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Preface

Organizing the 4th International Workshop on Computational Topology in
Image Context (CTIC 2012) has been an interesting experience indeed, going
far beyond mathematics and computer science.

As mathematicians, we expected to focus only on theoretical problems and
algorithms. On the contrary, the heaviest snowfall in Italy in the last 20 years
reminded us that science is only part of reality, and forced the Organizing Com-
mittee to postpone the workshop for three months, until the end of May 2012.
In one sense, this unpleasant occurrence was a reminder that unexpected phe-
nomena are an important issue not only in scientific discovery but also in prac-
tical life.

This collection documents the presentations accepted at CTIC 2012. The
research conducted by the authors of these papers was the core of the workshop,
and we thank all the contributors for their commitment and dedication. Their
effort allowed us to continue the tradition of CTIC in providing a forum for
scientific exchange in topology and computation in image context at a high-
quality level.

Special thanks go to our invited speakers, Frédéric Chazal (INRIA Saclay,
Orsay) and Walter Kropatsch (PRIP, Vienna University of Technology), for their
key contribution to the success of this workshop.

We also thank all the Scientific Committee members for their valuable feed-
back, which enabled the authors to further improve the quality of their work.

CTIC 2012 could not have been organized without our sponsors (Università
degli Studi di Bologna, European Science Foundation, Rotary Club Bologna,
GNSAGA—Istituto Nazionale di Alta Matematica “Francesco Severi”) and sup-
porters (Advanced Research Center on Electronic Systems for Information and
Communication Technologies “E. De Castro”—University of Bologna, GIRPR—
Gruppo Italiano Ricercatori in Pattern Recognition, SIMAI—Società Italiana di
Matematica Applicata e Industriale, Università degli Studi di Modena e Reggio
Emilia). We are very grateful to all of them.

We also thank the team working at the Centro Congressi in Bertinoro for
their valuable help.

Finally, we are grateful to the participants attending this workshop, and to
their snow-proof patience.

May 2012 Massimo Ferri
Patrizio Frosini
Claudia Landi
Andrea Cerri

Barbara Di Fabio
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Maŕıa José Jiménez Rodŕıguez Universidad de Sevilla, Spain
Tomasz Kaczynski Université de Sherbrooke, Canada
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A Framework for Label Images

Löıc Mazo�

Université de Strasbourg, LSIIT, UMR CNRS 7005, France
loic.mazo@unistra.fr

Abstract. Label images need a specific topological model to take into
account not only the topologies of the regions but also the topology of
the partition. We propose a framework for label images in which all the
regions of the initial partition and of any coarser partition of the space
can be explicitly represented. Some properties of the model are given
and a local transformation that preserves the weak homotopy types of
all the regions of all the partitions is defined.

Keywords: Label image, simple point, homotopy type.

1 Introduction

In this paper, we study, from a topological viewpoint, digital label images, that
is, images whose domain is Z

n and whose codomains are sets on which there gen-
erally exists no meaningful order relation (unlike grey-level images for instance).
Label images need a specific approach in topology. Indeed, a label image is much
more than a collection of independent objects and we are also interested in the
spatial relations between these objects. Thereby, any topologically sound label
image processing must pay attention to the objects and to the partition of the
space associated to the labels. Nevertheless, as far as we know, the literature
devoted to the topology of label images is not well developed and essentially
oriented towards specific applications. The most commonly used approach is to
process one label at a time while rejecting temporarily the other labels in the
background, coming down to a binary image (e.g. [14,3,8]). With this method,
either the topology of the partition is ignored or it is necessary to adjoin another
structure, like a region adjacency graph, with the possibility to lose some infor-
mation on tunnels or knots. Even in the case where the configuration permits a
binary treatment of the image (in [9,12] the objects are concentric topological
spheres), there are some specific issues. In a binary image, one usually finds just
one object of interest embedded in an ambient space without significance. Hence,
the choice of the adjacency pair can be done accordingly to the (known or ex-
pected) properties of the unique considered object. Now, if the binary image is a
label image, that is to say, the two members of the partition are regions of inter-
est, how to decide the region that will be equipped with the 6-adjacency and the

� The research leading to these results has received funding from the French Agence
Nationale de la Recherche (Grant Agreement ANR-2010-BLAN-0205).

M. Ferri et al. (Eds.): CTIC 2012, LNCS 7309, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 L. Mazo

one that will be equipped with the 26-adjacency relation for instance? In [12],
the choice is made in relation with the nature of the objects (their thickness) and
in [9], the choice is made after algorithmic considerations. In both cases, that
could be unsatisfactory if the two objects of interest are similar. Furthermore,
most of the time, in the applications (see, e.g., [13]) the value of the image on
a picture element changes from the background to a particular label (depending
on a cost, or energy, function), or vice versa, but more rarely it goes from a
label to another label (and it occurs that points cannot be labelled since any
choice of a label would break an a priori knowledge or would create a forbidden
configuration like a cross over). An important drawback of this method is that
an object identified by a label is inevitably seen under distinct adjacencies at
distinct times of the process and even the number of the connected components
is no more an invariant. This problem can be solved by working in the class of
well-composed images [7] which uses the same adjacency relation for the object
and for the background (namely, the (2n)-adjacency relation). Moreover, it is
possible to transform (in a non-injective manner) an ordinary label image into
a well-composed image [17] but the algorithm needs an order on the labels. The
approach proposed in [4] makes it possible to change the label of a point in a 3D
cellular space by choosing a new label among several ones with the assurance
that the homotopy types of the two labels, the new one and the former one, are
preserved. Nevertheless, no attention is paid to the topology of the partition. To
take this latter topology in consideration, it is required in [2] that the unions of
two labels (in 2D spaces), or two or three labels (in 3D spaces), are watched in
any process as well as single labels. However, a careful examination of the ex-
amples provided by the authors shows that these conditions are not sufficient to
maintain the topology of the partition. In particular, the unions of three labels
should also be watched in a 2D space. In [5], the authors study label images in Z

3

with objects that are 6-connected. They understand the topology of the parti-
tion as the set of the topologies of the surfaces between 6-adjacent labels. When
performing a change of label on a point, they use simple points in the (6, 18)-
adjacency framework of Z

3 to maintain both topologies of the thinned label and
of the growing one, while they use collapses in the cubical complex framework
to ensure the preservation of the topologies of the surfaces between 6-adjacent
labels. In a previous work [11], we have proposed an extensive theoretical frame-
work to deal with label images. The main idea is that, topologically, a label image
is a set of regions (that share the same label) together with some unions of these
regions (thus, we retain the idea exposed in [2]). In other words, a label image
is a partition together with some coarser partitions which are meaningful and a
topologically sound processing of the image must control the topologies of all the
regions of these partitions. In our framework, the label images are defined on a
poset (partially ordered set), typically the space of cubical complexes equipped
with the inclusion, and take their values on an atomistic1 lattice of labels. The
atoms of the lattice are the labels of the initial digital image (defined on Z

n)

1 A lattice is atomistic if any element, but the minimum, is a supremum of atoms.
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and the supremum operation is used to create the unions of labels of interest
(the coarser partitions). At least, besides the atoms, the lattice of labels must
contain a minimum and a maximum (leading to the lattice of labels described
in [15,16]). At most, the lattice is the power set of the atoms. In [11], we describe
some transformations on label images that preserve the weak homotopy type of
all the regions of interest. Nevertheless, this model has an important drawback
at the first stage: the embedding of the digital space in a poset. If the digital
objects are not modeled by closed subsets of R

n (i.e. if the adjacency relation
for the objects is not the (3n − 1)-adjacency), the embedding cannot preserve
the topology of the labels together with their unions as illustrated on Figure 1.
To overcome this issue, we have been lead to develop another model that we
describe in this article.

r g

(a) (b)

Fig. 1. (a) A digital image λ in Z
2 with 2 labels r (red), g (green) and a background (not

depicted). (b) The embedding of the image λ in F
2, the space of cubical 2-complexes,

obtained by applying the following membership rule: the label of a face is the infimum
of the labels of the surrounding facets in the poset (2{r,g},⊆). We have proved in [10]
that this embedding preserves the connected components and the fundamental groups
of the object and its complement when a binary digital image is interpreted with the
(2n, 3n − 1)-adjacency pair. But, if we identify the two labels, that is if we consider a
coarser partition of the space, the topology is not the same on these two images (we
have one component on the left and two components on the right).

The remainder of this article is organized as follows. In Section 2, we define
the covering images, the kind of abstract image that we propose to model a
label digital image. In Section 3, we expose a notion of simple point for covering
images. In Section 4, we show that the classical duality for binary images (ob-
ject/background) can be extended to covering images. Section 5 concludes this
paper and indicates some results, more technical, that we cannot expose here by
lack of space. Note that, also by lack of space, no proofs are given in this article.

2 Covering Images

In order to model all the topological relations that can be found in a digital label
image λ (defined on Z

n), we propose two steps.

1. We split the image λ in a collection of binary images that represent the
regions of interest, that is the regions that have been labeled (for instance
during a segmentation process) and a number of unions of these regions



4 L. Mazo

if we are interested in some inter-labels relations. The unions are labeled
thanks to a lattice structure on labels: the label of an union of regions is
the supremum of the labels of the regions. No other labels are needed for
our purpose, so the lattice of labels, noted T , is an atomistic lattice (whose
atoms are the initial labels) and there is a one-to-one correspondence between
this lattice and the collection of binary images (we write λt for the binary
image associated to the label t in the collection built from the digital label
image λ). Figure 2 exemplifies this first stage (in the sequel, the infimum
and supremum operators on T are denoted ∧ and ∨ while ⊥ and � are the
minimum and the maximum of T ).

y y y

c c c

c y c

c c c

b b b

b b

r b

g r r

(a)

�

c ∨ y ∨{b, r, g}

c y b r g

⊥

(b)

(c)

(d) (e)

(f) (g) (h) (i) (j)

Fig. 2. (a) A digital label image with five labels c, y, b, r, g respectively depicted in
cyan, yellow, blue, red and green. (b) A lattice structure T whose atoms are c, y, b, r, g.
(c-j) The collection of binary images associated to the lattice T (the binary image
associated to ⊥ is not represented for it is a constant image, with no object).
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2. In each binary digital image λt created in the previous step, we introduce
inter-xels elements (pointels, linels, surfels and so on) to be able to use topo-
logical tools. The space in which we embed the digital images is the space of
cubical complexes, F

n, but it could be another cellular decomposition of the
space2. The inter-xels elements must be labeled with membership rules with
respect to the desired interpretation of the image. Such rules can be found
in the literature (see e.g. [1]). We have proposed in [10] our own rules which
preserve the connected components for the classical adjacency pairs and re-
sult in isomorphisms between the digital fundamental groups as defined by
Kong and the classical fundamental groups of the regions of F

n. Note that
distinct rules can be applied to distinct labels provided no inconsistency is
introduced (for instance, if two voxels are connected in the region labeled A,
they cannot be disconnected in the region labeled by A or B): this leads us
to the notion of fiber described below.

After these two steps have been achieved, we get a collection (μt)t∈T (actually a
lattice) of binary images, the sheets, defined on F

n (see Figure 3 and Figure 4).
Now, we can see this collection as a unique image μ by setting that μ(x) is equal

(a) (b)

x

Fig. 3. The sheet associated to the label r of the digital label image depicted on
Figure 2. (a) The digital binary image of Figure 2(i) is interpreted with the (4, 8)-
adjacency pair (the object of the binary image is open, it does not include its boundary).
(b) The same image is interpreted with the (8, 4)-adjacency pair (the object is closed
so it includes its boundary).

to the set (we say the fiber) whose elements are the (extended) labels t such
that μt(x) = 1 (in other words, the labels attached to x, or, equivalently, the
regions of interest x belongs to). For instance, let μ, resp. ν, be the collection
of binary images a sheet of which is depicted on Figure 3(a), resp. Figure 3(b).
Then, provided the same membership rule is applied on all the sheets, μ(x) =
{∨{b, r, g},�} while ν(x) = {r, g,∨{b, r, g},�} where x is the one-dimensional
face marked on Figure 3. When a point in F

n has not been labeled, for instance,

2 A formal description of F
n can be found in [11] but no knowledge of cubical complexes

is needed to understand the sequel of the article.
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a point in the infinite region surrounding the image, then its fiber is set to ∅.
Since the region obtained by identifying two labels a and b, that is, the region
associated to the supremum of the labels a and b, contains all the faces that
are in the region a or in the region b plus, possibly, some other faces (like the
one-dimensional face at the center of Figure 1 when we take for a the red label
and for b the green one), the fibers are up-sets, that is for any fiber S,

t ∈ S and t ≤ u ⇒ u ∈ S. (1)

We write GT for the family of the up-sets over the lattice T . Note that ∅ ∈ GT .
Eventually, we can define a covering image.

Definition 1 (Covering image). Let T be an atomistic lattice. A covering
image μ is a function from F

n to GT . For any t ∈ T , the sheet μt is the binary
image defined on F

n by μt(x) = 1 if t ∈ μ(x) and μt(x) = 0 otherwise. For any
x ∈ F

n, the set μ(x) is the fiber over x.

From Definition 1 and Relation (1), we derive that, for any t, u ∈ T ,

t ≤ u ⇒ μt ≤ μu. (2)

where the order on sheets is the pointwise order.
Let t ∈ T be a label. We set t↑ = {u ∈ T | t ≤ u} and t↓ = {u ∈ T | u ≤ t}.

The set 〈t〉μ = μ−1
t ({1}) is the support of t in the covering image μ. Thereby,

the expressions x ∈ 〈t〉μ, μt(x) = 1 and t ∈ μ(x) are synonymous. We write
〈t〉cμ for the set F

n \ 〈t〉μ. The set 〈�〉c = μ−1(∅) is the background of μ. When
there is no ambiguity, we write also 〈t〉 and 〈t〉c instead of 〈t〉μ and 〈t〉cμ. The
support 〈⊥〉 contains the points in F

n that are in the supports of every labels,
in particular every proto-labels. Thus 〈⊥〉 is empty in a covering image obtain
from a digital label image (since a digital label image is a partition of Z

n, or
a partition of a finite region of Z

n). Nevertheless, we will need this support to
define the dual of a covering image (Section 4): in the dual of a covering image
built from a digital label image, the support 〈⊥〉 is not empty (but so is the
background).

Since the lattice T is atomistic, and since, for any set of labels S, we have
(
∨

t∈S t)↑ =
⋂

t∈S t↑, any element of the codomain GT of a covering image can
be expressed as an union of intersections :

GT =

{
⋃

A∈B

⋂

t∈A

t↑ | B : a family of sets of atoms

}

where
⋃

A∈∅
⋂

t∈A t↑ = ∅ and
⋂

t∈∅ t↑ = ⊥↑ = T . This latter description of GT

gives a way to encode the fibers with trees.
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3 Simplicity

A more detailed presentation of the notions of topology used below can be found
in our previous work on label images [11].

In a binary image, a point x in the object is simple if its removal from the
object “preserves topology” [6]. Since a covering image is a collection of binary
images (the sheets), we can extend the notion of simple point to covering images:
roughly speaking, in a covering image, a point is simple for a fiber S if it is
simple in any sheet modified by the assignment μ(x) = S. In our framework,
we use β-simple points. A point x ∈ F

n is a β-simple point for a subset X of
F

n if one of the sets x↑ \ {x} or x↓ \ {x} is contractible3. The β-simple points
have the advantage to preserve topology twice. Indeed, in the one hand, F

n can
be equipped with the Alexandroff topology whose open sets are the up-sets of
F

n. Then, the deletion of a β-simple point x from a subset X of F
n is a weak

homotopy equivalence, that is, the inclusion i : X\{x} → X induces a one-to-one
correspondence between the connected components of both spaces and induces
also isomorphisms between the homotopy groups of X \ {x} and X . Moreover,
this is also true for the dual inclusion i′ : F

n \ X → F
n \ (X \ {x}). On the

other hand, one can associate to any subset X of F
n an euclidean set, denoted

|K(X)|, which is the realization of a simplicial complex. The deletion from X
of a β-simple point x induces a strong deformation retraction from |K(X)| to
|K(X \{x})|. Furthermore, this is also true for the complements (in R

n) of these
realizations but, possibly, in a non-monotonic manner.

Eventually, we can give the definition of a simple point in a covering image.

Definition 2 (Simple point in a covering image). Let S ∈ GT be a fiber.
A point x ∈ F

n is simple for (the fiber) S if the following two conditions are
verified:

(i) for any label u ∈ μ(x) such that u /∈ S, x is β-simple for the set 〈u〉 or for
the set 〈u〉c ∪ {x};

(ii) for any label u /∈ μ(x) such that u ∈ S, x is β-simple for the set 〈u〉 ∪ {x}
or for the set 〈u〉c.

The previous definition, and the properties of β-simple points, ensures that, if
a point is simple for the fiber S in the image μ, we can set μ(x) = S while
preserving the topology of any region of interest, including the unions pointed
out by the choice of the lattice T . Moreover, modifications of fibers over points in
F

n having the same dimension can be done in parallel, leading to well-balanced
algorithms. Figure 4 gives an example of thinning on a covering image using
simple points for the fiber ∅. Observe that in this thinning we have maintained
the possibility to go back to Z

n without losing any topological information but
this is a difficult issue on which we are still working.
3 A space is contractible if it has the homotopy type of a point. A subset X of F

n

is contractible iff it can be shrunk to a unique point by the sequential removal of
unipolar points. A point x is unipolar if x↑ \ {x} has a minimum or x↓ \ {x} has a
maximum.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a) A label image λ defined on Z
3. (b) The “red” sheet μred of the covering

image μ associated to the image λ and the (6, 18)-adjacency pair (on this sheet, which
is a binary image, as on the other sheets, the colors are used only to better distinguish
the faces of the cubical complex). For any label t, and any f ∈ F

n such that dim(f) ≤ 2,
the rule used to define the value of μt(f) can be expressed as follows: if dim(f) = d
and f bounds at least k black voxels then f is black (i.e. μt(f) = 1), otherwise f is
white, where (d, f) ∈ {(2, 2), (1, 3), (0, 6)} (see [10]). (c) The “red-or-blue”sheet. (d)
The “green-or-blue”sheet. (e–h) The same as (a–d) after a thinning procedure (using
simple points for the fiber ∅) has been applied. Note that in our implementation we do
not directly process the sheets but the fibers (and we extract the sheets for visualization
when the process is over).

4 Duality

Thanks to the dual order on the lattice T and to the complementation in 2T , we
are able to define the dual of a covering image.

We write FT for the subset of 2T composed of the complements of the elements
of GT in 2T . As GT is the family of the up-sets over T , FT is the family of the
down-sets over T (E ∈ FT iff e ∈ E and f ≤ e imply f ∈ E), i.e. FT = G(T �)

where T � is the lattice T equipped with its dual order.
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Definition 3 (Dual covering image). The dual covering image of μ is the
covering image ¬μ : F

n → FT defined for any x ∈ F
n by (¬μ)(x) = 2T \ μ(x).

The duality on covering images comes down to a swap of the background and
the object in each sheet of a covering image: for any label t ∈ T , 〈t〉¬μ = 〈t〉cμ
and the background of the dual of a covering image μ is μ−1(T ) = μ−1(⊥↑).

The duality is compatible with the simplicity: a face is simple for a fiber S in
a covering image iff it is simple in the dual covering image for the complement
in 2T of S.

Thanks to this duality we can design in one time tools to process digital label
images whose regions have to be interpreted with an (α, β)-adjacency pair or
with the (β, α)-adjacency pair.

5 Conclusion

The model exposed in this paper is a way to encompass all the topological
relations that characterize a label image. From a theoretical point of view, it
can help us to check what is precisely preserved or modified by a procedure.
Likely, it is not necessary to implement the model as is. We have begun to look
for sufficient conditions to directly process label images defined on Z

3 with the
conceptual aid of covering images. The first results are tedious but we have not
made any optimization on them. On the other hand, it seems predictable that the
complexity of a label image (with all the intra-labels and inter-labels relations)
is exponentially more costly than the complexity of a single object. Nevertheless,
we think that this model can be useful to work on images with several objects
when the inter-relations between the objects are meaningful.

Further works will consist in improving the implementation of the whole
framework and testing this implementation on “real” images. We plan also to
define and study morphological operators for covering images.
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Abstract. This work is focused on characterizing the existence of a
perfect discrete Morse function on a triangulated 3-manifold M , that is,
a discrete Morse function satisfying that the numbers of critical simplices
coincide with the corresponding Betti numbers. We reduce this problem
to the existence of such kind of function on a spine L of M , that is, a 2-
subcomplex L such that M −Δ collapses to L, where Δ is a tetrahedron
of M . Also, considering the decomposition of every 3-manifold into prime
factors, we prove that if every prime factor of M admits a perfect discrete
Morse function, then M admits such kind of function.

Keywords: perfect discrete Morse function, triangulated 3-manifold,
spine.

1 Introduction

The existence of a perfect discrete Morse function on a triangulated 3-manifold
K heavily depends on K and gives us information about its combinatorial struc-
ture. For example, it is easy to prove that if we consider a triangulation of S3

containing the Dunce hat as subcomplex then any discrete Morse function de-
fined on it has at least 3 critical simplices. This situation strongly contrasts with
the smooth case, where the existence of perfect functions on a manifold does
not depend on the given triangulation. The main goal of this work, which is the
continuation of the paper [2], consists on reducing the problem, initially stated
on 3-manifolds, to 2-complexes. It is possible since we prove that a triangulation
K of a 3-manifold admits a perfect discrete Morse function if and only if a spine
of K admits such kind of function. For the sake of simplicity, we have restricted
our study to closed orientable 3-manifolds.

This problem can be regarded not only in a theoretical way but also it is
strongly linked with applications in several areas like digital image processing,
object recognition and representation of digital objects. In this sense there are
works which use 3-dimensional cell complexes for modelling 4D digital objects,
which arise in a natural way when considering a time sequence of 3D objects
(see [19] and [5]). Any discrete Morse function provides information on the ho-
mology of a manifold. For example, the number of critical i-cells is not less than
the i-th Betti number of the manifold. In this context, a perfect discrete Morse

M. Ferri et al. (Eds.): CTIC 2012, LNCS 7309, pp. 11–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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function on a complex encodes its minimal topological structure in terms of the
basic n-cycles. Notice that it is not always possible to get a perfect discrete
Morse function, since there are complexes not admitting such kind of functions.
For example, there are triangulations of 3-balls containing complicated knots as
subcomplexes with few edges not admitting perfect functions (see [4] for details).
Optimal discrete Morse functions (those with the minimal number of critical
cells) can be used to obtain minimal decompositions of complexes/digital im-
ages in terms of homological forests (see [17] for details). Only in the case that
the considered complex admits perfect discrete Morse function, such minimal
decomposition has as many critical i-cells as the i-th Betti number and, more-
over, the triangulation of the model is “nice”, that is, the complex contains no
complicated knot (see [4]).

Discrete Morse functions arise in a natural way in the image context as
graylevel scale digital images are taken into account. Being more precise, start-
ing from real values (graylevel scale) on the vertices of a cubical complex, they
are extended to the complex by defining a discrete Morse function on it (see [21]
and [11]).

The paper is organized as follows: Section 2 is devoted to introducing the basic
notions and results concerning to discrete Morse theory. Section 3 includes the
obtained results on graphs and 2-complexes. Once the main result is obtained
at the beginning of Section 4, that is, the reduction of the problem of deciding
if a given triangulated 3-manifold admits perfect discrete Morse functions to the
2-dimensional case, we indicate necessary conditions in terms of the homology of
the manifold for the existence of perfect functions. Also, taking into account the
decomposition of a 3-manifold into prime manifolds, we prove in a constructive
way that if every prime factor admits a perfect function then the given manifold
admits such a kind of function.

2 Preliminaries

Through all this paper we shall consider finite simplicial complexes.
Let K be a simplicial n-complex and α be a n-simplex of K. If there exists a

(n− 1)-dimensional face β of α such that β is not a face of any other n-simplex
in K, we say that there is an elementary collapse from K to K − {α, β}.
The inverse operation is called an elementary expansion from K − {α, β}
to K. If K = K0 ⊃ K1 ⊃ · · · ⊃ Km = L are simplicial complexes such that
there is an elementary collapse from Ki−1 to Ki , i = 1, ...,m, we say that
K collapses to L, denoted by K ↘ L. Equivalently, the inverse operation is
called an expansion from L to K, denoted by K ↗ L. The notion of collapse
was introduced by J.C.H. Whitehead [22] in the context of simple homotopy
theory. More recently, there have been introduced weaker notions like shaving
in the computation of the homology of cubical complexes [18] and contraction
in the computation of cohomology operations [10] which are more suitable for
Computational Topology.
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The collapse number of a 2-complex K, denoted by co(K), is the minimal
number of 2-simplices τ1, . . . , τco(K) that need to be removed from K so that
K −{τ1, . . . , τco(K)} collapses to a graph. A detailed study of the computability
of this number can be found in [6].

A 2-complex such that every 1-simplex is a face of exactly two 2-simplices is
called a 2-pseudomanifold. A 2-complex K is said to be strongly connected
if, given any two 2-simplices σ, σ′ in K, there exists a chain of 2-simplices con-
necting them, that is, a sequence σ0, . . . , σk of 2-simplices such that σ = σ0,
σ′ = σk and σi ∩ σi+1 is a common 1-face. The strongly connected com-
ponents of a 2-complex are its maximal strongly connected subcomplexes. A
strongly connected 2-pseudomanifold is called a strong 2-pseudomanifold.
Notice that any 2-pseudomanifold K can be decomposed as the union of its
strongly connected components and the intersection of two of such components
is either empty or a finite set of vertices.

Given a simplicial complex K, a discrete Morse function is a function
f : K −→ R such that, for any p-simplex σ ∈ K:

(M1) card{τ (p+1) > σ/f(τ) ≤ f(σ)} ≤ 1.
(M2) card{υ(p−1) < σ/f(υ) ≥ f(σ)} ≤ 1.

A p-simplex σ ∈ K is said to be a critical simplex with respect to f if:

(C1) card{τ (p+1) > σ/f(τ) ≤ f(σ)} = 0.
(C2) card{υ(p−1) < σ/f(υ) ≥ f(σ)} = 0.

A value of a discrete Morse function on a critical simplex is called critical value.
Given c ∈ R, the level subcomplex K(c) is the subcomplex of K consisting

of all simplices τ with f(τ) ≤ c, as well as all of their faces, that is,

K(c) =
⋃

f(τ)≤c

⋃
σ≤τ

σ

Given two values of f , ak < al, the relationship between two level subcomplexes
K(ak) and K(al) is the following [7]:

If the interval [ak, al] does not contain any critical value, then K(al) collapses
to K(ak) or equivalently, K(ak) expands to K(al).

If the interval [ak, al] contains a critical value corresponding to a critical sim-
plex of dimension i, then K(al) has the same simple homotopy type as K(ak)
with an i-cell attached.

A discrete vector field V on K is a collection of pairs (α(p) < β(p+1)) of
simplices of K such that each simplex is in at most one pair of V . A V -path is
a sequence of simplices

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , . . . , β(p+1)

r , α
(p)
r+1, . . . ,

such that, for each i ≥ 0, the pair (α
(p)
i < β

(p+1)
i ) ∈ V and β

(p+1)
i > α

(p)
i+1 
= α

(p)
i .

Given a discrete Morse function f on K, the gradient vector field induced
by f is the set of pairs of simplices (α(p) < β(p+1)) such that f(α) ≥ f(β).
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Theorem 1. [8] A discrete vector field V is the gradient vector field of a discrete
Morse function if and only if there are no non-trivial closed V -paths.

Theorem 2. [7] Let f be a discrete Morse function defined on K and let bp be
the p-th Betti number of X with p = 0, 1, . . . , n (where n is the dimension of K).
Then:

(I1) mp(f)−mp−1(f) + · · ·+ (−1)p m0 ≥ bp − bp−1 + · · ·+ (−1)p b0,
(I2) mp(f) ≥ bp,
(I3) m0(f)−m1(f) + · · ·+ (−1)nmn(f) = b0 − b1 + · · ·+ (−1)nbn = χ(X),

where mp(f) denotes the number of critical p-simplices of f on K.

Notice that these inequalities are still valid for the case of Betti numbers with
general coefficients, that is, using any field F instead of Z.

In the smooth setting Pitcher proved in [20] the following generalized version
of Morse inequalities which also take into account the torsion coefficients qp of
Hp(M ;F ), where F is a field or Z:

Theorem 3. Let M be a compact Riemannian manifold and let f be a smooth
Morse function. Then:

1. m0(f) ≥ b0, mp(f) ≥ bp+qp+qp−1 with p = 1, . . . , n−1, mn(f) ≥ bn+qn−1.
2. mp(f) − mp−1(f) + · · · + (−1)pm0 ≥ bp − bp−1 + · · · + (−1)p b0 + qp with

p = 1, . . . , n− 1.

This result can be extended in a straightforward way to the discrete approach.
A discrete Morse function f defined onK is optimal if it has the least possible

number of critical simplices, that is, mi(f) ≤ mi(g) with 1 ≤ i ≤ n for every
discrete Morse function g on K.

A discrete Morse function f is called F -perfect if mp(f) = bp(K;F ) with
p = 0, . . . , n. Taking into account the Morse inequality (I2) of Theorem 2, we
conclude that every F -perfect function is optimal.

Remark 1. Notice that if a discrete Morse function is Z-perfect then, due to
βi(K,Z) = βi(K,Q), the function is Q-perfect too. Moreover, if a complex K
admits a Q-perfect discrete Morse function, then the homology groups of K
with coefficients in Z are torsion-free (see Proposition 5.9 of [14] for details). By
means of the universal coefficient theorem, the Betti numbers are the same for
coefficients in any field and consequently the function is F -perfect for all field F .

3 Perfect Discrete Morse Functions on Graphs and
2-Complexes

We will start the study of the existence of perfect discrete Morse functions on
2-complexes by considering the case of homology with integer coefficients.It is
well known that every 1-dimensional complex admits Z-perfect discrete Morse
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functions. It can be proved considering a spanning tree, by means of Lemma
4.3 of [7], a discrete Morse function on such tree with a unique critical vertex is
constructed. Finally, this function is extended to the graph by assigning a local
maximum to every edge not contained in the tree.

As a direct consequence, taking into account Lemma 4.3 of [7], every 2-
complex collapsing to a graph admits a Z-perfect discrete Morse function. In
particular, since every surface with boundary collapses to a graph (see example
7, page 52 of [9]), such surfaces admit a Z-perfect discrete Morse function.

Now we are going to give several results on the links between the existence
of Z-perfect discrete Morse functions on a given 2-complex with some trivial
homology groups and its simple homotopy type.

Proposition 1. Let K be a compact connected 2-complex admitting a Z-perfect
discrete Morse function. The following statements hold:

1. If K is Z-acyclic then it is collapsible.
2. If H1(K) = 0 and H2(K) 
= 0 then K has the same simple homotopy type

as a wedge of copies of S2.
3. If H1(K) 
= 0 and H2(K) = 0 then K has the same simple homotopy type

as a wedge of copies of S1.

It follows from the above result that every compact connected 2-complex which
is Z-acyclic and non-contractible does not admit Z-perfect discrete Morse func-
tions. An example of such kind of 2-complex can be found in [16].

Using a straightforward Mayer-Vietoris argument, we can prove that every
complex K admitting Z-perfect discrete Morse functions satisfies H1(K;Z) is
free. Notice that the converse is not true. In [2] an example of a 2-complex
K with H1(K) = Z and not admitting Z-perfect discrete Morse functions is
included. In particular, if the first fundamental group of a 2-complex is finite
and non-trivial then it does not admit Z-perfect discrete Morse functions.

By means of the collapse number of a 2-complex we proved that a connected
compact 2-complex K admits a Z-perfect discrete Morse function if and only
if co(K) = b2(K;Z). As a direct consequence we obtained that a compact
connected surface without boundary admits a Z-perfect discrete Morse func-
tion if and only if it is orientable. Moreover, this result can be extended to
2-pseudomanifolds in the sense that a 2-pseudomanifold K admits a Z-perfect
discrete Morse function if and only if every strongly connected component of K
is orientable.

4 Perfect Discrete Morse Functions on 3-Manifolds

In this section we will consider the problem of the existence of perfect discrete
Morse functions on 3-manifolds. First of all, let us recall some basic notions and
results concerning 3-manifolds.
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Definition 1. Given two closed triangulated 3-manifolds K and L, the con-
nected sum of them, denoted by K�L, is defined as follows:

• We choose two 3-simplices σ and τ in K and L respectively.
• We identify in (K − σ) ∪ (L− τ) the simplices of the boundaries of σ and τ

by some simplicial gluing map.

Definition 2. A connected triangulated 3-manifold M is called prime if
M = K�L implies K = S3 or L = S3.

Theorem 4 (Knesser-Milnor[12]). Let M be a compact connected orientable
triangulated 3-manifold. Then there is a decomposition M = P1� · · · �Pn with
each Pi prime. This decomposition is unique up to insertion or deletion of S3.

Using the Pitcher’s strengthened version of Morse inequalities we get the next
result

Proposition 2. Let M be a closed triangulated 3-manifold admitting a Z-perfect
discrete Morse function, then M is orientable and H1(M ;F ) is free for all
field F .

Remark 2. The converse of the above result is not true since there are 3-manifolds
with H1(M) free which do not admit Z-perfect discrete Morse functions as it is
shown in the following example:

Consider the 3-manifold M = H3�(S1×S2), where H3 denotes the Poincare’s
homology sphere (see [12] and [13]). Notice that H1(M) = Z is free (in fact
Hi(M) = Z) and thus a perfect discrete Morse function has 4 critical simplices.
However, since the first homotopy groupΠ1(M) is not abelian it follows that any
presentation of this group has at least two generators and then the 1-skeleton
of any CW -structure of M contains the wedge of at least two circles. So m2 =
m1 ≥ 2 and hence we conclude that every discrete Morse function on M has at
least 6 critical simplices.

Corollary 1. Let M be a closed triangulated 3-manifold such that Π1(M) is fi-
nite and non-trivial. Then M does not admit Z-perfect discrete Morse functions.

Remark 3. Examples of this kind of spaces are the spherical manifolds S3/Γ
where Γ is a finite subgroup of SO(4) acting freely on S3 by rotations. In the
particular case that Γ is a cyclic group these manifolds are the lens spaces L(p, q)
for 0 < p

q < 1.

Corollary 2. Let M be a closed triangulated 3-manifold such that Π1(M) con-
tains a torsion subgroup. Then M does not admit Z-perfect discrete Morse
functions.

Definition 3. Let M be a triangulated 3-manifold. A spine L of M is a 2-
subcomplex L such that M −Δ collapses to L, where Δ is a tetrahedron of M .
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Fig. 1. The figure on the left is solid torus admitting as spine the torus on the right

The next figure represents a spine of the 3-manifold obtained by the
complement in a 3-ball of a knotted thickened Y, the so called worm-eaten apple.

Fig. 2. A spine of a worm-eaten apple

Next result illustrates how the problem of deciding whether a given orientable
3-manifold M admits a Z-perfect discrete Morse function is reduced to the two-
dimensional case, that is, it is equivalent to the problem of determining the
existence of such kind of functions on a spine of M . Algorithms for the obtention
of perfect functions on 2-complexes are presented in [3].

Theorem 5. Let M be a connected closed orientable triangulated 3-manifold
and let F be either Z or a field. M admits an F -perfect discrete Morse function
if and only if there exists L, a spine of M , which admits an F -perfect discrete
Morse function.

Proof. Let us suppose that M admits an F -perfect discrete Morse function f ,
hence mi(f) = bi with i = 0, . . . , 3. Since H3(M) � Z and M is connected,
then m0(f) = 1 = m3(f). By means of Poincare duality’s theorem, we get that
m1(f) = m2(f). Let N be the subcomplex obtained by removing the unique
critical 3-simplex of f denoted by Δ. Notice that N is of the same simple homo-
topy type as a 2-dimensional subcomplex L, since N can be obtained from L by
a sequence of elementary expansions, in fact L is a spine of M . The proof can
be carried out by induction on the sequence of level subcomplexes taking into
account that every 3-simplex added at a given step provides us an expansion
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(since no 3-simplex is critical). Then, by an easy Mayer-Vietoris argument we
get bi(L) = bi(M −Δ) = bi(M) with i = 0, 1, 2. Indeed the restriction g of f to
L is perfect satisfying mi(f) = mi(g) with i = 0, 1, 2.

Conversely, let us assume that there is a spine L admitting an F -perfect
discrete Morse function g. Let Δ be a 3-simplex such that M − Δ ↘ L then
by a Forman’s result (Lemma 4.3 of [7]), g can be extended to a Z-perfect
discrete Morse function ĝ on M − Δ. Finally, we extend ĝ to M by defining
f(Δ) = 1 +maxσ<Δ f(σ).

