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Preface

PAKDD 2012 was the 16th conference of the Pacific Asia Conference series on
Knowledge Discovery and Data Mining. For the first time, the conference was
held in Malaysia, which has a vibrant economy and an aspiration to transform
itself into a knowledge-based society. Malaysians are also known to be very ac-
tive in social media such as Facebook and Twitter. Many private companies
and government agencies in Malaysia are already adopting database and data
warehousing systems, which over time will accumulate massive amounts of data
waiting to be mined. Having PAKDD 2012 organized in Malaysia was therefore
very timely as it created a good opportunity for the local data professionals to ac-
quire cutting-edge knowledge in the field through the conference talks, tutorials
and workshops.

The PAKDD conference series is a meeting place for both university re-
searchers and data professionals to share the latest research results. The PAKDD
2012 call for papers attracted a total of 241 submissions from 32 countries in all
six continents (Asia, Europe, Africa, North America, South America, and Aus-
tralasia), of which 20 (8.3%) were accepted for full presentation and 66 (27.4%)
were accepted for short presentation. Each submitted paper underwent a rigorous
double-blind review process and was assigned to at least four Program Commit-
tee (PC) members. Every paper was reviewed by at least three PC members,
with nearly two-thirds of them receiving four reviews or more. One of the changes
in the review process this year was the adoption of a two-tier approach, in which
a senior PC member was appointed to oversee the reviews for each paper. In
the case where there was significant divergence in the review ratings, the senior
PC members also initiated a discussion phase before providing the Program Co-
chairs with their final recommendation. The Program Co-chairs went through
each of the senior PC members’ recommendations, as well as the submitted pa-
pers and reviews, to come up with the final selection. We thank all reviewers
(Senior PC, PC and external invitees) for their efforts in reviewing the papers
in a timely fashion (altogether, more than 94% of the reviews were completed
by the time the notification was sent). Without their hard work, we would not
have been able to see such a high-quality program.

The three-day conference program included three keynote talks by world-
renowned data mining experts, namely, Chandrakant D. Patel from HP Labs
(Joules of Available Energy as the Global Currency: The Role of Knowledge Dis-
covery and Data Mining); Charles Elkan from the University of California at
San Diego (Learning to Make Predictions in Networks); and Ian Witten from
the University of Waikato (Semantic Document Representation: Do It with Wik-
ification). The program also included four workshops, three tutorials, a doctoral
symposium, and several paper sessions. Other than these intellectually inspiring
events, participants of PAKDD 2012 were able to enjoy several social events
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throughout the conference. These included a welcome reception on day one, a
banquet on day two and a free city tour on day three. Finally, PAKDD 2012
organized a data mining competition for those who wanted to lay their hands
on mining some real-world datasets.

Putting a conference together with a scale like PAKDD 2012 requires tremen-
dous efforts from the organizing team as well as financial support from the
sponsors. We thank Takashi Washio, Jun Luo and Hui Xiong for organizing
the workshops and tutorials, and coordinating with the workshop/tutorial or-
ganizers/speakers. We also owe James Bailey a big thank you for preparing the
conference proceedings. Finally, we had a great team of Publicity Co-chairs, Lo-
cal Organization Co-chairs, and helpers. They ensured the conference attracted
many local and international participants, and the conference program proceeded
smoothly.

We would like to express our gratitude to SAS, AFOSR/AOARD (Air Force
Office of Scientific Research/Asian Office of Aerospace Research and Devel-
opment), MDeC (Multimedia Development Corporation), PIKOM (Computer
Industry Association of Malaysia) and other organizations for their generous
sponsorhip and support. We also wish to thank the PAKDD Steering Com-
mittee for offering the student travel support grant and the grant for the best
student paper award(s), and UTAR and MMU for providing the administrative
support.

Philip Yu
Ee-Peng Lim

Hong-Tat Ewe
Pang-Ning Tan
Sanjay Chawla
Chin-Kuan Ho
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Vincenzo Piuri Università degli Studi di Milano, Italy
Vladimir Estivill-Castro Griffith University, Australia
Wagner Meira Universidade Federal de Minas Gerais, Brazil
Wai Lam The Chinese University of Hong Kong,

Hong Kong
Walter Kosters Universiteit Leiden, The Netherlands
Wanpracha Chaovalitw The State University of New Jersey Rutgers,

USA
Wei Fan IBM T.J. Watson Research Center, USA
Weining Qian East China Normal University, China
Wen-Chih Peng National Chiao Tung University, Taiwan
Wilfred Ng Hong Kong University of Science and

Technology, Hong Kong
Woong-Kee Loh Sungkyul University, South Korea
Xiaofang Zhou The University of Queensland, Australia
Xiaohua Hu Drexel University, USA
Xiaohui Liu Brunel University, UK
Xiaoli Li Institute for Infocomm Research, Singapore
Xin Wang University of Calgary, Canada
Xindong Wu University of Vermont, USA
Xingquan Zhu Florida Atlantic University, USA
Xintao Wu University of North Carolina at Charlotte, USA
Xu Sun Cornell University, USA
Xuan Vinh Nguyen Monash University, Australia
Xue Li The University of Queensland, Australia



Organization XV

Xuelong Li University of London, UK
Xuemin Lin The University of New South Wales, Australia
Xueyi Wang Northwest Nazarene University, USA
Yan Liu IBM Research, USA
Yan Jia National University of Defense Technology,

China
Yang Zhou Yahoo!, USA
Yang-Sae Moon Kangwon National University, Korea
Yasuhiko Morimoto Hiroshima University, Japan
Yi-Dong Shen Institute of Software, Chinese Academy of

Sciences, China
Yi-Ping Chen La Trobe University, Australia
Yifeng Zeng Aalborg University, Denmark
Yiu-ming Cheung Hong Kong Baptist University, Hong Kong
Yong Guan Iowa State University, USA
Yonghong Peng University of Bradford, UK
Yue Lu University of Illinois at Urbana-Champaign,

USA
Yun Chi NEC Laboratories America, Inc., USA
Yunhua Hu Microsoft Research Asia, China
Zheng Chen Microsoft Research Asia, China
Zhi-Hua Zhou Nanjing University, China
Zhiyuan Chen University of Maryland Baltimore County, USA
Zhongfei Zhang Binghamton University, USA
Zili Zhang Deakin University, Australia

External and Invited Reviewers
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Abstract. Relational networks often evolve over time by the addition,
deletion, and changing of links, nodes, and attributes. However, accu-
rately incorporating the full range of temporal dependencies into
relational learning algorithms remains a challenge. We propose a novel
framework for discovering temporal-relational representations for classi-
fication. The framework considers transformations over all the evolving
relational components (attributes, edges, and nodes) in order to accu-
rately incorporate temporal dependencies into relational models. Addi-
tionally, we propose temporal ensemble methods and demonstrate their
effectiveness against traditional and relational ensembles on two real-
world datasets. In all cases, the proposed temporal-relational models
outperform competing models that ignore temporal information.

