
New Exact Concise Representation of Rare Correlated
Patterns: Application to Intrusion Detection

Souad Bouasker1, Tarek Hamrouni1, and Sadok Ben Yahia1,2

1 LIPAH, Computer Science Department, Faculty of Sciences of Tunis, Tunis, Tunisia
2 Institut TELECOM, TELECOM SudParis, UMR 5157 CNRS SAMOVAR, France

Abstract. During the last years, many works focused on the exploitation of rare
patterns. In fact, these patterns allow conveying knowledge on unexpected events.
Nevertheless, a main problem is related to their very high number and to the low
quality of several mined rare patterns. In order to overcome these limits, we pro-
pose to integrate the correlation measure bond aiming at only mining the set of
rare correlated patterns. A characterization of the resulting set is then detailed,
based on the study of constraints of different natures induced by the rarity and the
correlation. In addition, based on the equivalence classes associated to a closure
operator dedicated to the bond measure, we propose a new exact concise repre-
sentation of rare correlated patterns. We then design the new RCPRMINER algo-
rithm allowing an efficient extraction of the proposed representation. The carried
out experimental studies prove the compactness rate offered by our approach. We
also design an association rules based classifier and we prove its effectiveness in
the context of intrusion detection.

Keywords: Concise representation, Constraint, Rarity, Correlation, Closure op-
erator, Equivalence class.

1 Introduction and Motivations

Recently, rare pattern mining has been proved to be of actual added value in many appli-
cation fields such as the intrusion detection, the analysis of criminal data, the pharma-
covigilance, etc. [7]. In fact, rare patterns can identify unexpected events or exceptions
[15], since they have a very low frequency in the data base. In practice, the exploitation
of rare patterns is hampered by the high number and the low quality of the extracted
rare patterns. Thus, an extracted rare pattern may not represent any useful information
whenever it is composed only by items among which there is no semantic link. In this
situation, integrating correlation measures would be of benefit by only mining Rare cor-
related patterns. These latter patterns offer a strong semantic link among their items.
Indeed, an interesting rare pattern is that which appears a very small number of times
in the database but has items that are strongly linked w.r.t. a correlation metric.

In this paper, we focus on the extraction of an exact concise representation of rare
correlated patterns w.r.t. to the bond correlation measure [10]. This measure is redefined
in this work as the ratio between the conjunctive support of a pattern and its disjunctive
support. Indeed, although used in many works under various names like extended Jac-
card measure, coherence, Tanimoto coefficient, the link between the expression of this
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measure and the disjunctive support in the denominator part has never been established
in the literature. Our choice of this measure is motivated by the theoretical framework
presented in [10,14], in addition to the structural study that was done in [12]. Further-
more, it has been proved in [14] that the bond measure fulfills the theoretical properties
that any measure of quality dedicated to rare association rule should have. Moreover,
the authors in [12] proposed a generic approach for correlated patterns mining based
on the bond measure. Note, however, that the study of rare correlated patterns was not
previously carried out in the literature.

From the computational point of view, the integration of the bond measure within the
mining process of rare patterns is a very challenging task. Indeed, the correlated patterns
associated to the bond measure verify an anti-monotone constraint and then induce an
order ideal [5] in the pattern lattice. In opposition to this, rare patterns form an order
filter [5] in the pattern lattice since they fulfill a monotone constraint. Therefore, the set
of rare correlated patterns result from the intersection of two theories [9] induced by
the constraints of correlation and rarity. The set of rare correlated patterns is then more
complicated to be mined than any set of patterns induced by one or more constraints of
the same nature [4]. We thus provide in this paper a thorough characterization of this
set of patterns based on the notion of equivalence class. In our case, equivalence classes
are induced by the closure operator associated to the bond measure.

To the best of our knowledge, there is no previous study in the literature that has been
dedicated to the extraction of a concise representation of patterns fulfilling both the
rarity and the correlation constraints. Worth of mention that the new proposed approach
is generic and can then be applied to any set of rare correlated pattern according to any
correlation measure which shares the same structural properties as the bond measure,
e.g., the all-confidence measure [10].1

The remainder of the paper is organized as follows: Section 2 presents basic notions
used throughout this work. In Section 3, we characterize the set of all rare correlated pat-
terns by studying the associated constraints. We also introduce the associated new exact
concise representation. Section 4 is dedicated to the description of the RCPRMINER

algorithm allowing the extraction of the proposed representation. The empirical stud-
ies are provided in Section 5. Section 6 illustrates the application of our approach in
intrusion detection. The conclusion and perspectives are sketched in Section 7.

