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Abstract. In this paper, we consider graphs where a set of Boolean at-
tributes is associated to each vertex, and we are interested in k-clique
percolated components (components made of overlapping cliques) in such
graphs. We propose the task of finding the collections of homogeneous k-
clique percolated components, where homogeneity means sharing a com-
mon set of attributes having value true. A sound and complete algorithm
based on subgraph enumeration is proposed. We report experiments on
two real databases (a social network of scientific collaborations and a net-
work of gene interactions), showing that the extracted patterns capture
meaningful structures.
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1 Introduction

During the last decade, graph mining has received an increasing interest in the
data mining community. More recently, several works have considered the mining
of enriched graphs where attributes are associated to the vertices. These works
led to interesting results, for instance in clustering [4,8,15,16], dense graph min-
ing [7,12] or graph matching [14].

In this paper, we focus on the special case where the domain of the attributes
is Boolean and we propose to extract collections of components called k-clique
percolated components [1]. More precisely, we define a pattern as a Collection
of Homogeneous k-clique Percolated components (CoHoP), where homogeneity
means that the vertices in all components share a common set of Boolean at-
tributes having value true. A CoHoP pattern must also satisfy two additional
constraints: it must contain more than a given number of k-clique percolated
components and the vertices must have in common more than a given number
of attributes set to true. A k-clique percolated component has been defined in [1]
as a union of cliques of size k connected by overlaps of k − 1 vertices (we recall
the more formal definition in the next section), and since then, it has been widely
accept as one structure that can be used to represent the notion of community.
A CoHoP, as introduced here, can thus be interpreted as a set of communities,
where elements in all communities share similar Boolean properties.
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In this paper, we also present a sound and complete algorithm to extract the
CoHoPs, and we show on two datasets (a coauthor graph and a gene interaction
graph) that these patterns can be used to capture useful information, depicting
underlying hidden structure of the graph.

The rest of the paper is organized as follows. Section 2 introduces the definition
of the CoHoP patterns. The extraction algorithm is described in Section 3 and
the experiments are reported in Section 4. The related works are discussed in
Section 5, and Section 6 briefly concludes.

2 Pattern Definition

In this section, we first define the dataset structure and recall the notion of k-
clique percolated component. Then, we define the targeted patterns, that are
collections of k-clique percolated components.

Graphs where information are associated to vertices have been used in dif-
ferent research areas under various names, e.g. attributed graphs [12,14,15,16],
itemset-associated graphs [2], informative graphs [4,8], graphs with feature vec-
tors [7]. In this paper, we use the term attributed graphs, and restrict ourselves
to Boolean attributed graphs.

Definition 1 (Boolean attributed graph). A Boolean attributed graph is
denoted G = (V , E ,A,F) where V is the set of vertices, E is the set of edges, A
is the set of Boolean attributes, and F : V → 2A is the function returning for a
vertex the set of attributes having value true.

For notational convenience, let us define the following functions.

Definition 2 (Functions vert and Atb). Let x be an attribute. The function
vert(x) = {v ∈ V | x ∈ F(v)} returns the set of vertices having value true
for the attribute x. Let M be a collection of sets of vertices. Then, Atb(M) =⋂

V ∈M (∩v∈V F (v)) is the set of attributes shared by all vertices in M .

Let G be an attributed graph. We denote G[V ] the subgraph of G induced by
the set of vertices V , i.e., G restricted to the vertices in V . The notation G�X�
denotes the subgraph induced by the set of vertices having value true for all
attributes in X , i.e., G�X� = G[∩x∈Xvert(x)].

A clique is a set of vertices in which every pair of distinct vertices is connected
by an edge and a k-clique is a clique of size k. A k-clique percolated component
(termed also k-clique-community in [11]) is a relaxed version of the concept
of cliques. The definition of k-clique percolated component given in [1] can be
reformulated as follows using an equivalence relation over the cliques.