1 Introduction

Temporal-relational information is present in many domains such as the Internet,
citation and collaboration networks, communication and email networks, social
networks, biological networks, among many others. These domains all have at-
tributes, links, and/or nodes changing over time which are important to model.
We conjecture that discovering an accurate temporal-relational representation
will disambiguate the true nature and strength of links, attributes, and nodes.
However, the majority of research in relational learning has focused on mod-
eling static snapshots [2, 6] and has largely ignored the utility of learning and
incorporating temporal dynamics into relational representations.

Temporal relational data has three main components (attributes, nodes, links)
that vary in time. First, the attribute values (on nodes or links) may change over
time (e.g., research area of an author). Next, links might be created and deleted
throughout time (e.g., host connections are opened and closed). Finally, nodes
might appear and disappear over time (e.g., through activity in an online social
network).

Within the context of evolving relational data, there are two types of predic-
tion tasks. In a temporal prediction task, the attribute to predict is changing
over time (e.g., student GPA), whereas in a static prediction task, the predic-
tive attribute is constant (e.g., paper topic). For these prediction tasks, the
space of temporal-relational representations is defined by the set of relational
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2 R. Rossi and J. Neville

elements that change over time (attributes, links, and nodes). To incorporate
temporal information in a representation that is appropriate for relational mod-
els, we consider two transformations based on temporal weighting and temporal
granularity. Temporal weighting aims to represent the temporal influence of the
links, attributes and nodes by decaying the weights of each with respect to time,
whereas the choice of temporal granularity restricts attention to links, attributes,
and nodes within a particular window of time. The optimal temporal-relational
representation and the corresponding temporal classifier depends on the partic-
ular temporal dynamics of the links, attributes, and nodes present in the data,
as well as the network domain (e.g., social vs. biological networks).

In this work, we address the problem of selecting the most optimal temporal-
relational representation to increase the accuracy of predictive models. We con-
sider the full space of temporal-relational representations and propose (1) a
temporal-relational classification framework, and (2) a set of temporal ensemble
methods, to leverage time-varying links, attributes, and nodes in relational net-
works. We illustrate the different types of models on a variety of classification
tasks and evaluate each under various conditions. The results demonstrate the
flexibility and effectiveness of the temporal-relational framework for classifica-
tion in time-evolving relational domains. Furthermore, the framework provides a
foundation for automatically searching over temporal-relational representations
to increase the accuracy of predictive models.

2 Related Work

Recent work has started to model network dynamics in order to better pre-
dict link and structure formation over time [7, 10], but this work focuses on
unattributed graphs. Previous work in relational learning on attributed graphs
either uses static network snapshots or significantly limits the amount of tem-
poral information incorporated into the models. Sharan et al. [18] assumes a
strict representation that only uses kernel estimation for link weights, while GA-
TVRC [9] uses a genetic algorithm to learn the link weights. SRPTs [11] incor-
porate temporal and spatial information in the relational attributes. However,
the above approaches focus only on one specific temporal pattern and do not
consider different temporal granularities. In contrast, we explore a larger space
of temporal-relational representations in a flexible framework that can capture
temporal dependencies over links, attributes, and nodes.

To the best of our knowledge, we are the first to propose and investigate
temporal-relational ensemble methods for time-varying relational classification.
However, there has been recent work on relational ensemble methods [8, 14,
15] and non-relational ensemble methods for evolving streams [1]. Preisach et
al. [14] use voting and stacking methods to combine relational data with multiple
relations. In contrast, Eldardiry and Neville [8] incorporates prediction averaging
in the collective inference process to reduce both learning and inference variance.
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3 Temporal-Relational Classification Framework

Below we outline a temporal-relational classification framework for prediction
tasks in dynamic relational networks. Relational data is represented as an at-
tributed graph D = (G,X) where the graph G = (V,E) represents a set of N
nodes, such that vi ∈ V corresponds to node i and each edge eij ∈ E corresponds
to a link (e.g., email) between nodes i and j. The attribute set:

X =

(
XV = [X1, X2, ..., Xmv ],
XE = [Xmv+1, Xmv+2, ..., Xmv+me ]

)
contains mv observed attributes on the nodes (XV) and me observed attributes
on the edges (XE). Dynamic relational data evolves over time by the addition,
deletion, and changing of nodes, edges, and attributes. Let Dt = (Gt,Xt) refer
to the dataset at time t, where Gt = (V,Et) and Xt = (XV

t ,XE
t ). In our classifi-

cation framework, we consider relational data observed over a range of timesteps
t = {1, ..., T } (e.g., citations over a period of years, emails over a period of days).
Given this time-varying relational data, the task is to learn a model to predict
either a static attribute Y or a dynamic attribute at a particular timestep Yt,
while exploiting both the relational and temporal dependencies in the data.

We define our temporal-relational classification framework with respect to
a set of possible transformations of links, attributes, or nodes (as a function
of time). The temporal weighting (e.g., exponential decay of past information)
and temporal granularity (e.g., window of timesteps) of the links, attributes and
nodes form the basis for any arbitrary transformation with respect to the tempo-
ral information (See Table 1). The discovered temporal-relational representation
can be applied for mining temporal patterns, classification, and as a means for
constructing temporal-ensembles. An overview of the temporal-relational repre-
sentation discovery is provided below:

Table 1. Temporal-Relational Representation

1. For each Relational Component
− Links, Attributes, or Nodes

2. Select the Temporal Granularity
� Timestep ti
� Window {tj, tj+1, ..., ti}
� Union T = {t0, ..., tn}

3. Select the Temporal Influence
� Weighted
� Uniform
Repeat steps 1-3 for each component.

4. Select the Relational Classifier
� Relational Bayes Classifier (RBC)
� Relational Probability Trees (RPT)

Uniform Weighting

T
im
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st
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W
in
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o
w
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n
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im

e
st
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p

W
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w
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Edges

Attributes

Nodes

Table 1 provides an intuitive view of the possible temporal-relational rep-
resentations. For instance, the TVRC model is a special case of the proposed
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framework where the links, attributes, and nodes are unioned and the links are
weighted. Below we provide more detail on steps 2-4.

