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Abstract Sets, hence fuzzy sets, may have a conjunctive or a disjunctive
reading. In the conjunctive reading a (fuzzy) set represents an object of in-
terest for which a (gradual rather than Boolean) composite description makes
sense. In contrast disjunctive (fuzzy) sets refer to the use of sets as a repre-
sentation of incomplete knowledge. They do not model objects or quantities,
but partial information about an underlying object or a precise quantity. In
this case the fuzzy set captures uncertainty, and its membership function is a
possibility distribution. We call epistemic such fuzzy sets, since they represent
states of incomplete knowledge. Distinguishing between ontic and epistemic
fuzzy sets is important in information-processing tasks because there is a
risk of misusing basic notions and tools, such as distance between fuzzy sets,
variance of a fuzzy random variable, fuzzy regression, etc. We discuss sev-
eral examples where the ontic and epistemic points of view yield different
approaches to these concepts.

1 Introduction

Traditional views of engineering sciences aim at building a mathematical
model of a real phenomenon, via a data set containing observations of the
concerned phenomenon. This mathematical model is approximate in the sense
that it is an imperfect copy of the reality it intends to account for, but it is
often precise, namely it typically takes the form of a real-valued function that
represents, for instance, the evolution of a quantity over time. Approaches
vary according to the class of functions used. The oldest and most common
class is the one of linear functions, but a lot of works dealing with non-linear
models have appeared, for instance and prominently, using neural networks
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and fuzzy systems. These two techniques for constructing precise models
have been merged to some extent due to the great similarity between the
mathematical account of fuzzy rules and neurons, and their possible synergy
due to the joint use of linguistic interpretability of fuzzy rules and learning
capabilities of neural nets. While innovative with respect to older modeling
techniques, these methods remain in the traditional school of producing a
simplified and imperfect substitute of reality as observed via precise data.

Besides, there also exists a strong tradition of accounting for the non-
deterministic aspect of many real phenomena subject to randomness in re-
peated experiments, including the noisy environment of measurement pro-
cesses. Stochastic models enable to capture the general trends of populations
of observed events through the use of probability distributions having a fre-
quentist flavor. The probability measure attached to a quantity then reflects
its variability through observed statistical data. Again in this approach, a
stochastic model is a precise description of variability in physical phenom-
ena.

More recently, with the emergence of Artificial Intelligence, but also in con-
nection with more traditional human-centered research areas like Economics,
Decision Analysis and Cognitive Psychology, the concern of reasoning about
knowledge has emerged as a major paradigm [29]. While this topic has been
mainly developed in the framework of classical or modal logic, due to the
long philosophical tradition in this area, it has strongly affected the develop-
ment of new uncertainty theories [20], and has led to a critique of probability
theory as a unique framework for the representation of variability and belief.
These developments question traditional views of modeling as representing
reality independently of perception. They suggest a different approach that
should also account for the cognitive limitations of our observations of real-
ity. In other words, one might think of developing the epistemic approach to
modeling. We call ontic model a precise representation of reality (however
inaccurate it may be), and epistemic model a mathematical representation
both of reality and the knowledge of reality, that explicitly accounts for the
limited precision of our measurement capabilities. Typically, while the output
of an ontic model is precise (but possibly wrong), an epistemic model delivers
an imprecise output (hopefully consistent with the reality it accounts for).
An epistemic model should of course be as precise as possible, given the avail-
able incomplete information, but it should also be as plausible as possible,
avoiding unsupported arbitrary precision.

This paper discusses epistemic modeling in the context of set-based repre-
sentations, and the mixing of variability and incomplete knowledge as present
in recent works in fuzzy set-valued statistics.
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2 Ontic vs. Epistemic Sets

A set S defined in extension, is often denoted by listing its elements, say,
in the finite case {s1, s2, . . . , sn}. As pointed out in a recent paper [21] this
representation, when it must be used in applications, is ambiguous. In some
cases, a set represents a real complex lumped entity. It is then a conjunction of
its elements. It is a precisely described entity made of subparts. For instance,
a region in a digital image is a conjunction of adjacent pixels; a time interval
spanned by an activity is the collection of instants where this activity takes
place. In other cases, sets are mental constructions that represent incomplete
information about an object or a quantity. In this case, a set is used as a
disjunction of possible items, or of values of this underlying quantity, one of
which is the right one. For instance I may only have a rough idea of the birth
date of the president of some country, and provide an interval as containing
this birth date. Such an interval is the disjunction of mutually exclusive
elements. It is clear that the interval itself is subjective (it is my knowledge),
has no intrinsic existence, even if it refers to a real fact. The use of sets
representing imprecise values can be found for instance in interval analysis
[39]. Another example is the set of models of a propositional knowledge base:
only one of them reflects the real situation. Moreover this set is likely to
change by acquiring more information.

