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Preface

PAKDD 2012 was the 16th conference of the Pacific Asia Conference series on
Knowledge Discovery and Data Mining. For the first time, the conference was
held in Malaysia, which has a vibrant economy and an aspiration to transform
itself into a knowledge-based society. Malaysians are also known to be very ac-
tive in social media such as Facebook and Twitter. Many private companies
and government agencies in Malaysia are already adopting database and data
warehousing systems, which over time will accumulate massive amounts of data
waiting to be mined. Having PAKDD 2012 organized in Malaysia was therefore
very timely as it created a good opportunity for the local data professionals to ac-
quire cutting-edge knowledge in the field through the conference talks, tutorials
and workshops.

The PAKDD conference series is a meeting place for both university re-
searchers and data professionals to share the latest research results. The PAKDD
2012 call for papers attracted a total of 241 submissions from 32 countries in all
six continents (Asia, Europe, Africa, North America, South America, and Aus-
tralasia), of which 20 (8.3%) were accepted for full presentation and 66 (27.4%)
were accepted for short presentation. Each submitted paper underwent a rigorous
double-blind review process and was assigned to at least four Program Commit-
tee (PC) members. Every paper was reviewed by at least three PC members,
with nearly two-thirds of them receiving four reviews or more. One of the changes
in the review process this year was the adoption of a two-tier approach, in which
a senior PC member was appointed to oversee the reviews for each paper. In
the case where there was significant divergence in the review ratings, the senior
PC members also initiated a discussion phase before providing the Program Co-
chairs with their final recommendation. The Program Co-chairs went through
each of the senior PC members’ recommendations, as well as the submitted pa-
pers and reviews, to come up with the final selection. We thank all reviewers
(Senior PC, PC and external invitees) for their efforts in reviewing the papers
in a timely fashion (altogether, more than 94% of the reviews were completed
by the time the notification was sent). Without their hard work, we would not
have been able to see such a high-quality program.

The three-day conference program included three keynote talks by world-
renowned data mining experts, namely, Chandrakant D. Patel from HP Labs
(Joules of Available Energy as the Global Currency: The Role of Knowledge Dis-
covery and Data Mining); Charles Elkan from the University of California at
San Diego (Learning to Make Predictions in Networks); and Ian Witten from
the University of Waikato (Semantic Document Representation: Do It with Wik-
ification). The program also included four workshops, three tutorials, a doctoral
symposium, and several paper sessions. Other than these intellectually inspiring
events, participants of PAKDD 2012 were able to enjoy several social events
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throughout the conference. These included a welcome reception on day one, a
banquet on day two and a free city tour on day three. Finally, PAKDD 2012
organized a data mining competition for those who wanted to lay their hands
on mining some real-world datasets.

Putting a conference together with a scale like PAKDD 2012 requires tremen-
dous efforts from the organizing team as well as financial support from the
sponsors. We thank Takashi Washio, Jun Luo and Hui Xiong for organizing
the workshops and tutorials, and coordinating with the workshop/tutorial or-
ganizers/speakers. We also owe James Bailey a big thank you for preparing the
conference proceedings. Finally, we had a great team of Publicity Co-chairs, Lo-
cal Organization Co-chairs, and helpers. They ensured the conference attracted
many local and international participants, and the conference program proceeded
smoothly.

We would like to express our gratitude to SAS, AFOSR/AOARD (Air Force
Office of Scientific Research/Asian Office of Aerospace Research and Devel-
opment), MDeC (Multimedia Development Corporation), PIKOM (Computer
Industry Association of Malaysia) and other organizations for their generous
sponsorhip and support. We also wish to thank the PAKDD Steering Com-
mittee for offering the student travel support grant and the grant for the best
student paper award(s), and UTAR and MMU for providing the administrative
support.

Philip Yu
Ee-Peng Lim

Hong-Tat Ewe
Pang-Ning Tan
Sanjay Chawla
Chin-Kuan Ho
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Abstract. The nature of data streams requires classification algorithms
to be real-time, efficient, and able to cope with high-dimensional data
that are continuously arriving. It is a known fact that in high-dimensional
datasets, not all features are critical for training a classifier. To improve
the performance of data stream classification, we propose an algorithm
called HEFT-Stream (Heterogeneous Ensemble with Feature drifT for
Data Streams) that incorporates feature selection into a heterogeneous
ensemble to adapt to different types of concept drifts. As an example
of the proposed framework, we first modify the FCBF [13] algorithm so
that it dynamically update the relevant feature subsets for data streams.
Next, a heterogeneous ensemble is constructed based on different on-
line classifiers, including Online Naive Bayes and CVFDT [5]. Empiri-
cal results show that our ensemble classifier outperforms state-of-the-art
ensemble classifiers (AWE [21] and OnlineBagging [15]) in terms of ac-
curacy, speed, and scalability. The success of HEFT-Stream opens new
research directions in understanding the relationship between feature se-
lection techniques and ensemble learning to achieve better classification
performance.

1 Introduction

With rapid technological advancement, many real-life applications, such as stock
markets, online stores and sensor networks can produce massive datasets, or data
streams. To discover knowledge from data streams, scientists have to confront
the following challenges: (1) tremendous volumes of data; (2) dynamic changes of
the discovered patterns, which is commonly referred to as concept drifts ; and (3)
real-time response. Concept drifts are categorized into two types: gradual drifts
with moderate changes and sudden drifts with severe changes. Motivated by
the above challenges, there are two common approaches of existing classification
models for data streams: online incremental learning and ensemble learning.

Incremental learning trains a single classifier and updates it with newly arrived
data. For example: Domingos and Hulten [5] proposed a very fast Hoeffding tree
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learner (VFDT) for data streams. The VFDT was later extended to CVFDT [12],
which can handle the concept drifting streams by constructing alternative nodes
and replacing them to the outdated nodes when concept drifts occur. Incremen-
tal learning is quite efficient but it cannot adapt to sudden drifts. Ensemble
learning, which aims to combine multiple classifiers for boosting classification
accuracy, has attracted a lot of research due to its simplicity and good perfor-
mance. It can manage concept drifts with the following adaptive approaches: (1)
using dynamic combiner like a majority vote or weighting combination [18], (2)
continuously updating the individual classifiers online [2,15], and (3) changing
the ensemble structure by replacing outdated classifiers [16,21]. However, it has
high computational complexity as there are many time-consuming processes, eg.
generating new classifiers, and updating classifiers.

In this paper, we address the above problems by presenting a novel framework
to integrate feature selection techniques and ensemble learning for data streams.
To alleviate ensemble updating, we propose a new concept of “feature drifts”
and use it to optimize the updating process. With a gradual drift, each classifier
member is updated in a real-time manner. When a feature drift occurs, which
represents a significant change in the underlying distribution of the dataset, we
train a new classifier to replace an outdated classifier in the ensemble.

Moreover, feature selection helps to enhance ensemble learning. It not only im-
proves the accuracy of classifier members by selecting the most relevant features
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and removing irrelevant and redundant features, but also reduces the complexity
of the ensemble significantly as only a small subset of feature space is processed.
Finally, we propose a heterogeneous ensemble where different types of classifier
members are well selected to maximize the diversity of the ensemble [11,22].
Figure 1 gives an overview of our framework. The ensemble consists of many
classifiers, each of which has its own feature subset. If there is a feature drift,
the ensemble is updated with a new classifier together with a new feature subset;
otherwise, each classifier is updated accordingly. To aggregate the classification
results of classifier members, we assign each classier a weight w.r.t its perfor-
mance. This weighting method is proven to minimize the expected added error
of the ensemble.

In summary, the following are contributions of our framework which integrates
feature selection and ensemble learning techniques for data streams:

– We enhance ensemble learning with feature selection which helps to lessen
computational complexity and increase accuracy.

– We propose the definition of feature drifts and explore relationships between
feature drifts and concept drifts.

– We significantly increase the accuracy of the ensemble by designing a het-
erogeneous ensemble with well-chosen member classifiers and an optimal
weighting scheme.

2 Related Work

Ensemble learning, a process to construct accurate classifiers from an ensem-
ble of weak classifiers, has attracted extensive research in the past decade. In
general, these methods vary in the way of they construct various classifiers and
combine their predictions. The first step of constructing a group of classifiers
can be differentiated according to the dependencies among classifiers. The inde-
pendent approach trains classifiers randomly and can be easily parallelized, for
example, bagging [3], random subspace [19], and random forest [4]. The depen-
dent approach constructs a new classifier while taking advantage of knowledge
obtained during the construction of past classifiers, such as AdaBoost [8], Ad-
aBoost.M2 [7], and Gradient boosting [9]. In the second step of combining the
classifiers’ predictions, majority voting is one intuitive method to choose the
dominant decision [3,4,19]. As majority voting cannot guarantee that the voting
result will be better than the best individual one, the weighting method is intro-
duced which assigns competent classifiers higher weights, such as performance
weighting [7,8,9,21], Naive Bayes weighting [6], and entropy weighting [17].

Ensemble learning can also work well with data streams by effectively tackling
the challenges of continuous incoming data and concept drifts [2,15,16,18,21].
In [15], Oza et al. employed the Poisson distribution to adapt the traditional
bagging and AdaBoost techniques for data streams. Bifet et al. [2] proposed an
ensemble of Adaptive-Size Hoeffding Trees (ASHT) and used a statistical test
to detect concept drifts. Street and Kim [18] proposed a streaming ensemble
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of decision trees using majority voting. Wang et al. [21] proposed a carefully
weighted ensemble for concept-drifting data streams and proved that the en-
semble is more accurate than a single classifier trained on the aggregated data
of k sequential chunks. In [16], Sattar et al. adapted the traditional one-vs-all
(OVA) classifiers for data streams where k individual concept-adapting very fast
decision trees (CVFDT) [12] are learnt and each one is used to distinguish the
instances of one class from the instances of all other classes. However, the above
algorithms suffer from high complexity and the inability to adapt to different
types of concept drifts.

Feature selection is another important research issue as data streams are usu-
ally high-dimensional. Feature selection techniques can be classified into three
categories: filter, wrapper and embedded models [14]. The filter model evaluates
a feature subset by using some independent measure, which only relies on the
general characteristics of data. The wrapper model is attached to a learning al-
gorithm and uses its performance to evaluate a feature subset. A hybrid model
takes advantage of the above two models. As data streams require real-time re-
sponses, we favor the filter approach due to its simplicity and independence to
classification models. Moreover, in data streams, the definition of relevant fea-
tures is dynamic and restricted to a certain period of time. Features that are
previously informative may become irrelevant, and previously rejected features
may become important features. Thus, dynamic feature selection techniques are
required to monitor the evolution of features. Unfortunately, to the best of our
knowledge, there is limited research about the relationship between feature se-
lection and ensemble learning, especially for data streams.

In this paper, we will address this gap between feature selection and ensemble
learning and propose a novel framework for integrating feature selection and
heterogeneous ensembles. Our framework not only adapts to different kinds of
concept drifts properly, but also has low complexity due to its dynamic updating
scheme and the support of feature selection techniques.

3 Proposed Framework

In this section, we propose a general framework for ensemble learning for data
streams. We assume infinite data streams X = [x1,x2, . . . ,xt, . . .] as input in
the framework, where xt = [f1t , f

2
t , . . . , f

p
t ]

T is a p-dimensional vector arriving
at time t. We assume the data streams have c different class labels. For any
data vector xt, it has a class label yt ∈ {y1,y2, . . . ,yc}. Generally when the
dimension p is large, there is often only a small set of key features that is critical
for building accurate models for classification.

Data streams tend to evolve over time and so do the key features correspond-
ingly. For ease of discussion, we will use the following definitions:

Definition 1. A data source or a concept is defined as set of prior probabilities
of the classes and class-conditional probability density function (pdf):

S = {(P(y1),P(X|y1)), . . . , (P(yc),P(X|yc))}. (1)
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Definition 2. Given data streams X, every instance xt is generated by a data
source or a concept St. If all the data is sampled from the same source, i.e.
S1 = S2 = . . . = St = S, we say that the concept is stable. If for any two time
points i and j Si �= Sj , we say that there is a concept drift.

Definition 3. Given a feature space F , at time point t, we can always select the
most discriminative subset F̂t ⊆ F . If for any two time points i and j F̂i �= F̂j,
we say that there is a feature drift.

Next, we explore the relationship between concept drifts and feature drifts.

Lemma 1. Concept drifts give rise to feature drifts.

Proof. Assume that certain feature selection techniques evaluate the discrimi-
nation of a feature subset F at time t by a function:

D(Ft, t) = D(P (f i|yj), t), f i ∈ Ft ⊆ {f1, . . . , fp}, yj ∈ {y1, . . . , yc} (2)

And, there is a feature drift in [ti, ti+δt],⎧⎨⎩
F̂t = argmaxFi⊆FD(Fi, t)
Ft+δt = argmaxFi⊆FD(Fi, t+ δt)

F̂t �= F̂t+δt

(3)

We can always find a feature fa ∈ F and a class yb so that P (fa|yb, t) �=
P (fa|yb, t + δt). Else, P (f i|yj , t) = P (f i|yj, t + δt), ∀(i, j), then F̂t = F̂t+δt.
Hence, P (X |yb, t) �= P (X |yb, t+ δt)⇒ Si �= Si+δi. This denotes a concept drift
in the time interval [ti, ti+δt].

Lemma 2. Concept drifts may not lead to feature drifts.

Proof. For example, given data streams X within a time period [ti, ti+δt] we
assume the prior probability of a class i and j, P (yi) and P (yj), are changed;
but their sum (P (yi) + P (yj)) and other probabilities remain the same. In this
scenario, there is a concept drift but no feature drift.

Combining Lemmas 1 and 2, we can conclude that:

Theorem 1. Feature drifts occur at a slower rate than concept drifts.

Feature drifts, which are observed in high dimensional data streams, occur no
faster than concept drifts. As shown in the overview of our framework Figure 1,
we need to modify feature selection techniques to detect feature drifts. The
key idea is using feature selection to accelerate ensemble learning and steer
its updating process. Moreover, feature selection techniques not only remove
irrelevant and redundant features, but also accelerate the learning process by
reducing the dimensionality of the data. Thus, the overall performance of the
ensemble is improved in terms of accuracy, time and space complexities.
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First, we select online classifiers as classifier members as they can be incre-
mentally updated with new data. Then, we construct a heterogeneous ensemble
with a capability to adapt to both concept and feature drifts. With gradual
drifts, we only need to update the classifier members. With feature drifts, we
adjust the ensemble by replacing the outdated classifier with a new one. We
further deploy a weighting technique to minimize the cumulative error of the
heterogeneous ensemble.

3.1 Feature Selection Block

Feature selection selects a subset of q features from the original p features (q ≤ p)
so that the feature space is optimally reduced. Generally, we expect the feature
selection process to remove irrelevant and redundant features. We decide to use
FCBF [13] as it is simple, fast and effective. FCBF is a multivariate feature
selection method where the class relevance and the dependency between each
feature pair are taken into account. Based on information theory, FCBF uses
symmetrical uncertainty to calculate dependencies of features and the class rele-
vance. Starting with the full feature set, FCBF heuristically applies a backward
selection technique with a sequential search strategy to remove irrelevant and
redundant features. The algorithm stops when there are no features left to elim-
inate.

Symmetrical Uncertainty (SU) uses entropy and conditional entropy values
to calculate dependencies of features. If X , Y are random variables, X receives
value xi with probability P (xi), Y receives value yj with probability P (yj); the
symmetrical uncertainty between X and Y is:

SU(X,Y ) = 2

[
H(X)−H(X |Y )

H(X) +H(Y )

]
= 2

[
I(X,Y )

H(X) +H(Y )

]
, (4)

where H(X) and H(Y ) are the entropies of X and Y respectively; I(X,Y ) is
the mutual information between X and Y ; the higher the SU(X,Y ) value, the
more dependent X and Y are.

We choose to the sliding window version of FCBF so that it has low time
and space complexities. Incoming data is stored in a buffer (window) with a
predefined size. Next, the matrix of symmetrical uncertainty values is computed
to select the most relevant feature subset. The process is performed in a sliding
window fashion, and the selected feature subsets are monitored to detect feature
drifts. When two consecutive subsets are different, we postulate that a feature
drift has occurred.

3.2 Ensemble Block

Heterogeneous Ensemble. When constructing an ensemble learner, the diver-
sity among member classifiers is expected as the key contributor to the accuracy
of the ensemble. Furthermore, a heterogeneous ensemble that consists of dif-
ferent classifier types usually attains high diversity [11,23]. Motivated by this
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Algorithm 1. Ensemble Learning

Input: A series of infinite streaming data X = [x1,x2, . . . ,xt, . . .], where xt is a
p dimensional vector [f1

t , f
2
t , . . . , f

p
t ]

T with a class label yt arriving at time t, yi ∈
{y1, y2, . . . , yc}.
A set of l different classifier types, M = {M1,M2, . . . ,Ml}.
Output: An heterogenous ensemble E .
1: Initialize the ensemble E with k classifiers of each model in M, denoted as

C1, C2, . . . , Ck∗l.
2: while X has more instance do
3: if chunk is not full then
4: Add xi to chunk.
5: else
6: Perform FCBF to get the relevant and non-redundant feature subset ϕi.
7: if ϕi �= ϕi−1 then
8: Find the best accurate classifier Cbest having the smallest aggregated error

in the ensemble and get its type.
9: Build a new classifier Cnew having the same type with Cbest, and associated

with the feature subset ϕi.
10: Remove the classifier with the worst accuracy from E .
11: Add the new created classifier Cnew into E .
12: end if
13: for each classifier in the ensemble C do
14: for each instance x in chunk do
15: Set m according to Poisson(1)
16: Update m times each classifier member with x.
17: end for
18: end for
19: end if
20: end while

observation, we construct a small heterogeneous ensemble rather than a big ho-
mogeneous ensemble with a large number of classifiers of the same type, which
will compromise speed.

As mentioned, we aim to select online classifiers so that the ensemble can
properly adapt to different types of concept drifts. Here, CVFDT [12] and On-
line Naive Bayes (OnlineNB) are chosen as the basic classifier types, but the
framework can work with any classification algorithm. The OnlineNB is an
online version of the Naive Bayes classier. When a training instance (xt, yt)
comes, OnlineNB updates the corresponding prior and likelihood probabilities,
P (yt) & P (Fi = f t

i |yt). To classify a testing instance, it applies Bayes’ theorem
to select the class having the maximum posterior probability as follows:

OnlineNB(xt) = argmaxyjP (yj)
n∏

i=1

P (Fi = f t
i |yj) (5)

Details of the heterogeneous ensemble’s learning process are given in Algo-
rithm 1. Given a data stream X and a predefined set M of different classifier
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Algorithm 2. Real Time Classification

Input: A new testing unlabeled instance xt.
An ensemble E ofN classifiers, denoted as C1, C2, . . . , CN . Every classifier Ci is associated
with a feature subset ϕi.
Given a testing instance, every classifier Ci outputs a probability distribution vector
ρi = [ρi1, ρi2, . . . , ρic], (

∑c
j=1 ρij = 1, i ∈ {1, 2, . . . , N}).

Output: The ensemble ’s probability distribution vector for xt.

1: for every classifier Ci in the ensemble E do
2: Project the arriving testing instancext onto a low dimensional feature space ϕi

and get x̂t.
3: Compute the probability distribution vector ρi = Ci(x̂t).
4: Get the aggregated error of Ci, erri, and calculate the weight following the

Equation 8, wi = 1/(erri + α).
5: end for
6: Aggregate all probability distribution vectors as follows:

E(ρ) =
z∑

i=1

wi ∗ ρi

7: Normalize and return vector E(ρ).

types, we initialize the ensemble with k classifiers of each type inM. Next, data
streams are processed in a sliding window mode and data instances are grouped
into predefined-size chunks. When a new chunk arrives, we apply a feature se-
lection technique to find the most discriminative feature subset. If the subset
is different from the previous one, there is a feature drift. We would then need
to construct a new classifier with the selected feature subset. We add it to the
ensemble, and remove the worst classifier if the ensemble is full; the new classifier
will be of the same type as the best classifier member which has the smallest
aggregated error (lines 7-12). Finally, we employ online bagging [15] for updating
classifier members to reduce the variance of the ensemble (lines 13-18).

Ensemble Classification. Based on the research work of Tumer et. al [20] and
Fumera et. al [10], the estimate error of the ensemble are:

Eens
add =

N∑
k=1

w2
kE

k
add +

N∑
k=1

∑
l �=k

wlwk

[
βkβl + ρkl(σk

i σ
l
i + σk

j σ
l
j)/s

2
]
, (6)

where βk and σk are the bias and the standard deviation of the estimate error
εk of classifier Ck , ρkl is the correlation coefficient of the errors εk and εl.

We assume that classifier members are unbiased and uncorrelated (i.e. βk =

0, ρkl = 0, k �= l). Then, we have Eens
add =

∑N
k=1 w

2
kE

k
add,

∑N
k=1 wk = 1. To

minimize the added error of the ensemble, the weights of classifier members are
set as follows:

wk = (Ek
add)

−1

[
N∑

m=1

(Em
add)

−1

]
(7)
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When constructing the ensemble classifier, we estimate the added error of every
classifier member, Ek

add, which is its accumulated error from its creation time to
the current time. Moreover, to alleviate the extreme case of Em

add ≈ 0, we modify
the Equation 7 as follows:

wk = (Ek
add + α)−1

[
N∑

m=1

(Em
add + α)−1

]
, (8)

where α is a padding value which is empirically set to 0.001.
Details of the ensemble classification process are shown in Algorithm 2. Given

the ensemble E where each member can classify a testing instance and output
the result as a probability distribution vector, we use a weighting combination
scheme to get the result. First, for each classifier Ci we project the testing in-
stance xt onto the subspace ϕi. Then, the classifier Ci processes the projected
instance and outputs a probability distribution vector. We attain the aggregated
accuracy of Ci from its creation time, and calculate its optimal weight according
to Equation 8 to minimize the expected added error of the ensemble. Finally,
the ensemble’s result is set as the normalized sum of the weighted classification
results of the members (lines 6-7).

4 Experiments and Analysis

4.1 Experimental Setup

For our experiments, we use three synthetic datasets and three real life datasets.
The three synthetic datasets, SEA generator (SEA), Rotating Hyperplane (HYP),
and LED dataset (LED), are generated from the MOA framework [1]. Concept
drifts are generated by moving 10 centroids at a speed of 0.001 per instance in
the RBF dataset, and changing 10 attributes at a speed of 0.001 per instance in
the HYP dataset. The three real life datasets are: network intrusion (KDD’991),
hand-written digit recognition (MNIST2), and protein crystallography diffraction
(CRYST3) datasets. Table 1 shows the characteristics of the six datasets.

We compare our algorithm HEFT-Stream with other prominent ensemble
methods: AWE [21] and OnlineBagging [15]. The experiments were conducted
on a Windows PC with a Pentium D 3GHz Intel processor and 2GB memory. To
enable more meaningful comparisons, we try to use the same parameter values
for all the algorithms. The number of classifier members is set to 10 for all the
ensemble algorithms, and the chunk size is set to 1000. To simulate the data
stream environment, we process all experiments in a practical approach, called
Interleaved-Chunk. In this approach, data instances are read to form a data
chunk. Each new data chunk is first used to test the existing model. Then it is
used to update the model and it is finally discarded to save memory.

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2 http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
3 http://ajbcentral.com/CrySis/dataset.html
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Table 1. Characteristics of datasets used for evaluation

Name #Instances #Attributes #Classes Noise #Selected Features Ratio of FS

SEA 100,000 3 2 10% 2.25 75%
HYP 100,000 10 2 5% 6.71 67.13%
LED 100,000 24 3 10% 15.84 65.98%
KDD’99 494,022 34 5 N/A 2.33 6.87%
MNIST 60,000 780 10 N/A 30.77 3.95%
CRYST 5,500 1341 2 N/A 7.49 0.56%

4.2 Experimental Results

As AWE and OnlineBagging are homogeneous ensembles and can only work with
one classifier type, we set different classifier types for these ensembles accord-
ingly. For AWE, we set classifier members as Naive Bayes and C4.5, which are
recommended by the authors [21], and denoted as AWE(NB) and AWE(C4.5).
For OnlineBagging, we set its classifier members as OnlineNB and CVFDT, and
denoted as Bagging(OnlineNB) and Bagging(CVFDT) respectively. We conduct
the experiments ten times for each dataset and summarize their average accu-
racy and running times in Table 2. Readers may visit our website4 for algorithms’
implementation, more experimental results, and detailed theoretical proofs.

We observe that the AWE ensemble has the worst accuracy and the longest
running time. This is because the AWE ensemble uses traditional classifiers as
its members and trains them once; when there are concept drifts, these members
become outdated and accuracy is degraded. Moreover, the AWE ensemble always
trains a new classifier for every upcoming chunk, and this increases processing
time. The OnlineBagging has better performance but it largely depends on the
classifier type. For example, Bagging(OnlineNB) is more accurate and faster
than Bagging(CVFDT) for the LED dataset but Bagging(OnlineNB) become
less precise and slower than Bagging(CVFDT) for the KDD’99 dataset. It is
also noteworthy that both AWE and OnlineBagging do not work well with high
dimensional datasets, such as MNIST and CRYST.

Our approach, HEFT-Stream, addresses the above problems and achieves bet-
ter performance than WCE and OnlineBagging. It achieves the best accuracy
values and the lowest running time for most datasets. HEFT-Stream continu-
ously updates classifier members with gradual drifts, and only trains new clas-
sifiers whenever there are feature drifts or sudden drifts. This property not only
enables HEFT-Stream to adapt to different types of concept drifts but also
conserve computational resources. Furthermore, HEFT-Stream can dynamically
change the ratio among classifier types to adapt to different types of datasets;
when a particular classifier type works well with a certain dataset, its ratio in
the ensemble will be increased. Finally, with integrated feature selection capabil-
ity, HEFT-Stream only works with the most informative feature subsets which
improves accuracy and reduces processing time. The last column of the Table 1

4 http://www3.ntu.edu.sg/home2008/nguy0105/heftstream.html
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Table 2. Comparisons of AWE(NB), AWE(C4.5), Bagging(OnlineNB), Bag-
ging(CVFDT), and HEFT-Stream. Time is measured in seconds. For each dataset,
the highest accuracy value is boldfaced, and the lowest running time is underlined.

Dataset
AWE(NB) AWE(C4.5) Bagging(OnlineNB) Bagging(CVFDT) HEFT-Stream
Acc Time Acc Time Acc Time Acc Time Acc Time

SEA 88.08 6.61 88.12 26.08 87.91 2.9 89.12 21.47 89.28 22.65
HYP 87.94 19.42 72.72 27.40 86.92 8.07 88.90 40.41 89.18 12.42
LED 73.91 74.33 72.13 40.34 73.93 26.21 73.79 83.00 74.07 28.02

KDD’99 95.09 280.33 94.68 281.33 92.95 230.3 97.75 209.6 96.37 142.0
MNIST 9.87 2054.0 78.49 1246.7 9.87 1286.00 21.13 1456.00 79.36 439.00
CRYST 53.70 40.38 83.30 147.00 54.28 57.63 76.18 101.33 83.52 37.10

Average 68.10 412.51 81.57 294.80 67.64 268.53 74.48 318.65 85.30 113.53

shows the ratios of the selected features to the full feature sets for all datasets.
We realize that feature selection techniques are very useful for high dimensional
datasets. For example, the percentages of the selected features are 3.95% for the
MNIST dataset, and only 0.56% for the CRYST dataset.

5 Conclusions

In this paper, we proposed a general framework to integrate feature selection and
heterogeneous ensemble learning for stream data classification. Feature selection
helps to extract the most informative feature subset which accelerates the learning
process and increases accuracy. We first apply feature selection techniques on the
data streams in a sliding windowmanner and monitor the feature subset sequence
to detect feature drifts which represent sudden concept drifts. The heterogeneous
ensemble is constructed from well-chosen online classifiers. The ratios of classifier
types are dynamically adjusted to increase the ensemble ’s diversity, and allows
the ensemble to work well with many kinds of datasets. Moreover, the ensemble
adapts to the severity of concept drifts; we update the online classifier members
for gradual drifts, and replace an outdated member by a new one for sudden drifts.
We have conducted extensive experiments to show that our ensemble outperforms
state-of-the-art ensemble learning algorithms for data streams.

In our future work, wewill investigatemore intelligentmethods to adjust the ra-
tios of classifier types as well as the ensemble size.We will continue to examine the
relationship between concept and feature drifts and develop a metric to quantify
concept drifts and use it to further adapt ensembles to achieve better accuracy.
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Abstract. Due to the growing threat of network attacks, the efficient
detection as well as the network abuse assessment are of paramount im-
portance. In this respect, the Intrusion Detection Systems (IDS) are in-
tended to protect information systems against intrusions. However, IDS
are plugged with several problems that slow down their development,
such as low detection accuracy and high false alarm rate. In this paper,
we introduce a new IDS, called OMC-IDS, which integrates data mining
techniques and On Line Analytical Processing (OLAP) tools. The associ-
ation of the two fields can be a powerful solution to deal with the defects
of IDS. Our experiment results show the effectiveness of our approach in
comparison with those fitting in the same trend.

Keywords: Intrusion detection system, Data warehouse, OLAP, Audit
data cube, Association rules, Classification.

1 Introduction

As far as interconnections among computer systems grow rapidly, network se-
curity is becoming a major challenge. An Intrusion Detection System (IDS)
has been of use to monitor the network traffic thereby detect whether a sys-
tem is being targeted by network attacks [14]. Even that IDSs have become a
standard component in security infrastructures, they still have a number of sig-
nificant drawbacks [14]. Indeed, the volume of the audit data which an IDS has
to monitor is huge and grows rapidly. In addition, they flag out lower accuracy
and higher false alarm rates. Moreover, current IDS do not provide support for
historical data analysis and data summarization [13]. Supporting a historical
network database in conjunction with an IDS raises two important technical
challenges [8]: (i) since network traffic monitors generate data continuously and
at high-rate, the database needs to support a high data insertion rate [8]; (ii)
to facilitate the security analysis, the database must quickly answer historical
queries [8,13].

Recently, DataWarehouses (DW) andOn Line Analytical Processing (OLAP)
technologies have gained a widespread acceptance as a support for decision mak-
ing [7]. In a DW architecture, data are manipulated through OLAP tools which

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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offer visualization and navigation mechanisms of multidimensional data views,
commonly called data cubes [7]. Along with the increasing complexity of networks,
protecting a system against new and complex attacks, while keeping an automatic
and adaptive framework, is a thriving issue. One answer to the problem could rely
on the association of OLAP and data mining to allow elaborated analysis tasks
exceeding the simple exploration of the traffic data. DW and OLAP techniques
can help the security officer in detecting attacks, monitoring current activities on
the network, historical data analysis about critical attacks in the past and gener-
ating reports on trend analysis [13]. While, data mining is known for its ability to
discover knowledge from audit data [14].

In this paper, we investigate another way of tackling the aforementioned prob-
lems. Thus, we introduce a new IDS based on a DW perspective to enhance the
accuracy of detection as well as to minimize the false alarm rates. To that end, our
proposed system integrates the OLAP and data mining techniques to improve the
performance and usability of an IDS. Firstly, wemodel the network traffic data as a
multidimensional structure, called audit data cube. Secondly, we introduce a novel
algorithm that provides a concise representation of multidimensional association
rulesmined from the audit data cube. Finally, a classifier is used to decidewhether a
new connection record is an attack or not using the set of multidimensional detec-
tion rules. Through extensive carried out experiments on the standard intrusion
detection DARPA dataset, we show the effectiveness of our proposal on the IDS
performance aspects related to the false alarms as well as the detection rates.

The remaining of the paper is organized as follows. Section 2 sheds light on
some representative related work applying the data mining techniques into the
IDS. We introduce our new IDS based on the OLAP and data mining techniques
in Section 3. We also relate the encouraging results of the carried out experiments
in Section 4. Finally, Section 5 concludes and points out avenues of future work.

2 Scrutiny of the Related Work

Before data mining techniques are introduced into the intrusion detection field,
the latter was heavily dependent on a manually maintained knowledge basis to
reflect the ever-changing situations. However, this traditional way is difficult and
expensive [14]. Otherwise, within data mining techniques, the rules (or signa-
tures) of normal and abnormal activities can be created automatically. It is also
possible to detect new types of attacks through an incremental learning process.
Additionally, data mining techniques provide the means to easily perform data
summarization and visualization, that would be of great help to the security
analyst in identifying areas of concern [14]. In the following, we survey the most
prominent approaches dedicated to apply data mining techniques within the in-
trusion detection field.

- The MADAM-ID system [10] is considered as the first research work that
shows how data mining techniques can be used to construct IDS in a more
systematic and automated manner. Firstly, all network traffic is abstracted to
connection records. The latter are classified into “normal” and “intrusion”.
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- The ADAM system [2] is one of the best-known approaches that use associ-
ation rules mining and classification algorithms to detect intrusions. The main
moan that can be addressed to ADAM stands in its high dependency on training
data for normal activities. However, the attack-free training data is difficult to
afford, since there is no guarantee that we can prevent all attacks in real world
networks.
- The MINDS system [6] allows the development of scalable data mining al-
gorithms and tools for detecting attacks and threats against computer systems.
In fact, the system clusters audit data using a density-based local outliers algo-
rithm to detect intrusions. In addition, it applies an association pattern analysis
to summarize the network connections that are highly ranked as anomalous by
the algorithm.

On the one hand, although the data mining techniques could provide beneficial
characteristics to IDS, there is a compelling need to develop methods and tools
that can help in historical data analysis. On the other hand, within a typical
network environment, many different audit streams, collected from multiple cy-
ber sensors, are shown to be useful for detecting intrusions. Such data includes:
(i) raw network traffic data; (ii) netflow data; (iii) system calls; and so on.
Consequently, it is important to have an architecture that can integrate these
heterogenous data sources into a unified framework. The research works of [13]
focus on the OLAP techniques to represent network traffic data and relate it to
the corresponding IDS alerts. In contrast, we propose to couple OLAP and data
mining techniques for intrusion detection. The main idea behind our approach is
to take advantage from OLAP as well as data mining techniques and to integrate
them to the same analysis framework in order to improve the performance of an
IDS. In this paper, we introduce a new IDS, called OMC-IDS (Olap Mining
and Classification-based IDS ), which affords a support for historical data anal-
ysis and data summarization as well as the capacity to handle any kind of data
for intrusion detection.

3 OMC-IDS: Intrusion Detection Based on Olap Mining
and Classification

The OMC-IDS enriches the OLAP techniques with data mining facilities to
benefit from their cross capabilities they offer. Indeed, the audit data collected
from different heterogenous resources goes through four stages. Firstly, the data
is filtered to remove irrelevant information and a relational database is created
containing the meaningful remaining data. This database facilities information
extraction and data summarization based on individual attributes such as day,
source, destination, etc. Secondly, an audit data cube is constructed using the
available dimensions. Thirdly, the OMC-IDS system integrates OLAP technology
and association rule mining in order to extract interesting information under
different perspectives and levels of granularity. Finally, OMC-IDS uses a classifier
to classify each connection record either as one of the attack types or normal.
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In the following, we focus on the study of the three last steps of the OMC-IDS
system.

3.1 Audit Data Cube: Construction and Manipulation

The data feeding a data warehouse and OLAP systems is usually organized into
multidimensional data views commonly called data cubes. The latter contain
fact tables related to several dimension tables. A fact table represents the focus
of analysis and typically includes attributes called measures. These are usually
numerical values that facilitate a quantitative evaluation of various aspects of
interest. Dimensions include attributes that form hierarchies. As long as a hierar-
chy is traversed from finer to coarser levels, measures are aggregated. Hierarchies
can be included in a flat table forming the so-called STAR schema [7].

Fig. 1. A STAR schema for the IDS data warehouse

We propose to model the audit data as a multidimensional structure based on
the STAR schema shown in Figure 1. The fact table “Connections” contains the
attribute “#Connection” that measures the number of connections. The dimen-
sion “Time” includes information of date and time when the network packet was
captured. The dimension “Service” contains the name and the class of service
(or protocol) that was attacked. “Source Host” describes the source of IP ad-
dresses and port number. Likewise, the dimension “Destination Host” describes
the destination of IP address and port. Similarly, the dimension “Attack” con-
tains both the name of the attack and its type. Furthermore, hierarchies would
give an extra edge for analysis purpose, since they allow decision-making users to
see quantified data at different levels of abstraction. Therefore, security analysts
must deal with hierarchies to exploit OLAP systems to their fullest capabilities.
To do so, we define a concept hierarchy for each dimension in the audit data
cube. For example, “Hour → Day → Week → Month → Year” is the hierar-
chy on the “Time” dimension. The dimension “Attack” can be organized into
the hierarchy “Name → Class”, e.g., “Smurf → DoS”. In addition, the hierar-
chies can be pre-defined or generated by partitioning the dimension into ranges.
For instance, the dimension “Duration” could be partitioned into categories as
“Low”, “Medium” and “High”.
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Using the STAR schema described in Figure 1, a corresponding audit data
cube would be a six dimensional structure in which a cell contains aggregates of
the operations measures. For instance, a cell could correspond to short duration
attacks over the FTP service in the period 1 pm to 2 pm on Oct. 20th 2011.
The audit data cube can be constructed by using the SQL aggregation functions
(e.g., Count, Sum, Min, Max). For example, the Count value refers to the
number of connections. The audit data can be manipulated with great flexibility
and viewed from different perspectives by the use of data cubes. Indeed, OLAP
operations (e.g., Roll-up, Drill-down, Slice andDice) offer analytical mod-
eling capabilities that can be applied on the audit data. The Roll-up operation
allows the going from specific to general by climbing up the aggregation hierar-
chy. Otherwise, going from generalized data to more specific by stepping down
the aggregation hierarchy is called Drill-down. The Slice and Dice opera-
tions reduce the dimensionality of data by projecting the data on a subset of
dimensions for selected values of other dimensions.

3.2 Multidimensional Association Rule Mining

The association rule extraction is a technique of data mining to discover in-
teresting correlation relationships among data. In fact, the formalization of the
association rule mining problem was initially introduced by Agrawal et al. [1].
Given a set of records, the objective of mining association rules is to extract all
rules of the form X⇒ Y that satisfy a user-specified minimum support and min-
imum confidence thresholds, i.e., minSup1 and minConf2. X is the antecedent
of the rule and Y is its consequent.

In the recent years, the problem of mining association rules from data cubes
is knowing an increasing interest. The association rule mining can make OLAP
more useful and easier to apply in the overall scheme of decision support systems.
Further, OLAP is closely interlinked with association rules and shares with them
the goal of finding patterns in the data. Indeed, data cube structures make good
use of aggregated data, at the desired granularity levels, in the computation of
the support and the confidence [3].

The multidimensional association rules is shown to be useful in increasing the
detection accuracy and decreasing the false positives rate [12]. Consequently, the
IDS performances can be greatly improved whenever the association rules are
mined from the audit data cube. However, the number of the mined rules can
be quite large, which affects the speed of IDS and hampers its whole perfor-
mance [6,12]. Some of these rules are redundant since they contain patterns that
correspond to the subsets of other patterns.

Example 1. Let R and R1 tow multidimensional association rules. R: {Src Port
= 21 ∧ Dst IP = 192.63.11.11 ∧ service = telnet ∧ Duration = Long} ⇒ {Attack
= Smurf } and R1: {Src Port = 21 ∧ service = telnet} ⇒ {Attack = Smurf }. R
and R1 share similar features, i.e., the patterns “Src Port = 21” and “service =

1 minSup refers to the minimum support threshold pre-defined by the user.
2 minConf refers to the minimum confidence threshold pre-defined by the user.
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telnet”. If the respective supports of these two patterns are equal, then the rule
R1 is redundant w.r.t R.

To effectively mine the non-redundant multidimensional association rules from
the audit data cube, we use the concept of closure [11] defined as follows:

Definition 1. A pattern X is a closed pattern if there exists no pattern X ′

such that: (i) X ′ is a proper superset of X; and (ii) every connection record in
a network traffic containing X also contains X ′. The closure γ of a pattern X
is the maximal superset of X having the same support value as that of X.

In this respect, we introduce the AMAR (Audit Multidimensional Association
Rules mining) algorithm intended to mine a concise representation of multidi-
mensional association rules from an audit data cube AC. The pseudo-code is
shown by Algorithm 1.

Algorithm 1. The AMAR algorithm.
Input: AC, D, HD , minSup, minConf .
Output: Set of multidimensional non-redundant association rules, i.e., X ⇒ Y, with

corresponding Supp and Conf.
Begin1

C1 := {1-candidate};2
k := 1; /* |1-candidate| is the cardinality of attributes corresponding to D and3
HD .*/
While Ck �= ∅ and k ≤ |1-candidate| do4

CCk := ∅;5
FCk := ∅;6
Foreach candidate pattern A ∈ Ck do7

CCk := CCk ∪ γ(A);8

Foreach candidate closed pattern A ∈ CCk do9
Supp := ComputeSupport(A);10
If Supp ≥ minSup then11

FCk := FCk ∪ A;12

Foreach A ∈ FCk do13
Foreach B �= ∅ and B ⊂ A do14

Conf := ComputeConfidence(A − B, B);15
If Conf ≥ minConf then16

X := A − B;17
Y := B;18
return (X ⇒ Y, Supp, Conf);19

Ck+1 := ∅;20
Foreach A ∈ FCk do21

Foreach B ∈ FCk that shares (k-1) items with A do22
If All Z ⊂ {A ∪ B} of k items are inter-dimensional and closed23
frequent then

Ck+1 := Ck+1 ∪ {A ∪ B};24

k := k + 1;25

End26

Usually the user is interested in specified subsets of attributes in order to
extract interesting relationships among them. So, (s)he needs to exclude the set
of irrelevant attributes from the examination. To that end, AMAR allows the
user to guide the analysis process by: (i) defining the set of dimensions D to
be analyzed; (ii) choosing the hierarchies levels HD associated to the analy-
sis dimensions; and (iii) setting the minSup and the minConf thresholds. As
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sketched by Algorithm 1, we proceed by a bottom-up level wise search for fre-
quent closed k-patterns, where the level k is the number of items in the set.
We denote by Ck the sets of k-patterns that are potentially closed, CCk the
sets of closed k-patterns that are potentially frequent and FCk the sets of fre-
quent closed k-patterns. During the initialization step (line 2), our algorithm
captures the 1-candidates from the user defined analysis dimensions D over the
audit data cube AC. These 1-candidates correspond to the attributes of D, where
each one complies with the chosen hierarchies HD.

Within the first step, AMAR applies the closure concept (cf. Definition 1).
The second step (lines 9-12) of our algorithm derives the frequent closed pat-
terns FCk from the closed candidate patterns CCk that have a support greater
or equal to minSup. The third step (lines 13-19) allows the extraction of asso-
ciation rules with a confidence greater or equal to minConf . The computation
of support and confidence are performed respectively by the ComputeSupport
and ComputeConfidence functions. Both functions directly pick up required
precomputed aggregates from the data cube via MDX (MultiDimensional eX-
pression) queries [3]. The fourth step (lines 20-24) uses the set of frequent closed
k-patterns FCk to derive a new set of (k+1)-candidates, denoted by Ck+1. One
(k+1)-candidate is the union of two k-patterns A and B from FCk that respects
three conditions: (i) A and B must have k-1 common patterns; (ii) all non empty
sub-patterns from A ∪ B must be instances of inter-dimensional3 patterns in D;
and (iii) all non empty sub-patterns from A ∪ B must be frequent closed pat-
terns.

Table 1. A snapshot of an audit
data cube with four dimensions

Service Src Port Dst Port Attack #Con

Imap 63587 143 Neptune 44
Imap 6161 143 Satan 26
Pop3 6161 110 Neptune 15
Pop3 63587 143 Satan 20

Tcpmux 63587 1 Neptune 64

Table 2. Multidimensional association rule
list

ID Rules Sup Conf
R1 143 ⇒ Satan 0.3 0.5
R2 143 ∧ 63587 ⇒ Imap ∧ Neptune 0.3 0.7
R3 Satan ⇒ Imap ∧ 143 ∧ 6161 0.2 0.6
R4 63587 ∧ Neptune ⇒ Tcpmux ∧ 1 0.4 0.6
R5 Pop3 ∧ 143 ⇒ 63587 ∧ Satan 0.1 1.0
R6 Pop3 ∧ 63587 ⇒ 143 ∧ Satan 0.1 1.0

Example 2. Table 1 sketchs an example of an audit data cube with four di-
mensions. The last row measures the number of connections using the aggre-
gation function Count. The set of closed patterns, with their corresponding
supports, is as follows: {(“Pop3”: 0.2), (“143”:0.5), (“63587”:0.7), (“6161”:
0.2), (“Neptune”: 0.7), (“Pop3, 143, 63587, Satan”: 0.1), (“Pop3, 110, 6161,
Neptune”: 0.08), (“63587, 143”: 0.3), (“143, Satan”: 0.2), (“Imap, 143”: 0.4),
(“63587, Neptune”: 0.6), (“Imap, 143, 6161, Satan”: 0.1), (“Imap, 143, 63587,
Neptune”: 0.2), (“Tcpmux, 1, 63587, Neptune”: 0.3)}. We extract the set of
multidimensional association rules using the AMAR algorithm. Throughout our
example, we set the minSup to 10% and the minConf to 50%. The algorithm
generated 40 rules. Some of the extracted rules are illustrated in table 2.

3 An inter-dimensional pattern is composed of items coming from different dimensions.
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4 Classification

Intrusion detection can be considered as a classification problem where each
connection is identified either as one of the attack types or normal based on
some existing data [13]. Some of the association rules extracted by the AMAR
algorithm are not useful since they do not imply an intrusion type in their con-
sequent part. Therefore, we select the set of rules whose consequents include an
intrusion label. For instance, according to the set of rules illustrated by Table 2,
the rules R3 and R4 are excluded to retain only the rules R1, R2, R5 and R6.
Then, we apply a decomposition axiom introduced in [4] (cf. Definition 2) to
obtain new rules of the form “feature1 ∧ feature2 ∧ . . .∧ featuren ⇒ intrusion”.
Even though, the obtained rules are redundant, their generation is mandatory
to guarantee a maximal cover of the necessary rules.

Definition 2. Given an association rule R, a decomposition axiom is defined
as follows: If R : X ⇒ Y then R1 : X ⇒ Z is a derivable valid rule, ∀Z ⊂ Y .

Example 3. Let us consider the rule R2: {Dst Port = 143 ∧ Src Port = 63587}
⇒ {Service = Imap ∧ Attack = Neptune}. Using the decomposition axiom, R2 is
transformed in R′

2: {Dst Port = 143 ∧ Src Port = 63587} ⇒ {Service = Imap}
and R′′

2 : {Dst Port = 143 ∧ Src Port = 63587} ⇒ {Attack = Neptune}. We
retain the rule R′′

2 , since it includes an intrusion label in its consequent part.

Whenever the rules imply the same intrusion, we retain the rule which poses less
constraints and can match more audit records.

Example 4. Let us consider two rulesR: {Service = frag ∧ Src IP = 209.30.71.165
∧ Src port = 110 ∧ Dst port = 32} ⇒ {Attack = Pod} and R1: {Service = frag,
Dst port = 32} ⇒ {Attack = Pod}. Both rules R and R1 imply the same intru-
sion label (i.e., “Attack = Pod”). R1 is considered to be more interesting than R,
since it is needless to satisfy the features “Src IP = 209.30.71.165” and “Src port
= 110” to highlight the attack “Pod”. Hence, R1 implies less constraints and
can match more connection records than R.

Once the detection rules are generated, the OMC-IDS system applies a clas-
sifier [5] to classify the new connection records. Indeed, while having a new
connection record CNew, the detection of an intrusion consists in traversing the
detection rules from up to down in the classifier. The first reached rule, whose
antecedent’s part corresponds (i.e., included or equal) to the features of CNew,
will be of use. Thus, CNew will obtain the conclusion of the rule which indicates
an attack.

Example 5. Let us consider a new connection record CNew: “service = frag,
Src IP = 209.30.71.165, Dst port = 32”. If we have in the classifier just the
rule R (c.f. Example 4), we cannot classify CNew since the attribute “Src port
= 110” does not permit the matching. However, the rule R1 (c.f. Example 4),
which has a smaller antecedent than R, can classify CNew.

The latter example shows that the AMAR algorithm provides the relevant set
of detection rules of need for the classification step of OMC-IDS. In fact, the use
of such set of rules is of benefit for classifying new connection records.



OMC-IDS System 21

5 Experimental Results

To evaluate the effectiveness and efficiency of our proposed system OMC-IDS,
we carried out extensive experiments on a PC equipped with a 3 GHz Pentium
IV and 2 Go of main memory running under Linux Fedora Core 6. Indeed,
we compare our approach with the pioneering approaches falling within the
intrusion detection-based classification trend, namely, ADAM [2] and C4.54 [9].
During the carried out experiments, we use the DARPA19985 dataset. The
latter consists of training data and test data. The training data are generated
in the first seven weeks and testing data are derived in the rest two weeks. The
attacks consisting of a total of 33 different attack types are divided into four
different attack categories, namely DoS, R2L, U2R and Probing. To build the
audit data cube, we use the seven weeks’ training data. To that end, we adopt
the STAR schema showed in Figure 1. The audit data cube construction is done
using the Analysis Services of SQL Server 2008.

Through these experiments, we put the focus on the assessment of the IDS
performances in terms of detection and false alarms rates.

1. The Detection Rate (DR) is the number of correctly detected intrusions;
2. The False alarms Rate (FR) is the number of normal instances that were

incorrectly considered as attacks.

Table 3. The DR (%) of OMC-IDS with respect to the dimension’s variation

Dimensions DoS Probe U2R R2L
2-D 96.8 86.4 66.6 74.9
3-D 97.9 83.2 67.8 76.7
4-D 98.2 91.1 69.8 79.5
5-D 98.5 95.3 71.5 81.3
6-D 99.5 95.2 74.9 86.6

Table 3 shows the DR of OMC-IDS with respect to the dimension’s variation
for the four attack categories. The dimensions variation was established using
the AMAR algorithm. From the results, we can remark that the dataset with six
dimensions gives the best performances to detect the DoS class with 99.5% DR
whereas the dataset with five dimensions gives the worst DR with 98.5%. More-
over, the dataset with five dimensions generates the best performance to detect
the Probe class with 95.3% DR. The 6-D dataset gives the best performance to
detect the U2R class with 74.9% DR and 5-D generates the worst performance
with only 71.5%. Finally, the DR of R2L class on the 6-D dataset is the highest
one, i.e., 86.6% while on the 5-D we have the worst performance with only 81.3%
DR. As consequence, OMC-IDS allows the detection of the attacks with best DR
as far as the number of dimensions is the highest one, i.e., six dimensions. Even

4 Available in Weka: http://www.cs.waikato.ac.nz/ml/weka/
5 Available at http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/da-
ta/1998data.html
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though, the DR decreases according to the decrease of the dimension number, it
is still high.

The main challenge of IDS is to increase the value of the DR, while decreasing
the value of FR. Figure 2 presents the DR and the FR, obtained respectively by,
OMC-IDS, ADAM and C4.5-based systems. It can be seen that our approach
drastically outperforms the other ones. In fact, Figure 2 (a) shows that OMC-IDS
achieves a total DR above 99%, 97%, 86% and 74%, respectively corresponding
to the detection of four attack categories (i.e., DoS, Probe, R2L and U2R).
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Fig. 2. Performance of OMC-IDS vs. ADAM and C4.5-based

Compared to ADAM, we remark that OMC-IDS provides a higher successful
DR. Indeed, we achieved an average DR of 89% compared to 71%, over the four
attack categories. On one hand, the high value of DR is explained by the use
of pruning techniques that reduce the search space. In fact, the closed patterns
have been shown to present the best compactness rates [11]. Thus, the mecha-
nism adopted by the AMAR algorithm is more effective than that adopted by
ADAM which is hampered by the ineffectiveness of the redundant association
rules. On the other hand, the use of multidimensional association rules helps in
improving the performance of detecting attacks. For example, let us consider the
multidimensional association rule “{Src Port = 21 ∧ Dst Port = 63 ∧ Src IP =
209.30.71.165 ∧ Dst IP = 180.66.11.11⇒ Attack = Satan}”. Obviously, the lat-
ter rule has higher accuracy than a single dimensional association rule “{Dst IP
= 180.66.11.11 ⇒ Attack = Satan}”. Consequently, we conclude that OMC-
IDS is more efficient than ADAM due to the use of OLAP tools. In fact, the
mining of multidimensional association rules from audit data cubes enhances the
IDS process. Among the three tested systems, the C4.5-based IDS has the lowest



OMC-IDS System 23

DR for the four attack classes. For instance, whenever OMC-IDS and ADAM
have 74% and 65% DR for the U2R attacks, respectively, C4.5-based system
has 54% DR. This is due to the stealthy nature of those attacks. Moreover, it is
shown that C4.5 can classify more accurately on smaller datasets [9]. The results
illustrated by Figure 2 (a) are confirmed by Figure 2 (b). The latter presents
the DR of eight different attacks, including Pod, Smurf, Ipsweep, Portsweep,
Warezclient, Spay, Rootkit and Loadmodule.

In addition, Figure 2 (c) shows that the FR ranges from 0.2% to 1%. The
lowest FR is achieved for DoS attacks. The highest FR of R2L attacks generated
by OMC-IDS is equal to 0.2%, which is a very low value compared to ADAM
and C4.5-based systems. Precisely, according to Figure 2 (d), it is clear that the
improvement of OMC-IDS with respect to ADAM is of 2%, 1.2%, 2% and 3%,
respectively corresponding to the FR of the attacks Smurf, Ipsweep, Loadmodule
and Warezclient.
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Fig. 3. The ROC curves of OMC-IDS vs. ADAM and C4.5-IDS

Within intrusion detection, the ROC (Receiver Operating Characteristic) curve
is often used to assess the performance of IDSs. Figure 3 compares the ROC
curve of OMC-IDS vs. those of ADAM and C4.5-based systems. It can be seen
that the DR grows quickly to its peak value within a small increase of FR. In
addition, the result ensures that our system can achieve the highest DR with the
lowest FR. Thus, we conclude that OMC-IDS is more effective than ADAM
and C4.5-based systems due to the use of the OLAP techniques that helped in
improving the performance of detecting attacks.

6 Conclusion and Perspectives

On Line Analytical Processing (OLAP) provides tools to explore data cubes
in order to extract interesting information. In this paper, we have shown the
potential of coupling OLAP and data mining techniques in order to improve
IDSs. To that end, we designed a new architecture, called OMC-IDS, to model
network traffic using a multidimensional data structure based on the STAR
schema. Carried out experiments showed that OMC-IDS outperforms the pi-
oneering approaches, i.e., ADAM and C4.5-based systems. Future work will
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include exploring the alert correlations to expand the capabilities of our sys-
tem. We can combine data from multiple sources to obtain a better analysis of
the alert correlations.
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Abstract. Membership diversity is a characteristic aspect of social net-
works in which a person may belong to more than one social group. For
this reason, discovering overlapping structures is necessary for realistic
social analysis. In this paper, we present a fast algorithm1, called SLPA,
for overlapping community detection in large-scale networks. SLPA
spreads labels according to dynamic interaction rules. It can be applied
to both unipartite and bipartite networks. It is also able to uncover over-
lapping nested hierarchy. The time complexity of SLPA scales linearly
with the number of edges in the network. Experiments in both synthetic
and real-world networks show that SLPA has an excellent performance
in identifying both node and community level overlapping structures.

1 Introduction

Community or modular structure is considered to be a significant property of
real-world social networks. Thus, numerous techniques have been developed for
effective community detection. However, most of the work has been done on
disjoint community detection. It has been well understood that people in a real
social network are naturally characterized by multiple community memberships.
For example, a person usually has connections to several social groups like family,
friends and colleges; a researcher may be active in several areas; in the Internet,
a person can simultaneously subscribe to an arbitrary number of groups.

For this reason, overlapping community detection algorithms have been in-
vestigated. These algorithms aim to discover a cover [7], defined as a set of
clusters in which each node belongs to at least one cluster. In this paper, we
propose an efficient algorithm for detecting both individual overlapping nodes
and overlapping communities using the underlying network structure alone.

2 Related Work

We review the state of the art and categorize existing algorithms into five classes
that reflect how communities are identified.

Clique Percolation: CPM [11] is based on the assumption that a community
consists of fully connected subgraphs and detects overlapping communities by

1 Available at https://sites.google.com/site/communitydetectionslpa/

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 25–36, 2012.
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searching for adjacent cliques. CPMw [4] extends CPM for weighted networks
by introducing a subgraph intensity threshold.

Local Expansion: The iterative scan algorithm (IS) [2],[6] expands small cluster
cores by adding or removing nodes until a local density function cannot be
improved. The quality of seeds dictates the quality of discovered communities.
LFM [7] expands a community from a random node. The size and quality of
the detected communities depends significantly on the resolution parameter of
the fitness function. EAGLE [14] and GCE [9] start with all maximal cliques in
the network as initial communities. EAGLE uses the agglomerative framework
to produce a dendrogram in O(n2s) time, where n is the number of nodes, and s
is the maximal number of join operations. In GCE communities that are similar
within a distance ε are removed. The greedy expansion takes O(mh) time, where
m is the number of edges, and h is the number of cliques.

Fuzzy Clustering: Zhang [16] used the spectral method to embed the graph
into low dimensionality Euclidean space. Nodes are then clustered by the fuzzy
c-mean algorithm. Psorakis et al. [12] proposed a model based on Bayesian non-
negative matrix factorization (NMF). These algorithms need to determine the
number of communities K and the use of matrix multiplication makes them
inefficient. For NMF, the complexity is O(Kn2).

Link Partitioning: Partitioning links instead of nodes to discover communities
has been explored, where the node partition of a link graph leads to an edge
partition of the original graph. In [1], single-linkage hierarchical clustering is
used to build a link dendrogram. The time complexity is O(nk2max), where kmax

is the highest degree of the n nodes.

Dynamical Algorithms: Label propagation algorithms such as [13,5,15] use
labels to uncover communities. In COPRA [5], each node updates its belonging
coefficients by averaging the coefficients from all its neighbors in a synchronous
fashion. The time complexity is O(vm log(vm/n)) per iteration, where parameter
v controls the maximum number of communities with which a node can associate,
m and n are the number of edges and number of nodes respectively.

3 SLPA: Speaker-Listener Label Propagation Algorithm

Our algorithm is an extension of the Label Propagation Algorithm (LPA) [13].
In LPA, each node holds only a single label and iteratively updates it to its
neighborhood majority label. Disjoint communities are discovered when the al-
gorithm converges. Like [5], our algorithm accounts for overlap by allowing each
node to possess multiple labels but it uses different dynamics with more general
features.

SLPA mimics human pairwise communication behavior. In each communica-
tion step, one node is a speaker (information provider), and the other is a listener
(information consumer). Unlike other algorithms, each node has a memory of
the labels received in the past and takes its content into account to make the
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Fig. 1. The execution times of SLPA in synthetic networks with n = 5000 and average
degree k varying from 10 to 80

current decisions. This allows SLPA to avoid producing a number of small size
communities as opposed to other algorithms. In a nutshell, SLPA consists of the
following three stages:

Algorithm 1. SLPA(T, r)

T : the user defined maximum iteration
r: post-processing threshold
1) First, the memory of each node is initialized with a unique label.
2) Then, the following steps are repeated until the maximum iteration T is reached:

a. One node is selected as a listener.
b. Each neighbor of the selected node randomly selects a label with probability
proportional to the occurrence frequency of this label in its memory and sends
the selected label to the listener.

c. The listener adds the most popular label received to its memory.
3) Finally, the post-processing based on the labels in the memories and the threshold

r is applied to output the communities.

Note that SLPA starts with each node being in its own community (a total
of n), the algorithm explores the network and outputs the desired number of
communities in the end. As such, the number of communities is not required as
an input. Due to the step c, the size of memory increases by one for each node
at each step. SLPA reduces to LPA when the size of memory is limited to one
and the stop criterion is convergence of all labels. Empirically, SLPA produces
relatively stable outputs, independent of network size or structure, when T is
greater than 20. Although SLPA is non-deterministic due to the random selection
and ties, it performs well on average as shown in later sections.

Post-processing and Community Detection: In SLPA, the detection of
communities is performed when the stored information is post-processed. Given
the memory of a node, SLPA converts it into a probability distribution of labels.
Since labels represent community id’s, this distribution naturally defines the
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strength of association to communities to which the node belongs. To produce
crisp communities in which the membership of a node to a given community
is binary, i.e., either a node is in a community or not, a simple thresholding
procedure is performed: if the probability of seeing a particular label during the
whole process is less than a given threshold r ∈ [0, 0.5], this label is deleted. After
thresholding, connected nodes having a particular label are grouped together and
form a community. If a node contains multiple labels, it belongs to more than
one community and is called an overlapping node. A smaller value of r produces
a larger number of communities. However, the effective range is typically narrow
in practice. When r ≥ 0.5, SLPA outputs disjoint communities.

Complexity: The initialization of labels requires O(n), where n is the total
number of nodes. The outer loop is controlled by the user defined maximum
iteration T, which is a small constant which in our experiments was set to 100.
The inner loop is controlled by n. Each operation of the inner loop executes one
speaking rule and one listening rule. The speaking rule requires exactly O(1)
operation. The listening rule takes O(k) on average, where k is the average node
degree. In the post-processing, the thresholding operation requires O(Tn) oper-
ations since each node has a memory of size T. In summary, the time complexity
of the entire algorithm is O(Tnk) or O(Tm), linear with the total number of
edges m. The execution times for synthetic networks where averaged for each k
over networks with different structures, i.e., different degree and community size
distributions (see Section 4.1 for details). The results shown in Fig. 1 confirm the
linear scaling of the execution times. On a desktop with 2.80GHz CPU, SLPA
took about six minutes to run over a two million nodes Amazon co-purchasing,
which is ten times faster than GCE running over the same network.

4 Tests in Synthetic Networks

4.1 Methodology

To study the behavior of SLPA, we conducted extensive experiments in both
synthetic and real-world networks. For synthetic random networks, we adopted
the widely used LFR benchmark2 [8], which allows heterogeneous distributions
of node degrees and community sizes.

Table 1. Algorithms in the tests

Algorithm Complexity Imp

CFinder [11], 2005 - C++
LFM [7], 2009 O(n2) C++

EAGLE [14], 2009 O(n2s) C++
CIS [6], 2009 O(n2) C++
GCE [9], 2010 O(mh) C++

COPRA [5], 2010 O(vm log(vm/n)) Java
NMF [12], 2010 O(Kn2) Matlab
Link [1], 2010 O(nk2

max) C++
SLPA, 2011 O(Tm) C++

Table 2. The ranking of algorithms

Rank RSOmega RSNMI RSF

1 SLPA SLPA SLPA
2 COPRA GCE CFinder
3 GCE NMF COPRA
4 CIS CIS Link
5 NMF LFM LFM
6 LFM COPRA CIS
7 CFinder CFinder GCE
8 Link EAGLE EAGLE
9 EAGLE Link NMF

2 http://sites.google.com/site/andrealancichinetti/files

http://sites.google.com/site/andrealancichinetti/files
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We used networks with size n = 5000. The average degree is kept at k = 10.
The degree of overlapping is determined by two parameters. On defines the
number of overlapping nodes and is set to 10% of all nodes. Om defines the
number of communities to which each overlapping node belongs and varies from
2 to 8 indicating the diversity of overlap. By increasing the value of Om, we
create harder detection tasks. Other parameters are as follows: node degrees and
community sizes are governed by the power laws with exponents 2 and 1; the
maximum degree is 50; the community size varies from 20 to 100; the expected
fraction of links of a node connecting it to other communities, called the mixing
parameter μ, is set to 0.3. We generated ten instance networks for each setting.

In Table 1, we compared SLPA with eight other algorithms representing dif-
ferent categories discussed in section 2. For algorithms with tunable parameters,
the performance with the optimal parameter is reported. For CFinder, k varies
from 3 to 10; for COPRA, v varies from 1 to 10; for LFM α is set to 1.0 [7]. For
Link, the threshold varies from 0.1 to 0.9 with an interval 0.1. For SLPA, the
number of iterations T is set to 100 and r varies from 0.01 to 0.1. The average
performance together with error bar over ten repetitions are reported for SLPA
and COPRA. For NMF, we applied a threshold varying from 0.05 to 0.5 with
an interval 0.05 to convert it to a crisp clustering.

To summarize the vast amount of comparison results and provide a measure of
relative performance, we proposed RSM (i), the averaged ranking for algorithm
i with respect to measure M as follows:

RSM (i) =
∑
j=1

wj · rank(i, Oj
m), (1)

where Oj
m is the number of memberships in {2, 3, · · · , 8}, wj is the weight, and

function rank returns the ranking of algorithm i for the given Om. For simplicity,
we assume equal weights over different Om’s in this paper. Sorting RSM in
increasing order gives the final ranking among algorithms.
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4.2 Identifying Overlapping Communities in LFR

The extended normalized mutual information (NMI) [7] and Omega Index [3]
are used to quantify the quality of communities discovered by an algorithm. NMI
measures the fraction of nodes in agreement in two covers, while Omega is based
on pairs of nodes. Both NMI and Omega yield the values between 0 and 1. The
closer this value is to 1, the better the performance is.

As shown in Fig. 2 and Fig. 3, some algorithms behave differently under
different measures (the rankings of RSOmega and RSNMI among algorithms in
Table 2 also change). As opposed to NMF and COPRA, which are especially
sensitive to the measure, SLPA is remarkably stable in NMI and Omega.

Comparing the detected and known numbers of communities and distributions
of community sizes (CS) helps to understand the results. On one hand, we expect
the community size to follow a power law with exponent 1 and to range from 20
to 100 by design. As shown in Fig. 4, high-ranking (with high NMI) algorithms
such as SLPA, GCE and NMF typically yield a unimodal distribution with a
peak at CS = 20 fitting well with the ground truth distribution. In contrast,
algorithms in Fig. 5 typically produce a bimodal distribution. The existence of
an extra dominant mode for CS ranging from 1 to 5 results in a significant
number of small size communities in CFinder, LFM, COPRA, Link and CIS.
These observations nicely explain the ranking with respect to NMI.

4.3 Identifying Overlapping Nodes in LFR

Identifying nodes overlapping multiple communities is an essential component of
measuring the quality of a detection algorithm. However, the node level evalua-
tion was often neglected. Here we first look at the number of detected overlapping
nodes Od

n (see Fig. 6) and detected memberships Od
m (see Fig. 7) relative to the

ground truth On and Om, based on the information in Fig. 2. Note that a value
close to 1 indicates closeness to the ground truth, and values over 1 are possible
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when an algorithm detects more nodes or memberships than there are known to
exist. As shown, SLPA yields the numbers that are close to the ground truth in
both cases.

Note that Od
n alone is insufficient to accurately quantify the detection perfor-

mance, as it contains both true and false positive. To provide precise analysis, we
consider the identification of overlapping nodes as a binary classification prob-
lem. A node is labeled as overlapping as long as Om>1 or Od

m>1 and labeled
as non-overlapping otherwise. Within this framework, we can use F-score as a
measure of detection accuracy defined as

F =
2 · precision · recall
precision+ recall

, (2)

where recall is the number of correctly detected overlapping nodes divided by
On, and precision is the number of correctly detected overlapping nodes divided
by Od

n. F-score reaches its best value at 1 and worst score at 0.
As shown in Fig. 8, SLPA achieves the best score on this metric. This score

has a positive correlation with Om while scores of other algorithms are negatively
correlated with it. SLPA correctly uncovers a reasonable fraction of overlapping
nodes even when those nodes belong to many groups (as demonstrated by the
high precision and recall in Fig. 9 and Fig. 10). Other algorithms that fail to
have a good balance between precision and recall result in low F-score, especially
for EAGLE and Link. The high precision of EAGLE (also CFinder and GCE for
Om = 2) shows that clique-like assumption of communities may help to identify
overlapping nodes. However, they under-detect the number of such nodes.

With the F-score ranking, GCE and NMF no longer rank in the top three
algorithms, while SLPA stays there. Taking both community level performance
(NMI and Omega) and node level performance (F-score) into account, we con-
clude that SLPA performs well in the LFR benchmarks.
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Fig. 10. The recall

Table 3. Social networks in the tests

Network n k Network n k

karate (KR) 34 4.5 Email (EM) 33696 10.7
football (FB) 115 10.6 P2P 62561 2.4
lesmis (LS) 77 6.6 Epinions (EP) 75877 10.6

dolphins (DP) 62 5.1 Amazon (AM) 262111 6.8
CA-GrQc (CA) 4730 5.6 HighSchool (HS1) 69 6.3

PGP 10680 4.5 HighSchool (HS2) 612 8.0

5 Tests in Real-World Social Networks

We applied SLPA to a wide range of well-known social networks3 as listed in
Table 3. The high school friendship networks that were analyzed in a project
funded by the National Institute of Child Health and Human Development, are
social networks in high schools self-reported by students together with their
grades, races and sexes. We used these additional attributes for verification.

5.1 Identifying Overlapping Communities in Social Networks

To quantify the performance, we used the overlapping modularity, QNi
ov (with

values between 0 and 1), proposed by Nicosia [10], which is an extension of New-
man’s modularity. A high value indicates a significant overlapping community
structure relative to the null model. We removed CFinder, EAGLE and NMF
from the test because of either their memory or their computation inefficiency
on large networks. As an additional reference, we added the disjoint detection
results with the Infomap algorithm.

As shown in Fig. 11, in general, SLPA achieves the highest average QNi
ov ,

followed by LFM and COPRA, even though the performance of SLPA has larger
fluctuation than that in synthetic networks. Compared with COPRA, SLPA is
more stable as evidenced by smaller deviation of its QNi

ov score. In contrast,

3 www-personal.umich.edu/~mejn/netdata/ and snap.stanford.edu/data/

www-personal.umich.edu/~mejn/netdata/
snap.stanford.edu/data/
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COPRA does not work well on highly sparse networks such as P2P, for which
COPRA finds merely one single giant community. COPRA also fails on Epinions
network because it claims too many overlapping nodes in view of consensus of
other algorithms as seen in the bottom of Fig. 12. Such over-detection also
applies to CIS and Link, resulting in low QNi

ov scores for these two algorithms.
The results in Fig. 12 (based on the clustering with the bestQNi

ov ) show a common
feature in the tested real-world networks, which is a relatively little agreement
between results of different algorithms, i.e., the relatively small overlap in both
the fraction of overlapping nodes (typically less than 30%) and the number of
communities of which an overlapping node is a member (typically 2 or 3).

As known, a high modularity might not necessarily result in a true parti-
tioning as it does in the disjoint community detection. We used the high school
network (HS1) with known attributes to verify the output of SLPA. As shown
in Fig. 13, there is a good agreement between the found and known partitions in
term of student’s grades. In SLPA, the grade 9 community is further divided into
two subgroups. The larger group contains only white students, while the smaller
group demonstrates race diversity. These two groups are connected partially via
an overlapping node. It is also clear that overlapping nodes only exist on the
boundaries of communities. A few overlapping nodes are assigned to three com-
munities, while the others are assigned to two communities (i.e., their Om is 2).

5.2 Identifying Overlapping Communities in Bipartite Networks

Discovering communities in bipartite networks is important because they provide
a natural representation of many social networks. One example is the online tag-
ging system with both users and tags. Unlike the original LPA algorithm, which
performs poorly on bipartite networks, SLPA works well on this kind of networks.
We demonstrate this using two real-world networks4. One is a Facebook-like so-
cial network. One type of nodes represents users (abbr. FB-M1), while the other

4 Data are available at http://toreopsahl.com/datasets/

http://toreopsahl.com/datasets/
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Fig. 13. High school network (n = 69, k = 6.4). Labels are the known grades ranging
from 7 to 12. Colors represent communities discovered by SLPA. The overlapping nodes
are highlighted by red color.

represents messages (abbr. FB-M2). The second network is the interlocking di-
rectorate. One type of nodes represents affiliations (abbr. IL-M1), while the other
individuals (abbr. IL-M2).

We compared SLPA with COPRA in Table 4. One difference between SLPA
and COPRA is that SLPA applies to the entire bipartite network directly, while
COPRA is applied to each type of nodes alternatively. QNi

ov is computed on the
projection of each type of nodes. Again, we allow overlapping between commu-
nities. Although COPRA is slightly better (by 0.03) than SLPA on the second
type of nodes for interlock network, it is much worse (by 0.11) on the first type.
Moreover, COPRA fails to detect meaningful communities in the Facebook-like
network, while SLPA demonstrates relatively good performance.

Table 4. The QNi
ov of SLPA and COPRA for two bipartite networks

Network n SLPA (std) COPRA (std)

FB-M1 899 0.23 (0.10) 0.02 (0.07)
FB-M2 522 0.36 (0.02) 0.02 (0.07)
IL-M1 239 0.59 (0.02) 0.48 (0.02)
IL-M2 923 0.69 (0.01) 0.72 (0.01)

5.3 Identifying Overlapping Nested Communities

In the above experiments, we applied a post-processing to remove subset commu-
nities from the raw output of stages 1 and 2 of SLPA. This may not be necessary
for some applications. Here, we show that rich nested structure can be recovered
in the high school network (HS2) with n = 612. The hierarchy is shown as a
treemap5 shown in Fig. 14. To evaluate the degree to which a discovered com-
munity matches the known attributes, we define a matching score as the largest

5 Treemap is used for visualization: www.cs.umd.edu/hcil/treemap/

www.cs.umd.edu/hcil/treemap/
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Fig. 14. The nested structure in the high school network represented as a Treemap.
The color represents the best explaining attribute: blue for grade; green for race; and
yellow for sex. Numbers in parenthesis are the matching scores defined in the text. The
size of shapes is proportional to the community size. Due to the page limit, only part
of the entire treemap is shown.

fraction of matched nodes relative to the community size among three attributes
(i.e., grade, race and sex). The corresponding attribute is said to best explain
the community found by SLPA.

As shown, SLPA discovers a tree with a height of four. Most of the communi-
ties are distributed on the first two levels. The community name shows the full
hierarchy path (connected by a dash ’-’) leading to this community. For example,
C1 has id 1 and is located on the first level, while C1-25 has id 25, and it is the
second level sub-community of community with id 1.

Nested structures are found across different attributes. For example, C13 is
best explained by race, while its two sub-communities perfectly account for grade
and sex respectively. In C1, sub-communities explained by the same attribute
account for different attribute values. For example, both C1-25 and C1-40 are
identified by sex. However, the former contains only male students, while in the
latter female students are the majority. Although the treemap is not capable
of displaying overlaps between communities, the nested structures overlap as
before.

6 Conclusions

We introduced a dynamic interaction process, SLPA as a basis for an efficient
and effective unified overlapping community detection algorithm. SLPA allows
us to analyze different kinds of community structures, such as disjoint com-
munities, individual overlapping nodes, overlapping communities and overlap-
ping nested hierarchy in both unipartite and bipartite topologies. Its underlying
process can be easily modified to accommodate other types of networks (e.g.,
k-partite graphs). In the future work, we plan to apply SLPA to temporal com-
munity detection.
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4. Farkas, I., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New Journal
of Physics 9(6), 180 (2007)

5. Gregory, S.: Finding overlapping communities in networks by label propagation.
New J. Phys. 12, 103018 (2010)

6. Kelley, S.: The existence and discovery of overlapping communities in large-scale
networks. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY (2009)

7. Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the overlapping and hier-
archical community structure in complex networks. New J. Phys., 033015 (2009)

8. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78, 046110 (2008)

9. Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community
structure by greedy clique expansion. In: snakdd. pp. 33–42 (2010)

10. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of
modularity to directed graphs with overlapping communities. J. Stat. Mech., 03024
(2009)
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Abstract. Weighted Association Rule Mining (WARM) is a technique that is
commonly used to overcome the well-known limitations of the classical Associ-
ation Rule Mining approach. The assignment of high weights to important items
enables rules that express relationships between high weight items to be ranked
ahead of rules that only feature less important items. Most previous research to
weight assignment has used subjective measures to assign weights and are reliant
on domain specific information. Whilst there have been a few approaches that
automatically deduce weights from patterns of interaction between items, none
of them take advantage of the situation where weights of only a subset of items
are known in advance. We propose a model, WeightTransmitter, that interpolates
the unknown weights from a known subset of weights.

Keywords: Weight Estimation, Landmark Weights, Association Rule Mining.

1 Introduction

Weighted Association Rule Mining has been proposed as a method of generating a com-
pact rule base whose rules contain items that are of most interest to the user [2,8,10,11].
Items are typically weighted based on background domain knowledge. For example,
items in a market basket dataset may be weighted based on the profit they generate.
However, in many applications pre-assignment of weights is not practical. In high di-
mensional datasets containing thousands of different items it may not be feasible to
gather domain specific information on every single item, especially in a dynamically
changing environment. In such situations it is more practical to exploit domain infor-
mation to set weights for only a small subset of items (which we refer to as landmark
items) and to then estimate the weights of the rest through the use of a suitable inter-
polation mechanism. This research addresses the issue of constructing a suitable model
which will facilitate the estimation of unknown weights in terms of a given small subset
of items with known weights.

Another key issue that needs to be addressed is the validity of assigning item weights
based on domain specific input alone. Typically, items are supplied weights based on
their perceived importance, for example the profit that they generate. However, such
weight assessments are made in isolation to other items and thus do not account for the
indirect profit that an item generates by promoting the sale of other items which may
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be of high profit. For example, retailers often reduce their profit margin on items that
already have relatively low profit and market them as a package deal involving high
profit items. A concrete example is a discount on a mobile handset that is conditional
on the customer signing a long term contract with the phone company involved. In such
situations, the “low profit” item (mobile handset) is used as an incentive to entice cus-
tomers into buying the high profit items (calling plan contract). Clearly, in such contexts
the actual profit margin of the low profit item does not accurately reflect its importance.
Thus one of the premises of this research is that domain input on item weighting even
when available may not be sufficient by itself in characterizing the importance of an
item. Transactional linkages between items add value to domain specific information
and when these two inputs are combined in a suitable manner a more accurate assess-
ment can be made on an item’s importance.

Two major contributions of this research are the development of a model that ex-
presses the unknown weights of items in terms of known weights (landmark weights)
and an interpolation mechanism that estimates weights by taking into account linkages
between items that occur together. The rest of the paper is organized as follows. In the
next section, we examine previous work in the area of weighted association rule mining.
In Section 3 we give a formal definition of the weighted estimation problem. Section 4
presents our model for weight estimation. Our experimental results are presented in
Section 5. Finally we summarize our research contributions in Section 6.

2 Related Work

In the context of weighted association rule mining a number of different schemes have
been proposed for item weighting. Most of the schemes propose that domain informa-
tion be utilized for setting weights for items. Tao et al. [9], Cai et al. [2] and Sanjay
et al. [6] propose that item profit be utilized for assigning weights in retail environ-
ments for items while Yan et al. [11] use page dwelling time to assign weights in a web
click stream data environment. More recent work reported in [8,3,4] took a different
approach to the weight assignment problem. Sun and Bai introduced the concept of
w-support which assigns weights to items based on the properties of transactions in a
given dataset thus removing the need for domain specific input. The dataset was first
converted into a bipartite graph, with one set of nodes representing the items and the
other set of nodes representing the transactions. The w-support was then calculated by
counting the links between items and the transactions that the items appeared in. Koh
et al. [3] proposed a Valency model where the weight of an item was defined as a linear
combination of its purity and its connectivity. Purity takes into account the number of
items that a given item interacts with, while Connectivity accounted for the degree of
interaction between an item and its neighboring items. Pears et al. [4] used a weight in-
ference mechanism based on Eigenvectors derived from a transactional dataset. Given
a dataset D, the covariance of every pair of items that occur in transactions across D
was expressed in terms of its covariance matrix M . The first Eigenvector derived from
the covariance matrix M was used to assign weights to items.

None of the work done so far in weight inference directly addresses the issue of
weight estimation from a set of known landmark weights. A simple extension such as
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restricting the set of items input to only include the unknown items will not suffice as
the weights will be computed only on the basis of the interactions between the set of
unknown items and the interactions with the landmark items will be neglected. As such,
none of the above work can directly be utilized in their entirety.

3 Problem Definition

The weight fitting problem that we frame is to estimate the overall weight of items
and not simply the domain specific weights for items that are unspecified (i.e., item not
in the landmark set, L). As stated in the introduction, certain items that are perceived
to be of low importance on the basis of domain knowledge may actually assume a
higher importance than their perceived rating due to strong interactions with items that
are of high importance. In our problem setting we associate with each item a domain
weight and an interaction weight. Domain weights dw are only available for the set of
landmark items, L, whereas interaction weights iw are available for all items as these
can be deduced from the co-occurrences of items given a transaction database.

Given a set of items I , a subset L of landmark items where L ⊂ I , and a transaction
database D, the acquired weight wi of a given item i is determined by:

wi =

∑
l∈L iw(i, l).(wl + dwl) +

∑
m∈M iw(i,m).(wm)∑

k∈N iw(i, k)
(1)

where N represents the set of neighbors of item i, dwi ≥ 0 when i ∈ L and dwi =
0, otherwise. Thus an item i acquires a weight from its interactions with its neighbors
who transmit their own weights in a quantity proportional to the degree of interaction,
iw. Neighbors that are landmarks transmit their domain weights as well as their ac-
quired weights while neighbors in the set M of items that are not landmarks only trans-
mit their acquired weights. In the context of this research a neighbor of a given item i is
taken to be any item j that co-occurs with item i when taken across the database D. In
effect, an item that is a landmark item contributes both its own domain weight and the
weight acquired from its neighbors, while non landmark items simply transmit their ac-
quired weight which in turn was obtained from their own interactions with neighboring
items, which could include landmark items. Henceforth we shall abbreviate the term
acquired weight simply by the term weight, except when it is necessary to emphasize
the composite nature of the weight assignment.

The accuracy of the weight estimation mechanism expressed by Equation 1 above is
dependent on how the interaction component is modeled. This specification is a model-
ing issue which does not impact on the general definition of the problem and so further
discussion of this component is deferred to Section 4 which deals with the model de-
veloped to solve the problem.

For a given set of landmark items L the problem can now be stated formally as
follows: return all items i ∈ H where

H = {i|i ∈ I is in the top p% of items when ranked on acquired weight from Eq (1)} (2)

where p is a user-supplied threshold that determines the minimum overall weight to be
returned to the user for use in a subsequent weighted association rule mining phase.
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4 Weight Transmitter Model

In this section we present a model that we use as the basis of the solution to the weight
estimation problem. We use a graph structure (N,E) where nodes are represented by
items and edges by interactions between pairs of items. Each node i is associated with
the weight wi of the item, while an edge between items i and j is represented by G(i, j)
where G is the Gini information index [5]. The Gini information index G(i, j) measures
the degree of dependence of item j on item i. A high value of G(i, j) indicates that
item j occurs with a high degree of probability whenever item i occurs, likewise, the
non occurrence of item i leads to the non occurrence of item j with a high degree
of probability. Thus the G value captures the degree of dependence between pairs of
items. The higher the dependence of item j on item i, the higher the proportion of
weight transmission from item i to item j, and as such the Gini index can be used to
express the interaction weight component of the model.

Fig. 1. Influence of Neighborhood in Weight Estimation

As an illustrative example, consider two different scenarios with four items whereby
we have item k with unknown domain weight and three other items i1, i2, and i3 with
known domain weights. In the first case, (Figure 1 (a)) each of i1, i2 and i3 have domain
specified weights of 0.8 and each interacts with item k with a G value of 0.9. The
WeightTransmitter model that we propose returns a weight value of 2.4 for each of the
items, which when normalized yields a value of 0.89. With the same set of items but
with domain specific weights set to 0.1 (Figure 1(b)) all weights for the four items end
up with the same value of 0.3, which when normalized yields a value of 0.11. This
example illustrates the importance of neighborhood in the weight estimation process;
an item which is strongly connected through high G values to high weight items will
acquire a high weight, whereas the same item when connected to low weight items will
acquire a low weight, regardless of the strength of the connections.

We now present the WeightTransmitter model by expressing the weight of a given
item k in terms of the weights of its neighbors as:

wk =

∑
i∈S1

G(i, k).(wi + dwi) +
∑

j∈S2
G(j, k).(wj)∑

i∈S1
G(i, k) +

∑
i∈S2

G(i, k)
(3)

where S1 represents the set of neighbors of item i whose domain supplied weight dwi

components are known in advance and S2 is the set of neighbors of item i whose domain
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weights are unknown. Now
∑

i∈S1
G(k, i) +

∑
i∈S2

G(k, i) represents a known quan-
tity c1k, since all G index values can be calculated from the transaction database. The
dwi terms in set S1 also represent known quantities. We denote

∑
j∈S1

G(k, i).dwi by
c2k. Substituting the known constants c1k, c2k in the above equation and re-arranging
the terms gives:

c1k.wk −
∑
i∈S

G(i, k).wi = c2k (4)

where S = S1 ∪ S2 represents the complete neighborhood of item k. The above now
represents a system of k linear simultaneous equations in k unknowns which has an
exact solution with the Gaussian elimination method which we employ. The algorithm
below illustrates how the WeightTransmitter model fits in with the traditional weighted
association rule mining algorithm.

Algorithm: WeightTransmitter Model
Input: Transaction database T, known landmark weights dw,

universe of items I
Output: Item Weights W

Step 1: Build a one level graph of the neighborhood of item i
N(i) ← {k|k ∈ t, t ∈ T, i ∈ t}

Step 2: Calculate G values for interactions between item i and
neighbors N(i)

Step 3: Compute C1 = {|c1kk ∈ I} and C2 = {|c2kk ∈ I}
Step 4:Solve for weight vector W

W ← {w(i)|GaussianElimination(I, C1, C2), i ∈ I}

5 Experimental Results

Our evaluation is divided into three sections: weight estimation evaluation, rule evalua-
tion, and runtime evaluation. In the next section we describe the datasets that were used
in these evaluations.

5.1 Datasets

Our experiments were conducted on five real-world datasets which are described below.

– Retail dataset. We used a retail market basket dataset supplied by a supermarket
store that contained the unit profit values for each item which were supplied in a
separate file [1].

– Nasa weblog datasets. We also used two different web log files from the NASA
Kennedy Space Center in Florida collected over the months of July and August
1995. In these datasets pages represented items, and transactions consisted of a
sequence of clicks on a set of web pages that took place across a session, which we
set to have a maximum time of 15 minutes. The average dwelling time on a web
page (taken across all transactions) was taken as a proxy for item weight.

– Computer Science Lab datasets. Finally, we used two datasets containing web
log requests from a computer science lab at the University of Auckland between
the months of December 2007 - February 2008, and February 2008 - December
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2008. We preprocessed the dataset using the same technique as the Nasa datasets
and used the same proxy for item weight. Overall there were 1764 items and 5415
instances for the first of these datasets, while the second had 2315 items and 5591
instances.

5.2 Weight Estimation Evaluation

This evaluation was designed with three key objectives in mind. Firstly, to establish the
degree of sampling required in order to achieve convergence between estimated and ac-
tual weight on the composite weight measure. Ideally, convergence should be achieved
at a low level of sampling for the weight estimation process to be effective. Secondly, to
identify items that were flagged as being low weight according to domain information
but were assigned high weight values by the WeightTransmitter model. These items are
potentially interesting as they highlight situations where domain knowledge is inade-
quate to characterize the true importance of such items. Thirdly, we wanted to assess
the level of accuracy achieved by the weight estimation process at the point of conver-
gence. Since we had access to the domain weights for the complete set of items we were
able to establish the ground truth in terms of the composite weights by simply running
WeightTransmitter with a landmark sampling level at 100%.

To evaluate the accuracy of the weights produced by the WeightTransmitter model
we varied the percentage of landmark weights in the range 10% to 90% and tracked the
overall accuracy and precision across the high weight items. We start with the accuracy
evaluation. At each of the sampling levels 30 different runs were used that chose dif-
ferent sets of landmark items at random. The accuracy measures presented represent an
average of the measure taken across the 30 different trials.

Weight Convergence and Accuracy Analysis. Accuracy was tracked using three dif-
ferent measures: Correlation, Precision on high weight items, and Target Lift [7]. Target
Lift is a measure commonly used to measure the lift in response rate that occurs when
marketing offers are sent to a small set of customers who are likely to respond (identified
through some prediction method) rather than a mass marketing campaign that targets
the entire population. In the context of weight estimation the set of items returned by
WeightTransmitter which it regards as high weight corresponds to the set of probable
customers and the universe of items represents the entire customer population.

In the first analysis, we ran WeightTransmitter with the set of landmark weights as
input and collected the results into the set Sl. We then re-ran WeightTransmitter with
the complete set of known weights as input and collected the results into the set Sc. We
then plotted the Pearson correlation between the two result sets against the sampling
percentages that we used for the landmark weights. Figure 2 shows that there is a sta-
bilization of correlation around the 30% mark; the average correlation value is 89%,
with a standard deviation of 0.07. As expected, as the percentage of landmark items
increases the greater is the degree of convergence between estimated weight and actual
values on the composite weight value. Figure 2 shows that reasonable convergence of
weights is achieved around the 30% mark.

For the second analysis each of the sets Sl and Sc were divided into two parts (bins):
low and high. For each of the two sets, the top 10 percentile of items in terms of weight
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Fig. 2. Correlation Analysis Fig. 3. Precision Analysis (High Weights)

were allocated to high bin, and all other items to the low bin. Using the bins based on
the set Sc(i.e., by running WeightTransmitter at 100% level of sampling) to establish
a benchmark we were able to compute precision on the high weight category (bin).
Figure 3 shows the precision in the high weight weight category as a function of the
sampling percentage. At 30% the average precision value for the high weight items is
80%, with a standard deviation of 0.06.

In the third analysis we calculated the target lift. Table 1 shows that the lift in the
true positive rate at a 30% sampling rate is much greater than 1 across all datasets, thus
demonstrating the effectiveness of WeightTransmitter over a random weight assignment
scheme in identifying high weight items.

Table 1. Target Lift Value at 30%

Dataset Retail Nasa (July) Nasa (Aug) Computer Science Computer Science 2
Target Lift 5.04 6.99 7.75 8.53 3.41

Profit Analysis. Our weight accuracy analysis in the previous section establishes the
effectiveness of our model in accurately estimating composite weight. However, we
were also interested in tracking our other research premise which was the effect of the
weighting scheme on items that interacted strongly with items that were known to have
high weight. In particular, we were interested in tracking the set of items (H ′) where
H ′ = {i|i ∈ I where i is in the top p percentile on the basis of composite weight but not
on the basis of domain weight}. We were able to compute the set H ′ as we had access
to the weights of all items. For all items belonging to H ′ we defined a profit measure
(P ) that took into account the amount of indirect profit that such items generated. The
profit measure for a given item i ∈ H ′ was computed by taking the total profit (P1)
over all transactions (T1) in which item i occurs and then subtracting from this value
the total profit (P2) over all transactions (T2) in which item i does not occur.
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In order to isolate the confounding effect of transactions in T2 having more items
than T1 we restricted each of the transactions involved in T2 to only have the neighbors
of the item i under consideration. Furthermore, we also compensated for the differences
in the sizes of T1 and T2 by scaling P1 with the factor |T2|

|T1| .

P (i) =
|T2|
|T1|

.
∑
k∈t1

∑
t1∈T1

w(k)−
∑
k∈t2

∑
t2∈T2

w(k), ∀t1, t2 ∈ T (5)

where w(k) represents the weight of a high weight item k that is connected to item i and
T is the set of all transactions in the transaction database. Equation 5 as defined above
captures the indirect profit due to item i without the effects of the confounding factors
just mentioned. However, the profit measure P by itself has little meaning unless it is
compared with the profit generated by the set of items NH that remain low in weight
without making the transition to the high weight category. For our premise that domain
input on item weighting may not be sufficient by itself in characterizing the importance
of an item the P values of items in the set H ′ needs to be substantially higher than the
profit values in the set NH . Table 2 shows that this is indeed the case as the values in the
H ′ column contains much higher values than the NH column for all of the datasets that
we tracked. Table 2 contains the following columns; the percentage of items which have
transited to the high weight category when transactional linkages are accounted for,
average profit of items rated high by WeightTransmitter but not by domain weighting
(i.e., the set H ′), average profit of items rated high by domain weighting (i.e., the set
H ′′), and average profit of items that were not rated high by WeightTransmitter (i.e.,
the set NH).

Table 2. Weight Evaluation Based on Profit

Dataset % Change H′ Items H′′ Items NH Items
Retail 10 4647.53 3371.64 2418.20
Nasa (July) 11 5448.06 4375.46 3027.62
Nasa (Aug) 11 5101.86 4387.05 3424.50
Computer Science 11 99006.29 57231.93 49504.58
Computer Science 2 11 46219.19 32158.67 40224.14

Sensitivity Analysis. Given that the WeightTransmitter model achieved a high level
of precision at the relatively small sampling level of 30% we were interested in inves-
tigating how robust the scheme was to changes in the data distribution. In particular,
we were interested in tracking the sensitivity of Precision to the degree of variance in
the data. Due to the fact that WeightTransmitter uses a sample defined over the set of
landmark items, the question that arises is whether the error caused by the sampling re-
mains stable or changes substantially when the underlying data distribution changes.
To investigate this issue we used the Retail, Nasa (June), and Computer Science 1
datasets. Each weight value w in each of the selected datasets was perturbed by adding
white Gaussian noise to it. Each weight value w for a given set was transformed into
a weight value, wp = w + N(0, w/d), where d is a parameter that controls the level
of variance injected into the dataset. We experimented with different values of d so
as to obtain 3 levels of drift in variance from the baseline. The drift levels we used
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Fig. 4. Histogram of Support Distribution (Computer Science Dataset)

were 25%, 50% and 90% where drift level for a transformed dataset D′ is defined by:
drift(D′) = (stdev(D′)−stdev(D))

stdev(D) , where stdev(D), stdev(D′) represents the stan-
dard deviations across the baseline and perturbed datasets respectively. Figure 4 is the
histogram of support distribution for the Computer Science dataset. The other datasets
follow a similar distribution. The baseline represents the situation when the complete
ground truth is known, i.e., the domain weights for all items are known, thus enabling
the composite weight to be calculated exactly with no error involved. As mentioned
before we had access to the complete set of domain weights for each of the datasets that
we experimented with, thus enabling us to measure the true deviation in precision with
the degree of drift.

Table 3. Precision results deviation from the baseline

Dataset Percentages of Known Items Average
10% 20% 30% 40% 50% 60% 70% 80% 90%

Retail 25% 3.74 6.34 4.62 1.21 6.94 1.57 0.16 0.28 0.00 2.76
Retail 50% 3.38 5.43 3.03 2.82 7.02 1.15 2.02 3.31 0.23 3.16
Retail 90% 2.92 7.34 7.97 5.82 9.91 9.56 10.53 10.59 1.01 7.29
Nasa 25% 1.79 3.42 2.39 0.64 1.30 0.25 0.24 0.00 0.12 1.13
Nasa 50% 2.00 1.95 1.68 2.04 0.50 0.19 0.00 0.24 0.24 0.98
Nasa 90% 1.65 0.27 0.71 1.21 1.73 0.50 1.04 0.24 0.12 0.83
CS 25% 2.85 0.00 0.32 1.78 0.31 0.31 0.00 0.00 0.10 0.63
CS 50% 2.09 0.70 0.32 0.21 0.00 0.31 0.93 0.41 0.51 0.61
CS 90% 6.20 1.19 0.00 0.52 0.94 0.00 0.21 0.21 0.21 1.05

Table 3 shows that for the Retail dataset the deviation in Precision from the baseline
ranged from 0 to 10.59%. In general as the level of sampling increased the error de-
creased. The deviation showed some sensitivity to the degree of variance in the data; as
the drift level increased the deviation tended to increase. However, even at the extreme
drift level of 90%, the deviation was no more than 10%. A similar pattern was observed
for the Nasa and Computer Science datasets although the extent of the decrease in pre-
cision at the higher degrees of drift was on a smaller scale than with the Retail dataset.
These results demonstrate that WeightTransmitter was not overly dependent on which
items were chosen as landmarks, even with data that had a very high degree of variabil-
ity. This is a very desirable feature of a weight estimation mechanism in general and
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in terms of WeightTransmitter it inspires more confidence that the good performance at
the 30% sampling level will generalize to a wide variety of different datasets.

5.3 Rule Evaluation

One of the major premises behind this research was that the true weight of an item is
dependent not just on its individual importance, but also by its interaction with other
items that it co-occurs with. For our premise to be true the rule base should contain
rules of the form X → Y where X is a low weight item based on domain knowledge
whereas Y is a highly rated item on the basis of domain knowledge. If such patterns
occur then they signify that the set X of items appearing in rule antecedents should be
weighted much more heavily than what is suggested on the basis of domain knowledge
alone as such items co-occur strongly with highly weighted items.

The rule base was generated by inputing the top p% of items produced by Weight-
Transmitter to a standard rule generator. The rules generated for each dataset were sub-
jected to a minimum support threshold of 0.03, confidence threshold of 0.75 and a lift
threshold of 1.0. We computed rule interest measures such as Coherence and All Con-
fidence and ranked the rule bases by the Coherence measure. We then analyzed the rule
base to look for patterns of the form X → Y as described above that either support or
refute this premise. The top p parameter was set at 20% for the Retail dataset and at
40% for the rest of the datasets. Figure 5 shows a small sample of 4 rules produced on
the Retail dataset that exhibit this pattern.

541145000000 (Low) → 250000 (High)
210000 (Low) 541145000000 (Low) → 250000 (High)
5400136 (Low) → 541015000000 (High)
540014000000 (Low) → 250000 (High)

Fig. 5. Sample of rules Fig. 6. Sample of WeightTransmitter Model

The presence of such rules validates one of the major premises behind this research.
The rule bases produced from the other 3 datasets also exhibited such patterns but could
not be presented due to the limitations of space. In terms of the Retail environment the
practical value of such rules is that although items such as 541145000000 and 210000
are low profit items they are nevertheless important as the purchase of these items leads
to the purchase of the high profit item, 250000. It is also important to note that the rules
above would not have been generated if the items were weighted merely on the basis of
their domain weights (i.e profit margins) alone as they would have not met the top p%
threshold and would thus not have participated in the rule generation phase. As such,
this represents one of the key contributions of this research.

Rules 1 and 2 in Figure 5 reveal the existence of a clique of 3 items: 541145000000,
210000, and 250000 that interact with each other strongly as shown in Figure 6. In
the WeightTransmitter model item 250000 transmits its high domain weight to both
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items 541145000000 and 210000 in proportions G(3, 1) and G(3, 2) respectively, thus
increasing the domain weights of item 1 ( 541145000000) and item 2 (210000). This
results in transforming these two items into high weight items. At the same time each
of items 1 and 2 transmit their respective domain weights to item 3 in proportion to
G(1, 3) and G(2, 3) thus increasing the weight of item 3. This transmission of weights,
although increasing the weight of item 3 does not have a significant effect as item 3 is
already of high weight.

5.4 Runtime Evaluation

As shown in the previous section the WeightTransmitter model leads to the discovery
of valuable knowledge in the form of patterns that can be exploited in a useful manner.
However, the model does introduce run time overheads in solving a system of linear
equations. As such, our final experiment was to quantify what these overheads were and
to ascertain whether the rule generation run time remained within reasonable bounds.
Table 4 shows the runtime (measured in seconds) for our experiments with 30%, 60%,
and 90% of items used as landmarks, along with the time taken to generate a rule base
on the basis of domain knowledge alone, without the use of the WeightTransmitter
model. In generating the latter rule base we used exactly the same constraints on min-
imum support, Confidence and Lift (with the same top p value) in order to keep the
comparison fair. Table 4 reveals that the run time overhead introduced by WeightTrans-
mitter does remain within reasonable bounds and that such overhead tends to decrease
as a higher rate of landmark sampling is used. The decrease in run time at higher sam-
pling levels is caused by the reduced number of operations required to transform the
initial matrix into row echelon form due to the presence of more known values in the
form of domain weights. The only result that goes against the above trend was with the
Computer Science 2 dataset where the run time actually increased for the generation of
the rule base built with the use of domain knowledge only. This was due to the larger
number of items being returned in the top p list when compared to the list generated by
WeightTransmitter. This resulted in a larger number of itemsets being generated which
in turn resulted in a larger rule base, thus contributing to the increase in run time.

Table 4. Execution Time

Dataset 30% Known Weights 60% Known Weights 90% Known Weights Original Weights
Retail 476 355 234 102
Nasa 56 45 40 14
Nasa Aug 58 48 45 14
Computer Science 48 43 50 45
Computer Science 2 111 108 107 211

6 Conclusions

This research has revealed that weight estimation based on a small set of landmark
weights can be performed accurately through the use of the novel WeightTransmitter
model that we introduced. Furthermore, we showed through a Profit Analysis conducted
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on ground truth data that a substantial percentage of items switched status from the low
or moderate weight categories to the high weight category, thus supporting our premise
that weight assessments on an item should not be made in isolation to other items.

The use of other methods other than simple random sampling to identify landmark
items will be explored in future work. As alternatives to simple random sampling, we
plan to investigate the use of stratified random sampling as well as entropy based meth-
ods to identify influential items that will act as landmarks.
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Abstract. In this study, we research the mechanical correlations among
components of solid oxide fuel cell (SOFC) by analyzing the co-occurrence
of acoustic emission (AE) events which are caused by damage. Then we
propose a novel method for mining patterns from the numerical data such
as AE. The proposed method extracts patterns of two clusters consid-
ering co-occurrence between clusters and similarity within each cluster
at the same time. In addition, we utilize the dendrogram obtained from
hierarchical clustering for reduction of the search space. We applied the
proposed method to AE data, and the damage patterns which represent
the main mechanical correlations were extracted. We can acquire novel
knowledge about damage mechanism of SOFC from the results.

Keywords: clustering, co-occurrence pattern, damage evaluation.

1 Introduction

The fuel cell is regarded as a highly efficient, low-pollution power generation
system that produces electricity by direct chemical reaction. However, a cru-
cial issue in putting SOFCs into practical use is the establishment of a tech-
nique for evaluating the deterioration of SOFCs in the operating environment.
Since SOFCs operate in harsh environments (i.e., high temperature, oxidation
and reduction), the reaction area is decreased by fracture damage, and the cell
performance is reduced as a result[1]. Two of the co-authors have succeeded
in observing mechanical damage to SOFCs using the acoustic emission (AE)
method[2]. Acoustic emission is an elastic wave (i.e., vibration, sound waves, in-
cluding ultrasonic wave) produced by damage, such as cracks in the material, or
by friction between materials. Depending on the “fracture mode” (i.e., opening
or shear), the type of material, the fracture energy, the shear rate, and other
factors, distinct AE wave forms are produced[3,4].

Because AE data is enormous and high dimensional, data mining techniques
have been applied for AE data in order to help SOFC experts discover the type
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and cause of damage. Fukui et al. used kernel self-organizing map (kernel SOM)
to succeed in understanding the overview of damage process visually[5]. Also
Kitagawa et al. used KeyGraph and density estimation combining with kernel
SOM to identify the damage transition and rare essential events[6]. However,
little knowledge about the mechanical correlation of damages has been obtained.

Hence, this paper aims to extract damage patterns which represent major me-
chanical correlation among components in SOFC. For such purpose, this paper
proposes a novel method of co-occurrence pattern extraction against numerical
data such as AE events. The proposed method determines the area (or the com-
ponents) of two co-occurring clusters considering co-occurrence between clusters
and similarity within each clusters. The experiments show that we can acquire
novel knowledge about damage mechanism of SOFC from damage pattern, even
for the SOFC experts.

2 The Proposed Method: Co-occurring Cluster Mining

2.1 Problems of the Conventional Methods

The task to extract co-occurring AE events is equivalent in some part to the well
researched frequent pattern mining. Frequent pattern mining is to extract item
sets appering frequently. An item is mainly symbolic data, however, there are
also methods such as QLIQUE[8] and mining quantative frequent itemsets[9],
which can handle numeric item. In [8] and [9], frequent item sets are extracted
by searching frequent subspace clusters. However, the purpose is different from
our work, because the above works do not search co-occurrence between clusters.

The straightforward approach to extract co-occurrence patterns from numeri-
cal data is first to execute clustering, and then to extract patterns. For example,
Honda and Konishi quantized by SOM the image data of clouds obtained from
the satellite, and then extracted association rules about the climate change[10].
Also, Yairi et al. extracted association rules about anomaly detection after clus-
tering from time series data transmitted by the satellite[11]. After clustering,
the correlation pattern extraction method among clusters are used in these re-
searches, namely, two steps pattern extraction method.

However, the above works do not consider the co-occurrence among clusters
during clustering process. As a result, clusters may contain data points which
are not related to the co-occurrence patterns. To the contrary, clusters may not
contain data points which are related to the co-occurrence patterns. For example,
in SOFC, a glass seal changes its state according to the temperature, and the
feature of caused AE events also changes gradually. We aim to extract a part
of AE events caused by the damage of the glass seal which co-occur with other
components of SOFC.

2.2 The Requirements of a Co-occurrence Pattern

In this section, we define the characteristics of data this work handles, then
define the requirements of the co-occurrence pattern.
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Definition 1 (numerical event sequence). Suppose N numerical data xi =
(xi,1, · · · , xi,v), (i = 1, · · · , N) in v dimensional space are obtained in order
x1, · · · ,xN .

Definition 2 (basket). Suppose an event sequence with numerical value is di-
vided into some sections in time series. Namely, let all data set D is denoted
by D = [x1, · · · ,xi][xi+1, · · · ,xj ] · · · [xk, · · · ,xN ], (i < j < k < N), where
“[·]” refers to a basket.

The baskets are given by a minute, a day and so on, besides the length of baskets
is not always regular. The details about SOFC data is described in section 3.2.

Here, extracted co-occurrence patterns must satisfy the following three re-
quirements:

Requirement 1 (correlation). As for two sets composed of events A,B ⊂ D,
the co-occurring ration of A and B must be high rate.

E.g., Jaccard coefficient, confidence as in association rule, etc.
Requirement 2 (frequency). The number of times of which A and B co-occurs

in the time series are over the certain number of times.
E.g., support, etc.
Requirement 3 (similarity). As for two event sets A and B, events in each

event set is similar each other.
E.g., variance in a cluster, average distance between data points in a cluster,

etc.

Requirements 1 and 2 are derived from the co-occurrence between event sets
(cluster), and requirement 3 is from the clustering of the events.

Definition 3 (co-occurring cluster). If event sets with numerical value A,B ⊂
D satisfy the above three requirements, set A is a co-occurring cluster of B.

Definition 4 (co-occurrence pattern). With co-occurring clustersA andB which
satisfy all three requirements, P (A,B) = {A,B|A ∩ B = ∅} is called a co-
occurrence pattern.

We aim to extract the co-occurrence petterns mentioned above. This paper pro-
poses a novel method of co-occurrence pattern extraction called Co-occurring
Cluster Mining. Note that we do not consider the order of occurrence of AE
events in the same basket. The reason is mentioned in section 3.2.

A conventional frequent pattern means an item set appearing frequently,
whereas co-occurrence pattern means two sets composed of events that co-occur
frequently. Therefore, the proposed method is regarded as a particular kind of
clustering method considered the co-occurrence between clusters, rather than
frequent pattern mining.

2.3 The Objective Function

In this section, the objective function is defined to search co-occurrence pat-
terns. In searching, the most complex problem is to make clusters which satisfy
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the correlation and similarity. We search the pairs of clusters A,B ⊂ D which
maximize the following objective function:

L(A,B) = {f(A,B)}α · {g(A,B)}(1−α), (1)

where the function f(A,B) denotes the pattern correlation. The higher f(A,B)
value is, the more correlative pattern. For example, Jaccard coefficient and con-
fidence as in association rule are used as f(A,B). Jaccard coefficient is used in
case of analyzing the ratio of the co-occurrence of event A and B. While confi-
dence is used to the co-occurrence of event B under the situation that event A
occurred. Note that because requirement 1 denotes the correlation among many
separated baskets, the correlation in the short and sequential period must be
excluded. Therefore, even if events A and B co-occur several times in the same
basket, this is considered only once.

On the other hand, the function g(A,B) denotes the pattern similarity. The
higher g(A,B) value is, the more similar clusters. For example, the distance
between clusters, or the variance within each cluster are used as g(A,B). Note
that some definitions of the distance between clusters does not guarantee the
monotonicity of cluster merge, e.g., centriod and median methods in hierarchical
clustering. Therefore, we should avoid using those distances for g(A,B). If only
the distance between objects can be calculated, the average distance between
objects is used as the variance in a cluster.

Since the co-occurrence patterns must satisfy the requirements of correlation
and similarity at the same time, the objective function is defined as the product
of f(A,B) and g(A,B). Generally speaking, the range of f(A,B) is different
from that of g(A,B). Therefore, by normalizing as f(A,B), g(A,B) ∈ [0, 1],
both requirements of the correlation and similarity can be satisfied equally. The
parameter α ∈ [0, 1] determines whether the correlation or similarity should be
considered strongly. If α is close to 1, the similarity is considered more strongly
than the correlation, and if α is close to 0, and vice versa. By maximizing the
objective function by eq. (1), the co-occurrence patterns are obtained which sat-
isfies the requirements of correlation and similarity. In addition, the requirement
of frequency can be satisfied by extracting patterns which have higher support
value than the pre-defined minimum support.

2.4 The Algorithm

The proposed method searches the pairs of clusters maximizing L(A,B). The
proposed method is based on an aggregative clustering, because of high com-
putational complexity when using partition clustering like k-means. Partition
clustering needs to be executed every time variables in the search are changed,
in order to generate the candidate clusters of A and B. On the contrary, in
aggregative clustering, once the merge process of clustering is obtained, co-
occurrence patterns can be searched on the merge process. However, even in
aggregative clustering, the pair of Seeds(starting point of clustering) is O(N2),
and the expansion from each Seed will be O(N). Therefore, the total compu-
tational complexity is O(N4). For the reduction of search space, we utilize a
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dendrogram from the result of hierarchical clustering and search co-occurrence
patterns on the obtained dendrogram. By using the dendrogram, although the
degree of freedom about the decision of cluster shape decreases, the benefit is a
great reduction of the search space to O((N logN)2).

The algorithm of the proposed method is presented below. Here, assume a
dendrogram by some hierarchical clustering has been obtained in advance.

Co-ocuurring cluster mining algorithm� �
Input: Lmin(A, B), Suppmin(A, B), dendrogram by hierarchical clustering (HC),

baskets of numerical event sequence D = {Objectk}N
k=1.

Output: Co-occurrence patterns {P (A, B)}
1. BEGIN
2. FOR i from 1 to N DO
3. FOR j( �= i) from 1 to N DO
4. Cluster A ← Objecti, Cluster B ← Objectj ;

5. Initialize LBest(A, B) ← 0;

6. WHILE (TRUE) DO
7. IF L(A, B) > LBest(A, B) THEN
8. LBest(A, B) ← L(A, B);

9. Cluster ABest ←Cluster A, Cluster BBest ←Cluster B;

10. END IF
11. IF all pairs of clusters satisfying A ∩ B = ∅ have been searched THEN
12. BREAK;

13. END IF
14. Cluster A ← Expand Cluster(A, HC);

15. IF A ∩ B �= ∅ THEN
16. Cluster A ← Objecti, Cluster B ← Expand Cluster(B, HC);

17. END IF
18. END WHILE
19. IF L(A, B)Best > Lmin(A, B) and Supp(A, B) > Suppmin(A, B) THEN
20. Output P (A, B) = {ABest, BBest};
21. END IF
22. END FOR
23. END FOR

24. END

� �
Here, Fig. 1 represents an example of the process of Expand Cluster().

Expand Cluster() moves the current merge state from a certain node to the
upper parent node, all leaf nodes (objects) which are children of this node be-
long to new cluster A. By the expansion of cluster A, label A is given to objects
1 and 6. And A and B co-occur in baskets 1 and 3, namely, a co-occurrence
pattern (A,B) appears twice.

3 Application to AE Data

3.1 Damage Evaluation Test of Fuel Cells

A schematic diagram of the apparatus used to perform the SOFC damage test
is shown in Fig. 2. The test section was initially heated up to 800◦C in order to
melt a soda glass ring and was then gradually decreased to room temperature.
Note that this damage evaluation test was to rupture the cells intentionally
while lowering the temperature. Therefore, the knowledge obtained through this
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Fig. 1. The process of the proposed method. The above shows the dendrogram in the
data space, and the below shows baskets in the time series.

experiment is not directly available to actual running the SOFC. However, it is
sufficient to demonstrate and confirm the reasonableness of the proposed method.
The AE measurement was performed using a wide-band piezoelectric transducer.
The AE transducer was attached to an outer Al2O3 tube away from the heated
section. The sampling rate is 1 MHz, and so the observable maximum frequency
is 500 KHz. Running the SOFC for over 60 hours, 1,429 AE events were extracted
using the burst extraction method[12,5].

Then, the same as the research by Fukui et al.[5], the AE events obtained
from damage evaluation test are transformed into frequency spectrum data by
Fast Fourier Transform (FFT). We obtained 1,429 frequency spectrum data each
of which consists of 3,968 discrete points.

3.2 Division into Basket

Assume that the potential stress in a composite material is released after a
large-energy AE event occurs, i.e., interactions of internal forces are reset. In
this research, the observed AE event sequence was divided into baskets followed
by the research of Kitagawa et al.[6], assuming a sequence until a large-energy
AE event occurs to be a chain of damage progression. These baskets are used in
the proposed method. Note that because the damage process of SOFC is a com-
plicated system, it is difficult to extract co-occurrence patterns considering the
order of occurrence or the time intervals between AE events exactly. Therefore,
we do not consider the order of occurrence of AE events in the same basket, or
the time intervals between AE events.