3.1 Temporal Granularity

Traditionally, relational classifiers have attempted to use all the data available in
a network [18]. However, since the relevance of data may change over time (e.g.,
links become stale), learning the appropriate temporal granularity (i.e., range of
timesteps) can improve classification accuracy. We briefly define three general
classes for varying the temporal granularity of the links, attributes, and nodes.

1. Timestep. The timestep models only use a single timestep ti for learning.

2. Window. The window models use a sliding window of (multiple) timesteps
{tj, tj+1, ..., ti} for learning. When the size of window is varied, the space of
possible models in this category is by far the largest.

3. Union. The union model uses all previous temporal information for learning
at time ti, i.e., T = {0, ..., ti}.

The timestep and union models are separated into distinct classes for clarity in
evaluation and for understandability in pattern mining.

3.2 Temporal Influence: Links, Attributes, Nodes

We model the influence of relational components over time using temporal
weighting. Specifically, when considering a temporal dataset Dt = (Gt,Xt), we
will construct a weighted network Gt = (V,Et,W

E
t ) and Xt = (XV

t ,XE
t ,WX

t ).
Here Wt refers to a function that assigns weights on the edges and attributes
that are used in the classifiers below.

Initially, we define WE
t (i, j) = 1 if eij ∈ Et and 0 otherwise. Similarly, we

define WX
t (xm

i ) = 1 if Xm
i = xm

i ∈ Xm
t and 0 otherwise. Then we consider two

different approaches to revise these initial weights:

1. Weighting. These temporal weights can be viewed as probabilities that a
relational component is still active at the current time step t, given that
it was observed at time (t − k). We investigated three temporal weighting
functions:

– Exponential Kernel. The exponential kernel weights the recent past highly
and decays the weight rapidly as time passes [3]. The kernel function KE

for temporal data is defined as: KE(Di; t, θ) = (1− θ)t−iθWi

– Linear Kernel. The linear kernel decays more grdually and retains the
historical information longer: KL(Di; t, θ) = θWi(

t∗−ti+1
t∗−to+1 )

– Inverse Linear Kernel. This kernel lies between the exponential and lin-
ear kernels when moderating historical information:
KIL(Di; t, θ) = θWi(

1
ti−to+1 )
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(a) Graph and attribute weighting

(b) Incorporating link weights (c) Using link & attribute weights

Fig. 1. (a) Temporally weighting the attributes and links. (b) The feature calcula-
tion that includes only the temporal link weights. (c) The feature calculation that
incorporates both the temporal attribute weights and the temporal link weights.

2. Uniform. These weights ignore the temporal influence of a relational com-
ponent, and weight them uniformly over time, i.e., WE

t (i, j) = 1 if eij ∈
Et′ : t

′ ∈ T and 0 otherwise. A relational component can be assigned uni-
form weights within the selected temporal granularity or over the entire time
window (e.g., traditional classifiers assign uniform weights, but they don’t
select the appropriate temporal granularity).

We note that different weighting functions can be chosen for different relational
components (edges, attributes, nodes) with varying temporal granularities. For
instance, the temporal influence of the links might be predicted using the expo-
nential kernel while the attributes are uniformly weighted but have a different
temporal granularity than the links.

3.3 Temporal-Relational Classifiers

Once the temporal granularity and temporal weighting are selected for each rela-
tional component, then a temporal-relational classifier can learned. In this work,
we use modified versions of the RBC [13] and RPT [12] to model the transformed
temporal-relational representation. However, we note that any relational model



6 R. Rossi and J. Neville

that can be modified to incorporate node, link, and attribute weights is suitable
for this phase. We extended RBCs and RPTs since they are interpretable, di-
verse, simple, and efficient. We use k-fold x-validation to learn the “best” model.
Both classifiers are extended for learning and prediction over time.

Weighted Relational Bayes Classifier. RBCs extend naive Bayes classi-
fiers [5] to relational settings by treating heterogeneous relational subgraphs
as a homogeneous set of attribute multisets. The weighted RBC uses standard
maximum likelihood learning. More specifically, the sufficient statistics for each
conditional probability distribution are computed as weighted sums of counts
based on the link and attribute weights. More formally, for a class label C, at-
tributes X, and related items R, the RBC calculates the probability of C for an
item i of type G(i) as follows:

P (Ci|X, R) ∝
∏

Xm∈XG(i)

P (X i
m|C)

∏
j∈R

∏
Xk∈XG(j)

P (Xj
k|C)P (C)

Weighted Relational Probability Trees. RPTs extend standard probability
estimation trees to a relational setting. We use the standard learning
algorithm [12] except that the aggregate functions are computed after the ap-
propriate links and attributes weights are included for the selected temporal
granularity (shown in Figure 1). For prediction, if the model is applied to pre-
dict attribute Yt at time t, we first calculate the weighted data Dt . Then the
learned model from time (t − 1) is applied to Dt. The weighted classifier is
appropriately augmented to incorporate the weights from Dt.

4 Temporal Ensemble Methods

Ensemble methods have traditionally been used to improve predictions by con-
sidering a weighted vote from a set of classifiers [4]. We propose temporal ensem-
ble methods that exploit the temporal dimension of relational data to construct
more accurate predictors. This is in contrast to traditional ensembles that do
not explicitly use the temporal information. The temporal-relational classifica-
tion framework and in particular the temporal-relational representations of the
time-varying links, nodes, and attributes form the basis of the temporal ensem-
bles (i.e., as a wrapper over the framework). The proposed temporal ensemble
techniques are drawn from one of the five methodologies described below.

1. Transforming the Temporal Nodes and Links: The first method learns
an ensemble of classifiers, where each of the classifiers are learned from, and
then applied to, link and node sets that are sampled from each discrete
timestep according to some probability. This sampling strategy is performed
after selecting a temporal weighting and temporal granularity, and trans-
forming the data to the appropriate temporal-relational representation. We
note that the sampling probabilities for each timestep can be modified to
bias the sampling toward the present or the past.
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2. Sampling or Transforming the Temporal Feature Space: The second
method transforms the temporal feature space by localizing randomization
(for attributes at each timestep), weighting, or by varying the temporal gran-
ularity of the features, and then learning an ensemble of classifiers with dif-
ferent feature sets. Additionally, we might use only one temporal weighting
function but learn models with different decay parameters or resample from
the temporal features.

