
A Structural Approach to Indexing Triples

François Picalausa1, Yongming Luo2, George H.L. Fletcher2,
Jan Hidders3, and Stijn Vansummeren1

1 Université Libre de Bruxelles, Belgium
{fpicalau,stijn.vansummeren}@ulb.ac.be

2 Eindhoven University of Technology, The Netherlands
{y.luo,g.h.l.fletcher}@tue.nl

3 Delft University of Technology, The Netherlands
{a.j.h.hidders}@tudelft.nl

Abstract. As an essential part of the W3C’s semantic web stack and
linked data initiative, RDF data management systems (also known as
triplestores) have drawn a lot of research attention. The majority of
these systems use value-based indexes (e.g., B+-trees) for physical stor-
age, and ignore many of the structural aspects present in RDF graphs.
Structural indexes, on the other hand, have been successfully applied in
XML and semi-structured data management to exploit structural graph
information in query processing. In those settings, a structural index
groups nodes in a graph based on some equivalence criterion, for exam-
ple, indistinguishability with respect to some query workload (usually
XPath). Motivated by this body of work, we have started the SAINT-DB
project to study and develop a native RDF management system based
on structural indexes. In this paper we present a principled framework
for designing and using RDF structural indexes for practical fragments
of SPARQL, based on recent formal structural characterizations of these
fragments. We then explain how structural indexes can be incorporated
in a typical query processing workflow; and discuss the design, imple-
mentation, and initial empirical evaluation of our approach.

1 Introduction

As an essential part of the W3C’s semantic web stack, the RDF data model
is finding increasing use in a wide range of web data management scenarios,
including linked data1. Due to its increasing popularity and application, recent
years have witnessed an explosion of proposals for the construction of native
RDF data management systems (also known as triplestores) that store, index,
and process massive RDF data sets.

While we refer to recent surveys such as [12] for a full overview of these pro-
posals, we can largely discern two distinct classes of approaches. Value-based
approaches focus on the use of robust relational database technologies such as
B+-trees and column-stores for the physical indexing and storage of massive
1 http://linkeddata.org/

E. Simperl et al. (Eds.): ESWC 2012, LNCS 7295, pp. 406–421, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://linkeddata.org/


A Structural Approach to Indexing Triples 407

RDF graphs, and employ established relational database query processing tech-
niques for the processing of SPARQL queries [1, 7, 15, 18, 22]. While value-based
triplestores have proven successful in practice, they mostly ignore the native
graph structure like paths and star patterns that naturally occur in RDF data
sets and queries. (Although some value-based approaches consider extensions to
capture and materialize such common patterns in the data graph [1, 15].)

Graph-based approaches, in contrast, try to capture and exploit exactly this
richer graph structure. Examples include GRIN [20] and DOGMA [6], that pro-
pose index structures based on graph partitioning and distances in the graphs,
respectively. A hybrid approach is taken in dipLODocus[RDF], where value-
based indexes are introduced for more or less homogeneous sets of subgraphs [23].
These somewhat ad-hoc approaches work well for an established query workload
or class of graph patterns, but it is unclear how the indexed patterns can flexibly
support general SPARQL queries outside of the supported set.

Structural indexes have been successfully applied in the semi-structured and
XML data management context to exploit structural graph information in query
processing. A structural index is essentially a reduced version of the original data
graph where nodes have been merged according to some notion of structural
similarity such as bisimulation [4, 5, 9, 13]. These indexes effectively take into
account the structure of both the graph and query, rather then just the values
appearing in the query as is the case for value-based indexes. Furthermore, the
success of structural indexes hinges on a precise coupling between the expressive
power of a general query language and the organization of data by the indexes [9].
The precise class of queries that they can support is therefore immediately clear,
thereby addressing the shortcomings of other graph-based approaches.

While structural indexes have been explored for RDF data, for example in
the Parameterizable Index Graph [19] and gStore [24] proposals, these proposals
simplify the RDF data model to that of resource-centric edge-labeled graphs
over a fixed property label alphabet (disallowing joins on properties), which is
not well-suited to general SPARQL query evaluation where pattern matching
is triple-centric, i.e., properties have the same status as subjects and objects.
The relevance of such queries is observed by studies of the usage of SPARQL in
practice [3,16]. Furthermore, there is no tight coupling of structural organization
of these indexes to the expressivity of a practical fragment of SPARQL.

Motivated by these observations, we have initiated the SAINT-DB (Struc-
tural Approach to INdexing Triples DataBase) project to study the foundations
and engineering principles for native RDF management systems based on struc-
tural indexes that are faithful to both the RDF data model and the SPARQL
query language. As a initial foundation, we have recently established a precise
structural characterization of practical SPARQL fragments in terms of graph
simulations [8]. Our goal in SAINT-DB is to leverage this characterization in
the design of native structural indexing solutions for massive RDF data sets.