In this research, the energy threshold is 1, 500mV2, which is also used in the
research[6]. Then the AE event sequence is divided into 123 baskets. Fig. 3 shows
an example of division into baskets.
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Fig. 2. SOFC damage test apparatus

Fig. 3. An example of division into baskets (damage segments)

3.3 Calculation of Distance between AE Events

This work utilizes the result of the research by Fukui et al.[5] obtained by the
kernel SOM. We regard the objects used for hierarchical clustering as the code-
book vector (prototype). The self-organizing map[13] is an unsupervised neural
network and a visualization technique by mapping the high dimensional feature
space into the lower dimensional space (mainly two dimension). Kernel SOM[14]
is the extended method of conventional SOM by improving the ability to express
distribution of data with kernel method, which extends linear analysis method
to non-linear method by mapping higher dimension. According to the earlier re-
search, because the major damage types are already known on the kernel SOM,
we can visually understand damage types with this result. Furthermore, the
number of data points N is replaced to the number of prototypes M(N >> M)
by the quantization of the data space, the computational cost of searching co-
occurring patterns is significantly reduced.

The distance between prototype vectors for the requirement of similarity (re-
quirement 3) can be culculated as follows. Let M neurons of the prototype
vectors be {m1, · · · ,mM}, where mj = (mj,1, · · · ,mj,v). In addition, let the
position of M neurons in the topological layer be rj = (ξj , ηj) : j = 1, · · · ,M .
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The number of neurons and the layout of the topological layer must be pre-
defined, and a regular or hexagonal grid is normally used. Also, let a function
φ : Ω → H maps an original data space Ω to a high dimensional feature space
H. Then the prototype vector mi is calculated by:

mi = γi
∑

n
hc(n),iφ(xn), (2)

where γi = 1/
∑

n hc(n),i refers to the normalization factor. The neighborhood

function hi,j is the Gaussian function: hi,j = exp(−‖ri − rj‖2/2σ2), where σ
refers to the radius which represents the influence range of neighborhood.

Although the mapping function φ(xn) cannot be calculated directlyC a kernel
function can be defined as K(xi,xj) = 〈φ(xi), φ(xj)〉, where 〈, 〉 refers to the
scalar product.

In this research, we use Kullback-Leibler (KL) kernel which was validated
against the waveform data by Ishigaki et al.[15] and Fukui et al.[5].

Finally, the distance between prototype vectors mi and mj is culculated by:

di,j = ‖mi −mj‖2 = γ2
i

∑
k

∑
l

hc(k),ihc(l),iK(xk,xl)

−2γiγj
∑
k

∑
l

hc(k),ihc(l),jK(xk,xl) + γ2
j

∑
k

∑
l

hc(k),jhc(l),jK(xk,xl). (3)

Since batch learning is used for kernel SOM, the neighborhood radius σ gradually
decreases as learning is iterated. In culculating the distance of the codebook
vector from the map obtained after the learning, we cannot decide the value of
σ definitely. Therefore, the optimal neighborhood radius σ∗ used for extraction
of co-occurrence patterns is supposed to maximize the variance of the distances
between the prototype vectors: σ∗ = argmaxσ V (di,j). σ

∗ = 0.1 was linearly
searched at intervals of 0.01. We use this di,j as the distance between individual
events.

3.4 The Design of the Object Function

This paper focuses on the co-occurrence relationship in certain damage period,
namely about two sets of AE events A and B, we aim to extract damages
co-occurring at the high probability. Therefore, we use Jaccard coefficient as
f(A,B):

f(A,B) =
count(A ∩B)

count(A ∪B)
, (4)

where count(A) is the number of baskets where event A appears.
Moreover, we cannot obtain the centroid of clusters but can obtain the dis-

tance between codebook vectors with dave as the average distance among all
pairs of codebook vectors in the cluster. Hence, g(A,B) is:

g(A,B) = 1−
√
daveAdaveB/d2aveALL, (5)
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Table 1. The average values of the objective function of the extracted 100 patterns
in different hierarchical clustering methods; single linkage, complete linkage, group
average, centroid, median, and Ward’s method.

Method Single Complete Average Centroid Median Ward

Average 0.443 0.494 0.482 0.444 0.459 0.487

Table 2. The number of extracted damage patterns. The alphabets of damage types
are listed in Table 3, and the inter-regions damage types are represented with “,”.

Pattern Number Pattern Number Pattern Number

(B)-(B) 2 (D)-(D) 1 (E)-(D),(E) 1
(B)-(C) 3 (D)-(E) 1 (F)-(A),(D) 1
(B)-(D) 2 (E)-(E) 4 (F)-(D),(E) 1
(B)-(E) 2 (E)-(F) 5 (A),(D)-(D),(E) 1
(C)-(C) 1 (E)-(A),(D) 3 (D),(E)-(D),(E) 1

where dave is normalized divided by daveALL of the largest cluster so that
g(A,B) ∈ [0, 1]. To consider the corrrelation and similarity of patterns as equally
as possible, the parameter α in eq. (1) is set to 0.5.

3.5 The Results of Extracted Damage Patterns

The topology of kernel SOM is two dimensional square grid, and the number of
neurons is 15× 15.

First, Table 1 shows the average values of the objective function in different
hierarchical clustering methods. The values are averaged by the extracted 100
patterns when the minimum support is 0.04. The complete linkage method shows
the best result. The following all results are obtained by using the complete
linkage method in the hierarchical clustering.

Next, the representative extracted damage patterns are explained. Two ex-
perts of SOFC of the co-authors interpreted damage patterns. Table 2 shows
the estimated interpretation of extracted damage patterns. As the parameters
of pattern extraction, the minimum object function is 0.47, the minimum sup-
port is 0.04, 29 patterns were extracted. The computational time when using
1429 individual objects was 888.7 (sec) with Intel Xeon CPU 2.66GHz and 6GB
RAM. While, when using prototypes of the kernel SOM, the computational time
in 225 objects was 25.6 (sec).

In addition, Fig. 4 shows an example of the result of extracted damage pat-
tern on the result of kernel SOM. The correspondence of the regions on the
map to damage types is shown in Table 3. This damage types and frequent pe-
riod are already known by the research of Fukui et al.[5]. Each damage pattern is
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Table 3. The major damage types corresponding to the map in Fig. 4

Region Damage type

(A) squeaking of the members during heating
(B) progression of the initial cracks
(C) squeaking of the members followed by (B)
(D) cracks in the electrolyte
(E) cracks in the glass seal
(F) cracks in and exfoliation of the electrode

distinguished by using different colors, and the typical waveforms and spectra of
the damage type are shown.

Valid results based on the knowledge of SOFC experts: Damagepattern1
is a co-occurring pattern of (B) the progression of the initial cracks and (D)
cracks in the electrolyte. In pattern 1, AE events on the top of map are a part
of (B) of which these AE events occur in the latter period. Therefore, damage
pattern 1 is interpreted that the progression of the initial cracks causes cracks
in the electrolyte. According to table 2, we can know that progression of the
initial cracks co-occurs with various damages. So we estimate that progression
of the initial cracks is the starting points of various damages.

Next, damage pattern 2 is the co-occurring patterns of the cracks in
the glass seal and cracks in and exfoliation of the electrode. Especially, the
damage type which influences cracks in and exfoliation of the electrode are
cracks in the glass seal which occurs in the latter period of cracks of the glass
seal. The glass seal changes its state by the temperature, and in the period
mentioned above, the temperature is decreasing and glass seal is congealed at
the temperature of damage pattern 2. The glass seal and the electrode are not
connected directly, but it is supposed that the shrinking and transformation
of the cell due to the congelation of the glass seal produces the indirect
mechanical effect.

Novel results: According to Table 2, no damage patterns which include both
regions (D) and (F) are extracted. In spite of the fact that the electrolyte
and the electrode are connected, damage patterns which include them were
not extracted at all. This result was interesting to SOFC experts.

Next, since damage pattern 3 exists in the inter-regions, damage pattern
3 may contain novel damage types. Since these damages cause AE events
contain high peaks in the low frequency of the spectrum, the damages be-
tween regions (A) and (D) are estimated as the exfoliation of the electrolyte,
and the damages between regions (D) and (E) are estimated as the exfoli-
ation of the electrolyte or the glass seal. Damages of pattern 3 have never
discovered from the earlier research based only on the occurrence frequency
of each AE event. Taking the co-occurrence relationship of AE events into
consideration, damage pattern 3 is discovered for the first time.
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Fig. 4. An example of extracted damage patterns. The central map is the classification
result by the kernel SOM.

4 Conclusion

In this paper, we proposed the novel extraction method of co-occurrence patterns
against numerical data: Co-occurring Cluster Mining. The proposed method de-
termines the area (or the components) of two co-occurring clusters considering
co-occurrence between clusters and simultaneously similarity in each cluster. We
applied the proposed method for AE events obtained from damage evaluation
test of SOFC. As a result, damage patterns which demonstrate major mechanical
correlations of SOFC were extracted, including unexpected but valuable damage
patterns.

Furthermore, we will apply the proposed method for various numerical data
such as earthquake wave or the track of point on dynamic image, and demon-
strate the general-purpose of the proposed method.
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Abstract. During the last years, many works focused on the exploitation of rare
patterns. In fact, these patterns allow conveying knowledge on unexpected events.
Nevertheless, a main problem is related to their very high number and to the low
quality of several mined rare patterns. In order to overcome these limits, we pro-
pose to integrate the correlation measure bond aiming at only mining the set of
rare correlated patterns. A characterization of the resulting set is then detailed,
based on the study of constraints of different natures induced by the rarity and the
correlation. In addition, based on the equivalence classes associated to a closure
operator dedicated to the bond measure, we propose a new exact concise repre-
sentation of rare correlated patterns. We then design the new RCPRMINER algo-
rithm allowing an efficient extraction of the proposed representation. The carried
out experimental studies prove the compactness rate offered by our approach. We
also design an association rules based classifier and we prove its effectiveness in
the context of intrusion detection.

Keywords: Concise representation, Constraint, Rarity, Correlation, Closure op-
erator, Equivalence class.

1 Introduction and Motivations

Recently, rare pattern mining has been proved to be of actual added value in many appli-
cation fields such as the intrusion detection, the analysis of criminal data, the pharma-
covigilance, etc. [7]. In fact, rare patterns can identify unexpected events or exceptions
[15], since they have a very low frequency in the data base. In practice, the exploitation
of rare patterns is hampered by the high number and the low quality of the extracted
rare patterns. Thus, an extracted rare pattern may not represent any useful information
whenever it is composed only by items among which there is no semantic link. In this
situation, integrating correlation measures would be of benefit by only mining Rare cor-
related patterns. These latter patterns offer a strong semantic link among their items.
Indeed, an interesting rare pattern is that which appears a very small number of times
in the database but has items that are strongly linked w.r.t. a correlation metric.

In this paper, we focus on the extraction of an exact concise representation of rare
correlated patterns w.r.t. to the bond correlation measure [10]. This measure is redefined
in this work as the ratio between the conjunctive support of a pattern and its disjunctive
support. Indeed, although used in many works under various names like extended Jac-
card measure, coherence, Tanimoto coefficient, the link between the expression of this
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measure and the disjunctive support in the denominator part has never been established
in the literature. Our choice of this measure is motivated by the theoretical framework
presented in [10,14], in addition to the structural study that was done in [12]. Further-
more, it has been proved in [14] that the bond measure fulfills the theoretical properties
that any measure of quality dedicated to rare association rule should have. Moreover,
the authors in [12] proposed a generic approach for correlated patterns mining based
on the bond measure. Note, however, that the study of rare correlated patterns was not
previously carried out in the literature.

From the computational point of view, the integration of the bond measure within the
mining process of rare patterns is a very challenging task. Indeed, the correlated patterns
associated to the bond measure verify an anti-monotone constraint and then induce an
order ideal [5] in the pattern lattice. In opposition to this, rare patterns form an order
filter [5] in the pattern lattice since they fulfill a monotone constraint. Therefore, the set
of rare correlated patterns result from the intersection of two theories [9] induced by
the constraints of correlation and rarity. The set of rare correlated patterns is then more
complicated to be mined than any set of patterns induced by one or more constraints of
the same nature [4]. We thus provide in this paper a thorough characterization of this
set of patterns based on the notion of equivalence class. In our case, equivalence classes
are induced by the closure operator associated to the bond measure.

To the best of our knowledge, there is no previous study in the literature that has been
dedicated to the extraction of a concise representation of patterns fulfilling both the
rarity and the correlation constraints. Worth of mention that the new proposed approach
is generic and can then be applied to any set of rare correlated pattern according to any
correlation measure which shares the same structural properties as the bond measure,
e.g., the all-confidence measure [10].1

The remainder of the paper is organized as follows: Section 2 presents basic notions
used throughout this work. In Section 3, we characterize the set of all rare correlated pat-
terns by studying the associated constraints. We also introduce the associated new exact
concise representation. Section 4 is dedicated to the description of the RCPRMINER

algorithm allowing the extraction of the proposed representation. The empirical stud-
ies are provided in Section 5. Section 6 illustrates the application of our approach in
intrusion detection. The conclusion and perspectives are sketched in Section 7.

2 Basic Notions

We start by presenting the key notions related to our work. We first define a dataset.

Definition 1. (Dataset) A dataset is a tripletD = (T , I,R) where T and I are, respec-
tively, a finite set of transactions and items, andR⊆ T ×I is a binary relation between
the transaction set and the item set. A couple (t, i) ∈ R denotes that the transaction t
∈ T contains the item i ∈ I.
In this work, we are mainly interested in itemsets as a class of patterns. The two main
kinds of support a pattern can have are defined as follows, for any non-empty pattern I:
- Conjunctive support: Supp(∧I ) = | {t ∈ T | (∀ i ∈ I, (t, i) ∈ R)} |
- Disjunctive support: Supp(∨I ) = | {t ∈ T | (∃ i ∈ I, (t, i) ∈ R)} |

1 Mathematically equivalent to the h-confidence measure [16].
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Table 1. An example of a dataset

A B C D E

1 × × ×
2 × × ×
3 × × × ×
4 × ×
5 × × × ×

Example 1. Let us consider the dataset given by Table 1. We have Supp(∧AD) = |{1}|
= 1 and Supp(∨AD) = |{ 1, 3, 5}| = 3.2

We distinguish, given a minimum support threshold [1], between frequent and rare
patterns. These latter patterns are defined as follows.

Definition 2. (Rare patterns) The set of rare patterns is defined by: RP = {I ⊆ I|
Supp(∧I ) < minsupp}.

Among the elements of RP , we distinguish the smallest rare patterns according to set-
inclusion relation. These patterns constitute the setMinRP defined as follows:

Definition 3. (Minimal rare patterns) The MinRP set of minimal rare pattern is
composed by rare patterns having no rare proper subset. It is equal to: MinRP = {I
∈ RP| ∀ I1 ⊂ I: I1 /∈ RP}.

Example 2. Let us consider the dataset given by Table 1 for minsupp = 4. We have, for
example, the pattern BC ∈ RP since Supp(∧BC) = 3 < 4. We also have the pattern BC
∈MinRP since Supp(∧BC) = 3 < 4 and, on the other hand, Supp(∧B) = Supp(∧C) =
4. In this case,MinRP = {A, D, BC, CE}.

In the following, we define monotone and anti-monotone constraints [4,11].

Definition 4. (Monotone/Anti-Monotone constraint) Let Q be a constraint,
• Q is anti-monotone if ∀ I ⊆ I, ∀ I1 ⊆ I: I fulfills Q⇒ I1 fulfills Q
• Q is monotone if ∀ I ⊆ I, ∀ I1 ⊇ I: I fulfills Q⇒ I1 fulfills Q

The constraint of rarity is a monotone constraint, i.e., ∀ I , I1 ⊆ I, if I1 ⊇ I and
Supp(∧I ) < minsupp, then Supp(∧I1) < minsupp since Supp(∧I1) ≤ Supp(∧I ). Thus,
it induces an order filter [5] on the set of all the subsets of I, P (I). Worth of mention
that the frequency constraint induces an order ideal [5].

Definition 6 presents the set of correlated patterns according to the bond measure
[10] which is redefined here as given in Definition 5.
Definition 5. (The bond measure) The bond measure of a non-empty pattern I ⊆ I is
defined as follows:

bond(I) = Supp( ∧ I)
Supp( ∨ I)

Definition 6. (Correlated patterns) Considering a minimum correlation threshold min-
bond, the set CP of correlated patterns is equal to: CP = {I ⊆ I | bond(I )≥minbond}.

2 We use a separator-free form for the sets, e.g., AD stands for the set of items {A, D}.
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The constraint of correlation is an anti-monotone constraint, i.e., ∀ I , I1 ⊆ I, if I1
⊆ I , then bond(I1) ≥ bond(I ). Therefore, the set CP of correlated patterns forms an
order ideal [5] on P (I).

In the following, we will need the set composed by the maximal correlated patterns
which constitute the positive border of correlated patterns. This set is defined as follows:

Definition 7. (Maximal correlated patterns) The set of maximal correlated patterns,
denotedMaxCP , is composed by correlated patterns having no correlated proper su-
perset, i.e.,MaxCP = {I ∈ CP| ∀ I1 ⊃ I: I1 /∈ CP}.
Example 3. Consider the dataset illustrated by Table 1. For minbond = 0.2, we have

bond(BCE) =
3

5
= 0.6≥ 0.2. Therefore, the pattern BCE is a correlated one. In addition,

whatever the strict superset of BCE, this superset is not correlated. In this case, we have
MaxCP = {ACD, ABCE}.

Now we focus on the closure operator associated to the bond measure.

Definition 8. (The operator fbond) The closure operator fbond: P (I) →P (I) associ-
ated to the bond measure is defined as follows: fbond(I ) = I ∪ {i ∈ I \ I | bond(I ) =
bond(I ∪ {i})}.
The closure of a pattern I by fbond, i.e. fbond(I ), corresponds to the maximal set of
items containing I and sharing the same bond value with I . It can be easily proven that
fbond(I ) is equal to the intersection of its conjunctive closure fc and its disjunctive one
fd. Indeed, according to the framework proposed in [13], bond measure is a condens-
able function based on both preserving functions, namely the conjunctive support and
the disjunctive support.

Example 4. Consider the dataset illustrated by Table 1. For minbond = 0.2, we have
fbond(AB) = ABCE since C and E preserve the bond value of AB.

We focus now on the equivalence classes induced by the fbond closure operator.

Definition 9. (Equivalence class associated to the closure operator fbond) An equiva-
lence class associated to the closure operator fbond is composed by all the patterns
having the same closure by the operator fbond. Let [I] be the equivalence class to
which belongs the pattern I . [I] is formally defined as follows: [I] = {I1| fbond(I )
= fbond(I1)}.
In each class, all the patterns share the same bond value as well as the same conjunctive,
disjunctive, and negative supports. Therefore, all the patterns belonging to the same
class, induced by fbond, appear exactly in the same transactions. Besides, these patterns
characterize the same set of transactions. Indeed, each transaction necessarily contains
a non-empty subset of each pattern of the class.

In the next section, we will carry out a detailed study of the rare correlated patterns.

3 Characterization of the Rare Correlated Patterns

3.1 Definition and Properties

The set of rare correlated patterns is defined as follows:
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Definition 10. (Rare correlated patterns) Considering the support threshold minsupp
and the correlation threshold minbond, the set of rare correlated patterns, denoted
RCP , is equal to:RCP = {I ⊆ I | Supp(∧I ) < minsupp and bond(I ) ≥ minbond}.

Example 5. Consider the dataset illustrated by Table 1. For minsupp = 4 and minbond
= 0.2, the set RCP consists of the following patterns where each triplet represents

the pattern, its conjunctive support value and its bond value: RCP = {(A, 3,
3

3
), (D,

1,
1

1
), (AB, 2,

2

5
), (AC, 3,

3

4
), (AD, 1,

1

3
), (AE, 2,

2

5
), (BC, 3,

3

5
), (CD, 1,

1

4
), (CE,

3,
3

5
), (ABC, 2,

2

5
), (ABE, 2,

2

5
), (ACD, 1,

1

4
), (ACE, 2,

2

5
), (BCE, 3,

3

5
), (ABCE, 2,

2

5
)}. This set is depicted by Figure 1. The support shown at the top left of each frame

represents the conjunctive support. As shown in Figure 1, the rare correlated patterns
are then localized below the border shown in red of the anti-monotone constraint of
correlation, composed by the elements ofMaxCP , and over the border shown in black
of the monotone constraint of rarity, composed by the elements ofMinRP .
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Fig. 1. Localization of the rare correlated patterns for minsupp = 4 and minbond = 0.2

Therefore, the localization of the rare correlated patterns is much more complex than
the localization of theories corresponding to constraints of the same nature.

Interestingly enough, the use of bond allows improving the quality of mined patterns
by only retaining those containing strongly correlated items. However, the number of
these patterns is not necessarily reduced which may hamper its practical use. To loss-
lessly reduce such amount of information, we propose to define a new exact concise rep-
resentation of the RCP set. An exact representation of rare correlated patterns should
determine, for an arbitrary pattern, whether it is rare correlated or not. If it is a rare
correlated one, then this representation must allow faithfully deriving the values of its
support and its bond measure. In this respect, the proposed representation in this work
will be shown to be perfect in the sense that its size never exceeds that of the whole set
of rare correlated patterns. It also allows a better exploitation and management of the



66 S. Bouasker, T. Hamrouni, and S. Ben Yahia

extracted knowledge. In addition, since the representation, that we introduce, is lossless,
it allows to derive, whenever of need, the whole set of rare correlated patterns.

The new exact concise representation of rare correlated patterns is based on the
notion of equivalence class. Equivalence classes allow us to only keep track of non-
redundant patterns. Indeed, we retain for each class only the maximal and the minimal
ones. The next subsection details our approach.

3.2 Characterization of the Rare Correlated Equivalence Classes

Based on Definition 9, the elements of the same equivalence class have the same behav-
ior w.r.t. both the correlation and the rarity constraints. In fact, for a correlated equiva-
lence class, i.e. a class which contains correlated patterns, all of them could be rare or
frequent. The application of fbond then provides a more selective process to only ex-
tract representative rare correlated patterns of each class. TheRCP set of rare correlated
patterns is then split into disjoint equivalence classes – the rare correlated equivalence
classes – in which the closed pattern is the largest one w.r.t. the set-inclusion relation.
The smallest, w.r.t. the set-inclusion relation, patterns in a class are the minimal rare
correlated patterns. The set of these particular patterns are formally defined as follows:

Definition 11. (Closed rare correlated patterns) The CRCP set of closed rare corre-
lated patterns is equal to: CRCP = {I ∈ RCP| ∀ I1 ⊃ I: bond(I ) > bond(I1)}.
Definition 12. (Minimal rare correlated patterns) The MRCP set of minimal rare
correlated patterns is equal to:MRCP = {I ∈RCP| ∀ I1 ⊂ I: bond(I ) < bond(I1)}.

{}
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Fig. 2. An example of rare correlated equivalence classes for minsupp = 4 and minbond = 0.2

Example 6. Consider the datasetD illustrated by Table 1. For minsupp = 4 and minbond
= 0.2, Figure 2 shows the rare correlated equivalence classes. We have, the set CRCP
= {A, D, AC, AD, ACD, BCE and ABCE}. Whereas, the setMRCP is equal to:MRCP
= {A, D, AB, AC, AD, AE, BC, CD and CE}. As shown by Figure 2, the patterns A, D, AC
and AD are closed and at the same time minimal. Their equivalence classes then contain
a unique element.
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Before introducing our new concise representation, it is worth mentioning that the no-
tions of closed patterns and minimal generators were also simultaneously used in [8] in
order to offer a lossless concise representation of frequent itemsets. Now, based on the
two previous sets, we define our new exact concise representationRCPR.3

Definition 13. (The RCPR representation) The RCPR representation is equal to:
RCPR = CRCP ∪MRCP .

Example 7. Consider the dataset illustrated by Table 1 for minsupp = 4 and minbond =
0.2. According to the previous example, we have the RCPR representation composed

by: (A, 3,
3

3
), (D, 1,

1

1
), (AB, 2,

2

5
), (AC, 3,

3

4
), (AD, 1,

1

3
), (AE, 2,

2

5
), (BC, 3,

3

5
), (CD,

1,
1

4
), (CE, 3,

3

5
), (ACD, 1,

1

4
), (BCE, 3,

3

5
) and (ABCE, 2,

2

5
).

The following theorem proves that theRCPR representation is a lossless concise rep-
resentation of the RCP set. In this respect, both sets MRCP and CRCP composing
RCPR are required for the exact regeneration of the set RCP . The elements of the
former set are indeed required for ensuring the rarity property of an arbitrary pattern.
While the latter set is used for checking the correlation property and for exactly deriving
its bond and support values.

Theorem 1. TheRCPR representation is an exact concise representation of theRCP
set of rare correlated patterns.

Proof. Let I ⊆ I. We distinguish between three different cases:
a) If I ∈ RCPR, then I is a rare correlated pattern and we have its support and its

bond values in the representation.
b) If � J ∈ RCPR such that J ⊆ I or � Z ∈ RCPR such that I ⊆ Z , then I /∈

RCP since I does not belong to any rare correlated equivalence class.
c) I ∈RCP . Indeed, J and Z exist (otherwise I fulfills the conditions of the case b).

Thus, I is correlated since it is included in a correlated pattern, namely Z . It is also rare
since it contains a rare pattern, namely J . In this case, it is sufficient to localize the fbond
closure of I , say F . The closed pattern F belongs to RCPR since I is rare correlated
and RCPR includes the CRCP set of closed rare correlated patterns. Therefore, F =
min⊆{I1 ∈RCPR| I ⊆ I1}. Since fbond preserves the bond value and the conjunctive
support, we then have: bond(I ) = bond(F ) and Supp(∧I ) = Supp(∧F ). ♦

Example 8. Consider the RCPR representation illustrated by Example 7. Let us con-
sider each case separately. The pattern AD ∈ RCPR. Thus, we have its support equal

to 1 and its bond value equal to
1

3
. Although the pattern BE is included in two patterns

from the RCPR representation, namely BCE and ABCE, BE /∈ RCP since no element
of RCPR is included in BE. Consider now the pattern ABC. There are two patterns of
RCPR which allow determining that the pattern ABC is a rare correlated one, namely
AB and ABCE, since AB ⊆ ABC ⊆ ABCE. The smallest pattern in RCPR which cover

ABC, i.e. its closure, is ABCE. Then, bond(ABC) = bond(ABCE) =
2

5
, and Supp(∧ABC)

= Supp(∧ABCE) = 2.

3 RCPR stands for Rare Correlated Pattern Representation.
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The proof of Theorem 1 clearly highlights that it is straightforward the way queries over
of the proposed representation would be carried out w.r.t. a given arbitrary pattern as
well as the derivation of the whole set of rare correlated patterns. It is also important
to mention that the RCPR representation is a perfect cover of the RCP set, i.e., the
size of RCPR never exceeds that of the RCP set whatever the dataset and the used
minsupp and minbond values. It is in fact always true that (CRCP ∪MRCP ) ⊆RCP .

In the following, we introduce the RCPRMINER algorithm dedicated to the extraction
of theRCPR representation.

4 The RCPRMINER Algorithm

The pseudo-code of RCPRMINER is shown by Algorithm 1. RCPRMINER is a levelwise
algorithm which takes as an input a dataset D, a minimum support threshold minsupp
and a minimum correlation threshold minbond. This algorithm allows the determination
of theMRCP and the CRCP sets which constitute theRCPR representation.

Algorithm 1. RCPRMINER

Data: A dataset D = (T , I,R), minbond, and minsupp.
Results: The exact concise representation RCPR = MRCP ∪ CRCP .
Begin1

RCPR := ∅; Cand0 := {∅};2

/* The first step */3

MaxCP := MAXCP EXTRACTION(D, minbond);4

/* The second step */5

MaxCFP := {X ∈ MaxCP | X .ConjS ≥ minsupp} /* X .ConjS denotes the6

conjunctive support of X */;
MaxRCP := {X ∈ MaxCP | X .ConjS < minsupp} ;7

PCand1 := {i | i ∈ I} /* PCandn stands for Potential Candidates of size n */;8

While (PCandn �= ∅) Do9

/* Pruning of potential candidate patterns */10

Candn := PCandn \ {Xn ∈ PCandn | (∃ Z ∈ MaxCFP: Xn ⊆ Z) or (�11

Z ∈ MaxRCP: Xn ⊆ Z) or (∃ Yn−1 ⊂Xn: Yn−1 /∈ Candn−1)};
/* Determination of the minimal rare correlated patterns of size n and12

computation of their closures */
RCPR := RCPR ∪ MRCP CRCP COMPUTATION(D, Candn, minsupp);13

n := n +1;14

PCandn := APRIORI-GEN(Candn−1) ;15

Return RCPR;16

End17

The RCPRMINER algorithm mainly operates in two steps. The first step consists in
extracting the maximal correlated patterns from the extraction context through the in-
vocation of the dedicated MAXCP EXTRACTION procedure (cf. Line 4). The second
step consists in integrating the constraint of rarity and the obtained maximal correlated
patterns in a mining process of RCPR. In this situation, the set PCandn of poten-
tial candidates of size n is obtained using the classical APRIORI-GEN procedure (cf.
Line 15) from the retained candidates of size (n - 1). Once obtained, the set elements
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of PCandn are pruned (cf. Line 11) using several pruning strategies to yield the set
Candn. The used pruning strategies are as follows:

(i) The pruning of the candidates which are included in a maximal correlated
frequent pattern.

(ii) The pruning of the candidates which are not included in a maximal rare
correlated pattern.

(iii) The pruning based on the order ideal of the minimal correlated patterns.

Recall that the set of minimal correlated patterns induces an order ideal property. There-
fore, every minimal correlated candidate, having a non minimal correlated subset, will
be pruned since it will not be a minimal correlated pattern. In this respect, within the
MRCP CRCP COMPUTATION procedure (cf. Line 13), whose pseudo-code is omitted
here for lack of available space, the minimal rare correlated patterns are determined
among the retained candidates in Candn (cf. Line 11). This is done by comparing their
bond values to those of their respective immediate subsets. Then, minimal rare corre-
lated patterns are inserted into the MRCP set. Their closures are after that computed
according to the fbond closure operator, and then, inserted in the CRCP set. From the
computational point of view, it is important to mention that the localization of the bor-
der composed by the maximal correlated patterns is an NP-hard problem [3]. Therefore,
this task constitutes the most consuming part, w.r.t. execution time, in RCPRMINER.

The next section experimentally studies theRCPR representation compactness.

5 Experimental Results

In this section, our main objective is to show, through extensive experiments, that the
RCPR representation provides interesting compactness rates compared to the whole
set of rare correlated patterns. All experiments were carried out on a PC equipped with
a 2.7 GHz Intel Dual Core processor E5400 and 4 GB of main memory, running the
Linux Ubuntu 10.04. The experiments were carried out on different dense and sparse
benchmark datasets.4 Representative results are plot by Figure 3.

According to the obtained experimental results, interesting reduction rates are ob-
tained whether minsupp varies or minbond varies. TheRCPR representation is indeed
proved to be a perfect cover of theRCP set. In fact, the size ofRCPR is always smaller
than that of RCP set over the entire range of the support and bond thresholds. For ex-
ample, considering the dense MUSHROOM dataset for minsupp = 35% and minbond =
0.15: |RCPR| = 1, 810, while |RCP| = 100, 156. In this situation, RCPR offers a
reduction reaching approximately 98%. These results are obtained thanks to the non-
injectivity of the closure operator fbond which gathers into disjoint subsets, i.e., fbond
equivalence classes, patterns that have the same characteristics. This process avoids
mining redundant patterns. Note that, in this case, |MRCP| = 1, 412 and |CRCP| =
652. Since the RCPR representation corresponds to the union without redundancy of
theMRCP and CRCP , we always have |RCPR| ≤ |MRCP| + |CRCP|.

We present in the following the application of the proposed representation to the
context of intrusion detection.

4 Available at http://fimi.cs.helsinki.fi/data.
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Fig. 3. Evaluation of the RCPR representation size w.r.t. the minsupp and minbond variations

6 Application to Intrusion Detection

We present in this section, the application of the RCPR representation in the design
of an association rules based classifier. In fact, we used the MRCP and the CRCP
sets, composing the RCPR representation, within the generation of the generic rare
correlated rules of the form Min⇒ Closed \Min, with Min ∈MRCP and Closed
∈ CRCP .5 Then, from the generated set of the generic rules, only the classification
rules will be retained, i.e., those having the label of the attack class in its conclusion
part. After that, a dedicated classifier we designed is fed with these rules and has to
perform the classification process and returns the detection rate for each attack class.

We present hereafter the application of our approach on the KDD 99 dataset.

6.1 Description of the KDD 99 Dataset

Each object of the KDD 99 dataset6 represents a connection in the network data flow
and is then labelled either normal or attack. KDD 99 defines 38 attacks categories
partitioned into four Attack classes, which are DOS, PROBE, R2L and U2R, and one
NORMAL class. The KDD 99 dataset contains 4, 940, 190 objects in the learning set
and 41 input attributes for each connection. We propose in this work to consider 10%
of the training set in the construction step of the classifier, containing 494, 019 objects.
The learning set contains 79.20% (respectively, 0.83%, 19.65%, 0.22% and 0.10%) of
DOS (respectively, PROBE, NORMAL, R2L and U2R).

6.2 Summary of Experimentations and Discussion of Obtained Results

Table 2 summarizes the obtained results, where AR and DR, respectively, denote “As-
sociation Rule” and “Detection Rate”,7 while minconf is the minimum threshold of
the confidence measure [1]. In addition, by “Construction step”, we mean that the step
associated to the extraction of the RCPR representation while “Classification step”

5 By “generic”, it is meant that these rules are with minimal premises and maximal conclusions,
w.r.t. set-inclusion.

6 The KDD 99 dataset is available at the following link:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

7 Detection Rate = NbrCcCx
TotalNbrCx

, withNbrCcCx stands for the number of the correctly classified
connections and TotalNbrCx is equal to the whole number of the classified connections.
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represents the step in which the classification association rules are derived starting from
RCPR and applied for detecting intrusions.

We note that the highest value of the detection rate is achieved for the classes NOR-
MAL and DOS. In fact, this is related to the high number of connections of these two
classes. This confirms that our proposed approach presents interesting performances
even when applied to voluminous datasets. We also remark that the detection rate varies
from an attack class to another one. In fact, for the U2R class, this rate is relatively low
when compared to the others classes.

To sum up, according to Table 2, the computational cost varies from one attack class
to another one. It is also worth noting that, for all the classes, the construction step is
much more time-consuming than the classification step. This can be explained by the
fact that the extraction of the RCPR concise representation is an NP-hard problem
since the localization of the associated two borders is a complex task.

Table 2. Evaluation of the rare correlated association rules for the KDD 99 dataset

Attack minsupp minbond minconf # of generic # of generic # of generic CPU Time (in seconds)
class (%) exact approximate ARs of Construction Classification

ARs ARs classification step step
DOS 80 0.95 0.90 4 31 17 120 1
PROBE 60 0.70 0.90 232 561 15 55 1
NORMAL 85 0.95 0.95 0 10 3 393 15
R2L 80 0.90 0.70 2 368 1 1, 729 1
U2R 60 0.75 0.75 106 3 5 32 1

Furthermore, the results shown by Table 3 prove that the proposed rare correlated
association rules are more competitive than the decision trees as well as the Bayesian
networks [2]. In fact, our approach presents better results for the attack classes DOS,
R2L and U2R than these two approaches. For the NORMAL class, the obtained results
using our approach are close to those obtained with the decision trees. The Bayesian
networks based approach presents better detection rate only for the PROBE attack class.
The proposed rare correlated association rules then constitute an efficient classification
tool when applied to the intrusion detection in a computer network.

Table 3. Comparison between the proposed rare correlated association rules based classifier ver-
sus the state of the art approaches

Attack class Rare correlated generic ARs Decision trees [2] Bayesian networks [2]
DOS 98.68 97.24 96.65
PROBE 70.69 77.92 88.33
NORMAL 100.00 99.50 97.68
R2L 81.52 0.52 8.66
U2R 38.46 13.60 11.84

7 Conclusion and Future Works

We proposed in this paper a characterization of theRCP set of rare correlated patterns
and we defined the new exact conciseRCPR representation associated with this set. We
then designed the RCPRMINER algorithm allowing an efficient extraction of this repre-
sentation. The carried out experimental studies highlight interesting compactness rates
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offered by RCPR. The effectiveness of the proposed classification method, based on
generic rare correlated association rules, has also been proved in the context of intrusion
detection. Other avenues of future works concern the extraction of generalized associ-
ation rules starting from rare correlated patterns and their use in real-life applications.
In addition, we plan to extend our approach to other correlation measures [6,10,12,14]
through classifying them into classes of measures sharing the same properties.
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Abstract. This research is the first exploration on modeling life activity
of news event on Twitter. We consider a news event as a natural life form,
and use an energy function to evaluate its activity. A news event on
Twitter becomes more active with a burst of tweets discussing it, and it
fades away with time. These changes of the activity are well captured by
the energy function. Then, we incorporate this energy function into the
traditional single-pass clustering algorithm, and propose a more adaptive
on-line news event detection method. A corpus of tweets which discuss
news events was analyzed using our method. Experimental results show
that our method not only compares favorably to those of other methods
in official TDT measures like precision, recall etc., but also has better
time and memory performance, which makes it more suitable for a real
system.

Keywords: life activity modeling, energy function, Twitter, news event
detection, single-pass clustering.

1 Introduction

Twitter is a very popular micro-blogging and social-networking service. More
than 160 million users around the world are using it to remain socially connected
to their friends, family members and co-workers[3]. It allows users to use a short
text within a limit of 140 characters as their posts (also called tweets) through
many ways, including the mobile phone, the Web and text messaging tools[1]
and so on. Twitter also employs a social-networking model called ”following”[4],
in which the user is allowed to follow any other users she wants to, without any
permission or reciprocating by following her back. The one she follows is her
friend, and she is the follower. Being a follower on Twitter means she receives
all the updates from her friends[2].

More than a micro-blogging and social-networking service, Twitter is also
like a news media. Many news outlets have accounts on Twitter, such as ABC,
CNN, and New York Times. They use their accounts to report news, while many
other users follow these accounts to subscribe news coverage. Up to now, New
York Times has already have about 3 million followers. This news reporting and
reading application is so popular on Twitter, because the short text makes the
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news easier to read, and the social-networking functionality makes it faster to
diffuse and also provides a good interaction between users.

Unfortunately, Twitter grows too fast. The number of tweets per day is over
200 million. How to obtain the desired news information among the huge mass
of tweets becomes a problem. Therefore, a real-time on-line news event detection
system of Twitter is necessary. Usually, traditional single-pass algorithm[21] is
used to handle this problem. However, there is an ambiguous place of the tradi-
tional single-pass algorithm. This algorithm clusters tweets into different clusters
as different news events. But, it does not point out when to drop a news event
out of the system memory, as there is no news tweet any more. And, this may
cause it time consuming and memory exhausting for a real system.

In this paper, we implement the traditional single-pass clustering algorithm
by modeling the life activity of news event. First, we use an energy function to
model the life activity of a news event. We consider a news event on Twitter
as a natural life. For a natural life, it eats different food containing different
energy. It absorbs the energy by a certain transform ratio. Then, it grows old
with time. Similarly, the tweet is food to a news event on Twitter. So the energy
of a single tweet, an energy transferred factor and an energy decayed factor
are introduced and integrated together as an energy function. The value of the
energy function indicates the activity of a news event.

Then, we incorporate the energy function into the traditional single-pass algo-
rithm. The threshold of the traditional single-pass algorithm is a constant. But,
we use a variable to replace it. This variable threshold changes with the activity.
We also add a time window to determine when a news event should be dropped
out of the system memory. This time window changes with the activity of the
news event, too.

The rest of this paper is organized as follows: In section 2, we give a review of
related works. In Section 3, we describe the concepts and details of the energy
function. Then, we incorporate it into the traditional single-pass clustering al-
gorithm in Section 4. Section 5 reports the experiments and Section 6 concludes
this paper.

2 Related Work

What is Twitter? Kwak, et al.[2] point out that Twitter is not only a social
network, but something more akin to traditional news media. In its follower-
following topology analysis, [2] has found a non-power-law follower distribution,
a short effective diameter, and low reciprocity, which all mark a deviation from
known characteristics of human social networks[10]. Actually, over 85% of trend-
ing topics on Twitter are headline or persistent news in nature. Java, et al. also
give six main user intentions on Twitter in [11], and reporting news is one of
them.

Now, reporting and reading news is one of the most important application
on Twitter. As enormous amount of tweets are generated by the users every-
day, it is necessary to detect and track news event automatically. Detecting and
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Tracking new event was discussed in the project called Topic Detection and
Tracking(TDT), which is a DARPA-sponsored activity to detect and track news
events from streams of broadcast news stories.In general, clustering techniques
are the major methods of TDT. Salton in [9] introduced hierarchical agglomer-
ative clustering(HAC) method, and Yang, et al.[6] speed up the HAC by using
the technique of bucketing and re-clustering. However, HAC is not very suitable
for the time-ordered data collection. The other clustering method is single-pass
clustering[21,5], which processes the input documents iteratively and chronologi-
cally. Ron and James discuss the implementation and evaluation of a on-line new
event detection and tracking system using the single-pass clustering algorithm
in [20]. They proposed a threshold model, which regarded exploiting temporal
information would lead to improve the performance.

Besides, Chen, et al. proposed an aging theory to model life cycle of news
events in order to improve the traditional single-pass clustering algorithm in [7].
This work is close to ours. However, we go much further. First, we clearly defined
an energy function to evaluate the activity of a news event and give a iterative
algorithm to solve the parameters. Second, we use the activity of a news event to
determine the threshold of the single-pass clustering algorithm, and how long a
news event should stay in the system memory. Third, [7] divides the news events
into short-term and long-term events, while we treat all news events the same
way. Finally, our work focuses on the stream of tweets instead of traditional news
reports or stories.

With the rise of Twitter, researches of event detection on Twitter have already
attracted some attention. Sakaki, et al. gave a real-time event detection algo-
rithm, which monitors tweets to detect a target event like earthquake in [15]. In
their work, they also found out the tweets of a news event follows an exponential
distribution with time. [22] proposed a topic detection technique that permits
to retrieve in real-time the most emergent topics. [23] introduced a method to
collect, group, rank and track breaking news on Twitter, and developed an ap-
plication called ”Hotstream”.

Another issue worthwhile to note is that the tweets are much shorter and
noisier. The tweets stream is mixed by News events, Conversations[12], work
communication[13], business information[14] and so on. [8] made an attempt to
select the tweets that discussed news events only.

3 Modeling Life Activity Using Energy Function

In this section, the details of the energy function are described. We consider a
news event on Twitter as a natural life form. To track its life activity, we use
the concept of energy function. Like the endogenous fitness of an artificial life
agent[16], the value of the energy function indicates the activity of a news event.

3.1 Definition of Energy Function

A news event on Twitter becomes popular with a burst of tweets discussing it
and it fades away with time. A tweet discussed a news event is called news
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tweet. A news tweet to a news event is like food to a natural life. It provides
energy to the news event by a certain transform ratio. However, the life energy
of the news event also diminishes with time as the same as natural life grows
old. Figure 1 shows this life process.

Fig. 1. Life process of a news event on Twitter

α is energy transferred factor, and β is energy decayed factor. Energy
of a single news tweet is denoted by itemEng. Then we divide the whole life
span(the time span from the first news tweet to the last one) of a news event into
several successive and equal sized time slice. In time slice t, Et represents the net
energy that a news event obtains, including the energy absorb from news tweets
and the energy lost with time in this time slice. A news tweet is denoted as d,
and the news tweet set in this time slice is denoted as Dt. So, the net energy in
this time slice t is defined as follows:

Et =
∑
d∈Dt

(α · itemEng(d))− β (1)

The total energy of a news event at the nth time slice is the sum of the net
energy of all time slices before, so the Energy Function is:

E(n) =
n∑

t=1

Et =
n∑

t=1

(
∑
d∈Dt

(α · itemEng(d))− β) (2)

The value of E(n) just indicates the activity of a news event at the nth time
slice. It is easy to see E(0) = 0. If the news event has N time slices in total,
another constraint of the energy function is:

E(N + 1) = 0 (3)

The meaning of Equation 3 is also obviously. When the news event is over, its
energy value should turn to 0 again.
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From Equation 2, when a burst tweets discuss a news event, the energy value
increases, and the news event becomes more active. As time goes by, less and
less tweets discuss the news event, the decayed factor β plays a more effective
role, the energy value decreases, and the news event becomes less and less active.

3.2 Energy of A Single Tweet

As mentioned above, a news tweet to a news event is like food to natural life.
Different food contains different nutrition. Similarly, different news tweets also
contain different energy. The news tweet posted by more influential user will get
more attention. If more users can read the news tweet, the news event will have
more chance to become popular. It means a news tweet from a more influential
user contains more energy.

As a social-networking service, the relationships between users construct a
directed map, all users are the nodes of this graph. Researches[17,18,19] have
already studied on how to measure the influence of a node in the directed graph
or a person in a social network. One simple method of measuring the influence
of users on Twitter is the In-degree method in[4], it measures the influence of a
user by the number of her followers. This measurement currently also employed
by Twitter and many other third-party services, such as twitterholic.com and
wefollow.com.

Therefore, we also choose this measurement. f denotes the number of followers
of a Twitter user, fmax denotes the maximum number of followers that a user
has in our dataset. As a result, the influence of a Twitter user is defined as:

ifuser(f) =
log (f)

log (fmax)
(4)

It is obvious that 0 ≤ ifuser ≤ 1.
The energy value of a single news tweet is denoted by (itemEng), which has

already shown up in Equation 1 and 2. It is defined as:

itemEng(d) = λ1 + λ2 · ifuser (5)

where, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, and λ1 + λ2 = 1.

3.3 Constant Growth and Decay

One particular case of the life cycle of a news event is constant growth and decay,
which means, no matter how active the news event is, the energy transform ratio
and the loss of energy are the same. In another word, the transferred factor α
and the decay factor β are both constants. As a result, the energy function of
Equation 2 can be reduced to a simpler form as:

E(n) =

n∑
t=1

Et = α

n∑
t=1

∑
d∈Dt

itemEng(d)− nβ (6)
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There are two parameters α and β in Equation 6. We need two equations to
solve them. Therefore, we let t1, t2 be two different time slices in the life span
of a news event, and s1, s2 be the life energy at respective time slice. Then, we
have: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E(t1) =

t1∑
t=1

Et = α

t1∑
t=1

∑
d∈Dt

itemEng(d)− t1β = s1

E(t2) =

t2∑
t=1

Et = α

t2∑
t=1

∑
d∈Dt

itemEng(d)− t2β = s2

(7)

let

y(n) =

n∑
t=1

∑
d∈Dt

itemEng(d) (8)

where y(n) means the total energy the news tweets provide to the news event
till nth time slice.

Then, solve Equation 7, we get α and β as follows:

α =
s1 · t2 − s2 · t1

t2 · y(t1)− t1 · y(t2)
(9)

and

β =
s1 · y(t2)− s2 · y(t1)
t2 · y(t1)− t1 · y(t2)

(10)

4 Single-Pass Clustering with Energy Function

If news events were to be sought from a time-ordered static collection, one solu-
tion would be to use document clustering techniques[9,6] to cluster the collection,
and then to return the document from each cluster containing the earliest times-
tamp. However, we are interested in the strict on-line data, which has real-time
constraints and imposes a single-pass restriction over the incoming data stream
of tweets. The traditional single-pass clustering algorithm for news event detec-
tion on Twitter, is described as follows:

1. Build a term vector representation for the tweets and news events. The term
vector of a news event is represented by the geometric center of all term
vectors of its news tweets.

2. Compare a new tweet against the previous news events in memory.

3. If the tweet does not trigger any previous news events by exceeding a thresh-
old, flag the tweet as containing a new event, and add the news event into
the memory.

4. If the tweet triggers an existing news event, flag the tweet to this news event,
and update the term vector of the news event by recomputing the geometric
center.



Life Activity Modeling of News Event on Twitter Using Energy Function 79

There are two shortcomings of the traditional single-pass clustering algorithm.
First, the threshold of single-pass clustering method is a constant, which is not
very reasonable. When a news event is hot and its energy value is high, there are
a lot discussions on Twitter. Therefore, the threshold should turn smaller. So
that, tweets about the same news event with different contents can be clustered
into one news event. When the news event is dying, the news tweet is few. The
threshold should turn bigger, in case of other news tweets are clustered in this
news event.

Second, the traditional single-pass clustering algorithm does not mention how
long a news event should stay in the memory. It wastes the system memory and
also increases the time cost. Because, a new tweet still need to be compared to
the dead news event, and it even has a small chance to be flagged to the dead
news event. In a word, this shortcoming could reduce the performance of a real
system in all aspects.

We modify the traditional single-pass clustering algorithm with energy func-
tion to conquer the two problems described above. For the first one, we make
the threshold denoted by θ a variable, which changes with the energy value as
follows:

θ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θmax, E > E2

θmax − θmin

E2 − E1
× E +

θmin × E2 − θmax × E1

E2 − E1
, E1 ≤ E ≤ E2

θmin, E < E1

(11)

E represents the energy value of a news event. θ changes linearly with E. And it
has an upper bound θmax and a lower bound θmin, when E reaches E2 and E1.

For the second one, we check the time of the last tweet of every news event in
the memory periodically. At the check point, the time is T , and the time of the
last tweet of a news event ei is Ti. A time window W is given. If T − Ti > W ,
ei should be dropped out of the memory. This time window is also change with
the energy value computed by the energy function as follows:

W =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wmax, E > E2

wmax − wmin

E2 − E1
× E +

wmin × E2 − wmax × E1

E2 − E1
, E1 ≤ E ≤ E2

wmin, E < E1

(12)

wmax and wmin are the upper bound and lower bound of W , respectively.

5 Experiments and Evaluation

Before experiments and evaluation, we give a brief description of the dataset for
this research work. Then, we solve the energy transferred factor α and decayed
factor β of the energy function of our dataset. Finally, our news event detection
method is compared with others.
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5.1 Data Preparation

For the purpose of this research work, we crawled 900 headlines of news reports
from November 2, 2010 to January 10, 2011 through the RSS(Really Simple
Syndication) of the Associated Press website1. For each news report, we crawled
the tweets which matches all the words in the headline. Because all the news
reports are published by one news outlet, they seldom talk about the same news
event. We suppose that each news report represents an independent news event.
Besides, there were other tweets we did not crawl also discussed the news event,
only because they did not match all the words in the headlins of news report.
However, the tweets we crawled can be regarded as a sample of the whole news
tweets set. In this dataset, there are more than 400 thousand tweets in total,
and these tweets were posted by more than 130 thousands users.

Then we divided the dataset into two sets. One is training set, which is used
to train the energy transferred factor α, decayed Factor β, and threshold for
the single-pass clustering algorithm. We randomly chose 259 news events as the
training set. The rest 641 news events constitute the testing set, which is used
for evaluation and comparison.

5.2 Training Energy Transferred Factor and Decayed Factor

In this subsection, an iterative algorithm is proposed to solve the energy trans-
ferred factor α and decayed factor β. Before that, one more point to add is the
maximum energy value of each news event, which will be used to solve the energy
transferred and decayed factors. We suppose the maximum energy of every news
event is proportional to the its activity. As a result, for news events e1 and e2,
they have c1 and c2 news tweets, their whole life span are l1 and l2 hours, and
their maximum energy values are max(e1) and max(e2), the assumption can be
expressed as:

max(e1)

c1/l1
μ =

max(e2)

c2/l2
μ (13)

where, 0 < μ < 1. If μ = 1, c1/l1
μ = c1/l1 is the average activity of news event

e1; If μ = 0, c1/l1
μ = c1 is the total activity. So, when 0 < μ < 1, it can be

regarded as the mixture of the average and the total activity. In our experiment,
μ is set to 0.6.

Therefore, in the training set, if we set the maximum energy value of the news
event emax to 1.0, for other news event e, the maximum energy value is:

max(e) =
ce

cemax

× (
lemax

le
)μ (14)

The iterative algorithm to solve the energy transferred factor α and energy
decayed factor β are described as follows:

1 http://hosted.ap.org/lineups/TOPHEADS-rss 2.0.xml?SITE=
ILMOL&SECTION=HOME
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1. compute the maximum energy value max(e) of every news event e in the
training set by Equation 14.

2. compute the energy of every tweet in the training set by Equation 5, where
λ1 and λ2 are set to 0.3 and 0.7, empirically.

3. for every news event e in the training set:
(a) initialize t1 = 0.3le, s1 = 0.7max(e), t2 = N + 1, s2 = 0.0, tmax = 0
(b) repeat (c)(d)(e), until tmax does not change any more
(c) compute α and β by Equation 8, 9, 10
(d) find the maximum energy value and the time slice tmax using α and β

above by Equation 2
(e) reset t1 = tmax, s1 = max(e), t2 = N + 1, s2 = 0.0

4. compute the average value of all α and β of all news event in the training
set as the final results.

The final results are: α = 0.00110091, β = 0.00654238. We also give all results
of α and β for all news events in the training set in Figure 2.

Fig. 2. Energy decayed factor vs. energy transferred factor

It is clear to see that there is a obvious linear correlation between the energy
transferred factor and decayed factor. The main reason may be that all news
events follow almost the same tweets distribution with time. [15] considered this
distribution is an exponential distribution. So, using the average value of all
energy transferred factors and decayed factors as the final results is appropriate.

5.3 News Event Detection Comparisons

In this experiment, our method(A) is compared to two other methods. The
baseline method(B) is the traditional single-pass algorithm. The other is a fixed
time-window single-pass clustering method(W). This fixed time-window method
is a traditional single-pass clustering method added with a fixed time window
Wfixed. In this method, it also check the news event in the memory periodically.
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If there is no new web document for a news event more than Wfixed time, this
simple modified method will consider the news event is over, and delete it from
memory.

All the three methods group the tweets in the test set into several clusters.
Five official TDT measures[5] including: precision(p), recall(r), miss(m), false
alarm(f ) and F1-measure(F1 ) are used to evaluate the results of these three
methods.

Table 1 shows the results. W4, W8, W12 are the fixed-time-window method
with a fixed time window of 4, 8, 12 hours. In our method, the Wmin and Wmax

in Equation 12 are set to 4 and 12 hours. So it is reasonable to compare our
method with W4, W8 and W12.

Table 1. Results of TDT measures

p r m f F1

B 0.877939 0.904714 0.095286 0.000285 0.891125

W4 0.947464 0.499588 0.500412 0.000065 0.654215

W8 0.941955 0.692312 0.307688 0.000096 0.798066

W12 0.932875 0.779466 0.220534 0.000124 0.849298

A 0.914556 0.876216 0.123784 0.000301 0.894976

In Table 1, all fixed time-windowmethods out-performance the baselinemethod
a little in precision. However, their recalls are too low to accept. Thus, the base-
line method has a better F1-measure than all fixed time-windowmethods. For our
method, it achieves both reasonable precision and recall, which results in the best
F1-measure of all methods.

Besides, our method also has acceptable time and memory performance. Fig-
ure 3 shows the time and memory performance of all three methods. The red
lines are our method.

In Figure 3(a) and 3(b), The time cost of the traditional single-pass clustering
method increases as the square of the number of tweets processed, while the fixed
time-window method and our method are increase almost linearly. Our method
is a little slower than the fixed time-window method. Because it needs a few
more computational works of the changing threshold and time window, which is
worthwhile. As there is a big improvement in official TDT measures, especially
in recall.

In Figure 3(c) and 3(d), the memory cost is represented by the number of
clusters in memory. The number of clusters of Traditional single-pass method
increases linearly with the number of tweets processed, while the fixed time-
window method and our method both fluctuate around a small constant.

Generally speaking, our method has the best results in the official TDT mea-
sures and it also has quite acceptable time and memory performance, which
makes it suitable for a real system.
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Fig. 3. Comparison of time and memory cost

6 Conclusions

In this paper, we report a novel news event detection method of Twitter. Ex-
perimental results show that it performances well not only in the official TDT
measures, but also in time and memory cost.

Although the proposed method is quite good for a real system, there are still
two major points needed to be improved. First, the energy transferred factor
and decayed factor could also change with the energy value itself. When the
news event is active, the energy transferred factor could be a little bigger, while
the energy decayed factor could be a little smaller. Second, the user influence,
which measures the energy of a single tweet, could use a more reliable and
effective model. Moreover, our method can also be more generalized in other
time sequential data mining, in the future.
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Abstract. If a friend called you 50 times last month, how many times did you
call him back? Does the answer change if we ask about SMS, or e-mails? We
want to quantify reciprocity between individuals in weighted networks, and we
want to discover whether it depends on their topological features (like degree, or
number of common neighbors). Here we answer these questions, by studying the
call- and SMS records of millions of mobile phone users from a large city, with
more than 0.5 billion phone calls and 60 million SMSs, exchanged over a period
of six months. Our main contributions are: (1) We propose a novel distribution,
the Triple Power Law (3PL), that fits the reciprocity behavior of all 3 datasets
we study, with a better fit than older competitors, (2) 3PL is parsimonious; it has
only three parameters and thus avoids over-fitting, (3) 3PL can spot anomalies,
and we report the most surprising ones, in our real networks, (4) We observe that
the degree of reciprocity between users is correlated with their local topologi-
cal features; reciprocity is higher among mutual users with larger local network
overlap and greater degree similarity.

1 Introduction

One of the important aspects in human relations is the reciprocity, a.k.a. mutuality. Reci-
procity can be defined as the tendency towards forming mutual connections with one
another by returning similar acts, such as email and phone calls. In a highly reciprocal
relationship both parties share equal interest in keeping up their relationship, while in a
relationship with low reciprocity, one person is much more active than the other.

It is important to understand the factors that play role in the formation of reciprocity
as there exists evidence that reciprocal relationships are highly probable to persist in the
future [6]. Also, [18] shows that reciprocity related behaviors provide good features for
ranking and classification based methods for trust prediction. Reciprocity plays other
important roles in social and communication networks. For example, if the network sup-
ports a propagation process, such as spreading of viruses in email networks or spreading
of information and ideas in social networks, then the presence of mutual links clearly
speeds up the propagation. Non-existence of reciprocal links can also reveal unwanted
calls and emails in spam detection.

Despite its importance, reciprocity has remained an under-explored dynamic in net-
works. Most work in network science and social network analysis focus on node level
degree distributions [5,10,14], communities [20,22,19], and triadic relations, such as
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clustering coefficients and triangle closures [12]. The study of dyadic relations [26] and
the related bivariate distributions they introduce is, however, mostly overlooked, and
thus is the focus of this paper. Our motivation is grouped into two topics:

M1. Modeling bivariate distributions in real data: Two vital components of un-
derstanding data at hand are studying the simple distributions in it and visualizing
it [27]. The study of reciprocity introduces bivariate distributions, such as the distri-
bution Pr(wij , wji) of edge weights on mutual edges, where association between two
quantitative variables needs to be explored. A vast majority of existing work focus on
univariate distributions in real data such as power-laws [8], log-normals [4], and most
recently DPLNs [21], however the study of multivariate distributions has limited focus.

In addition, visualization of multivariate data in 2D is hard and often misleading
due to issues regarding over-plotting. More importantly, mere visualization does not
provide a compact data representation as opposed to data modeling. Summarization via
aggregate functions such as the average or the median loses a lot of information and is
also not representative, especially for skewed distributions as found in real data.

Models, on the other hand, provide compact data representations by capturing the
patterns in the data, and are ideal tools for applications like data compression and
anomaly detection.

M2. A weighted approach to reciprocity: Traditional work [11] usually study reci-
procity on directed, unweighted networks as a global feature which is quantified as the
ratio of the number of mutual links pointing in both directions to the total number of
links. Defining reciprocity in such an unweighted fashion, however, prevents under-
standing the degree of reciprocity between mutual dyads. In a weighted network, even
though two nodes might have mutual links between them, the skewness and the magni-
tude of the weights associated with these links would contain more information about
how much reciprocity is really there between these nodes. For example, in a phone call
network the reciprocity between a mutual dyad where the parties make 80%-20% of
their calls respectively is certainly different than that of a mutual dyad with 50%-50%
share of their calls. In short, edge weights are crucial to study reciprocity as a property
of each dyad rather than as a global feature of the entire network and give more insight
into the level of mutuality.

In this paper, we analyze phone call and SMS records of 1.87 million mobile phone
users from a large city collected over six months. The data consists of over half a billion
phone calls and more than 60 million SMSs exchanged. Our contributions are:

1. We observe similar bivariate distributions Pr(wij , wji) of mutual edge weights in
the communication networks we study. We propose the Triple Power Law (3PL)
function to model this observed pattern and show that 3PL fits the real data with
millions of points very well. We statistically demonstrate that 3PL provides better
fits than the well-known Bivariate Pareto and Bivariate Yule distributions. We also
use 3PL to spot anomalies, such as a pair of users with low mutuality where one of
the parties makes 99% of the calls during the entire working hours, non-stop.

2. We use weighted measures of reciprocity in order to quantify the degree of recip-
rocal relations and study the correlations between reciprocity and local topological
features among user pairs. Our results suggest that mutual users with larger local
network overlap and higher degree similarity exhibit greater reciprocity.
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2 Related Work

Bivariate Distributions in Real Data: A vast majority of existing work focus on uni-
variate distributions in real data such as power-laws, Pareto distributions and so on [17].
For example, the degree distribution has been found to obey a power-law in many real
graphs such as the Internet Autonomous Systems graph [10], the WWW link graph [1],
and others [5,7]. Additional power laws seem to govern the popularity of posts in cita-
tion networks, which drops over time, with power law exponent of -1 for paper citations
and -1.5 for blog posts [14].

A recent comprehensive study [8] on power-law distributions in empirical data shows
that while power-laws exist in many graphs, deviations from a pure power-law are also
observed. Those deviations usually appear in the form of exponential cut-offs and log-
normals. Similar deviations were also observed in [2] where the electric power-grid
graph in a specific region in California as well as airport networks were found to exhibit
power-law distributions with exponential cut-offs.

Other deviations from power-laws continue. Discrete Gaussian Exponential (DGX) [4]
was shown to provide good fits to distributions in a variety of real world data sets such
as the Internet click-stream data and usage data from a mobile phone operator. Most re-
cently, [21] studied several phone call networks and proposed a new distribution called
the Double Pareto Log-Normal (DPLN) that was used to separately model the per-user
number of call partners, number of calls and number of minutes. Other related work on
explaining and modeling the behaviour of phone network users include [6,9,16,23].

While univariate distributions are used to model the distribution of a specific quantity
x, for example the number of calls of users, bivariate distributions are used to model the
association and co-variation between two quantitative variables x1 and x2. Association
is based on how two variables simultaneously change together, for example the total
number of calls with respect to the number of call partners of users.

Unlike univariate distributions, the multivariate distributions have mostly been stud-
ied theoretically in mathematics and statistics [3]. On the other hand, analysis of es-
pecially skewed multivariate distributions in real data has attracted much less focus.
Existing work includes [28], which uses the bivariate log-normal distribution to de-
scribe the joint distributions of flood peaks and volumes, as well as flood volumes and
durations. Also, [15] studies the drought in the state of Nebraska and models the du-
ration and severity, proportion and inter-arrival time, and duration and magnitude of
drought with bivariate Pareto distributions.

Reciprocity in Unweighted Networks: Previous studies usually consider reciprocity as
a global metric of a given directed network where reciprocity is quantified as r=L↔

L , the
ratio of the number of mutual links L↔ pointing in both directions to the total number
of links L. By definition, r=1 for a purely bidirectional network (e.g. collaboration
networks) and r=0 for a purely unidirectional network (e.g. citation networks).

There are two issues with this definition. First, it depends on the density of the net-
work; reciprocity is larger in a network with larger link density. Second, this definition
treats the graph as unweighted, and thus fails to quantify the degree of reciprocity be-
tween mutual dyads. [11] combines this classical definition with the network density
into a single measure which tackles the first problem, however the new measure still re-
mains a global, unweighted metric and does not allow to study the degree of reciprocity.



88 L. Akoglu, P.O.S. Vaz de Melo, and C. Faloutsos

3 Data Description

In this work, we study anonymous mobile communication records of millions of users
collected over a period of six months, December 1, 2007 through May 31, 2008. The
data set contains both phone call and SMS interactions.

From the whole six months’ of activity, we build three networks, CALL-N, CALL-
D and SMS, in which nodes represent users and directed edges represent phone call
and SMS interactions between these users. CALL-N is a who-calls-whom network
with edge weights denoting (1) total number of phone calls, CALL-D is the same
who-calls-whom network with edge weights denoting (2) total duration of phone calls
(aggregated in minutes), and SMS is a who-texts-whom network with edge weights
denoting (3) total number of SMSs. Table 1 gives the data statistics. Global unweighted
reciprocity is r=0.84 for CALL, and r=0.24 for SMS.

Table 1. Data statistics. The number of nodes N , the number of directed edges E, and the total
weight W in the mutual and non-mutual CALL and SMS networks.

Network N E WN WD(min) Network N E WSMS

CALL 1,87M 49,50M 483,7M 915x106 SMS 1,87M 8,80M 60,5M
CALL(mutual) 1,75M 41,84M 468,7M 885x106 SMS(mutual) 0,58M 2,10M 46,6M

4 Proposed Model: 3PL

Given a network of users with mutual, weighted edges between them, say CALL-N,
and given two users i and j in the network, is there a relation between the number of
calls i makes to j (wij ) and the number of calls j makes to i (wji)? In this section, we
want to understand the association between the weights on the reciprocal edges in hu-
man communication networks and study their distribution Pr(wij , wji) across mutual
dyads. Since we study the pair-wise joint distribution, the order of the weights do not
matter. Thus, to ease notation, we will denote the smaller of these weights as nST (for
weight from Silent-to-Talkative) and the larger as nTS , and will study Pr(nST , nTS).

Figure 1(top-row) shows the weights nTS versus nST for all the reciprocal edges in
(from left to right) CALL-N, CALL-D, and SMS. Each dot in the plots corresponds
to a pair of mutual edges. Since there could be several pairs with the same (nST , nTS)
weights, the regular scatter plot of the reciprocal edge weights would result in over-
plotting. Therefore, in order to make the densities of the regions clear, we show the
heatmap of the scatter plots where colors represent the magnitude of volume (red means
high volume and blue means low volume).

In Figure 1, we observe that most of the points are concentrated (1) around the origin
and (2) along the diagonal for all three networks. Concentration around the origin, for
example in CALL-N, suggests that the vast majority of people make only a few phone
calls with nST , nTS < 10, and much fewer people make many phone calls, which
points to skewness. In addition, concentration along the diagonal indicates that mutual
people call each other mostly in a balanced fashion with nST ≈ nTS . Notice that
similar arguments hold for CALL-D and SMS.
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Fig. 1. (top-row) Scatter plot heatmaps: total weight nST (Silent to Talkative) vs the reverse,
nTS , in log scales. Visualization by scatter plots suffers from over-plotting. Heatmaps color-code
dense regions but do not have compact representations or formulas. Figures are best viewed in
color; red points represent denser regions. The counts are in log2 scale. (bottom-row) Aggregation
by average: summarization and data aggregation, e.g. averaging, loses a lot of information.

Even though heatmaps reveal similar patterns in all the three networks, mere visual-
ization does not provide compact representations for our data. One way to go around this
issue is to do data summarization. For example, Figure 1(bottom-row) shows how nTS

changes with nST on average. The least square fit of the data points in log-log scales
then provides a mathematical representation of the data. Data summarization by means
of an aggregate function such as the average, however, loses a lot of information about
the actual distribution: in our example, the slope of the least square fit in CALL-N is
close to 1, which suggests that nTS is equal to nST on average, and does not provide
any information for the deviations. This issue arises mostly because aggregation by the
average is not a good representative, especially for skewed distributions.

Given our observation that the distribution of reciprocal edge weights (nST , nTS)
follows a similar pattern across all three networks, how can we model the observed
distributions? Since neither visualization nor aggregation qualify for compact data rep-
resentation, we propose to formulate the distributions with the following bivariate func-
tional form Pr(nST , nTS), which we call the Triple Power-Law (3PL) function.

Proposed Model 1 (Triple Power-Law (3PL)). In human communication networks,
the distribution Pr(nST , nTS) of mutual edge weights nST and nTS (nST being the
smaller) follows a Triple Power-Law in the following form

Pr(nST , nTS ;α, β, γ) ∝ n−α
ST n

−β
TS(nTS − nST + 1)−γ

Z(α, β, γ)
, α > 0, β > 0, γ > 0, and

nTS ≥ nST > 0, Z(α, β, γ) =
∑M

nST =1

∑M
nTS=nST

n−α
ST n

−β
TS(nTS − nST + 1)−γ .

where Z is the normalization constant and M is a very large integer.

Next we elaborate on the intuition behind the exponents α, β and γ.
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Intuition behind the β Exponent: 3PL is the 2D extension of the “rich-get-richer”
phenomenon; people who make many phone calls will continue making even more, and
even longer ones, leading to skewed, power-law-like distributions. The β exponent is
the skewness of the main component, the number nTS of phone-calls from ’talkative’ to
’silent’. High β means more skewed distribution; β=0 is roughly uniform distribution.
As we show in Figure 1, there are many people who make only a few (and short) phone
calls and only a few people who make many (and long) phone calls. Visually, the vast
majority of people who make only a few phone calls are represented with the high
density (dark red) regions around the origin in all three networks.

Intuition behind the α Exponent: Similarly, this indicates the skewness for nST , the
number of silent-to-talkative phone-calls. High value of α means high skewness, while
α close to zero means uniformity. Notice that α ≈ 0 for our real phone-call datasets
(see Figure 2).

Intuition behind the γ Exponent: It captures the skewness in asymmetry. High γ
means that large asymmetries are improbable. This is the case in all our real datasets.
For example, in addition to the origin in Figure 1(a), the regions along the diagonal
also have high densities. These regions correspond to mutual pairs with about equal
interaction in both directions. This suggests that humans tend to reciprocate their com-
munications. 3PL also captures this observation; notice that the probability is higher
for nTS close to nST and drops for larger inequality (nTS−nST ) as a power-law with
exponent γ.

4.1 Comparison of 3PL to Competing Models

In this section, we compare our model with two well-known parametric distributions
for skewed bivariate data, the Bivariate Pareto [13] and the Bivariate Yule [25]. Their
functional forms are given as two alternative competitor models as follows.

Competitor Model 1 (Bivariate Pareto)

fX1,X2(x1, x2) = k(k + 1)(ab)k+1(ax1 + bx2 + ab)−k−2, x1, x2, a, b, k > 0.

Competitor Model 2 (Bivariate Yule)

fX1,X2(x1, x2) =
ρ(2)(x1 + x2)!

(ρ+ 1)(x1+x2+2)
, x1, x2, ρ > 0;α(β) = Γ (α+ β)/Γ (α), α > 0, β ∈ R.

We use maximum likelihood estimation to fit the parameters of each model for each of
our three networks. In Figure 2, we report the best-fit parameters as well as the corre-
sponding data log likelihood scores (the higher, the better). Notice that for CALL-N and
CALL-D the 3PL achieves higher data likelihood than both Bivariate Pareto and Bi-
variate Yule. On the other hand, for SMS, the data likelihood scores of all three models
are about the same; with Bivariate Pareto giving a slightly higher score.

The simple sign of the difference between the log likelihoods (log likelihood ratioR),
however, does not on its own show conclusively that one distribution is better than the
other as it is subject to statistical fluctuation. If its true value over many independent
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data sets drawn from the same distribution is close to zero, then the fluctuations can
easily change its sign and thus the results of the comparison cannot be trusted. In order
to make a firm judgement in favor of 3PL, we need to show that the difference between
the log likelihoods is sufficiently large and that it could not be the result of a chance
fluctuation. To do so, we need to know the standard deviation σ onR, which we estimate
from our data using the method proposed in [24].

CALL-N CALL-D SMS

Triple Power Law (3PL)
α 1e-06 1e-06 0.8120
β 2.0703 1.8670 1.5896
γ 0.8204 0.9650 0.3005
Loglikelihood -7.55e+07 -8.88e+07 -5.41e+06

Bivariate Pareto
k 0.7407 0.7657 0.7862
a 0.2119 0.5723 0.7097
b 10e+05 1.25e+04 0.7553
Loglikelihood -7.77e+07 -9.26e+07 -5.39e+06
z 803.73 975.75 -41.06
p 0 0 0

Bivariate Yule
ρ 1.11e-16 5.55e-17 1e-06
Loglikelihood -8.59e+07 -10.00e+07 -5.41e+06
z 2.14e+03 1.93e+03 1.49
p 0 0 0.03

Fig. 2. Maximum likelihood parameters estimated for
3PL, Bivariate Pareto and the Bivariate Yule and data
log-likelihoods obtained with the best-fit parameters. We
also give the normalized log likelihood ratios z and the
corresponding p-values. A positive (and large) z value in-
dicates that 3PL is favored over the alternative. A small
p-value confirms the significance of the result. Notice that
3PL provides significantly better fits to CALL and is as
good as its competitors for SMS.

In Figure 2, we report the nor-
malized log likelihood ratio de-
noted by z =R/

√
2nσ, where n

is the total number of data points
(number of mutual edge pairs in
our case). A positive z value in-
dicates that the 3PL model is
truly favored over the alterna-
tive. We also show the corre-
sponding p-value, p = erfc(z),
where erfc is the complementary
Gaussian error function. It gives
an estimate of the probability
that we measured a given value
of R when the true value of R
is close to zero (and thus cannot
be trusted). Therefore, a small p
value shows that the value of R
is unlikely to be a chance result
and its sign can be trusted.

Notice that the magnitude of
z for CALL-N and CALL-D is
quite large, which makes the p-
value zero and shows that 3PL is
a significantly better fit for those
data sets. On the other hand, z
is relatively much smaller for
SMS, therefore we conclude
that 3PL provides as good of a
fit as its competitors for this data

set. Note that the number of mutual edge pairs n in SMS (≈1 million) is much smaller
compared to that of the call networks (≈21 million) (Table 1). It is worth emphasizing
that difference, because the bivariate pattern of reciprocity might reveal itself better in
larger data sets, and it would be interesting to see whether 3PL provides a better fit for
SMS when more data samples become available.

Next, we demonstrate also visually that 3PL provides a better fit to the real data
than its competitors. To this end, having estimated the model parameters for all three
models, we generated synthetic data sets with the same number of samples as in each
of our networks. We show the corresponding plots for CALL-N in Figure 3 (a) for real



92 L. Akoglu, P.O.S. Vaz de Melo, and C. Faloutsos

data, and synthetic data generated by (b) 3PL, (c) Bivariate Pareto, and (d) Bivariate
Yule. We notice that the simulated data distribution from 3PL looks more realistic than
its two competitors. Similar results for CALL-D and SMS are omitted for brevity.
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(a) CALL-N (real data) (b) 3PL (synthetic) (c) Biv. Pareto (synthetic) (d) Biv. Yule (synthetic)

Fig. 3. Contour-maps for the scatter plot nTS versus nST in CALL-N (a) for real data, and
synthetic data simulated from (b) 3PL, (c) Bivariate Pareto and (d) Bivariate Yule functions using
the best-fit parameters. Notice that synthetic data generated by 3PL looks more similar to the real
data than its competitors also visually. Counts are in log2 scale. Figures are best viewed in color.

4.2 Goodness of Fit

The likelihood ratio test is used to compare two models to determine which one provides
a better fit to a given data. However, as we mentioned in the previous section, it cannot
directly show when both competing models are poor fits to the data; it can only tell
which is the least bad. Therefore, in addition to showing that 3PL provides a better (or
as good) fit than its two competitors, we also need to demonstrate that it indeed provides
a good fit itself.

A general class of tests for goodness of fit work by transforming the data points
(x1,i, x2,i) according to a cumulative distribution function (CDF) F as ui = F (x1,i,
x2,i) for ∀i, 1 ≤ i ≤ n. One can show that if F is the correct CDF for the data, ui should
be uniformly distributed (derivation follows from basic probability theory). That is, if
the CDF F̂ estimated from our model is approximately correct, the empirical CDF of
the ûi = F̂ (x1,i, x2,i) should be approximately a straight line from (0, 0) to (1, 1).
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Fig. 4. Distribution of ûi = F̂ (x1,i, x2,i) for all data
points i according to cumulative distribution function
(CDF) F̂ estimated from our 3PL model. An approxi-
mately uniform distribution of ûi shows that 3PL provides
a good fit to real data.

For each of our three data
sets, we generate synthetic data
drawn from our 3PL function
with the corresponding estimated
best-fit parameters. Then, we
compute ûi = F̂ (x1,i, x2,i) for
all the data points in each of the
data sets, where F̂ is the esti-
mated CDF from each synthetic
data. In Figure 4, we show the
CDF of ûi as well as the CDF
for a perfect uniform distribu-

tion. Notice that the distribution of ûi is almost uniform for CALL-N and CALL-D,
and quite close to the uniform for SMS. This corroborates our case that our model pro-
vides a good approximate to the correct CDF of our data sets, and thus indeed provides
a good fit.
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4.3 3PL at Work

There exist at least three levels at which we can make use of parametric statistical mod-
els for real data: (1) as data summary: compact mathematical representation, data re-
duction; (2) as simulators: generative tools for synthetic data; (3) in anomaly detection:
probability density estimation.
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Fig. 5. (a) Least likely 100 points by 3PL (shown with
triangles). (b) Local neighborhood of one mutual pair de-
tected as an outlier (marked with circles). Edge thickness
is proportional to edge weight.

In Figure 5(a), we show top
100 pairs in CALL-D with low-
est 3PL likelihood (marked with
triangles). Figure 5(b) shows the
local neighborhood of one of
the pairs, say A and B (marked
with circles in (a)). We notice
low mutuality; A initiated 99%
of the calls in return to less
than 2 hours total duration of
calls B made. Further inspection
revealed constant daily activity
by A, including weekends, with
about 7 hours call duration per day on average, starting at around 9am in the morning
until around 5-8pm in the evening. It is also surprising that all these calls are addressed
to the same contact, B. While for privacy reasons, we cannot fully tell the scenario be-
hind this behavior, this proves to be an interesting case for the service operator to further
look into. Other interesting anomalous observations are omitted for brevity.

5 Reciprocity and Local Network Topology

Given that person i calls person j wij times and person j calls person i wji times, what
is the degree of reciprocity between them? In this section, we discuss several weighted
metrics that quantify reciprocity between a given mutual pair. Later, we study the rela-
tionship between reciprocity among mutual pairs and their topological similarity.

5.1 Weighted Reciprocity Metrics

Three metrics we considered in this work to quantify the “similarity” or “balance” of
weights wij and wji are (1) Ratio r =

min(wij ,wji)
max(wij ,wji)

∈ [0, 1], (2) Coherence c =
2
√
wijwji

(wij+wji)
∈ [0, 1] (geometric mean divided by the arithmetic mean of the edge weights),

and (3)Entropy e = −pij log2(pij)− pji log2(pji) ∈ [0, 1], where pij =
wij

(wij+wji)
and

pji = 1− pij . All these metrics are equal to 0 for the (non-mutual) pairs where one of
the edge weights is 0, and equal to 1 when the edge weights are equal. Although these
metrics are good at capturing the balance of the edge weights, they fail to capture the
volume of the weights. For example, human would score (wji=100, wij=100) higher
than (wji=1, wij=1), whereas all the metrics above would treat them as equal.

Therefore, we propose to multiply these metrics by the logarithm of the total weight,
such that the reciprocity score consists of both a “balance” as well as a “volume” term. In
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the rest of this section, we use the weighted ratio rw =
min(wij ,wji)
max(wij ,wji)

log(wij+wji) as the
reciprocity measure in our experiments. The results are similar for the other weighted
metrics, cw and ew.

5.2 Reciprocity and Network Overlap

Here, we want to understand whether there is a relation between the local network over-
lap (local density) and reciprocity between mutual pairs. Local network overlap of two
nodes is simply the number of common neighbors they have in the network.

In Figure 6, we show the cumulative distribution of reciprocity separately for differ-
ent ranges of overlap. The figures suggest that people with more common contacts tend
to exhibit higher reciprocity, both in their SMS and phone call interactions.
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Fig. 6. Complementary cumulative distribution of reciprocity for different ranges of local network
overlap (number of Common Neighbors). Notice that the more the number of common contacts,
the higher the reciprocity.

5.3 Reciprocity and Degree Similarity

Fig. 7. Average reciprocity among dyads with
degrees (di, dj) in CALL-N

Next, we investigate the relation between
the degree similarity (degree assortativity)
and reciprocity. In Figure 7, we show the
heatmap for the average reciprocity among
pairs with respective degrees di and dj
for CALL-N (similar figures for other net-
works are omitted for brevity). The heatmap
plot suggests that two people with more
similar number of contacts exhibit larger
reciprocity; notice the increase in reci-
procity with increasing dj for fixed di (from
bottom to diagonal, towards degree similar-
ity) and then the drop from diagonal to the
right, towards degree dissimilarity.

6 Conclusions

In this paper, we analyze more than 0.5 billion phone call and 60 million SMS records of
millions of mobile phone users over six months; and study reciprocity; the distribution
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and strength of mutual relations in weighted human communication networks. Our main
contributions and findings are the following:

– Patterns in joint pdf Pr(wij,wji): We find that the joint distribution Pr(wij , wji)
of the weights on mutual edges in mobile communication networks of users follow
a bivariate pattern for all three types of weights; number of phone calls, duration
of phone calls and number of SMSs. More specifically, the data points concentrate
(1) around the origin as well as (2) along the diagonal in the scatter plot of wij

versus wji. Observation (1) suggests a power-law like distribution in the amount
of interactions; e.g., many people with few calls and only a few people with many
calls. Observation (2) indicates that human communications are mostly reciprocal.

– New model (3PL) for the joint pdf Pr(wij,wji): We propose the Triple Power
Law (3PL) bivariate function to model this joint distribution. Our goodness of fit
tests show that 3PL can model the observed distributions with more than 20 million
mutual edge pairs quite well. We statistically demonstrate that it provides better fits
than two other well-known bivariate distributions for skewed data, the Bivariate
Pareto and the Bivariate Yule.

– 3PL at work: 3PL provides a compact as well as a sparse data representation with
only three parameters. We also show how to exploit 3PL to detect anomalies. Our
case studies successfully reveal suspicious mutual interactions that agree with hu-
man intuition.

– Weighted reciprocity: Lastly, we take a weighted network approach and use
weighted metrics to quantify the degree of reciprocity in human interactions. We
observe that reciprocity is higher (1) for mutual pairs with larger local network
overlap, that is, people with more common friends; and (2) for mutual pairs with
larger degree-similarity, that is, people with similar number of contacts.
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Abstract. Graph-based ranking algorithm has been recently exploited for sum-
marization by using sentence-to-sentence relationships. Given a document set
with linkage information to summarize, different sentences belong to different
documents or clusters (either visible cluster via anchor texts or invisible cluster by
semantics), which enables a hierarchical structure. It is challenging and interest-
ing to investigate the impacts and weights of source documents/clusters: sentence
from important ones are deemed more salient than the others. This paper aims to
integrate three types of hierarchical linkage into traditional graph-based methods
by proposing Hierarchical Graph Summarization (HGS). We utilize a hierarchi-
cal language model to measure the sentence relationships in HGS. We develop
experimental systems to compare 5 rival algorithms on 4 instinctively different
datasets which amount to 5197 documents. Performance comparisons between
different system-generated summaries and manually created ones by human edi-
tors demonstrate the effectiveness of our approach in ROUGE metrics.

Keywords: Summarization, Hierarchical Graph, Visible and Invisible Linkage.

1 Introduction

In the era of information explosion, people need new information to update their knowl-
edge whilst information on Web is updating extremely fast. Multi-document summa-
rization has been proposed to address such dilemma by producing a summary delivering
the majority of information content from a document corpus, and the short summary is
necessarily helpful to facilitate users to quickly understand the large number of docu-
ments. Automated multi-document summarization has drawn much attention in recent
years. In the communities of information retrieval and natural language processing, a
series of conferences on automatic text summarization have advanced the summariza-
tion techniques and produced a couple of experimental online systems.

Graph-based ranking algorithms have been recently exploited for summarization by
making use of sentence-to-sentence relationships and played an important role with the
exponential document growth on the Web. In general, traditional graph summarization
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utilizes plain linkage among sentences without considering higher-level information be-
yond the sentence-level information, which is insufficient. Given a document set with
linkage information to summarize, different sentences belong to different documents
and clusters, either clustered by visible linkage (e.g., anchor texts) or invisible linkage
(e.g., semantic cohesion), which enables a hierarchical text structure. It is challenging
and interesting to investigate the impacts and weights of source documents/clusters:
different documents and clusters usually have different importance for users to under-
stand the document set. Sentence from important documents/clusters are deemed more
salient than the trivial ones. In brief, simultaneous consideration of three-layer hierar-
chical linkage has not been investigated under a unified framework.

In order to address above insufficiency, we aim to model these three levels of
hierarchical linkage, i.e., sentence-to-sentence, sentence-to-document and document-
to-cluster relationships, into traditional graph-based summarization, and we name this
approach as Hierarchical Graph Summarization (HGS). We propose a hierarchical lan-
guage model to measure the sentence relationships for the ranking process in HGS.
Document/cluster-level information through visible and invisible linkage is used for
smoothing: neighboring text information is proved to be useful [11]. We will first in-
vestigate the presence of visible and invisible linkage for clustering.

Visible Linkage. A web document is connected to other web documents by explicit
links via anchor texts, which are denoted as visible linkage.

Invisible Linkage. A web document is connected to other web documents through
implicit semantic coherence, denoted as invisible linkage.

The contributions of this paper are as follows:

• The 1st contribution is to utilize the instinctively explicit linkage among web
documents, which is a natural understanding of enormous web data organization. We
distinguish such visible linkage from invisible linkage by semantic cohesion and utilize
both information into clustering.
• The 2nd contribution is to incorporate a three-level hierarchical linkage structure

into a unified language smoothing model, which is used to measure sentence relation-
ships by utilizing both document-level and cluster-level information simultaneously.

We start by reviewing previous work in Section 2. In Section 3 we describe the basic
graph summarization and describe our proposed HGS in Section 4. We conduct empiri-
cal evaluations in Section 5, including performance comparisons and result discussion.
Finally we draw conclusions in Section 6.

2 Related Work

Multi-document summarization (MDS) has drawn much attention in recent years. In
general, MDS can either be extractive or abstractive. The former assigns salient scores
to semantic units (e.g. sentences, paragraphs) of documents indicating the importance
and then extracts top ranked ones, while the latter demands information fusion(e.g.
sentence compression and reformulation). Here we focus on extractive summarization.

To date, various extraction-based methods have been proposed for generic multi-
document summarization. MEAD [3] is an implementation of the centroid-based
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method that scores sentences based on features such as cluster centroids, position, and
TF.IDF, etc. NeATS [6] adds new features such as topic signature and term cluster-
ing to select important content. Themes (or topics, clusters) in documents have been
discovered and used for sentence selection [10,14,13].

Most recently, the graph-based ranking methods have been proposed to rank sen-
tences/passages based on “votes” or “recommendations” between each other. TextRank
[9] and LexPageRank [2] use algorithms similar to PageRank and HITS to compute
sentence importance. Cluster information such as document-level information has been
incorporated in the graph model to better evaluate sentences [12].

Generally, summarization considers content characteristics such as coverage,
diversity [1,17,5], and all these characteristics require a calculation of sentence linkage
measurement. To the best of our knowledge, currently, neither the instinctively visible
linkage of anchor texts from web document organizations is utilized for summarization,
nor the three-layer hierarchical linkage has been investigated simultaneously in a uni-
fied language model to measure sentence relationships. HGS approach can naturally and
simultaneously take into account these two advantages in graph-based summarization.

3 Basic Graph Summarization

The basic graph summarization is essentially a way of deciding the importance of a
vertex within a linkage graph based on global information recursively drawn from the
entire graph, using the Markov Random Walk Model (MRW). The basic idea is that of
“voting” or “recommendation” between the vertices, where each vertex is a sentence.
A link between two vertices is considered as a vote cast from one vertex to the other
vertex. The score associated with a vertex is determined by the votes that are cast for it,
and the score of the vertices casting these votes.

Formally, given a document set D, let G = (V,E) be a graph to reflect the relation-
ships between sentences in the document set, as shown in Figure 1 (Part A). V is the
set of vertices and each vertex si in V is a sentence in the document set. E is the set
of edges, which is a subset of V × V . Each edge eij in E is associated with an affinity
weight f(si → sj) between sentences si and sj (i �= j). Sentence s is generated from
the language modelΘs. The affinity weight is measured by Kullback-Leibler divergence
of si and sj , contained in a decreasing logistic function L(x) = 1

1+ex to map the dis-
tance into interval [0,1] as proposed in [16,17]. That is, f(si → sj) = L(DKL(sj ||si)),
where DKL(sj ||si) is:

DKL(sj ||si) =
∑
w∈W

p(w|Θsj )log
p(w|Θsj )

p(w|Θsi )
(1)

W is the set of words in our vocabulary and w denotes a word. The language model of
Θs will be discussed in details later. If Θsi and Θsj are very close, the KL-divergence
would be small and f(si → sj) would be high, which intuitively makes sense.

Given f(si → sj), the transition probability from si to sj is then defined by normal-
izing the corresponding affinity weight as follows.

p(si → sj) =

{
f(si→sj)

∑|V |
k=1 f(si→sk)

, if
∑

f �= 0

0, otherwise
(2)
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Note that p(si → sj) is asymmetric and it measures the affinity from si to sj . We
let f(si → si) = 0 to avoid self transition. We use the row-normalized matrix M =
[Mij ]|V |×|V | where Mij = p(si → sj) to describe G with each entry corresponding
to the transition probability and all zero elements are replaced by a smoothing factor
empirically set to 1/|V |.

Based on the matrix M, the saliency score Ψ(si) for sentence si can be deduced from
those of all other sentences linked with it and it can be formulated in a recursive form
as in the PageRank algorithm as follows:

Ψ(si) = μ ·
∑

all j �=i

Ψ(sj) ·Mji +
1− μ

|V | (3)

For implementation, the initial scores of all sentences are set to 1 and the iteration al-
gorithm in Equation (3) is adopted to compute the new scores of the sentences. Usually
the convergence of the iteration algorithm is achieved when the difference between
the scores computed at two successive iterations for any sentences falls below a given
threshold (0.0001 in this study). μ is the damping factor usually set to 0.85, as in the
PageRank algorithm. We then apply the Maximum Marginal Relevance (MMR) mech-
anism for redundancy removal, similar to the method used in [11].

We see that according to the KL-divergence scoring method, our main tasks are to
estimate Θs. Since s can be regarded as a short document, we can use any standard
method to estimate Θs. Here, we use Dirichlet prior smoothing [18] to estimate Θs as
follows:

p(w|Θs) =
c(w, s) + μs · p(w|B)

|s|+ μs
=

c(w, s)

|s|+ μs
+

μs

|s|+ μs
· p(w|B) (4)

where |s| is the length of s, c(w, s) is the count of word w in s, p(w|B) is a background
model used as smoothing factor. Generally p(w|B) is estimated by the whole document
set D, i.e., using c(w,D)∑

w′∈W c(w′,D) . μs is the smoothing parameter.

However, note that as the length of a sentence is very short, smoothing is critical for
addressing the term sparseness problem for sentences. The globalized smoothing from
the whole corpus is coarse-grained. Therefore, we move on to estimate the fine-grained
p(w|Θs) from multiple-layers by the hierarchical graph summarization.

4 Hierarchical Graph Summarization

4.1 Overview

In the basic graph summarization, all sentences are indistinguishable, i.e., the sentences
are treated uniformly. As we mentioned in Section 1, there may be many factors that can
have impact on the importance analysis of the sentences. This study aims to examine
the impact of hierarchical linkage on graph summarization, by incorporating sentence-
to-document relationship, as well as visible and invisible document clustering.

Besides 1) the basic pair-wise sentence-to-sentence relationship, the hierarchical
graph includes 2) sentence-to-document relationship, 3) document-to-cluster relation-
ship from visible linkage and 4) document-to-cluster relationship from invisible link-
age by semantic clustering. We number these four types of linkage correspondingly
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Fig. 1. Illustration of the hierarchical linkage graph. A circle denotes a sentence and a square
denotes a document. Different lines denote different types of linkage, which are marked with
Number 1-4. Some lines are omitted due to the space limits.

in Fig. 1. As can be seen, the lowest layer is just the traditional link graph between
sentences that has been well studied in previous work. The upper layer represents the
documents. The dashed lines between these two layers indicate the conditional influ-
ence between the sentences and the documents: a link is established when the sentence
is from the document. Documents are connected due to visible lines by anchor text
arrows and are also grouped by invisible semantic clusters.

4.2 Incorporating Hierarchical Linkage

Sentence-to-Document Links. To incorporate the document-level information and the
sentence-to-document relationship, the document-based graph model is proposed based
on the two-layer link graph including both sentences and documents in Fig. 1.(Part B):
the language model of sentence s is smoothed by the source document.

Visible Document-to-Cluster Links. Web documents are linked to each other through
anchor texts and we keep such structural information. We start “walking” from a par-
ticular web document to all connected web documents until all linked documents are
visited. These documents are clustered together as visible clusters, and the document
within the visible cluster forms a visible document-to-cluster relationship.

Invisible Document-to-Cluster Links. Web documents can be clustered according to
their semantic coherence, and the distance is calculated by the standard cosine similarity
measurement. We use the popular clustering algorithms of K-means to produce the
invisible semantic cluster. Given a document set, it is hard to predict the actual cluster
number, and thus we empirically set the number k of expected clusters as k=

√
|D|,

where |D| is the number of documents.

Linkage Integration. After we introduce three types of hierarchical links, the estima-
tion of the background language model ΘB should be based on the source document
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and source cluster where the sentence comes from, according to [8], the background
model can be now written as:

p(w|B) =
c(w, d) + μcp(w|C)

|d|+ μc
=

c(w, d)

|d|+ μc
+

μc

|d|+ μc
· p(w|C) (5)

We take Equation (5) into Equation (4) and obtain the final representation:

p(w|Θs) =
c(w, s)

|s|+ μs
· |s||s| +

μs

|s|+ μs
·
(

c(w, d)

|d|+ μc
· |d||d| +

μc

|d|+ μc
· p(w|C)

)
=

|s|
|s|+ μs

· p(w|s) + μs|d|
(|s|+ μs)(|d| + μc)

· p(w|d)

+
μsμc

(|s|+ μs)(|d|+ μc)
· p(w|C)

(6)

μc can be interpreted as our confidence on the prior of how cluster information weighs.
Thus setting μc=|d| means that we put equal weights on the document-level and the
cluster-level information. μc=0 yields no consideration of cluster-level information and
μs=0 yields simple consideration of plain sentence relationships.

After simple calculation, we notice that the sum of all coefficients in Equation (6)
equals to 1, and hence we change Equation (6) into a more concise format of

p(w|Θs) = α · p(w|s) + β · p(w|d) + γ · p(w|C) (7)

α, β, γ all belong to [0,1] and α + β + γ=1. The cluster representation of p(w|C) can
be rewritten as a combination of visible cluster p(w|Cv) and invisible cluster p(w|Civ)
controlled by λ:

p(w|C) = λ · p(w|Civ) + (1− λ) · p(w|Cv) (8)

Special Cases:
(1) β=0 and γ=0: only plain relationship between two sentences are considered;
(2) β �=0, γ=0: plain linkage and document-to-sentence relationship included;
(3) γ �=0, λ=0 means no invisible clustering impact from visible linkage;
(4) γ �=0, λ=1 means no visible clustering impact from invisible linkage.

4.3 Estimation of Document/Cluster Importance

Documents and clusters are not equally important. Our assumption is that the sentences
in an important document or cluster should be ranked higher and more likely to be
chosen into the summary. The importance of documents (or clusters) is measured the
relevance to the whole corpus. We examine such impact by incorporating the document
importance and cluster importance into calculation of sentence linkage and ranking.

The function π(d) aims to evaluate the importance of document d in the document
set D. The following two methods are developed to evaluate the document importance.

πkl: It uses the transformed KL-Divergence value between the document d and the
whole document set D as the importance score of the document:

πkl(d) = L(DKL(d||D)) (9)
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πpr: It constructs a weighted graph between documents and uses the PageRank algo-
rithm to compute the rank scores of the documents as the importance scores of the
documents. The link structure among documents is established by the inherent visible
linkage. The equation for iterative computation is the same with Equation (3).

The function φ(C) evaluates the importance of cluster C (both visible and invisible)
in the document set D. Similarly we have two methods to evaluate cluster weights.

φkl: It uses the transformed KL-Divergence value between the cluster C and the
whole document set D as the importance score of the cluster:

φkl(C) = L(DKL(C||D)) (10)

φpr: We add the PageRank scores of all the documents within the cluster C, i.e.,

φpr(C) =
∑
d∈C

πpr(d) (11)

By incorporating document and cluster importance, Equation (7) can be rewritten as
Equation (12), substituting the unweighted p(w|d) and p(w|C). p(w|Θs) is estimated
for all sentences and applied into Equation (1), (2), (3) to calculate the hierarchical
sentence relationships and to rank sentences within the multiple-layer graph.

p(w|Θs) = α · p(w|s) + β · [π(d)p(w|d)] + γ · [φ(C)p(w|C)] (12)

5 Experiments and Evaluation

5.1 Dataset

We use the data in [16] to test HGS on the real world datasets, which amounts to 5197
documents from various major news sites (such as BBC, CNN and Xinhua News, etc.).
Our data includes 4 subjects, and each belongs to a different category of Rule of Inter-
pretation (ROI) [4]. Reference summaries are created by editors [16].

Table 1. Detailed basic information of 4 datasets

Subjects #Sentences #Documents #Visible Links #RefSum (Avg. Length)
1.Influenza A 115026 2557 5108 5 (83)
2.BP Oil Spill 63021 1468 2493 6 (76)

3.Haiti Earthquake 12073 247 115 2 (32)
4.Michael Jackson Death 37819 925 1627 3 (64)

5.2 Evaluation Metrics

The ROUGE measure is widely used for evaluation [7]: the DUC contests usually offi-
cially employ ROUGE for automatic summarization evaluation. In ROUGE evaluation,
the summarization quality is measured by counting the number of overlapping units,
such as N-gram, word sequences, and word pairs between the candidate summaries CS
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and the reference summaries RS. There are several kinds of ROUGE metrics, of which
the most important one is ROUGE-N with 3 sub-metrics: precision, recall and F-score.

ROUGE-N-R =

∑
S∈RS

∑
N-gram∈S

Countmatch(N-gram)∑
S∈RS

∑
N-gram∈S

Count (N-gram)

ROUGE-N-P =

∑
S∈CS

∑
N-gram∈S

Countmatch(N-gram)∑
S∈CS

∑
N-gram∈S

Count (N-gram)

ROUGE-N-F =
2× ROUGE-N-P × ROUGE-N-R

ROUGE-N-P + ROUGE-N-R

S denotes a summary. N in these metrics stands for the length of N-gram and N-
gram∈RS denotes the N-grams in reference summary while N-gram∈CS denotes the
N-grams in the candidate summary. Countmatch(N-gram) is the maximum number of N-
gram in the candidate summary and in the set of reference summaries. Count(N-gram) is
the number of N-grams in reference summaries or candidate summaries.

According to [7], among all sub-metrics, unigram-based ROUGE (ROUGE-1) has
been shown to agree with human judgment most and bigram-based ROUGE (ROUGE-
2) fits summarization well. We report three ROUGE F-measure scores: ROUGE-1,
ROUGE-2, and ROUGE-W, where ROUGE-W is based on the weighted longest com-
mon subsequence. The weight W is set to be 1.2 in our experiments by ROUGE package
(version 1.55). The higher the ROUGE scores, the similar the two summaries are.

5.3 Algorithms for Comparison

Pre-processing. Given a collection of documents, we first decompose them into sen-
tences. Then the stop-words are removed and words stemming is performed. After these
steps, we implement the following widely used summarization algorithms as baseline
systems. They are designed for traditional summarization without hierarchical linkage.
For fairness we conduct the same preprocessing for all algorithms.

Random: The method selects sentences randomly for each document collection.
Centroid: The method applies MEAD algorithm [3] to extract sentences according

to the following parameters: centroid value, positional value, and first-sentence overlap.
GMDS: The plain graph MDS proposed by [11] first constructs a sentence connec-

tivity graph based on cosine similarity and then selects important sentences based on
the concept of eigenvector centrality.

PGMDS: Wan et al. present a two-layer pair-wise graph summarization methods in
[12], utilizing sentence-to-sentence and sentence-to-document linkage without a con-
sideration of simultaneous document-to-cluster links.

HGS: HGS is an algorithm with three-layer hierarchical linkage information and at
the same time, both visible and invisible document clustering are performed.

RefSum: As we have used separate reference summaries from human evaluators, we
not only provide ROUGE evaluations of the competing systems but also of the reference
summaries against each other, which provides a good indicator of not only the upper
bound ROUGE score that any system could achieve.
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5.4 Overall Performance Comparison

We use a cross validation manner among 4 datasets, i.e., to train parameters on one
subject set and to examine the performance on the others. After 4 training-testing pro-
cesses, we take the average F-score performance in terms of ROUGE-1, ROUGE-2 and
ROUGE-W on all sets. The details are listed in Tables 2∼5.

Table 2. Overall performance comparison
on Influenza A. ROI∗ category: Science.

Systems R-1 R-2 R-W 95%-conf.

RefSum 0.491 0.112 0.159 0.44958

Random 0.197 0.039 0.081 0.75694
Centroid 0.241 0.050 0.094 0.45073
GMDS 0.252 0.059 0.098 0.33269

PGMDS 0.303 0.060 0.099 0.53123
HGS 0.298 0.063 0.101 0.53459

Table 3. Overall performance comparison
on BP Oil Leak. ROI category: Accidents.

Systems R-1 R-2 R-W 95%-conf.

RefSum 0.517 0.135 0.183 0.48618

Random 0.202 0.041 0.096 0.64406
Centroid 0.259 0.052 0.098 0.34743
GMDS 0.267 0.057 0.102 0.43877

PGMDS 0.273 0.061 0.107 0.77245
HGS 0.299 0.058 0.111 0.39236

Table 4. Overall performance comparison
on Haiti Earthquake. ROI category: Disasters.

Systems R-1 R-2 R-W 95%-conf.

RefSum 0.528 0.139 0.167 0.30450

Random 0.206 0.043 0.093 0.75694
Centroid 0.252 0.050 0.099 0.43045
GMDS 0.251 0.058 0.098 0.33694

PGMDS 0.275 0.055 0.106 0.64198
HGS 0.307 0.060 0.115 0.67312

Table 5. Overall performance comparison
on Jackson Death. ROI category: Legal Cases.

Systems R-1 R-2 R-W 95%-conf.

RefSum 0.482 0.115 0.163 0.47052

Random 0.189 0.039 0.084 0.52426
Centroid 0.255 0.048 0.089 0.21045
GMDS 0.267 0.055 0.095 0.30070

PGMDS 0.281 0.063 0.107 0.67825
HGS 0.294 0.059 0.113 0.42148

∗ROI: news categorization defined by Linguistic Data Consortium (http://www.ldc.upenn.edu/projects/tdt4/annotation).

From the results in Table 2 to Table 5, we have following observations:

• Generally Random has the worst performance.
• The results of Centroid are better than those of Random, mainly because the Cen-

troid method takes into account positional value and first-sentence overlap, which facil-
itate main aspects summarization. However, the flat clustering-based summarization is
proved to be less useful [15].
• The GMDS system outperforms centroid-based summarization methods. This is

due to the fact that PageRank-based framework ranks the sentence using eigenvector
centrality which implicitly accounts for information subsumption among all sentences.
• In general, the PGMDS algorithm outperforms GMDS system. It indicates that the

two-layer hierarchical summarization is more useful than plain graph summarization
and richer linkage structure indeed facilitates graph summarization.
• HGS under our proposed framework outperforms baselines, indicating that the

overall properties we use for three layers of hierarchical linkage are beneficial for sum-
marization tasks.
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Fig. 2. α: weight of sentence-to-sentence links Fig. 3. β: weight of sentence-to-document links

Fig. 4. γ: weight of document-to-cluster links Fig. 5. λ: tradeoff of visible/invisible cluster

Having proved the effectiveness of our proposed methods, we carry the next move
to identify how different layers of information take effects to enhance the quality of a
summary in parameter tuning of α, β, γ and λ.

5.5 Parameter Tuning

Keeping other parameters fixed, we vary one parameter at a time to examine the changes
of its performance from all 4 datasets. The first group of key parameters in our frame-
work is α, β and γ where α+ β+ γ=1. Every time we tune a parameter at a step of 0.1
and vary the other two for the best performance to achieve. Experimental results indi-
cate the sentence-level relationship have stable but little impact on the summarization
performance (illustrated in Fig. 2). The positive influence of documents and clusters
are confirmed in Fig. 3 and Fig. 4 when β �=0 and γ �=0. Compared with document-
level information, cluster-level information has a relatively weaker influence. Excessive
use of higher level information impairs performance. Over smoothing from source texts
might make the language models divergent from the original ones. We set α=0.3, β=0.5,
γ=0.2 in our experiments.
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Another key parameter in our framework is λ in Equation (8) to measure the tradeoff
between visible and invisible cluster information. We gradually change λ from 0 to 1 at
the step of 0.1 to examine the effect in Fig. 5. The combination of visible and invisible
cluster outperforms the performance in isolation (λ=1 or 0). It is understandable that
these two clustering metrics denote separate document organization methods and intro-
duce different smoothing backgrounds. In general, a larger weight from visible cluster
is preferable (λ=0.3).

Finally we examine the impact of document and cluster weights and the results are
summarized in Table 6. From Table 6, we conclude that to distinguish the weight of
documents and clusters is useful to measure sentence relationships because the usage
of both weights brings prominent improve compared with π(d)=OFF and φ(C)=OFF.
We find that document weight by πpr(d) is much better than πkl(d), indicating that the
web organization structure is helpful to find the centric documents within the corpus.
The usage of πkl(d) has been proved in [12]. We also try different combinations of
φ(C) for visible and invisible clusters. φkl means both clusters are weighed by KL-
Divergence, and φpr means both clusters are weighed by PageRank score. φkl+pr means
using KL-Divergence for visible clusters and using PageRank for invisible clusters,
while φpr+kl means using PageRank score for visible clusters and using KL-Divergence
for invisible clusters. We have an interesting finding that for visible clusters organized
by anchor texts, the weights measured by PageRank seems to make more sense than
using semantic coherence, and vice versa. Therefore, in general, the performance of
φpr+kl is the most plausible weighting strategy.

Table 6. The impact of document weights and cluster weights, measured by KL-Divergence (kl),
PageRank score (pr) and their different combinations

�
��π
φ ON

OFF
φpr φkl φpr+kl φkl+pr

πpr 0.282 0.289 0.291 0.286 0.266
πkl 0.268 0.271 0.273 0.265 0.254
OFF 0.242 0.237

6 Conclusions

In this paper we propose a Hierarchical Graph Summarization method, incorporat-
ing hybrid linkage information from multiple levels simultaneously into traditional
graph summarization models. We utilize sentence-to-sentence relationship, sentence-
to-document relationship and document-to-cluster relationship. We also investigate the
web document structural information by explorations of visible and invisible doc-
ument clusters, and the visible clusters earn heavier weights than invisible clusters
(λ=0.3). Further more, we distinguish document/cluster by measuring their correspond-
ing weights, calculating KL-Divergence and PageRank scores.

Abundant experiments are conducted on 4 real datasets, comparing 5 rival algo-
rithms. Experimental results demonstrate the effectiveness of our proposed HGS. The
benefits of visible and invisible clustering are also confirmed. Documents and clusters
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should be distinguished by their significance. We also find that the semantic coherence
for invisible clustering has not shown as promising effects as visible clustering does.
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Abstract. Mobile search market is growing very fast. Mining mobile
search activities is helpful for understanding user preference, interest and
even regular patterns. In previous works, text information contained by
either search queries or web pages visited by users is well studied to
mine search activities. Since rich context information (e.g., time, loca-
tion and other sensor inputs) is contained in the mobile search data, it
has also been leveraged by researchers for mining user activities. How-
ever, the two types of information were used separately. In this paper,
we propose a graphical model approach, namely the Text and Context-
based User Activity Model (TCUAM), which mines user activity patterns
by utilizing query text and context simultaneously. The model is devel-
oped based on Latent Dirichlet Allocation (LDA) by regarding users’
activities as latent topics. In order to guide the activity mining pro-
cess, we borrow some external knowledge of topic-word relationship to
build a constrained TCUAM model. The experimental results indicate
that the TCUAM model yields better results compared with text-only
and context-only approaches. We also find that the constrained TCUAM
model is more effective than the unconstrained TCUAM model.

Keywords: mobile user modeling, user’s activity mining, Latent Dirich-
let Allocation.

1 Introduction

With the prosperity of mobile market, more and more web search activities go to
mobile devices. This raises the requirement of mining mobile search data, which
is important for understanding user preferences, interests and activity patterns.
Compared with web search from PC, mobile search data contains rich context
information, e.g., time, location, surrounding business and other signals captured
by sensors of mobile devices. Previous works of mining search activities focus on
analyzing the content of search query, web pages, etc., with limited attentions of
mining context information [3]. According to our analysis of mobile search log
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Table 1. Three main types of user search activity data

User Behavior Query Text Search Context
Time = 08:00∼09:00

Text-Dominated restaurant Day = Monday
SurroundingType = Amusement Equipment
Time = 14:00∼ 15:00

Context-Dominated facebook Day = Sunday
SurroundingType = Baseball Clubs & Parks

Samsung Time = 15:00∼ 16:00
Both-Dependent focus price Day = Saturday

Amazon.com SurroundingType = Downtown

data, we discover that both search query text and context information can help
understand user activities. Table 1 gives examples of three major types of user
search activities.

– Text-Dominated activities can be fully understood by query content, with-
out considering context information. For example, query “restaurant” indi-
cates that the user wants to find a restaurant.

– Context-Dominated activities can be explained by the context informa-
tion. E.g., a user issues several queries with the following context: “Time =
14:00∼15:00”, “Day = Sunday” and “SurroundingType = Baseball Clubs
& Parks”. We can infer that the user’s activity may be related to “Playing
Baseball”.

– Both-Dependent activities require both text and context information to
explain the user’s activities. For instance, the user’s context is “Time =
15:00∼16:00”, “Day = Saturday”, “SurroundingType = Downtown”, and
the query is “Samsung focus price Amazon.com”. We can infer that the
user’s activity is likely to be “Shopping”.

We can see that both text and context information can help understand the
activity of mobile users. However, as far as we know, currently there are few ap-
proaches which can model user activities based on text and context information
simultaneously.

In this paper, we propose a graphical model approach, namely the Text and
Context-based User Activity Model (TCUAM) to mine user activity patterns
using both query text and search context information. The TCUAM model is
developed based on Latent Dirichlet Allocation (LDA), by regarding user ac-
tivities as latent topics. As there are many noises in mobile log data, TCUAM
has difficulty in discovering meaningful patterns. Therefore, we leverage human
knowledge to help. We borrow external knowledge of topic-word relationship
to build a constrained TCUAM model. The experiments on real mobile log in-
dicates that the TCUAM model yields better results compared with text-only
and context-only approaches. We also find that the constrained TCUAM model
behaves more effectively than the unconstrained TCUAM model.
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The rest of this paper is organized as follows. Section 2 briefly introduces the
related work. The TCUAM model is defined in Section 3. We describe experi-
ments and results in Section 4. Conclusions are given in Section 5.

2 Related Work

There are mainly two groups of research works which are related to ours. The
first is about feature modeling used in mining user activity patterns. Understand-
ing user intent from text information such as past queries and user profiles is a
common technique for web search personalization. Sieg et al. [2] analyzed user
profiles and assigned implicitly derived interest scores to existing concepts in a
domain ontology for personalization. Noll et al. [4] implemented personalization
using social bookmarking and tagging. Teevan et al. [5] utilized a personaliza-
tion technique to leverage implicit information about the users’ interests and
activities, including previously issued queries, previously visited web pages and
the documents a user has read or created. Besides text information mentioned
above, context information is also adopted by researchers to mine user activity
patterns. Arias et al. [6] found that it was beneficial to understand user intents
and complete desired queries by context information such as time and location.
Hattori et al. [7] improved the performance of query refinement by incorporating
user context information. Church et al. [8] proposed a novel interface to support
multi-dimensional and context-sensitive mobile search, combining context fea-
tures such as location, time, and community preferences to offer better search
experiences.

The other group of related works is about learning models. The models of
utilizing context information can be divided into three stages. In the first stage,
context information is manually processed in a certain domain, especially in
a geographical system [9,10,11]. In the second stage, researchers begin to use
traditional text learning model to tackle context learning problems. Algorithms
like Bayesian Network, Hidden Markov Model (HMM), Support Vector Machine
(SVM) and Conditional Random Field (CRF) have been adopted to model user
behaviors [12,13]. In the third stage, unsupervised models are used for learning
tasks of large-scale data. Topic model related approaches are adopted in this
stage for user activity mining. E.g., Bao et al. [3] tried to model context infor-
mation by an unsupervised approach based on latent dirichlet allocation (LDA)
to discover users’ activities.

