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Abstract A linear regression model for interval data based on the natural
interval-arithmetic has recently been proposed. Interval data can be identi-
fied with 2-dimensional points in R×R

+, since they can be parametrized by
its mid-point and its semi-amplitude or spread, which is non-negative. The
model accounts separately for the contribution of the mid-points and the
spreads through a single equation. The least squares estimation becomes a
quadratic optimization problem subject to linear constraints, which guaran-
tee the existence of the residuals. Several estimators are discussed. Namely,
a closed-form estimator, the restricted least-squares estimator, an empirical
estimator and an estimator based on separate models for mids and spreads
have been investigated. Real-life examples are considered. Simulations are
performed in order to assess the consistency and the bias of the estimators.
Results indicate that the numerical and the closed-form estimator are appro-
priate in most of cases, while the empirical estimator and the one based on
separate models are not always suitable.

1 Introduction

Often experimental researches involves non-perfect data, as missing data, or
censored data. In particular, closed and bounded real-valued sets in R

p are
useful to model information which also representing linguistic descriptions,
fluctuations, grouped data images, to name but a few. Interval data are a spe-
cific case of this kind of elements. The study of linear regression models work-
ing with interval-valued variables has been addressed mainly by two ways:
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(a) in terms of the separate models involving some interval components (as
the midpoint and the range or the minimum and the maximun) (see Billard
and Diday, 2003; Lima Neto et al., 2005 and references therein) which most
of the times work with symbolic interval variables; and (b) in terms of arith-
metic set-based unified models (as in Diamond 1990, Gil et al. 2001, 2002,
2007, González-Rodŕıguez et al. 2007, Blanco-Fernández et al. 2011, among
others). The main difference between both views is that the first approach
usually fits the separate models by numerical or classical tools, but without
the usual probabilistic assumptions for the regression model. This provides
good fittings but non-obvious easy ways of making inferences. On the other
hand, the second approach provides a natural framework to develop infer-
ences, although the least squares approach becomes a minimization problem
with strong constraints.

In Blanco-Fernández et al. (2011) a flexible simple linear regression model
was introduced, the so-called Model M . This model is flexible in the sense
that it accounts for relationship between mid points and the radius of the
involved random intervals. A comparison of several regression estimators of
Model M will be addressed.

The rest of the paper is organized as follows: in Section 2 some prelim-
inary about the Model M will be introduced. In Section 3 four estimation
approaches of Model M will be described. In Section 4 a real-life example
is analyzed to compare the behaviour of the estimators. Finally, Section 5
cointains some conclusions.

2 The Model M for Random Intervals

Hereafter, the intervals that will be considered are elements in the space
Kc(R) = {[a1, a2] : a1, a2 ∈ R, a1 ≤ a2}. An interval A ∈ Kc(R) can be
expressed in terms of its minimun and maximun or in terms or its middle
point (mid ) and the radius (spr ). The second characterization is more usual
in regression studies, as it involves non-negativity constraints which are easier
to handle than the order contraints involved in the first characterization.
There is another representation for the intervals which will be used, namely,
the canonical decomposition, defined as A = midA [1± 0] + sprA [0± 1] (see
Blanco-Fernández et al., 2011).

The arithmetics which will be used are the Minkowski addition A + B =
{a + b : a ∈ A, b ∈ B} and the product by scalars λA = {λa : a ∈ A},
with A,B ∈ Kc(R) and λ ∈ R. The space (Kc(R),+, ·) is not linear as
the existence of the symmetric element with respect to the addition is
not guaranteed in general, in the sense that A + (−A) �= {0} unless A
is a singleton. A new concept of difference agreeing with the natural dif-
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ference, the so-called Hukuhara difference, is introduced. It is defined as
A−H B = [inf A− inf B, supA− supB] if and only if sprB ≤ sprA.

Remark: If sprB > sprA, then the Hukuhara difference does not exist.