The following result guarantees the existence of a perfect discrete Morse function
on a closed 3-manifold if every single component of its prime factor (given by
Theorem 4) admits such a kind of function.

Theorem 6. Let M = M1�M2 be a decomposition of a connected closed ori-
entable 3-manifold M and let F be either Z or a field. If there exist triangu-
lations Ki of Mi admitting an F -perfect discrete Morse function with i = 1, 2
then there exists a triangulation K of M admitting an F -perfect discrete Morse
function.

Proof. Let us assume that Ki is a triangulation of Mi admitting an F -perfect
discrete Morse function with i = 1, 2. By using Theorem 5, there are spines Li

of Ki admitting F -perfect discrete Morse functions f and g. Let L1 ∨ L2 be
the wedge obtained by identifying the only critical vertices v and w of f and g
respectively. Then the function h, defined as

h(σ) =

⎧⎨⎩
f(σ), if σ ∈ L1 − {v};
g(σ), if σ ∈ L2 − {w};
min{f(v), g(w)}, if σ = v = w.

is an F -perfect discrete Morse function on L1 ∨ L2.

Since it is known that L1 ∨ L2 is a spine of K = K1�K2, (see [15]) then by
means Theorem 5, we conclude that K (which is a triangulation of M) admits
an F -perfect discrete Morse function.

Remark 4. Taking into account the classification of closed prime 3-manifolds
based on their fundamental group (see [13]), by Corollary 1 we obtain that a
closed prime 3-manifold M admitting a perfect discrete Morse function is either
S1 × S2 or K(Π1(M), 1) where Π1(M) is infinite but not cyclic.

In this second case, by means of Corollary 2 we conclude thatΠ1(M) is torsion
free and also, if we suppose that Π1(M) is abelian then M = S1×S1×S1. Now,
since H1(M) is infinite then M must be a sufficiently large Haken manifold, for
example, Mg × S1 where Mg is an orientable surface of genus g (see [13]).
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Abstract. In this paper, we present an efficient way for computing ho-
mology generators of nD generalized maps. The algorithm proceeds in
two steps: (1) cell removals reduces the number of cells while preserv-
ing homology; (2) homology generator computation is performed on the
reduced object by reducing incidence matrices into their Smith-Agoston
normal form. In this paper, we provide a definition of cells that can be re-
moved while preserving homology. Some results on 2D and 3D homology
generators computation are presented.

Keywords: nD Generalized Maps, Cellular Homology, Homology
Generators, Removal Operations.

1 Introduction

In this paper, we propose a method for efficiently computing homology gener-
ators of subdivided cellular objects. The main idea is to simplify a subdivided
object into a smaller one while preserving its homology. This principle is similar
to the one used in [10] which is mainly algebraic (i.e. based on reduction of chain
complexes), while our approach is mainly combinatorial.

In this work, we define a simplification algorithm based on the cell removal
operations defined on generalized maps. Its principle is to simplify as much as
possible the number of cells while preserving homology. Then we reduce incidence
matrices (used for describing boundary operators) into their Smith-Agoston nor-
mal form for computing homology generators [3]. Moreover, generators computed
in the reduced object can easily be projected into the original one.

The paper is structured as follows: in Sect. 2 all the necessary background
regarding n-Gmaps is recalled. Section 3 presents the main result of the paper:
the definition of the simplification algorithm based on the removal of two types
of cells, and the proof of the homology preservation. Finally, some experiments
are presented in Sect. 4 in order to illustrate that the simplification step widely
reduces the number of cells, and also the homology generator computation.

2 Preliminary Works

An n-Gmap is a combinatorial structure devoted to the representation of cellular
subdivision of orientable or not orientable nD quasi-manifolds, with or without
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boundaries (see [11,12] for more details). Any polytopal complex can be described
by an n-Gmap, while the converse is not true (an i-cell can be non homeomorphic
to an i-disk). It is possible to associate a semi-simplicial set with any n-Gmap.
An n-Gmap is not constructed directly from the cells of the subdivision but from
more elementary objects: darts. The set of darts is structured through involutions
that describe how they are linked to each other.

Definition 1 (n-Gmap). An n-dimensional generalized map, called n-Gmap,
with 0 ≤ n, is a (n+ 2)-tuple G = (D,α0, . . . , αn) where:

1. D is a finite set of darts;
2. ∀i, 0 ≤ i ≤ n, αi is an involution on D;
3. ∀i : 0 ≤ i ≤ n− 2, ∀j : i+ 2 ≤ j ≤ n, αi ◦ αj is an involution.

The cells of the subdivision are defined implicitly as set of darts thank to the
orbit notion (see Def. 2). An orbit in an n-Gmap can be seen as the set of darts
that we can reach from a given dart and using as many times as possible the
given involutions.

Definition 2 (Orbit). Let Φ = {π0, · · · , πn} be a set of permutations defined
on a set D. 〈Φ〉 is the permutation group of D generated by Φ. The orbit of an
element d ∈ D relatively to 〈Φ〉, denoted 〈Φ〉 (d) is the set {φ(d) | φ ∈ 〈Φ〉}.
As we can see in Def. 3, each i-dimensional cell is an n-Gmap is obtained by an
orbit using all the involutions except αi.

Definition 3 (i-cell). Let G be an n-Gmap, and d ∈ D be a dart. Given i,
0 ≤ i ≤ n, the i-dimensional cell containing d, called i-cell and denoted by ci(d),
is

〈
α0, . . . , α(i−1), α(i+1), . . . , αn

〉
(d).

Due to the definition of cells as sets of darts, the incident and adjacency relations
on cells can easily be tested. Two distinct cells c1 and c2 are incident if c1∩c2 
= ∅,
and two i-cells c1 and c2 are adjacent if there is two darts d1 ∈ c1 and d2 ∈ c2
satisfying d1 = αi(d2). When a dart d belongs to an i-dimensional border, we
have αi(d) = d and we say that d is i-free.

In the example of Fig. 1, face f3 is described by 〈α0, α1〉 (1) = {1, 2, 3, 4, 5, 6},
edge e1 by 〈α0, α2〉 (13) = {13, 14, 15, 16}, and vertex v1 by 〈α1, α2〉 (2) =
{2, 3, 7, 14, 15, 24}. v1 and e1 are incident since 〈α1, α2〉 (2) ∩ 〈α0, α2〉 (13) =
{14, 15} 
= ∅. f1 and f3 are adjacent since 23 ∈ f1, 1 ∈ f3, and α2(1) = 23.

In this paper, the main operations used to simplify an n-Gmap are the removal
operations (see [7,6] for the definitions). Intuitively, removing a removable cell c
merges the two (i+ 1)-cells incident to c, without modifying the other cells.

Definition 4 (Removable cell). Let G be an n-Gmap, c be an i-cell of G. c
is removable if one of the two conditions is satisfied:

i = n− 1; or 0 ≤ i < n− 1 and ∀d ∈ c, αi+1 ◦ αi+2(d) = αi+2 ◦ αi+1(d).

The notion of removable cell c is strongly related to the number of its (i + 1)
incident cells, called the degree of c and denoted degree(c). A direct consequence
of Def. 4 is that an i−cell c of degree > 2 is not removable.
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Fig. 1. Example of a 2G-map G = (D,α0, α1, α2). (a) A 2D cellular complex containing
3 faces; 9 edges and 7 vertices. (b) The 2G-map describing this cellular complex, having
24 darts (represented by numbered black segments). Two darts linked by α0 are drawn
consecutively and separated by a gray segment (for example α0(19) = 20), two darts
linked by α1 share a common point (for example α1(20) = 21), and two darts linked by
α2 are drawn parallel, the gray segment over these two darts (for example α2(13) = 16).

In the example of Fig. 1, all the edges are removable (since an (n − 1)-cell
is always removable in an nG-map), vertex v2 is removable while vertex v1 not.
Removing edge e1 merges faces f1 and f2 in one face having as boundary the
boundary of f1 plus the boundary of f2 minus edge e1.

To be able to compute homology of an n-Gmap, we need to have a boundary
operator (defined in [5,4]). The boundary operator is defined for n-Gmaps having
orientable cells. Note that it is possible to represent a non-orientable object (e.g.
a Klein bottle) with a n-Gmaphaving only orientable cells.

In the following we detail the notions of orientable cell and signed cell
(cf. Defs. 5 and 6).

Definition 5 (Orientable i-cell). An i-cell c is orientable if c = e1 ∪ e2 such
that: ∀d ∈ c, ∀j, 0 ≤ j ≤ n, j 
= i: d is not j-free ⇒ d and αj(d) do not belong
to the same set e1 or e2. c is non-orientable otherwise.

If c is orientable, then it can be partitioned in two sets of darts representing its
two orientations and we can associate a value −1 or +1 to each of its dart, called
a sign. In the following, we only consider n-Gmap having all its cells signed.

Definition 6 (Signed i-cell). Let c be an orientable i-cell. The corresponding
signed i-cell is c together with a sign for each of its dart d, denoted sgi(d):

• sgi(d) = −sgi(αj(d)) ∀j: 0 ≤ j < i such that d is not j-free;
• sgi(d) = sgi(αj(d)) ∀j: i < j ≤ n.

For defining a boundary operator on n-Gmaps, we first define the signed inci-
dence number between two cells ci and ci−1 which describes the number of times
that ci−1 appears in the boundary of ci.

Definition 7 (Signed incidence number). let {pj}j=1···k be a set of darts s.t.
the orbits {〈α0, · · · , α(i−2)

〉
(pj)}j=1···k make a partition of

〈
α0, . . . , α(i−1)

〉
(d).

The signed incidence number between ci and ci−1 is defined by
(ci : ci−1) =

∑
pj ,j=1···k|pj∈ci−1

sgi(pj).sg
i−1(pj).
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Note that this definition is equivalent to the one given in [5]. Now the bound-
ary operator ∂G of any i-cell c is defined as ∂G(c) =

∑
c′(c : c′)c′, where c′

are (i − 1)−cells incident to c. The boundary operator ∂G satisfies ∂G ◦ ∂G = 0
when involutions αi are without fixed points for 0 ≤ i ≤ n − 1. Moreover,
we have proven in [4] that the homology defined on n-Gmaps by this bound-
ary operator is equivalent to the simplicial homology of the associated quasi-
manifolds when the homology of the canonical boundary of each i-cell is that
of an (i − 1)-sphere, and when ∀d ∈ D, ∀i ∈ {0, . . . , n}, d is i-free or αi(d) 
∈
〈α0, . . . , αi−2, αi+2, . . . , αn〉 (d). In the following, all the considered n-Gmaps sat-
isfied these conditions.

3 Removal Operations Preserving Homology

In this section, we prove that removing a degree two cell or a dangling cell
preserves the homology of the n-Gmap.

3.1 Chain Complexes and Chain Contractions

Let S = {Sq}q be a graded. A q-chain is a finite formal sum of elements of
Sq with coefficients in Z. Let Cq(S) denote the group of q-chains of S. The
chain complex (C∗(S), ∂) is the chain group C∗(S) = {Cq(S)}q together with a
boundary operator ∂. Given an n-Gmap G, let SG be the set of all the cells of
G. (C∗(SG), ∂G) is the chain complex associated to G.

A chain contraction [13] of (C∗(S), ∂) to (C∗(S′), ∂′) is a triple (f = {fq :
Cq(S) → Cq(S

′)}q, g = {gq : Cq(S
′) → Cq(S)}q and φ = {φq : Cq(S) →

Cq+1(S)}q) such that: (i) f and g are chain maps; i.e. fq◦∂q = ∂′
q◦fq and gq◦∂q =

∂′
q ◦ gq for all q; (ii) φ is a chain homotopy of idC∗(S) = {idq : Cq (S) → Cq (S)}q

to g◦f = {gq◦fq : Cq(S) → Cq(S)}q; i. e. φq−1◦∂q+∂′
q+1◦φq = idq−gq◦fq for all

q; (iii) f ◦ g = idC∗(S′). If a chain contraction of (C∗(SG), ∂G) to (C∗(SG′), ∂G′)
exists, then the n-Gmaps G and G′ have isomorphic homology groups.

3.2 Degree Two Cells

Proposition 1. Let c be an i-cell in an n-Gmap. If c is removable and degree
two cell, then there are two (i+1)-cells a and b satisfying: |(a : c)| = |(b : c)| = 1
and for all other (i+ 1)-cells c′, (c′ : c) = 0.

Proof. Since c is degree two, there are two (i+1)-cells a and b that are incident
to c. For these two cells, we have c ∈ ∂G(a) and c ∈ ∂G(b). So, (a : c) 
= 0 and
(b : c) 
= 0. If |(a : c)| > 1, contradiction with removal property, thus |(a : c)| = 1
(and the same for |(b : c)| = 1). For all other (i+ 1)-cells c′, c′ is not incident to
c otherwise the degree was greater than two. Thus (c′ : c) = 0. ��
Proposition 2. Let c be an i-cell in an n-Gmap. If c is a removable degree two
cell, and if each j-cell e incident to c, is after the removal of c a j-cell equal to
e \ c, then homology is preserved after the removal of c.
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Note that the removal of a cell may induce removal of other cells (for example,
it is possible to build a sphere made of one vertex, one degree two edge and two
faces. Removing the edge would supress all the darts and so the vertex and the
two faces). The second condition ensures that only one cell is removed

Proof. Let (C∗(SG), ∂G) be the chain complex associated to G. Since c is degree
two, there are two (i + 1)-cells a and b that are incident to c. The set SG′

of the cells of the n-Gmap G′ obtained after removing the cell c consists in
SG \ {a, b, c} ∪ {a′} where a′ is the resulting (i + 1)-cell from merging the two
cells a and b. Since, by Prop. 1, |(a : c)| = |(b : c)| = 1 and for all other (i + 1)-
cells c′, (c′ : c) = 0, we can construct a chain contraction (f, g, φ) of (C∗(SG), ∂G)
to (C∗(SG′), ∂G′) as follows:

f (x) =

⎧⎪⎪⎨⎪⎪⎩
c− (b : c)∂G(b), if x = c,

a′, if x = a,
0, if x = b,
x, otherwise;

g (x) =

{
a− (a : c)(b : c)b, if x = a′,

x, otherwise;

φ (x) =

{
(b : c)b, if x = c,

0, otherwise.

To check that (f, g, φ) is a chain contraction is left to the reader. Moreover, we
know that each j-cell incident to c is preserved by the removal operation. Then
G and G′ have isomorphic homology groups. ��

3.3 Dangling Cells

Let (C∗(S), ∂) be a chain complex. Let s, t ∈ S such that |(s : t)| = 1 and
(s′ : t) = 0 for any s′ ∈ S, s′ 
= s. If we remove s and t from S to get S′, we
obtain another chain complex (C∗(S′), ∂′) which is called an elementary collapse
of S. A chain contraction of (C∗(S), ∂) to (C∗(S′), ∂′) is given by

f (x) =

⎧⎨⎩
0, if x = s,

t− (s : t)∂(s), if x = t,
x, otherwise;

g (x) = x; φ (x) =

{
(s : t)t, if x = t,

0, otherwise.

Therefore an elementary collapse preserves homology. A subset of S is collapsible
if they can all be removed from S in a sequence of elementary collapses.

Let c be a k-cell, the closure of c, denoted c, is the set made of c plus all the
j-cells, 0 ≤ j < k that are incident to c. The closure of a set S of cells, denoted
S, is the union of the closures of all the cells of S.

Definition 8 (Dangling cell). Let c be an i-cell. We denote C the set of (i−1)-
cells of ∂G(c), and B = {c′ ∈ ∂G(c)|degree(c′) > 1}. c is dangling if c is
orientable, its degree is 1, {c} ∪ C \ B is collapsible, and each j-cell e ∈ B̄, is
after the removal of c a j-cell equal to e \ c.
Proposition 3. Let c be an i-cell in an n-Gmap. If c is removable and dangling
cell, then its removal preserves the homology of the n-Gmap.

Proof. Removing c will remove also all the cells in C \ B because these cells
are included in c (i.e. their set of darts is included in the set of darts of c). As
{c} ∪C \B is collapsible, and as all the other cells are preserved, the homology
of the n-Gmap is preserved by the definition and property of collapsible. ��
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3.4 Simplification Preserving Homology

The main principle of the simplification algorithm consists in removing succes-
sively all the degree two cells and all the dangling cells for all the dimensions
starting from (n − 1)-cells to 0-cells. For that, we start to define Algo. 1 which
simplifies all the i-cells of a given n-Gmap for a given dimension i.

Algorithm 1. Simplification of i-cells.

Input: An n-Gmap G.
Output: Simplify all the i-cells of G while preserving the same homology.

foreach i-cell c of G do
if c is removable and the degree of c is 2 then

Remove f ;

else if c is removable and c is a dangling cell then
push(P, c);
repeat

c ← pop(P );
push in P all the dangling i-cells adjacent to c;
Remove c;

until empty(P );

In this algorithm, we consider successively each i-cell c, and there are three
possible cases. First, if c is not removable, then we are sure that c cannot be
removable in a future step of the algorithm. Indeed, we only remove i-cells and
this does not modify the (i+1)-cells incident to c. Second, if c is removable and
its degree is two, we remove c. Third, if c is removable and dangling, we also
remove c, but now we have to reconsider all the i-cells adjacent to c. Indeed,
these cells can possibly become dangling due to the removal of c. At the end of
the loop, we have considered all the i-cells and removed all the degree 2 cells
and the dangling cells that were removable.

Now the global simplification method consists only in simplifying all the i-
cells of the n-Gmap for all the cells by decreasing dimensions. We have to work
in decreasing dimensions because the removal of an i-cell modifies the degree of
all the incident (i−1)-cells. At the end of the global simplification algorithm, we
have removed all the removable cells of degree 2 or dangling. By using Props. 2
and 3, we know that the final n-Gmap obtained after all the removals has the
same homology than the initial n-Gmap.

4 Experiments

In order to illustrate the interest of our simplification algorithm, we show results
on homology generator computation for the five objects shown in Fig. 2. Objects
(a), (b) and (c) are described by 2-Gmaps; objects (d) and (e) are described by
3-Gmaps.
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(a) (b) (c) (d) (e)

Fig. 2. (a) 2-torus. (b) Klein bottle. (c) pinion. (d) tower. (e) Menger sponge.

Table 1. Results of our experiments. We give the number of cells (columns # cells) for
initial objects, and after the simplification algorithm. The last column gives the time of
the simplification step. The two columns Homology computation give the memory space
and the time of the homology generators computation (0s means less than 10−6s).

Object Initial Simplified

# cells Homology # cells Homology Simplif.
Cell dim. 0 1 2 3 computation 0 1 2 3 computation time

2-torus 404 802 396 - 14Mb 5.76s 6 9 1 - 2.36Kb 0s 0s
Klein 900 1800 900 - 74Mb 128.47s 2 3 1 - 0.41Kb 0s 0s
Pinion 470 701 231 - 11Mb 3.56s 2 3 1 - 0.41Kb 0s 0s
Tower 906 1856 952 4 85Mb 140.97s 10 15 4 1 6.53Kb 0s 0s
Menger 896 2304 1728 400 159Mb 372.50s 189 365 97 1 2938.00Kb 0.81s 0.03s

To compute the homology generators, we iterate through all the cells of the n-
Gmap and we compute incidence matrices (which describes the boundary of the
cells) using the incidence number definition. Then we reduce incidence matrices
into their Smith-Agoston normal form for computing homology generators [3].
Compared to the classical Smith normal form, the specificity of the Agoston
reduced normal form is that for a given dimension d, the basis of the boundaries
Bp is a subset of the basis of cycles Zp, thus the quotient group Hp = Zp/Bp

can directly be obtained by simply removing from Zp the boundaries of infinite
order. Note that several optimizations exists for the reduction of incidence ma-
trices [15,8]. Even if they can be used, we do not use them here as we focus on
showing the improvement obtained with the simplification process.

The computation of homology generators was implemented in Moka [16], a
3D topological modeler based on 3-Gmap. For this reason, the computation
of homology generators is limited to 2D and 3D cases, but all the functions
are generic in any dimension. The results are presented in Table 1, where the
simplification step widely reduces the number of cells. On the last column one
can see that the simplification step is very fast. Memory space is also reduced
as the size of incidence matrices are directly linked to the number of cells.
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(a) (b) (c)

Fig. 3. The generators of H1 (in red) computed on simplified objects, and projected
on initial objects (drawn in grey). (a) Klein bottle. (b) Tower. (c) Menger sponge.

Lastly, we can see in Fig. 3 the different generators of H1 obtained for some
objects. By using the definition of removal operations, we are able to project the
generators of the simplified object on the initial one (by using a similar technique
as in [14,9]).

We have made a second type of experiments in order to compare our approach
with other existing methods. To our knowledge there is no other general method
which compute homology generator of cellular objects. Thus we compare our
solution with Chomp and RedHom [1,2] which compute homology generators of
cubical complexes. We chose these two methods since the two softwares are pub-
licly available. However, it must be noticed that representing a cubical complex
by a n-Gmaps is not efficient since a cube is described by 48 darts; the interest
of cellular model is precisely to represent non regular subdivisions. In order to
test the scale up property of the three methods, we chose three objects (see in
Fig. 4(a), (b) and (c)), and multiply the size of each voxel by 4 to 9 for the first
two objects, and by 2 to 7 for the last object which contains more voxels.

We can see in Fig. 4 the time required to compute homology generators of
each object by the three compared methods. These results are really encouraging
for our method which obtain the best computation time for the first two objects,
with an important gain for the second one. For the third object, Chomp, and Moka

performances are very similar (even if Chomp is a little bit quicker), while RedHom
is really faster. In this last case, Chomp, and Moka have similar computation time
than for the two first objects, while RedHom is extremely fast. We suppose there
is an optimization allowing to remove directly some block of voxels. Indeed, the
upper part of the last object is composed by a full block of voxels. This kind of
improvement can also be made for our method.

These experiments show that our method is very competitive since it is not
optimized for a specific type of subdivision but it is generic for any cellular
complex. Thus its main interest is its genericity and we can conclude from this
comparison that this is not to the detriment of the efficiency. Moreover, we can
improve our results by adding a thinning pre-processing step that reduces the
number of voxels while preserving the homology.
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Fig. 4. Homology computation time comparison for Chomp, RedHom and Moka. Objects
are made of voxels filling the bounding box (in wireframe), the filled surfaces being
borders of cavities or tunnels. (a) Cub1: 1067 voxels; 1 connected components; 9 tunnels;
5 cavities. (b) Cub2: 1828 voxels; 1 connected components; 7 tunnels; 4 cavities. (c) Cub3:
4003 voxels; 1 connected components; 6 tunnels; 3 cavities.

5 Conclusion

In this paper, we have presented an algorithm that simplifies an n-Gmap while
preserving its homology. For that, it removes degree two cells and dangling cells.
Then we can compute homology on the reduced n-Gmap and project the gener-
ator on the original object. Some results show the interest of the simplification
step, both in memory space and in computation time.

Some questions are still open. The first question is about the conditions on
removed cells. Is it possible to remove some other type of cells while preserving
the homology? The answer is no in 2D and 3D, but still open in higher dimen-
sion. This question is related to the definition of the minimal generalized map
having the same homology. In 3D, to obtain this minimal map, we need to use
another type of operation (fictive edge shifting). Thus we would like to study the
extension of this operation in higher dimension to define the minimal n-Gmap.
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LNCS, vol. 5810, pp. 300–312. Springer, Heidelberg (2009)

6. Damiand, G., Dexet-Guiard, M., Lienhardt, P., Andres, E.: Removal and contrac-
tion operations to define combinatorial pyramids: Application to the design of a
spatial modeler. Image and Vision Computing 23(2), 259–269 (2005)

7. Damiand, G., Lienhardt, P.: Removal and Contraction for n-Dimensional Gener-
alized Maps. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003.
LNCS, vol. 2886, pp. 408–419. Springer, Heidelberg (2003)

8. Dumas, J.-G., Heckenbach, F., Saunders, B.D., Welker, V.: Computing simplicial
homology based on efficient smith normal form algorithms. In: Algebra, Geometry,
and Software Systems, pp. 177–206 (2003)

9. Gonzalez-Diaz, R., Ion, A., Iglesias-Ham, M., Kropatsch, W.G.: Invariant represen-
tative cocycles of cohomology generators using irregular graph pyramids. Computer
Vision and Image Understanding 115(7), 1011–1022 (2011)

10. Kaczynski, T., Mrozek, M., Slusarek, M.: Homology computation by reduction of
chain complexes. Computers & Math. Appl. 34(4), 59–70 (1998)

11. Lienhardt, P.: Topological models for boundary representation: a comparison with
n-dimensional generalized maps. CAD 23(1), 59–82 (1991)

12. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. Computational Geometry & Applications 4(3), 275–324 (1994)

13. MacLane, S.: Homology. Classic in Mathematics. Springer (1995)
14. Peltier, S., Ion, A., Kropatsch, W.g., Damiand, G., Haxhimusa, Y.: Directly com-

puting the generators of image homology using graph pyramids. Image and Vision
Computing 27(7), 846–853 (2009)

15. Storjohann, A.: Near optimal algorithms for computing smith normal forms of
integer matrices. In: Lakshman, Y.N. (ed.) Proceedings of the 1996 Int. Symp. on
Symbolic and Algebraic Computation, pp. 267–274. ACM (1996)

16. Vidil, F., Damiand, G.: Moka (2003), http://moka-modeller.sourceforge.net/

http://moka-modeller.sourceforge.net/


Enhancing the Reconstruction from Non-uniform Point
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VRVis Center for Virtual Reality and Visualization Research
vucini@vrvis.at

Abstract. In this paper we propose an efficient method for selecting the recon-
struction resolution of non-uniform representations. We analyze the topological
difference between reconstructions based on Topological Persistence information
and define a distance for quantifying such information. We compute the Persis-
tence information with a state-of-the-art method and report in detail the charac-
teristics of the proposed algorithm. We evaluate our method in different scenarios
and compare to previous contributions. Our proposed method offers faster and
more reliable results in an effort to improve the reconstruction process and to
reduce the necessity for visual inspection.

Keywords: Reconstruction, Topology, Persistence, Bottleneck Distance.

1 Introduction

Nowadays, the number of applications that provide non-uniform (irregular) data is
increasing steadily. Examples vary from astronomical, Doppler and ultrasound mea-
surements, to particle or numerical simulations in physical sciences. Non-uniform data
representations offer a way of adapting the measure location according to the impor-
tance of the data. However, most of the techniques that deal with the analysis and
processing of data are fitted to uniform (regular) data. The transform of non-uniform
representations to uniform ones, is a viable option, for the better understanding and
analysis of such data. In this paper we focus on the process of reconstruction from
non-uniform to uniform representations.

The main problem in the reconstruction from non-uniform representations is the se-
lection of the proper resolution of reconstruction. This will be the central question we
will try to answer in this paper. The problem of selection of reconstruction resolution
can be translated into a trade-off finding problem between accuracy and memory effi-
ciency. A coarse (low) resolution of reconstruction requires less memory consumption,
but will smooth the signal in areas with sharp transitions, resulting in visual artifacts
or high errors. On the other side, a too fine (high) resolution of reconstruction will
introduce memory overheads while achieving a better accuracy.

Another important issue, in the reconstruction process is the evaluation of the qual-
ity of reconstruction. A commonly followed approach for assessing the quality of re-
construction is to measure the reconstruction error, e.g., the root mean square error
(RMSE). In addition to the fact that the RMSE can be misguiding due to his averaging
behavior, in many scenarios low RMSEs may still result in artifacts in the reconstructed
data. Hence, direct visual inspection is required, introducing the need of more time
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overhead and user interaction. In a traditional reconstruction framework, we would fol-
low these steps when trying to reconstruct a non-uniform points set P: (1) reconstruct P
with different resolutions, (2) compute the RMSEs for each reconstruction resolution,
(3) select those reconstructions that have RMSEs lower than a user defined threshold,
and (4) visually inspect the reconstructed data for possible artifacts, e.g., by means of
volume rendering. Vuçini and Kropatsch [17] proposed to reduce the necessity for vi-
sual inspection by using topological information derived from Homology analysis. A
schematic view of this reconstruction pipeline is displayed in Fig. 1.

YesNo

Reconstruct with 
Resolution Nx

Increase 
Resolution Nx

Visually Inspect 
Uniform Data

  RMSE Low?   Artefacts? NoYes Visualize/Use 
Uniform Data

Offline Inspect
Uniform Data

Non-uniform
Point Set

Fig. 1. Schematic view of a pipeline for the reconstruction of non-uniform point sets to uniform
representations when the target resolution is unknown. The offline inspection step represents the
option to decide over the quality of reconstructions using additional information and without the
need of visual inspection.

In this paper, we build upon the work of Vuçini and Kropatsch [17]. We also derive a
topological signature from the analysis of data. Instead of homology we use persistent
homology (or simple Persistence) in our analysis workflow. The usage of Persistence
allows us to compute a more robust topological signature, in a more efficient way due
to recent developments in persistence computation algorithms [20]. The topological
information together with error measurements improves the quality assessment of the
reconstruction and reduces the need of visual inspection.

In Section 2 we give a short summary of related work. We introduce our topology
controller in Section 3, and explain the main modules of the proposed algorithm. In
Section 4 we show results w.r.t. the usage of the topological signature and assess the
value of its applicability. Finally, conclusions are drawn and some ideas are layed out
and discussed as future work in Section 5.

2 Related Work

Following we give an overview of work related to the proposed approach, namely, with
regard to reconstruction and topology analysis of data.

Non-uniform data reconstruction (approximation) is a recent, fast growing research
area. A number of approaches reconstruct non-uniformly sampled data, especially for
one- and two-dimensional signals. Most of the methods are based on the reconstruction
of the data by solving large systems of equations ([11]). Perhaps the most popular ap-
proach for approximating non-uniform data is based on Radial Basis Functions (RBFs).
They have been used in surface ([14]) as well as volumetric ([13]) approximation and re-
construction techniques. Arigovindan et al. [2] proposed to use B-splines in a multi-grid
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framework for the reconstruction of non-uniform 2D data. Vuçini et al. [18] extended
these ideas to 3D volumes and large datasets.

Most of the above-mentioned approaches consider the resolution of reconstruction
as known a priori. In order to find the resolution allowing exact reconstruction a lower
bound on the minimal distance between two sampling positions has to be assured.
For general shift-invariant spaces a Beurling density D ≥ 1 is necessary for a stable
and perfect reconstruction ([1]). In topology analysis, in order to be able to provide a
topological-stable reconstruction, the object (signal) taken into consideration has to be
r-regular. The related literature is mainly related to the problem of surface reconstruc-
tion ([15]). Vuçini et al. [18] proposed the usage of the σavg concept for selecting an
optimal resolution of reconstruction. While this approach works well in the proposed
reconstruction pipeline, still the method is based on heuristically derived assumptions
and no clear proof is given that this is an optimal characteristic that works with other
reconstruction pipelines.

Due to the complexity of the data, techniques for providing a simplified view are
required in fields such Visualization and Graphics. Topology analysis has been success-
fully linked to fields related to isosurface selection [3], topological downsampling and
simplification ( [12]), topology-guided analysis and navigation in scalar and time vary-
ing data ([5]), and feature tracking and evolution ([21]). Carr et al. [6] have presented a
generalized framework consolidating the theory and application of the contour spectrum
concept. Most of the above-mentioned works have concentrated in reporting topological
information related to 0-dimensional homology, i.e., connected components. Topolog-
ical persistence information has been also used for shape comparison and feature clas-
sification ([7], [8], [4]). In our previous work ([17]), homology information was used
to derive a topological signature. The main drawback of the method, is the necessity to
compute the homology information for each superlevel set in order to derive important
information. In the current approach the usage of Persistence overpasses this drawback,
resulting in lower computation times and in the same time providing a more compact
representation.

All the above-mentioned methods provide extensive information, which is difficult
to interpret without the appropriate statistical analysis. Similar to [17], in the proposed
method we use statistical topological information for guiding the selection of resolu-
tion of reconstruction. As a result, our framework gives important cues that reduce the
necessity of human’s visual inspection of the data.

3 Topology-Based Analysis

Our proposed algorithm consists of two main modules: 1) the variational reconstruction
module, and 2) the module that derives the statistical Persistence-based information. Both
modules are integrated in the main iterative procedure which extracts useful statistical
information related to the reconstruction process. Through this information we will be
able to select a resolution of reconstruction that has both a low RMSE and topological
stability with regards to our defined Persistence-based topology-controller (PC ).

3.1 Variational Reconstruction Basics

Variational reconstruction is a well-known technique applied to solving ill-posed prob-
lems such as the reconstruction from non-uniform point sets. The variational functional
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is formulated so that it provides a solution close to the input points, while regularizing
the smoothness in order to prevent discontinuities.

Given a set S of sample points, si = (xi,yi,zi), i = 1,2, . . . ,M,, the B-spline ap-
proximation is formulated in a way that it approximates the points set in a resolution
(Nx,Ny,Nz) of the axis-aligned bounding box. Cubic B-splines do not enjoy the interpo-
lation property, but with real-world data where noise is always present, approximative
(not-interpolating) splines are better suited for the reconstruction process ([16]).

The key idea of the variational reconstruction is to build a linear system and to solve
it by minimizing a derived cost function. Once the linear system is solved, we can
estimate the approximating function f (s) (a C2-continuous function) at any position
s ∈ V , where V is the volume enclosing the bounding box of the non-uniform point set.
For a deeper insight into the method we refer the reader to [18].

3.2 Persistence-Based Topology Analysis

We shortly introduce Persistence, focusing on Z2 homology ([10]). Given a topological
space X and a filtering function f : X → R, Persistence performs a topological explo-
ration along a filtration, i.e., a nested sequence of subsets X1 ⊆ X2 ⊆ . . . ⊆ Xn = X ,
usually induced by considering the sublevel sets of the filtering function. The algo-
rithm captures the birth and death times of homology classes of the sublevel set as it
grows along the filtration. By birth, we mean that a homology class comes into being;
by death, we mean it either becomes trivial or becomes identical to some other class
born earlier. The persistence, or lifetime of a class, is the difference between the death
and birth times. Homology classes with larger persistence reveal information about the
global structure of the space X, as described by the function f .

3.3 Persistence-Based Algorithm (PbA)

Similar to [17], the proposed algorithm takes as input a non-uniform point set (S), a
minimum (Nmin) and maximum (Nmax) resolution of reconstruction, and a resolution
step Δ (see Algorithm 1). In difference from [17] we do not require the number of
superlevel sets needed to reconstruct. The number of superlevel sets was previously
required by the Homology module, due to the fact that homology computation runs
only on binary data, e.g., object and background. Persistence, offers us the possibility
to create a filtration along the values of the data.

Algorithm 1. PbA(S, Nmin, Nmax, Δ )
1: for i = Nmin to Nmax do
2: determine Vi by solving variational reconstruction for S on resolution i
3: compute Persistence P0

Vi
, P1

Vi
and P2

Vi

4: build Persistence frequency histograms PH0
Vi

, PH1
Vi

and PH2
Vi

5: i = i+Δ
6: end for
7: compute the topology controller (PC )
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The iterative algorithm starts with determining the volume Vi, from the approximat-
ing function estimated from the variational reconstruction of the non-uniform point set
S (line 2). The resolution of reconstruction Nx×Ny×Nz is specified by the loop-variable
i (loop-variable i is augmented in each step by the variable Δ ). By varying Nx, Ny and
Nz are determined automatically by the proper aspect ratio of the axis-aligned bounding
box enclosing the given non-uniform data points. In (line 3) we compute the persistence
of the reconstructed volumes. As a result, we obtain a set of pairs for each dimension,
i.e., P0

Vi
, P1

Vi
and P2

Vi
. Each pair represents a persistent topological feature and is given

as two functional values, i.e., (birth, death). Following, we can build the Persistence fre-
quency histograms PH0

Vi
, PH1

Vi
and PH2

Vi
(line 4). The frequency histograms span the

data range, e.g., in many data examples [0,4095], and measure the number of persistent
topological features that are alive at a specific functional value. PHτ

Vi
can be considered

as the τ-dimensional persistence signature of the point set S in resolution i.
After computing the Persistence frequency histograms for each resolution, we can

define the topology controller PC (i) as:

PC (i) =
1

α0 +α1 +α2

2

∑
τ=0

ατ ·

∥∥∥PHτ
Vi
−PHτ

VNmax

∥∥∥∥∥∥PHτ
VNmax

∥∥∥ (1)

where the weights (coefficients) α ∈ {0,1} control the impact of the respective τ-
dimensional persistence statistics (PHτ ) on the topology controller. In simpler words,
PC (i) computes the relative error of PHτ

Vi
with regard to PHτ

VNmax
, which is the

persistence signature of the point set S in the maximum resolution.