2 Basic Notions

We start by presenting the key notions related to our work. We first define a dataset.

Definition 1. (Dataset) A dataset is a triplet D = (T , I, R) where T and I are, respec-
tively, a finite set of transactions and items, and R⊆ T ×I is a binary relation between
the transaction set and the item set. A couple (t, i) ∈ R denotes that the transaction t
∈ T contains the item i ∈ I.
In this work, we are mainly interested in itemsets as a class of patterns. The two main
kinds of support a pattern can have are defined as follows, for any non-empty pattern I:
- Conjunctive support: Supp(∧I ) = | {t ∈ T | (∀ i ∈ I, (t, i) ∈ R)} |
- Disjunctive support: Supp(∨I ) = | {t ∈ T | (∃ i ∈ I, (t, i) ∈ R)} |

1 Mathematically equivalent to the h-confidence measure [16].
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Table 1. An example of a dataset

A B C D E

1 × × ×
2 × × ×
3 × × × ×
4 × ×
5 × × × ×

Example 1. Let us consider the dataset given by Table 1. We have Supp(∧AD) = |{1}|
= 1 and Supp(∨AD) = |{ 1, 3, 5}| = 3.2

We distinguish, given a minimum support threshold [1], between frequent and rare
patterns. These latter patterns are defined as follows.

Definition 2. (Rare patterns) The set of rare patterns is defined by: RP = {I ⊆ I|
Supp(∧I ) < minsupp}.

Among the elements of RP , we distinguish the smallest rare patterns according to set-
inclusion relation. These patterns constitute the set MinRP defined as follows:

Definition 3. (Minimal rare patterns) The MinRP set of minimal rare pattern is
composed by rare patterns having no rare proper subset. It is equal to: MinRP = {I
∈ RP| ∀ I1 ⊂ I: I1 /∈ RP}.

Example 2. Let us consider the dataset given by Table 1 for minsupp = 4. We have, for
example, the pattern BC ∈ RP since Supp(∧BC) = 3 < 4. We also have the pattern BC
∈MinRP since Supp(∧BC) = 3 < 4 and, on the other hand, Supp(∧B) = Supp(∧C) =
4. In this case, MinRP = {A, D, BC, CE}.

In the following, we define monotone and anti-monotone constraints [4,11].

Definition 4. (Monotone/Anti-Monotone constraint) Let Q be a constraint,
• Q is anti-monotone if ∀ I ⊆ I, ∀ I1 ⊆ I: I fulfills Q ⇒ I1 fulfills Q
• Q is monotone if ∀ I ⊆ I, ∀ I1 ⊇ I: I fulfills Q ⇒ I1 fulfills Q

The constraint of rarity is a monotone constraint, i.e., ∀ I , I1 ⊆ I, if I1 ⊇ I and
Supp(∧I ) < minsupp, then Supp(∧I1) < minsupp since Supp(∧I1) ≤ Supp(∧I ). Thus,
it induces an order filter [5] on the set of all the subsets of I, P (I). Worth of mention
that the frequency constraint induces an order ideal [5].

Definition 6 presents the set of correlated patterns according to the bond measure
[10] which is redefined here as given in Definition 5.
Definition 5. (The bond measure) The bond measure of a non-empty pattern I ⊆ I is
defined as follows:

bond(I) = Supp( ∧ I)
Supp( ∨ I)

Definition 6. (Correlated patterns) Considering a minimum correlation threshold min-
bond, the set CP of correlated patterns is equal to: CP = {I ⊆ I | bond(I ) ≥ minbond}.

2 We use a separator-free form for the sets, e.g., AD stands for the set of items {A, D}.
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The constraint of correlation is an anti-monotone constraint, i.e., ∀ I , I1 ⊆ I, if I1
⊆ I , then bond(I1) ≥ bond(I ). Therefore, the set CP of correlated patterns forms an
order ideal [5] on P (I).