3 Methodology

3.1 Data and Preprocessing

In this work, we mine user activities using mobile search log. The log contains a
set of records R = {r1, r2...rn}, where ri =< qi, ci >. qi is the query issued by the
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user and ci is the context when the search event happens. ci = {< fi, vi > |1 ≤
i ≤ Np} where < fi, vi > is a feature-value pair, fi stands for the feature name
while vi is the value of feature fi. As we know, there are various noises in search
log and it is difficult to obtain satisfactory results without data preprocessing.
In traditional approaches, queries with low frequencies are usually regarded as
noises and excluded from query log. In our work, we regard the queries which
are not very related to context as noises. We introduce a scoring function to
calculate the possibility of a query to be noise:

ξ(q) = −
∑Np

i=1 p(< fi, vi >)log(p(< fi, vi >))

|fq − ˜f75%|
(1)

where p(< fi, vi >) stands for the probability of feature fi to take the value

vi. The smaller value −
∑Nf

i=1 p(< fi, vi >)log(p(< fi, vi >)) takes, the more
irrelevant feature fi is with the query text, thus the more likely query q will be
a noisy query. fq denotes the frequency of query q, ˜f75% stands for the average
frequency of 75% queries whose values lie in the middle of all the queries. The
larger value |fq− ˜f75%| takes, the more extreme the query frequency is, thus the
more likely the query is considered to be noise.

The smaller value ξ(q) takes, the more likely that query q is considered as
noise. In practice, an appropriate threshold is chosen to filter out noisy queries.

3.2 Text and Context-Based User Activity Model

In this section, we will introduce the Text and Context-based User Activity
Model (TCUAM) for mining users’ activities based on Latent Dirichlet Alloca-
tion (LDA). Bao et al. [3] has proposed an LDA-based approach to mine user
activities using context information. However, context information itself can only
explain part of user activities. Our model is designed to utilize text and context
information simultaneously for user activity mining.

Given a set of records R = {r1, r2...rn}, we split them into sessions according
to time information. Each session contains data records within 30-minutes time
span. Given a collection of M sessions S = {s1, s2..., sM}, we assume that each
session is generated by a collection of topics, which follow dirichlet distributions.
Suppose there are totally K topics, rm,n =< qm,n, cm,n > denotes the nth ob-
servation of record in the mth session. qm,n = {wm,n,1, wm,n,2, ...} stands for the
nth observation of query text in the mth session where wm,n,i is the ith word
of query qm,n, cm,n = {< fi, vi >} stands for the nth observation of context in
the mth session. < fi, vi > represents a feature-value pair where fi denotes the
feature name and vi denotes the value of feature fi.

The process of generating text and context information for all the sessions
can be expressed as follows. Firstly, draw a query word distribution ϕk for
each topic k from dirichlet distribution with parameter β. Secondly, for each
topic k and feature f , draw a feature-value pair distribution ωk·f from dirichlet
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distribution with parameter τ . Thirdly, for each session sm, draw a topic distribu-
tion θm and a feature distributions λm from dirichlet distribution with parameter
α and γ respectively. Then for each session sm, records are generated repeatedly
based on the model. For each record rm,n in session sm, we first choose a topic
zm,n according to the topic distribution Multi(θm). Afterwards, query text and
context information are generated respectively according to their distributions
on topic zm,n. Each word wm,n,i in the query text is generated directly from word
distribution Multi(ϕzi,j). For the context cm,n = {< fi, vi >}, each feature fi
is generated from the feature distribution Multi(λm) while the corresponding
value vi is generated from the feature-value pair distribution Multi(ωzi,j,fi).
Table 2 summarizes the generative process of TCUAM.

In practice, we take the whole query as a single word. That is, we use qm,n =
wm,n, instead of qm,n = {wm,n,1, wm,n,2, ...}. The graphical representation of the
model is shown in Figure 1.

Table 2. Generative process of TCUAM

1. For each topic k
Draw word distribution ϕk ∼ Dir(β)

2. For each topic k and feature f
Draw feature-value pair distribution ωk·f ∼ Dir(τ)

3. For each session sm
(a) Draw topic distribution θm ∼ Dir(α)
(b) Draw feature distribution λm ∼ Dir(γ)
(c) For each record observation rm,n in session sm

(1) Choose a topic zm,n ∼ Multi(θm)
(2) Generate query text qm,n:

For each word in qm,n
Choose a word wm,n,i ∼ Multi(ϕzi,j )

(3) Generate context information cm,n:
For each feature value pair < fi, vi > in cm,n,
(i) Choose a feature fi ∼ Multi(λm,zi,j )
(ii) Choose a feature value vi ∼ Multi(ωzi,j ,fi)

3.3 Inference of Model

To simplify the equations, we define the following symbols. The hyper-parameters
in the TCUAM model are denoted as Θ, which include α, β, γ and τ . The ob-
servations are denoted by Γ , which consist of Ns sessions. rm,n =< qm,n, cm,n >
denotes the nth record in the mth session. qm,n = wm,n stands for the nth ob-
servation of query text in the mth session, and cm,n = {< fi, vi > |1 ≤ i ≤ Np}
stands for the nth observation of context in the mth session. < fi, vi > represents
a feature-value pair where fi denotes the feature name and vi denotes the value of
feature fi. The parameters are represented by Δ, including θ, ϕ, λ and ω. The la-
tent variables of topics are denoted by z. We define Φ = {ϕk}Kk=1, Λ = {λk}Kk=1

and Ω = {ωp}K·F
p=1 , where K is the total number of topics and F is the total
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Fig. 1. Graphical Representation of TCUAM

number of features. Thus, given hyper-parameters, the joint distribution of all
observations and hidden variables can be calculated as follows:

p(Γ,Δ, z|Θ) =

Ns∏
m=1

Nr∏
n=1

p(wm,n|ϕzm,n)

Np∏
j=1

p(vp|ωzm,n,fj )

× p(fp|λm,zm,n)p(zm,n|θm)p(θm|α)p(Φ|β)p(Λ|γ)p(Ω|τ )

(2)

where Ns is the number of sessions, Nr is the number of records in each session,
and Np is the number of feature-value pairs in the context.

We obtain the joint probability for all observations by integrating over the
parameters and latent variables:

p(Γ |Θ) =

∫ ∫ ∫ ∫
p(θm|α)p(Φ|β)p(Λ|γ)p(Ω|τ )

×
Ns∏

m=1

Nr∏
n=1

∑
zm,n

(wm,n|ϕzm,n)

Np∏
j=1

p(vp|ωzm,n,fp)

× p(fp|λm,zm,n)p(zm,n|θm)dΦdΛdΩdθm

(3)

We use Gibbs sampling to get the approximate estimation of parameters. In
Gibbs sampling, each record is assigned to a certain topic under the condition
that other records have been labeled. We assume that Text Information and
Context Information are generated by activity topics independently and obtain
the following equation:

p(zi = k|z¬i,w, c) = p(zi = k|z¬i,w, )p(zi = k|z¬i, c) (4)
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where w stands for the vector of words; c stands for the vector of feature-value
pairs in the context; zi represents the topic of the i

th record whereas z¬i denotes
the vector of topics for all records after excluding the ith record.

The two conditional probabilities on the right side of Eq.(4) can be calculated
by [14]:

p(zi = k|z¬i,w) =
p(w|z)
p(w|z¬i)

· p(z)

p(z¬i)
∝

nw
k,¬i + βw

ΣW
w′=1n

w′
k + βw

· nk
m,¬i + αk

ΣK
k′=1

nk′
m + αk

(5)

p(zi = k|z¬i, c) ∝ p(vp|zi = k,z¬i, F, V¬i)p(zi = k|z¬i)

=

Np∏
p

n
fp,vp
k,¬i + ωvp∑

v′ n
fp,v′
k,¬i +

∑
v′εVfp

ωv′
· nk

m,¬i + αk∑K
k′=1 n

k′
m,¬i +

∑K
k′=1 αk

(6)

Where αk denotes the hyper-parameter of dirichlet distribution for topic k, and
βw denotes the hyper-parameter of dirichlet distribution for word w. i =< m,n >
stands for the index of the nth observation in the mth session, nw

k,¬i stands for

the times of word w being observed with topic k after excluding the ith record,
nf,v
k,¬i stands for the times of feature-value pair < f, v > being observed with

topic k after excluding the ith record, and nk
m,¬i stands for the times of topic k

being observed in session m after excluding the ith record.
After the convergence of Gibbs sampling iteration, each observation will be

assigned a final topic label. Eventually, the parameters can be inferred as below:

p(w|zk) = ϕk,w =
nw
k + βw

ΣW
w′=1n

w′
k + βw

(7)

p(fp, vp|zk) = p(vp|zk, fp)p(fp) (8)

p(vp|zk, fp) =
n
fp,vp
k + ωvp∑

v′ n
fp,v′
k + n

fp,vp
k + ωv′εVfp

ωv′
(9)

p(fp) =

∑K
k′=1

∑
v′ n

fp,v
′

k′ + λfp∑
f ′

∑K
k′=1

∑
v′ n

f ′,v′
k′ +

∑
f ′ λf ′

(10)

3.4 Constrained TCUAM Model

In practice, the unconstrained TCUAM model is unable to achieve satisfactory
results due to massive noises in mobile log. Therefore, we borrow some external
knowledge about topic-word relationship to help. We leverage a set of websites,
which are organized into a list of topics. For each topic, we can use search log
to associate queries with websites using the follow-click information. Given a
set of topics K = {k1, k2...}, assume that the set of websites for topic ki is
url(ki) = {u1, u2...}. Suppose there is a set of queries Q = {q1, q2...} and the



116 B. Peng et al.

set of follow-click URLs for each query qj is fclick(qj) = {u1, u2...}. We split
each query into word sequences. Thus, the relevant score of topic ki and word
wj can be calculated by:

Score(ki, wj) =
∑

wjεqt,u
′εfclick(qt),u′εurl(ki)

tfidfwj (11)

We choose top 50 words with the highest relevance scores for each topic and map
them to η[50 ∼ 1] linearly. For example, if airline is the third relevant word to
topic Travel, η(Travel, airline) = 48. Thus, we obtain 50 representative words
for each topic as external knowledge to guide the activity mining model. The
core idea of using this knowledge is to increase the weight of an unlabeled word
in Gibbs Sampling if it is known to be a representative word for a specific topic.
The whole procedure of Gibbs sampling is displayed in Algorithm 1, where the
variables are defined in Table 3.

Table 3. Variables in Algorithm 1

Ns number of sessions to generate

Nr number of records in a certain session

Np number of feature-value pairs in a certain record

η relevance scores between words and topics

nw
k the times of word w being observed with topic k

np
k the times of feature-value pair p being observed with topic k

nf
k the times of feature f being observed with topic k

nk
m the times of records being observed with topic k in document m

nm the times of records being observed in session m

nk the times of records being observed with topic k

np the times of records being observed with feature-value pair p

4 Experiment

4.1 Data Set

In this paper, we carry out our experiments on real mobile logs from a commercial
search engine. The data set consists of half a year’s mobile logs in California
State, USA. Table 4 shows the feature list of text and context information used
in our experiment. For period feature, we define its values according to the time
range of search activity. We remove the users whose query numbers are less than
50 in half a year time span. The preprocessing procedure described in section
3.1 is applied to clean the dataset. In our experiment, we set the threshold as
0.25.

The external knowledge of topic-word relationship for the constrainedTCUAM
model is illustrated in Table 5. We have 15 kinds of activity topics which mobile
users are specially interested in. For each activity topic, 50 words are selected to
be the external knowledge. Because of space limitation, only top 5 words for each
activity topic are listed in the table.
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Algorithm 1. Gibbs Sampling For Constrained TCUAM

1 zero all counter, nk
m, nw

k , np
k, n

f
k , nm, nk, np

2 for each session smε[1, Ns] do
3 for each record rm,nε[1, Nr ] in session sm do
4 if pre-word k̃ exist then
5 rm,n.topic = k̃
6 end
7 else
8 rm,n.topic = zm,n ∼ Mult(1/K)
9 end

10 k = rm,n.topic
11 S = η(k, rm,n.w)

12 Increase counter: nk
m + S, nm + S, nw

k + S, nk + S
13 for each feature-value pair pε[1, Np] in record rm,n do

14 Increase counter: np
k + S, nf

k + S, np + S
15 end
16 end
17 end
18

19 while not converged do
20 for each session smε[1, Ns] do
21 for each record rm,nε[1, Nr] in session sm do
22 for the current record rm,n assigned to topic k: S = η(k, rm,n.w)

23 Decrease counter: nk
m − S, nm − S, nw

k − S, nk − S
24 � sample a new topic k′ ∼ p(zi = k′|z¬i,w, c), S = η(k′, rm,n.w)

25 Increase counter: nk′
m + S, nm + S, nw

k′ + S, nk′ + S

26 for each feature-value pair pε[1,Np] in record rm,n do

27 Increase counter: np
k′ + S, nf

k′ + S, np + S
28 end
29 end
30 end
31 end

4.2 Experimental Setup

In the experiment, we evaluate four models which are described below.

– TM (Text-based Model) is the baseline of our experiment. The text-based
model utilizes query text to build a LDA model for mining users’ activities.

– CM (Context-based Model) is proposed by Bao et al. [3] to mine mobile
users’ activity patterns based on context information.

– TCUAM (Text and Context-basedUser ActivityModel) is an unconstrained
approach proposed in this paper to model users’ activities by using text and
context information collaboratively.

– CTCUAM (Constrained TCUAM) is a constrained model which uses ex-
ternal knowledge of topic-word relationship to guide the TCUAM model.

In order to get a fair comparison of the models above, we adopt the same session
segmentation method for all the models. Records are segmented into sessions
by time information. Each session contains the records within a time span of
30 minutes. In addition, the number of topics in all the models is set to be 200
experimentally.
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Table 4. Feature Information

Data type Feature Feature-Value Range
Text Information N/A free query, pre-assigned query

Date 05/01/2010, 05/02/2010, 05/03/2010... 12/31/2010
Day Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday, Sunday
Time Information WorkdayOrWeekend Workday, Weekend

Period Early Morning, Morning, Noon, Afternoon, Evening
Night1, Night2

Time 01 : 00 ∼ 02 : 00, 02 : 00 ∼ 03 : 00 ... 23 : 00 ∼ 00 : 00
GPS Longitude and Latitude
CityName Glendale, San Diego, Rosemead, Los Angeles, Dublin...

Location Information PostalCode 92128, 92880, 91361, 92107, 94804, 91737 ...
SurroundingType None, Colleges & Universities, Natural Gas Services...
PlaceType Home, Workplace, Other

4.3 Evaluation

The goal of our experiment is to examine whether users’ activity patterns can be
mined correctly from mobile logs. Unfortunately, it is difficult to identify auto-
matically whether the result patterns make sense or not. Therefore, we examine
the result topics produced by each model manually and assign each topic a score.
The score is given according to the following rules:

– 5: It is a perfect pattern and indicates user activity clearly.
– 4: It is a good pattern and can give an overall sense of user activity.
– 3: It is a reasonable pattern and gives some clues of the user activity.
– 2: It is a bad pattern and includes many noises.
– 1: It is a non-sense pattern and difficult to be understood.

The average score (AS) of result topics is calculated after each topic is assigned
a score manually. In our experiment, we use AS as the metric to evaluate the
performances of different models.

4.4 Results

Table 6 shows the results of different models, evaluated by the average score
(AS). We can find out that the worst way to mine user’s activity is the Context-
based Model (CM), whose AS value is 1.995. It indicates that only context
information is not enough to determine users’ actual activities. The Text-based
Model (TM) achieves 2.295 for AS value, which shows that the text informa-
tion is more informative than the context information. By using text and context
information simultaneously, the TCUAM model achieves 2.545 for AS value (im-
proving 27.6% from Context-based Model and 10.9% from Text-based Model).
Therefore, the text information and context information can be utilized collab-
oratively to benefit the activity mining approaches. The Constrained TCUAM
model enhances the performance further by 11.8%, achieving an AS value of
2.845. Moreover, the knowledge used in the constrained model is easy to be col-
lected. Thus, the constrained model can mine user activity topics more precisely
without taking too much human efforts.
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Table 5. Knowledge of Text Information

Shopping Legal & Finance Education Travel
tanger bank middle airline
store union school hotel
deb stock university airtran
outlet credit college cathay
hollister financial institution hyatt
Arts & Entertainment Automotive & Vehicles Business to Business Home & Family
cinemark toyota store badcock
cinema ford hollister arien
theater tire suntrust dyson
imax honda levi home
krikorian dodge graco rug
Government Sports & Recreation Health & Beauty Food & Dining
library yankee hospital restaurant
court coach doctor steakhouse
ccap dodger medical pizza
park sporting alzheimer burger
civil dunham sentara chili
Professionals & Services Computers & Technology Real Estate & Construction
oregonian sony apartment
kinko garmin region
fimserve safelink hotel
kroger logmein blum
train gps comerica

Table 6. Comparison of Models

Model 5 4 3 2 1 Sum AS
TM 2 16 58 87 37 200 2.295
CM 3 11 31 92 63 200 1.995
TCUAM 7 29 57 80 27 200 2.545
CTCUAM 10 42 74 55 19 200 2.845

Table 7. Examples of activity topics

Text Information IsRelevant Text Information IsRelevant
f stock Yes cocktail lounges Yes
ewbc stock Yes sports bars Yes
culos de caseras Yes night clubs Yes
caty stock Yes restaurants No
twitter search No carnivals Yes
coh stock Yes amusement places Yes
cellufun No fairgrounds Yes
games No taverns Yes
monster tits No norwalk amc No
dis stock Yes barbecue restaurants No
Context Information IsRelevant Context Information IsRelevant
WorkdayOrWeekend=Workday Yes Period=Evening Yes
PlaceType=Home Yes WorkdayOrWeekend=Weekend Yes
Day=Wendensday Yes Day=Saturday Yes
Period=Morning Yes Day=Tuesday No
Period=Early Morning Yes PlaceType=Other Yes
Day=Tuesday Yes SurroundingType=Food & Dining Yes
SurroundingType=None No Period=Afternoon Yes
Time= 07 : 00 ∼ 08 : 00 Yes Time= 17 : 00 ∼ 18 : 00 Yes
Time= 06 : 00 ∼ 07 : 00 Yes Time= 19 : 00 ∼ 20 : 00 Yes
CityName=Glendale No Time= 18 : 00 ∼ 19 : 00 Yes

4.5 Case Study

To get a further understanding of the Constrained TCUAM model, we select
some examples to demonstrate the results produced by the model. Table 7 shows
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two topics discovered by the model. The “IsRelevant” column gives the human
judgement that whether the text or context is relevant to the topic. It is easy
to infer that the user’s activity is “searching for stock information at home in
the workday morning” for the left case and it is “searching for amusement place
after dinner outside in the weekend” for the right case.

5 Conclusion

In this paper, we propose a text and context-based user activity model to mine
user’s activity patterns from mobile logs. In addition, we introduce a small
amount of external knowledge about topic-word relationship to build a con-
strained TCUAM model. The experiments were carried out on real mobile logs.
The experimental results have indicated that the TCUAM model can yield bet-
ter results, compared with text-only and context-only approaches. We can also
conclude from the results that the constrained TCUAM model performs more
effectively than the unconstrained TCUAM model.
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Abstract. Viral marketing works with a social network as its backbone,
where social interactions help spreading a message from one person to
another. In social networks, a node with a higher degree can reach larger
number of nodes in a single hop, and hence can be considered to be
more influential than a node with lesser degree. For viral marketing with
limited resources, initially the seller can focus on marketing the product
to a certain influential group of individuals, here mentioned as core. If k
persons are targeted for initial marketing, then the objective is to find
the initial set of k active nodes, which will facilitate the spread most
efficiently. We did a degree based scaling in graphs for making the edge
weights suitable for degree based spreading. Then we detect the core
from the maximum spanning tree (MST) of the graph by finding the top
k influential nodes and the paths in MST that joins them. The paths
within the core depict the key interaction sequences that will trigger the
spread within the network. Experimental results show that the set of k
influential nodes found by our core finding method spreads information
faster than the greedy k-center method for the same k value.

Keywords: spread of information, social network analysis, maximum
spanning tree, k -center problem.

1 Introduction

1.1 Motivation

A social network is a graph that represents relationships and interactions be-
tween a group of individuals. It acts as a medium through which information,
innovations and influence spread among its members. An idea forked up from a
community or an individual can either disappear with passage of time or influ-
ence a significant number of members in the network. For industry-based market
analysts, the most interesting feature about a social network is that when people
start recommending a new product to their friends, the product gains popularity
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very quickly. The strategy of marketing a product by targeting a small number
of individuals, which trigger brand awareness [1] among all the members of the
network through self-replicating viral diffusion of messages, is known as viral
marketing [2,3,4]. Viral marketing can be much more cost effective than tradi-
tional methods since it employs the customers themselves to accomplish most
of the promotional effort. Further, as people trust recommendations from their
friends more than the manufacturing company itself, viral marketing pays off
handsomely. The only challenge we face while utilizing word-of-mouth [5,6] ad-
vertisement is that we need to pick out a set of customers that maximizes the
information flow within a network. For example, suppose we have a social net-
work where the extent to which individuals influence one another is known and
we want to endorse a new product in the network. We have a limited budget
which is sufficient to convince at most k members to adopt the product. These
k members of the network having the information are referred to as the initial
active node set S and the rest of the nodes, who do not have the information
yet, are called inactive nodes. The influence spreads from one node to another
with time and the active node set grows (similarly inactive node set decreases)
until further spread is not possible.

The problem mentioned above is known as the influence maximization prob-
lem, which was first introduced by Kempe et al. [7,8] as a discrete optimization
problem. In this paper, we put forward an efficient heuristic which improves
existing algorithms for influence maximization from two complementary direc-
tions. One is to propose a new heuristic that spreads the influence to maximum
number of nodes within minimum amount of time and the second is to improve
the greedy algorithm to further reduce its run-time. In this section we provide a
brief introduction to the problem that we have solved and we also discuss some
of the important works related to spread of information that is relevant to our
work. In the next section, we have discussed our approach for an efficient spread
of information in a network and describe our algorithm elaborately. In the third
section, we have discussed about the experimental results describing the per-
formance of our algorithm compared to pre-existing algorithms, we conclude by
highlighting our contributions in the section thereafter.

1.2 Literature Review

It is a widely accepted fact that with proper choice of influential mediators [9] in-
formation can circulate within the network in minimum time. The optimization
problem of finding such influential nodes in a social network was first introduced
by Domingos and Richardson [2,3]. Motivated by its application in viral market-
ing, Kempe et al. [7,8] studied the influence maximization problem, considering
two fundamental propagation models - linear threshold model (LT) and inde-
pendent cascade model (IC). They showed that influence maximization problem
is NP-hard and a simple greedy algorithm of successively selecting influential
mediators approximates the optimum solution within a factor of (1− 1

e ).
Later, Even-Dar and Shapira extended the study of spread maximization set

problem where the underlying social network behaves like the voter model. In
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their paper [10], they proposed an algorithm that gives an exact solution to the
abovementioned problem, when all nodes have the same cost (cost of introducing
a person to a new technology/product), and also provided a fully polynomial time
approximation scheme for the more general case in which different nodes may
have different costs. Kimura and Saito proposed shortest path based influence
cascade models [11] and provided efficient algorithms to compute spread of in-
fluence under these models. Recently, Kimura et al. [12] proposed an alternative
method for finding a good approximate solution to the influence maximization
problem on the basis of bond percolation and graph theory. Using large-scale
real networks including blog networks they experimentally demonstrated that
the method proposed by them is much more efficient than the conventional
methods.

Another well-studied problem that we refer to in this paper is the k -center
problem [13,14,15,16]. It is defined as a facility location problem where the objec-
tive is to find appropriate locations for the facilities such that maximum distance
from any client to its nearest facility is minimized. A close observation on k -
center problem shows that it is very much similar to the influence maximization
problem, as in both the cases we try to find a set of nodes which facilitate the
service or information spread. In our paper, we show that selecting influentials
based on their degrees can produce even better result than existing algorithms
and that too in much less time. Knowledge of the related works mentioned in this
section gives us an overview of spread of information. However, the algorithm
that we have presented in this paper, approaches the problem differently from
the existing models.

2 Maximizing Influence Spread

2.1 Problem Definition

Assuming each member of a social graph spreads information to its neighbors
with probability 1, we aim at solving the following problem,

Problem 1: Given a social network graph G = (V,E) with a weight vector
W indicating the extent to which individuals influence one another, find a set S
of influential mediators of cardinality at most k, such that the objective function
is defined as,

r = max
v∈V

d(v, S) (1)

and is minimized where,

d(v, S) =
k

min
i=1

d(v, si) (2)

and d(a, b) is the shortest distance between nodes a and b.

2.2 Our Approach

In this paper, our primary objective is to find an initial set of active nodes
in a social graph which maximizes propagation of a new innovation within the
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Fig. 1. Correlation between the degree of nodes in a network and the time it takes
to spread the information throughout the network (AS relationship data, with 6474
nodes and 13895 edges), if the spread is simulated assuming that initial active node
set consists of that node only

network in minimum time. For example, adoption of new drug within the med-
ical profession, use of cell phone among school students, etc. For a social graph
G = (V,E), we consider the problem of finding a subgraph Gc = (Vc, Ec), where
Vc ⊆ V and Ec ⊆ E, through which maximum information flow is likely to
happen. We define this region as core of the graph. Initially we scale the weight
of an edge e ∈ E, by the average of the degrees of the two nodes connected to
e. Based on the notion that greater the degree of a node, higher the influence
it imparts on the social network due to its ability to reach greater number of
nodes (refer to Fig 1). It is desirable to use the edges that are incident on nodes
having higher degree. Hence we use this average degree value as a multiplicative
factor to the existing edge weights. In case of unweighted graphs, initial edge
weights for all edges are taken to be 1 and for weighted graphs, some existing
edge weights are assumed to be provided. These initial edge weights have been
denoted as weightold(eij) in equation 3. The basic idea is to include high-degree
nodes within the initial active node set, so that reachability to other nodes within
one hop is maximized from the very first step of the spread. Hence, it is also
important to track the interactions or the edges between nodes with high influ-
ence. To track such edges, we define an objective function to scale the weight of
each edge of the graph with the average degree of the nodes connected by that
edge.

Definition 1: Given a social network graph G = (V,E), where ∀eij ∈ E,
eij denotes an unordered pair of nodes (vi, vj), and vi, vj ∈ V . We denote the
existing weight of eij by weightold(eij), and then we define the revised weight of
an edge to be

weight(eij) = weightold(eij)×
degree(vi) + degree(vj)

2
(3)
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After scaling the edge weights of the graph, we aim to find the maximum cost
spanning tree of the weighted graph. This problem is same as finding a minimum
cost spanning tree of an isomorphic graph Giso that has a one to one mapping for
all the nodes and edges in G, where the edge weights are of same absolute value
but with negative signs. Prim’s algorithm for finding minimum cost spanning
tree is quite popular and is used on Giso. This minimum cost spanning tree
generated from Giso gives us the tree, which can be re-mapped to the labels in
G and hence the maximum cost spanning tree of G can be found.

The above representation gives us edge weights based on the influence of the
nodes. The function used for defining weights of the edges was motivated by the
fact that finding a maximum spanning tree from the weighted graph would give
us the path by which a node is connected to its neighbor with highest degree.
Hence the maximum spanning tree would generate the path that is most likely
to be followed if the influence starts to spread from the nodes with highest degree.

Definition 2: The maximum spanning tree of a graph G is a connected subgraph
GT = (V,ET ), where ET ⊆ E and ∀eTi ∈ ET ,

|ET |∑
i=1

weight(eTi) ≥
|Ek|∑
i=1

weight(eki) (4)

for any Ek, where Ek ⊆ E and ∀eki ∈ Ek, forming a spanning tree. The
edge weights here essentially denote the strength of interactions between adja-
cent nodes. So, we essentially scale the existing weight based on the topological
structure of the graph and include the significance of the degree of vertices
within the edge weights. Attributed graph may have different edge weights for
the same edge based on different features. As for example, in a zonal call graph
of a cellular service provider, interactions between any two users can be judged
by the number of calls or the number of SMSs or some other mode of interac-
tions between them. Strength of such interactions can be judged by the number
of calls/week or number of SMSs/week basis. As long as a single composite edge
weight based on some objective function can be deduced from the edge weights
for each feature, we can also use this method for attributed graphs. However,
the ways of finding such composite edge weights, remains out of the scope of this
paper. If the edge weights are only determined by some apriori information, the
effects of the graph topological structure can be ignored. Hence, in order to take
into account both the externally collected information as well as the knowledge
of the graph topological structure, we scale the initial edge weights to convert
them into new edge weights.

It should be noted that in case of disconnected graphs, if we try to get the
maximum spanning tree, not all the nodes will be included in the tree. So,
it would only be meaningful to pick the largest connected component of the
original graph as the graph, where the spread of information is observed and
find the maximum spanning tree from it. Here, G is considered as the largest
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connected component of the original graph. Usually for social graphs, largest
connected components consist of around 95% (or more) of the nodes in the graph.
After selecting the largest connected component and extracting the maximum
spanning tree from it, we will have a unique path between any pair of nodes.

The maximum spanning tree, at this stage, consists of a subset of the edge set
E using which maximum amount of information flows, but it still consists of all
the nodes as in V. For social graphs with fairly large number of actors(nodes),
influencing all the nodes immediately requires huge marketing expenses. So, our
objective is to select a few nodes with topmost degrees of the network, target
to market the product to those influential nodes so that they could spread the
influence in as less number of steps as possible. Finding the core of the graph
provides us with a trade-off between the budget and the time of spread. It does
not require the product to be marketed to everyone i.e, the nodes with lower
influence can be ignored. Hence, this model can work with a restricted budget.
But at the same time instead of influencing everyone in one step, it takes more
number of steps to reach all the nodes in the graph. The number of steps to
reach all or the majority of the nodes needs to be optimized by suitably choosing
the top k influential individuals. We follow some rudimentary graph coarsening
techniques to reduce the number of nodes so that we can follow the behavior
of the cores with various influence limits and become aware of their structures.
In order to coarsen the graph, we pick a certain degree threshold based on the
point where the degree distribution plot of the nodes in V has the least slope.
If the degree threshold is denoted by dth then the final graph that represents
a core for the threshold dth is denoted by Gx = (Vx, Ex) where ∀vxi ∈ Vx,
degree(vxi) ≥ dth. Higher the value of dth, lower will be the cardinality of Vx.

In some cases, where coarsening the graph results in formation of a discon-
nected core, we introduce bridge nodes to join the components. Addition of
bridge nodes in influential node set enhances the chance of knowledge propaga-
tion between influentials and hence different communities and thereby increases
the spread within the network [17]. Influential nodes may exist in disjoint clus-
ters in different parts of the network. In that case, these bridge nodes work as
brokers of information from one of those clusters to another. For example, in
ancient or medieval age epidemic break-outs stayed within a geographic location
as communication between geographic regions was restricted, therefore restrict-
ing the brokers. But recently, during spread of swine flu, which generated from
Mexico, some individuals (here brokers) helped its spread to even geographically
distant locations like eastern Asia. Intuitively, these brokers should have higher
edge betweenness values than other nodes in the network.

Note that, in this model we are assuming that a node, who gets activated at
time-stamp t, always transmits the information to its neighbors and the inactive
neighbors accept the information to become activated at time-stamp t+1. If ac-
ceptance of information by the neighbors becomes probabilistic, then the model
becomes probabilistic too. We plan to follow-up this work with a probabilistic
model of influence spread using the core as a seed for the spread.
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2.3 Detecting the core

In this section, we explain the algorithm for finding the core, as defined in
the previous section. Given the graph G and modified weight vector W we find
the core Gc using this algorithm. In line 1, we use Prim’s algorithm to find the
maximum spanning tree and store it as GT . The vertex and edge set of Gc are
initialized in line 3. In lines 4-13, we get the nodes with degree value higher than
degree threshold(dth) and connect the maximum spanning tree edges between

Algorithm 1. Detecting the core of a graph

Input : G(V ,E) the social network, weight(eij) ∈ W,∀eij ∈ E
Output: The core Gc = (Vc, Ec)

1 GT (V,ET ) ← MSTPrim(G,weightij)
2 //MSTPrim(G,weightij) finds the maximum spanning tree of G using Prim’s

algorithm
3 Vc ← ∅, Ec ← ∅
4 for each vertex v ∈ V do
5 if degree(v) ≥ dth then
6 then Vc ← Vc ∪ {v}
7 end

8 end
9 for each vertex eij ∈ ET do

10 if u, v ∈ Vc then
11 then Ec ← Ec ∪ {eij}
12 end

13 end
14 // In MST, path between any pair of nodes vi, vj gives us a tree, defined as

Gpath(i,j) = (Vpath(i,j), Epath(i,j))
15 Gcc ← DepthF irstSearch(Gc)
16 // If Gc is disconnected, let Gcc = {Gcc1 ∪Gcc2 ∪Gcc3 ∪ ... ∪Gccp}, where

Gcci = (Vcci, Ecci)
17 // Given i, j, where i < j, vi ∈ Vcci, vj ∈ Vccj , Gcci, Gccj ∈ Gcc

18 repeat
19 foreach pair Gcci, Gccj ∈ Gcc do
20 if ∃k, Vcck ⊆ Vcc and ∃vl � vl ∈ Vcck, Vpath(i,j), vl /∈ Vcci, Vccj then
21 Vcci ← Vcci ∪ Vccj ∪ Vpath(i,j) ∪ Vcck1 ∪ Vcck2 ∪ ... ∪ Vcckr

22 Ecci ← Ecci ∪Eccj ∪Epath(i,j) ∪Ecck1 ∪Ecck2 ∪ ... ∪Ecckr

23 Vcc ← Vcc − Vccj − Vcck1 − Vcck2 − ...− Vcckr

24 Ecc ← Ecc − Eccj − Ecck1 − Ecck2 − ...− Ecckr

25 else
26 Vcci ← Vcci ∪ Vccj ∪ Vpath(i,j)

27 Ecci ← Ecci ∪Eccj ∪Epath(i,j)

28 Vcc ← Vcc − Vccj

29 Ecc ← Ecc − Eccj

30 end

31 end

32 until Gcc consists of only Gcc1;
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them. In this way, we get the influential nodes but the broker nodes are yet to be
accounted for. Also, such that the core at this stage may be disconnected. So we
run depth first search (DFS) on Gc and store the components in Gcc. In essence,
Gc and Gcc are same. If Gc is disconnected, then Gcc would be union of multiple
disjoint graph components. In lines 18-32, we keep merging the components until
one single connected component is produced. In this process, for all pair of com-
ponents we select any node from each of them and try to find the path between
them from ET . While adding, any node external to Vc might be added. Note
that the path between the two components may go through other components.
In those cases, all these components are merged into one. The process contin-
ues until Gc becomes one connected component. Due to the use of maximum
spanning tree for its generation, the final core turns out to be a tree (refer to
Fig 2 and Fig 3). The run-time of the algorithm is dominated by the step where
Prim’s algorithm (using binary heap) is being called i.e. O(|E|log|V |).

(a) Dolphin network
with 62 vertices and 159
edges

(b) Maximum spanning
tree of Dolphin network

(c) Core of Dol-
phin network,
with k = 7

Fig. 2. Diagrams of the original dolphin interaction network, its maximum spanning
tree and core with k=7. The coloring of nodes depicts communities within the network
and its purpose is to generate a better visualization.

3 Experimental Results

We have tested the quality of influence maximization set generated by our
method on a number of social networks which have been studied by several
authors [18,17,19]. We executed our algorithm for core finding and spread of
information on a desktop PC with 2.0 GHz Intel core duo processor, 3 GB RAM
and LINUX Ubuntu 10.10 OS. We also compared the accuracy of our heuristic
with a popular spread maximization method. For graph visualization we used
Gephi [20], an open source software for exploring and manipulating networks.
All the programs developed for experiment purpose, have been written in C++
and was compiled with GNU g++ 4.6.0 compiler.
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(a) AS relationship net-
work with 6474 nodes
and 13895 edges

(b) Maximum spanning
tree of AS relationship
network

(c) Core of AS
relationship net-
work, with k = 18

Fig. 3. Diagrams of the smaller AS relationship network, its maximum spanning tree
and core with k=18 (dth=50). The coloring of nodes depicts communities within the
network and its purpose is to generate a better visualization.

Table 1. Core finding method performs better than greedy k -center overall. Higher
the number of k, better the performance of core finding method over k -center method.

Data Number of k Hops to spread information
to 99% of the network nodes
greedy k -center core finding

Zachary’s Karate Club 3 2 2

Dolphin Network 7 4 3

ArXiv GrQc collaboration 9 7 7
6 7 7

AS relationship network (small) 18 4 3
10 4 3
3 4 4

AS relationship network (large) 30 4 3
12 4 4
6 4 4

We have performed the experiments on a total of five different social network
datasets of different size. The first one, is Zachary’s karate club data, a social
network of friendships between 34 members of a karate club at a US university
in the 1970s [18]. The second one is an undirected social network of frequent
associations between 62 dolphins in a community living off a coastal region of
New Zealand. The third dataset, GR-QC (General Relativity and Quantum Cos-
mology) collaboration network, is from the e-print arXiv and covers co-author
relationships between scientists, who submitted their papers to the General Rel-
ativity and Quantum Cosmology category between 1993 to 2003. It consists
of 5242 nodes and 28980 edges. The other two datasets are, AS-relationship
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(a) Spread using k -center (b) Spread using core

Fig. 4. Visual representation of the spread of information in the dolphin interaction
network. Initial active node set is denoted by blue colored nodes. The nodes getting the
information at first hop are colored green/cyan, the nodes at second hop are colored
yellow, the nodes at third hop are colored pink and the nodes getting the information
at the fourth and final step are colored white.

datasets from CAIDA website [19]. AS-relationships are important for routing
policies and has implications on network robustness, traffic engineering, macro-
scopic topology measurement strategies. We use two AS-relationship datasets
of different size, to observe how our algorithm performs on network of similar
structure but of different size. One of these two datasets has 6474 nodes and
13895 edges and the other has 16301 nodes and 32955 edges.

We have compared our method with k -center problem, which is also a facility
location problem and distributes the facilities within the network in such a way
so that the maximum distance from all the nodes to its nearest facility is min-
imized. This is essentially another way to model the spread where the facility
locations could be selected for initiating the spread. For all the instances of our
experiments, we have seen that the core finding method works faster or at least
as fast as the greedy solution for the k -center problem. In core finding, value
of k is determined by dth. From Table 1, it seems that with higher value of k,
core finding performs better than the greedy solution for the k -center problem.
Comparative performance between these two methods for some k and dth com-
binations using all five datasets have been shown in Table 1, Fig 4 and Fig 5. An
important observation from the experimental results is that, even if we increase
the value of k, number of steps to reach the information to 99% of the nodes
in the network does not necessarily reduce. Say, due to budget constraints, we
want to choose k to be 7. Based on input value of k, say, by using the algorithm,
we get the number of hops to reach every node in a network from its core to be
4. From another observation, we may also get to see that in that same network



Spread of Information in a Social Network Using Influential Nodes 131

(a) Rate of spread in ArXiv GrQc
collaboration network

(b) Rate of spread in AS relation-
ship network (large)

Fig. 5. Comparative study between the rates of spread of information using k-center
method and core finding method, in CA-GrQc and AS-relationship(large) datasets

we can achieve the spread to all nodes with 4 hops for k=5 too. In that case, we
need to find the lowest value of k for which the number of hops still remain the
same as in case of the input k value. In such a situation, remaining within the
budget constraints, no faster spread will be possible but it will be possible that
not all the budget will be used up for initial marketing or creating the initial
active set of nodes. Hence, a lower number of nodes may also be able to spread
the information in same time. We want to extend our work by efficiently finding
the lowest k values for all set of hops.

4 Conclusion

In this paper, we have presented an efficient method for spread of information by
selecting the influential nodes based on degree. We have proposed a technique
of scaling existing edge weights based on the degree of the two nodes on which
the edge is incident. Using the new scaled edge weights, we have proposed a
method to find an important set of nodes from the network and have named it
as core. We have selected this core as the seed or the initial set of active nodes
for the spread of information and have shown that the spread using the core
works faster than greedy k -center method.
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Abstract. We propose a model of coverage patterns and a methodology to ex-
tract coverage patterns from transactional databases. We have discussed how the
coverage patterns are useful by considering the problem of banner advertisements
placement in e-commerce web sites. Normally, advertiser expects that the banner
advertisement should be displayed to a certain percentage of web site visitors. On
the other hand, to generate more revenue for a given web site, the publisher has to
meet the coverage demands of several advertisers by providing appropriate sets
of web pages. Given web pages of a web site, a coverage pattern is a set of pages
visited by a certain percentage of visitors. The coverage patterns discovered from
click-stream data could help the publisher in meeting the demands of several ad-
vertisers. The efficiency and advantages of the proposed approach is shown by
conducting experiments on real world click-stream data sets.

Keywords: Click stream mining, online advertising, internet monetization, com-
putational advertising, graphical ads delivery.

1 Introduction

We have proposed a model of data mining pattern, called, “coverage patterns” and a
methodology to discover coverage patterns from transactional databases. Given a set of
data items, a coverage pattern is a set of non-overlapping data items covered by a certain
percentage of transactions. An Apriori-like algorithm [1] called CMine is proposed for
mining coverage patterns.

In the literature, the notion of coverage is being used for solving the set cover prob-
lem [2] in set theory and node cover problem [3] in graphs respectively. In [4], the
notion of coverage and overlap is used to examine the creation of a tag cloud for ex-
ploring and understanding a set of objects. In [5], the notion of coverage and overlap is
used to solve the problem of topical query decomposition. In this paper, we have pro-
posed a different kind of knowledge patterns. The proposed patterns can be employed
in improving the performance of several applications such as banner advertisements.

The research in this paper is motivated with the problem of banner advertisement
placement. The background and problem description is as follows.

Banner advertising is one of the dominant modes of online advertising, in addition to
the contextual and sponsored search advertising. A banner advertisement is described as
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a hypertext link that is associated with a box containing graphics which is redirected to
a particular web page when a user clicks on the banner [6]. The following three entities
are involved in banner advertising: advertiser, publisher and visitor. An advertiser is
interested in endorsing products through banner advertisements. A publisher manages
a web site or an advertisement network that sells banner advertisement space. Finally, a
visitor visits the web pages of a web site which contains banners.

An advertiser has the goal of spreading his/her advertisement to a certain percentage
of people visiting a web site. The goal of the publisher is to make more revenue by effi-
ciently using the advertising space available in the web pages of a web site and meeting
the demands of multiple advertisers. For a given web site and period, one can analyse
the visitors’ behaviour by processing the transactions generated based on click stream
dataset and identify the sets of web pages that cover a given percentage of visitors’ pop-
ulation. However, the research issue here is to investigate the approaches for discovering
the sets of web pages which can cover a given percentage of visitors’ population based
on transactions extracted from the click stream data.

Most of the research work on online advertisement has been focused on auction
models [7], keyword or phrase identification based on user queries [8], contextual ad-
vertising [9] and allocation and scheduling of advertisements [10]. To our knowledge,
not much amount of research work has been carried out on improving the options of-
fered by the publisher to the advertisers.

The proposed model of coverage patterns could help the advertiser by making his
advertisement visible to a certain percentage of web site visitors. With the proposed
approach, it is possible to ensure that the publisher can meet the demands of multi-
ple advertisers by considering several groups of potential pages. Through experimental
results on the real world datasets we show that the proposed model and algorithm is
efficient. It has a potential to improve the performance of banner advertisement place-
ment.

A preliminary approach was presented in [11] to extract coverage patterns for banner
advertisement placement. In this paper we have elaborated the model and presented a
formal model of coverage patterns. We also proposed an efficient algorithm to extract
complete set of coverage patterns and conducted experiments.

The rest of this paper is organized as follows: In section 2, we propose the model and
approach to extract coverage patterns. In section 3, we present experimental results. In
the last section, we present the conclusion and future work.

2 Model of Coverage Patterns

In this section, we first explain the model of coverage patterns. Next, we discuss the
computational issues involved in extracting coverage patterns and explain how the no-
tion of sorted closure property can be exploited for efficient extraction of coverage
patterns. Subsequently, we present the algorithm to extract coverage patterns.

2.1 Coverage Patterns

As already mentioned, we identify the issue of banner advertisement placement as one
of the potential application of coverage patterns. For a given e-commerce web site, the
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transactions generated from click stream dataset can be used to identify the sets of web
pages that cover a given percentage of visitors’ population. Such a knowledge could
be used to place the banner advertisements assuming similar visitors’ behaviour. The
related issues will be investigated as a part of future work.

To present the model of coverage patterns, we consider transactions generated from
click stream data of a web site. However, the model can be extended to any transactional
data set.

The basic terminology is as follows: Let W = {w1, w2, · · · , wn} be a set of iden-
tifiers of web pages and D be a set of transactions, where each transaction T is a set
of web pages such that T ⊆ W . Associated with each transaction is a unique trans-
actional identifier called TID. Let Twi , wi ∈ W be the set of all TIDs in D that
contain the web page wi. A set of web pages X ⊆ W i.e., X = {wp, · · · , wq, wr},
1 ≤ p ≤ q ≤ r ≤ n, is called the pattern. A pattern containing k number of web pages
is called a k-pattern. In other words, the length of k-pattern is k.

Example 1. Consider the transactional database shown in Table 1. It contains 10
transactions. The set of pages, W = {a, b, c, d, e, f}. The TIDs containing the web
page ‘a’ are 1, 2, 3, 4 and 10. Therefore, T a = {1, 2, 3, 4, 10}. The set of web pages
‘a’ and ‘b’ i.e., {a, b} is a pattern. Since there are two web pages in this pattern it is a
2-pattern.

Table 1. Transactional database

TID 1 2 3 4 5 6 7 8 9 10
Pages a, b, c a, c, e a, c, e a, c, d b, d, f b, d b, d b, e b, e a, b

The percentage of transactions in D that contain the web page wi ∈W is known as the
“relative frequency of a web page wi ∈W ” and denoted as RF (wi).

Definition 1. (Relative frequency of a web page wi ∈ W .) Let |Twi | indicates the
total number of transactions that contain wi. The relative frequency of wi is denoted as
RF (wi). That is, RF (wi) =

|Twi |
|D| .

Note that from the advertisement point of view the pages that are visited by more num-
ber of users are interesting. We capture this aspect with the notion of frequent page.
The frequent web pages are web pages which have relative frequency no less than the
user-specified threshold value, called minimum relative frequency.

Definition 2. (Frequent web page.) A web page wi ∈ W is considered frequent if
RF (wi) ≥ minRF , where minRF is the user-specified minimum relative frequency
threshold.

Example 2. Continuing with the example, the relative frequency of ‘a’ i.e., RF (a) =
|Ta|
|D| = 5

10 = 0.5. If the user-specified minRF = 0.5, then ‘a’ is called a frequent web
page because RF (a) ≥ minRF .
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Next, we capture the notion that given a set of web pages how many users visit at least
one web page in the set. It means that if we place an advertisement on all pages in the
set it will guarantee the delivery of advertisement to the users who visit atleast one page.
This aspect is captured through the notion of coverage set.

Definition 3. (Coverage set of a pattern X = {wp, · · · , wq, wr}, 1 ≤ p ≤ q ≤ r ≤ n.)
The set of distinct TIDs containing at least one web page of X is called the coverage
set of pattern X and is denoted as CSet(X). Therefore, CSet(X) = Twp∪· · ·∪Twq∪
Twr .

A pattern will be interesting if its coverage set contains more than a threshold number
of transactions. This aspect is captured through the notion of coverage support.

Definition 4. (Coverage-support of a pattern X .) The ratio of size of coverage set of
X to the transactional database size is called the coverage-support of pattern X and is
denoted as CS(X).

CS(X) =
|CSet(X)|
|D| . (1)

Example 3. The set of web pages ‘a’ and ‘b’ i.e., {a, b} is a pattern. The set of tids con-
taining the web page ‘a’ i.e., T a = {1, 2, 3, 4, 10}. Similarly, T b = {1, 5, 6, 7, 8, 9, 10}.
The coverage set of {a, b} i.e., CSet({a, b}) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Therefore,
coverage support of {a, b} i.e., CS({a, b}) = |CSet({a,b})|

|D| = 10
10 = 1.

For a pattern X , CS(X) ∈ [0, 1]. If CS(X) = 0, no single web page of X has appeared
in the entire transactional database. If CS(X) = 1, every transaction in T contains at
least one web page wj ∈ X .

It can be noted that once a pattern X has certain coverage-support, then adding other
web pages in particular web pages co-occurring with any of the web pages belonging
to X to that pattern may not increase the coverage support significantly. From the ad-
vertisement point of view, such a pattern can be uninteresting to the advertiser. This is
because the same users visit the web pages as there is an overlap of coverage set of X
and coverage set of new single web page pattern.

Example 4. In the transactional database shown in Table 1, T {a} = {1, 2, 3, 4, 10}
and T {c} = {1, 2, 3, 4}. The coverage-support of {a, c} i.e., CS({a, c}) = 5

10 = 0.5.
If user-specified minCS = 0.5, then {a, c} is an interesting pattern. However, this
pattern is uninteresting as the pattern ‘c’ has not increased coverage-support of the
pattern ‘a’.

To capture this aspect, we introduce the notion overlap ratio of the pattern.

Definition 5. (Overlap ratio of a pattern.) Overlap ratio of a pattern X =
{wp, · · · , wq, wr}, where 1 ≤ p ≤ q ≤ r ≤ n and |Twp | ≥ · · · ≥ |Twq | ≥ |Twr |, is
the ratio of the number of transactions common in X − {wr} and {wr} to the number
of transactions in wr. It is denoted as OR(X) and is measured as follows.

OR(X) =
|(Twp ∪ · · · ∪ Twq ) ∩ (Twr)|

|Twr | (2)
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For a pattern X , OR(X) ∈ [0, 1]. If OR(X) = 0, there exists no common transactions
between X − {wr} and {wr}. If OR(X) = 1, wr has occurred in all the transactions
where at least one web page wj ∈ (X − {wr}) has occurred.

Example 5. Continuing with Example 3, the OR({a, b}) = |CSet(b)∩CSet(a)|
|CSet(a)| = 2

5 =
0.4.

Note that a coverage pattern is interesting if it has high coverage support and low over-
lap ratio. As a result an advertisement is exposed to more number of users by reducing
repetitive display of the advertisement. The definition of coverage pattern is as follows.

Definition 6. (Coverage pattern X .) A pattern X is said to be a coverage pattern if
CS(X) ≥ minCS, OR(X) ≤ maxOR and RF (wi) ≥ minRF , ∀wi ∈ X . The
variables, minCS and maxOR represent user-specified minimum coverage support
and maximum overlap ratio, respectively. A coverage pattern X having CS(X) = a%
and OR(X) = b% is expressed as

X [CS = a%, OR = b%] (3)

Example 6. If minRF = 0.4, minCS = 0.7 and maxOR = 0.5, then the pattern
{a, b} is a coverage pattern. It is because RF (a) ≥ minRF , RF (b) ≥ minRF ,
CS({a, b}) ≥ minCS and OR({a, b}) ≤ maxOR. This pattern is written as follows:

{a, b} [CS = 1 (= 100%), OR = 0.4 (= 40%)]

Problem statement: Given a transactional database D, set of web pages W , and user-
specified minimum relative frequency (minRF ), minimum coverage support (minCS)
and maximum overlap ratio (maxOR), discover complete set of coverage patterns such
that

i. If X is a coverage 1-pattern (i.e., k = 1), then RF (wi) ≥ minRF and RF (wi) ≥
minCS, ∀wi ∈ X .

ii. Otherwise (i.e., when k > 1), each coverage pattern X must have CS(X) ≥
minCS, OR(X) ≤ maxOR and RF (wi) ≥ minRF , ∀wi ∈ X .

2.2 Mining Coverage Patterns

A naive approach to find the complete set of coverage patterns for a dataset consisting
of n web pages is to generate all possible (2n − 1) combinatorial patterns (CP) from n
web pages. Now, each pattern in CP is added to the coverage pattern set if it satisfies
minCS,minRF and maxOR constraints. The problem with this approach is, if n
is large the search space will be large leading to high computational cost. The search
space can be reduced if the coverage pattern satisfies downward closure property on
either coverage support or overlap ratio.

Our analysis on coverage patterns states that the measure coverage support does not
satisfy downward closure property. That is, although a pattern satisfies minCS, it is
not necessary that all its non-empty subsets will also satisfy minCS value.
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Example 7. Consider the patterns {a}, {e} and {a, e}. The coverage supports of these
patterns are 0.5, 0.4 and 0.7, respectively. If the user-specified minCS = 0.7, then
the pattern {a, e} satisfies minCS value. However, its non-empty subsets do not satisfy
minCS value.

The parameter overlap ratio also does not satisfy downward closure property if a pat-
tern is considered as an unordered set of web pages. However, this measure satisfies
downward closure property if a pattern is an ordered set, where web pages are sorted
in descending order of their frequencies. This property is known as the sorted closure
property [12].

Property 1. If X ⊂ Y , then CSet(X) ⊆ CSet(Y ).

Property 2. Sorted closure property: Let X = {wp, · · · , wq, wr} be a pattern such
that RF (wp) ≥ · · · ≥ RF (wq) ≥ RF (wr) and 1 ≤ p ≤ q ≤ r ≤ n. If OR(X) ≤
maxOR, all its non-empty subsets containing wr and having size k ≥ 2 will also have
overlap ratio less than or equal to maxOR.

Rationale: Let wa, wb and wc be the web pages having RF (wa) ≥ RF (wb) ≥
RF (wc). If OR(wa ∪wc) > maxOR, then OR({wa ∪wb}∪wc) > maxOR because
from Property 1

|CSet(wa) ∩ CSet(wc)|
|CSet(wc)|

≤ |CSet({wa ∪ wb}) ∩ CSet(wc)|
|CSet(wc)|

(4)

Definition 7. (Non-overlap pattern X .) A pattern X is said to be non-overlap if
OR(X) ≤ maxOR and RF (wi) ≥ minRF , ∀wi ∈ X .

Every coverage pattern is a non-overlap pattern, however it is not the same vice versa.
The sorted closure property of non-overlap patterns is used for minimizing the search
space while mining complete set of coverage patterns by designing an algorithm similar
to the Apriori algorithm [1]. The detailed algorithm for mining the complete coverage
patterns is given in next subsection.

2.3 Coverage Pattern Extraction Algorithm

We use the following notations. Let F be a set of frequent items, Ck be a set of can-
didate k-patterns, Lk be a set of coverage k-patterns and NOk be a set of non-overlap
k-patterns. The proposed algorithm CMine employs a level-wise search to discover the
complete set of coverage patterns. In level-wise search, k-patterns are used to explore
(k+1)-patterns. The proposed CMine algorithm is different from Apriori algorithm [1]
used for mining frequent patterns. The main reason is as follows: Frequent patterns sat-
isfy downward closure property. Therefore, Apriori algorithm uses frequent k-patterns
to explore (k + 1)-patterns. CMine cannot explore (k + 1)-patterns with coverage k-
patterns as coverage patterns no longer satisfy downward closure property.
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The detailed description of the algorithm is as follows: The algorithm CMine begins
with a scan of the database and discovers set of all frequent web pages (denoted as F )
and coverage 1-patterns (denoted as L1). Non-overlap 1-patterns (denoted as NO1) will
be the set of all frequent 1 web pages. Next, web pages in NO1 are sorted in descending
order of their frequencies. This is an exception from Apriori algorithm [1] that has to
be carried out in CMine algorithm to efficiently mine coverage patterns. Each web page
wi ε NO1 is of the form < wi, T

wi > where Twi denote set of transaction ids which
contain the web page wi. Using NO1 as a seed set, candidate patterns C2 are generated
by combining NO1 � NO1. From C2, the patterns that satisfy minCS and maxOR
are generated as coverage 2-patterns, L2. Simultaneously, all candidate 2-patterns that
satisfy maxOR are generated as non-overlap 2-patterns NO2. Since overlap patterns
satisfy sorted closure property, C3 is generated by combining NO2 � NO2. From
C3, L3 and NO3 are discovered. At each level ‘k’, a two-step process is followed,
consisting of join and prune actions [13].

1. The join step: To find Lk, a set of candidate k-web page sets Ck is generated by
joining NOk−1 with itself. Let l1 and l2 be web page sets in NOk−1. Note that the
members of NOk−1 are join-able if their first (k − 2) web pages are in common.

2. The prune step: Ck is a superset of Lk, that is, its members may or may not be
coverage patterns, but all of the coverage k-web page sets are included in Ck. The
number of k-web page sets in Ck, however, can be huge, and so this could involve
heavy computation. To reduce the size of Ck , the Sorted closure property of non-
overlap patterns is used as follows. Any (k − 1)-web page set that is not satisfying
the overlap ratio cannot be a subset of a non-overlap k-web page set. Hence, if any
(k − 1)-ordered subset of a candidate k-web page set is not in NOk−1, then the
candidate cannot be a non-overlap pattern either and so can be removed from Ck.
This pruning step is used to reduce the search space.

The above process is repeated until no new coverage pattern is found or no new candi-
date pattern can be generated.

The proposed algorithm uses bitwise operations to find the complete set of coverage
patterns. So, a single scan of the database (to find the bit strings for all single web
page sets) is sufficient for the algorithm to find the complete set of coverage patterns.
Generation of bit strings for larger web page sets and computation of CS, OR for a
web page set can be carried out by using simple bitwise AND and OR operations which
makes the algorithm computationally very fast.

We now explain the working of CMine algorithm using the transactional database,
T , shown in Table 1. There are 10 transactions in this database, that is, |T | = 10. Let
the user-specified minRF , minCS and maxOR be 0.4, 0.7 and 0.5, respectively. The
column titled Bitstring represents binary representation of coverage set of pattern i. For
example, the bit string corresponding to the pattern ”{b,a}” is ”1111111111”. This im-
plies that every transaction of T contains either b or a or both. For binary representation
of TID’s, union of coverage sets of two patterns is equal to boolean OR operation of cor-
responding bit strings. Similarly, intersection of coverage sets of two patterns is equal
to boolean AND operation of corresponding bit strings. We use Figure 1 to illustrate
the CMine algorithm for finding coverage patterns in T .
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Fig. 1. Working of CMine algorithm. The term ‘I’ is an acronym for item set.

i. The algorithm CMine scans all the transactions to generate bit string Bwi and rel-
ative frequencies (RF ) of each web page wi ε T . RF (wi) = |Bwi |

|T | . |Bwi | denotes
the number of 1’s in the bit string. Each web page, wi ε T is a member of the set of
candidate 1-pattern, C1.

ii. From C1, the set of coverage 1-patterns, L1, are discovered if their frequencies
are greater than or equal to minCS. Simultaneously, set of non overlap 1-patterns,
NO1, are discovered if candidate 1-patterns have relative support greater than or
equal to minRF and finally the web pages in NO1 are sorted in the decreasing
order of their frequencies.

iii. To discover the set of coverage 2-patterns, L2, the algorithm computes the join of
NO1 � NO1 to generate a candidate set of 2-patterns, C2.

iv. Using Equation 1, coverage support of each candidate pattern is computed by

boolean OR operation. For example, CS(b,a) = |Bb∨Ba|
|T | = |1111111111|

10 = 10
10 =1.0.

Next, overlap ratio for each candidate pattern is computed by boolean AND oper-

ation. For example, OR(b,a) = |Bb∧Ba|
|Ba| = |1000000001|

5 = 2
5 =0.4. The columns titled

‘CS’ and ‘OR’ respectively show the coverage support and overlap ratio for the
patterns in C2.

v. The set of candidate 2-patterns that satisfy maxOR are discovered as non-overlap
2-patterns, denoted as NO2. Simultaneously, the set of candidate 2-patterns that
satisfy both minCS and maxOR are discovered as coverage 2-patterns.

vi. Next, C3 is generated by NO2 � NO2. That is, C3 = NO2 � NO2 = {{b, a, c},
{b, a, e}, {b, c, e}, {a, d, e}, {c, d, e}}.
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Fig. 2. Number of patterns generated by CMine algorithm at different minCS and maxOR
values for BMS-POS, Mushroom and T40I10D100K datasets

vii. As in step v, we discover non-overlap 3-patterns, NO3, and coverage 3-patterns,
L3. The algorithm stops as no more candidate 4-patterns can be generated from
non-overlap 3-patterns.

3 Experimental Results

For experimental purposes we have chosen four real world datasets and one synthetic
dataset. The detailed description of the datasets are given below.

i. Kosarak dataset is a sparse dataset with 990,002 number of transactions containing
41,270 distinct items [14].

ii. MSNBC dataset contains data from Internet Information Server (IIS) logs for
msnbc.com and news-related portions of msn.com for the entire day of September,
28, 1999 [15]. Requests are at the level of page category. The number of categories
are 17 and the number of transactions are 989,818.

iii. Mushroom dataset is a dense dataset containing 8,124 transactions and 119 distinct
items [14].

iv. BMS-POS dataset contains click stream data of a dotcom company [14]. The dataset
contains 515,597 number of transactions and 1656 distinct items.

v. The synthetic dataset T40I10D100K is generated by the dataset generator [16]. The
dataset contains 100,000 transactions and 941 distinct items.

The CMine algorithm was written in Java and run with Windows XP on a 2.66 GHz
machine with 2GB memory.
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3.1 Coverage Pattern Generation

The Figure 2(a) shows the number of patterns generated (y-axis) for BMS-POS dataset
for different values of minCS (x-axis) while minRF and maxOR are fixed at the val-
ues 0.01 and 0.7 respectively. It can be observed from the Figure 2(a) that the number
of coverage patterns decrease with the increase in minCS, and more importantly, the
number of patterns generated are very few when minCS is greater than 0.5. In general,
for a given maxOR, coverage support of coverage patterns increases with the length of
the pattern due to the addition of new frequent items. The length of a coverage pat-
tern increases with increasing levels of iteration for generation of candidate itemsets in
CMine algorithm. However for higher levels of iteration due to overlap ratio constraint,
the number of non-overlap patterns generated is decreased. Therefore, the number of
coverage patterns generated having higher coverage support decreases with increasing
minCS. The relation between the number of coverage patterns generated and minCS
which was apparent in Figure 2(a) is also observed for Figure 2(b) and 2(c). It can
also be observed form Figure 2(c) that no coverage patterns are generated for minCS =
0.35. This implies, that maximum threshold of minCS for minRF = 0.03, maxOR = 0.8
for T40I10D100k dataset is 0.35 since no coverage patterns are generated for minCS
greater than 0.35.

The Figure 2(d) shows number of patterns generated (y-axis) for BMS-POS dataset
for different values of maxOR (x-axis) while minRF and minCS are fixed at the values
0.01 and 0.40 respectively. It can be observed from Figure 2(d) that the gradient of the
curve increases linearly from maxOR = 0.1 to 0.4. For maxOR = 0.4, the gradient of
the curve changes and again increases linearly from maxOR = 0.4 to 0.7. However, the
gradient of the curve from maxOR = 0.4 to 0.7 is greater than the curve for maxOR =
0.1 to 0.4. This implies that the number of patterns generated increases with increasing
maxOR value. As the maxOR value is increased, the number of items of the candidate
sets Ci (i =2,3,4...k-1) are increased which will result in increase of number of coverage
patterns generated. Similar to the Figure 2(d), the phenomenon of increase in generation
of coverage patterns with respect to maxOR value is also observed in Figure 2(e) and
2(f). It can be observed form Figure 2(f) that the number of patterns generated become
constant for maxOR≥ 0.30. This implies that no new nonoverlap patterns are generated
for higher levels of iteration for generation of candidate item sets in CMine algorithm
such that coverage patterns extracted from non-overlap patterns have coverage support
greater than 0.225.

3.2 Scalability Experiment

We used Kosarak dataset to conduct scalability experiment. We divided the dataset into
five portions of 0.2 million transactions in each part. We investigated the performance
of CMine Algorithm after cumulatively adding each portion with previous parts and
extracting coverage patterns each time. The values of minRF, minCS and maxOR are
fixed at 0.01, 0.1 and 0.5 respectively. The experimental results are shown in Figure 3.
It is clear from the Figure 3 that as the database size increases, the execution time also
increased linearly.
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Fig. 3. Scalability of CMine algorithm

3.3 Usefulness of Coverage Patterns

Table 2 shows some coverage patterns generated by Cmine algorithm for minCS = 0.4
and maxOR = 0.5 and minRF = 0.02 for MSNBC dataset. The names of web page
categories involved in MSNBC are “frontpage”, “news”, “tech”, “local”, “opinion”,
“on-air”, “misc”, “weather”, “health”, “living”, “business”, “sports”, “summary”, “bbs”
(bulletin board service), “travel”, “msn-news”, and “msn-sports”. From Table 2, it can
be observed that any of the six coverage patterns ensure about 40 percent coverage. The
result indicates how the proposed approach provides flexibility to the publisher to meet
the demands of multiple advertisers by considering different sets of web pages.

Table 2. Sample coverage 3-patterns extracted from MSNBC dataset [15]

S.No Coverage Pattern CS S.No Coverage Pattern CS
1 {local,misc, frontpage} 0.42 4 {on-air, news,misc} 0.40
2 {news, health, frontpage} 0.43 5 {tech,weather, on-air} 0.41
3 {tech, opinion, frontpage} 0.41 6 {sports,misc, opinion} 0.43

4 Conclusions and Future Work

In this paper we have proposed a new data mining pattern called “coverage pattern” and
proposed an efficient methodology to extract the same from transactional databases. We
have explained how coverage patterns could be useful by considering the issue of banner
advertisement placement. By conducting experiments on different kinds of datasets, we
have shown that the proposed model and methodology can effectively discover coverage
patterns.

As a part of the future work, we are going to investigate how both frequent and cov-
erage pattern knowledge can be used for efficient banner advertisement placement. In
addition we are planning to investigate how the content of the web page and search
query can be exploited to explore content specific coverage patterns. We are also ex-
ploring how the notion of coverage patterns can be extended to other domains like
bio-informatics for extracting potential knowledge patterns.
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Abstract. Social networking service has become very popular recently.
Many recommendation systems have been proposed to integrate with so-
cial networking websites. Traditional recommendation systems focus on
providing popular items or items posted by close friends. This strategy
causes some problems. Popular items always occupy the recommenda-
tion list and they are usually already known by the user. In addition,
items recommended by familiar users, who frequently communicate with
the target user, may not be interesting. Moreover, interesting items from
similar users with lower popularity are ignored. In this paper, we pro-
pose an algorithm, UBI, to discover unknown but interesting items. We
propose three scores, i.e., Quartile-aided Popularity Score, Social Behav-
ior Score, and User Similarity Score, to model the popularity of items,
the familiarity of friends, and the similarity of users respectively in the
target user’s personal social network. Combining these three scores, the
recommendation list containing unknown but interesting items can be
generated. Experimental results show that UBI outperforms traditional
methods in terms of the percentages of unknown and interesting items
in the recommendation list.

Keywords: recommendation, social network, unknown but interesting.

1 Introduction

With the tremendous success of social networking websites nowadays, diverse
social network services have been vigorous and much popular. Although many
services related to social network websites exist, it is important to set up a stan-
dard which helps users to make a decision if it is worthy of them. In recent
years, many recommendation systems have been proposed to integrate with so-
cial networking websites and been used in many different business applications
such as movies, music, books, news, etc. Some popular e-commerce websites such
as Amazon, eBay, and Netflix analyze the shopping behavior of users to build
the recommendation list of products to their customers. The online shopping
system recommends each customer the products bought by others who have
similar shopping behavior in the past. In addition, some well-known social net-
working websites, Facebook, Myspace and Twitter provide users to establish
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their own personal communities or social networks based on friends. There are
many services for personalized recommendations in social networking websites.
For example, InSuggest1 provides personalized recommendations of bookmarks
originating from the social bookmarking site Delicious2, and Outbrain3 provides
personalized blog recommendations from blogging services. The purpose of these
recommendations are to adapt the contents of the websites to the specific needs
of the individual user by presenting the most attractive and relevant items to
users.

Traditional recommendation systems usually generate recommendation lists
based on popularity of items and/or analyze the behavior of the target user and
then make further recommendations. However, these systems focus on providing
popular items or items posted by close friends. This leads to problems listed as
follows:

1. Popular items always occupy the recommendation list and they are usually
already known by the user.
2. Items recommended by familiar users, who frequently communicate with the
target user, may not be interesting.
3. Interesting items from similar users with lower popularity are ignored.

Fig. 1 shows the personal social network of the target user U1. Circular nodes
represent users and the link between two users indicates the friend relationship.
The number on the link denotes the number of direct communication between
these two users and MF represents the number of mutual friends between U1

and the other user. In addition, square nodes represent items posted by the
connected user, where the number indicates the number of comments left by all
users and the number of likes, which means other users are interested in the
item. Traditional recommendation systems usually recommend items I4 : 150
and I1 : 100, since I4 is the most popular item and I1 is copied by many users.
However, these items are easily found by the target user and should not occupy
the recommendation list. On the other hand, I9 : 55 from similar user U3 with
lower popularity is easily ignored. New paragraph to remedy these defects, we
propose to discover unknown but interesting items, and design an algorithm to
generate recommendation list on personal social networks. The personal social
network contains the target user and his/her direct friends. We also include items
posted by these users.

Our proposed algorithm not only considers the popularity of items and the
similarity with friends, but also discovers unknown but interesting items through
the target user’s social behavior. We propose three scores to calculate Unknown
But Interesting Score of each item in the target user’s personal social network.
The first score is Quartile-aided Popularity Score, which is based on the popu-
larity adjusted by quartiles of items, to find out items with lower popularity. The

1 http://insuggest.wordpress.com/
2 http://www.delicious.com/
3 http://www.outbrain.com/
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Fig. 1. The personal social network of the target user U1

second score is Social Behavior Score, which depends on social interactions on
social network websites and direct communication between users. The third score
is User Similarity Score, which is based on interests between users, to model the
similarity of the target user and his/her friends. Combining these three scores,
we can generate the recommendation list with unknown but interesting items to
the target user.

Finally, to evaluate our approach, we implement our system on a social net-
working website, and collect users’ feedback to compare differences between tra-
ditional approaches and our proposed algorithm. The experimental results show
that our proposed algorithm can successfully find unknown but interesting items
and the satisfaction percentage of our system is higher than compared methods.

The remainder of this paper is organized as follows. In Section 2, a brief survey
of related works is presented. The proposed algorithm is introduced in Section
3. Section 4 presents the experimental results. Finally, we conclude this work in
Section 5.

2 Related Works

2.1 Social Networking

Social networking is the development of social collaborative technologies, and
connected by one or more specific types of relationship, such as friendship, sim-
ilar interest. In recent year, online social networking has been around in the
world, therefore, many online social networking websites are being generated
which allow users to establish their social network by adding other users to their
friend lists. For example, many users of popular social networking sites such as
Facebook and Twitter. Many research issues of social networking focused on de-
velopment of information techniques and data processing [7], and then extend
to social networking analysis [10], which is a set of methods to discover relations
between nodes in a social network.
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A number of measures in social networking analysis including network size,
degree centrality, betweenness, density etc. are considered. Bird et al. [5] pro-
posed a method to extract social networks from e-mail communication. Agrawal
et al. [3] using web mining techniques to understand the behavior of users in
news group, the proposed the behavior is meaning a newsgroup posting consists
of one or more quoted lines from another posting followed by the opinion of
the author. Adamic et al. [2] developed a method to discover the relationship of
friends and neighbors in the web. Many social networking analysis approaches
have propose similar ideas to find neighborhoods and paths with the social net-
work [8], [9]. In our work, we extend the concept of social networking to discover
the unknown but interesting items from social network site.

2.2 Recommendation Systems

Recommendation systems are widely used for personalized information filtering
technology, always used to recommend items that are of interest to users based on
customer demographics, features of items, or user preferences. Therefore, users
should provide their interest profiles to recommendation systems in order to
get recommendations. Then recommendation systems can utilize these interest
profiles to estimate the ratings of the unrated items for users or predict that items
to be liked by users. In general, recommendation systems are usually classified
into the following three methods: content-based recommendation, collaborative
filtering and hybrid approaches.

The first method is based on contents [12], which analyzes the contents of in-
formation products and user information to produce the recommended method.
This method is mainly dependent on the data description of goods and users
of consumer behavior in the past, for the two meta-analysis to calculate the
characteristics of different commodities of the scores for the summary, identify
the items for the user with a higher satisfaction scores in order to establish
recommended.

The second method is based on collaborative filtering [14], which utilizes simi-
larities of user’s preferences to recommend items. Collaborative filtering is a set of
similarity measure methods, as follows: Jaccard’s coefficient of similarity, Cosine
similarity [15], Pearson correlation-based similarities [13]. Many approaches em-
ploy the technique of collaborative filtering, for instance, Bell et al. [4] proposed
novel algorithms for predicting user ratings of items by integrating complemen-
tary models that focus on patterns at different scales. Facebook has a feature,
called “People You May Know”, which recommends user to connect with based
on a “friend of a friend” approach [1].

Finally, many recommendation systems use hybrid approaches by combining
content-based methods and collaborative filtering [6], which helps to avoid cer-
tain limitations of content-based and collaborative systems. For example, TAN-
GENT [11] focused on the “surprise me” query, in which a user may be bored
with usual genre of items, and may recommend new genre of items. This research
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Fig. 2. The architecture of the system

closes to our belief, however, traditional recommendation systems always focus
on high frequency of item with similarity of user. That gives us an inspiration
that we can make use of the impact in our work.

3 Unknown But Interesting Recommendation System

In this section, we illustrate the system architecture and the details of our pro-
posed algorithm, Unknown But Interesting algorithm.

3.1 System Architecture

We build a recommendation system on a social networking platform. The ar-
chitecture of the system is shown in Fig. 2. First, when the target user logs in
to our system, the target user’s social data is collected and is used to generate
the personal social network. The social data includes the target user’s profile,
which contains his/her posts, interests, friends list, and social interactions. From
the friends list, the open information of the target user’s friends is also collected,
which includes the number of mutual friends and direct communication. We only
consider 1-level friends, who have the direct connections to the target user. The
reason is that users are usually not interested in the social behavior of friends of
1-level friends and friends of friends have little influence power to the target user.
After the collection of the social data, we analyze the personal social network to
calculate three different scores of each item and obtain unknown but interesting
score by the proposed algorithm. Finally, we can generate the recommendation
list of items show the results on the social networking website.

3.2 Unknown But Interesting Algorithm

Unknown But Interesting (UBI) algorithm focuses on the popularity of items,
the similarity between users, and the social behavior of the target user. The
proposed algorithm calculate three scores as follows:
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Fig. 3. Example of PSiv, QSiv, and QPSiv

1. Quartile-aided Popularity Score (QPS) of each item.
2. Social Behavior Score (SBS) by considering social interactions of users.
3. User Similarity Score (USS) of each friend of the target user.

Finally, we combine these three scores to obtain the Unknown But Interesting
Score (UBIS), and provide the recommendation list to the target user. We
explain the formulas and significance of each score as follows.

Quartile-Aided Popularity Score. In the social networking website, users
can post messages, photos, videos, and links on their own pages. Other users
are able to leave comments on the posted items or simply click “like” button to
show their interests in the items. Therefore, in our system, the popularity score,
PSiv, is defined as the number of comments and likes of a certain item i posted
by user v.

As we explained earlier, traditional recommendation systems always recom-
mend popular items to users, but these items are well-known and easily noticed
by users themselves. In order to determine a certain degree of popular items,
we use the concept of quartile, Qr = |r (n+ 1) /4| , where r determines which
quartile, and n is total number of items. The items are sorted by their popularity
score, PSiv, ascendingly. The upper quartile, Q3(PSiv), represents the popular-
ity of the item with the �3 (n+ 1)/ 4�th rank in the list. In this way, we define
quartile score, QSiv, to be the popularity score minus the upper quartile.

QSiv = PSiv −Q3 (PSiv) (1)

Fig. 3 shows the PSiv and QSiv of each item posted by each user in Fig. 1. In this
example, n is 14. Therefore Q3 is the 11th lowest value of PSiv. The respective
QSiv is shown in middle row. Furthermore, in order to find items which are
not very popular but still have enough attention, we propose Quartile-aided
Popularity Score, QPSiv.

QPSiv = 1− QSiv

Max (QSiv) + 1
(2)

QPSiv normalizes QSiv by the maximum value and gives the upper quartile the
highest credit. In this way, we can capture the popularity of items adjusted by
the upper quartile.

Social Behavior Score. In addition to adjusting the popularity of items, UBI
considers the social behavior of the target user to further discover unknown
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Fig. 4. Example of MFuv, DCuv , and SBSuv

items. In the social networking website, users usually allowed to meet friends
and make connections to one another. Users can easily get information from
the friends they are familiar with. Therefore, UBI includes two factors from the
social behavior, i.e., mutual friends and direct communication. We define mutual
friend, MFuv, be the number of mutual friends between user u and user v, and
direct communication of users, DCuv, be the number of direct communication
between user u and user v. For the target user u, the more mutual friends u
and v have the more likely it is that items are spread between those friends. In
addition, the more direct communication there is between u and v, the more
likely it is that items posted by user v are already known by the target user u.
Therefore, in order to find unknown items, we define Social Behavior Score as
follows.

SBSuv =

⎛⎝1− MFuv

Max
v∈friends of u

(MFuv) + 1

⎞⎠×
⎛⎝1− DCuv

Max
v∈friends of u

(DCuv) + 1

⎞⎠ ,

(3)
where Max(MFuv) represents the maximum value of MFuv among all friends v
of the target user u, and Max(DCuv) is the maximum value of DCuv among all
v. SBSuv represents the inverse probability that the items posted by user v are
already known by the target user u. Fig. 4 shows some SBSuv of users in Fig. 1.

User Similarity Score. UBI not only takes popularity of items and familiarity
of users into consideration, but also includes the similarity of users to obtain
interesting items. If the item is recommended by a similar user of the target
user, it is more likely that the target user is interested in the item. At first, users
can do different actions in the social networking website to show their interest
in some items, e.g., posting a link, commenting on a photo, or liking a video. We
give each action a worth value, WV , indicating how much a user is interested to
some item by performing this action.

WVj =

∑
j∈all actions times of action j

times of action j
(4)

For example, the number of articles is 100, the number of comments is 500, and
the number of likes is 1000. We can get the sum of all action as 1600, and we can
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Fig. 5. The score of user’s behavior

calculate the worth value of posting an article to be 16, leaving a comment to
be 3.2, and liking an item to be 1.6. Then, users may have a variety of behavior
on the same item, as shown in Fig. 5. Therefore, we sum up the worth value of
all actions performed on the same item i to get the interesting score, ISi.

ISi =
∑

j∈all actions

WVj (5)

Finally, we can define the user behavior as

UBu = {ISI1 , ..., ISIn} , (6)

where ISi is the total interesting score of the user v to the item i. Accordingly,
the User Similarity Score, USSuv, between user u and user v is computed by the
following equation.

USSuv =
UBu · UBv

‖UBu‖ ‖UBv‖
(7)

From the user behavior listed in Fig. 5, user similarity score between U1 and U3

is 0.5, and USS between U1 and U19 is 0.21.

Unknown But Interesting Score. Finally, we combine QPS, SBS, and USS
to calculate the unknown but interesting score for each item on the personal
social network of the target user u. Thus, we define Unknown But Interesting
Score as follows.

UBISi =
∑
v

(QPSiv × SBSuv × USSuv) (8)

where
∑

is the sum of same item i among all user v. Consequently, we can
generate the recommended list based on UBIS. As shown in Fig. 6, we sort
UBIS and recommend the Top-k items to the target user.
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Fig. 6. Example of UBISi

4 Experiments

In this section, the methodology and the performance evaluation are discussed.
The experiment is conducted to measure the percentages of unknown but inter-
esting items in the recommendation list. The methodology is discussed in Section
4.1. The performance evaluation is presented and discussed in Section 4.2.

4.1 Methodology

We implement recommendation system on a popular social networking website,
Facebook, in order to compare our algorithm to traditional recommendation sys-
tems. We can obtain user’s social information easily to discover unknown items.
We generate three recommendation lists each on Facebook, traditional method,
and our algorithm. First, Facebook recommendation list is based on latest up-
dates from user’s posting. Second, traditional method is based on popular items
with user’s preferences on Facebook. In other words, users usually focus on pop-
ularity of items with similarity among users. At last, our algorithm is based on
UBIS which recommends unknown but interesting items. We generate recom-
mendation list which presents Top-20 items to the target user, as shown in the
Fig.7, which is the interface of UBI recommendation system on Facebook, and
we show one of the lists randomly. Furthermore, we show posted user’s name,
content of the item, and each list has two questions for each message, and ques-
tionnaires, which are as follows: unknown or known, and interesting. The ques-
tion about unknown or known represents whether the message is unread or read
by the target user respectively. The question about interesting denotes whether
the target user is interested in the message. We can compare UBI algorithm with
the other two methods based on our questionnaires.

4.2 Performance Evaluation

We randomly invited 355 users to participate in our experiment. Our experi-
ments were conducted in the months starting from July through September of
2011, and 185 active users participated per month. At first, we compared three
recommendation lists, and focused on unknown and interesting questions checked
by users. In other words, these two indicators are used to determine the target
user’s satisfaction. Fig. 8 presents percentages of items in the recommendation
lists. Facebook (FB) recommends unknown items better than others, because FB
usually recommends latest items, but users are usually not interested in them.
The percentage of unknown items of traditional method with popularity with
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Fig. 7. System user interface for the recommended list

similarity (PS) is worst than that of other methods whereas the percentage of
interesting items of traditional method with PS is better than that of FB. Be-
cause traditional method recommends items, which are usually already known
to users, based on PS among users. Our UBI algorithm can discover unknown
items almost same as FB does and interesting items is better than FB and PS.
In terms of overall satisfaction with unknown and interesting questionnaires, our
algorithm can recommend unknown but interesting items exactly.

Fig. 8. The percentages of items in the recommendation lists

In addition, we recommend Top-20 items for each recommendation system,
then we compared percentages of Top-5 to Top-20. We want to ensure good
performance of satisfaction for each stage. Fig. 9 represents the percentage of
options checked by users for Top-5 to Top-20. In Fig. 9(a), the UBI algorithm
discovers unknown items almost the same as FB, and the percentage of interest-
ing is higher than FB and PS. Besides, Fig. 9(b), (c), and (d) also show this trend.
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Fig. 9. The percentages of items in the Top-k list

This phenomenon represents not only Top-20 better UBI recommendations, but
Top-5 to Top-15 also better than FB and PS. Therefore, we can obtain user’s
satisfaction from user’s feedback is better than that of FB and PS. Finally, We
found that our proposed algorithm to discover unknown but interesting items is
better than Facebook and the traditional methods.

5 Conclusions

Traditional systems are based on similarity and popularity. This strategy leads
to some problems. We proposed an algorithm which recommends unknown but
interesting item by utilizing three scores: Quartile-aided Popularity Score, So-
cial Behavior Score, and User Similarity Score. We focus on the communication
among users and mutual friends, and discover the unknown but interesting item
for user. In other words, we not only consider the similarity but also care about
the user’s social interaction. Experimental results show that the performance
of UBI significantly outperforms that of traditional methods in terms of the
percentages of unknown and interesting items in the recommendation list. Our
future work could focus on information propagation in social networks, and friend
of friend structure and utilize cloud computing techniques to improve the system
performance.
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Abstract. Health risks management such as epidemics study produces
large quantity of spatio-temporal data. The development of new meth-
ods able to manage such specific characteristics becomes crucial. To
tackle this problem, we define a theoretical framework for extracting
spatio-temporal patterns (sequences representing evolution of locations
and their neighborhoods over time). Classical frequency support doesn’t
consider the pattern neighbor neither its evolution over time. We thus
propose a new interestingness measure taking into account both spatial
and temporal aspects. An algorithm based on pattern-growth approach
with efficient successive projections over the database is proposed. Exper-
iments conducted on real datasets highlight the relevance of our method.

1 Introduction

In everyday life, we can observe many phenomena occurring in space and time
simultaneously. For example, the movements of a person associate spatial infor-
mation (e.g. the departure and arrival coordinates) and temporal information
(e.g. the departure and arrival dates). Other applications, with more complex
dynamics, are much more difficult to analyze. It is the case of spread of infectious
disease, which associates spatial and temporal information such as the number of
patients, environmental or entomological data. Yuang in [13] describes this con-
cept of dynamics as a set of dynamic forces impacting the behavior of a system
and components, individually and collectively.

In this paper, we focus on spatio-temporal data mining methods to better
understand the dynamics of complex systems for epidemiological surveillance. In
the case of dengue epidemics, public health experts know that the evolution of the
disease depends on environmental factors (e.g. climate, areas with water points,
mangroves...) and interactions between human and vector transmission (e.g. the
mosquito that carries the disease). However, the impact of environmental factors
and their interactions remain unclear.
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To address these issues, spatio-temporal data mining provides highly relevant
solutions through the identification of relationships among variables and events,
characterized in space and time without a priori hypothesis. For example, in our
context, we will discover combinations of changes in environmental factors that
lead epidemic peaks in specific spatial configurations. We will show in the related
works section that existing methods are not completely adapted to our problem.
For this reason, we have define new spatio-sequential patterns, based on an ex-
tension of sequential patterns, to link the spatial and temporal dimension. An
example of pattern in the dengue context is: frequently over the past 10 years,
if it rains in an area and if there is standing water and high temperatures in the
neighborhood, then there is an increase number of mosquitoes in adjacent areas,
followed by an increase of dengue cases. It can be used for analysis by health
care professionals, to better understand how environmental factors influence the
development of epidemics. Such patterns are very interesting because they en-
able to capture evolution of areas considering their events and events in adjacent
zones. However, they are very difficult to mine because the search space is very
large. Proposing scalable methods to find these patterns are consequently very
challenging. We have defined an interestingness measure to overcome this prob-
lem of scalability and an efficient algorithm based on pattern-growth approach.

In section 2, we review existing spatio-temporal data mining methods and
we show that these methods are not suitable for our problem. In section 3, we
detail our theoretical framework. In section 4, we present our algorithm called
DFS-S2PMiner. In section 5, we present experiments on real datasets. The paper
ends with our conclusions and future perspectives.

2 Related Work

In this related work section, we are not concerned by the trajectories problematic
addressed in [1, 3]. We only focus on methods analyzing the evolution and the
interaction of objects or events characteristics through space and time. Early
work addressed the spatial and temporal dimensions separately. For example,
Han et al. in [4] or Shekhar et al. in [10] looked for spatial patterns or co-location,
i.e. subsets of features (object-types) with instances often identified as close in
space. In our context, an example of co-location is within a radius of 200 m,
mosquitoes nests are frequently found near ponds. On the contrary, other authors
as Pei et al. in [9] have studied temporal sequences which only take into account
the temporal dimension. Tsoukatos et al. in [11] have extended these works to
represent sets of environmental features evolving in time. They extract sequences
of characteristics that appear frequently in areas, but without taking into account
the spatial neighborhood. An example of pattern obtained is: in many areas,
heavy rain occurs before the formation of a pond, followed by the development
of mosquito nest. If these two types of methods, only spatial or temporal, can
be very relevant for epidemiological surveillance, they do not capture relations
such as: often, a heavy rain occurs before the formation of a pond followed in a
close area by the development of mosquito nests. In [12], Wang et al. focus on the
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extraction of sequences representing the propagation of spatiotemporal events
in predefined time windows. They introduce two concepts: Flow patterns and
Generalized Spatiotemporal Patterns in order to extract precisely the sequence
of events that occur frequently in some locations. Thus, the authors will be able
to identify patterns of the form: dengue cases appear frequently in area Z1 after
the occurrence of high temperatures and the presence of ponds in area Z2.

However, Huang et al. in [7] found that all the patterns discovered with others
approaches are not all the time relevant because they may not be statistically sig-
nificant and in particular not ”dense” in space and time. They therefore proposed
an interestingness measure taking into account the spatial and temporal aspects
to extract global sequence of features. However, they study the events one after
another. They don’t take into account the interactions such as often heavy rain
and the occurrence of ponds are presented before the development of mosquito
nests. Celik et al. in [2], proposed the concept of Mixed-Drove Spatiotemporal
Co-occurrence Patterns, i.e. subsets of two or more different event-types whose
instances are often located in spatial and temporal proximity (e.g. an event-type
is heavy rain and an instance is heavy rain in zone Z1 the 10/17/2011 ). For
similar reasons than Huang, they have proposed a specific monotonic composite
interest measure based on spatial and temporal prevalence measures. However,
they do not extract the frequent evolutions of event-types over time (events of
each instance occur necessarily in the same time slot). For example, we can only
extract patterns such as: heavy rain, ponds and development of mosquito nests
are frequently found together in lots of time slots. Finally, approaches proposed
by Wang, Huang and Celik cannot capture the evolution of areas with regard to
their set of event-types and the sets of event-types of their neighbors.

In this paper, we describe a method for extracting spatio-temporal sequences
of patterns (i.e. sequences of spatial sets of events) called S2P (Spatio-Sequential
Patterns). We aim at identifying relationships such as: the presence of dengue
cases in an area is often preceded of high temperatures and the presence of wa-
ter tanks in a neighboring area. Thus, we will deal with the developments and
interactions between the study area and its immediate environment. Moreover,
as this type of patterns are very difficult to mine, because of the huge generated
search space, we will introduce an interestingness measure to make our approach
scalable.

3 Spatio-sequential Patterns: Concepts and Definitions

3.1 Preliminaries

A spatio-temporal database is a structured set of information including geo-
graphic components (e.g. neighborhoods, rivers, etc.) and temporal components
(e.g. rain, wind). Such a database is defined as a triplet DB = (DT, DS, DA)
where DT is the temporal dimension, DS the spatial dimension and DA =
{DA1

, DA2
, . . . , DAp

} a set of analysis dimensions associated with attributes. The
temporal dimension is associated with a domain of values denoted dom(DT) =
{T1, T2, . . . , Tt} where ∀i ∈ [1..t], Ti is a timestamp and T1 < T2 < . . . < Tt. The
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spatial dimension is associated with a domain of values denoted dom(DS) =
{Z1, Z2, . . . Zl} where ∀i ∈ [1..l], Zi is a zone. We define on dom(DS) a neigh-
borhood relationship, denoted Neighbor by:

Neighbor(Zi, Zj) = true if Zi and Zj are neighbors, false otherwise (1)

Each dimension DAi
(∀i ∈ [1..p]) in the set of analysis dimensions DA, is asso-

ciated with a domain of values denoted dom(Ai). In these domains, the values
can be ordered or not.

To illustrate the definitions, we use a sample of weather database, Table 1,
which represents weather in three cities on three consecutive days. The table
lists temperature (Temp), precipitation (Prec), wind speed (Wind) and gusts in
Km/h. The three cities are associated by a neighborhood relationship described
in Figure 1.

Table 1. Weather changes in three cities :
Z1, Z2 et Z3 on December 22, 23, 24, 2010

City Date Temp Prec Wind Gusts

Z1 12/22/10 Tm Pm Vm -
Z1 12/23/10 Tm Pm Vl -
Z1 12/24/10 Tl Pm Vm 55
Z2 12/22/10 Tm Pm Vm -
Z2 12/23/10 Tl Pm Vl -
Z2 12/24/10 Tl Pl Vm -
Z3 12/22/10 Tl Pm Vs 75
Z3 12/23/10 Tm Ps Vl -
Z3 12/24/10 Tl Ps Vs 55

Z1

Z2

Z3

Fig. 1. Neighboring cities

In Table 1, DT = {Date}, DS = {City} and DA = {Temp, Prec,Wind,
Gusts}. The domain of the temporal dimension is dom(DT) =
{12/22/10, 12/23/10, 12/24/10} with 12/22/10 < 12/23/10 < 12/24/10.
The domain of spatial dimension is dom(DS) = {Z1, Z2, Z3} with
Neighbor(Z1, Z2) = true, Neighbor(Z1, Z3) = true and Neighbor(Z2, Z3) =
false. Finally, for the analysis dimensions Temp and Gusts, the domains are
respectively dom(Temp) = {Tm, Tl, Ts} and dom(Gusts) = {55, 75}.

3.2 Spatio-sequential Patterns

Definition 1. Item and Itemset. Let I be an item, a literal value for the
dimension DAi , I ∈ dom(DAi

). An itemset, IS = (I1I2 . . . In) with n ≤ p, is a
non empty set of items such that ∀i, j ∈ [1..n], ∃k, k′ ∈ [1..p], Ii ∈ dom(DAk

),
Ij ∈ dom(ADA′

k

) and k �= k′.
All items in an itemset are associated with different dimensions. An itemset

with k items is called k-itemset.

We define the In relationship between zones and itemsets which describes
the occurrence of itemset IS in zone Z at time t in the database DB:



The Pattern Next Door: Towards Spatio-sequential Pattern Discovery 161

In(IS, Z, t) is true if IS is present in DB for zone Z at time t. In our example,
consider the itemset IS = (TmPmVl) then In(IS, Z1, 12/23/10) is true as the
itemset (TmPmVl) occurs for zone Z1 on 12/23/10 (see Table 1).

We now define the notion of interaction with neighbor zones.

Definition 2. Spatial itemset. Let ISi and ISj be two itemsets, we say that
ISi and ISj are spatially close iff ∃Zi, Zj ∈ dom(DS), ∃t ∈ dom(DT ) such that
In(ISi, Zi, t) ∧ In(ISj , Zj, t) ∧Neighbor(Zi, Zj) is true. A pair of itemsets ISi

and ISj that are spatially close, is called a spatial itemset and denoted by
IST = ISi · ISj.

To facilitate notations, we introduce a n-ary group operator for itemsets to
be assigned by the operator · (near), denoted []. The θ symbol represents the
absence of itemsets in a zone. Figure 2 shows the three types of spatial itemsets
that we can build with the proposed notations. The dotted lines represent the
spatial dynamics.

(a) (b) (c)

Fig. 2. Graphical representation of spatial itemsets (a) IS1 · IS2 (b) θ · IS2 (c) IS1 ·
[IS2; IS3]

The spatial itemset IST = (Tm · (VlPm)) describes that events Tm and VlPm

occur in neighboring zones at the same time. The spatial itemset IST = (θ ·
[Tm;Pl]) indicates that Tm and Pl occur in two different zones neighbor to a
zone where no event appears.

Definition 3. Inclusion of spatial itemset. A spatial itemset IST = ISi ·ISj

is included, denoted ⊆, in another spatial itemset I ′ST = IS′
k · IS′

l, iff ISi ⊆ IS′
k

and ISj ⊆ IS′
l.

The spatial itemset IST = (TmPm · Vl) is included in the spatial itemset I ′ST =
(TmPm · Vl55) because (TmPm) ⊆ (TmPm) and (Vl) ⊆ (Vl, 55).

We now define the notion of zones evolution according to their spatial neigh-
borhood relationship.

Definition 4. Spatial Sequence. A spatial sequence or simply S2 is an ordered
list of spatial itemsets, denoted s = 〈IST1IST2 . . . ISTm〉 where ISTi , ISTi+1 satisfy
the constraint of temporal sequentiality for all i ∈ [1..m− 1].

A S2 s = 〈(Tm)(θ · [Pl;Vs])(Vl · [Pl;Tl])〉 is illustrated in figure 3 for the zone Z1,
where the arrows represent the temporal dynamics and the dotted lines represent
the environment.

A relationship generalization (or specialization) between S2’s is defined as
follows:
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Fig. 3. Example of the spatio-temporal dynamic

Definition 5. Inclusion of S2. A S2 s = 〈IST1IST2 . . . ISTm〉 is more specific
than a S2 s′ = 〈I ′ST1

I ′ST2
. . . I ′STn

〉, denoted s � s′, if there exists j1 ≤ . . . ≤ jm
such that IST1 ⊆ I ′STj1

, IST2 ⊆ I ′STj2
, . . . , ISTm ⊆ I ′STjm

.

A S2 s = 〈(TlPm · PlVs)(55)〉 is included in the S2 s′ = 〈(TlPm · PlVs)(55 · Vs)〉
because (TlPm · PlVs) ⊆ (TlPm · PlVs) and (55) ⊆ (55 · Vs).

For a specific zone, we note sZ the associated spatial data sequence in the
database DB. sZ contains or supports a spatial sequence s if s is a subsequence
of sZ . The support of a spatial sequence s is thus defined as the number of zone
supporting s. If the support of the spatial sequence is greater than a user-defined
threshold, the sequence is frequent and corresponds to a spatio-sequential
pattern (S2P ). Nevertheless, in a spatio-temporal context, we need to define a
more precise and suitable prevalence measure, as explained in the next section.

3.3 Spatio-temporal Participation

The proposed spatio-sequential pattern allow to tackle both spatial and temporal
issues. In order to manage in an efficient way the mining of such patterns, a new
filtering measure has to be defined. To highlight the participation of an item in a
spatial sequence, we propose an adaptation of the participation index [6] which
is a combination of two measures: spatial participation index and temporal
participation index taking into account respectively the spatial dimension and
the number of occurrences in time.

Definition 6. Spatial participation ratio Let s be a spatial sequence and I
be an item of s, the spatial participation ratio for I in s, denoted by SPr(s, I)
is the number of zones which contain s divided by the number of zones where the
item I appears in the whole database:

SPr(s, I) = Supp(s)
Supp(I)

Definition 7. Spatial participation index Let s = 〈IST1 , IST2 , . . . ISTn〉 be
a spatial sequence, the spatial participation index of s denoted SPi(s) is the
minimum of spatial participation ratio:
SPi(s) = MIN∀I∈dom(A),I∈s {SPr(s, I)}

Definition 8. Temporal participation ratio Let s be a spatial sequence and
I be an item of s, the temporal participation ratio for I in s denoted TPr(s, I)
is the number of occurrences of s (i.e. the number of instances over time) divided
by the total number of occurrences of I:

TPr(s, I) = NbOccurrences(s)
NbOccurrences(I)
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Definition 9. Temporal participation index Let s = 〈IST 1
, IST 2

, . . . ISTn
〉

be a spatial sequence, the temporal participation index of s denoted TPi(s) is
the minimum of temporal participation ratio:
TPi(s) = MIN∀I∈dom(Ai),I∈s {TPr(I, s)}

We define the spatio-temporal participation index of a spatial sequence s,
STPi(s), as:

STPi(s) = 2 ∗ SPi(s) ∗ TPi(s)

SPi(s) + TPi(s)
(2)

Given a spatio-temporal database DB, the problem of spatio-sequential pattern
mining is to find all spatial sequences whose spatio-temporal participation index
is greater than a user-specified threshold min stpi.

Note that the predicate ”STPi is greater than a user-threshold” is antimono-
tonic. If a spatio-sequential pattern s is not frequent, all patterns s′ such as s
is included in s′ (s � s′), are also not frequent. This property is used in our
pattern mining algorithm to prune the search space and quickly find frequent
spatio-sequential patterns.

4 Extraction of Spatio-sequential Patterns

In this section, we propose an algorithm called DFS-S2PMiner to extract
spatio-sequential patterns considering both spatial and temporal aspects. DFS-
S2PMiner adopts a depth-first-search strategy based on successive projections of
the database such as FP-Growth [5] and Prefixspan [8] for scalability purpose.
Specifically, this algorithm is based on the pattern-growth strategy used in [5].
The principle of this approach is to extract frequent patterns without a can-
didate generation step. This approach recursively creates a projected database,
associates it with a fragment of frequent pattern, and ”mines” each projected
database separately. The frequent patterns are extended progressively along a
depth-first exploration of the search space.

First, we introduce the definition of the projection of a spatio-temporal
database used in the algorithm. Let s be a spatio-sequence of the database DB.
The projection of database DB w.r.t. s, denoted DB|s, is the set of suffixes of
s in DB.

The algorithm 1 describes our recursive algorithm DFS-S2PMiner. First, the
set of frequent items I and θ · I, denoted F1, is extracted from the projected
database DB|α (line 1 of Algorithm 1). These items constitute extensions of
sequence α. Note that in the first recursive call, DB|α corresponds to the initial
database DB (since α = {}). Then, for each of these items X ∈ F1, we extend
the spatio-sequential pattern α with X (lines 3 and 4). Two types of extension
are possible : 1) adding X to the last spatial itemset of the sequence α (line 3)
or 2) inserting X after (i.e. the next time) the last spatial itemset of α (line 4).
We check the measure of interest for these two spatio-sequential patterns (lines
5 and 9) and record frequent ones in the set of solutions F (lines 6 and 10). For
each frequent pattern, the algorithm then performs another projection of the
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database using DB|α and recursively extends the pattern by invoking again the
algorithm (lines 7 and 11). The algorithm stops when no more projections can
be generated.

Algorithm 1. DFS-S2PMiner

– Main routine
Require: A spatio-temporal database DB and a user-defined threshold min stpi
Ensure: A set of frequent spatio-sequential patterns F

α ← {}
Call Prefix-growthST(α,min stpi, DB|α, F )

– Prefix-growthST (α,min stpi,DB|α, F )
Require: a spatio-sequential pattern α , the user-defined threshold min stpi, the projection DB|α

of the spatio-temporal database on α, and F a set of frequent spatio-temporal patterns;
1. F1 ← {a set of frequents items I and θ · I on DB|α, with I ∈ ⋃

i∈[1..p] dom(DAi
) }

2. for all X ∈ F1 do
3. β ← αX
4. δ ← α(X)
5. if STPi(β) ≥ min stpi then
6. F ← F ∪ β;
7. Prefix-growthST(β,min stpi, DB|β , F )
8. end if
9. if STPi(δ) ≥ min stpi then

10. F ← F ∪ δ;
11. Prefix-growthST(δ,min stpi, DB|δ, F )
12. end if
13. end for

We use our running example (Table 1 and Figure 1) with min stpi = 2/3 to
illustrate this algorithm.
Iteration 1 (α = {})

– Extraction on frequent items and spatial items (line 1). The first
step is to extract frequent items and frequent spatial items from DB, let:

F1 ={Pm : 3, Tm : 3, Vm : 2, Vl : 3, Tl : 3, 55 : 2, θ · Tm : 3,

θ · Pm : 3, θ · Vm : 3, θ · Vl : 3, θ · Tl : 3, θ · 55 : 3}

– Extension of current sequence α (lines 3-4).
– STPi processing and Recording solutions (lines 5-6 and 9-10).
– Projection and Recursive call (lines 7 and 11). For each frequent
item I and θ · I, the algorithm calculates the corresponding projection of
the database. For example, for the frequent item Pm, we obtain the follow-
ing projection (see Table 2). Each of these projected database is used in a
recursive call to find its frequent super-sequences.

Iteration 2 (α = 〈(Pm)〉)

– Extraction on frequent items and spatial items (line 1). The first
recursive call will build the super-sequences with the prefix 〈(Pm)〉 from the
projected database of Table 2. Specifically, the algorithm will find frequent
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Table 2. Projected database of 〈(Pm)〉

Zones Sequences Neighbors Neighbor sequences

Z1 S1 = 〈( Vm)(TmPmVl)(TlPmVm55)〉 Z2 S2 = 〈( Vm)(TlPmVl)(TlPlVm)〉
Z3 S3 = 〈( Vs75)(TmPsVl)(TlPsVs55)〉

Z2 S2 = 〈( Vm)(TlPmVl)(TlPlVm)〉 Z1 S1 = 〈( Vm)(TmPmVl)(TlPmVm55)〉
Z3 S3 = 〈( Vs75)(TmPsVl)(TlPsVs55)〉 Z1 S1 = 〈( Vm)(TmPmVl)(TlPmVm55)〉

items in the projected database (line 1) and extend 〈(Pm)〉 (line 2 - 4). The
frequent items obtained from DB|〈(Pm)〉 are: {Vm : 2, Tm : 2, Pm : 2, Vl :
3, Tl : 3, 55 : 2, θ · Vm : 3, θ · Tl : 3, θ · Pm : 3, θ · Vl : 3, θ · Tm : 3, θ · 55 : 3}

– Extension of current sequence α (lines 3-4). The first frequent item
found is 〈Vm〉 : 2. Therefore, we can build two spatial sequences: 〈(PmVm)〉
(line 3) and 〈(Pm)(Vm)〉 (line 4).

– STPi processing and Recording solutions (lines 5-6 and 9-10). The
spatio-sequential pattern 〈(Pm)(Vm)〉 with STPi = 2/3 is frequent (line 9).

– Projection and Recursive call (lines 7 and 11). Thus, the algorithm
uses this pattern to make a new projection (see Table 3) and to recursively
search all frequent super-sequences with the prefix 〈(Pm)(Vm)〉.

Table 3. Projected database of 〈(Pm)(Vm)〉

Zones Sequences Neighbors Neighbor sequences

Z1 S1 = 〈(TmPmVl)(TlPmVm55)〉 Z2 S2 = 〈(TlPmVl)(TlPmVm)〉
Z3 S3 = −

Z2 S2 = 〈(TlPmVl)(TlPlVm)〉 Z1 S1 = 〈(TmPmVl)(TlPmVm55)〉
Z3 S3 = ∅ Z1 S1 = 〈(TmPmVl)(TlPmVm55)〉

Iteration 3 (α = 〈(PmVm)〉)

– Extraction on frequent items and spatial items (line 1). The frequent
items obtained for DB|〈(PmVm)〉 are: {Vm : 2, Pm : 2, Vl : 2, Tl : 2, θ · Vm :
3, θ · Tl : 3, θ · Pm : 3, θ · Vl : 3, θ · 55 : 3}.

– Extension of current sequence α (lines 3-4). For example, the spatial
item θ ·Pm : 3 is one of the frequent items. In this case, the algorithm builds
the spatio-sequential pattern 〈(Pm)(Vm)(θ · Pm)〉.

– STPi processing and Recording solutions (lines 5-6 and 9-10). This
pattern is frequent with a STPi = 1 because 〈θ · Pm〉 appears in all times
and zones (see Table 3).

– Projection and Recursive call (lines 7 and 11). When all frequent
items are projected, the algorithm goes through another branch of the search
space, i.e. patterns beginning with 〈(Tm)〉 (see set F1)

The algorithm thus proceeds generally in the same way whether items are spatial
or not. The main difference is how to compute the support. The support of
a spatial item is the number of zones where the item occurs at least once in
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their neighborhood (so we have θ · Vl : 3 in Table 2). Notice that when the
algorithm extends a pattern of type 〈(IST1 )(IST2)...(ISTk

·X)〉 with a common
item θ · Y , the operator of n-ary group is used to represent the sequence as
〈(IST1 )(IST2) . . . (ISTk

· [X ;Y ])〉.

5 Experiments

The approach proposed in this paper has been integrated in a Java prototype,
and it has been experimented on two real datasets. The first one represents the
evolution of dengue infection in a city during an epidemic (26 dates). The city is
divided in 81 districts each one characterized by 12 epidemic and environmental
attributes (e.g. number of dengue cases, precipitation per day or presence of
pools). The second dataset is a record of biological indicators in the Saône rivers,
for example, IBGN (Standardized Global Biological Index) and IBD (Biological
Diatom Index). These indicators are associated with hydrological stations along
the watercourse and raised up made by some stations along the watersheds of
the Saône. This dataset includes 815 samples associated to 223 stations (zones)
and 10 attributes.

We compared our approach with the work proposed by Tsoukatos [11] since
it is the closest work. Indeed, this work extracts sequences of itemsets repre-
senting the evolution of each zone individually (but without taking into account
neighbors as in our approach). Experiments have been done on an Intel Core I5
processor with 4G of RAM on Linux.

First, a qualitative evaluation of the results was done. We compared the pat-
terns obtained by our approach with the ones obtained by the DFS Mine algo-
rithm of Tsoukatos on the dengue dataset.

For example, both approaches could find classical sequential patterns such
as ”few pools, few precipitations and few graveyard are followed by few dengue,
few precipitations and wind”. However, our approach could also find complex
patterns such as ”few pools, few precipitations and few graveyard, followed by
few pools and few precipitations in neighbor zones, are followed by few dengue
in neighbor zones”. This example gives an idea of the richness of our patterns
by enabling to highlight the influence of neighbor areas.

When using the spatio-temporal participation index as measure of interest, we
can’t compare any further the extracted patterns since prevalence measures are
different. While the approach of Tsoukatos keeps sequences occurring in many
zones but not necessarily several times, our approach keeps sequences occurring
in many zones and several times. The interest of our proposal is to consider the
temporal weight of patterns.

Second, a quantitative evaluation of our approach was done. We compared
the execution time of our algorithm with the DFS Mine algorithm proposed
by Tsoukatos in [11]. Figure 4 shows execution times of DFS Mine (classical
support) and DFS-S2PMiner algorithms (using classical support and spatio-
temporal participation index) on the studied datasets for several thresholds.
Execution times are relatively similar while our approach is doing more complex
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(a) (b)

Fig. 4. Execution runtime of DFS Mine and DFS-S2PMiner algorithms on (a) Dengue
dataset (b) River dataset

(a) (b)

Fig. 5. Number of patters extracted by DFS Mine and DFS-S2PMiner algorithms on
(a) Dengue dataset (b) River dataset

processing. Indeed, as shown by figure 5, the STPi measure allows an efficient
pruning of the search space, even for the large dataset of the Saône river.

6 Conclusion and Perspectives

In this paper, we propose a new concept of spatio-temporal patterns called
spatio-sequential patterns (S2P). This concept enables to analyze the evolution
of areas considering their set of features and their neighboring environment. An
example application of these patterns is the study of the spatiotemporal spread
of dengue w.r.t. epidemic, district and environmental data. A formal framework
is established to define S2P generically. To extract these patterns, we propose
a generic method called DFS-S2PMiner based on a depth-first strategy. A new
prevalence measure has been defined to cope with the limits of the classical sup-
port w.r.t. spatial and temporal aspects. Our proposal has been experimented on
two real datasets. Results show the interest of the approach to extract efficiently
rich spatio-temporal patterns.
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Among possible future developments, we plan to extend the concept of
neighborhood to n neighborhoods while allowing scalability. No new defini-
tions are needed but an heuristic exploration of the search space may be required.
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Abstract. Outlier detection (also known as anomaly detection) is a common data
mining task in which data points that lie outside expected patterns in a given
dataset are identified. This is useful in areas such as fault detection, intrusion de-
tection and in pre-processing before further analysis. There are many approaches
already in use for outlier detection, typically adapting other existing data mining
techniques such as cluster analysis, neural networks and classification methods
such as Support Vector Machines. However, in many cases data from sources
such as sensor networks can be better represented with an uncertain model. De-
tecting outliers with uncertain data involves far more computation as each data
object is usually represented by a number of probability density functions (pdf s).

In this paper, we demonstrate an implementation of outlier detection with un-
certain objects based on an existing density sampling method that we have paral-
lelized using the cross-platform OpenCL framework. While the density sampling
method is a well understood and relatively straightforward outlier detection tech-
nique, its application to uncertain data results in a much higher computational
workload. Our optimized implementation uses an inexpensive GPU (Graphics
Processing Unit) to greatly reduce the running time. This improvement in perfor-
mance may be leveraged when attempting to detect outliers with uncertain data
in time sensitive situations such as when responding to sensor failure or network
intrusion.

1 Introduction

In recent years there has been increased interest in mining uncertain data [1]. A signif-
icant amount of data collected, such as from temperature sensors, contain some degree
of uncertainty, as well as possibly erroneous and/or missing values. Some statistical
techniques such as privacy-preserving data mining may deliberately add uncertainty
to data. In addition, with the proliferation of affordable, capacious storage solutions
and high speed networks, the quantity of data collected has increased dramatically. To
quickly deal with the large quantities of mostly uninteresting data, outlier detection is a
useful technique that can be used to detect interesting events outside of typical patterns.
However, uncertainty adds greatly to the complexity of finding outliers as uncertain
objects are not represented by a single point, but rather a probabilistic object (i.e. the
point could be anywhere in the given space with some probability). This increase in
complexity leads to the problem of reduced scalability of algorithms to larger amounts
of data.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 169–180, 2012.
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Within a similar time frame, multi-core processors and most recently general purpose
computing using graphics processors (GPGPU) have become popular, cost effective ap-
proaches to provide high performance parallel computing resources. Modern GPUs are
massively parallel floating point processors attached to dedicated high speed memory –
for a fraction of the cost of traditional highly parallel processing computers. Program-
ming frameworks such as NVIDIA CUDA and OpenCL now allow for programs to
take advantage of this previously underutilized parallel processing potential in ordinary
PCs and accelerate computationally intensive tasks beyond typical applications in 3D
graphics, seeing use in scientific, professional and home applications (such as video
encoding).

Our contributions in this paper are a modified density sampling algorithm and im-
plementations for fast parallel outlier detection with uncertain data using this parallel
processing resource. Our implementation has been optimized for the features and re-
strictions of the OpenCL framework and current GPUs.

This paper is organized as follows: Sect. 2 briefly covers related work in the field of
outlier detection with uncertain data as well as other GPU accelerated outlier detection
techniques. Sect. 3 describes our modified algorithm used in this paper for outlier de-
tection with uncertain data. Sect. 4 details our implementation of the algorithm, with
attention to key points in parallelization and optimization using the OpenCL frame-
work. Sect. 5 describes our testing methodology and demonstrates the effectiveness of
our OpenCL-based approach in greatly improving performance using both GPU and
CPU hardware. Sect. 6 summarizes our contributions and concludes this paper.

2 Related Work

Outlier detection is a well established and commonly used technique for detecting data
points that lie outside of expected patterns. The prototypical approach to outlier detec-
tion is as a by-product of clustering algorithms [2]. In a clustering context, an algorithm
such as DBSCAN [3] will exclude data points that are not close (given an appropriate
metric such as distance or density) to other objects. Later, more approaches were pro-
posed for outlier detection, such as Local Outlier Factor (based on k-nearest-neighbors),
Support Vector Machines, and neural networks.