Sets representing collections C of elements forming composite objects will
be called conjunctive; sets E representing incomplete information states will
be called disjunctive. A conjunctive set is the precise representation of an
objective entity (philosophically it is a de re notion), while a disjunctive set
only represents incomplete information (it is de dicto). We also shall speak of
ontic sets, versus epistemic sets, in analogy with ontic vs. epistemic actions in
cognitive robotics [30]. An ontic set C is the value of a set-valued variable X
(and we can write X = C). An epistemic set E contains the ill-known actual
value of a point-valued quantity x and we can write x ∈ E. A disjunctive
set E represents the epistemic state of an agent, hence does not exist per se.
In fact, when reasoning about an epistemic set it is better to handle a pair
(x,E) made of a quantity and the available knowledge about it.

A value s inside a disjunctive set E is a possible candidate value for x,
while elements outside E are considered impossible. Its characteristic func-
tion can be interpreted as a possibility distribution [56]. This distinction
between conjunctive and disjunctive sets was made by Zadeh himself [57]
distinguishing between set-valued attributes (like the set of sisters of some
person) from ill-known single-valued attributes (like the unknown single sister
of some person). This issue has been extensively discussed by Yager [53] and
Dubois and Prade [17] for the study of incomplete conjunctive information
(whose representation requires a disjunctive set of conjunctive sets).

An epistemic set (x,E) does not necessarily accounts for an ill-known de-
terministic value. An ill-known quantity may be deterministic or stochastic.
For instance, the birth date of a specific individual is not a random variable
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even if it can be ill-known. On the other hand the daily rainfall in a specific
place is a stochastic variable, since it can be modelled by a probability dis-
tribution. An epistemic set then captures in a rough way information about
a population via observations. For instance, there is a sample space Ω, and x
can be a random variable taking values on S, but the probability distribution
on Ω is unknown. All that is known is that x(ω) ∈ E, that is Px(E) = 1 where
Px is the probability measure of x. In that case, E represents the family PE

of objective probability measures on Ω such that P ({ω : x(ω) ∈ E}) = 1,
one of which being the proper representation of the random phenomenon.
In this case, the object to which E refers is not a precise value of x, but a
probability measure Px describing the variability of x.

Note that in the probabilistic literature, an epistemic set is more often than
not modelled by a probability distribution. In the early 19th century, Laplace
proposed to use a uniform probability on E, based on the insufficient reason
principle, according to which what is equipossible must be equiprobable. This
is a default choice in PE that coincides with the probability distribution
having maximal entropy. However, this approach makes sense if x is a random
variable. In case x is an ill-known deterministic value, Bayesians [35] propose
to use a subjective probability P b

x in place of set E. In that case, where
the occurrence of x is not a matter of repetitions, P b

x(A) is the price of a
lottery ticket chosen by an agent who agrees to earn $1 if A turns out to be
true, in an exchangeable bet scenario where the bookmaker exchanges roles
with the buyer if the proposed price is found unfair. It forces the agent to
propose prices pb(s) that sum exactly to 1 over E. Then P b

x(A) measures
the degree of belief of the (non-repeatable) event x ∈ E, and this degree is
agent-dependent.

However clever it may be, this view is debatable (see [20] for a summary
of critiques). Especially, this representation is unstable: if P b

x is uniform on
E, then P b

f(x) may fail to be so if E is finite and the image f(E) does not
contain the same number of elements as E, or if E is an interval and f is not
a linear transformation. Moreover, the use of unique probability distributions
to represent belief is challenged by experimental results (like Ellsberg paradox
[4]), which show that individuals do not make decisions based on expected
utility in front of partial ignorance.

3 Random Sets vs. Ill-known Random Variables

As opposed to the case of an epistemic set representing an ill-known prob-
ability distribution, another situation is when the probability space (Ω,P )
is available1, but each realisation of the random variable is represented as a
set. This case covers two situations:

1 In this paper, we assume Ω is finite to avoid mathematical difficulties.
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1. Random conjunctive sets: The random variable X(ω) is multi-valued
and takes values on the power set of a set S. For instance, S is a set of
spoken languages, and X(ω) is the set of languages spoken by an individ-
ual ω. Or X(ω) is an ill-known area of interest in some spatial domain,
and ω is the outcome of an experiment to locate it. Then a probability
distribution pX is obtained over 2S , such that pX(C) = P (X = C). It is
known in the literature as a random set (Kendall [31], Matheron [38]). In
our terminology this is a random conjunctive (or ontic) set.