Contributions and Overview. In this article, we report on our first results in
SAINT-DB. In particular, we make the following contributions: (1) A new no-
tion of structural index for RDF data is introduced that, reflecting the SPARQL



408 F. Picalausa et al.

t1 : (sue, type, CEO)
t2 : (crispin, type, VP)
t3 : (sue, manages, joe)
t4 : (joe, reportsTo, jane)
t5 : (jane, friendOf, lucy)
t6 : (crispin, knows, larry)
t7 : (larry, bestFriendOf, sarah)
t8 : (sarah, dislikes, hiromi)
t9 : (manages, type, socialRel)

t10 : (reportsTo, type, socialRel)
t11 : (friendOf, type, socialRel)
t12 : (knows, type, socialRel)
t13 : (bestFriendOf, type, socialRel)
t14 : (dislikes, type, socialRel)
t15 : (yonei, knows, yongsik)
t16 : (yongsik, reportsTo, tamae)
t17 : (kristi, manages, filip)
t18 : (filip, bestFriendOf, sriram)

Fig. 1. A small RDF graph, with triples labeled for ease of reference

language, contains complete triple information and therefore allows for the re-
trieval of sets of triples rather than sets of resources. (2) A formalization of the
structural index, coupled to the expressivity of practical fragments of SPARQL,
is given, together with the algorithms for building and using it. (3) We demon-
strate the effective integration of structural indexing into a state-of-the-art triple
store with cost-based query optimization.

We proceed as follows. In Sec. 2 we introduce our basic terminology for query-
ing RDF data. In Sec. 3 we present the principles behind triple-based structural
indexes for RDF. In Sec. 4 we then discuss how these principles can be put into
practice in a state of the art triple store. In Sec. 5, we present an empirical
study where the effectiveness of the new indices within this extended triple store
is demonstrated. Finally, in Sec. 6 we present our main conclusions and give
indications for further research.

2 Preliminaries

RDF. All information in RDF is uniformly represented by triples of the form
(s, p, o) over some fixed but unspecified universe U , (s, p, o) ∈ U3. Here, s is
called the subject, p is called the predicate, and o is called the object. An RDF
graph D is a finite set of RDF triples, D ⊆ U3. To illustrate, a small RDF graph
of social relationships in a corporate setting is given in Fig. 1.

BGP Queries. RDF comes equipped with the SPARQL [17] language for query-
ing data in RDF format. Using so-called basic graph patterns (BGPs for short)
as building blocks, SPARQL queries search for specified subgraphs of the input
RDF graph. While SPARQL queries can be more complex in general, we will
focus in this article on so-called BGP queries: SPARQL queries that consist of
basic graph patterns only. The reason for this is threefold. First and foremost,
the evaluation of basic graph patterns is a problem that occurs as a subproblem
in all SPARQL query evaluation problems. Second, BGP queries correspond to
the well-known class of conjunctive queries from relational databases. Third, re-
cent analysis of real-world SPARQL query logs has illustrated that the majority
of SPARQL queries posed in practice are BGP queries [3, 16].



A Structural Approach to Indexing Triples 409

The formal definition of BGP queries is as follows. Let V = {?x, ?y, ?z, . . . }
be a set of variables, disjoint from U . A triple pattern is an element of (U ∪V)3.
We write vars(p) for the set of variables occurring in triple pattern p. A basic
graph pattern (BGP for short) is a set of triple patterns. A BGP query (or simply
query for short) is an expression Q of the form select X where P where P is
a BGP and X is a subset of the variables mentioned in P .

Example 1. As an example, the following BGP query retrieves, from the RDF
graph of Fig. 1, those pairs of people pa and pc such that pa is a CEO and pc

has a social relationship with someone directly related to pa.

select ?pa, ?pc

where { (?pa, type,CEO), (?pa, ?relab, ?pb), (?pb, ?relbc, ?pc),
(?relab, type, socialRel), (?relbc, type, socialRel)} ��

To formally define the semantics of triple patterns, BGPs, and BGP queries,
we need to introduce the following concepts. A mapping μ is a partial function
μ : V → U that assigns values in U to a finite set of variables. The domain of μ,
denoted by dom(μ), is the subset of V where μ is defined. The restriction μ[X ]
of μ to a set of variables X ⊆ V is the mapping with domain dom(μ) ∩ X such
that μ[X ](?x) = μ(?x) for all ?x ∈ dom(μ) ∩ X . Two mappings μ1 and μ2 are
compatible, denoted μ1 ∼ μ2, when for all common variables ?x ∈ dom(μ1) ∩
dom(μ2) it is the case that μ1(?x) = μ2(?x). Clearly, if μ1 and μ2 are compatible,
then μ1 ∪ μ2 is again a mapping. We define the join of two sets of mappings Ω1

and Ω2 as Ω1 �� Ω2 := {μ1∪μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2, μ1 ∼ μ2}, and the projection
of a set of mappings Ω to X ⊆ V as πX(Ω) := {μ[X ] | μ ∈ Ω}. If p is a triple
pattern then we denote by μ(p) the triple obtained by replacing the variables in
p according to μ. Semantically, triple patterns, BGPs, and queries evaluate to a
set of mappings when evaluated on an RDF graph D:

�p�D := {μ | dom(μ) = vars(p) and μ(p) ∈ D},
�{p1, . . . , pn}�D := �p1�D �� · · · �� �pn�D,

�select X where P �D := πX(�P �D).

Example 2. Let Q be the query of Example 1 and D be the dataset of Fig. 1.
Then �Q�D = {〈?pa �→ sue, ?pc �→ jane〉}. In other words, Q evaluated on D
contains a single mapping μ, where μ(?pa) = sue and μ(?pc) = jane. ��

3 Principles of Triple-Based Structural Indexing

To evaluate a BGP P = {p1, . . . , pn} on an RDF graph D we need to perform
n − 1 joins �p1�D �� · · · �� �pn�D between subsets of D. Since D is large in
practice, we are interested in pruning as much as possible the subsets �pi�D of
D that need to be joined, where 1 ≤ i ≤ n. In particular, we are interested in
efficiently removing from �pi�D any “dangling” triples that do not participate in
the full join. Towards this purpose, we next introduce the notions of equality
type and structural index.



