
ferent categories. We investigate the structure of blogosphere but categorized into
12 subjects. We show that all the sub-categories have small-world properties, which
lead us to believe that information can flow in the blogosphere independently of the
blog category (main subject of the blog). Furthermore, we show that the categories
overlap which means that a post in a blog of one category can easily flow to another.

The paper concentrates on blogs hosted by Google’s Blogspot hosting service. We
have crawled Blogspot sites (sites ending at blogspot.com and attributed to each blog
a category based on its reachability from 10 starting points of 12 blog categories.

2 Related Works

There has been many works studying blogs and their influence, and how this in-
fluence can be computed for blogs, even how blog visits and the number of posts
correlates to sales in websites such as amazon.com [} [12].

The importance of blogs is well motivated but researchers have also looked at
other aspects of the Blogosphere such as the style of writing. Huffaker and Calvert
[11]] studied the characteristics of bloggers (writers of blogs) and showed that the
style of writing depends strongly on their gender, age and language. Although this
is only slightly related to our structural study here, Huffaker and Calvert’s study
demonstrates that there is diversity in blogs which leads to a confirmation that
the approach we take in this paper considering differences in categories (themes
of blogs) is reasonable.

Politics is another important issue that has been studied in the context of blogs
and information spread. Farrell and Drezner [[§] have performed a study on political

2 blogpulse.com is no longer available as of January 2012. http: / /web.archive.org
maintains the latest version of BlogPulse.
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posts in the Blogosphere and found that blogs can shape the political discorse by
creating specific focal points. They found that 7% of the general population on the
Web use blogs but a staggering 83% of journalists used blogs with 43% of them
using/reading blogs on a weekly basis.

Inspired from his work on language acquisition, Roy [14] has recently shown
that blogs are excellent predictors of people’s likes and dislikes; he has launched a
startup company called Bluefin Labd to commercially explore this market niche.
The company focuses on monitoring activity in micro-blogs such as Twitter. Roy’s
work has generated a lot of attention because his approach to measure flow of infor-
mation in blogs and social media can be used by advertisers to made decisions on
where to place their content. Statistical evidence in favor of blogs as generators of
content was found in Dautrich and Barnes in a survey of 300 TV programs [3].

Another kind of work related to network of blogs deals with the identification
of influential bloggers in a network [1]]. Although the original study was done to
identify bloggers (people posting on blog sites), it easy to see how this work could
be generalized to the entire site. Aggarwal [[1]] proposes to use four factors to decide
on the importance of blogs (bloggers in his study): (/) Recognition of the blog site by
many people which can be approximated by the number of in-links the blog has; (2)
Activity Generation of the blog is represented by the number of posts it receives; (3)
Novelty of the post correlates to it being more important—blogs with more out-links
generally represent the fact that the posts are not novel since they refer to content
already published elsewhere; and finally (4) Eloquence of posts in a blog can be
represented by the length of the posts—Ilonger posts generally represent eloquence.

Our approach is different from the ones above because we examine the blogo-
sphere network divisions from the point of view of area of interest or “categories”.
The paper delves into an analysis of each individual network as well as a full net-
work combining all categories. We show that the small-world properties of each
category network may explain why information spreads fast in the Blogosphere.

3 Network Properties

The literature in Network Sciences include a number of metrics that can be calcu-
lated to characterize networks which, in turn, may reveal interesting patterns in the
relationships of nodes.

Degree is a measure of a node. For the network, we generally look at the degree
distribution which represents the frequency in which a node with degree k appears
in the network, given by p(k). It has been observed that in many real networks
the degree distribution roughly follows a power law, that is:

p(k) = ck™, (1)

where ¢ and \ are constants. In directed networks, such as the ones we study in this
paper, we look at the degree distribution divided into indegree and outdegree.

3 http://bluefinlabs.com



134 P. Saha and R. Menezes

An interesting characteristic of some networks is the transitivity of relations be-
tween nodes, generally referred to as the clustering coefficient of the network or the
is just the average of all C;.

Qmi
ki(k; — 1)

where m; is the number of links between the k; neighbors of ¢.; the clustering co-
efficient of the entire network (C) is given by C' = }L >, Ci. As a transitivity
measure, C' may used to identify small-world networks [13] which are expected to
have high clustering (when compared to random networks) and short average path
lengths.

For many real networks, their growth is based on the idea that modules combine
to form larger modules in a sort of hierarchical manner. The scaling law is given by:

Ci = ()

Clk)=k"7, 3)

where 7y is expected to be approximately 1. The hierarchy of a network can be char-
acterized quantitatively by the work of Dorogovtsev et al. [6] who demonstrated
that in hierarchical networks the distribution of clustering coefficients of nodes with
degree k, given by C'(k).

4 Blogosphere Networks: The blogspot.com Case Study

There are many providers that specialize in hosting blogs. Among the most common
ones are: Blogspot and Wordpress. Blogspot is Google’s blog hosting service and
contains thousands of blogs.

The first step in our study is to build a network representing blogspot.com. In our
network nodes represent blog sites and the directed edges represent a connection
between two of these sites. The general assumption is that if a blog has a link to an-
other, there exists a potential exchange of information from the later to the former.
The first step was to collect the a dataset. We used Google to get the names of the
top-10 blogs of blogspot.com in 12 common categories: Arts, Business, Cooking,
Education, Finance, Health, Music, Politics, Religion, Science, Sports and Travel.
These categories reflect general topics found in many newspapers around the world.
For each of these topics a Google search was performed following the format:
site:blogspot.com [CATEGORY], where [CATEGORY] is one of the 12 mentioned.

Once we had the starting points, we wrote a crawler to explore the starting points
and the other “blogspot.com” sites they link to until a given depth. For instance, if
we crawled the starting points using depth 1, it would include the 10 starting points
and all sites hosted at blogspot.com that any of the original 10 starting points link
to. In this paper we use a dataset that we gathered by crawling the sites until depth
3. During the crawling process we added the initial category as an attribute of every
reached site; if a site S is reached while we were crawling the starting nodes for
the “cooking” category, site S would also be considered as a “cooking” site. The
premise is that if one is reading a blog on cooking and it contains a link to another
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site, there is a probability that he will follow that link and maybe post information
on the connected site. To summarize, a [CATEGORY ] tag indicates that information
from a [CATEGORY] blog can flow to the blog in question.

The network we have created is directed given that it represents the link between
blogs (a blog link to another exists independent of the inverse link). The network
is also weighted since we want to represent close connections. We assume that if a
blog has many links to another, then it considers that blog important. The larger the
number of links, the stronger the connection (perceived importance).

It is easy to understand that if we have 12 individual networks and we try to
combine them into one, we may have nodes that appear in many of the networks.
In other words, the crawling from different locations may lead us to the same blog.
This overlap is important because it tells us how information may flow from one
category to another.

Figure [[ldepicts the full network where nodes are colored according to their cat-
egory. This figure shows that many nodes are reached from more than one category
(showed as black nodes). The visualization alone demonstrate that at depth 3, infor-
mation may flow from any topic to any topic although the number of black nodes
is not as high as one might think. We see the network dominated by music blogs
which accounts for nearly 40% of the blogs in the dataset.

5 Network Measurements

We analysed the blog networks for each category as well as the full network. We
are mainly concerned with the network measures that we have described previously
because they can help us characterize the kind of network formed by the Blogspot
blogosphere. The results in Table [T indicate that each of the category-based blog
networks display small-world properties.

In order to better understand the values we show in Table 2] the corresponding
values of our Blogspot network is placed against values for other real networks,
namely the Internet and the Film actors networks studied by Newman [13]].

One issue that has to be observed from Figure 2lis that the outdegree distribution
does not follow Barabdsi and Albert [3]] description of a scale-free network. The
problem is quite simple to understand and pertains to the fact that the preferential
attachment—where hub nodes tend to become even more connected as time goes
by—does not account for the fact that the entity being represented by the node ages
and hence become less attractive. In the context of blogs, it means that there is a cap
on the number of its out-links, which is very natural to understand. Dorogovtsev and
Mendes [[7] have described a model in which aging is considered and this model is
a better fit to the behavior of out-degree distribution in Figure[2l In network terms,
the out-degree distribution appears to be a case where the data is better fitted with a
generalized power law supplemented with an exponential cut-off (GPL-EC) [2].

Next we try to look at the growth of the network from blogspot.com. Figure [3]
shows the clustering coefficient distribution for nodes with degree k. As explained
earlier, hierarchical networks tend to closely follow the scaling law.
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Fig. 1. The the full Blogspot network considering all categories (crawled to depth 3). The
categories are denoted by the colors. Due to the density of the network this picture shows
edges if they have weight 3 or more. Each color represent a different category but the nodes
which can be reached from more than one category are represented in black.

Number of nodes
A
3
Number of nodes

In-degree Outdegree

Fig. 2. Figure shows the indegree (left) and outdegree (right) distributions for blogs in the blo-
gosphere. Both distributions follow a power law except that the outdegree has an exponential
cutoff.

The full blogspot network follows the scaling law perfectly with v = 1. This
means that blogs link to each other and form a hierarchy where small tightly-
connected groups join into larger groups of blogs which in turn become more tightly
connected just to later join again into larger networks.
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Table 1. Category-based blog networks. n represents te number of nodes, m is the number
of edges, \in and Ao+ represent the exponent of the power-law degree distribution of the
indegree and outdegree respectively, £ is the average path length between pairs of nodes, and
C refers to the clustering coefficient of the network

Network n M Xin Aout £ 7 C Color in Figure[T]
Finance 252 311 2.5 0.82.401.40.04 Dark Green
Business 1,125 1,379 2.9 0.6 3.05 1.5 0.07 Light Gray
Religion 3,203 5,404 1.8 0.9 3.50 1.1 0.05 Orange
Travel 3,669 5,073 2.7 0.8 3.56 1.2 0.05 Dark Gray
Education 4,160 6,314 2.0 0.8 3.61 1.1 0.06 Pink
Sports 4949 7,783 2.3 1.1 3.69 1.3 0.07 Brown
Health 6,347 9,455 2.0 0.9 3.80 1.5 0.05 Navy Blue
Politics 8,252 13,368 2.2 0.9 3.91 1.1 0.05 Purple
Arts 10,615 15,572 2.3 1.1 4.02 1.4 0.06 Cyan
Cooking 12,697 26,416 2.1 1.1 4.10 1.1 0.06 Yellow
Science 21,328 37,512 2.1 1.24.321.20.05 Red
Music 32,631 93,647 2.0 1.44.510.80.08 Green

Full Network 82,921 197,206 2.2 1.6 491 1.0 0.07 —

Table 2. The comparison of the full unfiltered blog network with the Internet and the Film
Actors statistics

Variable Name Blog Network Film Actors Internet
Number of Nodes (n) 82,921 449,913 10,697
Number of Edges (m) 197,206 25,516,482 31,992
Exponent of power law distr. (\) 22/1.6 23 2.5
Average Clustering Coefficient(C) 0.07 0.20 0.035
Average path length (¢) 4.9 348 331

Avg. elustering cosficient

El 0 100 o zo00
B Number of neighbors

Fig. 3. The clustering coefficient distribution of the blogspot network. The distribution
demonstrates that the network is hierarchical given it perfectly follows the scaling law.
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6 Conclusion

In this paper, we used a dataset of Google blog hosting service called Blogspot and
showed that even categorized blog networks have small-world characteristics. This
is an indication that regardless of the subject discussed in blogs, a fad, gossip, or
other important information can spread rapidly. This is also reinforced by the fact
that if we look at the amount of overlap in these networks, that is, the number of sites
that are reached from many different categories (shown as black nodes in Figure [I)).
From a total 82,921 nodes, 10,099 are reached from different categories (approx.
12% of the nodes). We believe this tells us that information in the blogosphere can
easily cross these category-based boundaries. We intend to study the behavior of
these overlap as a function of the distance from the starting nodes (depth).
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Ripple Effects: Small-Scale Investigations into
the Sustainability of Ocean Science Education
Networks

Robert Chen, Catherine Cramer, Pam DiBona, Russel Faux, and Stephen Uzzo

Abstract. Education Networks are an important way for educational institutions to
develop and share knowledge and resources. Yet, methods of evaluating what
makes them successful have been elusive. Here, we present a network analysis of
the New England Ocean Science Education Collaborative (NEOSEC), a success-
ful ocean science literacy collaborative and an effort to reveal characteristics inhe-
rent to successful education networks. NEOSEC is a network comprised of more
than 40 institutions, with a stated goal of advancing ocean literacy in the region.
Analysis of the evolution of this network suggests that network analysis adds an
important dimension to evaluating education networks, and that successful educa-
tional networks may exhibit network characteristics that could aid in understand-
ing their functionality and sustainability. Preliminary results also indicate that as
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these networks increase in complexity they may exhibit characteristics of other
kinds of complex networks.

1 Introduction

Developing effective networks is critical to the success of educational programs,
the spread of excellence across scales of educational practice, and the sustainabili-
ty of communities devoted to a shared mission (Austin 2000). Yet there have been
relatively few attempts to look at the structure and dynamics, and resulting effects
and sustainability of these communities through a network lens (Durland & Frede-
ricks 2005). The evaluation of consortia in general has tended to look at the effects
of the efforts of individuals or organizations rather than investigating the struc-
tures and dynamics of networks (Cross et al. 2002).

Over the past year the Center for Ocean Science Education Excellence-Ocean
Communities in Education And social Networks (COSEE OCEAN), an NSF-
funded ocean science literacy center, has assembled an interdisciplinary team to
look at the effectiveness and sustainability of networks of education communities
developed to increase ocean literacy among multiple audiences. We performed an
analysis of NEOSEC in an effort to reveal characteristics inherent to successful
education networks. Analysis of this network suggests that successful educational
networks exhibit characteristics that could aid in understanding their functionality
and sustainability. As these networks aggregate and increase in complexity, they
may also reveal complex network characteristics like clustering, and preferential
attachment, albeit further study is needed to substantiate this.

2 Analysis

Founded in 2006, NEOSEC is a diverse, networked collaboration of 43 institu-
tions from across New England, including aquaria, museums, universities, gov-
ernment entities, and science and research centers. COSEE OCEAN is a member
of this network.

Network analysis for this study was conducted based on the Himmelman model
(Himmelman 2002) to assess the increase in collaboration among members. The
intent was to investigate the following questions: “What changes can be seen in
the inter-organizational collaborations within NEOSEC?”; and “Are there organi-
zational characteristics that affect participation in the network?”

The sample is comprised of organizational members of NEOSEC (N=43) (in
NEOSEC, individuals act as representatives of their institutions), with 38 of these
submitting analyzable responses after the data were cleaned (for a final response
rate of 88%). The survey asked about depth of interactions with fellow collabora-
tive members at two time points: 2005, prior to NEOSEC forming; and then again
at August 2011. It utilized a scale ranging from “We did/do not know of this
group” to “We had/have sustained collaborations with this group.” All analyses
were conducted in UCINet and SPSS, with network visualizations done in Net-
Draw, Gephi and Pajek.
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2.1 Node-Level Metrics

An ego network is composed of a single network node, referred to as the ego (in
this case, a single NEOSEC member institution) and the other nodes with whom
the ego claims to have a relation, known as the alters.

Table 1. Summary of ego network density gain (*significant at p<0.05 [paired samples t
test])

Time Mean Std. Deviation Effect Size
T1_Ego_Density 72.85 6.66
T2_Ego_Density 88.51* 1.38 0.88

In Table 1, Ego density refers to the extent to which the alter organizations are
linked. Note that gains seen here are significant, with a sharp downward turn to
the standard deviation. Effect size here is also large. NEOSEC member organiza-
tions are interacting more with other organizations that are in turn interacting with
one another. Changes in standard deviation convey sharp increases in ego network
densities.

We theorized that meeting attendance and funding levels might have significant
impact on network effects and calculated the correlations between these variables
and ego network density gains (Table 2). Limiting analysis to only organizations
that participated in joint projects with federal funding to NEOSEC, we found a
non-significant and negative correlation between funding score and meetings at-
tended. We concluded that these 3 variables are only weakly correlated for funded
projects. Multiple regression (not shown) using state, meetings attended, and
composite funding as independent variables and ego network density gains as a
dependent variable also yielded inconclusive results.

Table 2. Correlations between meeting attendance, funding received, and centrality gains
for organizations in jointly funded projects

Meetings  Composite EgoNet Den-
Attended Funding sity Gain
. Pearson
Meetings  Correlation 1 0.127 0.176
Attended B )
Sig. (2-tailed) 0.652 0.529
. Pearson
Composite o relation -0.127 1 -0.336
Funding - ;
Sig. (2-tailed) 0.652 0.220
Network Pearson
Density Correlation 0.176 -0.336 1

Gain Sig. (2-tailed) 0.529 0.220




144 R. Chen et al.

2.2 Dyadic-Level Metrics

In this section two metrics, namely degree centrality (out) and Eigenvector cen-
trality (out) were analyzed. Out ties are those a given organization claims to have
with others in NEOSEC, as opposed to ties others claim to have with a given or-
ganization. Out degree refers to the number and strength of ties a given organiza-
tion claims to have with the others. Out Eigenvector refers to the number and
strength of ties that one’s ties claim to have. An organization with a high level of
Eigenvector centrality will be connected to other organizations that have many
connections of their own, connections that may or may not be connected to the
original organization.

Table 3 shows that NEOSEC members reported significant increases in both the
number and strength of their collaborations with other NEOSEC members. In addi-
tion, these connections themselves increased in their collaborative ties with other
NEOSEC members. The approximate 77 effect sizes (eta-squared) are very solid,
leading one to conclude that the network is has grown significantly in complexity.

Table 3. Pre-Post Dyadic-Level Metrics (*Significant at p<0.05 [paired samples t test])

Mean Std. Deviation Effect Size
T1_Out Degree 23.82 8.36
T2_Out Degree 32.45% 4.69 0.57
T1_Out Eigenvector 0.68 0.23
T2_Out Eigenvector 0.89* 0.12 0.52

NEOSEC organization ties have increased in number and strength accompanied
by smaller standard deviations. Geographically, organizations with greater central-
ity are clustered in Boston and southern New England coastal areas, and there is a
much more even distribution of centrality extending over the entire region.

The question then arises as to whether the centrality increases were caused by
the members associating with one another within the context of NEOSEC. We
looked at whether there might be an association between the number of NEOSEC
meetings attended and centrality gains. The meeting attendance factor was not,
however, found to be a significant predictor (linear regression) of gains in centrali-
ty, suggesting that the increases in connections among NEOSEC members took
place outside of official NEOSEC functions. On the other hand, members who
attended fewer than four meetings appear to show less gain than members who at-
tended more meetings. This observation is suggestive of attendance having a con-
sistent relationship with centrality gains, though again, the relationship fell short
of statistical significance.

Roughly 40% of the responding organizations participated in grant-funded work
over the time period since the beginning of NEOSEC. To examine the relationship
between funded activities and network change, we created a scale (“composite fund-
ing”) with organizations receiving two “points” for each directly funded program
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and one “point” for each grant for which the organization served as an unfunded re-
source partner. Little correlation was found between funding levels and centrality
gains (0.282, not significant, Pearson).

2.3 Network-Level Metrics
In this section we present findings from the analyses of the pre-post effects in the
overall NEOSEC network. In this case we measured density, centralization and

hierarchy for both prior to and after the formation of the NEOSEC network.

Table 4. General network-level metrics

Metric Time 1 (T1) Time 2 (T2)
Density 1.49 2.26
Centralization 36.29% 31.16%
Hierarchy 0.05 0.00

In Table 4, Density, the number and strength of ties compared to the number and
strength of possible ties, can be quite sensitive to context. What might be seen as
dense in one context (e.g., a law firm) might be viewed as sparse in another (e.g., a
family reunion). For NEOSEC, the density values show a robust increase on the or-
der of 52%, and while one might interpret these values in different ways, the ob-
served increase is sizeable. Centralization values, the degree to which the network
exhibits “hub and spoke” structure, decreased only slightly, indicating that nodes
with higher degree distribution remain so as the complexity and frequency of inte-
ractions increases: overall the network retains a rather centralized structure. Con-
versely, the virtual disappearance of hierarchy indicates the lack of a “pecking or-
der” or a general equivalence among the organizations, in which a more peripheral
organization can easily reach a more core organization (see Figure 1).

(a) T1 | (b) T2

Fig. 1. NEOSEC Network by state. T1(a) Note that there is some clustering and a distinct
set of core organizations in the center. T2(b) reveals a continued clustering, but no signifi-
cant (Kruskal-Wallis) between-group differences in terms of centrality gains. An increase
in overall density and complexity of ties is evident, but previously peripheral organizations
now have increased ties to more central ones.
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(a) T : ) T2

Fig. 2. NEOSEC Collaboration network by organization. T1(a) depicts the overall structure
with nodes shaped by organization. Note some clustering but about half of nodes have <6
connections and none >16. T2(b) reveals a higher degree of clustering and centrality gains
with a few nodes having dramatically increased levels of collaboration ties (>19) to other
organizations.

3 Conclusions

The NEOSEC network has grown significantly in its overall cohesion in the pat-
terns of relations among member organizations, and in the ego network density of
individual organizations. Network density values show a sharp increase and hie-
rarchy values (referring to non-reciprocated ties) for all practical purposes disap-
peared. Centralization values indicate strong network actors before NEOSEC and
that they remain so. Change in the coreness values was not significant from T1 to
T2, indicating that organizations that were central before NEOSEC remain so,
even as the network becomes more complex.

Dyadic measures indicate significant increases with very good effect sizes,
meaning that organizations have more and stronger ties with other organizations
that are in turn better connected with others. This underscores the conclusion that
the network grew in ways that involved all network members. The ego network
density values increased sharply as well, though we found no significant relations
here to the state in which the member operates, the levels of funding, or the num-
ber of NEOSEC meetings attended.

As illustrated by Figure 2, degree distribution for a small number of centralized
nodes rises noticeably between T2 and T2. An artifact of the development of the
NEOSEC network is a possible trend toward a scale-free structure, although addi-
tional time slices would be needed to corroborate this trend.

4 Discussion

The growth and development of educational networks depend on a host of internal
and external parameters. Critical components appear to be: increased face-to-face
interactions and resulting knowledge, shared goals and vision, paid staffing, and
opportunities for collaboration.
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Examination of NEOSEC through the lens of network analysis revealed that it
has evolved from a loosely affiliated set of organizations into a tightly knit net-
work. No single identifiable factor appeared that drove NEOSEC members to de-
velop their relations with others, yet the NEOSEC network has effectively built
overall regional capacity for expanding ocean literacy in New England. This net-
work responds to opportunity and has a high degree of trust, which has enhanced
its sustainability. The observed, meshed cohesion creates support structures for
taking on complex projects that take advantage of each actor’s capabilities.

The network analysis revealed important findings about the growth of the net-
work, findings that could not have been gathered with comparable rigor in any
other way. While measured ties are not the only ties that exist between actors,
these ties appear to be important to network functioning and are critical indicators
of network vitality. The implications of findings are currently under consideration,
but a cursory look at the data reveal relative activity of individuals or groups and
possible tactics for planning activities, adjusting strategies, and meeting overall
educational goals.

By evaluating performance, patterns and dynamics in a small, focused, but di-
verse set of networks of different scales within the education arena, our goal is to
use network analyses like this one to uncover strategies to effectively build sus-
tainable education networks. Network analysis offers an approach to study the
scaling of educational network structures that may be well suited to identifying
bottlenecks in network structure and serve as a diagnostic tool for optimizing
network function to achieve learning goals. It supports an informed process of ref-
lection and new lines of inquiry in the structuring and evaluation of education
networks. The ultimate goal is to develop network diagnostic capacity to aid in the
development of networks of engaged ocean scientists and educators - a powerful
force in support of learning and discovery.
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Socio-dynamic Discrete Choice on Networks

in Space: Impact of Initial Conditions, Network
Size and Connectivity on Emergent Outcomes
in a Simple Nested Logit Model

Elenna R. Dugundji and Lasz16 Gulyés

Abstract. The reported research treats interactions between agents and generated
feedback dynamics in the adoption of various transportation mode alternatives.
We consider a simple nested logit model where an agent’s choice is directly influ-
enced by the percentages of the agent’s neighbors and socio-economic peers mak-
ing each choice, and which accounts for common unobserved attributes of the
choice alternatives in the error structure. We explicitly address non-global interac-
tions within several hypothesized social and spatial network structures. Discrete
choice estimation results controlling heterogeneous individual preferences are em-
bedded in a multi-agent based simulation model in order to observe the evolution
of choice behavior over time with socio-dynamic feedback due to the network ef-
fects. For the particular simple model under study, we find the impact of initial
conditions on the emergent long-run behavioral outcomes is dependent on network
size and network connectivity. We conclude highlighting limitations of our
present study and recommendations for future work.

1 Introduction

Suppose you have the possibility to choose to adopt one of a number of different
behaviors or to choose to buy one of a number of different products. Moreover,
suppose the choice is multi-dimensional or more generally, that there are common
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unobserved attributes of the choice alternatives. A classic approach to statistical
prediction in such a situation given an observed sample of decision-making agents
in a population is the nested logit model, pioneered by Ben-Akiva [1] in the con-
text of transportation demand modeling. Now suppose your choice is influenced
by your individual perception of the choices made by your neighbors, colleagues
and/or socioeconomic peers. Brock and Durlauf [2] have noted: There has yet to be
any analysis of (nested logit) models... when self-consistency is imposed on the expected group
choice percentages. Such an analysis should provide a number of interesting results. It is our
aim to fill this gap. We present an application of the model to transportation mode
choice using pseudo-panel microdata in the greater Amsterdam region, combining
econometric estimation with computational techniques from multi-agent based si-
mulation. This paper extends earlier work by the authors [3] by exploring effects
of various hypothesized treatments of which decision-makers influence each other
defined on the basis of spatial proximity and socioeconomic group.

2 Model Assumptions

Discrete choice theory allows prediction based on computed individual choice
probabilities for heterogeneous agents’ evaluation of alternatives. For the nested
logit model we assume a sample of N decision-making agents indexed
(1,...,n,...N) each faced with a single choice among mutually exclusive elemental
alternatives i in the choice subset C, of some universal choice set C. The choice
set C, faced by agent n is partitioned into M mutually exclusive and collectively
exhaustive “nests” C,,, of elemental alternatives which are assumed to be corre-
lated. In general the composite choice set C, will vary in size and content across
agents: not all elemental alternatives i in the universal choice set may be available
to all agents. The overall correlation structure of alternatives is however assumed
to be the same across agents, aside from availability. A key feature of the nested
logit model is thus that the symmetry of choice behavior is inherently broken the
assumed correlations among elemental alternatives. For detailed specification the
interested reader is referred to Ben-Akiva and Lerman [4] and earlier work by the
authors [3].

The research reported here explores interactions between a decision-maker and
the aggregate actions of other decision-makers proximally situated in a sociogeo-
graphic network. We use a priori beliefs about the social and/or spatial dimension
of interactions to formulate the connectivity of the network. In the case study to be
discussed, we have rich socioeconomic data for each respondent as well as the
geographic location of each respondent’s residence and work location. This allows
us to define aggregate interactions by grouping agents into geographic neighbor-
hoods or into socioeconomic groups where the influence is assumed to be more
likely. In the simplest case, these groups are assumed to be mutually exclusive and
collectively exhaustive. That is each agent belongs to one and only one group. The
agent is assumed to be influenced by the average choice behavior of his or her
group, and the influence by other groups is assumed to be negligible. At a global
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level, the picture is a fragmented or disconnected network of clustered groups. If
we are interested in equilibrium behavior, the consequences of such an assumption
are important: there is no transmission of influence across groups, and the global
picture is a weighted average behavior of the separate clusters. Thus we also con-
sider cases with overlapping groups, with agents for example connected by social
group as well as by residential district, or by postcode regions of residence and
work location. This leads to a giant cluster for the empirical examples under con-
sideration, with the important implication that influence can spread throughout the
entire population.