Data mining applications such as outlier detection are also candidates for paralleliza-
tion to reduce running time [4] as in typical cases there is a large amount of data that
is processed by a small number of routines, possibly in real-time or interactively (for
example, in an intrusion detection system). These tasks are said to be ‘data parallel’,
and such tasks are well suited for execution on a GPU [2]. Unlike conventional parallel
processing computers that have many complex CPU cores, a modern GPU consists of a
large number of simple ‘stream processors’ that are individually capable of only a few
operations. However, the ability to pack many stream processors into the same space
as a single CPU core gives GPUs a large advantage in parallelism. A similarly parallel
traditional CPU-based system would be significantly more costly and complex.

The two most popular programming frameworks for GPGPU are C for CUDA, a
proprietary solution developed by NVIDIA Corporation, and OpenCL, an open standard
backed by multiple companies including Intel, AMD, NVIDIA and Apple. With both



Accelerating Outlier Detection with Uncertain Data Using Graphics Processors 171

CUDA and OpenCL, work is split from the host (i.e. the CPU) to kernels that execute
on a computing device (typically GPUs). Kernels contain the computationally intensive
tasks, while the host is tasked with managing the other computing devices. A single
kernel can be executed in parallel by many worker threads on a GPU.

Several outlier detection algorithms [2] [5] [6] [7] have been adapted for acceleration
with GPUs using CUDA and have seen significant reductions in running times (e.g. a
hundred fold improvement in [2]). In this paper, we opt to use OpenCL, as it provides
a high degree of portability between different manufacturers of GPUs, as well as the
ability to execute the same parallel code on a CPU for comparison.

While there is already a large body of work in the area of accelerating outlier detec-
tion on regular (certain) data, often in real world cases data collected has some degree
of uncertainty or error [1], for instance, a network of temperature sensors monitoring
a greenhouse. Moreover, some statistical techniques such as forecasting and privacy
preserving data mining will naturally be uncertain. These uncertainties can be repre-
sented by a number of common probability density functions (e.g. Gaussian distribu-
tion), which offer a convenient closed form representation. However, sampling a pdf
for outlier detection using a typical distance or density based approach will result in
greatly increased running time due to the computational load from calculations from
all the sampled points (e.g. LOF has a complexity of O(n2) [2], where n would in this
case be the total number of samples).

The work in [8] introduces outlier detection on uncertain data as records in a database,
with each record having a number of attributes (dimensions). Each dimension has a pdf,
and the objective is to find data points in an area with data density η (expressed as the
η-probability of a data point) less than a threshold value δ, i.e. a (δ, η)-outlier. As it is
assumed that outliers have low density in some subspace of the data, each subspace is
explored and in each subspace and outliers are removed.

It is noted [8] that it is impractical to determine η-probabilities directly, so a sam-
pling approach of the pdf s is used. As the sampling process is a very time consuming
operation, [8] also proposes a ‘microclustering’ technique to reduce the number data
objects into clusters. However, in this paper we do not explore microclustering of the
data to focus on the performance of density sampling on a GPU.

3 Algorithm for Outlier Detection with Uncertain Data

In this paper, we propose modification of the density sampling algorithm proposed in
[8] to optimize it for GPU acceleration. We will first recap the outlier detection approach
and terminology.

Let datasetD contain n uncertain data objects, with each object di having m dimen-
sions. For each object, each dimension has a pdf that is assumed to be independent.
Each object is represented by its mean value X̄i. The pdf for X̄i along dimension j
is denoted by hj

i (·) and the standard deviation of hj
i (·) is denoted ψj(X̄i). In the case

of data stored in certain form (i.e. without standard deviation), uncertainty can be es-
timated from the calculated standard deviation of each dimension using the Silverman
approximation suggested in [8].
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It is defined that the η-probability of object X̄i is the probability that X̄i lies in a
subspace with overall data density of at least η. A subspace is defined as the objects in a
subset of the m dimensions, while overall data density is defined by pdf s of each object.
The probability pi of X̄i in a subspace of dimensionality r with overall data density of
at least η can be found by solving the following integral:

pi =

∫
h(x1,...,xr)

r∏
j=1

hj
i (xj) dxj (1)

Note that h(x1, . . . , xr) represents the overall probability density function on all co-
ordinates in the given subspace. However, as pi is difficult to calculate precisely with
Eq. 1, it can be estimated using a density sampling algorithm, using s samples:

EstimateProbability(di, η, r, s)
Let F j

i (·) be the inverse cumulative distribution function of pdf hj
i (·)

success = 0, runs = 0
for s times do

for j = 1 to r do
y = a uniform random value [0, 1]
for all dk in D do
densityi = densityi + hj

k(F
j
i (y))

end for
densityi = densityi/|D|

end for
if densityi > η then
success = success+ 1

end if
runs = runs+ 1

end for
return (success/runs)

By sampling an object at multiple random points, calculating the overall data den-
sity at each sampled point, and counting how many of those sampled points exceed
η, the probability that object lies in a subspace with data density of at least η (i.e. η-
probability) can be estimated. It is also evident that the requirement to calculate overall
data density at each sampled point presents a large computational workload.

Finally, object X̄i is defined as a (δ, η)-outlier if the η-probability of X̄i in any sub-
space is less than a user parameter δ, that is, the object has a low probability of lying in
a region of high data density.

The overall algorithm is presented in pseudo code form as follows:

DetectOutlier(D, η, δ, r, s)
O = null
i = 1
Ci = { First dimension of data points in D }
while Ci is not empty and i ≤ r do

For each object d ∈ Ci −O calculate EstimateProbability(d, i, s, η)
Add any objects with η-probabilities < δ to O
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Ci+1 = for each point in Ci −O append corresponding dimension i+ 1 from D
i = i+ 1

end while
Note that the outlier detection algorithm uses a roll-up approach [8], starting with

a one dimensional subspace and adding more dimensions for each iteration. Each sub-
space is tested for outliers and any outliers are discarded from further consideration in
other subspaces.

4 Serial and Parallel Implementations

In order to compare performance, we implemented the algorithm described in the previ-
ous section in two ways: a traditional serial implementation in C++ (for the CPU) and a
parallel implementation optimized for the OpenCL framework (for both CPU and GPU).
In this section, we detail the key points to our serial and parallel implementations.

Note that in this paper, we assume all dimensions and their pdf s are independent
of each other. Density at a single point in a given data object is estimated by taking
the pdf of all dimensions of all data objects. This process is repeated for each sample
of each data object. In this case, the pdf is given by the Gaussian function f(x) =

1√
2πσ2

e−
(x−μ)2

2σ2 . The calculation of the inverse cumulative distribution function (inverse
cdf ) is more complicated due to the absence of a closed form representation. In this
implementation, it is calculated numerically using the technique described in [9].

4.1 Serial Methods

Within the serial implementation are two methods referred to as ‘iterative’ and ‘sin-
gle pass’. As noted previously, the density sampling algorithm uses a roll-up approach
to outlier detection starting with a single dimension and adding more dimensions for
each subsequent iteration. Since each dimension is considered independent, every com-
bination of subspaces does not need to be considered without loss of generality. Any
outliers found in a given subspace are excluded from later subspaces. The ‘iterative’
method uses this roll-up approach as described in Sect. 3. In contrast, the simpler ‘sin-
gle pass’ method only tests the entire problem space, that is, rather than looping through
subspaces of dimensionality 1 to r in DetectOutlier, one subspace of dimensionality r
is tested. This effectively averaging out all the densities in each dimension. As shown
in Sect. 5, this has a marked impact on performance (running time) as well as quality.

4.2 Parallel Methods

The parallel OpenCL implementation follows a similar path, with two methods referred
to as ‘early reject’ and ‘no early reject’. As described in Sect. 3, ‘early reject’ generates
comparable results to the serial iterative method, and ‘no early reject’ generates compa-
rable results to the serial single pass approach. However, the OpenCL implementation
differs in some key ways to the relatively straightforward serial implementation.

When a kernel executes on a computing device such as a GPU, it should take into
account a different architecture to a regular CPU. To better leverage the GPU using
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OpenCL, this implementation uses several optimizations such as the use of single preci-
sion floating point values and special hardware accelerated mathematical functions (na-
tive functions). Single precision floating point values are used extensively in graphics,
and thus GPUs are optimized for many single precision functions. By avoiding double
precision there are significant performance improvements at the cost of a small amount
of quality. However this is dependent on the hardware platform, and on our test platform
the CPU offered worse performance running OpenCL code with these optimizations.
As such, for fairness the CPU OpenCL implementation uses a simpler version that is
functionally identical but using double precision and without additional math functions.

The main kernel that is called from DetectOutlier on the host contains an imple-
mentation of EstimateProbability, along with a number of other functions such as the
uniform random number generator, as well as calculation of pdf and cdf. The current
OpenCL framework and the GPU imposes certain additional restrictions, such as a lack
of recursion (a function calling itself) and lack of dynamic memory allocation on the
GPU. This is a problem as refinement methods used in math libraries often use recur-
sion. These were re-written to remove recursion and to take advantage of additional
OpenCL functionality (e.g. the complementary error function erfc).

In addition, branching logic can cause a reduction in performance and should be
avoided where possible, as GPUs must execute the same code path for each worker
thread executing in parallel. As such, counter-intuitive methods such as an arithmetic
approach to η-density is used and not removing objects already detected as outliers from
further calculation until later are used to avoid branching as far as possible. Memory
management is also important on a GPU, with the fastest private memory available for
each worker thread used as a scratch area and a slower global memory space that can
be accessed by all workers used to store the datasetD. As copying data to and from the
GPU is an expensive operation, data transfers are minimized and as much preprocessing
and processing done on the GPU as possible.

For optimum performance using a GPU, clearly there must be a high level of data
parallelism, with many worker threads to divide the problem. In this implementation,
each data object is assigned one worker thread, and each worker is responsible for
density sampling of that object’s space. To further improve parallelism, vectors are
used in each worker’s private memory to hold the pdf variables. This allows multiple
dimensions of each object to be operated on simultaneously on hardware that supports
vector operations (4 dimensions in this implementation). The preprocessor will zero
additional empty dimensions to ensure the vectors are filled. The simplified overview of
the modified EstimateProbability (no early reject) that executes on each worker thread
is as follows:

EstimateProbabilityWorker(r, s, η, δ)
Let i be the data object of the current worker
Let F j

i (·) be the inverse cumulative distribution function of pdf hj
i (·)

Let vector length x = r/4, for vectors of width 4
prob = 0
for x times do

Let zero vectors successes, densities, y be of length x
runs = 0, subtotal = 0
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for s times do
y = uniformly random variables in [0, 1]
for all dk in D do
densities = densities+ hj

k(F
j
i (y1,...,x))

end for
densities = densities/|D|
successes = successes+ clamp(ceil(densities− η), 0, 1)
runs = runs+ 1

end for
if using ‘early reject’ then

for each vector dimension l do
if (subtotal + successesl)/l > δ then
subtotal = (subtotal + successesl)/l

else
successesl = 0

end if
end for

else
prob = sum(successes)/(r× runs)

end if
end for
Copy prob into global memory for host program

Note that while the early reject method adds some overhead to check each dimension
against δ, the performance impact is negligible unless the vectors are large relative to the
number of objects in the dataset. In our testing, there was no detectable no performance
difference between the early reject and no early reject methods.

In addition, the DetectOutlier loop that calls EstimateProbability is replaced with
the following:

Copy Cr from the host to the GPU
Call EstimateProbabilityWorker(d, r, s, η, δ) for every object d ∈ Cr
Copy η-probabilities from the GPU back to the host
Add any objects with η-probabilities < δ to O

The host loop is thus replaced by multiple workers executing in parallel on the GPU.
The following section shows the results of our testing using a synthetic and a real

dataset, as well as the parameters used for optimal results. Note that rather than directly
manipulating η and δ, a parameter uncertainty is used both in the generation of syn-
thetic data and to adjust the value of η and δ, compensating for the differences in the
underlying standard deviation. When operating on data in which the standard deviation
is not known, it can be estimated on a sample of the data by the preprocessor.

5 Experimental Results

The following tests were conducted on a PC running Microsoft Windows Vista SP2
with an Intel Core 2 Duo E8200 dual core CPU and an NVIDIA GeForce GT440 (96
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stream processors) GPU. The serial and host code was compiled using Microsoft Visual
Studio 2010. The OpenCL code was run using NVIDIA CUDA Toolkit 4.0 and driver
280.26 (OpenCL 1.1) for the GPU, and AMD Stream SDK 2.5 (OpenCL 1.1) for the
CPU.

5.1 Performance

To test performance, we generate simple synthetic datasets with a fixed percentage of
outliers (10%). In all cases, data objects that are not outliers have a mean value of 0 and
a standard deviation of 1, while outliers are offset by 3 (simulating an outlier with high
confidence).

In these performance tests, we compare the running time of the serial iterative (CPU-
Iterative) and single pass (CPU-Single Pass) methods, as well as the OpenCL imple-
mentation on the CPU (CPU-OpenCL) and the GPU. As noted in Sect. 3, the early reject
and no early reject methods demonstrated identical performance with the datasets used,
so are not shown individually for clarity. All objects in this test have 12 dimensions and
use 800 samples per object.

Fig. 1. A comparison of running time with increasing numbers of data objects

It is evident from Fig. 1 that none of the CPU based methods (including the paral-
lel CPU-OpenCL method) offer acceptable performance, with running times increasing
rapidly with larger numbers of objects. The GPU offers significant performance im-
provement over the tested CPU implementations, from 8× at very small sizes against
the parallel CPU-OpenCL method up to over 1500× compared against the slowest
CPU-Iterative method at larger sizes. Fig. 2 shows the relative increase in running time
as dataset size doubles.

The scaling of performance is quadratic with respect to the number of objects in
the dataset, due to the algorithm’s design. The CPU-based implementations demon-
strate this clearly (with some deviation at very small dataset sizes due to overhead).
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Fig. 2. A comparison of relative increase in running times with each doubling of data objects

At smaller sizes, the GPU demonstrates linear scaling, exceeding the expected quadratic
scaling. However the GPU’s actual scaling behavior is still quadratic, as the algorithm is
unchanged. The processing overhead on the GPU skews performance at smaller dataset
sizes, but at sizes exceeding 1000 objects, the worker threads’ contention for processing
resources and global memory access becomes the performance limiter. It is possible that
with the microcluster compression technique described in [8], this behavior can be used
advantageously. Overall, the GPU methods maintain a 67× performance improvement
over CPU-OpenCL (parallel) and a 273× improvement over CPU-Single Pass (serial).

Figs. 3 and 4 look at two other scaling considerations, the number of dimensions per
object and the number of samples per object.

Fig. 3. A comparison of running time with increasing dimensionality

It is clear from Figs. 3 and 4 that the number of dimensions and number of samples
offers a strictly linear increase in running time, consistent with the increase in process-
ing load without significant additional memory access load. For the GPU in particular,
the increase in running time is negligible.
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Fig. 4. A comparison of running time with increasing numbers of samples per object

5.2 Quality

Although the focus of this paper has been on performance, the quality of the results
must also be acceptable. In the following tests of outlier detection quality, we make the
following assumptions: the source data is recorded in a certain form, with data points
each having some number of dimensions. To represent the inherent uncertainty, the
values of each data point’s dimensions are mapped to the mean values of an equivalent
uncertain data object’s dimensions. The uncertainty of each dimension was estimated
from the standard deviation.

To adjust uncertainty in the synthetic dataset, the standard deviation is adjusted in a
range from 1 to 3 (i.e. at uncertainty level 3, standard deviation is three times the actual
standard deviation). Algorithm parameters η and δ are automatically scaled from 0.3
to 0.6 as uncertainty increases. This is done in an attempt to control the large decline
in quality originally seen [8] as uncertainty increases. Although the scaling factors are
hard-coded in this implementation, the preprocessor could be extended to better dy-
namic control of the algorithm parameters and reduce the number of parameters to tune
by hand.

The following tests use a real dataset: the Breast Cancer Wisconsin (Diagnostic) Data
Set (labeled ‘wdbc’) from the UCI Machine Learning Repository. This dataset contains
569 records with 30 attributes. This dataset is divided into records marked ‘benign’ and
‘malignant’, for the purposes of this test the ‘malignant’ records are deemed outliers,
resulting in a relatively high outlier rate of 37%.

Fig. 5 shows the related parallel and serial methods yielding similar quality, with
the CPU methods leading slightly in quality due to the GPU’s use of single precision
floating point values. Dynamically adjusting the algorithm parameters allows for recall
to remain fairly static as uncertainty increases. Note is that the simplest single pass
method of averaging density over the entire problem space works well in this relatively
small dataset. However as shown in Fig. 6, quality rapidly drops off as more dimensions
are added, limiting its usefulness.

For a clearer overview, Fig. 6 represents quality using F1 score, the harmonic mean
of precision and recall. It is clear that while adding dimensions results in a slight gain
in quality for the iterative and early reject methods, the single pass and no early reject
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Fig. 5. Precision (left) and Recall (right) with different levels of uncertainty for the ‘wdbc’ dataset

Fig. 6. F1 score with different numbers of dimensions

methods show a significant loss in quality. As outliers are not necessarily of low density
in all dimensions, averaging out an object’s density over all dimensions leads to areas
of low density being lost, thus recall declines significantly.

6 Conclusion

Through this paper, we have demonstrated the use of a density sampling algorithm for
outlier detection on uncertain data can be greatly accelerated by leveraging both a GPU
and the OpenCL framework. With our implementation, experimental results demon-
strate significant reductions to running time from a worst case very small dataset yield-
ing a 8× performance improvement over the parallel CPU-OpenCL implementation and
the best case yielding over 1500× improvement compared to the serial CPU-Iterative
method. This could enable large numbers of uncertain objects to be scanned in time
critical situations, such as in fault detection on sensor networks.

In the future, we would like to explore other techniques to detecting outliers with
uncertain data both in comparison to this implementation and in consideration for more
methods that can be parallelized for GPU acceleration. Density and distance based cal-
culations are often used in clustering and outlier detection applications, and there are
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demonstrable gains from using GPU acceleration in calculation intensive tasks, such as
when operating on uncertain data. There are also still opportunities to improve quality
and performance (e.g. the microclustering compression technique proposed in [8]), and
further testing with more datasets is planned.
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Abstract. In this paper, we consider graphs where a set of Boolean at-
tributes is associated to each vertex, and we are interested in k-clique
percolated components (components made of overlapping cliques) in such
graphs. We propose the task of finding the collections of homogeneous k-
clique percolated components, where homogeneity means sharing a com-
mon set of attributes having value true. A sound and complete algorithm
based on subgraph enumeration is proposed. We report experiments on
two real databases (a social network of scientific collaborations and a net-
work of gene interactions), showing that the extracted patterns capture
meaningful structures.

Keywords: graph mining, network analysis, attributed graph, k-clique
percolated component.

1 Introduction

During the last decade, graph mining has received an increasing interest in the
data mining community. More recently, several works have considered the mining
of enriched graphs where attributes are associated to the vertices. These works
led to interesting results, for instance in clustering [4,8,15,16], dense graph min-
ing [7,12] or graph matching [14].

In this paper, we focus on the special case where the domain of the attributes
is Boolean and we propose to extract collections of components called k-clique
percolated components [1]. More precisely, we define a pattern as a Collection
of Homogeneous k-clique Percolated components (CoHoP), where homogeneity
means that the vertices in all components share a common set of Boolean at-
tributes having value true. A CoHoP pattern must also satisfy two additional
constraints: it must contain more than a given number of k-clique percolated
components and the vertices must have in common more than a given number
of attributes set to true. A k-clique percolated component has been defined in [1]
as a union of cliques of size k connected by overlaps of k − 1 vertices (we recall
the more formal definition in the next section), and since then, it has been widely
accept as one structure that can be used to represent the notion of community.
A CoHoP, as introduced here, can thus be interpreted as a set of communities,
where elements in all communities share similar Boolean properties.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 181–192, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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In this paper, we also present a sound and complete algorithm to extract the
CoHoPs, and we show on two datasets (a coauthor graph and a gene interaction
graph) that these patterns can be used to capture useful information, depicting
underlying hidden structure of the graph.

The rest of the paper is organized as follows. Section 2 introduces the definition
of the CoHoP patterns. The extraction algorithm is described in Section 3 and
the experiments are reported in Section 4. The related works are discussed in
Section 5, and Section 6 briefly concludes.

2 Pattern Definition

In this section, we first define the dataset structure and recall the notion of k-
clique percolated component. Then, we define the targeted patterns, that are
collections of k-clique percolated components.

Graphs where information are associated to vertices have been used in dif-
ferent research areas under various names, e.g. attributed graphs [12,14,15,16],
itemset-associated graphs [2], informative graphs [4,8], graphs with feature vec-
tors [7]. In this paper, we use the term attributed graphs, and restrict ourselves
to Boolean attributed graphs.

Definition 1 (Boolean attributed graph). A Boolean attributed graph is
denoted G = (V , E ,A,F) where V is the set of vertices, E is the set of edges, A
is the set of Boolean attributes, and F : V → 2A is the function returning for a
vertex the set of attributes having value true.

For notational convenience, let us define the following functions.

Definition 2 (Functions vert and Atb). Let x be an attribute. The function
vert(x) = {v ∈ V | x ∈ F(v)} returns the set of vertices having value true
for the attribute x. Let M be a collection of sets of vertices. Then, Atb(M) =⋂

V ∈M (∩v∈V F (v)) is the set of attributes shared by all vertices in M .

Let G be an attributed graph. We denote G[V ] the subgraph of G induced by
the set of vertices V , i.e., G restricted to the vertices in V . The notation G�X�
denotes the subgraph induced by the set of vertices having value true for all
attributes in X , i.e., G�X� = G[∩x∈Xvert(x)].

A clique is a set of vertices in which every pair of distinct vertices is connected
by an edge and a k-clique is a clique of size k. A k-clique percolated component
(termed also k-clique-community in [11]) is a relaxed version of the concept
of cliques. The definition of k-clique percolated component given in [1] can be
reformulated as follows using an equivalence relation over the cliques.

Definition 3 (Adjacency relation). Let G be an attributed graph and R be
the adjacency relation over the k-cliques in G. Two k-cliques are related by R
if and only if they have an intersection of at least k − 1 vertices. Let Rt be the
transitive closure of R.

The relation R is symmetric and reflexive, so Rt is symmetric, reflexive, and
transitive. Consequently, Rt is an equivalence relation.
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Definition 4 (k-clique Percolated Component (k-PC)). A k-PC is the
union of all k-cliques in a class of equivalence over Rt.

In other words, a k-PC is the union of all k-cliques that can be reached from each
other through a series of adjacent k-cliques. We will denote Ckpc(G) the collection
of all k-PCs in an attributed graph G. Compared to other fault-tolerant clique
definitions, the particularity of k-PC is to enforce the fact that each vertex can
be reached from any other vertex through well connected subset of vertices [11].
In the context of social networks, it represents a community where each person,
even if not directly connected to another member, can easily find a way to com-
municate with him/her. Note also that with this definition, a clique is contained
in at most one k-PC. However, since a vertex can be in several cliques sharing
less than k − 1 vertices, it can be part of several k-PCs.

As mentioned in the introduction, our purpose is to explore the relation be-
tween strongly connected subgraphs. To perform this task we extract collections
of set of vertices such that, with k, α, and γ three user defined positive in-
tegers, (1) all vertices are homogeneous, more precisely, they have at least α
true-valued attributes in common, (2) the collection contains at least γ k-PCs
and (3) all k-PCs showing the same true-valued attributes are in the collection.
These patterns are defined more precisely as follows.

Definition 5 (Collection of Homogeneous k-PCs (CoHoP)). Let k, α,
and γ be three strictly positive integers, and G be an attributed graph. A collection
M of sets of vertices is a CoHoP if and only if:

– |Atb(M)| ≥ α (the vertices in M are homogeneous);
– M contains at least γ k-PCs, i.e., |M | ≥ γ;
– M is the collection of all k-PCs in G�Atb(M)�, i.e., M contains all k-PCs

sharing the attributes in Atb(M).

Note that due to the constraint on homogeneity, a k-PC which is formed by
vertices sharing less than α attributes cannot be part of a CoHoP.

3 Mining CoHoP Patterns

We first present a naive algorithm enumerating all subgraphs which might con-
tain a pattern. Then we show how to safely reduce the subgraphs enumeration,
and we describe the corresponding algorithm. Finally we describe implementa-
tion techniques.

Naive Algorithm
While Definition 5 is very declarative, we establish the following more construc-
tive definition of the CoHoPs.

Lemma 1. Let k, α, and γ be three strictly positive integers, and G be an at-
tributed graph with A the set of Boolean attributes in G. A collection M of sets of
vertices is a CoHoP if and only if there exists X ⊆ A such that M = Ckpc(G�X�),
|X | ≥ α, and |M | ≥ γ.
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Proof. First, consider a CoHoP M . By direct application of Definition 5, there
exists X = Atb(M) ⊆ A such that M = Ckpc(G�X�), |X | ≥ α, and |M | ≥ γ.
Now we prove the reciprocal. Consider X a set of attributes satisfying |X | ≥ α,
and M a collection of sets of vertices such that M = Ckpc(G�X�) and |M | ≥
γ. Since M = Ckpc(G�X�), then X ⊆ Atb(M). So G�Atb(M)� is a subgraph
of G�X� and since all vertices in M are also in G�Atb(M)�, we have M =
Ckpc(G�X�) = Ckpc(G�Atb(M)�). Thus M is a CoHoP.

To compute all patterns, a naive algorithm can enumerate the subgraphs Ge =
G�X� for all non empty set of attributes X , and for each Ge computes all k-PCs
in Ge. Then, if |X | ≥ α and if there is at least γ k-PCs in Ge, this collection of
k-PCs is a CoHoP. From Lemma 1, this algorithm is correct. However, with this
enumeration technique, 2|A| − 1 subgraphs will have to be enumerated (2|A| − 1
non empty subsets of A). The following lemmas are used to reduce the collection
of subgraphs that has to be enumerated.

Reducing the Collection of Graphs to Be Enumerated

First, we introduce the notion of k-max-clique which is a clique having at least k
vertices and not being a subset of any other clique. The collection of all k-max-
cliques in an attributed graph G is denoted Ckmax(G).

The next lemma states that we can discard the attributed graphs that do not
contain at least γ k-max-cliques, and also their subgraphs.

Lemma 2. Let G be an attributed graph. If G does not contain at least γ k-max-
cliques, then neither G nor any subgraph of G can contain a CoHoP.

Proof. Let G be an attributed graph having less than γ k-max-cliques. Since all
k-cliques in a k-max-clique are in the same k-PC, then the number of k-max-
cliques cannot be greater than the number of k-PCs. So, G cannot contain γ
k-PCs and thus cannot contain a CoHoP. The same holds for any subgraph of
G, since a subgraph of G cannot contain more k-max-cliques than G.

According to the following lemma, we can avoid the enumeration of graphs (and
their subgraphs) if they are induced by sets of attributes shared by not enough
vertices to contain a CoHoP.

Lemma 3. Let G be an attributed graph and x an attribute shared by less than
k vertices in G. Then, the graph G�{x}� and all its subgraphs cannot contain a
CoHoP.

Proof. Straightforward since G�{x}� contains less than k vertices.

The following property allows to reduce the set of vertices under consideration.

Lemma 4. Let G be an attributed graph. Only vertices in a k-max-clique of G
can form a CoHoP in G or in any subgraph of G.

Proof. Direct, as a vertex which is not in a k-max-clique cannot be in any k-PC.
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Algorithm Description

A recursive function FindCoHoP, that takes advantage of Lemmas 2, 3, and 4 to
prune the search space, is presented as Algorithm 1. The input of the algorithm
for the first call is the whole attributed graph, i.e., Ge = G, and Ac, the set of
candidate attributes remaining under consideration to find attributes shared by
subgraph, is A.

Line 1 checks that there is at least γ k-max-cliques in Ge. If it is not the
case, from Lemma 2 no subgraph of Ge including Ge itself can contain a k-PC.
Line 2 computes the set of vertices which might contain a k-PC (i.e., Vr) as
the union of all k-max-cliques in Ge according to Lemma 4. Line 3 checks (1) if
there is at least α attributes shared by all vertices in Vr (|∩v∈VrF(v)| ≥ α) and
(2) if there is at least γ k-PCs (|Ckpc(Ge[Vr])| ≥ γ). If so, the collection of k-PCs
is a CoHoP, and is output on line 4. On line 5, attributes from Ac shared
by all vertices in Vr are removed from Ac. Removing these attributes does not
change the collection of enumerated subgraphs, since if we pick such an attribute
x we have Ge[Vr ∩ vert(x)] that is equal to Ge[Vr] itself in the recursive call to
FindCoHoP (line 9). On line 6, attributes shared by less than k vertices in Vr
are removed from Ac, according to Lemma 3. This avoids unnecessary calls to
FindCoHoP with subgraphs having not enough vertices. Lines 7 to 9 perform
a standard recursive enumeration scheme to produce in a depth first way, and
element by element (the x that is picked), all subsets of Ac. While Ac is not
empty, an attribute x is picked (line 8) and function FindCoHoP is called with
the subgraph of Ge induced by the set of vertices in Vr sharing attribute x, i.e.,
Ge[Vr ∩ vert(x)].

Algorithm 1. FindCoHoP

Input: Ge, Ac

1 if |Ckmax(Ge)| ≥ γ then
2 Vr = ∪C∈Ckmax(Ge)

3 if |∩v∈VrF(v)| ≥ α and |Ckpc(Ge[Vr])| ≥ γ then
4 output Ckpc(Ge[Vr])

5 Ac ← {x ∈ Ac | Vr � vert(x)}
6 Ac ← {x ∈ Ac | |vert(x)∩ Vr| ≥ k}
7 while Ac �= ∅ do
8 Pick and remove an attribute x from Ac

9 FindCoHoP(Ge[Vr ∩ vert(x)], Ac)

Theorem 1. Algorithm 1 returns all CoHoP patterns and only CoHoP patterns.

Proof. Lemma 1 and Lemmas 2 to 4 (safety of the pruning) ensure the com-
pleteness of Algorithm 1. Line 3 ensures its soundness.

Note that a given CoHoP might be output several times by Algorithm 1. Such
duplicates are removed in a simple post-processing step.
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Implementation
We give here some details about the implementation of Algorithm 1 used in the
experiments presented in the next section.

The algorithm used to compute the collection of k-PCs in a graph is the
one described in [11] and also used for instance in [3]. It first builds a matrix
representing the adjacency relation between the k-cliques, and then compute the
connected components of k-cliques (the k-PCs) using this matrix. The algorithm
used to compute the k-max-cliques is CLIQUES [13]. Both the collection of k-
max-cliques (i.e., Ckmax(Ge)) and the collection of k-PCs (i.e., Ckpc(Ge[Vr])) are
computed only once for a given attributed graph on respectively lines 1 and 3,
and are reused on lines 2 and 4. Moreover, the computation of the k-PCs is done
on line 3 only if the vertices in Vr have at least α attributes in common (i.e.,
|∩v∈VrF(v)| ≥ α).

Finally, since vertices in a pattern must share at least one attribute (α ≥ 1),
in general it is not necessary to compute the k-max-cliques of the whole graph.
So, the first level of the enumeration is computed using only lines 6 to 9 of
Algorithm 1, with Vr the set of all vertices of the input attributed graph.

4 Experiments

In this section we report experiments on three datasets built using real data: two
bibliographic datasets (DBLP1 and DBLP2), and a biological dataset (BioData).
The size and density of these datasets are presented in Table 1. All experiments
were performed on a PC running GNU/Linux with a 3 GHz Core 2 Duo CPU
and 8 GB of main memory installed (no more than 2 GB where used). We first
describe the datasets, then, we illustrate the interest of the CoHoPs by mean of
three typical examples of pattern found. Next, we discuss the performances of
the algorithm and parameter setting.

Collaboration Network: DBLP1 and DBLP2 datasets have been built using
the public DBLP database1. This database contains rather exhaustive bibli-
ographic information on most computer science conferences and journals. We
built our datasets using all conferences and journal up to august 2011. A vertex
corresponds to an author and the attributes associated to a vertex are the con-
ferences and journals in which the author has published. An edge between two
authors represents the fact that they have coauthored some papers.

For DBLP1 we wanted a large dataset to assess the performances of extraction
algorithm. Consequently, in DBLP1, we put an edge to represent each pair of
coauthors, and for the attributes, an author is associated to all conferences and
journals in which she/he has published. This led to a dataset containing 997, 050
authors and 5, 963 conferences/journals.

The dataset DBLP2 was targeted to obtained more meaningful patterns. Thus,
in DBLP2, we focused on pairs of authors that have been collaborating more sig-
nificantly, and we put an edge between two authors if they were coauthors of
at least three articles. We also required a stronger relationship between authors

1 http://dblp.uni-trier.de/

http://dblp.uni-trier.de/
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and conferences/journals. Indeed, we associated a conference or a journal to an
author, only if this author has published at least three times in this confer-
ence/journal. Finally, in DBLP2, authors that remain associated to no confer-
ence/journal (i.e., authors who have never published three times in the same
conference/journal) were removed.

Protein Interaction Network: BioData has been built using two databases
STRING2 [5] and SQUAT3 [6]. STRING integrates data on protein-protein in-
teractions from different sources (e.g., genomic data, co-expression, experiments,
literature). Among these interactions we only retained interactions with confi-
dence4 higher or equal to 400 (default STRING selection threshold). SQUAT is
a public database of Boolean gene expression data resulting from SAGE experi-
ments. SQUAT contains for thousands of genes, the sets of biological situations
(termed libraries) where these genes are overexpressed. In our experiments, only
Human species genes were used. We built the BioData dataset as follows. A
vertex is a gene, and we put an edge between two genes if there was an inter-
action reported in STRING (confidence of at least 400) between the proteins
corresponding to these two genes. The attributes associated to a gene were sim-
ply the biological situations in which the gene was overexpressed according to
the SQUAT database. In our experiments, only Human species genes were used,
this led to 15, 571 genes common to the two databases. For these genes we have
expression data in SQUAT for 486 different biological situations.

Table 1. Size and density of datasets DBLP1, DBLP2, and BioData

DBLP1 DBLP2 BioData

# Vertices 997,050 127,386 15,571
# Attributes 5,963 3,980 486
Avg. degree 6.88 3.69 20.01
Avg. attributes/vertex 3.06 2.15 11.46

4.1 Illustration of the Interest of the Patterns

Collaboration Network: Let us first define some vocabulary in the context of
a network of researchers. In [11] the authors consider that a k-PC is a community
in the sense that “it consists of several complete subgraphs that tend to share
many of their nodes”. Consequently, we will use the term community for a k-PC.
We will also say that two communities are connected if there is an edge between
both communities. In DBLP2, we searched for CoHoPs with at least seven 4-
PCs were all authors have published in the same three conferences or journals

2 http://string-db.org/
3 http://bsmc.insa-lyon.fr/squat/
4 This confidence is a measure provided by STRING. Low confidence means that there
are not so many evidences that the interaction exists.

http://string-db.org/
http://bsmc.insa-lyon.fr/squat/
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(a) Seven 4-PCs concerning con-
ferences IPMI, ISBI, MICCAI and
journal IEEE Trans. Med. Imaging.

(b) Nine 4-PCs concerning confer-
ences INTERSPEECH, ICSLP, and
EUROSPEECH.

Fig. 1. Two patterns extracted from DBLP2 with k = 4, γ = 7, and α = 3. Each color
corresponds to a k-PC. Vertices in red are in several k-PCs

(i.e., k = 4, α = 3 and γ = 7). With this parameter setting, 57 CoHoPs where
extracted. To illustrate the kind of patterns that were retrieved, we focus on two
patterns presented in Figures 1(a) and 1(b).

The pattern on Figure 1(a) contains seven 4-PCs, all authors having published
in conferences or journals related to medical imaging. The authors N. Avache,
H. Delingette, G. Malandain, S. Ourselin, X. Pennec, and P. M. Thompson are
forming a community connected to all other communities except one and is the
core of a star-based topology. Knowing such a structure is useful to make some
decisions. For instance having researchers of the core community as partners in
a project, or choosing this community as a destination for a post-doc position
could be a great opportunity to benefit from contacts with all the other groups.
We also investigated the role of the authors connecting two communities (i.e.,
the endpoints of edges connecting two communities) in this pattern using Ar-
netMiner5. We found that four of these bridging nodes [10] were advisor of at
least half of the authors of their respective communities. So they are likely to be
senior researchers and this is coherent with the fact that they appear as bridges
between communities.

In the second CoHoP, presented on Figure 1(b), all authors have published
at least three times in three conferences related to speech communication / spo-
ken language. It contains nine communities, seven of them not being connected
to any other. Moreover, from the personal page of the authors, we found out
that in most cases a community is formed by people working in the same re-
search institute. So, here most communities are formed by researchers working
in the field of speech processing and not strongly publishing with researchers
from other institutes. Such structure with disconnected groups of people sharing

5 ArnetMiner (http://arnetminer.org/) is an application providing the relationship
(e.g., coauthor, advisor, advisee) between researchers.

http://arnetminer.org/
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similar interests might be interesting for several tasks. For instance, it can give
hints to funding organisms to set up long term development strategies of col-
laboration networks. Or it can also be helpful, in a normal day-to-day activity,
like finding reviewers for a paper, by suggesting experts in the same domain as
the authors, but having no closed collaborations (strong coauthor relationship)
with these authors (and also eventually having no closed collaborations with the
other experts).

Fig. 2. A CoHoP extracted from BioData with k = 3, α = 4, and γ = 3. Each color
corresponds to a k-PC. Vertices in red are in several k-PCs.

Protein Interaction Network: In the BioData dataset, we searched for Co-
HoPs with at least three 3-PCs were all genes are overexpressed in at least four
biological situations (i.e., k = 3, α = 4, and γ = 3) and obtained 25 patterns.
The CoHoP containing the greatest number of k-PCs is presented Figure 2.
This CoHoP is composed of 7 k-PCs, and all vertices are genes overexpressed
in 4 situations corresponding to normal white blood cells activities. The pattern
contains (from left to right) a ring made of 4 groups of genes (4 k-PCs), with two
other groups forming a tail link to the ring, and an extra isolated group. Such a
structure suggest, among others, the following biological questions. Is there any
order in the activation of the groups along the ring ? Do the groups forming
the tail act as a trigger for the whole ring activity ? Are there some interactions
between the isolated group and the others (while no such interaction is reported
in STRING with a confidence of 400 or greater) ? All these questions can lead
to interesting deeper investigations through wet biology experiments.

4.2 Performance Study

Figure 3 shows that the extraction can be made in less than 25 minutes when
k ≥ 4 on DBLP1 and DBLP2 (on BioData, all extractions made for similar
settings were run in less than 10 seconds). We can also notice that in all settings,
the runtime increases significantly when k decreases. The runtime increase when
γ decreases, as shown on Figure 3(b), is mainly due to the computation of k-PCs
from a large number of k-max-cliques.

The number of output patterns is given on Figure 4. As expected this number
decreases when the values of k, α, and γ increase. Such curves can be used
to help setting the extraction parameters. For instance, for communities, the
literature [11,3] recommends to use a value of k between 3 and 6. So, for DBLP2,
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(b) Runtimes on DBLP1 with α = 3
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(c) Runtimes on DBLP2 with γ = 3
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(d) Runtimes on DBLP2 with α = 3

Fig. 3. Runtime for different sets of parameters on DBLP1 and DBLP2

since the running time is rather low, we could count the number of patterns for
these values of k and a whole range of values of α and γ. Then we chose among
these settings the ones that were meaningful and that lead to collections of
patterns of reasonable size (for human browsing).

5 Related Work

Local pattern mining in attributed graphs to find homogeneous set of vertices is
rather recent, and two main families of approaches have been developed.

In the first family [7,12], a pattern is a single densely connected subgraph
(e.g., a quasi-clique) such that the vertices have homogeneous feature values.
Such a pattern can reveal a module, a group or a community sharing similar
properties or interests. A pattern in our approach is set of groups sharing similar
attribute values, and thus exhibits a different kind of structures made of several
groups (not a single one). Moreover the notion of group is also different, and
corresponds for CoHoPs to an another well known form of communities, the
k-clique percolated components. It should also be pointed out, that if the user
is interested in extracting single groups, this can also be done, in the case of
CoHoPs, by setting parameter γ to 1 and by outputting all k-clique percolated
components as separated patterns.
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(b) # patterns on DBLP1 with α = 3
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(c) # patterns on DBLP2 with γ = 3
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(d) # patterns on DBLP2 with α = 3

Fig. 4. Number of patterns for different sets of parameters on DBLP1 and DBLP2

Our proposal is closer to the second family of approaches [2,9], where a pattern
is a collection of set of vertices in a subgraph made of vertices sharing similar
attribute values. These previous works adopt opposite views on the kind of
structures they consider. In [9] the constraint on the structure of a group is
very strong, since the sets of vertices must be cliques. On the contrary, in [2],
the choice was made to be very tolerant, since a set of vertices is simply required
to form a connected subgraph. We introduce in this paper a complementary
approach, that exhibits another kind of group structures, namely the k-clique
percolated components, that are typical group structures used in the literature
to capture the notion of community.

6 Conclusion

In this paper, we considered graphs having a set of Boolean attributes associated
to each vertex. We proposed to find Collection of Homogeneous k-clique Perco-
lated components (CoHoP) and gave a sound and complete algorithm for this
task. We shown by means of experiments on real datasets that the extractions
can be made in practice and lead to meaningful patterns.

Acknowledgments. This work is partly funded by the Rhône-Alpes Com-
plex Systems Institute (IXXI) through the REHMI project, and by the French
National Research Agency (ANR) through the projects FOSTER (ANR-2010-
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Abstract. Link prediction is a key technique in many applications in
social networks, where potential links between entities need to be pre-
dicted. Conventional link prediction techniques deal with either homoge-
neous entities, e.g., people to people, item to item links, or non-reciprocal
relationships, e.g., people to item links. However, a challenging problem
in link prediction is that of heterogeneous and reciprocal link prediction,
such as accurate prediction of matches on an online dating site, jobs or
workers on employment websites, where the links are reciprocally deter-
mined by both entities that heterogeneously belong to disjoint groups.
The nature and causes of interactions in these domains makes hetero-
geneous and reciprocal link prediction significantly different from the
conventional version of the problem. In this work, we address these is-
sues by proposing a novel learnable framework called ReHeLP, which
learns heterogeneous and reciprocal knowledge from collaborative infor-
mation and demonstrate its impact on link prediction. Evaluation on a
large commercial online dating dataset shows the success of the proposed
method and its promise for link prediction.

Keywords: Machine Learning, Data Mining, Information Retrieval,
Recommender Systems.

1 Introduction

Social networks are commonly used to model the interactions among people in
communities, which can be represented by graphs where a vertex corresponds
to a person in some community and an edge or link represents some association
between the corresponding people. Understanding the association between two
specific vertices by predicting the likelihood of a future but not currently existing
association between them is a fundamental problem known as link prediction [13].

Social interaction on the Web often involves both positive and negative rela-
tionships, e.g., since attempts to establish a relationship may fail due to rejection
from the intended target. This generates links that signify rejection of invita-
tions, disapproval of applications, or expression of disagreement with others’
opinions. Such social networks are reciprocal since the sign of a link indicating

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 193–204, 2012.
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Fig. 1. Collaborative Information for Reciprocal and Heterogeneous Link Prediction.
Links as interactions connect nodes (in circles) that belong to different groups (grey
shading or no shading). The signs of links represent matches of two way decisions,
which are predicted by a learning model using collaborative information.

whether it is positive or negative depends on the attitudes or opinions of both
entities forming the link. While the interplay of positive and negative relations
is clearly important in many social network settings, the vast majority of on-
line social network research has considered only positive relationships. Moreover,
reciprocal positive and negative relationships have been even less investigated.
Recently, social network analysis has had a variety of applications, such as online
dating sites, education admission portals as well as jobs, employment, career and
recruitment sites, where people in the networks have different roles, and links
between them can only be between people in different roles. Such networks are
heterogeneous, creating challenges for link prediction since existing approaches
focus only on homogeneous networks where nodes in the networks have the same
role and any of them may link to any other.

In this work, we consider the heterogeneous and reciprocal link prediction
problem. We propose a framework to address prediction of the sign of a link
in heterogeneous and reciprocal networks. We model this problem as a machine
learning problem and create structural features for learning, i.e. we construct
features for learning based on structural collaborative information. Specifically,
motivated by taste and attractiveness in the Social Collaborative Filter [4], we
first define a structural unit called a tetrad (to be defined in Section 4.1), i.e.
a path crossing four nodes as in Figure 1 [4], in the graph of networks based
on a set of variations of collaborative filtering. These represent collaborative
information regarding taste and attractiveness of nodes in the graph (people in
social networks). The properties of each tetrad are then measured in terms of
positive and negative signs through its path. Finally, the properties of a tetrad
are used as features in a learning framework for link sign prediction.

The paper is organised as follows. Section 2 presents related work. Section 3
defines the problem. Section 4 develops a learnable framework for the reciprocal
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and heterogeneous link prediction problem. Experimental evaluation is in Sec-
tion 5 and we conclude in Section 6.

2 Related Work

Liben-Nowell and Kleinberg [13] developed one of the earliest link prediction
models for social networks. They concentrated mostly on the performance of var-
ious graph-based similarity metrics for the link prediction problem. This work
has since been extended to use supervised learning for link prediction [8,2,7],
where link prediction was considered as a binary classification task in a super-
vised learning setup using features extracted from various network properties.

Recent developments in online social networks such as Facebook and Twitter
have raised scalability challenges for link prediction. Large scale link prediction
was addressed by Acar et al. in [1], where higher-order tensor models based on
matrix factorisation were used for link prediction in large social networks.

Recently, work on link prediction has started considering both negative and
positive relationships in online websites [12,3,10,11]. Leskovec et al. investigated
the problem of link sign prediction to uncover the mechanisms that determine
the signs of links in large social networks where interactions can be both positive
and negative [12]. Also, learning methods based on multiple sources and multiple
path-based features were investigated. In [6], there is a collective link prediction
problem where several related link prediction tasks are jointly learned. In [14], a
supervised learning framework has been designed based on a rich variety of path-
based features using multiple sources to learn the dynamics of social networks.

In reciprocal and heterogeneous link prediction, the reciprocal and heteroge-
neous nature of networks makes the problem significantly different from tradi-
tional link prediction. Therefore, new methods to: 1) model the characteristics of
how reciprocal and heterogeneous links form; and 2) that can be used for mining
and predicting such links in large social network datasets are essential.

3 Problem Statement

Link prediction is defined as the inference of new interactions among the mem-
bers of a given social network [13]. More formally, the link prediction problem
is defined as: given a snapshot of a social network at time t, seek to accurately
predict the edges that will be added to the network during the interval from
time t to a given future time t′ = t + δt. The solution to this problem lies in
modelling the evolution of the network using intrinsic features derived from the
network itself in order to understand which properties of the network lead to the
most accurate link predictions.

Edge sign prediction is an important type of link prediction, defined as follows.
Suppose we are given a social network with signs on all its edges, but the sign on
the edge from node u to node v, denoted s(u, v), has been hidden. How reliably
can we infer this sign s(u, v) using the information provided by the rest of the
network? This problem is both a concrete formulation of our basic questions
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about the typical patterns of link signs, and also a way of approaching our
motivating application of inferring unobserved attitudes among users of social
computing sites. For a given link in a social network, we will define its sign to
be positive or negative depending on whether it expresses a positive or negative
attitude from the source of the directed link to the target, and vice versa.

Heterogeneous and reciprocal link prediction deals with predictions for het-
erogeneous and reciprocal links in social networks. We define the key concepts
as follows. A heterogeneous and reciprocal link is a link (u, v) that has its two
nodes u and v belonging to different types, or groups (i.e., the nodes are het-
erogeneous) and its edge sign depends on the attitudes of both nodes (i.e., link
establishment is reciprocal). Heterogeneous and reciprocal social networks are
networks connected only by heterogeneous and reciprocal links. A heterogeneous
and reciprocal link prediction problem (ReHeLP) is the prediction of links in
heterogeneous and reciprocal social networks.

Heterogeneous and reciprocal social networks exist in many applications (e.g.,
online dating sites, education admission sites, as well as jobs, employment, career
and recruitment sites). In online dating sites, we have: 1) users belonging to
different groups (male or female); 2) links established only between users from
different groups; and 3) link signs dependent on the compatibility of user pairs.

4 Methods

Given a directed graph G = (V,E) with a sign (positive or negative) on each
edge, we let s(u, v) denote the sign of the edge (u, v) from node u to node v.
That is, s(u, v) = 1 when the sign of (u, v)) is positive, 0 when negative. For
different formulations of our task, we suppose that for a particular edge (u, v),
the sign s(u, v) is hidden and that we trying to infer it.

4.1 Feature Construction

The first step towards our heterogeneous and reciprocal link prediction is feature
construction, which defines a collection of features for learning a model. The
features are divided into two categories, according to their relationships to the
entities in the networks.

Monadic Features. In social networks, the activity and popularity of an entity
have impact on the behaviour of the entity. Therefore, the first category of
characteristics of entities to be measured for link prediction is the activity and
popularity of entities, which are the aggregated local relations of an entity to the
rest of the world. This type of information represents the baseline, quantifying
how many ingoing and outgoing edges a node could have.

The number of outgoing actions of a node measures how active an entity in
the networks is, represented by its out-degree, the number of outgoing edges of
a node in graph. We define the first monadic features based on the degree of
the outgoing edges, as follows. An outgoing edge e of a node v is an edge that
directs from v to another node. The degree of outgoing edges of a node do(v) is
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the number of outgoing edges from that node v. We also separate the outgoing
edges according to their sign and define the degree of positive outgoing edges
and the degree of negative outgoing edges, which represents not only the activity
but also the general attitude of an entity to the world. The degree of positive
outgoing edges of a node d+o (v) is the number of outgoing edges from that node
v and with positive sign. The degree of negative outgoing edges of a node d−o (v),
is the number of outgoing edges from that node v and with negative sign.

Similarly, the number of incoming actions of a node measures how popular an
entity is in the network, represented by the degree of incoming edges. Therefore, we
define the degree of positive incoming edges and the degree of negative incoming
edges to model the popularity and again general attitude of an entity as follows.
The degree of positive incoming edges of a node d+i (v) is the number of incoming
edges to that node v with positive sign. The degree of negative incoming edges of
a node d−i (v), is the number of incoming edges to that node v with negative sign.

The four monadic features (d+o (v), d
−
o (v), d

+
i (v), d

+
i (v)) will be used in our

method to represent the activity and popularity as well as the general attitude
of an entity in a network.

Dyadic Features. We also define dyadic features based on collaborative in-
formation. Collaborative information is the information extracted from a com-
munity that represents knowledge about the network derived from collaborative
efforts. Collaborative information is the basis of collaborative filtering for rec-
ommendation, which makes automatic predictions about the interests of a user
by collecting preferences or taste information from many other users. We make
use of collaborative information for link prediction and extract dyadic features
as in collaborative filtering.

The links of interest represent reciprocal relationships between entities, re-
quiring reciprocal collaborative information to be considered [4,5,9]. Reciprocal
collaborative information could be embedded in several different kinds of collab-
orative filtering frameworks. In [4], a general framework for reciprocal collabo-
rative filtering was developed for recommendation, which was then extended in
several variant methods [9]. Here, we contribute to integrating such collaborative
information into a learnable framework for link prediction, rather than recom-
mendation. Moreover, we aim at prediction of heterogeneous links, hence both
nodes of a link cannot link to the same third node. For example, in people to
people dating recommendation, a link only exists between a heterogeneous pair,
i.e. a male type and a female type (we do not consider same-sex relationships in
this work). In this bipartite representation the sender and recipient cannot both
link to the same third person. Therefore, we consider a three step path involving
both nodes within a potential link, which is defined as a tetrad in Definition 1.

Definition 1. A tetrad t(u, sv, su, v) or t(u, v) is a three step path among four
different nodes (u→ sv → su → v) in a graph, where the source node u (sender)
and a node similar to it su (defined by collaborative filtering) both belong to one
of the two types, while the target node v (recipient) and another node similar to
it sv both belong to the other type.
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Table 1. Dyadic Features Based on Reciprocal Collaborative Information

Typical Inverted Transmissible
RSR SRS RRS RSS SRR SSR SSS RRR

n(r+s+r+) n(s+r+s+) n(r+r+s+) n(r+s+s+) n(s+r+r+) n(s+s+r+) n(s+s+s+) n(r+r+r+)
n(r+s+r−) n(s+r+s−) n(r+r+s−) n(r+s+s−) n(s+r+r−) n(s+s+r−) n(s+s+s−) n(r+r+r−)
n(r+s−r+) n(s+r−s+) n(r+r−s+) n(r+s−s+) n(s+r−r+) n(s+s−r+) n(s+s−s+) n(r+r−r+)
n(r+s−r−) n(s+r−s−) n(r+r−s−) n(r+s−s−) n(s+r−r−) n(s+s−r−) n(s+s−s−) n(r+r−r−)
n(r−s+r+) n(s−r+s+) n(r−r+s+) n(r−s+s+) n(s−r+r+) n(s−s+r+) n(s−s+s+) n(r−r+r+)
n(r−s+r−) n(s−r+s−) n(r−r+s−) n(r−s+s−) n(s−r+r−) n(s−s+r−) n(s−s+s−) n(r−r+r−)
n(r−s−r+) n(s−r−s+) n(r−r−s+) n(r−s−s+) n(s−r−r+) n(s−s−r+) n(s−s−s+) n(r−r−r+)
n(r−s−r−) n(s−r−s−) n(r−r−s−) n(r−s−s−) n(s−r−r−) n(s−s−r−) n(s−s−s−) n(r−r−r−)

A tetrad t(u, v) captures a two step relationship across two types, which is
the minimum indirect path between a pair of nodes (u, v). Tetrad is a novel
type of sub-graph feature for heterogeneous and reciprocal link prediction, which
captures collaborative information that cannot be captured by features used in
existing link prediction approaches. The following feature sets for each pair of
nodes (u, v) are then based on a variety of minimum indirect paths defined on
the pair.

The first type of dyadic features is based on Typical Reciprocal Collaborative
Information. As shown in Figure 2, this is the typical reciprocal collaborative
filtering for people to people recommendation with two-way preferences [4,5]. In
the figure, ua is the source node (corresponding to u in Definition 1), ur the target
node (v in Definition 1), ustr and usar the similar nodes (sv in Definition 1), usaa

and usta the similar nodes (su in Definition 1). From this configuration, we can
construct two set of features. One set is (on the top half of the figure) to capture
the collaborative information for predicting the recipient’s preference. The other
set is (on the bottom half of the figure) to capture the collaborative information
for predicting the initiator’s preference. Since we have positive or negative signs
for each interaction and there are 3 interactions in each set as shown in the
figure, we can create 2 ∗ 23 = 16 features of this type as in Table 1 indicated by
RSR and SRS. In Table 1, a tetrad type is presented by the directions of three
edges from u to v in a tetrad t(u, v), where S and s mean a link from a precursor
to a successor, R and r to a precursor from a successor, and their signs, where +
means a positive link and − negative. n is used to represent the number of links
of a tetrad type. To give an example, n(r+s−r+) means the total number of the
type of tetrad t(u, sv, su, v) that have a positive link from u to sv, a negative
link to sv from su and a positive link from su to v.

The second type of dyadic feature is based on Inverted Reciprocal Collaborative
Information. This type of dyadic feature is derived by fitting the inverted collab-
orative filters [9] into the reciprocal collaborative filtering framework [4]. There
are two types of inverted collaborative filters: user-based and item-based. In this
work, we make use of both of these inverted collaborative filters to generate
more features. We first take the recipient-based inverted collaborative filtering
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filtering with similar sender
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Fig. 5. Reciprocal collaborative filtering
by preference transmission

and add another novel type of collaborative information (on the top half of the
figure) to capture the preference of the recipient as shown in Figure 3. The orig-
inal inverted collaborative filters only model positive signs for all interactions
in the configuration. To allow more collaborative information to be considered
by the learning system in our configuration, we use both positive and negative
signs in any interaction within the configuration, and rely on the machine learn-
ing method to select discriminative features. Similarly, we add one more new
type of collaborative information (on the top half of the figure) to the sender-
based inverted collaborative filtering to capture the preference of the recipient as
shown in Figure 4. We also allow both positive and negative signs for interaction.
Features based on inverted collaborative information are summarised in Table 1
indicated by RRS, RSS, SRR and SSR.

The third type of dyadic feature is based on Transmissible Collaborative In-
formation. Dyadic features are considered also to capture the transmissible prop-
erties of preferences as in Figure 5. Similar to [9], if we only consider positive
interactions in creating the collaborative information, we should then have the
property of preference transmission. This can be easily validated by the taste
and attractiveness concept in [4]. Similarly, we have the first set of features (on
the top half of the figure) to capture the recipient’s preference and another set of
features (on the bottom half of the figure) to capture the sender’s preference. We
again allow both positive and negative signs in any interaction within the con-
figuration. Features based on preference transmission are illustrated in Table 1
indicated by SSS and RRR.

Each of these 64 tetrad types may provide different evidence about the sign
of the edge from the initiator to the recipient, possibly some favouring a negative
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sign and some favouring a positive sign. We encode this information in a 64-
dimensional vector specifying the number of tetrads of each type that both
nodes in a link are involved in. Notice that this is the first time a complete set of
combinations showing all possible sources of collaborative information derived
from the structure of tetrads has been used for link prediction.

4.2 Learning and Testing

To predict links, we first calculate the feature values and then calculate a measure
of combined feature strength as the weighted combination of feature values, as
follows:

s =
n∑

i=1

ωixi + ω0 (1)

where s is the combined feature strength, xi the value of the ith feature and ωi

the weight value for xi. To learn the weights and convert this combined feature
strength into an edge sign prediction, we use logistic regression, which will output
a value in the range of (0, 1) representing the probability of a positive edge sign:

p =
1

1 + e−s
(2)

where p is the predicted probability of an positive edge sign.
We will show in Section 5 that by using logistic regression, we are also able to

uncover the contribution of each feature to the prediction by investigating the
learned coefficients.

Once we have the learned model, testing is simply to calculate feature values
for each test instance (pair of nodes) and input them into the learned model
to compute the probability of a positive link between them. The instances are
then classified into positive or negative according to the thresholding of the
probability value with respect to a threshold.

5 Experiments

5.1 Setup

In these experiments, we aim to evaluate the proposed approach on link pre-
diction of dating social networks in a real world dataset, which is a demanding
real-world one. Link prediction on dating social networking is a typical hetero-
geneous and reciprocal link prediction problem, where the nodes are users and
links are interactions. Here users are either of male or female type, links are only
estimated between users of a different type and the link sign depends on the
decisions of both users. The datasets were collected from a commercial social
network (online dating) site containing interactions between users. Specifically,
the data contains records, each of which represents a contact (communication)
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Table 2. Dataset Description

#Interaction #Positive Link #Negative Link #User
Numbers in Dataset 1710332 264142(15%) 1446190(85%) 166699

by a tuple containing the identity of the contact’s sender, the identity of the con-
tact’s recipient, and an indicator showing whether the interaction was successful
(with a positive response from the recipient to the sender) or unsuccessful (with
a negative response or no response).

The experiments were conducted on a dataset covering a four week period
in March, 2010. The dataset contains all users with at least one contact in the
specific period. The dataset used for this research is summarised in Table 2. We
follow the methodology of Leskovec [12] and created a balanced dataset with
equal numbers of positive and negative edges.

To the best of our knowledge, there is no existing work on edge sign predic-
tion in heterogeneous and reciprocal networks. Therefore, we took the recent
approach to positive and negative link prediction in online social networks by
Leskovec et al. [12] as the baseline to compare to the proposed algorithm, which
has been reported to significantly improve on previous approaches [12]. The
baseline method uses all valid features except those based on two-step paths
that are not valid for heterogeneous and reciprocal link prediction since the lat-
ter has a tetrad structure. Notice that although the baseline method has some
utility in heterogeneous and reciprocal link sign prediction, it is not designed
for that problem. To the best of our knowledge, we are the first to consider the
heterogeneous and reciprocal link sign prediction problem.

We use accuracy, precision and recall as evaluation metrics for evaluation of
the proposed algorithm. We also use the receiver operating characteristic (ROC)
and the area under the ROC curve (AUC) for our evaluation.

Algorithms for feature extraction were implemented using SQL in Oracle 11.
Learning and testing algorithms were implemented in Matlab. For the large
scale dataset in Table 2, feature extraction required less than 1 hour. Training
on 90% of the balanced dataset and testing on the remaining 10% of the dataset
took about 1 minute on a workstation with 64-bit Windows 7 Professional, 2
processors of Intel(R) Xenon(R) CPU x5660@2.80GHz and 32GB RAM.

5.2 Results

To compare the proposed method to the baseline method, we conducted ex-
periments to generate values for the evaluation metrics from two methods and
statistically tested significance of differences using a paired t -test.

We used 10 fold cross-validation (CV) repeated 10 times and hold-out to gen-
erate results for evaluation. For hold-out, we hold 20% of the data for testing and
train the model using the remaining 80% of the data. The comparative results
are shown in Figure 6 with details in Table 3. The proposed method achieves
about 78% predictive accuracy on average on 100 runs by 10 fold CV repeated
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Table 3. Comparative Results. (“*” indicates improvement of the method.)

Baseline ReHeLP Improvement

10-fold CV Accuracy 0.756 0.781* 2.46%

repeated 10 times
Precision 0.718 0.749* 3.14%
Recall 0.806 0.813* 0.67%

20% hold out for testing

Accuracy 0.754 0.778* 2.40%
Precision 0.717 0.747* 3.04%
Recall 0.803 0.810* 0.71%
AUC 0.803 0.827* 2.35%

10 times while the baseline method only has less than 76% predictive accuracy
on average, showing the proposed method outperforms the baseline method by
about 2.5% predictive accuracy. For hold-out evaluation, the proposed method
similarly outperforms the baseline method by 2.4% predictive accuracy. The pro-
posed method also outperforms the baseline method in terms of precision, recall
and AUC as shown in Table 3, where the proposed method achieved 3.14%, 0.67%
improvement over the baseline method for precision and recall respectively by 10
fold cross-validation repeated 10 times, and 3.04%, 0.71% improvement over the
baseline method for precision and recall respectively by hold-out. The threshold
selected for this evaluation is based on the optimal operating point selected us-
ing the ROC curve in Figure 7, where the ROC curve of the proposed method
remains above that of the baseline method also indicating the improvement by
the former. On the AUC of the ROC curve, the proposed method outperforms
the baseline method by 2.35%.

A paired t -test is used to assess whether the means of the results of our
method and the compared method are statistically different from each other.
The result of a paired t -test on the corresponding predictive accuracy x of the
proposed method and predictive accuracy y of the compared baseline method by
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Table 4. Paired t-test at the 5% Significance Level

Hypothesis (h) p-value 95% Confidence Interval

1 2.74E-98 [0.0241 0.0251]

10-fold cross-validation repeated 10 times is shown in Table 4. Here the paired
t -test tests the null hypothesis that data in the difference x − y are a random
sample from a normal distribution with mean 0 and unknown variance, against
the alternative that the mean is not 0, i.e. the null hypothesis that the results
come from populations with equal means, against the alternative that the means
are unequal. Our experiments show that the test rejects the null hypothesis at
the α = 0.05 significance level as shown by the hypothesis h = 1 in the table.
Notice that the 95% confidence interval on the difference mean contains a positive
interval that does not contain 0, which indicates that the mean of the predictive
accuracy of the proposed method is greater than that of the baseline method.
Moreover, the p value has fallen below α = 0.05 and in fact even below α = 0.01,
which can be considered as a very significant difference (significant improvement
in accuracy).

6 Conclusion

We have presented a learning framework for the heterogeneous and reciprocal
link prediction problem. To the best of our knowledge, this the first work to
address the link sign prediction problem in heterogeneous and reciprocal social
networks. The improvement gained by the proposed approach has been clearly
demonstrated by a set of extensive experiments. The experiments were conducted
in demanding real world datasets collected from a commercial social network
site, which shows that the proposed method is able to make heterogeneous and
reciprocal link predictions and outperforms the use of existing link prediction
techniques.

Future work will include investigating methods to use better collaborative in-
formation and understand the way that the collaborative information contributes
to the prediction in order to design and make use of improved features.
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Abstract. Network motif detection methods are known to be impor-
tant for studying the structural properties embedded in network data.
Extending them to stochastic ones help capture the interaction uncer-
tainties in stochastic networks. In this paper, we propose a finite mixture
model to detect multiple stochastic motifs in network data with the con-
jecture that interactions to be modeled in the motifs are of stochastic na-
ture. Component-wise Expectation Maximization algorithm is employed
so that both the optimal number of motifs and the parameters of their
corresponding probabilistic models can be estimated. For evaluating the
effectiveness of the algorithm, we applied the stochastic motif detection
algorithm to both synthetic and benchmark datasets. Also, we discuss
how the obtained stochastic motifs could help the domain experts to gain
better insights on the over-represented patterns in the network data.

Keywords: Stochastic motifs, finite mixture models, expectation max-
imization algorithm, social networks.

1 Introduction

Network motifs, also known as simple building blocks of complex networks, are
defined as patterns of interactions that appear in different parts of a network
more frequently than those found in randomized networks. With the network
represented as a graph, network motifs can be interpreted as the over-represented
subgraph patterns embedded in the graph. Since the pioneering work by Shen-
Orr et. al [1], there have been a lot of research works on detecting network
motifs in biological networks [4,5,6] with the objective to gain insights on the
relationship between the network structural properties and the functions they
possess. Milo et al. [2,3] generalized the idea to characterize a broad range of
networks, including ecosystem food webs, neuronal networks, World Wide Web,
etc. Recently, network motif detection has also been applied to social network
analysis. For example, an email based social network can be well characterized
by the Z-score distribution of embedded 3-node subgraph patterns [8,9].

Most of the existing works on network motif detection assume that the net-
work motif is deterministic, which means that the corresponding subgraph
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c© Springer-Verlag Berlin Heidelberg 2012



206 K. Liu, W.K. Cheung, and J. Liu

patterns either appear completely or are missing totally. Deterministic net-
work motif detection methods could give inaccurate results if the motifs exhibit
stochastic properties. The corresponding stochastic network can be modeled as
a mixture of a background random ensemble and families of mutually similar
but not necessarily identical interconnection patterns represented by a stochas-
tic network motif [6] (which is also called probabilistic motif in [5]). Stochastic
motif detection can then be casted as a missing-value inference and parameter es-
timation problem under a Bayesian framework. Expectation-Maximization(EM)
algorithm and Gibbs sampling can readily be adopted [6,10].

Recently, Liu et al. [11] applied the finite mixture model to analyze social
media but with the assumption that there is only one stochastic motif. This paper
generalizes this work to model stochastic network as a finite mixture model with
k components (k ≥ 1) and adopt the Bayesian approach for detecting the optimal
set of multiple stochastic motifs. The paper is organized as follow. Section 2
presents the problem formulation. Evaluation results obtained via experiments
performed based on both synthesis and benchmark datasets are reported in
Section 3. Section 4 concludes the paper with future research directions.

2 Network Motif Analysis in Social Media

Analyzing triads embedded in networks have long been found important in con-
ventional social network analysis. However, local interaction patterns (or termed
as “ties” in social network analysis community) which are salient for characteriz-
ing the overall structure of the networks could appear with stochastic variations.
It makes conventional motif detection methods problematic as demonstrated in
[11]. For large online networks which contain interactions of millions of different
individual entities, the incorporation of stochastic models becomes especially es-
sential for more robust motif detection. This is analogous to the need of hidden
Markov Model (HMM) for more robust speech recognition and that of condi-
tional random field (CRF) for information extraction. For stochastic motif de-
tection, the target of detection is the embedded network motifs (foreground) and
the other links are modeled as the random background.

Relationships or interactions among N elementary units in a population could
be represented as a graph G with N nodes and a set of edges denoted by an ad-
jacency matrix A = (aij)N×N . For directed graphs, aij = 1 if there is a directed
edge pointing from node i to node j, and 0 otherwise. For undirected graphs,
aij = 1 if node i and node j are connected, and 0 otherwise. Subsets of nodes
in G with only the local connectivity considered define subgraphs of G. A sub-
graph S with n nodes can be described by an adjacency matrix XS = (xij)n×n,
where xij is either 0 or 1 to indicate its connectivity. By sampling subgraphs of
a relatively small size (say, triads) from G, the frequency distribution of their
appearance can characterize the local structural properties of the graph. To ex-
tend from this, a set of subgraphs with “structurally similar” adjacency matrices
defines a stochastic network subgraph pattern which if over-represented defines
a stochastic network motif M .
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2.1 Canonical Forms of Subgraphs for Modeling Stochastic Motifs

Enumerating or sampling subgraphs from a network is the pre-processing step
needed before related stochastic models can be applied. A well-known problem is
the handling of subgraph isomorphism. Intuitive speaking, structurally equiva-
lent subgraph instances could have their nodes labeled in different orders, making
those equivalent subgraphs associated with very different adjacency matrices.
Identifying subgraph isomorphism itself is NP-complete in general [13]. Some
heuristic computational tricks could be applied to reduce the computational
complexity issue on average. In this work, an efficient graph/subgraph isomor-
phism testing algorithm Nauty [12] is used to check for structurelly equivalent
subgraphs and relabel them based on a canonical one so that their appearances
can be well aggregated and the stochastic model learning can be accurate.

The remaining question is the choice of the canonical forms. Existing meth-
ods for detecting deterministic motifs assume that the motifs are independent
and the choices of the canonical forms for the isomorphically equivalent groups of
subgraph instances can just be independently considered. However for stochastic
motifs, one should expect a stochastic motif model which gives a high proba-
bility value to the canonical form of a subgraph pattern A should give also a
relatively high value to that of a subgraph pattern B which is a subgraph of A.
In other words, the canonical forms for the different isomorphically equivalent
subgraph patterns should be chosen in such a way that one being the subset
of another should be “aligned” as reflected in their node labeling orders. With
this considered, we carefully derived the set of canonical subgraph patterns for
subgraphs with 3 nodes as shown in Figure 1. For subgraphs with more than 3
nodes, we are currently studying the possibility of building the corresponding
canonical forms efficiently by joining and/or extending the canonical adjacency
matrices of 3-node subgraphs [14].
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Fig. 1. All possible subgraphs of canonical form with 3 nodes

2.2 Finite Mixture Model

With the assumption that a stochastic network can be modeled as a mixture of
families of independent foreground stochastic motifs embedded in a background
random ensemble, each subgrah in the stochastic network can be regarded as
either generated from the background or from one of the foreground motifs. In
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this paper, we extend from the mixture model in [6,11] that multiple stochastic
motifs can be detected and the number of motifs required can be estimated.

Assuming there exist k stochastic motifs M f = {M1, · · · ,Mk} which are
represented as a set of probability matrices Θf = {Θ1, · · · , Θk}, with Θh =
(θhij)n×n, 0 ≤ θij ≤ 1, 1 ≤ h ≤ k. θhij denotes the probability that there is an edge
from node i to j in the h-th motif. The background ensemble M0 is characterized
by a family of randomized networks generated from a given stochastic network
which contain the same number of nodes and edges, and the same statistics for
the nodes’ in/out degrees.

Moreover, let {S1, · · · , SW } denote a set of subgraph instances sampled from a
given network, X = {X1, · · · ,XW } denote the adjacency matrices correspond-
ing to the subgraph instances (observed data) where Xw = (xw

ij)n×n and xw
ij =

{0, 1}, Zw
h denotes an indicator variable taking the value of 1 if subgraph instance

Sw comes from the model Mh or 0 otherwise, and thus Z = (Z1, · · · ,ZW )T form
the missing data of the problem, where Zw = (Zw

0 , · · · , Zw
k )

T . The probability
that Xw comes from Mh is given as

p(Xw|Θh) =

n∏
i=1

n∏
j=1

(θhij)
xw
ij (1− θhij)

1−xw
ij . (1)

Also, let λ = (λ0, · · · , λk) be the mixing portion of the mixture model which
also denotes the prior probabilities of Pr(Zw = 1), w = {1, · · · ,W}.

The stochastic motif detection problem can thus be casted as a maximum
likelihood estimation problem for Θ = {Θf ,λ} where the log-likelihood function
for the complete data is given as

l(Θ) = log p(X,Z|Θ) =
W∑

w=1

k∑
h=0

Zw
h logλh +

W∑
w=1

k∑
h=0

Zw
h log p(Xw|Θh). (2)

The EM algorithms for estimatingΘf and λ will be presented in the next section.
For the background model, we are interested in the probability of observing

the subgraph instance Sw in the background model p(Xw|Θ0) instead of Θf . As
in [6,11], the background model is estimated by counting the subgraph instances
in randomized networks. We first generate a set of randomized networks. For each
randomized network described by an adjacency matrix A = (aij)N×N , we ran-
domly choose pairs of connections and repeatedly swap the target of them until
the network is well randomized, while keeping the incoming and outgoing degrees
of each node remain unchanged, i.e., keeping the summation of each row and each
column in the adjacency matrix unchanged. Subgraphs are then sampled from the
randomized networks. p(Xw|Θ0) is estimated asNw/Ntotal, whereNw is the num-
ber of the subgraph Sw sampled from the ensemble of the randomized networks
and N is the total number of subgraphs sampled with the same size with Sw.

2.3 Basic EM Algorithm

For learning probabilistic models with missing data (unknown motifs for our
case), the Expectation-Maximization (EM) algorithm [15] is typically used for
obtaining the Maximum Likelihood (ML) estimates of the model parameters.
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The EM algorithm produces a sequence of estimates by alternatingly applying
the E-step and M-step until it converges.

– E-step: Compute the complete data expectation of log-likelihood E[l(Θ)]
given the observed data X and the current estimates of model parameters
Θ̂. We have

E[l(Θ)] =
W∑

w=1

k∑
h=0

E[Zw
h ] log λ̂h +

W∑
w=1

k∑
h=0

E[Zw
h ] log p(Xw|Θ̂h), (3)

where E[Zw
h ] = E[Zw

h |X, Θ̂] =
p(Xw|Θ̂h)λ̂h∑k
j=0 p(X

w|Θ̂j)λ̂j

(4)

– M-step: The model parameters are estimated by maximizing the expectation
of the log-likelihood, given as

(λ∗,Θ∗
f ) = arg max

λ,Θf

E[l(Θ)]. (5)

And the updating rules for λ and Θh are given as

λ∗
h =

1

W

W∑
w=1

E[Zw
h ] λ∗

0 = 1−
k∑

h=1

λ∗
h (6)

(θhij)
∗ =

α̂h
ij

α̂h
ij + β̂h

ij

, α̂h
ij =

W∑
w=1

E[Zw
h ]xw

ij , β̂h
ij =

W∑
w=1

E[Zw
h ](1− xw

ij). (7)

Note that p(Xw|Θ0) is estimated based on the subgraph statistics in the ensem-
ble of randomized networks as explained in the previous section.

2.4 Learning the Optimal Number of Motifs

To determine the optimal number of stochastic motifs automatically, we adopt
the Component-wise EM for Mixture(CEM2) which was proposed to integrate
both the model parameter estimation and model selection steps into one single
EM algorithm [16]. The general idea of CEM2 is to update the parameters of
each component one by one so that the component with very low support by the
data can be pruned. CEM2 starts from all possible k-component mixtures and
prunes the died components(λh = 0) sequentially at each EM iteration.

CEM2 implements the minimum message length(MML) criterion [17] to select
the number of components. The best parameter estimate for the mixture model
is the one minimizing the message length L[Θ,X], which is given by

L[Θ,X] = L[Θ] + L[X|Θ], (8)

where L[Θ] is the minimum message length for prior information, and L[X|Θ] is
the minimum message length for data which can be estimated as − log p(X|Θ).
As in [16], the final cost function (message length) L[Θ,X] is given by

L[Θ,X] =
N

2

∑
m:λh>0

log(
Wλh

12
) +

knz
2

log
W

12
+

knz(N + 1)

2
− log p(X|Θ), (9)

where knz is the number of components with non-zero probability, and N is the
number of parameters specifying each component. The detailed steps of CEM2

to motif detection can be found in Algorithm 1.
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Algorithm 1. CEM2 Algorithm

Input: Subgraphs X = {X1, · · · ,XW }, ε, kmin, kmax, initial parameters Θ̂(0) =
{Θ̂1, · · · , Θ̂kmax ; λ̂1, · · · , λ̂kmax}

Output: Mixture model with optimal Θ∗

1. t ← 0, knz ← kmax, Lmin ← +∞
2. uw

h ← p(Xw|Θ̂h), ch ← max{0, (
∑W

w=1 E[Zw
h ]) − N

2
}, for h = 1, · · · , kmax, and

w = 1, · · · ,W
3. while knz ≥ kmin do
4. repeat
5. t ← t+ 1
6. for h = 1 to kmax do
7. E-step: E[Zw

h ] = uw
h λ̂h(

∑kmax
j=0 uw

j λ̂j)
−1, λh ← ch(

∑kmax
j=0 cj)

−1

8. M-step: {λ̂1, · · · , λ̂kmax} ← {λ̂1, · · · , λ̂kmax}(
∑kmax

h=0 λ̂h)
−1

9. λ̂0 = 1−
∑kmax

h=1 λ̂h

10. if λ̂h > 0 then
11. update Θf according to Eq.(7), and uw

h ← p(Xw|Θ̂h)
12. else
13. knz ← knz − 1
14. end if
15. end for
16. Θ̂(t) = {Θ̂1, · · · , Θ̂kmax ; λ̂0, · · · , λ̂kmax}
17. calculate L[Θ̂(t),X] according to Eq.(9)
18. until L[Θ̂(t− 1),X ]− L[Θ̂(t),X] < ε|L[Θ̂(t− 1),X]|
19. if L[Θ̂(t− 1),X ] ≤ Lmin then
20. Lmin ← L[Θ̂(t− 1),X ]
21. Θ∗ ← Θ̂(t)
22. end if
23. h∗ ← argminh{λ̂h > 0}, λ̂h ← 0, knz ← knz − 1
24. end while

3 Experimental Results

In this section, we present experimental results to demonstrate first the correct-
ness of the detected stochastic motifs using synthetic datasets. Then, we further
present the results of applying the stochastic motif detection algorithm to some
real datasets and provide interpretation of the results obtained.

3.1 Results on Synthetic Networks

We generated a set of synthesized networks for correctness evaluation. Each
network is generated by 1) creating a group of subgraphs coming from a known
set of reference stochastic motifs as foreground models and 2) adding random
links among the subgraphs to generate random background. In particular, we
chose the subgraphs commonly found in many real networks, e.g., id is 38, 46,
166, 174, and 238 (see Fig. 1) as the reference motifs. We then applied our method
to the synthetic networks we generated. In order to avoid the EM algorithm being
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(a) Synthetic data (b) Amazon network (c) Wiki-Vote network

(d) Slashdot network (e) Epinions network

Fig. 2. The plot of the expected log likelihood under different numbers of motifs

trapped into local optima, we ran the EM algorithm several times with different
initializations to report the best Θ in terms of the likelihood value.

Figs. 3(a) - 3(e) show the stochastic motifs obtained by the multiple motif
detection method in the synthetic networks. According to Fig. 2(a), the value
of E[l(Θ)] increases a lot when the motif number varies from 1 to 5. There is a
sharp drop in the increasing rate for the value of E[l(Θ)] when k = 5, 6, 7. This
is consistent to the fact that there are 5 reference motifs used for generating the
synthetic networks. A similar conclusion can be drawn by referring to Table 1.

Table 1. λs when the number
of motifs is 5, 6 and 7 (×10−2)

λ1 λ2 λ3 λ4 λ5 λ6 λ7

k = 5 7.1 9.8 8.6 7.7 2 - -

k = 6 3.8 7.9 8.5 10.1 13.5 0.2 -

k = 7 9.1 9.5 9.1 6.0 9.6 0.1 0.1

Table 2. Dataset statistics (×103)

Amazon Wiki Slash Epinions

# nodes 262 8 77 76

# edges 1,235 104 828 509

# subgraphs 7,685 13,329 67,361 70,911

3.2 Results on Benchmark Datasets

We have also applied the stochastic motif detection algorithm to large-scale social
network datasets named “Amazon”, “Wiki-Vote”, “Slashdot” and “Epinions”
which are obtained as described in [18,19]. The dataset “Amazon” considers the
Customers Who Bought This Item Also Bought feature of the Amazon website.
If a product A is frequently co-purchased with product B, the graph contains
an directed edge from node A to node B. “Wiki-Vote” is a network consisting of
voting interaction for Wikipedia admin candidates. The link refers to a vote from
a user to an admin candidate represented a user agree or disagree the promotion
of the admin candidate. “Slashdot” is a social network of technology blog. The
links in this network are the designations of “friends” or “foes”. “Epinions” is
a trust network, where we can know the trust or distrust relations of the users
from the directed links between each other. Table 2 lists the statistics of these
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four datasets. These networks have order of tens to hundreds of thousands of
nodes and hundreds of thousands to millions of edges. In each network, we know
the directions of all the edges.

Figs. 2(b) - 2(e) show the expected maximum log likelihood values E[l(Θ)] of
the mixture models with different component numbers in the four datasets. Here
we can determine the best number of motifs by visual inspection to identify the
points where the increase of E[l(Θ)] starts to slow down. Also, by referring to
tables 3 - 6, the values of λ with different motif numbers in these four datasets
also hint us the best optimal number to choose from (as marked with bold face
in the tables). For instance, for Amazon network, when the number of motifs
k is set to 6, the value of λ6 is very small. This hints that the 6-th motif is
only “supported” by a very limited number of subgraph instances and thus 5
stochastic motifs could be enough. Similar results were obtained for Wiki-Vote,
Slashdot and Epinions networks.

Table 3. λs for Amazon (×10−2)

λ1 λ2 λ3 λ4 λ5 λ6

k = 4 2.3 3.5 2.1 1.5 - -

k = 5 1.7 1.6 2.3 2.3 1.6 -

k = 6 2.2 2.7 1.4 1.3 1.8 0.1

Table 4. λs for Wiki-Vote (×10−2)

λ1 λ2 λ3 λ4

k = 2 1.0 1.2 - -

k = 3 2.0 1.1 1.1 -

k = 4 1.2 3.9 4.7 0.2

Table 5. λs for Slashdot (×10−3)

λ1 λ2 λ3 λ4 λ5

k = 3 0.8 1.3 2.9 - -

k = 4 1.5 1.8 1.6 0.42 -

k = 5 1.1 2.2 1.4 0.32 0.39

Table 6. λs for Epinions (×10−3)

λ1 λ2 λ3 λ4 λ5

k = 3 8.4 4.7 8.0 - -

k = 4 8.1 5.7 2.3 0.45 -

k = 5 9.2 4.8 5.8 0.54 0.27

Fig. 3 shows the stochastic motifs detected in the datasets we used. Similar
to [11], one can make interpretations on the networks of study based on the
motifs extracted, which can in turn be validated by related domain experts. For
instance, we made the following observations which seems revealing some local
structural properties of the networks:

– By referring to the results obtained based on the Amazon dataset (Figs.
3(f) - 3(j)), we observed the following patterns: i) a 3-node pattern (Fig.
3(f)) where three products are always co-purchased bidirectionally; ii) a 3-
node pattern (Fig. 3(g)) where only two pairs of products are co-purchased
bidirectionally but not the third pair; iii) some other 3-node patterns where
only one pair of products are co-purchased bidirectionally but not the other
two (Figs. 3(h),3(i)); and iv) a 3-node pattern where the co-purchasing is
never done directionally for the related products. It could be interesting
to further analyze whether the four patterns are corresponding to different
product characteristics, which could in turn result in some more context
specific product recommendation methodologies.
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Fig. 3. Stochastic motifs detected in different datasets with the edge width showing
the corresponding probability of edge appearance, and the edge label gives the actual
probabilities. E.g., 1(0.92)2 means the occurrence probability of edge x12 is 0.92. A
dashed edge here implies a probability value less than 1.

– From the results obtained based on the Wiki-Vote dataset (Figs. 3(k) - 3(m)),
it is also interesting to observe the following patterns: i) a 3-node pattern
(Fig. 3(k)) where co-voting never occurs; and ii) some 3-node patterns where
co-voting only occasionally occurs for one pair of voters but not the other
pairs (Figs. 3(l) and 3(m)). In general, co-voting activities within a triad are
not commonly observed. We believe that this could be related to the user
psychology behind the voting process, requiring again further investigation
effort with respect to the corresponding application context.

– All the motifs detected in these social networks consist of a basic feed-forward
loop structure (structure of Fig. 1(e)) with some additional edges. The
feed-forward loop structure is the most popular deterministic motif found
in biological and social networks, which follows the status theory in social
networks proposed in [18]. E.g., if A regards B as having higher status (a link
from A to B), and B regards C as having higher status (a link from B to C),
so A should regard C as having higher status and hence be inclined to link
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from A to C. So, the feed-forward loop structure is often over-represented
while the feedback loop (structure of Fig. 1(i) having link from C to A) is
under-represented instead.

As inspired by [18], we plan to make reference to different social psychology
theories developed in social science to validate and gain further insights and thus
explanation on the underlying social behaviors embedded in the social media.

3.3 Effectiveness of CEM2 in Estimating Optimal Number of Motifs

Fig. 4 shows how the cost functions L(Θ,X) evolve throughout the CEM2 itera-
tions. Starting from the maximum possible number of motifs (knz = 13 for motif
size is 3), the cost function decreases as the CEM2 iterations proceed. When
some components are pruned as described in the algorithm, the value of the cost
function would increase to some extent. After some iterations, the remaining
motifs will then be learned to better fit to the data, and thus the cost function
decreases again. The number of motifs is automatically estimated by choosing
with the one which gives the lowest cost function value. For synthetic data, the
mixture model with 5 motifs gives the lowest cost function value, which is consis-
tent to that estimated using the basic EM. In the four social networks we used,
the cost functions have the lowest values when the motif numbers become 3, 3,
3 and 5 respectively, which are also consistent to the results observed in Section
3.2, but here we need to run CEM2 only once. Fig. 5 shows the evolution of
motifs annihilation by taking the Wiki-Vote network as an example. Figs. 5(a) -
5(e) are the motifs when the number of motifs is 5. With the iteration continues
until convergence, the number of motifs becomes to 3, the corresponding motifs
are listed in Figs. 5(f) - 5(h).

(a) Synthetic network (b) Amazon network (c) Wiki-Vote network

(d) Slashdot network (e) Epinions network

Fig. 4. The evolution of cost functions L(Θ,X) until convergence in different datasets,
the x-axis gives iteration times, knz means the number of none-zero components
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Fig. 5. The evolution of motif pruning by taking Wiki-Vote network as an example

3.4 Computational Complexity

The overall complexity include those for subgraph sampling, generating of ran-
dom networks, and the parameter estimation via the EM algorithms.

The complexity of sampling subgraphs of n nodes in a network is RS =
O(NsK

n−1nn+1), where K is a small constant value corresponding to the aver-
age node degree in the network, and Ns is the number of subgraphs sampled.
The background model is simulated by randomized networks which generated
by the switch method as in [2,11], where many rounds of ”switchings” of two
edges randomly selected from the real network are conducted while keeping the
in/out degree of each node fixed. In so doing, the complexity of generating a
random network is O(TsNe) (the number of switches), where Ts is the switch
times per edge (a random number in the range of 100− 200) and Ne is the num-
ber of edges in the real network. Overall time complexity for pre-processing is
O(NsK

n−1nn+1(1+Nr)+NrTsNe), whereNr is the number of random networks.
For the basic EM algorithm, the complexity of each iteration is O(n2Ns). So,

the total complexity of EM algorithm together with pre-processing is O(Ns ×
Kn−1nn+1(1+Nr)+Nr×Ts×Ne+k×I×n2Ns), where I is the iteration times of
EM algorithm and k is optimal number of motifs. For CEM2, it is only slightly
computationally heavier than the basic EM algorithm due to the multiple E-
steps to recompute E[Zw

h ] [16]. As updating E[Zw
h ] needs only full computation

of Eq.(4) for j = h. For j �= h, the terms (Xw|θh), which could contribute a lot
to the computational cost of E-step, remain unchanged and thus only need to be
computed once per sweep, like in the basic EM. However, the basic EM should
be run several times with different motif numbers. CEM2 is needed to run only
once. So, the overall time complexity of CEM2 is lighter than basic EM.

For further speedup, as the data are assumed independent and identically
distributed (i.i.d) and thus can be partitioned into multiple subsets, our method
can also take the advantage of parallel computing on GPUs [20] so as to be more
scalable to large-scale datasets.
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4 Conclusion and Future Works

Motif detection provides an important tool to assist the study of structural prop-
erties in network data for domains like bioinformatics and on-line social media.
We proposed the use of the finite mixture model to detect multiple stochastic
motifs in network data and a related CEM algorithm for automatically deter-
mining the optimal number of motifs embedded and the model parameters of
the motifs. We applied the method to both synthetic and several benchmark
datasets and discussed how the obtained motifs could be used to gain an in-
depth understanding of the underlying stochastic local interaction patterns.

Our method works well for analyzing the network structural properties based
on small motifs (i.e., 3 or 4 nodes). For future work, more scalable (possibly
parallel) implementation will be needed if the analysis is to be carried out for
motifs of various sizes. From the perspective of further improving modeling and
thus the analysis power, related research directions include: 1) extending the
method to take into consideration the sign of the edges, and 2) incorporating
the timing information on edges to detect temporal motifs as a family of similar
interaction patterns which over-represented throughout the period of time.
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Abstract. Nowadays online monitoring of data streams is essential in many 
real life applications, like sensor network monitoring, manufacturing process 
control, and video surveillance. One major problem in this area is the online 
identification of streaming sequences similar to a predefined set of pattern-
sequences.  

In this paper, we present a novel solution that extends the state of the art 
both in terms of effectiveness and efficiency. We propose the first online 
similarity matching algorithm based on Longest Common SubSequence that is 
specifically designed to operate in a streaming context, and that can effectively 
handle time scaling, as well as noisy data. In order to deal with high stream 
rates and multiple streams, we extend the algorithm to operate on multilevel 
approximations of the streaming data, therefore quickly pruning the search 
space. Finally, we incorporate in our approach error estimation mechanisms in 
order to reduce the number of false negatives. 

We perform an extensive experimental evaluation using forty real datasets, 
diverse in nature and characteristics, and we also compare our approach to 
previous techniques. The experiments demonstrate the validity of our approach. 

Keywords: data stream, online similarity matching, time series. 

1 Introduction 

In the last years, due to accelerated technology developments, more and more 
applications have the ability to process large amounts of streaming time series in real 
time, ranging from manufacturing process control and sensor network monitoring to 
financial trading [1] [2] [3] [4] [5]. A challenging task in processing streaming data is the 
discovery of predefined pattern-sequences that are contained in the current sliding 
window. This problem finds multiple applications in diverse domains, such as in network 
monitoring for network attack patterns, and in industrial engineering for faulty devices 
and equipment failure patterns. Previous work on streaming time series similarity [6] [7] 
proposed solutions that are limited either by the flexibility of the similarity measures, or 
by their scalability (these points are discussed in detail in Section 2).   

Motivated by these observations, in this paper we propose a new approach that 
overcomes the above drawbacks. First, we observe that in the absence of a time 
scaling constraint, degenerate matches may be obtained (i.e., by matching points in 
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• Finally, we perform an extensive experimental evaluation with forty real datasets 
(Section 4). The results demonstrate the validity of our approach, in terms of 
quality of results, and show that the proposed algorithms run (almost) three times 
faster than SPRING [9] (the current state of the art).  

The rest of the paper is organized as follows. We start by briefly presenting the 
background and the related work in Section 2. Section 3 presents our approach and 
describes in detail our algorithm. Section 4 discusses the experimental evaluations, 
and Section 5 concludes the paper. 

2 Background and Related Work 

We now introduce some necessary notation, and discuss the related work. 
A time series is an ordered sequence of n real-valued numbers T=(t1, t2, …, tn). We 

consider t1 the first element and tn the last element of the time series. In the streaming 
case, new elements arrive continuously, so the size of the time series is infinite. In this 
work, we are focusing on a sliding window of the time series, containing the latest k 
streaming values. We also define a subsequence ti,j of a time series T=(t1, t2, …, tn) is 
ti,j=(ti, ti+1, …, tj), such that 1≤i≤j≤n. We say that two subsequences are similar if the 
distance D between them is less than a user specified threshold ε.  

2.1 Distance Measures 

The most frequently used distance measure is the Euclidean distance, which computes 
the square root of the sum of the squared differences between all the corresponding 
elements of the two sequences (Figure 2(a)). The Euclidean distance cannot be applied 
on sequences of different sizes, or for element temporal shifts and, in these cases, the 
optimal alignment is achieved by DTW (Dynamic Time Warping) [10] (Figure 2(b)). 
DTW is an elastic distance that allows an element of one sequence to be mapped to 
multiple elements in the other sequence. If no temporal bound is applied, DTW can lead 
to pathological cases [11] [12] where very distant elements are allowed to be aligned. 
To avoid this problem, temporal constraints can be added in order to restrict the allowed 
temporal area for the alignment; the most used constraints are the Sakoe-Chiba band [13] 
and the Itakura Parallelogram band [14] (shaded area in Figure 3). The LCSS measure [8] 
is also an elastic distance measure that has an additional feature compared to DTW: it 
allows gaps in the alignment. This feature can be very valuable in real applications, 
since in this way we can model noise, outliers, and missing values (Figure 2(c)).  

 
      (a)              (b)            (c) 

Fig. 2. Time series distances: Euclidean (a), DTW(b), and 
LCSS (c) 

Fig. 3. Sakoe-Chiba band (left) 
and Itakura Parallelogram (right) 
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2.2 Similarity Matching 

The Euclidean distance is used by [6] for identifying similar matches in streaming 
time series. This study proposes a technique, where the patterns to be matched are 
first hierarchically clustered based on their minimum bounding envelopes. Since this 
technique is based on the Euclidean distance, it requires the sequences to be of the 
same size and is rather sensitive to noise and distortion [15]. As a solution, [9] 
presented the SPRING algorithm that computes the DTW distance in a streaming data 
context. This algorithm allows comparison of sequences with different lengths and 
local time scaling, but does not efficiently handle noise (outlier points). We elaborate 
more on SPRING in the next subsection. 

The warping distance techniques are also studied by [16], who propose the Spatial 
Assembling Distance (SpADe), a new distance measure for similarity matching in 
time series, which is able to operate incrementally in a streaming environment. 
However, Ding et al. [11] showed (based on a large collection of datasets) that DTW, 
in general, has better accuracy than SpADe. 

Stream-DTW (SDTW) is proposed by [7] with the aim of having a fast DTW for 
streaming times series. SDTW is updatable with each new incoming data sequence. 
Nevertheless, the experimental results show that it is not faster than SPRING. In [17] 
the LCSS distance was used to process data streams, but was not adapted for online 
operation in a streaming context, which is the focus of our paper.  

Other related works to this topic focused on approximations, thus proposing 
approximate distance formula. One example is the method proposed by [18] that uses the 
Boyer Moore string matching algorithm to match a sequence over a data stream. This 
approach is limited in that it operates with a single pattern and a single stream at a time. 
A multi-scale approximate representation of the patterns is proposed by [19] in order to 
speed up the processing. Even though the above representations introduce errors, neither 
these errors nor the accuracy of the proposed technique are explicitly studied.  

2.3 SPRING Overview 

The basic idea of SPRING (for more details see [9]) is to maintain a single, advanced 
form of the DTW matrix, called Sequence Time Warping Matrix (STWM). This 
matrix is used to compute the distances of all possible sequence comparisons 
simultaneously, such that the best matching sequences are monitored and finally 
reported when the matching is complete. 

Each cell in the STWM matrix contains two values: the DTW distance d(t,i) and 
the starting time s(t,i) of sequence (t,i), where t=1,2,…n and i=1,2,…m are the time 
index in the matrix of the stream and of the pattern respectively. A subsequence 
starting at s(t,i)  and ending at the current time t has a cumulative DTW distance 
d(t,i), and it is the best distance found so far after comparing the prefix of the stream 
sequence from time s(t,i) to t, and the prefix of the pattern sequence from time 1 to i. 
On arrival of a new data point in the stream, the values of d(t,i) and s(t,i) are updated 
using Equations (1) and (2). A careful implementation of the SPRING algorithm leads 
to a space complexity of O(m) and time complexity of O(mn), just like DTW. 
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3 Our Approach 

In this section, we present two novel algorithms for streaming similarity matching 
called naiveSSM (naive Streaming Similarity Matching) and SSM (Streaming 
Similarity Matching).  

The naiveSSM algorithm efficiently detects similar matches thanks to three features: 
it constrains the time scaling allowed in the matches, thus, avoiding degenerate answers; 
it handles outlier points in the data stream, by using LCSS; and it uses a special 
hierarchical summarization structure that allows it to effectively prune the search space. 
Although naiveSSM provides good results, it is not aware of the computation error 
introduced by the summarization method. SSM takes care of the computation error and 
improves the results by using a probabilistic error modeling feature.   

3.1 The naiveSSM Algorithm 

3.1.1 CWC Bands (Continuous Warping Constraint bands) 
We observe that the simple addition of a Sakoe-Chiba band for solving the problem of 
degenerate matches would not be enough, since not all matching cases would be 
detected. Figure 4 illustrates this idea; two sequences situated outside of the band, but 
very near of its bounds, are not detected as matching because they are outside of the 
allowed area. The solution we propose is a novel formulation of Sakoe-Chiba band, 
which we call Continuous Warping Constraint (CWC band). 

CWC band consists of multiple succeeding overlapping bands where each of 
these bands is bounding one possible matching sequence (Figure 5). More precisely, 
we propose to associate a boundary constraint to each possible matching, and not a 
general allowed area (as in Figure 4). In this way, the CWC band provides more 
flexible bounds that follow the matching sequences behavior. Figure 5 shows three 
CWC bands. The first matching sequence (dark grey) falls within the first CWC 
band, while the second sequence falls in the third CWC band, hence both being 
successfully detected as matching. A single CWC band is an envelope created 
around the pattern (the left allowed time scaling value being equal to the right 
allowed time scaling value); the size of the envelope is a user-defined parameter. 
The CWC bands have the additional advantage that they can be computed with 
negligible additional cost.  
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Fig. 4. Sakoe-Chiba band (shaded area), 
and two candidate matching sequences 
(dark grey) falling outside the constraint 
envelope 

 

Fig. 5. The same two candidate matching 
sequences as Figure 4, and three overlapping 
CWC bands 

 
The CWC bands can be added to the SPRING algorithm, on top of the DTW. Due 

to lack of space, in the following, we only discuss the application of CWC on top of 
streaming LCSS. 

3.1.2 LCSS in a Streaming Context 
LCSS provides a better support for noise compared to DTW, as we mention in 
Section 2. Equation (3) shows the LCSS computation of two sequences, A and B, of 
length n and m, respectively. The parameter γ is a user-defined threshold for the 
accepted distance. We now derive a novel formula for the streaming version of LCSS. 

LCSS( A, B) =

0 if A or B is Empty( )
1+ LCSS(at−1,bi−1) if dist(at ,bi ) < γ( )
max[LCSS(at−1,bi ), otherwise
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where t = 1,2,...,n and i = 1,2,...,m

 

(3) 

Since LCSS and DTW have similar matrix-based dynamic programming solutions 
(for the offline case), one may think that they also share the idea of the STWM 
matrix, thus, leading to a simple solution of replacing DTW with LCSS in the 
SPRING framework.  Unfortunately, this is not a suitable solution: simply plugging 
LCSS Equation (3) into SPRING introduces false negatives and degenerate time 
scaled matches. The false negatives occur because the otherwise clause in Equation 
(3) selects the maximum of the two preceding sequences irrespective of the portion of 
the δ time scaling they have consumed. Therefore, it is possible that the selected 
sequence may have a higher LCSS value than the discarded sequence, but has already 
exceeded its allowed time scaling limit. The problem is that even though such a 
sequence will never become a matching sequence (because of its length), it may 
prevent a valid sequence from becoming a match.  

To address this problem, we formulate the new CWC band constrained LCSS 
Equation (4) (due to lack of space, we omit the intermediate steps of deriving these 
new equations). In Equation (4), δ is a user defined parameter defining the maximum 
time scaling limit for the CWC bands, which corresponds to the size of the bands. The 
LCSS count is incremented only if the current pattern and stream value match, that is, 
they have a point to point distance less than the threshold γ, and the preceding 
diagonal LCSS falls within the CWC band (i.e., belongs to the allowed envelope 
area). Equation (5) describes the corresponding update of the starting time. 
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First of all, the window size must be at least as big as the searched pattern. Then, 
since we use elastic matching, a candidate matching sequence can be extended up to δ 
data points in both directions (i.e., to the left and right), which gives the following 
inequality for the window size (refer to area “A” in Figure 7):  WindowSize ≥ 
patternLength + 2δ. When a candidate matching sequence is detected, we must 
determine its locally optimal neighbour. For this purpose, and since δ is the maximum 
allowed time scaling, the window has to contain an extra δ data points (depicted as 
“B” in Figure 7). Finally, one more data point is needed for the optimality verification 
of the candidate sequence. The above statements lead to the following inequality for 
the window size:  WindowSize = patternLength +3 δ +1.  

3.2 SSM Algorithm 

3.2.1 Probabilistic Error Modelling  
As all approximations result in loss of information, multilevel summarization is also 
expected to lead to some loss of information. Therefore, it is highly probable that the 
set of candidate matches found at the highest level may not contain all the actual 
matches. One way of addressing this problem is by lower bounding the distance of the 
time series. Even though this is possible, this approach would lead to a 
computationally expensive solution. Instead, we propose an efficient solution based 
on the probability with which errors occur in our distance computations.  

We randomly choose a sample of actual data point sequences from the streaming 
window. For all the sequences in the sample, we compute the error in the distance 
measure introduced by the approximation (by comparing to the distance computed 
based on the raw data). Then, we build a histogram that models the distribution of 
these errors, the Error Probability Distribution (EPD). Evidently, errors are smaller for 
the lower levels of approximation, since they contain more information, and are 
consequently more accurate than the approximations at higher levels. 

The pruning decision of a candidate matching sequence is based on the EPD: we 
define the error-margin as 1-3σ (standard deviations) of the EPD. Intuitively, the 
error-margin indicates the difference that may exist between the distance computation  
based on the summarization levels and the true distance. Using an error-margin of 3σ, 
we have a very high probability that we are going to account for almost all errors.  

Then, if the distance of a candidate sequence computed at one of the approximation 
levels is larger than the user-defined threshold ε, but less than ε + error-margin, this 
sequence remains a candidate match (and is further processed by the lower 
approximation levels).  

3.2.2 Change-Based Error Monitoring 
The data stream characteristics change continuously over time and EPD must reflect 
them. For this purpose, we set up a technique allowing the effective streaming 
computation of EPD. The most expensive part of the EPD computation is the 
computation of the LCSS distance between the pattern and all the samples. The 
continuous computation of EPD can be avoided by setting up a mechanism that will 
trigger the EPD re-computation only when the data distribution changes significantly.  
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In the work, we propose to use a technique that is based on the mean and variance 
of the data. This technique was proven to be effective [21] [22] and can be integrated 
in a streaming context. Though, more complex techniques for detecting data 
distribution changes can be applied as well [23]. 

Our algorithm operates as follows. When sufficient data arrives in the stream 
window, the EPD is constructed. Then the mean and the variance of the original 
streaming data are computed and registered together with the error margins. We 
consider that the EPD needs to be updated (i.e., reconstructed), only when the mean 
and variance of the current window changes by more than one standard deviation 
compared to the previous value. We will call this technique change-based error 
monitoring. 

The only remaining question to answer is how often to sample. If we look for a 
pattern of size k within a streaming window of size n, there are (n – k + 1) possible 
matching sequences for the first element of the window, (n – k + 1 - 1) possible 
matching sequences for the second element of the window and so on until there is 1 
single possible matching sequence for the n-k element of the window. Therefore there 
are (n–k+1)+(n–k+1-1)+(n–k+1-2)+...+1=(n–k+1)*(n–k+2)/2 possible matching 
sequences.  

Given the large number of possible matching sequences, even a very small 
sampling rate (i.e., less than 1%) can be sufficient for the purpose of computing EPD. 
In the following section, we experimentally validate these choices. 

4 Experimental Evaluation 

All experiments were performed on a server configured with 4xGenuine Intel Xeon 
3.0 GHz CPU, and 2 GB RAM, running the RedHat Enterprise ES operating system. 
The algorithm was coded in Matlab. 

We used forty real datasets (for details, see [24]) with diverse characteristics from 
the UCR Time Series Repository [25], and treated them as streams. Patterns are 
randomly extracted from the streams, and the experiments are organized as follows. A 
dataset consists of several streams and several patterns. An experiment carried out on 
a single dataset means that each pattern in that dataset is compared with each stream 
in the same dataset. All experiments are carried out with patterns of length 50 (unless 
otherwise noted), and we report the averages over all runs, as well as the 95% 
Confidence Intervals (CIs). 

We use precision and recall to measure accuracy: precision is defined as the ratio 
of true matches over all matches reported by the algorithm; recall is the ratio of true 
matches reported by the algorithm over all the true matches. The matches produced by 
SPRING with CWC bands serve as the baseline for all our experiments. 

4.1 Approximate Similarity Matching  

We first examine the performance of the naiveSSM algorithm. In this case, we use up 
to 5 levels for the multilevel summarization. The performance when using only some 
of these 5 levels of the summarization is lower (these results are omitted for brevity). 
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experiments on forty real datasets show that the proposed solution runs (almost) three 
times faster than previous approaches. At the same time, our solution exhibits high 
accuracy (precision and recall more than 99% and 95%, respectively), and ensures 
that we do not obtain degenerate answers, by employing the novel CWC bands.  
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Abstract. Mining frequent tri-concepts from folksonomies is an interesting prob-
lem with broad applications. Most of the previous tri-concepts mining based
algorithms avoided a straightforward handling of the triadic contexts and paid
attention to an unfruitful projection of the induced search space into dyadic con-
texts. As a such projection is very computationally expensive since several tri-
concepts are computed redundantly, scalable mining of folksonomies remains a
challenging problem. In this paper, we introduce a new algorithm, called TRI-
CONS, that directly tackles the triadic form of folksonomies towards a scalable
extraction of tri-concepts. The main thrust of the introduced algorithm stands in
the application of an appropriate closure operator that splits the search space into
equivalence classes for the the localization of tri-minimal generators. These tri-
minimal generators make the computation of the tri-concepts less arduous than
do the pioneering approches of the literature. The experimental results show that
the TRICONS enables the scalable frequent tri-concepts mining over two real-life
folksonomies.

Keywords: Folksonomies, Triadic Concept Analysis, Closure Operator, Equiv-
alence Classes, Triadic Concepts.

1 Introduction and Motivations

Complementing the Semantic Web effort, a new breed of so-called Web 2.0 applica-
tions recently emerged on the Web. Indeed, social bookmarking systems, such as e.g.,
DEL.ICIO.US1, BIBSONOMY 2 or FLICKR3 have become the predominant form of con-
tent categorization of the Web 2.0 age. The main thrust of these Web 2.0 systems is their
easy use that relies on simple, straightforward structures by allowing their users to label
diverse resources with freely chosen keywords aka tags. The resulting structures are
called folksonomies4, that is, ”taxonomies” created by the ”folks”. Considered as a tri-
partite hyper-graph [9] of tags, users and resources, the new data of folksonomy systems

1 http://www.delicious.com
2 http://www.bibsonomy.org
3 http://www.flickr.com
4 http://wwww.vanderwal.net/folksonomy.html

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 231–242, 2012.
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provides a rich resource for data analysis, information retrieval, and knowledge dis-
covery applications. Recently, the discovery of shared conceptualizations opens a new
research field which may prove interesting also outside the folksonomy domain: closed
tri-sets (triadic concepts) mining in triadic data [6]. Actually, this line of Triadic Con-
cept Analysis did not grasp a broad attention. However, with the rise of folksonomies,
formally represented as triadic contexts, many researches advocate the extraction of
lossless concise representations of interesting patterns from triadic data.

In this paper, we are mainly interested in the mining of frequent triadic concepts (tri-
concepts for short) from 3-dimensional data, i.e., folksonomy. These patterns are among
the recent research topics in Triadic Concept Analysis. In this respect, a determined al-
gorithmic effort was furnished to get out this type of patterns. Worth of mention, the
pioneering work of Stumme et al., through the TRIAS algorithm [6], for tri-concepts
mining. TRIAS inputs a folksonomy, formally represented as a triadic context, and com-
putes all tri-concepts. However, the main moan that can be addressed to TRIAS, stands
in its need to transform the triadic context into dyadic contexts in order to extract tri-
concepts. Thus, the mining task becomes very computationally expensive and could be
avoided by extending the basic notions of FCA (Formal Concept Analysis) for the tri-
adic case. Ji et al., in [7], have proposed un alternative algorithm, called CUBEMINER,
which directly operates on the triadic context. It consists in using cubes called cutters
generalizing the cutters introduced for constraint-based mining of formal concepts [1].
Yet, in a folksonomy, the number of cutters may be very large as far as the cardinality of
at least one dimension of a folksonomy is high. Besides, the CUBEMINER algorithm op-
erates in a depth-first manner, which has the risk of causing infinite trees. More recently,
Cerf et al., in [2], proposed the DATA-PEELER algorithm with the challenge of beating
both later algorithms in terms of performance. The DATA-PEELER algorithm is able
to extract all closed concepts from n-ary relations. DATA-PEELER enumerates all the
n-dimensional closed patterns in a depth first manner using a binary tree enumeration
strategy. However, similarly to CUBEMINER, the strategy of DATA-PEELER, involving
a depth-first approach implies its depth’s recursion, in the worst case, to the total num-
ber of elements (whatever the dimension). Moreover, DATA-PEELER is hampered by
the large number of elements that may contain any of the folksonomy’s dimensions and
its strategy becomes ineffective and leads to a complex computation of tri-concepts.

In this respect, a compelling and thriving issue is to introduce a new scalable algo-
rithm, that overcomes the flaws of the previous ones. Hence, in this work, the main
contribution is to introduce a new algorithm for tri-concepts mining, called TRICONS,
aiming at providing better scalabilty than do the pioneering approches of the litera-
ture, by applying an appropriate closure operator. In fact, the closure operator splits
the search space into equivalence classes in order to find the tri-minimal generators.
These tri-minimal generators, representative of the different equivalence classes, make
the computation of the tri-concepts less arduous than do the aforementioned ones. In-
deed, the tri-minimal generators are the smallest elements, i.e., tri-sets, in an equiva-
lence class, while their associated closure is the largest one within the corresponding
equivalence class. Thus, the pairs - composed by Tri-MGs and their related closures -
allow, (i) an easier localization (extraction) of each tri-concept since it is necessarily
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encompassed by an Tri-MG and the related closures and; (ii) to straightforwardly han-
dle the triadic form of a folksonomy towards an efficient extraction of tri-concepts.

The remainder of the paper is organized as follows. Section 2 recalls the key notions
used throughout this paper. We scrutinize the related work of mining triadic concepts
in section 3. In section 4, we introduce a new closure operator to the triadic context
as well as the TRICONS algorithm dedicated to the extraction of frequent tri-concepts.
The empirical evidences about the performance of our approach are provided in Section
5. Finally, we conclude the paper with a summary and we sketch ongoing research in
section 6.

2 Key Notions

In this section, we briefly sketch the key notions that will be of use in the remainder of this
paper. In the following, we start by presenting a formal definition of a folksonomy [6].

Definition 1. (FOLKSONOMY) A folksonomy is a set of tuples F = (U , T , R, Y ),
where Y ⊆ U × T × R is a triadic relation such as each y ⊆ Y can be represented by
a triple: y = {(u, t, r) | u ∈ U , t ∈ T , r ∈ R}, denoting that the user u annotated the
resource r using the tag t.

Example 1. An exemple of a folksonomyF is depicted by Table 1 with U = {u1, u2, . . .,
u7}, T = {t1, t2, . . . , t5} and R = {r1, r2, r3}. Each cross within the ternary relation
indicates a tagging operation by a user from U , a tag from T and a resource from R,
i.e., a user has tagged a particular resource with a particular tag. For example, the user
u1 has assigned the tags t2, t3 and t4, respectively, to the resources r1, r2 and r3.

Table 1. A toy example of a folksonomy that would be of use throughout the paper

U /R-T r1 r2 r3
t1 t2 t3 t4 t5 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

u1 × × × × × × × × ×
u2 × × × × × × × × × × ×
u3 × × × × × × × × × × ×
u4 × × × ×
u5 × × × × × × × × × × ×
u6 × × × ×
u7 × × × × × × × × × × × × × × ×

The following definition presents the frequent tri-set [6].

Definition 2. (A (FREQUENT) TRI-SET) Let F = (U , T ,R, Y) be a folksonomy. A tri-
set of F is a triple (A, B, C) with A ⊆ U , B ⊆ T , C ⊆ R such that A × B × C ⊆ Y .
A tri-set (A, B, C) of F is said frequent whenever |A| ≥ minsuppu, |B| ≥ minsuppt
and |C| ≥ minsuppr, where minsuppu, minsuppt and minsuppr are user-defined
thresholds.
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As the set of all frequent tri-sets is highly redundant, we will in particular consider a
specific condensed representation, i.e., a subset which contains the same information,
namely the set of all frequent tri-concepts. The latter’s definition is given in the follow-
ing [6,8].

