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Abstract The standard central tendency measure for interval-valued data
is the Aumann-type expected value, but as in real settings it is not always
convenient because of the big influence that small changes in the data as well
as the existence of great magnitude data have on its estimate. The aim of this
paper is to explore other summary measures with a more robust behavior. The
real-valued case has served as inspiration to define the median of a random
interval. The definition of the median as a ‘middle position’ value is not
possible here because of the lack of a universally accepted total order in the
space of interval data, so the median is defined as the element which minimizes
the mean distance, in terms of an L1 metric (extension of the Euclidean
distance in R), to the values the random interval can take. The two metrics
that we consider are the generalized Hausdorff metric (like the well-known
Hausdorff metric, but including a positive parameter which determines the
relative importance given to the difference in imprecision with respect to the
difference in location) and the 1-norm metric introduced by Vitale. The aim
of this paper is to compare these two approaches for the median of a random
interval, both theoretically based on concepts commonly used in robustness
and empirically by simulation.

1 Introduction and Motivation

Statistical data obtained from random experiments can be of a very dif-
ferent nature. Interval data frequently appear when intrinsically imprecise
measurements (like fluctuations, ranges, censoring times, etc.) or values as-
sociated with some imprecise knowledge on numerical values (when dealing
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with grouped data for instance) are involved. Many examples can be found
in real life, such as the intervals describing the age range covered by each
class when individuals in surveys are split into age groups, the fluctuation
of quotations on the stock exchange or the temperature range for the daily
forecast in a certain location. Similarly, many interval data sets are obtained
in research studies in different fields such as Medicine, Engineering, Empirical
and Social Sciences in which the information about the range of values the
variable takes along a period is even more relevant than the detailed records.

Random intervals are interval-valued random elements, that is, they for-
malize mathematically the random mechanism of producing interval data
associated with a random experiment. To analyze this type of data, some
central tendency measures based on the interval arithmetic (globally consid-
ering intervals as elements and not as sets of elements) have been proposed.
The most often used measure is the Aumann-type expected value. It inherits
very good probabilistic and statistical properties from the mean of a real-
valued random variable, but that is also the reason why it can be highly
influenced by the existence of great magnitude data or data changes.

In real settings, the solution is to consider more robust central tendency
measures, like the median. Inspired by this, we define the median of a random
interval. Taking into account that there is no universally accepted total order
criterion in the space of non-empty compact intervals (so the median cannot
be defined as a ‘middle’ position value), an L1 metric, generalization of the
Euclidean metric in R, is required to define the median as the element of the
space minimizing the mean distance to all the values the random interval can
take. The first choice for the L1 metric was the generalized Hausdorff metric
(see Sinova et al [5]): a new distance based on the well-known Hausdorff
metric expressed in terms of the mid/spr characterization of intervals (that
is, their mid-point and their spread or radius). However, there are obstacles to
generalize the median defined by means of the generalized Hausdorff metric to
random fuzzy numbers due to the fact that, although the generalized mid and
spread (see Trutschnig et al. [7]) characterize a fuzzy number, the sufficient
and necessary conditions a function must fulfill to be a generalized mid or
spread are not known yet and it is not possible to guarantee that the median
defined in that way is indeed a fuzzy number. These difficulties prompted
the use of another distance (suitable for the definition of the median of a
random fuzzy number as shown in Sinova et al. [6]), based on the 1-norm,
as introduced by Vitale [8], and which considers the characterization of an
interval in terms of infima and suprema. Of course, a second definition of
median of random intervals is obtained as a particular case of the median for
random fuzzy numbers. The definition of both medians and their immediate
properties are studied in Section 3, after recalling in Section 2 the notation
and basic operations and concepts in the space of interval data. In Section
4, the two proposed definitions of median of a random interval are compared
by means of the finite sample breakdown point and some simulation studies.
Finally, Section 5 presents some conclusions and open problems.
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2 The Space of Intervals Kc(R): Preliminaries

First of all, some notation is established, starting with Kc(R), the class of
nonempty compact intervals. Each one of the intervals K ∈ Kc(R) can be
characterized in terms of its infimum and supremum, K = [infK, supK] or
in terms of its mid-point and spread or radius, K = [midK − sprK,midK+
sprK], where

midK =
infK + supK

2
, sprK =

supK − infK

2
.

