
Software Architectures for Scalable Ontology

Networks

Alessandro Adamou1,2

1 Alma Mater Studiorum Università di Bologna, Italy
2 ISTC, National Research Council, Italy

Abstract. Theory and practice in ontology management are drifting
away from monolithic ontologies towards ontology networks. Processing
interconnected knowledge models, e.g. through reasoning, can provide
greater amounts of explicit knowledge, but at a high computational cost
if the whole knowledge base has to be handled by concurrent processes.
Our research tackles this problem via a software engineering approach.
We devised a framework that combines privileged containers for ontology
models with volatile containers for instance data that vary frequently. A
reference implementation was developed in an Apache project for con-
tent management, and its adoption is providing data and use cases for
validating it with objects from Fedora Commons repositories.

1 Introduction

The discipline and methodologies of ontology engineering are gradually shifting
away from the monolithic notion of ontologies. Current practices and empirical
sciences see reuse as a key criterion for constructing knowledge models today,
so that networking-related concepts are being applied to interconnectivity be-
tween ontologies. As a consequence, the notion of ontology network has begun to
surface. An ontology network is created either at design time (e.g. the engineer
adds OWL import statements and reuses imported entities) or at a later stage
(e.g. someone discovers alignments between multiple ontologies agnostic to each
other, creates an ontology with alignment statements and sets up a top ontology
that imports all of them). Our research concentrates on exploiting the latter
scenario while still accommodating the former.

Establishing ontology networks can have a number of advantages, the most
apparent ones being related to redundancy minimisation and reasoning. Inter-
connecting ontology modules keeps from re-defining basic or shared entities, can
augment knowledge on the given entities and produce even more inferred knowl-
edge when reasoners are run on the network. This is, however, when reasoning
performance issues kick in. Description Logic (DL) classifies a whole knowledge
structure non-selectively, and whether the process is incremental depends on
the reasoner implementation. However, if a reasoner is being run for a specific
task, portions of this knowledge structure could be unnecessary and inflate the
computation to produce results that are no use to the task at hand. Let us con-
sider the social network domain for an example. If the task is to infer a trust

E. Simperl et al. (Eds.): ESWC 2012, LNCS 7295, pp. 844–848, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Software Architectures for Scalable Ontology Networks 845

network of users based on their activity, there is hardly any point in including
the GeoSpecies ontology that classifies life form species1, which could however
be part of the knowledge base. If, however, another task is to infer an affinity
network, GeoSpecies could be considered for assessing affinity between zoologists.

There are also considerations to be made on the network substructure. The
OWL language relies upon import statements to enforce dependency resolution
to a certain extent, and as a de facto standard mechanism it has to be respected.
However, import statements are static artifacts that imply strict dependencies
identified at design time, therefore the dynamic usage of such OWL constructs
has to be delegated to a software platform that serves or aggregates ontologies.
We argue it should be combined with an OWL2-compliant versioning scheme.

2 Problem Statement and Research Questions

Given the above challenges, we have formulated these research questions:

RQ1. How can a single software framework create ontology networks on top of
a common knowledge base, in order to serve them for different processing tasks?

We call these ontology networks virtual, in that it is the framework that can
create, rewrite and break ontology linkage at runtime, as required by a specific
instance-reasoning task, without affecting the logical axioms in the ontologies.

RQ2. Is it possible for such a framework to safely accommodate concurrency in
multi-user contexts, and with minimum resource overhead?

Instance data may vary across simultaneous users of a system, but also with
time (e.g. only a daily snapshot of data feeds, or the whole history of an ABox
for a domain). This variability implies multiple simultaneous virtual networks. A
TBox, on the other hand, can be comprised of consolidated schemas and vocabu-
laries, which would be preposterous to copy across ontology networks. However,
they are generally the ones with a greater impact on reasoner performance, and
users should be able to exclude unneeded parts of them from their networks.
We must also make sure that (i) changes in a user-restricted ABox do not affect
another user’s ABox, and (ii) the memory footprint of ontology networks in the
framework is negligible compared to the combined size of the knowledge base.

RQ3. Can the constructs and limits of standard ontology languages be followed
and exploited to this end, without altering the logical structure of an ontology?

