
Optimising XML–RDF Data Integration
A Formal Approach to Improve XSPARQL Efficiency

Stefan Bischof

Siemens AG Österreich, Siemensstraße 90, 1210 Vienna, Austria
bischof.stefan@siemens.com

Abstract. The Semantic Web provides a wealth of open data in RDF
format. XML remains a widespread format for data exchange. When
combining data of these two formats several problems arise due to rep-
resentational incompatibilities. The query language XSPARQL, which is
built by combining XQuery and SPARQL, addresses some of these prob-
lems. However the evaluation of complex XSPARQL queries by a naive
implementation shows slow response times. Establishing an integrated
formal model for a core fragment of XSPARQL will allow us to improve
performance of query answering by defining query equivalences.

Keywords: Data Integration, Query Optimisation, XQuery, SPARQL.

1 Integrating XML and RDF Data Lacks Efficiency

Data exchange became faster and more convenient by using the Internet. Two
of the predominant formats to exchange data over the Internet but also inside
organisations are XML, used for business data, financial data, etc., and RDF, the
data format of the Semantic Web. While XML is tree based with relevant child
order, RDF data is unordered due to its graph structure. The W3C recommended
query languages for XML and RDF are XQuery and SPARQL, respectively. A
brief example scenario: Fred has to send a report containing the number of bought
items for each customer to Julie. Julie expects a XML document while Fred stores
his data in a RDF triple store. Fred also has to integrate XML documents from
Julie into his triple store. When using standard query languages Fred ends up
with several queries in different languages glued together by scripts.

XSPARQL [3] is a combined query language making transformation and in-
tegration of XML and RDF data easier. XSPARQL extends XQuery by two
additional grammar expressions: the SparqlForClause to use SPARQL’s graph
pattern matching facility including operators, and the ConstructClause to allow
straightforward creation of RDF graphs. Listing 1 shows an example query. Fred
produces the XML document for Julie by taking the RDF graph as input. Graph
patterns are used to query the RDF graph and the variables of the graph pattern
are then used by any XQuery expression. Since XSPARQL is based on XQuery,
a Turing-complete language, it supports all kinds of more sophisticated data ma-
nipulations. Fred can also use XSPARQL to convert Julie’s XML documents to
custom RDF by using a single query containing a construct template.

E. Simperl et al. (Eds.): ESWC 2012, LNCS 7295, pp. 838–843, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimising XML–RDF Data Integration 839

Listing 1. XSPARQL query: List customers with number of bought items

for * where { [] foaf :name $name ; :id $id . }
return <customer name ="{$name}"> { count(

for * where { [] :buyer [:id $id]; :itemRef []. }
return <item />) } </customer >

Efficiency is important when transforming data between XML and RDF. Eval-
uating complex XSPARQL queries, i.e., queries containing nested graph patterns,
shows slow query response times with the current prototype.1 The performance
impact can be explained by the architecture which rewrites XSPARQL queries to
XQuery queries containing external calls to a SPARQL engine. The main advant-
ages of such an implementation are reuse of state of the art query optimisation
as well as access to standard XML databases and triple stores. But for complex
XSPARQL queries a high number of SPARQL queries (similar to each other)
are yielded, resulting in a major performance impact [3, 4, 5]. Listing 1 contains
a nested SparqlForClause in line 3, which depends on the specific customer ID
($id). The implementation issues a separate SPARQL query for each customer.
Simple join reordering [3, 4] improves query answering performance. But there is
still a performance gap between simple flat queries and complex nested queries,
thus optimisations on a more fundamental level are needed.

The XQuery semantics specification[8] formalism, i.e., natural semantics, is
not well suited for concisely expressing query equivalences. As opposed to Rela-
tional Algebra, which serves as the basis for query languages like SPARQL, nat-
ural semantics uses calculus-like rules to specify type inference and evaluation
semantics. Since the XSPARQL semantics reuses the formalism of XQuery, a
concise description of possible optimisations is inhibited by the formalism.

To find and express new optimisations and prove their correctness, we need
a more suitable formalism. Finding such a formalism is the first goal of the
presented PhD topic. Like other formalisms used for query optimisation we also
use only a core fragment of the query language to optimise. We thus propose an
integrated formal model of an XSPARQL core fragment called XS.

Section 2 gives an overview of related work and describes open problems. Sec-
tion 3 explains the approach we propose which involves creating a core formal-
ism to express different kinds of optimisations by query equivalence and rules
for cost-based optimisations. Lastly Sect. 4 outlines the research methodology
for addressing the efficiency problem by a formal approach.