3 Case Study

The data used in this paper originates from travel questionnaires administered by
the Municipality of Amsterdam Agency for Infrastructure, Traffic and Transport
(dIVV) in Amsterdam and a neighboring suburban municipality to the south,
Amstelveen. The data set made available by the dIVV is a subset of the full modal
split database, containing only direct home-work trips and direct work-home trips
where the purpose of the trip at the non-home location is classified as either
“work” or “business.” The data received includes records of trips where respon-
dents have indicated one of the following transportation mode choices: external
system public transit or internal system public transit (23,7% mode share); bicycle
or moped/motorcycle (26,7% mode share); car driver or car passenger (49,6%
mode share). The final data sample used in the case study contains 2913 decision-
making agents. Raw socio-economic variables available for use in the model in-
clude among other agent characteristics: income category, education level, age.
Geographical location of the home and non-home locations are given in the data in
terms of the centroid of a traffic analysis zone (TAZ). The dIVV considers 381
TAZ centroids in Amsterdam and 48 TAZ centroids in Amstelveen, with a total of
933 TAZs in the whole of the Netherlands. Using standard GIS software, the cen-
troids are mapped onto postcode zones and municipal districts.

3.1 Fully Connected Network: Initial Conditions and Size Effects

Although we are fundamentally interested in non-global interactions, we start our
modeling endeavor by first considering a fully connected network with global in-
teractions. The reason for this is that when the model includes “self-loops”, that is,
each agent counts it own choice in evaluating the choices made by reference
agents, the steady-state solutions of the socio-dynamic system can be solved ana-
Iytically as derived in Dugundji [5], since the agents are perfectly homogenous in
this special case. Such an analytical benchmark is useful for verification of our
programming implementation of the multi-agent based model to confirm that we
get expected results under known conditions in parameter space. Furthermore, the
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benchmark can help us later to interpret emergent outcomes as we change the pa-
rameter settings step-by-step away from the known analytical case. By studying
the simulation results for the fully-connected network under controlled conditions
varying the initial starting mode shares and network size, it can help us gain in-
sight in subsequently understanding the behavior of the system with hypothesized
sociogeographic networks.

We estimate a simple nested logit model on the basis of the sample data. The only
observed explanatory variable in the model is the network interaction variable.
Unobserved heterogeneity across the transportation mode choice alternatives is cap-
tured by nesting the alternatives that are assumed to be correlated. Since we have on-
ly three elemental choices in this case study, there are only three possible nesting
structures, namely public transit nested with bicycle, public transit nested with car,
and bicycle nested with car. Estimation of the three successive nested logit models
have shown the second nesting structure to be most significant in terms of loglike-
lihood ratio test and in terms of the #-test on the nest coefficient. The unobserved
heterogeneity might represent here for example individual preference for a “moto-
rized” transportation mode. The estimation results for this model are given Table 1.
In a typical empirical application we would usually consider additionally other
explanatory variables in the specification of the utility function, including individu-
al-specific socioeconomic characteristics of the commuters (eg. gender) as well as
individual-specific attributes of the choice alternatives (eg. travel time), and the
availability of alternatives (eg. while Amsterdam and Amstelveen are well served by
public transit, not everyone in the might be able to commute by public transit if there
is no transit service at their work destination). We defer this detailed study for future
research. Our goal with the estimation here is not an analysis to inform policy, but
rather to generate empirically plausible parameters to study the theoretical behavior
of the system. We deliberately restrict our consideration in this paper to the simple
model in order well understand the fundamental behavior of the simple model first
before proceeding to an even more complex situation. This way we can focus on un-
derstanding the network effect in the nested logit model without confounding the
contributions to the long-run results.

Table 1. Estimation results for simple nested logit model with fully connected network *

Variable Coefficient Estimate  Standard Error t-Statistic

Share of respondents in the sample 2.76 0.16 1.78 (against 0)
choosing each mode

Scale parameter for transit-car nest 1.03 0.05 0.67 (against 1)
a) Null log-likelihood: -3200; Final log-likelihood —3035; Likelihood ratio test: 331.

Using the approach described in Dugundji [5], we find that there are five equi-
librium solutions for the long-run behavior of this simple nested logit model with
sociodynamic feedback with global interactions for the particular estimated
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parameter values in Table 1. Three of these solutions are stable and two of these
solutions are unstable. See Table 2. Due to the symmetry of the system whereby
transit and car are nested together, at any mode share value for which there is a so-
lution for transit, there will be a dual solution with an analogous mode share value
for car, and vice versa.

Table 2. Analytical equilibrium solutions for simple model with fully connected network

Solution Nr.  Stability Bicycle Mode Share Transit Mode Share Car Mode Share
1 (most) stable  0.700 0.150 0.150
2 stable 0.158 0.143 0.698
3 stable 0.158 0.698 0.143
4 saddle node  0.267 0.237 0.496
5 saddle node  0.267 0.496 0.237

Using the Repast modeling platform (http://repast.sourceforge.net), we create a
computational version of this model that will allow us to experiment with different
hypothetical scenarios that can either be derived from the sample data, or tweaked
by the modeler accordingly to study variation. There are three aspects that we will
consider in this paper: initial starting mode shares, network size and network con-
nectivity. In order not to confound the effects of the utility parameters in the eco-
nometric estimation with the time-varying evolution of the mode shares, we use
the estimated coefficient values in Table 1 for all multi-agent based simulations in
this paper. We defer the re-estimation of parameters based on different network
structures for future research.

Example time series results for the mode shares with a fully connected network
under different scenarios are shown in Fig. 1. Each run is allowed to iterate for
600,000 time steps. This is approximately 200 revisions of choices with asyn-
chronous decision-making for the network of 2913 agents. The black times series
represents the proportion of agents choosing car at any given time step, the light
gray time series represents the proportion choosing bicycle, and the dark gray time
series represent the proportion choosing public transit. Fig. 2 shows observed
long-run outcomes at the last time step when applying different random seeds for
determining the decision-making order for agents evaluating the choice distribu-
tion and updating their choice.

From Table 2 we know the most stable solution occurs with a mode share for bi-
cycle of 0.700 and mode shares for transit and car of each 0.150. In practice we do
not expect to see the saddle node solutions. Also, for initial starting mode shares as
in the survey data with almost 50% car commuters, and less than 25% transit users,
we might expect in practice that stable solution nr. 2 listed in Table 2 with mode
share 0.698 for car and mode share 0.143 for transit will be more likely to be
reached than its dual solution number 3 with the mode shares reversed. In the upper
left panel of Fig. 1 we see an example time series where the stable solution nr. 2 is
gradually reached. In the left panel of Fig. 2, over multiple runs we indeed consis-
tently obtain the analytically predicted first two equilibrium solutions in Table 2.
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Fig. 1. Example time series for nested logit model with fully-connected network under dif-
ferent initial conditions (N = 2913, except for District 16)
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Fig. 2. Observed mode shares at t = 600,000 with different random seeds for determining
the agent decision-making order with the nested logit model on a fully-connected network.
Initial conditions have no significant effect on long-run outcomes under volatile dynamics.

Next, we test a hypothetical case where the initial mode shares are not deter-
mined from the survey, but are tweaked so that the starting mode shares are equal,
ie. all one-third. In this non-biased case, we might expect the most stable equili-
brium to be dominant. In the example time series in the upper right panel of Fig. 1
we see initially ambivalent average behavior, but once the runaway effect is
established, the series proceeds to the stable solution and then stays there. Over
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multiple runs with different random seeds determining the decision-making order
we find that all runs went to the dominant equilibrium.

Then, we consider a hypothetical case where the initial mode share for public
transit is very high (80%). The example time series in the lower left panel of Fig. 1
moves easily to the stable solution nr. 3 listed in Table 2, and stays there. Over
multiple runs with different random seeds, we find that all runs are locked in at
this steady state.

Finally we consider the effect of the size of the network on the long-run beha-
vior. Since our sociographic networks with clustered groups can be expected to
show the weighted average behavior of the separate clusters, it is useful to see
how a separate cluster behaves. In our case study, a separate cluster is assumed by
design to be a fully connected network of a subset of the total number of agents.
The time series in the lower right panel of Fig. 1 shows an example for District 16
(Amstelveen South) where N = 461. Here the initial mode share for car within the
district is particularly high (66,2%). However, instead of finding a long-run lock-
in at stable solution nr. 2 listed in Table 2, because the dynamics become more vo-
latile with the lesser number of agents we see that the time series cycles between
all three stable equilibria in Table 2, and all modes have an opportunity in turn to
become dominant.

The reason for the volatility with the smaller network size has to do with the as-
sumption of each agent’s choice being influenced here by the percentage of agents
the reference group making each choice. Since each cluster by definition here con-
tains only a subset of the total number of agents in the data sample, the influence
of an individual agent updating a choice is larger within the fully connected clus-
ter than when considering the entire data sample being fully connected. This rela-
tively larger jump in mode share for a particular mode alternative as a given agent
updates its choice within a smaller reference group, gives the possibility to jump
out of a particular steady state and move to another one. In the right panel of
Fig.3, when considering the behavior over multiple runs with different random
seeds determining the order in which agents make decisions, we find a picture of
emergent outcomes scattered across the three stable equilibria, transitioning
through the region of the saddle node equilibria. Furthermore the most stable solu-
tion nr. 1 is notably dominant over all runs, despite the initial conditions of start-
ing with high car mode share in the District.

In summary, thus far we have seen: 1) lock-in at the analytically predicted sta-
ble steady-states, 2) manifestation of the analytically predicted most stable equili-
brium being dominant, and 3) for a fully connected network with smaller size, the
larger jump in mode share as an agent updates each choice per iteration breaks the
lock-in that we found when the entire sample is fully connected. Given this know-
ledge, we now proceed to our study of sociogeographic networks.

3.2 Sociogeographic Networks: Clusters and Overlapping Groups

We begin our consideration of sociogeographic networks with a broad classifica-
tion by residential district. The districts in the Municipality of Amsterdam are
meaningful entities for the purpose of our case study since they have their own
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local government structures (http://www.amsterdam.nl/gemeente/stadsdelen) with
their own directly elected representative aldermen. In the multi-party system in the
Netherlands, the composition of the majority coalition in one district may be dif-
ferent than the majority coalition in another district reflecting the different local
cultures associated with the districts. As a result the districts have the possibility to
organize themselves in different ways and set different spending priorities. Resi-
dents identify themselves with their districts and often deliberately choose to live
in a particular district, and not another district. In our case study, there are 9 dis-
tricts represented in the data, ranging in size from 223 sampled respondents (Dis-
trict 4, Amsterdam East) to 461 sampled respondents (District 16, Amstelveen
South). The mean size is 323 respondents with standard deviation 74, skewness
0.32 and kurtosis 0.19.

In order to be able to test the effect of spatial scale, by way of comparison with
the network interdependence defined by residential district, we also define a
smaller neighborhood region of influence on the basis of 4-digit postcode. There
are 67 postcode regions represented in the sample, ranging in size from 10 sam-
pled respondents to 161 sampled respondents. The mean size is 43 with standard
deviation 32, skewness 2.1 and kurtosis 4.4. As with districts, the postcode defini-
tions are also meaningful in that they do not have arbitrary boundaries: residents
know in which postcode zone they live and the postcode zones have different rep-
utations. The postcodes in the greater Amsterdam metropolitan region are general-
ly defined such that there is homogeneity within a zone, and heterogeneity across
zones, in terms of land uses and built environment according to the period that the
zone was originally developed and/or subsequently re-developed in the incremen-
tal growth of the region over the years. Our assumption is that the postcode boun-
daries delineate spatial peers and that agents residing within a particular postcode
have similar underlying preferences and values, thus exerting a relatively stronger
influence than agents who live outside the postcode.

Next, under the assumption that respondents are influenced by the choice beha-
vior of others in their own socioeconomic class regardless of their residential loca-
tion, we define 13 socioeconomic groups using the three variables age, income
and education [3]. The groups range in size from 99 sampled respondents to 385
sample respondents. The mean size is 224 respondents with standard deviation
111, skewness 0.33, and kurtosis —1.8. Our assumption is that a respondent’s di-
rect friends and colleagues are likely of a similar socioeconomic status. For the
purposes of the case study, we consider here a relatively dense network of over-
lapping groups where agents are connected by both their residential district and
socioeconomic class.

Finally, since we are considering commute behavior and the work location is
known in the data set, we define postcode regions for the work locations. Here
again the idea is that due to urban planning policy in the Netherlands the type of
work locations and their accessibility will tend to be more homogeneous within a
postcode zone than across postcodes. The socio-cultural and practical acceptance
of traveling to work by bicycle, for example, may be likely to be higher in a post-
code zone where many commuters already travel by bicycle. This in turn may in-
spire other workers who initially travel by another transportation mode, to revise
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their mode choice. The mechanism may occur through various different means,
such as direct communication with their colleagues, financial travel re-
imbursement incentives from their employers, simply being aware that colleagues
commute by bicycle, or even just seeing lots of other bicycles parked outside on
the street or in a bicycle parking area. Furthermore if there is a critical mass of bi-
cycle commuters to a particular area, there is more stimulus to provide better
bicycle facilities, such as covered bicycle parking and dedicated bicycle paths.
Regardless of the precise underlying mechanism of the interaction, such an effect
can approximately modeled in the aggregate as an agent being influenced by the
proportion of other agents in their work postcode zone making a given mode
choice. For the purposes of the case study, we define connectivity of interactions
with an overlapping network where an agent is influenced both by the proportion
of agents making a given choice in their work postcode zone and their residential
postcode zone. This leads to a network which is much less dense than the scenario
with overlapping residential districts and socioeconomic groups.

Using our multi-agent based model, we now explore the evolution of the choice
behavior of the nested logit model with feedback defined by these sociogeograph-
ic networks. By experimental design, the network of disconnected residential dis-
trict clusters and the network of overlapping residential district and social group
are approximately five times more dense than the network of disconnected post-
code zone clusters and the network of overlapping residential and work postcode
zones, respectively. Example time series for the nested logit model with sociogeo-
graphic network interaction are shown in Fig. 3. As in the previous section, each
run is allowed to iterate for 600,000 time steps; the black times series represents
mode share for car, light gray represents mode share for bicycle, and dark gray
represents mode share for public transit.

We first consider the two scenarios with a disconnected network of clustered
groups. From our study of fully connected networks in the previous section, we
know that smaller network size leads to more volatile sociodynamics in our mod-
el. Since we saw evidence of this volatility already in the largest district compris-
ing 461 agents, we might expect that all other residential districts (with the smal-
lest having only 223 agents) and accordingly all postcode zones (ranging in size
from 161 to 10 agents) can only be more volatile. Furthermore since transmission
of influence is prohibited across the separate clusters, the overall time-varying be-
havior of the global modal split must logically be the weighted average behavior
of the mode shares within the separate clusters. In the example time series in the
upper left panel of Fig. 3 we see initially persistent average behavior across the
clusters with high mode share for car, but then over time the most stable equili-
brium in Table 2 tends to become dominant. However, we see in the example time
series that the overall bicycle mode hovers around 0.5 never reaches the mode
share of 0.7 that it did in the previous section, since there is no interaction me-
chanism in this scenario to coordinate across clusters. With the volatility that we
saw for District 16 alone in Fig. 1 and given the dispersion of long-run outcomes
across different seeds that we saw for District 16 alone in Fig. 2, we might pre-
sume that is unlikely that all 9 clusters here will happen to be in the same equili-
brium at the same time. While the majority of clusters may tend to be at the most
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stable equilibrium in the long-run, probabilistically there will be some clusters that
will be in one of the other two stable equilibria, or in the process of transitioning
between equilibria.

Residential District Clusters Residential Postcode Clusters
1.0
0.8 -~ -
06 - 4
0.4
0.2
0.0

District and Social Group Residential and Work Postcode
1.0 |

Mode Share

08 A
06 -~ -

0.0 T T T T T T 1 T T T T T T

Time Step (x10°)

Fig. 3. Example time series for nested logit model with sociogeographic networks
(N=2913)

In the example time series in the upper right panel of Fig. 3, we find that the
overall behavior across the 67 postcode clusters moves fairly rapidly to a roughly
equal split of one-third for each mode. Here the volatility within the clusters is so
high that no single mode ever stays dominant for very long and there are so many
clusters that the average behavior statistically tends to be non-biased.

Finally, given this behavioral information, we proceed to understand what hap-
pens in the empirically most relevant scenarios with overlapping groups, where we
have interaction within socioeconomic and spatially defined groups but there is a
possibility for transmission of influence across groups. In the example time series
in the lower left panel of Fig. 3 with interaction defined by overlapping residential
district and social group, we find initial prominence of the high mode share for car
as we did in the case of the network of disconnected residential district clusters,
but here there is indeed the possibility for eventual coordination across clusters,
with the entire sample locking-in to one of the stable equilibria in Table 2. In the
example in Fig. 3 we find the most stable equilibrium prevailing with high mode
share for bicycle; time series with other random seeds for defining the decision-
making order of the agents showed stable equilibrium nr. 2 in Table 2 prevailing
with high mode share for car. We never found transit mode prevailing, presumably
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due to inability to overcome the initial conditions with low transit mode share. The
observed long-run outcomes at time step t= 600,000 when applying different ran-
dom seeds thus yields a similar picture as the left panel of Fig. 2.

The example time series in the lower right panel of Fig. 3 with interaction de-
fined by the relatively less dense network of overlapping residential and work
postcode zones is just as interesting. With the relatively small cluster sizes in this
scenario, we find initial statistical tendency towards an overall non-biased split
fluctuating around one-third for each mode, similar to the case of the network of
disconnected residential postcode clusters. Because of the possibility for transmis-
sion of influence across clusters here though, eventually the most stable equili-
brium gradually takes over as in the case we saw with the hypothetical fully con-
nected network with initially equal mode shares. Over multiple runs with different
random seeds determining the decision-making order we find that all runs indeed
went to the dominant equilibrium.

In summary, we have seen: 1) global modal choice behavior in a disconnected
network of clustered groups is the weighted average behavior of separate clusters;
2) smaller cluster sizes yield more volatility in our nested logit model with soci-
odynamic feedback and as a result, a tendency towards an overall non-biased
modal split averaged over many clusters; 3) with sufficient volatility, initial condi-
tions have no significant effect on long-term outcomes; 4) with overlapping
groups, influence can spread throughout entire sample; 5) for a giant cluster with
sufficient network density and sufficient average degree, the precise connectivity
of the network doesn’t appear to matter in the long-run, but the initial conditions
of the starting mode shares do matter; the emergent distribution of outcomes for
overall modal split gives the same picture as the analytically predicted outcomes
for a fully-connected network with the given initial conditions; 6) the analytically
predicted most stable equilibrium ultimately prevails in connected, sparse network
of overlapping clusters; initial conditions of the starting mode shares don’t seem to
matter here.

4 Recommendations

We have extended previous work on discrete choice with social interactions in
important ways. We consider a model where an agent’s choice is directly influ-
enced by the proportions of the agent’s neighbors, colleagues and/or socio-
economic peers making each choice, accounting for common unobserved
attributes of the choice alternatives in the error structure. We observe that different
sociogeographic networks generate dramatically different dynamics and thus
clearly cannot be ignored in any empirical application. Misrepresentation of the
appropriate scale at which social influence occurs and of the appropriate network
structure can thus yield strongly flawed policy implications when studying social
feedback.

Further research is needed to explore systematically more comprehensive utility
specifications, including for example the effects of availability of alternatives, al-
ternative specific constants, agent-specific socio-demographic characteristics and
agent-specific attributes of choice alternatives. Also very important for any policy
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application, particularly for transportation mode choice, would be the introduction
of not only positive feedback, but also negative feedback into the model to ac-
count for congestion effects in addition to agglomeration effects.

In an application of the agent-based model for policy purposes, it may further-
more be important to scale up the number of agents in the simulation to the actual
relevant population size. In the domain of transportation land use planning, simu-
lation on the basis of a realistic number of agents can be critical for understanding
congestion on the transportation network. Iterative proportional fitting is an estab-
lished technique in transportation modeling for generating synthetic populations
[6]. An open question however is how to scale up social networks from survey da-
ta to a synthetic population. Since we have seen that network size and connectivity
do indeed impact emergent outcomes of a discrete choice model with social and
spatial interactions, the key importance of recent modeling efforts [7, 8] to depict
and understand realistic social networks at the population level in geographic
space is underscored.
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Tipping Points of Diehards in Social Consensus
on Large Random Networks

W. Zhang, C. Lim, and B. Szymanski

Abstract. We introduce the homogeneous pair approximation to the Naming Game
(NG) model, establish a six dimensional ODE for the two-word NG. Our ODE re-
veals how the dynamical behavior of the NG changes with respect to the average
degree < k > of an uncorrelated network and shows a good agreement with the nu-
merical results. We also extend the model to the committed agent case and show the
shift of the tipping point on sparse networks.

1 Introduction

The Naming Game(NG) has become a very popular model in analyzing the behav-
iors of social communication and consensus [1]. In this model, each node is assigned
a list of names as its opinions chosen from an alphabet S. In each time step, two
neighboring nodes, one listener and one speaker are randomly picked. The speaker
randomly picks one name from its name list and sends it to the listener. If the name
is not in the list of the listener, the listener will add this name to its list, otherwise
the two communicators will achieve an agreement, i.e. both collapse their name list
to this single name. The variations of this game can be classified as the “Original”
(NG), “Listener Only” (LO-NG) and “Speaker Only” (SO-NG) types [2] regarding
the update when the communicators make an agreement, and as the “Direct”, “Re-
verse” and “Link-updated” types regarding the way that the two communicators are
randomly picked. These variations have different behaviors but can be analyzed in
the way. In this paper we mainly focus on the “Original” “Direct” version.

Mean field approach has been applied to the NG and a lot of interesting results
have been obtained. They reveal the essential difference of the NG compared with
other communication models, such as the voter model, in reproducing important phe-
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nomena in real world social communications. One of the most significant results is a
phase transition at a critical fraction of the committed agents in the network, the tip-
ping point [6]. Above the tipping point, the minority committed agents will persuade
the majority to achieve global consensus in a time growing with the logarithm of net-
work size, while below the tipping point, the committed agents would require the time
exponential in the network size [[7], so practically never, for networks of non-trivial
size. However, as most applications of the mean field approximation, these theoret-
ical predictions deviate from the simulations on complex networks especially when
the network is relatively “sparse”. In many studies, the dynamical behavior of the
network given its average degree or the degree distribution is very important.

Recently, a so-called homogeneous pair approximation has been introduced to
voter model [3]], a model simpler than the NG, which improves the mean field ap-
proximation by taking account of the correlation between the nearest neighbors.
Their analysis is based on the master equation of the active links, the links between
nodes with different opinions. Although it shows a spurious transition point of the
average degree, it captures most features of the dynamics and works very accurately
on most uncorrelated networks such as ER and scale free networks.

In this paper, we apply this idea to the NG, especially the two-word NG case.
Different from the voter model case, there are more than one type of active links, so
we have to analyze all types of links including active and inert ones. As a consequence,
instead of a one dimensional ODE in voter model case, we have a six dimensional
one. We derive the equations by analyzing all possible updates in the process and
write it in a matrix form with the average degree < k > as a explicit parameter. The
ODE clearly shows how the NG dynamics changes when < k > decrease to 1, the
critical value for ER network to have giant component, and converges to the mean field
equations when < k > grows to infinity. Then we show the good agreement between
our theoretical prediction and the simulation on ER networks. Finally, we show the
decrease of tipping point value in low average degree networks, i.e. we need fewer
committed agents to force a global consensus in a loosely connected social network.
The results of a detailed analysis of this model will be reported in another paper.

2 The Model

Consider the NG dynamics on an uncorrelated network (the presences of links are
independent) together with the following assumptions which are the foundation of
the homogeneous pair approximation:

1. The opinions of neighbors are correlated, while there is no extra correlation be-
sides that through the nearest neighbor. To make this assumption clear, suppose
three nodes in the network are linked as 1-2-3 (there is no link between 1 and 3),
their opinions are denoted by random variables X;,X»,X3 correspondingly. There-
fore this assumption says: P(X;|Xz) # P(X}), but P(X;|X2,X3) = P(X;|X2). This
assumption is valid for all uncorrelated networks (Chung-Lu type network [4]],
especially the ER network).
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2. The opinion of a node and its degree are mutually independent. Suppose the node
index i is a random variable which picks a random node. The opinion and degree
of node i, are X; and k;. Mathematically, this assumption means E[k;|X;] =< k >,
P(Xi|k;) = P(X;) and P(X;|X;,ki,k;) = P(X;|X;) where j is a neighbor of i. This
assumption is perfect for the networks in which every node has the same degree
(regular geometry) and is also valid for the network whose degree distribution
is concentrated around its average (for example, Gaussian distribution with rela-
tively small variance or Poisson distribution with not too small < k >). We will
show later this assumption is good enough for ER network.

In other words, the probability distribution of the neighboring opinions of a specific
node is an effective field. This field is not uniform over the network but depends only
on the opinion of the given node. For an uncorrelated random network with N nodes
and average degree < k >, the number of links in this network is M = N < k > /2.
We denote the numbers of nodes taking opinions A,B and AB as nga, np, nap, their
fractions as pa,pp, pap- We also denote the numbers of different types of links
as L =[La_a,La_B,La_aB,L—B,Ls_aB,Lap_ap|", and their fractions are given by
1=L/M. We take L or 1 as the coarse grained macrostate vector. The global mean
field is given by:

DA | [ <k>na 1 2La-a+La—p+La-ap
plL)=| ps | = M <k>np | = ", La-p+2Lp p+Lp_sp
PAB <k>nyp La-ap+Lp ap+2Lap-aB

Suppose X;, X; are the opinions of two neighboring nodes. We simply write P(X; =
A|X; = B), for example, as P(A|B). We also represent the effective fields for all these
types of node in terms of L:

P(AJA) 2Lp-a
1
(A)(L) (B|A) 2Up a+Lap+Laap\ ;"
P(ABJA) La-an
- P(A[B) | rap
(+[B)(L) (B|B) Lag+2Lpp+Llpap\; . °
P(AB|B) Lp-as
P(A|AB) La-an
1
P(-|AB)(L) = | P(B|AB) Lo

P(AB|AB) La_ap+Lp_ap+2Lap—an s an

To establish the ODE for NG dynamics, we calculate the variable E[AL|L]. It takes a
long discussion to consider of all possible communications in this network. We just
take one case as example: listener taking opinion A and speaker taking opinion B.
The probability for this type of communicationis ps P(BJA). The direct consequence
of this communication is that the link between the listener and speaker changes from
A-B into AB-B, so L4_p decreases by 1 and Lg_4p increases by 1. Besides, since
the listener changes from A to AB, all his other related links change. The number of
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these links is on average < k > — 1 (here we use the assumption 2, E [k;|X;] =< k >).
The probabilities for each link to be A-A, A-B, A-AB before the communication is

given by P( |A) (here we use assumption 1). After the communication, these links
will change into AB-A, AB-B, AB-AB correspondingly and change the value of
E[L] by

-1 0 O

0 —-10

1 0 —1
(<k>-1) 00 0 P(-|A).

01 0

0 0 1

Similarly, we analyze all types of communications according to different listener’s
and speaker’s opinions, and sum these changes into AL weighted by the probability
that the corresponding communication happens and obtain:

EML@%:LH%H<k>—UML

where D is a constant matrix, matrix R is a function of L, given by:
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0-1000 0 0 -10 -10 0
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R= (0, )[04P(1AT + 0sP(1B], 041, P(1A) —  PCIAB]]

0,051, P(1B) — , P(IABY], ~(0a + 0n)P(IAB)).