Definition 3 (Adjacency relation). Let G be an attributed graph and R be
the adjacency relation over the k-cliques in G. Two k-cliques are related by R
if and only if they have an intersection of at least k − 1 vertices. Let Rt be the
transitive closure of R.

The relation R is symmetric and reflexive, so Rt is symmetric, reflexive, and
transitive. Consequently, Rt is an equivalence relation.
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Definition 4 (k-clique Percolated Component (k-PC)). A k-PC is the
union of all k-cliques in a class of equivalence over Rt.

In other words, a k-PC is the union of all k-cliques that can be reached from each
other through a series of adjacent k-cliques. We will denote Ckpc(G) the collection
of all k-PCs in an attributed graph G. Compared to other fault-tolerant clique
definitions, the particularity of k-PC is to enforce the fact that each vertex can
be reached from any other vertex through well connected subset of vertices [11].
In the context of social networks, it represents a community where each person,
even if not directly connected to another member, can easily find a way to com-
municate with him/her. Note also that with this definition, a clique is contained
in at most one k-PC. However, since a vertex can be in several cliques sharing
less than k − 1 vertices, it can be part of several k-PCs.

As mentioned in the introduction, our purpose is to explore the relation be-
tween strongly connected subgraphs. To perform this task we extract collections
of set of vertices such that, with k, α, and γ three user defined positive in-
tegers, (1) all vertices are homogeneous, more precisely, they have at least α
true-valued attributes in common, (2) the collection contains at least γ k-PCs
and (3) all k-PCs showing the same true-valued attributes are in the collection.
These patterns are defined more precisely as follows.

Definition 5 (Collection of Homogeneous k-PCs (CoHoP)). Let k, α,
and γ be three strictly positive integers, and G be an attributed graph. A collection
M of sets of vertices is a CoHoP if and only if:

– |Atb(M)| ≥ α (the vertices in M are homogeneous);
– M contains at least γ k-PCs, i.e., |M | ≥ γ;
– M is the collection of all k-PCs in G�Atb(M)�, i.e., M contains all k-PCs

sharing the attributes in Atb(M).

Note that due to the constraint on homogeneity, a k-PC which is formed by
vertices sharing less than α attributes cannot be part of a CoHoP.

3 Mining CoHoP Patterns

We first present a naive algorithm enumerating all subgraphs which might con-
tain a pattern. Then we show how to safely reduce the subgraphs enumeration,
and we describe the corresponding algorithm. Finally we describe implementa-
tion techniques.

Naive Algorithm
While Definition 5 is very declarative, we establish the following more construc-
tive definition of the CoHoPs.

Lemma 1. Let k, α, and γ be three strictly positive integers, and G be an at-
tributed graph with A the set of Boolean attributes in G. A collection M of sets of
vertices is a CoHoP if and only if there exists X ⊆ A such that M = Ckpc(G�X�),
|X | ≥ α, and |M | ≥ γ.
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Proof. First, consider a CoHoP M . By direct application of Definition 5, there
exists X = Atb(M) ⊆ A such that M = Ckpc(G�X�), |X | ≥ α, and |M | ≥ γ.
Now we prove the reciprocal. Consider X a set of attributes satisfying |X | ≥ α,
and M a collection of sets of vertices such that M = Ckpc(G�X�) and |M | ≥
γ. Since M = Ckpc(G�X�), then X ⊆ Atb(M). So G�Atb(M)� is a subgraph
of G�X� and since all vertices in M are also in G�Atb(M)�, we have M =
Ckpc(G�X�) = Ckpc(G�Atb(M)�). Thus M is a CoHoP.

To compute all patterns, a naive algorithm can enumerate the subgraphs Ge =
G�X� for all non empty set of attributes X , and for each Ge computes all k-PCs
in Ge. Then, if |X | ≥ α and if there is at least γ k-PCs in Ge, this collection of
k-PCs is a CoHoP. From Lemma 1, this algorithm is correct. However, with this
enumeration technique, 2|A| − 1 subgraphs will have to be enumerated (2|A| − 1
non empty subsets of A). The following lemmas are used to reduce the collection
of subgraphs that has to be enumerated.