3. Adding Noise or Randomness: The third method is based on adding
noise along the temporal dimension of the data, to increase generalization
and performance. Specifically, we randomly permute the nodes feature values
across the timesteps (i.e., a nodes recent behavior is observed in the past and
vice versa) or links between nodes are permuted across time, and then learn
an ensemble of models from several versions of the data.

4. Transforming the Time-Varying Class Labels: The fourth method in-
troduces variance in the data by randomly permuting the previously learned
labels at t-1 (or more distant) with the true labels at t, again learning an
ensemble of models from several versions of the data.

5. Multiple Classification Algorithms and Weightings: The fifth method
constructs and ensemble by randomly selecting from a set of classification
algorithms (i.e., RPT, RBC, wvRN, RDN), while using the same temporal-
relational representation, or by varying the representation with respect to
the temporal weighting or granularity. Notably, an ensemble that uses both
RPT and RBC models significantly increases accuracy, most likely due to
the diversity of these temporal classifiers (i.e., correctly predicting different
instances). Additionally, the temporal-classifiers might be assigned weights
based on assessment of accuracy from cross-validation (or a Bayesian model
selection approach).

5 Methodology

For evaluating the framework, we use both static (Y is constant over time) and
temporal prediction tasks (Yt changes over time).

5.1 Datasets

PyComm Developer Communication Network. We analyze email and
bug communication networks extracted from the python-dev mailing list archive
(www.python.org) for the period 01/01/07−09/30/08. The network consists of
13181 email messages, among 1914 users. Bug reports were also extracted and
used to construct a bug discussion network consisting of 69435 bug comments
among 5108 users. The size of the timesteps are three months. We also ex-
tracted text from emails and bug messages and use it to dynamically model
topics between individuals and teams. Additionally, we discover temporal cen-
trality attributes (i.e., clustering coefficient, betweenness). The prediction task
is whether a developer is effective (i.e., if a user closed a bug in that timestep).
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Cora Citation Network. The Cora dataset contains authorship and citation
information about CS research papers extracted automatically from the web.
The prediction tasks are to predict one of seven machine learning papers and to
predict AI papers given the topic of its references. In addition, these techniques
are evaluated using the most prevalent topics its authors are working on through
collaborations with other authors.

5.2 Temporal Models

The space of temporal-relational models are evaluated using a representative
sample of classifiers with varying temporal weightings and granularities. For ev-
ery timestep t, we learn a model on Dt (i.e., some set of timesteps) and apply
the model to Dt+1. The utility of the temporal-relational classifiers and repre-
sentation are measured using the area under the ROC curve (AUC). Below, we
briefly describe a few classes of models that were evaluated.

– TENC: The TENC models predict the temporal influence of both the links
and attributes [16].

– TVRC: This model weights only the links using all previous timesteps.
– Union Model:The union model uses all links and nodes up to and including

t for learning.
– Window Model: The window model uses the data Dt−1 for prediction on

Dt (unless otherwise specified).

We also compare simpler models such as the RPT (relational information only)
and the DT (non-relational) that ignore any temporal information. Additionally,
we explore many other models, including the class of window models, various
weighting functions (besides exponential kernel), and built models that vary the
set of windows in TENC and TVRC.

6 Empirical Results

In this section, we demonstrate the effectiveness of the temporal-relational frame-
work and temporal ensemble methods on two real-world datasets. The main
findings are summarized below:

� Temporal-relational models significantly outperform relational and non-
relational models.

� The classes of temporal-relational models each have advantages and disad-
vantages in terms of accuracy, efficiency, and interpretability. Models based
strictly on temporal granularity are more interpretable but less accurate than
models that learn the temporal influence. The more complex models that
combine both are generally more accurate, but less efficient.

� Temporal ensemble methods significantly outperform non-relational and re-
lational ensembles. In addition, the temporal ensembles are an efficient and
accurate alternative to searching over the space of temporal models.
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6.1 Single Models1
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Fig. 2. Comparing a primitive
temporal model (TVRC) to com-
peting relational (RPT), and
non-relational (DT) models

We evaluate the temporal-relational frame-
work using single-models and show that in
all cases the performance of classification im-
proves when the temporal dynamics are ap-
propriately modeled.

Temporal, Relational, and Non-
Relational Information. The utility of the
temporal (TVRC), relational (RPT), and
non-relational information (decision tree;
DT) is assessed using the most primitive
models. Figure 2 compares TVRC with the
RPT and DT models that use more fea-
tures but ignore the temporal dynamics of
the data. We find the TVRC to be the sim-
plest temporal-relational classifier that still
outperforms the others. Interestingly, the discovered topic features are the only
additional features that improve performance of the DT model. This is signifi-
cant as these attributes are discovered by dynamically modeling the topics, but
are included in the DT model as simple non-relational features (i.e., no temporal
weighting or granularity).

T=1 T=2 T=3 T=4
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Fig. 3. Exploring the space
of temporal relational models.
Significantly different temporal-
relational representations from
the proposed framework are
evaluated.

Exploring Temporal-Relational Models.
We focus on exploring a representative set of
temporal-relational models from the proposed
framework. To more appropriately evaluate
the models, we remove highly correlated at-
tributes (i.e., that are not necessarily temporal
patterns, or motifs), such as “assignedto” in
the PyComm prediction task. In Figure 3, we
find that TENC outperforms the other models
over all timesteps. This class of models are sig-
nificantly more complex than TVRC since the
temporal influence of both links and attributes
are learned.

We then explored learning the appropri-
ate temporal granularity. Figure 3 shows the
results from two models in the TVRC class
where we tease apart the superiority of TENC
(i.e., weighting or granularity). However, both
TVRC models outperform one another on different timesteps, indicating the ne-
cessity for a more precise temporal-representation that optimizes the temporal
granularity by selecting the appropriate decay parameters for links and attributes

1 For brevity, some plots and comparisons were omitted [17].
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(i.e., TENC). Similar results were found using Cora and other base classifiers
such as RBC. Models based strictly on varying the temporal granularity were
also explored. More details can be found in [17].