Then we normalize L by the total number of links M and normalize time by the
number of nodes N:

d N N
1= " E[AL|L|= [D k> —1)R|1
PR [AL|L] M[ +(<k>—1)R]
1 <k>-1
-2 D R|L 1
<P s ) M

Now we get the ODE of 1 for the NG and < k > is explicit in the formula. In the
last line, the first term is linear and comes from the change of the link between the
listener and the speaker. The second term is nonlinear and comes from the changes
of all the related links. Under the mean field assumption, the first term does not
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exist, because there is no specific “speaker” and every one receives messages from
the mean field. When < k >— 1, the ODE becomes:

d
1=2D1
dt

which is a linear system. When < k >— oo, the ODE becomes:

d
1=2Rl
dt

If in matrix R we further require P(-|Aj = P(-|B5 = P(-|AB§ = p and transform the
coordinates by L — p(L), the ODE just turns back to the one we have under the
mean field assumption [6]].

3 Numerical Results without Committed Agents

Next we show some numerical results. Fig[I] shows the comparison between our
theoretical prediction (color lines) and the simulation on ER networks (black solid
lines). The dotted lines are theoretical prediction by mean field approximation. We
calculate the evolution of the fractions of nodes with A, B and AB opinions re-
spectively and show that the prediction of mean field approximation deviates from
the simulation significantly while that of homogeneous pair approximation matches
simulations very well.

05f Theoretical 4

041 Mean field

Fig. 1. Fractions of A, B and AB nodes as function of time. The three color lines are the
averages of 50 runs of NG on ER network with N = 500 and < k >= 5. The black solid lines
are solved from the ODE above with the same < k >. The black dotted lines are from the
ODE using mean field assumption.
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Fig 2l shows the trajectory of the macrostate mapped into two dimensional space
(pa,pBp), the black line is the trajectory predicted by the mean field approximation.
We find that when < k > is large enough, say 50, the homogeneous pair approxi-
mation is very close to the mean field approximation. When < k > decreases, the
trajectory tends to the line psp = 1 — ps — pp = 0, which means there are fewer
nodes with mixed opinions than predicted by the mean field. In this situation, opin-
ions of neighbors are highly correlated forming the “opinion blocks”, and mixed
opinion nodes can only appear on the boundary.

09 q

08l mean field
<k>=3
<k>=4
<k>=5 i
<k>=10

o8k <k>=50 |

0.7

0.4f B

0.3

[ 011 0‘2 0.‘3 O.‘A 015 0.‘6 0.‘7 0.‘8 0.‘9 1
Pa
Fig. 2. The trajectories solved from the ODE with different < k > mapped onto 2D macrostate

space. When < k >— oo, the trajectory tends to that of the mean field equation. When < k >—
1, the trajectory get close to the line pgp =1—ps — pp =0.

4 Committed Agents

Suppose we have p (fraction) committed agents (nodes that never change their opin-
ions) of opinion A, and all the other nodes are initially of opinion B. Is it possible
for the committed agents to persuade the others and achieve a global consensus?
Previous studies found there is a critical value of p called tipping point. Above this
value, it is possible and the persuasion takes a short time, while below this value, it
is nearly impossible as it takes exponentially long time with respect to the system
sizes.

Similar to what we did in the previous section. We derive the ODE for the
macrostate, although the macrostate now contains three more dimensions. L =
(La—c,Lg—c,Lap—c:La-a,La—g,La-a,L—p,Lp—ap,Lag—ag)”, where C denotes
the committed A opinion and A itself denotes the non-committed one. Hence we
have a nine dimensional ODE which has the same form as equation [Tl but with
different details in D and R:
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Finally, we show the change of the tipping point with respect to the average degree
< k > in Fig[3l Starting from the state that pg = 1 — p, the ODE system will go to
a stable state for which pp = pj. pj is 0 if the committed agents finally achieve the
global consensus. The sharp drop of each curve indicates the tipping point transition
with the corresponding < k >. According to the figure, the tipping point shifts left
when the average degree < k > decreases.

mean field | ‘

L
0.08 0.1 0.12

L L .
] 0.02 0.04 0.06
P

Fig. 3. Fraction of B nodes of the stable point (pp) as a function of the fraction of nodes
committed to A (p). The color lines consist of stable points obtained by tracking the ODE of
NG on ER for a long enough time. The black lines are the stable points solved from the mean
field ODE.
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Modeling Annual Supreme Court Influence:
The Role of Citation Practices and Judicial
Tenure in Determining Precedent Network
Growth

Ryan Whalen

Abstract. Using networks generated from the entire set of United States Supreme
Court decision citations, this paper models yearly court influence as a function of
system stability, complexity, precedent age and judicial tenure. The model demon-
strates that decisions written in years when the mean judicial age is low and judges
are more stable in their use of precedent, more conservative in terms of the age of
precedent cited, and the yearly citation network is less complex are more likely to
be cited in future years. By incorporating system endogenous variables in model-
ing efforts, this paper contributes to the development of complex legal systems
studies, and proposes new ways to develop the field.

1 Introduction

Every year, the American Supreme Court contributes to its own body of
precedent. Justices carefully craft decisions, situating them within the set of extant
precedent by citing relevant prior decisions. This process generates a complex dy-
namic system that grows and changes from year-to-year as the Supreme Court is-
sues more and more decisions generating ever more citation links between them.

Ostensibly, the Supreme Court’s authority stems from its role as the judicial
system’s court of final appeal. Decisions serve as precedent, establishing the state
of law for analogous disagreements in the future. This authority derives from the
convention of stare decisis, assuring that lower courts conform to higher court
precedent, while precedents stand as “good law” unless they are for some reason
overturned.
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Before decisions become precedent judges must of course write them, and
while they craft these decisions judges are expected to take into account existing
precedent, citing it where relevant. From 1789 to 2004 the court issued approx-
imately 35 000 decisions with over 200 000 citations between them. If we con-
ceive of these decisions as nodes in a network, with their citations joining them
together into a “web of law” [1] we can apply network analytic techniques to as-
sess the court’s performance.

Given this web of law we can think of a court’s influence in terms of how often
it is cited in future years. If the court writes important decisions that go on to in-
fluence future deliberations, that court will receive more citations than a court
which — for whatever reason — writes decisions that are less important in future
years. Past research has examined the court in terms of constitutional eras [2,3],
interest group activity [4], judicial ideology [5,6], and from a host of other pers-
pectives. The models that these works develop and rely upon tend to use factors
exogenous to the precedent system to explain and understand court behavior.

There has been little work that has attempted to model court citation influence
year-by-year that incorporates variables both endogenous and exogenous to the ci-
tation system. This study fills that gap by modeling court citation patterns from
1800 to 1990 as a function of variables drawn both from the citation system itself
and from exogenous historical variation.

System-level analysis of court citations contributes to a growing literature that
attempts to apply artificial intelligence to legal analysis [7,8] as well as an increa-
singly popular and capable field of legal citation analysis [9-11]. This study is
amongst the first to use the record of complex Supreme Court behavior to con-
struct new variables that help to explain the system’s functioning.

2 The Measures

The citation data used [12] comes
from a set provided by Lexis-Nexis
and used originally in Fowler et al’s
[13] analysis of precedent centrality
measures. It includes complete data
on citations between Supreme Court
cases from 1789 to 2005. The data
started as a full-network edge list
which was then parsed into a com-
plete network. Subgraphs were then @%v
generated for every year including all =
of the decisions written that year and 1800 1850 1000 1950 2000
the citations for each. year

Yearly citations. The dependent
variable used below is the total num-
ber of citations received by decisions written in each year. Because of the central
importance of precedent to the legal system, the number of citations that decisions
written in each year go on to receive is a useful proxy for a year’s influence. Years
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during which many important decisions are written will go on to garner more cita-
tions as those decisions are deemed relevant in future years, and thus exert more
influence on legal development.

The dependent variable plot (figure 1) shows a fairly low rate of citation for
years prior to the civil war. Following the war, we see a sharp increase in the
number of citations received per year. By start of the 20th century, the change has
largely leveled off and each year receives somewhere between around one and two
thousand citations. The mean number of citations received per year is 945 (sd
655), with a few outlying years. For instance, 1976 is situated well above the
curve. In this instance the outlying behavior is caused by one particularly influen-
tial case - Gregg v. Georgia — that is often cited in reply to the many death penalty
appeals that the Court receives.

There is a natural downward curve in more recent years as decisions written
during this time period have had fewer opportunities to attract citations. Due to
this consideration, the analysis below uses a subset of the data, excluding years
prior to 1800 — which saw relatively little Court activity — and years after 1990,
which have yet to reach citation maturity.

Precedent age. Mean precedent age was calculated by taking the mean of the
age of all precedents cited in a given year. Throughout this paper, I will refer to
this mean citation age as the observed precedent age. The observed age suggests
how conservative or progressive a court is in terms of what precedent it cites —
with older precedents suggesting a more conservative court and vice versa. How-
ever, it is difficult to compare years to one another because, as years go by, there
are more old cases for judges to cite and they grow older every year. This creates a
natural tendency for observed age to increase over time.

To control for this I also calculated the mean age of all extant precedent for each
year. This variable, referred to below as expected random age, tells us what mean
age we would expect if judges made citations at random. The difference between
expected random age and observed precedent age provides a more nuanced perspec-
tive on how conservative or progressive a given court’s citation patterns are.

Mean citation age across all years
is 18.95 years (sd 7.95), while the — Observed
mean expected random age is 35.56 "
years (sd 21.11). The mean difference «
between expected random age and
observed citation age is 16.25 years
(sd = 14.63). Looking at the observed
mean citation age (figure 2) shows an =
unstable period prior to the civil war
that is similar to what we observe in
both the yearly citation and stability |,
plots. Prior to the civil war, age stea- "% 5 50 50 0
dily increases until leveling off
around the mid 19" century at which
point mean age fluctuates between around 20 and 35 years. Meanwhile, we see
random age steadily increase and move further and further from the observed age

80

Fig. 2. Citation age
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curve. Prior to the mid 19" century, the mean age of Supreme Court citations re-
mained very close to what we would expect to see if citations were made at ran-
dom. As years go by, and especially after the start of the 20" century, Supreme
Court citation age begins to diverge more and more from what we would expect to
see given random citations.

Citation stability. Examining the contents of yearly citation subgraphs and
comparing them to one another allows us to include measures of system stability
in our model. We can consider the set of precedent used in a year as a court’s
precedent repertoire. We can measure how stable court repertoires are by compar-
ing them to those used in preceding years. Some courts use very similar reper-
toires to those used in previous years, whereas others use sets of precedent that,
for the most part, have not been used in recent years. Periods of changing reper-
toire denote either changes in the content of cases that the Supreme Court hears or
changes in the body of precedent that the Supreme Court feels is good law.

To measure precedent stability we can calculate the proportion of precedent
cited in any given year that was also cited in the preceding 5 years. To determine
this we simply divide the total number of unique citations in each year by the
number of those citations that were also used in the previous five year period. At a
value of 1, this stability variable tells us that all of the precedent used in a given
year was also used at some point during the previous 5 years. Similarly, a 0.5 sta-
bility level shows that half of a year’s precedent was also used at some point dur-
ing the previous 5 years.

Mean stability across years is 0.52 (sd
0.18). The stability plot (figure 3) shows
that prior to the civil war, the court was
significantly less stable — and more vari- £ - o0 og
able in its stability - in the set of
precedent it used. Following the civil
war, precedent stability levels off and = |, «#.o "
tends to vary within a narrower range, %% o
with anywhere from 40-70% of 2 _.°
precedent used in a given year also used °
in the preceding 5 years. This curve sug-

gests behavior counter to what one would
expect. During the Court’s early years
there was less precedent available for

T T T
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Fig. 3. Citation stability

Supreme Court justices to cite. We

would therefore expect that — all else being equal — these early years would exhibit
more stability than the later years during which justices had a much larger body of
precedent to draw on. However, we observe just the opposite, with stability in-
creasing concomitantly with the available body of precedent.

Components. Yearly subgraphs tend to be made up of many disconnected com-
ponents. In most situations the citations between case A and the body of precedent it
cites and case B and the body of precedent it cites will form two distinct graph com-
ponents. However, if case A cites case B or vice versa or the two cases share
precedent, their ego networks will join to form one larger component. We can thus
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measure the number of components in each yearly subgraph and use this measure-
ment to infer how connected a year’s precedent is. When there are many subcompo-
nents in a given year, cases tend to be isolated from one another, each addressing its
own body of precedent. However, when there are fewer components, the decisions
within a year are more interrelated and — in a sense — more complex as they are more
likely to depend on and interact with one another. The analysis below includes a
components variable calculated by measuring the number of connected components
in each yearly subgraph.

The number of components in the yearly
citation subgraphs (figure 4) shows a striking
inverted-U  shaped curve (mean=32.8, 2
sd=21.46). As the 19" century progressed,
the Court’s yearly citation networks con-
sisted of an ever-growing number of compo-
nents, until just before the turn of the century
when component number peaked and subse-
quently declined for the duration of the 20"

components
3

20

century. Substantively, this means that dur- RV

ing the 19™ century, yearly decisions became | ="

separated into distinct silos, each relying in- 120 150 100 1550 o
dividually on its own body of precedent. -

During the 20" century we see the reverse, Fig. 4. Graph components

where each year’s decisions become more
related and are much more likely to rely on
one another’s findings and share precedent.

Judicial experience. There are numerous reasons to believe that judicial Su-
preme Court tenure is significantly related to court influence. Scholars have long
noted “freshman effects” [14] [15] for Supreme Court justices. When we measure
mean Supreme Court judicial experience we are in a sense measuring how “fresh”
an entire court is. Courts with lower mean experience are likely to have worked
together less than other courts and they lack the presence of more experienced jus-
tices who might serve as stabilizing factors within the court.

To measure judicial experience, the U.S. Supreme Court Justices database [16]
was used to calculate mean judicial tenure for each year included in the model.
Examining mean judicial tenure on a yearly basis shows quite clear court eras,
during which the court builds up judicial experience before one or more particular-
ly long serving justices leave the bench to be replaced by newcomers. Mean judi-
cial tenure across all years is 11.71 (sd 3.48).

Cases: In addition to the above measures, the number of cases written in each
year is included as a control variable.

Modeling yearly citations. While the descriptives above provide an interest-
ing perspective on Supreme Court history, this paper’s chief priority is to test
whether or not variables endogenous to the citation system serve as meaningful
predictors of eventual court influence. In order to do so, OLS regression was used
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to model yearly citations as a function of stability, judicial experience, the differ-
ence between random expected age and real age and the number of decisions writ-
ten that year. The results (table 1) are discussed below.

Table 1. Dependent Variable = Yearly in citations

Estimate St. Error Beta Coef. p-value
Intercept 284.21 119.94 0.019
Stability 709.11 222.57 0.188 0.0017
Age_Diff -8.48 2.86 -0.172 0.0035
Judicial Tenure -29.12 7.50 -0.144 0.0015
Components 5.95 1.59 0.197 <0.001
Cases 3.97 0.44 0.651 <0.001

Adj . R’=0.75

3 Discussion

Overall the model accounts for a relatively high proportion of variability in yearly
citations (adj. R*=0.75). All of the predictor variables, and the cases control varia-
ble, are significant predictors of yearly citations.

Stability. The positive coefficient demonstrates that years which use bodies of
precedent similar to those used in the five preceding years are more likely to at-
tract citations. That is to say, the less stable courts are with the body of precedent
they use and the more they diverge from precedents that have recently been cited
the less influence they have in future years.

Citation age. The negative citation age coefficient suggests that as the differ-
ence between mean citation age and expected random age increases (i.e. as courts
stray from random expected age by citing more recent decisions) the court be-
comes less likely to attract citations in future years.

Components. The number of components a year’s subgraph has and the number
of citations that year goes on to garner are positively related. This could perhaps
reflect a preference for less complexity within a year’s precedent network. The ci-
tation age and stability findings above showed an aversion to change as measured
from some baseline established outside the yearly subgraph. On the other hand,
the components finding demonstrates that fewer relationships and less complexity
within a year’s decision network are also related to the number of citations a
year’s decisions will garner.

Judicial tenure. As the collective experience of a court grows, the decisions
they write become less likely to attract future citations. Much of the literature on
judicial tenure suggests that judges are more moderate early in their time on the
bench. Perhaps this leads to more moderate decisions for courts that are made up
of disproportionately short-tenure justices, and perhaps these moderate decisions
are more palatable to future justices. Alternately, this effect could be related to the
phenomenon of recent case preference that we observe in the citation age plot
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(figure 4). It is conceivable that older, more experienced judges are more in touch
with older jurisprudence, whereas younger, less experienced judges could be more
in touch with newer case law, especially that which they helped create.

Cases. This control variable shows a significant positive relationship with year-
ly citations, and moreover a relatively large effect size. This is unsurprising as
years during which more decisions were written are, all else being equal, more
likely to attract citations.

The whole model. Stepping back from an examination of each variable’s place
in the model, we see a model that is itself significant, not only statistically but also
methodologically. While scholars have long advocated for an increased focus on
empirical studies of the legal system [i.e. 17], there has as yet been relatively few
legal citation analyses. Most of the research done prior to this study has been de-
scriptive in nature, and — to the author’s best knowledge — none have used system
endogenous variables as elements in an analytic model.

Court evolution. Another strength of this analysis is its ability to provide us
with insight into how the Court’s behavior has changed over time. Most of our va-
riables demonstrate an “establishment” period prior to the civil war. During this
period, court behavior had yet to reach a level of relative stability, showing more
variability from year to year. Following the civil war, and especially after the start
of the 20™ century, we see a court that behaves much differently than it had in its
early years. We see much less fluctuation in the set of precedent used, an increas-
ing preference for more recent precedent and much more stability in the number of
citations each year goes on to receive.

4 Conclusion

This study demonstrates that we can use citation networks to analyze Supreme
Court influence. It shows that precedent stability, citation age, the number of
components in a year’s citation subgraph and judicial tenure are all significantly
related to the number of citations a year’s decisions will go on to garner. Years
with less experienced Supreme Court justices at the bench, that are stable in re-
gards to the body of precedent they cite, consistent when citing from across the
age spectrum of available precedent, and relatively uncomplicated in terms of how
many relationships exist between decisions are more likely to attract citations in
future years. However, this study’s most important contributions are not the sub-
stantial conclusions arising from its analysis. Rather, its contribution to the devel-
opment of a new type of legal analysis variable - derived from measurements
endogenous to the precedent citation system — and the demonstration that these va-
riables are meaningful predictors of system behavior, will hopefully inspire simi-
lar studies in the future.

Acknowledgments. The author would like to acknowledge the support of National Science
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The Effect of Citations to Collaboration
Networks

Pramod Divakarmurthy and Ronaldo Menezes

Abstract. In this paper we investigate collaborations in computer science based on
the Association for Computing and Machinery (ACM) Digital Library dataset. We
have constructed two types of network of collaborations one based on all publica-
tions and a second that only considers publications with at least one citation. We
compare and measure the metrics for both the networks and we show that there are
slight structural changes and significant fluctuations in the ranking of authors.

1 Introduction

A social network represents a set of individuals with relationships among them .
In network terms, individuals are represented as nodes and relationships represented
with ties (edges) between these individuals. An edge can represent a friendship, or
any type of relationship between the individuals linked. In this work, we assume
the relationship is based on authors’ collaborations in a research paper. We focus
on Computer Science collaboration and hence our study is based on the publication
data available at Association for Computing and Machinery (ACM) Digital Library
which is arguably the most complete database of computer-related publications.

The study of collaboration patterns in concerned with co-authorship; researchers
who are connected to one another when they co-authored a paper. The assumption
for the social relationship is that if individuals have worked together in a paper then
one can safely assume that they know each other. Once the networks are built, Social
Network Analysis (SNA) techniques are used to better understand the structure of
collaborations between computer science authors.

Studying scientific collaborations networks as well as how papers cite others (ci-
tation networks) has become increasingly important. Understanding these networks

Pramod Divakarmurthy

BioComplex Laboratory, Department of Computer Science, Florida Institute of Technology,
Melbourne, FL, USA

e-mail: {pdivakar2011, rmenezes}@my.fit.edu

R. Menezes, A. Evsukoff, & M.C. Gonzilez (Eds.): Complex Networks, SCI 424, pp. 177-85]
springerlink.com (© Springer-Verlag Berlin Heidelberg 2013


{pdivakar2011,rmenezes}@my.fit.edu

178 P. Divakarmurthy and R. Menezes

help us better understand how scientific discoveries and innovations are communi-
cated within the scientific community. Thousands of research papers are published
every year. In most cases, citation counts are used to measure the impact of scien-
tific work in the scientific community. A study by Garfield et al. 8] in 1992, showed
that there is a high correlation between citations and Nobel Prize winners. However,
there are works that are never cited. This alone makes us wonder what is the effect
of these uncited works to the studies done in collaboration networks.

Music studies have always used “citations”. In music, composers are credited
when their song is recorded. Songs that are written but not recorded are not listed in
the music databases and can be considered as non-existent. Using the same concept,
we have considered the number of citations of each paper in this study. Cited papers
imply that the knowledge generated from the collaborations has been used in further
studies. Hence, we generate two types of networks of authors: (i) one “traditional”
where all papers are considered, and (ii) citation-based one which considers the
citations of paper. In the later network, only papers with one or more citations are
used to generate network of authors, while in the former all papers, regardless of
their citations counts, are considered. We measure and discuss the characteristics of
both the networks and rank authors on both networks.

2 Related Works

Network science is a topic that has gained increasing importance in recent years.
However, the study of scientific collaboration has been around for quite some time.
For instance, the concept of Erdos number has permeated the mathematical research
community for more than thirty years [4]]. Erdés number is a measure of the shortest
path (geodesic distance) between an author and the well-known Hungarian mathe-
matician Paul Erdos in a co-authorship network.

Recently, studies on large-scale collaboration networks by Newman [[10] in
the fields of bio-medicine, physics and mathematics, demonstrated that biology is
highly collaborative field when compared to mathematics and physics, a result that
reflects the laboratory and experimentation needs. Barabdsi et al. studied the
evolution in time of collaboration networks in neuroscience and mathematics. The
results showed that collaboration network tend to be scale-free, and that the net-
work evolution is governed by preferential attachment. A similar type of study was
performed on the scientific collaboration of the Pacific Asia Conference on Informa-
tion Systems (PACIS) [6]]; the network contained a significantly large main compo-
nent and it exhibited small-world characteristics. Using visualization techniques and
SNA metrics they revealed the structural characteristics of PACIS community and
were able to identify influential members. More recent studies have also shown that
collaborations are usually local: same University, city, or county and comparatively
fewer individuals from different countries [[7].
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3 Networks and Metrics

A graph is a collection of nodes and edges (connections between nodes). From the
point of view of network sciences, a graph is considered to be a network when nodes
represent real-world objects and edges represent the link between them. Nodes or
edges may have a variety of properties associated with them. For instance, in a
social network nodes may represent people and may include different properties
such as nationality, gender and age; edges may represent a friendship or other kind
of relationship and can have attributes such as the strength of the relationship.

One common type of graph is a k-partite graph (called a bipartite graph when
k = 2), in which the vertices are partitioned into k-disjoint subsets, and each edge
connects vertices in distinct partitions. Hence a bipartite graph is one in which the
nodes can be divided into two sets U and V so that every edge in the graph con-
nects a node in V with a node in U. For instance, a network made of actors-movies
may contain nodes representing actors and nodes representing the movies. Bipartite
networks are important for us because in our study we have a bipartite network of
papers and authors, although we concentrate on the author projection.

The properties of a given network can be described at two levels, global and in-
dividual node properties. Global graph metrics describes the characteristics of the
entire network, for example the graph’s diameter, mean node distance, number of
components, cliques, clusters, small-world phenomena, etc. Individual properties
relate to the analysis of the properties of network nodes, such as centrality, degree,
and position in a cluster. The status of an node is usually expressed in terms of its
centrality, i.e. a measure of how central the node is to the network graph. Central
nodes have a higher degree of influence in the network. There are however many
variations of centralities. The Degree centrality of a node is defined as the total
number of edges that are adjacent to the node; it measures how many connections
authors have to their immediate neighbors in the network. Closeness centrality fo-
cuses on how close an author is to all other authors in the network. Authors may
be well connected to their immediate neighbors but they can be part of an isolated
clique. Although, such a node is locally well connected, its closeness centrality may
be low. Authors with high closeness scores are likely to receive information more
quickly than others. The Betweenness centrality of a node determines how often the
node is found on the shortest path between any pair of nodes in the network.

The degree distribution express the probability, p(k), that a node in the network
will have k connections. It has been observed that in many real networks [9]] their
degree distribution roughly follows a power law as given by Equation [Il where, ¢
and A are constants. For most of the real networks 2 < A < 3.

p(k) = ck™* ()

An important characteristic of some network is the clustering coefficient, which
is a measure of the ration in which nodes in a graph tend to cluster together. In
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co-authorship network, clustering coefficient indicates the how much a node’s col-
laborator has written a paper with one of its other collaborators. The clustering co-
efficient , C;, of that node is given by Equation[2] where, m; is the number of links
between the k; neighbors of i; the clustering coefficient of the entire network is just
the average of all C; over the number of nodes in the network n. As a transitivity
measure, clustering is more applicable to social networks but it is also used to iden-
tify small-world networks [12] which are expected to have high clustering and short
average path lengths.

2m,-

Ci= ki(k; —1)

©))

4 Building Social Networks from Collaborations

The Association for Computing and Machinery (ACM) is the primary society for
computer science professionals. As part of their services, they include a Digital
Library which indexes many scientific journals, magazines, conference papers, and
books in computer science. In order to perform our study we have gathered informa-
tion about publications available in the digital library and constructed a dataset. The
dataset includes works available in the ACM Digital Library from 1951 to 2011,
although the core of the dataset is from 1981 to 2010. Using a Web Crawler, we
extracted the information and processed the bibliographic data available for each
paper found. Information such as published year, title, authors, citations and sub-
ject classification were stored as part of our dataset. We also extracted information
of authors who had published a paper by 2010. Additional information about the
authors such as, name of author, his affiliation (mentioned in his work), number
of papers published, number of citations and publications years were also extracted
from website. After all was done our dataset included 62,758 authors who published
about 233,464 papers over a span of approximately 60 years (1951-2011).

5 Experiments and Results

Our first analysis looks at what kind of network we are working with. Table[Tlshows
that the networks we study here can clearly be characterized as small world. The
clustering coefficient of the network is very high and indicates that the network is
organized in groups of highly collaborative individuals with few connections to the
outside of the group. Yet, these outside connections do exist and lead to short paths
between nodes, where short is defined as £ ~ logn. Table[Ilshows the characteristics
of the ACM networks compared to another network available in the literature [3].
The ACM networks display a higher clustering meaning this network has a higher
collaborations that form triads (cliques of degree 3). Furthermore, the power-law
characteristics is within the expected values for real networks with A = 2.28. None
of the works mentioned in Section [2| have taken the citations of the papers into
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consideration. We generated what we call the ACM Citations network (ACM-C)
considering the citations of every paper. Note this is not a network of papers and
their citations but a collaboration network which considers the collaboration only
for cited papers. There are 141,604 cited papers in our ACM dataset. Table[Tlshows
a comparison of ACM-C and ACM networks with another real network.

Table 1. Network Statistics. Comparison of the ACM and ACM-C with the measurements
taken from the Film-Actors network [1]]

ACM ACM-C Film Actor

Nodes (n) 62,758 50,614 449,913
Links (m) 340,962 225,191 25,516,482
Mean Degree (z) 10.86 8.89 113.43
Exponent Power Law (1) 2.3 2.3 2.3
Average Clustering Coeff. (C) 0.60 0.64 0.20
Average Path Length (¢) 499 547 3.48

Since we are interested in identifying the top collaborators from ACM and ACM-
C networks, we decided to rank them. Hubs (nodes with high degree) are important
but they represent the level of “collaborativeness” of a researcher at the present time.
Yet, one may want to have a more predictive measure for the researchers. Closeness
centrality expands the definition of degree centrality by focusing on how close an
author is to all other authors in the network and hence may represent the “potential
collaborativeness” of the researcher; one may not have a lot of collaborators but the
structure of the network makes him a prime candidate to acquire new collaborations.
This measure is very important since it may indicate the authors who are in the best
position to improve their connectivity (degree centrality). One of the known charac-
teristics of social networks is that triads tend to form from triple; if A knows B who
in turn knows C, there is high probability that A will get to know C. Given this prop-
erty, it should be clear that nodes with high closeness should in general have a higher
probability of acquiring new collaborators, hence the “potential collaborativeness”.