To analyze this kind of data, the two most relevant operations from a statis-
tical point of view are the addition and the product by a scalar. In this paper,
we use the usual interval arithmetic (the particular case of set arithmetic).
That is:

• The sum of two nonempty compact intervals, K,K ′ ∈ Kc(R), is defined
as the Minkowski sum of K and K ′, i.e., as the interval

K +K ′ = [infK + infK ′, supK + supK ′] =

[(midK+midK ′)−(sprK+sprK ′), (midK+midK ′)+(sprK+sprK ′)].

• The product of an interval K ∈ Kc(R) by a scalar γ ∈ R is defined as the
element of Kc(R) such that

γ ·K =

{
[γ · infK, γ · supK] if γ ≥ 0

[γ · supK, γ · infK] otherwise

= [γ ·midK − |γ| · sprK, γ ·midK + |γ| · sprK].

A very important remark is that with these two operations the space is
not linear, but only semilinear (with a conical structure) because of the lack
of an opposite element for the Minkowski addition. Therefore, there is no
generally applicable definition for the difference of intervals that preserves
the connection with the sum in the real case. Hence, distances play a crucial
role in statistical developments. Although L2 metrics are very convenient in
many statistical developments like least squares approaches, an L1 distance
is now needed in order to define the median. In this paper, the two following
L1 metrics will be used:

• The generalized Hausdorff metric (Sinova et al. [5]), which is partially
inspired by the Hausdorff metric for intervals and the L2 metrics in
Trutschnig et al. [7]. It includes a positive parameter to weight the rel-
ative importance of the distance between the spreads relative to the dis-
tance between the mid-points (allocating the same weight to the deviation
in location as to the deviation in imprecision is often viewed as a con-
cern in the Hausdorff metric). Given two intervals K,K ′ ∈ Kc(R) and any
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θ ∈ (0,∞), the generalized Hausdorff metric between them is defined as:

dH,θ(K,K ′) = |midK −midK ′|+ θ · |sprK − sprK ′|.

• The 1-norm metric, introduced by Vitale [8]. Given any two intervals
K,K ′ ∈ Kc(R), the 1-norm distance between them is:

ρ1(K,K ′) =
1

2
| infK − infK ′|+ 1

2
| supK − supK ′|.

As mentioned before, this corresponds to the particular case (for intervals)
of the metric used to define the median of random fuzzy numbers (Sinova
et al. [5]).

A random interval is usually defined (following the random set-based ap-
proach to introduce this notion) as a Borel measurable mapping X : Ω →
Kc(R), starting from a probability space (Ω,A, P ), with respect to A and the
Borel σ-field generated by the topology induced by the Hausdorff metric. The
generalized Hausdorff metric and the 1-norm metric are topologically equiv-
alent to each other and to the Hausdorff metric. Therefore, the definition
of random interval can be rewritten in terms of either of these two metrics
instead of the Hausdorff metric. This Borel measurability guarantees that
concepts like the distribution induced by a random interval or the stochastic
independence of random intervals, crucial for inferential developments, are
well-defined by trivial induction. A random interval can also be defined in
terms of real-valued random variables: X is a random interval if, and only
if, both functions inf X : Ω → Kc(R) and supX : Ω → Kc(R) (or equiva-
lently, midX : Ω → Kc(R) and sprX : Ω → [0,∞)) are real-valued random
variables.

The Aumann expectation is the standard central tendency measure for
random intervals. This mean value is indeed the Fréchet expectation with
respect to the dθ metric, which corresponds to the Bertoluzza et al. [1] dis-
tance (see Gil et al. [3]) for the particular case of interval-valued data, and is
defined as:

dθ(K,K ′) =
√
(midK −midK ′)2 + θ · (sprK − sprK ′)2,

where K,K ′ ∈ Kc(R) and θ ∈ (0,∞). This means that the Aumann expec-
tation is the unique interval which minimizes, over K ∈ Kc(R), the expected
squared distance E[(dθ(X,K))2]. Furthermore, it can be expressed explicitly
as the interval whose mid-point equals the expected value of midX and whose
spread equals the expected value of sprX . The Aumann expectation inherits
many very good probabilistic and statistical properties from the expectation
of a real-valued random variable, like the linearity and invariance under lin-
ear transformations, and it also fulfills the Strong Law of Large Numbers
for almost all the metrics we can consider. However, its high sensitivity to
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data changes or extreme data makes this value not always convenient when
summarizing the information given by interval-valued data sets.