2. Ill-known random variables: The random variable x(ω) takes values
on S but its realisations are incompletely observed. It means that ∀ω ∈ Ω,
all that is known is that x(ω) ∈ E = X(ω) where X is a multiple-valued
mapping Ω → 2S representing the disjunctive set of mappings (called
selections) {x : Ω → S, ∀ω, x(ω) ∈ X(ω)} = {x ∈ X} for short. In other
words the triple (Ω,P,X) is an epistemic model of the random variable x.
This is the approach of Dempster [11] to imprecise probabilities. He uses
this setting to account for a parametric probabilistic model Pθ on a set U
of observables, where θ ∈ Θ is an ill-known parameter but the probability
distribution of a function φ(u, θ) ∈ Ω is known. Then S = Θ × U and
X(ω) = {(θ, u), ∃θ, φ(u, θ) = ω}. It is clear that for each ω, X(ω) is an
epistemic set restricting, for each observation u the actual (deterministic)
value θ.

Shafer [46] has proposed a non-statistical view of the epistemic random set
setting, based on a subjective probability m over 2S , formally identical to pX .
In this setting called the theory of evidence, m(E) represents the subjective
probability that all that is known of a deterministic quantity x is of the form
x ∈ E. This is the case when an unreliable witness testifies that x ∈ E
and p is the degree of confidence of the receiver agent in the validity of the
testimony. Then with probability m(E) = p, x ∈ E is a reliable information.
It means that the testimony is useless with probability m(S) = 1−p assigned
to the empty information S. This view of probability was popular until the
end of the 18th century (see [41] for details and a general model of unreliable
witness). More generally the witness can be replaced by a measurement device
or a message-passing entity with state space U , such that if the device is in
state u then the available information is of the form x ∈ E(u) ⊆ S, and p(u)
is the subjective probability that the device is in state u [47].

The above discussions lay bare the difference between random conjunctive
and disjunctive sets, even if they share the same mathematical model. In the
first case one may compute precise probabilities that a set-valued variable X
takes value in a family A of subsets:

PX(A) =
∑

X(ω)∈A
p(ω) =

∑

C∈A
pX(C). (1)

For instance, in the language example, and S = {English, French, Spanish},
one may compute the probability that someone speaks English by summing
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the proportions of people in Ω that respectively speak English only, English
and French, English and Spanish, and the three languages.

In the second scenario, the random set X(ω) represents knowledge about
a point-valued random variable x(ω). For instance, suppose S is an ordered
height scale, x(ω) represents the height of individual ω and X(ω) = [a, b] ⊆ S
is an imprecise measurement of x(ω). Here one can compute a probability
range containing the probability Px(A) =

∑
x(ω)∈A p(ω) that the height of

individuals in Ω lies in A, namely lower and upper probabilities proposed by
Dempster [11]:

PX(A) =
∑

X(ω)⊆A

p(ω) =
∑

E⊆A

pX(E); (2)

PX(A) =
∑

X(ω)∩A �=∅
p(ω) =

∑

E∩A �=∅
pX(E) (3)

such that PX(A) = 1− PX(Ā), where Ā is the complement of A. Note that
the set of probabilities PX on S induced by this process is finite: since Ω and
S are finite, the number of selections x ∈ X is finite too. In particular, PX

is not convex. Its convex hull is P̃X = {PS; ∀A ∈ S, PS(A) ≥ PX(A)}. It is
well-known that probability measures in this convex set are of the form

PS(A) =
∑

E⊆S

pX(E)PE(A)

where PE , a probability measure such that PE(E) = 1, defines a sharing
strategy of probability weight pX(E) among elements of E. As explained by
Couso and Dubois [7], it corresponds to a scenario where when ω ∈ Ω occurs,
x(ω) is tainted with variability (due to the measurement device) that can be
described by a conditional probability P (·|ω) on S. Hence the probability
Px(A) is now of the form:

Px(A) =
∑

ω∈Ω

P (A|ω)P (ω).

However, all we know is that P (X(ω)|ω) = 1 for some maximally specific
epistemic subset X(ω). This is clearly a third (epistemic) view of the random
set X . It is easy to see that the choice of PX vs. its convex hull is immaterial
in the computation of upper and lower probabilities, so that

PX(A) = inf{
∑

ω∈Ω

P (A|ω)P (ω) : P (X(ω)|ω) = 1, ∀ω ∈ Ω} (4)

= inf{
∑

E⊆S

pX(E)PE(A) : PE(E) = 1}. (5)

where PE(A) = P (A|ω) if E = X(ω).
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In the evidence theory setting, Dempster upper and lower probabilities of
an event are directly interpreted as degrees of belief Bel(A) = PX(A) and
plausibility Pl(A) = PX(A), without reference to an ill-known probability on
S (since the information is not frequentist here). This is the view of Smets [49].
The mathematical similarity between belief functions and random sets was
quite early pointed out by Nguyen [40]. But they gave rise to quite distinct
streams of literature that tend to ignore or misunderstand each other.

