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Abstract. Collaborative Filtering (CF) is a popular strategy for rec-
ommender systems, which infers users’ preferences typically using either
explicit feedback (e.g., ratings) or implicit feedback (e.g., clicks). Explicit
feedback is more accurate, but the quantity is not sufficient; whereas im-
plicit feedback has an abundant quantity, but can be fairly inaccurate. In
this paper, we propose a novel method, Expectation-Maximization Col-
laborative Filtering (EMCF), based on matrix factorization. The con-
tributions of this paper include: first, we combine explicit and implicit
feedback together in EMCF to infer users’ preferences by learning latent
factor vectors from matrix factorization; second, we observe four differ-
ent cases of implicit feedback in terms of the distribution of latent factor
vectors, and then propose different methods to estimate implicit feedback
for different cases in EMCF; third, we develop an algorithm for EMCF
to iteratively propagate the estimations of implicit feedback and update
the latent factor vectors in order to fully utilize implicit feedback. We
designed experiments to compare EMCF with other CF methods. The
experimental results show that EMCF outperforms other methods by
combining explicit and implicit feedback.

1 Introduction

In the modern digital world, consumers are overwhelmed by the huge amount
of product choices offered by electronic retailers and content providers. Recom-
mender systems, which analyze patterns of user interests in products in order
to provide personalized recommendatons satisfying users’ tastes, have recently
attracted a great deal of attention from both academia and industry. Collabora-
tive filtering (CF) [9], which analyzes relationships among users and items (i.e.,
products) in order to identify potential associations between users and items, is
a popular strategy for recommender systems. Compared to content filtering [8],
which is the other recommendation strategy that depends on profiles of users
and/or items, CF has the advantage of being free of domain knowledge. Since CF
relies only on the history of user behavior, it can address the issues in creating
explicit profiles, which are difficult in many recommender system scenarios.

The history of user behavior for CF usually consists of user feedback, which
generally refers to any form of user action on items that may convey the infor-
mation about users’ preferences of items. There are two kinds of user feedback:
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explicit feedback and implicit feedback. Explicit feedback is often in the form
of rating actions. For example, Amazon.com asks users to rate their purchased
CDs and books on a scale of 1-5 stars. Since explicit feedback directly represents
users’ judgments on items in a granular way, it has been widely used in many
traditional CF recommender systems [2] [9] [10]. However, explicit feedback re-
quires users to perform extra rating actions, which may lead to inconvenience for
the user. Given the overwhelming amount of items, it is burdensome for users
to rate every item they like or dislike.

Implicit feedback, on the other hand, does not need additional rating actions.
Implicit feedback generally refers to any user behavior that indirectly expresses
user interests. For example, a news website may cache a user’s clicking records
when browsing news articles, in order to predict what kind of news the user
may prefer. Other forms of implicit feedback include keyword searching, mouse
movement, and even eye tracking. Since it is relatively easier to collect such user
behaviors, implicit feedback attracts the interest of researchers who attempt to
infer user preferences from the much larger amount of implicit feedback. How-
ever, implicit feedback is less accurate than explicit feedback. For example, a
user may regret buying a product online after receiving the real product. It is
difficult to determine whether a user likes a product only based on the purchase
behavior, even though the user paid for the product.

Explicit feedback and implicit feedback are naturally complementary to each
other. With explicit feedback, the quality is more reliable, but the quantity is
limited. However, the quality of implicit feedback is less accurate, but there
is an abundant quantity. Most of the existing works have solely considered ei-
ther explicit feedback [3] or implicit feedback [4] [7] in recommender systems.
While there are few works that have tried to unify explicit and implicit feedback,
explicit feedback is just treated as a special kind of implicit feedback; and, the
implicit feedback is simply normalized to a set of numeric rating values. Without
carefully studying how to organically combine explicit and implicit feedback, we
will not be able to further improve the performances of recommender systems.

In this paper, we propose a novel recommender method based on matrix fac-
torization [5], called expectation-maximization collaborative filtering (EMCF).
The first contribution of this paper is that we combine explicit and implicit feed-
back together, in which both explicit feedback and implicit feedback are fully
utilized. The second contribution is that we observe different cases of implicit
feedback and develop the corresponding solutions to estimate implicit feedback
for different cases. The third contribution is that we design an expectation-
maximization-styled algorithm in EMCF to update the estimations of implicit
feedback and latent factor vectors.