6.2 Temporal-Ensemble Models
TVRC
RPT
DT

A
U

C

0.
92

0.
94

0.
96

0.
98

1.
00

T=1         T=2        T=3          T=4         Avg

Fig. 4. Comparing temporal, rela-
tional, and traditional ensembles

Instead of directly learning the optimal
temporal-relational representation to in-
crease the accuracy of classification, we use
temporal ensembles by varying the relational
representation with respect to the temporal
information. These ensemble models reduce
error due to variance and allow us to assess
which features are most relevant to the do-
main with respect to the relational or tem-
poral information.

Temporal, Relational, and Traditional
Ensembles. We first resampled the in-
stances (nodes, links, features) repeatedly and then learn TVRC, RPT, and DT
models. Across almost all the timesteps, we find the temporal-ensemble that uses
various temporal-relational representations outperforms the relational-ensemble
and the traditional ensemble (see Figure 4). The temporal-ensemble outperforms
the others even when the minimum amount of temporal information is used (e.g.,
time-varying links). More sophisticated temporal-ensembles can be constructed
to further increase accuracy. We have investigated ensembles that use signifi-
cantly different temporal-relational representations (i.e., from a wide range of
model classes) and ensembles that use various temporal weighting parameters.
In all cases, these ensembles are more robust and increase the accuracy over
more traditional ensemble techniques (and single classifiers). Further, the average
improvement of the temporal-ensembles is significant at p < 0.05 with a 16%
reduction in error, justifying the proposed temporal ensemble methodologies.

Communication Team Centrality Topics
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C
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RPT
DT

Fig. 5. Comparing attribute classes
w.r.t. temporal, relational, and tra-
ditional ensembles

In the next experiment, we construct en-
sembles using the feature classes. We use the
primitive models (with the transformed fea-
ture space) in order to investigate (more ac-
curately) the most significant feature class
(communication, team, centrality, topics)
and also to identify the minimum amount
of temporal information required to outper-
form relational ensembles.

In Figure 5, we find several striking tem-
poral patterns. First, the team features are
localized in time and are not changing fre-
quently. For instance, it is unlikely that a
developer changes their assigned teams and
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Fig. 6. Randomization. The significant attributes used in the temporal ensemble are
compared to the relational and traditional ensembles. The change in AUC is measured.
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Fig. 7. Evaluation of temporal-relational classifiers using only the latent topics of the
communications to predict effectiveness. LDA is used to automatically discover the
latent topics as well as annotating the communication links and individuals with their
appropriate topic in the temporal networks.

therefore modeling the temporal dynamics only increases accuracy by a relatively
small percent. However, the temporal-ensemble is still more accurate than tra-
ditional ensemble methods that ignore temporal patterns. This indicates the ro-
bustness of the temporal-relational representations. More importantly, the other
classes of attributes are evolving considerably and this fact is captured by the
significant improvement of the temporal ensemble models. Similar performance
is also obtained by varying the temporal granularity (see previous examples).

Randomization. We use randomization to identify the significant attributes
in the temporal-ensemble models. Randomization provides a means to rank and
eliminate redundant attributes (i.e., two attributes may share the same



12 R. Rossi and J. Neville

significant temporal pattern). We randomize each attribute in each timestep
and measure the change in AUC. The results are shown in Figure 6.

We find that the basic traditional ensemble relies on “assignedto” (in the
current time step) while the temporal ensemble (and even less for the relational
ensemble) relies on the previous “assignedto” attributes. This indicates that
relational information in the past is more useful than intrinsic information in the
present—which points to an interesting hypothesis that a colleagues behavior
(and interactions) precedes their own behavior. Organizations might use this
to predict future behavior with less information and proactively respond more
quickly. Additionally, the topic attributes are shown to be the most useful for the
temporal ensembles (Fig. 7), indicating the utility of using topics to understand
the context and strength of relationships.

7 Conclusion

We proposed and validated a framework for temporal-relational classifiers, en-
sembles, and more generally, representations for temporal-relational data. We
evaluated an illustrative set of temporal-relational models from the proposed
framework. Empirical results show that the models significantly outperform
competing classification models that use either no temporal information or a
very limited amount. The proposed temporal ensemble methods (i.e., tempo-
rally sampling, randomizing, and transforming features) were shown to sig-
nificantly outperform traditional and relational ensembles. Furthermore, the
temporal-ensemble methods were shown to increase the accuracy over traditional
models while providing an efficient alternative to exploring the space of temporal-
models. The results demonstrated the effectiveness, scalability, and flexibility of
the temporal-relational representations for classification and ensembles in time-
evolving domains. In future work, we will theoretically analyze the framework
and the proposed ensemble methods.
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Abstract. Hierarchical text classification plays an important role in
many real-world applications, such as webpage topic classification, prod-
uct categorization and user feedback classification. Usually a large
number of training examples are needed to build an accurate hierar-
chical classification system. Active learning has been shown to reduce
the training examples significantly, but it has not been applied to hi-
erarchical text classification due to several technical challenges. In this
paper, we study active learning for hierarchical text classification. We
propose a realistic multi-oracle setting as well as a novel active learning
framework, and devise several novel leveraging strategies under this new
framework. Hierarchical relation between different categories has been
explored and leveraged to improve active learning further. Experiments
show that our methods are quite effective in reducing the number of
oracle queries (by 74% to 90%) in building accurate hierarchical classi-
fication systems. As far as we know, this is the first work that studies
active learning in hierarchical text classification with promising results.

1 Introduction

Hierarchical text classification plays an important role in many real-world ap-
plications, such as webpage topic classification, product categorization and user
feedback classification. Due to the rapid increase of published documents (e.g.,
articles, patents and product descriptions) online, most of the websites (from
Wikipedia and Yahoo! to the small enterprise websites) classify their documents
into a predefined hierarchy (or taxonomy) for easy browsing. As more documents
are published, more human efforts are needed to give the hierarchical labels of
the new documents. It dramatically increases the maintenance cost for those
organization or companies. To tackle this problem, machine learning techniques
such as hierarchical text classification can be utilized to automatically categorize
new documents into the predefined hierarchy.