Table [2 shows the top 10 authors in both networks used here. Many of the au-
thors who are considered hubs in full ACM network remain as hubs in the ACM-C
network. However some of them do not, and this is what makes the citation study
a better representation; Rick Rand (IBM) appears in the ACM network because it
has a high degree. However his connections come from works that have not been
cited. We claim that ACM-C work is a better snapshot of “collaborativeness” in
the computer science field. We note that rankings for closeness changed signifi-
cantly from ACM to ACM-C, meaning that the “potential collaborativeness’’; ACM-
C ranks shows “potential collaborativeness” to cited authors instead of all authors.

The results in Table [2] may still have problems when it comes to hubs because
a person may have high degree by collaborating with many people who have no
collaborators themselves. Since the use of rank approaches such as Pagerank is not
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Table 2. Ranking of authors according to (“collaborativeness”) and closeness centrality (“po-
tential collaborativeness”). Note that the list of authors for degree remain quite stable (shown
in bold) when we consider only citations. However the closeness rank changes significantly.
This may be an indication that the study could be improved if we worked on the core of the
network as in Table[3

ACM Network ACM-C Network
rank degree closeness degree closeness
1 Jack Dongarra Martin Jung Jack Dongarra Ian Petersen
2 Mingqiang Li Norbert Oster Alberto Vincentelli Andrey Savkin
3 Ian Foster Sven Sohnlein Ian Foster Robin Evans
4 Manish Gupta Florin Pinte Manish Gupta Y. Feng
5 Alberto Vincentelli R. Lacher Minggqiang Li Gordana Felic
6 Noga Alon S. Vasupongayya Noga Alon Zongru Liu
7 Luca Benini Benjoe Juliano Luca Benini C. Liu
8 David Maier David Munson Ewa Deelman Praveen Nadagouda
9 Hector Garcia-Molina Stefano Andriani Hector Garcia-Molina Chien Ta Minh
10 Rick Rand Daniele Menon Derek Lieber Tim Walsh

appropriate in undirected networks, we decided to concentrate on the core of the
network. We filtered the network by removing edges below a certain threshold, fol-
lowed by the removal of nodes with degree zero. We increased the threshold until
we were left with about 10,000 authors (or about 20% of the network nodes). We
then extracted giant component (largest connected subgraph) of the network. The
experiments in Table 3] shows the results of the experiments with the core network
for ACM and ACM-C.

Table 3. Ranking of authors according to (“collaborativeness”) and closeness centrality (“po-
tential collaborativeness™). Note that the list of authors for degree is still quite stable when we
consider only citations. However we notice that closeness now also remains stable. Authors
that appear in two or more rankings are shown in bold.

ACM Network ACM-C Network
rank degree closeness degree closeness
1 Jack Dongarra Scott Shenker Jack Dongarra Scott Shenker
2 Hector Garcia-Molina Hari Balakrishnan Hector Garcia-Molina Christos Papadimitriou
3 Luca Benini David Culler Alberto Vincentelli Prabhakar Raghavan
4 Mateo Valero Joseph Hellerstein Luca Benini Jeffrey Ullman
5 Alberto Vincentelli Christos Papadimitriou David Culler Hari Balakrishnan
6 Andrew Byun Kahng  Ion Stoica Michael Stonebraker Mihalis Yannakakis
7 Milind Tambe Prabhakar Raghavan Robert Brayton Rajeev Motwani
8 Micha Sharir Thomas Anderson Gerhard Weikum Randy Katz
9 David Culler Randy Katz Micha Sharir Michael Stonebraker
10 Thomas Henzinger Li Feng Zhang Scott Shenker Joseph Hellerstein

TablesPland[3]shed light on many issues related to rank of authors. First, the qual-
ity of the dataset is essencial to the ranking approach. Although this might sound
obvious it may be overlooked because one may think that quality is quantity. We
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can see that many of the hubs in Table ] are not present in Table Bl This is be-
cause they were hubs with many connections but their connections were weak (not
well established). Once we reduced the network by removing sporadic collabora-
tions their positions in the network were corrected. Second, it is hard to measure
“potential collaborativeness”. As with anything related to predicting the future, we
need to see if the list provided in Table 3] for the ACM-C network confirms to be
true in a few years. However we know that social networks tend to form triads and
we believe that authors with high closeness are the ones with a high potential be-
cause they can form collaborations with many already-established researchers. Last,
we can safely assume that computer scientists such as Jack Dongarra (University of
Tennessee), Hector Garcia-Molina (Stanford University), Alberto Vincentelli (UC
Berkeley) and Luca Benini (University of Bologna) are among the most prolific
in computer science; they are hubs, their connections tend to be established (long-
term collaborations), and their work is very well cited. Looking at the closeness we
immediately see that Scott Shenker (UC Berkeley) appears to have the highest po-
tential to acquire important (cited) collaborations; similar argument can be made for
Christos Papadimitriou (UC Berkeley) and Prabhakar Raghavan (Yahoo Labs).

Last, Figure [l depicts the filtered networks. The size of the node represents the
degree of collaboration of those nodes in the network. The color of the node repre-
sents the community it belongs to based on the modularity algorithm [3]]. Here we
use communities just for visualization purposes but it is important to know that the
authors forming the communities changes dramatically. We are currently working
on a research paper to discuss community formation in these networks.

(a) ACM Network (b) ACM-C Network

Fig. 1. Visualization of ACM and ACM-C network. The size of the nodes represents the
degree of collaboration of authors and the color represents the community to which they
belong. The edge thickness represents the number of collaborations between two authors.
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6 Conclusion

In this paper, we studied the network of collaborations from the Association for
Computing and Machinery (ACM) dataset. We have constructed a network of col-
laboration in which nodes are authors who are linked to other authors they have
collaborated in a paper we then changed the collaboration rule to include collabora-
tions at least one citation. We compared the metrics for both the network and showed
the visualization of the networks. We have ranked the authors based on the number
of collaborations in one network and compared their ranking with the other network.
Similarly, we have ranked authors based on closeness centrality since it represents
a potential metric for “collaborativeness”. We showed that there are fluctuations in
the ranking when the citations of paper is taken into consideration.

We are collecting more data to make the dataset more complete since currently
the core of our dataset is from 1981 to 2010. We will continue to work on the current
dataset on many fronts. In particular we want to understand the evolution of the two
networks we work on in this paper. One issue that can affect the results we presented
relate to the fact that recent publications generally have low citations at first but with
time the citations count of a good paper increases gradually, so the removal of early
works for lack of citations may be a little unfair. We are currently working on a
way to normalize the citations so that early works have a better chance of being
considered.
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Network Analysis of Software Repositories:
Identifying Subject Matter Experts

Andrew Dittrich, Mehmet Hadi Gunes, and Sergiu Dascalu

Abstract. A software developer joining a large software project faces a steep learn-
ing curve before they are able to make real contributions. One challenge is finding
the subject matter experts who can answer questions about a specific area of the
software or to review changes. This is especially true of large projects with many
modules and a large number of authors. In this paper, we describe a method to model
a software project as a network using information mined from the project’s version
control repository, and demonstrate how network analysis techniques can be used to
identify the key authors and subject matter experts. We investigate metrics that can
be gathered using network analysis, such as which groups of authors typically work
together, and how closely knit the developers are on a project. We analyze several
specific projects to demonstrate the applicability of these techniques and several
hundred projects to show general trends.

1 Introduction

A new developer starting on a large has a lot to learn before they can be a productive
member of the team. The project contains many different modules, each of which
can be complex on its own. Typically, a junior developer will turn to a more senior
developer to ask questions, and to gain insight into the overall architecture of a
project. However, it can be difficult to identify experts for a particular area. A good
candidate to start with is the person who last modified a file in a module, but this
person may have just fixed a formatting problem or a compiler warning, and might
not be the best person to ask.

Identifying the most experienced author for a specific area of the project is also a
problem for project managers. If a bug is found in a specific module of a large soft-
ware project, then ideally, the most experienced developer in that area of the project
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should be assigned to fix it. Unfortunately, there is not an easy way to identify that
individual. If the manager has been working on this project for a while, then they
most likely have the experience to know who the key developer is in this area. Al-
ternatively, they can survey the team members to find someone who is familiar with
the area of the code in question.

A project manager may also be interested in how the development team works
together. If each developer works on a separate part of the project, and there is
no overlap in responsibilities, then there is increased organizational risk from team
members leaving the organization. A manager can mitigate this risk by analyzing
which members work together and organizing the team such that there is more
overlapping knowledge [[12]. This risk is difficult to quantify, as there are limited
methods for measuring team cohesiveness.

Researchers have investigated collaborative networks to understand different as-
pects of collaborations [§]]. This paper proposes modeling the version control repos-
itory as a network, and applying network analysis techniques to identify the key
authors for the project and to measure team cohesiveness.

The next section discusses related work. Section [3] discusses how data can be
gathered from a source control repository. Section@ discusses how network analysis
techniques are applied. Sections[3and[@]discuss the results of this analysis on some
specific projects, and general trends resulting from the analysis of a few hundred
projects. Section[7lanalyzes the results. Section[8] concludes the article and suggests
future research in this area.

2 Related Work

There are many metrics that can be used to analyze a software project, but there
are very few metrics to identify key authors. Commonly used metrics include defect
rate, complexity, test coverage, and productivity [10]. These metrics are rarely used
to judge a specific author. Associating software metrics with specific authors can
cause authors to feel threatened, and is not recognized as a best practice in indus-
try [13]. Hence, typical software metrics are not available to solve this problem.

Other techniques have been developed to identify individuals familiar with spe-
cific areas of software. One such method is described by Linstead et.al. [6]. This
method searches the source code for keywords or topics, and associates authors
with the topics based on the history contained in the revision control repository.
This method is able to identify an author who is familiar with a particular topic
in the source code. Based on their results, this method is effective in identifying
subject matter experts for specific areas of code. However, this method does not
consider which authors are the core developers for the overall project, and does not
take advantage of the existing relationships between authors that are available in the
version control repository.

Another network analysis method is described by Lopez-Fernandez et.al. [[7].
This method mined open source version control repositories to identify networks
of authors and gain insight into the overall structure of a group of developers. The
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approach connects two authors if they have contributed to the same module, and
produces an author network. General data is then gathered from this network in
order to characterize the project overall.

Huang et.al. describe a similar analysis technique where an author network is
created using data from a source control repository [3]. Authors are connected if
they have worked on a file in the same directory. The resulting author graph is an-
alyzed using distance centrality to separate the network into kernel and peripheral
developers.

Several articles have been written on methods for gathering data from source con-
trol repositories. Voinea et.al. describe a framework for querying CVS repositories,
parsing the data, and analyzing it. They also propose a method to visualize the result-
ing data to highlight patterns in the development of a project, such as changes in the
development team over time [14]] [13]]. Kagdi et.al. describe a method to recover the
ordered sequence of changed items in a Subversion repository using several heuris-
tics, and a method for analyzing the results [3]. These advanced repository mining
techniques were not required for this study. The data needed from a repository can
be easily obtained from a log file and converted into a graph for further analysis, as
described in the next section.

Several studies have been performed to identify connections between members
of networks. Extensive analysis of authors of academic papers has been performed
to identify relationships between authors and author groups [9]]. This analysis takes
a similar approach by linking authors that worked on the same paper, and using this
information to create an author network. This differs slightly from the software col-
laboration. Coauthorship of an academic paper consists of multiple authors working
together at the same time, whereas two developers may work on the same source
code at separate times with less collaboration between authors.

3 Gathering the Data

The first step in this analysis is to create a bipartite graph that links each unique
author with the files that they changed. One set of vertices in the graph are authors
and the other set are files. An edge is created for each author that changes a file. For
a basic analysis, each edge has equal weighting.

The primary source for this data is a log file produced from the version control
system. In this case, projects using Subversion were analyzed, and an xml-format
log was produced containing details on every modification to every file in the repos-
itory. Other projects using other version control systems such as Mercurial, Git,
CVS, or Perforce could have also been used.

The log data was analyzed to produce a list of author-file pairs for each author
that made a change to each file. This was interpreted as an edge list for a graph that
represents the repository, i.e., a bipartite graph where one type of vertex represents
a file and another type of vertex represents an author. A subsection of the bipartite
graph produced for the open source Audacity project is shown in Figure [[al
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Fig. 1. Graph representations of the Audacity project. (a) A portion of the bipartite graph
representing the Audacity project. Authors are blue and files are red. (b) The author graph
resulting from the projection of the bipartite graph.

In some cases, only a subset of the repository needs to be analyzed. To accom-
plish this, the input data can be filtered to get more specific results using several
methods. This can be done by analyzing a log for only one section of a repository,
e.g., a single folder or module. The data could also be filtered by file name filters,
e.g., *.cpp’.

Another problem is with the initial addition of files. The author that adds a file
will be associated with that file, even if they are not an expert in that area. To avoid
this, the initial addition of files can be ignored, and only modifications are consid-
ered in the analysis.

Filtering the data by the date may also be necessary for long-term projects. Over
many years of development, authors will tend to make connections to each other by
working on the same file. This may give the incorrect impression that a develop-
ment team works closely together while certain individuals might have never met.
Filtering the data by a specific time period will avoid this problem.

4 Analyzing the Data

The graph that was produced by analyzing the data is a bipartite graph with edges
between authors and the files that they modified. This can be projected into two
undirected one-mode graphs that show the relationships between authors and the
relationships between files separately. The one-mode author graph produced from
this projection has a vertex for each author, and an edge connects two authors if
they made changes to the same file. This one-mode graph represents the network
of connections between authors. For instance, the author graph resulting from the
projection of the graph in Figure[Talis shown in Figure [TBl

The core developers for a project can be identified by analyzing the author graph.
These are the authors that are the most connected in the author graph. If an author is



Network Analysis of Software Repositories: Identifying Subject Matter Experts 191

well connected, then it indicates that they have worked on many different files with
many different authors, and most likely have a wide range of knowledge in the area.

To measure how well connected an author is, we can check the centrality of the
author. Measuring the degree of the author is a straightforward way to measure.
However, this ignores the degree of the other authors to which this author is con-
nected. If an author has connections to others with many connections, then this
can indicate that the author works with other important authors, and should have a
higher weight. Another measure of centrality that takes this into consideration is the
eigenvector centrality. Measuring the eigenvector centrality for an author is a good
indication of how well connected this author is in the author network, and can be
used as a proxy to find the experts in this area.

It is important to know which authors typically work together on a software
project. This is very useful for a project manager when assigning resources to a spe-
cific project. Authors who have a history of working well together tend to make a
more productive team than those who don’t. Hence, identifying these authors might
be beneficial. One way to do this is to identify the communities of authors in the au-
thor graph. There are several algorithms for doing this. The algorithms that gave the
best results in our analysis were the greedy method, the modularity maximization
method, and the spinglass method.

The greedy method is a very simple algorithm that runs in O(nlog? n) time, and
is well suited for extremely large networks [9]. This algorithm is implemented in
iGraph’s community fastgreedy method [4]]. The projects analyzed in this study had
between 4 and 158 authors, so the simplicity of the greedy algorithm was not nec-
essary, and more complex algorithms could be explored.

The modularity maximization method is discussed in Newman [9]. This method
breaks the network into communities such that the total modularity of the network
is maximized. This algorithm is also implemented in iGraph’s community-leading-
eigenvector method [4]. This algorithm resulted in many small communities. Hence,
it may be useful if identifying small teams of programmers to work together or for
pair programming.

The spinglass method is a complex algorithm that simulates the cooling of a hot
system into a grounded state [9]. It associates negative modularity with the energy
of an infinite range spin glass and attempts to minimize the energy of the system
to find communities [[T1]]. This algorithm is implemented in iGraph’s community-
spinglass method, as well [4]]. This method produced a few large communities in the
projects analyzed, and seemed to give the best results among all methods.

The communities determined by either of the methods can be used to set up the
optimal team structure for a project by selecting people with a collaboration history
for new projects. Alternatively, a project manager could pick people from different
communities to encourage cross-team cooperation.

The author graph can be analyzed to determine how the authors work together.
Ideally, each author would be connected to each other author. This would indicate
that every author had worked together with every other author, and there are at least
two authors familiar with every file. So the risk of losing a key employee would be
mitigated because there is always a backup who is familiar with the code.
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Table 1. Top 10 authors as measured by centrality metric

Audacity Subversion Super TuxKart
1.000 richardash1981 1.000 cmpilato  1.000 cosmosninja
0.971 dmazzoni 0.998 maxb 0.976 hikerstk
0.969 llucius 0.997 kfogel 0.955 auria
0.968 vjohnson 0.995 hwright 0.924 mbjornstk
0.964 jamescrook 0.995 dIr 0.896 coz
0.964 msmeyer 0.994 blair 0.880 hiker
0.954 mchinen 0.992 julianfoad 0.805 grumbel
0.953 windinthew 0.991 brane 0.791 thebohemian
0.951 martynshaw 0.991 ehu 0.791 scifly
0.947 mbrubeck 0.989 sussman  (.744 donconso

This can be measured by the transitivity or clustering of the author graph. A high
clustering coefficient indicates that many authors are connected, and a low clustering
coefficient indicates that authors typically work alone.

5 Results for Specific Projects

The analysis methods described above were applied to three specific open source
projects, namely, Audacity, Subversion, and Super TuxKart.

Audacity is an open source audio editing program. The Audacity project was first
hosted on SourceForge in May of 2000, and has 60 unique authors, 9450 unique
files, and 24,377 modifications connecting them. The core developers identified by
the analysis techniques described above are shown in Table[Il The results were con-
firmed based on developer credits available on the Audacity website, and indicates
that this technique can identify the core developers of the project.

Communities of developers in the Audacity project were identified using the sp-
inglass technique as in Figure 2l 1t is difficult to verify that these communities are
accurate without knowledge of the developers or experience working on this project.

The Subversion project started using Subversion for source control (self-hosting)
in August of 2001 [1]], so there is an extensive history consisting of 158 unique
authors, 6752 unique files, and 92,775 modifications connecting them. The core
developers identified are shown in Table [Il Again, these results were confirmed
using information available on the Subversion website.

Three communities of developers were identified using the spinglass algorithm
to analyze the entire subversion project. Due to the lengthy history of the project,
the results are difficult to interpret. Over such a long time, it is likely that many
developers would develop connections to many others. For example, if a single file
has a history of 20 revisions, then an author could potentially make 20 connections
when this file is changed. This leads to a highly connected author graph without
clearly defined communities.
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Fig. 2. Communities of authors in the Audacity project

Super TuxKart is an open source multiplayer racing game. It was based on
TuxKart, and became Super TuxKart in 2006. The project consists of 36 unique
authors and 12,597 unique files. The core developers identified by the analysis tech-
niques described above are shown in Table [Tl These results were verified based on
the list of core developers listed on the Super TuxKart website, as well.

6 General Results

This analysis technique was automated and applied to a large number of projects.
These results can be used as a guideline to see how a specific project’s metrics
compare to projects in general.

Open source projects from SourceForge were analyzed in bulk. The top 10,000
projects as measured by weekly downloads were gathered. Of these 10,000 projects,
5,031 used a Subversion repository. 1,063 of these repositories had no data available
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and were discarded. Many of the remaining projects had only a few authors, which
would not give meaningful results. In order to get meaningful data about the rela-
tionships between authors, a minimum of 15 authors was chosen. This eliminated
3,665 projects, which left 303 projects for this analysis. This included projects with
up to 158 authors and between 377 and 192,121 files.

Each project was ana-
lyzed to identify the core
developers, author com-

. . 14.00%
munities, and clustering
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thor graph. The cluster-  10.00%
ing coefficient was of the fg_'. 8.00%
most interest. The distri- & 6.00%
bution of the clustering 3 200
coefficient for the author o
graphs in Figure [3 re- 2.00%
veals that most projects 0.00%
have a clustering be- 0 0.2 0.4 0.6 0.8 1
tween 0.7 and 0.9. Au- Clustering Coefficient

dacity had a clustering of
0.783, Subversion had a
clustering of 0.880, and
Super TuxKart had a clus-
tering of 0.626.

The project with the lowest clustering was wxCode with a clustering of 0.036
and its author graph is shown in Figure al This project is a collection of add-on
components and libraries for use with wxWidgets. Each component is separately
maintained by a different author, which explains why the authors in this project
typically don’t work together.

The project with the second lowest clustering was Axiom 3D Engine with a clus-
tering of 0.208 and its author graph is shown in Figure This project is a cross
platform 3D rendering engine, and has 17 authors for 20,890 files. The low cluster-
ing coefficient indicates that the authors typically don’t work together, which makes
sense considering that there are a few authors and many files.

The project with the highest clustering was pkgbuild with a clustering of 0.991
and its author graph is in Figure 5al This project is a tool for building Solaris SVr4
or IPS packages, and has 70 unique authors for 4,145 unique files. Another exam-
ple of a project with a high clustering coefficient is MegaMek with a clustering of
0.980 and its author graph is in Figure This project is an online version of the
BattleTech board game, and has 31 unique authors for 10,735 unique files.

Fig. 3. Clustering coefficient distribution of all projects

7 Analysis

There are several things that can impact the results from this analysis. Our method
assumes that the changes made by each author are relevant to the file being modified.
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Fig. 4. Author graphs with the lowest clustering coefficient. (a) wxCode project with a clus-
tering of 0.036. (b) Axiom 3D Engine project with a clustering of 0.208.
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Fig. 5. Author graphs with the highest clustering coefficient. (a) pkgbuild project with a
clustering of 0.991. (c) MegaMek project with a clustering of 0.980

This is not always true. An author could make a change to the formatting of a file
or correct a typo in a comment. This author would then be linked to that file and
all of the authors who had modified it previously. This should not be a common
occurrence, but it has the potential to affect the results of the analysis and make
some authors seem to be core developers when they really are not.
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A developer’s personal software practice could also skew the results. If an author
makes many small changes to a file, then their connection to that file will have
a higher weight than an author who makes one large change. If edge weights are
ignored, then this is not a problem, but that could also skew the results towards
authors who made a single change.

Another potential problem is anonymous contributions or multiple online identi-
ties for the same person. The projects analyzed in this study did not allow anony-
mous users to change the source code. If a project did allow anonymous users, then
there would be a disproportionate number of changes associated with the anony-
mous user, and this anonymous user could appear to be a core developer, even
though it represents many unique individuals in reality. To protect against this, each
anonymous user should be considered as a separate developer [2]. Similarly, one
person may have several different online identities that are used to make changes,
which could prevent this person from being identified as a core developer, or even
put that person in multiple developer communities.

8 Conclusion and Future Work

It can be difficult to identify the subject matter experts for a software project or
module within a project. Several techniques have been explored in the past to extract
software metrics from a version control repository, and each is specific to the data
being sought. This paper describes a network analysis technique that can be used to
accurately identify the core developers for a specific software project, and measure
how often the developers work together on the same area of code. The analysis was
performed on 303 open source projects. Specific details were presented for 3 of
these projects, and the general trends were identified based on the analysis of 303
projects. The accuracy of this analysis was confirmed based on credits and other
information available on the project websites. Information related to communities
of authors within a project was difficult to verify.

The information gathered from this analysis is useful for a new developer in
order to identify subject matter experts to answer their questions, and for a project
manager when assigning resources. The clustering coefficient of the author graph is
a useful indicator for a project manager. If the clustering is too low, then there may
be increased risk of key team members leaving the organization. The distribution of
clustering coefficients of all projects can be used by a project manager as a basis of
comparison.

This analysis should be expanded in the future to attempt to improve the accuracy
of the results and to obtain more insight into the project structure. One area that can
be explored is how the data is filtered. This study allowed a user to filter the data by
file name and to exclude the original addition of files to the repository. The ability to
filter by a time period would be useful to limit the analysis for long-lived projects.
Other filtering techniques could be developed to limit the analysis to only a certain
set of authors, or files containing certain text.
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Another area of future research is analyzing how the author graph changes over
time. As new developers start work on the project, how do they get incorporated
into the author network, and how to older developers transition away from a central
role? This may offer insight into the team dynamics for a project and indicate how
accepting they are of new developers.
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The Social Structure of Organ
Transplantation in the United States

Srividhya Venugopal, Evan Stoner, Martin Cadeiras, and Ronaldo Menezes

Abstract. As of today, 110,629 Americans are waiting for an organ trans-
plant yet in 2010 only 28,664 people received organ transplants. This fact
alone demonstrates that the country is facing a shortage of organs. Num-
bers such as these make it absolutely clear that we need to be looking for
improvements in the organ allocation system in the USA. Before one starts
proposing new allocation systems, it is crucial to understand the structure
of the current system. In spite of availability of data on transplants, to our
knowledge, no proper analysis has been done using the data. This paper looks
at this data and what it may reveal about the allocation process currently
in place. In order to structure the data we used techniques from network
sciences to create a network of locations (henceforth called a geographical
social network) representing all the transplants in the USA since 1987 where
nodes represent states in the USA. This “social structure” is then analyzed
using techniques from network sciences to bring clarity to the organ donation
process.

1 Introduction

End-stage organ failure is a major public health concern. With limited treat-
ment alternatives, transplantation has become the best option for people with
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failing organs. Consequently, maintaining an adequate supply of donor organs
has become the main goal of transplantation programs. While the number of
organ donors has increased by less than 5% per year on average, demand has
grown by almost 20%. Currently, more than 100,000 Americans are waiting
for an organ transplant, but unfortunately less than one-third will receive an
organ killing nearly 20 people each day|[11].

Based on this data, it is evident that organ transplantation becomes a life
saving option only for a minority. The long list of people waiting for an organ
also suggests that there is an urgent need to reformulate the way organs are
allocated and identify possible alternatives to the current system.

How to best reduce this deficit and make transplants available to the
largest-possible population has been the question of many researchers and
organizations dedicated to the study of organ transplantation. Most studies
have concentrated in understanding the effect of allocation policies to con-
sequently modify the existing rules. With the availability of transplantation
data, one way to proceed could be not only to analyze more data, but to
improve the way we extract knowledge from the existing data. Thus, in this
paper, we construct a geographical social network (GSN) where nodes rep-
resents states, based on the donor-recipient relationship and use techniques
from network sciences to analyze the network formed for many organs.

An important concept we adopt in this paper is imagining an organ as
a commodity that flows between patients and communities of disparate so-
cial, biological and geographical backgrounds and spreads in response to the
growing demand of patients suffering from end-stage organ failure. Keeping
this in mind, we model the sharing of this commodity as a network.

The study of the structure of the network underlying the organ transplant
system is a robust methodology that has been exploited over the past decade
in many science fields [3]. In this paper we apply network concepts to the field
of organ transplantation to help us answer questions related to the structure
and allocation of organs in the USA.

Common to understanding networks is their derivation from information
collected about a system. In the United States, the United Network for Organ
Sharing (UNOS) has been created to support, coordinate, and promote solid
organ transplantation, following the rapid expansion of the field as transplan-
tations become safer. The study of the information contained in the UNOS
database by applying concepts of social networks is expected to follow prin-
ciples that are well established and fundamental to systems such as those
studies described for the spread of obesity [5] and infectious diseases [0].

This paper focuses on the following question: Are organs being kept lo-
cally whenever possible? For this we use community analysis on the GSNs
we generate from the UNOS database as a way to reveal structure (or lack
thereof) in the system.
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2 Related Work

In 1954, the Organ Procurement and Transplantation Network (OPTN) was
established to maintain a national registry for organ matching and to develop
allocation policies. Subsequently, UNOS was formed to develop and operate
a system to allocate organs to potential recipients all over United States.
Organ procurement organizations (OPOs) are responsible for obtaining and
allocating organs for transplantation. UNOS has divided the USA into 11
geographical regions to aid in the handling of organs. These regions differ
from each other with respect to size and population. Currently there are 69
OPOs [10] in the 11 national regions. Figure [Il depicts the 11 regions.