Instead of treating explicit feedback as special implicit feedback, EMCF ini-
tializes a latent factor model with explicit feedback and then updates the latent
factor vectors based on the explicit feedback ratings and the implicit feedback
estimations. The key challenge in utilizing implicit feedback in matrix factoriza-
tion is that implicit feedback does not have the numeric rating value. Instead of
simply normalizing implicit feedback to a set of numeric rating values, EMCF
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estimates implicit feedback rating values based on the explicit feedback and
available latent factor vectors.

We observe that the implicit feedback can be categorized into four cases, in
terms of the distribution of latent factor vectors from the currently trained latent
factor model. For different cases, EMCF has corresponding solutions, which are
not only based on explicit feedback ratings and implicit feedback estimations,
but are also based on the graph-based structure of explicit and implicit feedback.

We also observe that only part of implicit feedback ratings can be esti-
mated based on the current situation of the model. Therefore, an expectation-
maximization-styled algorithm is designed in EMCF to: 1) propagate current
estimations of implicit feedback plus explicit feedback ratings towards the set of
implicit feedback that have not yet been estimated, so that more implicit feed-
back estimations can be added into the model training; 2) Re-train the latent
factor model based on all the available implicit feedback estimations and explicit
feedback ratings and then update the latent factor vectors of users and items for
further estimating. The algorithm not only fully utilizes implicit feedback with
explicit feedback, but also prevents noisy implicit feedback from affecting the
performance of the EMCF model.

Experiments have been conducted to compare the EMCF model with other
popular models. The experimental results show that EMCF outperforms those
models, especially when the percentage of explicit feedback is small.

The rest of the paper is organized as follows: in Section 2, a preliminary is
given including the formalization, the background of CF, and a related method
called co-rating; in Section 3, we present the observations of implicit feedback
and propose the solutions to estimate implicit feedback for different cases; in
Section 4, we describe the EMCF model and introduce the algorithm to train
the model; in Section 5, the experiments make the comparisons between EMCF
and other models; the conclusion and some future works are given in Section 6.

2 Preliminary

2.1 Formalization

In this paper, we use U = {u1, u2, . . . , um} to denote a set of m users and use
I = {i1, i2, . . . , in} to denote a set of n items. The explicit feedback and implicit
feedback are defined as the observable actions from U to I that may directly
and indirectly reflect users’ preferences of the items.

Explicit feedback is usually in the form of rating actions. A user rates items
by assigning numeric rating values. The observed rating values are represented
by a matrix R ∈ �m×n, in which each entry rui ∈ � is used to denote the rating
on item i given by user u. We use SE to denote the set of explicit feedback,
which consists of user-item-rating triples (u, i, rui).

Implicit feedback typically consists of various types of actions performed by
users on items that can be automatically tracked by systems. In some related
works [4] [6], implicit feedback is represented by a binary variable bui ∈ {0, 1},
in which 1 means user u performed some action on item i and 0 means u never
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touched i. In this paper, we assume that a user has no interest to an item if he/she
never touched this item. We use SI to denote the set of implicit feedback, which
consists of user-item pairs (u, i) for which u has implicit feedback on i.

2.2 Collaborative Filtering

There are two primary types of CF methods: nearest-neighbor methods and ma-
trix factorization methods. A brief introduction of these two types of methods is
given in this section.

Nearest-neighbor Methods. Nearest-neighbor methods are prevalent in CF
[2]. Generally, the procedures of nearest-neighbor methods follow a similar pat-
tern: first calculate the similarity, which reflects distance, correlation, or weight,
between two users or two items; then produce a prediction for the active user by
taking the weighted average of all the ratings.

In terms of different focuses in the similarity calculation, there are two types
of nearest-neighbor methods: item-based methods and user-based methods. As
the name suggests, item-based methods calculate the similarities between items,
try to find nearest-neighbor items for the target item, and then evaluate the
active user’s rating on the target item based on the ratings of its neighbors.
Similarly, user-based methods first identify nearest-neighbor users for the target
user by calculating the similarities between users, and then make predictions for
the target user to unrated items based on neighbor users’ ratings.

Matrix Factorization Methods. Matrix factorization is the other primary
type of approaches for CF. Latent factor models, which try to explain the rating
generation by vectors of latent factors inferred from the patterns of ratings, are
typically used in matrix factorization methods. In a sense, such latent factors
correspond to the dimensions in a latent space in which the profiles of both users
and items can be characterized. Koren et al. [5] gave some examples to interpret
latent factors: if the items are movies, the latent factors may measure obvious
dimensions such as comedy versus drama, less well-defined dimensions such as
depth of character development or quirkiness, or completely un-interpretable
dimensions; for users, each latent factor may measure how a user scores the
corresponding movie factor.