Many approaches have been proposed to improve the performance of hierar-
chical text classification. Different approaches have been proposed in terms of
how to build the classifiers [2,19], how to construct the training sets [1,6] and
how to choose the decision thresholds [15,1] and so on. As a hierarchy may con-
tain hundreds or even tens of thousands of categories, those approaches often

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 14–25, 2012.
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require a large number of labeled examples for training. However, in real-world
applications, such as webpage topic classification, the labeled documents are very
limited compared to the total number of unlabeled documents. Obtaining a large
size of labeled documents for training requires great amount of human efforts.
How can we build a reliable hierarchical classifier from a relatively small number
of examples? Can we reduce the number of labeled examples significantly?

To tackle the lack of labeled examples, active learning can be a good choice
[16,12,18]. The idea of active learning is that, instead of passively receiving the
training examples, the learner actively selects the most “informative” exam-
ples for the current classifier and gets their labels from the oracle (i.e., human
expert). Usually, those most informative examples can benefit the classification
performance most. Several works have successfully applied active learning in text
classification [16,5,20]. However, to our best knowledge, no previous works have
been done in hierarchical text classification with active learning due to several
technical challenges. For example, as a large taxonomy can contain thousands of
categories, it is impossible to have one oracle to provide all labels. Thus, similar
to DMOZ1, multiple oracles are needed. What would be a realistic setting for
multiple oracles for active learning in hierarchical text classification? How can
we leverage the hierarchical relation to further improve active learning?

In this paper, we study how active learning can be effectively applied to hi-
erarchical text classification so that the number of labeled examples (or oracle
queries) needed can be reduced significantly. We propose a new setting of mul-
tiple oracles, which is currently in use in many real-world applications (e.g.,
DMOZ). Based on this setting, we propose an effective framework for active
learning in hierarchical text classification. Moreover, we explore how to uti-
lize the hierarchical relation to further improve active learning. Accordingly,
several leveraging strategies and heuristics are devised. According to our ex-
periments, active learning under our framework significantly outperforms the
baseline learner, and the additional strategies further enhance the performance
of active learning for hierarchical text classification. Compared to the best per-
formance of the baseline hierarchical learner, our best strategy can reduce the
number of oracle queries by 74% to 90%.

2 A Novel Multi-oracle Setting

When active learning is applied to text classification, as far as we know, all
previous works (e.g., [5,20]) explicitly or implicitly assume that given a document
that might be associated with multiple labels, there always exist oracles who can
perfectly answer all labels. In hierarchical text classification, it is very common
that the target hierarchy has a large number of categories (e.g., DMOZ has
over one million categories) across various domains, and thus it is unrealistic for
one oracle (expert) to be “omniscient” in everything. For example, an expert
in “Business” may have less confidence about “Computer”, and even less about

1 It is often called Open Directory Project (http://www.dmoz.org).

http://www.dmoz.org
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“Programming”. If the expert in “Business” has to label “Programming”, errors
can occur. Such error introduces noise to the learner.

Therefore, it is more reasonable to assume that there are multiple oracles who
are experts in different domains. Each oracle only gives the label(s) related to
his or her own domains. Thus, the labels provided by multiple oracles will be
more accurate and reliable than the labels given by only one oracle. Although
previous works have studied active learning with multiple oracles [4,10], as far
as we know, their settings are quite different from ours as their oracles provide
labels for all examples for only one category, while in our case, different oracles
provide labels for examples in different categories in the hierarchy.

Our setting of multiple oracles is actually implemented in DMOZ. As far as
we know, DMOZ holds a large number of categories. Each category is gener-
ally maintained by at least one human editor whose responsibility is to decide
whether or not a submitted website belongs to that category.2 We adopt the
similar setting of DMOZ. In our setting, each category in the hierarchy has
one oracle, who decides solely if the selected document belongs to the current
category or not (by answer “Yes” or “No”).

3 A New Framework of Hierarchical Active Learning

In this paper, we mainly discuss pool-based active learning where a large pool
of unlabeled examples is available for querying oracles. Figure 1 shows the basic
idea of our hierarchical active learning framework. Simply speaking, at each
iteration of active learning, classifiers on different categories independently and
simultaneously select the most informative examples from the unlabeled pool for
themselves, and ask the oracles on the corresponding categories for the labels.
The major steps of our hierarchical active learning algorithm are as follows:

1. We first train a binary classifier (C) on each category to distinguish it from its
sibling categories. The training set (DL) is constructed by using the positive
examples from the training set of the parent category [14].3

2. Then, we construct the local unlabeled pool (DU ) for each classifier (see
Section 3.1), select the most informative examples from the local unlabeled
pool for that classifier, and query the corresponding oracle for the labels.

3. For each query, the oracle returns “Yes” or “No” to indicate whether the
queried example belongs to that category or not. Based on the answers, the
classifier updates its classification model (see Section 3.2).

4. This process is executed simultaneously on all categories at each iteration
and repeats until the terminal condition is satisfied.

There are two key steps (step two and three) in the algorithm. In step two, we
introduce the local unlabeled pool to avoid selecting out-of-scope (we will define
it later) examples. In step three, we tackle how to leverage the oracle answers in
the hierarchy. We will discuss them in the following subsections.

2 See http://www.dmoz.org/erz/ for DMOZ editing guidelines.
3 On the root of hierarchy tree, every example is positive.

http://www.dmoz.org/erz/
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Fig. 1. The hierarchical active learning framework. The typical active learning steps
are numbered 1, 2, 3 in the figure.

3.1 Unlabeled Pool Building Policy

From step one of our algorithm, we know that the training examples for a deep
category (say c) must belong to its ancestor categories. However, it is likely
that many unlabeled examples do not belong to the ancestor categories of c. We
define those examples as out-of-scope examples. If those out-of-scope examples
are selected by c, we may waste a lot of queries. Thus, instead of using one shared
unlabeled pool [5] for all categories, we construct a local unlabeled pool on each
of the categories. To filter out these out-of-scope examples, we use the predictions
of the ancestor classifiers to build the local unlabeled pool. Specifically, given
an unlabeled example x and a category c, only if all the ancestor classifiers of c
predict x as positive, then we will place x into the local unlabeled pool of c.

3.2 Leveraging Oracle Answers

For the two answers (“Yes” or “No”) from oracles, there are several possible
ways to handle them. We give a brief overview here and discuss the detailed
strategies in Section 5.

