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Abstract. This paper explores the issue of detecting concepts for ontology 
learning from text. Using our tool OntoCmaps, we investigate various metrics 
from graph theory and propose voting schemes based on these metrics. The idea 
draws its root in social choice theory, and our objective is to mimic consensus 
in automatic learning methods and increase the confidence in concept extraction 
through the identification of the best performing metrics, the comparison of 
these metrics with standard information retrieval metrics (such as TF-IDF) and 
the evaluation of various voting schemes. Our results show that three graph-
based metrics Degree, Reachability and HITS-hub were the most successful in 
identifying relevant concepts contained in two gold standard ontologies. 
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1 Introduction 

Building domain ontologies is one of the pillars of the Semantic Web. However, it is 
now widely acknowledged within the research community that domain ontologies do 
not scale well when created manually due to the constantly increasing amount of data 
and the evolving nature of knowledge. (Semi) Automating the ontology building 
process (ontology learning) is thus unavoidable for the full-realization of the Semantic 
Web.  

Ontology learning (from texts, xml, etc.) is generally decomposed in a number of 
steps or layers, which target the different components of an ontology: concepts, tax-
onomy, conceptual relationships, axioms and axioms schemata [3]. This paper is con-
cerned with the first building block of ontologies which are concepts (classes). In fact, 
concept extraction is a very active research field, which is of interest to all knowledge 
engineering disciplines. Generally, research in ontology learning from texts considers 
that a lexical item (a term) becomes a concept once it reaches a certain value on a 
given metric (e.g. TFIDF). Numerous metrics such as TF-IDF, C/NC value or entropy 
[3, 4, 8, 15] have been proposed to identify the most relevant terms from corpora in 
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information retrieval and ontology learning. For example, some approaches such as 
Text2Onto [4] and OntoGen [7] rely on metrics such as TFIDF to evaluate term re-
levance. However, generally the presented solutions either adopt one metric or require 
that the user identifies the most suitable metric for the task at hand [3]. Following our 
previous work on graph theory based metrics for concept and relation extraction in 
ontology learning [19], we propose to enrich this perspective by: 

─ Testing various metrics from graph theory and  
─ Taking into account a number of metrics in suggesting suitable concepts based on 

the Social choice theory [5, 14]. 

1.1 Motivation 

This work aims at exploring the following research questions: 

─ Do we obtain better results with graph-based metrics rather than with traditional 
information retrieval measures? 

In our previous work [19], we showed that some graph-based metrics are a promising 
option to identify concepts in an ontology learning system. This paper continues ex-
ploring this aspect by enriching the set of studied measures and extending the experi-
ment to another gold standard.  

─ Do we obtain better results with voting schemes rather than with base metrics? 

Social Choice Theory studies methods for the aggregation of various opinions in  
order to reach a consensus [5]. This theory is appealing in our case for two main rea-
sons: firstly, at the practical level, it provides a mean to aggregate the results of vari-
ous metrics in order to recommend concepts. Secondly, at the theoretical level, it 
gracefully integrates the idea of consensus, which is one of the main goals of ontolo-
gies. In fact, ontologies are meant to improve the communication between computers, 
between humans and computers and between humans [12]. At this level, another re-
search question is: How can we mimic consensus with automatic ontology learning 
methods? Although consensus is generally concerned with human users, our hypothe-
sis is that mimicking this characteristic at the level of automatic methods will provide 
more reliable results.  

1.2 Contributions 

This paper explores various metrics and voting schemes for the extraction of concepts 
from texts. Besides bringing a different perspective to this research avenue, the signi-
ficance of our proposal is that it is applicable to a number of issues related to the Se-
mantic Web, including (but not limited to) learning relationships, helping experts 
collaboratively build an ontology and reducing the noise that results from the auto-
matic extraction methods.  
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2 Background 

This paper is based on our ontology learning tool, OntoCmaps [19], which in turn is 
derived from our previous work [20, 21]. OntoCmaps is a “complete” ontology learn-
ing system in the sense that it extracts primitive and defined classes (concepts), con-
ceptual relationships (i.e. relations with domain and range), taxonomical relationships 
(is-a links) and equivalence classes’ axioms (e.g. AI = Artificial Intelligence).   
OntoCmaps relies on dependency-based patterns to create a forest of multi-digraphs 
constituted of nodes (terms) and edges (hierarchical and conceptual relations).  An 
example of pattern is: 

 

 
 

 
 

 

Semantic Analysis 
Is_a (knowledge representation, Artificial Intelligence technique) 
By multi-digraphs, we mean that there can be multiple directed relationships from a 
given term X to a given term Y. For each term X, there can be various relationships to a 
set of terms S, which constitutes a term map. Some term maps might be isolated, others 
might be linked to other term maps through relationships, hence creating a forest. Figure 
1 shows a term map around the term “intelligent agent”, which can in turn be related to 
the term of agent, which has itself a term map (and so on). Once the extraction of term 
maps is performed, the tool filters the results based on various graph-based metrics by 
assigning several scores to the potential candidates. These scores serve to promote can-
didate terms as concepts in the ontology.  In our previous work [19], we identified a 
number of graph-based metrics as potential useful measures for extracting terms and 
relationships. We found promising results by comparing these graph-based metrics 
(Degree, Betweenness, PageRank and HITS-Authority) to information retrieval metrics 
such as TF-IDF and TF. We showed that graph-based metrics outperformed these 
commonly used metrics to identify relevant candidate concepts. We also tested some 
voting schemes (intersection voting scheme and majority voting scheme) and discov-
ered that they contributed in increasing the precision in our results. 

This paper investigates further this previous study, by expanding the set of consi-
dered graph-based metrics and by using voting theory methods to consider the vote of 
each metric for the selection of domain concepts. In fact, voting theory can be used to 
consider the contribution of each metric and to decrease the noise that results from a 
NLP pipeline. Voting theory has been experimented in a number of works in artificial 
intelligence such as agent group-decision-making [6], information mashups [2], on-
tology merging [14] but to our knowledge, there is no ontology learning tool which 
proposed to identify concepts through graph-based measures and to increase the con-
fidence of the extractions by aggregating the results of the various metrics through 
voting theory. This type of aggregation, resulting from the Social Choice Theory [14], 
seems similar in spirit to ensemble learning methods frequently used in machine 
learning [13]. However, as previously stated, experimenting voting theories has the 

nsubj cop Artificial intelli-
gence technique 

is Knowledge 
representation 
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potential to mimic real-world vote aggregation and seems a suitable approach to es-
tablishing consensus in learning domain concepts. 

 

 

Fig. 1. An Example of OntoCmaps output 

3 Voting Theory for Concept Detection 

Concept detection through vote aggregation can closely be related to the problem of 
rank aggregation, which is a well-known problem in the context of Web search where 
there is a need of finding a consensus between the results of several search engines 
[5]. Vote aggregation can be defined as the process of reaching a consensus between 
various rankings of alternatives, given the individual ranking preferences of several 
voters [2]. In the context of a vote, each metric is considered as a voter.  

3.1 Metrics 

After the extraction of term maps, OntoCmaps assigns rankings to the extracted terms 
based on scores from various measures from graph theory (see below). In fact, since 
OntoCmaps generates a network of terms and relationships, computational network 
analysis methods are thus applicable and in this case. As outlined by [11], text mining in 
general and concept extraction in particular can be considered as a process of network 
traversal and weighting. In this paper, in addition to Degree, PageRank, HITS-Authority 
and Betweenness presented in [19], we computed three additional metrics HITS-Hubs, 
Clustering coefficient and Reachability centrality. As explained below, these metrics are 
generally good indicators of the connectedness and the accessibility of a node, which 
are two properties that might indicate the importance of a node (here a term) [11, 19].  

The following metrics were calculated using the JUNG API [10]:  

Degree (Deg) assigns a score to each term based on the number of its outgoing and 
incoming relationships;  
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PageRank (Prank) calculates the eigenvector probability of a term with a constant 
probability of the random walk restarting at a uniform-randomly chosen term [10]; 

HITS assigns hubs-and-authorities scores to terms based on complementary ran-
dom walk processes. In our case, we considered that hubs scores and authority scores 
were two different metrics (Hits-hubs and Hits-Authority);  

Betweenness (Bet) calculates a centrality measure where vertices that occur on 
many shortest paths between other vertices have higher betweenness than those that 
do not. 

Clustering Coefficient (CC) is a measure of the connectedness between the 
neighbors of a node. It is given by the proportion of links between the terms within a 
term neighborhood divided by the number of relations that could possibly exist be-
tween them. 

Reachability centrality (Reach) calculates the distance between each pair of 
terms using the Dijkstra algorithm.  

Each of these metrics produces a ranked list of terms, i.e. a full-ordering of the ex-
tracted terms. Full-ordering is considered as the ideal scenario for rank aggregation [5].  

3.2 Voting Theory Score-Based Methods 

Here, we introduce voting theory methods, which can generally be divided in two 
main classes: score-based methods and rank-based methods.   

In the score-based methods, each metric assigns a score to the elements of a list 
(here the extracted terms) and the resulting list must take into account the score as-
signed by each metric. Given the universe of Domain Terms DT, which is composed 
of all the nominal expressions extracted through our dependency patterns [19], the 
objective of the vote is to select the most popular terms t ∈DT, given multiple metrics 
m ∈ M. Each metric m computes a score Stm for a term t. This score is used to create 
a fully ordered list TM for each metric. 

Sum and maximum values are generally two functions that are used to assign an 
aggregated score to the terms [18]. We implemented two voting schemes based on 
scores: the intersection voting scheme and the majority voting scheme. 

In the Intersection Voting Scheme, we select the terms for which there is a con-
sensus among all the metrics and the score assigned is the sum of the scores of each 
individual metric normalized by their number. 

In the Majority Voting Scheme, we select the terms for which there exists a vote 
from at least 50% of the metrics. The score is again the normalized sum of the score 
of each individual metric participating in the vote. 

Each graph-based metric produced a full list of terms (DT) ordered in the decreas-
ing order of scores. Top-k lists (partial ordering) may be created from full-ordered 
lists through setting up a threshold over the value of the metrics. In fact, such a thre-
shold might be set to increase metrics’ precision: in this case, only the portion of the 
list whose score is greater than or equal to a threshold is kept for each metric and the 
voting schemes operate on these partial lists.  
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3.3 Voting Theory Rank-Based Methods 

In rank-based methods, also called positional methods, the elements are sorted based 
not on their score but on their positions in the lists. Besides the score, we consider a 
rank rtm, which is the position of a term t within the ordered list produced by a metric 
m. The total number of ranks in metric m is Rm, which is defined as maxt(rtm), the 
lowest assigned  rank (1 being the best rank). There might be more terms than ranks, 
because multiple terms might share a rank position. 

Following [2], we implemented three positional voting schemes: Borda Count, 
Nauru and RunOff as these schemes (especially Nauru and Borda) are generally wide-
ly accepted in voting theory.  

Borda Count Voting Scheme: This method assigns a “rank” rtm to each candidate, 
with the lowest possible rank assigned to missing entries (usually 0). A candidate who 
is ranked first receive n points (n=size of the domain terms to be ranked), second n-1, 
third n-2 and so on. The “score” of a term for all metrics is equal to the sum of the 
points obtained by the term in each metric. 

Nauru Voting Scheme:  The Nauru voting scheme is based on the sum of the in-
verted rank of each term in each metric (sum(1/rtm)). It is used to put more emphasis 
on higher ranks and to lessen the impact of one bad rank [2].  

RunOff Voting Scheme: This voting scheme selects terms one at a time from each 
metric in a fixed order starting from the highest ranked terms. Once the same term has 
been selected by at least 50% of the metrics it is added to the voting list and further 
mentions of it are ignored. This operation is repeated until no remaining terms exist 
(full-ordering).  

4 Methodology 

4.1 Dataset 

We used a corpus of 30,000 words on the SCORM standard which was extracted from 
the SCORM manuals [16] and which was used in our previous experiments [19]. This 
corpus was exploited to generate a gold standard ontology that was validated by a do-
main expert. To counterbalance the bias that may be introduced by relying on a unique 
domain expert, we performed user tests to evaluate the correctness of the gold standard. 
We randomly extracted concepts and their corresponding conceptual and taxonomical 
relationships from the gold standard and exported them in Excel worksheets. The work-
sheets were then sent together with the domain corpus and the obtained gold standard 
ontology to 11 users from Athabasca University, Simon Fraser University, the Univer-
sity of Belgrade, and the University of Lugano. The users were university professors 
(3), postdoctoral researchers (2), and PhD (5) and master’s (1) students. The users were 
instructed to evaluate their ontology subset by reading the domain corpus and/or having 
a look to the global ontology. Each user had a distinct set of items (no duplicated items) 
composed of 20 concepts and all their conceptual and taxonomical relationships. Almost  
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29% of the entire gold standard was evaluated by users and overall more than 93% of 
the concepts were accepted as valid and understandable by these users. This size of the 
sample and the fact that the sample evaluated by the users was selected randomly can 
provide us with solid evidence that the results of the user evaluation of the sample can 
be generalized to the entire gold standard. 

To improve its quality, there have been slight modifications to the previous gold 
standard: class labels were changed by using lemmatization techniques instead of 
stemming, which introduced some changes in the GS classes. Additionally, some 
defined classes were also created, and new relationships were discovered due to new 
patterns added to OntoCmaps. The following table shows the statistics associated to 
the classes in our current GS1. 

Table 1. GS1 statistics (SCORM) 

Primitive  
classes 

Defined 
Classes 

Conceptual 
Relationships 

Taxonomical 
Relationships 

1384 81 895 1121 

 
Once the GS ontology was created, we ran the OntoCmaps tool on the same cor-

pus. The aim was to compare the expert GS concepts with the concepts learned by the 
tool. We ran our ontology learning tool on the SCORM corpus and generated a rank-
ing of the extractions based on all the above-mentioned metrics: Degree, Between-
ness, PageRank, Hits, Clustering Coefficient and Reachability. The tool extracted 
2423 terms among which the metrics had to choose the concepts of the ontology. 

We also tested our metrics and voting schemes on another smaller corpus (10574 
words) on Artificial Intelligence (AI) extracted from Wikipedia pages about the topic. 
The tool extracted 1508 terms among which the metrics had to choose the concepts of 
the ontology. Table 2 shows the statistics of the extracted AI gold standard. 

Table 2. GS2 statistics (Artificial Intelligence) 

Primitive  
classes 

Defined 
Classes 

Conceptual  
Relationships 

Taxonomical 
Relationships 

773 65 287 644 

 
As previously explained, OntoCmaps produced a ranking of terms based on the 

various metrics introduced in this study, and we divided our results in Top-N lists, 
gradually increasing the number of considered terms. Recall that metrics order terms 
from the highest rank to the lowest one. The point was to determine how quickly the 
accuracy of the results would degrade as we expand the set of considered terms. 

Since the SCORM GS contained 1384 primitive classes (concepts), we limited the 
evaluation to the first 1500 terms in our experiments on SCORM. In the AI GS, we 
stopped at Top-600 with 773 primitive classes in the GS. We then divided each data-
set in small Top-k lists versus large Top-k lists. Small lists are expected to have the 
higher precision as they include the best rated terms. In the SCORM GS, small lists 
                                                           
1  http://azouaq.athabascau.ca/Corpus/SCORM/Corpus.zip 
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included Top-k, k=50, 100, 200 (up to ~14.5% of the expected terms) and large lists 
had k>200. In the AI GS, small lists were Top-50 and Top-100 (up to ~13% of the 
expected terms).  

4.2 Evaluation Criteria 

Our experimental evaluation of the different ranking methods tests each of the indi-
vidual metrics and each of the aforementioned voting systems.  There are a number 
of methods that are used to evaluate similar types of research: in information retrieval 
and ontology learning, the results are generally evaluated using precision/recall and F-
measure [3]. In our case, we chose to concentrate on the precision measure as ontolo-
gy learning methods obtain difficultly good precision results (see for example [Brew-
ster et al., 2009] and the results of Text2Onto in [4] and in our experiments [19]). 
Moreover, it is better to offer correct results to the user rather than a more complete 
but rather a noisier list of concepts [9]. In voting theory and rank aggregation studies 
[2], the results are often evaluated through Social Welfare Function (SWF). A SWF is 
a mathematical function that measures the increased social welfare of the voting sys-
tem. SWF employed in similar research include Precision Optimal Aggregation and 
the Spearman Footrule distance [2, 17]. Given that Precision Optimal Aggregation is 
similar in spirit to the precision metric employed in information retrieval, we em-
ployed standard precision (Precision Function) against our GS:  

Precision = items the metric identified correctly / total number of items generated by 
the metric  

This precision metric was computed for a number of Top-N lists. 
For the voting methods, we also calculated a social welfare function (SWF) by 

computing the proportion of the contribution of each metric to the overall ranking. In 
our case, the SWF is defined by the number of terms from the gold standard which 
were included in the promoted concepts of the overall ranking proposed by each  
voting method. 

4.3 Experiments 

Quality of Individual Metrics. In [1], the authors indicate that the performance of 
each individual ranker might have a strong influence over the overall impact of the 
aggregation. Therefore, we decided first to assess the performance of each metric in 
various partial lists: Top-50, Top-100, Top-600, Top-1000, Top-1500 and Top-2000. 
Table 3 show the performance of each metric in each of these lists. 

For smaller N-Lists (N=50,100, 200), we can notice that Betweenness, PageRank 
and Degree are the best performing metrics, while the metrics Reachability, Degree 
and Hits-Hub become the best ones with larger lists (N=400..2000). Only the degree 
metrics seems to be constantly present in the best three results of each Top-N list.  
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Table 3. Precision results for each metric on the SCORM GS 

 Bet Prank Deg HITS 
(Auth) 

HITs 
(Hubs) Reach CC 

Top-50 96.00 96.00 94.00 86.00 88.00 92.00 70.00 

Top-100 96.00 82.00 95.00 77.00 87.00 89.00 75.00 

Top-200 88.00 81.00 87.00 79.50 84.50 85.50 78.50 

Top-400 77.00 76.00 79.25 73.50 80.25 81.75 73.50 

Top-600 75.00 69.67 75.00 71.67 80.50 82.33 69.00 

Top-1000 66.30 63.80 71.90 66.10 77.30 77.60 63.40 

Top-1500 63.47 61.07 66.67 61.07 71.20 70.07 62.27 

Top-2000 61.35 60.90 64.00 60.90 63.95 63.95 61.45 

 
In order to compare our results and make another experiment, we tested our me-

trics on the second gold standard (AI). The following table shows the results of this 
experiment. We notice that HITS-Hub and Reachability give the best performance 
overall. 

Table 4. Precision results for each metric on the AI Gold Standard 

 Bet Prank Deg HITS 
(Auth) 

HITs 
(Hub) Reach CC 

Top-50 78.00 74.00 88.00 74.00 88.00 84.00 84.00 

Top-100 71.00 69.00 86.00 62.00 88.00 81.00 67.00 

Top-200 70.00 61.50 75.00 57.50 79.50 73.00 56.50 

Top-400 60.75 50.75 64.00 57.00 74.50 73.00 54.50 

Top-600 56.50 48.83 62.50 53.50 69.67 68.17 54.67 

Top-1000 52.80 50.60 57.10 50.60 58.20 58.20 52.30 

Choice of Metrics Combinations. Next, we computed the SWF Precision Optimal 
Aggregation (which in our case is equal to the Precision measure) for each voting 
method. In order to test various combinations and identify if some metrics were per-
forming better than others, we ran the Weka tool on the SCORM GS, on the AI GS 
and on the merged set of AI and SCORM GSs (ALL). For each row in the GS, data 
contained a given term, the scores attributed by each metric and whether or not the 
term has been included in the GS (Yes/No). Using subset selection in Weka, we tried 
to identify a subset of features (metrics) which had a significant effect for predicting 
if a term should belong to the GS or not. Thus, we ran a wrapper-based subset selec-
tion algorithm which used a 10 fold cross-validation based on the CfsSubsetEval  
Attribute Evaluator and a BestFirst search in order to determine the most important 
attributes. 
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Table 5. Metrics selection using CfsSubsetEval Attribute Evaluator2 and a BestFirst search  

Attributes 
 

Number of 
folds (%) 

SCORM 

Number of 
folds (%) 

AI 

Number of 
folds (%) 

ALL 
1 Betw 10(100 %)    1(  10 %)   0(  0 %)   
2 Prank 4(40 %)     10(100 %)   8( 80 %)   
3 Deg 10(100 %)    10(100 %)  2( 20 %)  
4 HITS(Auth) 0( 0 %)     7(70 %)     10(100 %)     
5 HITS(Hubs) 10(100 %)    0( 0 %) 1( 10 %) 
6 Reach 10(100 %)    0( 0 %) 10(100 %)     
7 CC 8( 80 %)     0( 0 %)  0(  0 %)  

 
Table 5 shows us how many times each metric was selected during a 10-fold cross 

validation. We can see that some metrics are used more times than others during each 
cross validation. According to these results, only two metrics Degree and Reachability 
are present in all 10 folds of our cross-validation (10(100%)) over two datasets: De-
gree appears over the SCORM and AI datasets while reachability appears over the 
SCORM and combined (All) datasets.  However, we can notice that each individual 
GS has other significant metrics.  

Based on these results, we decided to compute the following voting schemes: 

─ Intersection Voting Schemes (IVS_1, IVS_2 and IVS_3), where IVS_1 is based on 
all the metrics except the clustering coefficient (which appears to be significant 
only for SCORM): Hits_Hub, Hits_Authority, PageRank, Degree, Reachability and 
Betweenness. IVS_2 uses Reachability and Betweenness while IVS_3 is based on 
Betweenness, Reachability, Hits_Hub and Degree. 

─ Majority Voting Schemes (MVS_1 and MVS_2), where MVS_1 and MVS_2 uses 
the same metrics respectively as IVS_1 and IVS_3. 

─ Borda, Nauru and Runoff were all based on the metrics Betweenness, Reachability, 
Degree and HITS-Hubs which are the best metrics for the SCORM GS. 

Precision Optimal Aggregation Results on the SCORM and AI GS.  In the Top-
50 list of the SCORM GS, we noticed that all the voting schemes, except Runoff 
(96% precision), were successful (100% precision) in identifying relevant concepts 
among the highest ranked 50 terms. However, as the number of considered terms 
increases (Table 6), we can notice that the Intersection voting schemes and the 
majority voting schemes (~82%) beat slightly the other voting scheme systems 
(Runoff: 77.5%, Nauru: 79.8%, and Borda: 80.5%). In our experiments on the AI GS 
(Table 6), the best performing voting schemes were: 

─ Nauru first (90%) and then Runoff, IVS_1 and MVS_2 with 88% in the Top-50 list  
─ Runoff first (81.5%), Nauru (80%) and then IVS_1 and MVS_2 with 79% in the 

Top-200 list; 
─ IVS_2 first (67.5%), Nauru and Runoff with 67%, Borda with 66% and then IVS_1 

and MVS_2 with 65.5% in the Top-600 list. 
                                                           
2  In Weka, CfsSubsetEval evaluates the worth of a subset of attributes by considering the indi-

vidual predictive ability of each feature along with the degree of redundancy between them. 



 Voting Theory for Concept Detection 325 

 

Table 6. Performance of voting methods for Top-600 terms on the SCORM GS 

 SCORM Top-600  AI Top-600 

IVS_1 82.66 65.5 

IVS_2 82.33 67.5 

IVS_3 82.66 61.83 

MVS_1 82.66 61.83 

MVS_2 82.66 65.5 

Borda 80.5 66 

Nauru 79.83 67 

RunOff 77.5 67 

Comparison with other Metrics on the SCORM Gold Standard.  In order to 
compare our results with some baselines, we computed standard measures used in 
information retrieval: Term frequency (TF) and TF-IDF as well as random term selec-
tion (see table 7).  TF and TF-IDF were computed on two sets of terms: TF and 
TFIDF are computed on all the extracted terms from the corpus while TF(DT) and 
TFIDF(DT) are computed on domain terms only, i.e. terms that were selected by On-
toCmaps as already potential domain terms through patterns and stop words filtering. 

Table 7. Traditional Metrics results on the SCORM GS 

 TFIDF  TF  TFIDF (DT)   TF (DT)  Random  

Top-50 72.00 74.00 92.00 90.00 34.00 

Top-100 70.00 66.00 89.00 88.00 33.00 

Top-200 66.50 66.00 85.50 79.50 36.00 

Top-400 56.75 52.50 72.25 69.50 39.00 

Top-600 51.00 47.33 66.83 65.83 40.33 

Top-1000 43.70 44.80 62.40 62.70 43.10 

Top-1500 43.80 43.07 59.93 59.93 43.74 

Top-2000 43.60 43.60 59.80 59.8.00 43.74 

 
As we can see in table 7, the metrics TFIDF and TF are more successful when they 

are applied on the pre-filtered domain terms (TFIDF (DT) and TF (DT)). We can also 
notice that the graph-based metrics and their combination through voting schemes 
beat the traditional metrics (compare Table 3 and Table 7). Up to the Top-200 list, 
Betweenness is the best performing metrics, then Reachability (in Top-400, Top-600 
and Top-1000), then HITS-Hub (Top-1500), and finally Degree (Top-2000).   
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Comparison with other Metrics on the AI Gold Standard. We repeated the same 
experiment on the AI GS. As shown in Table 8, among the traditional metrics, we can 
also notice that the best performing ones are TFIDF (DT) and TF (DT). If we com-
pare these metrics from Table 8 with the graph-based ones (Table 4), we also see that 
again graph-based metrics have much better performance in all the Top-k lists (k=50, 
100, 200, 400, 600 and 1000). For example, the best in the Top-50 list is the Degree 
and HITS-Hub with 88% versus (72% for TFIDF (DT)) and in the Top-600, the best 
is HITS-hub (69.67%) versus 50.83% for TF (DT) and TFIDF (DT). 

Table 8. Traditional Metrics results on the AI GS 

 TFIDF TF TFIDF (DT) TF (DT) Random 

Top-50 38.00 50.00 72.00 70.00 28.00 

Top-100 41.00 47.00 69.00 71.00 30.00 

Top-200 40.00 39.00 62.50 61.50 25.50 

Top-400 35.00 34.00 56.25 53.25 27.00 

Top-600 32.83 31.50 50.83 50.83 28.00 

Top-1000 28.00 28.10 56.30 56.40 27.56 

 

Based on the results presented in Tables 3, 4, 7 and 8, we ran a paired sample t-test 
on each of these metrics combinations and the differences were statistically signifi-
cant and in favor of graph-based metrics in general, and in favor of Degree, reachabil-
ity and Hits-hubs in particular. 

5 Discussion 

In this section, we summarize our findings and the limitations of our work.  

5.1 Findings 

Our findings are related to our initial research questions:  

Do we obtain better results with graph-based metrics rather than with tradition-
al ones? 
Obviously, it is possible to confirm this research hypothesis through our experiments 
with the best performing metrics being:   

─ SCORM – small lists : Betweenness, PageRank, and Degree 
─ SCORM- large lists: Hits-Hub, Degree, Reachability 
─ AI- small lists: Degree, Hits-Hubs, Reachability 
─ AI- large lists: Hits-Hub, Degree, Reachability 
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We can observe that Degree is constantly present and that Degree, Hits-Hub and Rea-
chability seem to be the best performing graph-based metrics. This result is confirmed 
by our machine learning experiments (Table 5) for at least two metrics Degree and 
Reachability. 

Do we obtain better results with voting schemes rather than with base metrics? 
As far as voting schemes are concerned, the first question is whether we were able to 
increase the precision of the results by using these voting schemes (see Table 9). In 
previous experiments [19], we noticed that some voting schemes were enabling us to 
get better performance but our ranked lists contained only those terms whose weight 
was greater than the mean value of the considered metric, which had already a strong 
impact on the precision of each metric. 

Table 9. Comparison between voting schemes and base metrics 

 SCORM AI 

Top-50 
100% : All voting schemes except Runoff 
96%: Bet and PageRank 

90%: Nauru 
88%: Deg and HITS-hub 

Top-100 
97%:  IVS_3, MVS_1, MVS_2 
96%: Bet 

86%: Runoff 
88%: HITS-hub 

Top-200 
87%: IVS_1 and MVS_2  
88%: Bet 

81.5%: Runoff 
79.5%: HITS-hub 

Top-400 
83.75%: IVS_3 and MVS_1 
81.75% : Reach 

72.75%: Runoff 
74.5%: HITS-hub 

Top-600 
82.67%: IVS_1, IVS_3, MVS_1, MVS_2 
82.33%: Reach 

67.5: IVS_2 
69.67%: HITS-hub 

Top-1000 
77.7%: IVS_1 and MVS_2 
77.6%: Reach 

60.7%: IVS_1 and MVS_2 
58.2%: HITS-hub and Reach 

Top-1500 
71.26%: IVS_1 and MVS_2 
71.20%:  HITS_hub 

NA 

Top-2000 
65.15%: IVS_1 and MVS_2 
64%: Degree 

NA 

 
Despite a small increase in almost all the cases in favor of voting schemes, the dif-

ference between voting schemes and base metrics such as Degree, Hits-Hub and Rea-
chability was not really noteworthy. This asks the question whether such voting 
schemes are really necessary and whether the identified best graph-based metrics 
would not be enough, especially if we don’t take the mean value as a threshold for the 
metrics. Having identified that the best base metrics were Degree, Reachability and 
HITS-hub, we tried some combinations of metrics on the SCORM GS.  Despite an 
improvement of voting theory schemes (e.g. Borda) in some Top-n lists, we did not 
notice a major difference. Our future work will continue testing combinations of vot-
ing schemes and voting theory measures, based on these metrics, on various gold 
standards.  We also plan to compare this voting-based approach with ensemble ma-
chine learning algorithms. 
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5.2 Limitations 

One of the most difficult aspects in evaluating this type of work is the necessity to 
build a gold standard, which in general requires a lot of time and resources. Building a 
GS that represents a universal ground truth is not possible. Ideally, the experiments 
presented in this paper should be repeated over various domains to evaluate the gene-
ralizability of the approach. However, this is often impossible due to the cost of such 
a large scale evaluation. In this paper, we extended our previous evaluation on another 
corpus, and we also extended the set of tested metrics and voting schemes. Future 
work will have to continue the validation of our approach and to expand the set of 
“traditional” metrics (such as C/NC value) to be compared with graph-based metrics. 

Another limitation is that the metrics that we propose for discovering concepts are 
graph-based metrics, which involves processing the corpus to obtain a graph while 
metrics commonly used in information retrieval such as TF-IDF only require the cor-
pus. In our experiments, we always relied on OntoCmaps to generate this graph. 
However, we do not believe that this could represent a threat to the external validity 
of our findings, as these metrics are already applied successfully in other areas such 
social network analysis and information retrieval and are not dependent on anything 
else than a set of nodes (terms) and edges (relationships). 

Finally, despite our focus on concepts in this paper, such a graph-based approach is 
worth the effort only if the aim is to extract a whole ontology and not only concepts, 
as it involves discovering terms and relationships between terms. This requirement is 
also closely linked to another limitation: since we rely on deep NLP to produce such a 
graph, it requires time to process the corpus and calculate the graph-based metrics. 
However, we believe that this is not a major limitation, as ontologies are not supposed 
to be generated on the fly. 

6 Conclusion 

In this paper, we presented various experiments involving a) the comparison between 
graph-based metrics and traditional information retrieval metrics and b) the compari-
son between various voting schemes, including schemes relying on voting theory. Our 
finding indicates that graph-based metrics always outperform traditional metrics in 
our experiments. In particular, Degree, Reachability and HITS-Hub seem to be the 
best performing ones. Although voting schemes increased precision in our experi-
ments, there was only a slight improvement on the precision as compared to the three 
best performing metrics. 
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