410 F. Picalausa et al.

Definition 1. An equality type is a set of pairs (i, j) with 1 ≤ i, j ≤ 3. Intu-
itively, a pair (i, j) in an equality type indicates the position in which two triples
share a common value. In particular, let t = (t1, t2, t3) and u = (u1, u2, u3)
be two RDF triples or two triple patterns. Then the equality type of t and u,
denoted eqtp(t, u), is defined as eqtp(t, u) := {(i, j) | ti = uj and 1 ≤ i, j ≤ 3}.
Essentially, the equality type of t and u specifies the kinds of natural joins that
t and u can participate in. For example, when evaluating the BGP {(?x, ?y, 1),
(?z, ?x, ?y)} we are looking for triples t and u such that {(1, 2), (2, 3)}⊆eqtp(t, u).
This is a necessary condition in general for a mapping to be in a BGP result:

μ ∈ �P �D ⇒ eqtp(p, q) ⊆ eqtp(μ(p), μ(q)) for all p, q ∈ P.

Intuitively speaking, a structural index (defined below) groups triples into
index blocks, and summarizes the equality types that exist between triples in
those blocks. The necessary condition above can then be used to prune triples
that can never realize the desired equality type, by looking at the structural
index only.

Definition 2 (Structural Index). Let T denote the set of all equality types
and let D be an RDF graph. A structural index for D is an edge-labeled graph
I = (N, E) where N is a finite set of nodes, called the blocks of the index, and
E ⊆ N × T × N is a set of edges labeled by equality types. The nodes N of I
must be sets of triples in D (i.e., N ⊆ 2D), and must form a partition of D. We
write [t]I to denote the unique block of I that contains t ∈ D. Furthermore, it is
required that E reflects the equality types between the triples in its blocks, in the
sense that for all t, u ∈ D we must have ([t]I , eqtp(t, u), [u]I) ∈ E.

An embedding of a BGP P into a structural index I is a function α : P → N
that assigns to each triple pattern p ∈ P a node α(p) ∈ N such that for every
p, q ∈ P there exists τ ∈ T with eqtp(p, q) ⊆ τ and (α(p), τ, α(q)) ∈ E.

Example 3. Consider the graph shown in Fig. 2, where nodes are labeled with
triples from the dataset D of Fig. 1, and, for clarity of presentation, self-loops (all
labeled by {(1, 1), (2, 2), (3, 3)}), symmetric edges (e.g., there is also a {(1, 3)}
edge from n3 to n2), and transitive edges (e.g., there are also {(2, 2)} edges
between n1 and n6 and n1 and n7) have been suppressed. The reader is invited
to verify that this graph is indeed a structural index for D, and that there is only
one embedding α of the BGP of query Q of Example 1 into this structural index.
In particular, α assigns the triple patterns (?pa, ?relab, ?pb) and (?pb, ?relbc, ?pc)
of Q to index nodes n2 and n3, respectively. Whereas in the absence of structural
information, these triple patterns individually can match any triple of D, α
restricts their possible bindings to a small fraction of D, a significant reduction
in search space for evaluating Q on D. ��

3.1 Query Processing with Structural Indexes

The following proposition (proof omitted) establishes in general this connec-
tion between query embeddings in a structural index and query evaluation on a
dataset.



A Structural Approach to Indexing Triples 411

n
1

n
9

n
2

n
3 n

4

n
5

n
6

n
7

n
8

Fig. 2. A structural index for the RDF graph of Fig. 1. As described in Example 3, a
few edges have been suppressed for clarity of presentation.

Proposition 1. Let P = {p1, . . . , pn} be a BGP, let D be a dataset, let I be a
structural index for D and let A be the set of all embeddings of P into I. Then

�P �D =
⋃

α∈A

�p1�α(p1) �� · · · �� �pn�α(pn)

= �p1�⋃
α∈A α(p1) �� · · · �� �pn�⋃

α∈A α(pn)

This proposition indicates two natural ways we can use a structural index I
to alternatively compute �P �D:

(M1). First compute the set A of all embeddings of P into I. Ideally, I is
small enough so that finding these embeddings is computationally fast. For
each α ∈ A we join �p1�α(p1) �� · · · �� �pn�α(pn), and add the result to
the output. Note that, since α(pi) ⊆ D for each 1 ≤ n, also �pi�α(pi) ⊆
�pi�D. Potentially, therefore, we compute joins on smaller relations than
when computing �p1�D �� · · · �� �pn�D. Nevertheless, we risk computing
many such joins (as many as there are embeddings of P into I).

(M2). To circumvent this problem, we can alternatively compute, for each i,
the subset Di =

⋃
α∈A α(pi) of D, and then join �p1�D1 �� · · · �� �pn�Dn .

This requires computing the join only once, but on larger subsets of D.

We will empirically validate the effectiveness of these methods in Section 5.2.