Reducing the Collection of Graphs to Be Enumerated

First, we introduce the notion of k-max-clique which is a clique having at least k
vertices and not being a subset of any other clique. The collection of all k-max-
cliques in an attributed graph G is denoted Ckmax(G).

The next lemma states that we can discard the attributed graphs that do not
contain at least γ k-max-cliques, and also their subgraphs.

Lemma 2. Let G be an attributed graph. If G does not contain at least γ k-max-
cliques, then neither G nor any subgraph of G can contain a CoHoP.

Proof. Let G be an attributed graph having less than γ k-max-cliques. Since all
k-cliques in a k-max-clique are in the same k-PC, then the number of k-max-
cliques cannot be greater than the number of k-PCs. So, G cannot contain γ
k-PCs and thus cannot contain a CoHoP. The same holds for any subgraph of
G, since a subgraph of G cannot contain more k-max-cliques than G.
According to the following lemma, we can avoid the enumeration of graphs (and
their subgraphs) if they are induced by sets of attributes shared by not enough
vertices to contain a CoHoP.

Lemma 3. Let G be an attributed graph and x an attribute shared by less than
k vertices in G. Then, the graph G�{x}� and all its subgraphs cannot contain a
CoHoP.

Proof. Straightforward since G�{x}� contains less than k vertices.

The following property allows to reduce the set of vertices under consideration.

Lemma 4. Let G be an attributed graph. Only vertices in a k-max-clique of G
can form a CoHoP in G or in any subgraph of G.

Proof. Direct, as a vertex which is not in a k-max-clique cannot be in any k-PC.
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Algorithm Description

A recursive function FindCoHoP, that takes advantage of Lemmas 2, 3, and 4 to
prune the search space, is presented as Algorithm 1. The input of the algorithm
for the first call is the whole attributed graph, i.e., Ge = G, and Ac, the set of
candidate attributes remaining under consideration to find attributes shared by
subgraph, is A.

Line 1 checks that there is at least γ k-max-cliques in Ge. If it is not the
case, from Lemma 2 no subgraph of Ge including Ge itself can contain a k-PC.
Line 2 computes the set of vertices which might contain a k-PC (i.e., Vr) as
the union of all k-max-cliques in Ge according to Lemma 4. Line 3 checks (1) if
there is at least α attributes shared by all vertices in Vr (|∩v∈VrF(v)| ≥ α) and
(2) if there is at least γ k-PCs (|Ckpc(Ge[Vr])| ≥ γ). If so, the collection of k-PCs
is a CoHoP, and is output on line 4. On line 5, attributes from Ac shared
by all vertices in Vr are removed from Ac. Removing these attributes does not
change the collection of enumerated subgraphs, since if we pick such an attribute
x we have Ge[Vr ∩ vert(x)] that is equal to Ge[Vr] itself in the recursive call to
FindCoHoP (line 9). On line 6, attributes shared by less than k vertices in Vr

are removed from Ac, according to Lemma 3. This avoids unnecessary calls to
FindCoHoP with subgraphs having not enough vertices. Lines 7 to 9 perform
a standard recursive enumeration scheme to produce in a depth first way, and
element by element (the x that is picked), all subsets of Ac. While Ac is not
empty, an attribute x is picked (line 8) and function FindCoHoP is called with
the subgraph of Ge induced by the set of vertices in Vr sharing attribute x, i.e.,
Ge[Vr ∩ vert(x)].

Algorithm 1. FindCoHoP

Input: Ge, Ac

1 if |Ckmax(Ge)| ≥ γ then
2 Vr = ∪C∈Ckmax(Ge)

3 if |∩v∈VrF(v)| ≥ α and |Ckpc(Ge[Vr])| ≥ γ then
4 output Ckpc(Ge[Vr])

5 Ac ← {x ∈ Ac | Vr � vert(x)}
6 Ac ← {x ∈ Ac | |vert(x)∩ Vr| ≥ k}
7 while Ac �= ∅ do
8 Pick and remove an attribute x from Ac

9 FindCoHoP(Ge[Vr ∩ vert(x)], Ac)

Theorem 1. Algorithm 1 returns all CoHoP patterns and only CoHoP patterns.