Our goal with RQ3 is to make sure that, whatever objects the framework intro-
duces, they can always be exported to legal OWL 2 artifacts; that they do not
require yet another annotation schema; that they do not force the addition of
logical axioms or the interpretation of existing ones in the original ontologies.

1 GeoSpecies knowledge base, http://lod.geospecies.org



846 A. Adamou

3 Related Work

Networked architectures. Ontology architecture focuses on applying development
and deployment schemes within the ontology lifecycle [6]. In this respect, some
later efforts in ontology repository design such as Cupboard [3] are showing some
concern over their potential use to implement linked ontology networks, as in
the networked model of [5]. The study on ontology architectures has led to the
problem of determining the modular decomposition of monolithic ontologies,
whose theoretical foundations are extensively described in [7].

Methodologies with reuse support. We are concerned with the importance of reuse
in ontology engineering, since reused concepts can be potential interconnection
nodes, with little to no alignment effort. The NeOn Methodololgy [8] and eXtreme
Design [2] are examples of such reuse-oriented design methodologies.

Scalable reasoning. Scalability is addressed with regard to reasoning on modu-
larised ontologies [1], but also to adaptively reacting to changes in an ontology.
Forward-chaining rule-based reasoners such as LMF2 have been proposed as a
trade-off between expressiveness and computational complexity in large datasets.
As for DL reasoning, the approach of Fokoue et al. [4] processes the ontologies
at reasoning time through pruning, summarizing and in-memory imaging.

4 Approach and Implementation

The requirement analysis, design, development and evaluation of our proposed
solution all occur in the field of content management, with the aim to deliver se-
mantically enhanced capabilities to Content Management Systems (CMS). This
setting has allowed us to expand our investigation vertically across knowledge,
persistence, interaction and user management, all the while maintaining an angle
on industrial adoption trends and software engineering.

Our research and design work opted for a separation of concerns between the
structures holding class and instance data, following a finer granularity than
the classic TBox/ABox pair. We devised an architecture where variable instance
data (across time or users) can be orthogonal to vocabularies, meta-models or
consolidated instance data. We then distinguished scenarios where some archi-
tectural layers should be considered ‘privileged’ for update by applications and
CMS administrators, while others (mainly ABox-related) are devoted to volatile
instance data supplied by users or external services for single or batch operations.
Our framework assembles ontology networks using the following constructs:

– Session. A container for instance data loaded at runtime. A user or client
application can open a session, load the ontologies containing instance data
and attach other parts of the network (see below). For instance, to clas-
sify the knowledge extracted from a daily blog post feed, a client can push

2 Linked Media Framework reasoner,
http://code.google.com/p/kiwi/wiki/Reasoning



Software Architectures for Scalable Ontology Networks 847

the corresponding RDF graph into the same session day-by-day. A session
takes ownership of any non-versioned ontologies loaded into it. Although not
intended for persistence, it can last across more HTTP sessions over time.

– Scope. A “realm” for all the ontologies that model a given domain or con-
text. For instance a “social networks” scope can reference FOAF, SIOC,
alignments between these and other related custom models. One or more
scopes can be attached to one or more sessions at once, thereby realizing the
virtual network model. Each scope is divided in two spaces. The core space
contains the ontologies that provide immutable knowledge, such as founda-
tional ontologies. The custom space extends the core space with additional
knowledge such as alignments with controlled vocabularies. Note that one
occurrence of the same ontology can be shared across multiple spaces.

When these artifacts are exported as OWL ontologies, linkage relations are ma-
terialised as owl:imports statements forged for each ontology network, while
owl:versionIRIs are used by these artifacts to either “claim ownership” of the
ontologies they manage or share them (e.g. TBoxes) across networks.

This ontology network management architecture has been implemented as
part of the Apache Stanbol service platform for semantic content manage-
ment3. Since Stanbol is an extensible framework, any plugin can setup and
manage its own ontology scopes and sessions. We contributed the following com-
ponents to the Stanbol ontology manager package:

– OntoNet implements an object model of sessions, scopes and spaces, and
comes with Java and RESTful APIs for configuring ontology networks. On-
toNet implements policies for determining which ontologies to store per-
sistently and which should be either shared or replicated across networks.
The OntoNet constructs are supported by the reasoner features of Stanbol,
which implement background jobs and concurrent reasoning services with
configurable expressivity.