3 The Median of a Random Interval Defined Through
an L1 Metric

The Aumann expectation of a random interval is not robust enough which is
the motivation for extending the concept of median. Nevertheless, the non-
existence of a universally accepted total order in the space Kc(R) does not
allow us to define it as a ‘middle position’ value. In real settings another ap-
proach is to define the median as the value with the smallest mean Euclidean
distance to the values of the real-valued random variable. Then, an L1 metric
between intervals which extends the Euclidean distance is required in order
to define the median as the interval with the smallest mean distance to the
values of the random interval. The two L1 metrics between intervals intro-
duced before satisfy this condition, so the definition of the median through
both distances is now formalized.

Definition 1. The dH,θ-median (or medians) of a random interval X : Ω →
Kc(R) is (are) defined as the interval(s) Me[X ] ∈ Kc(R) such that:

E(dH,θ(X,Me[X ])) = min
K∈Kc(R)

E(dH,θ(X,K)), (1)

if these expected values exist.

A very practical result that guarantees the existence of the median and
allows to compute it is the following. Given a probability space (Ω,A, P ) and
an associated random interval X, the minimization problem (1) has at least
one solution, given by any nonempty compact interval such that:

mid Me[X ] = Me(midX), spr Me[X ] = Me(sprX).

It can immediately be noticed that the dH,θ-median is not unique if either
Me(midX) or Me(sprX) (which are medians of real-valued random variables)
are not unique. It should be pointed out that the chosen solution does not
depend on the value chosen for theta, although the mean error does.

Analogously, the median can be defined by means of the 1-norm metric:

Definition 2. The ρ1-median (or medians) of a random interval X : Ω →
Kc(R) is (are) defined as the interval(s) Med[X ] ∈ Kc(R) such that:

E(ρ1(X,Med[X ])) = min
K∈Kc(R)

E(ρ1(X,K)), (2)

if these expected values exist.



80 B. Sinova and S. Van Aelst

In this situation, the practical choice (one of the solutions of minimization
problem (2)) is the interval Med[X ] ∈ Kc(R) which satisfies:

inf Med[X ] = Me(inf X), supMed[X ] = Me(supX).

If any of these two medians of real-valued random variables are not unique,
the usual criterion of choosing the mid-point of the interval of possible me-
dians is used to guarantee that Med(X) is nonempty.

Both medians preserve most of the elementary operational properties of
the median in real settings. Namely,

Proposition 1. Suppose that X is a random interval associated with a prob-
ability space. Then,

• if the distribution of X is degenerate at an interval value K ∈ Kc(R),

Me[X ] = K,

Med[X ] = K.

• for any K ∈ Kc(R) and γ ∈ R,

Me[γ ·X +K] = γ ·Me[X ] +K,

Med[γ ·X +K] = γ ·Med[X ] +K.

One remark about a distinctive feature in contrast to the real-valued case
is that neither the dH,θ-median nor the ρ1-median of a random interval is
necessarily a value taken by the random interval as can be noticed from the
following example: let X be a random interval taking the values [0, 4], [1, 3]
and [2, 5] with probability 1

3 . In this situation, the dH,θ-median is the interval
Me[X ] = [Me(midX)−Me(sprX),Me(midX)+Me(sprX)] = [2− 3

2 , 2+
3
2 ] =

[ 12 ,
7
2 ] and the ρ1-median is Med[X ] = [Me(inf X),Me(supX)] = [1, 4], neither

of them being values the random interval takes.
As mentioned before, there is no universally accepted total order in the

space Kc(R), so it is not possible to define the median as a ‘middle position’
value. However, both medians are a measure of ‘middle position’ with a cer-
tain partial ordering, when applicable. For the dH,θ-median, it can be proven
that it is coherent with the Ishibuchi and Tanaka [4] partial ordering:

K ≤CW K ′ if, and only if, midK ≤ midK ′ and sprK ≥ sprK ′.

Hence, K ′ is considered to be CW -larger than K if, and only if, its location
is greater and its imprecision is lower than for K:

Proposition 2. For any sample of individuals (ω1, . . . , ωn) such that

X(ω1) ≤CW . . . ≤CW X(ωn)

we have that

• if n is an odd number, then Me[X ] = X(ω(n+1)/2),



Comparison of Two Medians of a Random Interval 81

• if n is an even number, then Me[X ] = any interval value ‘between’ X(ωn/2)
and X(ω(n/2)+1), the ‘between’ being intended in the ≤CW sense, that is,

midMe[X ] can be any value in
[
midX(ωn/2),midX(ω(n/2)+1)

]
, whereas

sprMe[X ] can be any value in
[
sprX(ω(n/2)+1), spr (ωn/2)

]
.

On the other hand, the ρ1-median is coherent with the well-known product
order for the inf/sup vector, which is the partial ordering given by:

K � K ′ if, and only if, infK ≤ infK ′ and supK ≥ supK ′

or, equivalently, for all λ ∈ [0, 1] we have that K [λ] ≤ K ′[λ], where K [λ] =
λ supK + (1− λ) inf K.

Proposition 3. For any sample of individuals (ω1, . . . , ωn) such that

X(ω1) � . . . � X(ωn)

we have that

• if n is an odd number, then Med[X ] = X(ω(n+1)/2),

• if n is an even number, then Med[X ] =
X(ωn/2) +X(ω(n/2)+1)

2
.

Finally, the strong consistency of both the sample dH,θ-median and the
sample ρ1-median as estimators of the corresponding population quantities
can be proven under very mild conditions as shown in the following results.

Proposition 4. Suppose that X is a random interval associated with a prob-

ability space (Ω,A, P ) and Me[X ] is unique. If M̂e[X ]n denotes the sample
median associated with a simple random sample (X1, . . . , Xn) from X, then

lim
n→∞ dH,θ

(
M̂e[X ]n,Me[X ]

)
= 0 a.s.[P ].

Proposition 5. Suppose that X is a random interval associated with a prob-
ability space (Ω,A, P ) and Med[X ] is unique without applying any conven-

tion. If M̂ed[X ]n denotes the sample median associated with a simple random
sample (X1, . . . , Xn) from X, then

lim
n→∞ ρ1

(
M̂ed[X ]n,Med[X ]

)
= 0 a.s.[P ].

4 The Comparison between the dH,θ-median
and the ρ1-median of a Random Interval

The first result compares the dH,θ-median and the ρ1-median by means of
the computation of the finite sample breakdown point. Recall that the finite
sample breakdown point is a measure of the robustness, since it gives the
minimum proportion of sample data which should be arbitrarily increased or
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decreased to make the estimate arbitrarily large or small. Following Donoho
and Huber [2], the finite sample breakdown point (fsbp) of the sample dH,θ-
median in a sample of size n from a random interval X is given by:

fsbp(M̂e[X ]n, xn, dH,θ)

=
1

n
min

{
k ∈ {1, . . . , n} : sup

yn,k

dH,θ(M̂e[X ]n, M̂e[Yk]n) = ∞
}
,

where xn denotes the considered sample of n data from the metric space
(Kc(R), dH,θ) in which supK,K′∈Kc(R) dH,θ(K,K ′) = ∞ and Me[Yk]n is the
sample median of the sample yn,k obtained from the original sample xn by
perturbing at most k observations.

Analogously, the finite sample breakdown point of the sample ρ1-median
in a sample of size n from a random interval X is, with the same notation:

fsbp(M̂ed[X ]n, xn, ρ1)

=
1

n
min

{
k ∈ {1, . . . , n} : sup

yn,k

ρ1( ̂Med[X ]n, ̂Med[Yk]n) = ∞
}
,

Then, it can be proven that

Proposition 6. The finite sample breakdown point of both the sample dH,θ-
median and the ρ1-median from a random interval X, equal

fsbp(M̂e[X ]n, xn, dH,θ) = fsbp(M̂ed[X ]n, xn, ρ1) =
1

n
· �n+ 1

2
�,

where �·� denotes the floor function.

Proof. First note that the conditions supK,K′∈Kc(R) dH,θ(K,K ′) = ∞ and
supK,K′∈Kc(R) ρ1(K,K ′) = ∞ are fulfilled in the corresponding metric spaces
because dH,θ(1[n−1,n+1],1[−n−1,−n+1]) = ρ1(1[n−1,n+1],1[−n−1,−n+1]) = 2n.
Since the fsbp for the sample median of a real-valued random variable equals
�n+1