Matrix factorization methods map both users and items to a joint latent factor
space, so that each user is modeled by a user latent factor vector and each item
is modeled by an item latent factor vector. The rating for a user-item pair is
modeled as an inner product of this user’s latent factor vector and this item’s
latent factor vector.

2.3 Co-rating

Liu et al. [6] developed a matrix factorization model called co-rating, which tries
to unify explicit and implicit feedback. Co-rating treats explicit feedback as a
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special kind of implicit feedback, so that the entire set of explicit and implicit
feedback can be used simultaneously during the model training. For solving
the challenge of implicit feedback ratings having only binary values instead of
numeric values, co-rating normalizes the rating values of explicit feedback and
the binary values of implicit feedback into a range of [0, 1]. With the co-rating
method, latent factor vectors are learned by solving an objective function in
the matrix factorization model trained with explicit and implicit feedback. The
co-rating’s objective function is different from the one normally used in other
matrix factorization methods [1] [5]; an extra weighted term has been added,
which aims at controlling the loss when treating explicit feedback as implicit
feedback.

3 Explicit and Implicit Feedback

3.1 Matrix Factorization with Explicit Feedback

In this paper, we fully utilize explicit feedback and implicit feedback together to
train a latent factor model by the matrix factorization method. In the matrix
factorization method, each item i is associated with a latent factor vector qi ∈ �k,
and each user u is associated with a latent factor vector pu ∈ �k, where k is the
number of latent factors. For a given item i, the elements of qi measure the extent
to which the item possesses those factors. For a given user u, the elements of pu
measure the extent of u’s interest in items according to the corresponding factors.
The rating value rui is approximated by the dot product qᵀi pu. Therefore, the
rating matrix R is approximated by the product of the user latent factor matrix
MU ∈ �k×m and the item latent factor matrix MI ∈ �k×n as

R ≈Mᵀ
U ·MI . (1)

The matrix factorization method learns the individual latent factor vectors in
MU and MI by solving

argminq∗,p∗
∑

(u,i,rui)∈ST

(rui − qᵀi pu) + λ(‖qi‖2 + ‖pu‖2), (2)

where ST is the training set including the known rating values, the term rui −
qᵀi pu is the estimation of the goodness of the rating approximation, ‖qi‖2+‖pu‖2
is the regularization term to avoid model overfitting, and the constant λ is to
control the extent of regularization.

Before utilizing implicit feedback, we first use the set of explicit feedback
SE to initially train the model, so that ST ← SE at this stage. There are
two approaches to solve Equation 2: Stochastic Gradient Descent (SGD) [5] and
Alternating Least Squares (ALS) [11].

SGD is a popular approach that is easy to implement and has a relatively fast
running time. In SGD, the algorithm loops through all ratings in ST . For each
triple (u, i, rui), the algorithm computes the associated prediction error:
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eui = rui − qᵀi pu. (3)

The algorithm then modifies the parameters by a magnitude proportional to
γ in the opposite direction of the gradient as:

qi ← qi + γ · (eui · pu − λ · qi) (4)

pu ← pu + γ · (eui · qi − λ · pu) (5)

ALS is a different style of algorithm for learning the latent factor vectors.
In ALS, one of the unknown latent factor vectors is fixed in order to learn the
other vector; and, the latter vector is then fixed to learn the former vector. The
procedure is repeated until convergence is reached. With ALS, the optimization
of Equation 2 becomes quadratic and can be optimally solved. Although ALS is
slower and more complicated than SGD, it is usually favorable when paralleliza-
tion is needed. Due the space limitation, we are not going to give the details of
ALS here.

3.2 Enhance Explicit Feedback with Implicit Feedback

Matrix factorization methods require numeric rating values to learn the latent
factor vectors. Although explicit feedback satisfies this requirement, the amount
of explicit feedback ratings is usually not sufficient to train an accurate model.
On the other hand, the amount of implicit feedback is much larger than the
amount of explicit feedback due to the lack of additional rating actions. If there
is a way to assign a meaningful numeric estimation to implicit feedback, it can
be used to enhance the model trained only based on explicit feedback ratings.