In the following, we will need the set composed by the maximal correlated patterns
which constitute the positive border of correlated patterns. This set is defined as follows:

Definition 7. (Maximal correlated patterns) The set of maximal correlated patterns,
denoted MaxCP , is composed by correlated patterns having no correlated proper su-
perset, i.e., MaxCP = {I ∈ CP| ∀ I1 ⊃ I: I1 /∈ CP}.

Example 3. Consider the dataset illustrated by Table 1. For minbond = 0.2, we have

bond(BCE) =
3

5
= 0.6 ≥ 0.2. Therefore, the pattern BCE is a correlated one. In addition,

whatever the strict superset of BCE, this superset is not correlated. In this case, we have
MaxCP = {ACD, ABCE}.

Now we focus on the closure operator associated to the bond measure.

Definition 8. (The operator fbond) The closure operator fbond: P (I) →P (I) associ-
ated to the bond measure is defined as follows: fbond(I ) = I ∪ {i ∈ I \ I | bond(I ) =
bond(I ∪ {i})}.

The closure of a pattern I by fbond, i.e. fbond(I ), corresponds to the maximal set of
items containing I and sharing the same bond value with I . It can be easily proven that
fbond(I ) is equal to the intersection of its conjunctive closure fc and its disjunctive one
fd. Indeed, according to the framework proposed in [13], bond measure is a condens-
able function based on both preserving functions, namely the conjunctive support and
the disjunctive support.

Example 4. Consider the dataset illustrated by Table 1. For minbond = 0.2, we have
fbond(AB) = ABCE since C and E preserve the bond value of AB.

We focus now on the equivalence classes induced by the fbond closure operator.

Definition 9. (Equivalence class associated to the closure operator fbond) An equiva-
lence class associated to the closure operator fbond is composed by all the patterns
having the same closure by the operator fbond. Let [I] be the equivalence class to
which belongs the pattern I . [I] is formally defined as follows: [I] = {I1| fbond(I )
= fbond(I1)}.

In each class, all the patterns share the same bond value as well as the same conjunctive,
disjunctive, and negative supports. Therefore, all the patterns belonging to the same
class, induced by fbond, appear exactly in the same transactions. Besides, these patterns
characterize the same set of transactions. Indeed, each transaction necessarily contains
a non-empty subset of each pattern of the class.

In the next section, we will carry out a detailed study of the rare correlated patterns.

3 Characterization of the Rare Correlated Patterns

3.1 Definition and Properties

The set of rare correlated patterns is defined as follows:
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Definition 10. (Rare correlated patterns) Considering the support threshold minsupp
and the correlation threshold minbond, the set of rare correlated patterns, denoted
RCP , is equal to: RCP = {I ⊆ I | Supp(∧I ) < minsupp and bond(I ) ≥ minbond}.

Example 5. Consider the dataset illustrated by Table 1. For minsupp = 4 and minbond
= 0.2, the set RCP consists of the following patterns where each triplet represents

the pattern, its conjunctive support value and its bond value: RCP = {(A, 3,
3

3
), (D,

1,
1

1
), (AB, 2,

2

5
), (AC, 3,

3

4
), (AD, 1,

1

3
), (AE, 2,

2

5
), (BC, 3,

3

5
), (CD, 1,

1

4
), (CE,

3,
3

5
), (ABC, 2,

2

5
), (ABE, 2,

2

5
), (ACD, 1,

1

4
), (ACE, 2,

2

5
), (BCE, 3,

3

5
), (ABCE, 2,

2

5
)}. This set is depicted by Figure 1. The support shown at the top left of each frame

represents the conjunctive support. As shown in Figure 1, the rare correlated patterns
are then localized below the border shown in red of the anti-monotone constraint of
correlation, composed by the elements of MaxCP , and over the border shown in black
of the monotone constraint of rarity, composed by the elements of MinRP .
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Fig. 1. Localization of the rare correlated patterns for minsupp = 4 and minbond = 0.2

Therefore, the localization of the rare correlated patterns is much more complex than
the localization of theories corresponding to constraints of the same nature.