3.2 Index Construction

A crucial assumption in the query processing strategies (M1) and (M2) outlined
above is that the structural index I is small enough to efficiently compute em-
beddings on, yet detailed enough to ensure that candidate triples that cannot



412 F. Picalausa et al.

participate in the required joins are pruned. Indeed, note that computing all
embeddings of P in the trivial index I in which each block consists of a single
triple will be as hard as computing the result of P on D itself. On the other
hand, while it is trivial to compute all embeddings of P into the other trivial
index J in which all triples are kept in a single block, we always have α(pi) = D
and hence no pruning is achieved.

We next outline a method for constructing structural indexes that are guaran-
teed to have optimal pruning power for the class of so-called pure acyclic BGPs,
in the following sense.

Definition 3 (Pruning-optimal). A structural index I for RDF graph D is
pruning-optimal w.r.t. BGP P if, for every p ∈ P , we have πvars(p)�P �D =
�p�⋃

α∈A α(p), where A is the set of all embeddings of P in I. Index I is pruning-
optimal w.r.t. a class of BGPs C if I is pruning-optimal w.r.t. every P ∈ C.

Note that the inclusion πvars(p)�P �D ⊆ �p�⋃
α∈A α(p) always holds due to Prop. 1.

The converse inclusion does not hold in general, however.
Stated differently, pruning-optimality says that every element in �p�α(p) can

be extended to a matching in �P �D, for every triple pattern p ∈ P and every
embedding α of P into I. Hence, when using Prop. 1 to compute �P �D we indeed
optimally prune each relation �pi�D to be joined.

As already mentioned, we will give a method for constructing structural in-
dexes that are pruning-optimal w.r.t. the class of so-called pure acyclic BGPs.
Here, purity and acyclicity are defined as follows.

Definition 4. A BGP P is pure if it contains only variables, i.e., if P ⊆ V3.

The restriction to pure BGPs is motivated by the following proposition, stating
that pruning-optimal indexes do not always exist for non-pure BGPs. Intuitively,
this is due to the fact that structural indexes only contain information about the
joins that can be done on an RDF graph D, but do not contain any information
about the universe values present in D. Since non-pure BGP do query for these
universe values, structural indexes do not have enough information to ensure that
for every α, every p, q ∈ P and every t ∈ �p�α(p) there always exists a matching
tuple u ∈ �q�t that not only has the correct join type (i.e., eqtp(p, q) ⊆ eqtp(t, u)
but also fulfills the universe value constraints required by q (i.e., u ∈ �q�D).

Proposition 2. Let p, q be distinct triple patterns with eqtp(p, q) �= ∅ and {p, q}
not pure. There exists an RDF graph D such that any structural index I for D
is not pruning-optimal w.r.t. P .

The other restriction, acyclicity is a very well-known concept for relational select-
project-join queries [2]. Its adaption to BGP queries is as follows.

Definition 5 (Acyclicity). A BGP P is acyclic if it has a join forest. A join
forest for P is a forest F (in the graph-theoretical sense) whose set of nodes
is exactly P such that, for each pair of triple patterns p and q in P that have
variables in common the following two conditions hold:



A Structural Approach to Indexing Triples 413

1. p and q belong to the same connected component of F ; and
2. all variables common to p and q occur in every triple pattern on the (unique)

path in F from p to q.

The depth of F is the length of the longest path between any two nodes in F .
The depth of an acyclic BGP P is the minimum depth of a join forest for P .

Recent analysis has illustrated that 99% of the BGP queries found in real-world
SPARQL query logs are acyclic [16]. The class of acyclic BGPs is hence of prac-
tical relevance.

Similar to the way in which the concept of graph bisimulation (as used e.g.,
in modal logic and process calculi) is used to build structural indexes for semi-
structured and XML databases and XPath-based query languages (e.g., [4, 9]),
our pruning-optimal index is obtained by grouping triples that are equivalent
under the following notion of guarded simulation.

Definition 6 (Guarded simulation). Let D be an RDF graph and let k be a
natural number. We say that u ∈ D simulates t ∈ D guardedly up to depth k,
denoted t �k u, if either (1) k = 0; or (2) if k > 0 there exists for every t′ ∈ D
some u′ ∈ D such that eqtp(t, u) ⊆ eqtp(t′, u′) and t′ �k−1 u′. We write t �k u
if t �k u and u �k t. Finally, we write t � u if t �k u for every k.

Although space constraints prohibit us from discussing the origin of the above
definition in detail (cf. [8]), readers familiar with the notion of graph simulation
may note that the above notion of guarded simulation is equivalent to the graph
simulation (up to depth k) of the edge-labeled graph G = (D, {(t, τ, u) ∈ D×T ×
D | τ ⊆ eqtp(t, u)}) to itself. It follows immediately that efficient main-memory
algorithms for computing the relations �k and � hence exist [10, 21].

Definition 7 (Simulation Index). The depth-k simulation index of RDF
graph D, denoted simk(D), is the structural index I = (N, E) for D such that

– N consists of the equivalence classes of �k, i.e., if we denote by [t]�k
the set

{u ∈ D | t �k u} then N = {[t]�k
| t ∈ D}.

– E = {([t]�k
, τ, [u]�k

) | t, u ∈ D, τ = eqtp(t, u)}.
The simulation index of D, denoted sim(D) is defined similarly, but then using
� instead of �k.

The following proposition (proof omitted) shows that simulation indexes are
pruning-optimal with respect to the class of pure acyclic BGPs.