Fig. 1. UNOS divides the United States into 11 geographic regions

The major criteria used for allocating organs to patients are the severity
levels and geographical location. Organs are allocated to local OPOs based
on the status levels, and only when the severity levels within the local OPOs
are exhausted the organs are allocated to the next regional OPOs and lastly
to the OPOs at the national level. Patients will be assigned to three different
categories based on the predicted mortality. The organs are allocated based
on these status levels and are first allocated within the local OPO and only
after the local OPOs are exhausted, the organ is allocated to adjacent OPOs.
This locality in allocation has a good reason to exist: most organs cannot wait
long periods to be transplanted because they degrade in quality—organs such
as kidney can only withstand up to 36-48 hours, beyond which the organ can
no longer be used for transplantation.

An important issue regarding the fairness of the allocation is the disparities
in the amount of the time patients wait for organs. Evidence suggests that
minorities and the poor may have limited access to organs [7]. African Amer-
icans have to wait twice as long as Caucasians to receive a kidney transplant
[1], which might be attributed to a shortage of African American donors. Also,
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due to the high cost of health insurance, for many minority patients Medicaid
is the only available health insurance. Medicaid policy varies from state to
state and does not cover the cost of kidney transplantation completely [§]. All
these factors clearly indicate the existence of inequalities in organ allocation
system that need to be considered while analyzing the network. The reality
is that the organ transplant system represents a collection of relationships
between diseases, comorbidities, donors, recipients, healthcare facilities and
cultural and economical backgrounds.

In the past few years, our understanding of networks has undergone a revolu-
tion because of the emergence of a new array of theoretical tools and
techniques for mapping out real networks. The growing interest in intercon-

nectedness showed that networks can be identified for all aspects of human
health [2].

3 Geographical Social Network Structure

The essence of network science is to define concepts and measures to char-
acterize the topology of real world networks. Although these concepts have
been used in the past for social network analysis, they have recently been
used in other areas of science [9.

We introduce the concept of a (GSN) of organ transplants. This struc-
ture assumes the states are nodes which are linked when a transplant occurs
between the states. Note that this still captures the social aspect of organ
donation since the transplantation used for the relationship between two ge-
ographical locations is a social relation between two individuals.

In this paper we use community detection to find tightly connected group
of states. Many algorithms have been proposed to identify communities, but
here we use the fast algorithm proposed by Blondel et al. [4].

3.1 Building the GSNs

When building a network, it is very important to carefully choose the ob-
jects that the nodes will represent, and the relationships that the edges will
capture. The relationship (edge) seems very clear: in the process of organ
donation we have a donor and a recipient, so the relationship is this link be-
tween the donor and the recipient. However, the use of people as nodes yields
a structure with no interesting features. Therefore, we decided to, instead of
linking people, link in a geographical network the location of their residence.

In order to build the GSN, we use the dataset provided by UNOS which con-
tains information on all transplants performed in the United States that were
reported to OPTN since October 1, 1987. It includes both deceased and living-
donor transplants for heart, intestine, kidney, liver, lung, and pancreas. When
we assign states as nodes we are likely to find that two nodes can be connected
more than once. In network terms, the GSNs are weighted networks that is, if
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the number of transplantations between California and Arizona is 20, then the
weight of the edge connecting the nodes representing these states is 20.

The transplantation is a directed relationship: the organ goes from someone
to someone else. In this paper we mostly disregard direction and use an
undirected version of the network. In most cases, we are trying to find nodes
involved in the process independent of the directionality. In Section [ we
discuss that, as future work, we intend to use the directionality to understand
how the network changes when considering other dimensions in the dataset
such as ethnic groups, education level, and others.

3.2 Analyzing the GSNs

Our first analysis relates to the community formation in the state-level GSN.
We have generated a GSN at the state level for each of the six organs available
in the dataset and looked at their community divisions. Recall that since the
relationships should prioritize smaller distances (according to current organ
donations policies), we should be able to see the communities correlating
quite well to regions of the United States.

In network sciences it is common to show topological characteristics of
the network. However for the state-level study, the network in itself does
not display interesting characteristics given its density. Given that states are
connected to one another when a transplant occurs between two people from
those states, it is likely that the GSNs are almost fully connected. Table [II
shows some information about the full GSN networks.

Table 1. All networks below have 56 nodes which include the 50 states in the
Unites states plus its territories. Graph density is a measure of the number of edges
in the network in relation to the max number of edges it could have (in this case
1,540).

GSN Edges Graph Density Communities
Intestine 519 0.337 11
Lung 882 0.573 4
Pancreas 940 0.610 7
Heart 980 0.636 3
Liver 1,169 0.759 4
Kidney 1,224 0.866 4

Table [Ml shows that the GSNs are very dense. The density value represent
the fraction of edges that exist in the graph in relation to the maximum
number of edges that could exist. Note that the networks for organs with
more transplants are the most dense ones (heart, liver and kidney). Given that
they approximate fully connected networks, they do not present interesting
features.
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Fig. 2. Community formation of state-level GSNs represented by color. Note the
differences between some of the organs. In these networks, the 48 contiguous states
are placed relative to their true geographical locations, while Hawaii, Alaska and
the territories are not

It is common in the literature to apply an edge threshold to a network in
an attempt to reduce the number of edges, making it easier to review network
features. Figure 2] depicts the GSNs that have been filtered to remove edges
below certain thresholds. The simple explanation for the use of thresholds
is that in many instances relationships should be considered as important if
they are strong. In other words, if every node is linked to every other node
via an edge with a weight at least w, then w does not express a significant
relationship and we should therefore only consider edges with a weight greater
than w. We can choose any number greater than w as our filtering threshold,
which we call w'. In Figure 2 we use different values of wt depending on
the structure of the initial, unfiltered network. We find each networks w™
by trying different values until the community structure becomes clear. The
edge-weight threshold is applied empirically for each of the network so that
the formation of communities reveals meaningful information.

What we can observe in Figure [ are significant differences between the
geographical organization of the communities. Take for instance Figure
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which shows five communities for heart transplantation. Although the specific
number of communities is not relevant in this study, what we can see is that
the communities have very well defined borders that correlate to areas of the
United States and more specifically the UNOS regions. We already expected
to have less regions in the community because some UNOS regions are very
small and near each other, like regions 9 and 10 in Figure [l

Now contrast Figure with Figure Without much effort one can
clearly see that the geographical divisions between communities is better for
the heart GSN than for the intestine GSN. This is an interesting finding
because the community analysis of the network reveals that the “distance”
aspect of organ policies are respected better for in heart transplantation than
intestine transplantation. In Figure Pl we see the GSNs for heart, pancreas,
lung, and liver with the best organized communities, while intestine and kid-
ney GSNs demonstrate need for improvement. The GSN for kidney is actually
okay except for a node in the northeast of the United States (representing
the state of New York) which is part of the southeast community (including
Florida, Texas, Puerto Rico, and others). In the GSN for pancreas trans-
plants we see Puerto Rico linked to a community in the southwest of the
country rather than staying with the more natural community of states in
the southeast.

4 Conclusion and Future Work

In this paper we have shown that the use of network sciences can significantly
help us understand and identify problems in the process of organ allocation.
Our approach in this paper was to concentrate on what we call a geographical
social network (GSN) because the distance traveled by organs is crucial to the
health of the organ—they should travel small distances whenever possible.
Using community analysis on the GSNs we have demonstrated that the organ
allocation process differs amongst the organs and can be further optimized for
certain organs such as intestine and kidney. We also show that for the other
organs considered in this study the community analysis reveal a structure
that is very similar to the regional divisions implemented by UNOS, which
means the organs are already being kept as local as possible.

A few examples of data that can help us further develop this study include
information about ethnical groups, education level, cause of death, and many
others attributes that may shed light on factors that influence the process.
In this paper we have already started to identify possible issues related to
ethnic groups. We believe the way forward in this study is to understand
the differences of the characteristics found here (communities) for different
groups divided by ethnicity, education level, income level, religious beliefs,
etc. This paper and our future work can help us understand the process of
organ allocation in a more detailed way and lead to changes in the system
that could benefit thousands of people every year.
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A Novel Framework for Complex Networks
and Chronic Diseases*

Philippe J. Giabbanelli

Abstract. Complex networks have provided a wealth of information regarding in-
fectious diseases, for example by understanding how the network structure impacts
the basic reproduction number or immunization strategies. However, researchers
have struggled to translate this knowledge to chronic diseases, where social net-
works are at play but broad societal factors also have an important role. This
translation is becoming urgent given the increasing prevalence, and the escalating
healthcare costs, of conditions such as obesity. In this paper, we provide a mathemat-
ical framework that enables researchers to represent both the network and societal
aspects of chronic disease, thereby facilitating this translation effort. Our frame-
work uses Complex Networks to represent the population, where influences between
neighboring nodes are modelled through Fuzzy Cognitive Maps that account for so-
cietal effects. Applying our framework to real-world cases, possibly through pro-
cesses such as Group Model Building, may facilitate the better direction of policy
towards the management of chronic diseases.

1 Introduction

Research in complex networks has resulted in tremendous advances to our un-
derstanding of infectious diseases. Selected examples include understanding how
the network’s structure impacts on the basic reproduction number [11, 2] (i.e., will
the disease die out or become an epidemic in the presence of given properties?),
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mitigates the influence of the starting point [3]], or can be capitalized upon to de-
sign better immunization strategies [4]. However, a growing number of countries
are now facing the burden of chronic diseases. For example, the prevalence of obe-
sity in the United States has steadily increased over the past decades, to reach an
alarming two third of adults being overweight or obese [3]. This condition is detri-
mental to individuals’ health [6] [7] and also to the country’s economy since costs
have been estimated from 860 to 960 billion US dollars by 2030 given the current
trends [8]. While peers contribute to one’s obesity status [9], similarly to infectious
diseases, there is also a strong contribution of factors such as social determinants.
Thus, complex networks can be useful to represent the contributions of peers, but
cannot be directly applied as the disease is not purely infectious.

In this paper, we introduce a novel framework that capitalizes on complex net-
works to represent peers’ effects in chronic diseases, while encompassing broader,
societal determinants using Fuzzy Cognitive Maps. This framework has several ben-
efits. Firstly, practitioners may have had a limited training regarding chronic dis-
eases during medical schools [10], and their models often adopt a clinical perspec-
tive centered on individuals’ physiology. Newer models have either addressed the
population structure [11]] (e.g., Figures[Iland[2] for obesity), or taken a sociological
lens to seek out the social ‘root causes’, but could not provide practitioners with a
comprehensive picture that would complement their clinical knowledge. Our frame-
work makes the creation of such a comprehensive view possible by integrating both
network aspects and sociological causes. Furthermore, it is able to carry out pre-
dictions, whereas numerous sociological models are solely conceptual. Secondly, a
working model constructed from our framework can be populated with information
derived from experts’ knowledge, via processes such as Group Model Building. In-
deed, objective and/or quantitative data may not be readily available, and our frame-
work can capitalize on qualitative, subjective assessments that are more commonly
found in sociological approaches. Finally, there is a need to translate the complex
networks knowledge on epidemics into chronic diseases, where similar theoretical
issues abound but have yet to be addressed (e.g., can public policies leverage so-
cial networks to mitigate the obesity epidemic? when training a community, which
voices would have the stronger impact based on social ties?).

(a) . (b)
D Unhealthy
‘ . Healthy
. No change

Fig. 1. Rush and colleagues provided an early model of obesity centered on peers [12]. They
used a cellular automaton, where each person is a cell whose colour indicates whether they are
healthy (black) or unhealthy (white). A person interacts with the 8 neighbours surrounding
him (red arrows), whose states are aggregated and compared to a given threshold. If the result
is greater than the threshold then the person is assigned that dominant state. For a threshold of
5, in (a) the central healthy person will become unhealthy due to having 6 unhealthy friends,
and in (b) the person has too few unhealthy friends to change state. Color online.

Change state
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Fig. 2. Similarly to Rush et al. [12], Bahr and colleagues considered that an individual’s
state changes based on peers [13]]. Taking a network perspective, they used more realistic
population structures than the grid defined by a cellular automaton. However, their rules were
entirely based on the idea of obesity as ‘infectious’: in this example, if a node is assigned the
state found in at least the majority of neighbors, then the whole population would become
obese at time steps labeled next to the nodes. For example, Lucy has 2 obese friends and 1
non-obese so she will be obese; the same will then apply for Ted.

In Section[2l we informally introduce how our framework couples complex net-
works with Fuzzy Cognitive Maps (FCMs). The underlying mathematics are then
formally described in Section [3l Finally, we discuss the practical applications of
this model, in terms of future research as well as strategies for action.

2 Fuzzy Cognitive Maps and Complex Networks
2.1 Fuzzy Cognitive Maps

An individual can be at increased risk of chronic diseases based on social deter-
minants such as income, education, or gender. Data regarding the relationships
between such factors and a disease outcome is often uncertain and/or vague. For ex-
ample, reports can be conflicting even for a similar population make-up, and experts
may disagree with one judging a relationship to be ‘medium’ whereas another sees
it as ‘high’. However, decisions such as public policies still have to be made based
on this knowledge. Fuzzy Set Theory is precisely designed for this situation [14]]:

Fuzzy set theory resembles human reasoning under approximate information and in-
accurate data to generate decisions under uncertain environments. It is designed to
mathematically represent uncertainty and vagueness, and to provide formalized tools
for dealing with imprecision in real-world problems.

Consider a group of six experts asked to estimate the impact of ‘education’ on a
disease outcome. Following a classical process [13]], each would choose linguistic
terms such as ‘very low’, ‘low’, ‘medium’, ‘high’, and ‘very high’. Perceptions of
what constitutes, for example, a ‘medium’ relationship differs amongst individuals.
What some individuals may call ‘medium’ would be the same as what others would
designate as ‘high’. Fuzzy set theory accounts for this issue via membership func-
tions: a term such as ‘medium’ is not associated to one specific value but rather to
a range, and this range can overlap with those used by other terms. If four experts
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declare the relationship to be ‘very high’ while the two others chose it to be ‘high’,
then their opinions can be summarized in the form of IF-THEN rules:

Ry: IF (Education is ON) THEN Disease outcome is HIGH (positively) (2/6)
Ry: IF (Education is ON) THEN Disease outcome is VERY HIGH (positively) (4/6)

These rules summarize that 2 out of 6 opinions predicted a high causality, and 4
out of 6 opinions opted for a very high causality. Using these rules and membership
functions, one can derive a specific value (i.e., by using an aggregation method, a
defuzzification method, and an inference mechanism)! [16].

This process can be repeated to estimate the impact of different relationships
based on opinions expressed in Group Model Building or in the literature. These re-
lationships can then be articulated to form a network called a Fuzzy Cognitive Map
(FCM), introduced by Kosko in 1986 [17]. An FCM is composed of nodes rep-
resenting domain concepts (e.g., ‘obesity’, ‘education’, ‘income’) linked by edges
representing causal relationships. Concepts take value in the interval [0, 1] where O
represents that the concept does not hold for a given individual (i.e., it is false) and
1 that it certainly holds (i.e., it is true). Edges are labeled as positive or negative to
indicate that the target concept respectively increases or decreases with the source
concept. Edges take weights in the interval [0, 1], and their weights are obtained by
the aforementioned process. Most importantly, the FCM changes over time: it up-
dates the value of concepts, and can thus make predictions (see next Section for the
formal process). FCMs have been used extensively [18], including in settings where
errors in predictions would have disastrous consequences, such as calculating the
dose for radiotherapy treatment [19]]. Thus, they offer a robust approach to integrate
uncertain or inaccurate knowledge, as is often found when examining how factors
contribute to a chronic disease.

2.2 Complex Networks

Social networks are a significant factor in health [21]]. This was popularized [22, 23]
due to an article from Christakis and Fowler [24]]. While the article’s methodology
was recently criticized [23], its key conclusion about the importance of peers influ-
ences is well supported [9]. This was illustrated by the model from Rush et al. [12]
(Figure[T), later improved by Bahr and colleagues who, instead of constraining
interactions to take place with nearest neighbors in a grid, used networks (Figure 2))
and various rules for changing state. While thinking of obesity as directly ‘conta-
gious’ was possibly useful in the early development of models, a heavy reliance on
that metaphor ignores entirely social determinants and can lead to making inade-
quate public health recommendations. This effort was thus pushed forward through
amodel in which individuals do not influence each other directly [26], but instead in-
fluence shared social activities such as (the level of) physical activity or diet patterns
(i.e., energy intake). Whether an individual changes behaviour then depends on the

I Commonly used tools include the Fuzzy Toolbox from Matlab.



A Novel Framework for Complex Networks and Chronic Diseases 211

combination of peers’ and environmental influences. Changes in behaviour further
participate to changes in weight through an approximation of body metabolism. In
this model, social determinants start to appear under the umbrella of ‘environmental
factors’, but much is still required to elucidate which determinants matter and how
they interact. Therefore, we propose a theoretical framework that couples complex
networks with FCMs in order to express both peers’ and societal influences, while
capitalizing on the strength of techniques valued for these aspects separately.

2.3 Coupling Complex Networks and Fuzzy Cognitive Maps

Section 2.1] showed how Fuzzy Cognitive maps can be valuable to represent social
determinants, and Section highlighted the role of complex networks in health.
In this Section, we explain how our framework couples both techniques.

Initialization. Given a chronic disease such as obesity, assume that an FCM has
been constructed and a social network has been createda. For each node of the so-
cial network, we will create one instance of the FCM (Figure 3). For each of these
instances, the values of concepts will be drawn from specific probability distribu-
tions. For example, in Figure[3] we need to provide an initial value for ‘Exercise’. In
the United States, a suitable probability distribution would be a normal distribution
with a mean of 1.53 (level for a sedentary individual [31])), a standard deviation of
0.1 (since most individuals are sedentary [32]]), and a range of 1.4 to 4.7 (based on
data from the Food and Agriculture Organization [31]].

Matching. In the FCM, we identify the concepts that are influenced by peers,
and those (not necessarily distinct) that are influencing peers. Then, we establish
a matching (i.e., a weighted bipartite graph) linking influenced concepts to influ-
encing concepts and indicating the strength. How exactly one concept influences
another is problem-specific, and is a classical issue studied as ‘culture diffusion’
in anthropology. For example, in Axelrod’s approach, the strength of the interac-
tion depends on the cultural similarity between two individuals, and the outcome is
to exchange the value on a concept where the individuals differ [33]. A smoother
approach, similar to [26], would be to consider that if the difference between one
and peers’ is significant enough then an influence can be conveyed, and will modify
one’s concepts by a given percentage, similarly to the approach in [20].

Simulation. The overall process, formally specified in Section Bl consists of (i)
applying the influence of peers on each individual’s FCM (as discussed above), and
(i1) applying the inference engine of the FCM for each individual. The first task

2 If no real-world social structure can be used, we would recommend to generate a small-
world network since the last decade showed this property to hold often in social net-
works [27]]. The experiments can also be carried on several synthetic populations, in which
case one could account for the presence of other population-wide properties such as the
scale-free distribution of degrees. Generating such networks can be achieved using an ar-
ray of models from statistical mechanics or graph theory (e.g., [28l 29 30]).
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Fig. 3. The initialization provides each individual with an instance of the FCM. Some con-
cepts of the FCM can be influenced by peers (in black) while others (in white) cannot. This
example shows that one’s exercise and food intake can be influenced by peers, whereas the
socio-economic status (SES) is not perceived as being influenced by peers. The simulation
will evolve the influenced factors based on peers’ FCMs, and then apply the inference engine
to evolve each FCM.

must be carried on in parallel in order for all individuals to change at the same time
(similarly to updating the values of a cellular automaton). In the second task, the
FCMs are independent and the operations can be carried on in any order.

3 Formal Framework

The formal definitions follow the order introduced in Section2l Definition [Tl formal-
izes an FCM (Section[2.1)). Definition 2l formalizes the social network (Section [2.2)).
The coupling (Section 2.3)) firstly requires us to define influenced (in black in Fig-
ure 3) and influencing factors, in Definition Bl Then, the matching between these
factors is provided by Definitiondl and the influences carried on by the matching are
formalized in Definition 8l Finally, Algorithm [ states how the population evolves
at a given time step, and its key lines are discussed.

Definition 1. A Fuzzy Cognitive Map (FCM) is formalized as a 4-tuple (V,E,W,M)
where the vertices V are the concepts, the directed edges E are the relationships be-
tween concepts, the matrix of weights W = (w; ) 1<i<|v|1<j<|v| € R represents the
strengths of these relationships, and the vector M = (m;) 1<i<|v| € [0, 1] associates
a value to each vertex.

Definition 2. The population is formalized as a directed unweighted graph G =
(V,E) where the vertices V are the individuals and the edges E are their social 1ies.
Each vertex v € V contains a Fuzzy Cognitive Map, denoted by vrcy.

Definition 3. The set of concepts of an FCM that are influenced by peers is denoted
by a(V) CV, while concepts influencing another FCM are denoted by B(V) C V.
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Definition 4. A matching function F : (a € o(V)) — {b GEB (V)} determines, for
each influenced concept, the set of concepts that influence itl.

Definition 5. The function v: (R,R,R) — R takes an influenced concept, an influ-
encing concept, the weight of the relationship between the two, and determines the
change that should be applied on the influenced concept.

Algorithm 1. Evolves the population

Require: The population has been initialized, the FCMs have starting values
1: //Applies the social influences in parallel
2: forie Vdo

3:  for jeV|(j,i)cEdo

4: /ffor each neighbor j influencing a person i

5: for a € o(ipcy) do

6: /ffor each concept influenced by peers

7: for b € F(a) do

8: //for each influencing concept

9: M(a) < M(a)+y(M(a),M(b),W ((a,b))) /updates the value of concept a
10: //Evolves each individual’s FCM until it stabilizes
11: foric Vdo
12:  while ipcys does not stabilize do
13: for gec V(iFCM) do
14: Mg (t+1) = f(Mg(t) + Zhev (gpen) hte Mi(t) X Wh.g) /updates each concept

Social influences are all applied at the same time so the operation must be done in
parallel (Section2.3). Therefore, the new value of M(a) (line 9) can be buffered, and
all new values updated after the main loop (line 10). For |V| individual FCMs with
| (V)] influenced concepts each, this takes a space of |V| x |a(V)]. Less space can
be consumed if an individual is updated as soon as all his neighbors have been pro-
cessed. The FCM’s stabilization condition (line 12) commonly consists of updating
all concepts until few rarget concepts (i.e., those giving the predictions) change by
less than a specified amount. Line 14 is the standard update of an FCM [34]], where
f is a threshold function that bounds the new concept’s value to be in the interval
[0, 1]. This function can be, for instance, a sigmoid function such as the hyperbolic
function f(x) = tanh x = j;ij Some concepts of an FCM are constant (e.g., they
have no incoming edges) and they should not be updated. This can be solved either
by restoring these concepts to their previous value following line 14, or selecting
only those concepts that satisfy problem-specific requirements (line 13).

3 In Section 23l we assumed that influencing and influenced concepts are the same in all
FCMs. That is, Va,b (S V,OC(GFCM) = a(bFCM)aﬁ(aFCM) = ﬁ(bFCM). This simpliﬁes
the definition of F' by assuming that influencing factors do not depend on which peer
is selected. However, Algorithm [I]does not depend on this assumption. Therefore, if one
needs a model in which the factors influencing individuals vary among peers, the matching
function F should be generalized to also depend on the peer; that is, F : (a € a(Viey), j €

V)= {beB(V))}
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4 Conclusion

Complex networks have provided a wealth of information regarding infectious dis-
eases. However, the community has struggled to translate this knowledge to chronic
diseases, where one is influenced by peers but also strongly by social determinants.
This translation is becoming urgent given the increasing burden of chronic diseases
such as obesity. In this paper, we have developed a new mathematical framework
based on complex networks and Fuzzy Cognitive Maps.

Our framework facilitates the translation of the theory of complex networks and
epidemics into chronic diseases, and it also benefits settings such as group model
building. Indeed, groups have gathered to better understand chronic diseases by cre-
ating mapsﬂ. This demonstrates that groups can identify key factors and their re-
lationships, but the end product often remains at a conceptual stage and does not
have predictive power. Our framework enables these groups to push forward their
process into mathematical models, while only requiring (i) a synthesis of partici-
pants’ knowledge on the strength of relationship, (ii) the identification of influenced
and influencing factors, (iii) a synthesis of the relationship between influencing and
influenced factors. Our use of fuzzy logic simplifies the process by enabling partic-
ipants to describe strengths via linguistic terms such as ‘Very high’ or ‘medium’.

Our framework comes with limitations that should be the object of future theoret-
ical research. Each node of our networks is influenced by a set of factors, whose con-
cepts can change over time while their relationships are considered to be constant.
However, there is evidence that these relationships change, which could prompt for
dynamic networks depending on the time scale under consideration. The specifi-
cation of the dynamicity could be informed by a life course perspective, since it
shows how the factors influencing a node change as its role evolves (e.g., [33])). Fi-
nally, setting up a virtual population requires providing initial values for the factors
influencing each individual (Section 23} nitialization). For a given scenario, data
may be available for each factor, but factors are rarely independent from each other.
For example, assuming statistical independence between being black, a woman, and
living with obesity, may be very inaccurate when the individual’s experience is pre-
cisely shape by being a black obese woman altogether. This issue is not specific to
our framework but abounds in the way we often conceptualize populations [36], and
requires advances in data collection tools [37].
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Centrality and Network Analysis in a Natural
Perturbed Ecosystem

Gilberto C. Pereira, Fatima F. Santos, and Nelson F.F. Ebecken

Abstract. The aim of this work is to gain knowledge on the interactions between
the chlorophyll-a and nine meroplankton larvae of epibenthonic fauna. The stu-
died case is the Arraial do Cabo upwelling system, Southeastern of Brazil, which
provides different environmental conditions. To assess this information a network
approach based in probability estimative was used. Comparisons among the
generated graphs are made in the light of different water masses, application of
Shannon biodiversity index, and the closeness and betweenness centralities mea-
surements. Our results show the main pattern among different water masses and
how the core organisms belonging to the network skeleton are correlated to the
main environmental variable. We conclude that the approach of complex networks
is a promising tool for environmental diagnostic.

Keywords: Coastal upwelling, Ecological networks, Plankton interactions, Envi-
ronmental analysis.

1 Introduction

The Brazilian coast presents a large variety of ecosystems but little is known about
its biodiversity, degree of connectivity and behavioral patterns. Nowadays, these
systems are subjected to a large number of anthropogenic pressures without either
knowing the load processing ability of the biological networks and its structural
stability. These issues make any initiative in coastal management hard and com-
plex for decision making. One of the major problems is the habitat change, de-
struction or loss (Halpern et al., 2007; 2008). Despite their adaptive character
(Levin and Lubchenco 2008) and often redundant linkages, marine ecosystems are
vulnerable to rapid changes in diversity and function (Palumbi et al. 2008). The
widespread decline of species, habitats, and ecosystem function have led to calls
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for ecosystem based management (EBM) as a solution for what ails the oceans
(USCOP 2004, SEMIEA, 2004). Recent legislative instruments have been ap-
proved worldwide addressing the need to assess the ecological status (Borja et al.
2008). In this way, many initiatives can be found in literature ( Simonini et al.,
2009; Pereira et al., 2008). According Norberg (2004), environmental factors re-
gulate biodiversity through species sorting processes. Species distributions in
communities affect ecosystem processes and environmental factors. These dynam-
ics are determined by the traits of species in the community. The question of how
changes in biodiversity will affect the ecosystem functioning, the so-called biodi-
versity-ecosystem function (BEF) debate, is clearly not easy to answer. However,
it has long been recognized that species interact in ecosystems with other species
and with abiotic factors in many ways, of which pairwise interactions are only one
possibility (Hutchinson, 1959). In this context, Raffaelli (2006) argued that a sys-
tem approach is necessary to address issues involving changes in biodiversity and
function of natural ecosystems. Although pairwise interactions have always had a
key role in ecology, a new focus on complex networks has been placed (Dunne et
al., 2002). Several studies have shown how the structural characteristics of com-
plex networks are related to their stability and dynamic (Huxel and McCann,
1998, Albert et. al, 2000, Strogatz, 2001, Kolasa, 2005). The application of cen-
tralities indices to the network component can identify the keystone species
(Jérdan et al., 2006, Libralato, et al., 2006), and the role they play in a network
(Gonzalez et, al, 2009). So, the aim of this paper is (i) to use a network approach
to investigate differences between different water masses based on graphs
generated from chlorophyll-a, merozooplankton larvae of epibenthic fauna and
some environmental parameters; (ii) establish differences in biodiversity; (iii) ap-
ply the closeness and betweenness centralities measures in order to determine the
positional importance of each specie or node; (iv) identify which set of n node be-
longs to the core skeleton of the network, (v) examine how the core organisms are
correlated to the main environmental variable.