If the answer is “Yes”, we can simply update the training set by directly
including the queried example as a positive example. To better leverage the hi-
erarchical relation, we can even add the positive example to all the ancestor
categories. Furthermore, since the positive example is possibly a negative exam-
ple on some of the sibling categories, we may consider including it as a negative
example to the sibling categories.

If the answer is “No”, we can not simply add the example as a negative ex-
ample, since we don’t know whether the queried example actually belongs to the
ancestor categories. Thus, we could simply discard the example. Alternatively,
we can also query the oracle on the parent category to see if the example belongs
to the parent category, but the extra query may be wasted if the answer is “No”.

In the following parts, we will first present our experimental configuration,
and then empirically explore whether our framework can be effectively applied
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to hierarchical classification and whether different strategies described above can
indeed improve active learning.

4 Experimental Configuration

4.1 Datasets

We utilize four real-world hierarchical text datasets (20 Newsgroups, OHSUMED,
RCV1 and DMOZ) in our experiments. They are common benchmark datasets
for evaluation of text classification methods. We give a brief introduction of the
datasets. The statistic information of the four datasets is shown in Table 1.

Table 1. The statistic information of the four datasets. Cardinality is the average
number of categories per example (i.e., multi-label datasets).

Dataset Features Examples Categories Levels Cardinality

20 Newsgroups 61,188 18,774 27 3 2.202
OHSUMED 12,427 16,074 86 4 1.916

RCV1 47,236 23,049 96 4 3.182
DMOZ 92,262 12,735 91 3 2.464

The first dataset is 20 Newsgroups4. It is a collection of newsgroup docu-
ments partitioned evenly across 20 different newsgroups. We group these cate-
gories based on subject matter into a three-level topic hierarchy which has 27
categories. The second dataset is OHSUMED5. It is a clinically-oriented MED-
LINE dataset with a hierarchy of twelve levels. In our experiments, we only use
the sub-hierarchy under subcategory “heart diseases” which is well-studied and
usually taken as a benchmark dataset for text classification [8,13]. The third
dataset is RCV1 [9]. It includes three classification tasks: topic, industrial and
regional classification. In our experiments, we focus on the topic classification
task.6 The last dataset is DMOZ. It is a human-edited web directory with web-
pages manually organized into a complex hierarchy. DMOZ is extracted from a
sub collection rooted at “Science” and it has three-level category hierarchy.7

4.2 Performance Measure

To evaluate the performance in hierarchical classification, we adopt the hierar-
chical F-measure, which has been widely used in hierarchical classification for
evaluation [17,3,14]. The definition the hierarchical F-measure is as follows,

hF =
2× hP × hR

hP + hR
where hP =

∑
i |P̂i

⋂
T̂i|∑

i |P̂i|
hR =

∑
i |P̂i

⋂
T̂i|∑

i |T̂i|
(1)

4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 http://ir.ohsu.edu/ohsumed/
6 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
7 http://olc.ijs.si/dmozReadme.html

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://ir.ohsu.edu/ohsumed/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://olc.ijs.si/dmozReadme.html
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where hP and hR are the hierarchical precision and the hierarchical recall, P̂i is
the set consisting of the most specific categories predicted for test example i and
all its (their) ancestor categories and T̂i is the set consisting of the true most
specific categories of test example i and all its (their) ancestor categories.[14]

4.3 Active Learning Setup

In our experiment, linear Support Vector Machine (SVM) is used as the base
classifier on each category in the hierarchy, since the high dimensionality of text
data usually results in the dataset being linearly separable [16]. Specifically,
LIBLINEAR [7] package is used as the implementation of linear SVM. For LI-
BLINEAR, there are primarily two parameters C and W that will affect the
performance. C is the penalty coefficient for training errors and W balances
the penalty on the two classes. In our experiment, we set C = 1000 and W as
the negative class proportion. For example, if the class ratio of positive and neg-
ative class in the training set is 1:9, then W = 0.9. The purpose is to give more
penalty to the error on the minority class.

For active learning, due to the simplicity and effectiveness of Uncertainty Sam-
pling8, we adopt uncertainty sampling as the strategy to select the informative
examples from the unlabeled pool. It should be noted that our hierarchical active
learning framework is independent of the specific active learning strategy. Other
strategies, such as expected error reduction [12] and representative sampling [18]
can also be used. We will study them in the future.

We split all the four datasets into labeled (1%), unlabeled (89%) and testing
(10%) parts. As we already know the labels of unlabeled examples, we will use
the simulating oracles instead of the real human oracles (experts). We set a query
limit (see Section 5.1). The training process is decomposed into a sequence of
iterations. In each iteration, each category simultaneously selects a fixed number
of examples9 from its local unlabeled pool and queries the oracles (one query will
be consumed when we ask one oracle for one label). After each category updates
its training set, we recompute the parameter W and update the classification
model. The entire training process terminates when the number of queries con-
sumed exceeds the query limit. To reduce the randomness impact of the dataset
split, we repeat this active learning process for 10 times. All the results (curves)
in the following experiments are averaged over the 10 independent runs and
accompanied by error bars indicating the 95% confidence interval.

5 Empirical Study

In this section, we will first experimentally study the standard version of our
active learning framework for hierarchical text classification, then propose several
improved versions and compare them with the previous version.

8 Uncertain sampling in active learning selects the unlabeled example that is closest
to the decision boundary of the classifier.

9 We heuristically use logarithm of the unlabeled pool size to calculate the number of
selected examples for each category.
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5.1 Standard Hierarchical Active Learner

In order to validate our active learning framework, we will first compare its stan-
dard version (we call it standard hierarchical active learner) with the baseline
learner. The standard hierarchical active learner uses intuitive strategies to han-
dle oracle answers (see Section 3.2) in deep categories. If the oracle answer is
“Yes”, the standard hierarchical active learner directly includes the example as
a positive example; if “No”, it simply discards the example. On the other hand,
the baseline learner is actually the non-active version of the standard hierarchi-
cal active learner. Instead of selecting the most informative examples, it selects
unlabeled examples randomly on each category.

Empirical Comparison: We set the query limit as 50 × |C| where |C| is the
total umber of categories in the hierarchy. Thus, in our experiments the query
limits for the four datasets are 1,350, 4,300, 4,800 and 4,850 respectively. We
denote the standard hierarchical active learner as AC and the baseline learner
as RD. Figure 2 plots the average learning curves for AC and RD on the four
datasets. As we can see, on all the datasets AC performs significantly better
than RD. This result is reasonable since the unlabeled examples selected by AC
are more informative than RD on all the categories in the hierarchy. From the
curves, it is apparent that to achieve the best performance of RD, AC needs
significantly fewer queries (approximately 43% to 82% queries can be saved)10.