2 �, we immediately have that:

min

{
k ∈ {1, . . . , n} : sup

yn,k

| ̂Me(mid [X ]n)− ̂Me(mid [Yk]n)| = ∞
}

= �n+ 1

2
�

min

{
k ∈ {1, . . . , n} : sup

yn,k

| ̂Me(spr [X ]n)− ̂Me(spr [Yk]n)| = ∞
}

= �n+ 1

2
�

min

{
k ∈ {1, . . . , n} : sup

yn,k

| ̂Me(inf[X ]n)− ̂Me(inf[Yk]n)| = ∞
}

= �n+ 1

2
�

min

{
k ∈ {1, . . . , n} : sup

yn,k

| ̂Me(sup[X ]n)− ̂Me(sup[Yk]n)| = ∞
}

= �n+ 1

2
�
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Therefore,

sup
y
n,�n+1

2
�

dH,θ(M̂e[X ]n, ̂Me[Y�n+1
2 �]n) ≥

sup
y
n,�n+1

2
�

|mid (M̂e[X ]n)−mid ( ̂Me[Y�n+1
2 �]n)| =

sup
y
n,�n+1

2
�

| ̂Me(mid[X]n)− ̂Me(mid[Y� n+1
2 �]n)| = ∞

and
sup

y
n,�n+1

2
�

ρ1( ̂Med[X ]n, ̂Med[Y�n+1
2 �]n) ≥

sup
y
n,�n+1

2
�

1

2
| inf( ̂Med[X ]n)− inf( ̂Med[Y�n+1

2 �]n)|

=
1

2
sup

y
n,�n+1

2
�

| ̂Me(inf[X ]n)− ̂Me(inf[Y�n+1
2 �]n)| = ∞

On the other hand,

supy
n,�n+1

2
�−1

| ̂Me(mid [X ]n)− ̂Me(mid [Y�n+1
2 �−1]n)| = M1 < ∞

supy
n,�n+1

2
�−1

| ̂Me(spr [X ]n)− ̂Me(spr [Y�n+1
2 �−1]n)| = M2 < ∞

supy
n,�n+1

2
�−1

| ̂Me(inf[X ]n)− ̂Me(inf[Y�n+1
2 �−1]n)| = M3 < ∞

supy
n,�n+1

2
�−1

| ̂Me(sup[X ]n)− ̂Me(sup[Y�n+1
2 �−1]n)| = M4 < ∞

Consequently,

sup
y
n,�n+1

2
�−1

dH,θ(M̂e[X ]n, ̂Me[Y�n+1
2 �−1]n)

= sup
Y�n+1

2
�−1

[
| ̂Me(mid[X ]n)− ̂Me(mid[Y�n+1

2 �−1]n)|

+ θ · | ̂Me(spr[X ]n)− ̂Me(spr[Y�n+1
2 �−1]n)|

]
≤ M1 + θ ·M2 < ∞

and
sup

y
n,�n+1

2
�−1

ρ1( ̂Med[X ]n, ̂Med[Y�n+1
2 �−1]n)

= sup
y
n,�n+1

2
�−1

[
1

2
· | ̂Me(inf[X ]n)− ̂Me(inf[Y�n+1

2 �−1]n)|
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+
1

2
· | ̂Me(sup[X ]n)− ̂Me(sup[Y�n+1

2 �−1]n)|
]
≤ M3 +M4

2
< ∞

�

Furthermore, the fsbp of both medians can also be compared with the Au-
mann expectation:

Theorem 1. The finite sample breakdown point of the sample Aumann ex-
pectation from a random interval X, fsbp(Xn), is lower than the ones for the
sample dH,θ-median and the sample ρ1-median for samples of size n > 2.

Proof. Following the same reasoning used in the previous proposition, it can
be proven that

fsbp(Xn, xn, dH,θ) = fsbp(Xn, xn, ρ1) =
1

n
,

so, consequently,

fsbp(M̂e[X ]n, xn, dH,θ) ≥ n/2

n
=

1

2
>

1

n
= fsbp(Xn, xn, dH,θ)

fsbp(M̂ed[X ]n, xn, ρ1) ≥ n/2

n
=

1

2
>

1

n
= fsbp(Xn, xn, ρ1)

�

In order to corroborate these results, some empirical studies have been
developed. A sample of n = 10000 interval-valued data has been randomly
generated from a random interval characterized by the distribution of two
real-valued random variables, midX and sprX . Two cases have been consid-
ered: one in which the two random variables are independent (Case 1) and
another one in which they are dependent (Case 2). In both situations, the
sample has been split into two subsamples, one of size n · cp associated with
a contaminated distribution (hence cp represents the proportion of contami-
nation) and the other one, of size n · (1 − cp), without any perturbation. A
second parameter, CD, has also been included to measure the relative dis-
tance between the distribution of the contaminated and non contaminated
subsamples. In detail, for different values of cp and CD the data for Case 1
are generated according to

• midX � N (0, 1) and sprX � χ2
1 for the non contaminated subsample,

• midX � N (0, 3) + CD and sprX � χ2
4 + CD for the contaminated sub-

sample,

while for Case 2 we use

• midX � N (0, 1) and sprX �
(

1

(midX)2+1

)2

+ .1 · χ2
1 for the non con-

taminated subsample,
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• midX � N (0, 3)+CD and sprX �
(

1

(midX)2+1

)2

+ .1 ·χ2
1 +CD for the

contaminated subsample.