Proof. Lemma 1 and Lemmas 2 to 4 (safety of the pruning) ensure the com-
pleteness of Algorithm 1. Line 3 ensures its soundness.

Note that a given CoHoP might be output several times by Algorithm 1. Such
duplicates are removed in a simple post-processing step.
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Implementation
We give here some details about the implementation of Algorithm 1 used in the
experiments presented in the next section.

The algorithm used to compute the collection of k-PCs in a graph is the
one described in [11] and also used for instance in [3]. It first builds a matrix
representing the adjacency relation between the k-cliques, and then compute the
connected components of k-cliques (the k-PCs) using this matrix. The algorithm
used to compute the k-max-cliques is CLIQUES [13]. Both the collection of k-
max-cliques (i.e., Ckmax(Ge)) and the collection of k-PCs (i.e., Ckpc(Ge[Vr])) are
computed only once for a given attributed graph on respectively lines 1 and 3,
and are reused on lines 2 and 4. Moreover, the computation of the k-PCs is done
on line 3 only if the vertices in Vr have at least α attributes in common (i.e.,
|∩v∈VrF(v)| ≥ α).

Finally, since vertices in a pattern must share at least one attribute (α ≥ 1),
in general it is not necessary to compute the k-max-cliques of the whole graph.
So, the first level of the enumeration is computed using only lines 6 to 9 of
Algorithm 1, with Vr the set of all vertices of the input attributed graph.

4 Experiments

In this section we report experiments on three datasets built using real data: two
bibliographic datasets (DBLP1 and DBLP2), and a biological dataset (BioData).
The size and density of these datasets are presented in Table 1. All experiments
were performed on a PC running GNU/Linux with a 3 GHz Core 2 Duo CPU
and 8 GB of main memory installed (no more than 2 GB where used). We first
describe the datasets, then, we illustrate the interest of the CoHoPs by mean of
three typical examples of pattern found. Next, we discuss the performances of
the algorithm and parameter setting.

Collaboration Network: DBLP1 and DBLP2 datasets have been built using
the public DBLP database1. This database contains rather exhaustive bibli-
ographic information on most computer science conferences and journals. We
built our datasets using all conferences and journal up to august 2011. A vertex
corresponds to an author and the attributes associated to a vertex are the con-
ferences and journals in which the author has published. An edge between two
authors represents the fact that they have coauthored some papers.

For DBLP1 we wanted a large dataset to assess the performances of extraction
algorithm. Consequently, in DBLP1, we put an edge to represent each pair of
coauthors, and for the attributes, an author is associated to all conferences and
journals in which she/he has published. This led to a dataset containing 997, 050
authors and 5, 963 conferences/journals.

The dataset DBLP2 was targeted to obtained more meaningful patterns. Thus,
in DBLP2, we focused on pairs of authors that have been collaborating more sig-
nificantly, and we put an edge between two authors if they were coauthors of
at least three articles. We also required a stronger relationship between authors

1 http://dblp.uni-trier.de/

http://dblp.uni-trier.de/
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and conferences/journals. Indeed, we associated a conference or a journal to an
author, only if this author has published at least three times in this confer-
ence/journal. Finally, in DBLP2, authors that remain associated to no confer-
ence/journal (i.e., authors who have never published three times in the same
conference/journal) were removed.