Proposition 3. Let D be an RDF graph. sim(D) is pruning-optimal w.r.t. the
class of pure acyclic BGPs. Moreover, simk(D) is pruning-optimal w.r.t the class
of pure acyclic BGPs of depth at most k, for each k.

Although pure BGPs are infrequent in practice, they are the only reasonable
class of queries to couple queries with structural indexes from a theoretical point
of view, as indicated by Prop. 2. This result hence shows that the sim(D) and
simk(D) indexes allow one to take into account precisely the structural (join)
information in the dataset.



414 F. Picalausa et al.

4 Applying the Principles in Practice

In this section we discuss the design of SAINT-DB in which we have implemented
the principles of Sec. 3. We start with a description of the triplestore upon which
SAINT-DB is built.

RDF-3X. RDF-3X is a state-of-the-art, open source native RDF storage and
retrieval system [15]. It is widely used by the research community and has,
according to many previous studies, excellent query performance.

RDF-3X makes extensive use of B+-trees as its core underlying data structure.
In particular, it stores all (s, p, o) triples of the RDF graph in a (compressed)
clustered B+-tree in which the triples themselves act as search keys. This means
that the triples are sorted lexicographically in the leaves of the B+-tree, which
allows the conversion of triple patterns into efficient range scans. For example, to
compute �(jane, friendOf, ?x)�D it suffices to search the B+-tree using the prefix
search key (jane, friendOf), and subsequently scan the relevant leaf pages to find
all bindings for ?x. RDF-3X actually employs this idea aggressively: to guarantee
that not only triple patterns of the form (jane, friendOf, ?x) can be answered
by efficient range scans, but also triple patterns of the form (?x, friendOf, lucy),
(jane, ?x, ?y), and so on, it maintains all six possible permutations of subject (S),
predicate (P) and object (O) in six separate indexes (corresponding to the sort
orders SPO, SOP, PSO, . . . ). Compression of the B+-tree leaf pages is used to
minimize storage overhead. Since each possible way of lexicographically ordering
the RDF graph (SPO, SOP, PSO, . . . ) is materialized in a separate index, joins
can be answered using efficient merge-only joins during query processing (as
opposed to the sort-merge joins that are normally required). We mention that in
addition, RDF-3X also builds six so-called aggregated indexes and three so-called
one-valued indexes, but refer to RDF-3X paper for full details [15].

The RDF-3X query optimizer uses detailed statistics (available, among oth-
ers, in the aggregated and one-valued indexes) to efficiently generate bushy join
orderings and physical query plans using an RDF-tailored cardinality and selec-
tivity estimation algorithm [15].

SAINTDB. SAINT-DB represents structural indexes I = (N, E) by assigning
a unique integer id(n) > 0 to each index block n ∈ N . Both the partition N of
D and D itself are represented by storing all triples (s, p, o) ∈ D as quads of the
form (s, p, o, id([s, p, o]I)), where id([s, p, o]I) denotes the identifier of the index
block containing (s, p, o). The set of labeled edges E over N is represented by
storing each (m, τ, n) ∈ E also as a quad (id(m), τ, id(n), 0), where the 0 in the
fourth column allows us to distinguish quads that represent E-edges from quads
representing D-triples. All of these quads are conceptually stored in a single
quaternary relation.

Since SAINT-DB hence stores quads instead of triples, we have updated the
complete RDF-3X infrastructure (B+-tree storage management and indexes,
query optimization and compilation, query processing, data statistics, etc.) to
reason about quads instead of triples. This effectively means that we save all
permutations of subject (S), predicate (P), object (O), and block-id (B) (as well



A Structural Approach to Indexing Triples 415

as their aggregate and one-value versions) into B+-trees. As a consequence, it
becomes possible to retrieve the set of all triples that (1) match a given triple
pattern and (2) belong to a given index block by accessing the suitable B+-
tree. For example, to compute �(jane, friendOf, ?x)�n with n an index block we
would search the SPBO B+-tree using the prefix key (jane, friendOf, id(n)) and
find all bindings for ?x using a range scan over the corresponding leaves. This
idea is easily extended to compute the set of all triples that (1) match a given
triple pattern and (2) belong to a set of given index blocks. For example, to
compute �(jane, friendOf, ?x)�n1∪n2 we would search and scan the SPBO B+-
tree using the prefix key (jane, friendOf, id(n1)); search and scan again using the
(jane, friendOf, id(n2)) prefix; and merge the two results to produce a sorted list
of bindings for ?x.

Adding Predicates to the Index. During our experiments we have noticed
that the set A of all embeddings of BGP P into I frequently contains embeddings
α that cannot contribute to �P �D due to the fact that, for some triple pattern
p ∈ P , there is actually no triple in α(p) that mentions the constants required
in p. To remedy this deficiency while keeping the index small, we store, for each
index block n ∈ N the set preds(n) of predicates mentioned, preds(n) := {pred |
(s, pred, o) ∈ n}. Since the set of all predicates used in an RDF graph is typically
quite small, each preds(n) is also small and efficient to represent. By storing
preds(n) in the index we can then remove from A all embeddings α for which
there is some triple pattern (s, p, o) ∈ P with p a constant and p �∈ preds(n). Let
us denote this reduced set of embeddings by A′.