Definition 3. ((FREQUENT) TRIADIC CONCEPT) A triadic concept (or a tri-concept
for short) of a folksonomy F = (U , T , R, Y ) is a triple (U , T , R) with U ⊆ U , T ⊆
T , and R ⊆ R with U × T × R ⊆ Y such that the triple (U , T , R) is maximal, i.e.,
for U1 ⊆ U , T1 ⊆ T and R1 ⊆ R with U1 × T1 × R1 ⊆ Y , the containments U ⊆ U1,
T ⊆ T1, and R ⊆ R1 always imply (U , T , R) = (U1, T1, R1). A tri-concept is said to
be frequent whenever it is a frequent tri-set. The set of all frequent tri-concepts of F is
equal to T C = {TC | TC = (U , T , R) ∈ Y is a tri-concept}.

Given a tri-concept T C = (U , T , R), the U , R and T parts are respectively called
Extent, Intent, and Modus.

Example 2. Consider the folksonomy depicted by table 1. We can denote that the tri-set
S1={{u5, u7}, {t2, t3, t4}, {r1, r2}} is not a tri-concept of F . Whereas, TC1={{u5,
u7}, {t2, t3, t4}, {r1, r2, r3}} is a tri-concept of F : it includes all maximal tags and
resources shared by the users u5 and u7.

3 Related Work

With the rise of folksonomies, formally represented as triadic contexts, many researches
advocate the extraction of implicit shared conceptualizations formally sketched by tri-
concepts. Indeed, Jäschke et al., in [6], introduced the TRIAS algorithm to compute
frequent tri-concepts from a folksonomy. Hence, tackling a folksonomy F = (U , T , R,
Y), TRIAS first constructs a dyadic contextK1 = (U , T ×R, Y1) whose columns corre-
spond to couples of elements from T andR and then, via a projection, according to the
T and R axis, extracts formal concepts. The second step of TRIAS consists, for each
formal concept, in checking whether it is closed w.r.t. U . Actually, the main feature
of TRIAS is to exploit the subsets of tri-concepts already extracted in order to check
whether they lead to new tri-concepts. However, several tri-concepts are computed re-
dundantly inducing a number of unnecessary computations. This drawback occurs be-
cause of the particular order of extraction of tri-concepts which is strongly inspired by
the way of doing of the NEXTCLOSURE algorithm [4], dedicated to building of a lattice
of frequent closed itemsets. Nevertheless, Ji et al., in [7], have introduced an alternative
algorithm called CUBEMINER, which directly operates on the triadic context. It consists
in using cubes called cutters generalizing the cutters introduced for constraint-based
mining of formal concepts in [1]. These cutters are recursively processed to generate
candidates at each level, thus, the number of levels of the execution equals that of cut-
ters. For each cutter applied to a tri-set, three candidates are constructed accordingly to
the three axis of the folksonomy as long as the tri-set contains all elements of the current
cutter. When no more cutter is applicable on a tri-set, it becomes a tri-concept. Yet, in a
folksonomy, the number of cutters may be very large as far as the cardinality of at least
one set of F is high. Besides, the CUBEMINER algorithm operates in a depth-first man-
ner, which has the risk of causing infinite trees. Moreover, at each level, several checks
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are performed on each candidate to ensure its closeness and its uniqueness which is
very computationally expensive. Indeed, each candidate must be compared twice to the
elements of the cutters. More recently, Cerf et al., in [2], proposed the DATA-PEELER

algorithm with the challenge of outperforming both TRIAS and CUBEMINER algo-
rithms in terms of performance. The DATA-PEELER algorithm is able to extract closed
concepts from n-ary relations by enumerating all the n-dimensional closed patterns in
a depth first manner using a binary tree enumeration strategy. At each level, the current
node of the tree is split into two nodes after selecting the element to be enumerated.
In addition, the DATA-PEELER algorithm does not store the previously computed pat-
terns in main memory for duplicate detection and closure checking. However, similarly
to CUBEMINER, the strategy of DATA-PEELER, involving a depth-first approach, may
cause infinite trees. Aiming at palliating these hindrances in effectively extracting tri-
concepts, we introduce the TRICONS algorithm dedicated to an efficient extraction of
frequent triadic concepts from a folksonomy. Following the minimum description length
principle, the set of frequent tri-concepts represents a concise representation of frequent
tri-sets, by providing the shortest description of the whole set of these frequent patterns.
The main thrust of the TRICONS algorithm stands in the localisation of the smallest el-
ements, i.e., tri-sets, called tri-Minimal generators (Tri-MGs), in an equivalence class.
Indeed, these Tri-MGs are the first reachable elements of their respective equivalence
classes, thanks to a breadth-first sweeping of the associated search space. Doing so,
makes the computation of the tri-concepts less arduous than do the aforementioned
ones.

4 The TRICONS Algorithm

In this section, we firstly, introduce a new closure operator for a triadic context as well as
an extension of the notion of minimal generator. Thereafter, we describe the TRICONS

algorithm.

4.1 Main Notions of the TRICONS Algorithm

Lehmann and Wille have introduced in [8] two closure operators for the construction
of triadic concepts. However, these operators are only of use on dyadic contexts, i.e.,
the folksonomy should be split into three dyadic contexts. Hence, we introduce, in what
follows, a new closure operator for a triadic context.

Definition 4. Let S = (A, B, C) be a tri-set of F . A mapping h is defined as follows :

h(S) = h(A, B, C) = (U , T , R) | U = {ui ∈ U | (ui, ti, ri) ∈ Y ∀ ti ∈ B, ∀ ri ∈ C}
∧ T = {ti ∈ T | (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ri ∈ C}
∧ R = {ri ∈ R | (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ti ∈ T }

Roughly speaking, h(S) computes the largest tri-set in the folksonomy which contains
maximal sets of tags and resources shared by a group of users containing A. For exam-
ple, considering the folksonomy F depicted by Table 1, we have h{u1, {t2, t3, t4}, r1}
= {{u1, u2, u3, u5, u7}, {t2, t3, t4}, {r1, r2, r3}}.
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Proposition 1. h is a closure operator.

Proof. To prove that h is a closure operator, we have to prove that this closure operator
fulfills the three properties of extensivity, idempotency and isotony [3].

(1) Extensivity
Let T = (A, B, C) be a tri-set of F ⇒ h(T ) = (U , T , R) such that :
U = {ui ∈ U | (ui, ti, ri) ∈ Y ∀ ti ∈ B, ∀ ri ∈ C} ⊇ A since we have (ui, ti, ri) ∈ Y
∀ ui ∈ A, ∀ ti ∈ B, ∀ ri ∈ C,

T = {ti ∈ T | (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ri ∈ C} ⊇ B since U ⊇ A
and R = {ri ∈ R | (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ti ∈ T } ⊇ C since U ⊇ A and T ⊇ B.

Then, (A, B, C) ⊆ (U , T , R)⇒ T ⊆ h(T )

(2) Idempotency
Let T = (A, B, C) be a tri-set of F ⇒ h(T ) = (U , T , R) ⇒ h(U , T , R) = (U ′, T ′, R′)
such that :

U ′ = {ui ∈ U | (ui, ti, ri) ∈ Y ∀ ti ∈ T , ∀ ri ∈ R} = U ,
T ′ = {ti ∈ T | (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ri ∈ C} = T ,
and R′ = {ri ∈ R | (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ti ∈ T ′} = R.

Then, (U ′, T ′, R′) = (U , T , R)⇒ h(h(T )) = h(T )

(3) Isotony
Let T = (A, B, C) and T ′ = (A′, B′, C′) be tri-sets of F with T ⊆ T ′ ⇒ h(T ) = (U , T ,
R) and h(T ′) = (U ′, T ′, R′) such that :

On the one hand, U ′ = {ui ∈ U | (ui, ti, ri) ∈ Y ∀ ti ∈ B′, ∀ ri ∈ C′}.
and U = {ui ∈ U | (ui, ti, ri) ∈ Y ∀ ti ∈ B, ∀ ri ∈ C}.

⇒ U ′ ⊇ U since B ⊆ B′ and C ⊆ C′ [8].
On the other hand, T = {ti ∈ T | (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ri ∈ C}, R = {ri ∈ R

| (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ti ∈ T }, T ′ = {ti ∈ T | (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ri ∈
C} and R′ = {ri ∈ R | (ui, ti, ri) ∈ Y ∀ ui ∈ U , ∀ ti ∈ T ′}
⇒ T ⊆ T ′ since U ⊆ U ′ and R ⊆ R′ since U ⊆ U ′ and T ⊆ T ′ [8].
Then, (U , T , R)⊆ (U ′, T ′, R′)⇒ h(T ) ⊆ h(T ′)

According to (1), (2) and (3), h is a closure operator.

Like the dyadic case [10], the closure operator induces an equivalence relation on the
power set of elements, i.e., tri-sets in the folksonomy, portioning it into disjoint subsets
called equivalence classes that we introduce in the following :

Definition 5. (EQUIVALENCE CLASS) Let S1 = (A1, B1, C1), S2 = (A2, B2, C2) be
two tri-sets of F and TC ∈ T C. S1 and S2 belong to the same equivalence class
represented by the tri-concept TC, i.e., S1 ≡TC S2 iff h(S1) = h(S2) = TC.

The smallest tri-set (w.r.t. the number of items) in each equivalence class is called a
tri-minimal generator and is defined as follows:
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Definition 6. (TRI-MINIMAL GENERATOR) Let g = (A, B, C) be a tri-set such as
A ⊆ U , B ⊆ T and C ⊆ R and TC ∈ T C. The triple g is a tri-minimal generator
(tri-generator for short) of TC iff h(g) = TC and � g1 = (A1, B1, C1) such as :

1. A = A1,
2. (B1 ⊆ B ∧ C1 ⊂ C) ∨ (B1 ⊂ B ∧ C1 ⊆ C), and
3. h(g) = h(g1) = TC.

(u5,u6,u7)
(t4,t5)

(r1,r2,r3)

(u5,u6,u7)
(t4,t5)
(r1)

(u5,u6,u7)
(t4,t5)
(r1,r2)

(u5,u6,u7)
(t4)

(r1,r2)

(u5,u6,u7)
(t4)

(r1,r2,r3)

(u5,u6,u7)
(t5)

(r1,r2)

(u5,u6,u7)
(t4)
(r1)

(u5,u6,u7)
(t5)
(r2)

The tri-concept

Non 
Tri-Generators

Tri-Generators

Fig. 1. Example of an equivalence class from F

Figure 1 sketches a sample class of the induced equivalence relation from the folk-
sonomy depicted by table 1. The largest unsubsumed tri-set TC = {{u5, u6, u7}, {t4,
t5}, {r1, r2, r3}}, has three tri-generators g1, g2 and g3. However, g4 = {{u5, u6, u7},
{t4, t5}, r1} is not a tri-generator of TC since it exists g1 such as g1.extent=g4.extent,
(g1.intent = ⊆ g4.intent ∧ g1.modus ⊂ g4.modus).

4.2 Description of the TRICONS Algorithm

TRICONS operates in three steps as follows:

1. The extraction of tri-generators;
2. The computation of the modus part of tri-concepts;
3. The computation of the intent part of tri-concepts.

The pseudo code of the TRICONS algorithm is sketched by Algorithm 1. TRICONS

takes as input a folksonomy F = (U , T , R, Y) as well as three user-defined thresholds
: minsuppu, minsuppt and minsuppr. The TRICONS algorithm outputs the set of all
frequent tri-concepts that fulfill these aforementioned thresholds. TRICONS operates as
follows : it starts by invoking the TRISORT procedure (Line 2), that sorts the folkson-
omy w.r.t. the fields r, t and u, respectively. This sorting facilitates the handling of the
folksonomy in order to extract the tri-generators. Then, TRICONS calls the FINDMIN-
IMALGENERATORS procedure (Step 1), which pseudo-code is given by Algorithm 2,
in order to extract the tri-generators which are stored in the set MG (Line 4) : for each
triple (u, t, r), FINDMINIMALGENERATORS computes the set Us which is the maximal
set of users (including u) sharing the tag t and the resource r (Algorithm 2, Line 4).



238 C. Trabelsi, N. Jelassi, and S. Ben Yahia

ALGORITHM 1: TRICONS

Data :
1. F : (U , T , R, Y) : A Folksonomy.
2. minsuppu, minsuppt, minsuppr : User-defined thresholds.

Result : T C : {Frequent tri-concepts}.
1 begin
2 TRISORT(F );
3 /*Step 1 : The extraction of tri-generators*/
4 FINDMINIMALGENERATORS(F , MG , minsuppu);
5 /*Step 2 : The computation of the modus part*/
6 foreach tri-gen g ∈ MG do
7 Increase Set(MG, minsuppu, minsuppt, g, T S, true);
8 end
9 PRUNEINFREQUENTSETS(TS,minsuppt);

10 /*Step 3 : The computation of the intent part*/
11 foreach tri-set s ∈ T S do
12 Increase Set( T S, minsuppu, minsuppt, s, T C, false);
13 end
14 PRUNEINFREQUENTSETS(T C,minsuppr);
15 end
16 return T C ;

ALGORITHM 2: FINDMINIMALGENERATORS

Data :
1. MG : The set of frequent tri-generators;
2. F (U , T , R, Y) : A folksonomy;
3. minsuppu : User-defined threshold of user’s support.

Result : MG : {The set of frequent tri-generators}.
1 begin
2 while (u, t, r) �=NULL do
3 (u, t, r):=NEXTTRIPLE(F);
4 Us= {ui ∈ U | (ui, t, r) ∈ Y} ;
5 if | Us | ≥minsuppu then
6 g.extent = Us; g.intent = r; g.modus = t;
7 AddTri(MG, g)
8 end
9 end

10 end
11 return MG ;
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Algorithm 2 invokes both ADDTRI and NEXTTRIPLE functions. The first one al-
lows to add the tri-set Tri to the set S, whereas the second one returns for each call the
next triple (u, t, r) of the folksonomy F .

ALGORITHM 3: Increase Set
Data :

1. SIN : The set of frequent tri-generators/tri-sets.
2. minu, mint : User-defined thresholds of extent and modus support.
3. tri : A tri-generator/tri-set.
4. flag : a boolean indicator.

Result : SOUT : {The set of frequent tri-sets/tri-concepts}.
1 begin
2 foreach tri-set tri′ ∈ SIN do
3 if flag and tri.intent = tri′.intent and tri.extent ⊆ tri′.extent then
4 s.intent = g.intent; s.extent = g.extent; s.modus = g.modus ∪

g′.modus; ADDTRI(SOUT , s);
5 end
6 else if flag and tri.intent = tri′.intent and tri and tri′ are incomparables

then
7 g′′.extent = g.extent ∩ g′.extent; g′′.modus = g.modus ∪ g′.modus;

g′′.intent = g.intent; If | g′′.extent | ≥minu then ADDTRI(MG, g′′);
8 end
9 else if not flag and tri.extent⊆ tri′.extent and tri.modus ⊆ tri′.modus and

tri.intent �= tri′.intent then
10 TC.extent = s.extent; TC.modus = s.modus; TC.intent = s.intent ∪

s′.intent; ADDTRI(SOUT , TC);
11 end
12 else if not flag and tri and tri′ are incomparables then
13 s′′.extent = s.extent ∩ s′.extent; s′′.modus = s.modus ∩ s′.modus;

s′′.intent = s.intent ∪ s′.intent;
14 If | s′′.extent | ≥minu and | s′′.modus | ≥mint then ADDTRI(T S, s′′);
15 end
16 end
17 end
18 return SOUT ;

Afterwards, TRICONS invokes the Increase Set procedure (Step 2) for each tri-
generator of MG (Lines 6-8), which pseudo-code is given by Algorithm 3, in order to
compute the modus part of the tri-concepts. The two first cases of Algorithm 3 (Lines
3 and 6) have to be considered by Increase Set according to the extent of each tri-
generator before returning the set T S of tri-sets. The boolean indicator flag marked
by TRICONS shows whether the tri-set processed by the Increase Set procedure is a
tri-generator. Then, infrequent tri-sets, i.e., whose the modus part cardinality does not
fulfill the minimum threshold minsuppt are pruned (Line 9). In the third and final step,
TRICONS invokes a second time the Increase Set procedure for each tri-set of T S
(Lines 11-13), in order to compute the intent part. Increase Set looks for tri-sets s′ of
T S having a different intent part than a given tri-set s (Algorithm 3, Line 9). Before
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returning the set T C of tri-concepts, TRICONS prunes the infrequent ones, i.e., whose
the intent cardinality does not fulfill the minimum threshold minsuppr by invoking
the PRUNEINFREQUENTSETS procedure (Line 14). TRICONS comes to an end after
invoking this procedure and returns the set of the frequent tri-concepts which fulfills the
three thresholds minsuppu, minsuppt and minsuppr.

Example 3. Considering the folksonomy depicted by Table 1 (page 4) with minsuppu
= 3, minsuppt = 3 and minsuppr = 2 yields the following track for the TRICONS algo-
rithm. The first step of TRICONS consists in the extraction of (frequent) tri-generators
from the context (step 1) thanks to the FINDMINIMALGENERATORS procedure. Then,
invoking firstly the Increase Set procedure, on these tri-generators, allows the reduc-
tion of the number of candidates. Hence, only five candidates, at step 2, are generated
which directly lead to the frequent tri-concepts extracted by TRICONS. So, the set T S
contains the tri-sets {{u1, u2, u3, u5, u7}, {t2, t3, t4}, r1}, {{u1, u2, u3, u5, u7}, {t2,
t3, t4}, r2}, {{u1, u2, u3, u5, u7}, {t2, t3, t4}, r3}, {{u2, u3, u7}, {t1, t2, t3, t4}, r2}
and {{u2, u3, u7}, {t1, t2, t3, t4}, r3}. At this level, TRICONS generates a number of
candidates by far lower than its competitors, thanks to the generation of tri-generators.
The third and final step, i.e., the second call to the Increase Set procedure, tends to
increase the intent part of each tri-set belonging to T S in order to extract frequent tri-
concepts. For example, the two latter tri-sets merge giving the tri-concept {{u2, u3, u7},
{t1, t2, t3, t4}, {r2, r3}} which is added to the set T C. Contrariwise to both CUBE-
MINER and TRIAS, the tri-concepts are extracted only once. The final result set T C is
then returned by TRICONS which comes to an end with frequent tri-concepts that fulfill
the minimum thresholds mentioned above.

5 Experimental Results

In this section, we show through extensive carried out experiment the assessment of
the TRICONS5 performances vs. those of TRIAS and DATA-PEELER6, respectively.
We have applied our experiments on two real-world datasets. The first dataset, i.e.,
DEL.ICIO.US, is considered to be dense, i.e., containing many long frequent tri-concepts
at various levels of minimum thresholds values, while the second is considered to be
sparse, i.e., containing a large number of tags but only a few of them frequently co-
occur in tri-concepts (on average, no more than 2 tags).

•DEL.ICIO.US: DENSE DATASET: The DEL.ICIO.US dataset used for our experiments
is around 10 MB in size (compressed) and it is freely downloadable7. The dense dataset
contains 48000 triples : 6822 users, 671 tags and 13102 resources.
• MOVIELENS: SPARSE DATASET: The MOVIELENS dataset used is around 13 MB
in size (compressed) and it is freely downloadable8. The sparse dataset contains 48000
triples : 33419 users, 18066 tags and 13397 resources.

5 The TRICONS algorithm is implemented in C++ (compiled with GCC 4.1.2) and we used an
Intel Core i7 CPU system with 6 GB RAM. Tests were carried out on the Linux operating
system UBUNTU 10.10.1.

6 Unfortunately, the code of the CUBEMINER algorithm is not available.
7 http://data.dai-labor.de/corpus/delicious/
8 http://www.grouplens.org
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Table 2. Performances TRICONS vs. those of TRIAS and DATA-PEELER (in seconds) above the
DEL.ICIO.US and MovieLens datasets

# Triples Dataset TRICONS TRIAS DATA Dataset TRICONS TRIAS DATA

(Type) PEELER (Type) PEELER

5000 0,05 0, 51 638, 22 0,06 0, 14 43, 64
15000 0,55 0, 91 1538, 15 0,53 1, 50 1271, 49
25000 DEL.ICIO.US 3,31 5, 68 1937, 23 MovieLens 0,91 3, 30 2010, 77
35000 (Dense) 11,73 17, 67 2318, 07 (Sparse) 1,51 6, 34 2909,91
48000 13,73 20, 67 2718, 07 2,69 11, 52 3851, 38

Performances of TRICONS vs. TRIAS and DATA-PEELER: For mining frequent
tri-sets and frequent tri-concepts, we set minimum support values of minsuppu = 2,
minsuppt = 2 and minsuppr = 1, i.e., in a frequent tri-concept, at least, 2 users have
assigned the same tags (2 at least) to a same resource at least. Table 2 compares the
performances (in sec) of the three algorithms above for different values of the number
of triples over the mentioned datasets. With respect to the aforementioned minimum
support values, the number of the extracted tri-concepts from the DEL.ICIO.US dataset
is around 3877. Whereas 1088 tri-conepts are extracted from MovieLens dataset.

• TRICONS vs. TRIAS: For both datasets, the different tests highlight that TRICONS al-
ways shows better performances than do TRIAS. For exemple, TRICONS reaches almost
13, 73 sec when handling 48000 triples from DEL.ICIO.US, showing a drop in execu-
tion time of around 33, 57%, compared to TRIAS. Moreover, the obtained results, on the
both datasets, confirm that this discrepancy between the two algorithms stills in favor
of TRICONS as far as the number of triples grows. Interestingly enough, for the sparse
dataset, i.e., MOVIELENS, we note, for all values of the number of triples, an average
reduction of TRICONS execution time reaching almost 69, 54% compared to TRIAS.
The performance differences between these mentioned algorithms can be explained by
the fact that TRIAS starts by storing the entire folksonomy into main memory before
extracting frequent tri-concepts. This memory greedy storage has the drawback to slow
the algorithm and alters its execution time as far as the number of triples becomes sig-
nificant. Contrarily to TRICONS that firstly invokes the FINDMINIMALGENERATORS

procedure to extract the tri-generators which constitues the core of the tri-concepts. This
specific treatment of TRICONS reduces the memory greediness. Indeed, the number of
tri-generators are often by far below the total number of the triples in a folksonomy.

• TRICONS vs. DATA-PEELER: For both datasets and for all values of the number of
triples, DATA-PEELER algorithm is far away from TRICONS performances. Indeed, the
poor performance flagged out by DATA-PEELER, is explained by the strategy adopted
by this later which starts by storing the entire folksonomy into a binary tree structure,
which should facilitate its run and then the extraction of tri-concepts. Indeed, such struc-
ture is absolutely not adequate to support a so highly sized data, which is the case of
the folksonomies considered in our evaluation. Furthermore, TRICONS is the only one
algorithm that does not store the dataset in memory before proceeding the extraction of
tri-concepts. In addition, TRICONS generates very few candidates thanks to the clever
use of tri-generators that reduce the search space significantly. In contrast, TRIAS and
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DATA-PEELER, in addition to store in memory the whole dataset, generate an impres-
sive number of candidates, most of which are stored in memory uselessly given the
small number of tri-extracted concepts.

• TRIAS vs. DATA-PEELER: Contrariwise to experimental results shown in [2], TRIAS

outperforms DATA-PEELER since the considered datasets are far away larger. We used
real-world datasets similar to those used in [6] which explains why TRIAS is better in
terms of performance than its competitor.

6 Conclusion and Future Work

In this paper, we introduced an extension of the notion of closure operator and tri-
generator in the folksonomy and we thoroughly studied their theoretical properties.
Based on these notions, we introduced the TRICONS algorithm, for a scalable min-
ing of tri-concepts, that heavily relies on the order ideal shape of the set of tri-minimal
generators. In nearly all experiments we performed, the obtained results showed that
TRICONS outperforms the pioneering algorithms of the literature; that is owe to the
non-injectivity property of the closure operator. Other avenues for future work mainly
address the extraction of other concise representations of frequent tri-sets. In this re-
spect, we will try to expand the steady effort carried within the diadic case towards
defining concise representations, e.g., disjunction-free sets (closed) non-derivable sets,
(closed) essential itemsets, to cite but a few. It is a thriving issue, since these concise
representation have already shown interesting compactness rates [5].
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Abstract. This work explores unsupervised anomaly detection within sequen-
tial, hierarchical data. We present a flexible framework for detecting, ranking
and analyzing anomalies. The framework 1) allows users to incorporate complex,
multidimensional, hierarchical data into the anomaly detection process; 2) uses
an ensemble method that can incorporate multiple unsupervised anomaly detec-
tion algorithms and configurations; 3) identifies anomalies from combinations
of categorical, numeric and temporal data at different conceptual resolutions of
hierarchical data; 4) supports a set of anomaly ranking schemes; and 5) uses an in-
teractive tree hierarchy visualization to highlight anomalous regions and relation-
ships. Using both synthetic and real world data, we show that standard anomaly
detection algorithms, when plugged into our framework, maintain a high anomaly
detection accuracy and identify both micro-level, detailed anomalies and macro-
level global anomalies in the data.

Keywords: Anomaly detection framework, multi-resolution anomalies, ensem-
ble method.

1 Introduction

Anomaly detection has many applications, including fraud detection, outbreak identi-
fication, and data scrubbing [13] [4]. Each of these domains contains its own semantic
relationships, many of which can be modeled as hierarchical. In this paper, we present
a framework that allows users to identify anomalies across different levels of these hier-
archical structures. For example, in fraud detection, users may be interested in detecting
fraudulent behavior across different time granularities (weeks, month, years) or across
different locations (neighborhood, city, state). In this case, both time and location are
different examples of semantic hierarchies that can be used to identify recurring or ag-
gregated anomalies. Figure 1 shows an example of a sequential, time based hierarchy
that we will refer to as an anomaly tree. Each level of the anomaly tree represents a
different granularity of time. By viewing these different semantic groups of data hi-
erarchically, users can better understand how anomalies propagate through different
sequential, hierarchical relationships associated with their applications. Are anomalies
scattered or recurring? Are some days, months, or years more anomalous than others?

In this work, we propose SHARD, a flexible framework for Sequential, Hierarchical,
Anomaly, Ranking, and Detection that supports incorporation of hierarchical semantics

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 243–255, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



244 J. Robinson et al.

Fig. 1. Anomaly tree example and individual node statistics

across numeric and categorical data into unsupervised, anomaly detection and rank-
ing. This work makes the following contributions. First, we present system and design
considerations for developing a general framework for hierarchical anomaly detection.
These considerations lead to the decoupling of data formats, outputs, and the definition
of ’anomalous’ for a given use case. The second contribution is the framework itself,
which allows single or multiple anomaly detectors to work together. Most importantly
it allows domain experts to drive the anomaly detection process by scripting meaning-
ful, hierarchical relationships between the attributes. Finally, we present experiments
on synthetic and real world data sets that show similar performance of detailed, micro-
level anomaly detection when compared to the baseline detector performance without
the framework; the experiments also demonstrate high-order macro-level anomalies that
would completely escape the expert’s view without the framework.

The remainder of this paper is organized as follows. Section 2 presents related liter-
ature. Section 3 presents background concepts. Our framework is presented in section
4, followed by experimental results in section 5, and the conclusions in section 6.

2 Related Literature

A large body of literature on anomaly detection exists. For a detailed survey of anomaly
detection techniques, we refer you to [4] and [13].

Anomaly Detection Frameworks: A few anomaly detection frameworks have been
proposed in the literature. For example, Chandola [3] proposes a Reference Based Anal-
ysis (RBA) framework for analyzing anomalies with numeric and categorical data in
sequences and time series. While RBA offers summary visualizations, it does not offer
the multi-resolution evaluations, the interactive visualizations, or the plugin detection
and ranking algorithms that our framework does. Nemani et al. [12] propose a frame-
work for detecting anomalies in spatial-temporal data. This framework supports plugin
detection algorithms; yet, it does not appear to support visualization of multi-granular
time series, nor is it clear how customizable other aspects of this framework are.

Anomaly Detection Algorithms: A number of approaches for anomaly detection of
time series data exist [5], [8], [10]. Antunes and Oliveira [5] transform the time series
into forms that can use standard approaches for anomaly detection. Keogh, Lonardi,
and Chiu [10] evaluate the frequency of substrings in a time series and compare the re-
sulting distribution to a baseline time series. Li and Han [11] explore anomaly detection
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in multidimensional time series data, identifying the top-k outliers for each detection
method and iteratively pruning these sets until a uniform set of anomalies is discov-
ered. All of these sequential anomaly detection algorithms focus on single resolution
anomaly detection. Instead, this work focuses on a framework that supports integration
of many algorithms across multiple resolutions.

Joslyn and Hogan [9] explore similarity metrics in directed acyclic graphs and other
hierarchical structures. Their work can be utilized to visualize and find anomalies in
ontologies. While the ideas concerning semantic hierarchies that we present are implicit
in Joslyn and Hogan’s work, their focus is entirely on similarity metrics in these tree
structures and not on the full implementation of an anomaly detection framework.

3 Hierarchical Anomalies

Suppose we are given a data set D, containing a set of attributes or features, F =
{F1, F2, . . . , Fm}, where m is the number of features in D. Each feature contains an
ordered list of n values, Fi = [v1, v2, . . . , vn]. We define an anomaly, A, as a data point
or set of data points that deviate or behave differently than the majority of comparison
data, where the comparison data represents values for one or more features in D. We
purposely define an anomaly broadly since the type of deviation of interest can vary de-
pending on the data type (numeric, categorical, etc.) and/or the domain characteristics.

Even though our framework can handle any data that can be represented sequentially
and hierarchically, including natural language (document, sentences, words, syllables,
letters) and genetic sequences (DNA, genes, proteins), for ease of exposition and ubiq-
uity of data, we focus on time series data and time anomaly trees. In this case, data
values exists for each feature in the data set at n time points. We also define a set of
semantic resolutons r = {r1...rh}, where each resolution represents a different seman-
tic grouping for data in D. The semantic groupings for our example in figure 1 are day,
month, and year, r = {day, month, year, all}. These semantic groupings can then be
used as the basis for creating a time anomaly tree T of height h, where h = 4 for our
example. The resolutions tell us the granularity of data associated with each node in a
particular level of the tree. The leaf nodes contain statistics about data values at resolu-
tion r1, the day resolution in our example. The parent nodes of the leaf nodes contain
statistics about the data values at resolution r2, e.g. the month resolution, and so on.
Given this anomaly tree, we define a hierarchical anomaly A(nl) to be a node n at level
l that deviates significantly from other nodes (or a subset of other nodes) at level l in
the anomaly tree, where deviation is measured by one or more detectors selected by the
user and significance is algorithm specific.

For example, in a stock data domain, a single company can be considered anoma-
lous if it has an unlikely, sudden surge and subsequent drop in price, if it has an unlikely
surge in price that is maintained for some sustained duration, e.g. month, before drop-
ping back to normal, if daily behavior differs drastically from other companies’, or if
the company manifests a combination of these unusual behaviors. The specific type of
behavior identified depends on the detectors and rankers specified by the user.
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4 Anomaly Detection Framework

Our high level algorithm for anomaly tree construction and annotation is presented as
Algorithm 1. The input to the algorithm is the data (D), an ontology template that
specifies the semantic relations of interest (τ ), the anomaly detectors of interest (A),
and an anomaly ranker (R). Using this information, the framework builds an anomaly
tree by assigning data values to the nodes and updating the node summary statistics
according to the ontology template, runs different anomaly detectors on the nodes of
this tree to obtain a set of anomaly scores for each node, and ranks the anomalies in the
tree by computing a score based on criteria such as the level of agreement between the
anomaly detectors and the anomaly scores of the child nodes. The resulting tree is then
used for an interactive tree visualization that can be analyzed by the user. The remainder
of this section describes the framework and different design decisions.

Algorithm 1. Anomaly tree construction and annotation
INPUT: Template τ , Anomaly Detectors A, Ranker R, Data D
OUTPUT: T

function T = BUILD_TREE(τ , D)
function IDENTIFY_ANOMALIES(T , A)
function RANK_ANOMALIES(T , R)
return T

4.1 Ontology Template

The ontological tree template not only decides the hierarchy of where and how feature
values are organized and propagated, but also determines how the detectors evaluate
nodes. Specific considerations are 1) the range of nodes that maintain summary statistics
for the detectors to analyze, 2) normalizing or scaling of multivariate combinations,
and 3) sorting of temporal or ordinal features. Table 1 shows an example ontology
template and the resulting anomaly tree. The XML template describes an application
that attempts to find three different semantic hierarchies based on time, industry, and
employee education.

4.2 Anomaly Tree Structure

The anomaly tree T generated by the ontology template consists of multiple node types.

Definition 1. The leaf nodes at the lowest level of the tree contain data values. Data
from these nodes are aggregated and propagate information to the remaining levels of
the tree. Semantic grouping nodes are non-leaf nodes that are associated with a feature
and group children nodes according to the feature values. Branching nodes create a
branch of nodes to be evaluated for anomalies. These nodes determine how the child
values are evaluated and propagated through T . The propagation of leaf node values
stops at the branching node.

Each node type handles individual data values differently. Semantic grouping nodes
split on every new value of the attribute specified in the ontology template. Branching
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Table 1. XML template and anomaly tree for XML template. Nodes a, c and d are examples of
branching Nodes. Node b is a semantic grouping node, as are all nodes below c and d. Node d
also specifies the data propagation to be categorical.

<DataTreeTemplate>
<Node attribute="industry">

<Node attribute="company">
<Node attribute="edu" branch="EDU[c]"

propagateValues="True" >
<Node attribute="employee">

<Leaf attribute="edu" />
</Node>

</Node>
<Node attribute="date" step="2"

branch="PRICE"
propagateValues="True" >

<Node attribute="date" step="0">
<Node attribute="date"

step="1" >
<Leaf attribute="price"/>

</Node>
</Node>

</Node>
</Node>

</Node>
<Node attribute="edu" branch="EDU_PR"

propagateValues="True">
<Node attribute="date" step="2" >

<Leaf attribute="price"/>
</Node>

</Node>
</DataTreeTemplate>

nodes are not associated with a value. Instead they store summary statistics of all de-
scendant nodes and tell the detectors whether or not to search for anomalies in a partic-
ular branch. The branch creation process creates a root node and a set of children nodes,
where each child corresponds to a branching node based on attribute values specified in
the ontology template. For example, in the tree path industry/company/[PRICE]/Price/
yyyy/mm/dd/price1, all nodes are grouping nodes except for [PRICE] and the leaf node
price data. The leaf nodes propagate their values upward to the top branching node,
which means that every parent node is a summary of all of its child nodes. The XML
example has two leaf attribute values, price and education that anomalies will be calcu-
lated for.

The branch EDU[c] creates a branching node that maintains summary statistics (e.g.
mode) of the categorical datatype education for each employee in the semantic group-
ing node company, so that we can determine the most frequent level of education per
company. Likewise, the parent semantic grouping node industry allows the researcher
to also evaluate levels of education across industries. Branching node [EDU_PR] ag-
gregates prices by the average levels of education across all companies.

Table 1 also shows portions of the anomaly tree for the specified XML template. In
this example, there is only one industry, technology, under which there are three nodes,
one for each of the companies.2 The arrows at the bottom of nodes indicate nodes that
can be expanded to show their children. As the figure illustrates, the anomaly statis-
tics are populated throughout the tree and data statistics from the leaf nodes under a
branching node are aggregated as they are pushed up to the branching node, popu-
lating the intermediary nodes along the way. Each intermediary node maintains sum-
mary statistics of its children nodes. The month level node for the price attribute, for

1 The XML template in table 1 uses the keyword ’step’ to identify which time steps to split on.
2 See http://cs.georgetown.edu/∼singh/SHARD/ for larger figures, data sets, and source code.



248 J. Robinson et al.

example, maintains the average price for all the children day nodes. Other statistics are
also calculated, including median, mode, standard deviation, and entropy.

4.3 Baseline Anomaly Detectors

The anomaly detectors use the anomaly tree, T , to determine the degree of anomalous-
ness of each node in T . This is accomplished by running each user specified anomaly
detection algorithm, e.g. statistical significance or entropy, for each element in the tree.
Along with the basic detectors, SHARD includes an ensemble detector that combines
the detection results of the individual detectors using a weighted voting algorithm,
where the weights are prespecified by the user. Once the anomaly scores are computed
by the different detectors, the tree nodes are annotated with this additional information.
This is also illustrated in Table 1.

In order to identify an anomaly, a data value must be compared to other data val-
ues. When evaluating a particular node in T , we use neighboring nodes as comparison
data. However, how these nodes are used differs depending on the particular anomaly
detection algorithm. For example, table 1 shows the current node under consideration
to be day 6 of month 1 (January) of year 1998 of CA, Inc. The options for comparison
data for this example include: 1) all immediate sister nodes, all nodes in January for this
year and company; 2) all prices for all months under the same company; 3) all prices for
all months and companies; 4) all the January 6ths’ for the current year across all com-
panies; and 5) the averages of the previous days or months. The SHARD framework
includes three parameterized defaults: 1) all local siblings (sister) nodes; 2) all nodes
at the same tree height for the same attribute; and 3) previous nodes at the same tree
height for the same attribute. Other options can be specified at configuration time and
new options are straightforward to integrated into framework.

4.4 Ranking Anomalies

Once all of the detectors have evaluated the nodes in T , the algorithm then runs a user
specified ranking method to assign an overall anomaly score to each node. The ranking
procedure can compute the anomaly score based on any of the following criteria: 1) the
anomaly scores provided by different detectors for a particular node; 2) the percentage
of detectors that found a particular node anomalous; 3) the priority of the detectors that
found the node to be anomalous; 4) the percentage of child nodes that were found to be
anomalous; 5) the importance of the level of granularity in which the anomalous node
occurs; and 6) whether anomalies occur in other parallel branches at the same granu-
larity. Our intuition is that the level of anomalousness depends on the domain priori-
ties, objectives and definitions of comparison data. Therefore, we incorporate a tunable
ranker that can be adjusted to these considerations. Ranking based on the percentage
of anomalous children is the default ranker in SHARD, although we also provide other
ranking procedures that combine different subsets of the mentioned factors.

4.5 Anomaly Tree Visualization

SHARD uses the SpaceTree [14] hierarchical visualization application to highlight
the most anomalous nodes based on a color heat map. SpaceTree reads in XML and
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Fig. 2. One year of synthetic time series data

displays an interactive tree of variable depth and width. This interactive software en-
ables users to expand the entire tree or focus on subtrees of different branches of the
full tree while hiding other subtrees. Doing this helps the user see where anomalies oc-
cur across multiple resolutions. Because our framework is customizable, any amount of
detail can be displayed for each node including ranking scores, statistical summaries,
individual detector results, and raw data. This interactive visualization supports both
an overview and a detailed view, allowing for a more comprehensive analysis of the
anomalies. Most of the tree images in this paper were generated using SpaceTree.

5 Empirical Evaluation

In this section, we evaluate our framework on synthetic and real world data sets. Our
evaluation of the SHARD framework focuses on detection accuracy and anomalies dis-
covered. Specifically, we compare the accuracy of the detectors outside our framework
with the same detectors within the SHARD framework and show that the overall accu-
racy is generally maintained, while also offering bigger picture insights. We also discuss
these insights at different levels of the anomaly tree and demonstrate the flexibility of
our framework.

We experimented with four standard anomaly detection algorithms in our frame-
work: 1) the Shewhart algorithm [1], which flags anomalies that are x standard devi-
ations away from the mean; 2) the Cumulative Sum (cusum) algorithm, which tracks
the mean of all previous elements and compares the values to the current element; 3)
entropy (applied to anomalies as described in [7]); and 4) a thresholding version of
Bruenig et. al’s [2] Local Outlier Factor (LOF).

The ranking algorithm used in all of the experiments is RankerA. This ranker first
evaluates the children nodes. If at least half are anomalous, the current (parent) node is
also considered anomalous. Otherwise, the sum of all anomaly scores, one from each
detector, of a node is divided by the number of children nodes.

5.1 Synthetic Data Experiments

For this analysis, we generated three time series with a numeric data value for each
day over a six year period, and one categorical times series. Figure 2 shows each of the
numeric time series for a one year period. As illustrated in the figure, each time series
has different properties and anomalies. Time series X increases in overall magnitude
over time with burst anomalies for 200 random days, one random month of the year (this
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Detector Attribute - Path Precision Recall 

Shewhart 

x - yyyy/mm/dd 75.3% 11.6% 
x - leaf 100.0% 8.9% 
y - yyyy/mm/dd 93.3% 12.5% 
y - leaf 100.0% 54.5% 
z - yyyy/mm 83.3% 45.5% 
z - leaf 3.3% 50.0% 
x,y,z - yyyy/dd 100.0% 2.2% 

OVERALL 52.9% 12.7% 

Entropy 

x - yyyy 50.0% 100.0% 
x - yyyy/mm 12.5% 50.0% 
x - yyyy/mm/dd 29.6% 86.2% 
x - leaf 21.6% 63.0% 
y - yyyy 100.0% 100.0% 
y - yyyy/mm 60.0% 100.0% 
y - yyyy/mm/dd 29.1% 85.7% 
y - leaf 100.0% 100.0% 
z - yyyy/mm 83.3% 45.5% 
z - yyyy/mm/dd 0.4% 25.0% 
z - leaf 3.3% 50.0% 
color - yyyy 25.0% 100.0% 
color - yyyy/mm 6.7% 25% 
color - leaf 30.2% 95.0% 
x,y,z - yyyy 50.0% 100.0% 
x,y,z - yyyy/mm 100.0% 52.9% 
x,y,z - yyyy/mm/dd 33.9% 88.0% 

OVERALL 28.3% 82.2% 

LOF( 1 ) x - yyyy/mm/dd 92.0% 41.1% 
y - yyyy/mm/dd 100.0% 29.9% 

LOF( 3 ) x,y,z - yyyy/mm/dd 98.1% 46.4% 
OVERALL 95.6% 7.9% 

Fig. 3. Single detectors

Detector Parameters Attribute Precision Recall 

Shewhart 

thresh=2 x 100.0% 8.9% 
" y 100.0% 54.5% 
" z 3.8% 50.0% 
" color n/a n/a 
" x,y,z 100.0% 10.3% 

OVERALL 52.6% 24.2% 

Entropy 

thresh=1.2 x 21.6% 63.0% 
" y 100.0% 100.0% 
" z 3.8% 50.0% 
" color 1.3% 47.8% 
" x,y,z 21.8% 62.8% 

OVERALL 20.5% 74.3% 

LOF 

k=15, dim=1 x 9.0% 0.5% 
" y 100.0% 5.4% 
" z 0.0% 0.0% 
" color n/a n/a 

k=15,dim=3 x,y,z 85.0% 15.2% 
OVERALL 74.6% 6.7% 

(a) Baseline detectors

Detector Attribute - Path Precision Recall 

Shewhart 
Entropy 
LOF( 1 ) 
LOF( 3 ) 

x - yyyy/mm/d 88.2% 43.3% 
x - leaf 100.0% 8.9% 
y - yyyy/mm/d 97.1% 30.4% 
y - leaf 100.0% 100.0% 
z - yyyy/mm 83.3% 45.4% 
z - leaf 3.3% 50.0% 
x,y,z - yyyy/mm/d 99.1% 46.4% 

OVERALL 68.4% 25.6% 

(b) Ensemble detectors

Fig. 4. Baseline and ensemble detectors

includes several of the random anomalous days), and one random year (this includes
approximately 1/3 of its days being anomalous). Time series Y is similar except that
the "normal" comparison values across all 6 years remain relatively steady. Like X , it
contains randomly anomalous days, months and a year- most of which coincide with
the anomalies in time series X . Time series Z is mostly independent of the other two
time series and illustrates a plateau anomaly that starts and ends with anomalies found
in X and Y . It contains the same anomalous month each year in which all values during
this month are consistent for this month, but still much higher than the normal day value
for the rest of the year. At the individual day level, the only anomalies are the first day
of this month when the values increase and the first of the following month when the
values decrease back to normal. We also include a categorical attribute, Color, that is
dependent on the season in the times series (during months 11,12, 1, 2, 3 {blue, green,
purple}; 4, 5, 10 {yellow, orange}; and 6, 7, 8, 9{red, orange, yellow}). An anomalous
instance is an out-of-season color that corresponds with the Y anomalies’ time points.

Our ontology template for this data set consists of 5 branches underneath the root.
The first three simply aggregate each of the continuous variables by year, month and
day independently:

[DATE-X]/yyyy/mm/dd/x, [DATE-Y]/yyyy/mm/dd/y, [DATE-Z]/yyyy/mm/dd/z

The fourth branch groups all three variables under each unique date:

[DATE-XYZ]/yyyy/mm/dd/x,y,z

Here, the time series are evaluated together, in the context of each other. In other words,
the most anomalous time periods are when all three time series have anomalous be-
havior during the same time period. Note that there are parameters in the XML to nor-
malize or scale multiple values under a single node. In this run, the configuration was
set to Normalize. The final branch, [COLOR][c]/yyyy/mm/color organizes the categor-
ical colors by month and year to capture anomalies in the context of different seasons.
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Table 2. Anomaly detectors on the CalIt2 dataset, (dd = day of month; Day = day of week)

Detector Attribute - Path Precision Recall 

Shewhart 
 

mm/dd/hh 21.7% 49.4% 
mm/dd/hh/c 25.0% 58.6% 
hh 100.0% 9.1% 
hh/Day/c 24.9% 43.2% 
hh/Day/c/id/c 25.0% 56.5% 

OVERALL 24.7% 51.9% 
 

Detectors Attribute - Path Precision Recall 

Shewhart 
Entropy 
LOF( 1 ) 

mm/dd/hh/c 72.2% 4.5% 
Day 50.0% 4.2% 
Day/c 62.8% 4.9% 
Day/c/id/c 60.7% 5.5% 

OVERALL 63.9% 4.6% 
 

Detector Attribute - Path Precision Recall 

Entropy 
 

mm/dd/hh/c 72.2% 4.5% 
hh/Day 14.3% 58.3% 
hh/Day/c/id/c 60.1% 5.8% 

OVERALL 39.5% 4.1% 
 

Detector Attribute - Path Precision Recall 

LOF hh/Day 50.0% 16.7% 
hh/Day/c 61.8% 4.9% 

OVERALL 59.5% 1.3% 
 

These various branches show the flexibility of the framework for handling different
feature combinations that the user wants to investigate.

Figure 4(a) shows the scores of the baseline algorithms outside of our framework.
The algorithms process each attribute individually and flag individual values as being
anomalous, but give no indication of anomalous months or years. Figure 3 shows the
results of the baseline algorithms within our framework. The overall scores are com-
parable with the record level scores outside of our framework in figure 4(a); however,
a richer picture is gained using our framework: Shewhart now correctly identifies z’s
anomalous months with much higher accuracy, entropy performs well at nearly all reso-
lutions of the anomaly tree, and LOF’s recall is higher for most variables. Finally, figure
4(b) shows the results of the ensemble of these detectors. While the overall accuracy
and precision is lower than the single detectors in the framework, the interior nodes of
the tree have similar or better precision and accuracy results, demonstrating a potential
benefit of a diverse set of detectors for hierarchical anomaly detection.

5.2 Event Attendance Data Results

We now consider an event data set, the CalIt2 dataset [6], for detecting anomalous
events. This data set contains two observation time series (people flowing in and people
flowing out of the building) over 15 weeks from July to November. There are 48 time
points per day. The ’normal’ behavior of this data set is a periodic, light flow of people
going in and out of this building. When a conference is occurring, the flow increases
for what is considered normal at that day and time, and an anomaly occurs.

Using the SHARD framework we specified two parallel branches in the ontology
template, which offers two different views of the data. The first is Month/Day/Hour/
Count - the intutive hierarchy. The second branch is Hour/DayOfWeek/Count/id/Count.
This branch first establishes normal data behavior of the 24 hours of the day across the
entire dataset, and then sub-aggregates the data by the day of the week and then the
counts. So, it might establish that the average count for 9:00 am is 3.5 people, and
the average for 9:00 am/Wednesday is 5.0 people. The next groupings id/Count, then
establish counts based on individual records.

Inside the SHARD framework with this XML configuration, Shewhart with a thresh-
old of 1 scores 24.7% precision, 51.9% recall on the anomaly tree nodes; Entropy with
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Fig. 5. El Nino anomaly tree: inverted month-year hierarchies. Anomalous nodes shaded orange.

a threshold of 7.5 scores 39.5% precision, 4.1% recall; LOF where k=5 scores 59%
precision and 1.3% recall; and these three detectors in an ensemble configuration score
63.9% precision and 4.6% recall. Outside of the SHARD framework Shewhard and
Entropy perform comparably on the flat data (pr= 24.8%, re=56.3%, and pr=55.7%,
re=5.4%, respectively), but LOF scores 0% precision and recall.

We offer a few observations. First, the 0 score of LOF outside of our system is prob-
ably due to at least k records with high counts that are not known events. As these
points are considered normal comparison data, no points are flagged anomalous when
the comparison data consists of all records. In our framework this happens less because
these normal high-count records are dispersed throughout different parts of the anomaly
tree. Second, the ensemble run of these three methods produced a higher precision level
than any of these three algorithms independently. Third, the SHARD framework pro-
duced insight into many different levels of the anomaly tree. Specifically, investigating
the SpaceTree nodes that were flagged anomalous, we determined: November is anoma-
lous because it has no events but very high counts, August is anomalous because it has
more events than the other months, all Saturdays are anomalous because they do not
have any events, one Sunday is anomalous because it is the only Sunday with an event,
and three days are anomalous because they are the only days with multiple events.

5.3 Climatology Data Results

Here we use a data set collected by the Pacific Marine Environmental Laboratory to
study the El Nino and La Nina phenomena [6]. This data set contains climatology data
from 1980-1998, during which there were 6 El Ninos (1982, 1987, 1991, 1992, 1994,
1997) and 1 La Nina (1988). The years in bold were considered very strong. The most
anomalous months with unusually high temperatures are typically December of that
year and January of the following year. There were 178,080 total readings of date,
location, trade winds, humidity and air and sea surface readings.

Using the SHARD framework, we create an XML template that contains a typical,
sequential date hierarchy year/month/day/{attribute} structure for each attribute. Using
Entropy, threshold=1, the framework flags the appropriate El Nino and La Nina years
with 87.5% precision and 58.3% recall using the ocean surface temperature; 88.9%
and 66.7%, respectively, with the air temperature readings. Because we do not have
ground truth weather information to accurately label all anomalous months and days,
the precision and recall cannot be reported for the other levels of the anomaly tree.
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Table 3. Anomalous years in stock data set

We pause to mention that this data set contains many missing values since not every
buoy was equipped to measure all of these attributes. Our framework can handle missing
values by creating tree nodes only for values that are present and then searching for local
anomalies within the tree.

Because of the flexibility of our XML templating, we also considered an alternative
XML template that inverts months with years, so that the hierarchy is month/year/day
as shown in figure 5. This means that for the month of December we have all year nodes
as children and under each year node all December day measurements. This gives the
researcher a very easy way to learn during which years December was most anomalous.
Using this inverse technique, if we examine December, we find 85.7% precision and
77.7% recall at tagging the appropriate years. More interestingly, though, the highest
ranked nodes correspond very well to the ’strong’ El Nino years.

5.4 Stock Data Results

In these experiments, we analyze the NASDAQ daily stock quotes from 1998-2009
of 34 companies in the Technology, Financial, Services and Consumer Goods sectors.
There is 1 date attribute, 7 numeric attributes and 5 categorical attributes for 14,805
records. We chose these years and industries because much happened in this decade:
there was the dot.com bubble, followed by a correction year, 9/11, and another cor-
rection year following the real estate bubble. With the stock data we decided to study
the most anomalous years by industry with the XML template configured as Indus-
try/Year/Company Size/Company Name/Month/Day/Closing Price. We again used a
default Entropy detector with a threshold of 1. A brief summary of these results can
be found in table 3. Although we found the correlations between anomalies in Asset
Management and those in Beverages - Brewers unexpected, the rest of the results seem
easily interpretable, Application Software’s dot.com boom and correction are rightly
noted, the airlines show up in 2001, and many financial anomalies start to show up in
2004-2008. These results are consistent with expectations.

5.5 Discussion

The experimental results demonstrate the utility of having a hierarchical anomaly detec-
tion framework. Our synthetic and event attendance detection results indicate that the
ensemble method has fewer false positives than the individual detection methods and
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a higher accuracy than any of the individual methods. We believe this results because
the ensemble method is able to capture a more robust image of the data, whereas the
individual algorithms are more suited to detect a particular type of anomaly.

Our results also show that the existence of anomalies at one granularity is not indica-
tive of anomalies in other granularities. Figure 5 depicts a feature with many anomalous
leaf nodes, but the parents of these nodes are not anomalous as indicated by ’Anoma-
lous Nodes Below’. This is consistent with our understanding of point and contextual
anomalies, and that one does not imply the other. Higher granularities are more descrip-
tive of contextual anomalies, and not simply single point anomalies.

Using the SpaceTree application, we were also able to visualize our results in a
meaningful way. The user is able to access relevant statistics about each node, as well
as quickly see where anomalies are occurring. This is important in our work as mentally
visualizing anomalies at multiple granularities is not an intuitive task.

6 Conclusions and Future Work

This work introduces SHARD, a framework that supports analysis of complex, multi-
dimensional, hierarchical anomalies. Our framework is robust and allows for easy cus-
tomization for different applications, as well as easy extensions for adding additional
anomaly detectors and rankers. Using our prototype system, we illustrate both the flex-
ibility and utility of this framework on both synthetic and real world data sets. Future
work includes expanding the detectors in the framework, allowing for streaming analy-
sis, demonstrating other semantic hierarchies that are not time based, and reducing the
number of user specified parameters. Finally, many of the hierarchical aggregates men-
tioned are examples of cuboids. Extending our tree framework to a cube framework is
another promising direction.
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Abstract. In this paper, we study a new problem of instant social graph search,
which aims to find a sub graph that closely connects two and more persons in a
social network. This is a natural requirement in our real daily life, such as “Who
can be my referrals for applying for a job position?”. In this paper, we formally
define the problem and present a series of approximate algorithms to solve this
problem: Path, Influence, and Diversity. To evaluate the social graph search re-
sults, we have developed two prototype systems, which are online available and
have attracted thousands of users. In terms of both user’s viewing time and the
number of user clicks, we demonstrate that the three algorithms can significantly
outperform (+34.56%-+131.37%) the baseline algorithm.

1 Introduction

With the big success of many large-scale online social networks(e.g., Facebook, Ren-
Ren, MySpace, Ning, and Twitter) and the rapid growth of the mobile social networks
(e.g., FourSquare, Data.net, Strands), there has been a large increase in the people’s
social friends especially online social network friends. The online social network is
becoming one of the most important ties between people’s daily life and virtual web
space. For example, Facebook, which is the most-visited site on the web, contains more
than 600,000,000 unique visitors(users) since Jan 2011; Foursquare, a location-based
mobile social network, has attracted 6 million registered users by the end of 2010. There
is little doubt that most of our friends are online now.

In such a case, one important requirement in the social network is to find the connec-
tions (also called associations) among persons [14], which has many direct applications.
For example, to find referral people for applying for a job position [9]. Indeed, LinkedIn
has a very important function, which allows users to see how far (how many degrees)
you are from another user and allow users to write recommendation to a friend. In
particular, interesting questions arise: “Who are the good referrals for me to apply for
the PhD program of a university?”, “What are my relationships to the Turing Award
winner, Prof. John Hopcroft?”, and “Who are the experts on topic X and how to con-
nect him/her?”. For all the questions, the answers should be returned in real time. The
general problem is referred to as instant social graph search. Please note that the con-
nection between people might be directed, e.g., via a coauthorship; or indirected, e.g.,
the friend’s friend.
� The work is supported by the Natural Science Foundation of China (No. 61073073) and
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(a) Coauthor network (b) Alumni network of a university

Fig. 1. Two examples of instant social graph search in a coauthor network and a university alumni
network. The left figure shows the social graph between two computer science experts: “Philip
Yu” and “John Hopcroft” in the coauthor network. The right figure shows the social graph be-
tween “Andrew Yao” (Turing Award winner) and “Xiaochuan Wang” (Vice President of a com-
pany) in the alumni network.

Motivating Example. To clearly motivate this problem, Figure 1 gives examples of in-
stant social graph search on a coauthor network and an alumni network of a university.
The figure 1(a) shows the social graph between two experts in computer science: “Philip
Yu” and “John Hopcroft” and the figure 1(b) plots the social graph between one faculty
“Andrew Yao” (Turing Award winner) and one alumnus “Xiaochuan Wang” (Vice Pres-
ident of a company) discovered from the alumni network. In the figure 1(b) different
colored links indicate different types of relationships. For example, in the left figure,
yellow-colored link indicates advisee relationship, red-colored link indicates advisor
relationship, and green-colored link indicates coauthor relationship. While in the right
figure, the types of relationships include: advisor, colleague, classmate, high-school
alumni, friendship, etc. “Pictures Worth a Thousand Words”. We can see such a social
graph is very helpful to understand the social connection among persons. With such a
graph, we can easily find trusted referrals for connecting a person (e.g., an expert), who
are very likely to give a help because they are friends of your friends.

The problem is non-trivial. One fundamental challenge is how to effectively select
and generate the social graph between (or among) persons in real time. It is well-known
that any two persons in the world are connected in six steps or fewer [13]. This means
that almost any persons in the world are within your six-degree social circle. At the same
time, this also implies that for any two persons, the number of connections between
them would be huge. Obviously it is infeasible to display all the connections between
persons in a social graph. Our preliminary study shows that when a graph consists of
more than 50 nodes, the user will have difficulties in understanding the meaning of the
graph, and quickly lose interest to the graph (with less viewing time).

Challenges and Contributions. In this work, we try to conduct a systematic investiga-
tion of the problem of instant social network search. The problem poses a set of unique
challenges:
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– Goodness. How to quantify the goodness of a sub network among people? Specifi-
cally, given a graph G and a query consisting of multiple person nodes in the graph,
how to find a “good” subgraph of G that contains the query nodes.

– Diversity. How to diversify the returned graph so that it captures the whole spectrum
of the connections among the queried persons? It is widely realized that diversity
is a key factor to address the uncertainty in an information need [1,21].

– Efficiency. How to return the queried graphs instantly? As real social networks are
getting larger with millions or billions of nodes, it is necessary to design an efficient
algorithm which can return the queried social graphs in (milli-)seconds.

To address the above challenges, we first precisely define the problem and then propose
an efficient algorithm to solve the problem. We further incorporate the topic diversity
into the objective function and propose an enhanced diversity algorithm. We have devel-
oped two prototype systems, one is for a coauthor network and the other is for a univer-
sity alumni network, both of which are online available and has attracted thousands of
users. We evaluate the performance of the proposed algorithms in terms of user viewing
time and number of user clicks. Experimental results on one-month query log show that
the proposed algorithms can significantly outperform (+34.56%- +131.37% in terms of
viewing time) the alternative baseline algorithm. We also find that the Diversity algo-
rithm achieves the best performance. Our experiments also validate the efficiency of the
presented algorithms, which can return the search results for most queries in 2 seconds.

2 Problem Definition

In this section, we first give several necessary definitions and then present the problem
formulation.

A social network is modeled as an undirected graphG = (V,E, U,W ), where V rep-
resents a set of users, E ⊂ V ×V represents a set of social relationships between users,
ui ∈ U represents the importance (or activity) of user vi, and wij ∈ W represents the
closenesses between user vi and user vj . Given a query of k persons q = {vq1, · · · , vqk},
the goal is to find a set of users Sq ⊂ V to closely connect the queried users in q, by
considering the importance of nodes, the closeness of relationships, and the connected-
ness to the query users. In different networks, the three criteria can be instantiated in
different ways. For example, in a coauthor network, importance can be defined as the
number of papers published by the author (or the total number of citations of the author,
or simply the value of H-index [7]), while the relationship’s closeness can be defined
as the number of coauthored papers. Formally, we can define the social graph search
problem as follows:

Definition 1. Social Graph Search: Given a social network G = (V,E, U,W ) and
a query q = {vq1, · · · , vqk} of k persons, the goal of social graph search is to find a
subgraphGq of G, such that (1) Gq contains the queried persons, i.e., {vq1, · · · , vqk} ⊆
Vq , (2) nodes in the subgraph Gq are closely connected, and (3) the number of nodes in
the returned graph is less than a threshold, i.e., |Vq | ≤M .
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In the definition, we explicitly constrain the number of persons in the returned social
graph as M (condition (3)). This constraint is necessary for controlling the size of the
returned subgraph; otherwise, algorithm would trivially return the whole social graph.
Now the problem is how to satisfy the second constraint: nodes in the subgraph Gq are
closely connected, more specifically, how to quantify the connectness of a graph. To
make things simple, we define the connectness as the number of relationships among
the selected nodes in the graph Gq . Another challenge is how to diversify the selected
nodes in the graph. In Section 3 we will introduce how we achieve these two goals and
find the trade-off balance between them.

Several relevant research efforts [2] has been made so far. However, our problem ad-
dressed in this paper is very different from existing work. For example, [2] proposes the
notion of semantic association and has investigated how to rank the semantic associa-
tions based on the information gain. However, association search is different from social
graph search. The former is to find association paths to connect two persons, while our
goal is to find a social graph to connect multiple persons. Our problem can be viewed
as a generalized problem of the association search. Faloutsos et al. [5] also study how
to efficiently discover a connection subgraph between nodes in a graph. However, they
do not consider the importance of nodes and weight of relationships together, and they
do not give an objective method to evaluate the discovered subgraph. Our work aims at
satisfying both of the two goals: relevance and diversity. Sozio and Gionis [15] study a
community-search problem, which has an objective similar to our work. However, the
algorithm cannot be scaled up to handle networks of millions of nodes in real time.

3 Algorithms

The problem of social graph search as we defined in Section 2 is NP-hard, which can be
proved by a reduction to the Dominating Set Problem. In this section, we will introduce
three algorithms to obtain approximate solutions of the problem, respectively called
Path, Influence, and Diversity. For easy explanation, we consider only two persons in
the query, i.e., q = {vq1, vq2}.

3.1 Basic Ideas

There are two basic objectives we want to achieve in the social graph search problem.
The first is to find important nodes and the second is to find nodes that could closely
connect the queried nodes. In general, the connective social graph between user vq1 and
vq2 can be decomposed into multiple paths between them [8]. Therefore our first idea
is to cast the problem as shortest associations finding. According to the weighted im-
portance wij between users, we can find the shortest association path between any two
users using dynamic programming, and then find the top-k shortest paths by relaxing
the search condition. This algorithm is called Path. It is efficient and easy to implement.
However, the algorithm does not consider the importance of nodes and also the possible
redundant information (i.e., the same nodes and edges) between different paths.
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Input: G, number of selected pathes k, bound to shortest path δ;
Output: S;

Initialize S = ∅;
Initialize D = inf;
Use Dijkastra algorithm to calculate the shortest path D;
for i = 1 to D + δ do

create a queue Q;
enqueue source on Q;
mark source;
while Q is not empty do

dequeue an item from Q into V ;
foreach edge e incident on v in Graph do

let w be the other end of e;
if w is not marked: then

mark w;
enqueue w onto Q;

end
end

end
end
Set all the marked node on the path in S;
Output S;

Algorithm 1. Path algorithm

We therefore propose an influence maximization based algorithm, called Influence.
The idea is to cast the problem as that of influence maximization [10], whose goal is to
find a small set of nodes in a social network that maximize the spread of influence under
certain models. To further consider the diversity, we propose an enhanced algorithm
called Diversity. The basic assumption is that each user may focus on different aspects
(topics). Without considering the diversity, the resultant graph may be dominated by a
major topic (e.g., a resultant graph from the alumni network may be dominated by one’s
classmates). The new algorithm incorporates the topic information into an objective
function, thus the selection strategy achieves a trade-off between the influence of the
selected nodes and the diversity of all topics over the resultant graph.

3.2 The Path Algorithm

A straightforward method to deal with the instant social graph search problem is to
find the shortest paths between two persons and then use those persons appearing in
the paths to construct the social graph. We called this baseline algorithm as Path. More
specifically, we take the negative weight−wij of each edge eij ∈ E in the network G as
its distance. By using a (heap-based) Dijkastra algorithm [4], we can obtain the shortest
path from all nodes to a target node in the network, with a complexity of O(nlog(n)).
Then we use a depth-first (or width-first) search to find near-shortest pathes by bounding
the length (distance) of the path within a factor (i.e., ≤ (1 + δ)) of the shortest path.
The algorithm is summarized in Algorithm 1.
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Limitations. The Path algorithm does not consider the correlation (dependency) be-
tween two paths, thus it is very likely to choose two “redundant” paths (i.e., paths
sharing a number of common nodes). Actually, in our data sets, analysis shows that in
many cases, the top 10 shortest paths only have one or two node(s) difference. Another
limitation of the algorithm is that it does not consider the importance of each node.

3.3 The Influence Algorithm

Our second idea is to cast the social graph search problem as that of influence maximiza-
tion [10], whose goal is to find a small set of nodes in a social network that maximize
the spread of influence under certain models.

In order to achieve this, we first translate the social network into an influence graph
where each node indicates a path between the queried nodes. If two paths have a common
node, we create an edge between the corresponding nodes in the influence graph and the
weight of the edge is the number of common nodes of the two paths. It is easy to know
that the new influence graph is a connected graph and then we employ a greedy algorithm
[3] to select the nodes in the new graph (i.e., paths in the original graph). The algorithm
is based on the Monte Carlo random process. It runs iteratively and in each round, the
algorithm selects one vertex into the selected set S such that this vertex together with
the current set S maximizes an influence score. Equivalently, this means that the vertex
selected in round i is the one that maximizes the incremental score of influence. To do
so, for each vertex v that is not in S, the influence spread of S ∪ v is estimated with R
repeated simulations of random process. The algorithm is presented in Algorithm 2.

Limitations. The Influence algorithm considers the network information, and it can
avoid redundant nodes (nodes are close with each other in the transferred graph), by
adopting a degree discount method [3]. However, it does not consider the diversity
problem. In some extreme cases, one major aspect (topic) may dominate the resultant
graph. This leads us to propose the Diversity algorithm.

3.4 The Diversity Algorithm

On a social network, each user may have interest (or expertise) on multiple different
topics. When the user searches for social graphs between two persons, he is not only in-
terested in the network that closely connects the two persons, but also interested in how
the two persons are connected on different aspects. For example, when the user searches
for the social graph between two professors respectively from data mining and theory.
The user might be interested in knowing how the two professors build collaborations in
different fields.

Hence, we augment the social network model with topic representation, i.e., G =
(V,E, U,W,R), where ri ∈ R is a vector denoting the topic distribution of each user
vi with each element rij representing the probability of user vi’s interest (or expertise)
on topic j. Please note that the diversity problem can be also defined in some other ways.
For example, we can consider different social ties and thus expect the returned social
graph contain diverse social ties. According to the definition, the social graph search
problem with diversity can be re-defined as to find a small subset of users to statistically
represent the topic distribution of the social graph between the queried persons.
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Input: G, number of selected pathes k;
Output: S;

Initialize S = ∅;
Initialize R = 20000;
for i = 1 to k do

foreach vertex v ∈ V \S do
sv = 0;
for j = 1 to R do

sv+ = |RanCas(S ∪ {v})|;
end
sv = sv/R;

end
S = S ∪ {argmaxv∈V \S{sv}};

end
Output S;

Algorithm 2. Influence algorithm

The proposed Diversity algorithm is based on two principles that are used to select
representative users in our physical social network: synecdoche (in which a specific
instance stands for the general case) and metonymy (in which a specific concept stands
for another related or broader concept) [12]. Thus one problem is how to define the
topic-based representative degree between users. Without loss of generality, we define
the representative degree of user vi on vj for topic z according to the similarity between
two persons on the topic, i.e.,

rep(vi, vj , z) =
|riz − rjz|

riz
(1)

Therefore, our objective is to select a set S of persons who can best represent all the
other persons in the social graph on all topics, formally we can define the following
objective function:

O(S) = maxvi∈S

∑
z

∑
vj∈V \S

rep(vi, vj , z) (2)

Maximizing the representative degree on all topics is obviously NP-hard. Some trade-
offs should be considered as we may need to choose some less representative nodes on
some topics to increase the total representative degree on all topics. We give a greedy
heuristic algorithm. Each time we traverse all candidate persons in the social graph and
find the individual that most increases the representative functionO(S). To increase in
representative function achieved by adding a person vi ∈ V , we only need to consider
the topics that vi can mainly contribute to (rik > 0) and all vi’s neighbors (we say vj is
vi’s neighbor if rep(vi, vj , z) > 0 for some vj ∈ V \S). The algorithm is summarized
in Algorithm 3:

4 Experimental Results

For evaluation, we have deploy the presented algorithms in two systems: a social graph
search in Arnetminer1 [19] and an alumni network system.

1 http://arnetminer.org
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Input: G, number of selected pathes k;
Output: selected users S;
S = ∅;
while |S| < k do

max = −1;
foreach vi /∈ S do

foreach riz > 0 do
foreach vj ∈ G that rep(vi, vj , z) > 0 do

Compute the increment of O(S ∪ vi) − O(S) on topic z;
end
Compute the total increment;

end
if increment > max then

v = vi ; Update max;
end

end
S = S ∪ {v};
Update O(S).

end
Return S;

Algorithm 3. Diversity algorithm

4.1 Experiment Setup

Data Sets. We perform our experiments on the two systems which contain two different
data sets: coauthor network and alumni social network.

– Coauthor network. In the coauthor network, we focus on studying the coauthor so-
cial graph, which consists of 1,483,246 authors and 47,443,857 coauthor relation-
ships. We also employ a time-dependent factor graph model [22,20] to discover the
advisor-advisee relationships from the coauthor network. The social graph search
function has been integrated into academic analysis and mining system for a few
months, and attracted tens of thousands of accesses.

– Alumni social network. In the alumni social network, we investigate the alumni net-
work from a university, which is comprised of 17,381 students graduated from its
Computer Science department and all faculty members of University. The network
contains 2,113,345 relationships of different types (e.g., colleague, advisor-advisee,
classmate, high-school alumni, etc.).

Evaluation Measures. To evaluate the proposed method, we consider two aspects:
user’s average viewing time and the average number of clicks. User’s viewing time
stands for how long a user will stay on the returned social graph. Staying for a long
time implies that the user may be more interested in the result than that with a shorter
time. We also design a user interactive mechanism, which allows the user to expand a
person’s detailed social information when she/he is interested in knowing more about
the person or to remove the node from the returned graph when she/he think the node is
irrelevant. For each query, we randomly select one of the proposed three algorithms to
generate and return the social graph to the user. We record the user behaviors (viewing
time and #clicks) on the returned social graph. We also compare the three algorithms
with a baseline algorithm, which randomly selects nodes from the candidate nodes.
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Fig. 2. Performance on the two networks (Coauthor and Alumni)

4.2 Accuracy Performance

As all the comparison methods require the number of users’ access and log, we set up
the two systems from early 2011. We use the log of four months (March - June, 2011)
in the coauthor system (consisting of 57,494 queries) and the log of one month (April,
2011) in the alumni system (consisting of 4,305 queries) to study the performance of
different algorithms.Figure 2 shows the results on the coauthor network data and alumni
network data.

Effect of User Clicking. Figure 2(a) shows the probability of a user clicking a node
in the social graph. Expand indicates that the user clicks to see more detailed person’s
social circle, while Remove indicates that the user clicks to remove a person from the
social graph. We see that all the presented four algorithms attract much higher click ratio
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than the Random algorithm. An interesting phenomenon is that overall the Path algo-
rithm attracts the largest number of user clicks; however, there are also a large number
of users click to remove person nodes from the social graph, which implies that there are
not only many “interesting” nodes in social graph returned by the Path algorithm, but
also many “irrelevant” nodes. To quantify this, we define another measurement called
Expand/Remove ratio as ratio of the number of “Expand” clicks divided by the num-
ber of “Remove” clicks. Figure 2(b) shows the result of Expand/Remove ratio by the
comparison algorithms. It can be seen that the Diversity algorithm has the largest ratio,
while the Random and the Path algorithm have lower ratios.

Effect of User Viewing Time. Figure 2(c) shows the average viewing time of a user
on the returned social graph by applying the different algorithms. It can be seen again
that the Diversity algorithm results in the longest viewing time, which confirms the
findings from Figure 2(b). On average, the presented three algorithms can gain an
73.69%-84.13% increase in terms of the number of (Expand) clicks, and an increase
from 34.56%-131.37% in terms of viewing time compared with the baseline (Random)
algorithm. In particular, the Diversity algorithm achieves the best performance from the
perspective of both Expand/Remove ratio and viewing time.

4.3 Analysis and Discussions

To obtain deeper understanding of the results, we perform the following analysis.

Effect of the Number of Displayed Nodes. We conduct an experiment to see the effect
of the number of the displayed nodes. We use the users’ average time of display different
nodes to overall performance. The curves of coauthor and alumni network look almost
the same. As an example, Figure 3 shows the users spend time on different nods. This
suggests that about twenty nodes are good display property.

Error Analysis. We conduct an error analysis on the results of our approach. We ob-
serve two major types of source of errors.

– Missing data. Sometimes the data is missing because the database does not contain
all the coauthor (alumni) relations. For example, there are thousands of papers every
year and many different of alumni relations, the database cannot contain all the
relations. Thus, the social graph might not also generate the result every time.

– Name ambiguity. In the coauthor network, there might be several persons with the
same name. This lead to mistake relationships between persons.
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5 Related Work

Social graph is an important problem in social network analysis, Tang et al. [18] study
the problem of topic-level social network search, which aims to find who are the most
influential users [17] in a network on a specific topic and how the influential users
connect with each other. In this section, we review the related work on connectivity
subgraphs and diversity.

Connectivity Subgraphs. Social graph search is to find a connectivity subgraph among
queried users. Faloutsos et al.[5] also address that problem. The main point of that paper
is to develop measures based on electrical-current flows of proximity between nodes of
the graph that depend on the global graph structure. And there are many ideas, such as
Koren et al. [11] refined the proximity measures using the notion of cycle-free effective
conductance. The main difference between our approach and above research is that
we define users’ influence of each person to others and consider the diversity of the
subgraph.

Diversity. Diversity is well-recognized as highly property in many data mining tasks,
which is very useful to address uncertainty about the information need given a query.
One of the most representative works is on expertise search, such as Agrawal et al. [1]
and Gollapudi et al. [6]. There are also some works which have focused on diversity
result in recommendation. For example, Ziegler et al. [23]. More recently, Tong et al.
propose a new approach for diversity of graph search [21]. The difference of our work
from existing lies in that we consider the diversity in the resultant social graphs.

The work is also related to the social relationship mining. For example, Tang et al.
[20] propose a learning framework based on partially labeled factor graphs for inferring
the types of social relationships in different networks. Tang et al. [16] further study the
problem of inferring social ties across heterogeneous networks. However, these method-
ologies do not consider the network search problem.

6 Conclusions

In this paper, we study a novel problem of instant social graph search, which aims to
find a subgraph of representative users to closely connect the queried persons. We for-
mally define this problem and present three algorithms to solve the problem. We have
developed two systems to validate the effectiveness and efficiency of the presented al-
gorithms. We have deployed the algorithms in two real systems: an academic mining
system and an alumni network system. In terms of both users viewing time and number
of clicks, we found that the presented algorithms significantly outperform (+34.56%-
+131.37% in terms of viewing time) the baseline method. We also found that the Diver-
sity algorithm can achieve the best performance. The presented algorithms are efficient,
and can perform most social graph searches in 2 seconds.

Detecting the personalized social graph represents a new research direction in social
network analysis. As further work, it is interesting to study how user’s feedback can be
used to improve the search performance (e.g., interactive learning).
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Abstract. Web data extraction has been one of the keys for web content mining 
that tries to understand Web pages and discover valuable information from 
them. Most of the developed Web data extraction systems have used data 
(string/tree) alignment techniques. In this paper, we suggest a new algorithm for 
multiple string (peer matrix) alignment. Each row in the matrix represents one 
string of characters, where every character (symbol) corresponds to a subtree in 
the DOM tree of a web page. Two subtrees take the same symbol in the peer 
matrix if they are similar, where similarity can be measured using either struc-
tural, content, or visual information. Our algorithm is not a generalization of  
2-strings alignment; it looks at multiple strings at the same time. Also, our algo-
rithm considers the common problems in the field of Web data extraction: miss-
ing, multi-valued, multi-ordering, and disjunctive attributes. The experiments 
show a perfect alignment result with the matrices constructed from the nodes 
closed to the top (root) and an encourage result for the nodes closed to the 
leaves of the DOM trees of the test web pages. 

Keywords: Text Alignment, Tree Alignment, Web Data Extraction, Informa-
tion Extraction. 

1 Introduction 

Deep web presents a huge amount of useful information which is usually formatted 
for its users. So, extracting relevant data from various sources to be used in web ap-
plications becomes not easy. Therefore, the availability of robust, flexible Information 
Extraction (IE) or Wrapper Induction (WI) systems that transform Web pages into 
program-friendly structures such as a relational database will become a great necessi-
ty. For relevant data extraction, unsupervised IE systems exploit the fact that web 
pages of the same Web site share the same template since they are encoded in a con-
sistent manner across all the pages; i.e., these pages are generated with a predefined 
template by plugging data values. Finding such a common template requires as input 
multiple pages (page-wide IE systems; e.g., RoadRunner [1], EXALG [2], and FiVa-
Tech [3]) or a single page containing multiple records (record-wide IE systems; e.g., 
IEPAD [4], DeLa [5], and DEPTA [6]).  

A crucial step for most web data extraction systems (record/page level systems) is 
alignment: either string alignment (e.g., IEPAD and RoadRunner) or tree alignment 
(e.g., DEPTA). Alignment of attribute values in multiple data objects (strings/trees) is 
a challenging task as these attributes are subject to the following variations [7]: 
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• An attribute may have zero or more values in a data-object. If the attribute has zero 
value, it is called a missing attribute; if it has more than one value, it is called a 
multi-valued attribute. A book’s author may be an example of multi-valued 
attribute, whereas a special offer is an example of missing attribute. 

• The set of attributes (A1, A2, …, Ak) may have multiple ordering, i.e., an attribute Ai 
may have variant positions in different instances of a data-object. We call this 
attribute a multi-ordering attribute. For example, a movie site might list the release 
date before the title for movies prior to 1999, but after the title for recent movies. 

• An attribute may have variant formats along with different instances of a data ob-
ject. If the format of an attribute is not fixed, we might need disjunctive rules to 
generalize all cases. For example, an e-commerce site might list prices in bold face, 
except for sale prices which are in red. So, price would be an example of a variant-
format (disjunctive) attribute in this site. On the other hand, different attributes in a 
data-object may have the same format, especially in table presentation, where sin-
gle <TD> tags are used to present various attributes.  

• Most IE systems handle input documents as strings of tokens as they are easier to 
process than strings of characters. Depending on the used tokenization methods, 
sometimes an attribute cannot be decomposed into individual tokens. Such an 
attribute is called an untokenized attribute. 

Untokenized attributes can be processed by further processing after the alignment 
step, while missing, multi-valued, multi-ordering, and disjunctive attributes are han-
dled during the alignment step. The effectiveness of an alignment algorithm relies on 
its capability to handle such problems. In this paper, we suggest a new alignment 
algorithm to be used as a part of web data extraction systems. Our algorithm considers 
the above four mentioned problems. Also, to align multiple data objects, our algo-
rithm processes all objects at the same time. Our algorithm doesn’t consider the prob-
lem of multiple-objects alignment as a generalization of 2-objects alignment. So, it 
has a global (better) view for the input objects (strings/trees). 

The rest of the paper is organized as follows. Section 2 defines the peer matrix 
alignment problem. Our proposed alignment algorithm and different examples that we 
suggest to clarify the algorithm are discussed in sections 3 and 4, respectively. Section 
5 describes our experiments. The related works are presented in Section 6. Finally, 
section 7 concludes our work. 

2 Problem Definition 

String alignment is simpler than tree alignment. Since web pages used with IE sys-
tems are tree structured (DOM trees), tree alignment will become a great necessity. 
Like FiVaTech, our algorithm considers the tree structure of the objects to be aligned, 
but we simplify the problem by converting it into string alignment as follows. We 
consider all of the objects (web pages) to be aligned are tree structured and have the 
same root p. Our algorithm collects all (first-level) child nodes of p in a matrix M, 
where each column keeps the child nodes for one root node p. Every node in the  
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matrix takes a symbol which actually denotes a subtree. All similar subtrees (peer 
nodes) are denoted by the same symbol. Similarity here can be measured by any suit-
able technique such as tree-edit distance. The peer matrix shown in Fig. 1b is con-
structed from the three trees of root p in Fig. 1a. The matrix has three columns; each 
one includes all child nodes of one root p, where two similar nodes take the same 
symbol. Now, the problem is transformed into multiple-string (peer matrix) align-
ment, where each string corresponds to one column in the matrix. Handling of the 
problems: missing, multi-valued, multi-ordering, and disjunctive attributes is based on 
this very important alignment step. The output of this step is an aligned list in which 
missing, repetitive, disjunctive, and multi-ordering patterns can be identified very 
easily. For example, as shown in Fig. 1d, the output aligned list has one repetitive 
pattern (BCD), where the two symbols B and D are optional (missing attributes) in 
this pattern. 

 

Fig. 1. Peer matrix construction 

Definition (Aligned Row): A row in the peer matrix is called an aligned row in two 
cases. The first case is occurred when all symbols in this row are the same (or disap-
pear in some columns of the row). The second case is occurred when the row has 
different symbols, but these symbols correspond to leaf nodes (text or <img>) such 
that each symbol appears only in its residing column (i.e., if a symbol exists in a col-
umn c, then all other columns outside the current row in the matrix do not contain this 
symbol). All of the rows above an aligned row must be also aligned. 

Definition (Aligned Peer Matrix): A peer matrix is aligned if all of the rows in the 
matrix are aligned. Fig. 1c is an example of an aligned peer matrix. As shown in the 
aligned peer matrix, the symbol ‘-’ refers to a null value which has been added after 
shifting some symbols down to patch an empty space. 

Definition (Aligned List): If M is an aligned peer matrix, so each aligned row in the 
matrix M is represented by a symbol which is either the same as the symbol in the 
row (if the row has a same symbol) or an asterisk (if the row has different symbols 
correspond to leaf nodes). Fig. 1d is the aligned list corresponds to the one in Fig. 1c. 
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Definition (Peer Matrix Alignment Problem): Given a peer matrix as input, the 
alignment problem is to modify the content of the matrix by shifting down, swapping, 
or replacing symbols in the matrix to transform it into an aligned peer matrix.  

 

Fig. 2. Examples of regular and irregular zigzag lines LB and LA, respectively 

3 The Proposed Algorithm 

Given a peer matrix as input, we start the matrix row by row (up-down fashion) and 
align each row using its contents and the contents of the other rows below it, to get an 
aligned peer matrix. Each row r is aligned by processing of zigzag lines that have 
been drawn to connect among the symbols in r and other symbols down r in the ma-
trix. Zigzag lines are drawn as follows. For each symbol s in r, we draw a sequence of 
lines (a zigzag line) Ls that connect among all first occurrences of the symbol s in 
each column of the current row r or the rows below r. The zigzag line Ls of the sym-
bol s at row r passes through different occurrences of s in different columns in r or 
below r with at most one occurrence of s in each column. Each occurrence of s is 
connected by a line with the first occurrence in the right/left hand side column. If the 
symbol does not appear in the right/left column, the line will pass to connect the first 
occurrence in the next column, and so on. All occurrences of s in the row r belong to 
the same zigzag Ls. If the symbol does not appear again in the row or below the row, 
we call it a non-zigzag symbol. This means, a non-zigzag symbol is not belonging to 
any zigzag line in the row. Fig. 2 shows two zigzag lines LA and LB at the first row. By 
drawing zigzag lines for the symbols in the row r, the challenge here is how we can 
process these zigzags to align the row r. Although, zigzag lines are different for dif-
ferent columns order in the matrix, our algorithm solves the problem in general and 
covers all suitable cases. Before we go further in this section to discuss our proposed 
alignment algorithm, we give some definitions that are important to the algorithm. 

Let l is a line in a zigzag Ls that connects two occurrences of s at the two locations 
(r1,c1) and (r2,c2) in the matrix, we define the vertical span of l as (r2 - r1+1) and the 
horizontal span as (c2 - c1+1). Also, we call a zigzag Ls horizontally covers the peer 
matrix if it is started at the first column and terminated at the last column of the ma-
trix. The vertical spans of the three lines of LA in Fig 2 are 3, 3, and 2, respectively. 
Also, the two zigzag lines LA and LB in Fig 2 horizontally cover the peer matrix. 

Definition (A Repetitive Pattern): A pattern P (a sequence of one or more consecu-
tive symbols in a column) is called repetitive if it has more than one occurrence in 
some column of the matrix. If P appears at most once in each column of the matrix, 
we call it a free (non-repetitive) pattern.  



272 M. Kayed 

 

Fig. 3. A left-most cross (a) and three alignment solutions (b), (c), and (d) 

Definition (Symbol Span): The span of a symbol s is defined as the maximum num-
ber of different symbols (without repetition) between any two consecutive occur-
rences of s in each column plus one; i.e., span of s represents the maximum possible 
cycle length of s. If s is a non-repetitive symbol, then its span value will be 0. For 
example, the span of the symbol B in the matrix in Fig. 2 is 3 (there are two different 
symbols, C and A, between the two occurrences in the second column).  

In our proposed algorithm, we use the calculated span value for a symbol s to control 
(restrict) the process of shifting down s in the matrix. Shifting down the symbol s 
must not violate the calculated symbol span value. This means, if s occurred only 
once in a column, it can be shifted down to anywhere in the column. But, the symbol 
s which is occurred at row r and column c cannot be shifted down if it appears up in c 
at a row r′ (i.e., r > r′) such that r-r′ ≥ span(s). For example, the symbol B in the fourth 
row and the second column of the matrix in Fig. 2 cannot be shifted down because its 
span is 3 and it appears up at the first row of the column. 

Definition (Regular Zigzag): a zigzag Ls is regular if the vertical spans of all of its 
lines are equal, and it horizontally covers the matrix. Otherwise it is called irregular. 
Fig 2 shows examples of regular and irregular zigzag lines LB and LA, respectively. 

Definition (A Top Horizontal Zigzag): a zigzag Ls is called horizontal if all of its 
lines are horizontal. If there is only one horizontal zigzag in a row, we call it a top 
horizontal. If there is more than one horizontal zigzag line, we call the one with a 
maximum number of lines a top horizontal zigzag. 

Definition (Left-most Cross): Let l1 is a line ( (r,c1), (r1,c2)) which belongs to a zig-
zag La in a row r as shown in Fig. 3(a). We call the cross between the line l2 ((r,c2), 



 Peer Matrix Alignment: A New Algorithm 273 

(r2,c1)) in a zigzag Lb and l1 a left-most cross if the vertical distance between r2 and r 
(m2= r2-r) is a minimum. As shown in Fig. 3(a), the cross makes four patterns in the 
peer matrix: P2 and P3 are the two patterns of lengths m1 under the two ending points 
of l2, while P1 and P4 are the two patterns of lengths m2 under l1.  

To align the row r which has a left-most cross as in Fig.3 (a), we have three possible 
different alignment cases. The first case, case I, is occurred if either P1 or P3 is op-
tional (missing pattern in c2 or c1, respectively, as shown in Figures 3(c) and (d)). The 
second case, case II, is occurred when the two patterns P1 (P3) and P2 (P4) are multi-
ordering in the column c1 (c2), respectively, as shown in Fig. 3(b). Finally, the third 
case, case III, is occurred when the two patterns P1 and P3 have disjunctive attributes 
(i.e., same data presented in different formats). Our algorithm works as follows to 
distinguish between these three cases I-III. 

If either P1≠P4 or P2≠P3, we align the row as case I (P1 or P3 is optional). Particu-
larly, if P1=P4 (while P2≠P3), we identify P3 as optional (i.e., P1 is shifted down in the 
column c1 a distance m1). If P2=P3 (while P1≠P4), we identify P1 as optional (i.e., P3 is 
shifted down in the column c2 a distance m2). Finally, if both P1≠P4 and P2≠P3, we 
shift down either P1 or P3 based on some criteria as we will discuss later. 

If both P1=P4 and P2=P3, the algorithm deals with the problem as follows. As in 
Fig. 3 (c) and (d), to identify the pattern P1 (P3) as optional in c2 (c1), it is necessary 
(but not sufficient) that P1 (P3) is repetitive in the matrix, respectively. So, if both P1 
and P3 are non-repetitive patterns, we identify P1 (P3) and P2 (P4) as multiple-ordering 
patterns (case II) in the column c1 (c2), respectively. The challenge here is occurred 
when either P1 or P3 is repetitive. Experimentally, we have observed that case I (either 
P1 or P3 is optional) is mostly the correct alignment choice. An exception is occurred 
when P1 and P3 have disjunctive patterns (the row is aligned using case III).  

Figure 4 shows an example of case III (disjunctive attributes) when a search engine 
web site presents a list of resulted web pages as links (<A> tag), except the current 
page is presented using <STRONG> tag (i.e., the two tags <A> and <STRONG> are 
disjunctive). So, the two cases I and III are possible when either P1 or P3 is repetitive. 
We handle this problem and decide the correct alignment case based on the following 
assumption. The two patterns a1 and a2 are disjunctive, if one of the two patterns (say 
a1) appears randomly among different consecutive occurrences of the other one (a2) in 
each column of the matrix. So, we assume that, there is a left-most cross in two col-
umns c1 and c2 such that one of the two patterns P1 or P3 is a sequence of the repeti-
tive pattern a2, while the other one is a1. If so, we replace all occurrences (in the ma-
trix) of a1 by a2 and mark a1 as disjunctive with a2. In the example shown in Fig. 4, P3 
is a sequence of the repetitive pattern a2 (<A>), and P1 = <STRONG>. So, we identify 
a1 (<STRONG>) and a2 (<A>) as disjunctive patterns. Our proposed algorithm which 
handles all of these cases and others to align the row r is shown in Fig. 5. 

As shown in Fig. 5, to align the row r in M, the algorithm recursively tries to align 
r and stops at three base cases: first (lines 2-3), when r is an aligned row as defined 
before, second (lines 4-6), when r only has disjunctive attributes, and third (lines 7-
11) when r has a top-horizontal zigzag. In the first case, the algorithm returns a sym-
bol s when r has either a horizontal zigzag Ls or a non-zigzag symbol s. But, if r has 
leaf nodes (img/text), the algorithm returns “*”. In the second case, the algorithm 
checks if r only has disjunctive attributes by using DisjunctiveAttributes(r, M). The 
function returns true if both of the following two conditions are satisfied: 
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Fig. 4. An example of disjunctive attributes in the matrix constructed from Tree1 and Tree2 

 

Fig. 5. Our proposed algorithm to align a row r in a peer matrix M 

─ The row r has a sequence of different symbols s1, s2, …, sk; k > 1, where each sym-
bol si is either a non-zigzag symbol or belonging to a horizontal zigzag line. 

─ For each different symbol si in r, there is a zigzag line Ls that connects among dif-
ferent occurrences of some symbol s below si. 
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The first condition makes sure the symbols in r have no occurrences below r, while 
the second condition gives a guarantee that there exists a zigzag which prevents any 
of these symbols to be shifted down. The third stop case is occurred when the row r 
has a combination of horizontal zigzag lines (one of them is a top-horizontal), non-
zigzag symbols, and other regular/irregular zigzag lines. If so, the algorithm only 
keeps the top-horizontal zigzag in the row r and considers all others as missing 
attributes. Therefore, it shifts all non-zigzag symbols (line 8) and all horizontal zigzag 
lines (line 9) down a distance 1, and stretches all remaining regular/irregular zigzag 
lines (line 10) using the function stretchZigzag(Ls). The function stretchZigzag works 
as follows. If Ls is regular (i.e., Ls connects among different occurrences of s in the 
two rows r and r'; r<r'), it shifts all occurrences of s in r downward a distance r'-r in 
the matrix M and patch empty spaces with a null value. If Ls is irregular (i.e., Ls con-
nects among different occurrences of s in r and other different rows r1, …, rk below r), 
the function shifts each occurrence of s at each row ri above r΄ downward a distance 
r'-r in the matrix M and patch empty spaces with a null value, where the row r΄, … ,  satisfies that r΄-r is min(r1-r, …, rk-r).  

When the row has one regular/irregular zigzag line, the algorithm identifies it as 
missing attribute (lines 12-14) and uses the function stretchZigzag to stretch it. Final-
ly, if the row has a left-most cross (lines 16-29), the algorithm handles it as we dis-
cussed above. The function selectAZigzag(La, Lb, r, M) returns one of the two zigzag 
lines La or Lb to be stretched based on either of the following three ordered criteria: 
First, a zigzag that has a line of non-zero minimum vertical span is returned. Second, 
the one with a maximum number of horizontal lines in the row r of the matrix M is 
returned. Third, the algorithm returns the right-most one. 

For an  matrix M, the running time to draw zigzag lines for each row is 
. Also, the running time to check whether some pattern is repetitive or not is 
. As a preprocessing step, for each row, the running time for calculating 

symbols scan values is . Therefore, the running time for each call of the 
recursive algorithm to align a row r in the matrix M is . Experimentally, a 
row is aligned after 2-3 calls. 

4 Examples 

The two matrices in Fig. 6 give two examples of disjunctive attributes. To align the 
first row of the matrix in Fig. 6(a), the row has one horizontal zigzag LA and one non-
zigzag symbol F, and at the same time there is a zigzag LC (in the third row) which 
has occurrences of C below A and F. So, the algorithm identifies A and F as disjunc-
tive attributes (returns s=A||F). To align the first row of the matrix in Fig. 6(b), the 
row has two horizontal zigzag lines LA and LF, and at the same time there is a zigzag 
LC which has occurrences of C below both A and F. So, our algorithm also identifies 
A and F as two disjunctive attributes, and then returns s=A||F. 

Fig. 7 gives two examples of a top horizontal zigzag (case ii in Fig. 5). To align the 
first row of the first matrix (Fig. 7(a)), the row has two horizontal zigzag lines LA (the 
top one because it has the maximum number of lines: 2) and LF. However, there is no 
zigzag lines that have occurrences below A and F at the same time (i.e., A and F are 
not identified as disjunctive attributes). So, the algorithm shifts down LF to the next 
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row in the matrix. For the matrix in Fig. 7(b), the first row has one horizontal zigzag 
LA (the top one) and one regular zigzag LB. So, the regular zigzag LB is stretched at the 
second row (i.e., all occurrences of B in the first row will be shifted down a distance 1 
and patch empty spaces with a null value). 

 

Fig. 6. Two examples of disjunctive attributes, case i 

 
Fig. 7. A row has a top horizontal zigzag, case ii 

 

Fig. 8. A row has either one regular zigzag (a) and (b), or one irregular zigzag (c); case iii 

Fig. 8 gives three examples when the row has only one non-horizontal regular zig-
zag (case iii). To align the third (second) row of the matrix in Fig. 8(a) (Fig.8(b)), the 
algorithm (line 13 in Fig. 5) stretches down LA (LC) at the fourth (third) row, respec-
tively. Fig. 8(c) gives an example when the row has only one irregular zigzag (LC). To 
align this row, LC is stretched down (line 13 in Fig. 5) at the third row. 

Fig. 9 gives two examples of missing attributes (case I in Fig. 5), when there is a 
combination of regular and irregular zigzag lines that form one or more crosses. The 
first step here is to identify the left-most cross and calculate m1, m2, and P1- P4 as 
shown in Fig. 3(a). Fig. 9 (a) presents an example of missing attributes when either 
P1≠P4 or P2≠P3, while Fig. 9 (b) presents another example when both P1=P4 and 
P2=P3, either P1 or P3 is repetitive, and none of the two patterns P1 and P2 is a se-
quence of some repetitive pattern a2. In the two examples, the function selectAZigzag 
in Fig. 5 is used to select one of the two zigzag lines (that make a left-most cross) to 
be stretched down. For the first matrix in Fig. 9, the function selects LC to be stretched 
at the third row because it has a line of the minimum vertical span (2). Also, it selects 
LA to be stretched down for the same reason in the second matrix. 

Fig. 10 discusses the case of multiple-order attributes, where P1=P4=”ABC” and 
P2=P3=”FGH”, but both of the two patterns P1 and P3 are non-repetitive. So, to align 
the first row of the matrix, our algorithm exchanges the two patterns P2 and P3 in the 
third column because they are multiple-ordering patterns. We shall not give here any 
example of case III, because we already presented one in the previous section. 
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Fig. 9. Two examples of missing attributes, case I 

 

Fig. 10. Multiple-ordering attributes, case II 

5 Experiments 

We measure the performance of the proposed algorithm by collecting 300 peer ma-
trices taken from a data set of 10 web sites (selected from the manually labeled 
Testbed for Information Extraction from Deep Web TBDW [8] Version 1.02) as 
follows. For each web site, we randomly select 30 matrices: 10 matrices from top 
levels (closed to the root), 10 matrices from the levels closed to the leaves, and 10 
matrices from the whole DOM tree. The performance of the algorithm is measured 
by calculating recall and precision for each selected matrix as follows. Precision is 
the proportion of symbols predicted by the algorithm as missing, disjunctive, or mul-
tiple-ordering that are targets (correctly identified). Recall is the proportion of miss-
ing, disjunctive, or multiple-ordering symbols that are predicted by the algorithm. The 
terms true positives (Tp), true negatives (Tn), false positives (Fp) and false negatives 
(Fn) compare the predicted class of matrix symbols with the actual class. Tp is the 
number of missing, disjunctive, or multiple-ordering symbols that are correctly identi-
fied by the algorithm. Fn is the number of missing, disjunctive, or multiple-ordering 
symbols that cannot be identified by the algorithm. Fp is the number of missing, dis-
junctive, or multiple-ordering symbols that are incorrectly identified by the algorithm. 
Finally, Tn is the number of symbols that are correctly not identified by the algorithm 
as missing, disjunctive, or multiple-ordering. Formally, we define recall and precision 
as follows:  ;                       

The performance of the algorithm with the 30 web sites is shown in Table 1. For each 
web site, the average of the calculated recall and precision for the selected 10 matrices 
constructed closed to the root (closed to the leaves and from the whole DOM tree) is 
shown in column 2-3 (4-5 and 6-7, respectively). As shown in the table, the algorithm 
performs perfectly with matrices near to the root of a DOM tree (columns 2-3), and 
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gives a good result near to leaves (columns 4-5) as the matrices near to the leaves are 
complicated and contain many missing, disjunctive, and multi-ordering symbols.  
The perfect results for the matrices near to the root was not a surprise because many 
of the matrices are already/easy to be aligned. In general, the results are encouraged 
for the whole DOM tree (columns 6-7).  

Table 1. The performance of the algorithm with a data set of 10 web sites 

Site Closed to root Closed to leaves Whole DOM tree 
Recall Precision Recall Precision Recall Precision 

Allnealthnet 1.00 1.00 0.95 0.92 0.99 0.95 
G. Unlimited 1.00 1.00 1.00 0.99 1.00 0.97 
IUMA 1.00 1.00 0.93 0.92 0.95 0.92 
Picsearch 1.00 1.00 1.00 1.00 1.00 1.00 
Sun-Sentinel 1.00 1.00 0.98 0.96 1.00 0.97 
amazon.co.uk 1.00 1.00 0.91 0.90 0.91 0.91 
Amazon 1.00 1.00 0.99 0.95 0.98 0.96 
Gene surname 1.00 1.00 0.95 0.95 0.95 0.97 
HomePopular 1.00 1.00 0.99 0.97 1.00 0.98 
NAMI 1.00 1.00 0.97 0.96 0.98 0.97 

Average 1.00 1.00 0.97 0.95 0.98 0.96 

6 Related Works 

IEPAD [4] and OLERA [9] generalize extraction patterns from unlabeled Web pages. 
Repetitive patterns in IEPAD are discovered using the binary suffix tree PAT tree. 
PAT trees compute only exact match patterns, templates with exceptions cannot be 
discovered through PAT trees. Patterns with inexact or approximate matching are 
discovered using multiple string alignment technique. IEPAD applies center star algo-
rithm to align multiple strings. In OLERA [9], user marks a record to be extracted to 
discover other similar records and generalize them using multiple string alignment. 
OLERA handles the problem in IEPAD when several alignments exist by proposing a 
matching function to compare the primitive data for text tokens. 

RoadRunner [1] considers the site generation process as encoding of the original 
database content into strings of HTML code. The system uses the ACME matching 
(alignment) technique to compare HTML pages of the same class and generate a 
wrapper based on their similarities and differences. 

DEPTA [6] discovers repetitive patterns by comparing adjacent substrings with 
starting tags having the same parent in the HTML tag tree. The recognition of data 
items or attributes in a record is accomplished by partial tree alignment. The algo-
rithm first chooses the record tree with the largest number of data items as center and 
then matches other record trees to the center tree. ViPER [10] assumes that repetitive 
patterns have variant lengths rather than they are of fixed length as in Depta. ViPER 
applies a tandem repeats algorithm before computing the edit-distance to handle miss-
ing and multiple values data. It applies a data alignment technique that is based on 
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global matching and text content information. The alignment method uses a divide-
and-conquer fashion to reduce the multiple-alignment problem. 

Finally, FiVaTech [3] conducts four steps: peer node recognition, matrix align-
ment, pattern mining, and optional node detection in turn. In the matrix alignment 
step, the system handles the two problems of disjunctive and multiple-ordering 
attributes as a case of missing attributes. 

7 Conclusions 

In this paper, we proposed a new algorithm for multiple string (peer matrix) align-
ment. Our algorithm looked at all of the multiple strings at the same time, so it has a 
global view for the inputted strings. Also, our algorithm considered the common 
problems in the field of web data extraction: missing, multi-valued, multi-order, and 
disjunctive attributes. To align a row in the peer matrix, our algorithm drew some 
virtual zigzag lines for each symbol in the row, and then tried to stretch/shift some 
lines to accomplish the task. 
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Abstract. Kernel discriminant analysis (KDA) is a popular technique
for discriminative dimensionality reduction in data analysis. But, when a
limited number of labeled data is available, it is often hard to extract the
required low dimensional representation from a high dimensional feature
space. Thus, one expects to improve the performance with the labeled
data in other domains. In this paper, we propose a method, referred to as
the domain transfer discriminant kernel learning (DTDKL), to find the
optimal kernel by using the other labeled data from out-of-domain distri-
bution to carry out discriminant dimensionality reduction. Our method
learns a kernel function and discriminative projection by maximizing the
Fisher discriminant distance and minimizing the mismatch between the
in-domain and out-of-domain distributions simultaneously, by which we
may get a better feature space for discriminative dimensionality reduc-
tion with cross-domain.

Keywords: Discriminant Kernel Learning, Dimensionality Reduction,
Transfer Learning.

1 Introduction

In many real-world applications, such as image processing, computational biol-
ogy and natural language processing, the dimensionality of data is usually very
high. Due to the complexity and noise of high-dimensional data, the effectiveness
of regression or classification is limited. This can be improved via dimensionality
reduction which finds a compact representation of the data for classification.

A more popular technique for dimensionality reduction is discriminant anal-
ysis. To handle nonlinear problems, the kernel discriminant analysis (KDA) is
proposed in [1], which computes the discriminative projection from the data set
that is mapped nonlinearly into the reproducing kernel Hilbert space (RKHS).
We observe that the kernel is chosen before learning in the KDA method. How-
ever, the kernel-based learning methods are desirable when integrating the tuning
of kernel into the learning space.

In addition, the discriminant multiple kernel learning methods require a plenty
of labeled samples to discriminate the unlabeled data from each class. In real-
world applications, it is usually costly or even impossible to get such a huge
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number of labeled samples from the same distribution. When this situation oc-
curs, the performance of discriminant kernel learning methods is poor. Then one
expects to carry out discriminant analysis with the help of other related labeled
data from other domains. This brings out the cross-domain problem since the ex-
isting discriminant kernel learning makes the assumption that the training data
and the test data are independent and identical. To resolve this problem, cross
transfer learning is proposed, whose aim is to improve learning in the in-domain
by porting the labeled sample from out-of-domain to that from in-domain to
carry out dimensionality reduction. Several works have been done by combining
unsupervised dimensionality with clustering, such as transferred dimensionality
analysis(TDA) [2], which intends to select the most discriminative subspace and
clustering at the same time. Maximum mean discrepancy embedding(MMDE)[3]
tries to find a subspace where training and test samples distribute similarly to
solve the sample selection bias problem in an unsupervised way. S.Si et al.[4]
proposed using evolutionary cross-domain discriminative Hessian eigenmaps by
minimizing the quadratic distance between the distribution of the training set
and that of the test set. However, it could not solve non-linear problems.

In this paper, we develop a new dimensionality reduction method, called do-
main transfer discriminant kernel learning method (DTDKL), which transfers
the knowledge from labeled data in out-of-domain to the in-domain by explicitly
carrying out kernel discriminant learning and transfer leaning in a coherent way.
More specifically, DTDKL tries to find a projection to maximize the Fisher dis-
criminant ratio in the optimal feature space and minimize the maximum mean
discrepancy (MMD) of the different distributions simultaneously. In fact, DT-
DKL provides a method to learn an optimal kernel function and discriminant
projection at the same time.
The key contributions of the paper can be highlighted as follows:

– To the best of our knowledge, DTDKL is the first semi-supervised
cross-domain discriminant kernel learning method. In contrast to the prior
discriminant kernel learning method, DTDKL does not assume that the
training and test data are drawn from the same distribution. Moreover, a
novel dimensionality reduction method with cross-domain is proposed, whose
objects are to maximize the Fisher discriminant ratio while minimizing the
maximum mean discrepancy of different distributions.

– By comparing the state-of-the-art dimensionality reduction methods, DT-
DKL performs better in the dataset of SyskillWebert, Reuters-21578 and
20-Newsgroup ensuring promising performance in real applications.

The rest of this paper is organized as follows: Section 2 presents the related
works and preliminaries of DTDKL; Section 3 proposes DTDKL method by
embedding maximum mean discrepancy (MMD) into discriminant analysis to
tackle the cross-domain problem; Section 4 presents our experimental results to
demonstrate its applications. Finally, we conclude the study in Section 5.
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2 Brief Review of Prior Work

2.1 Discriminant Multiple Kernel Learning

Dimensionality reduction has always attracted amount of attention.Variousmeth-
ods have been proposed in a recent survey [5] to solve this problem. The canoni-
cal dimensionality reduction algorithm is linear discriminant analysis (LDA) [6],
which is finding the most discriminative subspace for different classes in the origi-
nal space. And with the development of kernel-basedmethods, kernel discriminant
analysis has received a lot of interest for nonlinear problems. The KDA algorithm
finds the direction in a feature space, defined by a kernel function, onto which
the projections of different classes are well separated [1,7]. Note that the kernel
function plays a crucial role in kernel methods, and Lanckriet et al. [8] pioneered
the work of multiple kernel learning (MKL) in which the optimal kernel is ob-
tained as a linear combination of pre-determined kernel matrices. Based on ideas
of MKL, the kernel-based learning method for discriminant analysis was reformu-
lated as semi-definite programming (SDP) in Kim et al. [9]. Ye et al. [10] improved
the efficiency of the problem and extended naturally to the multi-class setting by
casting the SDP formulation in quadratically constrained quadratic programming
(QCQP) and semi-infinite linear programming (SILP).

2.2 Transfer Learning and Maximum Mean Discrepancy
Formulation

Semi-supervised learning aims to make use of unlabeled data in the process
of supervised learning and it has also been widely used in many areas related
to transfer learning. One of the typical branches is to find criteria to estimate
the distance between different distributions. A well-known example is Kullback-
Leibler (K-L) divergence. Many criteria are parametric for the reason that an
intermediate density estimate is usually required. To avoid parametric estima-
tion, some nonparametric methods are proposed to evaluate the distance between
the different distributions of data sets. Maximum Mean Discrepancy (MMD) is
a effective nonparametric criterion for comparing distributions based on RKHS
[11]. Suppose F be a class of functions f : X → R, and X = (x1, . . . , xn1),
Y = (y1, . . . , yn2) be random variable sets drawn from distributions P and Q,
respectively. The maximum mean discrepancy and its empirical estimate is as
follows:

MMD[F, X, Y ] := sup
f∈F

(
1

n1

n1∑
i=1

f(xi)−
1

n2

n2∑
i=1

f(yi)

)
(1)

The function space F could be replaced by H which is a universal RKHS. By
the fact that in RKHS, f(x) can be expressed as an inner product via f(x) =
〈ϕ(x), f〉H, where ϕ(x) : X→ H, then one may rewrite MMD as follows:

MMD =

∥∥∥∥∥ 1

n1

n1∑
i=1

ϕ(xi)−
1

n2

n2∑
i=1

ϕ(yi)

∥∥∥∥∥
H

= ‖μ1 − μ2‖H
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In terms of the MMD theory [11], the distance between distributions of two
samples is equivalent to the distance between the means of the two samples
mapped into a RKHS.

3 Semi-supervised Discriminant Analysis in Cross-Domain

Let X ⊆ IRd and Y = {−1,+1} denote the input space and the output space,
respectively. Let Dout = {(xout

i , youti ) ∈ X × Y : 1 ≤ i ≤ nout} be the set of
out-of-domain data samples with nout = |Dout|, and Din = Din

l ∪ Din
u be the

set of in-domain data samples where Din
l = {(xin

i , yini ) ∈ X × Y : 1 ≤ i ≤ nin
l }

with nin
l = |Din

l |, and Din
u = {xin

i ∈ X : nin
l+1 ≤ i ≤ nin} with nin

u = |Din
u |.

Typically, nin
l � nin

u . Let P and Q be the marginal distribution of Din and
Dout, respectively. We assume that the nout out-of-domain samples and the
nin in-domain samples are drawn independently and identically from a fixed but
unknown underlying probability distribution P and Q, respectively. Our task is to
predict the labels yinnl+1, . . . , y

in
n , which corresponds to the inputs xin

nl+1, . . . , x
in
n

in the in-domain data set.

3.1 Standard Discriminant Kernel Learning Analysis

The standard kernel discriminant analysis learns the kernel and the direction
from the labeled samples in Din

l in order to project the unlabeled samples inDin
u .

LetK : X×X→ IR be a kernel function. Then, Mercer’s Theorem [12] tells us the
kernel function implicitly maps the input space X to a high-dimensional (possibly
infinite) Hilbert space H equipped with the inner product 〈·, ·〉H through a map
ϕ : K → H:

K(x, z) = 〈ϕ(x), ϕ(z)〉H, ∀x, z ∈ X.

This space is called the feature space, and the mapping is called the feature
mapping. They depend on the kernel function K and will be denoted as ϕK and
HK .

Let x+ and x− denote the collection of data points from positive and negative
classes, respectively. Then the total number of data points in the training set
Din

l is nl = n+ + n−. The standard kernel discriminant analysis [9] learns the
kernel K and direction w ∈ Hk via the optimization problem

max
w,K

F (w,K) =
(wT (μ+

K − μ−
K))2

wT (Σ+
K +Σ−

K + λI)w

s.t. K =

p∑
i=1

θiKi, 1T θ = 1, θ  0, (2)

where K1, . . . ,Kp be the given p based kernels, θ  0 means its elements θi are
nonnegative, λ > 0 is a regularization parameter, I is the identity operator in
HK , μ+

K and μ−
K are the sample means

μ+
K =

1

n+

n+∑
i=1

ϕK(xi), μ−
K =

1

n−

nl∑
i=n++1

ϕK(xi),
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and Σ+
K and Σ−

K are the sample covariances

Σ+
K =

1

n+

n+∑
i=1

(ϕK(xi)− μ+
K)(ϕK(xi)− μ+

K)T ,

Σ−
K =

1

n−

nl∑
i=n++1

(ϕK(xi)− μ−
K)(ϕK(xi)− μ−

K)T .

Note that (2) is a supervised learning model which neglects the knowledge of the
unlabeled data, and hence can not yield the favorable classification. In addition,
this model requires all samples to come from the identical distribution, which
means that it can not deal with the cross-domain problem. Motivated by this,
we propose a domain transfer kernel learning method in the next subsection.

3.2 Domain Transfer Kernel Learning for Discriminant Analysis

Note that if the distributions P(x) and Q(x) are completely independent, then
the out-of-domain data Dout is useless; if P(x) and Q(x) are identical, then the
cross-domain problem becomes the standard classification problem. However, in
most cases P(x) and Q(x) are neither independent nor identical, for which we
may use the cross-domain projection vector that is learned from out-of-domain
data set Dout and the in-domain data set Din with MMD formulation. Then,
the optimization problem of DTDKL can be formulated as:

max
w,K

KLDAK,w(Dl)− βMMD2
K(Dout,Din), (3)

where β ≥ 0 is a parameter to balance the difference of data distributions of two
domains and the Fisher discriminant ratio of KLDA for labeled samples. This
optimization problem involves two classes of variables. One is the kernel matrix
K which represents the adaptive feature space, and the other is the projection
direction w for the dimensionality reduction.

By specializing KLDAK,w(Dl) and MMD2
K(Dout,Din) as F (w,K) and ‖μin−

μout‖, respectively, (3) becomes

max
w,K

Fλ,β(w,K)

s.t. K =

p∑
i=1

θiKi, 1T θ = 1, θ  0 (4)

where

Fλ,β(w,K)=
(wT (μ+

K − μ−
K))2

wT (Σ+
K +Σ−

K + λI)w
− β

∥∥μin
K − μout

K

∥∥2 . (5)

and μ+
K , μ−

K , Σ+
K ,Σ−

K denote the training samples’ (in-domain and out-of-domain)
means and covariances, respectively. Comparing with the model (2), we see that
a new term −‖μin− μout‖2 is introduced into the objective of (4). This term is
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a concave function that will bring a concavification effect on the original non-
concave objective of (2). So, the globally optimal solution of the maximization
problem (4) can be easier found than that of the problem (2) proposed in [9] .

