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Abstract A core task in the analysis of functional magnetic resonance imag-
ing (fMRI) data is to detect groups of voxels that exhibit synchronous activity
while the subject is performing a certain task. Synchronous activity is typi-
cally interpreted as functional connectivity between brain regions. We com-
pare classical approaches like statistical parametric mapping (SPM) and some
new approaches that are loosely based on frequent pattern mining principles,
but restricted to the local neighborhood of a voxel. In particular, we exam-
ine how a soft notion of activity (rather than a binary one) can be modeled
and exploited in the analysis process. In addition, we explore a fault-tolerant
notion of synchronous activity of groups of voxels in both the binary and the
soft/fuzzy activity setting. We apply the methods to fMRI data from a visual
stimulus experiment to demonstrate their usefulness.

1 Introduction

The localization and analysis of brain activity is a major objective in cog-
nitive neuroscience. Functional magnetic resonance imaging (fMRI) provides
an indirect, but non-invasive means to measure brain activity in vivo. Es-
sentially, time series of three-dimensional (3D) brain-images are acquired,
in which each volumetric pixel (or voxel for short) represents a cuboid of
tissue. Inferences about brain activity rest on the following principle: neu-
ronal activity entails the consumption of oxygen and thus the supply of the

1 Department of Knowledge and Language Processing, University of Magdeburg, D-39106
Magdeburg, Germany, kristian.loewe@gmx.net
2 Laboratory for Social and Neural Systems Research, Department of Economics, Univer-
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relevant area with oxygenated blood. The different magnetic properties of
oxygenated blood in comparison to deoxygenated blood result in observable
signal changes in the time series of the relevant voxels, which are exploited as
an indirect indicator of neuronal activity. This is known as the blood oxygen
level dependent (BOLD) effect [9]. For an excellent review of neurovascular
coupling and its effect on the BOLD signal see [8].

Typical task-related fMRI experiments are designed and conducted on the
grounds of certain hypotheses about brain functions which are subsequently
tested using regression-based statistics. To this end, most often general linear
models (GLM) based on canonical hemodynamic response functions (cHRF)
are fitted to each individual voxel time series in order to obtain statistical
maps highlighting brain activity related to experimental conditions. In that
regard, several apriori assumptions are widely accepted by the neuroimaging
community. For example, to facilitate comparison between voxels, GLMs are
generated and fitted using the same cHRF for all time series, even though
hemodynamic responses differ widely across the brain [1, 5]. As a conse-
quence, such an analysis is limited to the testing of a priori hypotheses and
frequently makes use of a priori assumptions, which—in case they are not
met—may constrain the significance of the obtained results.

In contrast to this, data-driven approaches might reveal unexpected pat-
terns that in turn could give rise to new hypotheses, while at the same time a
priori assumptions are avoided as far as possible. For example, recent stud-
ies made use of graph-theory in order to derive network characteristics of the
brain from interregional functional connectivity matrices, where functional
connectivity means the temporal dependence between brain regions [4]. In
both, task-related and resting-state settings (where in a resting state no task
and no explicit external stimulus is presented) studies indicated that the
brain network is organized in a highly clustered way [3, 13]. Recently, this
was exploited to compute locally restricted correlations (based on spatial
proximity) in order to rapidly identify potential hub regions in the brain [11].

Building in a similar fashion on the strongly clustered brain organization,
we present a new, noise-robust, and purely data-driven method targeting
local functional connectivity patterns. The proposed approach is applicable
to any type of fMRI data (task-related, resting-state etc.) and allows for
time-efficient and model-free generation of meaningful brain maps (without
making a priori assumptions or presuming hypotheses to test).

2 Notions of Activity

FMRI data are series of periodically acquired 3D intensity images. We denote
one such series by i = (i1, i2, . . . , iT ), where T is the number of points in
time at which the intensity images ik, k ∈ {1, . . . , T }, are recorded. The
individual images are organized in a regular 3D voxel grid of size X×Y ×Z.
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In order to simplify the processing, the voxel coordinates (x, y, z) can be
mapped (in an essentially arbitrary, but fixed fashion) to a linear index v
with 1 ≤ v ≤ V = X · Y · Z. In this way a data set can be represented by a
data matrix SV×T = (sv,t). By sv = sv,∗ = (sv,1, sv,2, . . . , sv,T ), that is, the
v-th row of S, we denote the time series of voxel v.

As the data are arbitrarily scaled, a meaningful and comparable notion of
activity (magnitude) arises only from a relative interpretation. In the follow-
ing, we derive a binary and a soft notion of voxel activity by considering at
any given time the deviation from its temporal average intensity. The binary
notion can be seen as a limiting case of the soft notion.

Binary Notion of Activity. We use a simple binary discretization in
order to assign to each value in a time series one of the two qualitative states
active and inactive. Formally, the dichotomized time series dv of a voxel v is
given by dv = (d(sv,1), d(sv,2), . . . , d(sv,T )) ∈ {0, 1}T induced by the function
d(sv,t) = H(sv,t − s̃v), t ∈ {1, . . . , T }, where s̃v denotes the median of the
values in sv and H is the Heaviside step function, defined as H(x) = 0 if x < 0
and H(x) = 1 otherwise. In other words, a voxel is regarded as active at a
point in time if the corresponding signal intensity value amounts at least to
the median of the respective time series. The median was chosen over the
mean because it is less sensitive to outliers.

Note that this very simple scheme is naturally open to many points of
criticism. For example, it enforces that a voxel is active half of the time,
which is clearly debatable. However, it already leads to useful results and
thus we defer finding better discretization schemes to future work.

Note also that the concise binary time series representation dv can be ex-
ploited in order to speed up subsequent analysis through a highly efficient
implementation using bit vectors. However, this advantage comes at the ex-
pense of the inevitable loss of information due to the discretization.

Soft Notion of Activity. The above discretization implies an extreme
sharpening of the signal: whereas the actual signal rises gradually over time,
the discretization enforces a sharp instantaneous signal change once the me-
dian is exceeded. Effectively, the signal is transformed into a square-wave
signal, thus increasing the contrast at the transition sites.

By replacing the Heaviside step function with a sigmoid function (for in-
stance, a logistic function), we introduce a soft notion of activity, which en-
ables a parameterized sharpening of the signal (thus also limiting the infor-
mation loss). Formally, we transform the time series according to the linear
scaling and logistic activation function

f
(β)
act (sv,t) =

(
1 + exp

(
− sv,t − s̃v
β(Q0.95(sv)−Q0.05(sv))

))−1

,

where Q0.05(sv) and Q0.95(sv) denote the 5% and the 95% quantile, respec-
tively, of the time series sv. Their difference can be seen as an estimate of the
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Fig. 1 Application of logistic activation functions differing in their slope β to a time
series s. For β → 1

∞ this is equivalent to the discretization approach.

range of intensity values, which is more robust than simply using min and
max and thus is in line with our choice of the median over the mean.

The strength of the sharpening effect is governed by the slope parameter β.
Obviously the binary discretization is obtained as a limiting case of this
scheme for β → 1

∞ . An illustration is shown in Figure 1.
Note that we use the normalization by an estimate of the range of values in

order to keep the meaning of the slope parameter independent of the range of
values of the time series. Of course, this is also open to criticism, as it removes
all information related to the amount of signal change, which may contain
valuable information. However, as with the choice of the median as the tran-
sition point between inactive and active, we leave further improvements of
the activation scheme for future work.

3 Local Connectivity Measures

Recent voxelwise functional connectivity analyses showed a highly clustered
organization of the brain in both task-related as well as resting-state set-
tings [3, 13]. Aiming to characterize local connectivity patterns by quantify-
ing the local cohesion strength, we propose new local connectivity measures
(LCM) operating on the time series of the enclosing 3× 3× 3 cuboid of each
voxel. In this scheme each center voxel serves as an identifier of its enclosing
cuboid, allowing for the data to be traversed in a sliding 3D window fashion.
For this purpose, we denote by

N26(v) = {w | v �= w ∧max{|xv − xw|, |yv − yw|, |zv − zw|} ≤ 1}

the 26 neighbors of a voxel v = (xv, yv, zv) (formed by the 6 voxels sharing a
face, the 12 sharing an edge and the 8 sharing a vertex with it). The whole
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cuboid of a voxel v is then denoted by C27(v) = {v ∪ N26(v)} and we only
consider voxels with a complete cuboid neighborhood.

A natural approach would be to calculate the average of Pearson’s corre-
lation coefficient of all 27·26

2 = 351 voxel pairs within an enclosing cuboid.
However, each individual correlation—and thus also their mean—might be
considerably prone to noise. Especially if there are some voxels that do not
participate in the joint activity and thus have low correlations with the other
voxels, an existing co-activity pattern may not be discernible.

Therefore, instead of combining pairwise correlations by averaging, we try
to obtain a more robust measure by integrating the values of all 27 voxels at
each point in time. To be more precise, our idea is to find for each voxel’s
enclosing cuboid C27(v) those points in time that exhibit synchronous activity
of at least a certain (user-specified) number of voxels. Formally, we have

LCMB
α (v) =

1

T

T∑
t=1

H
(( ∑

w∈C27(v)

dw,t

)
− α

)
,

where H is the Heaviside step function. “LCM” stands for “local connectivity
measure” and the upper index B indicates that it is based on the binary
time series dv. The measure is normalized w.r.t. T , the length of the time
series, in order to facilitate comparison between data sets of different length.
The parameter α ∈ {1, . . . , 27} captures the fault-tolerant aspect of this
measure: Given a cuboid and a point in time, α active voxels suffice for
the corresponding addend to become equal to one (and thus to contribute
positively to the co-activity measure).

For functionally independent adjacent voxels we expect to see around
13–14 active voxels at each point in time, because with our discretization
scheme (active above and inactive below the median) each voxel is active at
half of the points in time and therefore about half of the voxels in a cuboid
should be active on average. As a consequence, α should be chosen greater
than 14. However, what choice of α is best depends on the level of noise
present in the data and the desired contrast between functionally connected
and functionally independent 27-cuboids.

Clearly, the number of active voxels can be expected to be significantly
higher than 14 at points in time actually showing co-activity. As this co-
activity “uses up” some of the active states of the participating voxels, the
remaining points in time must possess a lower average number of co-active
voxels. In addition, it is plausible to assume that functionally connected voxels
also exhibit co-inactivity, that is, possess points in time at which only a
relatively low number of voxels are active. This can be exploited to enhance
the contrast of the measure by defining

LCMdBα (v) = LCMB
α (v) + (1− LCMB

28−α(v)).
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Since LCMB
α (v) is the higher, the more co-activity the voxels in a cuboid

show, while (1 − LCMB
28−α(v)) is the higher, the more co-inactivity they

show, this measure can be expected to be more sensitive.
Using our soft notions of activity, we now define soft analogues of the above

measures. In order to handle the activity degrees, we rely on the following
reasoning: in a perfect situation, in which all voxels are active at a point in
time (α = 27), the terms summed over can also be seen as conjunctions of
the activity values (active — 1, inactive — 0). In a soft setting this conjunc-
tion could be expressed, using a standard fuzzification of conjunctions, by a
minimum. The fault-tolerant aspect can then be incorporated by replacing
the minimum with a quantile, thus allowing a few activations to be low. This
leads to the following measure:

LCMS
α,β(v) =

1

T

T∑
t=1

Q
1−α−1/2

27

([
f
(β)
act (sw,t)

∣∣∣ w ∈ C27(v)
])

,

where Qp([x1, . . . , xk]) denotes the p-quantile of the data set [x1, . . . , x27]
(which we do not write as a set in order to allow for multiple voxels having

the same activation) such that 1− α−1/2
27 selects the α-smallest value. “LCM”

again stands for “local connectivity measure” and the upper index S indicates
that it is based on a soft notion of activity.

Arguing in the same way as for the binary measure, we can increase the
contrast and thus the sensitivity for detecting co-activity by defining

LCMdSα,β(v) = LCMS
α,β(v) + (1 − LCMS

28−α,β(v)).

4 Data and Preprocessing

We applied the proposed methods to both artificial data and real fMRI
recordings from a task-related experiment.

Artificial Data. In order to analyze the characteristics of the new measures,
we generated synthetic data sets of co-active and independent voxels. One
sample of a data set consisted of 27 voxel time series corresponding to one
3 × 3 × 3 cuboid of voxels. The co-active samples were created using zero
vectors (of length 300) into which blocks of ones were inserted at random
locations. The vectors were then convolved with the cHRF included in the
software package SPM81 for Matlab2. Finally, white Gaussian noise (WGN)
of given signal-to-noise ratio (SNR) was added. In this way, three data sets
of co-active samples were created, corresponding to SNRs of +10, 0 and

1 SPM8. Wellcome Trust Centre for Neuroimaging, London, UK.
Available at http://www.fil.ion.ucl.ac.uk/spm/.
2 MATLABR©. The MathWorks Inc., Natick, Massachusetts, USA.

http://www.fil.ion.ucl.ac.uk/spm/
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−10 decibel (dB). In addition, we created one data set containing samples of
independent voxels using WGN time series.

Real Data. The usefulness of the proposed methods as applied to real
data was assessed using task-related fMRI data, acquired using a 7 Tesla
MR-scanner (Siemens, Erlangen, Germany) in the context of a study of the
visual pathway. Subjects were instructed to focus on a central fixation point,
while being exposed to alternating left and right visual hemifield stimulation
of different luminance contrasts. Meanwhile, functional data were acquired in
volumes of 192× 192× 27 voxels at isotropic resolution of 1.1mm edge length
using a time resolution of 2s. Details can be found in [12].

The analysis of fMRI data is susceptible to manifold artifacts arising from
both physiological and hardware-related sources. It was therefore essential
to account for them prior to the actual analysis. Using an online image-
reconstruction procedure, all data were motion- and distortion-corrected
based on a reference measurement of the local point spread function [14].
As interpolation causes local correlations not originally present in the data,
we refrained from spatial smoothing and normalization to a standard brain.

Frequencies below 0.01Hz were removed from the individual voxel time se-
ries accounting for low frequency signal intensity drifts caused e.g. by scanner
instabilities [10] and physiological artifacts. Non-brain voxels were excluded
from further analysis by defining a brain mask using a thresholding proce-
dure based on the means of the voxel time series. For comparative purposes
in further analyses the remaining brain voxels were also partitioned into gray
matter and non-gray matter voxels by thresholding of a gray matter proba-
bility map generated using SPM8 segmentation routines.

GLM Analysis. For comparisons, a conventional GLM analysis of the
task-related fMRI data was carried out using SPM8. We applied a statistical
model containing boxcar waveforms convolved with a cHRF, representing
the left and right visual hemifield stimulation, respectively. Multiple linear
regression was then used to generate parameter estimates for each regressor
at every voxel. Visual field biased regions in each subject were identified using
a contrast of contralateral greater than ipsilateral visual stimulation resulting
in a statistical parametric map of t-statistics (SPMt).

5 Results for Test Data

Three variants of LCM and LCMd were calculated for the four test data
sets (see Section 4): LCMB

α , LCMdBα , LCM
S
α,0.05, LCMdSα,0.05, LCM

S
α,0.1, and

LCMdSα,0.1 (Figure 2). As anticipated, the LCM is higher for the co-active
voxels than for the noise voxels for α > 14 while the opposite is true for
α ≤ 14. LCMd exploits both complementary contrasts and thus exhibits an
increased sensitivity compared to LCM.
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Fig. 2 The generated test data (Section 4) were subject to LCMB
α (top left), LCMdBα

(top right), LCMS
α,0.05 (mid left), LCMdSα,0.05 (mid right), LCMS

α,0.1 (bottom left), and

LCMdSα,0.1 (bottom right). Sample means corresponding to the three data sets consisting of
co-active 27-cuboids (circles) and to the WGN 27-cuboids (asterisks) were plotted against
α. For the former, the darkness of the gray decreases with the SNR used when adding
WGN to the time series. The absolute differences between the results corresponding to the
WGN data and those corresponding to the three co-active data sets were plotted adopting
the respective gray levels (triangles). The same holds for the horizontal dashed lines rep-
resenting the mean of the average correlation coefficient (of the 351 pairwise correlations
per sample) distribution of the respective co-active data set.
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The average correlation coefficient yields higher contrast between co-active
and WGN samples (as estimated by the difference of their respective results)
if the strength of the noise is low, that is, for higher SNRs. The opposite is
true for lower SNRs: here LCM/LCMd outperforms the average correlation
coefficient in the course of decreasing SNR. Unavoidably, however, the higher
the strength of the additive WGN, the more the LCM/LCMd of the co-active
samples resemble those of the WGN data.

As illustrated by Figure 3, the variance (and range) of LCMd—and there-
fore its sensitivity—is lowest for the most extreme values of α. Accordingly,
also the difference between the co-active and the WGN voxels is minimal for
α = 14 and α = 27 (Figure 2, right column). As explained in Section 3, the
best choice of α depends on the level of noise present in the data and the de-
sired contrast between functionally connected and functionally independent
27-cuboids. While a smaller α provides higher noise robustness (fault toler-
ance), a too small choice will impair the contrast between co-active voxels
and WGN voxels, as the expected value under the assumption of independent
voxels comes closers. Then again, some fault tolerance needs to be ensured,
as due to noise a large α will result in a low range and similar LCMd for both
co-active and noise voxels, all the same.

The attainable noise robustness of LCM seems to increase with the sharp-
ening effect, that is, with decreasing slope β. The smaller β is, the farther
each value in a time series gets shifted towards minimum or maximum, that
is, towards 0 or 1. Thus, with β decreasing, LCM values tend to increase for
α > 14 and to decrease for α ≤ 14. In other words, the soft approach seems to
keep more noise than actual information. However, this behavior may be due
to our scheme of transforming the time series (using a median and quantile
normalization) and further investigations are needed in order to clarify this.
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6 Results for Real Data

The model-driven approach using a GLM yielded robust activation in cor-
tical and subcortical visual regions mostly confined to gray matter. As ex-
pected, highest activity differences were found in the left and right calcarine
sulcus respectively, the location of retinotopically organized primary visual
cortex (V1). Additional regions representing the left and right visual field,
respectively, could be localized such as the secondary and mid-level visual re-
gions V2 adjacent to the dorsal and ventral part of V1 as well as area MT+,
located bilaterally in the temporal parts of occipital cortex. Subcortical re-
gions such as the lateral geniculate nucleus (LGN) as well as the superior
colliculus showed statistically significant differences between their left and
right visual field representation, albeit much lower than V1 (see Section 4).

We now set out to adress the question whether it is possible to generate
meaningful brain maps without any a priori assumptions with respect to
experimental design or hemodynamic properties across the brain. The LCM
analysis generally yielded higher values for gray matter regions than for non-
gray matter regions. As for SPMt, the highest values were found in left and
right V1 and adjacent visual regions. Visual inspection of the results indicated
that high SPMt values are most often accompanied by high LCM values (3rd