SAINTDB Query Processing. We have implemented the following three
query processing strategies in SAINT-DB. In each of these strategies, we first
compute the reduced set A′ of embeddings of the P into I, as described above.

The first two strategies corresponds to the methods (M1) and (M2) described
in Sec. 3 where embeddings are only taken from A′ and where the sets �pi�α(pi)

and �pi�⋃
α∈A′ α(p) are computed using the suitable B+-tree range scans, as out-

lined above. No join ordering is attempted; all joins are executed in the same
order as when RDF-3X computes �p1�D �� · · · �� �pn�D. Since the operands
of the (M1) and (M2) may be smaller than the corresponding operands of the
RDF-3X join, this order may not be optimal.

The third strategy, denoted (M3) in what follows, is a variant of (M2) that
employs full quad-based query optimization to reach a suitable physical query
plan. In particular, (M3) uses the statistics to estimate the cardinality of both
�p�D and �p�⋃

α∈A′ , for each p ∈ P . In the event that the set {α(p) | α ∈
A} contains multiple index blocks (and we hence have to do multiple B+-tree
scans and merge the results) it uses these cardinalities to check that the costs
for loading and merging �p�⋃

α∈A α(p) is lower than the cost of simply loading
�p�D. If not, the structural index information is thrown away, and �p�D will be
executed (but only for the triple pattern under consideration in isolation). Once
it has determined, for each triple pattern, whether the available structural index
embeddings should be used, it computes a bushy join ordering and physical plan,
based on the quad cardinality statistics.



416 F. Picalausa et al.

5 Experimental Validation

5.1 Experimental Setup

We have implemented SAINT-DB upon RDF-3X version 0.362. All experiments
described in this section have been run on an Intel Core i7 (quad core, 3.06 GHz,
8MB cache) workstation with 8GB main memory and a three-disk RAID 5 array
(750GB, 7200rpm, 32MB cache) running 64-bit Ubuntu Linux.

Our performance indicator is the number of I/O read requests issued by
SAINT-DB and RDF-3X, measured by counting the number of calls to the buffer
manager’s readPage function. Thereby, our measurements are independent of
the page buffering strategies of the system. Since SAINT-DB currently does not
yet feature compression of the B+-tree leaf pages, we have also turned off leaf
compression in RDF-3X for fairness of comparison. During all of our experiments
the structural indexes were small enough to load and keep in main memory. The
computation of the set of all embeddings into the index hence does not incur
any I/O read requests, and is not included in the figures mentioned.

Datasets, Queries, and Indexes. We have tested SAINT-DB on two syn-
thetic datasets and one real-world dataset. The first synthetic dataset, denoted
CHAIN, is used to demonstrate the ideal that SAINT-DB can achieve on highly
graph-structured and repetitive data. It contains chains of triples of the form
(x1, y1, x2), (x2, y2, x3), . . . , (xn, yn, xn+1), with chain length n ranging from 3
to 50. Each chain is repeated 1000 times and CHAIN includes around 1 mil-
lion triples in total. The full simulation index sim(CHAIN) has been gener-
ated accordingly, and consists of 1316 index blocks, each consisting of 1000
triples. On CHAIN we run queries that also have a similar chain-shaped style
(?x1, ?y1, ?x2), (?x2, ?y2, ?x3), . . . , (?xn, ?yn, ?xn+1), with n varying from 4 to 7.

The second synthetic dataset, denoted LUBM, is generated by the Lehigh
University Benchmark data generator [11] and contains approximately 2 million
triples. For this dataset, we computed the depth-2 simulation index sim2(LUBM),
which consists of 222 index blocks. Index blocks have varying cardinalities, con-
taining as little as 1 triple to as many 190,000 triples.

The real-world RDF dataset, denoted SOUTHAMPTON, is published by the
University of Southampton3. It contains approximately 4 million triples. For this
dataset, we also computed the depth-2 simulation index sim2(SOUTHAMPTON),
which consists of 380 index blocks. Index blocks have varying cardinalities, con-
taining as little as 1 triple to as many 106 triples.

For all datasets the indexes in their current non-specialized form require only
a few megabytes and therefore can be kept in main memory. A specialized in-
memory representation could easily further reduce this footprint. The detailed
description of the queries used can be found online4. In the rest of this section we
denote queries related to the LUBM dataset as L1, . . . , L16, and those related
to SOUTHAMPTON as S1, . . . , S7.
2 http://code.google.com/p/rdf3x/
3 http://data.southampton.ac.uk/
4 http://www.win.tue.nl/~yluo/saintdb/

http://code.google.com/p/rdf3x/
http://data.southampton.ac.uk/
http://www.win.tue.nl/~yluo/saintdb/


A Structural Approach to Indexing Triples 417

1

10

100

1000

10000

100000

L
1 L
2

L
3

L
4 L
5

L
6 L
7

L
8

L
9

L
10 L
11

L
12

L
13

L
14 L
15

L
16 S1 S2 S3 S4 S5 S6 S7N

um
be

r
of

re
ad

re
qu

es
ts

(M1)
(M2)
(M3)

Fig. 3. Number of read requests for different query processing strategies

5.2 Experimental Analysis

We first examine the different query processing strategies implemented in SAINT-
DB to exploit the structural index, and then compare the performance of SAINT-
DB to that of RDF-3X. In the following, we assume that the database has loaded
the partition blocks into main memory, and ensure that all queries are executed
on a cold cache/buffer. The embeddings of the queries into the structural index
can therefore be efficiently computed, and are available to the query optimizer.