Fig. 2. Comparison between AC and RD in terms of the hierarchical F-measure. X
axis is the number of queries consumed and Y axis is the hierarchical F-measure.

Although the standard hierarchical active learner (AC ) significantly reduces
the number of oracle queries compared to the baseline learner (RD), we should
note that there is no interaction between categories in the hierarchy (e.g., each
category independently selects examples and queries oracle). Our question is:
can we further improve the performance of the standard active learner by taking
into account the hierarchical relation of different categories? We will explore
several leveraging strategies in the following subsections.

10 In 20 Newsgroups, RD uses 1,350 queries to achieve 0.46 in terms of the hierarchical
F-measure, while AC only uses 750 queries. Thus, (1350−750)/1350 = 44.4% of the
total queries are saved. The savings for other datasets are 82.5%, 72.9% and 43.3%.



Active Learning for Hierarchical Text Classification 21

5.2 Leveraging Positive Examples in Hierarchy

As mentioned in Section 3.2, when the oracle on a category answers “Yes” for
an example, we can directly include the example into the training set on that
category as a positive example. Furthermore, according to the category relation
in a hierarchy, if an example belongs to a category, it will definitely belong to
all the ancestor categories. Thus, we can propagate the example (as a positive
example) to all its ancestor categories. In such cases, the ancestor classifiers can
obtain free positive examples for training without any query. It coincides with
the goal of active learning: reducing the human labeling cost!

Based on the intuition, we propose a new strategy Propagate to propagate the
examples to the ancestor classifiers when the answer from oracle is “Yes”. The
basic idea is as follows. In each iteration of the active learning process, after we
query an oracle for each selected example, if the answer from the oracle is “Yes”,
we propagate this example to the training sets of all the ancestor categories as
positive. At the end of the iteration, each category combines all the propagated
positive examples and the examples selected by itself to update its classifier.

Empirical Comparison: We integrate Propagate to the standard hierarchical
active learner (we name the integrated version asAC+) and then compare it with
the original AC. The first row of Figure 3 shows the learning curves of AC+ and

Fig. 3. Comparison between AC+ and AC in terms of the hierarchical F-measure (first
row), recall (second row) and precision (third row)
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AC on the four datasets in terms of the hierarchical F-measure. Overall, the
performance of AC+ is slightly better than that of AC. By propagating positive
examples, the top-level classifiers of AC+ can receive a large number of positive
examples and thus the (hierarchical) recall of AC+ increases faster than AC as
shown in the second row. This is the reason why AC+ can defeat AC on the first
three datasets. However, from the third row, we can see the hierarchical precision
of AC+ actually degrades very sharply since the class distribution of the training
set has been altered by the propagated positive examples. It thus weakens the
boosting effect in the hierarchical recall and hinders the improvement of overall
performance in the hierarchical F-measure.

Since positive examples can benefit the hierarchical recall, can we leverage
negative examples to help maintain the hierarchical precision so as to further
improve AC+? We will propose two possible solutions in the following.

5.3 Leveraging Negative Examples in Hierarchy

We introduce two strategies to leverage negative examples. One is to query parent
oracles when the oracle answers “No”; the other is to predict the negative labels
for sibling categories when the oracle answers “Yes”.

Querying Negative Examples: For deep categories, when the oracle answers
“No”, we actually discard the selected example in AC+ (as well as in AC, see
Section 5.1). However, in this case, the training set may miss a negative example
and also possibly an informative example. Furthermore, if we keep throwing away
those examples whenever oracle says “No”, the classifiers may not have chance
to learn negative examples. On the other hand, if we include this example, we
may introduce noise to the training set, since the example may not belong to
the parent category, thus an out-of-scope example (see Section 3.1).

How can we deal with the two cases? We introduce a complementary strategy
called Query. In fact, the parent oracle can help us decide between the two
cases. We only need to issue another query to the parent oracle on whether this
example belongs to it. If the answer from the parent oracle is “Yes”, we can
safely include this example as a negative example to the current category. If the
answer is “No”, we can directly discard it. Here, we do not need to further query
all the ancestor oracles, since the example is already out of scope of the current
category and thus can not be included into its training set. There is a trade-off.
As one more query is asked, we may obtain an informative negative example,
but we may also waste a query. Therefore, it is non-trivial if this strategy works
or not.

Predicting Negative Labels: When the oracle on a category (say “Astron-
omy”) answers “Yes” for an example, it is very likely that this example may not
belong to its sibling categories such as “Chemistry” and “Social Science”. In this
case, can we add this example as a negative example to its sibling categories?
In those datasets where each example only belongs to one single category path,
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we can safely do so. It is because for the categories under the same parent, the
example can only belong to at most one category. However, in most of the hi-
erarchical datasets, the example belongs to multiple paths. In this case, it may
be positive on some sibling categories. If we include this example as negative to
the sibling categories, we may introduce noise.

To decide which sibling categories an example can be included as negative, we
adopt a conservative heuristic strategy called Predict. Basically, when a positive
example is included into a category, we add this example as negative to those
sibling categories that the example is least likely to belong to. Specifically, if
we know a queried example x is positive on a category c, we choose m sibling
categories with the minimum probabilities (estimated by Platts Calibration [11]).
We set

m = n− max
x∈DL

Ψ↑c(x), (2)

where DL is the labeled set, ↑ c is the parent category of c, n is the number of
children categories of ↑ c, Ψ↑c(x) is the number of categories under ↑ c that the
example x belongs to.

Empirical Comparison: We integrate the two strategies Query and Predict
discussed above into AC+ and then compare the two integrated versions (AC+Q
and AC+P) with the original AC+. Since in AC+ positive examples are propa-
gated, we can use this feature to further boost AC+Q and AC+P. For AC+Q,
when the parent oracle answers “Yes”, besides obtaining a negative example, we
can also propagate this example as a positive example to all the ancestor cate-
gories. For AC+P, as a positive example is propagated, we can actually apply
Predict to all the ancestor categories.

Fig. 4. Comparison between AC+P, AC+Q and AC+ in terms of the hierarchical
F-measure (upper row) and precision (bottom row)



24 X. Li, D. