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Abstract. Outlier detection (also known as anomaly detection) is a common data
mining task in which data points that lie outside expected patterns in a given
dataset are identified. This is useful in areas such as fault detection, intrusion de-
tection and in pre-processing before further analysis. There are many approaches
already in use for outlier detection, typically adapting other existing data mining
techniques such as cluster analysis, neural networks and classification methods
such as Support Vector Machines. However, in many cases data from sources
such as sensor networks can be better represented with an uncertain model. De-
tecting outliers with uncertain data involves far more computation as each data
object is usually represented by a number of probability density functions (pdf's).

In this paper, we demonstrate an implementation of outlier detection with un-
certain objects based on an existing density sampling method that we have paral-
lelized using the cross-platform OpenCL framework. While the density sampling
method is a well understood and relatively straightforward outlier detection tech-
nique, its application to uncertain data results in a much higher computational
workload. Our optimized implementation uses an inexpensive GPU (Graphics
Processing Unit) to greatly reduce the running time. This improvement in perfor-
mance may be leveraged when attempting to detect outliers with uncertain data
in time sensitive situations such as when responding to sensor failure or network
intrusion.

1 Introduction

In recent years there has been increased interest in mining uncertain data [1]. A signif-
icant amount of data collected, such as from temperature sensors, contain some degree
of uncertainty, as well as possibly erroneous and/or missing values. Some statistical
techniques such as privacy-preserving data mining may deliberately add uncertainty
to data. In addition, with the proliferation of affordable, capacious storage solutions
and high speed networks, the quantity of data collected has increased dramatically. To
quickly deal with the large quantities of mostly uninteresting data, outlier detection is a
useful technique that can be used to detect interesting events outside of typical patterns.
However, uncertainty adds greatly to the complexity of finding outliers as uncertain
objects are not represented by a single point, but rather a probabilistic object (i.e. the
point could be anywhere in the given space with some probability). This increase in
complexity leads to the problem of reduced scalability of algorithms to larger amounts
of data.
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Within a similar time frame, multi-core processors and most recently general purpose
computing using graphics processors (GPGPU) have become popular, cost effective ap-
proaches to provide high performance parallel computing resources. Modern GPUs are
massively parallel floating point processors attached to dedicated high speed memory —
for a fraction of the cost of traditional highly parallel processing computers. Program-
ming frameworks such as NVIDIA CUDA and OpenCL now allow for programs to
take advantage of this previously underutilized parallel processing potential in ordinary
PCs and accelerate computationally intensive tasks beyond typical applications in 3D
graphics, seeing use in scientific, professional and home applications (such as video
encoding).

Our contributions in this paper are a modified density sampling algorithm and im-
plementations for fast parallel outlier detection with uncertain data using this parallel
processing resource. Our implementation has been optimized for the features and re-
strictions of the OpenCL framework and current GPUs.

This paper is organized as follows: Sect. Rl briefly covers related work in the field of
outlier detection with uncertain data as well as other GPU accelerated outlier detection
techniques. Sect. [3] describes our modified algorithm used in this paper for outlier de-
tection with uncertain data. Sect. 4] details our implementation of the algorithm, with
attention to key points in parallelization and optimization using the OpenCL frame-
work. Sect. [5l describes our testing methodology and demonstrates the effectiveness of
our OpenCL-based approach in greatly improving performance using both GPU and
CPU hardware. Sect. |6l summarizes our contributions and concludes this paper.

2 Related Work

Outlier detection is a well established and commonly used technique for detecting data
points that lie outside of expected patterns. The prototypical approach to outlier detec-
tion is as a by-product of clustering algorithms [2]. In a clustering context, an algorithm
such as DBSCAN [3]] will exclude data points that are not close (given an appropriate
metric such as distance or density) to other objects. Later, more approaches were pro-
posed for outlier detection, such as Local Outlier Factor (based on k-nearest-neighbors),
Support Vector Machines, and neural networks.

Data mining applications such as outlier detection are also candidates for paralleliza-
tion to reduce running time [4] as in typical cases there is a large amount of data that
is processed by a small number of routines, possibly in real-time or interactively (for
example, in an intrusion detection system). These tasks are said to be ‘data parallel’,
and such tasks are well suited for execution on a GPU [2]. Unlike conventional parallel
processing computers that have many complex CPU cores, a modern GPU consists of a
large number of simple ‘stream processors’ that are individually capable of only a few
operations. However, the ability to pack many stream processors into the same space
as a single CPU core gives GPUs a large advantage in parallelism. A similarly parallel
traditional CPU-based system would be significantly more costly and complex.