4 When the Meaning of the Model Affects Results

The reader may consider that the three above interpretations of random sets
are just a philosophical issue, but do not impact on computations that can
be carried out with this model. For instance the mean interval of a random
interval has the same definition (interval arithmetics or Aumann integral)
independently of the approach. However this is not true for other concepts.
Two examples are given: conditioning and variance.

4.1 Conditioning Random Sets

Given a random set in the form of a probability distribution on the power
set S, and an event A ⊂ S, the proper method for conditioning the random
set on A depends on the adopted scenario.

Conditioning a conjunctive random set In this case the problem
comes down to restricting the set-valued realisations X(ω) so as to account
for the information that the set-valued outcome lies inside A. Then the ob-
tained conditional random set is defined by means of the standard Bayes rule
in the form of its weight distribution pX(·|A) such that:

pX(C|A) =
{

pX (C)∑
B⊆A pX(B) if C ⊆ A;

0 otherwise.
(6)

Conditioning an ill-known random variable Suppose the epistemic ran-
dom set X(ω) relies on a population Ω, and is represented by the convex set
of probabilities P̃X on S, one of which is the proper frequentist distribution
of the underlying random variable x. Suppose we study a case for which
all we know is that x ∈ A, and the problem is to predict the value of x.
Each probability pX(E) should be altered in order to restrict to the subset
ΩA = {ω : x(ω) ∈ A} of population Ω. However, because x(ω) is only known
to lie in X(ω), the set ΩA is itself ill-known. There are three situations:
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1. Either A∩E = ∅: then ΩA∩{ω : X(ω) = E} = ∅ and we can drop pX(E).
2. Or E ⊆ A and then {ω : X(ω) = E} ⊆ ΩA and pX(E) should remain

assigned to E;
3. Or E overlaps both A and its complement: then let αA(E) be the propor-

tion of the population for which all we know is x(ω) ∈ E and that lies
inside ΩA. The weight αA(E)pX(E) should be assigned to E ∩A.

One may then define the conditional probability distribution over 2S as fol-
lows:

pαA

X (B|A) =
{∑

B=E∩A αA(E)pX (E)
∑

E∩A�=∅ αA(E)pX (E) if B ⊆ A;

0 otherwise.
(7)

This mass assignment leads to computing lower and upper probabilities
PαA(·|A) and P

αA
(·|A) when the vector of weights αA is fixed. But this

proportion αA(E) is unknown in the third situation, while it is respectively 0
and 1 in the previous ones. Varying this unknown vector leads to upper and
lower conditional probabilities as follows:

PX(B|A) = sup
αA

P
αA

(B|A); PX(B|A) = inf
αA

PαA(B|A). (8)

and likewise for the lower conditional probability. In fact, it has been proved
that these bounds can be obtained by applying Bayesian conditioning to all
probabilities in P̃X with Px(A) > 0 and that they take an attractive closed
form [9, 23]:

PX(B|A) = sup{Px(B|A) : Px ∈ P̃X} =
PX(B ∩A)

PX(B ∩ A) + PX(B̄ ∩ A)
, (9)

PX(B|A) = inf{Px(B|A) : Px ∈ P̃X} =
PX(B ∩A)

PX(B ∩ A) + PX(B̄ ∩ A)
, (10)

where PX(B|A) = 1− PX(B̄|A) and B̄ is the complement of B.

Conditioning a belief function In this case, there is no longer any pop-
ulation, and the probability distribution m = pX on 2S represents subjective
knowledge about a deterministic value x. Conditioning on A means that we
come to hear that the actual value of x lies in A for sure. Then we perform
an information fusion process (a special case of Dempster rule of combination
[11]). It yields yet another type of conditioning, called Dempster condition-
ing, that systematically transfers masses m(E) to E ∩ A when not empty,
eliminates m(E) otherwise, then normalises the conditional mass function,
dividing by

∑
E∩A �=∅m(E) = Pl(A). It leads to the conditioning rule

Pl(B|A) = Pl(A ∩B)

Pl(A)
=

PX(A ∩B)

PX(A)
, (11)
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and Bel(B|A) = 1 − Pl(B̄|A). Note that it comes down to the previous
conditioning rule (7) with αA(E) = 1 if E ∩ A �= ∅, and 0 otherwise (an
optimistic assignment, justified by the claim that A contains the actual value
of x). Interestingly the conditioning rule for conjunctive random sets comes
down to the previous conditioning rule (7) with αA(E) = 1 if E ⊆ A, and
0 otherwise, that could, in the belief function terminology, be written as

Bel(B|A) = Bel(A∩B)
Bel(A) . It is known as the geometric rule of conditioning.

Such a pessimistic weight reassignment can hardly be justified for disjunctive
random sets.

