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Abstract Non-stationarity is an important aspect of data stream mining.
Change detection and on-line adaptation of statistical estimators is required
for non-stationary data streams. Statistical hypothesis tests may also be used
for change detection. The advantage of using statistical tests compared to
heuristic adaptation strategies is that we can distinguish between fluctua-
tions due to the randomness inherent in the underlying distribution while it
remains stationary and real changes of the distribution from which we sam-
ple. However, the problem of multiple testing should be taken into account
when a test is carried out more than once. Even if the underlying distribution
does not change over time, any test will erroneously reject the null hypothesis
of no change in the long run if we only carry out the test often enough. In this
work, we propose methods which account for the multiple testing issue and
consequently improve reliability of change detection. A new method based on
the information about the distribution of p-values is presented and discussed
in this article as well as classical methods such as Bonferroni correction and
the Bonferroni-Holm method.

1 Introduction

One of the most important aspects in data stream analysis is that in most
applications the underlying data generating process does not remain static,
i.e. the underlying probabilistic model cannot be assumed to be stationary.
The changes in the data structure may occur over time. Dealing with non-
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stationary data requires change detection and on-line adaptation. Different
kinds of non-stationarity have been classified in [1]:

• Changes in the data distribution: the change occurs in the data distribution
in general. For instance, the mean or the variance of the data distribution
may change over time.

• Changes in concept: here concept change refers to changes of a target
variable. A target variable is a variable whose values we try to predict based
on the model estimated from the data, for instance, for linear regression
concept drift refers to the change of the coefficients of the linear model
which is used to predict the target variable. Concept change can be further
distinguished in the following way:

– Concept drift: concept drift describes gradual changes of the concept.
In statistics, this is usually called structural drift.

– Concept shift: concept shift refers to an abrupt change which is also
referred to as structural break.

In the following, we do not differentiate between concept drift and shift for
two reasons. First of all, in both cases the relation between the predictor
attributes and the target variable will be changed anyway. Secondly, we can
only observe or sample the data at discrete time points, so that it does not
matter whether we interpret the changes between two time points as a dis-
continuous jump in terms of concept shift or as a smooth transition between
two time points which we cannot describe or observe in detail, because we
have data between two discrete time points.

Real world applications for non-stationary data can be found for instance
in stock market or weather prediction, change of protein structures through
mutation or the buying behaviour of customers of an on-line store. Since
non-stationary data models significantly affect the accuracy of prediction,
the fact of concept drift should be taken into account by on-line learning.
Hence the effective treatment of non-stationarity is an important problem
in machine learning. Therefore change detection and on-line adaptation for
data stream mining techniques are required for non-stationary data streams.
Various strategies to handle non-stationarity are proposed, see for instance
[6] for a detailed survey of change detection methods. Statistical hypothesis
tests may also be used for change detection. Since we are working with data
streams, it is required that either the calculations for the hypothesis tests can
be carried out in an incremental way or time window techniques should be
used. Hypothesis tests could be applied to change detection in two different
ways (for detailed survey see [12]):

• Change detection through incremental computation of the tests: by this
approach the test is computed in an incremental fashion. For instance,
the χ2-test and the t-test (for precise definitions see for example [10])
render themselves easily to incremental computations (on-line adaptation
of these tests is described in [12]). A low p-value for the comparison of the
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data distributions at different time points – in the case of the χ2-test – or
comparison of the mean values – in the case of the t-test – would indicate
a change in the data stream.

• Time window techniques: by this approach the data stream is divided into
time windows. A sliding window can be used as well as non-overlapping
windows. In order to detect potential changes, we need either to compare
data from an earlier window with data from newer one or to test only
the new data (for instance, whether the data follow a known or assumed
distribution).

However, the problem of multiple testing should be taken into account
when more than one hypothesis is tested simultaneously. The more hypothe-
ses are tested, the more likely the null hypothesis of no change will be er-
roneously rejected, even if the underlying distribution does not change over
time. In this work we present different approaches to solve this problem. One
way is the application methods that account for multiple testing like the well
known Bonferroni correction and the Bonferroni-Holm method. Furthermore,
we propose a new approach based on the information about the distribution
of p-values.

This paper is organised as follows. The problem of multiple testing is ex-
plained in Section 2. Two classical methods to handle the problem of multiple
testing are also described in this section. In Section 3 the theoretical back-
ground on p-values is given and a new approach based on the distribution of
p-values under the null hypothesis is introduced. Examples are discussed in
the experimental section 4.

2 Multiple Testing

Multiple testing refers to the application of a number of tests simultaneously.
Instead of a single null hypothesis, tests for a set of null hypotheses H0,
H1, . . . , Hn are considered. These null hypotheses do not have to exclude
each other.

An example for multiple testing is a test whether m random variables
X1, . . . Xm are pairwise independent. This means the null hypotheses are
H1,2, . . . , H1,m, . . . , Hm−1,m where Hi,j states that Xi and Xj are indepen-
dent. Multiple testing leads to the undesired effect of cumulating the α-error.

Definition 1. The α-error α is the probability to reject the null hypothesis
erroneously, given it is true.

Choosing α = 0.05 means that in 5% of the cases the null hypothesis would
be rejected, although it is true. When k tests are applied to the same sample,
then the error probability for each test is α. Under the assumption that the
null hypotheses are all true and the tests are independent, the probability
that at least one test will reject its null hypothesis erroneously is
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P (� ≥ 1) = 1− P (� = 0)

= 1− (1− α) · (1− α) . . . · (1 − α)

= 1− (1− α)k. (1)

� is the number of tests rejecting the null hypothesis.
A variety of approaches have been proposed to handle the problem of

cumulating the α-error. In the following, two common methods will be intro-
duced shortly.

The simplest and most conservative method is Bonferroni correction [9].
When k null hypotheses are tested simultaneously and α is the desired over-
all α-error for all tests together, then the corrected α-error for each single
test should be chosen as α̃ = α

k . The justification for this correction is the
inequality

P

(⋃
i

Ai

)
≤

∑
i

P (Ai) . (2)

For Bonferroni correction, Ai is the event that the null hypothesis Hi is
rejected, although it is true. In this way, the probability that one or more of
the tests rejects its corresponding null hypothesis is at most α. In order to
guarantee the significance level α, each single test must be carried out with
the corrected level α̃.

Bonferroni correction is a very rough and conservative approximation for
the true α-error. One of its disadvantages is that the corrected significance
level α̃ becomes very low, so that it becomes almost impossible to reject any
of the null hypotheses.

The simple single step Bonferroni correction has been improved by Holm
[7]. The Bonferroni-Holm method is a multi-step procedure in which the
necessary corrections are carried out stepwise. This method usually yields
larger corrected α-values than the simple Bonferroni correction.

When k hypotheses are tested simultaneously and the overall α-error for
all tests is α, for each of the tests the corresponding p-value is computed
based on the sample x and the p-values are sorted in ascending order.

p[1](x) ≤ p[2](x) ≤ . . . ≤ p[k](x) (3)

The null hypotheses Hi are ordered in the same way.

H[1], H[2], . . . , H[k] (4)

In the first step H[1] is tested by comparing p[1] with
α
k . If p[1] >

α
k holds,

then H[1] and the other null hypotheses H[2], . . . , H[k] are not rejected. The
method terminates in this case. However, if p[1] ≤ α

k holds, H[1] is rejected
and the next null hypothesis H[2] is tested by comparing the p-value p[2] and
the corrected α-value α

k−1 . If p[2] >
α

k−1 holds, H[2] and the remaining null
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hypotheses H[3], . . . , H[k] are not rejected. If p[2] ≤ α
k−1 holds, H[2] is rejected

and the procedure continues with H[3] in the same way.
The Bonferroni-Holm method tests the hypotheses in the order of their

p-values, starting with H[1]. The corrected αi-values
α
k ,

α
k−1 , . . . α are increas-

ing. Therefore, the Bonferroni-Holm method rejects at least those hypotheses
that are also rejected by simple Bonferroni correction, but in general more
hypotheses can be rejected.

During change detection instead of the common significance level α, the
Bonferroni correction or Bonferroni-Holm method should be used in order
to avoid the multiple testing problem. However, the streaming nature of the
data should be taken into account and it is therefore impossible to hold all
the obtained p-values in the memory. Furthermore, the number of tests to
be carried out is not known in advance. Thus, a time window technique-
based approach should be used, such for instance as a sliding window or
non-overlapping time windows.

3 Meta p-values

Another possibility to solve the problem of multiple testing during change
detection is to study the behaviour of the obtained p-values. Several authors
have analysed properties of p-values. For instance, Gibson and Pratt (see [5])
provided an interpretation and methodology for p-values, Sackrowitz and
Samuel-Cahn [8] analysed the stochastic behaviour of p-values. Donahue in
[4] studied the distribution of p-values under the alternative hypothesis. In
[2], the authors focus on the median of the p-value under the alternative
hypothesis.

Definition 2. The p-value is the probability to obtain a value of the test
statistic as extreme as, or more extreme than (depending on the alternative
hypothesis) the observed value of the test statistic given the null hypothesis
is true.

Hence, in the case of continuous test statistics for a right tailed test the
p-value is calculated as

p = Pr (T ≥ t|H0) = 1− FT (t) (5)

and for a left tailed test as

p = Pr (T ≤ t|H0) = FT (t) (6)

where FT (t) is the cumulative distribution function for the test statistic T
under the assumption that the null hypothesis H0 is true.

In the case of a two tailed test, the p-value is the total area under both
tails with an area of p

2 in each tail. Therefore, if the observed value falls into
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the one-tailed area, the area of this tail has to be doubled and the other tail
can be ignored.

p =

{
2 · Pr (T ≤ t|H0) , if t ≤ qT0.5
2 · Pr (T ≥ t|H0) , otherwise.

(7)

As the Equations (5), (6) and (7) show, the p-value is a function of a
random variable and hence a random variable itself. An obvious question is:
how are the p-values distributed under the null hypothesis and how under the
alternative hypothesis? First, the distribution of p-values is analysed when
H0 is true (see [4, 8]).

Theorem 1. Given the null hypothesis is true, the p-values of a continuous
test statistic T follow a uniform distribution on the unit interval [0, 1].

Proof. Let p be the achieved p-value and t the calculated test statistic with
FP (p|H0) and FT (t) being the corresponding cumulative distribution func-
tions under H0. Also, let F−1

T (γ) be the inverse function of FT (t), so that
FT

(
F−1
T (γ)

)
= γ for all γ ∈ [0, 1]. Then, for a right tailed test the following

holds

FP (p|H0) = Pr (P ≤ p|H0)

= Pr (1− FT (t) ≤ p|H0)

= Pr (FT (t) ≥ (1− p) |H0)

= 1− Pr (FT (t) ≤ (1− p) |H0)

= 1− FT

(
F−1
T (1− p)

)
= 1− (1− p) = p (8)

For a left tailed test corresponding to Equation (6) the distribution function
of the p-value is as follows

FP (p|H0) = Pr (P ≤ p|H0)

= Pr (FT (t) ≤ p|H0)

= FT

(
F−1
T (p)

)
= p (9)

for all p ∈ [0, 1].
According to Equations (7), (8) and (9), we obtain for the distribution of

P in case of a two tailed test: FP (p|H0) = 2 · p
2 = p. Note that we divide

the probability p to equal parts between both tails. Therefore, the random
variable P is uniformly distributed on the interval [0, 1] when H0 is true. ��

Figures 1 and 2 show the histograms for simulated p-values under the
null hypothesis and the alternative hypothesis respectively. The p-values are
generated by the Kolmogorov-Smirnov test which is carried out over and over
again for the problem of testing test whether or not data are coming from a
standard normal distribution.
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In the case when alternative hypothesis is true, the data are generated
by a normal distribution with expected value 0.05 and standard deviation
1. Altogether, 100 different runs are made for data samples of length 1000.
Figure 1 confirms that the p-values follow a uniform distribution on the unit
interval [0, 1] when the null hypothesis is true.

Fig. 1 Histogram for p-values under the null hypothesis.

The histogram in Figure 2 for the alternative hypothesis shows a different
situation. The sampling distribution here is clearly not uniform anymore, the
majority of values is close to zero and the amount of values decreases towards
the p-value one.

Thus, we are interested in the question: how are p-values distributed when
the alternative hypothesis holds? The distribution is given by Equation (10)
(see [4]).

FP (p|H1) = Pr (P ≤ p|H1)

= Pr (1− FT (t) ≤ p|H1)

= Pr (FT (t) ≥ (1− p) |H1)

= 1− Pr (FT (t) ≤ (1− p) |H1)

= 1−GT

(
F−1
T (1− p)

)
(10)



198 K. Tschumitschew and F. Klawonn

Fig. 2 Histogram for p-values under the alternative hypothesis.

where GT is the distribution of the test statistic T under the alternative
hypothesis. Here we only consider upper-tailed one-sided tests. As Equation
(10) shows, the distribution of the p-values in this case depends on the test
statistic distribution under H0 as well as under H1 hypothesis.

Hence, knowing the distribution of p-values under both hypotheses, a meta
analysis can be performed. Since for each alternative hypothesis – in most
cases the alternative is a composite hypothesis representing not a single but
a set of distributions – and therefore for each GT the distribution of p-values
under H1 is different (see Equation (10)) we restrict further considerations
to the uniformity of p-values under H0.

The most obvious way to carry out a meta analysis is to perform a good-
ness of fit test on the obtained p-values during multiple testing. For instance,
the Kolmogorov-Smirnov test (an implementation is available in the R statis-
tics library [3]) can be used for that purpose. However, the following problem
should be taken into account: in order to carry out a meta analysis of p-
values, neither a sliding window nor an incremental computation can be used
for change detection. Indeed, the general assumption for hypothesis tests that
the considered random variables are independent and identically distributed
(i.i.d.) does not hold for overlapping sliding windows. By the application of
sliding windows or incremental computation the next p-value is highly de-
pendent on the previous ones. The reason for this problem is that almost
the same values are used by the hypothesis test, correspondingly the com-
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puted neighbouring p-values would be approximately equal. Therefore, for
this approach only non-overlapping windows should be used during change
detection. As a consequence, we can not use the comparison between data
from an earlier window with data from newer one when an abrupt change
occurs, since in such a case H0 would be false only once and therefore only
one p-value would not come from a uniform distribution. Nevertheless, this
approach shows good results when a test is used in order to proof whether
the data follow a known or assumed distribution or to detect drift in the data
generating process.

4 Experimental Results

Our approach has been implemented in Java using R-libraries and has been
tested with artificial data. For the data generation process the following model
was used: first n1 time points data are generated from a standard normal
distribution, i.e. Xi ∼ N (0, 1) for i ∈ {1, . . . , n1}. At time point n1 + 1
a change occurs and the data are normally distributed with the following
settings: μ = 0.1 and σ = 1, i.e. N (0.1, 1).

Our meta analysis of p-values has been applied to this data set. The
Kolmogorov-Smirnov test for standard normality of the data was carried out
for non-overlapping time windows. The size of the window for the change de-
tection was chosen to be 500. Afterwards, the sliding window of size 100 was
used for the meta analysis of the obtained p-values. In order to test the dis-
tribution of the p-values a Kolmogorov-Smirnov test for uniformity is used.
A meta p-value is consequently the result of this test. Figure 3 illustrates
described technique.

� � � � � �

�

� � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � ��

	 � 
 � � � � � � � �	 � 
 � � � � � � � �

Fig. 3 Two windows for change detection.

The change occurred at the time point 59489. The computed p-values for
this part of the data are as follows:

After the change occurs, the null hypothesis can be rejected (depending
on the chosen α). However, from time to time H0 cannot be rejected. Fur-
thermore, for some parts without change H0 is erroneously rejected, even
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Table 1 p-values obtained during change detection.

time window p-value

[57000; 57499] 0.07486618716777954

[57500; 57999] 0.1401818038913014

[58000; 58499] 0.9941898244705528

[58500; 58999] 0.9291249862216258

[59000; 59499] 0.5020298421810007

[59500; 59999] 0.01168733233091191

[60000; 60499] 0.05625967117647695

[60500; 60999] 0.6789664978854166

[61000; 61499] 0.394486208210243

[61500; 61999] 0.05360718854238174

[62000; 62499] 0.7747463214977733

though the underlying distribution did not change at that time. For instance
for the interval [45500; 45999] the p-value is 0.018673 and consequently H0

can be rejected for all α ≥ 0.020. Whereas as Table 2 shows, all meta p-values
are smaller than 0.05 starting from the window [41000; 65999] and all meta
p-values before are larger than 0.05.

Table 2 Meta p-values obtained during change detection.

time window meta p-value

[40000; 64999] 0.1599219

[40500; 65499] 0.0809654

[41000; 65999] 0.0377086

[41500; 66499] 0.0161466

[42000; 66999] 0.0063506

[42500; 67499] 0.0022917

For the next example the data were generated as follows:

Yt =

t∑
i=1

|Xi| . (11)

We assume the random variablesXi to be normally distributed with expected
value μ = 0 and variance σ2

1 , i.e. Xi ∼ N
(
0, σ2

1

)
. To make the situation more

realistic, we consider the following model:
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Zt ∼ N
(
yt, σ

2
2

)
. (12)

The process (12) can be understood as a constant model with drift and noise.
The noise follows a normal distribution whose expected value equals the
actual value of the random walk and whose variance is σ2

2 . The data were
generated with the following parameters: σ1 = 0.00000008,σ2 = 0.002. Figure
4 shows the generated data.

Fig. 4 Two windows for change detection.

In order to detect changes, the two sample t-test was applied to this data
set. In such a way we can test whether the data from the old and new windows
have the same mean. Two non-overlapping windows of size 500 are used. For
the meta analysis, similar as before, the Kolmogorov-Smirnov test for unifor-
mity is applied to a sliding window of size 50. Since the mean changes very
slightly, sometimes H0 can not be rejected (depending on the chosen α), as
can be seen from Table 3, whereas all meta p-values provide the strong evi-
dence that the data is non-stationary (all obtained meta p-values are smaller
than 10−9).

As Tables 1, 2 and 3 show, the meta p-values are more reliable than p-
values. However, it should be taken into account that more time is needed
until a change can be detected. Therefore, this approach is not suitable when
very fast reaction to the occurred change is required. Whereas when more
attention is paid to the accuracy of change detection, meta p-values provide
a good solution to the problem of multiple testing for non-stationarity of the
data. For instance such kind of change detection can be used for changes
caused by slow wear and abrasion of materials, here the fast reaction is not
required but the information about the speed of wear.
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Table 3 p-values obtained during change detection.

time window t time window t+ 1 p-value

[0; 499] [500; 999] 0.04019542802527917

[500; 999] [1000; 1499] 0.01835982391226245

[1000; 1499] [1500; 1999] 0.02694198995888841

[1500; 1999] [2000; 2499] 0.00590771301502357

[2000; 2499] [2500; 2999] 0.00000051742252253

[2500; 2999] [3000; 3499] 0.21019670543166669

[3000; 3499] [3500; 3999] 0.02610004716763162

[3500; 3999] [4000; 4499] 0.01388767893804595

[4000; 4499] [4500; 4999] 0.02986063639554551

[4500; 4999] [5000; 5499] 0.00174724618341983

[5000; 5499] [5500; 5999] 0.21651140022620408

[5500; 5999] [6000; 6499] 0.00180512145155431

5 Conclusion

Change detection is a crucial aspect for non-stationary data streams or
“evolving systems”. It has been demonstrated in [11] that näıve adaption
without taking any effort to distinguish between noise and true changes of
the underlying sample distribution can lead to very undesired results. Statis-
tical measures and tests can help to discover true changes in the distribution
and to distinguish them from random noise. However, the following problem
arises: when a test is carried out over and over again, the probability to er-
roneously rejecting the null hypothesis increases with the amount of applied
tests. In this work, we have discussed the problem of multiple testing during
change detection and proposed classical methods as well as a new approach
to cope with the multiple testing issue.

Bonferroni correction and the Bonferroni-Holm method adjust the signifi-
cance level α in order to correct the occurrence of incorrect rejections of H0

leading to a very conservative approach that will seldom indicate a change
in the data stream. Our proposed approach is based on the uniformity of the
p-values under the null hypothesis. In such a way, not only the p-values but
also the meta p-values are taken into account by the change detection. This
approach shows good results even in cases where Bonferroni correction and
the Bonferroni-Holm method could not achieve any improvement. Although
we have only considered the distribution of the p-values under the null hy-
pothesis, it could be useful to study the distribution of p-values under the
alternative hypothesis, too.
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