Protein Interaction Network: BioData has been built using two databases
STRING2 [5] and SQUAT3 [6]. STRING integrates data on protein-protein in-
teractions from different sources (e.g., genomic data, co-expression, experiments,
literature). Among these interactions we only retained interactions with confi-
dence4 higher or equal to 400 (default STRING selection threshold). SQUAT is
a public database of Boolean gene expression data resulting from SAGE experi-
ments. SQUAT contains for thousands of genes, the sets of biological situations
(termed libraries) where these genes are overexpressed. In our experiments, only
Human species genes were used. We built the BioData dataset as follows. A
vertex is a gene, and we put an edge between two genes if there was an inter-
action reported in STRING (confidence of at least 400) between the proteins
corresponding to these two genes. The attributes associated to a gene were sim-
ply the biological situations in which the gene was overexpressed according to
the SQUAT database. In our experiments, only Human species genes were used,
this led to 15, 571 genes common to the two databases. For these genes we have
expression data in SQUAT for 486 different biological situations.

Table 1. Size and density of datasets DBLP1, DBLP2, and BioData

DBLP1 DBLP2 BioData

# Vertices 997,050 127,386 15,571
# Attributes 5,963 3,980 486
Avg. degree 6.88 3.69 20.01
Avg. attributes/vertex 3.06 2.15 11.46

4.1 Illustration of the Interest of the Patterns

Collaboration Network: Let us first define some vocabulary in the context of
a network of researchers. In [11] the authors consider that a k-PC is a community
in the sense that “it consists of several complete subgraphs that tend to share
many of their nodes”. Consequently, we will use the term community for a k-PC.
We will also say that two communities are connected if there is an edge between
both communities. In DBLP2, we searched for CoHoPs with at least seven 4-
PCs were all authors have published in the same three conferences or journals

2 http://string-db.org/
3 http://bsmc.insa-lyon.fr/squat/
4 This confidence is a measure provided by STRING. Low confidence means that there

are not so many evidences that the interaction exists.

http://string-db.org/
http://bsmc.insa-lyon.fr/squat/
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(a) Seven 4-PCs concerning con-
ferences IPMI, ISBI, MICCAI and
journal IEEE Trans. Med. Imaging.

(b) Nine 4-PCs concerning confer-
ences INTERSPEECH, ICSLP, and
EUROSPEECH.

Fig. 1. Two patterns extracted from DBLP2 with k = 4, γ = 7, and α = 3. Each color
corresponds to a k-PC. Vertices in red are in several k-PCs

(i.e., k = 4, α = 3 and γ = 7). With this parameter setting, 57 CoHoPs where
extracted. To illustrate the kind of patterns that were retrieved, we focus on two
patterns presented in Figures 1(a) and 1(b).

The pattern on Figure 1(a) contains seven 4-PCs, all authors having published
in conferences or journals related to medical imaging. The authors N. Avache,
H. Delingette, G. Malandain, S. Ourselin, X. Pennec, and P. M. Thompson are
forming a community connected to all other communities except one and is the
core of a star-based topology. Knowing such a structure is useful to make some
decisions. For instance having researchers of the core community as partners in
a project, or choosing this community as a destination for a post-doc position
could be a great opportunity to benefit from contacts with all the other groups.
We also investigated the role of the authors connecting two communities (i.e.,
the endpoints of edges connecting two communities) in this pattern using Ar-
netMiner5. We found that four of these bridging nodes [10] were advisor of at
least half of the authors of their respective communities. So they are likely to be
senior researchers and this is coherent with the fact that they appear as bridges
between communities.

In the second CoHoP, presented on Figure 1(b), all authors have published
at least three times in three conferences related to speech communication / spo-
ken language. It contains nine communities, seven of them not being connected
to any other. Moreover, from the personal page of the authors, we found out
that in most cases a community is formed by people working in the same re-
search institute. So, here most communities are formed by researchers working
in the field of speech processing and not strongly publishing with researchers
from other institutes. Such structure with disconnected groups of people sharing

5 ArnetMiner (http://arnetminer.org/) is an application providing the relationship
(e.g., coauthor, advisor, advisee) between researchers.

http://arnetminer.org/
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similar interests might be interesting for several tasks. For instance, it can give
hints to funding organisms to set up long term development strategies of col-
laboration networks. Or it can also be helpful, in a normal day-to-day activity,
like finding reviewers for a paper, by suggesting experts in the same domain as
the authors, but having no closed collaborations (strong coauthor relationship)
with these authors (and also eventually having no closed collaborations with the
other experts).