2 Material and Methods

2.1 Studied Area

The studied plankton community is found in a small (45 km?2), shallow (10m
depth), wind-driven and upwelling-influenced Anjos Bay, which is formed by Ca-
bo Frio Island (23 S, 42 W) in the state of Rio de Janeiro, southeastern Brazil.
Dominant E-NE winds are influenced by tropical maritime anticyclones due to
the Coriolis Effect and Ekman transport, which shunt nutrient-depleted surface
water (Brazil Current) offshore (Castelao and Barth, 2006). This water body is fol-
lowed by up-flowing, nutrient-rich (12 pMLNO3-N), deeper South Atlantic Cen-
tral Water (SACW), which comes from around 200-300m depth and reaches the
surface sporadically. An inverse pattern can be caused by S-SW winds because
cold fronts drive the oligotrophic Brazil Current (<1 uM-LNO3-N) toward the
coast. As SACW is heated in the euphotic layer, nitrate declines more rapidly than
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phosphate, and the N/P ratio declines (Pereira et al., 2009). These processes gen-
erate different habitat conditions that influence at the same time changes in com-
munity and trophic structure (Pereira and Ebecken, 2009).

2.2 Available Data

The available data (Table 1), is a matrix of 18 variables and 512 samples concern-
ing to a weekly harvested medium-term time series (10 years) of physical, chemi-
cal and biological gradients coming from November of 1994 to December of
2005.

Table 1. Basic Statistics of the available data

Variables Min Max Mean Std dev
Temperature (°C) 15,88 29,40 22,66 1,84
Salinity (g/L) 32,13 39,78 35,82 0,86
Oxygen (O,)(mg/L) 2,58 8,79 5,29 0,49
Phosphate (PO,) (ug/l) 0,00 3,69 0,26 0,21
Nitrite (NO,) (ug/l) 0,00 0,64 0,08 8,08
Nitrate(Nos) (ug/l) -0,09 10,19 0,68 0,95
Ammonium (NH,) (ug/l) 0,07 7,85 1,26 0,88
PH 6,39 10,44 8,13 0,42
Chlorophyll-a (mg/m3) 0 11,94 0,99 1,17
Cirripedia (Org/m3) 0 3641 205 355
Mytilidae (Org/m3) 0 2636 92 170
Decapoda (Org/m’) 0 437 20 35
Polychaeta (Org/m’) 0 1683 20 89
Ostreidae (Org/m3) 0 1132 31 91
Cypris (Org/m’) 0 5192 21 248
Ascidiacea (Org/m3) 0 1115 14 66
Isognomon (Org/m”) 0 2342 31 161
Bryozoa (Org/m”) 0 101 2 6

The physical and chemical variables demonstrate the hydrologic variability of
the environment as a function of interchangeable periods of upwelling and down-
welling events. The water mass identification was made through temperature and
salinity gradients according Pereira et al., (2008). The biological variables are the
chlorophyll-a as estimation of phytoplankton biomass, a single food resource, and
9 merozooplankton taxa representing consumers. Every variable were categorized
into five classes: zero which means no occurrence, low, mean, high and extremely
high.
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2.3 Network Generation

In this paper we present an approach for the discovery of community structure in
networks with only a single type of vertex (although they represent biotic and ab-
iotic variables we considered them the same type) and a single type of undirected
and unweighted edge, although generalizations to more complicated network types
are possible. Our divisive algorithm focus is not on removing the edges between
vertex pairs with low similarity, but on finding edges with the highest values of
occurrences, i.e. we focus on finding community structure based on the values of
the edges and not on the attributes of the vertices, as is more usual

Each variable is a vertex or node in a graph whose edges represent the interac-
tion between them. We were not interested to know only which variables each
population interacts with, but to measure the simultaneity intensity of this interac-
tion To quantify these interactions, it was considered the probability of presence
of variable Bi given the presence of a variable Bj, and is thus a measure of the sta-
tistical association between Bi and Bj. represented by P (BilBj) which measures
the strength of the association between Bi and Bj. As P (BilBj) does not take into
account statistical confidence, we considered the equation 1, proposed by Ste-
phens et. al. (2009), which also measures the degree of confidence one can have in
the statistical association between Bi and Bj relative to the null hypothesis, P(Bi),
that the distribution of Bi is independent of Bj and distributed with this probability
over the region of interest (in our study, just one geographic position).

e (Bij I Bj) = NBj (P( Bi | Bj) - P( Bi)) / (NBj (P( Bi) (1 -P(Bi))) ¥ (1)

Essentially, it is a one-sided binomial test where the null hypothesis is that the dis-
tribution of Bi is random over the collected data. The sum of the values of the
edges was considered to identify the network structure. Thus, in our proposal, an
edge is considered part of a sub-network if it connects a vertex pair in an amount
equal to a defined threshold. Naturally, the vertex pair connected by this edge is
also part of this sub-network. So, as an example, if a vertex is part of a 10-
threshold sub-network, it is connected by an edge with value “10” to at least one
other vertex. The approach we take to identify the structure of the network follows
roughly these lines. Thus, the general form of our network structure finding algo-
rithm is as follows:

1. Calculate the value of each interaction with equation 1.

2. Calculate the value of the sum of the edge (for each pair of vertices) in the
network.

3. Calculate the frequency distribution of the edges over the values (each fre-
quency distribution class is equal 1).

4. Identify the values that correspond to 25%, 50% and 75% of the frequency
distribution as a reference for first pre-division of the edges (and respective
vertex pair) into sub-networks. Naturally, a vertex is categorized in a fre-
quency distribution class according the highest value of its edges.
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5. Categorize each edge (and the vertex pair connected by it) in one of the 4
intervals defined above.

6. Identify the edges with the highest values (above 75% interval) and consi-
dered them part of the core network.

For graphical representation, the interactions whose values are higher than the
value that corresponds to75% of distribution (empirical threshold) appear rein-
forced. In fact, this threshold was set based on the average summed to one fold of
the standard deviation of all water masses. On this way, the nodes connected by
these stronger values of interactions will be considered as belonging to the skele-
tons of such networks.

2.4 Applied Indices

The Shannon-Wiener index was applied to each network to access differences in
biodiversity. It was computed as:

3
o - ):IP Inp;) — (§—1)/2N] (2)
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where S is the total number of species, called species richness; N the total number
of individuals. pi is the relative abundance of each species i, calculated as the pro-
portion of individuals of a given species to the total number of individuals in the
community: ni/N. In order to establish the positional importance of each node we
applied two common measures of centrality: closeness (CC) and betweenness
(CB). The former, is based on the total distance between one vertex and all other,
such that large distances yield low centrality values. In the network theory, it is
defined as the mean geodesic distance between a vertex v and all other vertices

reachable from it such as:

F_: dG(r‘! t]

tr Wy 3)
it—1

On the other hand, betweenness is a centrality measure of a vertex within a graph
so that vertices that occur on shorter paths between others have higher between-
ness than those that do not. For a graph G:=(V,E) with n vertices, the betweenness
CB(v) for vertex v is computed as follows:

1. For each pair of vertices (s,t), compute all shortest paths between them.

2. For each pair of vertices (s,t), determine the fraction of shortest paths that
pass through the vertex in question (here, vertex v).

3. Sum this fraction over all pairs of vertices (s,t). Such that (Shivaram,
2005):
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3 Results and Discussion

The use of temperature and salinity data enabled us to identify different water
masses such that the Coastal/Tropical mixing type corresponds to 44.80% of the
occurrences followed by the Tropical water of Brazil current (25,57%), Coastal
water (22.40%), SACW/Coastal (3.17%), SACW/Tropical (1.36%) and SACW
with only 0.90%. However, as previously reported by Pereira et. al.(2008), it was
found that 1.81% of the examples do not belong to any of these ranges, suggesting
another class of water, identified here as “New”. Table 2 presents the results of the
applied index related to each node and water masses.

Table 2. The Shannon-Wiener, Closeness and Betweenness indices of the studied popula-
tions for each water mass

Coastal ~ Coastal  Tropical Acas Acas Acas
Water tropical Coastal ~ Tropical
Shannon 1.94 2.0 1.97 1.47 1.63 1.49

Index
Closeness and Betweeness Centralities (CC-CB)
Biotic Variables

Ascidiacea 0.9-0 0.69-0 0.9-0 0-0 0.64-0 0.47-0
Bryozoa 0.9-0 0.75-0.02 1-0.02 0-0 0.64-0 0-0
Cirripedia 1-0.03 0.9-0.04 1-0.02 0.53-0 0.75-0.02 0.7-0.06
ClorofA 1-0.03 1-0.27 1-0.02 0.7-0.25 1-0.28 0.8-0.23
Cypris 0.69-1 0.53-0 0.69-0 0-0 0.56-0 0.43-0
Decapoda 1-0.03 0.82-0.02 1-0.02 0.38-0 0.9-0.19 0.62-0.01
Isognomon 0.82-0 0.69-0 0.9-0 0.38-0 0.56-0 0-0
Mytilidae 1-0.03 0.82-0.03 1-0.02 0.53-0 0.75-0.02 0.56-0
Ostreida 1-003 0.82-0.02 0.9-0 0.53-0 0.75-0.04 0.62-0.01
Polychaeta 0.82-0 0.69-0 0.9-0 0.53-0 0.6-0 0.56-0

The highest biodiversity (2) occurs in the mixing of Coastal/Tropical Water
Mass, while the smallest (1,47) was verified in the SACW. The centrality values
provide us a good evaluation about the positional importance of these populations
or nodes in each of water mass. The graph topology of the Coastal/Tropical Water
Mass can be constructed. It will show firstly the occurrence of the lowest (L) val-
ues of these variables indicating the oligotrophic condition of this water mass. It is
also possible to see that chlorophyll-a is strongly and preferably associated to the
ammonium (NH4) followed by phosphate (PO4), nitrate (NO3) and nitrite (NO2)
respectively. The PO4 importance to chlorophyll in this system has been previous-
ly highlighted in (Pereira et al. 2009). This graph would explicit the occurrence
of Cirripedia, Mytilidae and Decapoda as the main consumers. The chlorophyll-a
and these three groups of consumers are present in the most of water mass (data
not show) indicating they represent the skeleton of the biological network at the
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studied site. Differences were detected by the presence of mean values of chloro-
phylla(M) in SACW and SACW/ Tropical water mass that is the result of upwel-
ling process and the absence of Decapoda in the class “New”.

4 Conclusion

The fundamental goals underlying community ecology is to model the distribution
of biota, identify their interactions patterns and understand what drives the assem-
blages in order to perform predictions. The biological monitoring of the marine
part of coastal zone is crucial and has become a politically as well a scientifically
vital task. The main contribution of this paper is to show how the representation of
biological interaction could be constructed through a network approach to discri-
minate those of greater influence for a specific condition. It was possible to identi-
fy the core network of each water mass and their similarities.

Acknowledgments. This paper was supported by CAPES the Brazilian research agency
and FAPERI the Rio de Janeiro State research foundation.

References

1. Albert, R., Jeong, H., Barabdsi, A.L.: Error and attack tolerance of complex network.
Nature 406, 378-382 (2000)

2. Borja, A., Dauer, D.M.: Assessing the environmental quality status in estuarine and
coastal systems: comparing methodologies and indices. Ecological Indicators 8(4),
331-337 (2008)

3. Castelao, R.M., Barth, J.A.: Upwelling around Cabo Frio, Brazil: The importance of
wind stress curl. Geophys. Res. Lett. 33, 3602 (2005)

4. Dunne, J.A., Williams, R.J., Martinez, N.D.: Network structure and biodiversity loss in
food webs: robustness increases with connectance. Ecol. Lett. 5, 558-567 (2002)

5. Gonzalez, A.M.M., Dalsgaard, B., Olesen, J.M.: Centrality measures and the impor-
tance of generalist species in pollination network. Ecological Complexity 7, 3643
(2010)

6. Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C.,
Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan,
H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R.:
A global map of human impact on marine ecosystems. Science 319, 948-952 (2008)

7. Halpern, B.S., Selkoe, K.A., Micheli, F., Kappel, K.: Evaluating and ranking the vul-
nerability of global marine ecosystems to anthropogenic threats. Conservation Biolo-
gy 21, 1301-1315 (2007)

8. Huxel, G.R., Mc Cann, K.: Food Web Stability: The Influence of Trophic Flows across
Habitats. The American Naturalist 152 (3), 460-469 152(3), 460-469 (1998); Jordan,
F., Liu, W.-C., Davis, A.J.: Topological keystone species: measures of positional im-
portance in food webs. Oikos 112, 535-546 (2006)

9. Kolasa, J.: Complexity, system integration, and susceptibility to change: biodiversity
connection. Ecol. Complex. 2, 431-442 (2005)



224 G.C. Pereira, F.F. Santos, and N.F.F. Ebecken

10. Libralato, S., Christensen, V., Pauly, D.: A method for identi-fying keystone species in
food web models. Ecological Modeling 195, 153-171 (2006)

11. Lubchenco, J.: Resilience, robustness, and marine ecosystem based management. Bi-
oscience 58, 1-11 (2008)

12. Newman, M.E.J.: A measure of betweenness centrality based on random walks. Arxiv
preprint cond-mat/0309045, pp. 1-15 (2003)

13. Norberg, J.: Biodiversity and ecosystem functioning: A complex adaptive systems ap-
proach. Limnol. Oceanogr. 49(4, part 2), 1269-1277 (2004)

14. Palumbi, S., McLeod, K.L., Grunbaum, D.: Ecosystems in action: Lessons from ma-
rine ecology about recovery, resistance, and reversibility. Bioscience 58(1), 3342
(2008)

15. Pereira, G.C., Coutinho, R., Ebecken, N.F.F.: Data Mining for environmental analysis
and diagnostic: a case study of upwelling ecosystem of Arraial do Cabo. Brazilian
Journal of Oceanography 56(1), 1-12 (2008)

16. Pereira, G.C., Evsukoff, A., Ebecken, N.F.F.: Fuzzy modelling of chlorophyll produc-
tion in a Brazilian upwelling system, Ecol. Model. 220, 1506-1512 (2009)

17. Pereira, G.C., Ebecken, N.F.F.: Knowledge discovering for coastal waters classifica-
tion. Expert Systems with Applications 36, 8604—-8609 (2009)

18. Raffaelli, D., Van den Putten, W.H., Person, L., Wardle, D.A., Petchey, O.L., Kori-
cheva, J., Van den Heijden, M.G.A.: Multi-trophic processes and ecosystem function.
In: Loreau, M. (ed.) Biodiversity and Ecosystem Functioning (2002)

19. Naeem, S., Inckhausti, P.: [SEMIEA] EU Supporting European Marine Integrated
Ecosystem Assessments, p. 256. Oxford University Press, Oxford (2004)

20. Simonini, R., Grandi, V., Massamba-N’Siala, G., Iotti, M., Montanari, G.: Internation-
al Council for the Exploration of the Sea, Copenhagen, Denmark

21. D: Assessing the ecological status of the North-western Adriatic Sea within the Euro-
pean Water Framework Directive: a comparison of Bentix, AMBI and M AMBI me-
thods. Marine Ecology 30, 241-254 (2009)

22. Shivaram, N.: The Betweenness Centrality of Biological Networks. Thesis of the Fa-
culty of Virginia Polytechnic Institute and State University. p. 74 (2005)

23. Stephens, C.R., Heau, J.G., Gonzalez, C., Ibarra-Cerdena, C.N., Sanchez-Cordero, V.,
et al.: Using Biotic Interaction Networks for Prediction in Biodiversity and Emerging
Diseases. PLoS ONE 4(5), 5725 (2009), doi:10.1371/journal.pone.0005725

24. Strogatz, S.H.: Exploring complex networks. Nature 420, 268-276 (2001)

25. [USCOP] US Commission on Ocean Policy, An Ocean Blue-print for the 21st Cen-
tury. USCOP, Washington, DC (2004)



The Explanatory Power of Relations
and an Application to an Economic Network

Mauricio Monsalve

Abstract. Understanding the topology of complex networks is a central concern of
network science. Within this endeavor, we study the problems of building theories
from the non topological attributes of linked vertices and assessing their explanatory
power. We design a simple framework for building theories from the attributes of
vertices and apply it to explain the topology of the Chilean shareholding network, an
economic network which vertices represent firms and edges represent an ownership
relation, finding that a relational theory based on financial information explained the
topology of the network only in part.

1 Introduction

Understanding the topology of complex networks is a central concern of network
science [1]]. Some relationships are explained by the topology of a network while
others are explained by the nature of the elements in the relation. Let us first con-
sider a topologically explained relationship. Popularity produces social relations yet
popularity itself is also produced by them. (See the Albert-Barabasi model [2] for
example.) This is a topological effect rather than a relational one: here the network
topology sets the likelihood an edge between two vertices is formed. But other re-
lationships are better explained by the nature of the involved actors. Consider phys-
ical attraction, where one person likes another person. This relationship is better
explained by the physical and behavioral traits of people. Thus, physical attraction
is explained at the relational level: the likelihood an edge between two vertices ex-
ists depends solely on the non topological attributes of each vertex. However, not all
relationships are better explained by either the relational or topological levels. How
do we know to which extent a relationship is explained by each?
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Much research has been devoted to the study of the relations, under different
scopes and contexts [3]]. Dyadic analysis has been concerned with studying dyadic
(relational) data, and has been closely connected to social network analysis and
statistics [4, 15]. Relational data analysis and mining has been concerned with de-
scribing and searching relations, and has been closely connected to logic and statis-
tics [6l 3l]. And bearing the word link as in Web hyperlinks, the name link analysis
and mining has often been used in Web research [3, 7, [8]].

Experience has shown that the attributes of vertices should at least partially ex-
plain the topology of networks. By using the attributes of vertices to understand rela-
tions, researches have often found that similar vertices are often connected together
or the opposite. These phenomena have been called homophily and heterophily, re-
spectively [9,[10]. And when they are about similar or dissimilar degrees, then they
are called assortativity and dissortativity, respectively [L1]].

In this work, we develop a more general methodology to elaborate theories that
explain the existence of edges by taking into consideration the non topological at-
tributes of the involved vertices, discuss how to evaluate the explanatory power of
such explanations, and apply the methodology to an economic network: the Chilean
shareholding network. A shareholding or stock ownership network is an ownership
network linked by a partial ownership relation [12} (13, [14]]. Shareholding networks
have been studied in a number of countries [[14, 15|16} 17], and have acquired spe-
cial interest because of their role in the recent financial crises [[18]].

The paper is organized as follows. Section[2l proposes the methodology for build-
ing relational theories. Section [3] explains how the Chilean shareholding network
was obtained. Section [ shows the construction of a relational, non topological the-
ory to explain the Chilean shareholding network and its evaluation. Conclusions are
presented in section

2 The Explanatory Power of the Relational Level

We have divided vertex attributes in topological and non topological, and we have
said that relationships can be explained by them. But if we want to determine to
which extent relations are explained by each type of attribute, we must be careful.
We must not assume that topological and non topological attributes explain different
phenomena. It could be the case that a relationship is well explained by either one,
and so the structure of the network. Then, the question is about determining which
type of attribute is better and enough to explain the relationship.

We recommend using non topological attributes when it comes to explaining the
relationship structure of a network. Observe that topological attributes can be arbi-
trarily complex. In particular, it is possible to uniquely identify structurally equiv-
alent vertices in a network thorough topological attributes, for example, by making
use of many different evaluations of Katz centrality. In contrast, non topological at-
tributes are usually limited in number, and their values are often limited in variety.
In particular, continuous values call for more condensed representations, like their
statistical descriptions. Thus, non topological attributes are generally a good starting
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point for explaining relationships in networks, since they provide a natural control
for complexity.

2.1 Methodology with Probability Distributions

To test whether the topology of a network is explained by the non topological at-
tributes of its vertices, one must find a way to explain the relations thorough non
topological attributes and show that the topology of network induced by this expla-
nation is similar to the network one is trying to explain. But testing graph similarity
is a computationally hard problem: it is not known whether testing if two graphs
have the same topology is in P or NP (graph isomorphism problem), and finding
the largest identical portion of two graphs is NP-hard (maximum common subgraph
isomorphism problem) [19, 20]. However, one workaround consists in evaluating
graph similarity thorough topological measures, such as centralities [3} 21} 22]. Iso-
morphic graphs have exactly the same distributions of centralities, and when graphs
are subject to small changes, centralities do not change much either [23], implying
that similar graphs have similar centralities. Besides, they can be computed in poly-
nomial time, often resorting to the computation of shortest paths, and several can be
quickly approximated by random methods [24, 25].

We will assume that networks are generated by random processes instead of de-
terministic processes. Thus, we will focus on probabilistic explanations, i.e. func-
tions that map the attributes of two vertices to the probability that there is an edge
between them. The power of a probabilistic explanation can then be evaluated by
sampling many networks and comparing their similarity to the original one.

Now, let us concern ourselves with building probabilistic explanations. Let G =
(V,E) be a directed graph, with vertex set V and directed edge set E C V x V.
Consider two vertices X,Y € V with attributes described in vectors x = (x,x2,...,X,)
and y = (y1,y2,...,¥n), and assume that there is a probability h(x,y) that there is a
directed edge between them. The problem now consists in finding 4. To find it,
observe that an edge (x,y) (yes, as a 2n-tuple of attributes) exists with probability
h(x,y) given that x and y exist. Let f(x) be the distribution of the attributes of a
vertex, g(x,y) be the distribution of observed edges, |V | be the number of vertices,
and |E| the number of directed edges. Then, the following relation holds:

E|g(x,y) = [VIf(x) f()A(x,y). e
Thus, the previously unknown function 4 is found:

El glxy glx,y
by = B oo el

VIPff) ")
where p is the density of the directed network with loops. Note that Eq.[2/holds with

both continuous and discrete probability distributions f and g. However, note that
since h consists of a ratio, the distributions of g and specially f must be computed

@)
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Fig. 1. Graph used in the example

carefully. If the variables are continuously distributed, then f and g must be estimated
continuously, for example, by using kernel density estimators [26]] or copulas.
To sample a network from these distributions, one must:

e sample |V| vertices according to the probability distribution f, and
e for each vertex X € V with attributes x,
o for each vertex Y € V with attributes y,
o add (X,Y) to the set of directed edges with probability %(x,y).

From this sampling algorithm, it is easy to see that edges as pairs of attributes are
distributed according to Eq.2l

2.2 Illustrative Example

We now provide a simple, illustrative example of the methodology described in sub-
section2.1]l Consider a graph G = (V,E) of vertices V = {A,B,C,D,E} and directed
edges E ={(A,C),(B,C),(C,D),(D,E),(E,C)}. Vertices come in two shapes: A, B,
and C are circles (o), while D and E are diamonds (¢), as shown in Fig.[Tl The den-
sity of the graphis p =5/25=1/5.

The distribution of shapes in vertices is:

fle)=3/5, fle)=2/5,

and the distribution of shapes in edges is:

g(0,0)=2/5, g(0,0) =1/5, g(0,0) = 1/5, g(0,0) = 1/5.

Then, A is:

h(o,0) = (1/5) (3/(52)/(53)/5) =2/9, h(o,0)=(1/5) (3;51)/(52)/5) =1/6,

(1/5) (1/5)

h(o,0) = (1/5) (2/5)(3/5) 1/6, h(o,0) (1/5)(2/5)(2/5) 1/4.
Assume we have sampled three graphs, and we are using their degree distributions
to assess their similarity. (We define the degree of a vertex as the sum of its in
and out-degrees.) After sorting them, the original degrees are (1,1,2,2,4) and the
sampled degrees are (1,2,2,2,3), (1,1,1,2,4), and (0,2,2,3,3). Using the cosine to
test the colinearity of these vectors, we get 0.9617,0.9814, and 0.9231. We have not
specified baselines (e.g. we could use an Erdés-Renyi random graph as a reference
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Fig. 2. Reductions to undirected graphs. The directed graph in (a) is undirected in (b) and the
directed graph in (c) is undirected in (d).

for the degree distribution), but we can say that the generated graphs are do not
differ much from the original one, regarding degrees. (Well, it is hard to arrive to
conclusions with such a small statistical sample, but at the same time, classifying
five edges in four categories ((o,0), (0,0), (¢,0), (¢,¢)) should not lead to graphs
too different from the original one.)

2.3 Additional Considerations

Our first consideration regards how to apply the methodology to explaining and
sampling undirected graphs. We recommend the simple solution of transforming
the undirected graph G, = (V, E,) into a directed graph G = (V,E), such that E =
{(X,Y) eV xV|{X,Y} € G,}. By applying the methodology to the directed graph
G, we obtain functions f and & that explain both G and G,, thorough non topological
attributes. To sample from these functions, we must introduce a relation >7 on the
vertices V such that VX, Y € V, either X >7 Y or Y >r X. Then, to sample undirected
graphs:

e sample |V| vertices according to the probability distribution f, and
e for each vertex X € V with attributes x,
o for each vertex Y € V with attributes y, and such that X >7 Y,
o add {X,Y} to the set of undirected edges with probability i(x,y).

Our second consideration regards the problem of obtaining an undirected graph from
the explanation (functions f, &) of a directed graph. We will show that this is impos-
sible. Have a directed graph G = (V, E) and its functions f and k. The function &, for
the undirected graph G, = (V,E,) where E, = {{X,Y}|(X,Y) €E}.LetX,Y €V be
two vertices, and x,y be the non topological attributes of X and Y. Then, we could
say that A, (x,y) = 1 — (1 — h(x,y))(1 — h(y,x)). Now refer to the previous example,
Fig[dl Consider h(¢,¢) again, and let i, (¢, <) be the probability two ¢ vertices are
connected in the undirected case. Then, A, (¢,¢) should be 1/3 (with loops) or 1
(without loops). If we wrote the probability two different ¢ vertices are connected in
the directed model, we get 1 — (1 — h(o,0))? = 7/16, which is different from either
1/3 and 1. What happens is that the function that maps & from the directed case
to the A, of the undirected case does not exist. We can think of directed graphs G’
and G” that have ' = I yet I/, k], proving that such function does not exist. See
Fig.Dlfor an example.
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3 Data: The Chilean Shareholding Network

For our experiments, we considered the Chilean shareholding network. A share-
holding network is a network where actors (vertices) represent firms or people and
directed edges, or arcs, represent a shared ownership relationship [12} 13} [14]]. For
two actors X and Y, a directed edge (X,Y) means that X has some ownership on Y.
The ownership relationship we model is the possession of shares or stocks. Thus, di-
rected edges are weighted, because two actors may have different amounts of shares
of a firm.

The Chilean shareholding network is monitored and regulated by the SVS, la
Superintendencia de Valores y Seguros (the Superintendency of Stocks and Insur-
ances). They keep records of which firms openly trade their shares in the stock
market. For these firms, they keep data on a number of legal and financial mat-
ters. We are interested in their main shareholders (listed as the top 12) and financial
statements, specially assets, equity, debt and profit.

3.1 Selecting Actors and Relations

We discarded all actors that were not in the listings of the SVS, to ensure that all
of them were firms with financial statements. Thus, we discarded all natural people
and several firms from the shareholding relation.