4 Implementation and Results

Our test platform is an Intel i7 CPU @ 2.67GHz with 12GB of RAM. All the algorithms
are developped as single threaded hence only one processor core is used. Analog to [17],
we tested our framework with 3D data sets based on non-uniform point sets as well as
Cartesian grids. For detailed information on the datasets refer to [19].

In our framework, we analyze graphical plots of PC with regard to a changing
resolution and we set default weight values (α0 = α1 = α2 = 1) in Eq. 1. We attach
to these plots also the graphs of PC τ , which measure the τ-dimensional homological
statistics. PC τ is derived from PC by setting the respective ατ equal to one and the
other two weights equal to zero. Vuçini and Kropatsch [17], suggested a threshold of
0.2 for the topology controller, in order to find the optimal resolution of reconstruction.
While this is a viable approach, in this work we followed a different strategy. We let the
user define upon the plots of the topology controller, which the resolution that better
suits her. In this way, we avoid hard thresholding, which is not optimal when dealing
with different data types.

In Fig. 2 we show renderings of the point set and reconstructions from the Cooling
Jacket dataset. The dataset was generated at AVL List GmbH in order to evaluate a
cooling jacket design for a four cylinder diesel engine. This stationary flow simulation
incorporates a heat transport solution in order to predict critical temperature regions
within the engine. The original dataset is specified on an unstructured grid. The non-
uniform point set consists of 1,537,898 points encoding the pressure of the flow data.
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The topology of the data is very crucial for such an industrial simulation, and our
algorithm should be able to distinguish between the cases displayed in Fig. 2 b-d). In
Fig. 3(a), we display the plots of the topology controller derived from our proposed
algorithm. We see that the (red) line representing PC , stabilizes after the resolution
Nx = 410. Hence, this is the value that we select as an optimal reconstruction resolution
for the Cooling Jacket dataset. Visually comparing the renderings in Fig. 2 and 3(b),
we can also confirm that the reconstruction done with the selected resolution is topo-
logically more similar to the input point set, than the ones done with lower resolutions.
In Table 1 we provide results of our framework for different datasets and also com-
pare with the methods proposed in [18] and [17]. While our proposed resolutions are
different from the ones suggested in [18], they are similar to the ones proposed in [17].

(a) Points Set (b) 128×45×56

(c) 256×90×101 (d) 512×180×202

Fig. 2. Cooling Jacket (Pressure) dataset: a) dataset consisting of 1,537,898 non-uniform points,
b-d) reconstructions with resolution 128 × 45 × 51, 256 × 90 × 101 and 512 × 180 × 202
respectively
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Fig. 3. Cooling Jacket (Pressure) dataset: a) Persistence-based controller, b) reconstruction with
resolution 410× 144× 162. The hair-line in the Fig. a) highlights the values of the Persistence
Controllers for the selected resolution (Nx = 410).
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Table 1. Comparisons of reconstruction resolutions for different non-uniform datasets as
proposed by [18] and our proposed Topology controller

Dataset Previous [18] Previous [17] Proposed

Name Points Resolution RMSE Resolution RMSE Resolution RMSE

Oil 29,094 38x40x38 0.19 41x44x41 0.16 43x45x43 0.15
Natural Convection 68,921 61x61x61 0.63 55x55x55 0.71 58x58x58 0.68
Synthetic Chirp 75,000 64x64x64 1.12 58x58x58 1.18 60x60x60 1.16
Bypass 7,929,856 766x92x192 0.61 880x106x220 0.49 860x103x216 0.55
Blunt-Fin 40960 93x36x25 1.14 102x39x28 1.11 98x38x26 1.12
Cooling Jacket 1,537,898 256x90x101 0.92 400x140x157 0.86 410x144x162 0.83

Table 2. Comparison of times for the computation of the controllers for different datasets and
settings, as reported by Vuçini and Kropatsch[17] and the proposed method. (∗) Timings for the
results in the ’Previous’ column are estimated on a PC, running on an Intel Dual Core 2.70 GHz
processor machine with 6GB of RAM (similar single-core performance).

Dataset Times (min)

Name Points Nmin Nmax Δ Previous [17](∗) Proposed

Neghip 52,428 16 80 1 60.45 1.47
Natural Convection 68,921 16 64 1 107.13 0.63
Aneurism 419,430 32 160 4 40.77 8.12
Cooling Jacket(Pressure) 1,537,898 32 512 2 7215.32 282.13
Bypass 7,929,856 256 1024 16 6712.80 257.98

For computing the Persistence information we use the algorithm developed by Wag-
ner et al. [20]. For obtaining the reconstruction we use the algorithm developed by
Vuçini et al. [18]. The complexity of Persistence algorithm is cubic, while the vari-
ational reconstruction algorithm has a linear complexity. However, in our framework
we observed a linear complexity from both the modules. Computation times of the pro-
posed framework, and comparison to [17] are given in Table 2. Note that, with the usage
of the Persistence module we significantly decrease the computation times.

5 Conclusions and Future Work

In this work we presented an efficient method for selecting the resolution of reconstruc-
tion for non-uniform point sets. Building this work on our previous contribution, we
provide a more efficient method based on the concept of Persistence. We demonstrated
our results in comparison with previous contributions.

One of the reasons of using persistence, was to be able to use the bottleneck distance
[9], as a measure for quantifying the difference between reconstructions in various reso-
lutions. Along this work, we tested the proposed algorithm with both the bottleneck and
Haussdorff distances. However, both preliminary testings resulted in a non-converging
distance. In our future work, we want to analyze in more detail, the reasons underlying
such fact. We believe, this can be related with the way our distance computing algo-
rithm handles essential and non-essential classes in the persistence diagram. Another
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reason could be related to the possible normalizations, that have to be done in order to
be able to compare different persistence diagrams.

In our future work, we also want to enable the usage of persistence-based topolog-
ical signatures in visualization and graphics, e.g., in designing transfer functions or
highlighting topological features of interest.
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Abstract. Recent developments of computer architectures together
with alternative formal descriptions provide new challenges in the study
of digital Images. In this paper we present a new implementation of
the Guo & Hall algorithm [8] for skeletonizing images based on Cellu-
lar Automata. The implementation is performed in a real-time parallel
way by using the GPU architecture. We show also some experiments of
skeletonizing traffic signals which illustrates its possible use in real life
problems.

1 Introduction

A car at 120 km/h takes 6 seconds to travel 200 meters. Recognizing traffic
signals in real time is a challenge in the automotive industry and represents an
important step for automatic driving [13,14]. Moreover, changes in visibility due
to the weather, lighting etc. make necessary to store an scheme of the signal,
instead of a picture of it. The skeleton of the signal can be a good way to represent
the signal in an abstract way. Skeletonizing such images efficiently is crucial in
the process, since a car automatically driven must react in a very short space of
time according to signals.

In this paper we propose a real-time parallel implementation of the Guo &
Hall algorithm [8] for skeletonizing images by using a device architecture called
CUDATM, (Compute Unified Device Architecture) [21]. CUDATM is a general
purpose parallel computing architecture that allows the parallel NVIDIA Graph-
ics Processors Units (GPUs) to solve many complex computational problems in
a more efficient way than on a CPU [15].

M. Ferri et al. (Eds.): CTIC 2012, LNCS 7309, pp. 39–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The algorithm has been adapted on the theoretical basis using one of the
most known models of the Natural Computing, Cellular Automata (CA). Nat-
ural Computing studies computational paradigms inspired from physics, chem-
istry and biology [11]. It abstracts the way in which nature acts, providing ideas
for new computing models. One of the main research lines in Natural Com-
puting is Cellular Automata, introduced by John Von Neumann with the bi-
ological motivation of obtaining self-replicating artificial systems that are also
computationally universal.

CA are decentralized discrete computational systems1. They consist of large
numbers of simple identical components (cells) placed on an N -dimensional grid
with local connectivity defining the neighbourhood of a cell. The cells are in one
of a finite set of states. A discrete global clock is assumed and the cells change
their states synchronously depending on their own state and the states of the
neighbours, as determined by a local update rule. Technically, a CA consists of
two components. The first one is a cellular space: a lattice of N identical finite-
state machines (cells) each with an identical pattern of local connections to other
cells, with boundary conditions if the lattice is finite. The second component is
a set of transition rules that gives the update state of each cell.

These features make CA suitable for dealing with some problems in the anal-
ysis of digital images, where pixels are identified with cells and the changes
in a cell depends on the current state plus the current state of its neighbours
and all the changes can be made simultaneously [9,17]. Nonetheless, the inher-
ent features of CA for dealing with Image Analysis have found the limits of
sequential computers. The theoretical parallel framework of CA could not be
efficiently implemented in one-processor computers. Recently, the development
of new parallel architectures has brought a renewed interest in the use of CA for
Image Analysis.

The paper is organised as follows: Firstly, we recall the basic notions of the
Guo & Hall algorithm and give some ideas of our implementation on CUDA
inspired on CA. In Section 3 we show illustrative examples of the use of our
implementation and some comparisons with a sequential one. Finally, Section 4
is dedicated to conclusions and future work.

2 Guo and Hall Algorithm

Representing a shape with a small amount of information is a challenge in com-
puter vision. Skeletonization is one of the approaches to this purpose, converting
the initial image into a more compact representation and keeping the meaning
features. The conversion should remove redundant information, but it should also
keep the basic structure. Skeletonization is usually considered as a pre-process
in pattern recognition algorithms, but its study is also interesting by itself for
the analysis of line-based images as texts, line drawings, human fingerprints or
cartography.

1 We assume that the reader is familiar with the basic concepts of CA. More informa-
tion in [10,20].



Parallel Skeletonizing of Digital Images by Using Cellular Automata 41

Fig. 1. (a) Order of neighbour pixels of P. (b) Sail configuration. (c) Cross configura-
tion. (d) Chess configuration of an image.

The concept was introduced by Blum [5,6] under the name of medial axis
transform. There are many algorithms published in this topic (see [16]) and there
are many different approaches to the problem, among them the ones based on
distance transform of the shape and skeleton pruning based on branch analysis2.

In this paper, the skeleton is obtained by an iterative procedure of thinning:
the border points are removed as long as they are not considered significant. The
remaining set of points is called the skeleton. Among the parallel algorithms
following this idea, special attention deserves the so-called 1-subcycle parallel
algorithms or fully parallel algorithms [8]. We present a new implementation
of the algorithm of Guo & Hall by using the new technology GPGPU. In this
algorithm, the contour pixels are examined for deletion in an iterative process.
The decision is based on a 3× 3 neighbourhood. The image is divided into two
disjoint areas (sub-sections), similarly to a chess board. The algorithm consists
on two sub-iterations where the removal of redundant pixels from white and black
sections are alternated. This is repeated until there are no redundant pixels left.

According to [7], given a pixel P , we will denote by P1, . . . , P8 the clockwise
enumeration of its eight neighbour pixels (see Fig. 1 a)) and P as a Boolean
variable, with the truth value 1 if P is black and 0 if P is white. Two parameters
are defined:

B(P ) =
∑i=8

i=1 Pi

C(P ) = (¬P2 ∧ (P3 ∨ P4)) + (¬P4 ∧ (P5 ∨ P6))
+(¬P6 ∧ (P7 ∨ P8)) + (¬P8 ∧ (P1 ∨ P2))

where B(P ) is the number of black neighbour pixels, and C(P ) is the connectivity
operator given by the number of white neighbour pixels of P where some of the
next two pixels is black, following the order of pixels of Fig. 1 (a).

In each iteration, each pixel P is deleted (changed to white) if and only if all
of the following conditions are satisfied:

1. C(P ) = 1; this condition is necessary for preserving local connectivity when
P is deleted.

2. (P1 ∧ P3 ∧ P5 ∧ P7) ∨ (P2 ∧ P4 ∧ P6 ∧ P8) = FALSE; i.e., we cannot to find
a configuration of neighbour pixels with the way of Fig. 1 b) and c)).

3. B(P ) > 1.

2 See, for example, [1,3,19,4,2].
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Fig. 2. Scheme of our Cellular Automata

2.1 CA Formal Framework

The formal description of the algorithm in the framework of CA requires to
provide the cellular space and the set of rules.

– Given a n×m image, let us consider the CA cellular space on a rectangular
grid (n+2)× (m+2) with 8-adjacency3. The set of possible states is {x, y}
for x ∈ {0, 1}, where 0 stands for white and 1 stands for black, and y ∈ 0, 1
where 0 stands for active and 1 for no active. In the initial configuration,
we will consider the central n×m grid, where the cells will take the initial
state according with the color of the corresponding pixel in the image. The
remaining one-width framework will have the initial state 0 (white). The
initial value of y depends of the position of pixel in a image with the same
size of the input image, but taking a chess configuration (see Fig. 1 (d)). So,
if the pixel is black we consider the cell as active and if the pixel is white
the cell is no active.

– For the description of the set of rules, it is necessary to provide the con-
ditions necessary for the change in the state of a pixel. In this case, such
conditions are taken directly from the Guo & Hall algorithm (see above). A
cell will change its state if we can apply one of the four rules that appear
in Fig. 2; for example, a cell changes its state from {1, 1} to {0, 0} (from
{black,active} to {white,no active}) if it satisfies the conditions to be con-
sidered redundant, which includes its current state and the color of the pixels
in its 8-neighbourhood.

3 We consider this extra framework in order to avoid boundary conditions in the
description of the algorithm.
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Fig. 3. Scheme of threads for our skeletonizing

2.2 Parallel Implementation

GPUs constitute nowadays a solid alternative for high performance computing,
and the advent of CUDATM allows programmers a friendly model to accelerate
a broad range of applications. The parallel implementation of the Guo & Hall
algorithm described above has been developed by using Microsoft Visual Studio
2008 Professional Edition (C++) with the plugging Parallel Nsight (CUDATM)
under Microsoft Windows 7 Professional with 32 bits. CUDATM C, an extension
of C for implementations of executable kernels in parallel with graphical cards
NVIDIA has been used to implement the CA. It has been necessary the nvcc
compiler of CUDATM Toolkit and some libraries from openCV to the treatment
of input and output images.

The experiments have been performed on a computer with a CPU AMD
Athlon II x4 645, which allows to work with four cores of 64 bits to 3.1 GHz.
The computer has four blocks of 512KB of L2 cache memory and 4 GB DDR3
to 1600 MHz of main memory.

The used graphical card (GPU) is an NVIDIA Geforce GT240 composed by
12 Stream Processors with a total of 96 cores to 1340 MHz. It has 1 GB DDR3
main memory in a 128 bits bus to 700 MHz. So, the transfer rate obtained is by
54.4 Gbps. The used Constant Memory is 64 KB and the Shared Memory is 16
KB. Its Compute Capability level is 1.2 (from 1.0 to 2.1).

We can deal N blocks of threads for the complete image in our GPU of 96
cores, as we can see in Fig. 3. We need more threads than pixels if the height and
width of the image are not multiples of 16, i.e., we can have useless threads. The
Figure 4 shows a flowchart of the implementation on CUDA of the algorithm
presented in this paper.



44 F. Peña-Cantillana et al.

Fig. 4. Flowchart

3 Skeletonizing

In this section we show the results of some experiments of skeletonizing traffic
signals with our parallel implementation of the Guo & Hall algorithm. Notice
that, the algorithm is described for black and white colour images, so if the image
given is a colour image or an image in grey scale, firstly we apply an algorithm
of binarization, and later our parallel software.

Firstly, in Figure 5 we can see an example of skeletonizing some traffic signals.
Notice that the skeletonizing of signals with the original foreground in black and
the background white provides meaningful information about the message, but
in the opposite way, the output of the skeletonizing is not a recognisable image
and not suitable for automatic recognition.

Fig. 5. Some traffic signals and their skeletonization
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Fig. 6. A real photograph, its binarization, its skeletonizing, its inverse binarization
and its inverse skeletonizing (from left to right)

Next, we provide an example of a realistic recognising problem. In Figure 6,
we can see a photograph of size 789 × 1317. It has been binarized by using a
threshold method by using a threshold 100 on a gray scale 0, . . . , 255. At the
bottom of the Figure, we can see its skeletonizing and the skeletonizing of the
inverse thresholding.

We finish this section by showing the results of some experiments performed
with our implementation. We have taken 36 totally black images of n×n pixels4,
from n = 125 to n = 4500 with a regular increment of 125 pixels of side. Figure
7 (top) shows the time in milliseconds of the application of our implementation
of the Guo & Hall algorithm in CA for 1, 30, 60 and 90 steps in the skeletonizing

4 Theoretically, this is the worst case, since the time inverted by the algorithm depends
on the size of the biggest black connected component of the original image.
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process. Figure 7 (bottom) shows the same study for a sequential implementation
of the algorithm. Finally, Figure 8 shows a comparison of our implementation
vs. the sequential one by taking 90 steps in the Guo & Hall algorithm.

Fig. 7. Experimental time obtained for the Guo & Hall algorithm 36 totally black
images of n × n pixels, from n = 125 to n = 4500 with a regular increment of 125
pixels of side. Top image shows the time of our parallel implementation in CA. Bottom
image shows the time for a sequential implementation.

Fig. 8. A comparison of our implementation vs. the sequential one by taking 90 steps
in the Guo & Hall algorithm
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4 Conclusions

Computer vision is a hard task and a challenge in the next years. Classical se-
quential algorithms need to be revisited and adapted to the novel technologies,
but the new developments also need the support of deep theoretical founda-
tions. Using Cellular Automata is not a new concept in the study of digital
images (see, for example, [18]) but the intrinsic parallelism of CA could not be
effectively explored due to the limitations of sequential computers. Only recently,
the new architectures of GPU has started to be studied as a tool for realistic
implementations (see, e.g., [12]). This paper goes in this line by proposing a new
implementation of one of the basic pre-processing problems for image analysis,
the Guo & Hall algorithm. The quick development of new hardware architectures
will provide in the next years a challenge for the effective parallel implementation
of many other approaches in Image Analysis.

Acknowledgements. DDP andMAGN acknowledge the support of the projects
TIN2008-04487-E and TIN-2009-13192 of the Ministerio de Ciencia e Innovación
of Spain and the support of the Project of Excellence with Investigador de Re-
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Abstract. In this paper we report on a project to obtain a verified
computation of homology groups of digital images. The methodology is
based on programming and executing inside the Coq proof assistant.
Though more research is needed to integrate and make efficient more
processing tools, we present some examples partially computed in Coq
from real biomedical images.

Keywords: Homology, Discrete Morse Theory, Proof assistant tools,
Coq, SSReflect, Synapses.

1 Introduction

The discipline of Algebraic Digital Topology, or more specifically, the com-
putation of homology groups from digital images is mature enough (see, for
instance, [27], one among many good references) to go one step further and
investigate the possibility of a certified computation (i.e., formally verified by
proving correctness using an interactive proof assistant) in digital topology, as
it happens in other areas of computer mathematics (see [8]).

In a very rough manner, the process to be verified is reflected in Figure 1.
Putting it into words, from the black pixels of a monochromatic image a sim-
plicial complex is obtained (by means of a triangulation procedure); subse-
quently, from the simplicial complex, its boundary (or incidence) matrices are
constructed, and finally, homology can be computed. If we work with coefficients
over a field (and it is well-known that it is enough to take as coefficients the field
Z/2Z, when we work with 2D and 3D digital images) and if only the dimensions
of the homology groups (as vector spaces) are looked for, then having a program
able to compute the rank of a matrix is sufficient to accomplish the whole task.

� Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-
C02-01, and by the European Union’s 7th Framework Programme under grant agree-
ment nr. 243847 (ForMath).
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Fig. 1. Computing homology from a digital image

This architecture is particularized in this paper with a real problem that
appeared in an industrial application and with the Coq proof assistant as pro-
gramming and verifying tool.

The rest of this paper is organized as follows. Section 2 is devoted to present
an example, coming from the biomedical context, as a test-case for our formal
development. The formalization process is explained in Section 3, focusing on the
link between boundary matrices and homology groups. Section 4 explains how
the certified programs can be used to effectively compute homology of images. A
way to deal with the management of the huge matrices produced by biomedical
images is presented in Section 5. The paper ends with a section of Conclusions
and Further work, and the bibliography.

2 Motivation

When developing formal proofs, a major issue is ensuring that concepts are
defined in a way that will be applicable to concrete use. In our case, we are
developing a general theory of effective simplicial homology as part of the For-
math project [1]. We decided to validate our design choices on biomedical digital
images obtained from synaptical structures.

Synapses are the points of connection between neurons. The relevance of
synapses comes from the fact that they are related to the computational
capabilities of the brain.

The possibility of changing the number of synapses may be an important as-
set in the treatment of neurological diseases, such as Alzheimer, see [26]. There-
fore, we can claim that an efficient, reliable and automatic method for counting
synapses is instrumental in the study of the evolution of synapses in scientific
experiments.

Up to now, the method to count synapses was manual, see [6]. This was
impractical since it implies a considerable time investment. In order to improve
this process, a plug-in called SynapCountJ [17] for the ImageJ environment [22]
has been developed.

The procedure implemented in this software to handle neuron images can be
split into two steps. First, taking as input three images of a neuron, namely
the neuron with two different antibody markers and the structure of the neu-
ron, SynapCountJ produces a bitmap where synapses are the connected com-
ponents, see Figure 2 (the same images with higher resolution are accessible
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at http://www.unirioja.es/cu/joheras/synapses/). Then the second step
consists in counting the connected components of the bitmap. A detailed expla-
nation of the procedure was given in [13].

Fig. 2. Example of the results produced by SynapCountJ

To test the suitability of this program, biologists consider, on the one hand,
control cultures and, on the other hand, cultures under the effect of some drugs;
in this way, the evolution of the density of the occurrence of synapses under
the effect of those drugs can be determined. For instance, using the chemical
inhibitor GSK3, the evolution percentage manually obtained is 36% and the one
obtained with SynapCountJ is 36.6%. Thus, the experimental results obtained
with SynapCountJ were considered (by the biologists) very satisfactory.

The former step of the procedure implemented in SynapCountJ, the extraction
of a bitmap with the synapses from three images of the neurons, is carried out
based on solid previous experience of experimental scientists; therefore, they
consider it as a safe process. The latter step, the computation of connected
components, can be solved with many algorithms and is an interesting test case
for our framework where we can compute the homology in dimension 0 of such
images. This is a well known procedure to measure the amount of connected
components of an image, even if more elementary methods are also applicable.

3 Verification in Coq/SSReflect

In the introduction we have explained a method, based on simplicial homology, to
study the homology of a digital image which consists of: (1) building a simplicial
complex from the image, (2) generating the boundary matrices associated with
the simplicial complex, and (3) computing the homology from the boundary
matrices. Notwithstanding that cubical complexes are more suitable to encode
monochromatic images, it is worth noting that we are working on top of previous
formalization efforts which deal with simplicial complexes.

http://www.unirioja.es/cu/joheras/synapses/
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The correctness of the programs in charge of both the construction of a sim-
plicial complex from an image and the generation of the boundary matrices
associated with a simplicial complex have been formally proved using proof as-
sistant tools as can be seen in [21] and [14] respectively. Then, there only remains
the verification of the third point, the computation of homology groups from the
boundary matrices.

In our formalization, we have used the Coq proof assistant [5]. This sys-
tem provides a formal language to write mathematical definitions, executable
algorithms and theorems together with an environment for semi-interactive de-
velopment of machine-checked proofs. In addition, we take advantage of the
features included in SSReflect [9], an extension for Coq whose development
was started by G. Gonthier during the formal proof of the Four Color The-
orem [8]. The SSReflect libraries include enough ingredients to undertake
the task of defining and computing homology from matrices. Some details of
the proofs will be omitted; the interested reader can consult the original and
complete source code at http://wiki.portal.chalmers.se/cse/pmwiki.php/
ForMath/ProofExamples.

First of all, we define the notion of homology in Coq. Let K be a field,
V 1, V 2, V 3 vector spaces on K, and f : V 1 → V 2, g : V 2 → V 3 linear applica-
tions; then, the Homology of f, g is the quotient between the kernel of g and the
image of f . This is translated into Coq in the following way.

Variable (K : fieldType) (V1 V2 V3 : vectType K)

(f : linearApp V1 V2) (g : linearApp V2 V3).

Definition Homology := ((lker g) :\: (limg f)).

Nevertheless, we do not usually work with linear applications when trying to
compute homology but with the matrices representing those linear applications.
In particular, as we are working on a field K, given two matrices with coefficients
in this field, let us called them, mxf and mxg of sizes v1 × v2 and v2 × v3
respectively and such that their product is the null matrix, the dimension of the
corresponding homology vector space is given by the formula: v2−rank(mxg)−
rank(mxf). This definition is introduced in Coq as follows.

Definition dim_homology (mxf:’M[K]_(v1,v2)) (mxg:’M[K]_(v2,v3)) :=

v2 - \rank mxg - \rank mxf.

Now, the correctness of dim_homology can be shown by proving that given two
matrices mxf and mxg whose product is the null matrix (mxf *m mxg = 0), then
the result obtained using dim_homology is the dimension of the homology group
associated with the linear applications defined from mxf and mxg ((LinearApp
mxf) and (LinearApp mxg)).

Lemma dimHomologyrankE: mxf *m mxg = 0 ->

\dim Homology (LinearApp mxf) (LinearApp mxg) =

dim_homology mxf mxg.

However the use of SSReflect libraries may trigger heavy computations during
deduction steps, that would not terminate within a reasonable amount of time.

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples
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To handle this issue, some definitions like matrices are locked in a way that do
not allow direct computations.

To overcome this pitfall, we use the matrix representation and the rank algo-
rithm developed in [4] to define ex_homology which takes as argument two such
matrices (represented by means of lists of lists) mxf and mxg which dimensions
are v1×v2 and v2×v3 respectively, and computes the homology.

Definition ex_homology (v1 v2 v3:nat) (mxf mxg : seqMatrix K) :=

v2 - (rank v2 v3 mxg) - (rank v1 v2 mxf).

Finally, we prove the correctness of ex_homology by showing its equivalence to
dim_homology up to a change of representation (this domain transformation is
given by seqmx_of_mx).

Lemma ex_homology_rankE: forall (mxf: ’M[K]_(w1,w2)) (mxg : ’M[K]_

(w2,w3)), ex_homology (seqmx_of_mx mxf) (seqmx_of_mx mxg) =

dim_homology mxf mxg.

Then, we have an executable program to compute homology, for any dimension,
whose correctness has been verified in Coq; therefore, we can claim that its
results will always be correct.

4 Computing Homology with Coq

An example is presented in this section in order to clarify how we can compute
homology groups in Coq. Let us consider the simplicial complex of the left side
of Figure 3. If we impose a lexicographical order on the simplices of the same
dimension of this simplicial complex, its boundary matrix in dimension 1 is the
one presented in the right side of Figure 3; it is worth noting that the rest of
boundary matrices are empty, in particular we do not consider the empty set as
an element of dimension −1.

0

1

2

3

5

4

⎛
⎜⎜⎜⎜⎜⎝

(0, 1) (0, 2) (1, 2) (1, 3) (4, 5)

(0) 1 1 0 0 0
(1) 1 0 1 1 0
(2) 0 1 1 0 0
(3) 0 0 0 1 0
(4) 0 0 0 0 1
(5) 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Fig. 3. Simplicial complex and its boundary matrix

The procedure to compute the homology (note that it only makes sense to
compute homology in dimensions 0 and 1) of the simplicial complex of Figure 3
is as follows. Firstly, we define the boundary matrices.



54 J. Heras et al.

Definition d0_ex1 := [::].

Definition d1_ex1 := [::[::1;1;0;0;0];

[::1;0;1;1;0];

[::0;1;1;0;0];

[::0;0;0;1;0];

[::0;0;0;0;1];

[::0;0;0;0;1]].

Definition d2_ex1 := [::].

Eventually, we can compute the homology using the following instructions.

Eval vm_compute in (ex_homology 0 6 5 d0_ex1 d1_ex1).

Eval vm_compute in (ex_homology 6 5 0 d1_ex1 d2_ex1).

obtaining 2 and 1 respectively. In the same way, we could compute homology
from the boundary matrices associated with the simplicial complex generated
from a digital image. However, if we try to compute the homology from the
images produced by SynapCountJ (see Figure 2), Coq is not able to handle
those images yet, due to the size of data involved.

It is worth noting that Coq is a Proof Assistant and not a Computer Algebra
system. Efficient implementations of mathematical algorithms running inside
Coq is an ongoing effort, as shown by recent works on efficient real numbers [16],
machine integers and arrays [2] or a previous approach to compiled execution of
internal computations [10].

We devise a couple of ways to achieve better efficiency:

– Improve the runtime system using the extraction mechanism which trans-
latesCoq code to a functional programming language likeOCaml or Haskell.
However, this would not allow us to reuse the result of our homological
computations for further proofs. Indeed, output of external programs are
untrusted so they cannot be imported. Instead, we are using a recent inter-
mediate approach consisting in internally compiling Coq terms to OCaml
with performance comparable to extracted code [18].

– Optimize algorithms and representations using sparse matrices, which is well
suited to simplicial complexes obtained from digital images. We have devel-
oped an Haskell implementation of such an algorithm but we still need to
formally verify its correctness.

In the next section we describe another method to overcome the efficiency draw-
back, based on reducing the size of matrices while keeping the same homological
information.

5 Computing Discrete Vector Fields

The method that we are using for the reduction process is based on Discrete
Morse Theory [7]; namely, we work in the algebraic setting of this theory which
was described in [25]. Roughly speaking, the aim of Discrete Morse Theory con-
sists of finding simplicial collapses which transform a simplicial complex K into
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a smaller one but keeping its homological properties. In this context, the instru-
mental tool are admissible discrete vector fields which allows one to reduce the
amount of information removing “useless” information but keeping the homo-
logical properties of the original object.

The use of these techniques from Discrete Morse Theory has been welcomed in
the study of homological properties of digital images, see [3,11,15], for instance.
This is due to the fact that the size of the cellular object associated with an
image can be huge, but the choice of an appropriate vector field can produce a
much smaller object.

So, the question now is given a cellular complex how we can produce a vector
field as large as possible (the larger the vector field, the smaller the reduced
object). Several approaches to solve this problem have been studied as can be
seen in [24,12,23,19], the strategy that we have chosen was explained in [25]. It
is not the aim of this paper to describe that algorithm (from now on, called RS’s
algorithm; RS stands for Romero–Sergeraert); but, we just introduce some ideas.
This algorithm takes as input one of the boundary matrices associated with the
cellular complex and provides an admissible discrete vector field (subsequently,
from the matrix and the vector field a reduced matrix can be obtained).

The algorithm has been implemented in Haskell; and, some remarkable results
have been obtained in the reduction process. As benchmark to test our programs,
we have considered matrices coming from, on the one hand, 500 randomly gener-
ated images; and, on the other hand, biomedical images. In the former case, the
size of the matrices was initially around 100× 300, and after the reduction pro-
cess the average size was 5×50. Using the original matrices Coq takes around 12
seconds to compute their rank; on the contrary, using the reduced matrices Coq
only needs milliseconds. In the latter case, the matrices coming from biomedical
images, the size of matrices is reduced from around 690× 1400 to 97 × 500. In
this case, Coq cannot deal with the original matrices; on the contrary, it is able
to handle matrices as the ones obtained after applying the reduction programs
and compute the results in, approximately, 25 seconds.

As a final remark, let us explain the main reason for using Haskell to imple-
ment the RS algorithm. The use of this language is due to the fact that Haskell
is quite close to Coq; and, therefore, algorithms implemented in Haskell can be
verified using Coq, a question which is, as we have seen, instrumental in our
developments. In particular, the formalization of the correctness of the algorithm
in charge of constructing an admissible discrete vector field given a matrix is on-
going work; and, up to now, we have certified that our programs build a discrete
vector field. The proof of the admissibility property remains as further work.

6 Conclusions and Further Work

In this paper, we have presented how we can use Algebraic Topology techniques
to study biomedical images in a reliable manner. The first step consists in pro-
cessing the biomedical images to obtain an image where homological informa-
tion is as explicit as possible. Subsequently, using programs whose correctness
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has been verified in the Coq/SSReflect proof assistant, homological proper-
ties from the pre-processed image are obtained, which in turn are interpreted as
features of the original image.

This methodology has been applied in this paper to the problem of determin-
ing the number of synapses of a neuron. In this case, the problem is reduced to
measure the number of connected components of a monochromatic image. An
issue which can be solved, even if it is not the straightforward manner, thanks
to the computation of the homology group in dimension 0 of the image.

The use of certified tools able to compute homology groups will be important
in the future; for instance, to recognize the structure of a neuron; a problem
which seems to involve the homology group in dimension 1, see [20]. Other tech-
niques, like the ones of persistent homology, could be applied in stacks of neu-
rons to remove the noise of the images and help to the detection of the dendrites
(the branches of the neuron).

Some formalization aspects also remain as future work. We have already
mentioned the on-going work around proving the correctness of the admissible
discrete vector fields programs. Moreover, certifying the correctness of integer
homology computation is also further work (some results about the formalization
of the Smith Normal Form are already encoded in Coq, see [4]).

As we previously mentioned, we are still working on efficiency issues but
switching to better representations and more efficient algorithms will not require
to redo the proofs related to homology.
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Abstract. In this paper we show a more efficient algorithm than that
in [8] to compute subsets of points non-congruent by isometries. This
algorithm can be used to reconstruct the object from the digital image.
Both algorithms are compared, highlighting the improvements obtained
in terms of CPU time.

Keywords: digital image, grid, hypercube, isometry, n–xel.

1 Introduction

An n–dimensional digital image is a data structure typically representing a grid
made up by a finite set of n–dimensional color hypercubes. The n–dimensional
hypercubes of the grid are called n–xels for digital images of dimension n; par-
ticularly, pixels for n = 2 and voxels for n = 3.

By considering the central point of each n–dimensional hypercube of the grid,
we construct a dual grid made up by n–dimensional hypercubes whose vertices
are the central points of the hypercubes of the original grid.

In this way, the n–xels of an image are identified with vertices of n–dimensional
hypercubes of the dual grid.

In Figure 1 we show more details about this construction for 2–dimensional
binary digital images.

Fig. 1. From left to right: a binary digital image in a grid of size 10× 9; central points
of the image pixels; dual grid whose vertices are the central points of the squares of
the original grid

In this sense, to represent images by using computational techniques it is
necessary to fix a grid and the relations between the points.

M. Ferri et al. (Eds.): CTIC 2012, LNCS 7309, pp. 58–67, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Binary images are derived from a subdivision of the n–dimensional space
into unit hypercubes of dimension n which intersect two by two in a hypercube
of dimension n − 1. This subdivided space is equivalent to use as grid the n–
dimensional discrete space Zn. The elements (i1, ..., in) ∈ Zn are the lattice
points. Once the grid has been established, it is necessary to fix the neighborhood
relations between the lattice points.

For a given lattice point, a neighborhood is defined typically by using a distance
metric (see [3]). More concretely, two lattice points in Zn are neighboring points
if they are less than epsilon distance away. Depending on the values of epsilon,
different types of neighborhoods can be defined.

For instance, Kong and Roscoe [7] defined three standard types of neighbor-
hood in the three-dimensional space Z3: the 6–neighborhood, the 18–neighborhood
and the 26–neighborhood. These definitions are essentially equivalent to the
corresponding definitions in Rosenfeld [12]. In Figure 2 these three types of
neighborhood in Z3 are shown.

Fig. 2. A point P ∈ Z3 with each one of its: (a) six neighboring points satisfies
d1(P,Q) = 1; (b) eighteen neighboring points satisfies d1(P,Q) = 1 or d1(P,Q) =
2; and (c) twenty-six neighboring points satisfies d1(P,Q) = 1, d1(P,Q) = 2 or
d1(P,Q) = 3

For instance, a point P ∈ Z4 with each one of its: (a) eight neighboring points
satisfies d1(P,Q) = 1; (b) thirty-two neighboring points satisfies d1(P,Q) = 1 or
d1(P,Q) = 2; (c) sixty-four neighboring points satisfies d1(P,Q) = 1, d1(P,Q) =
2 or d1(P,Q) = 3; and (d) eighty neighboring points satisfies d1(P,Q) = 1,
d1(P,Q) = 2, d1(P,Q) = 3 or d1(P,Q) = 4. See [5] for more details.

2 Preliminaries

In this section, we recall some basic notions about algebraic-topology, geometry,
graph theory and digital images in order to do more understandable the paper.

Given a set S, an order relation on S is a relation � such that, for every
a, b, c ∈ S is held: (1) either a � b, or b � a; (2) if a � b and b � c, then a � c;
(3) if a � b and b � a, then a = b. Moreover, S is called ordered set. The reverse
order relation � is the relation given by a � b if b � a. Given two ordered sets
S1 and S2, the lexicographic order on the Cartesian product S1 × S2 is defined
as (a, b) � (a′, b′) if and only if a ≺ a′, or a = a′ and b � b′.
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A distance is a function d : Rn × Rn → R satisfying the following properties:
(a) d(x, y) ≥ 0; (b) d(x, y) = 0 if and only if x = y; (c) d(x, y) = d(y, x) and (d)
d(x, z) ≤ d(x, y) + d(y, z).