2 Related Work

Some published approaches to combine XML and RDF data use either XML or
RDF query languages or a combination. But none of these approaches is advanced
enough to address “cross-format” optimisation of such transformations. In general
such optimisations could be implemented by translating queries completely to a
1 An online demo and the source code are available at http://xsparql.deri.org/

http://xsparql.deri.org/

840 S. Bischof

single existing query language, such as XQuery, and shift optimisation and query
evaluation to an XQuery engine. Another approach to implement a combined
query language is to build an integrated evaluation engine from scratch.

Translate SPARQL to XQuery. Groppe et al. [12] present a language exten-
sion syntactically similar to XSPARQL, which extends XQuery/XSLT to allow
SPARQL queries as nested expressions. After an initial RDF to XML data trans-
lation the query translation uses an intermediary algebra allowing SPARQL op-
timisation, resulting in a pure XQuery/XSLT query. Fischer et al. [9] implement
a similar approach of rewriting SPARQL queries to XQuery. By using a more
sophisticated initial XML data transformation and heavier triple pattern join re-
ordering, they achieve better performance for queries with simple joins and filters.
Other approaches relying on ontology information are not relevant for the cur-
rent work, as a query language like XSPARQL gives the user fine grained control
over the output and intermediary transformations, but does not work automat-
ically. None of the above approaches address “cross-format” optimisation. As we
have found in our initial practical evaluation, query engines not catering for the
combination of both languages will suffer a severe performance impact when eval-
uating complex queries. Complex queries containing nested graph patterns will
occur frequently in practice when transforming data from RDF to XML because
of the inherent tree shape of the target XML documents.

Optimisation Formalisation. The current formal specification of XSPARQL,
based on XQuery, is too verbose to allow comprehensible specification of op-
timisations. Therefore we are looking for a formalisation supporting our specific
requirements: concise semantics and optimisation specification of a language frag-
ment.

XQuery optimisation is an obvious starting point when investigating optim-
isation of XSPARQL. Some of the recent works on XQuery optimisation use
custom algebras [1, 13, 14]. Other approaches [2, 6, 7, 10, 11] map XQuery to
standard logics (Datalog/logic programming, monadic second order logic) in or-
der to profit from well studied properties. A native algebra easily transfers to
an implementation prototype, however it makes comparisons to other formal-
isms hardly feasible. Using a well known formalisation like Datalog would make
custom XSPARQL optimisations easier since existing optimisation approaches
could be reused.

3 A Formal Model for Cross-Format Optimisation

The first step in addressing the XSPARQL efficiency problem, is to express the
query language semantics in a formal way. Since the XQuery semantics formalism
is operational and rather verbose, we look into alternative formalisms capable
of expressing the language semantics, at least for a core fragment, as well as
expression equivalences and corresponding proofs.

Optimising XML–RDF Data Integration 841

We aim to formalise an XSPARQL core fragment called XS, which is express-
ive enough to cover relevant queries or query parts, and simple enough to be
able to use query equivalences for optimisation heuristics. XS will therefore be
a well behaving formal model providing a unified representation and manipula-
tion framework for (unordered) graph data and (ordered) tree data at the same
time. The optimisation heuristics can also be used for related approaches since
the model works on the data models of XML and RDF. A cost model will be
created, enabling cost based optimisations as well. We will gather data about the
underlying data distribution for the cost model. We will build an XS prototype to
allow comparing the query answering performance to the naive implementation.

Optimisation of query languages operating on the data models of XML and
RDF at the same time are not well studied so far. Since SPARQL and XQuery are
based on different paradigms—SPARQL is a declarative language comparable to
SQL, while XQuery is a functional query language—formalisations differ greatly,
even when considering only fragments, as usually studied for optimisation.

One Limitation of the approach is expressivity: although XSPARQL is very
expressive, we aim at a concise formalisation. Thus XS will disallow many queries.
Even though we are aiming at finding a good compromise between optimisation
and expressivity, increasing expressivity is out of scope of this work.

4 Research Methodology

Finding novel optimisations for querying across formats requires several tasks: lit-
erature search, formalisation, theoretical verification, prototyping, practical eval-
uation and implementation of a relevant use case. All of these tasks are not
executed strictly in sequence, but rather in several iterative refinement steps.

Literature Search. For clearly defining the research problem and ensuring nov-
elty of the approach, we are currently performing an extensive literature
search. Data integration and data exchange are recent topics attracting re-
searchers from different domains. Integrating data from different representa-
tions however, has not seen broad attention. A second topic currently under
investigation is finding an appropriate formalisation for XS.

Core Fragment Isolation and Optimisation. We will isolate an XSPARQL
core fragment which allows expressing practically relevant queries and holds
optimisation potential. Optimisations are defined by query equivalences.

Theoretical Evaluation. The core fragment allows theoretical correctness veri-
fication. Using XS we will prove theoretical properties such as complexity
bounds and query/expression equivalences.