After initializing the model based on explicit feedback ratings, latent factor
vectors can be attained for users and items that are included in SE . For each
user-item pair (u, i) in SI , there are four possible cases:

– Case 1: Both u and i have been assigned latent factor vectors pu and qi,
respectively, because u and i are also included in SE .

– Case 2: u has been assigned latent factor vector pu because u is also included
in SE , but i has no latent factor vector since i is not included in SE.

– Case 3: i has been assigned latent factor vector qi because i is also included
in SE , but u has no latent factor vector since u is not included in SE .

– Case 4: Both u and i have no latent factor vectors, because u and i are not
included in SE .

These four cases are demonstrated in Figure 1.
For Case 1, the target implicit feedback can be straightforwardly estimated

using the latent factor vectors of u and i. The estimation r̂Iui can be computed
as:

r̂Iui = qᵀi pu. (6)
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Fig. 1. Four cases of implicit feedback. The black circles and black squares are used
to represent users and items, respectively, on which the latent factor vectors have been
assigned, and the white circles and white squares are used to represent the users and
items, on which there is no latent factor vector assigned yet. The solid lines represent
the explicit feedback, and the dash lines represent the implicit feedback. The thick dash
lines are the targets of implicit feedback that we will estimate based on the current
situation.

For Case 2, the target implicit feedback cannot be directly estimated using latent
factor vectors due to the lack of qi. We use an item-based CF method to estimate
it. First, the similarity sim(i, j) between item i and item j is calculated using
Jaccard Similarity Coefficient as:

sim(i, j) =
|Ai

⋂
Aj |

|Ai

⋃
Aj | , (7)

where Ai and Aj are the set of users who have either explicit or implicit feedback
actions on i and j respectively. Next, we look for the set of neighbor items Ni

of item i. In Ni, each neighbor item j has to satisfy the conditions as: 1) the
similarity sim(i, j) is larger than a pre-defined threshold; 2) a latent factor vector
has already been assigned on j. Then, the estimation r̂Iui for the target implicit
feedback can be computed as:

r̂Iui =

∑
j∈Ni

sim(i, j)qᵀj pu∑
j∈Ni

sim(i, j)
. (8)

Similarly for Case 3, the similarity sim(u, v) between user u and user v is also
calculated by Jaccard Similarity Coefficient as:

sim(u, v) =
|Au

⋂
Av|

|Au

⋃
Av| , (9)

where Au and Av are the set of items on which u and v have either explicit
or implicit feedback actions respectively. The set of neighbor users Nu for user
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u is found, in which each neighbor user v has a value sim(u, v) larger than a
threshold and has an assigned latent factor vector. The estimation r̂Iui for the
target implicit feedback can be computed using a user-based CF method as

r̂Iui =

∑
v∈Nu

sim(u, v)qᵀi pv∑
v∈Nu

sim(u, v)
. (10)

For Case 4, there is no sufficient information to estimate the target implicit
feedback based on the current situation.

4 Expectation-Maximization Collaborative Filtering

The user neighbor set Nu and the item neighbor set Ni may have no eligible
members. Although some user or item is similar enough with the target user or
item, they still can not become eligible neighbors due to lack of latent factor
vectors. On the other hand, estimations from Equation 8 and 10 are based on
currently learned latent factor vectors, and latent factor vectors need to be up-
dated based on the updated training set, in which new estimations will be added
in. To address these issues, we design the Expectation-maximization Collabora-
tive Filtering (EMCF) algorithm. The basic idea is to iteratively propagate the
available implicit feedback estimations, plus the explicit feedback, towards the
unavailable implicit feedback, in order to make possible the estimations on such
implicit feedback.

If we treat CF model as the objective and treat latent factor matrices as
estimated parameters, we can map the classic EM into our problem scenario.
Our goal is to build CF model that uses the matrix factorization method. The
model depends on both user latent factor vectors and item latent factor vectors.
The parameters that we use to estimate latent factor vectors are explicit feed-
back ratings and implicit feedback estimations. The two steps are defined as the
following:

– E Step: Train the collaborative filtering model using all the explicit feedback
ratings and currently available estimations of implicit feedback.

– M Step: Estimate the implicit feedback based on latent factor vectors that
are output from the CF model trained in the previous E Step.