Interestingly enough, the use of bond allows improving the quality of mined patterns
by only retaining those containing strongly correlated items. However, the number of
these patterns is not necessarily reduced which may hamper its practical use. To loss-
lessly reduce such amount of information, we propose to define a new exact concise rep-
resentation of the RCP set. An exact representation of rare correlated patterns should
determine, for an arbitrary pattern, whether it is rare correlated or not. If it is a rare
correlated one, then this representation must allow faithfully deriving the values of its
support and its bond measure. In this respect, the proposed representation in this work
will be shown to be perfect in the sense that its size never exceeds that of the whole set
of rare correlated patterns. It also allows a better exploitation and management of the



66 S. Bouasker, T. Hamrouni, and S. Ben Yahia

extracted knowledge. In addition, since the representation, that we introduce, is lossless,
it allows to derive, whenever of need, the whole set of rare correlated patterns.

The new exact concise representation of rare correlated patterns is based on the
notion of equivalence class. Equivalence classes allow us to only keep track of non-
redundant patterns. Indeed, we retain for each class only the maximal and the minimal
ones. The next subsection details our approach.

3.2 Characterization of the Rare Correlated Equivalence Classes

Based on Definition 9, the elements of the same equivalence class have the same behav-
ior w.r.t. both the correlation and the rarity constraints. In fact, for a correlated equiva-
lence class, i.e. a class which contains correlated patterns, all of them could be rare or
frequent. The application of fbond then provides a more selective process to only ex-
tract representative rare correlated patterns of each class. TheRCP set of rare correlated
patterns is then split into disjoint equivalence classes – the rare correlated equivalence
classes – in which the closed pattern is the largest one w.r.t. the set-inclusion relation.
The smallest, w.r.t. the set-inclusion relation, patterns in a class are the minimal rare
correlated patterns. The set of these particular patterns are formally defined as follows:

Definition 11. (Closed rare correlated patterns) The CRCP set of closed rare corre-
lated patterns is equal to: CRCP = {I ∈ RCP| ∀ I1 ⊃ I: bond(I ) > bond(I1)}.

Definition 12. (Minimal rare correlated patterns) The MRCP set of minimal rare
correlated patterns is equal to: MRCP = {I ∈RCP| ∀ I1 ⊂ I: bond(I ) < bond(I1)}.

{}
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Fig. 2. An example of rare correlated equivalence classes for minsupp = 4 and minbond = 0.2

Example 6. Consider the dataset D illustrated by Table 1. For minsupp = 4 and minbond
= 0.2, Figure 2 shows the rare correlated equivalence classes. We have, the set CRCP
= {A, D, AC, AD, ACD, BCE and ABCE}. Whereas, the set MRCP is equal to: MRCP
= {A, D, AB, AC, AD, AE, BC, CD and CE}. As shown by Figure 2, the patterns A, D, AC
and AD are closed and at the same time minimal. Their equivalence classes then contain
a unique element.
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Before introducing our new concise representation, it is worth mentioning that the no-
tions of closed patterns and minimal generators were also simultaneously used in [8] in
order to offer a lossless concise representation of frequent itemsets. Now, based on the
two previous sets, we define our new exact concise representation RCPR.3

Definition 13. (The RCPR representation) The RCPR representation is equal to:
RCPR = CRCP ∪MRCP .

Example 7. Consider the dataset illustrated by Table 1 for minsupp = 4 and minbond =
0.2. According to the previous example, we have the RCPR representation composed

by: (A, 3,
3

3
), (D, 1,

1

1
), (AB, 2,

2

5
), (AC, 3,

3

4
), (AD, 1,

1

3
), (AE, 2,

2

5
), (BC, 3,

3

5
), (CD,

1,
1

4
), (CE, 3,

3

5
), (ACD, 1,

1

4
), (BCE, 3,

3

5
) and (ABCE, 2,

2

5
).

The following theorem proves that the RCPR representation is a lossless concise rep-
resentation of the RCP set. In this respect, both sets MRCP and CRCP composing
RCPR are required for the exact regeneration of the set RCP . The elements of the
former set are indeed required for ensuring the rarity property of an arbitrary pattern.
While the latter set is used for checking the correlation property and for exactly deriving
its bond and support values.

Theorem 1. The RCPR representation is an exact concise representation of the RCP
set of rare correlated patterns.