4.2 Empirical Variance for Random Interval Data

Interval data sets provide a more concrete view of a random set. Again the
distinction between the case where such intervals represent precise actual
objects and when they express incomplete knowledge of precise ill-observed
point values is crucial in computing a statistical parameter such as variance
[7]. Consider a data set consisting of a bunch of intervals D = {Ii = [ai, ai], i =
1, ...n}. The main question is: are we interested by the joint variation of the
size and location of the intervals ? or are we interested in the variation of the
underlying precise quantity as imperfectly accounted for by the variation of
the interval data?

1. Ontic interval data: In this case we consider intervals are precise lumped
entities. For instance, one may imagine the interval data set to contain
sections of a piece of land according to coordinate x in the plane: Ii =
Y (xi) for a multimapping Y , where Y (xi) is the extent of the piece of
land at abscissa xi, along coordinate y. The ontic view suggests the use of
a scalar variance:

ScalV ar(D) =

∑
i=1,...,n d(M, Ii)

2

n
, (12)

where M = [
∑n

i=1 ai/n,
∑n

i=1 ai/n] is the interval mean value, and d is
a scalar distance between intervals (e.g. Euclidean distance between pairs
of values representing the endpoints of the intervals, but more refined
distances have been proposed [2]). ScalV ar(D) measures the variability of
the intervals in D, both in terms of location and width and evaluates the
spatial regularity of the piece of land, varying coordinate x. This variance
is 0 for a rectangular piece of land parallel to the coordinate axes.

2. Epistemic interval data: Under the epistemic view, each interval Ii
stands for an ill-known precise value xi that is the result of measuring
a deterministic value x several times. Here, the measurement process is
subject to randomness and is imprecise. Then we are more interested by
sensitivity analysis describing what we know about the variance we would
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have computed, had the data been precise. Then, we should compute the
interval

EV ar1(D) = {var({xi, i = 1, ...n}) : xi ∈ Ii, ∀i}. (13)

Computing this interval is a non-trivial task [25, 48]
3. Epistemic interval random data Alternatively one may consider that

the quantity x that we wish to describe is intrinsically random. Each mea-
surement process is an information source providing incomplete informa-
tion on the variability of x. Then each interval Ii can be viewed as con-
taining the support SUPP (Pi) of an ill-known probability distribution Pi:
then we get a wider variance interval than previously. It is defined by

EV ar2(D) = {var(
n∑

i=1

Pi/n) : SUPP (Pi) ⊆ Ii, ∀i = 1, ...n} (14)

and it is easy to see that EV ar1(D) ⊂ EV ar2(D).

In the extreme case of a single epistemic interval (x, [a, b]), if x is a deter-
ministic ill-known quantity, it has a unique true value. Then EV ar1([a, b]) =
var(x) = 0 (since even if ill-known, x is not supposed to vary: the set of vari-
ances of a bunch of Dirac functions is {0}). In the second case, x is tainted
with variability, var(x) is ill-known and lies in the interval EV ar2([a, b]) =
[0, v∗] where v∗ = sup{var(x), SUPP (Px) ⊆ [a, b]} = (b − a)2. The distinc-
tion between deterministic and stochastic variables known via intervals thus
has important impact on the computation of dispersion indices, like variance.

Note that in the epistemic view, the scalar distance between intervals can
be useful. It is then a kind of informational distance between pieces of knowl-
edge, whose role can be similar to relative entropy for probability distribu-
tions. Namely one may use it in revision processes, for instance. Moreover one
may be interested by the scalar variance of the imprecision of the intervals,
or by an estimate of the actual variance of the underlying quantity, by com-
puting the variance of say the mid-points of the intervals. Recently suggested
scalar variances [44] between intervals come down a mixture of such a scalar
variability estimation and the variance of imprecision.

5 Different Interpretations of a Fuzzy Set

A fuzzy set on a universe S is mathematically modelled by a mapping from
S to a totally ordered set L that is usually the unit interval. As highlighted
by Dubois and Prade [19], a membership function is an abstract object that
needs to be interpreted in practical settings in order to be used meaningfully.
They proposed three interpretations of membership grades in terms of degrees
of similarity, of plausibility and preference. An early and important use of
fuzzy sets, proposed by Zadeh [55] is the representation of symbolic categories
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on numerical universes. A linguistic variable is a variable that takes values on
a set of linguistic terms modelled by fuzzy sets of the real line. In this case,
degrees of membership express similarity or distance to prototypical values
covered by a term.

As already acknowledged a long time ago, fuzzy sets, like sets, may have
a conjunctive or a disjunctive reading [57, 53, 17]. In the conjunctive read-
ing, ontic fuzzy sets represent objects originally construed as sets but for
which a fuzzy representation is more expressive due to gradual boundaries.
Degrees of membership evaluate to what extent components participate to
the global entity. For instance, this is the case when modeling linguistic la-
bels by convex fuzzy sets on a measurable scale, like tall, medium-sized, short
achieving a fuzzy partition of the human height scale. In this case, the fuzzy
sets have a conjunctive reading because they are understood as the set of
heights compatible with a given label. Other examples of ontic fuzzy sets are
non-Boolean classes stemming from a clustering process, fuzzy constraints
representing preference, a fuzzy region in an image, a fuzzy rating profile ac-
cording to various attributes. As a concrete example, consider the fuzzy set
of languages more or less well spoken by a person.

In contrast, Zadeh [56] also proposed to interpret membership functions
as possibility distributions, paving the way to a representation of incomplete
information along a line followed thirty years earlier by Shackle [45]. In that
case, a degree of membership refers to the idea of plausibility. A possibility
distribution, denoted by π is the membership function of a fuzzy set of mu-
tually exclusive values in S. A possibility distribution is supposedly attached
to an ill-known quantity x. Namely π(s) > 0 expresses that s is a possible
value of x, all the more plausible as π(s) is greater. In particular it is assumed
that π(s) = 1 for some value s, which is then considered as normal, totally
unsurprizing. A possibility distribution thus extends the set-valued represen-
tation of incomplete information to account for degrees of plausibility. It is
well-known that a possibility distribution π induces a possibility measure Π
on 2S such that Π(A) = sups∈A π(s) for all events A and a necessity measure
N(A) = 1−Π(Ā) [16].

Now, if the information about a quantity x is expressed by means of a
fuzzy set, the above distinction between the deterministic and the stochastic
case is again at work. If x is deterministic, then this information must be
interpreted in terms of “confidence sets” as follows. Let Eα = {s, π(x) ≥ α}
be the α-cut of π:

For each α ∈ [0, 1], x ∈ Eα with probability greater than or equal to 1− α.

If an expert provides this kind information, the word “probability” refers to
subjective probability. Following Walley [52], 1 − α is the maximal price at
which this expert would buy the gamble that wins $1 if the real value of x
actually lies in Eα (the minimal selling price for this gamble is $1). Note that
there is no “real probability distribution” underlying π, but Dirac functions
as x is deterministic. The consonance of the family of sets Eα makes sense
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if this is the opinion of a single expert who tends to be imprecise but self-
consistent.

If x is stochastic then there are two possible ways of interpreting the pos-
sibility distribution π.

• Mathematically speaking, a possibility measure is a coherent upper prob-
ability [52], namely Π(A) = supP∈Pπ

P (A) where Pπ = {P, ∀A,P (A) ≤
Π(A)}. So, π encodes the set of probabilities Pπ [18, 14]. This set is sup-
posed to contain the real probability measure Px that governs the vari-
ability of x. It is a set-based representation of a stochastic variable repre-
senting incomplete information about a frequentist probability. An expert
providing distribution π claims that

For each α ∈ [0, 1], the event x ∈ Eα has objective probability greater
than or equal to 1− α.

• Another option is to consider π as encoding a higher-order (subjective)
possibility distribution on a set of objective probabilities. Namely, it can
be understood as follows:

For each α ∈ [0, 1], Px has support in Eα with subjective probability
greater than or equal to 1− α.

So the domain of π can be canonically extended to the set of probability
measures on S as follows: π(P ) = sup{α, P has support in Eα}. The pos-
sibility measure Π is a “second-order possibility” formally equivalent to
those considered in [10]. It is so called, because it is a possibility distribu-
tion defined over a set of probability measures. The deterministic case is
a special case of this framework, restricting probability measures to Dirac
measures. It would be interesting to investigate the relationship between
the set of probabilities Pπ and the higher order possibility model.

The above setting does not make it clear where the objective probability
distribution comes from, i.e. the underlying sample space. Moreover, it does
not account for the measurement process of x. Namely, regardless of whether
x is deterministic or stochastic, there may be a stochastic measurement pro-
cess yielding with more or less accuracy information on the possible values of
x. The setting of fuzzy random variables extends the above distinctions by
taking the measurement process into account explicitly.

6 Various Notions of Random Fuzzy Sets

The history of fuzzy random variables is not simple as it was started by two
separate groups with respectively epistemic and ontic views in mind. The first
papers are those of Kwakernaak [33, 34] in the late seventies, clearly under-
lying an epistemic view of fuzzy sets, a line followed up by Kruse and Meyer
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[32]. They view a fuzzy random variable as a (disjunctive) fuzzy set of clas-
sical random variables (those induced by selection functions compatible with
the random fuzzy set). It represents what is known about the variability of
the underlying ill-known random variable. These works can thus be viewed as
extending the framework of Dempster’s upper and lower probabilities based
on the triple (Ω,P,X) to fuzzy set-valued mappings X̃, where X̃(ω) defines
a possibility distribution restricting the possible values of x(ω). The degree
of possibility that x is the random variable underlain by (Ω,P, X̃) is

π(x) = inf
ω∈Ω

μX̃(ω)(x(ω)) (15)

For each level α ∈ (0, 1], X̃α(ω) = {s ∈ S : μX̃(ω)(s) ≥ α} is a multiple

valued mapping such that (Ω,P, X̃α) is an epistemic random set according
to Dempster framework. Kruse and Meyer [32] clearly define the variance of a
fuzzy random variable as a fuzzy set of positive reals induced by applying the
extension principle to the variance formula. Likewise, the probability of an
event becomes restricted by a fuzzy interval in the real line [1]. The evidence
theory counterpart of this view deals with belief functions having fuzzy focal
elements [54]. An alternative epistemic view of fuzzy random variables was
more recently proposed in the spirit of Walley [52], in terms of a convex set
of probabilites induced on S[8].

In contrast, the line initiated in the mid-1980’s by Puri and Ralescu [43] is
in agreement with conjunctive random set theory. A fuzzy random variable
is then viewed as a random conjunctive fuzzy set, i.e. a classical random
variable ranging in a set of (membership) functions. This line of research
has been considerably extended so as to adapt classical statistical methods
to functional data [5, 27]. The main issue is to define a space of functions
equipped with a suitable metric structure [13, 51]. In this theory of random
fuzzy sets, a scalar distance between fuzzy sets is instrumental when defining
variance viewed as a mean squared deviation from the fuzzy mean value
[28], in the spirit of Fréchet. A scalar variance can be established on this
basis and it reflects the variability of membership functions. It makes sense if
for instance, membership functions are models of linguistic terms and some
“term variability” must be evaluated given a set of responses provided by a
set of people in natural language. See [7] for an extensive comparison of the
three views of fuzzy random variables.

The ontic view is advocated by Colubi et al. [6] in the statistical analysis
of linguistic data. The authors argue that they are interested in the statistics
of perceptions. One of their experiments deals with the visual perception of
the length of a line segment expressed on fuzzy scale using a linguistic label
among very small, small, medium, large, very large. The alleged goal is to
predict the category that a person considers correct for the segment. The
precise length of the segment exists but it is irrelevant for the classification
goal. They agree that to predict the real length from the fuzzy perceptions
requires a different approach.
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The case of Likert scaling is more problematic. This is a method of as-
cribing quantitative values to qualitative data, to make them amenable to
statistical analysis. For instance, an ordered set of linguistic labels referring
to some abstract concept (like beauty) is encoded by successive integers. A
typical scale might be strongly agree, agree, not sure/undecided, disagree,
strongly disagree. Opinions are collected on such a scale and a mean figure
for all the responses is computed at the end of the evaluation or survey. A
number of authors have proposed to model such linguistic terms by means
of a predefined fuzzy partition made of fuzzy intervals (trapezoids) on a real
interval. In some other approaches the format of the fuzzy response can be
any fuzzy interval. The idea is to cope with the arbitrariness of encoding
qualitative value by precise numbers. In that case the result of an opinion
poll is clearly a random fuzzy set.

However this kind of approach is not convincing from a measurement point
of view[15]. First, it is not clear why the underlying real interval can be
equipped with addition at all. It is rather an ordinal scale, and trapezoidal
fuzzy sets then make no sense. Next, this continuous scale is totally fictitious
and it is patent that the real data are the linguistic terms provided by people:
there is no underlying real value behind such linguistic terms. If the response
has a free format (whereby any fuzzy interval can do), one may again see
this fuzzy response as being the evaluation in itself. The latter point would
plea for an ontic view of the random fuzzy sets. However the arbitrariness
of the numerical encoding casts doubts on the cogency of the sophisticated
functional analysis framework needed to apply fuzzy random set methods. It
may be that ordinal statistical methods devoted to finite qualitative scales
would be more appropriate in this case.

7 Epistemic vs. Ontic Interval Data Processing

Consider a set of bidimensional interval data D = {(xi, Yi = [y
i
, yi]), i =

1, ...n} or its fuzzy counterpart (if the Yi’s become fuzzy sets). The issue
of devising an extension of data processing methods to such a situation has
been studied in many papers in the last 20 years or so. But it seems that
the question how the reading of the set-valued data has impact on the cho-
sen method is seldom discussed. Here we provide some hints on this issue,
restricting ourselves to linear regression and some of its fuzzy extensions.