The EMCF algorithm is an iterative procedure. We begin by using explicit feed-
back ratings to initialize the CF model with the matrix factorization method,
which is introduced in Section 3.2. The set of implicit feedback is then catego-
rized based on four cases (Cases 1-4 above), in terms of whether the involved
users and item have latent factor vectors or not. Following the estimation meth-
ods introduced in Section 3.3, the implicit feedback ratings are estimated if
they are eligible. The estimated implicit feedback ratings are put together with
explicit feedback ratings to train the EMCF model again. Thus, for the user
and/or the item involved in the target implicit feedback, new latent factor vec-
tors are assigned if the user and/or the item do not yet have them. For other
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Algorithm EMCF

Input: Explicit feedback set SE , implicit feedback set SI , user set U, and item set I.

Output: User latent factor matrix MU and item latent factor matrix MI .

Initialization:

– Initialize training set ST with SE , train the latent factor vectors for users and items in ST , and assign them

back to MU and MI .
– Initialize an empty set ŜE , in which the implicit feedback estimation triples (u, i, r̂ui will be included.

BEGIN
Repeat:

For each user-item pair (u, i) in SI :
If both u and i have latent factor vectors:

Estimate rating r̂ui for (u, i);

Put (u, i, r̂ui) in ŜE by Equation 6;

Remove (u, i) from SI ;
Else If u has latent factor vector but i not:

Estimate rating r̂ui for (u, i) by Equation 8 when item neighbors of i can be found;

Put (u, i, r̂ui) in ŜE ;

Remove (u, i) from SI ;
Else If i has latent factor vector but u not:

Estimate rating r̂ui for (u, i) by Equation 10 when user neighbors of u can be found;

Put (u, i, r̂ui) in ŜE ;

Remove (u, i) from SI ;

Train model using ST ← ST ⋃
ŜE ;

Update the corresponding columns of MU and MI by updated latent factor vectors;
Evaluate the difference between the rating estimations produced by previous latent factor vectors and the
rating estimations produced by current latent factor vectors;

Until there is no new entry added in ŜE and the estimation difference is lower than the threshold.
END

Fig. 2. The formal description of EMCF algorithm

users and items that already have latent factor vectors, their latent factor vectors
are updated, since the EMCF model is re-trained using the updated rating set.
Therefore, the estimations of some non-eligible implicit feedback in the previous
round become possible. Then, EMCF algorithm is back to the step of estimating
implicit feedback, and the above steps are repeated. The algorithm is terminated
when there is no longer eligible implicit feedback to estimate and the rating es-
timation difference between the previous round and current round is lower than
a pre-defined threshold. The formal algorithm procedure description is shown in
Figure 2.

The EMCF algorithm has advantages by combining explicit feedback with im-
plicit feedback. First, the implicit feedback is categorized into the four disjoint
sets, in terms of the current situations of user and item latent factor vectors.
Therefore, we have a chance to deal with implicit feedback differentially. Sec-
ond, the estimation methods for different cases not only depend on the rating
calculation from the matrix factorization, but also consider the neighbor struc-
ture built by both explicit feedback and implicit feedback. Third, the iterative
procedure of EMCF fully utilizes implicit feedback by providing the opportu-
nity to include more estimations of implicit feedback, which are not eligible in
the previous operational round of the algorithm. Finally, the EMCF algorithm
prevents noisy implicit feedback from the model training procedure, so that the
performance of output model can be improved. Some implicit feedback is not
used, since there is no sufficent information for estimation. Usually, such implicit
feedback is suspected of being noise.
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5 Experiments

We design experiments to demostrate the performance of EMCF. MovieLens1 is
used in the experiments. The dataset consists of one million ratings from 6,000
users and 4,000 movies. In the dataset, 20% ratings are randomly selected and
held as the testing set, and the other 80% ratings are used as the training set.
In the training set, we follow the idea proposed in [1] to create implicit feedback
from explicit ratings data by considering whether a movie is rated by a user. In
each experiment, the percentage of implicit feedback is pre-defined, and the rest
of ratings in the training set are used as explicit feedback. The experiments are
conducted on Apache Mahout2, which is a recently popular machine learning
platform. On Mahout, we implement matrix factorization and co-rating using
ALS, and implement EMCF using SGD. All the methods are trained based on
the same sets of explicit and implicit feedback, and are tested on the same sets
of ratings. The root mean square error (RMSE) has been used as the evaluation
measure to compare the methods.

The first set of experiments aims at comparing the performances of EMCF
when only considering individual cases of implicit feedback. Given 20% of train-
ing set as explicit feedback, the baseline is the matrix factorization only using
explicit feedback, which is used to compare to EMCF with different cases of
implicit feedback. The results are shown in Table 1.