Prototype. A prototype implementation is needed to devise practical evalu-
ations and to implement a demonstration use case. The prototype will be
built using state of the art technology but should still be kept simple enough
to allow quick adaption. We also plan to publish concrete use case solutions
to show feasibility and relevance of our approach in practise.

Practical Evaluation. In previous work we proposed the benchmark suite
XMarkRDF [4] to measure the performance of RDF to XML data trans-
formation. XMarkRDF is derived from the XQuery benchmark suite XMark.

842 S. Bischof

We will extend XMarkRDF by queries covering specific types of joins as
addressed by the XS optimisations. With this benchmark suite we plan to
compare our optimisations to the current implementation and to comparable
implementations such as the translator presented by Groppe et al. [12].

In summary the research topic includes isolating an XSPARQL core fragment,
finding or creating a suitable formalisation (a unified graph-tree data processing
framework), describing optimisations by query equivalences, proving soundness,
evaluating performance practically and showing applicability in a prototype.
With the unified formal model for XML–RDF querying, we aim to provide a
tool to formally study heterogeneous data integration and improve query per-
formance.

Acknowledgements. The work of Stefan Bischof will be partly funded by a
PhD thesis grant from Siemens AG Österreich. The goal of this grant is that in
the course of his thesis, he will investigate the potential to deploy the developed
technologies within real-life data integration use cases within Siemens. Prelim-
inary results have been partly funded by Science Foundation Ireland grant no.
SFI/08/CE/I1380 (Lion-2) and an IRCSET grant.

References

1. Beeri, C., Tzaban, Y.: SAL: An Algebra for Semistructured Data and XML. In:
WebDB (Informal Proceedings) 1999, pp. 37–42 (June 1999)

2. Benedikt, M., Koch, C.: From XQuery to Relational Logics. ACM Trans. Database
Syst. 34(4), 25:1–25:48 (2009)

3. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping
between RDF and XML with XSPARQL. Tech. rep., DERI (March 2011),
http://www.deri.ie/fileadmin/documents/DERI-TR-2011-04-04.pdf

4. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between
RDF and XML with XSPARQL (2011) (under submission)

5. Bischof, S., Lopes, N., Polleres, A.: Improve Efficiency of Mapping Data between
XML and RDF with XSPARQL. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011.
LNCS, vol. 6902, pp. 232–237. Springer, Heidelberg (2011)

6. ten Cate, B., Lutz, C.: The Complexity of Query Containment in Expressive Frag-
ments of XPath 2.0. J. ACM 56(6), 31:1–31:48 (2009)

7. ten Cate, B., Marx, M.: Axiomatizing the Logical Core of XPath 2.0. Theor. Comp.
Sys. 44(4), 561–589 (2009)

8. Draper, D., Fankhauser, P., Fernández, M., Malhotra, A., Rose, K., Rys, M., Siméon,
J., Wadler, P.: XQuery 1.0 and XPath 2.0 Formal Semantics, 2nd edn. W3C Re-
commendation, http://www.w3.org/TR/2010/REC-xquery-semantics-20101214/

9. Fischer, P.M., Florescu, D., Kaufmann, M., Kossmann, D.: Translating SPARQL
and SQL to XQuery. In: XML Prague 2011, pp. 81–98 (March 2011)

10. Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath Quer-
ies. ACM Trans. Database Syst. 30, 444–491 (2005)

http://www.deri.ie/fileadmin/documents/DERI-TR-2011-04-04.pdf
http://www.w3.org/TR/2010/REC-xquery-semantics-20101214/

Optimising XML–RDF Data Integration 843

11. Gottlob, G., Koch, C., Pichler, R., Segoufin, L.: The Complexity of XPath Query
Evaluation and XML Typing. J. ACM 52(2), 284–335 (2005)

12. Groppe, S., Groppe, J., Linnemann, V., Kukulenz, D., Hoeller, N., Reinke, C.: Em-
bedding SPARQL into XQuery/XSLT. In: SAC 2008, pp. 2271–2278. ACM (2008)

13. Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., Thompson, K.: TAX: A Tree
Algebra for XML. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397,
pp. 149–164. Springer, Heidelberg (2002)

14. Zhang, X., Pielech, B., Rundesnteiner, E.A.: Honey, I Shrunk the XQuery!: an XML
Algebra Optimization Approach. In: WIDM 2002, pp. 15–22. ACM (2002)

	Optimising XML–RDF Data Integration A Formal Approach to Improve XSPARQL Efficiency

	Integrating XML and RDF Data Lacks Efficiency
	Related Work
	A Formal Model for Cross-Format Optimisation
	Research Methodology
	References