Query Processing Strategies. Fig. 3 shows the number of I/O read requests
issued to the buffer manager during query evaluation by each of the three dif-
ferent query processing strategies (M1), (M2), and (M3) introduced in Sec. 4.

As a general observation, (M1) requires more reads from the database than
(M2), which in turn requires more reads than (M3). Conceptually, (M1) executes
a different query for each embedding of the original BGP into the structural
index, while (M2) executes the same queries in parallel, sharing evaluation costs.
(M3) differs from both (M1) and (M2) by exploiting not only the structural index
but also the selectivity of particular triple patterns. A lower number of reads can
therefore be achieved, by accessing directly the relevant information when very
specific triple patterns are issued. For example, L4 asks for every undergraduate
student with a single triple pattern. Hence, no structural information is available
while the triple pattern itself selects the right data.

While this observation explains the general behavior, a more detailed analysis
provides more insights. First, query L12 does not require any read. Indeed, this
query does not produce any result, and the absence of results is identified at
the index level: no embedding of the BGP of this query exist into the structural
index. Second, queries L6 and L9 show that strategy (M1) can perform better
than (M2) and (M3). This is due to different join orderings, which, along with
sideways information passing [14], causes scans to skip different data sets. The
current plan generation cannot identify these differences, as sideways information
passing depends on runtime data.

SAINT-DB vs RDF-3X. We now turn to a comparison of the query evaluation
costs of SAINT-DB and RDF-3X. For this comparison we use the (M3) strategy
in SAINT-DB, given our observations above on the performance of this strategy.



418 F. Picalausa et al.

Table 1. Read requests for SAINT-DB and RDF-3X on the CHAIN dataset. The
columns denote the length of the chain in the query. Speed-up is the ratio of read
requests of RDF-3X over those of SAINT-DB.

4 5 6 7
SAINT-DB 306 350 393 438

RDF-3X 3864 4799 5734 6669
Speed-up 12.63 13.71 14.59 15.23

Table 2. Read requests for SAINT-DB and RDF-3X on the LUBM and SOUTHAMP-
TON datasets. Speed-up is the ratio of read requests of RDF-3X over those of SAINT-
DB.

C1 C2 C3
L2 L3 L4 L9 S1 S2 S4 L1 L5 L6 L7 L8

SAINT-DB 116 5 163 18 18 36 64 238 39 47 38 7
RDF-3X 89 5 123 12 16 35 53 194 132 39 268 7
Speed-up 0.77 1.00 0.75 0.67 0.89 0.97 0.83 0.82 3.38 0.83 7.05 1.00

C3
L10 L11 L12 L13 L14 L15 L16 S3 S5 S6 S7

SAINT-DB 25 41 0 53 1519 352 288 48 410 173 175
RDF-3X 21 30 281 109 2668 2178 1224 33 424 316 236
Speed-up 0.84 0.73 ∞ 2.06 1.76 6.19 4.25 0.69 1.03 1.83 1.35

Table 1 shows the performance of RDF-3X and SAINT-DB on the CHAIN
dataset. We see that SAINT-DB requires over 10 times less I/Os up compared
to RDF-3X, and this reduction in I/Os increases as query length increases. This
is due to the rich structures inside the data set and the queries. The structural
index can hence significantly eliminate the search space of the later index scans.
These results demonstrate the tremendous potential of structural indexing over
value-based indexing.

Table 2 shows the I/O costs of RDF-3X and SAINT-DB, for the LUBM and
SOUTHAMPTON datasets. We have grouped queries into three categories:

– (C1) Queries without structure. These queries consist of a single triple pat-
tern, and hence do not exhibit any structural information to be exploited.

– (C2) Structured queries over highly specific information. These queries have
many triple patterns, and at least one triple pattern is very selective.

– (C3) Structured queries. These queries have many triple patterns, with rich
structural information.

By leveraging exhaustive value-based indexes and various optimization strate-
gies, RDF-3X can efficiently answer queries in category C1 and C2. In particular,
for C2 the technique of sideways information passing [14] allows efficient com-
putation of bindings in RDF-3X for the less selective patterns. Hence, as we
can expect, the structural indexes of SAINT-DB provide no advantage. Never-
theless, even though these queries represent the worst-case scenario for struc-
tural indexes, SAINT-DB generally exhibits comparable query evaluation costs.



A Structural Approach to Indexing Triples 419

Further study is nevertheless warranted to bridge the gap between value-based
and structure-based indexing for such query types (e.g., compression techniques
in index blocks, to offset the overhead introduced by moving from triples to
quads).

For the queries of category C3, we see that structural information does in-
crease selectivity significantly. For example, queries L5, L7, L14, L15, and L16
do benefit from the increased selectivity, with SAINT-DB having as little as 15%
of the query evaluation costs of RDF-3X. The query benefiting the most from
structural information is L12. The result is detected as empty at the structural
index level in SAINT-DB, and hence no read request is issued. For this same
query, RDF-3X needs to perform a number of joins to find the same empty result.
The structural-approach avoids these I/Os completely.