Table 1. Given 20% explicit feedback, experimental results of matrix factorization
only with explicit feedback (MF+Explicit), EMCF with implicit feedback of Case 1,
EMCF with implicit feedback with Case 2, EMCF with implicit feedback of Case 3,
EMCF with implicit feedback with Case 2 and Case 3, and EMCF with all the implicit
feedback

MF + Explicit EMCF + Case1 EMCF + Case2 EMCF + Case3 EMCF + Cases2+3 EMCF + All

RMSE 1.039 1.048 0.985 0.990 0.968 0.945

From the results, we can see that the performance of EMCF with implicit
feedback of Case 1 is worse than the baseline. It is because the implicit feed-
back of Case 1 is estimated by the latent factor vectors learned from the model
only based on explicit feedback. Without estimations of other cases of implicit
feedback, EMCF with Case 1 overfits the model. EMCF with implicit feedback
of Case 2 or Case 3 outperforms the baseline. But the improvements of perfor-
mance are not obvious. EMCF with the implicit feedback combination of Case
2 and Case 3 has a greater improvements compared to the baseline. However,
the implicit feedback is not fully utilized due to the lack of Case 1. EMCF with
all the implicit feedback has the best performance since the EM-style algorithm
of EMCF fully utilizes all the implicit feedback.

1 http://www.grouplens.org/node/73
2 http://mahout.apache.org/
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Fig. 3. The experimental results of matrix factorization (MF) only with explicit feed-
back, co-rating, and EMCF with different percentage of explicit feedback

The second set of experiments aims at comparing the performances of EMCF
with different percentages of explicit feedback. There are two baseline meth-
ods: matrix factorization only with explicit feedback (MF with Explicit) and
co-rating [6]. There are several differences between the co-rating method and
our EMCF method. First, EMCF does not treat explicit feedback as a form of
special implicit feedback. Instead, EMCF initializes a latent factor model with
explicit feedback and then updates the latent factor vectors based on explicit
feedback ratings and implicit feedback estimations. Second, EMCF does not
normalize explicit feedback and implicit feedback into the same scale. On the
contrary, EMCF estimates the ratings of implicit feedback in terms of the scale
of explicit feedback. Third, EMCF does not add any new term in the objective
function of the matrix factorization. The proposed Expectation-maximization-
styled algorithm in EMCF ensures that the estimations of implicit feedback can
be adjusted in order to improve the performance of EMCF. The experimental
results are shown in Figure 3.

From the results, we can see that EMCF outperforms the other two baseline
methods, especially when the percentage of implicit feedback is small. On one
hand, the results of the comparison between EMCF and matrix factorization
show that utilizing implicit feedback with explicit feedback truly outperforms
the method based only on explicit feedback. On the other hand, the results of
the comparison between EMCF and co-rating show that simply treating explicit
feedback as implicit feedback hurts the performance of the method. The reason
may be due to too much noisy implicit feedback added into the model training.
The EMCF not only differentially estimates implicit feedback, but also itera-
tively updates the estimations based on both explicit and implicit feedback, by
which noisy implicit feedback can be prevented from affecting the performance.
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6 Conclusion and Future Works

In this paper, we present a novel method, Expectation-Maximization Collabo-
rative Filtering (EMCF), which combines explicit and implicit feedback using
matrix factorization for recommender systems. EMCF is based on the fact that
explicit feedback and implicit feedback are naturally complementary to each
other, since explicit feedback has good accuracy, but the quantity is insufficient;
whereas, implicit feedback has abundant quantity, but does not have good accu-
racy. After initializing the EMCF model with explicit feedback, we observe that
the implicit feedback can be categorized into four cases, in terms of the distribu-
tion of latent factor vectors. We propose three methods to differentially estimate
the implicit feedback for the different cases. An EM-styled algorithm is then
designed to iteratively propagate the implicit feedback estimations and update
the latent factor vectors based on all the available explicit feedback ratings and
implicit feedback estimations. We conduct experiments to compare EMCF with
two other baseline methods. The experimental results show that EMCF outper-
forms the other two baselines, especially when the explicit feedback percentage
is small.

In the future, we will continue to study how explicit feedback should be com-
bined with implicit feedback in recommender systems. We will adapt different
recommender methods for explicit and implicit feedback. We will also consider
more complicated types of implicit feedback, such as mouse movements, and
more features of implicit feedback, such as the durations of implicit feedback
actions.
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