A first approach that is widely known is Diamond’s fuzzy least squares
method [12]. It is based on a scalar distance between set-valued data. The
problem is to find a best fit interval model of the form y = A∗x + B∗,
where intervals A∗, B∗ minimize

∑n
i=1 d(Axi + B, Yi)

2, typically a sum of
squares of differences between upper and lower bounds of intervals. The fuzzy
least squares regression is similar but it presupposes the Ỹ ′

i s are triangu-
lar fuzzy intervals (ymi ; y−i , y

+
i ), with modal value ymi and support [y−i , y

+
i ].
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Diamond proposes to work with a scalar distance of the form d2(Ã, B̃) =
(am − bm)2 + (a− − b−)2 + (a+ − b+)2 making the space of triangular fuzzy
intervals complete. The problem is then to find a best fit fuzzy interval model
Ỹ = Ã∗x + B̃∗, where fuzzy triangular intervals Ã∗, B̃∗ minimize a squared
error

∑n
i=1 d

2(Ãxi + B̃, Ỹi). Some comments are in order:

• This approach treats fuzzy data as ontic entities.
• If the (fuzzy) interval data-set is epistemic, we get a linear description of

the trend of the knowledge as x increases.
• This approach does not correspond to studying the impact of data uncer-

tainty on the result of regression.

Many variants of this method, based on conjunctive fuzzy random sets
and scalar distances exist (see [24] for a recent one) including extensions to
fuzzy-valued inputs [26]. These approaches all adopt the ontic view.

Another classical approach was proposed by Tanaka et al. in the early
1980’s (see [50] for an overview). One way of posing the interval regression
problem is to find a set-valued function Y (x) (generally again of the form of
an interval-valued linear function Y (x) = Ax+B) with maximal informative
content such that Yi ⊂ Y (xi), i = 1, ...n. Some comments help situate this
method:

• It does not presuppose an ontic or epistemic reading of the data. If data
are ontic, the result models an interval-valued phenomenon. If epistemic,
it tries to cover both the evolution of the variable y and the evolution of
knowledge of this phenomenon.

• It does not clearly extend the basic concepts of linear regression.

Both approaches rely on the interval extension of a linear model y(x) =
ax+b. But, in the epistemic reading, this choice imposes unnatural constraints
on the relation between the epistemic output Y (x) and the objective input x
(e.g., Y (x) becomes wider as x increases). The fact that the real phenomenon
is affine does not imply that the knowledge about it in each point should
be also of the form Y (x) = Ax + B. In an ontic reading, one may wish
to interpolate the interval data more closely (see Boukezzoula et al. [3] for
improvements of Tanaka’s methods that cope with such defects).

Another view of interval regression, that has a clear epistemic flavor uses
possibility theory to define a kind of quantile regression. Even when applied
to precise data sets it gives an epistemic interval-valued representation of
objective data, likely to contain the actual model [42]. The idea is to find, for
each input value x, a confidence interval containing y(x) with confidence level
1−α. This is done via probability possibility transformations [22]. Varying α
leads to a bunch of nested intervals that can be modelled by fuzzy intervals
faithful to the dispersion of the yi’s in the vicinity of each input data xi.

The last approach we can think of is sensitivity analysis yielding all re-
gression results one would obtain from all precise datasets d consistent with
D. Strangely enough this technique is seldom proposed. The aim is to find
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the range of results one would have obtained with linear regression, had the
data been precise. Formally it can be posed as follows: Find

Y (x) = {â(d)x+ b̂(d) : d ∈ D}
={âx+ b̂, ∀â, b̂ that minimize

∑n
i=1(axi + b− yi)

2, ∀yi ∈ [y
i
, yi], i = 1, ...n}

It is clear that the envelope of the results is a set-valued function Y (x) that
has little chance of being defined by affine upper and lower bounds. This ap-
proach, which can genuinely be called epistemic regression has been recently
applied to kriging in geostatistics [36, 37].

8 Conclusion

This position paper has argued that the use of set-valued and fuzzy mathe-
matics in information processing tasks gives the opportunity to reason about
knowledge, an issue not so popular in data-driven studies. However, one
should distinguish between genuine set-valued problems where sets stand for
existing entities and epistemic data analysis problems where sets represent
incomplete information. This distinction impacts the very way new problems
can be posed so as to be meaningful in practice. Adding knowledge represen-
tation and reasoning to the modeling paradigm seems to be a good way to
reconcile Artificial Intelligence and numerical engineering methods.

Strangely enough fuzzy set-based information processing techniques gath-
ered under the Soft Computing flag are not set-valued methods, as they aim
most of the time at computing standard numerical functions using fuzzy rules
and neural networks, exploiting stochastic metaheuristics to optimise the fit.
A fuzzy system is then seldom viewed as an epistemic fuzzy set of systems.
Adopting the latter view could lead to fruitful developments of fuzzy sets
methods in a direction not yet much considered in the engineering sciences,
beyond rehashing good old fuzzy rule-based systems further.
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