The two most popular programming frameworks for GPGPU are C for CUDA, a
proprietary solution developed by NVIDIA Corporation, and OpenCL, an open standard
backed by multiple companies including Intel, AMD, NVIDIA and Apple. With both
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CUDA and OpenCL, work is split from the host (i.e. the CPU) to kernels that execute
on a computing device (typically GPUs). Kernels contain the computationally intensive
tasks, while the host is tasked with managing the other computing devices. A single
kernel can be executed in parallel by many worker threads on a GPU.

Several outlier detection algorithms [2]] [S]] [6] [7] have been adapted for acceleration
with GPUs using CUDA and have seen significant reductions in running times (e.g. a
hundred fold improvement in [2]]). In this paper, we opt to use OpenCL, as it provides
a high degree of portability between different manufacturers of GPUs, as well as the
ability to execute the same parallel code on a CPU for comparison.

While there is already a large body of work in the area of accelerating outlier detec-
tion on regular (certain) data, often in real world cases data collected has some degree
of uncertainty or error [1]], for instance, a network of temperature sensors monitoring
a greenhouse. Moreover, some statistical techniques such as forecasting and privacy
preserving data mining will naturally be uncertain. These uncertainties can be repre-
sented by a number of common probability density functions (e.g. Gaussian distribu-
tion), which offer a convenient closed form representation. However, sampling a pdf
for outlier detection using a typical distance or density based approach will result in
greatly increased running time due to the computational load from calculations from
all the sampled points (e.g. LOF has a complexity of O(n?) [2]], where n would in this
case be the total number of samples).

The work in [8] introduces outlier detection on uncertain data as records in a database,
with each record having a number of attributes (dimensions). Each dimension has a pdf,
and the objective is to find data points in an area with data density 7 (expressed as the
n-probability of a data point) less than a threshold value 4, i.e. a (9, n)-outlier. As it is
assumed that outliers have low density in some subspace of the data, each subspace is
explored and in each subspace and outliers are removed.

It is noted [8] that it is impractical to determine 7-probabilities directly, so a sam-
pling approach of the pdfs is used. As the sampling process is a very time consuming
operation, [8]] also proposes a ‘microclustering’ technique to reduce the number data
objects into clusters. However, in this paper we do not explore microclustering of the
data to focus on the performance of density sampling on a GPU.

3 Algorithm for Outlier Detection with Uncertain Data

In this paper, we propose modification of the density sampling algorithm proposed in
[8]] to optimize it for GPU acceleration. We will first recap the outlier detection approach
and terminology.

Let dataset D contain n uncertain data objects, with each object d; having m dimen-
sions. For each object, each dimension has a pdf that is assumed to be independent.
Each object is represented by its mean value X;. The pdf for X; along dimension j
is denoted by k! (-) and the standard deviation of k7 (-) is denoted v;(X;). In the case
of data stored in certain form (i.e. without standard deviation), uncertainty can be es-
timated from the calculated standard deviation of each dimension using the Silverman
approximation suggested in [8]].
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It is defined that the n-probability of object X; is the probability that X; lies in a
subspace with overall data density of at least 7. A subspace is defined as the objects in a
subset of the m dimensions, while overall data density is defined by pdfs of each object.
The probability p; of X; in a subspace of dimensionality r with overall data density of
at least 17 can be found by solving the following integral:

T
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Note that h(z1,...,x,) represents the overall probability density function on all co-
ordinates in the given subspace. However, as p; is difficult to calculate precisely with
Eq. [0 it can be estimated using a density sampling algorithm, using s samples:

EstimateProbability(d;, ), r, s) '

Let F/ (-) be the inverse cumulative distribution function of pdf h(-)

success = 0, runs =0

for s times do

for j =1tordo
y = a uniform random value [0, 1]
for all di, in D do o

density; = density; + b (F} (y))

end for
density; = density;/|D|

end for

if density;, > n then
success = success + 1

end if

runs = runs + 1

end for

return (success/runs)

By sampling an object at multiple random points, calculating the overall data den-
sity at each sampled point, and counting how many of those sampled points exceed
7, the probability that object lies in a subspace with data density of at least n (i.e. 7-
probability) can be estimated. It is also evident that the requirement to calculate overall
data density at each sampled point presents a large computational workload.

Finally, object X; is defined as a (&, 7)-outlier if the n-probability of X; in any sub-
space is less than a user parameter J, that is, the object has a low probability of lying in
a region of high data density.