Fig. 2. A CoHoP extracted from BioData with k = 3, α = 4, and γ = 3. Each color
corresponds to a k-PC. Vertices in red are in several k-PCs.

Protein Interaction Network: In the BioData dataset, we searched for Co-
HoPs with at least three 3-PCs were all genes are overexpressed in at least four
biological situations (i.e., k = 3, α = 4, and γ = 3) and obtained 25 patterns.
The CoHoP containing the greatest number of k-PCs is presented Figure 2.
This CoHoP is composed of 7 k-PCs, and all vertices are genes overexpressed
in 4 situations corresponding to normal white blood cells activities. The pattern
contains (from left to right) a ring made of 4 groups of genes (4 k-PCs), with two
other groups forming a tail link to the ring, and an extra isolated group. Such a
structure suggest, among others, the following biological questions. Is there any
order in the activation of the groups along the ring ? Do the groups forming
the tail act as a trigger for the whole ring activity ? Are there some interactions
between the isolated group and the others (while no such interaction is reported
in STRING with a confidence of 400 or greater) ? All these questions can lead
to interesting deeper investigations through wet biology experiments.

4.2 Performance Study

Figure 3 shows that the extraction can be made in less than 25 minutes when
k ≥ 4 on DBLP1 and DBLP2 (on BioData, all extractions made for similar
settings were run in less than 10 seconds). We can also notice that in all settings,
the runtime increases significantly when k decreases. The runtime increase when
γ decreases, as shown on Figure 3(b), is mainly due to the computation of k-PCs
from a large number of k-max-cliques.

The number of output patterns is given on Figure 4. As expected this number
decreases when the values of k, α, and γ increase. Such curves can be used
to help setting the extraction parameters. For instance, for communities, the
literature [11,3] recommends to use a value of k between 3 and 6. So, for DBLP2,
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Fig. 3. Runtime for different sets of parameters on DBLP1 and DBLP2

since the running time is rather low, we could count the number of patterns for
these values of k and a whole range of values of α and γ. Then we chose among
these settings the ones that were meaningful and that lead to collections of
patterns of reasonable size (for human browsing).

5 Related Work

Local pattern mining in attributed graphs to find homogeneous set of vertices is
rather recent, and two main families of approaches have been developed.

In the first family [7,12], a pattern is a single densely connected subgraph
(e.g., a quasi-clique) such that the vertices have homogeneous feature values.
Such a pattern can reveal a module, a group or a community sharing similar
properties or interests. A pattern in our approach is set of groups sharing similar
attribute values, and thus exhibits a different kind of structures made of several
groups (not a single one). Moreover the notion of group is also different, and
corresponds for CoHoPs to an another well known form of communities, the
k-clique percolated components. It should also be pointed out, that if the user
is interested in extracting single groups, this can also be done, in the case of
CoHoPs, by setting parameter γ to 1 and by outputting all k-clique percolated
components as separated patterns.
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Fig. 4. Number of patterns for different sets of parameters on DBLP1 and DBLP2

Our proposal is closer to the second family of approaches [2,9], where a pattern
is a collection of set of vertices in a subgraph made of vertices sharing similar
attribute values. These previous works adopt opposite views on the kind of
structures they consider. In [9] the constraint on the structure of a group is
very strong, since the sets of vertices must be cliques. On the contrary, in [2],
the choice was made to be very tolerant, since a set of vertices is simply required
to form a connected subgraph. We introduce in this paper a complementary
approach, that exhibits another kind of group structures, namely the k-clique
percolated components, that are typical group structures used in the literature
to capture the notion of community.

6 Conclusion

In this paper, we considered graphs having a set of Boolean attributes associated
to each vertex. We proposed to find Collection of Homogeneous k-clique Perco-
lated components (CoHoP) and gave a sound and complete algorithm for this
task. We shown by means of experiments on real datasets that the extractions
can be made in practice and lead to meaningful patterns.
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