The distance used is the so-called dτ (see Trutschnig et al., 2009) defined
as

dτ (A,B) =
√
(1 − τ)(midA−midB)2 + τ (sprA− sprB)2

for all A,B ∈ Kc(R).
Random intervals emerged as a generalization of the real-valued random vari-
ables. Then, y is a random interval if it is Bdτ |A measurable, being Bdτ the
Borel σ-algebra and A the σ-algebra of the probabilistic space (Ω,A, P ).

Notation: Random intervals will be denoted with boldlowercase letters
(x), vectors with lowercase letters (x) and matrices with uppercase letters
(X). The (Aumann) expect value is defined as E(x) = [E(midx)±E(sprx)],
whenever midx and sprx ∈ L1(Ω,A, P ). The Aumann expectation fulfils
Fréchet principle and the Fréchet variance associated with this expectation
is defined as

V arτ (x) = σ2
x,τ = E(dτ (x, E(x))) = (1− τ)σ2

mid x
+ τ σ2

sprx

whenever midx and sprx are integrably bounded.
As (Kc(R),+, ·) is not a linear space, the covariance cannot be defined by
mimiching the usual expression involving the arithmetic in Kc(R). However,
it can be defined in R

2 and we get the following expression

Covτ (x,y) = σx,y = (1− τ)σmid x,mid y + τ σsprx,spry

whenever ‖midx‖2τ , ‖midy‖2τ , ‖sprx‖2τ , ‖spry‖2τ ∈ L1(Ω,A, P ).

Model M will relate a response random interval y : Ω −→ Kc(R) with an
explanatory random interval x : Ω −→ Kc(R) as follows

y = xM α1 + xS α2 + ε (1)

where xM = midx[1±0] = [midx,midx], xS = sprx[0±1] = [−sprx, sprx],
α1, α2 and ε ∈ Kc(R) (see Blanco-Fernández et al, 2011).
The Model can be written in the matricial way as

y = xBl bα + ε (2)

with xBl = (xM |xS) ∈ Kc(R)
1×2, bα = (α1 |α2)

t ∈ R
2×1 and

ε : Ω −→ Kc(R) being a random interval such that E(ε|x) = Δ ∈ Kc(R).

Remark: A property of this model is that it is not identifiable due to the
fact that xS = −xS . However, the coefficient α2 can be considered, with-
out loss of generality, a non-negative vector in R and the space in which the
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solutions to the estimation problem are, can be restricted to R
+. In this way,

the model is identifiable.
Model M entails the following separate models

midy = α1 (midx) + mid ε

spry = |α2| (sprx) + spr ε. (3)

Remark: By the assumption that α2 can be considered non-negative, the
second expression can be written as

spry = α2(sprx) + spr ε.

Thus, it is feasible to consider the estimation of α1 and α2 through the
estimation of the separate models.

3 Estimation of the Model M

Four estimators of the regression coefficients will be considered. The first one
based on the fitting of the separate models introduced in (3). Separate models
have already considered to relate interval-valued variables (see Lima Neto &
Carvalho 2010 among others). In this case the proposed separate models are:

midy = xc bm + εm (4)

spry = xs bs + εs, (5)

where xc = (1,midx) and xs = (1, sprx) ∈ Kc(R)
1×2, bm and bs ∈ R

2×1,
y ∈ Kc(R) and εm, εs ∈ R. Lima Neto & Carvalho impose the condition
that bs ≥ 0 to avoid spreads ill-defined. However, bm has no constraint to be
fulfilled.
Then, let {yi,xi}i=1,...,n be a random simple sample of intervals, the estima-
tor of bm will be:

b̂m = [(xc)t (xc)]−1 (xc)t mid y (6)

where mid y ∈ R
n×1 and

xc =

(
1 1 . . . 1

midx1 midx2 . . . midxn

)
∈ R

n×2.