Note that the last term in Fλ,β(w,K) is independent of w. Hence, the maxi-
mization problem (4) can be rewritten as

max
K

max
w

{
(wT (μ+

K − μ−
K))2

wT (Σ+
K +Σ−

K + λI)w

}
− β

∥∥μin
K − μout

K

∥∥2
s.t. K =

p∑
i=1

θiKi, 1T θ = 1, θ  0. (6)

Using the same arguments as in [9], we know that the globally optimal solution
of the inner maximization problem

w∗ = (Σ+
K +Σ−

K + λI)−1(μ+
K − μ−

K). (7)

Substituting this into the objective of (8), we obtain that

max
K

F ∗
λ,β(K)

s.t. K =

p∑
i=1

θiKi, 1T θ = 1, θ  0 (8)

where

F ∗
λ,β(K) = (μ+

K − μ−
K)T (Σ+

K +Σ−
K + λI)−1(μ+

K − μ−
K)

−β
∥∥μin

K − μout
K

∥∥2 . (9)

On the other hand, from the Representer Theory [12], the optimal discriminative
projection in DTDKL is the span of the images of the training points in the
feature space. Note that in this method the training set includes both labeled
data and unlabeled data due to the MMD formulation. Hence, there exists a
vector α ∈ IRn such that

w∗ =
n∑

i=1

α∗
iϕK(xi) = UKα∗ (10)

where
UK = [ϕK(x1) · · · ϕK(xn)] .

In fact, we can find a closed-form expression of α:

α∗ =
1

λ
[I −G(λI +GKG)−1GK]a (11)

where a is an n-dimensional vector given by

a = [1/n+, . . . , 1/n+,−1/n−, . . . ,−1/n−, 0, . . . 0]T ∈ IRn,
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and the matrix G is defined as

G =

⎛⎜⎜⎜⎜⎝
1

√
n+

(I − 1
n+

1n+1
T
n+

) 0 0

0
1

√
n−

(I − 1
n−

1n−1
T
n−) 0

0 0 0

⎞⎟⎟⎟⎟⎠ .

Because the unlabel data is introduced in this model, the representation of the
variables are different from those of [9]. By equations (7), (10) and (11), F ∗

λ,β(K)
can be written as

F ∗
λ,β(K) = (μ+

K − μ−
K)T (Σ+

K +Σ−
K + λI)−1(μ+

K − μ−
K)

−βbTKb

= (μ+
K − μ−

K)Tw∗ − βbTKb

= aTUT
KUKα∗ − βbTKb

=
1

λ
aTK(I −G(λI +GKG)−1GK)a−βbTKb

where b = (b1, . . . , bn) with

bi =

{
1

nout if xi ∈ Dout;
− 1

nin if xi ∈ Din.
(12)

Then, the optimization problem (8) can be reformulated as

min
θ,t

− 1

λ

p∑
i=1

θi(a
TKia− λβbTKib) + t

s.t. aTKG(λI +GKG)−1GKa ≤ t, (13)

1T θ = 1, θ  0.

By the Schur Complement Theorem, we know that

aTKG(λI +GKG)−1GKa ≤ t⇔
(
λI +GKG GKa
aTKG t

)
 0.

The last two equations show that (13) is equivalent to

min
t∈IR,θ∈IRp

1

λ

(
t−

p∑
i=1

θi(a+
√
βb)TKi(a+

√
βb)

)
s.t. S(t, θ)  0

1T θ = 1, θ  0, (14)

where

S(t, θ) =

(∑p
i=1 θiJ

TKiG+ λI
∑p

i=1 θiG
TKia∑p

i=1 θia
TKiG t

)
.
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Algorithm 1. Kernel Discriminant Learning in Cross-domain Problem

input : A labeled out-of-domain data set Dout= {xout
i , yout

i }, an unlabeled
in-domain data set Din = {xin

i } and positive parameters λ, β.
output: Labels Y in of the unlabeled data Xin in the in-domain.
1. Solve SDP problem in (14) to obtain a kernel matrix K
2. Compute the coefficient vector α through (11), then the direction w can be

obtained from (10)

3. Use the direction w to get new representations {xout′
i } and {xin′

i } of the original
data {xout

i } and {xin
i }, respectively.

4. Train a classifier or regressor: f : xout′
i → yout′

i

5. Use the trained classifier or regressor to predict the labels

Thus, we convert the nonconvex optimization problem (4) into a convex semidef-
inite programming problem. Similar to the one obtained by [9], it can be solved
by interior-point method softwares such as SeDuMi or SDPT3.

The cost of constructing the basic kernel matrices is O(n2d), the combining the
p basic kernel matrices costs O(n2p), and computing the gradient and Hessian
of the objective is O(n3). so the total cost per Newton step of interior-point
methods which can solve SDP is O(p3+n2d+n2p+n3). In the case of p, d� n,
the total cost grows like O(n3), which is the same as that of SVMs. The SDP
guarantees the convergence of the algorithm.

4 Experiment

In this work, we carried out experiments on three real-world data collections from
two different domains to evaluate the described algorithms. The performance is
compared with MKDL-DA [9], and Semi-supervised kernel discriminant analysis
SKDA [13] as well as other transferred dimensionality reduction method, TKDR
[2] and MMDE [3].

4.1 Data Sets and Experiment Setup

As shown in Table 1, the data collections consist of Reuters-21578 [14], 20-
Newsgroups [15] and SyskillWebert [14]. Amoung them, Reuters-21578 and 20
Newsgroups is the standard used to test web page ratings. The important statis-
tics and pre-processing procedures of these collections are presented below.

Data Sets Description. With a hierarchical structure, SyskillWebert database
consists of the HTML source of web pages plus the ratings of a user on those
web pages. Four separate subjects are contained in the web pages. Associated
with each web page are the HTML source and a user’s rating in terms of ”hot”,
”medium” or ”cold” [16]. As demonstrated in Table 1, all of the four subjects
are involved in our study. ”Goat” is reserved as the set of in-domain and the
other are used as the out-of-domain data. Compared to the ”cold” pages, the
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total number of pages rated as ”medium” or ”hot” is fewer. Hence, we combine
the ”medium” and ”hot” pages together, and change the labels of those pages as
”non-cold” to form a binary classification problem. The learning task is to pre-
dict the user’s preferences for the given web pages. the Rueters-21578 is another
text repository which consists of Reuters news wire articles organized into five
top categories, and each category contains various sub-categories. Three cate-
gories, ”orgs”, ”people” and ”places”, we remove all the documents of ”USA”
in order to make the size of these three categories nearly even [16]. For each
category, all of the sub-categories are then organized into two parts, and each
part has different distribution and approximately equal size. Therefore, one part
can be used for the in-domain and the other is treated as the out-of-domain
purpose. According to the method described in [17], three cross-domain learning
tasks are generated as listed in Table 1, and the learning objective aims to clas-
sify articles into top categories. Similar to Reuters-21578 data, 20-Newsgroups
corpus contains 7 top categories and these top categories contain 20 subcate-
gories which have approximately 20,000 newsgroup documents. We select four
top categories ”com”, ”rec”, ”talk” and ”sci” in this experiment. Thus, three
other cross-domain tasks are formed as listed in Table 1.

Table 1. Summary of Datasets

Data Set In-domain Out-of-domain

Bands
SyskillWebert Goat Sheep

Biomedical

Orgs vs People Documents of Documents of
Reuters Orgs vs Places some sub other sub

People vs Places categories categories

20 Com vs Rec Documents of Documents of
News- Rec vs Sci some sub other sub
group Rec vs Talk categories categories

Experiment Setup. On one hand, for each in-domain data set employed in the
experiment, we further split it into two parts: in-domain data with labels(Dl) and
the in-domain data without labels(Du). We randomly select 50% data from out-
of-domain and in-domain, respectively. The ratio between |Dl| and |Du| is 1:9.
All of the in-domain data without labels(Du) are used as the test sets while the
training sets consist of the data points with labels from both the in-domain Dl

and out-of-domain (Dout). On the other hand, the kernel is a convex combination
of 10 Gaussian kernels [10]:

K(x, z) =

10∑
i=1

θie
‖x−z‖2/σ2

i

where θi are the weights of the kernels to be determined. The values of σi were
chosen uniformly over the interval [10−1, 102] on the logarithmic scale. The
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regularization parameter λ in DTDKL and the MMD parameter β was fixed
to 10−6 and 1, respectively. As a matter of fact, the algorithm is not sensitive
to the parameter β for a wide range.

Any ordinary classifier, such as Näıve Bayes, K-nearest, can be used in the di-
mensionality reduction method. In our experiments, we simply choose the nearest
centroid method.

4.2 Experimental Results

For performance evaluation, we use accuracy, which has been widely used as a
evaluation metric, we systematically compare the proposed algorithms to some
classifiers, including discriminant MKL-DA [9], SKDA [13], as well as TKDR [2],
MMDE[3]. All of the results reported below are mean of that running 10 times.

Table 2. Comparison of Performance (mean ± std %)

Data Set MKL-DA SKDA TKDR MMDE DTDKL

Syskill Goat-Bands 50.47 (11.31) 55.56 (1.63) 54.81 (1.24) 57.98 (4.52) 59.03 (1.13)
- Goat-Biomedical 58.38 (8.40) 60.54 (8.60) 61.14 (1.13) 60.32 (2.21) 61.38 (1.30)

Webert Goat-Sheep 80.52 (2.25) 67.38 (9.58) 71.05 (3.62) 80.04 (1.33) 81.75 (1.65)

Orgs-People 67.08 (5.96) 66.05 (6.02) 68.80 (4.81) 71.22 (3.14) 73.65 (5.05)
Reuters Orgs-Places 54.90 (8.56) 55.60 (4.91) 58.31 (4.98) 69.19 (3.31) 70.90 (1.98)

People-Places 50.54 (8.98) 54.94 (4.32) 53.60 (4.80) 64.86 (4.01) 65.60 (4.98)

20 Com-Rec 54.49 (9.05) 72.02 (7.42) 72.69 (7.29) 73.05 (3.98) 73.46 (3.32)
News- Rec-Sci 70.05 (8.78) 73.90 (4.06) 76.90 (5.53) 77.63 (3.29) 77.68 (4.85)
group Rec-Talk 70.80 (2.96) 77.35 (5.77) 78.03 (6.64) 78.90 (2.18) 79.08 (1.52)

In this section, we use accuracy as the evaluation metric, and compare the
proposed algorithms to MKL-DA, SKDA and TKDR. The results show clearly
that DTDKL is able to alleviate the influence of different distributions.

Table 2 summarizes the accuracies of MKL-DA, SKDA, TKDR, MMDE, and
DTDKL on the three databases with the best results highlighted in bold font. It
can be seen that the MAP of the DTDKL methods is consistently higher than
the other methods on all of the data sets. Moreover, it is general trend that those
problems with higher precision, generally, have a smaller error.

Overall Performance
Our proposed method DTDKL outperforms all the other algorithms in terms
of accuracy, demonstrating that DTDKL learns a robust target classifier.And
it is also easy to notice that the MMDE and DTDKL performs much better
than the other three methods, even TKDR. Moreover, the standard deviation
of DTDKL is much smaller, means that it is more stable. For the SyskillWebert
collection, compared to DTDKL’s rivals, on average it achieves at least 1.23%,
0.24% and 1.05% higher accuracy on ”GoatVsBands”, ”GoatsVsBiomedical” and
”GoatVsSheep”, respectively. The better performance can be ascribed to trans-
ferring the in-domain and out-domain data to a features whose the discriminant
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Fig. 1. Accuracy vs. different size of Din
l

distance of the data is maximum and the maximum mean discrepancy comes
out to be minimum. For the Reuters-21578 data set, the accuracy of DTDKL on
average achieve at least 1.6%, 1.7% and 0.7% higher that other approaches on
”OrgsVsPeople”, ”OrgsVsPlaces” and ”PeopleVsPlaces” respectively.The simi-
lar performance explanation provided to DTDKL method on Reuters-21578 can
also applied here. On the 20 News-group data set, the DTDKL methods per-
form best among the total tasks. Compare DTDKL and MKL-DA, we can see
that the MAP of DTDKL is at least 6.6% higher, even nearly 10% higher than
MKL-DA, which confirm the positive effect of MMD.

Sensitivity
This study evaluates the sensitivity of varied sizes of labeled in-domain data
and conducted on the three collection. The results are demonstrated in Fig.1.
It is evident that, as the size of the labeled in-domain data increases, DTDKL
performs better than or as equal as its competitors at most case. For example,
as shown in Figure 1(c), DTDKL achieves at least 5% higher accuracy than
other methods on each size of labeled in-domain data. As a general trend, the
accuracy of DTDKL steadily improves when the number of labeled in-domain
data increase from 1% to 10%. Consequently, we infer that, better performances
can be obtained if more labeled in-domain data are provided.

5 Conclusion

We have proposed a unified dimensionality reduction in cross-domain problems
to simultaneously learn a kernel function as well as Fisher discriminant direction
by maximizing the Fisher discriminant distance and minimizing the distance of
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out-of-domain and in-domain. Moreover, we assume that the kernel function in
optimal kernel discriminant analysis is a linear combination of multiple base
kernels; Thus, it can be efficiently solve by SDP. Experimental result show that
DTDKL method outperforms existing dimensionality reduction in cross-domain
in three text data sets.

References

1. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.: Fisher discriminant
analysis with kernels. In: NNSP Workshop, pp. 41–48 (1999)

2. Wang, Z., Song, Y., Zhang, C.: Transferred Dimensionality Reduction. In: Daele-
mans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS
(LNAI), vol. 5212, pp. 550–565. Springer, Heidelberg (2008)

3. Pan, S., Kwok, J., Yang, Q.: Transfer learning via dimensionality reduction. In:
AI, vol. 2, pp. 677–682 (2008)

4. Si, S., Tao, D., Chan, K.: Evolutionary cross-domain discriminative hessian eigen-
maps. IEEE Transactions on Image Processing 19(4), 1075–1086 (2010)

5. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces.
IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 328–340
(2005)

6. Fukunaga, K.: Introduction to statistical pattern recognition. Academic Pr. (1990)
7. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach.

Neural Computation 12(10), 2385–2404 (2000)
8. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., Jordan, M.: Learning the

kernel matrix with semidefinite programming. The Journal of Machine Learning
Research 5, 27–72 (2004)

9. Kim, S.J., Magnani, A., Boyd, S.: Optimal kernel selection in kernel fisher discrim-
inant analysis. In: ICML, pp. 465–472 (2006)

10. Ye, J., Ji, S., Chen, J.: Multi-class discriminant kernel learning via convex pro-
gramming. The Journal of Machine Learning Research 9, 719–758 (2008)

11. Borgwardt, K., Gretton, A., Rasch, M., Kriegel, H., Schölkopf, B., Smola, A.: In-
tegrating structured biological data by kernel maximum mean discrepancy. Bioin-
formatics 22(14), e49–e57 (2006)

12. Cristianini, N., Shawe-Taylor, J.: Kernel methods for pattern analysis. Cambridge
University Press, Cambridge (2004)

13. Cai, D., He, X., Han, J.: Semi-supervised discriminant analysis. In: ICCV, pp. 1–7
(2007)

14. Asuncioin, A., Newman, D.: Uci machine learning repository (2007),
http://www.ics.uci.edu/mlearn/MLRepository.html

15. Davidov, D., Gabrilovich, E., Markovitch, S.: Parameterized generation of labeled
datasets for text categorization based on a hierarchical directory. In: SIGIR, pp.
250–257 (2004)

16. Zhong, E., Fan, W., Peng, J., Zhang, K., Ren, J., Turaga, D., Verscheure, O.: Cross
domain distribution adaptation via kernel mapping. In: SIGKDD, pp. 1027–1036
(2009)

17. Dai, W., Yang, Q., Xue, G., Yu, Y.: Boosting for transfer learning. In: ICML, pp.
193–200 (2007)

http://www.ics.uci.edu/mlearn/MLRepository.html


Prioritizing Disease Genes by Bi-Random Walk

Maoqiang Xie1, Taehyun Hwang2, and Rui Kuang3,�

1 College of Software, Nankai University, Tianjin, China
2 Masonic Cancer Center, University of Minnesota, Twin Cities, USA

3 Department of Computer Science and Engineering,
University of Minnesota, Twin Cities, USA

kuang@cs.umn.edu

Abstract. Random walk methods have been successfully applied to pri-
oritizing disease causal genes. In this paper, we propose a bi-random walk
algorithm (BiRW) based on a regularization framework for graph match-
ing to globally prioritize disease genes for all phenotypes simultaneously.
While previous methods perform random walk either on the protein-
protein interaction network or the complete phenome-genome heteroge-
nous network, BiRW performs random walk on the Kronecker product
graph between the protein-protein interaction network and the pheno-
type similarity network. Three variations of BiRW that perform balanced
or unbalanced bi-directional random walks are analyzed and compared
with other random walk methods. Experiments on analyzing the disease
phenotype-gene associations in Online Mendelian Inheritance in Man
(OMIM) demonstrate that BiRW effectively improved disease gene pri-
oritization over existing methods by ranking more known associations in
the top 100 out of nearly 10,000 candidate genes.

Keywords: Disease Gene Prioritization, Bi-RandomWalk, Graph-based
Learning.

1 Introduction

It is now well accepted that phenotypes are determined by genetic material under
environmental influences. To understand the relation between disease phenotypes
and genes, numerous genomic studies on large patient cohorts such as genome-
wide association studies [1][2] have been conducted to identify candidate disease
genes, and in the past decade, the knowledge of determined disease phenotype-
gene associations has been quickly accumulated in databases such as Online
Mendelian Inheritance in Man (OMIM), a database of human genes and genetic
disorders. Driven by the accumulated knowledge, random walk-based algorithms,
which take the advantage of the availability of large phenotypic and molecular
networks (Fig. 1), were proposed to utilize the disease modules and gene modules
in the networks to prioritize disease genes [3][4][5][6][7][8][9]. The human disease
phenotype network [10] provides information on phenotype similarities computed
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by text mining of the full text and clinical synopsis of the disease phenotypes
in OMIM [11]. Large molecular networks such as the human protein-protein
interaction network [12] [13] or functional linkage network [6] provide functional
relations among genes. Based on the observation that genes associated with the
same or related diseases tend to interact with each other in the gene network and
similar phenotypes tend to share the same disease genes, random walk provides
an effective framework to explore the relations in the networks.

Phenotype Network Gene Network

Fig. 1. Predicting miss-
ing associations in disease
phenotype-gene association
network. The solid and dash
lines represent known and miss-
ing associations, respectively.

Motived by the graph matching problem, we
postulate that phenotype-gene associations can
be characterized by paired associations between
close by genes in the PPI network and close
by phenotypes in the phenotype similarity net-
work. Confirmed by the high frequency of such
paired associations in OMIM, we propose a bi-
random walk algorithm (BiRW) to capture the
patterns in the networks to unveil the associa-
tion between the complete collection of disease
phenotypes and genes (phenome-genome asso-
ciation). The key assumption is that the global
structure of phenome-genome association can be
represented by paired associations, and thus, the
reconstruction of the complete phenome-genome
association can be achieved by maximizing the
number of such paired associations constrained
on the known associations. BiRW algorithm it-
eratively adds new associations into the network
by bi-random walk to evaluate the number of re-

covered paired associations with a decay factor penalizing the number of steps.
We investigated variants of BiRW by performing bi-random walk with balanced
or unbalanced steps in the the PPI network and the phenotype similarity net-
work, and evaluated the methods by experiments on OMIM data.

2 Methods

The disease phenotype-gene association network (or phenome-genome associa-
tion network) is a heterogeneous network composed of a phenotype network, a
gene network and the known phenotype-gene associations modeled by a bipartite
graph (Fig. 1). Let P(m×m), G(n×n) and A(m×n) be the adjacency matrix of the
phenotype network, the gene network and the association bipartite graph respec-
tively, where m is the number of phenotypes and n is the number of genes. The
objective is to predict the missing associations based on the heterogenous dis-
ease phenotype-gene association network by reconstructing an association matrix
R(m×n). The magnitude of each Rij provides the degree of association between
phenotype i and gene j. In the following, we first introduce the loss function
for the learning problem and then the Bi-Random Walk algorithm (BiRW) that
minimizes the cost function for learning R.
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2.1 Loss Function

Our assumption is that similar (or the same) phenotypes are more likely to share
the same causal gene or causal genes that interact with each other. More specifi-
cally, we assume that the predicted paired associations should form the following
subgraph patterns: 1) the triangle with two phenotype nodes and one gene node
following the assumption “similar phenotypes may share the same causal gene”,
2) the triangle with one phenotype node and two gene nodes following the as-
sumption “causal genes of the same disease phenotype tend to interact”, and
3) the rectangle with two phenotype nodes and two gene nodes following the
assumption “genes associated with similar phenotypes tend to interact”. Based
on the assumptions, we define the following loss function over R,

L(R) = α
∑

u,v,i,j

(P ⊗G)(i,u),(j,v)(Ri,u −Rj,v)
2 + (1− α)

∑
i,u

(Ri,u −Ai,u)
2,

where P ⊗ G is the Kronecker product of P and G. Each P ⊗ G(i,u),(j,v) is
1 if Pi,j = 1 and Gu,v = 1, in other words phenotype i and j are neighbors
and gene u and v are also neighbors, and otherwise 0. In this loss function,
the first term enforces a smoothness on R where phenotypes (i, j) and gene
(u, v) should form paired associations with phenotype i aligned with gene u and
phenotype j aligned with gene v when (i, j) are neighbors and (u, v) are also
neighbors. The second term uses prior knowledge A as a regularization term.
The trade-off between these two competing constraints is controlled by a positive
parameter α ∈ (0, 1]. Intuitively, the cost function in equation (1) evaluates that
by associating a phenotype and a gene in R, how many paired associations
are curated. The interpretation is closely related to global network alignment
algorithms that were applied to align protein-protein interaction networks across
species [14][15][16][17][18]. Since the first term is actually a quadratic term of
the elements in R with Hessian D− (P ⊗G), the Laplacian of graph P ⊗G, the
loss function can be rewritten as the following quadratic function,

min
R

α
−→
RT (D − (P ⊗G))

−→
R + (1− α)||−→R −−→A ||2, (1)

where
−→
R is the vector concatenated from the rows in R and D is the diagonal

matrix with the row sum of P ⊗G as the diagonal entries.

2.2 Bi-Random Walk

To minimize the loss function in equation (1), a straightforward method is to
apply random walk with restart on the Kronecker product matrix P ⊗G. Since
P ⊗G is (m×n) by (m× n), this approach does not scale to the large network.
We propose a bi-random walk strategy (BiRW), which performs random walk
on the phenotype network and the gene network simultaneously. BiRW aims to
maximize the number of paired associations by bi-random walk on both phe-
notype network and gene network to evaluate potential candidate associations



Prioritizing Disease Genes by Bi-Random Walk 295

 

P  

P  

P  

P  G 

G 

G

G 

A ×G)×G)×G) ×G( P×( P×( P×P× ... ... 

 A 

... 

... 

... ... ... 

Step 1

Step 2

Step 3

Step t

P: phenotype affinity matrix 
G: gene affinity matrix 
A: curated phenotype-gene 
  association matrix 

: decay factor 
×: matrix multiplication op- 

erator 

Fig. 2. Illustration of bi-random walk algorithm. P and G are the affinity ma-
trices of the phenotype network and the gene network, respectively. A is the bipartite
graph of the known phenotype-gene association from OMIM. By iteratively extend-
ing the phenotype path and the gene path (achieved by multiplying P on the left
or G on the right in each step), the algorithm maximizes the number of paired as-
sociations (loops between phenotypes and genes) with the steps weighted by a decay
factor α ∈ (0, 1). The dashed edge indicates a potential association to add into the
network. The iterative algorithm finds the number of new paired associations formed
by introducing this additional connection.

(Fig. 2). By iteratively extending the phenotype path and the gene path (achieved
by multiplying P on the left and G on the right in each step), the algorithm eval-
uates each candidate association by the number of closed loops weighted by a
decay factor α ∈ (0, 1). The decay factor down-weights the importance of newly
formed loops as the number of random walk steps is getting larger. Here, the
matrix multiplications (P(m×m) ·A(m×n) ·G(n×n)) mimic jumps on the phenotype
network, the gene network and the association network. In the first step, each
element (P ·A ·G)(i,j) represents the number of paired associations obtained by
connecting a target phenotype i to a candidate gene j with phenotype or gene
paths length 1. If we ignore the decay factor for now, more generally, after t steps
of multiplication P . . . (P · (P · A ·G) ·G) . . . G = P t · A · Gt, the loop patterns
curated with up to t steps of random walks can be evaluated. To achieve the
best solution R(m×n), we formulated the problem as R = P · R · G, assuming
P is column-normalized, G is row-normalized, and the elements in R add to 1.

P ·R ·G can be rewritten in a vector form P ⊗G
−→
R . Each bi-random walk is the

same as a random walk on the Markov matrix P ⊗G. Thus, applying bi-random
walk is identical to using power method to find the stationary distribution of
P ⊗G. Note that the idea is also similar to a normalized and relaxed version of
regular graph-matching methods [17], which maximize the number of matched
edges in two graphs (the phenotype network and the gene network). In addition,
the known OMIM associations A normalized the same as R is introduced as
priori knowledge. The complete form of the model is as follows,

R = αP · R ·G+ (1− α)A, (2)
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The decay factor α also plays the role to balance the objective of closed loops for
evaluating candidate associations and the consistence with the known associa-
tions in A. This equation can be solved by iteratively updating R by calculating
the right side of the equation (2) with the current R. The process also con-
verges to a unique solution [18]. Candidate associations can then be selected by
the magnitude of the scores in R. Essentially, this algorithm is mathematically
equivalent to the label propagation algorithm in [19], and it was shown that the
algorithm minimizes the cost function in equation (1).

2.3 Unbalanced Bi-Random Walk

As illustrated in Fig. 2, the steps to walk on the phenotype network and the
gene network explicitly summarize the closed loops in the previous step. The-
oretically, the random walk in the two directions will eventually converge to a
stationary distribution as the unique solution. However, since only the closed
loops of smaller path lengths are informative for predicting associations, exces-
sively counting loops obtained by a large number of random walk steps could
introduce false positives. Moreover, the phenotype similarity network and the
gene network contain different topologies and structures, and thus, the optimal
number of random walk steps might be different on the two networks. To ad-
dress the problem, we restrict the number of random walk steps on the two sides
by introducing two additional parameters l and r as the numbers of maximal
iterations in the following left/right random walk on the networks,

Left Walk: Rt = αP · Rt−1 + (1− α)A (3)

Right Walk: Rt = αRt−1 ·G+ (1− α)A

Left Walk and Right Walk could be applied alternatively to introduce additional
steps in either phenotype network or gene network. The new formula does not
converge as equation 2 to a closed-form but it carries the same interpretation
that each left or right walk extends either the phenotype path length or the gene
path length. Empirically, l, r and α are the parameters tuned by cross-validation
on the training data.

2.4 BiRW Algorithms

Given phenotype network P , gene network G, and the phenotype-gene associa-

tions A, we first normalize the matrices P̄ = D
− 1

2

P ·P ·D− 1
2

P and Ḡ = D
− 1

2

G ·G·D− 1
2

G ,
where DP is a diagonal matrix with diagonal elements DPii =

∑
j Pij , and Ḡ

is the same normalized from G. Depending on the arrangement of the left/right
walk, we consider three variations of BiRW.

BiRW bl: This algorithm exactly implements the balanced BiRW given in
equation (2), and computes the closed-form solution of equation (1).
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BiRW bl(P̄ , Ḡ, A, α)
1 R0 = A

sum(A) , t = 1

2 Do until convege
3 Rt = αP̄ ·Rt−1 · Ḡ+ (1 − α)A
4 t = t+ 1
5 return (R)

BiRW avg: This algorithm implements the unbalanced BiRW with the aver-
aged output from the left walk and the right walk in each step.

BiRW avg(P̄ , Ḡ, A, α, l, r)
1 R0 = A

sum(A)

2 for t = 1 to max(l, r)
3 if t <= l
4 Rt left = αP̄ ·Rt−1 + (1− α)A
5 if t <= r
6 Rt right = αRt−1 · Ḡ+ (1− α)A
7 Rt = (δt≤r ·Rt left + δt≤l ·Rt right)/(δt≤l + δt≤r)
8 return (R)

In the algorithm, δt≤x is 1 if t ≤ x and 0 otherwise.

BiRW seq: This algorithm implements the unbalanced BiRW with sequential
walk with left walk followed by right walk in each step.

BiRW seq(P̄ , Ḡ, A, α, l, r)
1 R0 = A = A

sum(A)

2 for t = 1 to max(l, r)
3 if t <= l
4 Rt left = αP̄ ·Rt−1 + (1− α)A
5 if t <= r
6 Rt = αRt left · Ḡ+ (1− α)A
7 return (R)

3 Comparison of Random Walk Algorithms

In this section, we compare BiRW with the other random walk or label prop-
agation algorithms for disease gene prioritization [4][6][7][8][9]. For example,
PRINCE performs label propagation on the PPI network to prioritize disease
genes [8]. The initial probabilities on the gene nodes are normalized from the
causative genes of the nearest neighbors of the query phenotype p chosen by a
logistic function. The initial scores are propagated in the stochastic matrix nor-
malized from the PPI network. After convergence, the unique solution of label
propagation is used to rank the genes. RWRH [9] runs the same label propaga-
tion algorithm on the combined heterogeneous network of all the three networks
to rank genes for a query phenotype. MINProp [7] is based on a principled way to
integrate three networks in an optimization framework and performs iterative la-
bel propagation on each individual subnetwork. These disease gene prioritization
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algorithms rank genes based on their predicted association against a particular
query phenotype while BiRW is a global approach which identifies the missing
associations of all the phenotypes simultaneously. Thus, conceptually, BiRW is
a phenome-genome approach while the other algorithms are phenotype-wise ap-
proaches, none of which explores the relation between the predicted associations
across the phenotypes. To illustrate the difference between BiRW and the other
methods, we compared the initialization and the random walk steps of the al-
gorithms in Table 1. The first difference is that these methods learn with the
structure of different networks. Random Walk, Diffusion Kernel and PRINCE
perform random walk only on the PPI network combined with the direct neigh-
bors inferred from the phenotype network and the known associations. RWRH
and MINProp perform random walk on the complete heterogenous phenome-
genome association network. BiRW performs random walk on the Kronecker
product graph of the phenotype network and the gene network in the balanced
case or on the phenotype network and the gene network separately in the un-
balanced case.

Table 1. Comparison of random walk algorithms for disease gene prioritiza-
tion. We denote the target variables for assigning prediction scores on the phenotype
nodes and the gene nodes p(m×1) and g(n×1), respectively. q is the index of the query

phenotype. For any matrix X, X̂ represents the row normalized stochastic matrix from
X. α, β and λ are positive parameters ∈ (0, 1).

Algorithm Initialization and Random walk step(s)

Random Walk [4][6]
g0 = (Aq∗)′

gt = αGgt−1 + (1− α)g0

Diffusion Kernel [4]
g0 = (Aq∗)′

g = (e−β(DG−G)) ∗ g0

PRINCE [8]
g0(i) = logit(maxl(Pql ∗Ali))
gt = αḠgt−1 + (1− α)g0

RWRH [9]
g0 = 0,

{
p0(i) = 0, ∀i �= q
p0(q) = 1(

pt

gt

)
= α

(
(1− λ)P̂ λÂ

λÂT (1− λ)Ĝ

)(
pt−1

gt−1

)
+ (1− α)

(
p0

g0

)

MINProp [7]
g0 = 0,

{
p0(i) = 0, ∀i �= q
p0(q) = 1,

Repeat to solve two random walk problems until converge

1) pt = βP̄ pt−1 + (1− β)( 1−2β
1−β

p0 + β
1−β

Āg)

2) gt = αḠgt−1 + (1− α)( 1−2α
1−α

g0 + α
1−α

Ā′p)

BiRW
R = 0
Rt = αP̄Rt−1Ḡ+ (1− α) ∗ Ā

Another mathematical difference between BiRW and the other algorithms lies
in the formulation of using the known associations in A. PRINCE uses the known
associations to decide an initial set of genes that are associated with a query
phenotype. RWRH and MINProp directly use A as part of the large network for
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random walk. BiRW treats R as the target variable and the known association A
as a regularization of R, intuitively, because A is only partially known and most
of the zero entries of A are “unknown” instead of “no association”. Thus, using A
as a regularization instead of directly as part of the network for graph structure-
based learning is probably a more rigorous modeling because the incompleteness
of the bipartite network might mislead the random walk.

4 Experiments and Discussions

BiRW was compared to CIPHER [5], PRINCE [8] and RWRH [9], three of the
best performing algorithms for disease gene prioritization, by 100-fold cross-
validation and testing of an independent holdout set with OMIM data. We also
compared the three variants of BiRW, BiRW avg (default for BiRW), BiRW seq
and BiRW bl, with similar experiments.

4.1 Data Preparation

The disease phenotype network is an undirected graph with 5080 vertices repre-
senting OMIM disease phenotypes, and edges weighted in [0, 1]. The edge weights
measure the similarity between two phenotypes by their overlap in the text
and the clinical synopsis in OMIM records, calculated by text mining [10]. The
disease-gene associations are represented by an undirected bipartite graph with
edges connecting phenotype nodes with their causative gene nodes. Two versions
(May-2007 Version and May-2010 Version) of OMIM associations were used in
the experiments. May-2007 Version contains 1393 associations between 1126 dis-
ease phenotypes and 916 genes, and May-2010 Version contains 2469 associations
between 1786 disease phenotypes and 1636 genes. Human protein-protein inter-
action (PPI) network was obtained from HPRD [12]. The PPI network contains
34,364 curated binary interactions between 8919 genes.

4.2 Comparison with Other Methods

Since the disease gene prioritization algorithms rank genes based on their pre-
dicted association against a particular query phenotype, to make a reasonable
comparison with CIPHER [5], PRINCE [8] and RWRH [9], the three algorithms
were applied to predict the disease genes for each phenotype and the predictions
are compared with the results of BiRW phenotype-wise. In the experiment, a
disease phenotype was used as a query by an algorithm to rank the genes by
their association scores against the query phenotype. For PRINCE and BiRW,
the phenotype similarity network was transformed by a logistic function [8]. For
all the methods, a 100-fold cross-validation on the OMIM May-2007 Version was
performed for parameter tuning, and then the methods were applied to predict
the associations in an independent set of associations added into OMIM between
May-2007 and May-2010.
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(B) Test Data

Fig. 3. Performance of predicting OMIM associations. The plots show the per-
centage of phenotypes, for which a given method achieved a ROC score exceeding a
threshold in cross-validation and testing.

There are 1126 disease phenotypes with at least one known causal gene in
OMIM version May-2007. In the 100-fold cross-validation, the 1126 disease phe-
notypes were randomly divided into 100 subsets. In each cross-validation trial,
the OMIM associations of the 1% disease phenotypes in a subset were removed,
and then used as queries to rank the candidate genes. The hyper-parameters α
for both PRINCE and BiRW were chosen from {0.1, 0.2, ..., 0.9}, and l and r were
taken to be between 1 step to 5 steps. The three hyper-parameters of RWRH are
set to be the optimal parameters (0.5, 0.7, 0.5) suggested by the experiments in
[9]. The test set contains new associations of 518 phenotypes in OMIM May-2010
Version. ROC score (Area Under the Curve of Receiver Operating Characteris-
tic) was used as the global performance measure. The higher the target genes of
a query phenotype in the ranking, the better the performance. Specifically, for
each phenotype query, the target genes were labeled as positives and the other
genes were labeled as negatives. AUCs were computed by the positions of the
positives in the ranking list. We reported the AUC with up to 50, 100 and 300
false positives since the top part of AUC is more important.

The results produced by the best parameters in the cross-validation of each
method is reported in Fig. 3A (l = 4, r = 4 and α = 0.8 for BiRW and α = 0.1
for PRINCE). To make a comprehensive comparison, we plot the number of
phenotype queries with a AUC higher than a certain threshold in the plots.
The BiRW algorithm performed the best. Out of the 1126 phenotypes, BiRW
ranked around 55% in top 50 and 63% in top 500. PRINCE also gave decent
prediction performance although BiRW consistently outperformed PRINCE in
all the measures. RWRH, CIPHER DN (direct neighbor) and SP (shortest path)
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Table 2. Statistical significance in performance comparison. A pairwise com-
parison by paired t-test of the ranking results in 100-fold cross-validation.

(A) p-values for AUC50 comparison

BiRW(0.8,4,4) PRINCE(0.1) RWRH(0.5,0.7,0.5) C-SP C-DN

BiRW NaN
PRINCE 0.046 NaN
RWRH 4.41e-037 6.08e-030 NaN

CIPHER SP 6.97e-158 1.87e-150 1.20e-091 NaN
CIPHER DN 9.81e-158 7.99e-150 6.87e-090 0.836 NaN

(B) p-values for AUC100 comparison

BiRW(0.8,4,4) PRINCE(0.1) RWRH(0.5,0.7,0.5) C-SP C-DN

BiRW NaN
PRINCE 4.73e-004 NaN
RWRH 7.30e-039 4.27e-027 NaN

CIPHER SP 1.65e-175 2.09e-160 1.09e-100 NaN
CIPHER DN 1.65e-176 1.94e-161 2.71e-099 0.79 NaN

produced inferior results in this experiment. The possible reason for the worse
results of CIPHER might be because the associations of the test phenotypes were
all removed (called ab initio experiment) and each cross-validation held out a
significant number of known associations. Thus, no direct neighbors were avail-
able for the correlation calculation for many phenotype queries by CHPHER.
PRINCE, RWRH and BiRW worked much better than CIPHER SP and CI-
PHER DN because label propagation and bi-random walk both explore more
global information of the networks. We also measured the statistical significance
of the difference in AUC50 and AUC100 by paired t-test. The p-values are re-
ported in Table 2. Clearly, BiRW performs significantly better than all other
methods at the significance level 0.05.

4.3 Comparison of BiRW Variants

To understand the effect of combining left walk and right walk with different
strategies, we compared BiRW avg, BiRW seq and BiRW bl with the same ex-
periments on OMIM data. The results are reported in Table 3. BiRW avg and
BiRW seq, which perform random walk with a limited number steps, performed
significantly better than BiRW bl, which performs random walk till the conver-
gence to the stationary distribution. The observation partially agrees with the
results by [20] [21], which showed that genes within two-steps are more func-
tional cohesion in the PPI network. When the random-walk steps are above 2
in the gene network, results are very close to optimal as long as the number of
steps in the phenotype network is properly chosen. Since the results depends
on the random-walks in two networks and the decay factor, we found that it
is better to treat the steps as parameters as in BiRW avg and BiRW seq. It
is also interesting that BiRW avg performed constantly better than BiRW seq
although the difference is only marginal. We suspect that there might be a bias
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Table 3. Comparison of the three BiRW Variants. The table reports a compar-
ison of the ranking results by the BiRW variants, BiRW avg, BiRW seq and BiRW bl.
The parameters α, m and n of BiRW are chosen by the 100-fold cross-validation. AUCs
up to 50, 100, 300, 500, 1000 and all false positives are reported.

(A) 100-fold Cross-validation

AUC50 AUC100 AUC300 AUC500 AUC1000 AUC

BiRW avg(0.8,4,4) 0.4349 0.4818 0.5455 0.5721 0.6097 0.8063
BiRW seq(0.8,4,3) 0.4295 0.4696 0.5323 0.5596 0.5972 0.8019

BiRW bl(0.8) 0.2730 0.3344 0.4229 0.4608 0.5138 0.7768

(B) Test Data

AUC50 AUC100 AUC300 AUC500 AUC1000 AUC

BiRW avg(0.8,4,4) 0.2321 0.2809 0.3498 0.3862 0.4494 0.7708
BiRW seq(0.8,4,3) 0.2235 0.2651 0.3344 0.3700 0.4344 0.7672

BiRW bl(0.8) 0.1675 0.2198 0.3167 0.3689 0.4461 0.7754

in choosing the order of left walk and right walk when BiRW seq performs se-
quential random walks, and the bias might be data dependent. In BiRW avg,
there is no ambiguity in the order of the bi-random walk and thus, there might
be less variation expected in different data.

5 Conclusion

In the paper, we introduced a bi-random walk algorithm (BiRW) for disease gene
prioritization. We analyzed the algorithm by comparison with other random
walk algorithms for disease gene prioritization with both algorithmic analysis
and empirical experiments. We concluded that BiRW is an effective algorithm
for disease gene prioritization and the steps of random walks play a crucial role in
the performance of the algorithms. In future, we plan to explore other variations
of BiRW to more effectively utilize the hidden information in the networks.
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Abstract. In this paper, a novel feature selection algorithm FEAST is
proposed based on association rule mining. The proposed algorithm first
mines association rules from a data set; then, it identifies the relevant
and interactive feature values with the constraint association rules whose
consequent is the target concept, and detects the redundant feature val-
ues with constraint association rules whose consequent and antecedent
are both single feature value. After that, it eliminates the redundant
feature values, and obtains the feature subset by mapping the relevant
feature values to corresponding features. The efficiency and effectiveness
of FEAST are tested upon both synthetic and real world data sets, and
the classification results of the three different types of classifiers (includ-
ing Naive Bayes, C4.5 and PART) with the other four representative
feature subset selection algorithms (including CFS, FCBF, INTERACT
and associative-based FSBAR) were compared. The results on synthetic
data sets show that FEAST can effectively identify irrelevant and re-
dundant features while reserving interactive ones. The results on the
real world data sets show that FEAST outperformed other feature sub-
set selection algorithms in terms of average classification accuracy and
Win/Draw/Loss record.

Keywords: Feature subset selection, association rule, feature
interaction.

1 Introduction

Feature subset selection is an important research issue in the domains of machine
learning and data mining. Its purpose is to help the learning algorithm focus
on those aspects of the data most useful for analysis and future prediction.
Generally, feature subset selection is the process of identifying and removing
as many irrelevant and redundant features as possible. As irrelevant features
do not contribute to the predictive accuracy [13], and redundant features do
not contribute to getting a better predictor for that the most information they
provide is already present in other feature(s) [28], thus many feature subset
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selection algorithms have been proposed to handle the irrelevant features or/and
redundant features.

However, feature interaction is not a negligible issue in practice [12]. For ex-
ample, suppose F1 ⊕ F2 = Y , where F1 and F2 are two boolean variables, Y
represents the target concept, and ⊕ represents the xor operation. F1 and F2

are irrelevant with Y when we consider their discrimination abilities for Y sep-
arately, but they become very relevant when we combine them together. There-
fore, removing the interactive features will lead to poor predictive accuracy. Thus
a feature subset selection algorithm should consist of eliminating the irrelevant
and redundant features while taking the feature interaction into consideration.
Unfortunately, to our knowledge, only a few algorithms can deal with this situ-
ation [12,29].

Association rule mining can discover interesting associations among data
items [15], it has been used to build classifiers which show better classifica-
tion accuracy compared with the other types of classifiers [2,10,19]. Especially,
it also has been employed for feature selection recently by Xie et al. [26]. How-
ever, Xie et al. only focus on relevant features and do not consider redundant
and interactive features.

An association rule is an expression of A ⇒ C, where A (Antecedent) and
C (Consequent) are itemsets. If we view A as the feature(s) and C as the fea-
ture(s)/the target concept, association rules can reveal the dependencies between
either feature(s) and feature(s) or feature(s) and the target concept. Therefore,
it is reasonable and desirable to devise an association rule mining based method
to choose feature subset.

In this paper, we propose a Feature subset sElection Algorithm based on
aSsociaTion rule mining (FEAST), which can eliminate the irrelevant and re-
dundant features while taking the feature interaction into consideration. More-
over, FEAST uses association as the measure to evaluate the relativity between
feature(s) and the target concept, which is quite different from the traditional
measures, such as the consistency measure [4,20,29], the dependence measure
[9,27], the distance measure [18,21] and the information theory measure [17,23].
The association measure evaluates irrelevant, redundant and interactive features
in a uniform way, it is at least a potential alternatives for feature subset selec-
tion. The experimental results on the synthetic and real world data sets show
the effectiveness of the proposed algorithm.

The rest of the paper is organized as follows: In Section 2, we introduce
the related work. In Section 3 we describe some preliminaries. In Section 4, we
present the new feature subset selection algorithm FEAST. In Section 5, we
provide the experimental results. Finally, in Section 6, we summarize our work
and draw some conclusions.

2 Related Work

Feature subset selection has been an active research topic since 1970’s, and a
great deal of research has been published.
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Of the existing research work, most feature selection algorithms can effectively
identify the irrelevant features based on different evaluation functions. But not
all of them can eliminate the redundant features and take the feature interaction
into consideration [3]. Thus, the existing feature selection algorithms can gen-
erally be grouped into several categories according to whether or not they can
deal with irrelevant features, redundant features and the feature interaction.

Traditionally, feature subset selection research has focused on searching for
relevant features. Feature weighting/ranking algorithms [8] weigh features indi-
vidually and rank them based on their relevance to the target concept. Unfortu-
nately, they are incapable of removing redundant features. Such as well-known
Relief and its extension Relief-F [18].

Moreover, along with irrelevant features, redundant features also affect the
speed and accuracy of learning algorithms and thus should be eliminated as well
[16]. CFS [9], FCBF [27] and CMIM [5] are examples that take into consideration
the redundant features. However, they do not handle the feature interaction [29].

Feature interaction has been drawing more attention in recent years. There
can be two-way, three-way or complex multi-way interactions among features
[7]. Jakulin and Bratko [12] use interaction gain as a heuristic to detect feature
interaction. Their algorithms can detect 2-way (one feature and the class) and
3-way (two features and the class) interactions. Zhao and Liu [29] demonstrate
that feature interactions can be implicitly handled by a carefully designed feature
evaluation metric and a search strategy with a specially designed data structure.

Recently, association rules have been used for feature selection. Xie et al. [26]
propose an association rule-based feature selection algorithm FSBAR. Unfor-
tunately, it just detects relevant features and does not handle redundant and
interactive features. In contrast, our algorithm aims to eliminate the irrelevant
and redundant features, and takes the multi-way feature interactions into con-
sideration, hence it is quite different from these algorithms above.

3 Preliminaries

3.1 Strong, Classification and Atomic Association Rules

Association rule mining searches for interesting relationships among items in a
data set D. Let I = {i1, i2, · · · , ik} be a set of items, an association rule is an
implication of form A⇒ B, where A ⊂ I, B ⊂ I, and A ∩B = φ.

The support and confidence are two important measures of a rule’s interest-
ingness.

1. The support of rule A⇒ B is the percentage of instances in D that contain
both A and B, denoted as Support(A ⇒ B) = P (A ∪ B); this measure
reflects the rule’s usefulness whose value range is (0, 100%].

2. The confidence of rule A ⇒ B is the percentage value that shows how fre-
quently B occurs among all the instances containing A. It is denoted as
Confidence(A ⇒ B) = P (B|A); this measure reflects the rule’s certainty
whose value range is (0, 100%].
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Typically, association rules are considered interesting if they satisfy minimum
support threshold (minSupp) and minimum confidence threshold (minConf ).
The minSupp and minConf can be set by users or domain experts. Based on
these two thresholds, strong association rule (SAR) can be defined as follow.

Definition 1. Strong association rule (SAR). A rule r of form A ⇒ C is a
strong association rule if and only if:

Supp(r) > minSupp ∧ Conf(r) > minConf. (1)

Where Supp(r) and Conf(r) represent the support and confidence of the associ-
ation rule r, respectively.

For the sake of introducing classification association rule (CAR) and atomic
association rule (AAR), we first give the concepts of feature value itemset (FVIS)
and target value itemset (TVIS).

Let D = {d1, d2, · · · , dn} be a data set of n instances, F = {F1, F2, · · · , Fm}
be the feature space of D with m features, where Fi is the domain of ith feature
and Y be the target concept. The instance di of D can be denoted as a tuple
(Xi, yi), where Xi ∈ F1 × F2 × · · · × Fm, and yi ∈ Y . Then the feature value
itemset FVIS =

⋃m
i=1 Fi containing all possible feature values, and the target

value item set TVIS = Y .
With the definitions of FVIS and TVIS, classification association rule (CAR)

and atomic association rule (AAR) are defined as follows.

Definition 2. Classification association rule (CAR). A rule r of form A⇒ C
is a classification association rule if and only if:

r is a SAR ∧ A ⊆ FVIS ∧C ⊆ TVIS ∧ | C |= 1. (2)

Here, |X | denotes the cardinality of set X . All CARs constitute classification
association rule set (CARset).

Definition 3. Atomic association rule (AAR). A rule r of form A ⇒ C is an
atomic association rule if and only if:

r is a SAR ∧ | A |= 1 ∧ | C |= 1. (3)

All AARs excluding atomic classification rules constitute atomic association rule
set (AARset). Here, an atomic classification rule is an AAR whose consequent
is the target concept value.

3.2 Definitions of Relevant, Redundant and Interactive Features

To define the relevant, redundant features and feature interaction based on con-
straint association rules (i.e., classification and atomic association rules), we
firstly give the definitions of relevant feature value, redundant feature value and
feature value interaction based on association rules.
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Definition 4. Relevant feature value (RelFV). A specific value fij of feature
Fi is relevant to the target concept Y if and only if:

∃r ∈ CARset, fij ∈ r.Ante. (4)

Otherwise, fij is an irrelevant feature value ( iRelFV).

Where fij denotes the jth (1 ≤ j ≤ |Fi|) value of feature Fi, and r.Ante repre-
sents the antecedent of rule r. The same notations are employed in the following
definitions.

From Definition 4 we can know that, the feature values appeared in the an-
tecedent of a rule r ∈ CARset are relevant feature values; on the other hand,
the feature values never appeared in the antecedent of any rule r ∈ CARset are
irrelevant feature values.

We know that classification association rules have been extensively employed
in classification [2,10,19], and these classifiers usually possess preferable classi-
fication accuracy. This indicates that the rules in CARset can be used to effec-
tively explore the relationship between features and target concept. The feature
values appeared in the antecedents of CARs are necessary and related to the
target concept. Thus, it is reasonable to identify the relevant feature values by
Definition 4.

However, the feature values appeared in a rule’s antecedent maybe redundant.
That is, two closely-correlated feature values will be simultaneously appearing
in the rule’s antecedent. This is because that the association rules are gener-
ated based on frequent itemset mining (FIM) [24], but FIM cannot detect the
redundant items (i.e., feature values) since that, for a given feature value, if it is
frequent and selected into a frequent itemset, then the value being redundant to
it will be frequent and selected into an itemset as well. To handle this problem,
the redundant feature value is defined as follow.

Definition 5. Redundant feature value (RedFV). A specific value f of a feature
value set (FVset) is redundant if and only if:

∃r ∈ AARset, ({f} = r.Cons) ∧ (r.Ante ⊆ FVset). (5)

Where r.Ante and r.Cons represent the antecedent and consequent of rule r,
respectively.

From Definition 5 we can know that, of a given feature value set, a feature
value is redundant when it appeared in the consequent of a rule in AARset and
the rule’s antecedent is in the given feature value set as well.

As we known, for a redundant feature value, the information it provides is
already present in other feature value. This indicates that it is closely related
to and can be replaced by other feature value. What’s more, atomic association
rule can be used to explore the correlation between two feature values. Thus,
Definition 5 based on AAR can be used to detect redundant value.

It is noticed that Definition 5 only shows the two-way value redundancy (the
redundancy between two values). Of course, there might exist multi-way feature
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value redundancy (the redundancy among multiple feature values). However,
detecting all the multi-way value redundancy is a combination explosion problem
since we need to list all possible combinations. This is impracticable even when
the feature space is of a middle size. Therefore, we just focus on the two-way
redundancy in this paper.

Suppose FVset = {f1, f2, · · · , fk} is a feature value set with k feature values.
It is a value-assignment set of a feature set Fset with k features, that is, each
member of FVset corresponds to exactly a value of the feature of Fset. Let (A ⊂
FVset) �= φ and B = FVset −A, y be a value of the target Y , Conf (r) be the
confidence of an association rule r, and rF , rA and rB be the CARs of FVset
⇒ {Y = y}, A⇒ {Y = y} and B ⇒ {Y = y}, respectively. Then, the interactive
feature value can be defined as follow.

Definition 6. k-th feature value interaction. The k feature values in FVset are
said to interact with each other if and only if:

Conf(rF ) > Conf(rA) ∧ Conf(rF ) > Conf(rB). (6)

The confidence of an association rule shows how well the rule’s antecedent de-
scribes its consequent. The higher confidence means the stronger description
ability. In Definition 6, the confidence of rule rF is greater than those of rules rA
and rB . This means that although either feature value set A or B is not helpful
in describing the target concept, FVset = A ∪ B works well in describing the
target concept. In this case, feature value sets A and B are said to interact with
each other.

According to Definition 2, the classification association rules usually have
high confidence since their confidence should be at least greater than minConf.
This implies that all the rules with high confidence are included in CARset. In
Definition 6, it is impossible that rA or rB is a CAR but rF is not a CAR,
since Conf(rF ) is greater than both Conf(rA) and Conf(rB). Therefore, the
antecedents of rules in CARset will contain all possible feature value interactions
according to Definition 6. That is, the feature value interaction can be reserved
by the rules in CARset.

Based on the definitions of relevant feature value (RelFV), redundant feature
value (RedFV) and feature value interaction, relevant feature, redundant feature
and feature interaction are defined as follows.

Definition 7. Relevant feature (RelFea). Feature Fi is relevant to the target
concept Y if and only if:

∃fij ∈ Fi, {fij | fij is a RelFV} �= φ. (7)

Otherwise, Fi is an irrelevant feature ( iRelFea).

Definition 7 shows that a feature is relevant when at least one of its values is a
relevant feature value. On the other hand, for an irrelevant feature, all its values
are irrelevant.
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Definition 8. Redundant Feature (RedFea). Feature Fi is redundant if and only
if:

∀fij ∈ Fi, {fij | fij is a RedFV or an iRelFV} �= φ. (8)

Definition 8 indicates that a feature is redundant due to two reasons: (i) each
value of this feature is a redundant feature value; (ii) some values of this feature
are redundant while others are irrelevant. As irrelevant values provide no infor-
mation about the target concept and redundant values provide the information
which is present by the other values, they are all useless in describing the tar-
get concept. This is consistent with the property of the classical definition of
redundant feature [28].

Definition 9. Feature interaction. Let Fset = {F1, F2, · · ·, Fk} be a feature
subset with k features, and VAset be its value-assignment sets. Features F1, F2,
· · ·, Fk are said to interact with each other if and only if:

∃fset ∈ VAset, {fset is a FVset with k-th feature value interaction} �= φ. (9)

As we known, there is an intrinsic relationship between a feature and its values,
and the properties of a feature subset can be studied by its value-assignment.
Thus, for a given feature subset, it is reasonable that the feature interaction
among this feature subset could be implied and studied by that among its value-
assignment. Inspired by this, Definition 9 based on feature value interaction is
proposed to identify feature interaction.

4 Feature Subset Selection Algorithm

Based on the definitions of relevant feature, redundant feature and feature in-
teraction, we propose a novel feature subset selection algorithm FEAST, which
searches for relevant features while taking into consideration redundant features
and feature interaction.

4.1 FEAST Algorithm

The algorithm FEAST consists of four steps: i) Association rule mining, ii)
Relevant feature value set discovery, iii) Redundant feature value elimination
and iv) Feature subset identification.

1) Association rule mining
Constraint association rules are mined from the given data set based on
the predetermined thresholds minSupp and minConf. These rules include
classification association rules and atomic association rules. After this step,
classification association rule set (CARset) and atomic association rule set
(AARset) are obtained.

2) Relevant feature value set discovery
By collecting the antecedents of rules in CARset together, initial relevant
feature value set (RFVset), which reserves the feature value interactions, is
achieved according to Definition 4 and Definition 6.
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3) Redundant feature value elimination

A feature value is redundant means that the information it provides is already
present in another feature value. This indicates the redundant value is implied
by another value. In this paper, atomic association rule is employed to identify
this kind of implication relation. The higher the confidence of an atomic
association rule is, the stronger the implication. This means that the AARs
with higher confidence could be used to identify and eliminate redundant
values firstly.

For a given AAR r ∈ AARset with the highest confidence, the feature value
in r’s consequent is identified redundant and eliminated from current RFVset.
Meanwhile, according to Definition 5, a feature value in the consequent of an
AAR is redundant iff the feature value of the AAR’s antecedent is in the
current RFVset. Therefore, after eliminating r’s consequent from RFVset,
AARset should be updated by removing r and the rules whose antecedents
are equal to r’s consequent.

4) Feature subset identification

After eliminating redundant feature values, there are no irrelevant and re-
dundant values in RFVset. Meanwhile, step 2 shows that RFVset includes
all feature value interactions based on which the feature interactions are de-
fined (see details in Definition 9). Thus, according to Definition 7, by map-
ping the feature values in RFVset to the corresponding features, the final
feature subset is identified, which not only retains relevant features and ex-
cludes irrelevant and redundant features, but also takes feature interaction
into consideration.

Algorithm 1 shows the pseudo-code description of FEAST. Of the input param-
eters, minSupp and minConf are used as the constraint conditions to achieve
strong association rule SAR (Definition 1).

The pseudo-code of FEAST includes four parts, in part 1 (lines 1-2), classifi-
cation association rule set CARset and atomic association rule set AARset are
mined by function FP growth [11] on the given data set D according to minSupp
and minConf. In part 2 (lines 3-4), the union of the antecedents of the associa-
tion rules in CARset constitutes the relevant feature value set RFVset. Part 3
(lines 5-13) is used to eliminate the redundant feature values in RFVset, where
function Sort sorts the rules in AARset in descending order of rule’s confidence.
Firstly, the first rule (i.e. the rule with the highest confidence) r is chosen and
removed from AARset. Then if its antecedent is a subset of the current RFVset,
the value in r’s consequent is eliminated from RFVset; meanwhile, the rules
whose antecedents are equal to its consequent are removed from AARset. This
process repeats until that AARset is empty. Part 4 (lines 14-17) achieves the
selected feature subset S according to the feature values in RFVset.

Time Complexity Analysis. In part 1, the CARset and AARset are mined by
function FP growth. Since the time consumption of FP-growth is closely related
to the value of minSupp [11], the time complexity of this part can be represented
as O(f(minSupp, D)), where f(minSupp, D) is a function of minSupp and D
which increases with the decrease of minSupp/increase of the size of D. For part
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Algorithm 1. FEAST

inputs : D - the given data set;
minSupp - the support threshold;
minConf - the confidence threshold.

output: S - selected feature subset.

//– Part 1 : Association rule mining –
S = φ; RFVset = φ;//RFVset- relevant feature value set;1

[CARset, AARset ] = FP growth (D, minSupp, minConf );2
//– Part 2 : Relevant feature value set discovery –
for each r ∈ CARset do3

RFVset = RFVset ∪ r.Antecedent;4
//– Part 3: Redundant feature value elimination –

Sort (AARset); //sort rules in descending order of rule’s confidence5

while AARset �= φ do6
r = the first rule in AARset;7

AARset = AARset − {r};8

if r.Antecedent ⊂ RFVset then9
RFVset = RFVset − r.Consequent;10

for each r′ ∈ AARset do11

if r′.Antecedent == r.Consequent then12

AARset = AARset − {r′};13

//– Part 4: Feature subset identification –
for each feature value val ∈ RFVset do14

if val ∈ value set of feature F then15

S = S ∪ {F};16

return S17

2, once a CAR is generated by FP-growth, its antecedent could be merged into
RFVset meanwhile, so the consumed time of this part can be ignored. For part 3,
since its main time consummation is the process of sorting the rules in AARset,
the time complexity of this part is O(V · logV ) (by quick sort), where V is the
number of rules in AARset. The time complexity of part 4 is O(K) where K is
the number of feature values in the final RFVset whose maximum value is the
number of all possible feature values in D.

Consequently, the time complexity of FEAST is O(f(minSupp, D) + O(V ·
logV ) + O(K). Since part 1 is the major time consumer in the worst case, the
efficiency of FEAST depends largely on that of association rule mining.

5 Experimental Results and Analysis

In this section, we empirically evaluate the performance of FEAST, and present
the experimental results compared with the other four representative feature
selection algorithms upon both synthetic and real world data sets.

5.1 Benchmark Data Sets

Synthetic Data Sets. In order to directly evaluate how well FEAST deals
with irrelevant, redundant features and feature interaction, five synthetic data
sets with all the irrelevant, redundant and interactive features being known are
employed.
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The first two data sets synData1 and synData2 are generated by the data
generation tool RDG1 of the data mining toolkit WEKA1. The other three
data sets about MONK’s problems are available from UCI Machine Learning
Repository [1]. The five data sets are described as follows.

1) synData1. There are 100 instances and 10 boolean features a0, a1, · · · , a9. The
target concept c is defined by c = (a0 ∧ a1 ∧ a5) ∨ (a0 ∧ a1 ∧ a6 ∧ a8) ∨ (a0 ∧
a1 ∧ a5 ∧ a8) ∨ (a0 ∧ a1 ∧ a5 ∧ a8) ∨ (a5 ∧ a6 ∧ a8) ∨ (a0 ∧ a1).

2) synData2. There are 100 instances, 11 boolean features denoted as a0, a1, · · · ,
a9 and a redundant feature r that is the copy of a5. The target concept c is
defined by c = a5 ∨ (a1 ∧ a6 ∧ a8).

3) MONK1. There are 432 instances and 6 features a1, a2, · · · , a6. The target
concept c is defined by c = (a1 = a2) ∨ (a5 = 1).

4) MONK2. There are 432 instances and 6 features a1, a2, · · · , a6. The target
concept c is defined by exactly two of {a1 = 1, a2 = 1, · · · , a6 = 1}.

5) MONK3. There are 432 instances and 6 features a1, a2, · · · , a6. The target
concept c is defined by c = (a5 = 3 ∧ a4 = 1) ∨ (a5 �= 4 ∧ a2 �= 3). 5% class
noise was added to the training set.

For each data set, the features appearing in the definition of the target concept
are all relevant, while the absent features are either redundant or irrelevant. The
conjunctive terms in the target concept’s definition imply feature interactions.

Real World Data Sets. 14 extensively used real world data sets, which are
available from from UC Irvine Machine Learning Repository [1], are employed.
Table 1 summarizes the 14 data sets in terms of number of features (denoted as
F), the number of instances (denoted as I), the number of target concept values
(denoted as T). The sizes of data sets vary from 57 to 20,000 instances, and
the total number of original features is up to 240. Note that for the data sets
containing continuous-value features, if needed, we apply the MDL discretization
method (available in WEKA).

Table 1. Summary of the 14 real world data sets

Data set F I T Data set F I T

heart-c 11 303 5 autos 22 205 7

cleve 12 303 2 mushroom 22 8124 2

austra 14 690 2 colic-orig 23 368 2

labor 14 57 2 flags 26 194 6

letter 15 20000 26 molecular 57 106 2

primary-tumor 17 339 22 splice 60 3190 3

lymph 18 148 4 mfeat-pixel 240 2000 10

5.2 Experimental Setup

1) Four representative feature selection algorithms were selected to be compared
with FEAST.

These algorithms include two well-known and frequently-used CFS [9] and
FCBF [27]. They can effectively identify irrelevant features while taking consid-
eration of the redundant features.

1 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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To further study the performance of FEAST in terms of handling feature
interaction, an algorithm INTERACT [29], which is specifically proposed to
address the feature interaction, is selected as one benchmark algorithm.

Moreover, since our proposed FEAST is an association-rule-based feature se-
lection algorithm, a latest association-rule-based feature selection algorithm FS-
BAR [26] is selected as well.

The parameters of these algorithms (including FEAST) were determined by
the cross-validation strategy.

2) Classification accuracy over selected feature subset is extensively used as a
measure to evaluate the performance of the feature selection algorithm in feature
selection literature. This is due to the fact that the relevant features of real world
data sets are usually not known in advance, and we can not directly evaluate
how good a feature selection algorithm is by the features selected.

However, different classification algorithms have different biases, and a fea-
ture subset selection algorithm may be more suitable for some classification
algorithms than others. With this in mind, three different types of well-known
classification algorithms including probability-based Naive Bayes [14], decision
tree-based C4.5 [22] and rule-based PART [6] were selected.

In order to make best use of the data set and get stable results, the classifica-
tion accuracies before and after feature selection were obtained by a 5×10-fold
cross-validation procedure. That is, for a given data set, each feature selection
algorithm and each classifier were repeatedly performed on the data set with
10-fold cross-validation by five times.

3) All the experiments were conducted in the WEKA environment [25].

5.3 Results on the Synthetic Data Sets

Table 2 shows the feature subsets selected by the five feature subset selection
algorithms on the five synthetic data sets. In this table, ‘ ’ indicates a missing
relevant feature, and the letter in bold type indicates an irrelevant or a redundant
feature selected by mistake. The last row “Relevant features” reports the actual
relevant features of each data set.

Table 2. Features selected by the five algorithms on the synthetic data sets

FSS algorithm synData1 synData2 MONK1 MONK2 MONK3

CFS a0, , a5, a6, a8 a0, a1, a5, ,a7, , r , , a5 , , , , a5, a2, ,

FCBF a0, , a5, a6, a8 a0, a1, a5, ,a7, , , a5 a1, a2, a3, a4, a5, a6 a2, a4, a5

FSBAR a0, a1,a3, a5, a6, a8 a0, a1, a5, a6, a8 , , a5 a1, , , , , a2, , a5

INTERACT a0, a1, a5, a6, a8 a1,a3,a4, a5, a6,a7, a1, a2, a5 a1, a2, a3, a4, a5, a6 a2, a4, a5

FEAST a0, a1, a5, a6, a8 a1, a5, a6, a8 a1, a2, a5 a1, a2, a3, a4, a5, a6 a2, a4, a5

Relevant features a0, a1, a5, a6, a8 a1, a5, a6, a8 a1, a2, a5 a1, a2, a3, a4, a5, a6 a2, a4, a5

From Table 2, we observe that: (i) Only algorithm FEAST removes all ir-
relevant features while reserving all relevant features for all the five data sets.
The other algorithms identify the irrelevant on some but not all data sets. (ii)
Except algorithm CFS, all other four algorithms can identify and remove the
redundant feature r in the data set “synData2”. (iii) Only algorithm FEAST
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reserves all the interactive features on all the five data sets. INTERACT works
well on all the data sets except for “synData2”. The other algorithms identify
all the interactive features on some but not all the data sets.

5.4 Results on the Real World Data Sets

In this section, we present the comparison results of FEAST with other fea-
ture subset selection algorithms in terms of (i) the classification accuracies after
feature subset selection; (ii) the proportion of selected features; and (iii) the
runtime.

Here, the proportion of selected features is the ratio of the number of features
selected by a feature selection algorithm to the original number of features of a
data set.

What’s more, we also provide the sensitivity analysis results of the support
and confidence thresholds on the proposed algorithm FEAST.

Classification Accuracy Comparison. Table 3 records the classification ac-
curacies of Naive Bayes, C4.5 and PART with the five feature subset selection
algorithms, and the Win/Draw/Loss records, which are the numbers of data sets
where the classification accuracy of the given classifier obtained with FEAST is
greater than/equal to/lower than that with the compared feature selection al-
gorithm.

Table 3. Accuracies of Naive Bayes, C4.5 and PART with different feature selection
algorithms

Data Set
Naive Bayes C4.5 PART

FEAST CFS FCBF INTERACT FSBAR ORG FEAST CFS FCBF INTERACT FSBAR ORG FEAST CFS FCBF INTERACT FSBAR ORG

heart-c 83.46 84.43 84.43 82.90 82.18 84.44 79.80 79.80 79.80 78.88 80.86 78.79 82.13 81.12 81.12 79.80 82.84 78.85

cleve 84.22 84.86 84.86 83.50 82.51 83.85 79.60 79.20 79.20 78.75 78.22 77.90 83.19 80.58 80.58 81.72 78.88 79.57

austra 87.68 85.51 87.10 87.48 86.52 85.22 86.46 85.51 86.52 86.46 87.10 86.70 86.38 85.51 85.07 86.00 86.23 85.80

labor 90.00 89.33 89.33 90.18 89.47 91.67 84.33 80.67 80.67 91.58 85.96 73.68 88.00 80.67 84.00 85.96 85.96 80.67

letter 74.48 73.03 74.48 74.55 NA 74.04 78.98 79.17 79.14 79.08 NA 78.82 81.45 81.41 80.90 81.05 NA 80.69

primary-tumor 47.48 45.70 46.00 49.68 43.95 50.13 43.65 41.56 42.47 41.12 42.18 41.00 43.35 45.39 40.12 40.53 43.07 40.70

lymph 83.62 81.67 80.24 83.24 83.78 83.67 77.62 75.71 70.81 73.51 74.32 78.33 81.71 77.14 78.90 76.08 75.00 79.67

autos 77.95 77.40 69.21 78.15 59.51 71.64 77.98 75.55 67.31 76.98 73.17 83.81 78.95 79.45 67.29 75.90 74.63 78.00

mushroom 95.59 98.52 98.52 98.92 98.92 95.83 100.00 98.52 99.02 100.00 100.00 100.00 100.00 98.52 99.02 100.00 100.00 100.00

colic-orig 83.95 81.52 84.25 70.22 83.15 70.40 85.84 81.52 81.52 66.30 85.33 85.03 85.84 81.52 81.24 66.30 84.24 64.11

flags 79.89 73.13 75.18 70.82 70.1 73.21 71.74 72.24 71.63 70.72 69.59 71.18 70.16 70.58 72.1 66.19 67.53 64.92

molecular 97.18 93.27 95.27 94.53 92.45 90.27 80.91 83.82 82.82 81.70 83.96 80.82 85.82 86.73 84.82 86.98 86.79 82.82

splice 96.24 92.48 96.14 96.13 91.85 95.36 94.54 92.70 94.48 94.31 92.95 94.36 92.76 92.07 93.39 92.93 92.57 92.51

mfeat-pixel 90.95 93.00 91.15 90.45 NA 93.30 77.40 79.60 77.80 80.20 NA 78.65 83.00 84.15 80.95 82.25 NA 82.00

Average 83.76 82.42 82.58 82.20 80.37 81.64 79.92 78.97 78.08 78.54 79.47 79.22 81.62 80.35 79.25 78.69 79.81 77.88

W/D/L - 10/0/4 8/1/5 9/0/5 10/0/2 8/0/6 - 9/1/4 9/1/4 8/2/4 7/1/4 9/1/4 - 9/0/5 12/0/2 11/0/2 9/1/2 13/1/0

∗ In this table, “ORG” denotes original data sets, “W/D/L” represents “Win/Draw/Loss”, and “NA” means the algorithm is not available.

From Table 3 we observe that:

1) For Naive Bayes, (i) compared to the original data set, the average accuracy
of Naive Bayes is improved by all the algorithms except FSBAR; (ii) FEAST
outperforms other algorithms in terms of average accuracy, it improves the
average accuracy by 2.29% averagely; (iii) FEAST outperforms other algo-
rithms in terms of Win/Draw/Loss record, it wins other algorithms for 9.25
out of 14 data sets on average, while losses only 4 out of 14 on average.

2) For C4.5, (i) compared to the original data set, the average accuracy of C4.5 is
improved only by the FEAST and FSBAR, but FSBAR were not available on
two data sets due to its high time complexity; (ii) FEAST outperforms other
algorithms in terms of average accuracy, it improves the average accuracy
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by 1.47% averagely; (iii) FEAST outperforms other algorithms in terms of
Win/Draw/Loss record, it wins other algorithms for 8.25 out of 14 data sets
on average, while losses only 4 out of 14 on average.

3) For PART, (i) compared to the original data set, the average accuracy of
PART is improved by all algorithms; (ii) FEAST outperforms other algo-
rithms in terms of average accuracy, it improves the average accuracy by
2.64% averagely; (iii) FEAST outperforms other algorithms in terms of Win/
Draw/Loss record, it wins other algorithms for 10.25 out of 14 data sets on
average, while losses only 2.75 out of 14 on average.

Table 4. Proportion (%) of selected
features for different feature selection
algorithms

Data set FEAST CFS FCBF INTERACT FSBAR

heart-c 81.82 54.55 54.55 90.91 90.91
cleve 83.33 50.00 50.00 83.33 83.33
austra 50.00 50.00 50.00 92.86 64.29
labor 57.14 50.00 42.86 50.00 50.00
letter 80.00 73.33 73.33 80.00 NA
primary-tumor 47.06 70.59 64.71 94.12 52.94
lymph 44.44 55.56 44.44 55.56 55.56
autos 27.27 22.73 18.18 27.27 54.55
mushroom 36.36 18.18 18.18 27.27 36.36
colic-orig 26.09 8.70 8.70 21.74 30.43
flags 26.92 11.54 15.38 38.46 57.69
molecular 22.81 10.53 10.53 10.53 12.28
splice 31.67 10.00 36.67 38.33 11.67
mfeat-pixel 48.75 42.92 11.25 14.58 NA

Average 47.40 37.76 35.63 51.78 50.00

Table 5. Runtime (ms) for different fea-
ture selection algorithms

Data set FEAST CFS FCBF INTERACT FSBAR

heart-c 20 22 20 144 215
cleve 20 76 72 63 412
austra 45 80 83 74 1432
labor 16 62 60 62 18
letter 1190 678 558 5333 NA
primary-tumor 624 74 81 64 228
lymph 51 74 69 89 6786
autos 2216 78 72 82 29206
mushroom 223 238 215 405 242803
colic-orig 31 74 81 88 582
flags 319 22 42 58 2649
molecular 79 82 77 66 631
splice 1890 126 42 889 57435
mfeat-pixel 4250 7287 1696 4514 NA

Average 783.86 640.93 226.29 852.21 28533.08

Proportion of Selected Features Comparison. The reduction on the num-
ber of features is an important metric used to evaluate feature subset selection
algorithms. This can be measured through the proportion of features selected
by the feature selection algorithms.

Table 4 presents the proportion of features selected by each of the five feature
selection algorithms over the 14 data sets. From this table we observe that: i) All
the feature subset selection algorithms could significantly reduce the number of
features on average. FCBF ranks 1 with proportion of selected features 35.63%,
and INTERACT ranks last with 51.78%. ii) FEAST outperforms algorithms
INTERACT and FSBAR in reducing the number of features.

Runtime Comparison. Table 5 records the runtime of each feature subset
selection algorithm upon the 14 data sets. From it we observe that (i) the average
runtime of different algorithms is varying greatly, FCBF ranks 1 with 226.29 ms,
and FSBAR ranks last with 28533.08 ms. (ii) FEAST is faster than INTERACT
and FSBAR. Compared with the associative-based algorithm FSBAR, FEAST is
much more efficient since it generates association rules by FP-growth algorithm
which is more efficient than the Apriori algorithm used in FSBAR.

To summarize, the proposed algorithm FEAST outperformed other feature
subset selection algorithms on the 14 UCI data sets in terms of average classifi-
cation accuracy and Win/Draw/Loss record, and the runtime and the reduction
rate are acceptable.



Selecting Feature Subset via Constraint Association Rules 317

Sensitivity Analysis of the Support and Confidence Thresholds. Sup-
port threshold and confidence threshold are two important parameters in the pro-
posed algorithm FEAST. To study how they affect the performance of FEAST,
in this part, we give the sensitivity analysis of these two parameters on FEAST
in terms of classification accuracy, proportion of selected features and runtime,
respectively.

Classification Accuracy. Fig. 1 shows sensitivity analysis results of the support
and confidence thresholds on the classification accuracies of the three classifiers
with respect to our proposed algorithm FEAST.
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Fig. 1. Classification accuracies of the three classifiers with FEAST vs. different
thresholds

From Fig. 1(a) and 1(b) we observe that (i) for a given data set, the clas-
sification accuracy varying trends of the three classifiers w.r.t FEAST are very
similar for either the given support thresholds or the given confidence thresholds.
This reveals that the FEAST has no bias for a special classifier, i.e. the results
obtained by FEAST are generally suitable. (ii) The classification accuracy varies
with both the support and confidence thresholds, and the thresholds correspond-
ing to the highest classification accuracy are different for different data sets. For
example, in Fig. 1(a), the support threshold corresponding to the highest classi-
fication accuracy is about 10% for “austra”, while less than 5% for “colic-orig”.
In Fig. 1(b), the confidence threshold corresponding to the highest classification
accuracy is greater than 95% for “autos”, while about 70% for “splice”. This
implies that both support and confidence thresholds affect the feature subset
selected by FEAST, and the best thresholds are different for different data sets.

Proportion of Selected Features. Fig. 2 shows sensitivity analysis results of the
support and confidence thresholds on the proportion of features selected by the
proposed algorithm FEAST.

From Fig. 2(a) we observe that for all the 14 data sets, with the increment
of the support threshold, the proportion of the selected features decreases. The
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Fig. 2. Proportion of features selected by FEAST vs. different thresholds

reason is that with the increment of the support threshold, the number of the
frequent itemsets decreases. At the same time, FEAST chooses feature subset
from itemsets that are at least frequent, thus the number of the selected features
deceases, and the proportion of the selected features decreases as well. We also
observe that although the proportion of the selected features deceases with the
increment of the support threshold, for the different data sets, the decrement
extents are varying. Therefore, we should choose different support thresholds for
the different data sets.

From Fig. 2(b) we observe that with the increment of the confidence thresh-
old, the proportion of selected features either increases or decreases. The rea-
son is that for a given confidence threshold, there are many support thresholds
with varying values. Further, for the different confidence thresholds, the varying
ranges of the support thresholds are different. This means the corresponding
numbers of the frequent itemsets and further the proportions of selected fea-
tures are different as well. This reveals that both the support and confidence
thresholds are affected by data set characteristics and we should select different
thresholds for different data sets.

Runtime Fig. 3 shows the sensitivity analysis results of the support and confi-
dence thresholds on the runtime of our proposed algorithm FEAST.

From Fig. 3(a) we observe that for all the data sets, the runtime of FEAST
decreases when the support threshold increases. This is because with the incre-
ment of the support threshold, the number of the frequent itemsets is decreased.
So the time spending on mining the frequent itemsets is decreased as well. At
the same time, FEAST chooses the feature subset from the itemsets that are at
least frequent, thus the time consumed in the feature subset identification is also
deceased.

From Fig. 3(b) we observe that the runtime of FEAST can increase, decrease
and fluctuate when the confidence threshold increases. The reason is that for
a given confidence threshold, there are many support thresholds with varying
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Fig. 3. Runtime of FEAST vs. different thresholds

values. Further, for the different confidence thresholds, the varying ranges of the
support thresholds are different. This means that the corresponding numbers of
the frequent itemsets, and further the numbers of selected features are different
as well. Thus, the time used to mine frequent itemsets and to identify feature
subset is varying.

To summarize, the performance of the proposed algorithm FEAST is directly
affected by the selection of these two input-parameters: support and confidence
thresholds. However, the appropriate thresholds for different data sets would be
different. That is, there are no specific support and confidence thresholds which
are the best choice for all the data sets. We should pick up different thresholds
for different data sets.

6 Conclusion

In this paper, we have presented a novel constraint association rule based feature
selection algorithm FEAST. We have also compared FEAST with the other four
representative feature selection algorithms, including two well-known algorithms
CFS and FCBF, the algorithm INTERACT aiming at solving feature interaction,
and an associative-rule-based algorithm FSBAR, upon both the five synthetic
data sets and the 14 UCI data sets. The results on the synthetic data sets
show that FEAST can identify relevant features and remove redundant ones
while reserving feature interaction. The results on the real world data sets show
that our proposed algorithm FEAST can reduce the number of features and
outperforms all the other four feature selection algorithms in terms of the average
accuracy improvement and the Win/Draw/Loss records of all the three different
types of classifiers Naive Bayes, C4.5 and PART.

We have also conducted a sensitivity analysis of support and confidence thresh-
olds to FEAST. The results show that the support and confidence thresholds play
a fundamental role in the proposed algorithm. Moreover, for different data sets,
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the appropriate thresholds could be different. Therefore, for further research, we
plan to explore how to recommend the support and confidence thresholds for
FEAST according to data set characteristics.
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Frequent Pattern Visualizer
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Abstract. Frequent pattern mining algorithms aim to find sets of fre-
quently co-occurring items. Visual representation of the mining results
is more comprehensible to users than the traditional long textual list
of frequent patterns. Existing visualizers mostly show frequent patterns
as graphs in a two-dimensional space with (x, y)-coordinates. Nowadays,
in a collaborative environment, it is not uncommon for users to have
face-to-face meetings when they show the graphs visualizing frequent
patterns. In these situations, the viewing orientation of the graphs plays
an important role as different orientations positively or negatively impact
the graph legibility. A legible right-side-up graph to one user may be-
come an illegible upside-down graph towards another user. In this paper,
we propose a visualizer that uses a radial layout—which is orientation
free—to show frequent patterns. Having such a visualizer is beneficial in
the collaborative environment.

Keywords: Visual data mining, association analysis, frequent itemsets,
human-machine interaction, pattern discovery.

1 Introduction

Frequent pattern mining [1] finds implicit, previously unknown, and potentially
useful information in the form of sets of frequently co-occurring items or events
(e.g., merchandises in a store, courses offered at a university). It plays an essential
role in many knowledge discovery and data mining tasks. A common characteris-
tic of these tasks is the identification of the frequencies of items, or sets of items,
from datasets. For instance, a store manager may want to identify merchandise
items that are frequently purchased together so as to place the items closer to
each other (to reduce the distance required to travel by the shopper) or further
apart (to encourage more purchase of items placed in between those frequently
purchased ones). Similarly, a university administrator may want to know the
collection of popular courses taken together by students in a semester (for lec-
ture scheduling and exam scheduling). A book seller may want to recommend
bundles of popular books to readers.
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(a) Right-side up

(b) RHS (90◦ rot.) (c) Opposite side (180◦ rot.) (d) LHS (270◦ rot.)

Fig. 1. Viewing frequent patterns with FIsViz [16] at different orientations

Over the past two decades, data mining researchers have designed and devel-
oped numerous frequent pattern mining algorithms. However, many of these al-
gorithms have been focused on either functionality or efficiency. These algorithms
usually return the mining results in textual form (e.g., a very long list of fre-
quent patterns). Consequently, users may not easily comprehend the knowledge
and useful information from the textual list. Conversely, visual representation of
these patterns would be more comprehensible to users. However, not too many
visualization tools have been developed to support frequent pattern mining. A
common characteristic among the visualizers that were designed to support fre-
quent pattern mining (e.g., FIsViz [16], PowerSetViewer [19]) is that they display
the mined frequent patterns in a traditional two-dimensional rectangular space.
For instance, FIsViz lists domain items on the x-axis, shows frequency values
on the y-axis, and visualizes frequent patterns as polylines drawn on this two-
dimensional rectangular space with (x, y)-coordinates. As such, the orientation
of the graph displaying the patterns plays an important role in legibility of the
graph. Consider a situation in which two users are facing each other and are
discussing the frequent patterns shown on the graph (e.g., a marketing analyst
was asked by a store manager, who sits on the opposite side of a table, to dis-
cuss the sets of merchandise items that are frequently purchased by shoppers).
When showing frequent patterns in the graph as supporting evidence, it may be
right-side up to the manager (e.g., as shown in Fig. 1(a)) but upside down to
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the analyst (e.g., as shown in Fig. 1(c), from which important information such
as frequency is not easy to read) and vice versa.

To summarize, the users who face the unfavourable orientation may have dif-
ficulty in comprehending the frequent patterns shown on the graph. To improve
the situations, we propose in this paper a visualizer—called RadialViz—that
uses a radial layout to visualize frequent patterns. The key contribution of this
paper is our radial visualizer that shows the discovered frequent patterns in an
orientation-free environment.

This paper is organized as follows. The next section provides background and
discusses related work. We propose our visualizer in Sect. 3. Evaluation results
are presented in Sect. 4. Finally, we present the conclusions in Sect. 5.

2 Background and Related Work

Development of effective visualization systems for data mining has been the
subject of many studies. This line of research can be sub-classified into two gen-
eral categories: (i) systems for visualizing data (e.g., VisDB [12], independence
diagrams [4], Polaris [21]) and (ii) systems for visualizing the mining results
(e.g., systems that visualize decision trees [3], association rules [5,11], and clus-
ters [10,14]).

Recently, some tools and techniques have been designed to visualize patterns
involving sets of items or related co-occurring entities [6,15,17,18]. For example,
Wong et al. [23] designed visualization tools for visualizing topic association rules
and sequential patterns appearing in documents. Their visual tools are similar
to parallel coordinates, in which keywords appear on the parallel coordinate axes
in the y-direction and the sequential index (temporal or others) on the x-axis.

Similarly, Yang [24,25] designed a system mainly to visualize association rules
(but can also be used to visualize frequent patterns) in a two-dimensional space
consisting of parallel vertical axes. In his system, all domain itemset are sorted
according to their frequencies and evenly distributed along each vertical axis.
A frequent pattern consisting of k items (i.e., a k-itemset) is then represented by
a curve that extends from one vertical axis to another connecting k such axes.
As the frequency of such a pattern is indicated by the thickness of the curve, it
is not easy to compare the frequencies of patterns.

PowerSetViewer (PSV) [19] provides users with guaranteed visibility of fre-
quent patterns in the sense that the pixel representing a frequent pattern is
guaranteed to be visible by highlighting such a pixel. However, multiple frequent
patterns may be represented by the same pixel, and PSV does not show the re-
lationship between related frequent patterns (e.g., it is not easy for users to spot
the prefix/extension relationship among patterns {a}, {a, b} and {a, b, c}). Note
that {a} and {a, b} are prefixes of {a, b, c}. Equivalently, {a, b, c} is an extension
of {a, b}, which is then an extension of {a}. For any k-itemset Z in a domain
of m items, there are k− 1 non-empty prefixes (i.e., not counting the empty set
and Z itself) of Z and at most 2m−k − 1 extensions of Z.

FIsViz [16] was proposed in PAKDD 2008 to visualize frequent k-itemsets as
polylines connecting k nodes in a two-dimensional space with (x, y)-coordinates,
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in which domain items are listed on the x-axis and frequency values are indicated
by the y-axis. The x-locations of all nodes in the polyline indicates the domain
items contained in a frequent pattern Z, and the y-location of the rightmost
node of a polyline for Z indicates the frequency of Z. As such, prefix/extension
relationships can be observed by traversing along the polylines.

Nowadays, in a collaborative environment, it is not uncommon for collabora-
tors to have face-and-face meetings. Partially due to the emerging of tabletop
displays as an effective platform for collaboration, information is shared on the
tabletop surface in the meetings. As such, orientation or view perspective cannot
be neglected. Unlike a single-user environment (where orientation may not be an
issue), object orientation becomes critical in a multi-user environment because
not all users share a common perspective of the displayed information. As in-
formation is viewed from different positions, it may be perceived differently. A
recent study [2] showed that user perception (e.g., legibility or readability) of a
chart decreases when the chart is not oriented right-side up. Let us use FIsViz
as an example. When frequent patterns showed by FIsViz are rotated 90◦ or
270◦ clockwise (as shown in Figs. 1(b) and 1(d)) corresponding to the guests
who sit on the right-hand-side (RHS) or the left-hand-side (LHS) of the host,
guests may encounter difficulties in quickly reading the information. It may take
much longer when the charts are put upside down (as shown in Fig. 1(c)). Hence,
although FIsViz visualizes frequent patterns, it is not orientation free.

The aforementioned study [2] suggested that the legibility or readability can
be improved by using radial charts. The sunburst technique [20,22] is a space-
filling visualization that uses a radial layout (i.e., a ring chart, a multilevel pie,
or concentric circles) [7] to offer an explicit portrayal of a hierarchical structure.
Specifically, items in a hierarchy are laid out radially in sunburst. The root/top
of the hierarchy is put at the center, and deeper/leaf levels are put farther away
from the center (i.e., with the hierarchy moving outward from the center). Each
hierarchical level forms a “block arc” or pie segment. An inner block arc (or a pie
segment of an inner ring) bears a hierarchical relationship to those outer block
arcs (or pie segments of an outer ring) which lie within the angular sweep of the
parent arc. The arc length (and thus the central angle and area) of a block arc is
usually proportional to the quantitative values associated with that arc. Fig. 2
shows how sunburst visualizes a hierarchical structure of customers. From this
figure, we observe the following properties of hierarchical data represented by
sunburst:

P1. All children of a node in the hierarchy are disjoint.
P2. The quantitative value associated with a parent node is higher than or

equal to the sum of quantitative values associated with all its child nodes.
P3. Given P1 and P2, the quantitative value associated with a parent node is

higher than or equal to the quantitative value associated with each of its
child nodes.

Data in the hierarchical structure of customers in Fig. 2 possess the above three
properties. For instance, a customer is either a member or a non-member. A
member is either a gold, silver, or bronze member. Here, the quantitative value is
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Fig. 2. An example of sunburst [20,22]

the count. The total customer count is the sum of the total numbers of members
and non-members. The total membership count is the sum of the membership
counts of all gold, silver, and bronze members.

FP-Viz [13] uses a radial layout for visualizing tree-based frequent pattern
mining. Specifically, FP-Viz visualizes the FP-tree [9] used in the mining process.
As (i) all children of a node in an FP-tree are disjoint and (ii) the support value
of a parent node is higher than or equal to the sum of all support values of its
child nodes, then (iii) the support value of a parent node is higher than or equal
to that of each of its child nodes. In other words, when FP-VIz visualizes the
database transactions in the radial layout, the database transactions captured in
the FP-tree satisfies Properties P1–P3 above. However, FP-Viz does not directly
visualize frequent patterns, which need to be mined from the FP-tree. Moreover,
a pattern Z may be embedded in multiple paths of an FP-tree (e.g., {b, e} may
be contained in paths representing transactions ti = {a, b, c, d, e, f} and tj =
{b, c, e, g}), and thus appears in different block arcs in FP-Viz. Consequently, it
may not be easy to directly read the frequency of Z.

3 RadialViz: Our Proposed Visualizer

Recall from the previous section that FIsViz visualizes frequent patterns as poly-
lines in a two-dimensional rectangular space, but FIsViz is not orientation free.
In contrast, FP-Viz is orientation-free with a radial layout, but it shows the con-
tents of an FP-tree (i.e., database transactions to be mined) instead of directly
showing frequent patterns (i.e., the results mined from the FP-tree). In this sec-
tion, we propose a visualizer—called RadialViz—to use a radial layout (which
is orientation free) to directly show frequent patterns and their relationships
(e.g., prefix/extension relationships).

Visualizing the hierarchical structure of frequent patterns (and their pre-
fix/extension relationships) in a radial layout is challenging because frquent
patterns in the prefix/extension hierarchy does not satisfy Properties P1 and
P2. We observe the following with frequency being the quantitative value.

1−. Not all extensions of a frequent pattern Z are disjoint. In fact, extensions
of Z are usually overlapping (e.g., as two extensions of {a, b}, both {a, b, c}
and {a, b, d} are overlapping).
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(a) RadialViz (b) RadialViz with radial grid

Fig. 3. RadialViz shows the same set of frequent patterns as in Fig. 1

2−. The frequency of a frequent pattern Z is not necessarily higher than or
equal to the sum of frequencies of all extensions of Z.

3+. Fortunately, the frequency of a frequent pattern Z is still higher than or
equal to the frequency of each extension of Z.

We designRadialViz for visualizing frequent patterns based on these observations.

3.1 Basic Representation of Frequent Patterns in RadialViz

Recall that both sunburst and FP-Viz divide the central angle according to
quantitative values associated with the nodes in a hierarchy. This works well for
the hierarchy that satisfies Properties P1 and P2 (e.g., hierarchy in an FP-tree),
in which (i) child nodes of a parent node are disjoint and (ii) the quantitative
values associated with parent nodes are bounded below by the sum of quantita-
tive values associated with their child nodes (e.g., the support value of a parent
node in a tree path representing a set of similar transactions is at least the sum
of support values of all its child nodes in an FP-tree). The central angle for each
parent node is then subdivided according to the quantitative values associated
with its child nodes. However, these two properties do not hold for visualiza-
tion of frequent patterns as noted in Observations 1− and 2−. For example, if
frequency of {a, b} is 10, then individual frequency of its extension {a, b, c} or
{a, b, d} is at most 10. However, their sum can range from 0 to 20. If the sum were
above 10, then how can we represent {a, b, c} and {a, b, d} radiating from the
sector or block arc representing {a, b}? A naive solution is to overlap the areas
for these two extensions. This works for this particular example. However, what
if there are multiple extensions of {a, b} (e.g., for a domain of 100 items, there
are potentially 298−1 ≈ 3×1029 extensions of {a, b} including potentially 98 im-
mediate extensions of {a, b}). It is unclear how to overlap these 98 extensions
so that the outcome is still comprehensible to users. As such, we cannot divide
the central angle according to the frequency of a frequent pattern. This leads to
two questions: (i) How to represent the frequency of a pattern, which plays an
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important role in frequent pattern mining? (ii) How to divide the central angle
of the radial layout?

Representation of Frequency of a Frequent Pattern. To answer the first
question, our RadialViz uses radius (instead of the central angle, sector area, or
arc length) to represent the frequency information. By doing so, users can easily
infer the frequency distribution of all frequent patterns. For example, one can
easily spot from Fig. 3 the most popular course (with the high frequency) as it
is indicated by the sector with the longest radius (on the upper left portion of
the graph). Moreover, patterns with the same frequency have the same radius.

Representation of Cardinality of a Frequent Pattern. Representing fre-
quency of patterns by radius may lead to the following question. In both sunburst
and FP-Viz, each level of the hierarchy forms a ring or block arc. Here, when
visualizing frequent patterns in RadialViz, each level of the hierarchy represents
the cardinality k of k-itemsets. Given that RadialViz represents frequencies of
patterns by radius, patterns of the same cardinality may not necessarily form
a ring or block arc with the same radius from the center. The block arc for a
k-itemset (e.g., with frequency=55) may appear much further away from the
center than that for another k-itemset (e.g., with frequency=5). Since the block
arcs for (k + 1)-itemset extensions of a k-itemset Z is shown to be radiating
from the block arc for Z, users can count the number of levels of block arcs to
determine the cardinality of Z.

For user convenience, RadialViz uses colour to represent the cardinality of
frequent patterns. By doing so, users can directly get the cardinality without
counting multiple block arcs, each representing a cardinality level in the hierar-
chy. See Fig. 3, in which the colour bar at the bottom indicates the cardinality
(e.g., from red indicating the minimum cardinality of 1 to light blue indicating
the cardinality of 5+ for the illustrative student database).

Representation of a Frequent Pattern. Recall that RadialViz uses colour
to represent the cardinality of frequent patterns and uses radius to represent
the frequency. Based on Observation 3+, we know that the frequency of any
extension of a frequent k-itemset Z is bounded above by the frequency of Z.
This implies that the radii of block arcs for extensions of Z is bounded above by
the radius of block arc for Z. Hence, we do not have to put the block arcs for
(k+1)-itemset extensions of Z radiating from and outside the block arc for Z (as
shown in Fig. 4(a)) so as to avoid having a radial graph spanning too far from
the center. Instead, RadialViz stacks the block arcs or sectors for (k+1)-itemset
extensions of Z on top of the block arc or sector for Z. By doing so, RadialViz
represents each frequent pattern by a sector radiating from the center. There
are several advantages of this representation of frequent patterns by RadialViz.
First, the span of the radial graph is bounded above by the maximum radius
of all singletons (i.e., 1-itemsets). See Fig. 4(b). Second, the prefix/extension
relationship can then be represented through containment (i.e., sectors for the
extensions of Z are contained in the sector for Z). Third, it is much easier to
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(a) Radiating out level-by-level (b) Stacking up levels (as in RadialViz)

Fig. 4. Representation of frequent patterns

spot the change of frequency between Z and its extensions because sectors (for
Z and its extensions) are all radiating from the same center.

Next, let us answer the earlier question on how to divide the central angle of
the radial layout. A näıve approach is to divide the central 360◦ angle among all
singletons, and then recursively subdivide the angle associated for each k-itemset
among their immediate (k+1)-itemset extensions. However, a potential problem
associated with this näıve approach is that some sectors may be very dense (due to
the large number of frequent pattern extensions) while others may be very sparse
(due to the small number of frequent pattern extensions). Hence, our RadialViz
uses a different approach. Instead, RadialViz divides the central 360◦ angle into
p sectors, and each sector represents one of the p mined frequent patterns.

3.2 Other Features and Observations on RadialViz

In the previous section, we introduced some essential features of our RadialViz.
In this section, let us present some optional features of RadialViz.

Frequency of Frequent Patterns. Recall that RadialViz uses radius to repre-
sent frequency. Sectors with long radii represent frequent patterns with high fre-
quencies, while sectors with short radii represent less frequent patterns. In many
real-life applications, users need to compare frequencies of different patterns. Ra-
dialViz provides users with the radial gridline so that users can easily read off the
frequency of different patterns and compare among them. For example, each ring
formed by the radial gridline indicates a frequency increment of 10 in Fig. 3(b).
So, users can easily learn that the enrolments of the two most popular courses are
55 and 26. There are also two courses with the same enrolment of 21.

Moreover, RadialViz also provides users details-on-demand by allowing them
to hover the mouse over a sector to get a small box showing the frequency of
the corresponding frequent pattern represented by the sector. For example, the
longest red sector on the upper left indicates that the corresponding course was
taken by most students. When users hover the mouse over such a long red sector,
the small textbox appears and explicitly shows “55” as the exact frequency for
that course.
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(a) Only frequent 1-itemsets (b) Frequent 1- and 2-itemsets

Fig. 5. Our proposed RadialViz showing frequent patterns of the first k lev-
els/cardinalty (where k = (a) 1 and (b) 2) in Fig. 3

Ordering of Items in Patterns. Recall that FIsViz arranges domain items
in descending frequency order. Such an ordering would be helpful if users just
want to find out items with the highest or lowest frequencies. However, in many
other real-life applications, it is more common for users to look up the frequency
of some particular patterns of interest. In those applications, having the domain
items arranged in descending frequency order means that users need to perform
a linear scan for the interesting patterns. Hence, to facilitate easy lookup of fre-
quent patterns, RadialViz arranges items clockwise in some user-specified order
(e.g., alphabetical order). With such an arrangement, users can easily locate
the patterns of interest. For instance, Figs. 3 and 5 show second- to fourth-year
courses (arranged by course number clockwise from the 12 o’clock position).
Users can infer some knowledge like “the most popular course is a fourth-year
course”. Moreover, knowing that the most popular course is COMP 4380 (with
longest radius), if users want to find COMP 4350, then they only need to search
in a counterclockwise direction for a sector very close to COMP 4380. Further-
more, with this item arrangement, users can still easily spot the patterns with
the highest or lowest frequencies. The reason is that, as RadialViz uses radius
to show frequency, patterns with the highest and lowest frequencies would have
the longest and shortest radii, respectively.

Patterns of Some Specific Cardinality. Recall that RadialViz uses colour
to represent the cardinality k of frequent k-itemsets. Frequent patterns of the
same cardinality are represented by the same colour. Moreover, in many real-
life applications, it is uncommon to find frequent patterns of certain cardinality.
Hence, RadialViz allows users to specify which cardinality levels to be displayed.
For instance, Fig. 5(a) shows only frequent patterns of cardinality 1 (i.e., 1-
itemsets), whereas Fig. 5(b) shows only frequent patterns of both cardinalities
1 and 2 (i.e., 1- and 2-itemsets).

Zoom-In and Zoom-Out. When RadialViz shows all frequent patterns (as in
Fig. 3), it gives users an overview about the distribution of all frequent patterns.
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(a) Zooms in to the sector of interest (b) Zooms in to drilled-in sector of interest

Fig. 6. Our proposed RadialViz (a) zooms in and (b) drills in to the sector of interest
in Fig. 3

As some sectors are small, RadialViz provides users with interactive features to
zoom in and zoom out so that users can obtain information of the granularity
level of their interest. See Fig. 6(a) for a zoom-in view.

Drill-In. Moreover, RadialViz also provides users with interactive features to
drill in some specific area of interest. The key difference between zoom-in and
drill-in is that the former just magnifies the sector of interest (i.e., same layout)
whereas the latter redraws the sector of interest. To get a close-up of the drilled-
in image, RadialViz allows users to zoom in to the sector of interest in this
drilled-in image. See Fig. 6(b) for the zoom-in view when we drilled in to details
of COMP 4380. Note that combination of zoom-in and drill-in features is useful
when dealing with large amounts of data.

4 Evaluation

In this section, we show our results on evaluating our proposed RadialViz. Here,
we compare functionality and performance of our RadialViz with some existing
systems (e.g., FIsViz [16] from PAKDD 2008). We conducted two sets of evalu-
ation tests. In the first set, we tested functionality of our RadialViz by showing
how it can be applied to various scenarios or real-life applications. In the second
set, we tested performance of our RadialViz.

In terms of functionality, we considered many different real-life scenarios. We
determined whether RadialViz can handle each scenarios. If so, we examined
how it displays the mining results. The evaluation results show that RadialViz
was effective in all these scenarios. A few samples of these scenarios are shown
below:

Q1. Which course has the highest enrolment?
Q2. Which is the most frequent 2-itemset extensions of COMP 4380 and the

most frequent 3-itemset extensions of COMP 4380?



332 C.K.-S. Leung and F. Jiang

(a) RHS (90◦ rot.) (b) Opposite side (180◦ rot.) (c) LHS (270◦ rot.)

Fig. 7. Viewing the frequent patterns in Fig. 6 with RadialViz at different orientations

Q3. How many frequent 2-itemset extensions of COMP 4380 and the most fre-
quent 3-itemset extensions of COMP 4380 enrolled by more than 5 stu-
dents?

Q4. What is the highest cardinality for the frequent extensions of COMP 4380?
Q5. Which frequent course pairs have the same frequency?

Recall from Fig. 1 the snapshots of different orientations of FIsViz. See Fig. 7 for
snapshots of different orientations of RadialViz besides the right-side up view
shown in Fig. 3.

With RadialViz, we easily located the course with highest enrolment (i.e., the
sector with longest radius) regardless of the orientation. Although we spotted
the same information from FIsViz when frequent patterns are shown right-side
up, it took a bit longer time for other orientations of FIsViz.

To answer Q2 and Q3, we drilled in COMP 4380 and then zoomed in to the
center (as shown in Fig. 6(b)). With the colour bar, we easily spotted the frequent
2-itemset and 3-itemset extensions (i.e., longest yellow and green sectors, respec-
tively) of COMP 4380 from RadialViz regardless of the orientation. By hovering
the mouse over the corresponding sectors, the course labels were revealed and
answers were obtained (i.e., {COMP 4380, COMP 4580} with 21 students en-
rolled, and {COMP 4380, COMP 4550, COMP 4720} with 7 students enrolled).
Similarly, we counted the number of yellow and green sectors with radius ≥ 5,
and we got three course pairs and one course triplet that satisfy the enrolment
condition. In contrast, for FIsViz, we needed to traverse all polylines going out
from COMP 4380. As many of these polylines were bent and overlapping, it was
not easy to trace and count each polyline. The situation was worsened when the
graphs were not right-side up.

Similarly, for Q4, we just needed to look for the sector with colour representing
the highest cardinality from the figure. In this case, it was light blue indicating
four courses. For Q5, we easily spotted from Fig. 3(b) that COMP 4020 and
4350 have the same enrolment of 21. Answering these two questions in FIsViz
again required traversal of those bent and overlapping polylines.

In terms of performance, we varied the size of databases. The results showed
that the runtime (which includes CPU and I/Os) increased almost linearly with
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the number of transactions in the database. We also varied the number of items
in the domain, and the results showed that the runtime increased when the
number of domain items increased. Moreover, when the user-defined frequency
threshold minsup increased, the number of itemsets that satisfy the threshold
(i.e., itemsets to be displayed) decreased, which in turn leads to a decrease
in runtime. As ongoing work, we are conducting more extensive experimental
evaluation.

5 Conclusions

In this paper, we proposed a frequent pattern visualization system, called Radi-
alViz, which enables users to visualize the mined frequent patterns. RadialViz
represents k-itemsets using a radial layout (which is orientation free) and in a
hierarchical fashion (so that extensions of a pattern Z are contained within the
sector representing Z). Patterns of the same cardinality have the same colour,
and patterns of different cardinalities have different colours. Since RadialViz
uses radius to indicate the frequencies of patterns, users can easily observe the
frequency distribution of all the patterns. Patterns having similar radius have
similar frequencies. With interactive features (e.g., mouse hover, zoom-in, drill-
in), users can easily explore patterns of interest. Evaluation results showed the
effectiveness of RadialViz. Our proposed system helps users to answer many
questions for real-life applications, and thus assist them in making appropriate
business intelligence (BI) decisions, especially in face-to-face tabletop collabora-
tive environments.
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and University of Manitoba.
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Abstract. In this paper, we propose a new feature weighting algorithm
through the classical RELIEF framework. The key idea is to estimate
the feature weights through local approximation rather than global mea-
surement, as used in previous methods. The weights obtained by our
method are more robust to degradation of noisy features, even when the
number of dimensions is huge. To demonstrate the performance of our
method, we conduct experiments on classification by combining hyper-
plane KNN model (HKNN) and the proposed feature weight scheme.
Empirical study on both synthetic and real-world data sets demonstrate
the superior performance of the feature selection for supervised learning,
and the effectiveness of our algorithm.

Keywords: Feature weighting, local hyperplane, RELIEF, Classifica-
tion, KNN.

1 Introduction

Feature weighting plays an important step in the preprocessing of data, es-
pecially in data classification. In general, the feature weights are obtained by
assigning a continuous relevance value to each feature via a learning algorithm
by stressing on the context or domain knowledge. The feature weighting pro-
cedure is particularly useful for instance based learning models, which usually
construct the distance metric by using all features. Moreover, feature weighting
can reduce the risk of over-fitting by removing noisy features, thereby improve
the predictive accuracy. Existing feature selection methods broadly falls into two
categories, wrapper and filter methods. Wrapper methods use the predictive ac-
curacy of predetermined classification algorithms (called base classifier), such as
SVMs, as the criteria to determine the goodness of a subset of features [9,15].
Filter methods select features based on discriminant criteria that relies on the
characteristics of data, independent of any classification algorithm [7,14,17]. The
common discriminant criteria includes entropy measurement [18], Chi-squared

� This work was supported in part by NSFC under award number 60902076, NSF
of Guangdong Province under award number 9451027501002551, and China Funda-
mental Research Funds for the Central Universities under award number 11lgpy33.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 335–346, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



336 H. Cai and M. Ng

measurement [21], Fisher ratio measurement [10], mutual information measure-
ment [20,4,3], and RELIEF-based measurement [19,27,28].

Due to the emerging needs in biomedical and bioinformatics areas, researchers
are particularly interested in algorithms which can process of data with feature
being of large (or huge) dimensions, such as, microarray scanning in cancer
research. Therefore, filter methods are widely used due to its efficiency in com-
putation. Among the existing filter methods in feature weighting, the RELIEF
algorithm [19] is considered as one of the most successful ones due to its sim-
plicity and effectiveness. The main idea behind RELIEF is to iteratively update
feature weights by a distance margin to estimate the difference between neigh-
boring patterns. It has been further generalized to average multiple, instead
of just one, nearest neighbors when computing the sample margins, and was
named as RELIEF-F [19]. The authors have shown that RELIEF-F can achieve
significant improvement on performance of the original RELIEF [19]. Sun sys-
tematically proved that RELIEF is indeed an online algorithm for a convex
optimization problem [27]. Through maximizing an averaged margin of nearest
patterns in feature scaled space, RELIEF could estimate the feature weight in a
straightforward and efficient manner. Based on the theoretical framework, one
can impose outlier removal scheme called I-RELIEF since the margin averaging
is sensitive to large variations [27]. To accomplish sparse feature weighting, the
author introduced the l1 penalty into optimization of I-RELIEF [28].

In this paper, we present a new feature weighting algorithm to extend classical
RELIEF model. The main contribution of the proposed algorithm is that the
feature weights are estimated from local patterns other than global ones, as
used in exiting methods [19,27,28]. Therefore, the proposed feature weighting
scheme is particularly useful when combined with local pattern based classifiers,
such as HKNN [30], ADAMENN [8] and discriminant adaptive nearest neighbor
(DANN) [16]. Besides, local patterns are more robust to the noises and outliers.
It is promising to be used in applications where data are severely contaminated
by noises or rich of redundance.

This paper is organized as follows. Section 2 introduces the background of
the classical RELIEF method and its variations, including F-RELIEF and I-
RELIEF. The main result is reported in this section. Section 3 demonstrates the
performance of the proposed model. Extensive experiments have been conducted
to compare with the classical methods on benchmark data sets. Conclusion is
presented in Section 4.

2 The Proposed Method

2.1 RELIEF

The RELIEF algorithm has been successfully applied in feature weighing due to
its simplicity and effectiveness [19,28]. The main idea of RELIEF is to iteratively
adjust feature weights according to their ability to discriminate among neigh-
boring patterns. Mathematically, suppose that x is a randomly selected sample
of a binary class data. One can estimates its two nearest neighbors, wherein one
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is from its same class (called the nearest hit or NH) and the other is from a
different class (called the nearest miss or NM). Then the weight wi for the i-th
feature is updated by a heuristic estimation:

wi = wi + |x(i) −NM (i)| − |x(i) −NH(i)| (1)

Since there is no exhaustive or iterative search evolved in RELIEF updating, this
scheme is very efficient for the processing of data with huge dimensions, thus it
is particularly promising for large-scale problems such as analysis of microarray
data [24,28,7]. The authors have generalized the RELIEF model by averaging
k, instead of just one in Eq. (1), nearest neighbors when computing the sample
margins and was named as RELIEF-F model [19]. Experimental results have
shown that RELIEF-F achieves superior performance over the original RELIEF.
Its success is due to the robustness of margin estimation on multiple samples.
However, the optimal number of nearest neighbors needs to be estimated empir-
ically. Besides, RELIEF-F is also sensitive to noise degradation and the outliers.
An benchmark achievement has been reported in [27], in which the author firstly
proved that RELIEF is a convex optimization problem with a margin-based ob-
jective function,

max
w

n∑
n=1

ρn(w)

:=
∑N

n=1(
∑I

i=1 ωi|x(i)
n −NM (i)(xn)| −

∑I
i=1 ωi|x(i)

n −NH(i)(xn)|)
s.t. ‖w‖22 = 1, w ≥ 0 (2)

where ρn = d(xn−NM(xn))−d(xn−NH(xn)) is defined as margin of a sample
xn for distance function d(x) =

∑
i |xi|. NM(xn) and NH(xn) are the nearest

miss and hit for a sample xn, respectively.
To tackle the drawbacks of RELIEF, such as outlier detection and inaccurate

updating, Sun reformulated the above problem as maximization of expected
margin through scaling of features [27,28]:

E[ρ(w)] = wT ( E
i∈NM

[|xn − xi|]− E
i∈NH

|[xn − xi|)]

= wT
∑

i∈NM

P (xi = NM(xn)|w)|xn − xi| −
∑

i∈Hn

P (xi = NH(xn)|w)|xn − xi|

= wTzn (3)

where NM = {i : 1 ≤ i ≤ N, yi �= yn}, NH = {i : 1 ≤ i ≤ N, yi = yn, i = n} are
the sets of the nearest miss and the nearest hit, respectively. P (x = NM(xn)|W )
(or P (x = NH(xn)|W )) are the probabilities of the sample x being in the set
of NM(xn) (or NH(xn)) in the feature space scaled by weights w. Though the
probability distributions are unknown in prior, they can be estimated via kernel
density estimation [6]. Empirical study has shown that the I-RELIEF achieves
significant improvements over the traditional models. Task of classification on
feature scaled dataset achieves higher accuracy than standard techniques such
as SVM [12,15,9,26] and NN model [25]. Task of feature weighting is also robust
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to noisy features. In applications with a huge dimension of features, economic
feature weights are appreciated not only because of computational consideration,
but also most features being irrelevant [14,17]. To obtain sparse and economic
feature weighting, the author introduced the l1 penalty into the optimization of
I-RELIEF [28].

However, since the expectation in Eq. (3) is carried out on the set of nearest
miss or hit, which consisted of the nearest neighbors of all observed samples, the
feature weight estimation may be less inaccurate if the samples contain many
outliers, or most of the features are being irrelevant. In both cases, the distance
between the tested one and its nearest neighbors are in large value. It follows
that large bias will be introduced in margin estimation via averaging operation.
Although one can reduce the influence of the abnormal samples by introducing
kernel distribution estimation [27,28], it will introduce additional free parameter
estimation. Moreover, probability estimation via kernel approximation is sen-
sitive to the sample size [6,13]. Therefore, it limits the empirical applications
such as in analysis of microarray data, in which the data is notoriously known
for that the dimension of sample observation is far less than that of the sample
feature [11]. In this paper, we propose to use a local hyperplane to approximate
the set of the nearest hit and miss and then estimate the feature weight through
maximization of an expected margin defined by the hyperplane. The contribution
of this approximation is that the hyperplane is more robust for noisy features
degradation than averaging over all neighbors [19,27,28].