Proof. Let I ⊆ I. We distinguish between three different cases:
a) If I ∈ RCPR, then I is a rare correlated pattern and we have its support and its

bond values in the representation.
b) If � J ∈ RCPR such that J ⊆ I or � Z ∈ RCPR such that I ⊆ Z , then I /∈

RCP since I does not belong to any rare correlated equivalence class.
c) I ∈RCP . Indeed, J and Z exist (otherwise I fulfills the conditions of the case b).

Thus, I is correlated since it is included in a correlated pattern, namely Z . It is also rare
since it contains a rare pattern, namely J . In this case, it is sufficient to localize the fbond
closure of I , say F . The closed pattern F belongs to RCPR since I is rare correlated
and RCPR includes the CRCP set of closed rare correlated patterns. Therefore, F =
min⊆{I1 ∈RCPR| I ⊆ I1}. Since fbond preserves the bond value and the conjunctive
support, we then have: bond(I ) = bond(F ) and Supp(∧I ) = Supp(∧F ). ♦

Example 8. Consider the RCPR representation illustrated by Example 7. Let us con-
sider each case separately. The pattern AD ∈ RCPR. Thus, we have its support equal

to 1 and its bond value equal to
1

3
. Although the pattern BE is included in two patterns

from the RCPR representation, namely BCE and ABCE, BE /∈ RCP since no element
of RCPR is included in BE. Consider now the pattern ABC. There are two patterns of
RCPR which allow determining that the pattern ABC is a rare correlated one, namely
AB and ABCE, since AB ⊆ ABC ⊆ ABCE. The smallest pattern in RCPR which cover

ABC, i.e. its closure, is ABCE. Then, bond(ABC) = bond(ABCE) =
2

5
, and Supp(∧ABC)

= Supp(∧ABCE) = 2.

3 RCPR stands for Rare Correlated Pattern Representation.
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The proof of Theorem 1 clearly highlights that it is straightforward the way queries over
of the proposed representation would be carried out w.r.t. a given arbitrary pattern as
well as the derivation of the whole set of rare correlated patterns. It is also important
to mention that the RCPR representation is a perfect cover of the RCP set, i.e., the
size of RCPR never exceeds that of the RCP set whatever the dataset and the used
minsupp and minbond values. It is in fact always true that (CRCP ∪MRCP ) ⊆RCP .

In the following, we introduce the RCPRMINER algorithm dedicated to the extraction
of the RCPR representation.

4 The RCPRMINER Algorithm

The pseudo-code of RCPRMINER is shown by Algorithm 1. RCPRMINER is a levelwise
algorithm which takes as an input a dataset D, a minimum support threshold minsupp
and a minimum correlation threshold minbond. This algorithm allows the determination
of the MRCP and the CRCP sets which constitute the RCPR representation.

Algorithm 1. RCPRMINER

Data: A dataset D = (T , I,R), minbond, and minsupp.
Results: The exact concise representation RCPR = MRCP ∪ CRCP .
Begin1

RCPR := ∅; Cand0 := {∅};2

/* The first step */3

MaxCP := MAXCP EXTRACTION(D, minbond);4

/* The second step */5

MaxCFP := {X ∈ MaxCP | X .ConjS ≥ minsupp} /* X .ConjS denotes the6

conjunctive support of X */;
MaxRCP := {X ∈ MaxCP | X .ConjS < minsupp} ;7

PCand1 := {i | i ∈ I} /* PCandn stands for Potential Candidates of size n */;8

While (PCandn �= ∅) Do9

/* Pruning of potential candidate patterns */10

Candn := PCandn \ {Xn ∈ PCandn | (∃ Z ∈ MaxCFP: Xn ⊆ Z) or (�11

Z ∈ MaxRCP: Xn ⊆ Z) or (∃ Yn−1 ⊂Xn: Yn−1 /∈ Candn−1)};
/* Determination of the minimal rare correlated patterns of size n and12

computation of their closures */
RCPR := RCPR ∪ MRCP CRCP COMPUTATION(D, Candn, minsupp);13