Parameter bs is estimated according to Lawson and Hanson algorithm (see
Lawson and Hanson, 1974) for constrained LS problems. Then the estimator

of both parameters will be denoted by b̂sep = (b̂m, b̂s).
Remark: The main drawback of using the separate models to estimate

the coefficients is that (5) is not a linear model, due to the non-negativity
constraint of the variables. Additionally, the linear independence between
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the residuals and the independent variables implies further restrictions on
the residuals. Thus, inferences are not straight-forward deduced.

It is possible to obtain another estimator of bα by using sample moments.
Hence, it is introduced the following proposition:

Proposition 1. Given the random interval y and the vector of random in-
tervals xbl in the conditions of the Model M , the coefficients’ vector bα can
be expressed by:

bα = Covτ (y, x
bl)Covτ (x

bl, xbl)−1.

According to Proposition 1, an empirical estimator could be proposed based
on the sample moments, namely:

b̂emp = Covτ (y,X
bl)Covτ (X

bl, Xbl)−1 (7)

with Xbl ∈ Kc(R)
2×n and y ∈ Kc(R)

1×n.

The least squares estimation of bα and the parameter Δ will be carried
out from the information provided by the simple random sample of random
intervals {yi,xi}i=1,...,n obtained from the model:

y = Xbl b̂α + ε̂ (8)

being
Xbl = (xM |xS) ∈ Kc(R)

n×2

and
b̂α = (α̂1 | α̂2)

t ∈ R
2×1.

It is neccesary to assure the existence of the residuals, or in other words, that
the Hukuhara’s difference y −H (Xbl b̂α) exists. Then the expression of the
constraints is:

spr (α̂1 x
M + α̂2 x

S) ≤ spr y

which is equivalent to

sign(α̂2) ◦ |α2| sprx ≤ spr y ≡ α̂2 sprx ≤ spr y.

In order to assure the existance of the residuals, the least squares problem
will be written as a minimization problem with linear constraints. Specifically,
the aim will be to find feasible estimates of bα and Δ minimizing the not
explained variability, that is,

min
c2∈Γ

d2τ (y,X
bl c+ 1Δ) (9)

where c = (c1, c2)
t ∈ R

2×1 and Γ = {c2 ∈ [0,∞)/c2 spr x ≤ spr y}.
Introducing the following notation, the minimization problem (9) will be

transcribed into another one with some useful properties.
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vm = mid y −midy1 ; Fm = midXbl − (midXbl)1 (10)

vs = spr y − spry1 ; Fs = sprXbl − (sprXbl)1,

where vm, vs ∈ R
n×1 and Fm, Fs ∈ R

n×2. Then, the minimization problem
can be written as:

min
c2∈Γ

(1 − τ)(vm − Fm c)t(vm − Fm c) + τ (vs − Fs c)
t(vs − Fs c). (11)

Two possible ways of solving the problem have been proposed. The first one
results in a numerical estimator and the second one in an exact expression.
Concerning the first approach, as the objective function is a quadratic func-
tion and Γ is a set of linear constraints, Karush-Kuhn-Tucker (KKT) Theo-
rem assures the existence of solution and by means of the numerical estimator,

which will be denoted in the sequel by b̂kkt, an estimation of the solution will
be obtained.
On the other hand, a closed expression to estimate the regression coefficients
has been obtained in Blanco-Fernández et al. (2011). It is given in the fol-
lowing proposition and will be the last one to be compared later on.

Proposition 2. Under the conditions of Model M , the LS regression coeffi-

cients estimator is b̂exact = (α̂1, α̂2), where:

α̂1 =
Cov(xM ,y)

V ar(xM )

α̂2 = min
{
â0,max

{
0,

Cov(xS ,y)

V ar(xS)

}}

being â0 = min
{
spr yi

sprxi

}
∀i ∈ {1, . . . , n}.

According to Blanco-Fernández et al. (2011), given b̂α any estimator of bα,
it can be proved that the estimator for the residual, Δ, is:

Δ̂ = y −H XBl b̂α,

or alternatively as

Δ̂ = y −H (xM α̂1 + xS α̂2).