2.2 Approximation by Local Hyperplane

Given a sample x, it can be represented by a local hyperplane of class c by:

LHc(x) = {s | s = Hα}, (4)

where H is a I × n matrix composed by n NNs of the sample x: H =
{h1,h2, · · · ,hn}, with hi being the i-th nearest neighbor (called prototype)
of class c. The parameter of α = (α1, . . . , αn)

T is the weights of the proto-
types {hi, i = 1, 2, . . . , n}. It can be viewed as spanning coefficients of the
subspace LHc(x). Therefore, the hyperplane can be represented as: {· |Hα =
α1h1 +α2h2 + . . .+αnhn}. The value of α is solved by minimizing the distance
between the sample x and its local hyperplane of LHc(x) within feature scaled
space:

Jc(α) = argmin
1

2

I∑
i=1

ω(i)(xi − si)
2 =

1

2
(x−Hα)TW (x−Hα)

Subject to :
k∑

i=1

αi = 1 , α ≥ 0 (5)

where s = (s1, s2, . . . , sI) = Hα ∈ LHc(x). W is a diagonal matrix with
diagonal elements wi being the weight of the i-th feature.
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We are proposing to use the hyper plane to represent the set of nearest miss
NM(x) and nearest hit NH(x) for the given sample x. The beneficiary of the
representation is to characterize the local sample patterns robustly. Then the
distance between the sample to its NH (or NM) set can be estimated from
its local hyperplane other than averaging across over all samples within the set.
Therefore, we redefine the margin for a sample x as ρn = d(xn−LHNM (xn))−
d(xn −LHNH(xn)). The feature weights are now estimated through maximiza-
tion of total margins:

max
w

E[ρ(w)] =
1

N
max
w

N∑
n=1

(
I∑

i=1

ωi|x(i)
n − LH

(i)
NM (xn)| −

I∑
i=1

ωi|x(i)
n − LH

(i)
NH(xn)|)

= wT 1

N
max
w

N∑
n=1

(
I∑

i=1

|x(i)
n −αH

(i)
NM (xn)| −

I∑
i=1

|x(i)
n − βH

(i)
NH(xn)|)

= wTzn (6)

where HNM (xn) and HNH(xn) are the nearest neighbors for the set of the
nearest miss and hit of the sample xn. αn and βn are the coefficients for spanning

of hyperplane LH
(n)
NM and LH

(n)
NH . w is a vector with its i-th element w(i) being

the weight of the i-th feature, for i = 1, 2, . . . , I. To solve the minimization
problem of Eq. (6), one should estimate the parameters of αn, βn, which are
dependent on the nearest neighborhoods. The main problem of the estimation,
however, is that the nearest neighbors of a given sample are unknown before
learning. In the presence of many thousands of irrelevant features, the nearest
neighbors defined in the original space can be completely different from those in
the induced space. Therefore, the nearest neighbors defined in the original feature
space may not be true in the weighted feature space. To solve the difficulties,
we have designed an iterative algorithm, similar to the EM algorithm and I-
RELIEF [27], to achieve the goal.

Step 1: In t-th iteration, for a given sample x, we estimate the parameter of
α by constructing the local hyperplane of the nearest hit set within induced
feature space. It is trivial to show that the minimization of Eq. (5) is equivalent
to solving the following quadratic programming:

min
α

1

2
αT H̄α+ fTα

s.t. 1Tα = 1, α ≥ 0 (7)

where H̄ = HTW (i)H , f = −xTW (i)H , and 1 is an unitary vector whose
elements are all being 1. The matrix of W (i) is the t-th feature weight matrix,
satisfyingW (i)1 = w. The parameter of β for nearest miss hyperplane is obtained
similarly. Minimization of Eq. (5) is a constrained quadratic program problem
and standard techniques can be used to obtain its solution. In particular, since
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the matrix of H̄ is symmetric and non-negative, the minimization could be solved
efficiently through standard techniques, such as active set [23].

Step 2: Estimation of the total margin with respect to w(i).

ρ(w(i)) =
1

N

N∑
n=1

(
I∑

i=1

ωi|x(i)
n −αH

(i)
NM (xn)| −

I∑
i=1

ωi|x(i)
n − βH

(i)
NH(xn)|) (8)

Step 3: Estimation of the weight W in (i+ 1)-th iteration.

w = argmax
w

ρ(w(i))

=
1

N

N∑
n=1

(

I∑
i=1

ωi|x(i)
n −αH

(i)
NM (xn)| −

I∑
i=1

ωi|x(i)
n − βH

(i)
NH(xn)|) (9)

The above steps iterate alternatively until their convergence. The last two steps
are similar to the one used in I-RELIEF [27], and we name our scheme as LH-
RELIEF since it requires a local hyperplane approximation.

The pseudo-code for the LH-RLIEF is summarized in Alg. (2.1)

Algorithm 2.1: LH-RELIEF algorithm(V,W, λ)

comment:Variables Initialization: w=1
I
, stopping criteriaεand number of iterations T

for t ← 1 to T

while ‖w(t+1) −w(t)‖ > ε

do

⎧⎨
⎩
1. Estimate the coefficients for hyperplane of nearest miss and hit α,β
2. Calculate the margin by Eq .(8)
3. Update the weights by Eq. (9)

return (w)

3 Experimental Results

We shall demonstrate the performance of the proposed scheme through classifica-
tion evaluation on both synthetic and empirical problems. In particular, we are
interested in its: 1) performance of classification compared with other feature
weighting scheme; 2) robustness when processing the samples with irrelevant
features of large dimension.

3.1 Selection of Classifier

In our experiments, we selected the hierarchical k-nearest neighbor (HKNN)
algorithm to conduct the comparison on feature weighting [30]. HKNN could be
viewed as a localized approximation of K-nearest neighbor model. In this model,
each class is modeled as a smooth and low-dimensional manifold embedded in the
high-dimensional data space by assuming that the manifolds are locally linear.
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There are two steps involved in classification by HKNN. In the first step, for
each tested sample, it constructs local hyperplanes for each class. The label of the
tested sample is assigned to the class whose local hyperplane to the tested sample
is minimized. Empirical study has shown that the HKNN produced a comparable
or even better performance of classification than standard techniques, including
KNN and SVM [30,8,29]. One may note that the HKNN model shares the similar
idea with our approach in that the sample information is inferred from local
structure, which is the main reason for us to choose this particular classifier.

Since the HKNN model does not consider the influence of feature weights,
the test data will be firstly scaled into feature space before the classification is
carried out. The hyper-parameters used in training phase are estimated through
ten-fold cross validation.

3.2 Fermat’s Spiral Problem

In the first example, we shall test the performance of the proposed method on the
well-known Fermat’s Spiral problem. The test dataset consists of two classes with
200 samples for each class. The labels of the Spiral are completely determined by
its first two features. The shape of the Fermat’s Spiral distribution is shown in
Fig. 1(a). Heuristically, the label of a sample will be inferred easily from its local
neighbors. Classification based on local information will give more accurate as-
signment than global measurement based prediction (or classification) does since
the later one is sensitive to noise degradation. To tackle this drawback, Sun pro-
posed to lower the influence of the samples nearby throughmodeling of their prob-
ability distribution via kernel techniques [27]. This strategy is straightforward and
successful. However, if the dominant (informative) features are buried by the ir-
relevant (less informative) ones, estimation of the probability via distance will be
less accurate since the irrelevant feature may introduce a large variation to dis-
tance, for instance, the irrelevant features are being in a huge dimension. In
order to show this, irrelevant features following standard norm distribution are
added to the Spiral for classification testing. The dimensions of irrelevant fea-
tures are ranging from {0, 300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000}.
Two feature weighting scheme, I-RELIEF and LH-RELIEF were firstly applied
to quantify the importance of feature. Then the classification was performed on
dataset scaled by the feature weights. For each experiment, ten folds cross val-
idation scheme is used to compute the accuracy of classification. To eliminate
the statistical variations, we have conducted ten times experiments indepen-
dently on each dataset and averaged classification error is recorded and, shown
in Fig. 1(b). We observe that, the performance of the two methods are very
similar when the dimension of the irrelevant features is small. However, if the di-
mension of irrelevant features tends to be large, the performance of I-RELIEF is
severely degraded by the noises. In comparison, the performance of LH-RELIEF
is very stable and produces superior outcomes.
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Fig. 1. Experiment on Fermat’s Spiral. (a) Distribution of binary Fermat’s Spiral prob-
lem. Each class has 200 samples and is labeled by different colors; (b) Irrelevant fea-
tures with verified dimensions are added to test the robustness of the feature weighting
schemes. The LH-RELIEF outperforms I-RELIEF with respect to classification error.
With the increase of dimension of the irrelevant features, the performance of I-RELIEF
is degraded while LH-RELIEF keeps stable.

3.3 UCI Data Sets

In the second experiment, we tested the proposed technique on ten medium
sized datasets. The tested benchmark data sets were downloaded from the UCI
Machine Learning Repository [1], and they have been widely tested by various
classification benchmark models. The characteristics of the datasets are sum-
marized in Table 1. We compare our algorithm with four other algorithms, in-
cluding Iterative Search Margin Based Algorithm (Simba) [2], sparse Bayesian
multinomial logistic regression (SBMLR) [5] and I-RELIEF [27]. Simba is a local
learning based algorithm similar to RELIEF. SBMLR is a special kind of sparse
multinomial logistic regressionmodels with Bayesian regularization. Multinomial
logistic regression algorithm has been successfully used in text processing [31]
and microarray classification [22]. The beneficiary of adding regularization pa-
rameter into sparse multinomial logistic regression via a Laplace prior is that an
analytical solution could be obtained. Besides, its performance is similar to us-
ing cross-validation based model selection, thus greatly reducing computational
expense.

For each dataset, the optimal parameters were estimated by ten-fold cross
validation. The obtained feature weights under optimal parameters were used
to scale the raw datasets. Twenty times experiments on each dataset were per-
formed independently and classification errors were averaged to evaluate the
performance of the feature weighting scheme. We will use the classification error
to quantify the discrimination power of weighting scheme. Furthermore, statisti-
cal testing is also useful to fully comprise the performance of feature weights [27].
We selected the Students paired two-tailed t-test to achieve the goal. The p-value
of the t-test represents the probability that two sets of compared results come
from distributions with an equal mean. In this experiment, a p-value of 0.05 is
considered statistically significant.
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The results are summarized in Table 2. We observe that that LH-RELIEF
and I-RELIEF are statistically different from the tested ten datasets. The per-
formance of classification after LH-RELIEF is better than after I-RELIEF in
9 of 10 experiments. Among the four feature weighting schemes, LH-RELIEF
outperforms others in 5 of 10 datasets, while almost is suboptimal in other five
dataset.

Table 1. Summary of tested datasets and their characteristics

Data set #Instances #Classes #Feature

Bupa 345 2 6
Teach 151 3 5
Sonar 208 2 60
Cancer 198 6 32
Prokaryotic 997 3 20
Eukaryotic 2427 4 20
Haberman 306 2 3
Page block 5473 5 10
Pima 768 2 8
Spambase 4601 2 57
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Fig. 2. Experiment on benchmark dataset of Bupa and Pima by adding irrelevant
features in verified dimension, extending from 0 to 1000. (a) Bupa; (b) Pima.

In the last experiment, we are willing to test the performance of the algorithm
on data in huge dimensions. More specifically, we are interested in the robustness
of the algorithm on feature weighting with respect to the dimension of the irrel-
evant features. We selected two test datasets: Bupa and Pima. For each dataset,
irrelevant features are added to the raw dataset. The added irrelevant features
are independently sampled from zero-mean and unit-variance Gaussian distribu-
tion. Their dimensions are ranged from 0 to 1000. Including useless features is
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Table 2. Classification accuracies (%) on 10 real data sets. The LH-RELIEF shows
to be statistically different from the I-RELIEF in 9 among 10 datasets. The P -value
for each dataset is shown in parenthesis. Overall, the better results are subscripted by
star under different feature weighting scheme. The LH-Relief outperforms the standard
ones in most cases when the two methods show a statistically difference.

Dataset LH-RELIEF I-RELIEF SBMLR Simba
(P -value)

Bupa 69.7∗ 66.7 (0.00) 56.2 66.8
Teach 64.4∗ 46.3 (0.00) 34.4 62.3
Sonar 86.7∗ 84.3 (0.00) 82.7 85.7
Cancer 76.2 76.0 (0.48) 76.9∗ 76.4
Prokaryotic 90.5∗ 89.8 (0.00) 90.4 89.3
Eukaryotic 82.8 81.2 (0.00) 83.5∗ 81.3
Haberman 69.3 72.3 (0.00) 69.9 68.7
Page Block 94.5 94.1 (0.00) 95.7∗ 89.8
Pima 74.0 70.3 (0.00) 68.9 74.5∗

Spambase 84.8∗ 78.0 (0.00) 79.3 39.4

less appreciated in applications where the acquisition of data is quite expensive.
For example, it may complicate the pathway research if irrelevant genes are in-
cluded in microarray data analysis [27]. We would welcome such complication in
order to show the robustness of the algorithm.

The hyper-parameters, such as the kernel size σ in I-RELIEF and the number
of nearest neighbors k in LH-RELIEF are estimated through ten-fold cross vali-
dation. To eliminate statistical variations, each algorithm is run for twenty times
on each noisy dataset. In each run, a dataset is randomly partitioned into train-
ing and testing. The averaged testing errors serve as the criterion to quantify the
performance of the algorithm, and the results are drawn in Fig.2. For Bupa, the
classification error of the classifier after LH-RELIEF is smaller than that after
I-RELIEF in all dimensions, Fig. 2(a). This observation is coincided with the
results in Table. 2, implying that the feature weights estimated by LH-RELIEF
are more accurate and robust to the noises. For Pima, the performance of the two
scheme is almost comparable when the dimension of the the irrelevant features
is small, Fig. 2(b). However, the testing error after LH-RELIEF dramatically de-
creased with respect to the dimension of the irreverent features. In comparison,
the classification error after I-RELIEF tends to be greater. The experiment fur-
ther demonstrates that the proposed feature weighting scheme is more immune
to the noisy features by showing surprising high degree of robustness.

4 Discussion

In this paper, we proposed a new feature weight scheme to tackle the com-
mon drawbacks of the RELIEF family. The nearest miss and hit subset are



Feature Weighting by RELIEF Based on Local Hyperplane Approximation 345

approximated by constructing a local hyperplane. Then the updating of feature
weights is achieved by measuring the margin between the sample and its hy-
perplane under general RELIEF framework. The main contribution of the new
variation is that the margin is more robust to the noises and the outliers than ear-
lier works do. Therefore, the feature weights can characterize the local structure
more accurately. Experimental results on both synthetic and real-world datasets
validate our findings. The proposed weighting scheme performs superior on most
test data with respect to classification error. We also observed that the algorithm
was convergent in most cases, though theoretical justification is needed.
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Abstract. Identity disclosure control (IDC) on complex data has at-
tracted increasing interest in security and database communities. Most
existing work focuses on preventing identity disclosure in graphs that de-
scribes pairwise relations between data entities. Many data analysis ap-
plications need information about multi-relations among entities, which
can be well represented with hypergraphs. However, the IDC problem
has been little studied in publishing hypergraphs due to the diversity of
hypergraph information which may expose to many types of background
knowledge attacks. In this paper, we introduce a novel attack model with
the properties of hyperedge rank as background knowledge, and formalize
the rank-based hypergraph anonymization (RHA) problem. We propose
an algorithm running in near-quadratic time on hypergraph size for rank
anonymization which we show to be NP-hard, and in the meanwhile,
maintaining data utility for community detection. We also show how to
construct the hypergraph under the anonymized properties to protect
a hypergraph from rank-based attacks. The performances of the meth-
ods have been validated by extensive experiments on real-world datasets.
Our rank-based attack model and algorithms for rank anonymization and
hypergraph construction are, to our best knowledge, the first systematic
study for private hypergraph publishing.

Keywords: Identity disclosure control, Private hypergraph publishing,
Anonymization, Community detection.

1 Introduction

Identity Disclosure Control (IDC) is a critical problem in private data publishing,
and has been widely studied in previous work ([10,9,5,2,11]). Most of these stud-
ies focus on preventing entities from background knowledge attacks by modeling
a social network as a graph [10,16]. However, the graph-based representation is
neither sufficient nor realistic in real-world scenarios.

On the one hand, those potential data buyers (e.g. advertising agencies or
application developer) are more interested in attributes reflecting the spending
habit of an entity rather than the number of his/her friends. For example, the
major purpose for a sport retailer paying for the data from Facebook is to figure
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out the entities who are members of a sport interest group. More important, such
“interest group” data is usually real for an entity. We fabricate Bob as a member
of Facebook, and assume that he is very conscious in protecting private informa-
tion, such as the date of birth, the living place, the marriage status, and so on.
Hence, it is almost unlikely to identify Bob, even the corresponding information
is unique. However, as the inherent function and purpose of a social network,
Bob will describe his real interests or join certain interest groups without any
hesitation.

On the other hand, it is unrealistic to model background knowledge attacks
on a social network with the graph-based representation in large-scale networks.
For example, we take 1, 000 students in Beijing Jiaotong University who have
accounts in Renren.com, which is the most popular social network in China. With
the graph-based representation, there are only 1.5% students who have unique
degrees and 5.5% who have unique neighborhood substructures. However, by
considering some properties of the interest groups, the unique rate can climb up
to 33%.

Fig. 1. An example of hypergraphs

In order to remedy the above issues, this paper proposes a hypergraph-based
representation (seen in Figure 1) for a social network to depict a set of com-
plex relational entities, such as grouping a population of entities with various
attributes. A hypergraph-based representation is a mathematical construction
that is quite useful to exploit relationships between different entities [17]. Gen-
erally, vertices represent entities and each hyperedge represents a relationship
among a set of vertices.

Due to its specific structure, a hypergraph potentially faces more types of
breaches with new background knowledge attacks. In our Facebook example, the
members and their interest groups are natural to be modeled as a hypergraph
and published to third parties without any privacy guarantee. Thus, an attack
can be more valid (usually much easier) with the properties of such hypergraphs
as background knowledge. For instance, Bob can be easily identified by others
knowing his living habits. Notice that, the member-group relation can also be
formed as a bipartite graph in our example, but a hypergraph is more general
for our discussion, which is suitable for more complex relations such as tripartite
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graphs [6]. In this paper, we discuss the IDC problem in social networks with a
hypergraph-based representation.

1.1 Our Contributions

– discussing the IDC problem on hypergraphs by modeling rank-based attacks.
– formalizing a general model for rank-based hypergraph anonymization, and

justifying the hardness of such a perturbation problem.
– proposing an efficient algorithm for rank anonymization, and exploring the

issue of constructing a hypergraph with a specified rank set in the first place
so far as we know.

– introducing the bias of communities as information loss incurred in hyper-
graph perturbation.

The remainder of this paper is organized as follows. Section 2 presents a brief
survey of IDC on graphs. In Section 3, we model rank attack and introduce
efficient metrics for data utility. Section 4 focuses on methods against the pro-
posed rank attack and approaches for hypergraph construction. We present the
experimental results in Section 5 and conclude this paper in Section 6.

2 Related Work

The IDC problem has been studied extensively on graphs. As pointed out in
[2,9] simply removing the identifiers (or label) of the nodes does not always
guarantee privacy. They study a spectrum of adversary external information
and its power to re-identify individuals in a social network. The studies in [16,10]
extend the above idea by modelling so called neighborhood attack and degree
attack respectively. Specifically, the authors in [10] also proposed a two-step
framework as property anonymization and graph construction, which is very
useful to solve general anonymity problems on graphs.

Zheleva and Getoor [15] considered the problem of protecting sensitive re-
lationships among the individuals in the anonymized social networks. This is
closely related to the link-prediction problem that has been widely studied in
the link mining community. The work in [14] studies how anonymization algo-
rithms that are based on randomly adding and removing edges change certain
graph properties.

Liu et al. [11] took weight into consideration for privacy preserving in social
networks. They studied situations, such as in a business transaction network,
in which weights are attached to network edges that are considered to be con-
fidential. Then, they provide two perturbation strategies for this application.
The research in [12] extend the above work by formulating an abstract model
based on linear programming. However, the objective of their work still focuses
on maintaining certain linear property of a social network by reassigning edge
weights.
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3 Problem Statement

3.1 Rank Attack

Let V denote a finite set of vertices, and let E be a family of subsets e of V
such that ∪e∈E = V . Then we call G(V, E) a hypergraph with the vertex set
V and hyperedge set E. A hyperedge e is said to be incident with a vertex v
when v ∈ e. For a hyperedge e ∈ E, we use rank to denote the number of
vertices in e, i.e., r(e) = |e|. For a vertex v, we use rank sequence, denoted as
R, to represent the set of ranks of its incident edges E(v) = {e1, e2, . . . , ep},
i.e., R = [r1, r2, . . . , rp]. The set of rank sequences for all vertices in V is called
the rank set of the hypergraph G, which is denoted by RG = {R1, R2, . . . , Rn},
where n is the number of vertices in G.

Table 1. Tables for the example

(a) The adja-
cency matrix

e1 e2 e3 e4

v1 1 0 0 0

v2 1 1 0 0

v3 0 1 0 0

v4 0 1 0 0

v5 0 0 0 1

v6 0 1 0 1

v7 0 0 1 1

v8 0 0 0 1

(b) Origi-
nal R
V R
v1 [2]

v2 [4, 2]

v3 [4]

v4 [4]

v5 [2]

v6 [4, 3]

v7 [3, 2]

v8 [3]

(c) 2-
anonymity

V R2

v1 [3]

v2 [4, 3]

v3 [4]

v4 [4]

v5 [3, 2]

v6 [4, 3]

v7 [3, 2]

v8 [3]

Specially, for a hypergraph being regular, all sequences in the rank set have
the same dimension. Without loss of generality, we assume the elements in a
rank sequence are sorted as in descending order, r1 ≥ r2 ≥ . . . ≥ rp. Table 1b
shows the rank set for the sample hypergraph. Now we model a potential attack
on hypergraphs with the properties of edge rank as follows.

Definition 1. ( rank attack) Given a hypergraph G(V, E), if the rank sequence
R of a vertex v ∈ V is unique in G, the vertex v can be identified from G by
an adversary with the prior knowledge of R, even all vertices and hyperedges
unlabelled.

For example, in Figure 1, we have the corresponding adjacency matrix and the
rank set in Table 1a and 1b for the sample. It shows that the vertices v2, v6, v7

and v8 have unique rank sequences, which have high disclosure risk with a rank
attack. Let us take another real case as well: in our Facebook example, Bob is
involved in three online interest groups, tennis, cooking and photography, the
members in each group are 1, 000, 100 and 10. If the rank set R = [1000, 100, 10]
is unique in the hypergraph containing Bob, it is very likely to identify Bob from
the published hypergraph.
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3.2 Problem Definition

It is clear that the rank set of a hypergraph has to be investigated and modified
(if necessary) before published, in order to protect from the above rank attack.
We call this problem as rank-based hypergraph anonymization (RHA). The initial
idea is to generalize the values of the so-called quasi-identifier in a dataset, which
is a group of attributes that can be uniquely identify individuals. In this paper,
we define rank-based anonymity with the assumption that all attributes in a
rank sequence form the quasi-identifier. However, all of the algorithms proposed
later are suitable for the general case as well with a slight modification. Now, we
first introduce the term of rank anonymity for a hypergraph as follows.

Definition 2. (k-rank anonymity) A hypergraph G(V, E) is k-rank anonymous
if for every vertex v, there exist at least k − 1 other vertices in the hypergraph
with the same rank sequence as v.

For example, from Table 1b, the vertices v1, v5, v3 and v4 are 2-rank anonymous,
while others are all 1-rank anonymous. Therefore, the hypergraph shown in Fig-
ure 1 is 1-rank anonymous. By adding v5 into the hyperedge e1, the hypergraph
G is 2-rank anonymous as shown in Table 1c.

Then, we formally define the RHA problem as follows.

Problem 1. (rank-based hypergraph anonymization) Given RG, the rank set of a
hypergraph G(V, E), and an integer k, construct a k-rank anonymous hypergraph
G

′
(V, E

′
), such that the information loss Z is minimized.

In general, there exist two directions to solve the RHA problem: 1) changing the
incident matrix of the hypergraph to adapt the requirement of the rank set, and
2) perturbing the rank set separately and then reconstructing a hypergraph with
such modified rank set. The first method has the advantage of maintaining spec-
ified data utility globally while ensuring the security. However, such a technique
is very inefficient to implement especially for very large hypergraphs. Hence, this
paper will follow the second way to perturb a hypergraph, which is described as
rank anonymization (RA) and hypergraph construction (HC) respectively.

3.3 Measuring Quality of Hypergraph Anonymization

Differentiating from some other problems, such as k-anonymity on transactional
data, we use a conditional metric Z = (Z;ZA) to assess the quality of an ap-
proach for RHA. The anonymizing cost ZA is usually related to the operations
of anonymization, while Z represents one of the important hypergraph property
that we suppose to preserve. Here, we can only guarantee a solution of Z to be
optimal for RHA with the condition of certain ZA. It can be seen as a trade-off
between utility and efficiency. In other words, an anonymizing algorithm be-
comes too complex to implement with a real graph property as ZA, since it
must construct the adjacency matrix to obtain the real property at each step of
perturbation.
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Anonymizing Cost. As our basic operations for perturbing are to add, delete
or reallocate vertices in hyperedges, the method for rank anonymization is nat-
urally required to minimize the changes of hyperedges. Given a hyperedge e and
the anonymized e

′
correspondingly, we define the difference between their ranks

as anonymizing cost for a hyperedge, i.e. |re − re′ |. Then, given a rank set RG

of a hypergraph G(V, E), we describe the total anonymizing cost as

ZA =
m∑

i=1

gi∑
j=1

‖Rij − R∗
i ‖2 (1)

where m is the number of anonymized groups, gi and R∗
i ∈ RG represent the

number of objects and the anonymous object in each group.

Information Loss on Community Detection. As a hypergraph is powerful
in representing the multi-relationship among vertices, an important and natural
requirement is to detect communities in real-world applications [17,13]. There-
fore, the methods for RHA also aim at minimizing the effect on community
detection on hypergraphs published.

We use a popular metric, called modularity, which is known as a global quality
function to identify communities. We revise the definition of modularity in [7]
by using the terms of hypergraphs as the cumulative deviation from the random
expectation.

M =
NC∑
g=1

(∑
{vi,vj∈Cg | i�=j} cij∑

s rs (rs − 1)
−

∑
{vi,vj∈Cg | i�=j} didj

(
∑

s rs)
2

)
, (2)

where cij is the actual number of hyperedges in which i and j are together. Due
to space limitations, the induction of Equation 2 is omitted here. Let MG and
MG′ be the modularity derived from G and G

′
respectively. Then, we can define

the modularity bias as information loss,

ZM =
|MG −MG′ |

MG
. (3)

4 Algorithms

In this section, we propose algorithms for the RHA problem. It first states the
hardness of RHA with anonymizing cost as the objective function, and introduces
an efficient heuristic method based on the information loss defined in Equation
1. Then, we discuss hypergraph construction with a specified rank set, which is
rarely mentioned in previous studies so far as we know.

4.1 Rank Anonymization

From the definition of RHA, it is obvious that rank anonymization, as the first
step, is an optimization problem. The following theorem shows that such an
optimization problem is NP-hard, even for the simplest case that all rank sets
are with size 2.
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Algorithm 1. The Rank Anonymization Algorithm
Input: A set of rank sets R and an integer k.
Output: An anonymized set R′

.
1: Initialization.

1.1 find vs and vt in V with the most distance in R;
1.3 form groups gs and gt containing vs and vt with

their k − 1 closest vertices respectively;
1.4 determine anonymous objects os and ot and compute

information loss for each group.
2: Recursion.

2.1 set all remaining vertices as 1-element group and
initial the anonymous object as itself;

2.2 merge two groups with the lowest information loss;
2.3 re-calculate anonymous objects for each group;
2.4 go to 2.2 until every vertex is assigned to a group

with size [k, 2k).
3: Perturbation.

3.1 replace elements in each group by anonymous object;
3.2 merge all groups as R′

and return.

Theorem 1. The optimal rank anonymization problem is NP-hard.

Limited by space, we omit the formal proof (seen in the extended version of this
paper). To guarantee the complexity in polynomial time, we introduce an efficient
heuristic algorithm as a solution in Algorithm 1. This algorithm is similar with
a family of data-oriented heuristics for microaggregation proposed in [3], while
the major difference is the objective function due to anonymity.

The computational complexity of Algorithm 1 is O(n2log n
k ). Here, we form a

symmetric n × n distance matrix that each entry represents the Euclidean dis-
tance between two rank sets in R. It reduces the complexity of the initialization
step to linear. In each step of recursion, the algorithm introduce O(n2) operations
to calculate all new distances among groups. Finally, there are log n

k recursions
due to the group merging. Therefore, the total complexity is O(n2log n

k ).

4.2 Hypergraph Construction

Our next task for RHA is to reconstruct a hypergraph with a perturbed rank
set R. Some existing work [8,10] has studied popular construction techniques
according to various properties of a graph, such as degree and spectrum. Unfor-
tunately, most of these studies only consider graphs, and it has more concerns to
apply the proposed methods on hypergraphs due to the computational complex-
ity. The major reason is that one modification on an edge will affect a group of
vertices rather than only two vertices in graphs. Specifically, there are two major
challenges for the RHA problem: 1) the anonymized rank set has high possibility
that is not realizable; and 2)the constructed hypergraph need to maintain the
original community.
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To explain the first challenge, we define the realizability of a rank set as
follows.

Definition 3. (Realizability) A rank set R is called realizable if and only if
there exists at least one hypergraph G(V, E) that has the exact same rank set
with R.

This definition is extended from the realizability of degree on graph construction
[4]. We state the following necessary and sufficient condition for a rank set to be
realizable.

Lemma 1. A rank set R is realizable if and only if, for any entry rik it holds
αrik (α = 1, 2, . . .) different vertices in R containing the same entry with rik.

Proof. The sufficiency is obvious. As a hyperedge with rank r contains r vertices,
there at least exists α = 1. For the necessity, assuming a rank set has αr different
vertices having an element with value r, it is easy to form α hyperedges with
rank as r.

For example, in Table 1c, for r = 2, 4, 3, it holds α = 1, 1, 2 respectively, and the
2-anonymized rank set is realizable. However, if we modify R1 and R8 to [3, 2]
and [4], the rank set is still 2-anonymized but unrealizable with α = 3

2 , 5
4 , 5

3 .
Apparently, an anonymized rank set R has very high probability that it is not

realizable. Thus, Lemma 1 introduces a principle in how to develop a construction
method for RHA to ensure the success of construction. The basic idea behind
is to generate a realizable rank set from R based on Lemma 1 with minimal
modification. Algorithm 2 takes a specified rank set R as inputs and returns
a successfully constructed graph and an approximate error σ, which denotes
the modification bias of the rank set. Steps from 3 to 9 describe a procedure
to remove edges by matching each element in its rank set. Step 5 is a basic
search to find all vertices containing the same rank with rri. Step 6 is crucial to
modify a rank set to be realizable based on Lemma 1. Step 11 is to ensure the
connectivity of the output hypergraph. If the algorithm terminates and outputs
a hypergraph, then this hypergraph has the approximate specified rank set R.

The computational complexity of Algorithm 2 is O(n2m2), where n is the
number of vertices and m is the maximal degree for all vertices. For each vertex
vi, there are maximal m hyperedges connecting vi with other nodes. And for
each hyperedge, the worst case is traversing all remaining vertices to find S(vr),
which is n× m times. As there are n vertices, the total complexity is O(n2m2).

In Algorithm 2, the basic operations are adding/deleting vertices in each hy-
peredge of the original graph to satisfy the privacy requirement. However, such
an operation may affect the progress of finding communities. Thus, we provide
a community preserving procedure aiming at minimizing the change of the com-
munity set CG. Our main idea is to first assign a two-way label for each vertex
v ∈ V in G(V, E) according to the community and the min-cut that contain it.
Then, we perform vertex addition or deletion only in its incident domain(s). For
example, assuming that a hypergraph G has two non-overlapping communities
C1 and C2 with the min-cut S, a label (C1, Sv) for a vertex v ∈ V implies v ∈ C1
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Algorithm 2. The Hypergraph Construction Algorithm
Input: A hypergraph G(V, E) and an anonymized rank set R.
Output: A hypergraph G

′
(V, E

′
) and the approximate error σ.

1: V ← {v1, . . . , vn}, E ← ∅, count ← 0;
2: while R consists of non-zero elements do
3: pick a random vertex vr with Rr �= 0;
4: for i ← 1 to dr do
5: find a set S(vr) := {vs ∈ V | ∃rsj = rri};
6: modify rri and all rsj as s ← |S(vr)| in S(vr);
7: σ ← |rri−s|

rri
;

8: form an edge e containing all vertices in S(vr);
9: E ← E ∪ e, rri, rsj ← 0;
10: V ← V ∪ vr;
11: amend the connectivity of G

′
;

12: return G
′
(V, E

′
) and σ.

and v ∈ Sv. We also use S0 as a virtual set to denote a vertex does not appear
in any min-cuts. Therefore, in Algorithm 2, we can perform the selection of vs

within the domain where the elements have the same label. Apparently, this
procedure is application-oriented since there exist a number of algorithms for
community detection. However, this limitation can be released in the real-world
applications, which the data publisher can make consistent standards on the
methods of community detection with data users.

5 Experiments

The experiments are conducted on a 2.16 GHz Intel Core 2 Duo Mac with 4GB of
667MHz DDR2 SDRAM running the Macintosh OS X 10.5.8 operating system.
All algorithms are implemented using Matlab 7.0.

We use three real-world datasets, named Mushroom, Nursery and Msweb,
which contains 8, 124, 12, 960 and 32, 711 vertices respectively, and 22, 8 and
294 attributes respectively. Specifically, each attribute takes only a small num-
ber of values, each corresponding to a specific category. In our experiments,
we constructed a hypergraph for each dataset, where attribute values were re-
garded as hyperedges. Therefore, the Mushroom data includes 122 hyperedges,
while Nursery and Msweb have 27 and 294 hyperedges respectively. All three
datasets are from the UCI Machine Learning Repository [1].

5.1 Rank Attack on Real-World Data

Our first experiment is to show whether rank attack may happen on real-world
datasets. We detect the possibility of rank attack on the test data with varying
a specified parameter β, which is a threshold to assess a breach. That is, while
the number of vertices sharing the same rank sequence is no larger than β, these
vertices are recognized to be disclosed.
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Table 2. Rank Attack on Real-World Data

Disclosure rate (%)
β = 1 β = 3 β = 5 β = 10

Mushroom 16.18 20.24 38.36 55.14

Nursery 4.26 6.21 8.15 13.11

Msweb 4.55 7.59 10.61 13.64

Table 2 reports the percentage of vertices which can be successfully identified
by rank attack. It clearly shows that the rank attack indeed be a real issue for
hypergraph publishing. All testing datasets have relatively high risk of entity
disclosure. For Mushroom data, the disclosure rate of rank attack with β = 10
is even high as 55.14%, which implies over half of its vertices can be uniquely
identified. The rate is 4.55% with β = 1 for The Msweb contains around 600 in-
dividuals have high disclosure risk in the data with the rate 4.55% corresponding
to β = 1. Also, the disclosure rate grows very quick as β increases. For example,
the rate on the Nursery dataset increases nearly 10% with β = 10 than that
with β = 1.

5.2 Impact on Anonymizing Cost ZA

In this section, we assess the cost incurred in applying various strategies for
rank anonymization. As a comparison, we also implement a greedy anonymizing
algorithm for rank attack, called GreedyRA.

The graphs in Figure 2 describe the relations between anonymizing cost ZA

and various k for the Mushroom, Nursery and Msweb datasets respectively. The
results show that ZA increases slowly while k is not large (e.g. k < 20) for both
anonymizing algorithms. Furthermore, the GreedyRA arises much higher cost
than the RA algorithm does in all cases as expectation. The biggest difference
occurs in Msweb, which is over two times for every plot. In addition, the outcomes
reveal the efficiency of GreedyRA with small values of k. For example, the costs
by the two methods are very close to each other when k < 50 in the Nursery
data. Usually, the indistinguish level is not required to be very high in the real-
world applications. Thus, both anonymizing algorithms work efficiently in such
cases.

5.3 Impact on Information Loss

The final experiment is to explore the relation between the modularity bias
defined in Equation 2 and k. Figure 3 shows the relative changes of ZMwith
HCCP-RA, HC-RA and HC-RAG approaches by varying k. The modularity
bias rises up as k increases that follows the similar trend of ZH . However, the
gradients are not steep as that of ZH especially when k is not large. This implies
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that the impact of perturbation on modularity is not significant as the intra-
group error, as ZM is a global measurement. Also, HCCP-RA shows much better
performance than the others in all cases as expected. Moreover, the Mushroom
data has an interesting result that HC-RA and HC-RAG produce very close
plots with each other compared to the result of ZH . The reason is still not
clear and we suppose it is related to certain structure properties of the dataset
itself.

6 Conclusion

In this paper, we explored identity disclosure control in private hypergraph pub-
lishing. We addressed the problem of rank-based hypergraph anonymization by
modeling a novel background knowledge attack with rank. We proposed an effi-
cient heuristic algorithm for rank anonymization, which is shown NP-hard. We
also studied the problem of constructing a hypergraph with a specified rank set,
and provided methods maintaining the utility of community detection from the
original hypergraph.

There are many issues of this work that need to be addressed in further
research. As an NP-hard problem, it is worth to develop approximation algo-
rithms for RHA. Also, it is worth to investigate how the proposed approaches
affect other real hypergraph properties, such as diameter.



358 Y. Li and H. Shen

References

1. Asuncion, A., Newman, D.J.: UCI machine learning repository. University of Cal-
ifornia, Irvine, School of Information and Computer Sciences (2010)

2. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized
social networks, hidden patterns, and structural steganography. In: WWW 2007:
Proceedings of the 16th International Conference on World Wide Web, pp. 181–
190. ACM, New York (2007)

3. Domingo-ferrer, J.: Efficient multivariate data-oriented microaggregation. The
VLDB Journal 15, 355–369 (2006)

4. Erdos, P., Gallai, T.: Graphs with prescribed degrees of vertices. Mat. Lapok 11,
264–274 (1960)

5. Feder, T., Nabar, S.U., Terzi, E.: Anonymizing graphs (2008)
6. Ghoshal, G., Zlatiić, V., Caldarelli, G., Newman, M.E.J.: Random hypergraphs

and their applications. Phys. Rev. E 79(6), 066118 (2009)
7. Guimera, R., Sales-Pardo, M., Nunes Amaral, L.A.: Module identification in bi-

partite and directed networks. Physical Review E 76(036102) (2007)
8. Halbeisen, L., Hungerbuhler, N.: Reconstruction of weighted graphs by their spec-

trum. Eur. J. Comb. 21(5), 641–650 (2000)
9. Hay, M., Miklau, G., Jensen, D.: Anonymizing social networks. Technical Report

07-19, University of Massachusetts Amherst (March 2007)
10. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD 2008:

Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, pp. 93–106. ACM, New York (2008)

11. Liu, L., Wang, J., Liu, J., Zhang, J.: Privacy preservation in social networks with
sensitive edge weights. In: 2009 SIAM International Conference on Data Mining
(SDM 2009), Sparks, Nevada, pp. 954–965 (April 2009)

12. Egecioglu, O., Das, S., El Abbadi, A.: Anonymizing weighted social network graphs.
In: The 26th International Conference on Data Engineering, ICDE 2010 (2010)

13. Vazquez, A.: Finding hypergraph communities: a bayesian approach and variational
solution. Journal of Statistical Mechanics: Theory and Experiment (July 2009)

14. Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach.
In: SDM 2008: The SIAM International Conference on Data Mining, Atlanta, GA
(April 2008)

15. Zheleva, E., Getoor, L.: Preserving the Privacy of Sensitive Relationships in Graph
Data. In: Bonchi, F., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS, vol. 4890,
pp. 153–171. Springer, Heidelberg (2008)

16. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood at-
tacks. In: ICDE 2008: The 24th International Conference on Data Engineering, pp.
506–515. IEEE Computer Society, Los Alamitos (2008)

17. Zhou, D., Huang, J., Scholkopf, B.: Learning with hypergraphs: Clustering, classi-
fication, and embedding. Advances in Neural Information Processing Systems 19,
1601–1608 (2007)



EWNI: Efficient Anonymization of Vulnerable
Individuals in Social Networks

Frank Nagle1, Lisa Singh1, and Aris Gkoulalas-Divanis2

1 Georgetown University, Washington, DC 20057, USA
2 IBM Research-Zürich, Rüschlikon, CH-8803, Switzerland

Abstract. Social networks, patient networks, and email networks are all exam-
ples of graphs that can be studied to learn about information diffusion, community
structure and different system processes; however, they are also all examples of
graphs containing potentially sensitive information. While several anonymization
techniques have been proposed for social network data publishing, they all apply
the anonymization procedure on the entire graph. Instead, we propose a local
anonymization algorithm that focuses on obscuring structurally important nodes
that are not well anonymized, thereby reducing the cost of the overall anonymiza-
tion procedure. Based on our experiments, we observe that we reduce the cost of
anonymization by an order of magnitude while maintaining, and even improving,
the accuracy of different graph centrality measures, e.g. degree and betweenness,
when compared to another well known data publishing approach.

1 Introduction

Social networks, patient networks, email networks, and disease transmission networks
are all examples of graphs that can be studied to learn about information diffusion, com-
munity structure and different system processes; however, they are also all examples of
graphs containing potentially sensitive information. For some of these networks, it is
not just the personal information that is sensitive, but also the position or existence of
an individual in the graph. For example, the existence of a patient in a disease transmis-
sion network may be deemed as highly sensitive. As a result, a need exists to obscure
sensitive topological information while still maintaining accurate graph properties for
those studying these networks. Furthermore, because researchers are typically inter-
ested in data exploration applications, like community identification and information
diffusion, our goal is to publish an anonymized, transformed network that is resilient
against identity attacks and can be effectively studied as a graph.

A number of approaches have been proposed for anonymizing graphs. The re-
search literature can be separated into two groups, those that add noise to the base
graph and those that generalize the base graph. The former approaches use edge in-
sertions and deletions to either deterministically create common patterns in the graph
[24,16,25,3,26,7,6,22,19] or probabilistically add uncertainty [13,23,10,4]. The gener-
alization strategy hides the detail level of the network by partitioning the graph into
subgraphs, grouping nodes into clusters [5,20], or releasing specialized data structures
that are specific for answering certain types of queries [12,14,11]. In this work, we
investigate ways to publish a base graph that is sufficiently anonymized, contains suf-
ficient detail for graph mining tasks using different graph properties, and is efficiently
computed.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 359–370, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



360 F. Nagle, L. Singh, and A. Gkoulalas-Divanis

This work makes the following contributions: (1) Describes the use of simple graph
metrics to guide the anonymization process; (2) Proposes a local anonymization strat-
egy focusing on edge insertion or deletion to only the subset of nodes that are considered
vulnerable and; (3) Experimentally evaluates the proposed method and shows that the
released graph maintains a high degree of accuracy for different graph properties, in-
cluding degree, betweenness, diameter, and average path length on five real world data
sets, and are an order of magnitude more efficient than a well known approach that
alters the entire graph.

The rest of the paper is organized as follows. Related literature is presented in sec-
tion 2. In section 3, we provide necessary background and our privacy model. Our
anonymization strategies are presented in section 4, followed by an experimental eval-
uation in section 5, and conclusions in section 6.

2 Related Literature

A number of previous works have shown that just removing the labels of published
graphs is not sufficient for anonymization [2,12,17]. The main threats against these
naïvely anonymized networks are node re-identification and edge disclosures.

Research focusing on adding noise to the base graph considers different strategies
for edge insertion and edge deletion. Liu and Terzi [16] apply k-anonymity by ensuring
that the degree of all nodes is k-anonymous. Zhou and Pei [25] focus on preventing
neighborhood attacks by enforcing k-anonymous subgraphs based on a measure of the
local neighborhood graph for all nodes. Their method relies on adding edges to the
graph to make nodes that have distinct neighborhoods similar to other nodes. Wu et al
[22] extend Zhou and Pei’s work by introducing the k-symmetry model that accounts for
anonymization based on the degrees of each node’s neighbors. Similarly, Zou et al. [26]
use k-automorphism to make subgraphs k-anonymous. More recently, Cheng et al. [6]
developed the k-isomorphism method to preserve privacy at the subgraph level. Bhagat
et al. [3] introduce the concept of label lists as a potential anonymity mechanism for
obscuring the identity of a particular node. Zheleva and Getoor [24] present a number
of anonymization strategies for avoiding sensitive edge inference breaches. Tai et al
focus on a particular edge breach referred to as a friendship breach [19]. Das et al. [7]
present a method for anonymizing social network graphs with weighted edges. Their
linear programming anonymization method focuses on anonymizing the edge weights
and preserving properties of the graph that are expressible as linear functions of the
edge weights. In all these works, the anonymization procedure is applied to the entire
graph. In contrast, we propose applying our anonymization procedure to a small subset
of the full graph, thereby efficiently obtaining a releasable graph with comparable error.

3 Graph Structure and Privacy Model

3.1 Background

Let G(V, E) represent a simple, undirected graph, where V = {v1, v2, . . . , vn} is
the set of nodes and E = {eij = (vi, vj)| vi ∈ V and vj ∈ V, and i �= j} is the set of
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Fig. 1. A sample network graph

edges in G. Given a node vi in V , its neighbors N(vi) are the set of vertices adjacent
to vi: N(vi) = {vj | (vi, vj) ∈ E, vj �= vi, 1 ≤ j ≤ n}. Let E(N(vi)) be the
union of the edges between vi and the nodes in N(vi) and the edges between the nodes
in N(vi). Then the neighborhood subgraph of vertex vi is S(vi) = {VS , ES | VS ∈
N(vi) ∪ vi, ES ∈ E(N(vi))}.

The degree of a vertex is the size of the neighborhood, |N(vi)|. Betweenness cen-
trality is calculated by computing all of the graph’s shortest paths and determining how
many shortest paths a given node appears in. Sociologists measure the importance of
individuals in a network using different centrality measures, including degree centrality
(hubs) and betweeness centrality (brokers) [21]. Computer scientists have used these
same measures in different graph mining algorithms.

3.2 Privacy Model

In this work, a data owner is interested in publishing a graph G′ = (V ′, E′) that is an
anonymized version of G. We assume that there is a bijective function f : V → V ′ that
maps every vertex in V to a vertex in V ′. We do not, however, require that all edges in
E appear in E′. Some edges in E′ may also not be present in E.

Most literature focuses on adversarial attacks on three parts of a graph: nodes, edges,
and subgraphs. In this paper, our primary focus is on anonymizing nodes. We assume
adversaries know the degree of one or more nodes, where the number of nodes known is
small, |Vknown| << |V |. However, the adversary does not know the neighborhood sub-
graph S of any of the nodes in Vknown. Similar to related literature, k-degree anonymity
occurs if at least k nodes have the same degree [16].

Definition 1. Node exposure or a node identity breach occurs if any node in G is not
k-degree anonymous.

It is straightforward to determine if a node identity breach occurs using degree sets,
where Da is a set of vertices in G having degree a: Da = {vi|deg(vi) = a | vi ∈ V }.
We define D as the set of all degree sets. For example, in Figure 1 the complete set D
of degree sets is D1 = {A} , D2 = {C, D} , D3 = {B}. If k = 2, then nodes A and
B are exposed because D1 and D3 each have only one node in their sets.

Definition 2. Subgraph exposure occurs if all the neighborhood subgraphs of nodes
in a particular degree set Dj are the same.

This results because the adversary knows N(vi), but not S(vi). However, if all the
neighborhood subgraphs for a particular degree set are the same, then the adversary
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will know S(vi) with certainty.1 When we consider subgraph exposure, we must deter-
mine if all the subgraph neighborhoods are the same structure for a particular degree
set. In other words, are they isomorphic? Determining if different neighborhoods in
the graph are isomorphic is expensive to compute. However, because our neighborhood
subgraphs are ego networks, we can use some simple social network metrics, e.g. clus-
tering coefficient, to identify degree sets containing exposed neighborhood structures.

The clustering coefficient CCvi of a vertex vi is a normalized value that shows how
well connected the neighbors of vertex vi are: CCvi = 2|S(vi)|

|N(vi)|∗(|N(vi)|−1) where
|N(vi)| ≥ 2. The clustering coefficient of a node ranges from 0 (no neighbors con-
nected to each other) to 1 (all neighbors connected to each other). In Figure 1, the
clustering coefficient of B, C, and D are 0.333, 1 and 1, respectively.

To understand whether nodes in the same degree set Da have the same or similar
neighborhood structure, we can compare the variance of the clustering coefficient:

CC_difa =
{

0, if
1, if

var(CC(Da)) ≤ θ
var(CC(Da)) > θ

where CC(Da) is the clustering coefficient of each node in the degree set Da, var
is the variance of these values, and θ is the threshold for dissimilarity allowed in the
neighborhood. If all the nodes in a degree set must have the exact same neighborhood
subgraph to be exposed, then θ = 0 and the exposure occurs with var(CC_difa) =
0. However, if k is particularly large and want to extend the definition of subgraph
exposure to allow for a very small percentage of the subgraphs for a degree set to not
be isomorphic, then θ > 0. Returning to our example in Figure 1, nodes C and D in D2

have the same connectivity structure, var(CC_difa) = 0; therefore, by definition both
nodes have subgraph exposure.

Problem Statement: Given a social network G, we want to publish G′, a distorted
version of G modified using a set of edge operations such that: 1) each vertex in V
is represented in G′; 2) every vertex in V is k-degree anonymous in G′; 3) the degree
of nodes that are already k-degree anonymous are not alterable; and 4) reasonable
accuracy of different centrality and path measures exists in G′.

While we focus on degree anonymity to quantify structural uniqueness in this work,
any reasonable set of graph properties can be used to define unique parts of a graph,
e.g. centrality measures, neighborhood measures, or subgraph structures. Therefore, we
also propose a general definition for vulnerable components of a graph as follows:

Definition 3. In a graph G, a weak node, vw, is a node that is identifiable in the graph
based on one or more graph properties. The presence of weak nodes in a graph re-
duces the overall anonymity of G. We define W as the set of all weak nodes in G. A
weak neighborhood subgraph, Svi , occurs when the neighborhood subgraph of vi is
isomorphic to all the other neighborhood subgraphs in D|N(vi)|.

1 Note that our adversarial profile and definition of subgraph exposure differ from previous
literature. Therefore, unlike previous literature, having the same neighborhood subgraphs leads
to exposure.
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Algorithm 1. EWNI - Anonymization Approach
1: Input: G, k, θ
2: Output: G′

3:
4: compute degree_map
5: W = find_weak_nodes(G, k, degree_map)
6: graph_anonymization(W )
7: G′ = graph_construction()
8: return G′

4 Anonymization Algorithms
In this section, we present our approach for graph anonymization. As described in
Algorithm 1, our general approach is similar to that in [16]. The general approach pro-
posed in [16] gathers the degrees of all nodes in G, identifies which degree sets do not
have k nodes, and then changes the degree of those nodes to either match the closest de-
gree that is k-degree anonymous or create a new degree set that is k-degree anonymous.
After creating the new degree set, they construct a graph G′ based on it.

Similarly, we begin by determining the set of weak nodes (find_weak_nodes()).
We then apply a graph anonymization algorithm based on edge modification to only
neighborhoods of weak nodes. We consider two strategies, edge insertion and proba-
bilistic edge modification. After graph anonymization, a graph construction step follows
that is based on the computed degree sequence. Here we follow the standard procedure
proposed in Liu and Terzi [16] and will, therefore, focus on the first two parts of the
task in the remainder of this section.

4.1 Finding Weak Nodes and Neighborhood Subgraphs

Our approach for calculating weak nodes is presented in Algorithm 2. For completeness,
we also describe how to calculate weak subgraphs. Here, if |Di| < k, a set of vulnerable
nodes exists. Therefore, all nodes vi ∈ Di in that degree set are added to a list of nodes
(weak_Da) identified as weak due to their degree set length. We also track the difference
between |Di| and k, allowing us to later rank the level of weakness of the nodes. When
CC_dif < θ, all nodes vi ∈ Di are added to a list of node neighborhoods (weak_cc)
identified as weak due to their CC_dif value. This is the EWNI_CC_DIF () function
in Algorithm 2. Running our weak node identification method returns two lists, one of
weak nodes and one of nodes with weak neighborhoods. The EWNI algorithm has a
time complexity of O(|V | · (|V | + |E|)). However, in the worst case, it can require
O(|V |) more disk space. As will be illustrated in section 5, in practice we find that the
number of weak nodes and nodes with weak neighborhood subgraphs in a network is a
small proportion of the total number of nodes. It also remains small as the size of the
network increases.

4.2 Anonymizing G

Our localized strategy focuses on changes to only the weak nodes and weak neighbor-
hood subgraphs. The remaining parts of the graph remain the same. While we can our
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Algorithm 2. Efficient Weak Node Identification
1: function find_weak_nodes(G, k, degree_map)
2: i ← 1
3: weak_cc ← {}
4: weak_Da ← {}
5: while (i <max_degree(G)) do
6: Di ← DEGREE_SET(i, degree_map)
7: (cc_dif, weak_cc) ← EWNI_CC_DIF(Di, weak_cc)
8: if (|Di| < k) then
9: weak_Da ← weak_Da + Di, k − |Di|

10: return (weak_cc, weak_Da)

11: function EWNI_CC_DIF(Da, weak_cc)
12: if (|Da| = 0) then
13: return (0,weak_cc)

14: if (var(CC(Da)) > 0) then
15: return (1,weak_cc)
16: else
17: weak_cc ← weak_cc +Da

18: return (0,weak_cc)

weak node techniques to different anonymization algorithms, we choose to explain the
proof of concept using the general framework proposed in [16]. We first describe our
approach for anonymization that applies edge insertion to the weak nodes in the graph.
We then explain a variation that considers both insertions and deletion.

Weak Node Edge Insertion: Let DW be the degree sequence of the weak nodes. For
this method, we directly apply a greedy algorithm similar to [16] to only weak nodes,
W . This algorithm creates a group of the first k highest degree nodes that are not k-
degree anonymous and assigns them all the highest degree in the group. The algorithm
then computes two costs, the cost of merging the (k+1)-th node with the current group
and the cost of starting a new group, where the cost is based on the number of edges that
need to be inserted in each case. In order to help with the decision, the algorithm looks
ahead to k other nodes. The algorithm continues recursively until all the weak nodes
are considered. The run time is O(|W | · k). The proof of correctness is straightforward.

Probabilistic Weak Node Anonymity: For this method, we mimic the Weak Node
Edge Insertion algorithm described above, but instead of always adding edges to make
the k-sized group of nodes k-degree anonymous, we randomly determine whether to
add or delete edges. Let p be the probability for deleting an edge and q = 1 − p be the
probability for adding an edge. We first sort the degrees of the nodes in W . Then given
the sorted set of weak nodes, during each iteration for a size k group we randomly insert
or delete edges to the nodes in each weak degree set based on p and q. If the decision
is to insert an edge, we insert edges to the nodes in the group until all the degrees of
the nodes are equal to the highest degree in the group. If the decision is to delete an
edge, we delete edges and decrease the degrees in the group until all the degrees are
equal to the lowest degree in the group. This process continues until all the weak degree
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sets are members of k-degree anonymous degree sets. This method combines both a
deterministic and probabilistic adding of noise to obtain k-degree anonymity.

Proof. (Sketch) Nodes that are not in DW are already k-degree anonymous by defini-
tion. Since the nodes in DW are considered in groups of k and, in each group, all nodes
are assigned the same degree, these nodes become k-degree anonymous. Consequently,
the produced graph (using [16]) satisfies k-degree anonymity as it consists of k-degree
anonymous nodes.

Probabilistic Weak Neighborhood Subgraph Anonymity: While our focus is on node
exposure, our probabilistic weak node anonymity algorithm could be extended for neigh-
borhood subgraphs by only considering nodes and edges that are in W based on both
weak_cc and weak_Da. Generally, the algorithm would focus on adding and removing
edges that exist between neighbors that are weak. We save this analysis for future work.

5 Experiments

In this section we evaluate our approach in terms of 1) graph edit distance between G
and G′; 2) accuracy of graph properties; and 3) efficiency of anonymization on five real
world networks (graph properties shown in Table 1). The PolBlogs graph represents a
network of hyperlinks between weblogs about US politics in 2005 [1]. The Jazz graph
shows connections between different jazz musicians [8]. The Email graph is a network
of email interchanges between members of the University Rovira i Virgili [9]. The Wiki
graph is a network representing user participation in different elections [15]. Last, the
Facebook graph is from a crawl of a subset of public Facebook pages. Because this
crawl followed a snowball sampling protocol with multiple seeds, we remove nodes
that only have a single degree since they are an artifact of the sampling approach.

Sensitivity Analysis of Probabilistic Anonymization: Before comparing our
anonymization algorithm to other algorithms, we want to understand the sensitivity of the
percentage of additions vs. deletions of edges. In other words, does the actual percentage
of additions versus deletions affect the accuracy of the graph properties of interest?

Figure 2 shows the percentage of error introduced for our probabilistic method when
we vary the percentage of edges that are inserted and deleted. Each experiment was
run 10 times and the average results are presented. The x-axis shows the probability
of deleting an edge as opposed to inserting it. The y-axis shows the amount of error
introduced for each measure. This figure shows that the amount of error introduced is
relatively constant, but does rise some as the probability of insertions becomes higher
than deletions. Therefore, for the remainder of our experiments, we will set the proba-
bility of deleting an edge to 95% and the probability of adding an edge to 5%.

Table 1. Graph properties of data sets

Network Name Nbr of Vertices Nbr of Edges Average Degree Average Betweenness
Jazz 198 2742 27.7 121.65
Email 1133 5451 9.62 1475.01
PolBlogs 1222 16714 27.36 1060.76
Wiki 7115 100762 28.32 7884.65
Facebook 40531 157054 7.75 71262.98
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(a) Political Blogs (b) Jazz (c) Email (d) Wiki

Fig. 2. Graph properties percentage error as the probability of deletion decreases (k = 3)

Accuracy of Graph Properties: We now consider the accuracy of the released, per-
turbed graphs. The methods we consider are as follows: the original Liu and Terzi al-
gorithm [Liu], removal of weak nodes from the graph [Naïve], Liu and Terzi applied to
only weak nodes [Liu-Weak], our probabilistic anonymization [Prob], [Prob] with the
first operation forced to be a deletion [Prob-Del-1st] or with the first operation forced
to be an insertion [Prob-Ins-1st]. A naïve approach for anonymizing weak nodes is to
produce a graph G′ that simply removes each weak node, vw in W and incident edges
to nodes in N(vw) from G. In the last two methods, to reduce the variance of the ba-
sic probability anonymization procedure, we force the first operation to be consistent
across runs. This is necessary because of the generally large variance in the degrees of
the nodes in the first k weak nodes. Because they are the highest degree nodes, deleting
or inserting has the largest amount of impact on this 1st group of nodes. Forcing the
first action to always be the same reduces the variance to under 5%. The different algo-
rithms were run ten times and the average error introduced by each method for k = 10
is shown in Figure 3. If a bar is missing, then G′ was disconnected. We measured the
error for varying values of k and the results were similar to those when k = 10. The
x-axis shows the different data sets and the y-axis shows the value of the graph prop-
erty as computed on the original graph G [Original], and on the anonymized graph G′

produced by each tested method.
From Figure 3 we see that the best performer is [Prob-Del-1st] and the naïve removal

of weak nodes generally results in the highest error across all data sets and measures.
The exception to that is the betweenness calculation, where it generally outperforms the
other methods. We suspect this occurs because the other approaches are adding at least a
small fraction of edges to the graph, thereby creating new paths and potentially reducing
the number of shortest paths each node lies on. With the exception of the political
blogs data set, applying Liu and Terzi to just the weak nodes introduces less error than

(a) Average Degree (b) Average Betweenness (c) Average Path Length (d) Diameter

Fig. 3. Graph properties for different anonymization techniques (k = 10)
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Table 2. Graph edit distance comparison to the algorithm of [Liu] with k = 3 and k = 10

[Liu] [Liu-Weak] [Prob]
Jazz 0 -669, -13 -681, -324
Email 0 -84, -114 -131, -305
PolBlogs 0 -3529, -1242 -3529, -2547
Wiki 0 -11089, -6554 -11831, -10501
Facebook 0 -1138, -596 -2297, -6347

applying the algorithm to the entire graph. In general, our probabilistic methods perform
comparable or better than the other methods on these data sets.

Since our methods do not guarantee a minimum number of edge modifications to G,
we also compare the graph edit distance between G and G′. We set the baseline to be
the Liu and Terzi method and compare the graph edit distances based on that method.
Table 2 shows these results for each of the data sets averaged over 10 runs with k = 3
and k = 10, respectively. The table should be read as follows. For the Jazz dataset, the
[Liu-Weak] algorithm needs 669 fewer graph edit operations than [Liu] when k = 3
and 13 fewer graph edit operations when k = 10. Looking at the entire table, we see
that [Prob] has the smallest edit distance in all cases.

Finally, Singh and Zhan propose a measure called topological anonymity that uses
node and subgraph exposure to quantify the level of risk associated with releasing a
particular graph G′ [18]. It is computed as follows:

ta =

max(deg(G))∑
i=1

[
(|Di| × CC_difi) −

{
0, if |Di| ≥ k

|Di| , if |Di| < k

]
n

where k represents the required number of nodes in a degree set and n is the number of
nodes in G. The ta score, ranging from −1 to 1, with −1 indicating that the graph is
highly susceptible to both node and neighborhood subgraph exposure, and 1 indicating
that the nodes are well anonymized.

As another method to quantify the level of anonymity of G′ compared to the other
approaches, we compute the topological anonymity of G′ for the different methods.
Figure 4 (shown below) illustrates the improvement in the ta score after anonymization.
All the algorithms improve with the exception of the naïve one.

Fig. 4. Topological anonymity comparison Fig. 5. Run times (seconds) as the percentage of
weak nodes increases
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Fig. 6. Weak node distribution for k = 10

Weak Nodes Distribution: We now compare the distribution of weak nodes to deter-
mine if they are similar or different across our data sets. Figure 6 shows the distribution
of weak nodes when k = 10. The x-axis shows the degree of each weak node, and the
y-axis shows the number of nodes with that degree. In all cases, the maximum of the
y-value is k-1, since degrees that have k or more nodes are not considered weak. These
graphs show a number of interesting properties about the distribution of weak nodes.
The main similarity among the graphs is that the far left side does not have any weak
nodes, indicating that low degree nodes are generally k-degree anonymous. The Jazz
network is the one exception. Second, we observe that as the degree increases, the num-
ber of nodes with that degree decreases and the bars become sparser as we move from
left to right along the x-axis. This may be an indication that there are fewer nodes with
high degree and that those nodes are not always weak. Both of these observations sup-
port theories that state social networks often follow a power law distribution. Finally, the
figures highlight that the distribution of the weak nodes differs from data set to data set.

In addition to considering the number of weak nodes with each degree, we are also
interested in the subgraphs formed by these weak nodes. They represent the portion of
the graph that is most vulnerable to attack. Figure 7 shows that weak nodes tend to be
highly connected, with all weak nodes in the Political Blogs network contained in one
component, and the majority of weak nodes in the Facebook network contained in one
component. We measure the vulnerability associated with subgraphs by considering
their size and connectivity to other weak nodes. The subgraph vulnerability index is de-
fined as: SV I = |Sw|

|W |×|Cw| , where |Sw| is the number of nodes in the weak subgraph(s),
|W | is the total number of weak nodes, and |Cw| is the number of weak components.
SVI is 1 and 0.822 for Political Blogs and Facebook, respectively.

Efficiency Results: Table 3 compares the run time of the Liu and Terzi algorithm to
our delete first probabilistic anonymization algorithm with the probability of deleting

Table 3. Run Time Comparison (milliseconds)

Network Name Preprocessing Anonymization Total
Liu Weak Prob Liu Weak Prob Liu Weak Prob

Jazz 0.036 10.956 0.451 0.146 0.487 11.102
Email 0.062 25.239 8.423 0.089 8.485 25.328
PolBlogs 0.065 97.48 7.326 0.284 7.391 97.764
Wiki 0.25 1705.361 171.962 0.463 172.212 1075.824
Facebook without Degree 1 1.453 5187.103 4852 0.479 4853.453 5187.582
Facebook 8.484 73967.523 209784.52 1.125 209793.004 73968.648
Facebook doubled 17.217 155035.336 861238.351 5.277 861255.568 155040.613
Facebook quadrupled 33.781 319397.488 4392412.422 6.196 4392446.203 319403.684
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(a) Facebook (b) Political Blogs

Fig. 7. Weak Subgraphs

an edge set to 95% and the probability of adding an edge set to 5% when k = 10.
The second and third columns compare the preprocessing cost of the two approaches.
The next two columns compare the anonymization approaches followed by the total run
time in milliseconds.

Our preprocessing cost is higher than the original Liu and Terzi algorithm and is
always the dominant cost of the approach. The Liu and Terzi algorithm precomputes
a degree set map. Our algorithm precomputes a degree set map and clustering coeffi-
cients. While for small graphs our preprocessing cost is high, as the size of the graph
increases, it increases linearly, resulting in an overall run time that is still less than the
overall run time of the Liu and Terzi algorithm.

Table 3 shows that our anonymization run time increases sublinearly and is orders of
magnitudes faster than Liu and Terzi as the size of the graph increases. This is because
our cost is related to the number of weak nodes in the graph, which is a small fraction
of the total number of nodes. To evaluate the run time of the anonymization algorithm
as the number of weak nodes increases, we simulate an increase in the number of weak
nodes for each data set. Figure 5 shows that the run time increases linearly. Therefore,
even when the number of weak nodes increases, the algorithm performs efficiently.

6 Conclusions

This paper investigates anonymization of social graphs for data publishing. Current ap-
proaches apply anonymization techniques to the entire graph. We introduce the concept
of weak nodes and propose approaches that only anonymize those nodes. We show that
the number of weak nodes tends to be small in real world networks and anonymiza-
tion focusing on these nodes is orders of magnitude faster and maintains the same level
of accuracy and a low edit distance when compared to traditional methods. By not
distributing the noise uniformly across the graph, more of the original distribution and
properties are well maintained. Future work will investigate weak subgraph anonymiza-
tion and try to understand the impact of releasing a partially generalized graph.
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Abstract. One solution to deal with class imbalance is to modify its class
distribution. Synthetic over-sampling is a well-known method to modify class
distribution by generating new synthetic minority data. Synthetic Minority Over-
sampling TEchnique (SMOTE) is a state-of-the-art synthetic over-sampling al-
gorithm that generates new synthetic data along the line between the minority
data and their selected nearest neighbors. Advantages of SMOTE is to have de-
cision regions larger and less specific to original data. However, its drawback is
the over-generalization problem where synthetic data is generated into majority
class region. Over-generalization leads to misclassify non-minority class region
into minority class. To overcome the over-generalization problem, we propose an
algorithm, called TRIM, to search for precise minority region while maintain-
ing its generalization. TRIM iteratively filters out irrelevant majority data from
the precise minority region. Output of the algorithm is the multiple set of seed
minority data, and each individual set will be used for generating new synthetic
data. Compared with state-of-the-art over-sampling algorithms, experimental re-
sults show significant performance improvement in terms of F-measure and AUC.
This suggests over-generalization has a significant impact on the performance of
the synthetic over-sampling method.

1 Introduction

Imbalanced data has been identified as one of ten most challenging problems in data
mining [14]. A dataset is considered imbalanced when its class distribution is skewed.
The skewed class distribution can be represented as a binary class, i.e., minority and
majority class. The minority class is the one having a much smaller proportion of class
examples, whereas the majority class contains a much higher proportion of class exam-
ples. In classification, we want to correctly classify on the both classes. However, most
traditional classifiers are biased towards the larger number of examples. For example,
the C4.5 decision tree algorithm [10] assumes data is from a well balanced class dis-
tribution. As a result, in cases of imbalanced class distribution, the algorithm is biased
toward the majority class and treats the minority class as noise.

Solutions to the imbalanced class problem can be broadly divided into two cate-
gories [13]: algorithm level and data level. Data level solutions are independent of the

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 371–382, 2012.
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classification algorithm; the preprocessed data can be used by any traditional classifi-
cation methods. SMOTE [3] is a state-of-the-art of synthetic over-sampling algorithm
that generates synthetic data along the line between minority data members and their
selected nearest neighbors. The advantage of SMOTE is to have decision regions larger
and less specific to the original data [9]. However, it suffers from over-generalization
where synthetic data is generated into the majority class region. The reason is that
SMOTE selects its neighbors without regard to the majority class. This problem leads
to misclassifying non-minority class examples into minority class region.

Recently, many synthetic over-sampling methods [2–4, 7, 8] have been proposed to
overcome the imbalanced class problem. Most of the proposed algorithms are based on
SMOTE and directly select seed examples to generate new synthetic data. Borderline-
SMOTE [7] directly selects seed examples based on the decision boundary. Borderline
data is used as a seed example to generate new synthetic data. Safe-Level-SMOTE [2]
directly positions synthetic data between two minority examples based on the number
of minority data neighbors. However, these methods are not intended to solve the over-
generalization problem. To the best of our knowledge, MSYN [4] is the first synthetic
over-sampling method that tries to overcome over-generalization. MSYN uses 1-NN’s
margin to select a synthetic example. However, in case of a very small number of mi-
nority data, MSYN has the same problem as other methods as well.

In this paper, we propose an algorithm to overcome the over-generalization problem
in imbalanced data. To avoid over-generalization, a greedy filtering strategy is employed
to search for precise and generalized sets of minority data. Individually, precise and
generalized sets are then used as seed sets to generate synthetic minority data. TRIM
is a preprocessing algorithm for synthetic over-sampling methods. Therefore, it can
be used as a preprocessor for most existing synthetic over-sampling methods. In this
paper, TRIM is used as a preprocessing step to generate synthetic minority data for
SMOTE, called TRIM-SMOTE. The experimental results show significant performance
improvements in terms of F-measure and AUC over SMOTE. For F-measure, TRIM-
SMOTE statistical significance outperforms SMOTE in 26 out of 33 experiments. For
AUC, TRIM-SMOTE significance outperforms SMOTE in 22 out of 33 experiments.

2 Related Work

Studies using synthetic minority over-sampling [2–4, 7, 8] as a technique to balance
class distribution in the literature are designed based on the Synthetic Minority Over-
sampling TEchnique (SMOTE) [3]. SMOTE employs k-nearest neighbors (k-NN) as a
range to couple two minority examples; new synthetic data is randomly generated along
the line between the two minority examples. That is, SMOTE uses only minority data
to generate new synthetic data without regard to the majority class. The way SMOTE
generates new data can be interpreted as merging the two minority data into a disjunct
with synthetic data. As a result, SMOTE makes decision regions larger and less specific
to the original data. That is, the minority class is generalized and even over-generalized.
There have been several other techniques to generate minority synthetic data; in this
section we describe some significant works relevant to the work here.
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Borderline-SMOTE (BSMOTE) [7] uses the basic assumption that data nearby the
decision boundary has more chance to be misclassified than data far from the decision
boundary. The author further proposed a criteria to identify borderline data based on
k-NN; BSMOTE uses both minority and majority data in k-NN. The ratio of the num-
ber of neighborhood minority examples is used as criterion to identify importance of
borderline data. Only borderline data and their neighbors are used to generate synthetic
data. As a result, synthetic data is generated in the overlapping region between two
classes. Therefore, borderline SMOTE also suffers from over-generalization. The algo-
rithm may cause severe over-generalization due to the focus sampling in the overlap
area.

Safe-Level-SMOTE (SSMOTE) [2] has been proposed to directly position synthetic
examples instead of random positioning. The safe level criteria is based on the number
of neighborhood minority data in k-NN. That is, the higher number of neighborhood
minority data, the safer the position is. Since Safe-Level-SMOTE is based on SMOTE,
new synthetic data are generate on a line between two minority examples. A new syn-
thetic example is generated nearby a minority example that has higher number of neigh-
borhood minority data.

To the best of our knowledge, Margin-guided Synthetic Over-sampling (MSYN) [4]
is the first synthetic over-sampling method that claims to overcome over-generalization.
MSYN uses 1-NN margin to estimate goodness of the synthetic data. The algorithm bias
prefers synthetic data that has a large margin on both minority and majority classes.
The synthetic data is ranked by the margin, MSYN then selects the top M values for
use as synthetic minority data. MSYN trends to generate new synthetic data on a well
separated region while avoiding the boundary region. Although MSYN can be used to
avoid over-generalization, it uses all features to select a synthetic example. However,
many existing classification methods usually use several good features to classify data.
In this work, we propose a method to select precise seed sets on particular features. The
proposed method searches one feature space at a time to filter out irrelevant data while
maintaining seed data.

3 Methodology

The goal of the TRIM algorithm is to avoid over-generalization. The basic idea is to
identify sets of minority data having the best compromise between generalization and
precision. The algorithm starts with a single set containing all the data. For each feature,
every splitting point is identified and evaluated based on the TRIM criteria, described
below. A splitting point is identified by taking the midpoint between two adjacent sorted
values having different classes. The best splitting point will be used to split the data into
two sets, i.e., left and right sets. Iteratively, each set of minority data is split into smaller
sets until the stopping criterion is satisfied. The final sets are minority datasets are used
as seed data to generate synthetic data via SMOTE, namely TRIM-SMOTE.

3.1 TRIM Criteria

To avoid over-generalization, the seed data should be precise while maintaining their
generalization. Therefore, the TRIM criteria, Equation (1), is used as a measure of
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precision and generalization. The higher the TRIM value, the more precise and gener-
alized the seed data.

TRIM =
|minority|2

N
(1)

where |minority| is the size of the minority data. To get better seed data, TRIM Gain
(T −Gain) is evaluated against two splitting datasets, i.e, left and right sets. T −Gain
is compared to TRIM . If T − Gain > TRIM , a better seed data is obtained by a
binary splitting operation. Define |minorityleft| and |minorityright| as the number
of minority data in the left and right subsets; let N be the total number of examples,
Nleft, and Nright be the number of data in the left and right subsets. With this notation,,
T −Gain can be calculated as

T −Gain = max(
|minorityleft|2

Nleft
,
|minorityright|2

Nright
) (2)

The equation (2) is designed to capture two characteristics of SMOTE. The first charac-
teristic is to generate new synthetic data from a couple of minority examples. Therefore,
only minority data is used to evaluate precision. The second characteristic is synthetic
data is always generated within the convex hull of the minority data. Therefore, another
objective of T −Gain is to identify irrelevant majority data located outside the convex
hull and filter them out.

Fig. 1 shows a dataset containing two classes. Minority examples are shown as di-
amonds, and majority examples are stars. The convex hull of the minority class is il-
lustrated by a dashed line. The relevant majority data is A,B,C,D, and E. The rest
of the majority data are irrelevant. The seed data lie within the solid line. Similar to
decision trees, seed data are modeled with a hyper-rectangle. Thus, the irrelevant ma-
jority data that locate inside the solid line will be mis-identified as relevant majority
data.

The standard maximum function is used in Equation 2 to focus on improvement of
the seed set. The first objective is to filter out irrelevant majority data located outside the
convex hull of the minority data. We want to focus on improvement of seed data while
ignore irrelevant data. The second objective is to identify which set of data is splitting
seed data. To obtain a more precise seed data, some minority examples are split from
the old seed data. The max is used to detect which of the subsets to use as splitting seed
data. The splitting seed data is then compared against the old seed data to evaluate the
improvement.

3.2 TRIM Algorithm

The TRIM algorithm uses a greedy approach to search for set of minority data while fil-
tering out irrelevant data. Although this approach does not guarantee finding the global
optimum, it provides a good approximation to the optimal set. The following pseudo-
code describes the algorithm.
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Fig. 1. The artificial dataset with its convex hull and seed set boundary after processing by TRIM

Algorithm TRIM(D)
Input: data D
Output: list Seed

1. add D to Leaf
2. While Leaf and Candidate is not empty{
3. For each Leaf {
4. Initialize all splitting points S on Leafi
5. calculate TRIM on Leafi
6. For each S {
7. accept the highest T −Gainmax that does not split any minority data at Smax

splitting point
8. }
9. if (T −Gainmax > TRIM ) {

10. split Leafi into Leafleft and Leafright using Smax

11. if (subsetleft contains any minority data)
12. add Leafleft to Leaf
13. if (subsetright contains any minority data)
14. add Leafright to Leaf
15. remove Leafi from Leaf
16. } else {
17. add Leafi to Candidate
18. remove Leafi from Leaf
19. }
20. }
21. For each Candidate {
22. Initialize all splitting points S on Candidatei
23. calculate TRIM on Candidatei
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24. For each S {
25. accept highest T −Gainmax at Smax splitting point
26. }
27. if (T −Gainmax > TRIM ) {
28. split Candidatei into Candidateleft and Candidateright using Smax

29. if (Candidateleft contains any minority data)
30. add Candidateleft to Leaf
31. if (Candidateright contains any minority data)
32. add Candidateright to Leaf
33. remove Candidatei from Candidate
34. } else {
35. add Candidatei to Seed
36. remove Candidatei from Candidate
37. }
38. }
39. }
40. return Seed

In line 1, the algorithm starts with a single set containing all data. The algorithm
consists of two main steps which are irrelevant data filtering and candidate splitting.
The first step, irrelevant data filtering, is shown in lines 3-20. The main objective of
this step is to filter out irrelevant majority data. The splitting point will be used with a
constraint that is no minority data will be split into different set. This constraint ensures
only irrelevant majority data is split in this step and the relevant majority data is used
to splits minority data in the next step. Candidate splitting is performed in lines 21-39.
This step focuses on splitting some minority data to get more precise seed data. Both
split minority data and new seed data will be used in the 1st step of the next iteration.
This process iterates until no more better splitting point is found.

In lines 4-5 of the irrelevant data filtering step, the algorithm starts by initializing
available splitting points and TRIM value of the whole dataset. In lines 6-8, T −Gain
is evaluated on every splitting point that splits all minority data into one set. In lines
10-15, the data is split into two sets (left and right). All majority data will be filtered
out if they do not contain any minority examples. If no irrelevant data is found, the data
is sent to the second step at line 17.

In candidate splitting, the algorithm is similar to the filtering step. However, this step
focuses only on minority data, as shown in line 25. Notice that each seed data will
be processed in both steps at least once. In order to maintain the generalization, the
algorithm does not split minority data from majority data that are located outside the
convex hull. To ensure this condition, all the irrelevant majority data are filtered out in
the filtering step. Thus, the second step will split minority data based only on relevant
majority and minority data.

The higher the T − Gain in Equation (2), the more precise and generalized data
is obtained. In line 35, seed data will be generated when T − Gain ≤ TRIM . This
can be interpreted as meaning that no more precise and generalized data can be found.
Although seed data is well-approximated, some seed data can be considered as noise.
To filter out noise, a threshold minimum precision (minPrecision) is used to select
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seed data. Define |minorityi| as the number of minority data in Seedi; Ni be the to-
tal number of data in Seedi. The precision of Seedi (precisioni) can be expressed
mathematically as shown in Equation (3).

precisioni =
|minorityi|

Ni
(3)

The precision value of a seed is compared against minPrecision. The seed set will be
filtered out if precision < minPrecision. Intuitively, if we set minPrecision too
high, we lose some information. However, if we set minPrecision too low, noise can
happen in the seed data. We experimentally selected minPrecision = 0.3 as suitable
to preserve information while filtering out noise.

The TRIM algorithm calculates T − Gain on every splitting point. Define M as
the number of attributes and N be number of data values. The maximum number of
splitting points is N − 1, and the maximum number of iterations is N − 1 in the case
where only one example data is split at each iteration. Hence, the time complexity of
the algorithm is O(MN2). However, in experiments the critical step was found to be
data sorting, having complexity O(MNlog(N)).

4 Experimental Results

In the following, the results of TRIM-SMOTE, SMOTE, and MSYN are compared us-
ing 11 continuous datasets. All experiments were conducted using 10 random seeds
on 10-fold cross validation with three levels of sampling, i.e., 100%, 300%, 500%. Two
measurements, AUC [1] and F-measure [12], are used to evaluate performance. Each al-
gorithm was used in at least 3,300 experiments. The experiments use WEKA’s C4.5 [6]
as a classification model with default configuration, i.e., weka.classifiers.trees.J48 -C
0.25 -M 2. For TRIM, minPrecision was set to 0.3; parameters for the other algo-
rithms were set exactly same as in their papers.

Table 1. Experimental datasets

# Dataset #Attributes %Minority #Minority Data size
1 letter-A 16 3.94 789 20000
2 arrhythmia-6 280 5.53 25 452
3 libras-10 90 6.67 24 360
4 glass-3 10 7.9 17 214
5 mfeat-fourier1 76 10.0 200 2000
6 yeast-ME3 9 10.9 162 1484
7 breastTissue-fad 10 14.15 15 106
8 segment-path 19 14.28 330 2310
9 bloodTransfer 4 23.7 178 748
10 haberman 3 26.4 81 306
11 ionoshpere 35 35.8 126 351
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In Table 1 the 11 UCI datasets [5] are sorted by percentage of minority class. The per-
centages vary from 3.9% to 35.8%. Each dataset has five attributes, i.e., dataset’s name,
number of attributes (#Attributes), percentage of minority data (%Minority), number of
minority data (#Minority), and size of dataset (Data size). All datasets have binary class,
i.e, minority class and majority class. However, the 1st - 8th datasets have more than
two classes. Therefore, we used one class as the minority class, and grouped the others
as a majority class. For example, yeast-ME3 contains two classes, i.e., ME3 and others.
The ME3 and others are considered as minority and majority classes, respectively.

To illustrate the impact of over-generalization, we examine results for the the segment-
path and ionosphere datasets in term of AUC and F-Measure.

Fig. 2. The negative impact of over-generalization in term of F-Measure and AUC on segment-
path dataset

Fig. 3. The negative impact of over-generalization in term of F-Measure and AUC on ionoshpere
dataset

As shown in Fig. 2, the three algorithms (decision tree C4.5, TRIM-SMOTE, and
MSYN) exhibit comparable performance with respect to both AUC and F-measure.
This can be interpretted to mean that performance improvement is not guaranteed by
synthetic over-sampling methods. However, SMOTE is degraded on every percentage
of sampling and its performance is worse when the sampling percentage increases.
The reason is that MSYN and TRIM are designed to handle over-generalization while
SMOTE suffers from this problem.
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In Fig. 3, every synthetic over-sampling method, i.e., SMOTE, MSYN, and TRIM-
SMOTE yields lower performance with respect to F-measure when compared to C4.5.
However, we obtained stable performance with MSYN and TRIM-SMOTE, i.e., 82.8%
F-measure with 0.7% standardization. In contrast, SMOTE always yields lower perfor-
mance on every increasing sampling percentage. In terms of AUC, decision tree C4.5,
TRIM-SMOTE, and MSYN show comparable performance while SMOTE is always
lower. These four graphs illustrate the negative impact of over-generalization.

Table 2. Result in terms of F-measure in the experiments performs on eleven UCI datasets. A
value will be underlined when the particular algorithm yield the highest F-measure among all
four algorithms.

Dataset %Minority #Minority %Sampling C4.5 SMOTE MSYN TRIM-SMOTE

letter-A 3.94 16
100% 94.7% 93.9% 94.3% 95.2%
300% 94.7% 92.3% 93.7% 95.2%
500% 94.7% 91.8% 93.7% 94.8%

arrhythmia-6 5.53 25
100% 62.7% 58.1% 58.1% 64.3%
300% 62.7% 40.8% 40.9% 64.1%
500% 62.7% 36.2% 36.5% 69.6%

libras-10 6.67 24
100% 57.1% 56.6% 56.2% 57.0%
300% 57.1% 52.7% 59.0% 60.3%
500% 57.1% 50.8% 56.8% 65.6%

glass-3 7.9 17
100% 51.6% 35.0% 42.5% 47.7%
300% 51.6% 30.3% 39.8% 47.9%
500% 51.6% 29.6% 37.4% 43.8%

mfeat-fourier1 10.0 200
100% 97.4% 89.3% 98.1% 96.7%
300% 97.4% 79.7% 98.3% 96.9%
500% 97.4% 75.7% 98.3% 96.7%

yeast-ME3 10.9 162
100% 76.3% 76.3% 77.3% 77.4%
300% 76.3% 74.9% 76.0% 76.3%
500% 76.3% 75.0% 76.5% 78.4%

breastTissue-fad 14.15 15
100% 41.6% 26.7% 38.2% 36.9%
300% 41.6% 34.8% 36.9% 39.4%
500% 41.6% 33.2% 34.7% 42.0%

segment-path 14.28 330
100% 99.2% 93.8% 99.2% 99.2%
300% 99.2% 89.5% 99.2% 99.3%
500% 99.2% 85.1% 99.2% 99.3%

bloodTransfer 23.7 178
100% 46.9% 47.9% 48.3% 48.5%
300% 46.9% 47.4% 47.6% 48.6%
500% 46.9% 47.7% 47.0% 47.8%

haberman 26.4 81
100% 41.1% 49.5% 48.1% 51.1%
300% 41.1% 47.9% 50.1% 48.2%
500% 41.1% 45.6% 49.3% 48.1%

ionoshpere 35.8 126
100% 83.3% 80.5% 84.2% 82.5%
300% 83.3% 75.5% 82.3% 83.4%
500% 83.3% 72.8% 81.7% 82.5%

Win/Draw/Lose Significant 17/7/9 26/0/7 17/6/10 NA
1st rank 9 0 7 20
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Performance of C4.5 (without sampling), SMOTE, MSYN, and TRIM-SMOTE on
the eleven datasets in terms of F-measure and AUC are shown in Table 2 and 3. C4.5
is used as a baseline to evaluate improvement or decreased performance of the three
algorithms. The bottom rows provide a comparison of each of the three algorithms with
TRIM-SMOTE. The row labeled (Win/Draw/Lose Significant) summarizes the num-
ber of cases where the algorithm significant outperforms, equals, or performs worse
than TRIM-SMOTE. To evaluate statistical significant, Wilcoxon signed rank test [11]

Table 3. Result in terms of AUC in the experiments performs on eleven UCI datasets. A value will
be underlined when the particular algorithm yield the highest AUC among all four algorithms.

Dataset %Minority #Minority %Sampling C4.5 SMOTE MSYN TRIM-SMOTE

letter-A 3.94 16
100% 96.5% 96.8% 96.2% 97.3%
300% 96.5% 96.3% 96.1% 97.5%
500% 96.5% 96.2% 96.3% 97.3%

arrhythmia-6 5.53 25
100% 80.8% 82.7% 82.7% 81.8%
300% 80.8% 73.7% 73.6% 82.2%
500% 80.8% 71.8% 72.0% 86.5%

libras-10 6.67 24
100% 77.5% 79.8% 77.2% 78.0%
300% 77.5% 80.5% 80.5% 78.0%
500% 77.5% 83.0% 79.3% 78.3%

glass-3 7.9 17
100% 72.0% 64.2% 68.5% 72.4%
300% 72.0% 64.3% 68.5% 71.8%
500% 72.0% 67.9% 66.9% 70.4%

mfeat-fourier1 10.0 200
100% 98.3% 98.0% 98.8% 98.0%
300% 98.3% 96.7% 99.1% 98.2%
500% 98.3% 96.1% 99.2% 98.2%

yeast-ME3 10.9 162
100% 87.0% 89.4% 88.4% 89.0%
300% 87.0% 90.3% 87.8% 89.5%
500% 87.0% 91.4% 88.1% 90.8%

breastTissue-fad 14.15 15
100% 64.4% 57.8% 65.9% 64.5%
300% 64.4% 65.8% 64.3% 65.7%
500% 64.4% 65.4% 63.2% 67.7%

segment-path 14.28 330
100% 99.6% 98.8% 99.6% 99.6%
300% 99.6% 97.9% 99.6% 99.7%
500% 99.6% 96.9% 99.6% 99.7%

bloodTransfer 23.7 178
100% 65.2% 65.8% 66.1% 66.2%
300% 65.2% 65.4% 65.6% 66.3%
500% 65.2% 65.7% 65.2% 65.7%

haberman 26.4 81
100% 61.0% 65.4% 64.7% 66.6%
300% 61.0% 63.8% 66.0% 64.2%
500% 61.0% 61.6% 65.3% 64.0%

ionoshpere 35.8 126
100% 86.5% 85.1% 87.6% 86.2%
300% 86.5% 81.3% 86.4% 87.1%
500% 86.5% 78.9% 86.0% 86.6%

Win/Draw/Lose Significant 18/2/13 22/3/8 13/5/15 NA
1st rank 8 4 8 15



A Pruning-Based Approach for Searching Precise and Generalized Region 381

with p-value greater than or equal to 95% evaluates on every cross validation result.
The second row shows number of cases where the algorithm obtains the highest perfor-
mance among all four algorithms. The result is underlined when it obtains the highest
performance.

Table 2 shows the experimental results evaluated using F-measure. The table shows
that TRIM-SMOTE provided the best classification in 20 of 33 cases, and was almost
similar to C4.5. The table shows that SMOTE generally underperformed both C4.5 and
TRIM-SMOTE. For datasets having a very small number of minority examples, namely,
arrhythmia-6, libras-10, glass-3, and breastTissue-fad, SMOTE and MSYN show lower
performance than C4.5, whereas TRIM-SMOTE is most similar to C4.5, showing more
stable performance.

Table 3 shows experimental results evaluated using AUC. The table shows that
SMOTE generally underperformed both C4.5 and TRIM-SMOTE. For the datasets hav-
ing a very small number of minority examples, namely, arrhythmia-6, glass-3, and
breastTissue-fad, SMOTE and MSYN show lower performance than C4.5, whereas
TRIM-SMOTE is most similar to C4.5, showing more stable performance. For libras-
10 and yeast-ME3, SMOTE shows highest performance in terms of AUC, while TRIM-
SMOTE yielded the highest F-measure. This can be explained by the fact that SMOTE
randomly generates synthetic data on every minority data without regarding to major-
ity data, whereas TRIM-SMOTE tries to maintain a precise and generalized set of seed
data. As a result, TRIM-SMOTE produces comparable recall but higher precision while
SMOTE gain higher recall but lower precision.

These experimental results indicate that, of the four algorithms, SMOTE underper-
forms C4.5 the most, and its performance declines as the sampling percentage increases.
We observed stable performance for MSYN on large datasets but less than C4.5 for
small datasets.

5 Conclusions

Synthetic minority over-sampling is a method that generates new minority examples to
balance an imbalanced class distribution. The advantage is that synthetic data does not
duplicate the original minority data. Therefore, the classification model is not overfitted
to synthetic data. Synthetic over-sampling has its own drawback: over-generalization.
The problem is that the majority class region is confounded with synthetic minority
examples. To overcome over-generalization, we propose an algorithm called TRIM as
a preprocessing for synthetic over-sampling. TRIM searches for a set of precise mi-
nority examples while maintaining their generalization. The precise seed set is used as
an input to a synthetic minority over-sampling method. Thus, TRIM can be used as a
preprocessing algorithm for many available synthetic over-sampling techniques such as
SMOTE, BSMOTE, and MSYN. Prior to sampling, evaluation or interpretation of the
seed data can also be conducted. Empirical results also show encouraging improvement
over SMOTE and MSYN. TRIM-SMOTE is able to cope with the over-generalization
problem more than MSYN. Its performance is stable on large dataset, and increased on
small datasets. Experiments on multi-class and multivariate datasets are to be explored
in the future study.
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Abstract. While multi-label classification can be widely applied for
problems where multiple classes can be assigned to an object, its effec-
tiveness may be sacrificed due to curse of dimensionality in the feature
space and sparseness of dimensionality in the label space. Moreover, it
suffers with high computational cost when there exist a high number of
dimensions, as well as with lower accuracy when there are a number of
noisy examples. As a solution, this paper presents two alternative meth-
ods, namely Dependent Dual Space Reduction and Independent Dual
Space Reduction, to reduce dimensions in the dual spaces, i.e., the fea-
ture and label spaces, using Singular Value Decomposition (SVD). The
first approach constructs the covariance matrix to represent dependency
between the features and labels, project both of them into a single re-
duced space, and then perform prediction on the reduced space. On the
other hand, the second approach handles the feature space and the label
space separately by constructing a covariance matrix for each space to
represent feature dependency and label dependency before performing
SVD on dependency profile of each space to reduce dimension and for
noise elimination and then predicting using their reduced dimensions. A
number of experiments evidence that prediction on the reduced spaces for
both dependent and independent reduction approaches can obtain better
classification performance as well as faster computation, compared to the
prediction using the original spaces. The dependent approach helps sav-
ing computational time while the independent approach tends to obtain
better classification performance.

Keywords: multi-label classification, Singular Value Decomposition,
SVD, dimensionality reduction, Problem Transformation

1 Introduction

In the past, most traditional classification techniques usually assumed a sin-
gle category for each object to be classified by means of minimum distance.
However, in some tasks it is natural to assign more than one categories to an
object. For examples, some news articles can be categorized into both politic
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and crime, or some movies can be labeled as action and comedy, simultane-
ously. As a special type of task, multi-label classification was initially studied by
Schapire and Singer (2000) [10] in text categorization. Later many techniques in
multi-label classification have been proposed for various applications such as se-
mantic scene classification [2], music emotion categorization [12] and automated
tag recommendation [8]. However, these methods can be grouped into two main
approaches: Algorithm Adaptation (AA) and Problem Transformation (PT) as
suggested in [13]. The former approach modifies existing classification methods
to handle multi-label data [4,10]. On the other hand, the latter approach trans-
forms a multi-label classification task into several single classification tasks and
then applies traditional classification method on each task [2,9,14].

Residing in these two main approaches, one major issue is curse of dimen-
sionality, which causes a well-known overfitting problem. To solve this issue,
many techniques have been proposed, e.g., sparse regularization [6], feature se-
lection [17] and dimensionality reduction [15,16,18]. Among these methods, the
dimensionality reduction which transforms data in a high-dimensional space to
those in the lower-dimensional space, has been focused for multi-label classifi-
cation problem. The dimensionality reduction in multi-label data was formerly
studied by Yu et al. [16]. In their work, Multi-label Latent Semantic Index-
ing (MLSI) was proposed to project the original feature space into a reduced
feature space. Motivated by MLSI, Multi-label Dimensionality Reduction via
Dependence Maximization (MDDM) was introduced by Zhang and Zhou in [18].
In MDDM, Hilbert-Schmidt Independence Criterion (HSIC) was applied rather
than LSI and its aim was to identify reduced feature space that maximizes de-
pendency between the original feature space and the label space. Recently, Wang
et al. [15] has proposed a method to extend Linear Discriminant Analysis (LDA),
a well-known dimensionality reduction method, to handle multi-label data. Such
methods mainly focused on how to project the original feature space into a
smaller one, but still suffered with high dimensionality in the label space. By
this reason, these methods usually have high time complexity in the classification
task.

On the other hand, for the label space reduction, to improve the efficiency of
multi-label classification, Hsu et al. [7] posed a sparseness problem that mostly
occurred in the label space and then applied Compressive Sensing (CS) tech-
nique, widely used in the image processing field, to encode and decode the label
space. While the encoding step of this CS method seems efficient but the de-
coding step does not. Toward this issue, Tai and Lin [11] proposed Principle
Label Space Transformation (PLST) to transform the label space into a smaller
linear label space using Singular Value Decomposition (SVD) [5] with a simple
threshold setting (i.e., 0.5). More recently, Bi and Kwok (2011) [1] extended
the PLST to handle the labels which are organized in the form of a tree or
directed acyclic graph (DAG). Although the PLST-based methods are effective
by reducing dimensions in the label space, it seems not handle neither the curse
of dimensionality in the feature space nor the correlation (dependency) among
labels in the label space.
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Toward these issues, this paper presents an approach that considers both the
curse of dimensionality problem in the feature space and the sparseness problem
in the label space. Moreover, the dependency profile among features and labels,
the dependency profile among features and the dependency profile among labels
are also taken into account. Two alternative methods, namely Dependent Dual
Space Reduction (DDSR) and Independent Dual Space Reduction (IDSR), are
proposed to reduce dimensions in the dual spaces to eliminate redundancy as
well as noise using Singular Value Decomposition (SVD) for better prediction
and lower computational cost.

In the rest of this paper, Section 2 gives a formal description of the multi-
label classification task and literature review to the SVD method. Section 3
presents two dual dimensionality reduction approaches, Dependent Dual Space
Reduction (DDSR) and Independent Dual Space Reduction (IDSR). The multi-
label benchmark datasets and experimental settings are described in Section 4.
In Section 5, the experimental results using seven datasets are given and finally
Section 6 provides conclusion of this work.

2 Preliminaries

2.1 Definition of Multi-label Classification Task

Let X = RM and Y = {0, 1}L be an M -dimensional feature space and L-
dimensional binary label space, where M is the number of features and L is a
number of possible labels, i.e. classes. Let D = {〈x1,y1〉, 〈x2,y2〉, ..., 〈xN ,yN 〉}
is a set of N objects (e.g., documents, images, etc.) in a training dataset, where
xi ∈ X is a feature vector that represents an i-th object and yi ∈ Y is a label
vector with the length of L, [yi1, yi2, ..., yiL]. Here, yij indicates whether the i-th
object belongs (1) or not (0) to the j-th class (the j-th label or not).

In general, two main phases are exploited in a multi-label classification prob-
lem: (1) model training phase and (2) classification phase. The goal of the model
training phase is to build a classification model that can predict the label vector
yt for a new object with the feature vector xt. This classification model is a
mapping function H : RM → {0, 1}L can predict a target value closest to its
actual value in total. The classification phase uses this classification model to
assign labels. For convenience, XN×M = [x1, ...,xN ]T denotes the feature matrix
with N rows and M columns and YN×L = [y1, ...,yN ]T represents the label
matrix with N rows and L columns , where [·]Tdenotes matrix transpose.

2.2 Singular Value Decomposition (SVD)

This subsection gives a brief introduction to SVD, which was developed as a
method for dimensionality reduction using a least-squared technique [5]. The
SVD transforms a feature matrix X to a lower-dimensional matrix X′ such that
the distance between the original matrix and a matrix in a lower-dimensional
space (i.e., the 2-norm ‖ X−X′ ‖2) are minimum.
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Generally, a feature matrix X can be decomposed into the product of three
matrices as shown in (1).

XN×M = UN×M ×ΣM×M ×VT
M×M , (1)

where N is a number of objects, M is a number of features and M < N . The
matricesU andV are two orthogonal matrices, whereUT×U = I andVT×V =
I. The columns in the matrix U are called the left singular vectors while as the
columns in matrix V are called the right singular vectors. The matrix Σ is a
diagonal matrix, where Σi,j = 0 for i �= j, and the diagonal elements of Σ are
the singular values of matrix X. The singular values in the matrix Σ are sorted
by descending order such that Σ1,1 ≥ Σ2,2 ≥ ... ≥ ΣM,M . To discard noise, it
is possible to ignore singular values less than ΣK,K , where K � M . By this
ignorance the three matrices are reduced to (2).

X′
N×M = U′

N×K ×Σ′
K×K ×V′T

M×K , (2)

where X′
N×M is expected to be close XN×M , i.e. ‖ X −X′ ‖2< δ, U′

N×K is a
reduced matrix of UN×M , Σ′

K×K is the reduced version of ΣM×M from M to
K dimensions and V′

M×K is a reduced matrix of VM×M .
In the next section, we show our two approaches that deploy the SVD tech-

nique to construct lower-dimensional space for both features and labels for multi-
label classification.

3 Two Proposed Approaches

As mentioned earlier, most of previous approaches were presented to handle ei-
ther the problem of a curse of dimensionality in the feature space or the sparse-
ness problem in the label space.

This work presents two alternative approaches to deal with these aforemen-
tioned problems. In both approaches, the Singular Value Decomposition (SVD)
is used to project both feature and label spaces into reduced spaces then a clas-
sification method can be applied. In the classification phase, on the other hand,
SVD is used to reconstruct the original higher-dimensional label space from the
prediction result in the constructed lower-dimensional label space.

In this work, we propose two alternative methods, called Dependent Dual
Space Reduction (DDSR) and Independent Dual Space Reduction (IDSR). To
promote the dependency among features and labels, DDSR computes depen-
dency matrix between features and labels then applies SVD to eliminate the less
correlated data. These lower-dimensional matrices computed from SVD are used
to project both feature and label spaces into a common lower-dimensional space.
While the DDSR approach retains only data with high correlated between fea-
tures and labels, it neither considers dependency among features nor dependency
among labels. As our second proposed method, the Independent Dual Space Re-
duction (IDSR) uses the feature dependency matrix built from the feature space
and label dependency matrix computed from the label space as two projection
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matrices. After that two independent SVDs are applied to these matrices and
project feature space and label space to lower-dimensional spaces. The predic-
tion can be done on lower-dimensional spaces before transforming back to the
original space. The next subsections describe DDSR and IDSR in order.

3.1 Dependent Dual Space Reduction (DDSR)

As previously mentioned, it is possible to utilize the characteristic that the fea-
ture space and the label space may have some dependency with each other.
While it is possible to characterize a dependency among feature and label spaces,
for example, cosine similarity, entropy and symmetric uncertainty, with limited
space, we considered only covariance matrix. In this work, both spaces can be
simultaneously compressed by performing SVD on the feature-label covariance,
viewed as a dependency profile between features and labels. Equation (3) shows
construction of a covariance matrix SM×L to represent a dependency between
feature and label spaces.

SM×L = E[(XN×M − E[XN×M ])T (YN×L − E[YN×L])], (3)

where X is the feature matrix, Y is the label matrix and E[·] is an expected
value of the matrix.

Applying SVD, the covariance matrix SM×L is later decomposed to matrices
U, Σ and V. To retain only significant dimensions and reduce noise, the first
K (≤ min(M,L)) dimensions from matrices U and V are selected as U′

M×K

and V′
M×K . Here, a lower-dimensional feature matrix X′, can be created as

X′
N×K = XN×M ×U′

M×K . In the same way, a lower-dimensional label matrix
Y′ can be computed as Y′

N×K = YN×L ×V′
L×K . These tasks constitute the

pre-processing phase.
In the next step, these two lower-dimensional matrices,X′ andY′, are used for

building a classification model. Among existing methods on multi-label classifi-
cation, Binary Relevance (BR) is a simple approach and widely used. BR simply
reduces the multi-label classification task to a set of binary classifications and
then builds a classification model for each class. However, in this approach, the
projected label matrix Y′ contains numeric values rather than discrete classes.
By this situation, a regression method can be applied to estimate these numeric
values. While the projected label matrix Y′ has K dimensions, it is possible to
construct a regression model for each dimension. That is, K regression models
are constructed for K lower-dimensions. Moreover, each model, later denoted by
rk(X

′) is a regression model built for predicting each column Y′[k] using the
matrix X′. While the regression model returns continuous values, we propose a
method to find the optimal threshold for mapping a continuous value to binary
decision (0 or 1) as described in Section 3.3.

In the classification phase, firstly a test feature vector X̂ is transformed to the
lower-dimensional feature vector X̂′ using X̂′

1×K = X̂1×M ×U′
M×K . Then this

vector is fed to a series of regression models r(X̂′) to estimate the numeric value
in each dimension of the predicted lower-dimensional label vector Ŷ′

1×K [k].
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After that, a matrix V′T , an orthogonal matrix of the matrix V′, is multiplied
to reconstruct the lower-dimensional label vector Ŷ1×K back to the higher-
dimensional label vector Ŷ1×L. Next the predicted values in the label vector
Ŷ1×L are rounded to the value in {0,1} by the predefined threshold. The set of
predicted multiple labels is the union of the dimensions which have the value of 1.

3.2 Independent Dual Space Reduction (IDSR)

As opposed to the former approach, the Independent Dual Space Reduction
(IDSR) approach presents how to use two independent SVDs for transforming
the feature space and label space into the two lower-dimensional spaces similar
to DDSR even there are several possibilities of dependency calculation. In this
work, to consider the dependency in the feature space, the covariance matrix
SM×M is computed from the feature matrix XN×M . On the other hand, the
dependency among labels in the label space can be derived by calculating the
covariance matrix RL×L.

In the pre-processing phase of this approach, a feature dependency matrix
SM×M is built from a feature matrix XN×M and then it is decomposed to three
matrices Ux, Σx and Vx and select the top D dimensions from the matrix Ux.
Then the lower-dimensional feature matrix X′ can be constructed by X′

N×D =
XN×M ×U′

xM×D. The label dependency matrix RL×L is constructed from the
label matrix Y. Likewise, this matrix is decomposed to three matrices Uy, Σy

and Vy and the top K dimensions are selected from the matrix Uy. The lower-
dimensional label matrix Y′ can be formulated by Y′

N×K = YN×L ×U′
yL×K

.

While the original label matrix YN×L contains either 0 or 1 as its members, its
lower-dimensional label matrix Y′

N×K may include non-binary numeric values.
Moreover, it is not necessary that the dimension of the lower-dimensional feature
space D and that of the lower-dimensional label space K are identical. Note that
this condition is not the same with the DDSR approach, where D always equals
to K. After that, as the model training phase, we can construct K regression
models to predict Y′

N×K from X′
N×D. Note that each regression model is for

each of K dimensions of Y′. To transform a numeric value to a binary value a
threshold is established. Section 3.3 describes our proposed method for searching
the best threshold for each label. This step is done in the model training phase.

In the classification phase, the feature vector X̂ of an unseen object will be
reduced to the lower-dimensional feature vector X̂′ using X̂′

1×D = X̂1×M ×
U′

xM×D. Then the regression models estimate the numeric value in the lower-

dimensional label vector Ŷ′ based on the feature vector X̂′. Next the matrix
U′

y
T
, an orthogonal matrix of the matrix U′

y, is used to reconstruct the orig-

inal higher-dimensional label vector Ŷ from the prediction result in the lower-
dimensional label vector Ŷ′ i.e., ŶN×L = ŶN×K ×U′

y
T

L×K
. To assign labels to

an unseen object, the prediction values in the label vector Ŷ need to be rounded
to {0,1}. At this point, the threshold found in the model training phase can be
applied. Finally, the assigned label set is the union set of the dimensions that
have the value of 1.
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3.3 Threshold Selection

As stated above, by the orthogonal property of SVD, it can be used to reconstruct
an original label space from a lower-dimensional label space. As the result, the
reconstructed label vector may include non-binary values. To interpret the values
as binary decision, a threshold need to be set to map these values to either 0
or 1 for representing whether the object belongs to the class or not. As a naive
approach, the fixed value of 0.5 is used to assign 0 if the value is less than
0.5, otherwise 1 [11]. As a more efficient method, it is possible to apply an
adaptive threshold. In this work, we propose a method to determine an optimal
threshold by selecting the value that maximizes classification accuracy in the
training dataset that is similar to the mechanism in Han et al [6]. In other
words, the threshold selection is done by first sorting prediction values in each
label dimension in a descending order and examine performance (e.g., macro
F-measure) for each rank position from the top to the bottom to find the point
that maximize the performance. Then, the threshold for binary decision is set
based on that point.

4 Datasets and Experimental Settings

To evaluate the performance of our two proposed approaches, the benchmark
multi-label datasets are downloaded from MULAN1. Table 1 shows the char-
acteristics of seven multi-label datasets. For each dataset, N , M and L denote
the total number of objects, the number of features and the number of labels,
respectively. LC represents the label cardinality, the average number of labels per
example and LD stands for label density, the normalized value of label cardinality
as introduced by Read et al [9].

Table 1. Characteristics of the datasets used in our experiments

Dataset Domain N
M

L LC LD

Nominal Numeric

bibtex text 7,395 1,836 - 159 2.402 0.015
corel5k images 5,000 499 - 374 3.522 0.009
enron text 1,702 1,001 - 53 3.378 0.064
medical text 978 1,449 - 45 1.245 0.028
emotions music 593 - 72 6 1.869 0.311
scene image 2,407 - 294 6 1.074 0.179
yeast biology 2,417 - 103 14 4.237 0.303

Since each object in the dataset can be associated with multiple labels simul-
taneously, the traditional evaluation metric of single-label classification could
not be applied. The well-known multi-label evaluation metrics are of two types
[9]. As the first type, a label-based metric evaluates each label separately such

1 http://mulan.sourceforge.net/datasets.html

http://mulan.sourceforge.net/datasets.html
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as hamming loss and macro F-measure. As the second type, a label set-based
metric considers a set of labels simultaneously, i.e., accuracy and 0/1 loss. In
this work, hamming loss, macro F-measure, accuracy and 0/1 loss are used to
assess the effectiveness of the multi-label classification methods. Their detailed
descriptions can be found in several literatures such as those in Read et al [9].

Table 2. Performance comparison (mean) between BR, BR+, CC, PLST, DDSR,
and IDSR in terms of hamming loss (HL), macro F-measure (F1), accuracy, 0/1
loss on the seven datasets. (↓ indicates the smaller the better; ↑ indicates the larger
the better; † denotes the nominal-feature dataset and ‡ denotes the numeric-feature
dataset, the superscript (x,y) shows the percentage of dimensions reduced from the
original ones for the feature space and that for the label space.)

Dataset Metrics BR BR+ CC PLST DDSR IDSR

bibtex†
HL ↓ 0.0172 0.0163 0.0166 0.0155[20] 0.0137(9,100) 0.0140(40,100)

F1 ↑ 0.0047 0.0022 0.0038 0.0075[100] 0.3949(9,100) 0.4025(80,100)

Accuracy ↑ 0.0000 0.0001 0.0001 0.0012[100] 0.1543(3,40) 0.3699(80,100)

0/1 Loss ↓ 1.0000 1.0000 1.0000 0.9999[40] 0.8270(9,100) 0.8301(60,100)

corel5k†
HL ↓ 0.0094 0.0195 0.0094 0.0094[20] 0.0145(30,40) 0.0150(60,100)

F1 ↑ 0.0284 0.0710 0.0354 0.0286[40] 0.1215(15,20) 0.1143(60,100)

Accuracy ↑ 0.0528 0.1432 0.0584 0.0533[40] 0.1479(60,80) 0.1502(60,100)

0/1 Loss ↓ 0.9948 0.9938 0.9918 0.9944[20] 0.9944(45,60) 0.9948(60,100)

enron†
HL ↓ 0.1019 0.0997 0.1014 0.0721[20] 0.0529(3,60) 0.0532(20,100)

F1 ↑ 0.1957 0.1882 0.1920 0.2170[40] 0.3118(5,100) 0.2926(20,100)

Accuracy ↑ 0.3328 0.3274 0.3317 0.3475[20] 0.4723(5,100) 0.4617(20,100)

0/1 Loss ↓ 0.9089 0.9083 0.9066 0.9077[60] 0.8713(5,100) 0.8766(60,100)

medical†
HL ↓ 0.0996 0.0943 0.0974 0.0556[20] 0.0114(3,100) 0.0107(20,100)

F1 ↑ 0.3383 0.3370 0.3351 0.3411[60] 0.6485(3,100) 0.6815(40,100)

Accuracy ↑ 0.4017 0.3997 0.4060 0.4074[40] 0.7288(3,100) 0.7603(20,100)

0/1 Loss ↓ 0.7167 0.7085 0.7095 0.7167[100] 0.3731(3,100) 0.3507(20,100)

emotions‡
HL ↓ 0.2068 0.2264 0.2211 0.2037[60] 0.2728(8,100) 0.2152(100,60)

F1 ↑ 0.6317 0.6673 0.6243 0.6339[60] 0.6455(8,100) 0.6804(100,20)

Accuracy ↑ 0.5091 0.5537 0.5176 0.5091[100] 0.5090(8,100) 0.5534(60,40)

0/1 Loss ↓ 0.7467 0.7267 0.7451 0.7300[60] 0.8293(8,100) 0.7417(60,60)

scene‡
HL ↓ 0.1105 0.2583 0.1162 0.1105[100] 0.1190(2,80) 0.1113(60,80)

F1 ↑ 0.6480 0.5351 0.6903 0.6480[100] 0.7046(2,100) 0.7201(20,80)

Accuracy ↑ 0.5302 0.5744 0.6579 0.5302[100] 0.6109(2,80) 0.6451(20,80)

0/1 Loss ↓ 0.5186 0.5148 0.3831 0.5186[100] 0.5106(2,80) 0.4778(40,80)

yeast‡
HL ↓ 0.2008 0.2229 0.2165 0.2491[20] 0.2807(14,100) 0.2626(80,100)

F1 ↑ 0.4455 0.4053 0.4404 0.2688[20] 0.4926(3,20) 0.4927(40,100)

Accuracy ↑ 0.5019 0.4838 0.4796 0.3425[20] 0.4884(8,60) 0.5021(60,60)

0/1 Loss ↓ 0.8510 0.8564 0.8105 0.9785[40] 0.9259(14,100) 0.9086(80,100)

In this work, DDSR and IDSR are compared with four multi-label classifica-
tion techniques; BR, BR+ [3], CC [9] and PLST [11]. BR+ (Binary Relevance
with label dependency consideration) and CC (Classifier Chains) are two well-
known methods, which incorporate label dependency in multi-label classification.
PLST (Principle Label Space Transformation) is an efficient algorithm that uses
the reduction of label space dimension. Using ten-fold cross validation method,
the results of the four evaluation metrics and the execution time are recorded
and shown in Table 2 and 3, respectively. All multi-label classification methods
used in this work is implemented in R environment version 2.11.12 and linear

2 http://www.R-project.org/

http://www.R-project.org/
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regression is used for the regression model in the model training phase. For PLST
and IDSR method, we experiments with K ranging from 20% to 100% of the
dimension of the original label matrix, with 20% as interval. Likewise, the pa-
rameter D is also varied from 20% to 100% of the dimension of the original
feature matrix, with 20% as interval. Though, the K parameter in DDSR ap-
proach is calculated from the minimum value between a number of features and
labels, this parameter is also used the same criteria as PLST and IDSR method.
To compare the computational time, all methods were performed on the AMD
Opteron Quad Core 8356 1.1 GHz Processor with 512 KB of cache, 64GB RAM.