The overall algorithm is presented in pseudo code form as follows:

DetectOutlier(D, n, 6, r, S)

O = null

i=1

C; = { First dimension of data points in D }

while C; is not empty and ¢ < r do

For each object d € C; — O calculate EstimateProbability(d, i, s, 1)
Add any objects with n-probabilities < § to O
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C;+1 = for each point in C; — O append corresponding dimension ¢ + 1 from D
t=1+1
end while
Note that the outlier detection algorithm uses a roll-up approach [8], starting with
a one dimensional subspace and adding more dimensions for each iteration. Each sub-
space is tested for outliers and any outliers are discarded from further consideration in
other subspaces.

4 Serial and Parallel Implementations

In order to compare performance, we implemented the algorithm described in the previ-
ous section in two ways: a traditional serial implementation in C++ (for the CPU) and a
parallel implementation optimized for the OpenCL framework (for both CPU and GPU).
In this section, we detail the key points to our serial and parallel implementations.
Note that in this paper, we assume all dimensions and their pdfs are independent
of each other. Density at a single point in a given data object is estimated by taking
the pdf of all dimensions of all data objects. This process is repeated for each sample
of each data object. In this case, the pdf is given by the Gaussian function f(z) =
2
\/inz e ey . The calculation of the inverse cumulative distribution function (inverse
cdf) is more complicated due to the absence of a closed form representation. In this
implementation, it is calculated numerically using the technique described in [9].

4.1 Serial Methods

Within the serial implementation are two methods referred to as ‘iterative’ and ‘sin-
gle pass’. As noted previously, the density sampling algorithm uses a roll-up approach
to outlier detection starting with a single dimension and adding more dimensions for
each subsequent iteration. Since each dimension is considered independent, every com-
bination of subspaces does not need to be considered without loss of generality. Any
outliers found in a given subspace are excluded from later subspaces. The ‘iterative’
method uses this roll-up approach as described in Sect.[3 In contrast, the simpler ‘sin-
gle pass’ method only tests the entire problem space, that is, rather than looping through
subspaces of dimensionality 1 to r in DetectQOutlier, one subspace of dimensionality r
is tested. This effectively averaging out all the densities in each dimension. As shown
in Sect.[3 this has a marked impact on performance (running time) as well as quality.

4.2 Parallel Methods

The parallel OpenCL implementation follows a similar path, with two methods referred
to as ‘early reject’ and ‘no early reject’. As described in Sect.[3] ‘early reject’ generates
comparable results to the serial iterative method, and ‘no early reject’ generates compa-
rable results to the serial single pass approach. However, the OpenCL implementation
differs in some key ways to the relatively straightforward serial implementation.

When a kernel executes on a computing device such as a GPU, it should take into
account a different architecture to a regular CPU. To better leverage the GPU using
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OpenCL, this implementation uses several optimizations such as the use of single preci-
sion floating point values and special hardware accelerated mathematical functions (na-
tive functions). Single precision floating point values are used extensively in graphics,
and thus GPUs are optimized for many single precision functions. By avoiding double
precision there are significant performance improvements at the cost of a small amount
of quality. However this is dependent on the hardware platform, and on our test platform
the CPU offered worse performance running OpenCL code with these optimizations.
As such, for fairness the CPU OpenCL implementation uses a simpler version that is
functionally identical but using double precision and without additional math functions.

The main kernel that is called from DetectOutlier on the host contains an imple-
mentation of EstimateProbability, along with a number of other functions such as the
uniform random number generator, as well as calculation of pdf and cdf. The current
OpenCL framework and the GPU imposes certain additional restrictions, such as a lack
of recursion (a function calling itself) and lack of dynamic memory allocation on the
GPU. This is a problem as refinement methods used in math libraries often use recur-
sion. These were re-written to remove recursion and to take advantage of additional
OpenCL functionality (e.g. the complementary error function erfc).

In addition, branching logic can cause a reduction in performance and should be
avoided where possible, as GPUs must execute the same code path for each worker
thread executing in parallel. As such, counter-intuitive methods such as an arithmetic
approach to n-density is used and not removing objects already detected as outliers from
further calculation until later are used to avoid branching as far as possible. Memory
management is also important on a GPU, with the fastest private memory available for
each worker thread used as a scratch area and a slower global memory space that can
be accessed by all workers used to store the dataset D. As copying data to and from the
GPU is an expensive operation, data transfers are minimized and as much preprocessing
and processing done on the GPU as possible.