Some well-known distances are: (1) d1(x, y) =
∑n

i=1 |xi − yi|; (2) d2(x, y) =√∑n
i=1(xi − yi)2; and d∞(x, y) = maxn

i=1{|xi − yi|}.
An n–polytope is the closure of an n–cell with flat faces. Particularly, a polygon

is a 2–polytope and a polyhedron is a 3–polytope.
An n–dimensional hypercube (or hypercube of dimension n) is an n–polytope of

2n vertices which satisfy certain distance conditions. Particularly, 2–dimensional
and 3–dimensional hypercubes are called squares and cubes, respectively.

A map f : X → Y is called isometry if for any a, b ∈ X is satisfied d(f(a),
f(b)) = d(a, b). Two objects O,O′ are called isometric (or congruent by isome-
tries) if there exists a bijective isometry from O to O′.

The group of isometries of a cube are the rigid motions which leave the cube
invariant. This group has 48 elements.

The group of isometries of a 4–dimensional hypercube are the rigid motions
which leave the hypercube invariant. This group has 384 elements (see [10]).

A graph G = (V (G), E(G)) consists of two finite sets: V (G), the vertex set of
the graph, which is a nonempty set of elements called vertices. E(G), the edge
set of the graph, which is a possibly empty set of elements called edges, such that
every edge e ∈ E(G) is assigned an unordered pair of vertices {u, v}, (u 
= v)
called the end-vertices of e, and e is said to join u and v. If there exists more
than one edge between each pair of vertices, the graph is called multi-graph.

A subgraph of a graph G is a graph having all its vertices and edges in G.
Two graphs G and G′ are called isomorphic graphs if there exists an isomor-

phism (bijective morphism) between them.
Let G be a multi-graph of vertices v1, v2, . . . , vn. The adjacency matrix of G

is a n× n matrix M(G) = (mij) where the element mij is given by the number
of edges which join the vertex vi to the vertex vj .

A n–dimensional digital image is a representation of an image of dimension
n as a finite set of digital values, called picture elements or n–xels. Particularly,
these elements are called pixels and voxels for digital images of dimension 2 and
3, respectively. Moreover, if the set of digital values is {0, 1} then the image is
called binary digital image.

3 Computing Subsets of Points in Zn

The first stage of this section consists in constructing subsets of points starting
from the vertices of an n–dimensional unit hypercube. Then, the congruent ones
by isometries of the n–dimensional space are ignored.

We assume that all the points in Zn are assigned binary values, one or
zero. The points whose value is 1 (resp. 0) are called 1–points (resp. 0–points).
Given a finite subset of points, V , constructed starting from the vertices of an
n–dimensional unit hypercube, we also assume that the points in V have a value
of 1 while the points in the complement of V have a value of 0.
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These subsets of points are determined as follows: the n–dimensional unit
hypercube has 2n vertices and each one of them can be a 1–point or a 0–point,
so there exist 22

n

subsets of points which can be constructed starting from
the vertices of the n–dimensional unit hypercube. More concretely, there exist
C(2n, c) subsets with 0 ≤ c ≤ 2n 1–points. By using properties of combinatorial
numbers, C(2n, 2n − c) = C(2n, c) is also the number of subsets with 2n − c
1–points. In this way, the number of subsets with c 1–points is the same as the
number of subsets with 2n − c 1–points.

Below, we show the extension of the method shown in [8] to ignore congru-
ent subsets that differ by isometries of the n–dimensional space. This method
consisted in associating each subset with a multi-graph. The vertices of the multi-
graph were the points of the subset and the number of edges between each pair
of vertices u, v was determined by the square of Euclidean distance between u, v.

By considering the previous association between multi-graphs and subsets of
points of the n–dimensional unit hypercube, it was natural to identify subsets
with their respective associated multi-graphs.

A similar proof of Theorem 1 in [8] shows that two isomorphic subsets with
at least 2n−1 points are isometric. The converse implication is obvious, taking
into account that isometry is a stronger concept than isomorphism.

By considering previous results, Algorithm 1 in [8] (whose pseudocode is
extended in Algorithm 3.1 for any dimension) was implemented.

Algorithm 3.1

Input: set of vertices of the n–dimensional unit hypercube with an order relation ≺.
// V : empty list to save the vertices of the non-isomorphic multi-graphs.
Output: non-congruent subsets by isometries of the n–dimensional space.
begin

for c = 2n−1, ..., 2n do
Construct an ordered set (Vc,≺) containing to the C(2n, c) subsets with c 1–points

for (Vc)i ⊂ Vc do
Determine the multi-graph associated with (Vc)i, (Gc)i, whose adjacency ma-
trix is M(Gc)i = ((m(Gc)i)pq) where (m(Gc)i)pq = apq, being apq the square
Euclidean distance between vp, vq
while (Vc)i1 ⊂ Vc & (Vc)i2 ⊂ Vc & (Vc)i1 ≺ (Vc)i2 do

if (Gc)i1 and (Gc)i2 are isomorphic then
(Vc)i1 and (Vc)i2 are congruent by isometries
Vc = Vc − {(Vc)i2}

end if
end while

end for
V = V

⋃
Vc

end for
return V

end
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By using as input the set of vertices of the n–dimensional unit hypercube
arranged on an order relation≺, for 2n−1 ≤ c ≤ 2n, this algorithm: (a) constructs
an ordered set, (Vc,≺), containing to the C(2n, c) subsets with c 1–points; (b)
associates each subset (Vc)i ⊂ Vc with a multi-graph (Gc)i. The vertices of (Gc)i
are the points of (Vc)i and the element apq of the adjacency matrix of (Gc)i
corresponds with the square of Euclidean distance between vp, vq; and (c) checks
if there exists an isomorphism between each pair of multi-graphs (Gc)i1 , (Gc)i2 ,
associated with two subsets (Vc)i1 , (Vc)i2 ⊂ Vc which satisfy (Vc)i1 ≺ (Vc)i2 .

Algorithm 3.1 allows us to ignore the subsets with 2n−1 ≤ c ≤ 2n points
obtained by isometries of the n–dimensional space. The subsets with 0 ≤ c <
2n−1 points are determined by complementation.

Remark 1. Algorithm 3.1 only constructs subsets of vertices of the n–dimensional
unit hypercube with at least 2n−1 points.

Remark 2. Given an order relation, ≺, on the vertices of the n–dimensional unit
hypercube, Algorithm 3.1 determines the smallest non-congruent subsets with
respect to ≺. Moreover, by changing the order relation, subsets congruent with
these ones are obtained.

By using Algorithm 3.1, the following results can be proved.

Theorem 1. In Z3, there exist (up to isometry): (a) six subsets with four ver-
tices; (b) three subsets with five vertices; (c) three subsets with six vertices; (d)
one subset with seven vertices; and (e) one subset with eight vertices.

Taking into account the complementation, we can formulate Corollary 1.

Corollary 1. In Z3, there exist (up to isometry): (b’) three subsets with three
vertices; (c’) three subsets with two vertices; (d’) one subset with one vertex; and
(e’) one subset with zero vertices.

Remark 3. Let us observe that the twenty-two subsets obtained by using Algo-
rithm 3.1 for n = 3 coincide (up to rotations of the 3–dimensional space) with
the twenty-two types of unit cell presented by Kong and Roscoe in Figure 1
in [6].

Theorem 2. In Z4, there exist (up to isometry): (a) seventy-four subsets with
eight vertices; (b) fifty-six subsets with nine vertices; (c) fifty subsets with ten
vertices; (d) twenty-seven subsets with eleven vertices; (e) nineteen subsets with
twelve vertices; (f) six subsets with thirteen vertices; (g) four subsets with four-
teen vertices; (h) one subset with fifteen vertices; and (i) one subset with sixteen
vertices.

Taking into account the complementation, we can formulate Corollary 2.
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Corollary 2. In Z4, there exist (up to isometry): (b’) fifty-six subsets with seven
vertices; (c’) fifty subsets with six vertices; (d’) twenty-seven subsets with five ver-
tices; (e’) nineteen subsets with four vertices; (f ’) six subsets with three vertices;
(g’) four subsets with two vertices; (h’) one subset with one vertex; and (i’) one
subset with zero vertices.

Remark 4. The results shown in Theorem 2 and Corollary 2 confirm Pólya’s
count in 1940 (see Table II in [9]), whose main difficulty to count the different
2–colorings of the 4–dimensional hypercube was the derivation of the appropriate
cycle indices (see [2] for more details).

Algorithm 3.1 is based on graph isomorphisms, which is a problem in NP (see
[1,4] for more details). For this reason, a more efficient algorithm to ignore the
subsets of points that differ by isometries of the n–dimensional space has been
implemented. This new algorithm computes the group of isometries of the n–
dimensional unit hypercube in Rn and uses it to ignore the subsets of points of it
that differ by isometries of the n–dimensional space. Proposition 7 in [13] proves
that an algorithm of this type returns the subsets of points non-congruent that
differ by isometries of the n–dimensional space. A scheme of this algorithm is
shown in Figure 3.

Fig. 3. Scheme of a more efficient algorithm than Algorithm 3.1 to ignore the sub-
sets of vertices of the n–dimensional unit hypercube that differ by isometries of the
n–dimensional space

Algorithm 3.2 ignores the subsets of points that differ by isometries from the
group iso ncube of isometries of the n–dimensional unit hypercube.
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Algorithm 3.2

Input: (V,≺) set of vertices of the n–dimensional unit hypercube arranged on the
order relation ≺.

iso ncube: group of isometries of the n–dimensional unit hypercube.
// NIS: empty list to save the non-isometric subsets with 0 ≤ c ≤ 2n points.
Output: non-isometric with 0 ≤ c ≤ 2n points.
begin

for c = 0, ..., 2n do
Construct an ordered set (Vc,≺) containing to the C(2n, c) subsets with c points
for (Vc)i ⊂ Vc do

iso vci = ∅
{Empty list to save the subsets isometric to (Vc)i.}
for σ ∈ iso ncube do

iso vci = iso vci
⋃

σ((Vc)i)
end for
for all (Vc)j ⊂ Vc satisfying (Vc)j ∈ iso vci do

(Vc)i and (Vc)j are isometric
Vc = Vc − {(Vc)j}

end for
end for
NIS = NIS

⋃
Vc

end for
return NIS

end

Firstly, Algorithm 3.2 constructs an ordered set (Vc,≺) containing to the
C(2n, c) subsets with 0 ≤ c ≤ 2n vertices of the n–dimensional unit hypercube.
Next, for (Vc)i ⊂ Vc, it computes all the subsets isometric to (Vc)i by applying
the group of isometries of the n–dimensional unit hypercube. If there exists a
subset (Vc)j ⊂ Vc which coincides with any of the subsets isometric to (Vc)i,
then the algorithm removes (Vc)j from (Vc). In this way, Algorithm 3.2 allows
us to obtain a representative subset of each isometry class.

Remark 5. This alternative algorithm not only improves the computational time
of Algorithm 3.1 (see Table 1 for results in n = 3 and Table 2 for n = 4) but it can
be used for constructing non-isometric subsets of vertices of the n–dimensional
unit hypercube, regardless of its cardinality.

Remark 6. In the same way as Algorithm 3.1, the new algorithm determines the
smallest non-congruent subsets with respect to the order relation given on the
set of vertices of the n–dimensional unit hypercube; so that, by changing the
order relation, subsets congruent with these ones are obtained.

Remark 7. Theorems 1 and 2, and Corollaries 1 and 2 are held by using the
algorithm whose scheme is shown in Figure 3.
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Table 1. Algorithm 3.1 constructs and checks C(8, 4) = 70, C(8, 5) = 56, C(8, 6) =
28 and C(8, 7) = 8 multi-graphs in 3.12, 3.83, 2.8 and 1.58 seconds of CPU time;
respectively. These results are improved to 0.12, (practically) 0, (practically) 0 and
(practically) 0 seconds of CPU time; respectively.

Table 2. Algorithm 3.1 constructs and checks C(16, 8) = 12870, C(16, 9) = 11440,
C(16, 10) = 8008, C(16, 11) = 4368, C(16, 12) = 1820, C(16, 13) = 560, C(16, 14) =
120 and C(16, 15) = 16 multi-graphs in 11092.3, 9482.27, 11652.5, 8382.22, 2384.01,
734.34, 175.04 and 25.786 seconds of CPU time; respectively. These results are improved
to 18.8, 18.56, 14.63, 10.23, 5.43, 2.76, 1.55 and 1.73 seconds of CPU time; respectively.

4 Conclusion and Examples

In this paper, we have shown an algorithm more efficient than the extension
of that in [8] to compute subsets of points non-congruent by isometries of the
n–dimensional space. By using this algorithm for n = 3 and n = 4, 22 and 402
non-isometric subsets (see Figures 4 and 5 for some examples of these subsets),
respectively, have been computed by using a low CPU time. This algorithm
allows us to reconstruct objects from the n–xels of n–dimensional binary digital
images (see Figure 6 for 2 and 3–dimensional examples).

Fig. 4. Non-isometric subsets with five points of Z3 computed by using Algorithm 3.1
and its alternative using 3.83 and 0 seconds of CPU time, respectively
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Fig. 5. Non-isometric subsets with thirteen points of Z4 computed by using Algo-
rithm 3.1 and its alternative using 734.34 and 2.76 seconds of CPU time, respectively

Fig. 6. Reconstruction of an object from (a) the 172 pixels (points) of the digital
image localized on a grid of size 20×20, (b) the 495 voxels (points) of the digital image
localized on a grid of size 8× 8× 8

Remark 8. Let us note that the pictures in Figure 6 represent a 2–dimensional
(resp. 3–dimensional) object by extracting the boundary of the cell complex
whose cells are constructed from the convex hull of the black vertices of each
square (resp. cube). Moreover, this technique to represent objects from the
boundary of cell complexes can be extended to higher dimensions.
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Abstract. In this paper we present our ongoing research on applying
computational topology to analysis of structure of similarities within a
collection of text documents. Our work is on the fringe between text min-
ing and computational topology, and we describe techniques from each
of these disciplines. We transform text documents to the so-called vector
space model, which is often used in text mining. This representation is
suitable for topological computations. We compute homology, using dis-
crete Morse theory, and persistent homology of the Flag complex built
from the point-cloud representing the input data. Since the space is high-
dimensional, many difficulties appear. We describe how we tackle these
problems and point out what challenges are still to be solved.

Keywords: Computational topology, Computational homology, Flag
Complex, Discrete Morse theory, Text mining, Vector space model.

1 Introduction and Existing Work

With the growth of the Internet, efficient and accurate information-retrieval
systems are of great importance. Modern search-engines are able to quickly query
amounts of data counted in exabytes. Text mining aims at performing more in-
depth analysis, revealing some additional knowledge from the data.

Text mining methods often use graph-theoretical approaches [11]. Analysing
the connected components of the graph of similarities between pairs of docu-
ments is a simple example. From a topological perspective, such analysis operates
on 1-dimensional complexes (only pairs of documents are considered) and gives
0-dimensional topological information.

In general, higher dimensional relationships, i.e. relationships between larger
subsets of data, are sometimes used in data-mining. For example, the number of
triangles (3-cliques) is an important descriptor of the connectivity of a social or
collaborative network [6]. Rather than finding just the number of such higher-
dimensional elements, we would like to compute their topological structure.

We believe that mining a higher dimensional topological structure within a
set of text documents can give an important insight into the data. In general,
the current state-of-the-art topological methods are incapable of handling large
datasets in high dimensions, but efficient methods are being developed [15].
Still, we believe that experimenting with smaller, properly sampled data can
give interesting insights. For example, [3] shows that data coming from natural
images form a topological Klein bottle.

M. Ferri et al. (Eds.): CTIC 2012, LNCS 7309, pp. 68–78, 2012.
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In the ongoing research, done in cooperation with Google, we use the tools of
computational topology to robustly analyse and compare text data. The goal is
to find meaningful topological patterns. This information can help understand
the global structure of the data. In a longer perspective, this knowledge can
be used in conjunction with the standard methods, improving the quality of
information-retrieval systems. This is a novel direction, as is the application
of computational topology in higher dimensions. In this paper we show how we
adapt existing topological methods and how we tackle computational difficulties,
exploiting certain properties of the data. The main question we seek to answer is
whether the current computational topology algorithms are capable of efficiently
handling reasonable amounts of text data.

For an introduction to computational topology see [5]. A paper by Carlson [3]
is an important work, which shows that analysis of higher-dimensional data
can be meaningful. A number of papers dealing with lower-dimensional spaces
exist, but these techniques are hard or impossible to generalize to higher dimen-
sions [12]. A recent paper by Zomorodian [15] deals with building Rips complexes
of high dimensional data, which is also part of our computations. A PhD thesis
of Lewiner [9] describes the usage of discrete Morse theory to compute homology
groups.

2 Background

2.1 Vector Space Model

We start with describing a way to map textual data into a representation which
allows us to use topological tools. Vector space model is a standard tool in infor-
mation retrieval and data mining [13]. A corpus, i.e. collection of text documents,
is mapped into points (or vectors) in Rn. These vectors are the so-called term-
vectors and each of them represents a single document, as described below. Each
dimension in this space corresponds to a single word (or term).

With each document in a corpus, we associate a term-vector [13], contain-
ing words characteristic of this document. In practice from 10 to 50 words
are extracted. While term-vectors do not fully describe the documents, they
roughly encapsulate the topic. Each term t contained in some document d in
corpus D is weighted according to the standard tf -idf [13] technique: w(d, t) =
tf(d, t) · idf(t), where tf(d, t) is the number of occurrences of word t in docu-

ment d, and idf(t) = log |D|
|{d:t∈d}| . Thus, more frequent words in a document are

weighted higher but this is offset by the global popularity of a given term. By P
we denote the array of term-vectors representing all the documents of the corpus
D. Each term-vector is associated with a unique integer, which is the index of
that term-vector in P .

In terms of implementation, each term in the corpus can also be assigned a
unique number, which represents the term. This is more efficient than storing
multiple copies of the string representations of the terms. Term-vector d ∈ P is
compactly stored as a sparse vector: we explicitly represent only the coordinates
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Fig. 1. Example of the vector space model. A two-dimensional space is shown, which
means that only two different words are extracted from all documents. The similarity
between vectors B,C equals cos(ϕ) = 0.46 · 0.76 + 0.88 · 0.64 = 0.91.

with non-zero weights. The actual data-structure representing term-vector d is
simply an array of pairs (index of t, w(d, t)). See Figure 1 for a simple example.
Note that, for brevity, we often identify a document with its term-vector.

Rather than using the Euclidean metric on this space, we use the so-called
cosine similarity measure. This is a natural choice, as this measure is a standard
text mining tool used to compare documents. The similarity between two docu-
ments (represented by term-vectors a, b), is given by sim(a, b) := cos(∠(a, b)) =
〈a,b〉

||a||||b|| . This formula requires computing square roots, which is costly. We will

store normalized (according to Euclidean norm) term-vectors and equivalently
compute similarity as:

sim(a, b) = 〈a, b〉
Cosine similarity quantifies the closeness of topics of two documents [13]. The
values range from 0 (completely unrelated topics) to 1 (identical topic). Note
that the constructed space (equipped with the cosine similarity measure) is not
a metric space. Later we will use a weight function d(a, b) := 1−sim(a, b), which
is also not a metric, as the triangle inequality is not satisfied.

We have to distinguish between extrinsic (embedding) and intrinsic dimension
of the space. In this case, the extrinsic dimension, R, is large, equal to the
number of unique words in the dataset, which can reach tens of thousands to
several millions in practical applications. It is typically assumed that the intrinsic
dimension is significantly lower, which prevents the curse of dimensionality from
making the computations infeasible. Another important property of data coming
from real-world text corpora is that the frequency of word occurrences follow the
Zipf distribution [14]. It assumes that the frequency of an r-th most common
word is expressed as: P (r) = R

rln(cR) , where c is some constant which depends on

the corpus. This distribution is far from uniform – intuitively, the most common
words apear much more often than the others.

Also, note that due to very high extrinsic dimensionality, the space is very
sparse (empty) in practice. Another observation is that the number of keywords
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extracted from each document is relatively small. In practice, this number is cho-
sen between 10-50. So, for each term-vector, the number of nonzero coordinates
is small, compared to the number of zero coordinates. Therefore, the similarity
between two randomly chosen term-vectors should be zero most of the time,
since the support of these vectors is disjoint. These facts suggest that this space
behaves differently than the Euclidean space, where the distance between any
two points is finite (intuitively, zero similarity corresponds to infinite distance).
In practice, this effect is offset by the Zipf distribution – more popular words
increase the number of pairs of documents with nonzero similarity.

The described properties of the data are important, as they reduce the number
of large cliques appearing during computations. This makes topological compu-
tations based on flag complexes, as described in the following section, more
feasible.

2.2 Computational Topology

First, we would like to outline the computations we perform. We are interested in
computing homology and persistent homology of the space describing similarities
between the documents in a corpus. Representing the textual data in the vector
space model yields a point-cloud, allowing us to use topological tools. Starting
from the point-cloud we will construct a simplicial complex called a flag complex,
which encodes higher dimensional topological information, and can be viewed
as a higher-dimensional analog of a graph. Since the complex can be large,
we simplify it, using discrete Morse theory. This step retains the topological
information. Finally, we compute homology on the reduced complex.

A finite collection of sets, S, is an abstract simplicial complex if for every t ∈ S
and for every s ⊂ t we have s ∈ S. Every element t ∈ S is a simplex and its
dimension is defined as card(t)− 1. By Sk we denote the k-skeleton of complex
S, i.e. all simplices in S with dimension ≤ k. If p ⊂ q and card(q)− card(p) = 1,
we say that p is a face of q and q is a co-face of p. (Co-)boundary is the set of
all (co-)faces of a simplex. A simplex of dimension 0,1,2 is respectively: a vertex,
an edge and a triangle.

An ε-graph imposed by the similarity measure sim on the collection of term-
vectors P is defined asG = (P,E), where E = {(a, b) ∈ P×P | 1−sim(a, b) ≤ ε}.
In other words, edges connect pairs of documents with similarity above certain
threshold. In general, for graph G = (V,E), a subset V ′ ⊂ V is a clique if
for every v1, v2 ∈ V ′, (v1, v2) ∈ E. Flag complex of graph G is defined as:
S(G) := {V ′ ⊂ V | V ′ is a clique in G}. The flag complex of a graph G is the
maximal simplicial complex having G as its 1-skeleton.

3 Construction of Flag Complex

The flag complex, as well as the so-called Vietoris-Rips complex (see [5]), is a
standard tool used to perform topological data analysis [3]. In this section we
describe an efficient bottom-up technique to obtain flag complexes. The pre-
sented technique avoids the usage of associative data structures, which incur
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a significant performance penalty. We designed the code to use only vectors
(dynamically growing arrays as in the C++ Standard Library) which are fast
due to good caching properties.

The complex building phase is similar to the construction of Vietoris-Rips
complex presented in [15]. Since in Section 4 we are focused on computing Morse
complexes, we require fast access to the (co-)boundary of each simplex, which
is not included in the cited paper. We use the name flag complex instead of
Vietoris-Rips complex, as the latter assumes a metric function.

The input to the algorithms presented in this Section is the array P to-
gether with the similarity function sim. Let us first describe the data struc-
ture we use to store simplices. Each simplex s has a vector vertices storing the
0-dimensional simplices (which correspond to indices of term-vectors) that
belong to s. Moreover, it has a vector boundary, containing the faces of s.

During the construction we also use vectors coboundary and neigh. Vector
s.neigh contains the vertices adjacent to all vertices in s, with the additional
property that for each i ∈ s.neigh i > max{s.vertices}. We assume the the
entire simplex is created by its maximum vertex. Importantly, we exploit this
property in the algorithms to ensure that each simplex is created only once
(when the maximal vertex is processed). SimplicialComplex stores a vector of
pointers to simplices separately for each dimension. Algorithm 1 shows how we
build the 1-skeleton of the constructed flag complex.

Algorithm 1. CreateOneSkeleton

Input: array P of term-vector, double ε
1: verts = array of simplex*;
2: for i = 0 to P .size do
3: verts[i] = new simplex();
4: verts[i].vertices = i;
5: for i = 0 to P .size do
6: verts[i].neigh = ComputeNeigh(i , P , ε);
7: SimplicialComplex[0] = verts;
8: edges = array of simplex*;
9: for for i = 0 to vert.size do
10: for j = 0 to vert[i].neigh.size do
11: simplex* edge = new simplex;
12: edge.boundary = (vert[i], vert[i].neigh[j]);
13: vert[i].coBoundary.add(edge), vert[i].neigh[j].coBoundary.add(edge);
14: edge.vertices = (vert[i], vert[i].neigh[j]);
15: edge.neigh = vert[i].neigh ∩ vert[i].neigh[j].neigh;
16: edges.add(edge);
17: SimplicialComplex[1] = edges;

ComputeNeigh algorithm computes the ε-neighborhood of a given vertex with
a constraint that it returns only vertices with indices higher than the index of
the considered vertex. For the time being, we assume that it just iterates through
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all the vertices, computes the similarity and rejects the vertices corresponding
to documents with similarity below the threshold. This makes the complexity of
the entire Algorithm 1 quadratic. Since, in practice, the output graph is sparse,
the complexity can potentially be reduced. We are investigating methods of
computing ε-graphs, such as cover trees [2], which are more suitable for this
type of data. Some efficient techniques for metric spaces are reviewed in [15].

Once the 1-skeleton of the complex is created, we proceed with the creation
of higher dimensional simplexes, as described in Algorithm 2. In terms of com-
putational complexity, the entire constructed flag complex can be exponential
in the number of vertices of the input. This is related to the fact, that the total
number of cliques is pessimistically exponential. In practice, we are interested
in computing the complex only up to a certain, small dimension, which yields
polynomial worst-case complexity. The actual performance is heavily dependent
on the data.

Algorithm 2. CreateHigherDimensionalSimplices

Input: array initial of simplex*, int dim
1: new elements = array of simplex*;
2: for i = 0 to initial.size do
3: for j = 0 to initial[i].neigh.size do
4: simplex* new simplex = new simplex();
5: new simplex.neigh = initial[i].neigh ∩ initial[i].neigh[j].neigh;
6: new simplex.vertices = initial[i].vertices ∪ initial[i].neigh[j]
7: initial[i].coboundary.add(new simplex);
8: new simplex.boundary.add(initial[i]);
9: for each bd ∈ initial[i].boundary do
10: for each cbd ∈ bd.coboundary do
11: if cbd 
= initial[i] and initial[i].neigh[j] ∈ cbd.vertices then
12: cbd.coboundary.add(new simplex);
13: new simplex.boundary.add(cbd);
14: new elements.add(new simplex);
15: SimplicialComplex[dim] = new elements;

4 Morse-Flag Complexes

In this section we show how to use discrete Morse theory [7] to compress the Flag
complex during its construction. In particular we introduce a novel algorithm
which iterates Morse complex computations (see Algorithm 3), yielding the non-
persistent Z2 homology of the input complex (see Theorem 1). Exploiting this
property, we do not have to generate boundary matrices required for algebraic
computations, which tend to be costly in terms memory and time. To the best
of our knowledge this is the first algorithm to compute homology in general
dimension, which does not rely on matrix reduction. The obvious limitation is
the fact that is requires field coefficients.
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To algorithm proceeds as follows: it computes a Morse matching, then com-
putes the boundaries between the critical (unpaired) cells, which form a Morse
complex. Now we repeat the process as long as there exist some nonzero
boundaries, which allow to perform the Morse matching.

Note that using Z2, rather than Z, coefficients simplifies the computations,
but prevents us from capturing the so-called torsion (see [5]) in homology groups.
In terms of implementation, during the construction in dimension n we need to
store only the n− 1 and n− 2 dimensional elements, which enables us to reduce
the memory usage.

Theorem 1. Let S be the input complex. We build a Morse complex of S and
iterate Morse construction, as long as some Morse pairings exist. Let |Sn| de-
note the number of n-cells in the final Morse complex. Then dim Hn(S,Z2) =
βn(S) = |Sn|.

Proof. Since, in general, the Morse complex obtained in the described construc-
tion is not a simplicial complex, we use a more general algebraic Morse theory
(see Section 11.3, [8]). Compared to the setting of Forman [7], the important
difference is that during the matching between cells a and b, where a is a face of
b, we want the incidence coefficient (κ(a, b), see [8]) to be invertible. However,
in case of field coefficients, for a being a face of b we have κ(a, b) 
= 0, so it is
invertible in the field.

We now show that iterative construction of Morse complexes terminates with
complex whose all cells have empty boundaries (and consequently coboundaries).
Let us assume the contrary, namely that the construction terminated, but some
cell a has element b in its boundary. But then the Morse pairing between a and
b could have been made, which gives a contradiction.

Let us now assume that we obtained a Morse complex with each cell having
empty boundary and coboundary. From algebraic Morse theory we know that its
homology is isomorphic to the homology of the initial complex. Homology is de-
fined as the quotient Hn := ker∂n/im∂n+1. Since all the boundary maps ∂n are
zero, the image is empty and the kernel group is generated by all the cells. As a
result, every cell generates a homology class and consequently βn(S) = |Sn|. ��

It might seem that this algorithm contradicts some known hardness results
related to constructing optimal gradient vector fields (Morse matchings) [10].
Indeed constructing such a matching on the input complex would imply that
homology can be read from the related Morse complex. But we only define the
optimal matching on the penultimate complex, and this cannot be transferred
back to the original complex.

We will not discuss the complexity of this algorithm. Let us just state that
using efficient algorithms to compute Morse complexes from [9,16] we get a
bound of O(n3), where n is the size of the input complex. Experiments show
that in practice the runtime is better.

In Algorithm 3 we describe the compression of the initial complex to a Morse
complex. The procedure doMorsePairings(C, d) performs Morse pairings in a
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complex C under a constraint that the dimension of every element in a pair-
ing is ≤ d. The procedure computeMorseComplex(C, V ) computes the bound-
ary coefficients between critical cells (see [7,8] for the theory and also [9] for
algorithmic details) and removes from C all the non-critical elements
(i.e. elements from V ). The procedure stops execution when there are no more
pairings to be done in the complex. We want to point out that only the d − 2-
dimensional skeleton of the constructed complex is modified, because we need
the simplices in dimension d − 1 and d in order to build the higher dimen-
sional skeleton. This algorithm should be called for each step of construction in
Algorithm 2.

Algorithm 3. IteratedComputationOfMorseComplex

Input: C - initial complex
Output: C - reduced Morse complex
1: dim = dimension of C;
2: while true do
3: n = size(C);
4: List of Morse pairings V = doMorsePairings(C, dim− 2);
5: computeMorseComplex(C, V);
6: if size(C) == n then
7: return C;

5 Experiments

We have developed and tested a C++ implementation which includes the algo-
rithms outlined above. To compute homology and persistent homology, we use
the standardmatrix reduction method [5], with the twist by Chen and Kerber [4].
For experiments we sample the corpus of the English Wikipedia [17], processed
using Python library gensim [18].

There are two main parameters of our software. Parameter dim controls the
maximum dimension of the constructed complex. As a result, homology is com-
puted up to dimension dim− 1. The second parameter is ε ∈ [0, 1], which means
that only edges (a, b) with sim(a, b) ≥ 1− ε are included in the skeleton. These
parameters reduce the amounts of computations.

While in the worst case computing persistent homology takes cubic time,
the reduction algorithm is typically assumed to take linear time in practical
situations [4]. Judging from our experiments, the behavior is definitely super-
linear, probably roughly quadratic (in the size of the complex) for dimensions
≥ 3 (see Figure 2:left). For dimension < 2 the time required to build the complex
dominated over the persistence computations. Therefore, for higher dimensions
the reduction algorithm is clearly the computational bottleneck. Additionally
the number of cells grows super-linearly in the input size, but it is strongly
dependent on the chosen ε.

The observed quadratic behavior is important in the context of finding effi-
cient methods of computing persistent homology. Recent research suggests that
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Fig. 2. Left: Runtime (in seconds) of the reduction algorithm for dimension 4. The
behaviour appears to be quadratic, which is emphasised by fitting a degree two polyno-
mial. Right: Persistence diagram for a complex containing 0.8M cells. We can assume
1 for infinity, since we know that at this point the skeleton would become a complete
graph with all the cliques present. The curve in the lower part of the diagram repre-
sents a normalized cumulative sum of persistence values. It helps visualize the region
of values for which features of relatively large persistence appear.

simplifying the input complex using discrete Morse theory (in a way which re-
tains persistence) can increase efficiency. While in practice the significant ad-
vantage is in terms of memory usage [16], recent experiments show that such
a simplification can minimize the problem related to the slow matrix reduction
computation.

The observed quadratic behaviour is a good motivation for further develop-
ment of algorithms based on discrete Morse theory. In case of textual data, such
methods could help increase both the memory and time efficiency of persistence
computations. Unfortunately, currently published methods, giving optimality in
terms of the number of critical cells extracted, are limited to dimension ≤ 3.

Our attempt to compute standard homology using discrete Morse theory was
not very effective as the reduction factor was only about 10 − 20%. This is
probably related to the fact that we have many cycles in the highest dimension.
We plan to investigate this issue further.

As shown in Figure 2:right, the 1-dimensional topology is quite uninteresting
until the filtration value around 0.8. It means that only after introducing edges
with similarity ≤ 0.2, do many features of larger persistence start to appear.
On the other hand, we measured that the highest-dimensional cells are the most
abundant in the complex. It appears that cells rarely cluster to create homo-
logical features of non-zero persistence. Experiments in higher dimensions (but
for much smaller datasets) back up this statement. Note that in our setting a
boundary of a single simplex either remains a cycle ’forever’ (which actually
means it is killed at value 1, so persistence equals 1−birth) or is filled instantly
(zero persistence).

These observations suggest that features of non-zero persistence capture, let
us call it, semi-similar sets of documents. By that we mean sets of documents
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which are similar enough to create a, say, p-dimensional cycle, but for a given
threshold, they cannot fill this cycle. But, for a higher threshold, there can
exist additional cells (related to additional documents) which do fill the cycle.
Therefore, persistence can be viewed as the measure of discrepancy between the
inter-similarity of a set of documents, and its certain superset.

Analysis of the 1-dimensional persistence suggests two explanations of the low
number of features of non-zero persistence. 1) The similarities are very strong,
many large cliques appear and most lower-dimensional features have zero per-
sistence. 2) The similarities are strong only locally - almost all appearing cycles
are boundaries of a single simplex, so their persistence is 0 (if they are killed).
To verify this hypothesis experiments in higher (> 4) dimensions should be run.

6 Summary

The main purpose of this paper is to challenge the current computational topol-
ogy tools with large text datasets represented within the vector-space model.
The experimental results show that these methods lack efficiency. Specifically,
the algorithm for persistent homology exhibits quadratic behaviour in the size of
the constructed complex, which prevents our approach from scaling for realistic
amounts of data. Interestingly, to the best of our knowledge, this is the first
dataset exhibiting quadratic scaling, which comes from an application.

The experiments we were able to conduct did shed some light on the lower-
dimensional topological structure of the dataset. In our future research we would
like to answer some of the questions posed in the previous section as well as try
to verify the efficiency of different computational methods.
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Combinatoire B48c, 1–35 (2002)

8. Kozlov, D.: Combinatorial Algebraic Topology. Springer (2007)
9. Lewiner, T.: Geometric discrete Morse complexes, PhD Thesis (2005)

10. Lewiner, T., Lopes, H., Tavares, G.: Toward Optimality in Discrete Morse Theory.
Experiment. Math. 12(3), 271–286 (2003)

11. Polanco, X., Juan, E.S.: Text Data Network Analysis Using Graph Approach. In:
Proc. of InSciT, pp. 586–592 (2006)

12. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and Algorithms for Constructing
Discrete Morse Complexes from Grayscale Digital Images. IEEE Trans. Pattern
Anal. Mach. Intell. 33, 1646–1658 (2011)

13. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

14. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley,
Cambridge (1949)

15. Zomorodian, A.: Fast construction of the Vietoris-Rips complex. Computers &
Graphics 34(3), 263–271 (2010)

16. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Memory Efficient Computa-
tion of Persistent Homology for 3D Image Data using Discrete Morse Theory. In:
Sibgrapi 2011, Maceio, Brazil (2011)

17. English Wikipedia corpus, http://dumps.wikimedia.org/enwiki/
18. Gensim Library, http://radimrehurek.com/gensim/

http://dumps.wikimedia.org/enwiki/
http://radimrehurek.com/gensim/


Concentrated Curvature for Mean Curvature

Estimation in Triangulated Surfaces

Mohammed Mostefa Mesmoudi, Leila De Floriani, and Paola Magillo

Department of Computer Science, University of Genova,
Via Dodecaneso 35, 16146 Genova, Italy

mmesmoudi@ac-creteil.fr, {deflo,magillo}@disi.unige.it

Abstract. We present a mathematical result that allows computing the
discrete mean curvature of a polygonal surface from the so-called concen-
trated curvature generally used for Gaussian curvature estimation. Our
result adds important value to concentrated curvature as a geometric
and metric tool to study accurately the morphology of a surface.