5 Experimental Results

To evaluate our proposed approaches, seven datasets are used to compare per-
formance of BR, BR+, CC, PLST, DDSR and IDSR. Table 2 reports the best
value for each evaluation metric computed from all datasets. The numbers in
the superscript (x,y) represents the percentages of dimensions reduced in the
feature space and that in the label space, respectively. In the DDSR method,
the maximum number of reduced dimensions K cannot excess the minimum be-
tween the number of features (M) and the number of labels (L) since the reduced
dimension has the same size of both feature and label space. The superscript [y]
in the PLST approach means the percentage of reduce labels, compared to the
original. Note that PLST does not reduce the feature space. In the Table 2, the
best value for each row is emphasized by bold font.

From the table, we can make some observations as follows. First, we observe
that both DDSR and IDSR give comparable performance in terms of hamming
loss, compared to BR, BR+, CC and PLST. On the other hand, DDSR and IDSR
approaches gain an average gap of 16% macro F-measure increment. Moreover,
the DDSR approach shows an average gap of 11% accuracy improvement while
the IDSR approach improves with an average gap of 15%. Likewise, the DDSR
approach can reduce the 0/1 loss with decrement of 5% while IDSR can reduce
with 8% gap. Note that the medical dataset whose number of features are greater
than the number of objects, gives the maximum improvement when both spaces
are reduced.

As shown in Table 3, the execution time of the DDSR approach was reduced
with a factor of 10, compared to PLST and approximately 100 times, com-
pared to the traditional BR approach. Likewise, the IDSR approach with lower-
dimensional features used less time than the PLST and the BR method. We can
conclude that our two proposed methods, DDSR and IDSR, could transform the
feature and label spaces into the reduced spaces with less computational time
than the traditional BR, BR+, CC and PLST. As an additional observation,
IDSR is better than DDSR in several datasets while DDSR can be executed
faster than IDSR. The smaller K and D are, the faster we can compute.

In more details, Table 4 presents the complexity of learning process. However,
the time used for the transformation process and covariance calculation is trivial.
The N , M and L denote the number of objects, features and labels, respectively.
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Table 3. Average execution time (in seconds) on the seven datasets. † denotes the
nominal-feature dataset and ‡ denotes the numeric-feature dataset. Here, D is the
reduced number of feature dimensions. K is the reduced number of label dimensions.

Dataset Method
K

20%×L 60%×L 100%×L

bibtex†
BR - - 40442.05
BR+ - - 33537.76
CC - - 19700.05
PLST 7101.01 21961.42 29815.07
DDSR 69.85 126.56 283.36
IDSR (D=20%×M) 1338.02 2360.49 3855.54
IDSR (D=60%×M) 4656.35 14636.93 18787.84
IDSR (D=100%×M) 14800.45 27392.90 46642.77

corel5k†
BR - - 5721.81
BR+ - - 11971.31
CC - - 7007.41
PLST 1172.75 3174.11 5386.21
DDSR 69.73 366.07 1265.54
IDSR (D=20%×M) 364.17 560.04 818.53
IDSR (D=60%×M) 817.59 2667.54 4572.47
IDSR (D=100%×M) 1905.29 5273.13 6397.23

enron†
BR - - 656.94
BR+ - - 1904.89
CC - - 799.58
PLST 197.43 537.04 824.20
DDSR 4.62 6.57 11.56
IDSR (D=20%×M) 29.85 41.03 50.12
IDSR (D=60%×M) 60.48 120.46 175.46
IDSR (D=100%×M) 99.27 233.00 355.83

medical†
BR - - 1353.93
BR+ - - 2896.23
CC - - 1414.56
PLST 192.49 509.45 1240.37
DDSR 1.35 2.57 4.76
IDSR (D=20%×M) 238.56 256.15 234.38
IDSR (D=60%×M) 170.31 324.86 383.25
IDSR (D=100%×M) 449.11 735.24 982.16

emotions‡
BR - - 1.10
BR+ - - 4.09
CC - - 0.87
PLST 0.19 0.47 0.79
DDSR 0.41 0.47 0.53
IDSR (D=20%×M) 0.48 0.56 0.59
IDSR (D=60%×M) 0.51 0.68 0.85
IDSR (D=100%×M) 0.57 1.00 1.27

scene‡
BR - - 9.13
BR+ - - 57.33
CC - - 22.26
PLST 2.31 12.08 10.80
DDSR 2.70 2.79 2.87
IDSR (D=20%×M) 3.52 4.09 4.47
IDSR (D=60%×M) 4.80 6.84 8.13
IDSR (D=100%×M) 6.54 10.72 13.24

yeast‡
BR - - 16.23
BR+ - - 37.98
CC - - 15.62
PLST 3.93 9.23 10.15
DDSR 10.52 10.82 11.37
IDSR (D=20%×M) 11.68 11.99 12.04
IDSR (D=60%×M) 11.82 12.85 14.26
IDSR (D=100%×M) 12.33 14.15 16.20

For our two approaches, D and K are the reduced number of dimensions. The
f(X,Y ) is the complexity of the model that depends on the number of objects
(X) and the number of features (Y ). When linear regression is applied for the
model training phase, it requires O(4XY 2 +X3 +2XY ) and O(Y ) for the clas-
sification phase. We can observe that the BR+ method is recognized as the
slowest algorithm since it appends labels to the feature space for incorporating
label dependency and it requires two learning process, initial prediction step and
final prediction step, to complete the classification process. On the other hand,
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Table 4. The learning complexity of BR, BR+, CC, PLST, DDSR and IDSR.
Note that the complexity is in the function f(X,Y ), where X is the number of objects
and Y is the number of features.

Methods Complexity (O)

BR O(L× f(N,M))
BR+ O((L× f(N,M)) + (L× f(N, (M + L− 1))))
CC O(L× f(N, (M + L/2)))
PLST O(K × f(N,M))
DDSR O(K × f(N,K))
IDSR O(K × f(N,D))

our DDSR approach is the fastest method because the feature and label spaces
are transformed to the lower-dimensional space before classification technique is
applied.

6 Conclusion

This paper presents two alternative approaches to handle the curse of dimen-
sionality problem in the feature space as well as the sparseness problem in the
label space. The Dependent Dual Dimensionality Reduction (DDSR) considers
the dependency between feature and label spaces before transforming the feature
and label spaces into a single reduced space. On the other hand, the Independent
Dual Space Reduction (IDSR) approach transforms the feature space and label
space into the two lower-dimensionality spaces. Experiments with a broad range
of multi-label datasets show that our two proposed approaches achieve a better
performance, compared to PLST and BR, as well as other recent methods such
as Classifier Chains (CC) and BRplus (BR+). In addition, the DDSR approach
helps saving computational time while the IDSR approach tends to obtain better
classification performance As our future work, we will analyze three dependen-
cies, feature-label, feature-feature, and label-label, in detail. The ensemble of
these dependencies may help in improving the performance.
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Abstract. Named entity recognition (NER) has been a well-studied problem in 
the area of text mining for locating atomic element into predefined categories, 
where “name of people” is one of the most commonly studied categories. 
Numerous new NER techniques have been unfolded to accommodate the needs 
of the application developed. However, most research works carried out 
focused on non-fiction domain. Fiction domain exhibits complexity and 
uncertainty in locating protagonist as it represents name of person in a diverse 
spectrums, ranging from living things (animals, plants, person) to non-living 
things (vehicle, furniture). This paper proposes automated protagonist 
identification in fiction domain, particularly in fairy tales.  Verb has been used 
as a determinant in substantiating the existence of protagonist with the 
assistance of WordNet. The experimental results show that it is viable to use 
verb in identifying named entity, particularly “people” category and it can be 
applied in a small text size environment.  

Keywords: Named entity recognition, characters, fairy tales, text mining. 

1 Introduction and Motivation 

Named entity recognition (NER) is a well-studied research in the area of information 
extraction (IE) aiming to locate and extract significant atomic elements in text into 
predefined categories.  The most common studied categories are “name of people, 
organization and location” [1], [2] and [3], “date, time and phone” [4], “name of 
person, diploma, organization and research” [5] and many more entities as of interest 
of the application intended to be built. 

Andrew et al. used list of features, lexicon (augment using web search engine) and 
conditional random fields (CRF), a machine learning probabilistic approach to extract 
named entities in structured texts of CoNLL03 (name of person, location, 
organization and miscellaneous) [2]. Einat et al. focused solely in extracting personal 
names from informal text (email) using CRF and dictionary to enhance the names 
extraction [6]. The performance results vary among the chosen email corpora due to 
the free writing style in informal text and insufficient training data to produce good 
model for NER. Satoshi et al. manually hand-crafted about 1400 rules and 130,000 
instances of dictionary to extract 200 categories of named entity covering  
generally Japanese newspaper domain [7]. In 2010, Laura et al. proposed domain 



396 H.-N. Goh, L.-K. Soon, and S.-C. Haw 

adaptation of rule-based annotator to enhance domain customization for NER, a 
domain-independent CoreNER library of 104 features definition were being crafted 
manually to tailor different application domains need [1]. Public datasets of 
CoNLL03, Enron and ACE05 were used to train and test the “person, location and 
organization” entities. However, it is still manual and time consuming. 

Character level model [3] used Hidden Markov Model (HMM) and Maximum-
entropy Conditional Markov Model to inspect each letter in identifying named entity 
in ConLL, the character emission model is based on the n-gram proper-name 
classification engine [8] and state transition chaining is used to identify named entity 
boundary and classify them into predefined categories. Le et al. studied the use of 
inductive logic programming to extract named entities (name, diploma, organization, 
research) in Vietnamese language [5]. 80 Vietnamese homepages of scientist that 
were tagged manually and a set of features were used to train to generate a set of 
extraction rules to extract named entities in chosen test corpus. Javier et al. discussed 
the impact of coverage, reliability and independent number of features in extracting 
name of person [9]. Machine-learning algorithm, NER and classification were used to 
studied the mentioned impact, in the case of NER, combination of Stanford NE 
Recogniser (machine learning) and OAK (rule based  English analyzer) were used to 
detect NE. It generates good performance results if all NE features are being used in 
the training process when producing trained model for NE recognition. Michael et al. 
studied further details of breaking down “name of person” into sub-categories such as 
“politician” and “entertainer”, topic signatures and Wordnet are used to enhance the 
trained model using supervised machine learning [10]. 

All the above mentioned NER techniques are mainly constrained by two major 
issues as discussed below: 

(1) Recognition approach: The evolutionary of NER begins with manual effort to 
semi-automatic, and then to automatic approaches. Manual NER requires excessive 
amount of time and resources from domain expert and knowledge engineer to hand-
coded the rules manually. In such approach, existing text mining resources such as 
WordNet and dictionaries are always in used to speed up the manual NER process [7].  
Knowing that manual construction of NER rules exhibits a promising performance 
results due to the intentionality of recognizing NE in the domain studied, Laura et al. 
explored the domain customization using rule-based annotator; a set of universal rules 
is needed to accommodate investigated domain needs [1]. However, flexibility and 
scalability is still the main issue to be dissolved in manual NER. Semi-automatic NER 
begins with seed (manual selection) NE. Often, machine learning is used to train the 
seed NE to generate a model for NER. The quality of chosen seed data will greatly 
impact the trained model for NE recognition. Automatic NER implies fully 
recognition without human intervention. It is not an easy task as each domain exhibits 
differently in term of context and structural text representation.  

(2) Nature of the domain: Research domain done in the area of NER can be classified 
into fiction based and non-fiction based.  Fiction implies literary work which is 
based on imagination and not necessary on facts, e.g. novel and fairy tales, whereas 
non-fiction denotes representation of a subject which is presented as fact, such as  
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manual, news-wired and tourism website. Most NERs developed are in non-fiction 
based. Non-fiction based exhibits certain patterns in identifying NE, for instance, 
name of person may start with designator, capital letter of the first character, naming 
in a human way. However, fiction based exhibits complexity and uncertainty in 
locating NER as it represents name of person in a diverse spectrums, ranging from 
living things (animals, plants, person) to non-living things (vehicle, furniture). Elson 
et al. employed quoted speech attribution (dialogue and internal monologue) and 
syntactical approach (adaptation of natural language tools) to identify character in 
literary fiction, specifically 19th century novels and serials [11]. However, its 
characters are represented in human alike name. 

In this paper, we propose a fully automated named entity recognition framework to 
overcome the above mentioned issues. Fiction-based domain is used to test on the 
proposed framework.  We study the predefined category of “name of person” but aim to 
recognize protagonist(s) in fairy tales. Stanford parser and Stanford dependency relation 
are used to shallowly parse the input file to extract potential NE from the natural text. 
Word(s) that is/are labeled as VERB between two potential NEs will be extracted to form 
syntactic triplet structure of subject – verb – object (S-V-O) at a sentence level. 
WORDNET is then used to substantiate the extracted verb that associates with human 
action in identifying protagonist. Finally, threshold value is used to filter potential NEs in 
locating protagonist(s). Part of the work of this paper is a replication and extension of 
previous research on ontology construction in fiction-based domain [12]. 

The outline of this paper is as follow: Section 2 discusses the technologies 
background for this work. Section 3 presents the proposed system framework. Section 
4 describes the experiments and the paper is concluded in Section 5. 

2 Technologies Background 

2.1 Stanford Parser  

Stanford parser is a probabilistic parser that analyses syntactic structure of natural 
language sentences. It has the performance of 86.36% of accuracy in parsing [13]. It 
is implemented in Java by Stanford University’s Natural Language Processing Group 
and it is available in four languages (English, Chinese, Arabic and German). In this 
project, English is used to run and test on the selected plain text input.  

The parser can read various forms of plain text input and return various analysis 
formats, including part-of-speech tagged text, phrase structure trees, and a 
grammatical relations (typed dependency) format. In this work, only phrase structure 
trees and grammatical relations are used. 

2.1.1 Phrase Structure Parse 
Phrase structure trees utilized unlexicalized probabilistic context free grammar 
(PCFG) to achieve greater efficiency and accuracy in parsing sentences. Generally, 
phrase structure tree is a syntactical structure of sentence that segment group of words 
into phrases to form the subject and object of the verb.  
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2.1.2 Stanford Dependencies 
Stanford dependencies of English sentences are brought forth based on rules / patterns 
and Treebank representation from the generated phrase structure trees. There are 
forty-eight grammatical relations altogether to form the Stanford dependencies. It is a 
predicate argument representation with a grammatical relation used to bind the right 
dependencies of two tokens. 

In our work, Stanford dependencies is used to identify pair of words that are 
adjacent to each other based on the index tagged next to it or words that tagged with 
grammatical relation of “nn” will be extracted to form a list of term. This is extremely 
useful to limit the generation of candidate terms from phrase structure trees. 

Our hypotheses for detecting candidate terms are described as follows: 

(i) Pair of words that are adjacent often partially contributes to entity recognition. 
(ii)  Pair of words that are tagged with “nn” grammatical relation often denotes 

important keywords for a domain. 

2.2 WordNet 

Wordnet1 is the product of a research project at Princeton University which has 
attempted to model the lexical knowledge of a native speaker of English [14]. A 
derivationally related form (DRF) is one of the features available in WordNet being 
used to identify verb that associates with human action. In this work, each extracted 
verb (V) that formed S-V-O serves as a keyword for retrieving its corresponding 
senses’ description in derivationally related forms. Each returned description will be 
examined sentence by sentence. In the presence of either one of the three key phrases 
of “someone”, “a person” or “one who” in the sentence, the verb is considered to be 
associated with human action. 

3 System Framework 

The system framework for our proposed NER, focused solely in identifying fiction 
protagonist(s) is depicted in Fig. 1. The prototypical implementation of the automated 
NER (protagonist(s)) illustrated in Fig. 1 is explained as below: 

The terms used in the framework are: 

termsd : Terms that are extracted from stanford dependencies based on two criteria; (1) 
words that are adjacent to each other and (2) words which are tagged with the “nn” 
grammatical relation 
termpsp : Terms that are tagged with noun phrase (NP) in phrase dependency parse 
NEcandicate : Candidate NE 
VERBper : Verb that associates with the human action 

The first four steps of system framework in this work are generally similar to previous 
work done in ontology construction for fiction-based domain [12].  

Input : Fiction web page 
Step 1 : Document cleaning 

                                                           
1  http://wordnet.princeton.edu/ 
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Eight fairy tales are used to test on the proposed framework. Each 
fairy tale web page retrieved from the selected domain web pages is 
cleaned automatically using HTML Context Extractor2 in order to get 
rid of non-text content (banner, audio, video, images). A pure text file 
(.txt) is produced at the end of the cleaning process.   

 
Fig. 1. System framework for NE (protagonists/main actor) recognition  

                                                           
2  http://senews.sourceforge.net/KCE_README.html 
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Step 2 : Pre-linguistic processing 
Two features available in Stanford parser which are phrase structure 
parse (PSP) and stanford dependencies (SD) will be used to shallowly 
examine the text content of the generated pure text file.  Parse tree 
generated by PSP will be further manipulated by extracting phrases 
that tagged with “NP” to form list of term known as termpsp whereas 
predicate argument structure produced by SD will be analyzed 
according to the two hypotheses mentioned in section 2.1.2 to form list 
of term known as termsd.  
 

Step 3 : Candidate NE Contextualization 
NE often appears to be the subject and/or object of a sentence and it 
usually tagged as “NP” in a parse tree.  However, not all “NP” 
correspond to NE. For instance, in this work, “this”, and “nothing“ are 
the termpsp extracted from “The Story of Snow White”. Therefore, 
instead of solely extracting all “NP” listed in PSP to form candidate 
NE. Nested or exact wording of termsd against termpsp at sentence level 
is used to overcome the over generation of candidate NE as illustrated 
in equation (1) and describe elsewhere[12]. It implies parallelism in 
generating candidate NE.  

termsd   ∩  termpsp  =  NEcandicate                                          (1) 

The overlap between termsd and  termpsp will result in utilizing termpsp 
to form NEcandidate. This is due to NE may consist of more than two 
words while termsd  always represents its grammatical relation in two 
words. 
 

Step 4 : S-V-O (triplet) Extraction 
A syntactic triplet structure of S-V-O denotes an event / action being 
take place between a subject (S) and an object (O). In this work, S 
implies 1st NEcandicate  and O marks 2nd NEcandicate. V is a Verb Phrase 
(VP) that exist between 1st NEcandicate  and 2nd NEcandicate in a sentence 
basis. A sentence might have more than one S-V-O syntactic triplet 
structure. Extracted S can also be the O for another extracted triplet 
and vice versa. 
 

Step 5 : Verb Analysis 
“getDerivationallyRelatedForms” is one of the methods freely 
available in WordNet API (JAWS)3 which is used to automatically 
examine against each verb that resides in the extracted triplets in the 
previous step. Each verb serves as a keyword for retrieving its 
corresponding senses’ description in derivationally related forms. Key 
phrases of “someone who”, “one who” or “a person” are the hints use 
to identify verb that associates with human activity. Therefore, each 
return description will be examined sentence by sentence to locate the 

                                                           
3  http://lyle.smu.edu/~tspell/jaws/index.html 
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above mentioned hints. An integer value of 1 will be assigned to each 
S and O if the verb connected between them contains any of the three 
hints mentioned. At the end, each S and O might has a value of zero or 
more for its inbound link and outbound link that associated with human 
action related verb (VERBper), as shown in Fig. 2. 
 

 
 
 
 

Fig. 2. Inbound and outbound links of S and O 

Step 6 : Inbound/Outbound NE Link Analysis 
Each inbound link and outbound link of NEcandicate will be calculated for 
its proportional value as shown in equation (2) and (3). A filtering 
process of NEcandicate is then done based on the calculated proportion. 
NEcandicate which has value of 0, 1 and “#DIV/0!” for in and/or out will 
be discarded for further analysis in identifying protagonist.  0 means 
none of the inbound and/or outbound link is associated with human 
action, 1 denotes all inbound and/or outbound links are associated with 
human action and “#DIV/0!” shows division by zero, which denotes 
that no inbound or outbound link attached to NEcandicate. Later, 
normalization process of each filtered NEcandicate will be performed 
based on three equations (4), (5) and (6). Equations (4), (5) and (6) 
imply the inbound link (Nin), outbound link (Nout) and frequency 
(Nfreq) respectively. Frequency signifies the sum of inbound and 
outbound links for each filtered NEcandicate. Finally, each calculated 
proportion indicates the weight carried by filtered NEcandicate. High 
proportion of these three measures may increase the likelihood that the 
filtered NEcandicate is the protagonist of the investigated fairy tale.  

in = inbound_link_VERBper / inbound_link                       (2) 

out  = outbound_link_VERBper / outbound_link                   (3) Nin  ∑    N                                                                                                              (4)  Nout  ∑N                                                                       (5) Nfreq _ _ ∑ _N _                        (6) 

where 1 <= i <= N and N is the total number of  filtered NEcandicate in a 
fairy tale; Nin and Nout are the normalized values for inbound and 
outbound links respectively while Nfreq is the normalized value for 
frequency. 

S/O outbound _link  Inbound_ link  
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Output : Each proportion measured in the previous step is summed up to 
produce a unit measurement for each filtered NEcandicate (equation (7)). 
Later, median of all weights is calculated to serve as a threshold value 
in identifying protagonist(s). Therefore, different fairy tales may have 
different threshold values.  Finally, list of protagonist(s) is produced. weight Nin Nout Nfreq                                 (7) 

4 Experiments and Discussions 

4.1 Dataset 

Eight fairy tales from http://www.kidsgen.com were used to test on our proposed 
framework and the word count for each fairy tales is presented in the second column 
of Table 1 [1]. The eight fairy tales were chosen as it reflects the aim of this work 
which is to identify protagonist(s) in diverse spectrums. Some of the protagonists 
have a character name while some are just the type of the animal/inserts.   

4.2 Results and Discussion 

The most challenging issue in NER, particularly in the fiction domain of fairy tales 
lies in its evaluation with gold standard as protagonist name might (1) slightly vary 
according to the version of the tales or (2) context sensitive to the local flavor. 
Therefore, a simple survey was conducted on the eight studied fairy tales on 6 
primary school students. The third column in Table 1 shows protagonists for each 
fairy tales obtained from the survey.  This result is used as a gold standard in our 
work to measure the performance of our approach and other NER tools. Three 
evaluation metrics, namely recall, precision and F-measure are used to evaluate the 
outcome of the extracted protagonist(s).  

Table 1. Fairy tales word count and protagonists 

Fairy Tale Word Count Protagonist 
The Story of Snow White 1913 Snow White 
Cinderella 1077 Cinderella 
Beauty and the Beast 1357 Beauty, Beast 
Rapunzel 1393 Rapunzel 
Thumbelina 4348 Tiny 
Ugly Duckling 841 Duckling 
Sleeping Beauty 1317 Briar Rose 
Ant and the Grasshopper 142 Ant, Grasshopper 

 
Table 2 shows the protagonists extracted by our method using 2, 3 and 4 variables. 

The actual protagonist for each fairy tale appears in bold. 2-variable considered only 
proportion of inbound link (equation 4) and outbound link (equation 5) that attached 
to filtered NEcandicate. 3-variable is the method we have used in work as shown in Step 
6 above while 4-variable is an extension of 3-variable with an additional proportion of 
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links (inbound and outbound link ) that  associates with VERBper against all links 
(inbound and outbound link) of each filtered NEcandicate. Normalization is performed 
on each calculated proportion. The number of extracted protagonist(s) is the same 
across 2, 3 and 4 variables. However, the protagonist that were extracted are slightly 
different between 2-variable and 3, 4-variable. 3-variable and 4-variable extract the 
same list of protagonists.  

Table 2. Inbound/Outbound NE link analysis using different variables 

Fairy Tale 2-variable 3-variable 4-variable 
The Story of Snow White Snow White Snow White Snow White 
Cinderella Cinderella Cinderella Cinderella 
Beauty and the Beast Merchant, 

Daughter, Horse 
Merchant, 
Daughter, Beauty 

Merchant, 
Daughter, Beauty 

Rapunzel Time, Enchantress Rapunzel,  
Enchantress 

Rapunzel,  
Enchantress 

Thumbelina Leaf, Mole, Tiny, 
Feather, Earth, 
Country, Heart 

Leaf, Mole, Tiny, 
Feather, Earth, 
Flower, Bird 

Leaf, Mole, Tiny, 
Feather, Earth, 
Flower, Bird 

Ugly Duckling null null Null 
Sleeping Beauty Briar Rose Briar Rose Briar Rose 
Ant and the Grasshopper Ant Ant Ant

 
As mentioned in step 6, it is insensible to naively accept protagonist which the 

NEcandicate has only one inbound and/or outbound link, and the verb is associated with 
human action.  Comparatively, NEcandicate that has more than one inbound and/or 
outbound links will definitely have decreased verb probability associates with human 
action. In fact, protagonists are the main character(s) that should actively engage in 
story flow.  From our experimental dataset, it is observed that there are at least two 
existences of inbound and/or outbound link for each corresponding NEcandicate. Finally, 
filtered NEcandicate is produced after eliminating NEcandicate that has the value of 0, 1 and 
“#DIV/0!” for its corresponding in and out. The above mentioned scenario reflects the 
approach applied in 2-variable, high proportional value of inbound and outbound link 
as approach taken in might not sufficient in identifying protagonist in fairy tales. The 
additional proportional value in 4-variable does not contribute to protagonist 
identification as it shows the same result as 3-variable. The engagement of filtered 
NEcandicate in a story is shown explicitly by frequency (total link of inbound and 
outbound). High proportional value of each variable (3-variable) increases the 
probability of filtered NEcandicate to be chosen as protagonist whereas high frequency 
with low proportional value of inbound and outbound link may prevent NEcandicate to 
be protagonist.   

Table 3 compares the results between our approach with three freely available tools 
on the internet, namely AlchemyAPI 4 , General Architecture for Text Engineering 

                                                           
4  http://www.alchemyapi.com/api/entity/ 
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(GATE)5 and Illinois named entity tagger6. Note that the result on “Ugly Duckling” is 
not included as none of the tools, including our approach is able to identify any 
protagonist in the story.  AlchemyAPI employs hybrid approach in NER where 
statistical algorithms are combined with natural language processing technology to 
analyze and identify hundreds of entity types and “people” is one of its types. 
Contextual cues are used to disambiguate among entity types. For instance, information 
on a person’s career and where they are located are some of the contextual cues used to 
disambiguate “people” entity type. GATE uses predefined gazetteer list (ANNIE) and 
rule based approach (JAPE) for finding entity types. Various machine learning 
techniques can also be imposed on GATE to increase the performance of the NER.  
However, in this paper, the default GATE NER was used.  Illinois extracts NE using 
external knowledge (gazetteers) and machine learning paradigm. Portability, scalability 
and no training corpus are the main reasons of choosing these three tools for comparison.  

Table 3. Comparison of performance metrics with other tools 

Recall Precision F-measure 

Beauty and the beast 

AlchemyAPI 0.0000 0.0000 0.0000 
GATE 0.0000 0.0000 0.0000 
Illinois 0.5000 1.0000 0.6667 
Our approach 0.5000 0.3333 0.4000 

Cinderella 

AlchemyAPI 1.0000 0.3333 0.5000 
GATE 0.0000 0.0000 0.0000 
Illinois 1.0000 0.5000 0.6667 
Our approach 1.0000 1.0000 1.0000 

Rapunzel 

AlchemyAPI 1.0000 1.0000 1.0000 
GATE 0.0000 0.0000 0.0000 
Illinois 0.0000 0.0000 0.0000 
Our approach 1.0000 1.0000 1.0000 

Sleeping beauty 

AlchemyAPI 1.0000 1.0000 1.0000 
GATE 0.0000 0.0000 0.0000 
Illinois 1.0000 1.0000 1.0000 
Our approach 1.0000 1.0000 1.0000 

Snow white 

AlchemyAPI 1.0000 1.0000 1.0000 
GATE 1.0000 0.3333 0.5000 
Illinois 0.0000 0.0000 0.0000 
Our approach 1.0000 1.0000 1.0000 

Thumbelina 

AlchemyAPI 0.0000 0.0000 0.0000 
GATE 0.0000 0.0000 0.0000 
Illinois 1.0000 1.0000 1.0000 
Our approach 1.0000 0.1429 0.2500 

Ant and grasshopper 

AlchemyAPI 0.0000 0.0000 0.0000 
GATE 0.0000 0.0000 0.0000 
Illinois 0.0000 0.0000 0.0000 
Our approach 0.5000 1.0000 0.6667 

                                                           
5  http://gate.ac.uk/ 
6  http://cogcomp.cs.illinois.edu/page/demo_view/8 
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Table 4. Average performance results for each tool 

 Recall Precision F-measure 
AlchemyAPI 50.00 42.67 43.75 

GATE 12.50 4.17 6.25 
Illinois 43.75 43.75 41.67 

Our approach 75.00 68.45 66.46 

 
In this work, protagonist can be generally divided into two categories, namely 

protagonist name (e.g., Snow White and Beauty) and protagonist entity, e.g., insects 
(ant, grasshopper), and animal (duckling). As can be seen in Table 3, most of the tools 
perform well on the protagonist name, except for GATE which is constrained by the 
limited number of name listed in gazetteer. The good performance in this aspect is due 
to protagonist name is very similar to human name. However, the three tools performed 
poorly and in fact none of the protagonist entity were identified. Comparatively, our 
approach is able to perform across the two mentioned categories. In addition to 
producing comparable performance results with the chosen three tools on the 
protagonist name, our approach outperforms the rest in identifying protagonist entity, 
which is insects, ant specifically in the fairy tale of “Ant and grasshopper”. However, 
another protagonist entity of grasshopper is not identifiable as it has 0 value for in and 
that reduced the weight shown in equation (7) to be below the threshold. The same 
applies to the fairy tale of “Ugly duckling” that none of the tools is capable in 
identifying “duckling” as its protagonist because the word “duckling” does not seem to 
be human related name or appearing in the listed gazetteer. Our approach failed too, 
owing to the 0 value generated for in (equation 4). There is only one action imposed on 
“duckling” and the action is not related to human action.  A protagonist should interact 
actively in story flow and contribute to inbound link (VERBper, action being taken 
towards protagonist) and outbound link (VERBper, action taken by protagonist). 
Therefore, both number of actions being taken and imposed on filtered NEcandicate, and 
its relevancy to human action give strong impact during protagonist identification. 
Lacking of either factor may hamper the effort of protagonist identification. 

File size and activities/events affiliated with protagonist in fairy tale do impact the 
performance results of protagonist identification. This is due to the Verbper for 
inbound and outbound link will influence the proportion of NEcandicate’s inbound and 
outbound link. Small file size imposes limited activities or events affiliated with 
protagonist, which reduces the probability of inbound and outbound link that contain 
VERBper. This can be seems very clearly for the fairy tales of “Ant and grasshopper” 
and “Ugly duckling” which have 142 and 841 word count respectively. 

Recall, precision and F-measure are interdependent. High recall with low precision 
and vice versa might yield low F-measure, while high recall and high precision will 
definitely generate high F-measure. With the existence of one or two protagonists for 
a fairy tale always incur low precision if the number of identifiable filtered NEcandicate 
is high and vice versa. Therefore, carefully taking care of each fairy tales nature is 
likely to improve the performance results of the protagonist identification.  Table 4 
summarizes the comparative study. Our approach yields better results compared to the 
other three tools.    
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5 Conclusion 

This paper presents an algorithmic framework for protagonist identification in fiction 
domain. Comparatively, our proposed method is able to perform consistently.  For 
future work, we intend to improve the protagonist identification by collaborating with 
VerbNet [15], which is the largest on-line verb lexicon in English that incorporates 
both semantic and syntactic about its content.  
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Abstract. Discretization technique plays an important role in data min-
ing and machine learning. While numeric data is predominant in the real
world, many algorithms in supervised learning are restricted to discrete
variables. Thus, a variety of research has been conducted on discretiza-
tion, which is a process of converting the continuous attribute values into
limited intervals. Recent work derived from entropy-based discretization
methods, which has produced impressive results, introduces information
attribute dependency to reduce the uncertainty level of a decision ta-
ble; but no attention is given to the increment of certainty degree from
the aspect of positive domain ratio. This paper proposes a discretization
algorithm based on both positive domain and its coupling with informa-
tion entropy, which not only considers information attribute dependency
but also concerns deterministic feature relationship. Substantial exper-
iments on extensive UCI data sets provide evidence that our proposed
coupled discretization algorithm generally outperforms other seven ex-
isting methods and the positive domain based algorithm proposed in this
paper, in terms of simplicity, stability, consistency, and accuracy.

1 Introduction

Discretization is probably one of the most broadly used pre-processing techniques
in machine learning and data mining [6,13] with various applications, such as
solar images [2] and mobile market [14]. By using discretization algorithms on
continuous variables, it replaces the real distribution of the data with a mixture
of uniform distributions. Generally, discretization is a process that transforms
the values of continuous attributes into a finite number of intervals, where each
interval is associated with a discrete value. Alternatively, this process can be also
viewed as a method to reduce data size from huge spectrum of numeric variables
to a much smaller subset of discrete values.

The necessity of applying discretization on the input data can be due to dif-
ferent reasons. The most critical one is that many machine learning and data
mining algorithms are known to produce better models by discretizing continu-
ous attributes, or only applicable to discrete data. For instance, rule extraction
techniques with numeric attributes often lead to build rather poor sets of rules
[1]; it is not always realistic to presume normal distribution for the continuous
values to enable the Naive Bayes classifier to estimate the frequency probabilities
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[13]; decision tree algorithms cannot handle numeric features in tolerable time
directly, and only carry out a selection of nominal attributes [9]; and attribute
reduction algorithms in rough set theory can only apply to the categorical val-
ues [10]. However, real-world data sets predominantly consist of continuous or
quantitative attributes. One solution to this problem is to partition numeric do-
mains into a number of intervals with corresponding breakpoints. As we know,
the number of different ways to discretize a continuous feature is huge [6], in-
cluding binning-based, chi-based, fuzzy-based [2], and entropy-based methods
[13], etc. But in general, the goal of discretization is to find a set of breakpoints
to partition the continuous range into a small number of intervals with high
distribution stability and consistency, and then to obtain a high classification
accuracy. Thus, different discretization algorithms are evaluated in terms of four
measures: simplicity [5], stability [3], consistency [6], and accuracy [5,6].

Of all the discretization methods, the entropy-based algorithms are the most
popular due to both their high efficiency and effectiveness [1,6], including ID3,
D2, and MDLP, etc. However, this group of algorithms only concern the decrease
of uncertainty level by means of information attribute dependency in a decision
table [5], which is not rather convincing. From an alternative perspective, we
propose to improve the discretization quality by increasing the certainty degree
of a decision table in terms of deterministic attribute relationship, which is re-
vealed by the positive domain ratio in rough set theory [10]. Furthermore, based
on the rationales presented in [8,12], we take into account both the decrement
of uncertainty level and increment of certainty degree to induce a Coupled Dis-
cretization (CD) algorithm. This algorithm selects the best breakpoint according
to the importance function composed of the information entropy and positive
domain ratio in each run. The key contributions are as follows:

- Consider the information and deterministic feature dependencies to induce
the coupled discretization algorithm in a comprehensive and reasonable way.

- Evaluate our proposed algorithm with existing classical discretization meth-
ods on a variety of benchmark data sets from internal and external criteria.

- Develop a way to define the importance of breakpoints flexibly with our
fundamental building blocks according to specific requirements.

- Summarize a measurement system, including simplicity, stability, consis-
tency, and accuracy, to evaluate discretization algorithm completely.

The paper is organized as follows. Section 2 briefly reviews the related work.
In Section 3, we describe the problem of discretization within a decision table.
Discretization algorithm based on information entropy is specified in Section 4.
In Section 5, we propose the discretization algorithm based on positive domain.
Coupled discretization algorithm is presented in Section 6. We conduct extensive
experiments in Section 7. Finally, we end this paper in Section 8.

2 Related Work

In earlier days, simple methods such as Equal Width (EW ) and Equal Frequency
(EF ) [6] are used to discretize continuous values. Afterwards, the technology for
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discretization develops rapidly due to the great need for effective and efficient
machine learning and data mining methods. From different perspectives, dis-
cretization methods can be classified into distinct categories. A global method
uses the entire instance space to discretize, including Chi2 and ChiM [6], etc.;
while a local one partitions the localized region of the instance space [5], for
instance, 1R. Supervised discretization considers label information such as 1R
and MDLP [1]; however, unsupervised method does not, e.g., EW, EF. Splitting
method such as MDLP proceeds by keeping on adding breakpoints, whereas
the merging approach by removing breakpoints obtains bigger intervals, e.g.,
Chi2 and ChiM. The discretization method can also be viewed as dynamic or
static by considering whether a classifier is incorporated during discretization,
for example, C4.5 [6] is a dynamic way to discretize continuous values when
building the classifier. The last dichotomy is direct vs. incremental, while di-
rect method needs the pre-defined number of intervals, including EW and EF ;
incremental approach requires an additional criterion to stop the discretization
process, such as MDLP and ChiM [3]. In fact, our proposed method CD is
a global-supervised-splitting-incremental algorithm, and comparisons with the
aforementioned classical methods are conducted in Section 7.

3 Problem Statement

In this section, we formalize the discretization problem within a decision table, in
which a large number of data objects with the same feature set can be organized.

A Decision Table is an information and knowledge system which consists
of four tuples (U,C

⋃
D,V, f). U = {u1, · · · , um} is a collection of m objects.

C = {c1, · · · , cn} and D are condition attribute set and decision attribute set,
respectively. VC is a set of condition feature values, VD is a set of decision
attribute values, and the whole value set is V = VC

⋃
VD. f : U × (C

⋃
D)→ V

is an information function which assigns every attribute value to each object.
D �= ∅ if there is at least one decision feature d ∈ D. The entry xij is the value of
continuous feature cj (1 ≤ j ≤ n) for object ui (1 ≤ i ≤ m). If all the condition
attributes are continuous, then we call it a Continuous Decision Table.

Let S = (U,C
⋃
D,V, f) be a continuous decision table, S(P ) = (U,C∗⋃D,

V ∗, f∗) is the Discretized Decision Table when adding breakpoint set P , where
C∗ is the discretized condition attribute, V ∗ is the attribute value set composed
of discretized values V ∗

C and decision value VD, and f∗ : U × (C∗⋃D)→ V ∗ is
the discretized information function. For simplicity, we consider only one decision
attribute d ∈ D. Below, a consistent discrete decision table is defined:

Definition 1. A discrete decision table S(P ) = (U,C∗⋃D,V ∗, f∗) is consis-
tent if and only if any two objects have identical decision attribute value when
they have the same condition attribute values.

In fact, the discretization of a continuous decision table S is the search of a proper
breakpoint set P , which makes discretized decision table S(P ) consistent. In this
process, different algorithms result in distinct breakpoint sets, thus correspond to
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various discretization results. Chmielewski and Grzymala-Busse [5] suggest three
guidelines to ensure successful discretization, that is complete process, simplest
result and high consistency. Thus, among all the breakpoints, we strive to obtain
the smallest set of breakpoints which make the least loss on information during
discretization.

4 Discretization Algorithm Based on Information Entropy

In this section, we present a discretization method which uses class information
entropy to evaluate candidate breakpoints in order to select boundaries [6]. The
discretization algorithm based on entropy (IE ) is associated with the information
gain of objects divided by breakpoints to measure the importance of them.

Definition 2. Let W ⊆ U be the subset of objects which contains |W | objects.
kt denotes the number of the objects whose decision attribute values are yt(1 ≤
t ≤ |d|), where |d| is the number of distinct decision values. Then the class
information entropy of W is defined as follows:

H(W ) = −
|d|∑
t=1

pt log2 pt, where pt =
kt
|W | (4.1)

Note that H(W ) ≥ 0. Smaller H(X) corresponds to lower uncertainty level of
the decision table [5,6], since some certain decision attribute values play the
leading role in object subset W . In particular, H(W ) = 0 if and only if all the
objects in subset W have the same decision attribute value.

For a discretized decision table S(P ), let W1,W2, · · · ,Wr be the sets of
equivalence classes based on the identical condition attribute values. Then, the
class information entropy of the discretized decision table S(P ) is defined as

H(S(P )) =
∑r

i=1
|Wi|
|U| H(Wi). Based on Definition 1, we obtain the relationship

between entropy and consistency as follows. The proof is shown in the Appendix.

Theorem 1. A discretized decision table S(P ) is consistent if H(S(P )) = 0.

After the initial partition, H(S(P )) is usually not equal to 0, which means S(P )
is not consistent. Accordingly, we need to select breakpoints from candidate set
Q = {q1, q2, · · · , ql}, and it is necessary to measure the importance of every el-
ement of Q to determine which one to choose in the next step. Let S(P

⋃
{qi})

be the discretized decision table when inserting the breakpoint set P
⋃
{qi} to

the continuous decision table S, and the corresponding class information en-
tropy is H(S(P

⋃
{qi})). The existing standard [6] to measure the importance of

breakpoint qi is defined as:

H(qi) = H(S(P ))−H(S(P
⋃
{qi})). (4.2)

Note that the greater the decrease H(qi) of entropy, the more important the
breakpoint qi. Since H(S(P )) is a constant value for every qi(1 ≤ i ≤ l), then
the smaller the entropy H(S(P

⋃
{qi})), the larger probable the breakpoint qi

will be chosen.
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5 Discretization Algorithm Based on Positive Domain

Alternatively, we propose another discretization method incorporated with rough
set theory to select breakpoints to partition the continuous values. The dis-
cretization algorithm based on positive domain (PD) is built upon the indiscerni-
bility relations induced by the equivalence classes to evaluate the significance of
the breakpoints. Firstly, we recall the relevant concept in rough set theory [10].

Definition 3. Let U be a universe, P,Q are the equivalence relations over set
U , then the Q positive domain (or positive region) of P is defined as:

POSP (Q) =
⋃

W∈U/Q

{u : u ∈ U ∧ [u]P ⊆W}, (5.1)

where W ∈ U/Q is the equivalence class based on relation Q, [u]P is the equiva-
lence class of u based on relation P .

In the discretized decision table S(P ) = (U,C∗⋃D,V ∗, f∗), let C∗ be the
equivalence relation of “two objects have the same condition attribute values”,
let D denote the equivalence relation of “two object have the same decision
attribute value”. Then, the positive domain ratio of the decision table S(P )
is R(S(P )) = |POSC∗(D)|/|U |. Note that |U | is the number of objects, and
0 ≤ R(S(P )) ≤ 1. The greater the ratio R(S(P )), the higher the certainty level
of discretized decision table [8,10]. Below, we reveal the consistency condition
for the PD algorithm. The proof is also shown in the Appendix.

Theorem 2. A discretized decision table S(P ) is consistent if R(S(P )) = 1.

Similarly, we usually have R(S(P )) �= 1, that is to say, S(P ) is not consistent
after initialization. Thus, it is necessary to choose breakpoints from candidate
set Q = {q1, q2, · · · , ql} according to the significance order of all the candidate
breakpoints for the next insertion. Let R(S(P

⋃
{qi})) denote the positive do-

main ratio of the discretized decision table S(P
⋃
{qi}). We could then define

the importance of breakpoint qi as:

R(qi) = R(S(P
⋃
{qi}))−R(S(P )). (5.2)

Note that the larger the increase R(qi) of ratio, the greater importance of the
breakpoint qi. Since R(S(P )) is a constant for each candidate qi(1 ≤ i ≤ l),
therefore, the larger the ratio R(S(P

⋃
{qi})), the more important this break-

point qi.

6 Discretization Algorithm Based on the Coupling

Discretization algorithms are considered in terms of information entropy and
positive domain in Section 4 and Section 5, respectively. In a discretized de-
cision table, the information entropy measures the uncertainty degree from the
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perspective of information attribute relationship, while the positive domain ratio
reveals the certainty level with respect to the deterministic feature dependency
[8]. In this Section, we focus on both the information and deterministic attribute
dependencies to derive the coupled discretization (CD) algorithm.

Theoretically, Wang et. al [12] compared algebra viewpoint in rough set and
information viewpoint in entropy theory. Later on, Chen and Wang [4] applied
the aggregation of them to the hybrid space clustering. Similarly, by taking into
account both the increment of certainty level and the decrement of uncertainty
degree in a decision table, we consider to combine the PD and IE based methods
together to get the CD algorithm. This algorithm measures the importance of
breakpoints comprehensively and reasonably by aggregating the positive domain
ratio function R(·) and the class information entropy function H(·) together.
Alternatively, we propose one option to quantify the coupled importance:

Definition 4. For a discretized decision table S(P ), we have the coupled im-
portance of breakpoint set P be:

RH(P, qi) = k1R(qi) + k2H(qi), (6.1)

where R(qi) and H(qi) are the importance functions of breakpoint qi according
to (5.2) and (4.2), respectively; k1, k2 ∈ [0, 1] are the corresponding weights.

For every condition attribute cj ∈ C in the continuous decision table S =
(U,C

⋃
D,V, f), its values are ordered as lcj = x′

1j < · · · < x′
mj = rci .Then, we

define the candidate breakpoint as: qij =
x′
ij+x′

i+1,j

2 (1 ≤ i ≤ m− 1, 1 ≤ j ≤ n).
The process of the discretization algorithm based on the coupling of positive

domain and information entropy is designed as follows. The algorithm below
clearly shows that its computational complexity is O(m2n2) based on the loops.

7 Experiment and Evaluation

In this section, several experiments are performed on extensive UCI data sets
to show the effectiveness of our proposed coupled discretization algorithm. All
the experiments are conducted on a Dell Optiplex 960 equipped with an Intel
Core 2 Duo CPU with a clock speed of 2.99 GHz and 3.25 GB of RAM running
Microsoft Windows XP. For simplicity, we just assign the weights k1 = k2 = 0.5
in Definition 4 and Algorithm 1.

To the best of our knowledge, there are mainly four dimensions to evaluate
the quality [3,5,6] of discretization algorithms as follows:

- Stability: How to measure the overall spread of the values in each interval.
- Simplicity: The fewer the break points, the better the discretization result.
- Consistency: The inconsistencies caused by discretization should not be large.
- Accuracy: How discretization helps improve the classification accuracy.

Discretization methods that adhere to internal criterion assign the best score to
the algorithm that produces break points with high stability and low simplicity;
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Algorithm 1. Coupled Algorithm for Discretization

Data: Decision table S with m objects and n attributes (value xij), and k1, k2.
Result: breakpoint set P .
begin

breakpoint set P = ∅, candidate breakpoint set Q = ∅;
for j = 1 : n do

{x′
ij} ← sort({xij});

for j = 1 : n do
for i = 1 : (m− 1) do

candidate breakpoint qij ← x′
ij+x′

i+1,j

2
, Q = {q};

Fix the first breakpoint p1 ← argminqH(S(P
⋃
{qij}));

while H(S(P )) �= 0 ∧R(S(P )) �= 1 do
for candidate k = 1 : |Q| do

calculate RH(P, qk) according to (6.1);

qmax ← argmaxqRH(P, qk);
P ← P ∪ {qmax}, Q ← Q\{qmax};

Output breakpoint set P ;
end

while discretization approaches that adhere to external criterion compare the
results of the algorithm against some external benchmark, such as predefined
classes or labels indicated by consistency and accuracy. From these two perspec-
tives, the experiments here are divided into two categories according to different
evaluation standards: internal criteria (stability, simplicity) and external criteria
(consistency, accuracy), as shown in Section 7.1 and Section 7.2, respectively.

7.1 Internal Criteria Comparison

With respect to the internal criterion, i.e., stability and simplicity, the goal in this
set of experiments is to show the superiority of our proposed coupled discretiza-
tion (CD) algorithm against some classic methods [6] such as Equal Frequency
(EF ), 1R, MDLP, Chi2, and Information Entropy-based (IE ) algorithms.

Specifically, simplicity measure is described as the total number of intervals
(NOI ) for all the discretized attributes. More complicatedly, the stability mea-
sures are constructed from a series of estimated probability distributions for the
individual intervals constructed by incorporating the method of Parzen windows
[3]. As one of the induced measure, Attribute Stability Index (ASIj) is con-
structed from the weighted sum of the Stability Index (SIjk), which describes
the value distribution for each interval Ik of attribute cj . The measure SIjk fol-
lows 0 < SIjk < 1, if SIjk is near 0 then its values are next to the break points of
the interval Ik, while SIjk is close to 1 when its values are near the center of the
interval Ik. Furthermore, we have 0 < ASIj < 1, and the larger the ASIj value,
the more stable and better the discretization method. Here, we adapt this mea-
sure to be the Average Attribute Stability Index (AASI ), which is the weighted
sum of ASIj for all the attributes cj(1 ≤ j ≤ n): AASI =

∑n
j=1 ASIj/n.
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The break points and intervals produced by the aforementioned six discretiza-
tion methods are then analyzed on 15 UCI data sets in different scales, ranging
from 106 to 1484 (number of objects). The results are reported in Table 1. As
discussed, larger AASI, smaller NOI indicate more stable and simpler character-
ization of the interval partition capability, which further corresponds to a better
discretization algorithm. The values in bold are the best relevant indexes for
each data. From Table 1, we observe that with the exception of only few items
(in italic), the other indexes all show that our proposed CD algorithm is better
than the other five classical approaches (EF, 1R, MDLP, Chi2, IE ) in most cases
from the perspectives of stability and simplicity. It is also worth noting that our
proposed CD always outperforms the IE algorithm presented in Section 4 in
terms of stability, which verifies the benefit of aggregating the positive domain.

Table 1. Discretization Comparison with Stability and Simplicity

Data set
Average Attribute Stability Index Number of Intervals

EF 1R MDLP Chi2 IE CD EF 1R MDLP Chi2 IE CD

Tissue 0.57 0.56 0.27 0.64 0.15 0.68 81 96 48 38 26 24
Echo 0.44 0.52 0.67 0.50 0.32 0.65 70 44 17 21 19 14
Iris 0.33 0.28 0.66 0.67 0.39 0.72 16 17 12 11 14 14
Hepa 0.16 0.21 0.21 0.18 0.19 0.28 118 54 18 34 19 21
Wine 0.59 0.59 0.65 0.83 0.60 0.80 169 130 16 24 13 13
Glass 0.63 0.50 0.80 0.56 0.75 0.82 46 86 50 27 34 20
Heart 0.25 0.25 0.40 0.31 0.34 0.51 70 61 42 43 28 26
Ecoli 0.51 0.29 0.62 0.54 0.51 0.72 36 76 27 33 30 28
Liver 0.66 0.24 0.78 0.69 0.74 0.79 30 70 68 74 22 24
Auto 0.58 0.35 0.69 0.65 0.67 0.73 47 73 39 67 39 31

Housing 0.50 0.64 0.72 0.56 0.61 0.78 142 32 29 340 25 13
Austra 0.28 0.15 0.39 0.32 0.36 0.41 83 102 21 98 26 17
Cancer 0.17 0.13 0.27 0.22 0.22 0.26 44 31 29 40 18 18
Pima 0.55 0.32 0.73 0.60 0.20 0.70 48 161 24 35 33 29
Yeast 0.47 0.17 0.62 0.55 0.30 0.70 45 47 55 51 51 49

7.2 External Criterion Comparison

In this part of our experiments, we focus on the other two aspects of evaluation
measures: consistency and accuracy. Two independent groups of experiments are
conducted with extensive data sets based on machine learning applications.

According to Liu et al. [6], consistency is defined by having the least pattern
inconsistency count which is calculated as the number of times this pattern
appears in the data minus the largest number of corresponding class labels. Thus,
the fewer the inconsistency count, the better the discretization quality. Based on
the discretization results in Section 7.1, we compute the sum of all the pattern
inconsistency counts for all possible patterns of the original continuous feature
subset. Consistency evaluation is conducted on nine data sets with different
number of objects, ranging from 132 (Echo) to 768 (Pima) in an increasing
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order. We also consider the other seven discretization methods for comparison,
i.e., Equal Frequency (EW ), EF, 1R, MDLP, ChiM, Chi2, and IE.

As shown in Fig. 1, the total inconsistency counts of IE and our proposed CD
are always 0 on all the data sets, because the stopping criteria are the consistency
conditions presented in Theorem 1 and Theorem 2. However, MDLP seems to
perform the worst in terms of the consistency index, and the inconsistency counts
of the other five algorithms fall in the intervals between those of MDLP and CD
for all the data sets. These observations reveal the fact that algorithms IE and
CD are the most consistent candidates for discretization. While IE and AD both
indicate a surprisingly high consistency, in general, CD produces higher stability
(larger AASI ) and lower simplicity (smaller NOI ), as presented in Table 1.
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Fig. 1. Discretization Comparison with Consistency

How does discretization affect the classification learning accuracy? As Liu
et al. [6] indicate, accuracy is usually obtained by running a classifier in cross
validation mode. In this group of experiments, two classification algorithms are
taken into account. i.e., Naive-Bayes, and Decision Tree (C4.5). A Naive Bayes
(NB) classifier is a simple probabilistic classifier based on applying Bayes’ the-
orem with strong (naive) independence assumptions [13]. C4.5 is an algorithm
used to generate a decision tree (DT ) for classification. As pointed out in Section
1, the continuous attributes take too many different values for the NB classifier
to estimate frequencies; DT algorithm can only carry out a selection process
of nominal features [9]. Thus, discretization is rather critical for the task of
classification learning. Here, we evaluate the discretization methods with the
classification accuracies induced by NB and DT (C4.5 ), respectively.

Fig. 2 reports the results on 9 data sets with distinct data sizes, which vary
from 150 to 1484 in terms of the number of objects. As can be clearly seen from
this figure, the classification algorithms with CD, whether NB or DT, mostly
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Fig. 2. Discretization Comparison with Accuracy

outperform those with other discretization methods (i.e., EW, EF, 1R, IE ) from
the perspective of average accuracy. That is to say, discretization algorithm CD
is better than others on classification qualities. Though for the data set Yeast,
the average accuracy measures induced by NB with CD are slightly smaller than
that with IE, the stability measures shown in Table 1 indicate that CD is better
than IE. Therefore, our proposed discretization algorithm CD is better than
other candidates with respect to the classification accuracy measure.

Besides, we lead a comparison among the algorithms presented in Section 4
(IE ), Section 5 (PD), and Section 6 (CD). Due to space limitations, only simplic-
ity and accuracy measures are considered to evaluate these three discretization
algorithms. Here, we take advantage of the k-nearest neighbor algorithm (k-NN )
[7], which is a method for classifying objects based on closest training examples
in the feature space. After discretization, five data sets are used for classification
with both 1-NN and 3-NN, in which 70% of the data is randomly chosen for
training with the rest 30% for testing. As indicated in Table 2, our proposed
CD method generally outperforms the existing IE algorithm and proposed PD
algorithm. Specifically for 3-NN, the average accuracy improving rate ranges
from 2.35% (Iris) to 27.06% (Glass) when compared CD with IE. With regard
to 1-NN, this rate falls within −1.58% (Glass) and 1.96% (Austra) between CD
and PD. However, by considering both simplicity and accuracy, we find out that
CD is the best one since it takes the aggregation of the other two candidates.

Consequently, we draw the following conclusion: our proposed Coupled Dis-
cretization algorithm generally outperforms the other classical candidates in
terms of all the four measures: stability, simplicity, consistency, and accuracy.
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Table 2. Comparison between IE & PD & CD

Dataset
Number of Intervals Accuracy by 1-NN Accuracy by 3-NN

IE PD CD IE PD CD IE PD CD

Iris (150) 14 10 14 95.24 96.95 97.48 94.48 94.10 95.54
Glass (214) 34 79 20 61.60 79.53 78.27 57.73 66.67 67.12
Heart (303) 28 45 26 63.28 73.33 74.29 62.86 75.87 77.04
Austra (690) 26 78 17 70.14 76.60 78.10 73.17 80.54 79.96
Pima (768) 33 74 29 67.10 70.74 71.04 69.33 73.09 73.12

8 Conclusion

Discretization algorithm plays an important role in the applications of machine
learning and data mining. In this paper, we propose a new global-supervised-
splitting-incremental algorithm CD based on the coupling of positive domain
and information entropy. This method measures the importance of breakpoints
in a comprehensive and reasonable way. Experimental results show that our
proposed algorithm can effectively improve the distribution stability and clas-
sification accuracy, optimize the simplicity and reduce the total inconsistency
counts. We are currently applying the CD algorithm to the estimation of web
site quality with flexible weights k1, k2 and stopping criteria, and we also con-
sider the aggregation of the CD algorithm with coupled nominal similarity [11]
to induce coupled numeric similarity and clustering ensemble applications.
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Appendix: Theorem Proof

Proof. – [Theorem 1] Since H(S(P )) = 0 , then

|W1|
|U | H(W1) +

|W2|
|U | H(W2) + · · ·+

|Wr|
|U | H(|Wr |) = 0.

Because we have H(W ) ≥ 0 , then H(W1) = H(W2) = · · · = H(Wr) = 0.
According to the definition of class information entropy of Wi(i = 1, 2, · · · , r),

H(Wi) = −
∑r(d)

j=1 pj log2 pj. Since 0 ≤ pj ≤ 1, log2 pj ≤ 0, H(Wi) = 0, then

pj =
kj

|Wi| = 0 or pj =
kj

|Wi| = 1, that is kj = 0 or kj = |Wi| respectively, which
indicates that the decision attribute values of Wi(i = 1, 2, · · · , r) are all equal.
That is to say, the discretized decision table is consistent.

Proof. – [Theorem 2] Let the equivalence class of the objects that have the
same decision attribute value be denoted as Y = {Y1, Y2, · · · , Ys} , and the
equivalence class of the objects that have identical condition attribute value be
denoted as X = {X1, X2, · · · , Xt}.

Since we have R(S(P )) = 1, then |POCC∗ | = |U | holds. As we know
POCC∗(D) ⊆ U , then we further obtain that POSC∗(D) = U . According to
the Definition 6, for each Yj ∈ Y , we then have at least one Xi ∈ X , to satisfy
Xi ⊆ Yj , and Yj = Xi1 ∪ · · · ∪ Xij , (Xi1 , · · · , Xij ∈ X). As it is the fact that⋃
Xi =

⋃
Yj = U ,

⋂
Xi =

⋂
Yj = ∅, then for each Xi ∈ X , there exists only

one Yj ∈ Y , so that Xi ⊆ Yj . Hence, when the objects have identical condition
attribute value, their decision attribute values are the same, which means the
objects are consistent if R(S(P )) = 1.



Co-embedding of Structurally Missing Data by Locally
Linear Alignment

Takehisa Yairi

Research Center for Advanced Science and Technology, University of Tokyo
yairi@space.rcast.u-tokyo.ac.jp

Abstract. This paper proposes a “co-embedding” method to embed the row and
column vectors of an observation matrix data whose large portion is structurally
missing into low-dimensional latent spaces simultaneously. A remarkable charac-
teristic of this method is that the co-embedding is efficiently obtained via eigende-
composition of a matrix, unlike the conventional methods which require iterative
estimation of missing values and suffer from local optima. Besides, we extend
the unsupervised co-embedding method to a semi-supervised version, which is
reduced to a system of linear equations. In an experimental study, we apply the
proposed method to two kinds of tasks – (1) Structure from Motion (SFM) and
(2) Simultaneous Localization and Mapping (SLAM).

1 Introduction

Recently, the dimensionality reduction and matrix factorization techniques have been
regarded as a significant machine learning tool for feature extraction and data compres-
sion, as both the size and dimensionality of data in most application are continuing to
increase rapidly.

A non-trivial issue in applying these techniques to actual problems is how to deal
with missing data elements, as the real-world data, e.g., medical testing data, food pref-
erence questionnaire data, purchase records, etc. usually contains missing parts. If the
missing portion is relatively small, ad hoc treatment such as filling the missing ele-
ments with constant values and inferring them from similar data is acceptable. A more
sophisticated approach commonly used is to alternately estimate the missing values and
conduct dimensionality reduction or matrix factorization until convergence. The method
is known as EM (expectation maximization) algorithm in machine learning. However,
if the missing portion is very large and has some structural pattern, these conventional
approaches are expected to fail.

Consider the following situation for an example. An observer is wandering around
the town, carrying a wireless device (such as tablet PC). The device is assumed to be ca-
pable of recording approximate relative directions to all detected wireless access points
(APs). If the device could always communicate with all APs in the town wherever it is,
the observation data could be represented as a complete matrix, whose (i, j)-th element
is the relative direction to the j-th AP from the i-th observation position. Unfortunately,
however, most of the elements are missing, because the wireless communication range
is limited and affected by occlusion. Besides, the pattern of missing data is not ran-
dom but structured, as whether a measurement is present or absent is dependent on the

P.-N. Tan et al. (Eds.): PAKDD 2012, Part II, LNAI 7302, pp. 419–430, 2012.
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spatial relationship between the observer and AP. The conventional approaches are not
suitable for this kind of missing data.

In this paper, we propose the locally linear alignment co-embedding (LLACoE) that
embeds both row and column vectors of a matrix-form observation data with largely
and structurally missing elements into low-dimensional latent spaces respectively. A
key idea is that a measurement yi,j can be approximated by some linear projection of
the state vector of j-th object zj onto the subspace determined by the observer’s state
xi. A remarkable feature of LLACoE is that it does not require iterative computation to
estimate the missing values, but is efficiently solved by eigendecomposition or a system
of linear equations.

2 Related Works

Dimensionality reduction is a major topic of machine learning, as well as classification,
regression and clustering. Especially, in the last decade, non-linear dimensionality re-
duction (a.k.a. manifold learning) methods such as Isomap[7] and LLE[3] have been
developed and become popular. In addition, matrix factorization or low-rank matrix ap-
proximation techniques such as singular value decomposition (SVD) and non-negative
factorization (NMF) have been widely used in a variety of datamining applications.

A practical difficulty is that the real-world data is not only huge and high-dimensional,
but also often incomplete due to various reasons. The simplest way of dealing with such
incomplete data is to fill the missing parts with some proper constant values, typically
by zero. This approach will be reasonable enough, when the values are “missing” be-
cause they are out of measurement ranges. However, the applicability of this method is
obviously limited, because not all measurement data have such a property. Besides, it is
sometimes nontrivial to find a proper constant value, even when it is applicable.

A more sophisticated and popular approach is to estimate the missing values and
conduct dimensionality reduction or matrix factorization alternately until it converges.
In computer vision (CV), PCAMD (PCA with missing data) methods[5] such as alter-
nate least squares (ALS) and Wiberg’s algorithm[1] have been utilized for the structure
from motion (SFM), in which a 3-dimensional surface model of target object is esti-
mated from a sequence of 2-dimensional images. In machine learning (ML), this kind
of iterative algorithm is generally formalized as the EM algorithm. In fact, it was shown
that PPCA (probabilistic PCA) with EM algorithm can deal with incomplete data[4].
Also in NMF, some iterative algorithms that alternately estimating missing values and
factorizing a matrix into two low-rank ones have been recently developed[6]. While this
iterative estimation approach works fine if the missing part is relatively small, the con-
vergence property and solution quality become drastically worse as the missing portion
becomes larger. Besides, even if the missing data has some pattern or structure which
contains information of latent low-dimensional spaces, it does not have any mechanism
to utilize the information. In summary, these conventional approaches implicitly assume
small and randomly generated missing elements.

In contrast, our method utilizes only existing elements of the matrix data, which
means it is not necessary to fill the absent elements with constants, nor to estimate them
alternately. In addition, it takes advantage of the pattern of missing data, based on the
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idea that existing (i.e. not missing) elements are roughly linear to their corresponding
latent vectors.

3 Problem Definition

In this paper, we deal with a M ×N data matrix Y = [yi,j ]i=1,...,M,j=1,...,N . It should
be noted that (i, j)-th element yi,j is a D-dimensional vector in general.1 As Y contains
missing elements, we introduce a set of Boolean indicator variables {qi,j} to specify
whether each element is existing or missing. That is to say,

qi,j =

{
0 (if(i, j)-th element yi,j is missing)
1 (otherwise)

(1)

Now we pursue two goals at the same time:

1. Obtain a set of n-dimensional row latent vectors X = [x1, . . . ,xM ]� by reducing
the dimension of Y ’s row vectors.

2. Obtain a set of m-dimensional column latent vectors Z = [z1, . . . , zN ]� by reduc-
ing the dimension of Y ’s column vectors.

where, n << N · D and m << M · D. It should be noted that our purpose is not to
approximate or reconstruct Y by the product of X and Z�, but to embed the row and
column vectors of Y to low dimensional latent spaces respectively. It can be called as
simultaneous dimensionality reduction or co-embedding.

We can give another view to this problem. First, assume that a measurement yi,j is
generated by an unknown function of an observer’s latent state xi ∈ Rn and an item’s
latent state zj ∈ Rm, i.e.,

yi,j = g(xi, zj) + ei,j (2)

where ei,j is the noise. Our goal is to estimate sets of {xi} (i = 1, . . . ,M ) and {zj}
(j = 1, . . . , N ), when a partial set of {yi,j} is given. Note that function g itself is not
necessarily estimated.

Now we make an assumption that the presence of an observation yi,j has a locality
as to zj . Roughly speaking, this assumption states “if there exists i such that qi,j =
qi,j′ = 1, then zj and zj′ are close to each other”.

While this assumption seems to be very restrictive, there are many problems which
hold this property in fact. For example, in the case of mobile wireless device and access
points mentioned in section 1, this assumption is expected to be valid because the device
at a position xi can communicate only with APs in its neighborhood. It is also the case
with SLAM (simultaneous localization and mapping) problem[8] in mobile robotics,
where xi is the robot’s pose and zj is the j-th landmark’s position. Another example is
the SFM (structure from motion) problem in computer vision, where xi is the relative
spatial relationship between the camera and target object, zj is the j-th visual feature’s

1 Although Y should be regarded as a M ×N ×D tensor in this sense, we treat it as a matrix
whose element is a vector because it makes us understand the subsequent discussion more
easily.



422 T. Yairi

3D coordinates in the body frame, and yi,j is its 2D coordinates on the camera screen.
Obviously, if j-th and j′-th features are observed at the same time, they are expected to
close to each other.

The assumption may be valid even in collaborative filtering. If we consider the Net-
flix rating data set, xi is the preference of the i-th user, and zj is the j-th movie. If a
user watched two movies, they are likely to be in the same genre.

4 Locally Linear Alignment Co-embedding

In this section, we introduce the proposed method named LLACoE (locally linear align-
ment co-embedding).

4.1 Basic Idea

We consider the above assumption “if there exists i such that qi,j = qi,j′ = 1, then zj
and zj′ are close to each other” holds. Then, if qi,j = 1 or yi,j is not missing, a linear
approximation below is possible in its neighborhood, i.e.,

yi,j = g(xi, zj) + ei,j ≈ G(xi)[z
�
j , 1]� = G(xi)z̃j (3)

where G(xi) stands for a projection matrix determined by xi, and z̃j is a homogeneous
coordinates of zj .

Assume that xi implies observer’s latent state at time i, while zj implies j-th object’s
state or position. Then the above approximation states that when observer’s state is xi,
its observation data is formed by linear projections of all observable objects j ∈ Vi into
the observation subspace G(xi) determined by xi. In other words, each observation
data at a time can be regarded as linear projections of a piece (fragment) of the whole
world’s state into a low-dimensional perception space.

Now, our first goal is to reconstruct the latent states of all objects, i.e., {zj} by
aligning the pieces of observation data. Intuitively, it is similar to jigsaw puzzles or
reconstruction of fragmentary fossils. Since the alignment operation of each piece re-
flects the observer’s state, xi is also expected to be reconstructed. In the remaining of
this section, we will explain how to realize this rough idea.

4.2 Unsupervised Locally Linear Alignment Co-embedding

First we consider reconstructing the column latent vectors {zj}. The assumption in the
previous section means that zj is approximately linear (more strictly, affine) to yi,j if
qi,j = 1. We use this local linearity property in a reverse way. That is to say, we think
of approximating zj by an affine transformation of yi,j when qi,j = 1:

ẑi,j ≡ Ti[y
�
i,j , 1]

� = Tiỹi,j (4)

where Ti is an alignment transformation matrix common for yi,j (j = 1, . . . , N ) as
long as qi,j = 1. ỹi,j is the homogeneous coordinates of yi,j . It would be reasonable to
decide the final estimate of zj by averaging all the temporary estimates as:
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ẑj =

∑M
i=1 qi,j ẑi,j∑M

i=1 qi,j
=

M∑
i=1

q̃i,j ẑi,j (5)

where, q̃i,j = qi,j/
∑M

i=1 qi,j is the normalized observability indicator.
Now our main concern is how we can obtain the optimal set of alignment matri-

ces {Ti} (i = 1, . . . ,M ). A reasonable way is to choose them so that {ẑi,j} (i =
1, . . . ,M )– the estimates of zj for all i coincide with each other. This idea can be
realized by minimizing the following cost function Φaln with respect to {Ti}:

Φaln =
1

2

N∑
j=1

∑
i�=i′

q̃i,j q̃i′,j‖ẑi,j − ẑi′,j‖2 (6)

Although we omit the detailed derivation here, by introducing some auxiliary matri-
ces and vectors such as vj = [q̃1,j ỹ

�
1,j , . . . , q̃M,jỹ

�
M,j ], V = [v�

1 , . . . ,v�
N ]�, Di =∑N

j=1 q̃i,j ỹi,j ỹ
�
i,j , D = diag(D1, . . . ,DM ), T = [T1, . . . ,TM ]�, Eq.(6) can be re-

written as:

Φaln(T ) = Tr(T�(D − V �V )T ) (7)

Note that this is a trace of a matrix quadratic form of T , and that Z = [z1, . . . , zN ]�

can be obtained as Z = V T .
As the minimization of Φaln has a trivial solution T = 0 if there are no constraints,

we impose a constraint :

Z�Z = T�(V �V )T = I (8)

The solution of this constrained minimization is obtained as Topt = [u2, . . . ,um+1]
where u2, um+1 are the second smallest and (m + 1)-smallest eigenvectors of the
generalized eigenvalue problem:

(D − V �V )u = λ(V �V )u (9)

Then we obtain Ẑ = V Topt.
Next we consider reconstructing the row latent vectors X = [x1, . . . ,xM ]�. As

each alignment transformation matrix Ti obtained in the previous step is supposed to
characterize the corresponding row latent vector, estimates of {xi} are obtained by
reducing the dimension of vec(Ti) to n, where vec(Ti) is a column vector obtained
by reshaping the elements of matrix Ti. Note that {vec(Ti)} contain no missing ele-
ments, unlike the original observation matrix Y . We employed the simple SVD for the
dimensionality reduction this time, while other advanced non-linear methods are also
applicable.

The above cost function and the solution of column latent vectors {zj} originate
from Verbeek and Roweis’s method for non-linear PCA and CCA[9]. However, they
did not deal with the missing elements nor simultaneous dimensionality reduction of
column and row vectors. Therefore, our method is different from theirs.
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4.3 Regularization

In actual applications, we can often improve the estimation results by introducing task-
specific regularization terms into the original cost function. Especially, when the row
latent vector xi corresponds to the observer’s state at time i, each pair of xi and xi+1

and corresponding pair of alignment matrices Ti and Ti+1 are expected to be close to
each other. This soft constraint can be realized by introducing a regularization term for
smoothing successive rows of X expressed as,

Φsmo = Tr(T�(S�S)T ) (10)

where S is a matrix that computes the differences of pairs of successive elements in T .
We minimize the weighted sum of cost functions Φaln + αsmo · Φsmo instead of Φaln

under the same constraint.

4.4 Semi-supervised Co-embedding

In some application domains, a semi-supervised problem setting where the partial la-
bel information about row and column latent vectors are available beforehand is more
natural. For example, in the case of wireless device and access points story, it is no
wonder that exact positions of observer are partially available by GPS. LLACoE can be
extended to a semi-supervised version in a straightforward way.

We denote the labeled data of j-th column latent vector zj as z∗
j . We also define a

Boolean variable δj to indicate whether the label information is available or not. That
is to say,

z∗
j = zj (if δj = 1), 0 (if δj = 0) (11)

Then we define the cost function for the label information as:

Φzlb ≡
N∑
j=1

δj‖ẑj − z∗
j ‖2 (12)

By defining Z∗ = [z∗
1 , . . . , z

∗
N ]� and Jz = diag(δ1, . . . , δN ), Eq.12 can be re-written

as,
Φzlb = Tr((V T −Z∗)�Jz(V T −Z∗)) (13)

The whole cost function Φsem(T ) = Φaln + αsmo · Φsmo + αzlb · Φzlb can be easily
minimized by solving a system of linear equations:

Topt = (D + V �(αzlbJz − I)V + αsmoS
�S)−1(αzlbV

�JzZ
∗) (14)

Introducing the label information of row latent vectors {x∗
i } is similar to the above

discussion, but much simpler. It is a general semi-supervised regression problem, where
{vec(T̂i)} are input vectors. While there are many advanced methods for the semi-
supervised regression, this time we solved it simply by the ridge regression or least-
squares linear regression with Tiknov regularization.
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(a) Complete Observation
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(b) Incomplete Observation

Fig. 1. Examples of (a) complete and (b) incomplete observation in Exp.1. Numbers indicate
vertices’s’ IDs
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(a) SVD
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(b) (Unsupervised) LLACoE

Fig. 2. Reconstructed 3D model of dodecahedron with complete observation data
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(c) LLACoE (0.17 sec)

Fig. 3. Reconstructed 3D model of dodecahedron with incomplete observation data with com-
putational time. All algorithms are implemented in Matlab and conducted by a Dell Precision
T1500.
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5 Experiment

5.1 Experiment 1: Structure from Motion Task

First, we applied the proposed co-embedding method to the structure from motion
(SFM) task in computer vision domain, and compared it with conventional methods.

Assume that we look at a dodecahedron from a randomly chosen direction, identify
all visible vertices, then obtain their 2-dimensional coordinates on camera image as
the observation data [yi,1, . . . ,yi,N ], where N = 20 because a dodecahedron has 20
vertices. We repeat this procedure for M = 100 times, and obtain the observation data
Y . The goal of this task is to reconstruct a 3-dimensional model of dodecahedron, or
estimate 3-D coordinates {zj} of 20 vertices in the body frame.

For comparison, we first conducted this experiment under the condition that all ver-
tices are always visible, i.e., Y has no missing elements (Fig.1 (a)). In this case, ordi-
nary SVD is applicable. In fact, a perfect 3-D model is reconstructed by SVD as Fig.2
(a). Unsupervised version of the proposed method (LLACoE) also succeeds in recon-
structing it as Fig.2 (b).

Next we impose the practical condition that observation elements of occluded ver-
tices are lost (Fig.1 (b)). As a result, approx. 30 % of Y ’s elements are missing. In this
case, we cannot use the ordinary SVD anymore, because filling the missing elements
with some constants is obviously inappropriate. So we applied two PCAMD methods,
i.e., alternate least squares (ALS) algorithm and Wiberg’s algorithm[1]. The resultant
models are shown in Fig.3 (a)-(c). Although all three methods reconstructed the model
successfully, LLACoE is much faster than others because it does not need iterations.

5.2 Experiment 2: Mapping and Localization for Wireless Devices

Next we applied LLCoE to a simultaneous localization and mapping (SLAM) problem
with wireless devices in a simulated environment.

In this task, we assume that 564 access points (APs) are distributed in a virtual cam-
pus, and a walking observer with a wireless client device records the relative positions
of detected APs periodically. Fig.4 illustrates the simulated environment (research cam-
pus) and the ground truth map of APs. Some APs’ IDs are indicated for later evaluation.
Fig.5 illustrates the ground truth trajectory of the observer and observation points. Num-
ber of observation points is 310. In this task, the row latent vector xi (i = 1, . . . , 310)
is the observer’s state (i.e., position and heading direction), whereas the column latent
vector zj (j = 1, . . . , 564) is each AP’s position. Observation data yi, j is computed
from a very noisy bearing and range information. For example, Fig.6 (a) and (b) are
a ground truth map and a observed relative positions of detected APs at one time. We
generated the observation data with:

Pr(qi,j = 1) =
1

1 + exp(0.15 · (di,j − 50))
(15)

where di,j is the distance between i-th observation point and j-th AP. As a result, the
ratio of missing elements in Y becomes approx. 97 %. Fig.7 shows the distribution of
missing (gray) and existing (white) elements in Y .
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Fig. 4. Simulated environment with 564 AP
positions
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Fig. 5. Ground truth trajectory of observer

−100 −80 −60 −40 −20 0 20 40 60 80

100

120

140

160

180

200

220

240

260

280

 14

 16
 28

 29

 30

 38

 39

 40
 44

 53

495

  4  5

  6

  7

  8

  9

 10

 11

 12

 13

 15

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 31

 32

 33  34
 35

 36

 37

 41

 42

 43
 45

 46

 47

 48

 49

 50

 51

 52

 54

 55 56

 57

 58
 61  63  66  68

 69 70

 71

 72

 73
 74

 75

 76

 77

 78

 79
 80

 81

 82

 83

 84  85

 86  87

 88 89 90

 91

 92

 93

 94

 95 103
113

114

450

451
452

453

454

455

456 457

458

459

460

461

462 463

464

465
466 467

468

469

470

471

472

473
474

475
476

477

478

479480

481

482

483

484

485

486

487

488

489

490

491

492

493
494

496
497

558

559

562

563 564

(a) Ground truth

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

 14

 16

 28

 29

 30

 38 39

 40
 44

 53

495

(b) Observed

Fig. 6. Example of ground truth submap (a) and observed data (b). Observation is noisy and
distant APs are missing. Circles show the approximate communicatable ranges.

Unsupervised Localization and Mapping. First we applied the unsupervised version
of LLACoE to estimate X and Z from Y without the smoothing regularization. Al-
though the map of APs (Z) in Fig.8(a) is largely distorted, we can see the approximate
relative relationships with neighbors are reconstructed to some extent. On the other
hand, the trajectory of observer (X) in Fig.9(a) is reconstructed very well.
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Fig. 7. Distribution of missing (gray) and existing (white) elements of observation data Y . About
97% is missing.
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(c) LSI

Fig. 8. Reconstructed maps by unsupervised methods
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(b) LLACoE with smoothing
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Fig. 9. Reconstructed trajectories by unsupervised methods
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(b) Trajectory

Fig. 10. Estimated map and trajectory by semi-supervised LLACoE
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(b) Trajectory

Fig. 11. Estimated map and trajectory by co-localization[2]

Then we added the smoothing regularization term Φsmo described in section 4.3. We
set the weight parameter value as αsmo = 0.2 here. The results are shown in Fig.8(b)
and Fig.9(b). We can see that the reconstruction of X (map of APs) is much improved.

For comparison, we applied latent semantic indexing (LSI) method as in [2] to the
data. To do so, we converted the range measurements into signal strengths by a mono-
tonically decreasing function. The results are much worse than those of LLACoE as
shown in Fig.8(c) and Fig.9(c).

Semi-supervised Localization and Mapping. We also tested the semi-supervised ver-
sion of LLACoE in this experiment. We gave exact positions of 7 APs as the label in-
formation z∗

j , which are emphasized by circles in Fig.4. Partial label information of
observation points xi were also provided within the “areas” indicated in Fig.5.

Fig.10 (a) and (b) show the obtained map and trajectory, respectively. Owing to the
label information, the absolute accuracy of estimated positions is much improved.
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For comparison, we applied Pan’s co-localization algorithm based on graph regular-
ization [2] to the range measurements. The resultant map and trajectory are shown in
Fig.11 (a) and (b). Unfortunately, it completely failed in this experiment.

6 Conclusion

In this paper, we proposed a co-embedding method to embed the row and column
vectors of an observation matrix data whose large portion is structurally missing into
low-dimensional latent spaces simultaneously. The proposed method outperforms the
conventional methods based on EM algorithm and ALS in computational cost and sta-
bility, because it is solved by eigendecomposition of a symmetric matrix. We also a
semi-supervised version of the proposed co-embedding method, which is solved by a
system of linear equations. In the experiment, we evaluated the method on two kinds of
tasks, and compared it with other methods. In future, we are going to apply this method
to a variety of problems.
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Abstract. In last few years, the research community has shown interest
in the development of Brain Computer Interface which may assists phys-
ically challenged people to communicate with the help of brain signal.
The two important components of such BCI system are to determine
appropriate features and classification method to achieve better perfor-
mance. In literature, Empirical Mode Decomposition is suggested for
feature extraction from EEG which is suitable for the analysis of non-
linear and non-stationary time series. However, the features obtained
from EEG may contain irrelevant and redundant features which make
them inefficient for machine learning. Relevant features not only decrease
the processing time to train a classifier but also provide better general-
ization. Hence, relevant features which provide maximum classification
accuracy are selected using ratio of scatter matrices, Chernoff distance
measure and linear regression. The performance of different mental task
using different measures used for feature selection is compared and eval-
uated in terms of classification accuracy. Experimental results show that
there is significant improvement in classification accuracy with features
selected using all feature selection methods and in particular with ratio
of scatter matrices.

Keywords: Empirical Mode Decomposition, Brain Computer Interface,
Feature Selection, Chernoff distance measure, Scatter Matrices, Linear
regression.

1 Introduction

Last few years have witnessed the advancement of technologies which has made
possible the use of brain signals for communication between human and com-
puter. This growth in technologies allows research community to develop a sys-
tem called Brain Computer Interface (BCI) which can control a device such as
computer or wheel chair by human intentions rather than mechanical power of
human. It may be very useful to physically challenged persons who are suffering
from locomotor syndrome, Amyotrophic Lateral Sclerosis, Head trauma, severe
cerebral palsy or multiple disorders affect in body, which restricts such persons
to operate any electronics device smoothly and freely. With the development
of BCI, these people can operate any electronics device with the help of just
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brain signals and does not depend on the brain’s normal output pathways of
peripheral nerves and muscles. BCIs are often aimed for assisting, augment-
ing or repairing human cognitive or motor sensory function. Various techniques
such as Electroencephalogram (EEG), Electrocardiogram, functional magnetic
resonance imaging, Magneto encephalographic (MEG) and Positron emission
tomography (PET) are used for monitoring brain signals activities.

EEG is commonly used for BCI implementation due to its low cost, abil-
ity to record brain signals and non-invasive nature. There are many compo-
nents of a BCI system. However, the success of BCI system mainly depends on
two components: feature extraction and classification method. The feature ex-
tracted/selected from EEG should have high discriminative power to distinguish
the different tasks and the classification methods used to distinguish the differ-
ent tasks should be efficient in real time. There are many classification methods
available in the field of data mining and machine learning[16,20,31]. The re-
search work[22] discusses pros and cons of linear and classification methods for
BCI research.

In literature, autoregressive (AR) models or adaptive AR models
(AAR)[1,3,7,9,20,26] and power spectral density (PSD)[2,27] are commonly used
for feature extraction from EEG for BCI system. However, these methods as-
sume linearity, Gaussianality and minimum-phase within EEG signals, i.e., the
amplitudes of EEG signals are normally distributed, their statistical properties
do not vary over time, and their frequency components are uncorrelated. Under
these assumptions, the EEG signal is considered as a linear superposition of sta-
tistically independent sinusoidal or other wave components, and only frequency
and power estimates are considered while phase information is lost. Recently,
Empirical Mode Decomposition (EMD) is suggested for feature extraction from
EEG signal which is suitable for the analysis of non-linear and non-stationary
time series. A disadvantage arising at this point is that the feature vector so
obtained with EMD would be too large and the number of training samples
available are in general relatively small number. Consequently, it is essential to
do a feature selection in order to solve the problem of curse-of-dimensionality
which arises due to small sample and large number of features[17]. Also, the re-
sultant features may contain noisy, irrelevant or redundant features which make
them inefficient for machine learning. In fact, the presence of irrelevant and re-
dundant features may deteriorate the performance of the classifier and requires
high computation time and other resources for training and testing the data.
Hence, in order to enhance the performance of BCI system in terms of accuracy
and time required to detect, there is need to identify a set of relevant features.

Feature selection is used to remove such noisy, irrelevant, and redundant fea-
tures.There are two major approaches to feature selection: filter and wrapper
approach[10,14,22]. Most filter methods employ statistical characteristics of data
for feature selection which requires less computation. It independently measures
the importance of features without involving any classifier. Since, the filter ap-
proach does not take into account the learning bias introduced by the final
learning algorithm, it may not be able to select the most relevant set of features
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for the learning algorithm. On the other hand, wrapper methods tend to find
features better suited to the predetermined learning algorithm resulting in bet-
ter performance. But, it tends to be computationally more expensive since the
classifier must be trained for each candidate subset.

Feature ranking approaches have been widely investigated for feature
selection[10,21,23] in literature. Since in most of feature ranking approaches,
features are evaluated using statistical characteristics of the data, different fea-
ture ranking methods measure different characteristics of data. Therefore, the
informative features selected by different ranking methods may be different. In
literature to remove redundancy a forward/backward feature selection method
or its combinations are used with a measure that selects relevant and non redun-
dant features. Among the most widely used filter methods for feature selection,
there are techniques based on statistical separability measures which allow one to
select a suitable subset of features by assigning the degree of interclass separabil-
ity associated with each subset. In particular, ratio of scatter matrices, Chernoff
distance measures[19] and linear regression[21] are commonly employed by re-
search community in various area of data mining and pattern classification field
but yet to be explored in feature selection of EEG data for mental task classi-
fication. In this paper, we compare and evaluate these measures to determine
relevant features for BCI system.

Our work is organized as follows: Feature extraction using empirical mode
decomposition is included in Sect. 2. A brief introduction of separability measures
employed for features selection are discussed in Sect. 3. Experimental data and
results are discussed in Sect. 4 and Sect. 5 contains conclusions.

2 Feature Extraction from EEG

The feature extraction is carried out in two phases [12]: in the first phase, the
empirical mode decomposition is used, and the second phase estimates different
time and frequency parameters.

2.1 Empirical Mode Decomposition (EMD)

Under the assumption that any signal is composed of a series of different intrinsic
oscillation modes, the EMD can be used to decompose the incoming signal into
its different Intrinsic Mode Function (IMF). An IMF is a function that satisfies
two conditions[12]:

1. In the entire signal, the number of extremes and the zero-crossings must be
equal or differ at most by one.

2. At any point, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima must be zero.

Given the incoming signal x(t), the algorithm of EMD is based on a sifting
process that can be summarized as[12,14]:
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1. Interpolate all the local maxima and minima in the signal with a cubic spline
line, to produce the upper and lower envelope.

2. Repeat for the local minima to produce the lower envelope.
3. Compute the mean of both envelopes m1.
4. Extract the detail h1=x(t)−m1

5. Repeat the steps 1 to 4, and consider the detail hi as the data, until detail
h1 can be considered an IMF.

6. After k iterations, the detail hk is an IMF and is designated as: IMF1 = hk

7. Iterate steps 1 to 6 on the residual rj in order to obtain all the IMFs of the
signal:

rj = x (t)− IMF1 − IMF2...IMFm (1)

The procedure terminates when the residual rj is either a constant, a mono-
tonic slope, or a function with only one extreme. The result of the EMD process
produces n IMFs and a residue signal rn. The original signal x(t) can be recon-
structed summing up the n extracted IMF and the residue:

x(t) =

n∑
j=1

IMFj + rj (2)

2.2 Estimation of Various Parameters

In order to obtain the IMFs of the signal, publicly available EMD toolbox for
Matlab was utilized. The lower-order IMFs capture the faster oscillation modes of
the signal, whereas the higher-order IMFs capture the slower oscillation modes.
The EMD algorithm can be applied to each EEG 1 s segments. Afterward, the
EMD is able to extract no more than five IMFs and the residue for each 1 s EEG
segment. For each one of these five IMFs, different parameters can be computed.
The following parameters can be used to represent each EMD[5]:

1. Root Mean Square (RMS),
2. Variance,
3. Shannon entropy[23]
4. Lempel-Ziv Complexity Measure[13],
5. Central Frequency (50 % of spectrum energy)
6. Maximum Frequency (95 % of spectrum energy)

Some parameters were chosen since they are commonly used in BCI (RMS,
variance), LZ quantifies the complexity of a signal analysing its spatial-temporal
patterns and was used to analyse EEG signals in other areas[10]. The central and
maximum frequencies were used as descriptors of the bandwidth of each IMF.
Entropy was used to measure the average amount of information in a signal.

3 Feature Selection

A disadvantage arising at this point is feature vector contains 180 parameters (5
IMFs x 6 parameters 6 channels). Consequently, it is essential to do a feature
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selection in order to solve the curse-of-dimensionality inconvenience[24]. Feature
ranking is commonly used to determine a subset of relevant features. However,
the disadvantage of feature ranking method is that they ignore the correlations
between features. Hence the features selected may contain redundant informa-
tion and influences the classification capabilities of the feature subset that is
selected. Some of the methods suggested in literature for removing redundancy
are Chernoff distance measure[22], ratio of inter-class and with-in class scatter,
and linear regression[19]. In order to obtain a quantitative measure of how sep-
arable are two classes, a distance measure can be easily extracted from some
parameters of the data. A very important aspect of probabilistic distance mea-
sures is that a number of these criteria can be analytically simplified in the
case when the class conditional p.d.f.s follows multivariate normal distribution.
The class conditional probability densities functions p(Xk|Ci) of k-dimensional
samples Xk = [x1,x2, ...,xk] for a given class Ci, i = 1, 2, 3, ..., k is given by

p(Xk|Ci) =
1

(2π)
d
2

∣∣∣∑i
k

∣∣∣ exp [−1

2
(Xk − μi

k)
T (

i∑
k

)−1(Xk − μk)] (3)

where μi
k is a mean vector and

∑i
k is a covariance matrix for class Ci . In

literature, for multivariate normal distribution for two classes, CD measure is
given as follows[5]:

Jc
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1

2
β(1−β)(μ2

k −μ1
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+β
2∑
k

]−1(μ2
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k)+
1

2
log

∣∣(1− β)
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k +β
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∣∣1−β ∣∣∑2
k

∣∣β
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A major disadvantage of the class separability measure CD is that it is not
easily computed, unless the Gaussian assumption is employed. In literature, a
simpler criteria based on the scatters of feature vector samples is employed. To
this end, the scatter matrices: within-class scatter and between-class scatter are
respectively defined as:

Sw =

1∑
k

+

2∑
k

(5)

Sb = (μ2
k − μ1

k)(μ
2
k − μ1

k) (6)

From these definition of scatter matrices, it is straightforward to observe that
the criterion

J =
|Sb|
|Sw|

(7)

takes large values when samples of the selected features space are well clustered
around their mean within each class, and the clusters of the different classes are
well separated. Also, the criteria J have the advantage of being invariant under
linear transformation.

The regression analysis considers the relations between the selected features
which minimizes redundancy. While using regression analysis for data, a multiple
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regression model is considered because there can be many features which could
affect the presence or absence of samples from a particular class. A multiple
regression model with a target variable y and multiple variables X is given by
[15]:

y = β0 + β1xi1 + β2xi2 + ...+ βmxm + εi, i = 1, 2, ...m (8)

Where β0,β1, ...βm are constants estimated by observed values of X and class
label y and is estimated by normal distribution having mean zero and a variance
σ2. The sum of square errors (SSE) is given by

SSE =

n∑
i=0

(yi − ypi ) (9)

Where y and ypare observed and predicted values respectively. A large value of
SSE means that the regression is predicted poorly. The total sum of squares is
given by

SSTO =
n∑

i=0

(yi − ȳ) (10)

Where ȳ is the average of yi. In a regression model the choice of features which
best explains the class label depends on the value of R2 which is given by

R2 = 1− SSE

SSTO
(11)

4 Experimental Set-Up and Results

The EEG data used in our experiment was acquired by Keirn and Aunon[29] us-
ing the following procedure. The subjects were seated in an Industrial Acoustics
Company sound controlled booth with dim lighting and noiseless fans for ven-
tilation. An Electro-Cap elastic electrode cap was used to record from positions
C3, C4, P3, P4, O1, and O2, defined by the 10-20 system of electrode placement.
The electrodes were connected through a bank of Grass 7P511 amplifiers and
bandpass filtered from 0.1100Hz. Data was recorded at a sampling rate of 250
Hz with a Lab Master 12 bit A/D converter mounted in an IBM-AT computer.
Eye blinks were detected by means of a separate channel of data recorded from
two electrodes placed above and below the subjects left eye.

For our experiment, the data from six subjects except subject 5 performing five
different mental tasks were analyzed. The five mental tasks are: the baseline(B)
task, for which the subjects were asked to relax as much as possible; the letter(L)
task, for which the subjects were instructed to mentally compose a letter to a
friend or relative without vocalizing; the math(M) task, for which the subjects
were given non-trivial multiplication problems, such as 49 times 78, and were
asked to solve them without vocalizing or making any other physical movements;
the visual counting(C) task, for which the subjects were asked to imagine a
blackboard and to visualize numbers being written on the board sequentially; and
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the geometric figure rotation(R), for which the subjects were asked to visualize
a particular three-dimensional block figure being rotated about an axis.

Data was recorded for 10 seconds during each task and each task was repeated
five times per session. Most subjects attended two such sessions recorded on
separate weeks, resulting in a total of 10 trials for each task. With a 250 Hz
sampling rate, each 10 second trial produces 2,500 samples per channel. These are
divided into half-second segments that overlap by one quarter-second, producing
at most 39 segments per trial segments containing eye blinks are discarded.

Features are extracted from each one of signal using EMD. Each signal is
represented in terms of 180 statistics (5 IMFs x 6 parameters 6 channels).
To remove redundancy from the selected pool of features, three feature selection
measures are investigated: Chernoff distance measure, ratio of with-in class scat-
ter and between class scatter and linear regression. For Chernoff distance mea-
sure, features are selected using 3 different values ranging from 0.1 to 0.9 with an
increment of 0.4. We have used linear discriminate classifier (LDC), Quadratic
discriminate classifier (QDC), k-nearest neighbor (KNNC) and Support vector
machine (SVC) to evaluate the performance of the feature selection methods.
The average classification accuracy is computed using ten cross-validations. All
the simulations are done using matlab. Tables 1 and Table 2 show the mini-
mum classification accuracy achieved with different classifiers and the number
of features for different measures respectively. For Chernoff distance measure,
the maximum classification accuracy achieved over different values of β is shown
in Table 1. The best results in each category are indicated in bold. Figures 1-
2 and Tables 1-2 show the variation of classification accuracies and minimum
number of features for the different mental tasks respectively. Figures 1-2 shows
at end of this manuscript. We observe the following from Tables 1-2:

1. The classification accuracy of all mental tasks classification improved signif-
icantly with the use of feature selection.

2. The maximum average classification accuracy of mental tasks is achieved
with feature selection method using ratio of scatter matrices for all classifiers
except KNN.

3. The average classification accuracy of mental tasks with SVC and LDC are
similar and better in comparison to QDC and KNN using all feature selection
methods.

4. The performance of ratio of scatter matrices in combination of both LDC
and SVC is better in terms of classification accuracy in comparison to other
combination of a classifier and feature selection method.

5. The number of features required to obtain maximum classification accu-
racy is significantly smaller using feature selection methods in comparison
to baseline using all classifiers. In particular, the number of features selected
in combination of KNN is relatively smaller in comparison to other classi-
fiers. However, the classification accuracy is significantly less in comparison
to other classifiers.

6. As the number of features required to obtain maximum classification accu-
racy is significantly smaller using feature selection methods, the computation
time by all the learning methods will be significantly reduced.
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Table 1. Variation in Classification Accuracy Different Mental Task

Task BC BL BM BR CL CM CR LM LR MR Avg

WFS+ LDC 54.9 53.2 62.2 59.7 57 61.3 57.8 61.1 57 60.6 58.5

Scatt +LDC 92 93.3 97.4 94.6 92 96.3 93 96.1 93.5 94.4 94.3

JC+LDC 90.9 87.5 94.6 91.6 90.9 93.7 88.4 94.6 90.5 89.8 91.3

Reg+LDC 92.8 90.6 96.4 93.2 92.8 96.4 91.3 96 92.8 94.7 93.7

WFS+QDC 49.5 49.9 51.3 49 47.7 48.5 48.5 49.6 49.8 48.3 49.2

Scatt+QDC 91.3 88.3 95 92.9 91.3 94.3 91.5 95.5 91.6 92.5 92.4

JC+QDC 89.9 84.9 91.9 91.1 89.8 93 90.3 93.3 92.6 93.3 91

Reg +QDC 90.4 85.7 95.4 92.1 90.4 94.1 90.1 95.5 91.7 92.4 91.8

WFS+KNNC 47.7 47 54.3 49.8 54 56 50 54.7 49.4 55.2 51.8

Scatt+KNNC 87 82 88.1 91.1 87 91 86.6 90.6 88 86.6 87.8

JC+KNNC 89.3 82 87.7 92.1 89.3 90.8 86.7 90.6 93.1 89.4 89.1

Reg+KNNC 84.1 79.4 86.4 88.9 84.1 87.8 85 90.5 88.5 86 86.1

WFS+SVC 58.4 59.8 65.1 62 59.7 62.4 63.2 65.8 63.6 66.6 62.7

Scatt+SVC 92.4 93.6 97.3 92.8 92.4 96.3 93.3 96.5 93.3 94.6 94.3

JC+SVC 91.9 88.5 95 93.2 91.9 94.6 91.7 96.5 94.2 94 93.2

Reg+SVC 92.8 90.6 96.6 91.1 92.8 96.4 92.3 96.3 92.8 94.7 93.6

Table 2. Variation of Number of Features required for Different Mental Task

Tasks BC B L B M B R C L C M C R L M L R M R Avg
Scatter+LDC 15.3 23.7 21.3 13.8 15.3 19.3 17.7 15.5 14.8 19.3 17.6

JC+LDC 21.3 21.2 20.2 16.3 21.3 17.8 20 12.7 11.7 20 18.3

Reg+LDC 14.2 16.5 14.3 9.7 14.2 16.3 15.3 13.8 12.2 18.3 14.5

Scatter+QDC 12.7 19 17.5 12.2 12.7 19.2 15 14.8 13.3 14.8 15.1

JC+QDC 15.2 14.8 15.8 12.7 15.2 17.8 17 12 9.7 15.8 14.6

Reg+QDC 14.7 15.2 18.2 12.3 14.7 15.5 14.2 11.3 11.3 12.7 14

Scatter+KNNC 3.8 7.7 3.8 6.7 3.8 4.3 2.8 3.3 3.7 5 4.5

JC+KNNC 2.7 3.7 2.2 5.2 2.7 2.7 2.7 3.2 3 4.3 3.2

Reg+KNNC 6.8 7.3 5.5 8 6.8 5.7 5 5 8.2 8 6.6

Scatter+SVC 15.3 24 21.7 11.5 15.3 19.3 14.8 12.3 13.2 19.2 16.7

JC+SVC 21.3 21.2 18.7 12.8 21.3 17.8 22 15.8 14.5 20 18.6

Reg+SVC 13 14.3 13.7 7 13 11.7 13.8 13.7 10.8 13.3 12.4

* WFS=Without feature selection
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5 Conclusion

The performance of a classifier depends on the choice of features and classifier
for any pattern recognition system. Features based on Empirical Mode Decom-
position from EEG signal is extracted. These features may contain irrelevant and
redundant features which makes them inefficient for machine learning. Hence, rel-
evant features which provide maximum classification accuracy are selected using
ratio of scatter matrices, Chernoff distance measure and linear regression. The
performance of different mental task using different measures used for feature
selection is compared and evaluated in terms of classification accuracy. Experi-
mental results show that classification accuracy of all mental tasks classification
improve significantly with the use of feature selection methods. In particular the
performance of ratio of scatter matrix is better for all classifiers except KNN.
The time required to learn the model will decrease significantly as the number
of features reduces with the use of feature selections.In future, there is need
to develop a feature selection method for mental task classification which gives
better performance by all classifiers. It is also required to find out a method of
feature extraction which extracts minimal and most relevant features from EEG
signal for mental task classification and does not require any further feature
selection.
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Zäıane, Osmar R. I-342
Zeng, Ming II-280
Zhang, Baoxian I-431
Zhang, Chongsheng I-254
Zhang, Yan II-97
Zhang, Yang II-73
Zhang, Zhongfei(Mark) I-418
Zhang, Zili I-86
Zhao, Ye I-505
Zheng, Hui I-493
Zhou, Dequan I-604
Zhou, Jun I-171
Zhou, Weitao I-195
Zhou, Zhi-Hua I-122
Zhu, Hengshu I-431
Zhuang, Fuzhen I-392
Zighed, Djamel Abdelkader I-98, I-379
Zouzias, Anastasios I-591


	Title
	Preface
	Organization
	Table of Contents
	Pattern Mining: Networks, Graphs, Time-Series and Outlier Detection
	Heterogeneous Ensemble for Feature Drifts in Data Streams
	Introduction
	Related Work
	Proposed Framework
	Feature Selection Block
	Ensemble Block

	Experiments and Analysis
	Experimental Setup
	Experimental Results

	Conclusions
	References

	OMC-IDS: At the Cross-Roads of OLAP Mining and Intrusion Detection
	Introduction
	Scrutiny of the Related Work
	OMC-IDS: Intrusion Detection Based on Olap Mining and Classification
	Audit Data Cube: Construction and Manipulation
	Multidimensional Association Rule Mining

	Classification
	Experimental Results
	Conclusion and Perspectives
	References

	Towards Linear Time Overlapping Community Detection in Social Networks
	Introduction
	Related Work
	SLPA: Speaker-Listener Label Propagation Algorithm
	Tests in Synthetic Networks
	Methodology
	Identifying Overlapping Communities in LFR
	Identifying Overlapping Nodes in LFR

	Tests in Real-World Social Networks
	Identifying Overlapping Communities in Social Networks
	Identifying Overlapping Communities in Bipartite Networks
	Identifying Overlapping Nested Communities

	Conclusions
	References

	WeightTransmitter:Weighted Association Rule Mining Using LandmarkWeights
	Introduction
	Related Work
	Problem Definition
	Weight Transmitter Model
	Experimental Results
	Datasets
	Weight Estimation Evaluation
	Rule Evaluation
	Runtime Evaluation

	Conclusions
	References

	Co-occurring Cluster Mining for Damage Patterns Analysis of a Fuel Cell
	Introduction
	The Proposed Method: Co-occurring Cluster Mining
	Problems of the Conventional Methods
	The Requirements of a Co-occurrence Pattern
	The Objective Function
	The Algorithm

	Application to AE Data
	Damage Evaluation Test of Fuel Cells
	Division into Basket
	Calculation of Distance between AE Events
	The Design of the Object Function
	The Results of Extracted Damage Patterns

	Conclusion
	References

	New Exact Concise Representation of Rare Correlated Patterns: Application to Intrusion Detection
	Introduction and Motivations
	Basic Notions
	Characterization of the Rare Correlated Patterns
	Definition and Properties
	Characterization of the Rare Correlated Equivalence Classes

	The RcprMiner Algorithm
	Experimental Results
	Application to Intrusion Detection
	Description of the KDD 99 Dataset
	Summary of Experimentations and Discussion of Obtained Results

	Conclusion and Future Works
	References

	Life Activity Modeling of News Event on Twitter Using Energy Function
	Introduction
	Related Work
	Modeling Life Activity Using Energy Function
	Definition of Energy Function
	Energy of A Single Tweet
	Constant Growth and Decay

	Single-Pass Clustering with Energy Function
	Experiments and Evaluation
	Data Preparation
	Training Energy Transferred Factor and Decayed Factor
	News Event Detection Comparisons

	Conclusions
	References

	Quantifying Reciprocity in LargeWeighted Communication Networks
	Introduction
	Related Work
	Data Description
	Proposed Model: 3PL
	Comparison of 3PL to Competing Models
	Goodness of Fit
	3PL at Work

	Reciprocity and Local Network Topology
	Weighted Reciprocity Metrics
	Reciprocity and Network Overlap
	Reciprocity and Degree Similarity

	Conclusions
	References

	Hierarchical Graph Summarization: Leveraging Hybrid Information through Visible and Invisible Linkage
	Introduction
	Related Work
	Basic Graph Summarization
	Hierarchical Graph Summarization
	Overview
	Incorporating Hierarchical Linkage
	Estimation of Document/Cluster Importance

	Experiments and Evaluation
	Dataset
	Evaluation Metrics
	Algorithms for Comparison
	Overall Performance Comparison
	Parameter Tuning

	Conclusions
	References

	Mining Mobile Users’ Activities Based on Search Query Text and Context
	Introduction
	Related Work
	Methodology
	Data and Preprocessing
	Text and Context-Based User Activity Model
	Inference of Model
	Constrained TCUAM Model

	Experiment
	Data Set
	Experimental Setup
	Evaluation
	Results
	Case Study

	Conclusion
	References

	Spread of Information in a Social Network Using Influential Nodes
	Introduction
	Motivation
	Literature Review

	Maximizing Influence Spread
	Problem Definition
	Our Approach
	Detecting the core

	Experimental Results
	Conclusion
	References

	Discovering Coverage Patterns for Banner Advertisement Placement
	Introduction
	Model of Coverage Patterns
	Coverage Patterns
	Mining Coverage Patterns
	Coverage Pattern Extraction Algorithm

	Experimental Results
	Coverage Pattern Generation
	Scalability Experiment
	Usefulness of Coverage Patterns

	Conclusions and Future Work
	References

	Discovering Unknown But Interesting Items on Personal Social Network
	Introduction
	Related Works
	Social Networking
	Recommendation Systems

	Unknown But Interesting Recommendation System
	System Architecture
	Unknown But Interesting Algorithm

	Experiments
	Methodology
	Performance Evaluation

	Conclusions
	References

	The Pattern Next Door: Towards Spatio-sequential Pattern Discovery
	Introduction
	Related Work
	Spatio-sequential Patterns: Concepts and Definitions
	Preliminaries
	Spatio-sequential Patterns 
	Spatio-temporal Participation

	Extraction of Spatio-sequential Patterns
	Experiments
	Conclusion and Perspectives
	References

	Accelerating Outlier Detection with Uncertain Data Using Graphics Processors
	Introduction
	Related Work
	Algorithm for Outlier Detection with Uncertain Data
	Serial and Parallel Implementations
	Serial Methods
	Parallel Methods

	Experimental Results
	Performance
	Quality

	Conclusion
	References

	Finding Collections of k-Clique Percolated Components in Attributed Graphs
	Introduction
	Pattern Definition
	Mining CoHoP Patterns
	Experiments
	Illustration of the Interest of the Patterns
	Performance Study

	Related Work
	Conclusion
	References

	Reciprocal and Heterogeneous Link Prediction in Social Networks
	Introduction
	Related Work
	Problem Statement
	Methods
	Feature Construction
	Learning and Testing

	Experiments
	Setup
	Results

	Conclusion
	References

	Detecting Multiple Stochastic Network Motifs in Network Data
	Introduction
	Network Motif Analysis in Social Media
	Canonical Forms of Subgraphs for Modeling Stochastic Motifs
	Finite Mixture Model
	Basic EM Algorithm
	Learning the Optimal Number of Motifs

	Experimental Results
	Results on Synthetic Networks
	Results on Benchmark Datasets
	Effectiveness of CEM2 in Estimating Optimal Number of Motifs
	Computational Complexity

	Conclusion and Future Works
	References

	Scalable Similarity Matching in Streaming Time Series
	Introduction and Motivations
	Key Notions
	Related Work
	The TriCons Algorithm
	Main Notions of the TriCons Algorithm
	Description of the TriCons Algorithm

	Experimental Results
	Conclusion and Future Work
	References

	Scalable Mining of Frequent Tri-concepts from Folksonomies
	Introduction and Motivations
	KeyNotions
	Related Work
	TheTRICONS Algorithm
	Main Notions of the TRICONS Algorithm
	Description of the TRICONS Algorithm

	Experimental Results
	Conclusion and Future Work
	References

	SHARD: A Framework for Sequential, Hierarchical Anomaly Ranking and Detection
	Introduction
	Related Literature
	Hierarchical Anomalies
	Anomaly Detection Framework
	Ontology Template
	Anomaly Tree Structure
	Baseline Anomaly Detectors
	Ranking Anomalies
	Anomaly Tree Visualization

	Empirical Evaluation
	Synthetic Data Experiments
	Event Attendance Data Results
	Climatology Data Results
	Stock Data Results
	Discussion

	Conclusions and Future Work
	References

	Instant Social Graph Search
	Introduction
	Problem Definition
	Algorithms
	Basic Ideas
	The Path Algorithm
	The Influence Algorithm
	The Diversity Algorithm

	Experimental Results
	Experiment Setup
	Accuracy Performance
	Analysis and Discussions

	Related Work
	Conclusions
	References


	Data Manipulation: Pre-processing and Dimension Reduction
	Peer Matrix Alignment: A New Algorithm
	Introduction
	Problem Definition
	The Proposed Algorithm
	Examples
	Experiments
	Related Works
	Conclusions
	References

	Domain Transfer Dimensionality Reduction via Discriminant Kernel Learning
	Introduction
	Brief Review of Prior Work
	Discriminant Multiple Kernel Learning
	Transfer Learning and Maximum Mean Discrepancy Formulation

	Semi-supervised Discriminant Analysis in Cross-Domain
	Standard Discriminant Kernel Learning Analysis
	Domain Transfer Kernel Learning for Discriminant Analysis

	Experiment
	Data Sets and Experiment Setup
	Experimental Results

	Conclusion
	References

	Prioritizing Disease Genes by Bi-Random Walk
	Introduction
	Methods
	Loss Function
	Bi-Random Walk
	Unbalanced Bi-Random Walk
	BiRW Algorithms

	Comparison of Random Walk Algorithms
	Experiments and Discussions
	Data Preparation
	Comparison with Other Methods
	Comparison of BiRW Variants

	Conclusion
	References

	Selecting Feature Subset via Constraint Association Rules
	Introduction
	Related Work
	Preliminaries
	Strong, Classification and Atomic Association Rules
	Definitions of Relevant, Redundant and Interactive Features

	Feature Subset Selection Algorithm
	FEAST Algorithm

	Experimental Results and Analysis
	Benchmark Data Sets
	Experimental Setup
	Results on the Synthetic Data Sets
	Results on the Real World Data Sets

	Conclusion
	References

	RadialViz: An Orientation-Free Frequent Pattern Visualizer
	Introduction
	Background and Related Work
	RadialViz: Our Proposed Visualizer
	Basic Representation of Frequent Patterns in RadialViz
	Other Features and Observations on RadialViz

	Evaluation
	Conclusions
	References

	Feature Weighting by RELIEF Based on Local Hyperplane Approximation
	Introduction
	The Proposed Method
	RELIEF
	Approximation by Local Hyperplane

	Experimental Results
	Selection of Classifier
	Fermat’s Spiral Problem
	UCI Data Sets

	Discussion
	References

	Towards Identity Disclosure Control in Private Hypergraph Publishing
	Introduction
	Our Contributions

	Related Work
	Problem Statement
	Rank Attack
	Problem Definition
	Measuring Quality of Hypergraph Anonymization

	Algorithms
	Rank Anonymization
	Hypergraph Construction

	Experiments
	Rank Attack on Real-World Data
	Impact on Anonymizing Cost ZA
	Impact on Information Loss

	Conclusion
	References

	EWNI: Efficient Anonymization of Vulnerable Individuals in Social Networks
	Introduction
	Related Literature
	Graph Structure and Privacy Model
	Background
	PrivacyModel

	Anonymization Algorithms
	FindingWeak Nodes and Neighborhood Subgraphs
	Anonymizing G

	Experiments
	Conclusions
	References

	A Pruning-Based Approach for Searching Preciseand Generalized Region for Synthetic Minority Over-Sampling
	Introduction
	Related Work
	Methodology
	TRIM Criteria
	TRIM Algorithm

	Experimental Results
	Conclusions
	References

	Towards More Efficient Multi-label Classification Using Dependent and Independent Dual Space Reduction
	Introduction
	Preliminaries
	Definition of Multi-label Classification Task
	Singular Value Decomposition (SVD)

	Two Proposed Approaches
	Dependent Dual Space Reduction (DDSR)
	Independent Dual Space Reduction (IDSR)
	Threshold Selection

	Datasets and Experimental Settings
	Experimental Results
	Conclusion
	References

	Automatic Identification of Protagonist in Fairy Tales Using Verb
	Introduction and Motivation
	Technologies Background
	Stanford Parser
	WordNet

	System Framework
	Experiments and Discussions
	Dataset
	Results and Discussion

	Conclusion
	References

	CD: A Coupled Discretization Algorithm
	Introduction
	Related Work
	Problem Statement
	Discretization Algorithm Based on Information Entropy
	Discretization Algorithm Based on Positive Domain
	Discretization Algorithm Based on the Coupling
	Experiment and Evaluation
	Internal Criteria Comparison
	External Criterion Comparison

	Conclusion
	References

	Co-embedding of Structurally Missing Data by Locally Linear Alignment
	Introduction
	Related Works
	Problem Definition
	Locally Linear Alignment Co-embedding
	Basic Idea
	Unsupervised Locally Linear Alignment Co-embedding
	Regularization
	Semi-supervised Co-embedding

	Experiment
	Experiment 1: Structure from Motion Task
	Experiment 2: Mapping and Localization forWireless Devices

	Conclusion
	References

	Relevant Feature Selection from EEG Signal for Mental Task Classification
	Introduction
	Feature Extraction from EEG
	Empirical Mode Decomposition (EMD)
	Estimation of Various Parameters

	Feature Selection
	Experimental Set-Up and Results
	Conclusion
	References


	Author Index