For optimum performance using a GPU, clearly there must be a high level of data
parallelism, with many worker threads to divide the problem. In this implementation,
each data object is assigned one worker thread, and each worker is responsible for
density sampling of that object’s space. To further improve parallelism, vectors are
used in each worker’s private memory to hold the pdf variables. This allows multiple
dimensions of each object to be operated on simultaneously on hardware that supports
vector operations (4 dimensions in this implementation). The preprocessor will zero
additional empty dimensions to ensure the vectors are filled. The simplified overview of
the modified EstimateProbability (no early reject) that executes on each worker thread
is as follows:

EstimateProbabilityWorker(r, s, 1, 6)
Let ¢ be the data object of the current worker '
Let F/ (-) be the inverse cumulative distribution function of pdf h(-)
Let vector length x = r /4, for vectors of width 4
prob =0
for x times do

Let zero vectors successes, densities, y be of length x

runs = 0, subtotal = 0
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for s times do
y = uniformly random variables in [0, 1]
for all di, in D do o
densities = densities + hj.(F} (y1,....z))
end for
densities = densities/|D|
successes = successes+ clamp(ceil(densities — 1), 0, 1)
runs = runs + 1
end for
if using ‘early reject’ then
for each vector dimension [ do
if (subtotal + successes;)/l > 0 then
subtotal = (subtotal + successes;)/!
else
successes; = 0
end if
end for
else
prob = sum(successes)/(r X runs)
end if
end for
Copy prob into global memory for host program

Note that while the early reject method adds some overhead to check each dimension
against 9, the performance impact is negligible unless the vectors are large relative to the
number of objects in the dataset. In our testing, there was no detectable no performance
difference between the early reject and no early reject methods.

In addition, the DetectOutlier loop that calls EstimateProbability is replaced with
the following:

Copy C, from the host to the GPU

Call EstimateProbabilityWorker(d, r, s, 1, ) for every object d € C,
Copy n-probabilities from the GPU back to the host

Add any objects with n-probabilities < ¢ to O

The host loop is thus replaced by multiple workers executing in parallel on the GPU.

The following section shows the results of our testing using a synthetic and a real
dataset, as well as the parameters used for optimal results. Note that rather than directly
manipulating 7 and 6, a parameter uncertainty is used both in the generation of syn-
thetic data and to adjust the value of 1 and J, compensating for the differences in the
underlying standard deviation. When operating on data in which the standard deviation
is not known, it can be estimated on a sample of the data by the preprocessor.

5 Experimental Results

The following tests were conducted on a PC running Microsoft Windows Vista SP2
with an Intel Core 2 Duo E8200 dual core CPU and an NVIDIA GeForce GT440 (96
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stream processors) GPU. The serial and host code was compiled using Microsoft Visual
Studio 2010. The OpenCL code was run using NVIDIA CUDA Toolkit 4.0 and driver
280.26 (OpenCL 1.1) for the GPU, and AMD Stream SDK 2.5 (OpenCL 1.1) for the
CPU.

5.1 Performance

To test performance, we generate simple synthetic datasets with a fixed percentage of
outliers (10%). In all cases, data objects that are not outliers have a mean value of 0 and
a standard deviation of 1, while outliers are offset by 3 (simulating an outlier with high
confidence).

In these performance tests, we compare the running time of the serial iterative (CPU-
Iterative) and single pass (CPU-Single Pass) methods, as well as the OpenCL imple-
mentation on the CPU (CPU-OpenCL) and the GPU. As noted in Sect.[3] the early reject
and no early reject methods demonstrated identical performance with the datasets used,
so are not shown individually for clarity. All objects in this test have 12 dimensions and
use 800 samples per object.
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1600 - CPU (Iterative)
1400 CPU (Single Pass)
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200
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Running time ()

Fig. 1. A comparison of running time with increasing numbers of data objects

It is evident from Fig. [I] that none of the CPU based methods (including the paral-
lel CPU-OpenCL method) offer acceptable performance, with running times increasing
rapidly with larger numbers of objects. The GPU offers significant performance im-
provement over the tested CPU implementations, from 8 at very small sizes against
the parallel CPU-OpenCL method up to over 1500x compared against the slowest
CPU-Iterative method at larger sizes. Fig.[2] shows the relative increase in running time
as dataset size doubles.