Keywords: Curvature, Gaussian and mean curvature, Discrete curva-
ture, Triangulated surfaces.

1 Introduction

Curvature is an important geometric tool generally used to study the metric and
topological properties of a surface. Indeed, Gauss-Bonnet theorem [10] links the
topology of the surface (or of a patch of it) to its total Gaussian curvature. The
convexity and concavity of a surface can be studied through mean and Gaussian
curvatures and its main morphological features can be deduced from the the
critical values of mean curvature. The behavior of geodesic segments (i.e. the
shortest segment linking two points on a surface) can be studied through curva-
ture values and their sign over the surface. Curvature has been widely studied in
the smooth case and later in the discrete one where several attempts have been
made to give adequate definitions for both Gaussian and mean curvatures. Dis-
crete methods either interpolate the discrete values of the surface by a smooth
function, or define discrete approaches that guarantee similar properties as the
ones available in the smooth case (see [5] for more details). Such methods are
based on approximations and, thus, the values they produce suffer from error
optimization and control or from the approximation convergence when refining
the mesh to tend to a smooth surface.

Concentrated curvature has been defined by Aleksandrov in [3] as the total
curvature of spherical caps that approximate a triangulated surface at its ver-
tices. It turns out that concentrated curvature depends only on the total angle
around a vertex and does not depend on the radii of the approximating caps.
Concentrated curvature produces, thus, an accurate value for each vertex of the
surface and does not suffer from computation errors and convergence problems
(see Section 3). Moreover, concentrated curvature satisfies a discrete version of
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the above mentioned Gauss-Bonnet theorem that links the topology of a surface
to its metric [10].

In [7], we have introduced discrete distortion as a generalization of concen-
trated curvature to three-combinatorial manifolds, and in [8], we have shown
that its restriction to surface boundary of volumetric shape gives a good dis-
crete estimator of mean curvature.

The aim of this paper is to show that concentrated curvature is linked to the
restriction of discrete distortion via a simple relation that makes the computa-
tion of mean curvature possible from concentrated curvature. As a consequence,
principal curvature computation becomes possible as the solution of two simple
equations. This result gives to concentrated curvature a crucial role in combina-
torial geometry to study the metric properties of a surface.

The reminder of this paper is organized as follows. In Section 2, we present
some theoretical background on analytic curvatures. In Section 3, we present
concentrated curvature as a Gaussian curvature estimator. In Section 4, we de-
scribe how concentrated curvature can be generalized to 3-dimensional manifolds
and how its restriction to the boundary surfaces defines a new mean curvature
estimator, called discrete distortion. In Section 5, we present the duality between
concentrated curvature and discrete distortion. Finally, in Section 6, we present
some experiments that highlight such duality, and we draw some conclusions
and directions of future development.

2 Background Notions

In this section, we briefly review some fundamental notions on curvature (see [4]
for details). Let C be a curve having parametric representation (c(t))t∈R. The
curvature k(p) of C at a point p = c(t) is given by

k(p) =
1

ρ
=

|c′(t) ∧ c′′(t)|
|c′(t)|3 ,

where ρ, called the curvature radius, corresponds to the radius of the osculatory
circle tangent to C at p.

Let S be a smooth surface (at least C2). Let −→np be the normal vector to
the surface at a point p. Let Π be the plane which contains the normal vector−→np. Plane Π intersects S at a curve C containing p: the curvature kp of C at
point p is called normal curvature at p. When plane Π turns around −→np, curve
C varies. There are two extremal curvature values k1(p) ≤ k2(p) which bound
the curvature values of all curves C. The corresponding curves C1 and C2 are
orthogonal at point p [4]. These extremal curvatures are called principal normal
curvatures. Since the surface is smooth, then Euler formula (also called Dupin
indicatrix) indicates that the curvatures at a point p have an elliptic behavior
described by k(p) = k1(p) cos

2(θ) + k2(p) sin
2(θ), where parameter θ ∈ [0; 2π].

The Gaussian curvature K(p) and the mean curvature H(p) at point p are the
quantities

K(p) = k1(p) ∗ k2(p), (1)
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and

H(p) =
1

2π

∫ 2π

0

k(p)dθ =
k1(p) + k2(p)

2
. (2)

Gaussian curvature and the mean curvature strongly depend on the (local) ge-
ometrical shape of the surface. Mean curvature can identify saddle regions and
ridge/ravine lines, and mean curvature combined with Gaussian curvature can
identify convex, concave and locally flat regions. These are relevant properties
of curvature for surface analysis:

– Let p be a point with positive Gaussian curvature (i.e., both principal cur-
vatures have the same sign). If the mean curvature is positive [negative] at
p, then the surface is locally convex [concave] at p.

– A negative Gaussian curvature at a point p implies that the principal curves
lie in two different half spaces with respect to the tangent plane, and thus p
is a saddle point.

– If the principal curvatures at a point p are null (i.e., the Gaussian and the
mean curvatures are null), then the surface is “infinitesimally” flat at p.

– If the Gaussian curvature is null and the mean curvature is different from
zero at a point p, then the surface is flat in one principal direction and convex
[concave] in the other one (if the mean curvature of p is positive or negative,
respectively). Ridge and ravine lines correspond to such a situation.

A remarkable property of Gaussian curvature is given by Gauss-Bonnet
Theorem, which relates the metric property given by the Gaussian curvature
to the topology of the surface (given by its Euler characteristic) [4].

Theorem 1 (Gauss-Bonnet Theorem). For a compact surface S with a
possible boundary components ∂S we have∫ ∫

S

K(p)ds+

∫
∂S

kg(p)dl = 2πχ(S), (3)

where χ is Euler characteristic of surface S (i.e., χ = 2(1 − g), where g is the
genus of the surface), and kg denotes the geodesic curvature at boundary points
(i.e., the geodesic curvature is the norm of the projection of the normal vector
of the curve on the tangent plane to the surface).

3 Concentrated Curvature

In [3] a mathematical definition of a discrete Gaussian curvature has been given
by means of angle deflection. The author calls it concentrated curvature and
justifies mathematically this name. Much more recently in [1,2], other authors
propose to use concentrated curvature to define a stable alternative to Gaussian
curvature.

Let Σ be a (piecewise linear) triangulated surface and let p be a vertex of
the triangle mesh. Let Δ1, · · · , Δn be the triangles incident at p such that Δi
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and Δi+1 are edge-adjacent. If ai, bi are the vertices of triangle Δi different
from p, then the total angle Θp at p, also called conical angle, is given by

Θp =
∑n

i=1 âipbi.
Around p the surface is isometric to a cone of angle Θp at its apex. If Θp < 2π,

then we can approximate the cone by a spherical cap from its interior. Each point
on the cap has a constant Gaussian curvature equal to the square of the inverse
of the cap radius. The total Gaussian curvature of the cap is then equal to its
area normalized by the radius square. By simple computation, this number is
equal to 2π−Θp and is radius independent. This fact implies that approximating
the cone by smaller caps, the total Gaussian curvature is always the same. This
leads us to the definition of concentrated curvature.

Definition 1. [10] The concentrated Gaussian curvature KC(p), at a vertex p
of the triangulated surface, is the value

KC(p) =

{
2π −Θp if p is an interior vertex, and
π −Θp if p is a boundary vertex,

where Θp is the conical angle at p.

For an internal vertex, the quantity 2π−Θp is computed by approximating the
surface at each vertex by spherical caps. The total curvature of each spherical
cap is equal to 2π − Θp and does not depend on the radius of the cap. The
detailed justification can be found in [6].

Thus, concentrated curvature is, simply, the angle defect between the flat Eu-
clidean case (i.e., a plane) and the surface. Concentrated curvature for boundary
vertices is the angle defect between the case of boundary points of a half plane
and the surface.

A simple computation on the number of triangles, edges and vertices within
the surface gives the following discrete version of Gauss-Bonnet theorem [10]:

Theorem 2. Let Σ be a closed orientable triangulated surface, and χ(Σ) be the
Euler characteristic of Σ. Then∑

p vertex of Σ

KC(p) = 2πχ(Σ).

4 Discrete Distortion

The principle underlying concentrated curvature can be extended to combina-
torial (triangulated) 3-manifolds, by comparing the total solid angle around a
vertex with 4π which is the total solid angle around a point in R3. Let p be a
vertex of a combinatorial 3-manifold Ω. Vertex distortion at p is thus defined as

D(p) =

{
4π − Sp if p is an interior vertex, and
2π − Sp if p is a boundary vertex,

(4)

where Sp is the solid angle at p within the manifold.



Concentrated Curvature for Mean Curvature Estimation 83

We have proven in [7] that, if Σ is a shape embedded in R3, then internal
vertices have null vertex distortion. This is an important property that we use
to define the restriction of distortion on the boundary of the 3-manifold without
considering the tetrahedra in its interior.

For triangulated surfaces embedded in R3, the restriction of discrete distortion
to a surface reduces to compare the internal solid angles at vertices with 2π. In
this case, distortion at a vertex p can be expressed in a simpler way as

D(p) =
∑

e∈St(p)

(π −Θe), (5)

where St(p) is the set of edges incident to p, and Θe is the dihedral angle around
edge e. In [8], we have shown, through the use of Conolly functions, that the
restriction of distortion to surfaces provides a good discrete approximation of
mean curvature.

Mean curvature of a polyhedral surface is usually defined in literature (see,
e.g., [9]) by

|H | = 1
4|A|

∑n
i=1 ‖−→ei‖|π −Θi|, (6)

where |A| is the the area of the Voronoi or barycentric region around a vertex
p, ei is one of the n edges incident in p with a dihedral angle Θi. Formula (6)
produces only positive values. A positive or negative sign is given depending
on the angle formed by the surface normal at p with the vector obtained by
summing all edges, weighted with |π−Θi|. However, there is another issue when
using Formula (6) for mean curvature estimation: curvature values depend on
the length of the edges incident at vertex p, and, thus, are area-dependent.

5 Concentrated Curvature versus Discrete Distortion

We show here that there is a natural duality between discrete distortion and con-
centrated curvature. Let p be a vertex on a triangulated surface Σ embedded in
the Euclidean space. Let (Δi = uipui+1)i=1···n be the set of all triangles incident

at p on Σ and let (
−→
Ni)i=1···n be their unit normal vectors. Vectors

−→
Ni generate

a polyhedral cone C(p) of summit p where each face Fi (i = 1 · · ·n) is defined

by two consecutive vectors
−→
Ni and

−−−→
Ni+1 (i = 1 · · ·n mod(n)), see Figure 1.

Vertex p belongs thus to two surfaces Σ and C(p).
The following theorem implies that concentrated curvature can be used in

different ways to estimate both Gaussian and mean curvatures through simple
geometric constructions.

Theorem 3. Concentrated curvature and distortion of surfaces Σ and C(p)
at vertex p are linked by the following formulas, where indexes refer to the
corresponding surface:

DC(p) +KΣ(p) = 2π, and DΣ(p) +KC(p) = 2π. (7)



84 M.M. Mesmoudi, L. De Floriani, and P. Magillo

u
i

i+1
u

Δ
i

N N
i+1i

u
i+2p

Fig. 1. Duality between distortion and concentrated curvature. Unit normal vectors to
triangles incident to p generate a cone C(p).

Proof. Let ûi be the dihedral angle at edge pui shared by triangles Δi−1 and Δi.

Similarly, let N̂i be the dihedral angle at edge
−→
Ni within the cone C(p). Simple

geometric considerations, imply that the angle between
−→
Ni and

−−−→
Ni+1 is given by

�(−→Ni,
−−−→
Ni+1) = π − ûi+1. (8)

Conversely, vectors −→pui are perpendicular to triangles generated by (p,
−−−→
Ni−1,

−→
Ni)

of cone C(p). The above relation implies that

̂ui−1pui = �(−−−→pui−1,−→pui) = π − N̂i. (9)

Hence, there is a duality between angles at p of its incident triangles on surface
Σ and dihedral ones on cone C(p), and vice versa. The above results, together
with (5), imply that the distortion at p on surface Σ is equal to the total angle
at p of all triangles on C(p), and vice versa. Hence we have:

DΣ(p) =

n∑
i=1

�(−→Ni,
−−−→
Ni+1), DC(p) =

n∑
i=1

( ̂uipui+1). (10)

On the other hand, we know that concentrated curvature is the angle deficit on
the sum of all triangles incident to a vertex on a surface. Then we have

DΣ(p) + 2π −
n∑

i=1

�(−→Ni,
−−−→
Ni+1) = 2π, (11)

and

DC(p) + 2π −
n∑

i=1

( ̂uipui+1) = 2π, (12)

which leads to relations (7), and therefore proves the theorem.
Principal curvatures k1 and k2 can be obtained as a common solution of both

equation k1+k2 = 2D(p) and k1×k2 = K(p). The result expressed by Theorem 3
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provides a new interesting use for concentrated curvature and allows, with the
corresponding principal curvatures, a local control of geometry via dual cones, in
addition to its topological role described by the discrete Gauss-Bonnet theorem
[10].

6 Concluding Remarks

We have implemented the methods defined in (4) and (5) to compute discrete
distortion. We have experimentally compared the results and evaluated the ef-
ficiency of the computation. In Table 1, we report the order of magnitude of
the difference between the values obtained with each method. We can see that
the difference in distortion values computed with the two methods is negligible
(less than 1/109 of the values range). Moreover, the version with cone angles is
slightly faster.

Figures 2 and 3 show the values of distortion and of mean curvature estimated
with equation (6), with computation of sign, in a color scale. Color corresponds
to negative and to positive values, respectively, in the two figures, and white
corresponds to the remaining values. The two methods give the same image.

Table 1. Range of values of distortion, order of magnitude of the maximum difference
between the two methods, and execution times (averaged over 100 executions), in
seconds

Mesh Vertices Distortion Difference Execution time
range (1) (2)

Bunny 34k [−4.8, 5.2] e−09 .398 .378

Bumpy Torus 17k [−7.4, 6.4] e−11 .192 .185

Octopus 17k [−5.6, 6.1] e−11 .199 .187

Kitten 11k [−6.1, 6.3] e−11 .128 .122

Happy Buddha 544k [−8.9, 2.6] e−14 6.43 6.31

We have shown that Gaussian and mean curvatures can be described through
a pair of concentrated curvature values at each vertex. This gives concentrated
curvature an additional geometric role besides its topological role described by
the discrete Gauss-Bonnet theorem.

Surfaces where mean curvature is null everywhere, called minimal surfaces,
play a great role in many scientific fields (DNA structures, architecture, etc.). In
mathematics, generating and tracking such surfaces is a hard problem due to the
complexity of their defining PDE equations. Our work can help studying minimal
surfaces through the duality between concentrated curvature and distortion.

Troyanov has shown in [10] that, given a set of points with a corresponding
set of weights, then, under some conditions, there exists a polyhedral surface
whose vertices are the given set of points and whose concentrated curvatures
are the corresponding weights. We project to exploit such result to construct
and study the dual surface whose vertices are the same as the original surface
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and whose concentrated curvatures are those data (i.e., concentrated curvature
values) coming from the dual cones that we have constructed here. This may
reveal other interesting properties linking concentrated curvature to distortion
or reveal geometrical and topological properties relating the two surfaces.

Fig. 2. Positive values of distortion (left) and mean curvature (right) in false colors:
red (dark grey for black-and-white version) represent positive values, white represents
negative or null values

Fig. 3. Negative values of distortion (left) and mean curvature (right) in false colors:
blue (dark grey for black-and-white version) represent negative values, white represents
positive or null values

Acknowledgements. This work has been partially supported by the National
Science Foundation under grant number IIS-1116747, and by the Italian Ministry
of Education and Research under the PRIN 2009 program.



Concentrated Curvature for Mean Curvature Estimation 87

References

1. Akleman, E., Chen, J.: Insight for Practical Subdivision Modeling with Discrete
Gauss-Bonnet Theorem. In: Kim, M.-S., Shimada, K. (eds.) GMP 2006. LNCS,
vol. 4077, pp. 287–298. Springer, Heidelberg (2006)

2. Alboul, L., Echeverria, G., Rodrigues, M.A.: Discrete curvatures and Gauss maps
for polyhedral surfaces. In: European Workshop on Computational Geometry
(EWCG), Eindhoven, The Netherlands, pp. 69–72 (2005)

3. Aleksandrov, P.: Topologia Combinatoria. Edizioni Scientifiche Einaudi, Torino
(1957)

4. Do Carno, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc.,
Englewood Cliffs (1976)

5. Gatzke, T.D., Grimm, C.M.: Estimating curvature on triangular meshes.
International Journal on Shape Modeling 12, 1–29 (2006)

6. Mesmoudi, M.M., Danovaro, E., De Floriani, L., Port, U.: Surface segmentation
through concentrated curvature. In: Proc. International Conference on Image and
Pattern Processing, pp. 671–676, Modena, Italy (2007)

7. Mesmoudi, M.M., De Floriani, L., Port, U.: Discrete distortion in triangulated
3-manifolds. Computer Graphics Forum 27(5), 1333–1340 (2008)

8. Mesmoudi, M.M., De Floriani, L., Magillo, P.: Discrete Distortion for Surface
Meshes. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716,
pp. 652–661. Springer, Heidelberg (2009)

9. Meyer, M., Desbrun, M., Schroder, M., Barr, A.H.: Discrete differential-geometry
operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Proceed-
ings VisMath 2002, Berlin, Germany (2002)

10. Troyanov, M.: Les surfaces Euclidiennes à singularités coniques. L’Enseignement
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Abstract. In a recent paper we have introduced a notion of multival-
ued continuity in digital spaces which extends the usual notion of digital
continuity and allows to define topological notions, like retractions, in a
far more realistic way than by using just single-valued digitally continu-
ous functions. In particular, we have characterized the deletion of simple
points in 2-D, one of the most important processing operations in digital
topology, as a particular kind of retraction. In this work we extend some
of these results to 3-dimensional digital sets.

Keywords: Digital topology, continuous multivalued function, simple
point, retraction.

1 Introduction

Digitally continuous maps were first introduced by A. Rosenfeld [15] in 1986. He
characterized them as functions taking connected sets to connected sets.

Results related with this type of continuity were proved also by L. Boxer
[2–4], who introduced such notions as digital homeomorphism, retracts and
homotopies. A different approach using multivalued maps was suggested by
V. Kovalevsky [13]. (See the introduction of [5] for a discussion of the limitations
of these and related approaches).

In recent papers [5, 6], the authors presented a theory of continuity in digital
spaces which extends the one introduced by Rosenfeld. Our approach uses multi-
valued maps and provides a better framework to define topological notions, like
retractions, in a far more realistic way than by using just single-valued digitally
continuous functions. This notion has allowed us to characterize most common
thinning algorithms for digital images as retractions.

In this work we extend some results of those papers to 3-dimensional digital
sets. In sections 2 and 3 we revise the basic notions on digital topology required
throughout the paper. In section 4 we recall the notions of a digitally continuous
multivalued function and of a digital retraction, formulating one of the results of
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UPM-2011-Q061010133.
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[5] for 3-dimensional sets (Proposition 2). In section 5 we prove the main result
of the paper (Theorem 3): If a point p is (26, 6)-simple in X , then there exists a
multivalued (N , 26)-retraction F : X −→ X \ {p}.

For information on Digital Topology we recommend the survey [11] and the
books by Kong and Rosenfeld [12], and by Klette and Rosenfeld [9].

We are grateful to the referees for helpful comments and suggestions.

2 Digital Spaces

Two points in the digital plane Z2 are 8-adjacent if they are different and their
coordinates differ in at most a unit. They are 4-adjacent if they are 8-adjacent
and differ in at most a coordinate. Given p ∈ Z2 we define N (p) as the set
of points 8-adjacent to p, i.e. N (p) = {p1, p2, . . . , p8}. This is also denoted as
N 8(p). Analogously, N 4(p) is the set of points 4-adjacent to p (with the above
notation N 4(p) = {p2, p4, p6, p8}).

Two points of the digital 3-space Z3 are 26-adjacent if they are different and
their coordinates differ in at most a unit. They are called 18-adjacent if they are
26-adjacent and differ in at most two coordinates, and they are called 6-adjacent
if they are 26-adjacent and differ in exactly one coordinate. We have therefore,
three different neighborhoods of p: N 26(p) = N (p), N 18(p) and N 6(p).

In an analogous way, adjacency relations are defined in Zn for n ≥ 4.
A k-path P in Zn from the point q0 to the point qr is a sequence P =

{q0, q1, q2, . . . , qr} of points such that qi is k-adjacent to qi+1, for every i ∈
{0, 1, 2, . . . , r − 1}. If q0 = qr then it is called a closed path. A set S ⊂ Zn is
k-connected if for every pair of points of S there exists a k-path contained in S
joining them. A k-connected component of S is a k-connected maximal set.

Given X ⊂ Zn, p ∈ X , we say, according to [12], that p is a k-boundary point
of X if N k̄(p) ∩ (Zn \X) 
= ∅, where (k, k̄) = (8, 4) if n = 2, (k, k̄) = (26, 6) if
n = 3 (this notation will be used throughout the paper). We denote by ∂kX the
set of k-boundary points of X .

A point p and a set X are k-adjacent if p 
∈ X and there exists q ∈ X such
that p and q are k-adjacent.

3 Digitally Continuous Single-Valued Functions

We start this section revising the notion of digitally continuous function and
some of its properties.

Definition 1. Let f : X ⊂ Zm −→ Zn be a function between digital spaces with
adjacency relations k and k′, respectively. According to [15] and [3], f is (k, k′)-
continuous, if and only if, for every p, p′ ∈ X k-adjacent points of Zm then either
f(p) = f(p′) or f(p) and f(p′) are k′-adjacent points of Zn. When m = n and
k = k′, f is said to be just k-continuous.
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In [15] several results about digitally continuous functions related to operations
with continuous functions, intermediate values property, almost-fixed point theo-
rem, Lipschitz conditions, one-to-oneness, etc, were proved. Boxer [2–4] expanded
this notion to digital homeomorphisms, retractions, extensions, homotopies, dig-
ital fundamental group, induced homomorphisms, etc. (see also [8] and [10] for
previous related results).

In particular, Boxer proved that the k-boundary ∂S of a digital square S
is not a digital k-retract of the square [2], i.e., it is not possible to construct
a digitally continuous function f : S −→ ∂S such that f(x) = x for every
p ∈ ∂S, as happens if we consider them as subsets of R2. However, neither the
outer k-boundary of an annulus is a k-retract of the annulus, as opposite with
what happens considering as subsets of R2. Therefore, digitally k-continuous
single-valued functions can not model correctly the topology of R2. In the next
section we show how it is possible to define a notion of continuity for multivalued
functions in such a way that these limitations of digitally continuous single valued
functions are alleviated (see Proposition 2).

4 Digitally Continuous Multivalued Functions

The definitions and results in this section were first introduced in [5].

Definition 2. The r-th subdivision of Zn is formed by the set

Zn
r :=

{(z1
3r

,
z2
3r

, . . . ,
zn
3r

)
| (z1, z2, . . . , zn) ∈ Zn

}
and the function ir : Zn

r −→ Zn given by ir

(z1
3r

,
z2
3r

, . . . ,
zn
3r

)
:= (z′1, z′2, . . . , z′n)

where (z′1, z
′
2, . . . , z

′
n) is the point in Zn which is closest to

(z1
3r

,
z2
3r

, . . . ,
zn
3r

)
in

the Euclidean metric.
If we consider in Zn a k-adjacency relation, we can consider in Zn

r the induced

adjacency relation, i.e.,
(z1
3r

,
z2
3r

, . . . ,
zn
3r

)
and

(
z′1
3r

,
z′2
3r

, . . . ,
z′n
3r

)
are k-adjacent

if and only if (z1, z2, . . . , zn) is k-adjacent to (z′1, z′2, . . . , z′n).

Proposition 1. ir is k-continuous as a function between digital spaces.

Definition 3. Given X ⊂ Zn, the r-th subdivision of X is the set Xr := i−1
r (X).

Intuitively, if we consider X made of pixels, (respectively, voxels), the r-th sub-
division of X consists in replacing each pixel with 9r pixels (respectively, 27r

voxels) and the function ir is like an inclusion in the geometric sense.

Definition 4. Consider X,Y ⊂ Zn. A multivalued function F : X −→ Y is a
function F such that for every x ∈ X, F (x) is a non-empty subset of Y . A
multivalued function F : X −→ Y is said to be a (k, k′)-continuous multivalued
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function if there exists a (k, k′)-continuous (single-valued) function from Xr to
Y for some r ∈ N such that F (x) := ∪x′∈i−1

r (x)f(x
′). We say then that F is

induced by f . When k = k′, F is said to be just a k-continuous multivalued
function.

The reader is referred to [5] and [6] for properties of digitally continuous multi-
valued functions. We just note here that any single-valued digitally continuous
function is continuous as a multivalued function, and that if F is a (k, k′)-
continuous multivalued function then F takes k-connected sets to k′-connected
sets.

Definition 5. Let X ⊂ Zn and Y ⊂ X. We say that Y is a multivalued k-
retract of X if there exists a k-continuous multivalued function F : X −→ Y (a
multivalued k-retraction) such that F (y) = {y} if y ∈ Y . If moreover F (x) ⊂
N (x) for every x ∈ X \ Y , we say that F is a multivalued (N , k)-retraction.

The following result, which generalizes a 2-dimensional result proved in [5], and
that can be proved in a similar way as that result, shows that digitally continuous
multivalued functions and, in particular, multivalued k-retractions and multival-
ued (N , k)-retractions have similar properties as retractions in R3, in contrast
with single-valued digital retractions, which, as noted in the introduction, have
serious limitations to replicate the behavior of retractions in R3.

Proposition 2. The following holds:

i) The k-boundary of a cube X (with Int X 
= ∅) is not a multivalued k-retract
of X.

ii) The outer k-boundary ∂kX of a hollow cube X is a multivalued (N , k)-
retract of X.

5 Deletion of Simple Points as (N , k)-Retractions

A point p ∈ X ⊂ Z2 is 8-simple in X if its deletion does not change the topology
of X in the sense that, when deleting it, the number of components and holes
are preserved. A point p ∈ X ⊂ Z3 is 26-simple in X if, after deleting it, the
number and location of components, holes (tunnels) and cavities are preserved
(see [1, 14] for the formal definition of these intuitive notions, and [7] for an
example of why in the 3-dimensional case it is not enough to preserve just the
number of holes).

A k-simple point can be locally detected by the following characterization:

Theorem 1 ([1, 14]). Let X ⊂ Z2. A point p ∈ X is 8-simple if and only if p
is an 8-boundary point of X such that the number of 8-connected components of
N (p) ∩X which are 8-adjacent to p is equal to 1.

Let X ⊂ Z3. A point p ∈ X is 26-simple if and only if the number of 26-
connected components of N (p)∩X which are 26-adjacent to p is equal to 1, and
the number of 6-connected components of N 18(p)∩ (Z3 \X) which are 6-adjacent
to p is equal to 1.

The following theorem was proved in [5].
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Theorem 2. Consider X ⊂ Z2 and p ∈ X. Then p is an 8-simple point if and
only if there exists a multivalued (N , 8)-retraction F : X −→ X \ {p}.
Theorem 2 also holds for (k, k̄) = (4, 8) with an additional condition on p.

The following result generalizes to Z3 the “only if” part of Theorem 2.

Theorem 3. Consider X ⊂ Z3 and p ∈ X a 26-simple point. Then there exists
an (N , 26)-retraction F : X −→ X \ {p}.
Proof. We show how to define a multivalued (N , 26)-retractionF : X −→ X\{p}
according to the number of points of N 6(p) ∩X .

Denote the points in N 6(p) as follows: n the point above p, s the point below
p, w the point left of p, e the point right of p, f the point front of p, b the point
behind p. These 6 directions allows us to determine each point of N 26(p).

Case 1: card(N 6(p) ∩X) ≥ 3. If card(N 6(p) ∩X) = 6, p is not 26-simple. Then
N (p) is 26-simple if and only if p is, up to symmetries, as in Figure 1, where the
points not explicitly drawn can be in X or in Z3 \X .

Fig. 1. Local configurations of a 26-simple point with card(N 6(p) ∩X) ≥ 3

If card(N 6(p)∩X) = 5, we subdivide p in five parts (A1, A2, A3, A4, A5) as in
Figure 1a and we define f inducing F such that f(Ai) is the point of N 6(p)∩X
closest to Ai. Note that f is continuous because if Ai and Aj are 26-adjacent
then so are f(Ai) and f(Aj), and if a voxel in N (p) is 26-adjacent to Ai, then
it is also 26-adjacent to f(Ai).
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If card(N 6(p) ∩ X) = 4, N (p) is, up to symmetries, as in Figure 1b. Since
p is simple, the point nb (north and behind) must be in Z2 \X because it is
necessary to 6-connect in N 18(p) the points n and b (see Theorem 1). To define
F we subdivide p in 4 parts (A1, A2, A3, A4) and define f inducing F such that
f(Ai) is the point of N 6(p) ∩X closest to Ai.

If card(N 6(p) ∩ X) = 3, then p is, up to symmetries, as in one of the con-
figurations of Figures 1c-1e (the configurations correspond to the different ways
to 6-connect in N 18(p) the 3 white points of N 6(p)). In all cases we subdivide
p as in the figure and we define f inducing F such that f(Ai) is the point of
N 6(p) ∩X closest to Ai.

Fig. 2. Local configurations of a 26-simple point with 2 ≥ card(N 6(p) ∩ X) ≥ 1.
There are three more configurations, interchanging fe and fw in each of the three last
configurations (in each case the same subdivisions are used to define F ).
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Fig. 3. Local configurations of a 26-simple point with N 6(p) ∩X = ∅

Case 2: 2 ≥ card(N 6(p)∩X) ≥ 1. Since N (p) is 26-simple, p is, up to symmetries,
as in one of the configurations of Figure 2, where the gray points may or may
not be in X . The gray points may depend of their neighbors (for example, in
the second case, if nbw is black, then nw must be also black).
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In all cases, we subdivide p in up to 5 parts as in Figure 2 (in some cases,
to better see the subdivision, one of the subsets is shown transparent) and we
define f inducing F such that the image of the smallest parts are always the
blue or the gray point they are ”oriented to” (i.e. that for which this region is
the closest). Each of these parts is adjacent to a bigger part which goes to a blue
o gray point adjacent to the former, and so on. If any of the gray points were
not in X its part of the subdivision would be absorbed by its neighboring part.

Case 3: card(N 6(p) ∩ X) = 0. If N 18(p) ∩ X = ∅, then N (p) ∩ X consists on
just one corner of N (p), q, and we define F (p) = q, In the rest of the cases
N 18(p) ∩X 
= ∅. All possible configurations are shown in Figure 3.

The seven first cases satisfy that there is at least a white point q 6-adjacent
to p with card(N 6(q) ∩ N (p) ∩ (Z3 \X)) ≥ 3. The four last cases satisfy that
card(N 6(q) ∩ N (p) ∩ (Z3 \X)) ≤ 2 for all q 6-adjacent to p.

Note that, as in case 2, the gray points may depend of their neighbors (for
example, in the first case, if nbw is black, then bw must be also black). Moreover,
not all combinations of gray points are possible (for example, in the second case,
if fe is white, all the gray points must be also white).

In all cases, we subdivide p in up to 7 parts as in Figure 3 (in some cases,
to better see the subdivision, one of the subsets is shown transparent), and we
define f inducing F following the same rule as in case 2 (now, when two points
can be chosen as the next one, only one of them allows to define the image of
all the remaining subsets).

In Figure 4 we show the steps to construct the subdivision in one of the three
last cases (the ninth) which are more involved.

Fig. 4. Construction of the subdivision of p in one case
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Remark 1. The previous theorem guarantees that, if p ∈ X ⊂ Z3 is a 26-simple
point, then there exists an (N , 26)-retraction F : X −→ X \ {p}.

Moreover, the multivalued (N , 26)-retraction F : X −→ X \ {p} constructed
in the proof of the theorem is given by F (x) = {x} if x 
= p and

F (p) = (N 6(p) ∩X) ∪ {q ∈ N ∗
18(p) ∩X | N 6(p) ∩ N 6(q) ∩X = ∅}

∪ {q ∈ N ∗
26(p) ∩X | N 18(p) ∩ N 18(q) ∩X = ∅},

where N ∗
18(p) = N 18(p)\N 6(p) and N ∗

26(p) = N 26(p)\N 18(p). Note that, since
p is 26-simple, the third term in the union is nonempty if and only if N (p) ∩X
is just one corner of N (p).

Analogously, it can be easily seen, using the techniques of [5,6], that if X ⊂ Z2

and p ∈ X , then the multivalued function F : X −→ X\{p} given by F (x) = {x}
if x 
= p and

F (p) = (N 4(p) ∩X) ∪ {q ∈ N ∗
8(p) ∩X | N 4(p) ∩ N 4(q) ∩X = ∅}.

is a multivalued (N , 8)-retraction if and only if p is an 8-simple point.

6 Conclusions and Future Work

We have shown that if p is a 26-simple point of X ⊂ Z3 then there exists a
multivalued (N , 26)-retraction F : X −→ X \ {p}.

Conversely, it can be proved, in a similar way as for Theorem 2, that, if
there exists a multivalued (N , 26)-retraction F : X −→ X \ {p}, then p is a
26-boundary point of X such that the number of 26-connected components of
N (p) ∩ X which are 26-adjacent to p is equal to 1, and there exists at least
one 6-connected components of N 18(p) ∩ (Z3 \X) 6-adjacent to p (i.e p is a
26-boundary point).

Moreover, in all the configurations considered in the proof of Theorem 3, if
we 6-disconnect the “white” points, a multivalued (N , 26)-retraction F : X −→
X \ {p} not longer exists. In general, if the deletion of p creates a hole in X , a
multivalued (N , 26)-retraction F : X −→ X \ {p} does not exist. Therefore, the
following holds: “p is a 26-simple point of X ⊂ Z3 if and only if there exists a
multivalued (N , 26)-retraction F : X −→ X \ {p}”. We will publish the proof of
this result in a forthcoming paper.
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Abstract. Cell complexes have extensively been used as a compact rep-
resentation of both the geometry and topology of shapes. They have
been the basis modeling tool for boundary representations of 3D shapes,
and several dimension-specific data structures and modeling operators
have been proposed in the literature. Here, we propose basic topological
modeling operators for building and updating cell complexes in arbi-
trary dimensions. These operators either preserve the topology of the
cell complex, or they modify it in a controlled way. We compare these
operators with the existing ones proposed in the literature, in particular
with handle operators and various Euler operators on 2D and 3D cell
complexes.

Keywords: geometric modeling, cell complexes, topology-preserving
operators, topology-modifying operators.

1 Introduction

Cell complexes, together with simplicial complexes, have been used as a model-
ing tool in a wide range of application domains, such as solid modeling, computer
graphics, computer aided design, finite element analysis, animation, scientific vi-
sualization, and geographic data processing. They are used to discretize geomet-
ric shapes, such as static and dynamic 3D objects, or surfaces and hyper-surfaces
describing the behavior of scalar or vector fields.

The literature on operators for building and updating cell complexes is vast
but quite disorganized. A variety of topological operators have been designed for
building and updating data structures representing 2D and 3D cell complexes,
such as handle operators and Euler operators. Handle operators are based on
handlebody theory, stating that any n-manifold can be obtained from an n-ball
by attaching handles to it. The main characteristic of Euler operators is that
they maintain the Euler-Poincaré formula expressing the topological validity
condition of a cell complex.

We propose a set of Euler operators which form a minimally complete basis for
building and updating cell complexes in arbitrary dimensions in a topologically
consistent manner. We distinguish between operators that maintain the topology
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of the complex, and the ones that modify it in a controlled manner. Topology-
preserving operators add (or remove) a pair of cells of consecutive dimension,
but they do not change the Betti numbers of the complex. Topology-modifying
operators add (or remove) an i-cell, and increase (decrease) the ith Betti number,
or decrease (increase) the (i−1)st Betti number of Γ . We compare the 2D and 3D
instance of our operators with other Euler operators, and with handle operators,
proposed in the literature for 2D and 3D cell complexes, and we show how these
latter can be expressed in terms of the Euler operators we define here.