Indeed, as the existence of Hukuhara’s difference y−H XBl b̂α is guaranteed,
d2τ (y,X

Bl b̂α+1Δ) = d2τ (y−H XBl b̂α, 1Δ) and applying Fréchet principle, it
is obtained

Δ̂ = y −H (xM α̂1 + xS α̂2) = y −H (xM α̂1 + xS α̂2).
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4 Applications: A Comparative Study

The first example is concerned with the relationship between the systolic
and diastolic pressures in some patients in the hospital Valle del Nalón, in
Asturias. The pulse rate as well as both pressure ranges along a day will
be modelled by random intervals, where the endpoints of the interval are
the minimum and maximum respectively. The mathematical structure will
be given by Ω = {3000 patients of the hospital}, the Borel σ-algebra and a
probability P which is uniformly distributed.

Table 1 represents the data of the sample of 56 patients. For this example
the constraint sprx bα ≤ spry is fulfilled for the 56 patients. Table 2 sum-
marizes the estimates for α1 and α2. For the separate models approach, bm0
and bs0 refer to the real-valued intercepts while for the rest of the procedures
Δ denotes the interval-valued intercept.

Table 1 y: diastolic blood preassure (mmHg) and x: systolic blood pressure (mmHg)

x y x y x y

118-173 63-102 119-212 47-93 98-160 47-108
104-161 71-118 122-178 73-105 138-221 70-118
131-186 58-113 127-189 74-125 97-154 60-107
105-157 62-118 113-213 52-112 87-152 50-95
120-179 59-94 141-205 69-133 87-150 47-86
101-194 48-116 99-169 53-109 120-188 53-105
109-174 60-119 126-191 60-98 141-256 77-158
128-210 76-125 99-201 55-121 95-166 54-100
94-145 47-104 88-221 37-94 108-147 62-107
148-201 88-130 94-176 56-121 92-172 45-107
111-192 52-96 102-156 50-94 115-196 65-117
116-201 74-133 103-159 52-95 83-140 45-91
102-167 39-84 102-185 63-118 99-172 42-86
104-161 55-98 111-199 57-113 113-176 57-95
106-167 45-95 130-180 64-121 114-186 46-103
112-162 62-116 103-161 55-97 145-210 100-136
136-201 67-122 125-192 59-101
90-177 52-104 97-182 54-104
116-168 58-109 100-161 54-104
98-157 50-111 159-214 90-127

All the estimates for α1 are equal. However, the situation for α2 is different.

Focussing on b̂emp and b̂exact, it can be seen that they are equal because the
sample values fulfil the constraints to assure the existence of the residuals.
However, in general, they do not need to be the same value (as shown in

next example, due to the fact that b̂exact was defined to fulfil the constraint,

whereas b̂emp was not). The estimate obtained from the KKT approach is the
same as well, but this one was obtained by a numerical approximation. Then
we can conclude that the numerical approximation is really close to the exact
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Table 2 Estimations of the parameters α1, α2,Δ and bm0 , bs0

Estimator α1 α2 Δ/bm
0 − bs

0

b̂exact 0.4539 0.2570 [1.0164,32.7000]
̂bkkt 0.4539 0.2570 [1.0164,32.7000]

b̂emp 0.4539 0.2570 [1.0164,32.7000]
̂bsep 0.4539 0.6842 16.8582-0.9443

one. b̂sep reaches a really high value in the estimation of α2, which seem to
denote that this estimator is not a good one, when it is applied to Model M .

The second example is concerned with the relationship between the famil-
iar average income (y) and the percentage of people with higher education
(x) in EEUU in 2006 (http://fact?nder.census.gov). The difference between
this example and the previous one is that not all the values of the sample ful-
fil the constraint sprx bα ≤ spry. Table 3 displays the data of the sample of
50 people. Then, Table 4 summarizes the values of the different estimates for
α1 and α2. Again, estimates of α1 are equal for all the approaches. However,
the estimate of α2 is different for all the approaches excepting the exact and
the KKT-based methods.