The scaling of performance is quadratic with respect to the number of objects in
the dataset, due to the algorithm’s design. The CPU-based implementations demon-
strate this clearly (with some deviation at very small dataset sizes due to overhead).
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Fig. 2. A comparison of relative increase in running times with each doubling of data objects

At smaller sizes, the GPU demonstrates linear scaling, exceeding the expected quadratic
scaling. However the GPU’s actual scaling behavior is still quadratic, as the algorithm is
unchanged. The processing overhead on the GPU skews performance at smaller dataset
sizes, but at sizes exceeding 1000 objects, the worker threads’ contention for processing
resources and global memory access becomes the performance limiter. It is possible that
with the microcluster compression technique described in [8], this behavior can be used
advantageously. Overall, the GPU methods maintain a 67 x performance improvement
over CPU-OpenCL (parallel) and a 273 x improvement over CPU-Single Pass (serial).

Figs.Bland @l 1ook at two other scaling considerations, the number of dimensions per
object and the number of samples per object.
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Fig. 3. A comparison of running time with increasing dimensionality

It is clear from Figs. Bl and [ that the number of dimensions and number of samples
offers a strictly linear increase in running time, consistent with the increase in process-
ing load without significant additional memory access load. For the GPU in particular,
the increase in running time is negligible.
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Fig.4. A comparison of running time with increasing numbers of samples per object

5.2 Quality

Although the focus of this paper has been on performance, the quality of the results
must also be acceptable. In the following tests of outlier detection quality, we make the
following assumptions: the source data is recorded in a certain form, with data points
each having some number of dimensions. To represent the inherent uncertainty, the
values of each data point’s dimensions are mapped to the mean values of an equivalent
uncertain data object’s dimensions. The uncertainty of each dimension was estimated
from the standard deviation.

To adjust uncertainty in the synthetic dataset, the standard deviation is adjusted in a
range from 1 to 3 (i.e. at uncertainty level 3, standard deviation is three times the actual
standard deviation). Algorithm parameters 7 and § are automatically scaled from 0.3
to 0.6 as uncertainty increases. This is done in an attempt to control the large decline
in quality originally seen [8] as uncertainty increases. Although the scaling factors are
hard-coded in this implementation, the preprocessor could be extended to better dy-
namic control of the algorithm parameters and reduce the number of parameters to tune
by hand.

The following tests use a real dataset: the Breast Cancer Wisconsin (Diagnostic) Data
Set (labeled ‘wdbc’) from the UCI Machine Learning Repository. This dataset contains
569 records with 30 attributes. This dataset is divided into records marked ‘benign’ and
‘malignant’, for the purposes of this test the ‘malignant’ records are deemed outliers,
resulting in a relatively high outlier rate of 37%.

Fig. 13 shows the related parallel and serial methods yielding similar quality, with
the CPU methods leading slightly in quality due to the GPU’s use of single precision
floating point values. Dynamically adjusting the algorithm parameters allows for recall
to remain fairly static as uncertainty increases. Note is that the simplest single pass
method of averaging density over the entire problem space works well in this relatively
small dataset. However as shown in Fig.[6] quality rapidly drops off as more dimensions
are added, limiting its usefulness.

For a clearer overview, Fig. 6| represents quality using F1 score, the harmonic mean
of precision and recall. It is clear that while adding dimensions results in a slight gain
in quality for the iterative and early reject methods, the single pass and no early reject
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Fig. 5. Precision (left) and Recall (right) with different levels of uncertainty for the ‘wdbc’ dataset
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Fig. 6. F1 score with different numbers of dimensions

methods show a significant loss in quality. As outliers are not necessarily of low density
in all dimensions, averaging out an object’s density over all dimensions leads to areas
of low density being lost, thus recall declines significantly.

6 Conclusion

Through this paper, we have demonstrated the use of a density sampling algorithm for
outlier detection on uncertain data can be greatly accelerated by leveraging both a GPU
and the OpenCL framework. With our implementation, experimental results demon-
strate significant reductions to running time from a worst case very small dataset yield-
ing a 8 x performance improvement over the parallel CPU-OpenCL implementation and
the best case yielding over 1500 improvement compared to the serial CPU-Iterative
method. This could enable large numbers of uncertain objects to be scanned in time
critical situations, such as in fault detection on sensor networks.

In the future, we would like to explore other techniques to detecting outliers with
uncertain data both in comparison to this implementation and in consideration for more
methods that can be parallelized for GPU acceleration. Density and distance based cal-
culations are often used in clustering and outlier detection applications, and there are
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demonstrable gains from using GPU acceleration in calculation intensive tasks, such as
when operating on uncertain data. There are also still opportunities to improve quality
and performance (e.g. the microclustering compression technique proposed in [8]), and
further testing with more datasets is planned.
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