In Section 2, we review some background notions on cell complexes. In
Section 3, we introduce a set of topological operators for building and updating
cell complexes in arbitrary dimensions. In Section 4 we show how Euler opera-
tors proposed in the literature can be expressed through 2D and 3D instances of
our operators, and in Section 5, we show how handle operators can be expressed
in terms of our operators. In Section 6, we draw some concluding remarks, and
discuss possible research directions.

2 Background Notions

We review here some notions on cell complexes, that we will use throughout this
paper (see [Ago05] for more details). A k-cell in the Euclidean space En is a
homeomorphic image of a k-dimensional ball, and a cell complex in En is a finite
set Γ of cells in En of dimension at most d, 0 ≤ d ≤ n, such that

– the cells in Γ are pairwise disjoint,
– for each cell γ ∈ Γ , the boundary of γ is a disjoint union of cells of Γ .

If the maximum dimension of the cells in Γ is equal to d, then Γ is called a
d-complex. The set of cells on the boundary of a cell γ is called the (combina-
torial) boundary of γ. The (combinatorial) co-boundary (or star) of γ consists of
all the cells of Γ that have γ on their combinatorial boundary. An h-cell γ′ on
the boundary of a k-cell γ, 0 ≤ h ≤ k, is called an h-face of γ, and γ is called
a coface of γ′. Each cell γ is a face of itself. If γ′ 
= γ, then γ′ is called a proper
face of γ, and γ and γ′ are said to be incident. The domain, or carrier, of a cell
d-complex Γ embedded in En, with 0 ≤ d ≤ n, is the subset of En defined by
the union, as point sets, of all the cells in Γ .

The Euler-Poincaré formula expresses the necessary validity condition of a
cell complex with manifold or non-manifold carrier [Ago05]. The Euler-Poincaré
formula for a cell d-complex Γ (with or without boundary, of homogenous or
non-homogenous dimension) with ni i-cells states that

d∑
i=0

(−1)ini = n0 − n1 + ..+ (−1)dnd =
d∑

i=0

(−1)iβi = β0 − β1 + ..+ (−1)dβd.

Here, βi is the ith Betti number of Γ , and it measures the number of indepen-
dent non-bounding i-cycles in Γ , i.e., the number of independent i-holes. The
alternating sum n0 − n1 + .. + (−1)dnd is denoted as χ(Γ ), and is called the
Euler-Poincaré characteristic of Γ .
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3 Topological Operators

There have been many diverse proposals in the literature for manipulation op-
erators on 2D and 3D cell complexes. We propose here a minimal set of Euler
operators on cell complexes in arbitrary dimensions, which subsume all the other
Euler operators proposed in the literature. We classify these operators as:

– topology-preserving operators: MiC(i+ 1)C (Make i-Cell and (i+1)-Cell),
– topology-modifying operators: MiCiCycle (Make i-Cell and i-Cycle).

There are in total d topology-preserving operators, and (d+1) topology-modifying
operators.

Topology-preserving operators MiC(i + 1)C change the number of cells in
the complex Γ , by increasing the number ni of i-cells and the number ni+1

of (i + 1)-cells by one. The inverse KiC(i + 1)C (Kill i-Cell and (i+1)-Cell)
operators delete an i-cell and an (i + 1)-cell from Γ . The Euler characteristic
and the Betti numbers of the complex remain unchanged. Topology-preserving
operator MiC(i+1)C can create two new cells from an existing i- or (i+1)-cell,
or insert the new cells in the complex. The first type of MiC(i + 1)C operator
either splits an existing (i+1)-cell into two by splitting its boundary, and creates
an i-cell separating the two (i + 1)-cells, or dually, it splits an existing i-cell in
two by splitting its co-boundary, and creates an (i+ 1)-cell bounded by the two
i-cells. The second type of MiC(i+1)C operator either creates an i-cell and an
(i+1)-cell bounded only by the i-cell, or dually, it creates an (i+1)-cell and an
i-cell bounding only the (i+ 1)-cell.

Topology-modifying operators change both the number of cells in the complex
Γ and its Betti numbers, and thus they change the Euler characteristic of Γ .
They increase the number ni of i-cells and the number βi of non-bounding i-
cycles by one. The inverse KiCiCycle (Kill i-Cell and i-Cycle) operators delete
an i-cell and destroy an i-cycle, thus decreasing the numbers ni and βi by one.

We note here that the Betti numbers of a cell complex are determined by the
immediate boundary relation ∂i on the complex, which relates i-cells with (i−1)-
cells. The creation of an i-cell affects relations ∂i+1 and ∂i, and thus it either
increases βi by one, or it decreases βi−1 by one, to maintain the validity of the
Euler-Poincaré formula. In the first case, we obtain our operators MiCiCycle
(Make i-Cell and i-Cycle).

OperatorsMiCK(i−1)Cycle (Make i-Cell, Kill (i−1)-Cycle), i ≥ 2, obtained
in the second case, can be expressed through the proposed ones as: K(i−1)C(i−
1)Cycle (Kill (i − 1)-Cell and (i − 1)-Cycle) applied on one (i − 1)-cell on the
boundary of the i-cell to be created (possibly preceded by some K(i − 1)CiC,
which delete all i-cells in the co-boundary of the (i− 1)-cell), followed by M(i−
1)CiC (Make (i − 1)-Cell and i-Cell), which re-creates the deleted (i − 1)-cell
and creates the i-cell (followed by M(i− 1)CiC, inverse to K(i− 1)CiC, which
restore the deleted cells).

M1CK0Cycle (Make 1-cell, Kill 0-Cycle) can be obtained by destroying one
of the merged 0-cycles (components), applying one M0C1C, and re-creating the
destroyed component.
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M0C0Cycle (Make 0-Cell and 0-Cycle, i.e., make vertex and connected com-
ponent) is also an initialization operator, which creates a new complex Γ .

It can be shown that the proposed operators form a complete set of basis op-
erators for creating and updating cell complexes, by interpreting these operators
as ordered (2d+2)-tuples (x0, x1, .., xd, c0, c1, .., cd) in an integer grid, belonging

to the hyperplane
d∑

i=0

(−1)ixi =
d∑

i=0

(−1)ici defined by the Euler-Poincaré for-

mula. The first d+1 coordinates denote the number of i-cells created or deleted
by the operator, depending on the sign of the coordinate, and the last d+ 1 co-
ordinates denote the change in the Betti numbers of the complex induced by the
operator. Operator MiC(i+ 1)C, 0 ≤ i ≤ d− 1, has coordinates xi = xi+1 = 1,
xj = 0, j ∈ {0, 1, ..., d}\{i, i+ 1}, cj = 0, j ∈ {0, 1, .., d}. Operator MiCiCycle,
0 ≤ i ≤ d, has coordinates xi = ci = 1, xj = cj = 0, j ∈ {0, 1, ..., d}\{i}.

A linear combination
d∑

i=0

αdMiC(i+ 1)C +
d∑

i=0

βdMiCiCycle vanishes if and

only if αi = βi = 0, 0 ≤ i ≤ d, implying that the tuples corresponding to our
operators are linearly independent. Each tuple (a0, a1, .., ad, b0, b1, .., bd) in the
hyperplane can be expressed through the 2d + 1 independent (2d + 2)-tuples

corresponding to our operators as
d∑

i=0

αdMiC(i+1)C+
d∑

i=0

βdMiCiCycle, where

αi =
i∑

j=0

(−1)i−jaj −
i∑

j=0

(−1)i−jbj, and βi = bi, 0 ≤ i ≤ d. Thus, each opera-

tor satisfying the Euler-Poincaré formula on a cell complex Γ can be expressed
through our operators. In the space (hyperplane) of dimension (2d+1), a generat-
ing set consisting of (2d+1) independent tuples forms a basis for the hyperplane.

For a 2-complex Γ embedded in E3, the operators are also called:

– Topology-preserving operators: MVE (Make Vertex and Edge) and MEF
(Make Edge and Face).

– Topology-modifying operators:MV 0Cycle (Make Vertex and 0-Cycle), ME-
1Cycle (Make Edge and 1-Cycle) and MF2Cycle (Make Face and 2-Cycle).

Operator MV 0Cycle creates a new vertex and a new connected component, it
increases by one the number of vertices (0-cells) and the zeroth Betti number
β0. It is also an initialization operator. Operator ME1Cycle creates a new edge
and forms a 1-cycle, thus increasing by one the number of edges (1-cells) and
the first Betti number β1. Operator ME2Cycle creates a new face and forms
a 2-cycle, thus increasing by one the number of faces (2-cells) and the second
Betti number β2. Figure 1 shows an example of MV 0Cycle, ME1Cycle and
MF2Cycle operators.

For a 3-complex Γ embedded in E3, there will be an additional topology-
preserving operator MFV l (Make Face and Volume (3-Cell)) which adds a
new face (2-cell) and a new three-dimensional (volumetric) cell. The topology-
modifying operators will be the same as for 2-complexes, since in this case the
third Betti number β3 is null.
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(a) (b) (c)

Fig. 1. Topology-modifying operators on a 2-complex in E3: MV 0Cycle (Make Vertex
and 0-Cycle) (a); ME1Cycle (Make Edge and 1-Cycle) (b); MF2Cycle (Make Face
and 2-Cycle) (c)

4 Comparison with Other Euler Operators

We show that various Euler operators proposed in the literature for 2D and 3D
cell complexes are either instances of our operators, or can be expressed in terms
of them.

Virtually all proposed sets of basis Euler operators contain MEV (Make Edge
and Vertex) and MEF (Make Edge and Face) operators, which are the same
as our M0C1C (Make 0-cell and 1-cell) and M1C2C (Make 1-cell and 2-cell)
operators, respectively.

Several sets of basis operators have been proposed for manifold 2-complexes
bounding a solid in E3, called boundary models. In these models, there is only one
implicitly represented volumetric cell (corresponding to the cavity determined
by the complex), which is not necessarily a topological cell. Various forms of
topology-modifying operators [EW79, BHS80, MS82, Man88] are defined for
such models.

The glue operator in [EW79] merges two faces and deletes both of them. It
corresponds to the connected sum operator on manifold surfaces. Two faces may
be glued if they have the same number of vertices, and they have no edges in
common. The glue operator deletes not only the two faces, but it deletes also all
the edges and vertices on the boundary of one of the deleted faces. There are
two instances of the glue operator, illustrated in Figure 2.

- if the two glued faces belong to two different shells, one shell is deleted (β0

is decreased by one), and the operator is called KFS (Kill Face and Shell).
- if the two glued faces belong to the same shell, a handle (genus) is created
(β1 is increased by two), and the operator is called KFMH (Kill Face, Make
Hole).

(a) (b)

Fig. 2. Two instances of the glue operator: KFS (Kill Face and Shell) (a), KFMH
(Kill Face, Make Hole) (b)
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Let v1, e1, v2, e2, .., vk, ek and v′1, e
′
1, v

′
2, e

′
2, .., v

′
k, e

′
k be the cyclical lists of vertices

and edges of the two glued faces f and f ′, listed in the order in which they
are identified. Both instances of the glue operator can be expressed through our
operators as follows:

– M1CK0Cycle for KFS and M1C1Cycle for KFMH creates an edge con-
necting v1 and v′1,

– K0C1C contracts the edge (v1, v
′
1), and identifies v′1 with v1 (vertex v1 is

the current vertex),
– M1C2C makes a triangular face with vertices vi, vi+1, v

′
i+1 for current vertex

vi, K0C1C and K1C2C identify vertex v′i+1 with vertex vi+1 and edge e′i+1

with edge ei+1, respectively (vi+1 is the current vertex),

– M2C2Cycle and K1C2C identify edge e′k with edge ek,
– K2C2Cycle deletes face f ′ and the 2-cycle formed by faces f and f ′,
– K2C2Cycle for KFS merges the two solids bounded by shells containing f

and f ′ into one, and K2CM1Cycle for KFMH deletes face f and creates
a 1-cycle determined by edges e1,..,ek.

In [BHS80, MS82, Man88], the topology-modifying operator is called MRKF
(Make Ring, Kill Face). It is similar to the glue operator in [EW79], but it
imposes less restrictive conditions on the glued faces, and it deletes only one of
the faces. It creates a ring and deletes a face from the model, by gluing a face
to another face, thus deleting one face and making an (inner) ring in another
face. The face that is not deleted is transformed into a non topological cell. The
operator has two instances:

- MRKFS (Make Ring, Kill Face and Shell) glues together two faces belong-
ing to two different shells, thus merging two shells into one.

- KFMRH (Kill Face, Make Ring and Hole) glues two faces belonging to the
same shell, thus making a hole (genus) in the surface.

Let f ′ be the face that is glued to face f , and deleted. MRKF can be expressed
through our operators as follows (see Figure 3):

– k M0C1C operators, where k is the number of edges and of vertices of f ′,
– k M1C2C operators, which create a copy of f ′ in f ,

– a sequence defining the glue operator in [EW79],
– (k−1) K1C2C operators (we leave one edge joining a vertex of f to a vertex

of f ′ to maintain the topological validity of face f).

Topology-modifying operators defined for non-manifold 2-complexes in E3 [LL01]
are called MECh (Make Edge and Complex Hole), MFKCh (Make Face, Kill
Complex Hole) and MFCc (Make Face and Complex Cavity). They are the same
as our operators M1C1Cycle, M2CK1Cycle and M2C2Cycle, respectively. For
3-complexes in E3 [MSNK89, Mas93], an additional topology-modifying operator
is defined, called MV lKCc (Make Volume, Kill Complex Cavity), which is the
same as our M3CK2Cycle operator.
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(a) (b) (c) (d) (e)

Fig. 3. MRKF operator expressed through our operators: triangular face to be glued
to the quadrangular face (a), three M0C1C operators (b), three M1C2C operators
(c), glue (d), two K1C2C operators (e)

5 Comparison with Handle Operators

Handle operators on a manifold cell 2-complex Γ triangulating a surface S have
been introduced in [LPT+03]. They are based on handlebody theory for surfaces
[Mil63, Mat02], stating that any surface S can be obtained from a 2-ball by
iteratively attaching handles (0-, 1- and 2-handles).

Attachment of a 0-handle is also an initialization operator. It creates a new
surface with one face, three edges and three vertices. There are three operators
that correspond to attaching a 1-handle. They identify two boundary edges of Γ
(incident in exactly one face) with no vertices in common. If the two identified
edges belong to two different components of Γ , then the number of connected
components and of boundary curves (connected components of boundary edges)
in Γ is decreased by one. If the two identified edges belong to the same component
and the same boundary curve of Γ , then the number of holes (independent 1-
cycles) and the number of boundary curves in Γ is increased by 1. If the two
identified edges belong to the same component and two different boundary curves
of Γ , then the number of holes (independent 1-cycles) is increased by 1, and
number of boundary curves in Γ is decreased by 1. The operator that corresponds
to the attachment of a 2-handle identifies two edges on the boundary of Γ with
two vertices in common. It decreases the number of holes and the number of
boundary curves in Γ by 1. Handle operators in 2D are illustrated in Figure 4.

(a) (b) (c) (d) (e)

Fig. 4. Handle operators in 2D: attachment of a 0-handle (a); attachment of a 1-hande
(b), (c) and (d); attachment of a 2-handle (e)

Handle operators can be classified as topology-modifying operators, and they
can be expressed through our operators as discussed below:

– The attachment of a 0-handle corresponds to creating an initial triangle
(a 2-ball). It can be expressed as M0C0Cycle operator, two M0C1C op-
erators and one M1C2C operator, which together create a triangle (see
Figure 5 (a)).
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– The attachment of a 1-handle identifies two boundary edges e1 and e2 with
no vertices in common. It can be expressed through one M1CK0Cycle and
one M1C1Cycle operator if e1 and e2 belong to different components, or two
M1C1Cycle operators if they belong to the same component (the created
edges connect the endpoints of e1 to the corresponding endpoints of e2),
two K0C1C operators (they contract the two created edges and identify
the corresponding endpoints), one M2CK1Cycle operator (it creates a face
that fills the ring and deletes the cycle formed by e1 and e2), and finally one
K1C2C operator (it contracts the created face and identifies e1 with e2) (see
Figure 5 (b)).

– The attachment of a 2-handle identifies two edges with both vertices in com-
mon. It can be expressed as a M2CK1Cycle operator, followed by K1C2C
operator.

(a) (b)

Fig. 5. Attachment of a 0-handle in 2D can be expressed as one M0C0Cycle, two
M0C1C and one M1C2C (a). Attachment of a 1-hande in 2D can be expressed as one
M1CK0Cycle or one M1C1Cycle, one M1C1Cycle, two K0C1C, one M2CK1Cycle
and one K1C2C (b).

Handle operators have been extended to 3D in [LT97]. The operator that
creates a new 3-ball (initialization operator) corresponds to the attachment of a
0-handle. Other operators identify two boundary faces (incident in exactly one 3-
cell) of a cell 3-complex Γ triangulating a solid S. The attachment of a 1-handle
can be applied in three situations: if the two identified boundary faces are on
different connected components of Γ , then the two components are merged into
one; if the two identified faces belong to the same boundary surface component
of Γ (connected component of boundary faces) and have no edges in common,
then a hole is created; if the two identified faces belong to the different boundary
surfaces of the same connected component of Γ , the operator can be realized
only if Γ is embedded in a space of dimension greater than 3. The attachment
of a 2-handle corresponds to identifying two faces on the same boundary surface
component of Γ that have some edges in common. The operator can create
cavities and/or close holes in Γ . The attachment of a 3-handle is applicable if
the two identified faces belong to the same boundary surface component and
have all edges in common. This operator fills in the cavity formed by the two
identified faces.

The handle operators in 3D generalize the glue operator in [EW79], since the
two faces identified by a handle operator may have none, some, or all edges in
common. Thus, they can be expressed in terms of our operators in a similar
manner.
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6 Concluding Remarks

We have introduced a complete set of basis operators for building and updating
cell complexes in arbitrary dimensions. We have shown how other Euler operators
and handle operators proposed in the literature on 2D and 3D cell complexes
can be expressed through our operators.

An interesting research direction would be to generalize handle operators to
higher dimensions, i.e., for an n-manifold discretized as a cell complex, and to
express them as macro-operators through Euler operators in higher dimensions.

Simplicial complexes, which can be considered as a special case of cell com-
plexes, have been used as a preferred representation of shapes long before cell
complexes. In [LLM+10], a unified framework for building and updating mani-
fold cell 2-complexes has been proposed. It combines topology-preserving stellar
operators, and topology-modifying handle operators. We believe that it would be
interesting to combine our topology-modifying operators with stellar operators.

In [Gom04], the operators in [MSNK89] have been extended to complexes
called stratifications, in which cells, called strata, are defined by analytic equal-
ities and inequalities. The cells are not necessarily homeomorphic to a ball, and
they may have incomplete boundaries. We plan to investigate the relationship
between our operators and the ones in [Gom04], in the case of cell complexes.

Hierarchical pyramidal models have been defined in the framework of combi-
natorial maps [BK03], based on topology-preserving operators. We plan to define
a multi-resolution model for cell complexes based on our operators.

Acknowledgments. This work has been partially supported by the Italian
Ministry of Education and Research under the PRIN 2009 program, and by the
National Science Foundation under grant number IIS-1116747.
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Abstract. Triangle three-dimensional meshes have been widely used to
represent 3D objects in several applications. These meshes are usually
surfaces that require a huge amount of resources when they are stored,
processed or transmitted. Therefore, many algorithms proposing an ef-
ficient compression of these meshes have been developed since the early
1990s. In this paper we propose a lossless method that compresses the
connectivity of the mesh by using a valence-driven approach. Our algo-
rithm introduces an improvement over the currently available valence-
driven methods, being able to deal with triangular surfaces of arbitrary
topology and encoding, at the same time, the topological information of
the mesh by using Homological Spanning Forests. We plan to develop
in the future (geo-topological) image analysis and processing algorithms,
that directly work with the compressed data.

Keywords: Triangle Mesh Compression, Homological Spanning Forest,
Computational algebraic topology.

1 Introduction

Polygon three-dimensional meshes have been widely used on many different ap-
plications to represent 3D objects. In fact, since triangles are the basic geometric
primitives for standard graphics hardware and for many simulation algorithms,
triangle meshes are the most commonly used. This is the reason why most of the
effort in the field of static 3D model compression has been devoted to triangle
meshes.

We focus here in triangle meshes that often require a huge amount of data for
their storage, processing and transmission in the raw data format. Therefore, to
find an efficient method for compressing these meshes is one of the aims of the
work we present here.

Besides that, the ability of computing and storing topological information of
these meshes is also an issue of interest for many problems dealing with them.
This is the case of medical image processing, where topological information is
crucial in order, for instance, to make a meaningful automatic classification of
the images.

M. Ferri et al. (Eds.): CTIC 2012, LNCS 7309, pp. 108–116, 2012.
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The method we propose here provides a lossless compression of the connec-
tivity of the mesh, allowing the inclusion of its topological information in the
coded file and/or its automatic computation in the decompression process.

In order to compress the connectivity of the mesh, a valence-driven approach
started by Touma and Gotsman [2] is used. This valence-driven approach codifies
the neighborhood of each vertex as a number following a certain order. Using
this “valence”information the mesh can be reconstructed without loosing infor-
mation. Our variation introduces an improvement over the currently available
valence-driven algorithms, being able to deal with triangular orientable meshes
of arbitrary topology (not necessary 2-manifold), keeping all the benefits of the
valence-driven approach.

In the compression method we propose here, the data structures defined by
Molina-Abril and Real [4] (called Homological Spanning Forest) can be easily
computed without increasing the computational time of the algorithm. Let us
notice that by using this structure, we encode not only basic topological in-
formation like Betti numbers, genus or Euler characteristic, but also advanced
topological information (reconstruction of the boundary, homological classifica-
tion of cycles, etc.). The inclusion of this structure in the compressed data pro-
vides a suitable framework for a geo-topological processing in the compressed
domain (contractibility testing and transformability of cycles, topological anal-
ysis of ROIs, shortest path problems, etc.). The possibility of directly working
with the compressed data, is an important advantage when dealing with large
meshes and images.

The resulting algorithm uses less than 1.5 bits per vertex (bpv) on average to
encode mesh connectivity. This compression ratio coincides with the state-of-the-
art ratio that has not been seriously challenged till now. As other valence-driven
algorithms, the proposed method can be used in progressive transmission, which
means that the mesh can be decompressed, processed and rendered during the
transmission process.

In particular the investigation about connectivity compression has been de-
veloped under the project VirSSPA’10, in the Hospital Universitario Virgen del
Roćıo, Seville (Spain), and financed by the Consejeŕıa de Salud de la Junta de
Andalućıa and FEDER founds.

In order to complete the goals of the project, an application developed in C++
implementing the introduced technique has been developed. A database of more
than six hundred medical images of real patients from the Hospital Universitario
Virgen del Roćıo has been used to corroborate the theoretical results.

2 Connectivity Compression Method

For compressing the connectivity of an orientable triangle mesh, a valence-driven
algorithm has been developed. This approach was presented in 1998 by Touma
and Gotsman [2], compressing the connectivity in terms of the neighborhood of
each vertex. In the algorithm we propose here, a random triangle of the mesh is
selected to be the origin of three implosions (one for each of its three vertices).
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Also the triangle face is defined as the imploded region, being its border defined
as the three edges plus the three vertices.

The implosion of vertex v is defined as the process in which v and its neighbor-
hood faces are destroyed by collapsing (or being squeezed in) on v. An implosion
is always produced by a vertex in the border of the imploded region, growing
it. The number of new vertices that have been added to the implosion region
border due to the implosion is registered in order to be able to reconstruct the
implosion in the decompression process.

Fig. 1. An implosion (colored in yellow) from a vertex that belongs to a hole in the
mesh (in green), and the growing of the imploded region (in black) surrounding the
hole

This process also produces sorted list of vertices as they pass through the regular
region of the mesh to the imploded region border. This distribution, based on the
mesh topology, is very useful for the next step of a triangle mesh compression, that
is the geometry compression (it will not be treated in this paper).

Two special cases of implosions can be distinguished when dealing with 3D
triangle surfaces. Using the terminology coined by Touma and Gotsman, we call
these two cases split and merge. Although these special cases are not exactly
the same as those defined by Touma and Gotsman (as our method is developed
from an implosion point of view), they both are produced by the same topological
principles, so the notation has still sense in our case.

– SPLIT
A split is produced when an implosion touches its own region border. This
produces a split of the border into two, so if the imploded region has only
one border, after the split it will have two.

– MERGE
A merge occurs when an implosion touches another border that is different
from the border where the vertex that produced the implosions belongs. In
this case, a merge of the two borders needs to be done. If the imploded region
has two borders, after the merge it will have only one.
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3 Homological Spanning Forest Representation

Roughly speaking, topology in a discrete context helps to understand the de-
gree of connectivity of subdivided geometric structures. For subdivided objects,
homology is topology measured in terms of linear combinations (called chains)
of unit elements or bricks (also called cells), and in terms of “boundary rela-
tions” describes the connectivity dependencies among these bricks. Homology
depends on the ring of coefficient, and gives an algebraic answer in terms of
formal sums of bricks that have no boundary (for example, closed subdivided
curves or surfaces). These sums are called cycles and homology determines a rep-
resentative cycle for each n-dimensional hole or homology generator the object
has (connected components, tunnels, cavities, etc). In this way, homology can
be considered as a specification of the contribution of each brick to the creation
of the homology representative cycles.

In order to codify these connectivity information in an efficient way, we use
here a graph representation called Homological Spanning Forest (or HSF for
short). These hierarchical tree-like structure gives a positive and efficient answer
to the problem of codifying and computing classical algebraic topological infor-
mation (Euler characteristic, Betti numbers, classification and relations between
cycles, etc.). A detailed explanation about the topological information that the
HSF codifies, and its formal definition can be found in [5]. Relations between
the HSF and Morse Theory, in [4].

We will not go here into details about the Homological Spanning Forest rep-
resentation. An elementary example of a subdivided object is shown in Figure
2 for the understanding of this idea. Given a geometric graph G, its homology
information can be directly captured by means of a spanning tree T of G. In
fact, we transform T into a directed tree T d by adding arrows to every edge in
T , in such a way that at most one arrow comes out from each vertex. Therefore,
there will be only one vertex s of G, called sink, from which no arrow comes out.
In Figure 2 we interpret an arrow (e, f) in T d from the vertex f to the vertex
e as an elementary “deformation” operation, “contracting” in a continuous way
the vertex f onto e through the edge (e, f) inside the object. The result of apply-
ing (no matter the order we choose) the set of homology-preserving operations
represented by a red arrow in Figure 2, is a reduced structure consisting of only
three bricks: the vertex e, and two loops or “edges” starting and ending at the
same common vertex e (in fact, they represent the cycles {(c, e), (d, e), (c, d)}
and {(c, e), (c, f), (e, f)} coming from (c, e) and (c, f), respectively).

The directed spanning tree T d can be interpreted in dynamical terms, as the
way in which the set of vertices of the graph is “collapsed” to a representative
vertex of the connected component (in this case, the vertex e in black). These
three representative cycles of homology generators (in this case, no matter of the
ground ring we use but heavily dependent on the spanning tree T ) are determined
by the following bricks of G (called critical): the edges (c, f), (c, e) that belong
to G \ T , and the sink vertex e that belongs T . Their integer homology groups
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are one copy of Z in dimension 0 and two copies in dimension 1. A Homological
Spanning Forest representation F(G) for the subdivided geometric structure G
is the set of trees F(G) = {T d, T1, T2}, where T1 and T2 are trees composed by
only one “vertex”: the original edges (c, e) and (c, f) respectively.

a) b) c)

Fig. 2. a) A geometric graph G drawn on R2, b) a directed spanning tree (in red)
showing a homological “deformation” process, and c) the minimal homological object
(in black)

If we now add two triangles to the previous graph obtaining a new object
O, we can now construct a tree T d2 codifying the “collapsing” of (c, f) and
(c, e) to the triangles (c, e, f) and (c, d, e) respectively (see Figure 3). Then,
the HSF representation F(O) for the subdivided object O is the set of trees
F(O) = {T d, T d2}.

a) b) c)

Fig. 3. a) A geometric object O, b) a directed spanning tree (in red) showing a
homological “deformation” process, and c) the minimal homological object (in black)

This graph-based representation, suitably encodes advanced topological fea-
tures of the object, due to the fact that the HSF forest can be automatically
rewritten in algebraic terms (with coefficients in a field) as a chain homotopy
operator, that determines a strong relationship at chain level (formal sums of
bricks) between the geometric object and its minimal homological expression;
that is a chain homotopy equivalence. The chain homotopy operator can be di-
rectly extracted from the forest as sums of cells following the paths of the trees
(see [5] for more details). By advanced topological information we mean not only
Euler characteristic and Betti numbers, but also classification of cycles, relations
between cycles, etc.
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4 Connectivity Compression Algorithm

The compression algorithm is presented in algorithm 1. The decompression
method works similarly, but reading the implosions information from the
compressed file and then creating the mesh.

Algorithm 1. Compression

Require: List of triangles and vertex information (coordinates, normals and color) of
an orientable triangle mesh.

Ensure: Triangle mesh compressed.
Ensure: HSF of the mesh.
1: while there are no imploded vertices do
2: Select a no imploded triangle.
3: Define the triangle as imploded region.
4: Build the HSF for that triangle.
5: Define the triangle border as the imploded region border, and make it the active

border.
6: while there is an active border do
7: if all vertices of the border have been imploded then
8: Delete the border.
9: if there is no inactive border then
10: End loop.
11: else
12: Select an inactive border as active.
13: end if
14: else
15: Select a not imploded vertex of the active border.
16: Implode the vertex.
17: Register valence, splits and merges.
18: Build the HSF on the implosion, connecting them with the imploded region.
19: end if
20: end while
21: end while
22: return Homological Spanning Forest
23: return Compressed mesh

The Touma and Gotsman algorithm [2] has an average compression ratio of 1.5
bits per vertex. This ratio has not been seriously challenged till now. However,
these results are purely empirical, and a theoretical study is not available.

Alliez and Desbrun [1] proposed a method to further improve the performance
of Touma and Gotsman algorithm. They observed that the code produced by
splits consumes a non-trivial portion of coding bits, and proposed some simple
techniques to reduce it, especially for irregular meshes where this special code



114 J. Carnero, H. Molina-Abril, and P. Real

can be huge. Alliez and Desbrun proved that if the amount of the splits is
negligible, the performance of their algorithm is upper-bounded by 3.24 bpv,
which is exactly the same as the theoretical bits per vertex value computed by
enumerating all possible planar graphs [6].

In the algorithm we present here, our results are close to the ones by Touma
and Gostman. In the near future we plan to adapt the ideas presented by Alliez
and Desbrun to our algorithm in order to reduce the compression ratio. This
will give us an algorithm that is able to reach not only reach the theoretical
minimal compression ratio, but also to include in the compressed file (by using
the implosion technique) the topological information of the mesh (by computing
the so called HSF data structures).

4.1 HSF Data Structures Generation

In [3], the HSF computation algorithm has quadratic time complexity. The ad-
vantage of including the HSF representation computation in the proposed com-
pression method, is that the computational time is not increased. The forest
can be directly computed at the same time the implosions are generated. On
the same way, in case the compressed data do not contain the encoded HSF
structure, they can also be computed during the decompression process or even
directly from the compress domain.

The computation of the HSF is performed following a “star-shape” strategy
(see Fig. 4). In this way when a vertex “v” implodes, the arrows going from its
neighbors vertices to the vertex “v” are added to the HSF structure (colored
in red in Figure 4). The first imploding vertex of the whole process is the sink
vertex “s”. The arrows corresponding to the neighbor triangles are also added
considering the star flow (colored in blue in Figure 4). Following this strategy,
the trees.

a) b) c)

Fig. 4. a) The initial triangle mesh, b) The first implosion and HSF generation, and
c) Next steps of the compression method and HSF generation
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a) b) c)

Fig. 5. a) Two imploded areas needing to be merged, b) The first step of the HSF
representation computation in the merge operation, and c) The next steps of the HSF
representation computation in the merge operation producing a bifurcation in the tree
(marked within a circle in the picture)

Problems may occur when a merge or split takes place (see Figure 5). In this
case, the HSF structure is constructed by making a bifurcation in the T d2 tree.

5 Conclusions

In this paper we propose a lossless compression method based on a valence-
driven approach. The main advantage of the method, is that it compresses tri-
angle meshes of arbitrary topology and encodes, at the same time, the topolog-
ical information of the mesh by using Homological Spanning Forests, without
increasing the computational time.

The topological information encoded in the HSF structure can be later used
for processing geometrical and topological information in the compressed domain
(automatic cycle classification, how to transform -if it is possible- a cycle into
another inside the object, recognition of 3D objects based on geometrical and
topological features, etc). The algorithm allows progressive transmission, in the
sense that the mesh can be decompressed, processed and rendered while its data
is being received.
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Abstract. Homology computations recently gain vivid attention in sci-
ence. New methods, enabling fast and memory efficient computations are
needed in order to process large simplicial complexes. In this paper we
present the acyclic subspace reduction algorithm adapted to simplicial
complexes. It provides fast and memory efficient preprocessing of the
given data. A variant of the method for distributed computations is also
presented. As a result, Betti numbers can be effectively computed.

Keywords: Homology algorithms, reduction algorithms, acyclic sub-
space method.

1 Introduction

The classical way of computing homology consists in finding the Smith Normal
Form of the matrix of the boundary map [9]. The complexity of the Smith Nor-
mal Form algorithm is supercubical. This is prohibitive in applications where the
size of the boundary map matrix is large, in particular in rigorous numerics of dy-
namical systems, problems in image recognition, data analysis, material science,
electromagnetism, robotics, theoretical computer science, ecology, molecular bi-
ology and other areas. Therefore, in recent years several methods have been
proposed to speed up homology computations, particularly computations of the
homology of sets in various representations. Among such methods are geomet-
ric reduction algorithms. They aim at finding a smaller representation with the
same homology as the original set. A method of this type, recently proposed in
[8], is based on the construction of an acyclic subset. We recall that a simplicial
complex A is acyclic iff the homology of A is isomorphic to the homology of a
point. In this paper a component-wise acyclic subcomplex A of a simplicial com-
plex S is a simplicial complex whose connected components are acyclic subsets
of corresponding connected components of S. The acyclic subspace algorithm is
based on the simple observation that if A is an acyclic subcomplex of a simplicial
complex S, then:

Hn(S) ∼=
{
Hn(S,A) for n ≥ 1

Z for n = 0
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Note that due to the excision theorem [9] the relative homology Hn(S,A) de-
pends only on the neighborhood of S \ A in S. Therefore, if a large acyclic
subcomplex A of S may be constructed quickly, the problem of finding the ho-
mology of S is reduced to a relatively small set and consequently may be found
quickly. The aim of [8] was to show that in the case of cubical complexes a
relatively large acyclic subcomplex may be found in linear time.

The goal of the presented paper is to extend the ideas of [8] to the case of
simplicial complexes. In particular, we propose two fast algorithms constructing a
possibly large acyclic subcomplex A of every connected component of a simplicial
complex S. Moreover, we show how to extend this algorithms for the purposes
of distributed computations.

Acyclic subset reduction leads to more efficient computation of Betti numbers,
useful in image recognition.

2 Preliminaries

For the purposes of this paper a finite family of finite sets S is called an abstract
simplicial complex if for every P ∈ S and for every Q ⊂ P we have Q ∈ S. An
elementP ∈ S is called a simplex. IfP ∈ S andQ ⊂ P thenQ is called a face ofP . A
simplex P ∈ S is said to bemaximal if there is no simplexQ ∈ S such that P � Q.
Throughout this paper Smax(S) denotes the set of maximal simplices of S. The
algebraic closure of a simplexP , denoted by cl(P ) is a family of simplices consisting
ofP and all its faces. The closure of a family of simplicesK is cl(K) =

⋃
P∈K cl(P ).

For a simplex Q ∈ S its neighborhood consists of all maximal simplices in S whose
intersection with Q is nonempty . We denote this set by

n(Q) = {P ∈ S | Q ∩ P 
= ∅ and P is a maximal in S}.
By the dimension of a simplex P we mean dim(P ) := card(P )−1. For a simplicial
complex S by S0(S) we denote the set of all the vertices of S, i.e. its 0-dimensional
simplices, and we make a technical assumption that every vertex in S0 has a
unique label. In the sequel, we use a hash table [1], denoted H , whose keys are
labels of vertices and for each key the value is the list of all maximal simplices
containing the vertex labeled with the given key.

The main homological tools used in the paper are the exact sequence of a
pair and the Mayer-Vietoris sequence [9]. The exact sequence of a pair is used to
conclude that a subcomplex with trivial reduced homology can be removed from
the initial complex without changing its reduced homology. From the Mayer-
Vietoris sequence it follows, that a simplex can be added to the constructed
acyclic subcomplex if and only if its intersection with the acyclic subcomplex
has trivial reduced homology.