n := n +1;14

PCandn := APRIORI-GEN(Candn−1) ;15

Return RCPR;16

End17

The RCPRMINER algorithm mainly operates in two steps. The first step consists in
extracting the maximal correlated patterns from the extraction context through the in-
vocation of the dedicated MAXCP EXTRACTION procedure (cf. Line 4). The second
step consists in integrating the constraint of rarity and the obtained maximal correlated
patterns in a mining process of RCPR. In this situation, the set PCandn of poten-
tial candidates of size n is obtained using the classical APRIORI-GEN procedure (cf.
Line 15) from the retained candidates of size (n - 1). Once obtained, the set elements
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of PCandn are pruned (cf. Line 11) using several pruning strategies to yield the set
Candn. The used pruning strategies are as follows:

(i) The pruning of the candidates which are included in a maximal correlated
frequent pattern.

(ii) The pruning of the candidates which are not included in a maximal rare
correlated pattern.

(iii) The pruning based on the order ideal of the minimal correlated patterns.

Recall that the set of minimal correlated patterns induces an order ideal property. There-
fore, every minimal correlated candidate, having a non minimal correlated subset, will
be pruned since it will not be a minimal correlated pattern. In this respect, within the
MRCP CRCP COMPUTATION procedure (cf. Line 13), whose pseudo-code is omitted
here for lack of available space, the minimal rare correlated patterns are determined
among the retained candidates in Candn (cf. Line 11). This is done by comparing their
bond values to those of their respective immediate subsets. Then, minimal rare corre-
lated patterns are inserted into the MRCP set. Their closures are after that computed
according to the fbond closure operator, and then, inserted in the CRCP set. From the
computational point of view, it is important to mention that the localization of the bor-
der composed by the maximal correlated patterns is an NP-hard problem [3]. Therefore,
this task constitutes the most consuming part, w.r.t. execution time, in RCPRMINER.

The next section experimentally studies the RCPR representation compactness.

5 Experimental Results

In this section, our main objective is to show, through extensive experiments, that the
RCPR representation provides interesting compactness rates compared to the whole
set of rare correlated patterns. All experiments were carried out on a PC equipped with
a 2.7 GHz Intel Dual Core processor E5400 and 4 GB of main memory, running the
Linux Ubuntu 10.04. The experiments were carried out on different dense and sparse
benchmark datasets.4 Representative results are plot by Figure 3.

According to the obtained experimental results, interesting reduction rates are ob-
tained whether minsupp varies or minbond varies. The RCPR representation is indeed
proved to be a perfect cover of the RCP set. In fact, the size ofRCPR is always smaller
than that of RCP set over the entire range of the support and bond thresholds. For ex-
ample, considering the dense MUSHROOM dataset for minsupp = 35% and minbond =
0.15: |RCPR| = 1, 810, while |RCP| = 100, 156. In this situation, RCPR offers a
reduction reaching approximately 98%. These results are obtained thanks to the non-
injectivity of the closure operator fbond which gathers into disjoint subsets, i.e., fbond
equivalence classes, patterns that have the same characteristics. This process avoids
mining redundant patterns. Note that, in this case, |MRCP| = 1, 412 and |CRCP| =
652. Since the RCPR representation corresponds to the union without redundancy of
the MRCP and CRCP , we always have |RCPR| ≤ |MRCP| + |CRCP|.

We present in the following the application of the proposed representation to the
context of intrusion detection.

4 Available at http://fimi.cs.helsinki.fi/data.
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Fig. 3. Evaluation of the RCPR representation size w.r.t. the minsupp and minbond variations

6 Application to Intrusion Detection

We present in this section, the application of the RCPR representation in the design
of an association rules based classifier. In fact, we used the MRCP and the CRCP
sets, composing the RCPR representation, within the generation of the generic rare
correlated rules of the form Min⇒ Closed \Min, with Min ∈MRCP and Closed
∈ CRCP .5 Then, from the generated set of the generic rules, only the classification
rules will be retained, i.e., those having the label of the attack class in its conclusion
part. After that, a dedicated classifier we designed is fed with these rules and has to
perform the classification process and returns the detection rate for each attack class.

We present hereafter the application of our approach on the KDD 99 dataset.