We also discarded shareholding relations with less than 5% of participation.
Firms have small portions of ownership on other firms to obtain profits instead of
partially controlling the decisions of the owned firms. But by considering only the
top 12 shareholders, we are mostly considering relations of control. By discarding
relations with less than 5% of participation, we are ensuring that we are only work-
ing with relations of control.

3.2 Matching Names to ldentifiers

To construct the shareholding relation, we downloaded the list of shareholders of
each firm in the listings of the SVS. These lists of shareholders were just lists of
names and proportions of ownership. The relation is then constructed by matching
the names of the shareholders of each firm to the names of the firms in the listings.
However, the names of the shareholders were written informally, as opposed to the
formal style used in the listings of firms monitored by the SVS. Moreover, the writ-
ing style of the shareholders varied from firm to firm. Therefore, we had to use a
robust technique to match these names.

We matched shareholder names to firms as follows. First, we merged together all
the names a firm lists (complete, fantasy, stock name) in one string. Then, we re-
moved all special characters, most abbreviations and all connectives. We also abbre-
viated some words, to collapse similar words into the same. (E.g. administrador,
administradora,and administradores were replaced by adm.) After this,
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we transformed the string of names of each firm into a list of unique words. We
counted how many times a word appeared in these lists, to keep a registry of which
words identify firms better; common words do not help identifying firms while un-
common words may identify a firm completely. Finally, to identify a firm, we used
the following formulas. Let S be a set of words and ¢ (w) be the frequency of word
w in the lists (0 if not present). We then define a score for set S:

score(S) =Y (1 +;(W>>y.

wesS

Let Sx be the words in the name of a firm X and S, be the set of words of the name
of some listed shareholder. We then look for a firm X that maximizes score(Sx NS;).
However, we accept this candidate firm X only if:

score(Sx NS;)

score(Sx) 26 3)

We empirically adjusted the parameters y and 0, so that the matching worked well,
which was verified by inspection. We did not perform score(Sx N S;)/score(Sx U
S;) > 6 instead of Eq. B because shareholder names (S;) were reported in various
different writing styles.

After matching all firm names to shareholder names, we can represent the rela-
tions as tuples of attributes, allowing us to model the shareholding relation according
to the methodology developed earlier.

3.3 Retrieving Financial Statements

Finally, we needed to retrieve the financial statements of the firms. These are the
attributes of the actors in the network.

Financial statements were listed on the website of the SVS in three formats: as
Web pages, eXtensible Business Reporting Language (XBRL) files, and Acrobat’s
Portable Document Format (PDF) files. We created parsers to retrieve the financial
data displayed on Web pages and XBRL files, since they followed standardized
formats. We processed PDF files manually since they often consisted of scanned
images.

We retrieved financial statements from December 2009 since several firms did
not report them from 2010 and on. If they were not available because firms reported
late, we retrieved the ones from March 2009. If the firm was new, we retrieved the
statements from December 2010.

Finally, we normalized all financial statements to Chilean Pesos (CLP) because it
was the most common currency in the statements. We also retrieved only individual
financial statements instead of consolidated financial statements.
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Fig. 3. Distribution of log-assets in vertices (left) and edges (right)

3.4 Resulting Network

We were only able to retrieve the financial statements of 427 firms, yet there were
568 firms in the listings. Of the 1108 relations, 787 were between firms with known
financial data and solely 240 involved more than 5% of ownership. We retrieved a
sparse graph.

We found that assets was the attribute with the most explanatory power. Equity
and profits were strongly related to assets, and debt did not show explanatory power
and had high concentration around small values, often being zero. Under the natural
logarithm, we found that assets (log-assets) follow a bell shaped distribution, as
shown in Fig. Bl We also plotted the edges as pairs of attributes (log-assets) in the
scatter plot to the right of Fig.[3l which shows that firms are not strongly correlated
thorough log-assets; correlation is about 0.24, but the points are mostly concentrated
within a round cloud. (Save for a small line of loops and homophily.)

4 Experimental Evaluation

We now describe how we applied the methodology developed earlier to our data and
then discuss the results obtained.

4.1 Evaluation Methodology

First, we built the probabilistic description of the network using kernel density func-
tions [26], which distribute a probability cloud around each sample point. These
probability clouds are called kernels, hence the name of the methodology. We used
Gaussian kernels to transform each point into a narrow normal distribution. Let
X = {x1,x2,...,x,} be a set of observations, where each x; € X is a vector in RV,
Then, the kernel density estimator of the distribution of X is:

e =22
ZKbx Xi) = 2\/271:1) (— ) ) 4)
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Fig. 4. Distributions f (left), g (center) and & (right). Axes are log-assets.

where K, is a normal(0,b) probability distribution function, N is the number of
dimensions of the observations, and b is the bandwidth, the parameter that sets how
wide a point is smoothed. We use the following asymptotic estimator for b:

b~ 1.060n"'/,

which approximates the optimal b as the number of observations in the sample in-
creases. Here, o is the standard deviation of the sample. We used it as the root mean
squared distance to the average observation.

Following the observations made in subsection[3.4] we took the logarithm of the
assets (which we call log-assets) before estimating the probability density functions.
The results are shown in Fig. [dl Observe how f and g are smooth versions of the
distributions previously plotted in Fig. Bl We did not use the correction for corre-
lated data in the computation of g since the original observations exhibit a rounded
distribution (Fig. [3).

We sampled 200 graphs according to these distributions. We used the distribution
of degrees, closeness and betweeness centralities to compare the similarity between
the original and sampled graphs. The comparison was performed as follows: both
the centralities of the original and sampled graphs were sorted and then compared
thorough correlation and cosine functions, and thorough norm ratios, to evaluate
magnitudes. Norm ratios were evaluated as |centsumpie|/|centoriginail-

4.2 Experimental Results

Results are shown in Fig.[5l We can first see that comparisons thorough correlations
and cosines are nearly identical, meaning that sampled centralities are proportional
to the original ones. For degree centrality, we can see that the actual sampled graphs
have smoother degree distributions than the original graph. This can be explained
because we did not add the topological restriction of weights of the network. In
particular, in-degree centrality is limited (requiring at least 5% of ownership limits
in-degree to be at most 20), as opposed to out-degree. This was not modeled by the
probability distribution. At any rate, we see that the sampled degree distributions
have similar shape to the original one. Closeness centrality is also underestimated
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Fig. 5. Comparison of sampled centralities to the original ones

but bears a correlation of nearly 0.8. Betweenness centrality behaves quite differ-
ently. Correlations between the sampled and the original graphs are skewed and
close to 1. In terms of magnitude, they are often close to 1, but the tendency is to
overestimate the original betweenness centrality.

Deviations in closeness and betweenness centralities may arise from the greater
sparsity and decentralization of the sampled graphs. Recall that closeness centrality
measures the distances of the vertices to the rest of the network and that between-
ness centrality measures the ratio of shortest paths that goes thorough each vertex. If
the network is more sparse, distances become shorter because the connected com-
ponents are smaller, so closeness centrality must become smaller. Regarding be-
tweenness centrality, note that all vertices’ centralities must sum 1. To increase the
norm of such a vector, all it is necessary is to make its components more even. And
this is what happens when a network becomes sparser and/or decentralized: the ra-
tios of shortest routes thorough vertices become more similar. And so, betweenness
centrality becomes larger in norm, which is what we observed in the experiments.

5 Conclusions

We developed a methodology to explain relations between vertices according to
their attributes and applied it to an economic network. The methodology, which we
summarize in Fig.[6] is very simple to use in practice, but is to be used with caution.
While it is primarily aimed to directed graphs, we also discussed how to apply it to
undirected graphs. We have not discussed how to choose graph similarity measures
and how to interpret them. This is left for future work.
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Note that the problem we consider is related to the purpose of doing research

in network science: choosing the right level of abstraction. There is science at the
macro level (macroeconomics, macrosociology, &c) and science at the micro level
(microeconomics, microsociology, &c), and network science appeared as the bridge
between both levels. But we are yet to identify the levels of abstraction to work with
within the network abstraction.
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partially supported by grant Fondecyt 1070348 [28].
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Mapping Emerging News Networks:
A Case Study of the San Francisco Bay Area

Daniel Ramos, Mehmet Hadi Gunes, Donica Mensing, and David M. Ryfe

Abstract. The news and information system in the United States is undergoing a
significant transformation. From a limited number of professional, major metro-
politan newspapers, television and radio stations to a networked system of hun-
dreds of small and medium size information sources. Structural changes in news
production and distribution are significantly altering the supply and flow of news
to citizens. Using network analysis, we seek to map changes in the news ecology
of the San Francisco Bay area. In this study, we graph the relationships between
143 locally based news sites to examine connections between news organizations,
between journalists and their sources and between users of the news sites.

1 Introduction

The changing pattern of news production and consumption in the U.S. over the
past 30 years is well documented. Newspaper circulation has declined by 31% and
the percentage of people who watch an evening news program on a major Ameri-
can network has declined by 57% since 1990 [9]. The number of professional staff
in newspaper newsrooms has declined by more than 25% in the past 10 years [5].
Meanwhile, nearly 60% of all Americans now access news online in a typical day
[9] with the Internet now the third most popular news platform, behind local and
national television news [7]. These audience consumption patterns reflect a tech-
nological, economic and social transformation that is causing significant changes
in the news industry. The centralized, one-way distribution model of mass pro-
duced news is changing in response to a new communication structure that is far
more decentralized, interactive and integrated.

The defining characteristic of mass media is the ability to broadcast messages
from one-to-many points. Television, radio, magazines, newspapers and books
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have all been considered part of mass media, while telephones, the telegraph and
the postal service are classified as narrowcast industries characterized by point-
to-point message transmission [8]. The structure of the Internet, however, is a
networked model of distributed communication with broadcast and narrowcast ca-
pacity. The reconfiguring of media relationships online is fundamentally reshaping
the structure of social communication, including news and information, altering
the role and function of message, audience, producer and production. The purpose
of our study is to examine the network structure of news production in a specific
region, the San Francisco Bay area, to begin understanding the shape and charac-
teristics of this change. Specifically, we are interested in discovering the emerging
shapes of the network for evidence of the formation of small worlds or other net-
work configurations [12]. It is clear that changes of this magnitude are impacting
the content of the news as well the public’s access, response and participation in
the information being transmitted, thus affecting many of the functions generally
attributed to mass media.

The San Francisco Bay is recognized as one of centers of online innovation and
is an ideal setting to analyze the network effects of a changing communication
structure, given the high broadband penetration, sophisticated user base and con-
centration of online publishing experiments such as Craigslist.

2 Related Work

One of the earliest studies that applied network theory to online news sites ana-
lyzed the quantity of external hyperlinks accompanying individual stories [10, 11].
The author concluded that the increased use of internal links, rather than external,
confirmed the preferential attachment theory of network formation and pointed to
the evolution of particular stores, story topics and news organizations as hubs
forming central nodes in a network. However, he also noted that should the traffic
on non-media sites, such as blogs, increase, web editors may wish to reconnect
with that network of users, thus altering what constitutes a central node. It appears
that may be in fact what is happening as the number of non-professional, new
news sites develop and grow. Tremayne [11] noted that the distribution of external
links from news stories did not follow a normal distribution but a power distribu-
tion, with a handful of stories generating many of the external links.

A more recent network study analyzed 6,298 foreign news stories in 223 news
web sites from 73 countries for their use of external hyperlinks [3]. The author
found that news organizations rarely used external links, but when they did it fol-
lowed patterns predicted by the preferential attachment theorem and the world
system theory. The world system theory suggests that countries of the world can
be categorized into three hegemonies: core, semi-periphery, and periphery based
on their political and economic characteristics. The author found that only about
6% of foreign stories had one or more external hyperlinks. It is supposed that
journalists are usually trained to provide only minimal access to their sources and
that news organizations do not trust other sources to be accurate when distributing
information, especially when in a different country than in which it operates.
Furthermore, providing links to other sources could possibly report conflicting
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information and cast doubt on the report containing the hyperlink. The author also
concludes that since the media market is largely profit driven, that providing links
to other sites would take the user away from the current site and decrease adver-
tisement profits, supported by the finding that public broadcasters were more like-
ly to use external hyperlinks. Finally, the author reported that the network formed
by the study followed power-law degree distribution, with the US and UK attract-
ing 10% of the hyperlinks and other countries attracting no more than 2% each.

Finally, a study analyzed Chicago area news websites and how they linked
news and information [2]. Authors collected a list of 368 seed sites based on a
survey and another web site that compiles news feeds by location. They used a
web crawler to examine the links on these seed sites and recorded the links to oth-
er sites linked by the seed sites. They only recorded sites that were linked two or
more times from the original sites to insure relevancy. They performed the process
for three iterations and collected a final list of 277 sites. The sites were catego-
rized into the following: legacy (i.e., traditional media brands), legacy-affiliated
(i.e., publications owned by legacy brands), micropublisher (i.e., web sites fo-
cused on a topic or location), organization/institution (i.e., entities that would
have, in the past, needed media organizations), national brand (i.e., websites of
national scope with local presence), and service (i.e., websites that help publish-
ers). They found that organizations are authorities, micropublishers and organiza-
tions are hubs. They also found that organizations are prominent intermediaries
and organizations and some micropublishers are switchboards. From the previous
results, it is clear that the authority of organizations/institutions is signaled by high
number of inbound links. We will be testing the proportion of inbound and out-
bound links as part of this analysis, looking to distinguish the authorities, hubs and
switchboards of the network.

3 Methodology

As exploratory research, our analysis was driven not by specific hypotheses but by
questions about three types of relationships within the news network:

1. Relationships between news organizations,

2. Relationships between journalists and individuals/institutions/events external to
the news organization, and

3. The relationship between the users of the Web sites and the organizations.

We explored these three relationships using social network analysis. In the follow-
ing sections, we will describe the methodology of capturing each network.

3.1 News Organization to News Organization

The first network we were interested in capturing was the relationship between
news organizations. Using search engines and links on news sites to search for re-
levant sites, we developed a list of websites that (1) produce news, (2) are updated
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at least weekly and are (3) physically based in one of the nine San Francisco Bay
area counties. The list includes organizations of all sizes from traditional media
outlets to small blogs and other non-traditional formats. We compiled a list of 143
web sites we feel represent the news ecosystem of the San Francisco Bay area.

We used web crawling to discover the connections between organizations. For
this, we modified the WebSPHINX crawler. All links to outside destinations were
recorded to a database, including the number of times linked. A link was consi-
dered duplicate if it had the same domain name up to the subdomain level (e.g.
www.example.com/pagel.html is the same as www.example.com
/page2.html, but other.example.com is not). We made this delineation
because many of the sites in our list used hosting services like BlogSpot or Word-
Press and therefore all have the same second-level domain name.

Next, using the data from the crawl of each seed site, a directed, weighted
graph was generated for each site in which each site and its linked sites were
nodes. A directed edge is drawn from the seed site to the outside site indicating the
one-way nature of a hyperlink. The weight of the edge was calculated by how
many times that particular domain was linked to from the seed site. The next
phase merged all the graphs for each seed site into a large graph containing all
news organizations. From this graph we measured in-degree and out-degree to ex-
amine which news organizations are authorities or hubs, betweenness to examine
which sites might link otherwise unconnected sites, and PageRank to examine
which sites are more important in terms of the number links.

Most of the seed sites were crawled successfully but there were some sites that
were not crawled either because they were not accessible or they prevented web
crawlers from accessing them via the Robots Exclusion Standard [6]. In all, 118 of
the original 143 sites were crawled in some way, shown in Fig. 1. Some of the
larger sites were only partially crawled
due to their size. In this case, we tried
to focus on content from recent years.

We did not include edge weights be-
cause many of the sites have standard e
headers, footers, and navigational si- = s

debars that appear on many pages. - IR
Links in these page elements increased e
the reference count artificially and =N

skewed our metrics. i R

The average incoming and outgoing
links for a site in the network shown in
Fig. 1 is approximately 12 with the in
and out degree averages being very
close to 6. There are 43 sites that did Fig. 1. News organization network
not link to another news organization,
but most are linked to by another site. Not surprisingly, the sites with the most in-
coming links (i.e., authorities) were traditional news organizations such as the San
Francisco Chronicle, San Jose Mercury News, and the Oakland Tribune. A large
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number of links to an organization most likely indicates a greater level of authori-
ty and completeness compared to other sites. Similar to [3], the top eight sites for
incoming links, traditional news organizations, have a very low number of out-
going links. We theorize this is because traditional news reporters are likely to fol-
low the mass media model of news reporting without adapting to a networked
structure.

The sites with the most outgoing links (i.e., hubs) are generally independent or
non-traditional news organizations. This fits the expectation that non-traditional or
newly created news media sites are more likely to utilize the full potential of the
network and provide links to sources and supplemental information about the sto-
ry being reported.

We used the centrality measures as another way to evaluate the relative impor-
tance of a site in the graph. As expected, the sites we previously found to be au-
thorities (i.e., the traditional news organizations) had the highest page ranks. The
alternative news site The Easy Bay Express has the highest betweenness ranking.
The East Bay Express receives almost as many incoming links as it has outgoing.
Also, it links and is linked to by both traditional and non-traditional sites. There-
fore, it could be considered a bridge site between news organizations.

3.2 Journalists to the Community

The second network we were interested in was the linking patterns of journalists.
We used modified WebSPHINX to crawl the seed sites mentioned previously. We
crawled only the larger sites that had author credits clearly identified for each sto-
ry. The challenges in creating a graph of this network included the fact that some
sites do not have author credits in their articles nor is there any standard format for
website bylines. We had to develop site-specific web crawling rules so the crawler
knew where to find the author’s information. The crawler recorded each author
found and each external hyperlink reference in their stories. Duplicates were not
counted as in the method mentioned previously.

The network formed for journalists was a bipartite graph with the sets being all
the journalists discovered and the other set was all the external sites referenced in
their articles. Using this graph, we were able to measure the following metrics:
the degrees of the journalists (which journalists used hyperlinks most often) and
the degrees of the sites (which sites are linked to most often by journalists). Sites
not considered community (e.g. advertisements) were removed manually.

We crawled three large sites representing three different types of news media:
www.baycitizen.org as independent, laurendo.wordpress.com as a blog, and
www.sfgate.com as traditional. We only examined links in news stories that were
reported for the past few years (mainly 2010). As before, non-community sites
were removed.

The Bay Citizen’s journalists are in the middle range in terms of how frequently
they link to external sites. The range of external links is between 4 and 75 with the
top five journalists all having above 30 links. A minimum of four links are auto-
matically included on every news story to facilitate sharing on various social net-
working sites. Besides these sites, the most referenced sites are Oakland North,
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YouTube, Berkeleyside, Wikipedia, and the San Francisco Chronicle. Since The
Bay Citizen is established in 2010, it tends to utilize newer journalistic practices
by providing references to outside sources, but clearly these practices are unevenly
spread among writers.

Blogging Bayport Alameda is a blog about local news in Alameda written by
one author, Lauren Do. Do is very prolific and has linked to thousands of external
sites in her blog. As a personal project, Do does not host any advertising on her
site nor does she attempt to cover all the issues and events mentioned on her blog.

Despite the San Francisco Chronicle’s larger size, it had fewer journalists than
The Bay Citizen and did not link to many outside sources. The range of external
links is between 3 and 14 with the top five journalists all having between 8 and 14
links. Like The Bay Citizen, the minimum 3 links are on every news story as a me-
thod to share it on various social networking sites. No other sites are heavily
linked. The lack of external links is parallel to the results of the study by [3]. Inte-
restingly, the journalists who did utilize external links more frequently are free-
lancers and other non-staff.

It is clear the importance and popularity of social networking has reached most
news organizations. Even if a site generally did not link to external sites, it still
provided links to share its stories on multiple social networking sites. This practice
alone insures some connection to the network, even if generated automatically.

3.3 Commenters to News Organizations

The final network we were interested in is the links between user commenters on
news web sites and how they interact with news organizations and other commen-
ters. A recent feature of many of the larger news sites is the ability for the reader
to comment directly on a news story. This feature highlights the collaborative na-
ture of the Internet.

We focused on a small subset of seed
sites that had story comment features and
a larger population of registered users. It
also required site-specific web crawling
rules so the crawler knew where to find
the comments section and the commen-
ters’ names. The crawler recorded each
user found and each story they com-
mented on. A manual coding process was
required to remove spam bots and other
non-human commenters. Since sites do
not have a common user pool, each site
was its own graph. Fig. 2. Berkeleyside commenter network

The first networked formed was a
bipartite graph. The set of nodes were all the different users found and the second
was all the different stories commented on. We were able to measure the degrees
of the users to determine which users are most prolific in their commenting and
the degree of the stories to examine which stories garnered the most attention.
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We then transformed the first network into a 1-mode network by removing the
story nodes from the graph. Using this new network we were able to tell which us-
ers are connected together, meaning they commented on the same stories. The
edge weights in this new network were the number of stories that both users com-
mented on. Using this network we were able to tell if any users form clusters (i.e.,
commenting on the same stories) and how well connected these communities
might be. To create the initial networks, we crawled two independent sites: berke-
leyside.com and socketsite.com. We found that traditional news sites, tended to
use JavaScript based commenting systems that prevented our crawler from record-
ing. We limited the results to only news stories occurring in 2010. We also ma-
nually removed comments that were clearly spam or an automated posting.

On Berkeleyside, the stories with the most commenters are on a wide variety of
subjects, but many of the stories are about retail and commerce. Berkeleyside has a
fairly active community, shown in Fig. 2, with the top 4 users commenting on
over 100 stories and the top user commenting on 60% more stories then the next
highest user. When converting the network to only contain users, we found that a
user was linked to, on average, 19 other users via commenting on the same story.
The commenters were be divided into 142 different communities using the Lou-
vain method [1]. These communities also include users who are the only commen-
ter on a story and therefore are a community by themselves (as seen by the many
single nodes in Fig 2). The top two communities contain 29.75% (17.34% and
12.41%) of users which would suggest there is a large portion of users who fre-
quently comment on the same stories.

Socket Site mainly focuses on real estate,
so most of the top commented stories are in
regards to that subject. Since Socket Site is
a niche topic site, the community is smaller
than Berkeleyside, but the top 4 posters still
have commented on 80-100 stories each.
The community for Socket Site, shown in
Fig. 3, appears to be more closely knit than
Berkeleyside. We find that a user was linked
to, on average, 57 other users. The commen-
ters on this site could be divided into 19
different communities where the top 3
communities contain 53.36% of all users.
This tighter knit group might be explained
by the specific focus on the site which fosters more. There is also the possibility
that real estate professionals who work together also interact on this site.

Fig. 3. Socket Site commenternetwork

4 Conclusion

This study represents an initial step in understanding the emerging news networks
focusing on the San Francesco Bay Area. The network graphs reveal a distinct dif-
ference between the linking patterns of traditional news media sites and newer
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and/or alternative news sites. These results were mirrored when examining indi-
vidual reporters on the various types of sites. We found that some small percen-
tage of journalists in each of our examined news sites tended to link far more than
the average journalist. Finally, we found that commenters on sites sometimes form
communities in which they often comment on the same stories. This seems to
happen even more if a site is primarily about one topic.

These results indicate that the structure of the news ecology in the Bay area is
indeed changing. New patterns of relationships, production and distribution are
evident. Newer news organizations are facilitating practices that set them apart
from older news organizations that came of age in the mass media era. Some jour-
nalists are utilizing practices different from others, building content conducive to
networking and linking rather than stand alone, authoritative reports. News users
are organized according to a predictable range of relationships, knowledge of
which could facilitate better communication on news sites.
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Identifying Critical Road Network Areas with
Node Centralities Interference and Robustness

Giovanni Scardoni and Carlo Laudanna

Abstract. We introduce the notions of centrality interference and centrality robust-
ness, as measures of variation of centrality values when the structure of a network
is modified by removing or adding individual nodes from/to a network. Central-
ity analysis allows categorizing nodes according to their topological relevance in
a network. Thus, centrality interference analysis allows understanding which parts
of a network are mostly influenced by a node and, conversely, centrality robustness
allows quantifying the functional dependency of a node from other nodes in the net-
work. We examine the theoretical significance of these measures and apply them to
classify nodes in a road network to predict the effects on the traffic jam due to vari-
ations in the structure of the network. In these case the interference analysis allows
to predict which are the distinct regions of the network affected by the function of
different nodes. Such notions, when applied to a variety of different contexts, opens
new perspectives in network analysis since they allow predicting the effects of local
network modifications on single node as well as global network functionality.

1 Introduction

Study of complex networks currently spans several disciplines, including biology,
pharmacology, economy, social science, computer science and physics [1]]. One of
the major goals of modern network science is the quantitative characterization of
network structure and functionality with the purpose of inferring emergent proper-
ties of complex systems, abstracted as networks and represented as graphs [2]]. No-
tably, since network structure always affects function [3]], the topological analysis
approach allows understanding networks functionality through the analysis of their
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specific structure. For instance, the topological structure of the road network affects
critical traffic jam areas, the topology of social networks affects the spread of infor-
mation and diseases, and the topology of electrical grids affects the robustness and
stability of energy distribution. Remarkable results have been reached in this field
and, even if far from being complete, several key notions have been introduced. These
unifying principles underlie the topology of networks belonging to different fields of
science [41],[50,[6]1[71,[8]],[9]. Currently, network analysis mainly focuses on global
network properties and on their global modifications [10]; [111]; [12]]; [13] as for ex-
ample in the case of the vitality index [9]] or attack tolerance of networks [14]]. Recent
fundamental results show how analysis on the topology of the network allows
identifying the driving nodes of a network, i.e. the nodes that have to be controlled in
order to control the entire network, suggesting that identification of these nodes de-
pends on the network topology and not on the network dynamics. These results may
suggest the utility of a deeper analysis of biological networks, with the purpose of
analyzing not only global network properties, but especially local properties affect-
ing those nodes that are, more than others, central to the global functionality of the
network. In this context, network centralities, such as degree, eccentricity, closeness,
betweenness, stress, centroid and radiality [9]; [16]; [17] are topological parameters
allowing understanding the importance of single nodes in a network.

Here, we introduce the notion of centrality interference and robustness, as mea-
surements of changes in the local topological structure of the network as a conse-
quence of single nodes removal or addition, in order to quantify the influence of
single nodes in different parts of the network. Our approach allows addressing the
following question: “if we remove or add one node in the network, how do other
nodes modify their functionality because of this removal?”. In some cases, such as
in social and financial networks, the structure of the network is naturally modified
over time; in other cases this can be due to specific network changes: power grid
failures, traffic jam or work in progress in a road network, temporary closure of an
airport in an airline network and so on. In a biological network one or more nodes
(genes, proteins, metabolites) are possibly removed from the network because of
gene deletion, pharmacological treatment or protein degradation. Understanding the
topological consequences of such changes in the network means to understand how
the network functionally rearranges. For instance in the case of a drug treatment, we
can potentially predict side effects of the drug by looking at the topological prop-
erties of nodes in a drug-treated network, meaning with that a network in which a
drug-targeted node (protein) was removed. Similarly, we can understand new crit-
ical traffic points in a road or airline network after a modification of its structure.
Notably, our perspective concerns node-by-node modifications: a single node mod-
ification can be irrelevant to the overall organization of the network (for instance
its scale-free structure), but can profoundly modify the properties of one or more
nodes in different regions of the network, thus changing, for instance, the network
modular structure. Since centralities are single-node properties, the effects of single
node alterations can be calculated by analyzing modifications of centralities values
due to single node alterations. As the centrality value of a node is strictly dependent
on the network structure and on the properties of other nodes in the network, if we
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add or remove a node in the network the consequences of this modification on the
network structures are reflected on the centrality values of all the other nodes. Such
a situation, similarly to the case of interference for computer programs [18] can
be analyzed introducing the notions of centralities interference and robustness. We
first introduce interference for the betweenness centrality. The interference defini-
tion can be applied to other centrality measures. All definitions consider connected
networks (i.e. networks where each node is reachable from all the others) and that
remain connected also after nodes deletion.

2 Betweenness Interference

We consider a network as a graph G = (N, E) where N is the set of nodes and E is the
set of edges. Betweenness of node n is defined as Btw(G,n) = ¥ pen Xitnen GSC’;E:Z)
where 0y is the number of shortest paths between s and ¢ and oy (n) is the number of

shortest paths between s and ¢ passing through the vertex n. We consider the relative

value of betweenness normalizing it as relBtw(G,n) = zjf;vg(li’(" ();7].
the fraction of betweenness of each node with respect to the rest of the network.
Consider the example in figure [Th. If we remove node k from the network, node b
become the only node connecting a to all the other nodes in the network (fig.[Ib), so
its betweenness value will increase. This is a case of betweenness interference since
removing node k from the network “interferes” with the betweenness value of node
b and can be measured as follow. G; is the network obtained from G removing node
i and all its edges from the network. The betweenness inter ference of node i with
respect to node 7 in the network G is Intpy, (i,n,G) = relBtw(G,n) — relBtw(G);, n).
The measure shows which fraction of betweenness value a node loses or gains with
respect to the rest of the network when the node i is removed from the network. The
interference value can be positive or negative. If it is negative, it means that the role
of node n in the network is higher when the node i is not present in the network.
So we can say that node i has negative interference on node n, in the sense that the

) in order to have

e k ECK

fig.a ¢ C figob d ¢

Fig. 1. a. Node k and b are in the shortest paths from node a to the other nodes. b. Node k
has been removed. Node b is now essential for connecting node a to the rest of the network:
it is the only node in the shortest paths connecting a to the other nodes: node b betweenness
increases.
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presence of node i in the network is “negative” for the node n to play a “central
role” in the network. If the interference value is positive, it means that betweenness
value of node n is higher if node i has been added to the network. In this case we
say that i has positive interference on node n, in the sense that the presence of node
i is “positive” for node n to play a “central role” in the network. The meaning of
negative and positive interference strictly depends on the kind of network they are
applied to.

Note. Even if interference is calculated removing a node from the graph, it is a
measure of the influence of this node with respect to the rest of the network. Besides
it can also be used to model some frequent situations where nodes are added or
removed to/from a network. In these cases adding a node means to add a node
whose interactions are known. As example, adding a protein to a protein-protein
interactions network we exactly know its interactions with other proteins (the new
edges to add to the graph).

3 Centralities Interference definitions

The notion of interference can be easily extended to other centrality values and
other interference based measures as modulus inter ference (ModlIntpg,(i,n,G) =
|Btw(G,n) — Btw(G);,n)|) and absolute interference (AbsIntpn,(i,n,G) =
Btw(G,n) — Btw(Gj;,n)) can be used to enrich the analysis. Finally, a successive
step for a complete analysis of interference is to quantify the interference of a single
node with respect to the entire network. The question is: How important is node i for
the functionality of the entire network? A node can interfere with high value with re-
spect to few nodes and can have low interference value with respect to many others.
Alternatively one node can interfere with significant values with respect to the most
of the nodes in the network. In the second case the node can have importance for the
entire network functionality and not only for one or few nodes. In order to quantify
the interference with respect to the entire network we introduce the max interfer-
ence value and the global interference value. The betweenness max inter ference
value of node i is defined as maxIntp,(i,G) = max,ey\ (i} {Intp,(i,n,G)}. If it is
high at least one node is consitently affected by node i. The betweenness global
inter ference value of node i is Intps, (i,G) = X,en\ (iy (Intew(i,n, G)) . If it is high
the nodes interferes with high values with respect to the most of nodes in the net-
work. In order to compare different networks these two values can be normalized
by dividing them by |N| — 1 where |N| is the number of nodes of the network.

4 Centralities Robustness, Dependence and Competition Value

We approach now the reverse problem of interference: we know that a node has a
central role in the network and we would like to know if its functionality can be
affected by other nodes and how much. The question is, conversely to interference:
“which are the nodes affecting node n?”. To answer to this question we introduce the
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notion of robustness, competition and dependence value of a node. The betweenness

robustness of node n is defined as Robgtw(n,G) = —" 1r:t31 (in G} Robustness
1 ‘n w %y

depends on the maximum interference value that can affect the betweenness value
of the node. If it is low, the node can be easily “attacked” by removing or adding
particular nodes. If it is high, the node is “robust”, i.e. there is no node removal or
adding that can affect its betweenness value and consequently its functionality. Note
that we consider the modulus value of interference. Similarly to interference, posi-
tive and negative robustness can be defined but it is more intuitive to consider their
reciprocal values, respectively dependence and competition. The dependence value
is Deppy(n,G) = maxien,, {Intpn(i,n,G)} where Intpy,(i,n,G) > 0. If it is high,
this value means that the node is “central” because of the presence of at least another
node in the network: if that node is removed then node n loses a consistent part of
its central role (its centrality measures decreases). If low the central role of node n
is not dependent on other nodes and there is no node removal that can consistenly
affects its relevance in the network. Similarly we define the competition value as
Comppy(n,G) = maxiEMn{|IntB,W(i,n,G)|} where Intg,,(i,n,G) < 0. High com-
petition value means that the central role of node n can be “improved” removing
a particular node from the network (node n betweenness increases). In this sense
the two nodes, node n and the removed one are “competitors” in the network. If
low, the central position of the node cannot be improved removing a particular node
from the network. Because of our specific focus on single node analysis, the be-
tweenness variation due to robustness, competition and dependence can be related
to the betweenness value of the node in the starting network (the network with

no node deletion) (relRobg,,(G,n) = If:z%?»t((g:)) relDeppy(G,n) = lr):ffﬁif((g, :))

Compgyy (n,G) Similarly to the interference definitions, total ro-

relcomthW(n’G) = relBtw(n,G)
bustness dependence and competition value can be also used as global parameters
in order to characterize the entire network. All robustness, competition and depen-
dence definitions can be extended to other centrality values. Next example shows
the role of node centrality robustness, dependence and competition value. Consider
the network in figure Zh. Node3 and node6 have the highest values of betweenness
(25.64), node4 and node5 present the third highest value (12). A Robustness analysis

Fig. 2. Node3 and node6 have highest betweenness (25.64). Betweenness value of node4 and
node5 is 12.
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of node3 and node4 allows to understand if and to what extent their high between-
ness values depend on other nodes of the network. Node3 has higher robustness
value (0.046) than node4 (0.036). In fact node4 is in the shortest paths connect-
ing node0, nodel and node2 with node7, node8 and node9 (fig. 2h), but if we re-
move node6, node4 loses this role and becomes a “peripheral node” connecting only
node0, nodel, node2 between them (fig. Pb). This can not happen to node3 since it
is connected to both node6 and node5. Node3 has highest dependence on node5
equals to 0.0999. The relative dependence value is 0.3118 indicating that node3
loses about the 31% of its starting betweenness value if node5 is removed from the
network. Indeed, if we delete node5 the betweenness value of node3 becomes the
same as node4, since they connect the same nodes through the same paths: those
passing through node6. But dependence of node4 on node6 is higher (0.1143, with
relative dependence 0.7619 i.e it loses about 76% of its starting betweenness value
if node6 is removed from the network): as previously seen, if we remove node6 then
node4 becomes a “peripheral” node and node3 becomes the only way to connect the
“top” of the network with the “bottom”. Also the competition value of both nodes
is very informative. The highest value of node3 depends on deletion of node4 and
the highest value of node4 depends on node3. In this sense they are really “competi-
tors” in the network. But this also means that, missing one of the two nodes, its role
can be replaced by the other one. If we remove node3 then node4 becomes the only
connection between the “top” and “bottom” of the network. The same for node3 if
we remove node4. But node4 competition values is higher (0.2786 vs 0.2162). This
is due to the fact that starting betweenness value of node4 is lower (12) than node3
value. So the increase of betweenness of node4 is higher, the 185% of the starting
value.

5 Interference in a Transportation Network: The Case of Italy
North-East Highway

We applied interference to the highway network of the north-east of Italy, the region
included between Milan, Bologna and Trieste (see fig. [3). The network, containing
136 nodes and 144 edges has been compiled with the distance in minutes between
each highway exit as reported by the official Italy highway website [19]. We chose
three highway exits as example to evaluate betweenness interference: Melegnano,
Como, Mestre. Positive and negative values for each of these exits are reported in
figures [l and [3l Due to lack of space only the first ten values are reported, but they
are enough to illustrate the notion of interference in a real world example. Firstly
we analyzed Melegnano betweenness interference: Melegnano is a critical node to
connect the Milano area with the Bologna one. Closing the highway in this point
means to stop the main traffic from Milano to Bologna. As expected the first ten
positive interference values are all the towns between Milano Sud and Parma (see
fig. [ the red road). This region is the one that is more affected by Melegnano. If
Melegnano is part of the network, these towns are in the shortest way to connect
Milano and its area with Bologna and its area. This is perfectly captured by the
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Fig. 3. The north-east of Italy highway network and its representation as a graph

Melegnano Como Mestre
Node name Betweenness Interference Node name Betweenness Interference Node name Betweenness Interference
MilanoSud Fino Mira
Lodi Lainate PadovaEst  0.06
Sesto MilanoNord Mirano 0.05
Casalpusterlengo Agrate Grisignano  0.04
PiacenzaNord Cavenago Montebello  0.04
Fidenza MilanoEst Montecchio  0.04
Fiorenzuola Monza PadovaOv... 0.04
Parma Trezzo Soave 0.04
PiacenzaSud Bergamo VeronaEst  0.04
ReggioEmilia Capriate VicenzaEst 0.04
Fig. 4. First ten positive interference value of Melegnano, Como and Mestre

Melegnano Como Mestre
Node name Betweenness Interference Node name Betweenness Interference Node name Betweenness Interference
BresciaCentro PadovaEst -0.03 Spinea
BresciaOvest Grisignano -0.02 Preganziol
Ospitaletto Mestre -0.02 Venezia
Grumello Mira -0.02 Ala 0.0
Manerbio Mirano -0.02 Belluno 0.0
Palazzolo Montebello -0.02 BolognaArcoveggio 0.0
Ponteoglio Montecchio -0.02 BolognaFiera 0.0
Pontevico PadovaOvest -0.02 BolognaPanigale 0.0
Rovato VeronaSud -0.02 BolognaSanLazzaro 0.0
Bergamo VicenzaEst -0.02 BolzanoNord 0.0

Fig. 5. First ten negative interference value of Melegnano, Como and Mestre

positive interference of Melegnano with the highway exits of this region. If Meleg-
nano is removed from the network, for example if it is blocked by a road accident,
the road between Milano sud and Parma can not connect Milano and Bologna. To
understand the alternative paths, we consider the negative interference of Meleg-
nano. As reported in figure[3] the first ten negative values belong to the region around
Brescia Centro. As expected, if Melegnano is blocked, the interference analysis pre-
dicts that Brescia Centro is the new critical point to connect Milano and Bologna,
through the highway from Brescia Centro to Fiorenzuola (see fig. |6l the blue road).
Even if these nodes are far from Melegnano in the network, the interference analysis
can easily predict that they are undirectly influenced by Melegnano.
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Fig. 6. The shortest road from Milano to Bologna passes through Melegnano (red road). If
Melegnano is blocked, the shortest road is the one passing through Brescia (blue road). This
behaviour is exactly predicted by the interference analysis.

As a second example we computed Como interference. In the north-east highway
Como is only a peripheral node (see fig.[6). As expected its interference value is high
only for its neighbour, and susbstantially smaller than interference of Melegnano
(Como interference max value = 0,08, Melegnano interference max value 0,32).
This shows that interference analysis really reflects the importance of undirect in-
teraction between nodes. As third example we computed interference for Mestre
(see fig. [7). Mestre is well known as an important connection between Trieste (the
extreme east of Italy) and important nodes as Milano and Bologna. Its interference
analysis results in high negative interference with respect to Spinea, Preganziol,
Venezia. This is totally in agreement with the real situation: the road passing through
Spinea, Preganziol and Venezia called “passante of Mestre” was recently built in or-
der to solve traffic jam problem of the Mestre Area, always congested because of
traffic from Milano and Bologna to the Venice port and to Trieste. To confirm this
analysis we can modify the distance in minute between Mira and Mestre. In high
traffic condition, as for example during summer weekends when a lot of people
moves to the Venice area for holidays, the real distance between Mira and Mestre is
more than 20 minutes. In this case the shortest path connecting Trieste with Milano
and Bologna is the one passing through Spinea. We modified the distance of the net-
work according with these value. An interference analysis of Spinea in the updated
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Fig. 7. Mestre is a critical node to connect Trieste with the rest of Italy. Note the recently
built alternative path passing through Spinea, called “passante of Mestre”

network, shows high negative interference (= -1.7) with respect to Mira and Mestre.
As expected, according to the interference analysis, the role of Spinea is exactly to
reroute the traffic of Mestre: if Spinea is not part of the network, its negative in-
terference with Mestre and Mira predicts that Mestre and Mira are more congested
than they were before the “passante of Mestre” building.

6 Further Considerations and Conclusions

As showed above, the interference analysis allowed identifying critical areas in
roads network. This doesn’t result in a real dynamic prediction of traffic jam but,
only through the analysis of the network structure, we have been able to identify
those parts of the network that more than others can be affected by particular mod-
ification of single nodes (traffic jam, closure of an exit, work in progress). As ex-
plained in the introduction, the interference and robustness analysis can be applied
also to several other kinds of network (biological networks, social networks, elec-
trical grids, transportation networks and so on) and to other centralities measures.
So for any case study, the methodology and the interpretation of the analysis strictly
depends on the kind of network and the kind of centrality that is used. As a fur-
ther implication of our approach, we can consider centrality interference and ro-
bustness as natural generators of network modularity. Indeed, a new clusterization
algorithm can be derived if we group nodes depending on their interference value.
Given a node, we may compute its interference activity of the network and, then,
we may group in the same cluster all nodes having high interference values. This
interference-based modular decomposition of a network allows grouping of nodes
according to their response to the deletion (or addition) of specific nodes in the
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network. Importantly, this approach may lead to a less purely mathematical, but
more contextual-oriented method of network modularization. Notably, it is well
known that scale free networks are not easily affected by randomly removing single
nodes [10][11][12]. So a possible scenario of application of interference analysis
implies removal of groups of nodes. Definition of interference can be easily adapted
to such a situation, where removing a subset of nodes is considered.

In conclusion, the introduction of centrality interference and robustness allows
understanding how a network locally rearranges itself when nodes are removed or
added from/to a network, a common situation in several applications of networks
analysis. An interference analysis allows also to identify which parts of the networks
are influenced by single nodes or by modification on the functionality of such nodes;
with robustness and related notions (dependence and competition values) we may
infer how much the central role of a node can be affected by other nodes in the
network.
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Software Collaboration Networks

Christopher Zachor and Mehmet Hadi Gunes

Abstract. The need to work together with others on large projects has been em-
phasized with industrialization. As the software industry grew, it should be no
surprise that communities to serve this purpose appeared. With the creation of
websites such as Sourceforge.net, Github.com, and Freshmeat .net
developers from around the world are able to collaborate on open source projects.
This paper will attempt to extend previous studies of software collaboration net-
works through the use of network analysis. Examining Sourceforge.net, we ana-
lyze this community of developers who have contributed greatly to open source
software despite not being paid to do so.

1 Introduction

Open source collaboration systems provide an environment for software collabo-
ration. Such systems are popular. For instance, the Sourceforge.net community has
over 250,000 open source projects at the time of this writing. But what are the
characteristics of this large and diverse community? When given to tools to colla-
borate on software, do they work together or separately?

By analyzing this community using social network analysis, we can better under-
stand the developers of open source software. A major challenge for this project is
determining what measures will provide interesting and relevant results. We will at-
tempt to focus on measures and metrics that will provide a better understanding of
the collaborations (or lack thereof) within the SourceForge community.

Previous studies were focused more on the growth of the open source move-
ment rather than the collaborations of the developers [1-3]. While these studies
were useful in the sense that they achieved the goal of understanding the open
source software movement, they have not explored the developers from social
network analysis perspective or their analysis was not tailored to the collaboration
aspects of the network.
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In this paper, we generate various networks from the SourceForge commu-
nity and compute network measures. We want to analyze the groups in the Sour-
ceForge community to determine if it is a diverse collaboration network. Simi-
larly, we would like to determine if there are closely connected communities (i.e.,
cliquish sub-groups) who work exclusively with each other, or do developers work
with people they don't normally collaborate with.

While previous studies focused on the growth of the SourceForge commu-
nity and how it relates to the open source movement, we analyze how these com-
munities function and how they work together to produce software. Interpreting
the measures extracted from a recent snapshot of the network can provide a wealth
of information about how unpaid (with exception to some donations received from
the community) developer's work together to produce software.

2 Related Work

Gao et.al. looked at the growth of the SourceForge community over the course
of approximately two years [1]. During this time frame, the number of projects
grew from about 70,000 to about 90,000. A network was constructed from the re-
lation between the projects and the developers. Three analyses were done on the
network, i.e., structure analysis, centrality analysis, and path analysis. They then
analyzed the project network, the developer network, and the collaboration net-
work. Moreover, Gao et al. developed an agent based modeling to examine the
evolution of the SourceForge communities [2]. While they presented that the
SourceForge community was growing, they were not focused on the diversity
of collaborations within the network. This will be the primary focus of our paper.

Xu, et.al created multiple networks of SourceForge sub-communities to un-
derstand the network and how links are formed within the community structure
[3]. After measuring the degree distribution and showing that it follows the power
law, they indicated the networks are scale free. They found the small world phe-
nomenon, not only within the project leader network and core developer network,
but they also found it in the co-developer and active user networks. However, sim-
ilar to the previous study, they did not focus on the diverse collaborations.

While writing research papers and developing software is not same, the com-
munity structures of people that perform these tasks are, at the very least, similar.
On one hand, you have researchers collaborating to produce a research paper. On
the other hand, you have developers collaborating to produce software. In this
sense software collaboration networks are similar to co-authorship networks.

One of the earlier studies on co-authorship networks was performed by New-
man in [4]. He used four different databases from four different disciplines. In the
study, Newman was able to point out the difference between fields when it comes
to collaboration with other authors. Mathematics was low with about 1 to 1.5 au-
thors per publication. Meanwhile, papers on high-energy physics had an average
of about 8.9 authors. Author also pointed out some databases followed the power
law degree distribution while some did not. Author also indicated potential flaws
in the study. For instance, an author who supposedly published over 1600 papers
in a five year window due to several researchers with the same name that was not
identified during data collection and processing phases.
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3 Methodology

A simple Perl script will download project lists from SourceForge.net and
match HTML tags using regular expressions. By acquiring the project titles, a
script can be written to visit each page through its formatted URL (e.g.
http://sorceforge.net/projects/projectTitle). The project
home page can then be parsed, using regular expressions again, to acquire every
developer involved. When all projects and their corresponding developers have
been collected, the data will be checked for uniqueness.

The first network formed from this data will be a developer collaboration
network. Each node will consist of a developer and every edge will imply project
collaboration between the two. Developers working together multiple times will
not be taken in to account because we are only interested in the diversity of
collaborations, a single edge will be sufficient.

The second topology we will examine is the project-developer network. Nodes
are created using both projects and developers. A link between nodes will imply a
developer has worked on that project. As nodes will be from two distinct groups,
the network will be bipartite.

The first measures we will look at for each graph is degree related. The degree
of a node is the number of edges connected to it. We will also examine the degree
distribution. By looking at the degree distribution, we can determine if the
network follows a power law. Xu, et al. indicated that the SourceForge
community does, in fact, follow the power law [3]. However, the community has
grown by more than double since their study. While this growth should not change
the fact that the degree distribution follows a power law, it is still important to
verify it.

The assortativity coefficient, indicated by equation 1, is also an important
measure [5]. It can give us a measure of the likelihood that nodes of a similar
degree will work together. Thus, we will have higher degree nodes working with
higher degree nodes and lower degree nodes will work with lower degree nodes.
In the case of the SourceForge community, we can look at the higher degree
nodes as the more social developers in the network. Likewise, we can view the
lower degree nodes as the developers who would prefer to work alone. A result
closer to 1 will indicate nodes of a similar degree will likely have links to other
nodes of a similar degree. On the other hand, a result closer to -1 would indicate
that higher degree nodes are working with multiple nodes of a lesser degree.

- > (A, —kik, 12m )k, N
> k9, —kk, /2m)k,

Another measure we will examine is the clustering coefficient of the developer
network. This measure can be useful because social networks tend to have a
higher clustering coefficient than technological or biological networks [5]. We can
look at the network clustering coefficient with the help of the equation 2.
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(number of triangles )x 3

- (number of connected triples) 2

The small world phenomenon is important when discussing collaboration
networks. Each time you work with a new individual, either you learn something
from that individual or they learn something from you. In a small world network,
new ideas or methods can spread very quickly. Xu et al. were able to observe the
small world phenomenon in the SourceForge community [3]. However, the
network has grown drastically over the past years making it necessary to revisit.
What we are looking for is a relatively high clustering coefficient and a low
average shortest path measure. We say relatively because we will construct
random networks of equal nodes and edges. By comparing the differences, we can
verify small world properties within the community. The network should have a
low average shortest path, but the clustering coefficient of the SourceForge
community should be significantly higher than the random network.

4 Results

The data was collected over the course of one week in the middle of November
2010. During this time all projects listed on SourceForge were gathered with
the current number of downloads. Then, each project page was visited to gather all
developers involved in the creation of the application. A total of approximately
250,000 project titles were collected. However, roughly 20,000 of these project
pages were inaccessible. This was due to the page not existing. Many attempts
were made to recover the information from these projects but the pages simply do
not exist. This leads us to believe the projects have been taken down by the au-
thors and SourceForge leaves a record of their existence in the project data-
base. Of the 230,000 remaining projects, only 115,000 had at least one download
or more. The rest of the projects either had no downloads or were marked as inac-
tive by the developer. Projects marked as inactive do not display downloads.
While SourceForge claims to have 2.7 million developers, we found only
~200,000 unique developers who have worked on at least one project. The larger
number given by SourceForge includes community members whether they
have worked on a project or not.

4.1 Degree Distribution

For the Project-Developer Network, there were a total of 430,281 nodes with
276,853 edges. The total number of developers was 204,077. The total number of
projects was 226,204. The average number of projects worked on by the develop-
ers in this network was ~1.35 and the average number of developers per project
came out to ~1.22. These numbers are not surprising because there are a large
number of developers who have worked solo on a single project. We will examine
this further when we discuss the power law properties of the developer network.
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The project that goes by the title “junger]” was found to have the most developers
on a single project with a total of 43 developers. However, on further inspection of
the project, they appear to have produced very little. Meanwhile, the developer
that has produced the most software goes by the user name “roro01” with a total
of 50 open source applications. Most of them appear to be PDF conversion tools.
Finally, the developer who have collaborated the most with others is “bfulgham”.
This developer has worked with a total of 73 other developers on the network.
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One interesting fact about the SourceForge Developer Network is that it
follows the power law. Despite the growth since the last study done on the net-
work, it still follows the power law properties. This means that we have a few de-
velopers who have collaborated with many others (in this case, the highest is 73)
and we have many developers who have collaborated with only one or zero other
developers. In figure 1, we have the degree distribution where the data has been
charted on a log log plot. Figure 3 presents the complementary cumulative distri-
bution function of the degree distribution. Figure 3 shows the data that has not
been binned, but we can see the fat tail that is distinctive of a scale free network.

Fig. 3. Non-binned degree distribution with
“fat tail”
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We should expect that only a few developers will work with so many people and
we should expect that there will be so many in the community who would rather
work alone. Perhaps this tells us something about programmers in general. Some
of us would just rather work on a project alone. We might ask others for help oc-
casionally, but the result will be our own.

4.2 Assortativity and Rich Club

Moreover, the network has an assortativity coefficient of 0.85 indicating that high
degree nodes are connected to other high degree nodes more than the low degree
nodes. This is also reflected in almost exponentially increasing average neighbor
degree distribution in Figure 4. This indicates we have a number of developers
who are more likely to work with other social developers within the community.
In other words, the “social butterflies” of the network do not collaborate with the
“hermits” in the community. This makes sense because social developers might
actively seek group projects and find other social developers seeking for the same.
The developer is also introduced to new developers through these projects. This
gives them a greater opportunity to work with a more diverse collection of devel-
opers as opposed to a solo developer. Thus, their clique keeps growing while the
solo developer collaboration choices remain the same. Additionally, the rich club
connectivity graph in Figure 5 indicates there is a rich club in the network. That is,
considering the connections a small fraction of users are at the core of the network
with majority of links among themselves.

0.001 T 1
1,
i
iy 0.1
0.01
0.0001
0.001 ¢
0.0001
Data — Data ——
1e-05 — —_— 1€-05 ‘ . ‘
1 10 100 1e-05 0.0001 0.001 0.01 0.1 1
Node degree Normalized rank r/N
Fig. 4. Neighbor Degree Distr Fig. 5. Rich Club Connectivity

4.3 Clustering Coefficient

The clustering coefficient for the developer network will give us a measure of the
transitivity between developers. For example, if we look at three specific develop-
ers (A, B, and C), we have a perfect transitivity of one if and only if developer A



Software Collaboration Networks

has worked with developer B, developer
B has worked with developer C, and de-
veloper A has also worked with devel-
oper C. This forms a closed triad among
the three developers. By taking the aver-
age of the entire network, we can get an
idea of how cliquish the developer
community is.

The network clustering coefficient
for the developer network is 0.84396.
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Figure 6 presents the clustering coeffi-
cient distribution with respect to node
degrees. While this is a high number, it
makes sense because most two path
pairs are generally closed because the three developers were working on the same
project together. Thus, all three developers have worked together to close the tri-
ad. Despite being high, the clustering coefficient is only slightly higher than pre-
vious studies [2]. So, even though the network has grown by more than double in
the past three years, the transitivity has remained roughly the same. We should
expect that as the network grows, developers will branch out and form more cli-
ques to fill the gap between possible triads and closed triads.

Fig. 6. Clustering Coefficient Distribution

4.4 Small World Properties

A random network of the same number of nodes and the same average degree was
constructed using the Erdos-Renyi method. The clustering coefficient and average
shortest paths were then measured. The result was an average clustering coeffi-
cient of 0.0000114 was found. This is significantly lower than the developer net-
work's clustering coefficient of ~0.84. The average shortest path of the random
network was approximately 6.6 among reachable pairs. Meanwhile, the developer
network had an average shortest path of nearly 13.5 among reachable pairs.

For a network to exhibit small world properties, it must have a significantly
higher average clustering coefficient and a similar average shortest path of a ran-
dom network with an equal number of nodes and average degree. Because the av-
erage shortest distance is significantly higher in the developer network, we must
conclude that the developer network is not a small world network. The reason for
the higher average distance could be due to the existence of cliquish communities
within the network. These groups of developers generally work together, but one
or two developers within the group may branch out and work with other groups.
This would mean longer paths to reach other developers in other groups. While
previous studies found the SourceForge community to exhibit small world
properties [3], they included non-developers in their network.
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5 Conclusion

We have looked at many different aspects of the SourceForge community
with a focus on the developer's preferences for working in teams. Despite a large
growth in the community, the properties of this social network have remained the
same. Even with the addition of many new developers the clustering coefficient
has remained high. While most of these programmers are not the most team
oriented people on the planet, they are not hermits sitting in a dark room writing
code by themselves. However, we did find that the developers have formed
groups in a sense. Our assortativity measure would indicate that we have groups
of developers who prefer to work with other developers who like to work in
teams. They are also not branching out to work with solo developers in the com-
munity. Thus, we can conclude there is a divide within the network. This divide
is between solo developers, who would prefer to write code alone, and team-
oriented developers, who prefer to work with others. Of course, this raises the
question of whether the solo developers actually prefer to work alone or perhaps
they are not the type of person to go out and find teammates to work with.

Future work for this paper will include the collection of data from Gi-
thub.com, a similar software collaboration network. This will include a com-
parison and analysis of the two communities to determine if Github really is a so-
cial coding network. It will also include a measure of modularity based on various
attributes to better understand what type of developer the communities prefer to
work with.
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