3 Incidence Graph

We say that a graph G = (V,E) is an incidence graph of a simplicial complex
S if V is the set of maximal simplices of S and (S1, S2) ∈ E iff S1 ∩ S2 
= ∅.
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An augmented incidence graph is a triple (V,E,C) where (V,E) is the incidence
graph and C is the list of connected components of incidence graph, in which
each connected component is represented by a single maximal simplex from this
component. We will use augmented incidence graphs to retrieve all the informa-
tion about neighborhoods in a simplicial complex, necessary in the process of
constructing an acyclic subset.

In this section we show an algorithm constructing such a graph for a given
simplicial complex. The input data for this algorithm is the list of maximal
simplices Smax(S) and VertexHash H , described in Section 2. For each vertex v
we consider the list H [v] storing the maximal simplices that contain v. Q denotes
the queue used to store simplices which have not yet been added to the incidence
graph and whose neighbors are already there. Functions Enqueue and Dequeue

are standard operations on queues and their description can be found in [1].

Algorithm 3.1. IncidenceGraph(MaximalSimplexList Smax(S), VertexHashH)

1: V := ∅; E := ∅; C := ∅; Q := EmptyQueue;
2: for all Simplex P ∈ Smax(S) do
3: if P /∈ V then
4: C := C ∪ {P};
5: Enqueue(Q, P );
6: while Q 
= ∅ do
7: Simplex current := Dequeue(Q);
8: V := V ∪ {current};
9: for all Vertex v ∈ current do
10: for all Simplex neighbour ∈ H [v], neighbour 
= current do
11: if neighbour /∈ V then
12: e := (current, neighbour); E := E ∪ {e};
13: if neighbour /∈ Q then
14: Enqueue(Q, neighbour);
15: return Graph(V,E,C);

Theorem 3.1. Algorithm 3.1 stops and constructs the augmented incidence
graph G = (V,E,C) for simplicial complex S in O(card(V ) · dim(S) · deg(H))
where dim(S) = maxP∈S{dim(P )} and deg(H) = maxv∈S0(S){length(H [v])}.
Moreover, for each connected component G′ ⊂ G its set of nodes V (G′) equals to
the set of maximal simplices in the corresponding connected component S ′ ⊂ S.
Proof. Obviously V contains all maximal simplices in Smax(S). Pair
(S1, S2) ∈ E iff S1 ∩ S2 
= ∅, therefore augmented incidence graph is obtained.
Simplex P is added to C in line 4 only if P /∈ V which means P ∩ S = ∅ for all
S ∈ V and P represents a new connected component, since in while loop at line
6 BFS procedure, which finds connected components, is implemented. Simplex
P is added to Q only once, hence the while loop in line 6 always completes after
adding to V all elements from connected component of P .
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The internal for all loop in line 9 is performed for every d-dimensional simplex
at most dim(S) · deg(H) times. Since the while loop in line 6 is performed at
most card(V ) times, the complexity of the algorithm is O(card(V ) · dim(S) ·
deg(H)). �

4 Constructing Acyclic Subset

Since the homology of a disconnected complex is a direct sum of homologies of
its connected components, later in this paper we will construct component-wise
acyclic subcomplexes. In this section we present two approaches to construc-
tion of such complexes using the incidence graph as well as a function named
AcyclicityTest. The purpose of this function is to decide whether a simplex
may be added to the constructed acyclic set without loosing acyclicity. How to
obtain such a function is the purpose of Section 6.

The first algorithm, referenced in the following sections as AccST, is an adap-
tation of the algorithm presented in [8] to the case of simplicial complexes. The
adaptation is not straightforward, because, unlike the case of cubical sets, in the
simplicial case it is not obvious how to efficiently determine the neighborhood of
a simplex. For this, we use the incidence graph presented in Section 3. Another
difference is that, instead of one, we construct several acyclic subsets in each con-
nected component of S and then join them by a spanning tree. It allows us to
construct larger acyclic subsets for certain kinds of data. To do this we need two
auxiliary functions: FindSimplexNotInAccSub and CreateSpanningTree. Both
are based on standard graph algorithms [1]. The first finds a simplex that has no
intersection with the acyclic subset. It uses breadth-first search algorithm. If no
such simplex can be found, it returns NULL. The other takes as an input a list of
simplices, one per each constructed acyclic subset. It first constructs the shortest
paths connecting the acyclic subsets. Each path is a list of one-dimensional sim-
plices. The paths are used to build a graph in which nodes are the constructed
disjoint acyclic subsets and edges are the constructed paths. Then, Kruskal al-
gorithm [1] is applied to create a spanning tree joining the constructed acyclic
subsets.

Theorem 4.1. Algorithm 4.1 always stops. Given a simplicial complex S on
input, represented by the incidence graphG = (V,E,C), it returns a component-
wise acyclic complex A on output.

Proof. In lines 11 and 12 a simplex P is added simultaneously to Q and to
the acyclic subset A. Since P may be added to A only once and the num-
ber of simplices is finite, the inner while loop in line 7 always finishes. Func-
tions FindSimplexNotInAccSub and CreateSpanningTree are respectively BFS
and Kruskal algorithms [1], hence they both complete. Every simplex found by
FindSimplexNotInAccSub in line 13 is added to the acyclic subset. Hence, the
finiteness of V implies that the while loop in line 4 completes. Thus, since the
number of simplices in C is also finite, we know that the algorithm always stops.
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Algorithm 4.1. AccST(IncidenceGraph (V,E,C))

1: A := ∅; Q := EmptyQueue;
2: for all Simplex P ∈ C do
3: L :=EmptyList;
4: while P 
= ∅ do
5: A := A∪ {P};
6: Enqueue(Q, P );
7: while Q 
= ∅ do
8: Simplex Q := Dequeue(Q);
9: for all Simplex S ∈ n(Q) \ A do
10: if AcyclicityTest(A, S) = true then
11: A := A∪ {S};
12: Enqueue(Q, S);
13: P :=FindSimplexNotInAccSub(V,E, P,A);
14: if P 
= NULL then
15: L := L ∪ {P};
16: A := A∪ CreateSpanningTree(L);
17: return A;

Since each simplex is acyclic, we begin the construction of the acyclic subsets
of the components of S with the representants of the connected components of
the incidence graph described in Section 3. As long as we can find a simplex
acyclically intersecting A, by Mayer-Vietoris Theorem we may add it to A with-
out losing its acyclicity. If we cannot find such a simplex, we look in the same
connected component for another one that has no intersection with A and we
build acyclic subset around it as described above. We stop this procedure when
there are no simplices that do not intersect A. Due to Mayer-Vietoris Theorem
acyclic subsets constructed that way cannot intersect each other. Now let us as-
sume, we have a number of disjoint acyclic subsets of A and we want to connect
them in order to form a larger acyclic subset. First, we need to find paths, i.e.
lists of one-dimensional simplices, joining the subsets. Since all components of
the constructed set A are contained in the same connected component of S, we
can always find a path joining any two of them. Unfortunately, the constructed
paths can intersect each other or even other parts of A creating unwanted cycles.
Nevertheless, is is not difficult to avoid this problem by joining acyclic parts
step by step and adding only parts of the connecting paths so as not to lose
acyclicity. �

Algorithm 4.2, referenced in the following sections as AccIG, constructs simulta-
neously the incidence graph and a component-wise acyclic complex. For
certain kinds of data it provides faster and more memory efficient way of con-
structing component-wise acyclic subcomplex than Algorithm 4.1. The nodes
of the resulting graph G are these simplices in Smax(S) which are not in the
acyclic subset. The algorithm uses the general graph functions AddToGraph and
RemoveFromGraph, respectively adding a simplex to or removing a simplex from
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Algorithm 4.2. AccIG(MaximalSimplexList Smax(S), VertexHash H)

1: V := ∅; E := ∅; A := ∅; Q := EmptyQueue;
2: for all Simplex P ∈ Smax(S) do
3: if P /∈ V andP /∈ A then
4: A := A∪ {P};
5: EnqNeighb(P,H,Q);
6: while Q 
= ∅ do
7: Simplex current := Dequeue(Q);
8: if AcyclicityTest(A, current) = true then
9: A := A∪ {current};
10: EnqNeighb(current,H,Q);
11: if current ∈ V then
12: RemoveFromGraph(current, V,E);
13: else if current /∈ V then
14: AddToGraph(current, V,E,H);
15: EnqNeighb(current,H,Q);
16: return Graph(V,E), A;

a given graph. It also uses function EnqNeighb, which enqueues all neighbors of
given simplex that are not yet in the queue nor in the acyclic subset.

Theorem 4.2. Algorithm 4.2 stops and returns a component-wise acyclic com-
plex A and the incidence graph G = (V,E) whose nodes are the maximal sim-
plices in Smax(S) \ A.

Proof. A simplex may be added to Q only if it does not belong to the acyclic
subset and its neighbor has been added to the incidence graph or the acyclic
subset. Since each simplex can be added to the graph or the acyclic subset at
most once, the algorithm stops.

We start building a new acyclic component of the set A by finding a simplex
that has not been added yet neither to the graph nor to the acyclic subset. Thus,
it is not a neighbor of any simplex already processed. It means it represents new
connected component of S in which we can start build new acyclic subset A. We
extend it only by adding those maximal simplices that have acyclic intersection
with A. For every simplex in Q we either add it to the acyclic subset or to the
incidence graph, which means that nodes of the created incidence graph are all
maximal simplices of Smax(S) that have not been added to A. �

5 Distributed Computations

In this section we show how the algorithms that compute a component-wise
acyclic subcomplex for a given simplicial complex can be used in distributed
computations. The idea is to divide the initial complex into small parts, then
construct a component-wise acyclic subcomplex and an incidence graph for each
part and finally combine the results into a component-wise acyclic subcomplex
and incidence graph for the initial complex. However, we need to ensure that
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after combining the results from the individual computations the obtained space
is component-wise acyclic, i.e. we do not make cycles while connecting the acyclic
subsets from the different parts. Moreover, we need a way to connect individual
incidence graphs into the incidence graph of the initial complex. The whole
procedure is very technical and resembles what we do in Algorithm 4.1 but in a
more global scale. Let us emphasize that distributed computations involve only
the construction of the incidence graph and the acyclic subset for each part. After
combining the results from the individual reductions we create one complex for
which we can perform homology computations just like in the non-distributed
case.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) the initial simplicial complex, (b) the initial complex splitted into smaller,
partial complexes, (c) the boundary simplices in the partial complexes, (d) the acyclic
subsets in the partial complexes (black), (e) the combined results, (f) the acyclic subsets
joined with a spanning forest (black)

The first step is to split the initial list of maximal simplices of S (Figure 1a)
into lists Pi, i ∈ {1, 2, ..., n} in such a way that

⋃
i P i = Smax(S) (Figure 1b)

and P i∩Pj = ∅ if i 
= j. For every P i we define two sets: BVi :=
⋃

i
=j{S0(P i)∩
S0(Pj)} and BSi := {Q |Q ∈ P i ∧ S0(Q) ∩ BVi 
= ∅}. The elements of BSi

are referred to as the boundary simplices - simplices which have neighborhood
contained in other packages. (Figure 1c). In the process of constructing the
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acyclic subset Ai for each P i we consider only those simplices that are not
boundary simplices (Figure 1d). To do so, we need to change a little Algorithms
4.1 and 4.2 so they include such restriction. We will not present them here, but it
is easy for the reader to do such modification. In our example (Figure 1d) acyclic
subset is constructed from all simplices that are not boundary simplices, but in
general case this is not true. Computations of lists of both incidence graphs Gi

and acyclic subsets Ai may be performed sequentially or in a distributed manner.
In both cases we gain profits from lower memory usage, because list of simplices
for which computations are performed are much smaller than the initial one.
In the second case computations are performed much faster. Moreover, after
constructing the acyclic subsets Ai we can discard all simplices contained in
Ai from the incidence graph and construct a new acyclic subset which is the
intersection of Ai with the lower dimensional faces of simplices which are left
in the incidence graph. In the latter case, we save additional memory needed to
store redundant simplices. Finally, after combining the results (Figure 1e) into
one incidence graph we obtain a structure analogous to the one in Algorithm
4.1. We then create a spanning forest in which nodes are disjoint parts of the
acyclic subset and edges are lists of one-dimensional simplices connecting them
(Figure 1f).

Theorem 5.1. The family of simplices A constructed as above is a component-
wise acyclic subcomplex of the initial simplicial complex S.
Proof. By restricting the acyclic subset algorithm to these simplices that are not
boundary simplices we are sure that the acyclic subsets in the respective parts
do not create cycles after combining them. The rest of the proof is analogous to
the proof of Theorem 4.1. �

6 Acyclicity Tests

The AcyclicityTest function is a tool allowing to decide whether we can add
a simplex to the constructed acyclic subset. The function takes two arguments:
the already constructed acyclic subset A and a simplex P . We distinguish two
types of acyclicity tests:

– a full test – it returns true if and only if A ∩ cl(P ) is acyclic
– a partial test – if it returns true, then A ∩ cl(P ) is acyclic but false on

output denotes a failure to prove that A ∩ cl(P ) is acyclic.

Acyclicity tests in the setting of cubical sets, both full and partial, are proposed
in [8].

The main limitation for quick acyclicity tests is the dimension of the complex.
The full tests both in the cubical [8] and in the simplicial case are based on the
idea of tabulated configurations for boundary elements. The number of configu-

rations is 23
d−1 for a d-dimensional cube and 22

d+1

for a d-dimensional simplex.
This makes the method prohibitive for d > 3 in the case of cubical sets [8] and for
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d > 4 in the case of simplicial complexes [3]. The universal full test that works for
every dimension is the computation of the homology of A∩ cl(P ). However, this
method is computationally very expensive. Therefore, in the dimensions where
the tabulated configurations cannot be used, the use of quick partial tests is of
interest. An acyclic subset algorithm based on partial acyclicity tests remains
correct and often provides acyclic subsets which are not substantially smaller or
even the same size as the algorithms based on full tests.

In the rest of this section we introduce few partial tests for the simpli-
cial case. Given an acyclic subspace A and a d-dimensional simplex P we set
I := A ∩ cl(P ). The first test is based on the investigation of the maximal sim-
plices of I. It is straightforward to check that if the number of maximal simplices
of dimension d− 1 in I is less than or equal to d and there are no maximal sim-
plices of other dimensions in I, then I is acyclic. This proves the following
theorem.

Algorithm 6.1. AccTestCoDim1(Set A, Simplex P)

1: I := MaximalSimplices(A ∩ cl(P ));
2: d :=Dim(P ); i := 0;
3: for all Simplex Q ∈ I do
4: if Dim(Q) = d− 1 then
5: i++;
6: else
7: return false;
8: if i > 0 and i <= d then
9: return true;
10: else
11: return false;

Theorem 6.1. Given a set A and simplex P on input, if Algorithm 6.1 returns
true, then A ∩ cl(P ) is acyclic. However, false on output denotes a failure to
decide whether A ∩ cl(P ) is acyclic.

Algorithm 6.2 tries to find a vertex of P which is a common face of all maximal
simplices in I. If it is able to do so, it means that I forms a topology of a star
and therefore is acyclic. Analogous theorem as for Algorithm 6.1 can be stated
for Algorithm 6.2.

Two more partial tests will be introduced without presenting suitable algo-
rithms and theorems. First of them uses the list of maximal simplices I for
construction of an acyclic subcomplex I ′ of I. The whole procedure is exactly
the same as presented in this paper. For testing acyclicity it uses itself recur-
sively. At the bottom of recursion we only need to determine if the intersection of
two one dimensional simplices is acyclic. In fact it is true if and only if simplices
share common vertex, which is trivial to check. If constructed acyclic subcomplex
I ′ is the same as the initial complex I, then I is acyclic.

The last test constructs simplicial complex from I and performs coreductions
[7] on it. If the resulted complex is fully reduced, it means that I is acyclic.



126 P. Brendel et al.

Algorithm 6.2. AccTestStar(Set A, Simplex P)

1: I := MaximalSimplices(A ∩ cl(P ));
2: for all Vertex v ∈ P do
3: ok := true;
4: for all Simplex Q ∈ I do
5: if v � Q then
6: ok := false;
7: break;
8: if ok then
9: return true;
10: return false;

7 Numerical Experiments

All algorithms presented in this paper have been implemented in C++. The code
will be available as a part of RedHom [11] library. To provide a communication
between processes during distributed computation MPI [4] was used. Both local
and distributed approaches were compared with the coreduction homology al-
gorithm [7], denoted in the following table by CoRed. AccIG and AccST are the
algorithms introduced in Section 4. DAccIG and DAccST denote the outcome of
distributed computations using AccIG and AccST algorithms respectively for a
local construction of an acyclic subspace. Column size denotes the number of
maximal simplices used as input. Value in column s is the total time in seconds
needed for building the incidence graph, performing reductions (which could
be either removal of acyclic subset or coreductions [7]), creating the simplicial
complex from the list of maximal simplices and computing Betti numbers for
the complex [5]. Column MB contains the total amount of memory in megabytes
needed for performing computations. Distributed computations were performed
on 4 nodes (1 master and 3 slaves) simultaneously and values in this case denotes
the maximum running time in seconds over all nodes and maximum amount of
memory that single node needs. Computing generators after reduction of acyclic
subset is still an open problem.

CoRed AccIG AccST DAccIG AccST
Space name Size s MB s MB s MB s MB s MB

Bjorner 3079k 174 2330 203 1035 375 2968 154 568 229 1008

Dunce Hat 4758k 273 3603 327 1647 598 4525 224 821 390 1527

Proj. Plane 2799k 158 2180 189 943 323 2638 143 437 190 900

The second table contains comparison of efficiency of acyclicity test algorithms
presented in Section 6. Algorithm denoted as Tab is acyclicity test that uses
tabulated configurations. CoDim1 and Star are respectively Algorithms 6.1 and
6.2. Rec is recursive test, Hom is full test that uses homology computations and
Cored is test based on coreductions. For each algorithm column s denotes total
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Tab CoDim1 Star Rec Hom Cored
Space name Size s # s # s # s # s # s #

Bjorner 513216 33 513215 49 513215 34 513215 39 513215 166 513215 124 513215

Dunce Hat 793152 53 789279 73 789060 50 789279 55 789279 253 789279 192 789279

Proj. Plane 466560 29 464511 42 464609 31 464511 32 464511 150 464511 111 464511

running time in seconds needed for performing computations, just as described
above, using AccIG algorithm and selected acyclicity test. Column # denotes
number of maximal simplices in constructed acyclic subcomplex.
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Abstract. This paper deals with the concepts of persistence diagrams
and matching distance. They are two of the main ingredients of Topo-
logical Persistence, which has proven to be a promising framework for
shape comparison. Persistence diagrams are descriptors providing a sig-
nature of the shapes under study, while the matching distance is a metric
to compare them. One drawback in the application of these tools is the
computational costs for the evaluation of the matching distance. The aim
of the present paper is to introduce a new framework for the approxima-
tion of the matching distance, which does not affect the reliability of the
entire approach in comparing shapes, and extremely reduces computa-
tional costs. This is shown through experiments on 3D-models.

Keywords: Persistence diagram, shape analysis, dissimilarity criterion.

1 Introduction

Interpreting and comparing shapes are challenging issues in computer vision,
computer graphics and pattern recognition [11,12]. Topological Persistence –
including Persistent Homology [9] and Size Theory [1,10] – has proven to be a
successful comparison/retrieval/classification (hereafter CRC) scheme.

In a nutshell, the basic idea for dealing with the CRC task is to define a
measure of the (dis)similarity between the shapes in a given database. This can
be done by extracting a battery of shape descriptors – the so-called persistence
diagrams – from each element in the database, capturing meaningful shape prop-
erties. Thus, the problem of assessing the (dis)similarity between two shapes can
be recast into the one of comparing the associated persistence diagrams accord-
ing to the matching (or bottleneck) distance, a proven stable distance between
these descriptors. This process defines a metric over the database, that can be
used for CRC purposes. In general, a given persistence diagram may come from
different shapes: This can be interpreted as an equivalence with respect to the
properties captured by that descriptor.

Such an approach has been successfully used in a number of concrete prob-
lems concerning shape comparison and retrieval [4,5,8]. However, defining a
(dis)similarity metric in the case of large databases can lead to considerable

M. Ferri et al. (Eds.): CTIC 2012, LNCS 7309, pp. 128–138, 2012.
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computational costs. The bottleneck in this procedure can be identified in the
evaluation of the matching distance.

The Contribution of the Paper. Reducing the computational costs in defin-
ing a (dis)similarity metric within a database of shapes is definitely a desirable
target: This would enable us to further improve the persistence CRC framework
and apply it to a wider class of concrete problems. The present paper aims to
illustrate an idea to achieve this goal, ranging from a theoretical formalization
of the proposed strategy to its validation through an experimental study. We in-
troduce a multi-scale construction of our matching distance-based (dis)similarity
metric. Our procedure is based on a “dissimilarity criterion” which is formal-
ized in Theorem 1. Experiments on 3D-models show that, using our idea, it is
possible not to affect the reliability of the entire approach in comparing shapes,
extremely reducing the computational costs.

2 Preliminaries

In persistence, the shape of an object is usually studied by choosing a topolog-
ical space X to represent it, and a function ϕ : X → R, called a filtering (or
measuring) function, to define a family of subspaces Xu = ϕ−1((−∞, u]), u ∈ R,
nested by inclusion, i.e. a filtration of X . Applying homology to the filtration
allows us to study how topological features vary in passing from a set of the
filtration into a larger one, and to rank topological features with bounded life-
time by importance, according to the length of their life. The basic assumption
is that the longer a feature survives, the more meaningful or coarse the feature
is for shape description. Vice-versa, noise and shape details are characterized by
a shorter life. For further details we refer to [1,9].

The filtration {Xu}u∈R is used to define persistent homology groups as follows.
Given u ≤ v ∈ R, we consider the inclusion of Xu into Xv. This inclusion induces
a homomorphism of homology groups Hk(Xu) → Hk(Xv) for every k ∈ Z.
Its image consists of the k-homology classes that live at least from Hk(Xu) to
Hk(Xv) and is called the kth persistent homology group of (X,ϕ) at (u, v). When
this group is finitely generated, we denote by βu,v

k (X,ϕ) its rank.
A simple and compact description of persistent homology groups of (X,ϕ)

is provided by the so-called persistence diagrams, i.e. multisets of points whose
abscissa and ordinate are, respectively, the level at which a new k-homology class
is created and the level at which it is annihilated through the filtration.

We use the following notation: Δ+ = {(u, v) ∈ R2 : u < v}, Δ = {(u, v) ∈
R2 : u = v}, and Δ+ = Δ+ ∪Δ.

Definition 1 (Multiplicity). Let k ∈ Z and (u, v) ∈ Δ+. The multiplicity
μk(u, v) of (u, v) is the finite non-negative number defined by

lim
ε→0+

(
βu+ε,v−ε
k (X,ϕ)− βu−ε,v−ε

k (X,ϕ)− βu+ε,v+ε
k (X,ϕ) + βu−ε,v+ε

k (X,ϕ)
)
.
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Definition 2 (Persistence Diagram). The persistence diagram Dk(X,ϕ) is
the multiset of all points (u, v) ∈ Δ+ such that μk(u, v) > 0, counted with their
multiplicity, union the points of Δ, counted with infinite multiplicity.

We will call proper points the points of a persistence diagram lying on Δ+.

p

q’

p’

q’

p’
matching

p

(a) (b) (c) uuu

vvvX Yϕ ψ

Fig. 1. (a) The height function ϕ on the space X, and the associated persistence
diagram D0(X,ϕ). (b) The height function ψ on the space Y , and the associated per-
sistence diagram D0(Y, ψ). (c) The matching between D0(X,ϕ) and D0(Y, ψ) realizing
their matching distance.

Figures 1 (a)− (b) show two examples of persistence diagrams for k = 0. For
instance, in Figure 1 (a) a surface X ⊂ R3 is filtered by the height function ϕ.
The sole proper point of D0(X,ϕ) is p. Its abscissa corresponds to the level at
which a new connected component is born, while its ordinate identifies the level
at which this connected component merges with the existing one. To see, for
instance, that μ0(p) = 1, letting p = (ū, v̄), it is sufficient to observe that, for
every ε > 0 sufficiently small, it holds that βū+ε,v̄−ε

0 (X,ϕ) = 2, βū−ε,v̄−ε
0 (X,ϕ) =

βū+ε,v̄+ε
0 (X,ϕ) = βū−ε,v̄+ε

0 (X,ϕ) = 1, and apply Definition 1.
The matching distance between two persistence diagrams measures the cost of

finding a correspondence between their points. In doing this, the cost of taking
a point p to a point p′ is measured as the minimum between the cost of moving
one point onto the other and the cost of moving both points onto the diagonal,
see Figure 1 (c) for an example. In particular, the matching of a proper point p
with a point of Δ can be interpreted as the destruction of the point p. Formally:

Definition 3 (Matching Distance). Let D1
k, D

2
k be two persistence diagrams.

The matching distance dmatch

(
D1

k, D
2
k

)
is defined as

dmatch(D
1
k, D

2
k) = min

σ
max
p∈D1

k

d(p, σ(p)),

where σ varies among all the bijections between D1
k and D2

k and

d ((u, v) , (u′, v′)) = min

{
max {|u− u′|, |v − v′|} ,max

{
v − u

2
,
v′ − u′

2

}}
(1)

for every (u, v) , (u′, v′) ∈ Δ+.
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The importance of the matching distance in persistence is based on the fact that
persistence diagrams are robust with respect to it. Roughly, small changing in a
given filtering function (w.r.t. the max-norm) produces just a small changing in
the associated persistence diagram w.r.t. the matching distance [7,9].

Remark 1. From Definition 3 it follows that dmatch(D
1
k, D

2
k) ≤ (V − U)/2, with

U = min
(u,v)∈L

u, V = max
(u,v)∈L

v and L = D1
k ∪D2

k. Indeed, (V − U)/2 upper bounds

the cost of the bijection between D1
k and D2

k, taking all the points of L onto Δ.
Since dmatch is realized by the cheapest bijection between D1

k and D2
k, we have

the claim.
This result will be useful later.

3 Theoretical Setting and Results

Computationally, evaluating the matching distance between two persistence di-
agrams takes O(h2.5) [6], being h the total amount of their proper points.

As stressed before, in CRC applications involving large databases, comput-
ing the matching distance for any possible shape comparison can imply a high
computational cost. In fact, noisy or detailed shape models can produce persis-
tence diagrams with a large number of proper points. Our goal is to reduce this
computational complexity by contenting, at first, of a rough estimation of the
metric induced by the matching distance over a database, to be possibly refined
whenever it is not sufficient to distinguish between different shapes.

The key point here is the observation that, in most cases, realizing that two
shapes are very dissimilar does not require to compute the exact matching dis-
tance between the associated persistence diagrams. Deciding, e.g., whether an
elephant is different from an ant requires only a first glance at the two animals.
In our framework, such a “first glance” could be equivalent to a rough estima-
tion of the matching distance – and hence faster than its exact computation –
between the persistence diagrams associated with the “elephant shape” and the
“ant shape”, respectively. On the contrary, a different level of accuracy could
be necessary to distinguish, e.g., the “wolf shape” from the “German shepherd
shape”. This would lead to a sharper estimation of the matching distance be-
tween the associated persistence diagrams, possibly to its actual computation.

In light of these considerations, we propose a multi-scale construction of our
matching distance-based (dis)similarity metric.

Let Dk be a persistence diagram. For every p = (u, v) ∈ Δ+ and every δ > 0,
let Qδ(p) be the open square centered at p of side equal to 2δ, and let us denote
by �(Qδ(p), Dk) the number of points of Dk contained in Qδ(p).

Theorem 1 (Dissimilarity Criterion). Let D1
k, D

2
k be two persistence dia-

grams for which a point p = (u, v) ∈ Δ+ and two real numbers δ, ε > 0 ex-
ist, such that Qδ+ε(p) ⊂ Δ+ and �(Qδ(p), D

1
k) − �(Qδ+ε(p), D

2
k) > 0. Then

dmatch(D
1
k, D

2
k) ≥ ε.



132 A. Cerri, B. Di Fabio, and F. Medri

Proof. Since �(Qδ(p), D
1
k) > �(Qδ+ε(p), D

2
k), for every bijection σ : D1

k → D2
k

there exists at least one proper point q̄ = (ū, v̄) ∈ D1
k such that q̄ ∈ Qδ(p) and

σ(q̄) = q̄′ = (ū′, v̄′) ∈ D2
k, with q̄′ 
∈ Qδ+ε(p). Then, from (1) it holds that

d(q̄, q̄′) ≥ min

{
ε,max

{
v̄ − ū

2
,
v̄′ − ū′

2

}}
≥ min

{
ε,

v̄ − ū

2

}
= ε. (2)

Indeed, in (2), the first inequality holds because both |ū − ū′| and |v̄ − v̄′| are
not smaller than the difference between the semi-sides of Qδ(p) and Qδ+ε(p);
the second inequality is obvious; the equality follows from both the facts that
v̄− ū > (v−δ)− (u+δ), being (ū, v̄) ∈ Qδ(p) and (u+δ, v−δ) ∈ Δ+ the bottom
right vertex of Qδ(p), and (v− δ− ε)− (u+ δ+ ε) ≥ 0, i.e. (v− δ)− (u+ δ) ≥ 2ε,
being (u + δ + ε, v − δ − ε) ∈ Δ+ the bottom right vertex of Qδ+ε(p). Hence
max
q∈D1

k

d(q, σ(q)) ≥ ε for every bijection σ and, by Definition 3, the claim is proved.

(a) (b) (c)

(d) (e) (f)

uuu

u uu

vvv

v vv

ε

δp

Fig. 2. (a)− (b) Two persistence diagrams D1
k and D2

k. (c) The overlapping of D1
k and

D2
k, and the two squares Qδ(p) and Qδ+ε(p) for a certain p ∈ Δ+. (d)− (f) Algorithm

1 in action: three steps are necessary to find squares in which Theorem 1 holds.



Multi-scale Approximation of the Matching Distance for Shape Retrieval 133

Figures 2 (a)− (c) show an example of Theorem 1 in action. Figures 2 (a)− (b)
represent twopersistence diagrams, sayD1

k andD
2
k, respectively. InFigure 2 (c) the

twomultisets of points are overlapped, and the two squaresQδ(p) andQδ+ε(p) are
depicted. As can be seen, it holds that �(Qδ(p), D

1
k)− �(Qδ+ε(p), D

2
k) = 1. Hence,

by Theorem 1 we get that surely dmatch(D
1
k, D

2
k) ≥ ε.

The issue here is to find a suitable way to apply Theorem 1, so to improve
our CRC framework. This is what the following Algorithm 1 is thought for.

Algorithm 1 takes as input the lists A and B of proper points of two persis-
tence diagrams, and a parameter Exp. It runs a number of iterations equal to
 hExp! where h = |A| + |B| is the sum of the number of points of A and B,
and Exp is an arbitrary positive rational number. During each iteration, a finer
grid is created on a triangular region T ⊂ Δ+ with vertices (U − ε, U − ε), (U −
ε, V +ε), (V +ε, V +ε), being U and V as in Remark 1, containing all the points
belonging to A and B. In particular, at each iteration n, the algorithm produces
n(n+1)/2 small squares with side equal to (n+5)th part of the side of T. It then
evaluates Theorem 1 on each small square compared with the square having its
same center and side three times greater. The algorithm returns the maximum
value for which Theorem 1 holds. Algorithm 1 makes use of two different subrou-
tines: Matrix(i, j) which simply generates a two dimensional matrix 0i×j and
CountPoints(S, p, q) (Algorithm 2) whose output is the sum of the entries of
the 3×3 submatrix S[p−1, p, p+1; q−1, q, q+1] which is nothing more than the
number of points of the largest square into which we are going to evaluate the
theorem. Algorithm 3 gives as output the actual or the approximated distance
between two persistence diagrams. An example of Algorithm 1 in action is shown
in Figures 2 (d)− (f).

Algorithm 1. MatchDistGridApprox(A,B,Exp)

1: N ⇐ (|A|+ |B|)Exp� 16: qB(i, j) ⇐ qB(i, j) + 1
2: Res ⇐ 0 17: end for
3: ε ⇐ (V − U)/10 18: for p = 2 to (t− 1) do
4: Side ⇐ V − U + 2ε 19: for q = (p+ 3) to (t− 1) do
5: for n = 1 to N do 20: QA ⇐ CountPoints(qA, p, q)
6: t ⇐ 5 + n 21: QB ⇐ CountPoints(qB, p, q)
7: sSide ⇐ Side/t 22: r1 ⇐ (QA < qB(p, q))
8: qA ⇐ Matrix(t, t) 23: r2 ⇐ (QB < qA(p, q))
9: qB ⇐ Matrix(t, t) 24: if (r1 or r2) and (Res < sSide) then

10: for all a ∈ A do 25: Res ⇐ sSide
11: (i, j) ⇐ �(a− U + ε)/sSide� 26: end if
12: qA(i, j) ⇐ qA(i, j) + 1 27: end for
13: end for 28: end for
14: for all b ∈ B do 29: end for
15: (i, j) ⇐ �(b− U + ε)/sSide� 30: return Res

The computational complexity C of Algorithm 1 can be formalized as

C(h,Exp) = c1 +
hExp∑
n=1

(
c2 + 2c3(n+ 5)2 + c4 · h+

n+4∑
p=2

n+4∑
q=p+3

c5

)
,
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with c4 · h the cost of lines 10− 17, c3(n+ 5)2 the cost of lines 8− 9, c3 and c4
being constants as well as c1 (lines 1− 4), c2 (lines 6− 7) and c5 (lines 20− 30).

Making some simple mathematical manipulations we obtain that

C(h,Exp) = c1 + hExp(c2 + c4 · h) + 2c3 ·
hExp∑
n=1

(n+ 5)2 +

hExp∑
n=1

n+3∑
p=1

n−p+1∑
q=1

c5.

Now, by counting the total number of squares on which the theorem is evaluated
on a run of the algorithm, which is

hExp∑
n=1

n+3∑
p=1

n−p+1∑
q=1

1=
hExp∑
n=1

n+3∑
p=1

(n−p+1)=
hExp∑
n=1

n(n+ 1)

2
=

h3Exp + 3h2Exp + 2hExp

6
,

we can conclude that the computational complexity of Algorithm 1 is O(h3Exp).
Hence, by choosing Exp ≤ 2.5

3 we can ensure that Algorithm 1 has a computa-
tional complexity asymptotically lower than the one we would have by calculat-
ing the matching distance.

Algorithm 2. CountPoints(S, p, q) Algorithm 3. MetricApprox(A,B,Exp, thresh)

1: for i = (p− 1) to (p+ 1) do 1: Res =MatchDistGridApprox(A,B,Exp)
2: for j = (q − 1) to (q + 1) do 2: if Res > thresh then
3: Res ⇐ Res+ S(i, j) 3: V al = [(V − U)/2 +Res]/2
4: end for 4: else
5: end for 5: V al = dmatch(A,B)
6: return Result 6: return V al

4 Experimental Results

Our goal is to validate the theoretical framework introduced in the previous
section. Through some experiments on persistence diagrams for 0th homology
degree (a.k.a. formal series [10]), associated with 3D-models represented by tri-
angle meshes, we will prove that our algorithm allows us to reduce the compu-
tational complexity in defining a matching distance-based metric over a given
database, without greatly affecting the goodness of results (in terms of database
classification).

To test the proposed framework we considered a database of 228 3D-surface
mesh models introduced in [2]. The database is divided into 12 classes, each
containing 19 elements obtained as follows: A null model taken from the Non
Rigid World Benchmark [3] is considered together with six non-rigid transfor-
mations applied to it at three different strength levels. An example of the trans-
formations and their strength levels is given in Table 1. To define the considered
filtering functions, we proceeded as follows: For each triangle mesh M of vertices
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{P1, . . . , Pn}, the center of mass B is computed, and the model is normalized to
be contained in a unit sphere. Further, a vector w is defined as

w =

∑n
i=1(Pi −B)‖Pi −B‖∑n

i=1 ‖Pi −B‖2 .

Three filtering functions ϕ1, ϕ2, ϕ3 are computed on the vertices of M : ϕ1 is the
distance from the line parallel to w and passing through B, ϕ2 is the distance
from the plane orthogonal to w and passing through B, and ϕ3 is the distance
fromB. The values of ϕ1, ϕ2 and ϕ3 are then normalized so that they range in the
interval [0, 1]. These filtering functions are translation and rotation invariant, as
well as scale invariant because of a priori normalization of the models. Moreover,
the considered models are sufficiently generic (no point-symmetries occur etc...)
to ensure that the vector w is well-defined over the all database, as well as its
orientation is stable.