6.1 Description of the KDD 99 Dataset

Each object of the KDD 99 dataset6 represents a connection in the network data flow
and is then labelled either normal or attack. KDD 99 defines 38 attacks categories
partitioned into four Attack classes, which are DOS, PROBE, R2L and U2R, and one
NORMAL class. The KDD 99 dataset contains 4, 940, 190 objects in the learning set
and 41 input attributes for each connection. We propose in this work to consider 10%
of the training set in the construction step of the classifier, containing 494, 019 objects.
The learning set contains 79.20% (respectively, 0.83%, 19.65%, 0.22% and 0.10%) of
DOS (respectively, PROBE, NORMAL, R2L and U2R).

6.2 Summary of Experimentations and Discussion of Obtained Results

Table 2 summarizes the obtained results, where AR and DR, respectively, denote “As-
sociation Rule” and “Detection Rate”,7 while minconf is the minimum threshold of
the confidence measure [1]. In addition, by “Construction step”, we mean that the step
associated to the extraction of the RCPR representation while “Classification step”

5 By “generic”, it is meant that these rules are with minimal premises and maximal conclusions,
w.r.t. set-inclusion.

6 The KDD 99 dataset is available at the following link:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

7 Detection Rate = NbrCcCx
TotalNbrCx

, withNbrCcCx stands for the number of the correctly classified
connections and TotalNbrCx is equal to the whole number of the classified connections.
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represents the step in which the classification association rules are derived starting from
RCPR and applied for detecting intrusions.

We note that the highest value of the detection rate is achieved for the classes NOR-
MAL and DOS. In fact, this is related to the high number of connections of these two
classes. This confirms that our proposed approach presents interesting performances
even when applied to voluminous datasets. We also remark that the detection rate varies
from an attack class to another one. In fact, for the U2R class, this rate is relatively low
when compared to the others classes.

To sum up, according to Table 2, the computational cost varies from one attack class
to another one. It is also worth noting that, for all the classes, the construction step is
much more time-consuming than the classification step. This can be explained by the
fact that the extraction of the RCPR concise representation is an NP-hard problem
since the localization of the associated two borders is a complex task.

Table 2. Evaluation of the rare correlated association rules for the KDD 99 dataset

Attack minsupp minbond minconf # of generic # of generic # of generic CPU Time (in seconds)
class (%) exact approximate ARs of Construction Classification

ARs ARs classification step step
DOS 80 0.95 0.90 4 31 17 120 1
PROBE 60 0.70 0.90 232 561 15 55 1
NORMAL 85 0.95 0.95 0 10 3 393 15
R2L 80 0.90 0.70 2 368 1 1, 729 1
U2R 60 0.75 0.75 106 3 5 32 1

Furthermore, the results shown by Table 3 prove that the proposed rare correlated
association rules are more competitive than the decision trees as well as the Bayesian
networks [2]. In fact, our approach presents better results for the attack classes DOS,
R2L and U2R than these two approaches. For the NORMAL class, the obtained results
using our approach are close to those obtained with the decision trees. The Bayesian
networks based approach presents better detection rate only for the PROBE attack class.
The proposed rare correlated association rules then constitute an efficient classification
tool when applied to the intrusion detection in a computer network.

Table 3. Comparison between the proposed rare correlated association rules based classifier ver-
sus the state of the art approaches

Attack class Rare correlated generic ARs Decision trees [2] Bayesian networks [2]
DOS 98.68 97.24 96.65
PROBE 70.69 77.92 88.33
NORMAL 100.00 99.50 97.68
R2L 81.52 0.52 8.66
U2R 38.46 13.60 11.84

7 Conclusion and Future Works

We proposed in this paper a characterization of the RCP set of rare correlated patterns
and we defined the new exact conciseRCPR representation associated with this set. We
then designed the RCPRMINER algorithm allowing an efficient extraction of this repre-
sentation. The carried out experimental studies highlight interesting compactness rates
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offered by RCPR. The effectiveness of the proposed classification method, based on
generic rare correlated association rules, has also been proved in the context of intrusion
detection. Other avenues of future works concern the extraction of generalized associ-
ation rules starting from rare correlated patterns and their use in real-life applications.
In addition, we plan to extend our approach to other correlation measures [6,10,12,14]
through classifying them into classes of measures sharing the same properties.
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