– Ontology registry manager is the facility for referencing ontologies ex-
ternal to Stanbol. By setting up a registry, which is itself an RDF graph,
Stanbol can aggregate its ontologies from all over the Web and make them
available on-demand or OntoNet to assemble them into ontology networks.

At the time of writing, Stanbol is undergoing its release candidate phase. Our
contribution also comes as part of the Interactive Knowledge Stack project4.

5 Validation

With the reference implementation of our framework in place, we are moving
on to the phase of validating it on use cases from the content management do-
main. Small and medium enterprises have committed to adopt Apache Stanbol.
The main use case is provided by a company working in content curation for

3 Apache Stanbol, http://incubator.apache.org/stanbol
4 Interactive Knowledge Stack (IKS), http://code.google.com/p/iks-project/



848 A. Adamou

the visual arts domain. There, a Fedora Commons digital object repository5 is
used to maintain image metadata, which are interconnected with a SKOS-based
representation of the Getty ULAN repository6. OntoNet and reasoners will be
employed to produce knowledge enrichments over the standard Fedora metadata
vocabulary and present different user interface views on them based on different
ontology network configurations. In another use case, OntoNet will be used to
manage simultaneous content hierarchies from a shared repository. Scopes are
selected depending on the knowledge domains that each user decides to activate,
while sessions contain the metadata of user-owned and shared content items.

At the same time, we are developing benchmarking tools to evaluate the
computational efficiency of the system tout-court. Benchmarking will consider
(i) the amount and complexity of different networks that can be setup at the
same time on the same knowledge base, their memory usage and the minimum
Java VM size required; (ii) the overhead given by loading the same ontology
into multiple scopes or sessions; (iii) the duration of DL classification runs on
an ontology network large enough to deliver the expected inferences, compared
against standard DL reasoners called over the non-pruned knowledge base. The
possible size of the knowledge base per se will not be measured as it is strictly
bound to the storage mechanism employed. To date, the system effectiveness has
been measured through unit-testing and stress tests are guaranteeing that we
can set up a scope on a ∼ 200 MiB ontology using a VM ∼ 1.2 times as large.

References

1. Bao, J.: Representing and reasoning with modular ontologies. Ph.D. thesis, Iowa
State University (2007)

2. Blomqvist, E., Presutti, V., Daga, E., Gangemi, A.: Experimenting with eXtreme
Design. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 120–
134. Springer, Heidelberg (2010)

3. d’Aquin, M., Euzenat, J., Le Duc, C., Lewen, H.: Sharing and reusing aligned on-
tologies with Cupboard. In: Gil, Y., Noy, N.F. (eds.) K-CAP. ACM (2009)

4. Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The Summary
Abox: Cutting Ontologies Down to Size. In: Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 343–356. Springer, Heidelberg (2006)

5. Haase, P., Rudolph, S., Wang, Y., Brockmans, S., Palma, R., Euzenat, J., d’Aquin,
M.: D1.1.1 networked ontology model. NeOn Deliverable 1(D1.1.1), 1–60 (2006)

6. Obrst, L.: Ontological Architectures, pp. 27–66. Springer, Netherlands (2010)
7. Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies: Con-

cepts, Theories and Techniques for Knowledge Modularization. LNCS, vol. 5445.
Springer, Heidelberg (2009)

8. Suárez de Figueroa Baonza, M.C.: NeOn Methodology for Building Ontology Net-
works: Specification, Scheduling and Reuse. Ph.D. thesis, Universidad Politécnica
de Madrid, Madrid, Spain (2010)

5 Fedora Commons, http://fedora-commons.org/
6 Union List of Artist Names,
http://www.getty.edu/research/tools/vocabularies/ulan/


	Software Architectures for Scalable Ontology Networks
	Introduction
	Problem Statement and Research Questions
	Related Work
	Approach and Implementation
	Validation
	References