Taking a filtering function ϕ, we can now induce a metric over our database
by computing the matching distances dϕij = dmatch(D0(Mi, ϕ), D0(Mj , ϕ)) for
every i, j = 1, . . . , 228. To approximate such a metric, we applied Algorithm 1
to get a lower bound for each dϕij , say Resϕij . This procedure is controlled by
a threshold, threshϕ, obtained as follows: For every class in the database, 4
elements are (randomly) selected, and an average of the matching distances on
this small subset is evaluated. The final value of threshϕ is then the average over
all the classes in the database. In this perspective, the value threshϕ represents
the average matching distance between two elements of the same class.

Now, if Resϕij > threshϕ, then we can assume that the shapes of Mi and
Mj are quite dissimilar (compared w.r.t. ϕ) and therefore it is sufficient to have
just an estimation of dϕij : We opted for ((V − U)/2 + Resϕij)/2, with V and U
taken according to Remark 1. If Resϕij ≤ threshϕ, then the exact value of dϕij is
computed. The overall process is described in Algorithm 3.

Table 2 (first column) shows the average precision/recall (PR) graphs induced
by ϕ1, ϕ2 and ϕ3, respectively, when considering the computation of the match-
ing distances on the whole database and on some subparts of it after running
Algorithm 1, with Exp set at two different values. As can be seen, our approxima-
tion strategy does not affect so much the PR performances even in the displayed
worst case (filtering function ϕ2).

Table 2 (second column) gives a more general overview of the obtained results.
From top to bottom, each graph shows the reduction in the computational costs
– in terms of the percentage of computed matching distances used to build the
metric approximations – and an evaluation of the PR performances according to
the chosen values of Exp, for the filtering functions ϕ1, ϕ2 and ϕ3, respectively.
In particular, for a given value of Exp the evaluation of results is expressed as
the average L1-distance between the PR graph associated to that value Exp and
the one obtained by computing all the matching distances between the elements
in the database. The “critical Exp” depicted in all plots represents the value of
Exp such that the cost of applying Algorithm 1 equals the one of computing the
matching distance between two persistence diagrams.
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Table 1. The null model “Centaur0” and the 3rd strength level for each deformation

Table 2. First column: PR graphs related to ϕ1, ϕ2, ϕ3 computing dmatch on the whole
database (black), and on subparts of it (PR approx) by virtue of Algorithm 1 for two
different values of Exp (shaded); Second column: varying Exp, how the percentage of
dmatch computed and the distance between PR graph and PR approx vary
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As our plots show, it is possible to greatly reduce the computational costs by
approximating the matching distance-based metric over the database, obtaining
PR graphs which are quite close to the best possible.

5 Conclusions

In this paper we introduced a multi-scale strategy to evaluate a (dis)similarity
metric on a database of shapes – to be used for CRC purposes – using the con-
cepts of persistence diagrams and matching distance. The proposed framework
has been validated through experiments on 3D models represented by triangle
meshes: The obtained results show that it is possible to provide an approx-
imation of the metric induced by the matching distance between persistence
diagrams without compromising the goodness of results – in terms of retrieval
performance – and greatly reducing the computational costs coming from the
exact evaluation of the matching distance.

For the next future we plan to generalize Algorithm 1 in such a way that
the lower bound provided by Theorem 1 could be better exploited. We plan
to do this by randomly generating the largest squares in the triangular area T,
considered in Algorithm 1, allowing in this way partial covering of T and squares
overlapping, and making that the smallest squares vary inside the wider ones.
The expected result is to produce statistically better estimates of the matching
distance lower bound through the use of a more flexible tool not stuck on a fixed
tessellation like the one produced by Algorithm 1.
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problem. However, the authors are solely responsible for any possible errors.
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Abstract. Space or voxel carving is a non-invasive technique that is
used to produce a 3D volume and can be used in particular for the re-
construction of a 3D human model from images captured from a set of
cameras placed around the subject. In [1], the authors present a tech-
nique to quantitatively evaluate spatially carved volumetric representa-
tions of humans using a synthetic dataset of typical sports motion in
a tennis court scenario, with regard to the number of cameras used. In
this paper, we compute persistent homology over the sequence of chain
complexes obtained from the 3D outcomes with increasing number of
cameras. This allows us to analyze the topological evolution of the re-
construction process, something which as far as we are aware has not
been investigated to date.

Keywords: voxel carving, volume reconstruction, persistent homology,
evaluation.

1 Introduction

Homology is topologically invariant, meaning it is a property of an object that
does not change under continuous (elastic) transformations of the object. Roughly
speaking, homology characterizes “holes” in any dimension (e.g. connected com-
ponents, tunnels and cavities in a 3D space). Homology computation can be
carried out over a combinatorial structure called cell complex, which is built up
by basic elements (cells) of different dimensions (vertices, edges, faces, etc.). One
can take advantage of the combinatorial nature of a digital image (as a set of
voxels) to compute homology by taking as input the (algebraic) cubical complex
associated to the image. Persistent homology studies homology classes and their
life-times (persistence) in the belief that significant topological attributes must
have a long life-time in a filtration (an increasing nested sequence of subcom-
plexes). In this paper, we compute persistent homology via the Incremental and
Decremental Algorithms for computing AT-models (see [5]), which allow to com-
bine an incremental with a decremental technique in the case of a non-increasing
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filtration, that is, a sequence of subcomplexes. In the following Section, we de-
scribe the context in which we apply persistent homology computation. Section
3 is devoted to recall basic tools used in our computations. Section 4 describes
the application of persistent homology to the evaluation of the voxel carving
process. We draw some conclusions and ideas for future work in the last Section.

2 Voxel Carving Approach

Space carving is a well-known method for constructing three-dimensional models
of objects from a set of images. The process involves capturing a series of im-
ages of an object, and, by analysis of these images, deriving a description of the
shape of the object. In particular, space (or voxel) carving aproaches [2,3,9,11]
are non-invasive techniques that allow the reconstruction of a 3D human model
from the images captured from a set of cameras placed around the subject. In
each image, firstly, the region of interest (subject silhouette) is segmented from
the background by an autonomous adaptive “approximate median” background
modelling algorithm; then a 3D bounding box is drawn around the subject’s ap-
proximate position in 3D space. By using extracted silhouettes from each image,
inconsistent voxels are eliminated from the defined volume, iterating through
each of the cameras [9]. In [1], the authors present a technique to quantitatively
evaluate spatially carved volumetric representations of humans using a synthetic
dataset of typical sports motion in a tennis court scenario. Such a quantifica-
tion is based on the computation of Normalised Mean Square Error (NMSE)
of a groundtruth volumentric reconstruction (which has been considered at 50
cameras, based on experimental observation) against any reconstruction from
an inferior camera setup (with less cameras than the setup used to carve the
ground truth). The aim of such an evaluation is to somehow quantify the ac-
curacy of the 3D volume produced by the voxel carving process with regard to
the number of cameras used. This investigation was motivated by the fact that
very little work has been done to date on evaluating the quality of space carving
results. In this paper, we intend to give a different insight into the voxel carving
work by homologically characterising the sequence of reconstruction volumes.
This may be interesting as the surfaces produced with a few cameras are quite
noisy with many holes, which are irrelevant topological information that can be
discarded by using persistent homology. Given the nature of the carvings, we
believe that a homology-based approach is a more appropriate quantification
than the relatively simple NMSE-based approach used previously.

3 Homology Computations on a Set of Voxels

A cell complex is a general topological structure by which a space is decomposed
into basic elements (cells) of different dimensions, which are glued together by
their boundaries (see a formal definition of CW-complex in [8]). Due to the
nature of our input data, we focus on a special type of cell complex: cubical
complex. A cubical complex Q in R3, is given by a finite collection of p-cubes
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Fig. 1. Voxel carving approach for 3D reconstruction. Process with 4 cameras around
the subject and an overhead camera.

such that a 0-cube is a vertex, a 1-cube is an edge, a 2-cube is a filled square (we
call it, simply, a square) and a 3-cube is a filled cube (resp. a cube); together
with all their faces and such that the intersection between two of them is either
empty or a face of each of them.

We consider Z/2 as the ground ring for algebraic computations, since we do
not need to deal with torsion. The cubical chain complex associated to the cubical
complex Q is the collection C(Q) = {Cp(Q), ∂p}p where:

(a) each Cp(Q) is the corresponding chain group generated by the p-cubes of Q,
over Z/2;

(b) the boundary operator ∂p : Cp(Q) → Cp−1(Q) connects two immediate
dimensions. The boundary of a p-cube is the formal sum (mod 2) of all its
facets (proper faces of maximal dimension). It is extended to p-chains by
linearity.

Roughly speaking, the homology groups of a cubical chain complex will be a
chain group whose elements are equivalence classes of cycles, such that if one cy-
cle can be obtained from another by continuous deformation through the object,
then they are homologous (or equivalent). For example, two vertices are homolo-
gous if there exists a path through the object between them. Formally, a p-cycle
is a p-chain a such that ∂p(a) = 0. If a = ∂p+1b for some p+ 1-chain b then a is
called a p-boundary. We say that two p-cycles a and b are homologous if there
exists a (p+ 1)-chain c such that a = b+ ∂p+1c. Define the p-th homology group
to be the quotient group of p-cycles mod p-boundaries denoted by Hp(Q). Each
element [a] of Hp(Q) is a quotient class obtained by adding each p-boundary
to a given p-cycle a called a representative cycle of the homology class [a]. The
homology of Q is the chain group H(Q) = {Hp(Q)}p. See [10] for further details.

3.1 Incremental-Decremental Algorithms for Computing Persistent
Homology

We focus on homology computation methods based on the concept of AT-model
[7]. Given a cell complex, Incremental Algorithm for computing AT-models [7]
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computes homology information of the cell complex by an incremental technique,
considering the addition of a cell each time. Once homology of an object has been
computed, the same algorithm can be used again to update homology informa-
tion if new cells are added to the existing complex; Decremental Algorithm for
computing AT-models [6] can be used for the same aim, in the case that some
cells are deleted.

Given a cubical complex Q, an algebraic-topological model (AT-model [7]) for
Q is a set of data (Q,H, f, g, φ), such that:

– Q is the cubical complex itself.
– H is a subset of Q that characterizes the homology of Q by containing a

p-cube for each p-homology class, for all p. In 3D, H can only have points,
edges and squares: each point of H represents a connected component of Q,
each edge represents a “tunnel” and each square represents a “void” (i.e. a
connected component of the background inaccessible from the outside).

– f is a chain map from C(Q) to C(H). This map provides the equivalence
relation between cycles (that is, if two cycles, a and b, are equivalent, then
f(a) = f(b)). Moreover, f g(c) = c for any c ∈ H .

– g is a chain map from C(H) to C(Q). For each cube c in H , g(c) is a repre-
sentative cycle of a homology class.

– φ is a map from C(Q) to C(Q) that is a chain homotopy (see [10]) from g f
to the identity homomorphism on C(Q). This map can be seen as a kind of
boundary inverse. For example, if c is a vertex, then φ(c) is the path from c
to the vertex v ∈ H homologous to c.

Fig. 2. A simple example of execution of Incremental Algorithm for computing AT-
models. a) The input cubical complex, a filled square with all its faces (only the labels of
the vertices are shown). b) The elements inH . c) The table with the information related
to f , g and φ. Read, for instance, f(16) = 16, g(16) = 16, φ(16) = 0, φ(17) = 16 − 17
(edge from 16 to 17).

In [5], the authors revisit the algorithm for computing AT-models using an in-
cremental technique that appears in [7] (we will refer to it as the Incremental
Algorithm) with the aim of setting its equivalence with persistent homology
computation algorithm [4,12]. Given a cubical complex Q associated to a 3D
digital image, consider a full ordering of its cubes {c1, . . . , cn} such that if ci is a
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face of cj, then i < j; take a nested sequence of subcomplexes ∅ = Q0 ⊆ Q1 · · · ⊆
Qn (a filtration over Q) such that Qi = {c1, . . . , ci} (notice that all the proper
faces of ci are in Qi−1). Under these conditions, Incremental Algorithm can be
applied to compute persistent homology over the filtration.

See Fig. 2 as a simple example of execution of the Incremental Algorithm for
computing AT-models.

Fig. 3. A simple example of execution of Decremental Algorithm for computing an AT-
model (Q′, H ′, f ′, g′, φ′) after removing a 2-cube (the square 16 − 17 − 24 − 23) from
Fig. 2.a. a) The output cubical complex (only the labels of the vertices are shown) after
deleting the square. b) The cubes in H ′. c) The table with the information related to
f ′, g′ and φ′.

Now, let (Q,H, f, g, φ) be an AT-model for a cubical complex Q computed by
the Incremental Algorithm. Let cm be a maximal cube of Q. Then an AT-model
for Q′ = Q \ {cm}, (Q′, H ′, f ′, g′, φ′), can be constructed by the Decremental
Algorithm given in [5], where it was redefined (with respect to the one of [6])
with the aim of extending the concept of persistent homology for objects with a
filtration that is not necessarily increasing.

See Fig. 3 as an example of execution of Decremental Algorithm for computing
AT-models. Notice that by removing the 2-cube from the initial cubical complex
on Fig. 2, a new homology class is created. The output of the algorithm is the
set (Q′, H ′, f ′, g′, φ′) represented in a table form in Fig. 3.c).

Now, let ∅ = Q0 ↔ Q1 ↔ · · · ↔ Qn be a zig-zag filtration, that is, a sequence
of cell complexes such that every two consecutive complexes differ by a single cell
c, i.e. eitherQi = Qi−1∪{c} orQi = Qi−1\{c}. Then, one can compute persistent
homology over the filtration by combining the application of Incremental and
Decremental Algorithms depending on whether a cell c is added or deleted each
time.

4 Persistent Homology for 3D Reconstruction Evaluation

We are concerned with the application of persistent homology computation to
provide topological evaluation of the 3D reconstruction process by the voxel
carving technique. The new insight could significantly enrich the evaluation made
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Fig. 4. 3D Reconstructions using a) 4 cameras and b) 10 cameras. Representative
cycles of homology are highlighted in both cases. c) Barcode associated to the whole
sequence of 3D reconstructions with increasing number of cameras (from 1 to 50). d)
3D reconstruction using 50 cameras, what is considered the groundtruth model.

in [1] by means of NMSE quantification. For this aim, we must consider the
sequence of different 3D models, obtained by voxel carving under increasing
number of cameras, as a whole object on which we have to set up a filtration
over which to compute persistent homology. This way, in particular, we can get
an estimation of the minimum number of cameras needed in order to obtain a
topologically correct 3D model (which in general has only one connected com-
ponent and no tunnels or voids).

We denote by Rk the cubical complex associated to the 3D reconstruction
obatined using k cameras (which are randomly chosen). Starting from the first
reconstructionR1 (obtained by “one carving” of the initial 3D bounding box), we
can use Incremental Algorithm to compute its homology. Notice that Rk+1 may
be obtained from Rk by removing some voxels (cubes, together with all their
faces in the cubical complex). This fact makes this context good for making
use of the Decremental Algorithm for getting homology computations through
increasing number of cameras. Both, Incremental and Decremental Algorithms
provide all the pairs of cells responsible for the creation/destruction of homology
classes along the process, what allows to follow the evolution of these classes with
respect to time, that is, the number of cameras used. Actually, to compute persis-
tent homology of the whole sequence of 3D models, {Rk}k, the zigzag filtration is
given by the sequence {Rk}k itself with the inclusion, between Rk and Rk+1, of
a sequence of complexes {Rik

k }ik=1...nk
given by the addition or deletion of a cell,

each time. Compute, then, a big barcode for visualizing the hole computation in
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Fig. 5. 3D Reconstructions (viewed from different angles) using different number of
cameras: a) 4 cameras, b) 15 cameras and c) 24 cameras, which is similar to the one
obtained with 50 cameras (groundtruth model). Representative cycles of homology are
highlighted. Below, barcode associated to the whole sequence of 3D reconstructions
from 1 to 50 cameras.

order to easily analyze the stability of the elements of homology. We want also
to remark that, due to the nature of the voxel carving process, only voxels on the
surface of the object are removed each time, so different connected componentes
and tunnels (but no cavities) may arise.

We have used for computation five different frames extracted from a 3D video
sequence with a voxel resolution of 4 cm, that is, the spacing between each
voxel is 4 cm in the OX , OY and OZ directions. This means 15, 625 voxels
per cubic metre. We have appreciated, as it was expected, that simpler poses
of the subject produce simpler barcodes while more complex poses give place
to more interesting homological information. Fig. 4 shows that the carving pro-
cess, in a case of simple pose, stabilizes at 10 cameras (with a unique connected
component), while below that point, 3 different tunnels have been living for
some time. That means that, in order to produce a topologically correct model,
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at least 10 cameras are needed. Fig. 5 reflects a more complex pose, though it
also corresponds to a 3D object with one connected component and no tunnels
or voids. Notice the more complex barcode associated (in which 2 connected
components and 16 tunnels are represented) and, especially, the fact that a
1–homology class is created at time k = 15, that persists until k = 23. So
stabilization of one connected component as final state, occurs much later than
in the former case.

We are working also on other approaches:

– To compute persistent homology of the sequence of 3D difference complexes
{Dk}k with respect to the groundtruth model (R∞), where Dk = Rk \R∞.
Now the barcode for the whole sequence will provide different information
about the whole process that might complement the one given by the recon-
structions themselves.

– To compute persistent homology of the sequence of 3D complexes generated
by the convex deficiencies of each 3D reconstruction, that is, the complexes
obtained by the substraction of each 3D reconstruction to its 3D convex hull.

5 Conclusions and Future Work

Persistent homology computation provides an interesting new insight into the
3D model reconstruction process explained in this paper. There are lots of ideas
and experimentation still to be investigated. An important point is to study the
dependence of the observations on the resolution of the input data. An alterna-
tive approach could be to compute some homology-based features extracted from
each reconstructionRk and to compare them against a groundtruth model. These
features should be measurable so that a distance with respect to the groundtruth
model could be computed. These parameters could be extracted from the com-
parison of weighted histograms of connected components (for 0-homology study)
or minimal-legth (in some sense) representative cycles of 1-homology. Another
interesting question arises by fixing a certain number of cameras and considering
the sequence of 3D reconstructions along time. Holes can be produced along time
by different movements of the body that should not be stable along the com-
plete scene, so the homological analysis of voxel carving performance of video
sequences could shed some light on the classification of these movements.
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Abstract. Persistence modules are algebraic constructs that can be
used to describe the shape of an object starting from a geometric repre-
sentation of it. As shape descriptors, persistence modules are not com-
plete, that is they may not distinguish non-equivalent shapes. In this
paper we show that one reason for this is that homomorphisms between
persistence modules forget the geometric nature of the problem. There-
fore we introduce geometric homomorphisms between persistence mod-
ules, and show that in some cases they perform better. A combinatorial
structure, the H0-tree, is shown to be an invariant for geometric isomor-
phism classes in the case of persistence modules obtained through the
0th persistent homology functor.

Keywords: geometric homomorphism, rank invariant, H0-tree.

1 Introduction

The shape description problem is at the core of many shape recognition methods
used in computer vision and computer graphics. It is based on the fundamental
idea of using compact representations of shapes, namely, shape descriptors, to ana-
lyze, understand, and compare objects [17]. Roughly speaking, a shape descriptor
is complete when any two different shapes have two different descriptions.

In this paper we consider persistence modules as shape descriptors, focusing
on the completeness problem, that is the problem of deciding whether persistence
modules are able to discriminate between different shapes. We highlight some
differences that arise in this respect depending on whether we work in a purely
algebraic setting or we also keep memory of the underlying geometric setting to
define the set of homomorphisms between persistence modules.

Approaching the shape description problem by persistence, one usually mod-
els the shape of an object as a geometric pair (X, f), where X is a geomet-
ric representation of the object under study (e.g., a manifold or a triangular
mesh), and f is a function on X measuring some shape property of the object
(e.g., curvature, height, distance from a fixed point). Two objects are consid-
ered to have the same shape whenever the pairs (X, f) and (X ′, f ′) modeling
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them are isomorphic in a suitable category C [12]. However, since answering the
isomorphism question in C is not an easy problem, one is usually satisfied with
moving to persistence modules via the persistent homology functor, and studying
the isomorphism question for persistence modules [18,4]. In this way the shape
descriptors that are actually used for comparison are persistence modules.

The rationale behind this approach is that the persistent homology functor
does not change the isomorphism classes. Moreover, the isomorphism question
for persistence modules is easier than for objects in C. Sometimes one simpli-
fies further the problem by only considering as shape descriptors invariants
of isomorphism classes of persistence modules, such as barcodes [5], or size
functions [7].

The completeness problem for persistence modules is studied in [11] for the
case of curves. The authors show that two different shapes can have isomorphic
persistence modules (i.e. the persistent homology functor forgets some relevant
geometric features of the original shape), and prove that completeness can be
achieved by increasing the number of components of the measuring function f .

In this paper, after reporting the basic definitions about persistence in Sect.
2, in Sect. 3 we present an example showing that, in some cases, persistence
modules cannot discriminate non-equivalent shapes because in the category of
persistence modules there are homomorphisms that are purely algebraic. More
precisely, they do not reflect geometric transformations between the original
shapes. For this reason, in Sect. 4, we introduce the notion of geometric ho-
momorphisms between persistence modules and show that in some case they
perform better than algebraic homomorphisms. Finally, in Sect. 5, we consider
the problem of completeness for invariants. As for invariants with respect to
algebraic isomorphisms, we review some results about the rank invariant from
[2]. In the case of invariants with respect to geometric isomorphisms, we present
an invariant in the case of 0th homology, the H0-tree. We end the paper with a
brief list of open questions in Sect. 6.

2 Background on Persistence

2.1 The Geometric Approach to Persistence

According to the spirit of the original persistence papers [10,1], one has some
category C of interest of geometric nature, and a functor F from that category to
the category n-filt of n-filtrations. One then studies and works with the functor
Hi ◦ F , Hi being the ordinary ith homology functor. This composite functor is
generally called an ith persistent homology functor.

In the most simple case, fixed n ∈ N, C = C(n) is the category defined as
follows [15]:

1. Objects of C are pairs (X, f), where X is a topological space and f =
(f1, . . . , fn):X → Rn is a continuous function.
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2. If (X, f), (X ′, f ′) ∈ obj(C), then the set of morphisms of C from (X, f) to
(X ′, f ′) is the set of continuous functions γ:X → X ′ such that f(x) ≥
f ′(γ(x)) for all x ∈ X (with the convention that u = (ui) ≤ v = (vi) in Rn

means ui ≤ vi for all i).

We observe that an isomorphism in C is a homeomorphism mapping level sets
into level sets. Therefore we obtain the following easy remark.

Proposition 1. If two pairs (X, f) and (X ′, f ′) are isomorphic in C then their
natural pseudo-distance vanishes:

δ((X, f), (X ′, f ′)) := inf
γ

sup
x∈X

‖f(x)− f(γ(x))‖∞ = 0,

where γ varies in all possible homeomorphisms between X and X ′.

More details on the natural pseudo-distance and its relationship with persistence
can be found, e.g., in [6,8]. We remark that the converse of Proposition 1 in
general is false, although it can be true in certain cases (cf., e.g., [3]).

For (X, f) ∈ obj(C), and for u = (ui) ∈ Rn, let Xu = ∩n
i=1f

−1
i ((−∞, ui]). If

u ≤ v ∈ Rn, then there is an inclusion iX(u, v):Xu ↪→ Xv. Thus the collection
{Xr}r∈Rn is an n-filtration of X . If (X, f), (X ′, f ′) ∈ obj(C), and γ:X → X ′ is
a morphism from (X, f) to (X ′, f ′), then the restriction of γ to Xu, denoted by
γu, maps Xu to X ′

u, for all u ∈ Rn. Moreover, for all u ≤ v ∈ Rn, γv ◦ iX(u, v) =
iX′(u, v) ◦ γu. Thus the collection {γr}r∈Rn is a morphism of n-filtrations. The
functor F : C → n-filt which maps (X, f) to {Xr}r∈Rn and γ to {γr}r∈Rn is called
the sublevelset filtration functor.

2.2 The Algebraic Approach to Persistence

In [2,18], the authors showed that persistence can be defined at algebraic level
directly, without the need for an underlying topological setting. More precisely,
they introduced the concept of a persistence module M as the one of a family
{Mu}u∈Rn of vector spaces (or modules over the same commutative ring) to-
gether with a family of homomorphisms {ιM (u, v):Mu → Mv}u≤v∈Rn such that
ιM (u,w) = ιM (v, w) ◦ ιM (u, v) and ιM (u, u) = idMu for all u ≤ v ≤ w ∈ Rn.

Given two persistence modules M and N, the set of homomorphisms from M
to N consists of collections of homomorphisms of vector spaces h = {hu:Mu →
Nu}u∈Rn such that ιN (u, v) ◦ hu = hv ◦ ιM (u, v) for all u ≤ v ∈ Rn. Therefore,
in a purely algebraic setting two persistence modules M and N are isomorphic
if there exists a collection h = {hu:Mu → Nu}u∈Rn of isomorphisms of vector
spaces such that ιN (u, v) ◦ hu = hv ◦ ιM (u, v) for all u ≤ v ∈ Rn. We call h an
algebraic isomorphism of persistence modules.

The category of persistence modules will be denoted by M. Clearly, objects
and homomorphisms of M can be constructed by applying the persistent ho-
mology functor to objects and morphisms of C. It is known that, in the case of
objects, the converse is also true, at least for finite persistence modules [2, Th.
2]. For this reason, in this paper we focus on morphisms rather than on objects
of M.
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3 A Preliminary Example

Let us begin considering the following example. It shows that, even in the very
basic case of curves endowed with simple Morse functions, we can find non-
isomorphic pairs (X, f) and (X ′, f ′) in C taken by the persistent homology func-
tor into algebraically isomorphic modules.

Example 1. Let (X, f) and (X ′, f ′), with X = X ′ = S1, be the two curves
displayed in Figure 1. (X, f) and (X ′, f ′) are not isomorphic in C. Indeed, an
isomorphism between (X, f) and (X ′, f ′) necessarily takes a critical point of f to
the critical point of f ′ at the same height, which is clearly impossible in this case.
On the other hand, the persistence modules M and N obtained by applying the
0th persistent homology functor to the pairs (X, f) and (X ′, f ′), respectively,
are isomorphic in M. To see this, it is sufficient to consider the diagram

M5 =< z1, z2, z3|z1 = z2 = z3 >
h5→ N5 =< z′1, z

′
2, z

′
3|z′1 = z′2 = z′3 >

↑ ↑
M4 =< z1, z2, z3|z1 = z3 >

h4→ N4 =< z′1, z
′
2, z

′
3|z′2 = z′3 >

↑ ↑
M3 =< z1, z2, z3 >

h3→ N3 =< z′1, z′2, z′3 >
↑ ↑

M2 =< z1, z2 >
h2→ N2 =< z′1, z′2 >

↑ ↑
M1 =< z1 >

h1→ N1 =< z′1 >,

(1)

where the vertical maps are induced by inclusions, and the horizontal maps
are defined by setting h1(z1) = z′1, h2(z1) = z′1, h2(z2) = z′2, h3(z1) = z′1,
h3(z2) = z′2, h3(z3) = z′1 + z′2 − z′3, h4(z1) = z′1, h4(z2) = z′2, h5(z1) = z′1.

f f ′

a1a1

a2a2

a3a3

a4a4

a5a5

a6a6

X X ′

Fig. 1. Two curves not distinguishable by persistence modules in M

The previous example proves the following result, saying that algebraic
isomorphism of persistence modules may not distinguish the shapes of two pairs.
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Proposition 2. The persistent homology functor Hi◦F : C → M does not reflect
isomorphisms (i.e., Hi ◦ F (X, f) isomorphic to Hi ◦ F (X ′, f ′) in M does not
imply (X, f) isomorphic to (X ′, f ′) in C).
This prompts a new definition that will be given in the next section.

4 Geometric Homomorphisms

In this section we focus on particular homomorphisms between persistence mod-
ules that we call geometric because they are the image of a morphism in C. In
Proposition 3 we prove that, restricting to geometric homomorphisms, we can
distinguish the curves of Example 1.

Definition 1. Let (X, f) and (X ′, f ′) be two objects in C. A homomorphism
(resp., isomorphism) h between the persistence modules Hi ◦ F (X, f) and Hi ◦
F (X ′, f ′) is called a geometric homomorphism (resp. geometric isomorphism) if
it belongs to the image of the persistent homology functor.

We now prove that no isomorphism between the persistence modules
⊕

i∈Z
Hi ◦

F (X, f) and
⊕

i∈Z
Hi ◦ F (X ′, f ′) of Example 1 belongs to the image of the

persistent homology functor.

Proposition 3. Let (X, f) and (X ′, f ′) be as in Example 1. No morphism γ
between (X, f) and (X ′, f ′) is taken by

⊕
i∈Z

Hi ◦ F into an isomorphism of
persistence modules.

Proof. Let γ:X → X ′ be a continuous function such that f(x) ≥ f ′(γ(x)) for
every x ∈ X (i.e., γ is a morphism in C). Let us assume that Hi ◦ F (γ) is an
isomorphism for every i ∈ Z. Hence, in particular, H1(γ):H1(X) → H1(X

′) is
an isomorphism, and therefore the degree of γ is non-zero (recall that X = X ′ =
S1). It follows that γ(X) = X ′.

Let ai with i = 1, . . . , 6 be as in Figure 1 and let pi (resp. qi) be the only
critical point of f in f−1(ai) (resp. of f

′ in (f ′)−1(ai)). Since f(p1) ≥ f ′(γ(p1)),
necessarily γ(p1) = q1. Moreover, it must hold γ(p6) = q6. Indeed, since γ(X) =
X ′, there is some p ∈ X such that γ(p) = q6. Thus we get f(p) ≥ f(γ(p)) = a6,
implying p = p6. Using again f(x) ≥ f ′(γ(x)), we deduce that f ′(γ(p2)) ≤ a2.
Hence, either γ(p2) = q2 or γ(p2) belongs to the arc of X ′ containing q1 and
staying under a2.

Let us assume γ(p2) = q2. By considering the arcs in which p1, p6 (resp. q1, q6)
split the curve X (resp. X ′), since p3 does not belong to the arc containing p2,
by continuity we get that γ(p3) does not belong to the arc containing γ(p2).
Moreover, γ(p3) stays under a3. Thus, the classes of γ(p1) and γ(p3) are homol-
ogous in N3 = H0(X

′
a3
). Since the classes of p1 and p3 are not homologous in

M3 = H0(Xa3), we conclude that H0 ◦ F (γ) is not an isomorphism.
Otherwise, if γ(p2) belongs to the arc of X ′ containing q1 and staying under

a2, then γ(p1) and γ(p2) are homologous in N2 = H0(X
′
a2
). Since the classes of

p1 and p2 are not homologous in M2 = H0(Xa2), we conclude that H0 ◦ F (γ) is
not an isomorphism in this case either, yielding the claim. ��
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Thus, if we consider the subset of geometric isomorphisms we can distinguish
the curves of Example 1. This seems to suggest that the image of the persis-
tent homology functor is better suited for the aims of shape comparison than
persistence modules.

5 Invariants

In this section we study invariants for isomorphism classes of persistence modules
in the algebraic as well as in the geometric case.

5.1 Algebraic Setting

Invariants for classes of persistence modules up to algebraic isomorphism have
been thoroughly studied for cases n = 1 in [18] and n > 1 in [2]. The main
invariant proposed is the rank invariant.

Definition 2. Given a persistence module M consisting of vector spaces
{Mu}u∈Rn and homomorphisms {ιM (u, v):Mu → Mv}u≤v∈Rn, its rank invari-
ant is an integer-valued function ρM of two variables u ≤ v ∈ Rn, defined by
ρM(u, v) = rk (ιM (u, v)).

In [18] the authors show that, for n = 1, the rank invariant is a complete invariant
for algebraic isomorphism of persistence modules admitting a finite presentation
(in terms of generators and relators). This means that any two such persistence
modules are algebraically isomorphic if and only if their rank invariants coincide.

The analogous property for n > 1 is false, as the following example shows
(see also [2]).

Example 2. Consider the bi-dimensional persistence modules M and N, given
by

M1,3 =< zb >

M2,2 =< za >

M3,1 =< za >,

M0,0 =< za, zb >

(
0 1

)
��

(
1 1

)
������

��������
(
1 0

) ��

N1,3 =< z′a >

N2,2 =< z′b >

N3,1 =< z′a > .

N0,0 =< z′a, z′b >

(
1 0

)
��

(
0 1

)
�����

�������
(
1 1

) ��

where the row matrix displayed on each arrow represents the homomorphism
between the modules connected by the arrow, with respect to the bases enclosed
by angle brackets.

For instance, M and N can be obtained by applying the 1st homology functor
with coefficients in Z2 to the 2-filtrations displayed in Fig. 2.

M and N, as persistence modules over Z2, are not isomorphic, although their
rank invariants coincide.
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X0,0

X3,1

X2,2

X1,3

Y0,0

Y3,1

Y2,2

Y1,3

Fig. 2. Filtrations taken by the 1st homology functor into M (left) and N (right)

5.2 Geometric Setting

We now consider invariants for classes of persistence modules up to geometric
isomorphism. We confine our treatment to the case n = 1, that is to scalar
functions f :X → R. In this setting we can consider the so-called H0-tree of f
introduced in [1].

Trees are of widespread use in topology, either for invariant computations
in a discrete setting (e.g., spanning trees for the fundamental group [13], and
spanning forests for homology [16]) or as signatures in a continuous setting (e.g.,
contour trees [14] for domains of the plane, and merge trees [9] for arbitrary
manifolds). The use we make of trees in this section is in the latter spirit.

H0-trees can be defined on any topological space endowed with a (suitable)
scalar function used to filter the space. Intuitively, the connected components
of the sub-level sets of a function f , thanks to the inclusion relation, can be
organized in a directed tree structure where node parenthood maps component
inclusion. We shall prove that H0-trees are invariant for geometric isomorphism
classes of 0th homology.

Definition 3. For a closed (i.e. compact and without boundary) connected man-
ifold X and a simple Morse function f :X → R, the H0-tree of f is a rooted
binary tree labeled on the nodes defined as follows:

– the set of nodes is equal to the set of points of X such that for every suffi-
ciently small real value ε > 0, the homomorphism induced by the inclusion
ι(f(p)− ε, f(p) + ε):H0(Xf(p)−ε) → H0(Xf(p)+ε) is not an isomorphism;

– the label of a node p is equal to f(p);
– p is a child of q if q has the lowest label among the nodes for which f(p) <

f(q) and ι(f(p), f(q)):H0(Xf(p)) → H0(Xf(q)) takes the class of p to that
of q.

The H0-trees corresponding to the curves of Fig. 1 are displayed in Fig. 3.

Proposition 4. Let X,X ′ be closed connected manifolds, and f :X → R,
f ′:X ′ → R be simple Morse functions. If h is a geometric isomorphism be-
tween M = H0 ◦ F (X, f) and N = H0 ◦ F (X ′, f ′), then the H0-trees of f and
f ′, say T and T ′, are isomorphic as labeled trees.



Persistence Modules, Shape Description, and Completeness 155

a1a1

a2a2

a3a3

a4a4

a5a5

H0(X, f) H0(X
′, f ′)

Fig. 3. The H0-trees associated with the two curves of Fig. 1

Proof. Since h is an isomorphism, there is a label preserving bijection σ between
the set of nodes of T and that of T ′. Let us see that σ also preserves the edges.
Let p be a child of q in T . Then ι(f(p), f(q)) sends the class of p into that of
q. Since h is induced by a morphism γ:X → X ′, ι(f ′(γ(p)), f ′(γ(q))) sends the
class of γ(p) into that of γ(q), and the class of γ(p) (resp. γ(q)) coincides with
that of σ(p) (resp. σ(q)). Therefore σ(p) is a child of σ(q). ��
We remark that H0-trees are not invariant for algebraic isomorphism classes of
0th persistence modules. Indeed, the curves of Example 1 have non-isomorphic
H0-trees whereas their persistence modules are algebraically isomorphic.

We can see that H0-trees are not complete invariants for geometric isomor-
phism classes by taking the examples in Fig. 1 with −f and −f ′ instead of f and
f ′. However, in the case X = S1, we can prove that a curve (X, f), f :X → R be-
ing a simple Morse function, can be completely reconstructed up to f -preserving
homeomorphisms, from the H0-trees of f and −f .

6 Open Questions

We think that further investigations on the subject presented here could tackle
the following problems:

1. Is it true that the image of the persistent homology functor is a category?
2. Does a simple characterization of geometric homomorphisms exists?
3. Can H0-trees be generalized so to obtain combinatorial structures providing

invariants for geometric isomorphism classes for other homology degrees?
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