and 4th row of Figure 4). The two-dimensional histogram of SPMt and LCM
confirmed this observation (5th row of Figure 4). Conversely, many voxels
were exhibiting no considerable activation associated with the visual exper-
iment, while at the same time showing a high LCM. For both hemispheres,
two regions of interest (ROI) of 100 voxels each were defined in the center
of GLM activation, i.e., in V1, and in a white matter (WM) region in the
temporal lobe, where no coherent—let alone visually driven—activity was to
be expected. Highly active voxels in both V1 ROIs, identified with GLM and
indicated by high SPMt deviations from zero, were also identified by LCM,
while both approaches identified the WM regions as non-responsive. Voxels
identified as highly active by SPMt also show high LCM values, suggesting
local connectivity increases as the cortex is active (5th row of Figure 4).

7 Discussion, Conclusions and Future Work

We presented noise-robust and data-driven measures that characterize lo-
cal functional connectivity patterns in fMRI data. Specifically, the proposed
LCMs are designed in order to capture the proportion of synchronous activity
(LCM, α > 14), synchronous inactivity (1− LCM, α < 14) or both (LCMd)
as exhibited by adjacent voxels during a fixed period of time.

Using fMRI data from a study of the visual path, we compared stimulus-
related activity as detected by conventional regression-based GLM analysis
with local functional connectivity as estimated by LCMd. While increased
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stimulus-related activity was most often accompanied by increased local func-
tional connectivity, we also detected functionally connected clusters that ex-
hibited no considerable task-related activity. These clusters may have been
affected by locally coherent noise patterns or they may have been engaged
in neuronal activity unrelated (or at least not linearly related) to the visual
stimuli. In the latter case, further inspection of these clusters might give rise
to new hypotheses, subsequently testable in a conventional fashion.

Beyond the initial proof of concept, the proposed approach may be uti-
lized in future neuroscientific research as well as possible therapeutical im-
plementations. As the method is entirely data-driven, it is applicable to any
fMRI data (task- or stimulus-induced, resting-state, etc.). As such, LCM-
based analyses may be especially suited to the analysis of resting-state fMRI
data, as in this case no experimental task or stimulus onsets exist on which
regressors for GLM and fitting of cHRFs could be based.

With a properly adjusted implementation, the LCM-versions based on di-
chotomous time series (that is, with a binary notion of activity) allow for time-
efficient analysis of very large and very many data sets. This aspect might
be exploitable for real-time fMRI (rtfMRI). The rtfMRI methodology aims
at efficiently analyzing neuroimaging data in an online fashion (that is, con-
currently with the data acquisition by the scanner), the results of which may
govern the adaptation of experimental stimulation and the interaction with
the subject. The feasibility of online analysis of complex emotional and cogni-
tive states has recently been shown [7], while the future aim of such methods
lies in therapeutic neurofeedback-based training after traumatic brain injury,
cognitive stress or neurological pathology and will potentially culminate in
brain machine interfaces [6]. In this application domain, changes in local func-
tional connectivity could serve as an indicator of changing activity patterns,
as suggested by the comparison of GLM/SPMt and LCM results.

In addition, LCM might serve as a filter in order to constrain the brain
voxels to be analyzed further based on the functional images only or in addi-
tion to a T1-based gray matter segmentation. In favor of this idea it can be
said that the LCM maps and the GM probability maps seemed to be highly
conform (which is not surprising, though, since no neuronal activity is to be
expected in non-GM areas). In fact, an initial and general reduction to infor-
mative parts of fMRI data before the actual analysis (whether assumption
free or not) may constitute an interesting field of potential applications.

Future work includes finding a better way of mapping the intensity signal
as picked up by the scanner to an activation degree, since the shortcomings
of our current mapping do not allow us to fully exploit the advantages of
a soft approach, which inherently is better suited to maintain all relevant
information. Secondly, we are working on pertubation schemes to generate
surrogate data that can be used to derive p-values for the detected local
connectivity. Finally, we are in the process of extending our approach to a
time-efficient analysis of spatially unconstrained connectivity, which is made
possible by bit-vector representations of a binary notion of activity.
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