Both the population dH,θ-median and the population ρ1-median are approx-
imated by the Monte Carlo approach from this sample and the expected
distance between the non contaminated distribution, Xnc, and the approxi-
mated medians, considering the dH,θ and the ρ1 distances, were computed.

cp cD Ratioρ Ratioθ=1/3 Ratio
θ=

√
1/3

Ratioθ=1 Ratioρ Ratioθ=1/3 Ratio
θ=

√
1/3

Ratioθ=1

.0 0 1.019406 1.010211 1.014805 1.020016 1.090363 1.071163 1.113693 1.173596

.0 1 1.019391 1.010212 1.014806 1.020017 1.090412 1.071170 1.113704 1.173612

.0 5 1.019393 1.010221 1.014805 1.020014 1.090448 1.071139 1.113654 1.173533

.0 10 1.019410 1.010209 1.014802 1.020012 1.090442 1.071171 1.113705 1.173613

.1 0 1.016934 1.008394 1.012000 1.015977 1.081155 1.066063 1.106141 1.163368

.1 1 1.017550 1.008663 1.012288 1.016226 1.072844 1.053439 1.085163 1.129607

.1 5 1.015010 1.007975 1.011077 1.014365 1.065343 1.046932 1.071485 1.102874

.1 10 1.011805 1.006462 1.008901 1.011478 1.046427 1.036585 1.054048 1.075179

.2 0 1.014011 1.006560 1.009286 1.012245 1.073723 1.061916 1.099925 1.154805

.2 1 1.014893 1.006741 1.009424 1.012272 1.056341 1.037449 1.059556 1.090469

.2 5 1.012616 1.006605 1.008862 1.011194 1.047532 1.028887 1.041835 1.057560

.2 10 1.009017 1.004951 1.006547 1.008209 1.029309 1.020252 1.028132 1.037146

.4 0 1.008012 1.003628 1.005115 1.006738 1.062304 1.055413 1.090023 1.140840

.4 1 1.006726 1.003075 1.004202 1.005429 1.024528 1.014247 1.022384 1.033863

.4 5 1.009291 1.007752 1.008795 1.009980 1.022742 1.014213 1.018332 1.022988

.4 10 1.006831 1.007307 1.008008 1.008899 1.012734 1.009485 1.011648 1.013964

.4 100 1.000904 1.000999 1.001095 1.001233 1.001385 1.001161 1.001371 1.001585

Table 1. Ratios of the mean distances of the mixed (partially contaminated and
non-contaminated) sample dH,θ and ρ1-medians to the non-contaminated

distribution of a random interval in Case 1 (left columns) and Case 2 (right columns)

In Table 1, the ratios Ratioρ = E(ρ1(Xnc,Me[X ]))/E(ρ1(Xnc,Med[X ]))
and Ratioθ = E(dH,θ(Xnc,Med[X ]))/E(dH,θ(Xnc,Me[X ])) are shown. They
show us how the mean distance increases (w.r.t. each metric) when the chosen
median is not the one defined by means of the corresponding metric.

As Table 1 shows, the bigger the error proportion, the smaller the ratios.
It can be also noticed that the smaller the θ, the smaller the corresponding
ratio. As all the ratios are very close to 1, it can be concluded that both
the dH,θ-median (with different choices for θ) and ρ1-median have a quite
similar behavior since there are no big differences between choosing one of
the two measures in order to summarize the information given by the sample
(independently from the distance used).
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5 Concluding Remarks

In this study, two different definitions for the median of a random interval
have been compared. Both definitions preserve important properties of the
median in real settings and are coherent with the interpretation of the median
as a ‘middle position’ value for certain partial orderings between intervals. By
calculating the finite sample breakdown point and some simulation studies,
the robustness of the two medians has been shown to be similar.

Future directions to be considered could be the extension of this compar-
ison to the fuzzy-valued case and the definition of other central tendency
measures. For instance, trimmed means or medians defined through depth
functions could be adapted to this situation and compared with the current
results.
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