This initial empirical study indicates that there are indeed general situations
where SAINT-DB can clearly leverage structural information for significant re-
duction in query evaluation costs. Furthermore, for queries without significant
structure, or with highly selective triple patterns, SAINT-DB is competitive with
RDF-3X. Our next steps in this study are a finer analysis of query categories,
and their appropriate indexing and query evaluation strategies in SAINT-DB.

6 Concluding Remarks

In this paper, we have presented the first results towards triple-based structural
indexing for RDF graphs. Our approach is grounded in a formal coupling be-
tween practical fragments of SPARQL and structural characterizations of their
expressive power. An initial empirical validation of the approach shows that it is
possible and profitable to augment current value-based indexing solutions with
structural indexes for efficient RDF data management.

In this first phase of the SAINT-DB investigations, we have focused primarily
on the formal framework and design principles. We are currently shifting our
focus to a deeper investigation into the engineering principles and infrastructure
necessary to put our framework into practice. Some basic issues for further study
in this direction include: alternates to the B+-tree data structure for physical
storage and access of indexes and data sets; more sophisticated optimization and
query processing solutions for reasoning over both the index and data graphs;
efficient external memory computation and maintenance of indexes; and, exten-
sions to richer fragments of SPARQL, e.g., with the OPTIONAL and UNION
constructs.

Acknowledgments. We thank Paul De Bra for his critical feedback on these
investigations. The research of FP is supported by a FNRS/FRIA scholarship.
The research of SV is supported by the OSCB project funded by the Brussels
Capital Region. The research of GF, JH, and YL is supported by the Netherlands
Organization for Scientific Research (NWO).



420 F. Picalausa et al.

References

1. Abadi, D., et al.: SW-Store: a vertically partitioned DBMS for semantic web data
management. VLDB J. 18, 385–406 (2009)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

3. Arias, M., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world SPARQL queries. In: USEWOD (2011)

4. Arion, A., Bonifati, A., Manolescu, I., Pugliese, A.: Path summaries and path
partitioning in modern XML databases. WWW 11(1), 117–151 (2008)

5. Brenes Barahona, S.: Structural summaries for efficient XML query processing.
PhD thesis, Indiana University (2011)

6. Bröcheler, M., Pugliese, A., Subrahmanian, V.S.: DOGMA: A Disk-Oriented Graph
Matching Algorithm for RDF Databases. In: Bernstein, A., Karger, D.R., Heath,
T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 97–113. Springer, Heidelberg (2009)

7. Fletcher, G.H.L., Beck, P.W.: Scalable indexing of RDF graphs for efficient join
processing. In: CIKM, Hong Kong, pp. 1513–1516 (2009)

8. Fletcher, G.H.L., Hidders, J., Vansummeren, S., Luo, Y., Picalausa, F., De Bra,
P.: On guarded simulations and acyclic first-order languages. In: DBPL, Seattle
(2011)

9. Fletcher, G.H.L., Van Gucht, D., Wu, Y., Gyssens, M., Brenes, S., Paredaens, J.:
A methodology for coupling fragments of XPath with structural indexes for XML
documents. Information Systems 34(7), 657–670 (2009)

10. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: Coarsest
partition problems. J. Autom. Reasoning 31(1), 73–103 (2003)

11. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. J. Web Sem. 3(2-3), 158 (2005)

12. Luo, Y., Picalausa, F., Fletcher, G.H.L., Hidders, J., Vansummeren, S.: Storing and
indexing massive rdf datasets. In: De Virgilio, R., et al. (eds.) Semantic Search over
the Web, Data-Centric Systems and Applications, pp. 29–58. Springer, Heidelberg
(2012)

13. Milo, T., Suciu, D.: Index Structures for Path Expressions. In: Beeri, C., Bruneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1998)

14. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs. In:
SIGMOD, pp. 627–640 (2009)

15. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB J. 19(1), 91–113 (2010)

16. Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: Proceed-
ings of the International Workshop on Semantic Web Information Management,
SWIM 2011, pp. 7:1–7:6. ACM, New York (2011)

17. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Technical
report, W3C Recommendation (2008)

18. Sidirourgos, L., et al.: Column-store support for RDF data management: not all
swans are white. Proc. VLDB Endow. 1(2), 1553–1563 (2008)

19. Tran, T., Ladwig, G.: Structure index for RDF data. In: Workshop on Semantic
Data Management, SemData@ VLDB (2010)

20. Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A graph based RDF index.
In: AAAI, Vancouver, B.C., pp. 1465–1470 (2007)



A Structural Approach to Indexing Triples 421

21. van Glabbeek, R.J., Ploeger, B.: Correcting a Space-Efficient Simulation Algo-
rithm. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 517–529.
Springer, Heidelberg (2008)

22. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic
Web Data Management. In: VLDB, Auckland, New Zealand (2008)

23. Wylot, M., Pont, J., Wisniewski, M., Cudré-Mauroux, P.: dipLODocus[RDF]—
Short and Long-Tail RDF Analytics for Massive Webs of Data. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 778–793. Springer, Heidelberg
(2011)

24. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gStore: Answering SPARQL
queries via subgraph matching. Proc. VLDB Endow. 4(8), 482–493 (2011)


	A Structural Approach to Indexing Triples
	Introduction
	Preliminaries
	Principles of Triple-Based Structural Indexing
	Query Processing with Structural Indexes
	Index Construction

	Applying the Principles in Practice
	Experimental Validation
	Experimental Setup
	Experimental Analysis

	Concluding Remarks
	References