5 Conclusions

Some approaches to estimate the regression coefficients have been proposed
and the comparison between them have been made by means of some exam-

ples. According to the empirical results, estimator b̂sep does not provide good
results, which is natural, as they do not account for the specific features of

the unified model that has been considered. Thus, b̂sep will often divert from

the b̂exact.
The performance of the empirical estimator depends on the data which

has been used. If the data satisfies the constraint to assure the existence of
the residuals, then the estimator is similar to the exact one. Otherwise, it is
an erroneous estimator, as it provides wrong estimates for α2, the coefficient
accompanying the spreads. In any case, the estimator could be used for large
samples, as it approaches to the populational parameter consistenly.

Finally, the numerical estimator b̂kkt is an adequate, as it reaches values which
are really close to the exact ones.
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Table 3 y: familiar average income, x: percentage of people with higher education

State y x State y x

Alabama 48.460-49.954 7.5-7.9 Alaska 67.501-72.243 8.8-10.2
Arizona 55.063-56.355 8.9-9.5 Arkansas 44.28-45.906 5.9-6.5
California 64.150-64.976 10.3-10.5 Colorado 63.639-65.589 12.1-12.7
Connect. 77.203-79.105 14.0-14.8 Delaware 60.406-64.84 9.9-11.1
Columbia 57.076-65.134 24.4-26.4 Florida 54.043-54.847 8.8-9.0
Georgia 55.503-56.721 9.0-9.4 Hawaii 68.823-71.731 9.3-10.3
Idaho 50.612-52.668 6.8-7.4 Illinois 62.592-63.650 10.6-11.0
Indiana 55.322-56.240 7.8-8.2 Iowa 55.158-56.312 7.1-7.7
Kansas 56.159-57.555 9.5-10.1 Kentucky 48.044-49.408 8.0-8.4

Louisiana 47.467-49.055 6.6-7.0 Maine 51.820-53.766 8.5-9.3
Maryland 76.988-78.690 15.4-16.0 Massach. 73.710-75.216 15.4-15.8
Michigan 57.461-58.531 9.0-9.4 Minnesota 66.324-67.294 9.4-9.8
Mississippi 41.797-43.813 5.8-6.4 Missouri 52.465-53.587 8.5-8.9
Montana 50.177-51.835 7.8-9.0 Nebraska 56.291-57.589 8.0-8.8
Nevada 60.629-62.303 6.9-7.5 N.Hampshire 70.065-72.287 10.6-11.8
N.Jersey 77.226-78.524 12.2-12.6 N.Mexico 46.84749.551 10.5-11.3
N.York 61.774-62.502 13.2-13.4 N.Carolina 51.855-52.817 8.1-8.5

N.Dakota 53.918-56.852 5.9-7.1 Ohio 55.760-56.536 8.1-8.5
Oklahoma 47.179-48.731 7.0-7.4 Oregon 55.166-56.680 9.7-10.3
Pennsylv. 57.787-58.509 9.4-9.8 R.Island 62.762-66.704 10.7-11.9
S.Carolina 49.677-50.991 7.7-8.1 S.Dakota 52.870-54.742 6.7-7.7
Tennes. 49.240-50.368 7.3-7.7 Texas 52.080-52.630 7.9-8.1
Utah 57.306-58.976 9.0-9.8 Vermont 56.752-59.574 12.1-13.5

Virginia 66.263-67.509 12.9-13.5 Washington 63.055-64.355 10.5-10.9
W.Virginia 43.189-44.835 6.3-6.9 Wisconsin 60.172-61.096 8.2-8.6
Wyoming 55.797-59.213 6.8-8.0

Table 4 Estimates of the parameters

Estimator α̂1 α̂2 Δ̂/b̂m
0 − b̂s

0

b̂exact 2.9767 1.3817 [29.7003,30.5269]
̂bkkt 2.9767 1.3817 [29.7003,30.5269]

b̂emp 2.9767 2.3947 [30.0204,30.2068]
̂bsep 2.9767 2.6276 30.1136-0.0196
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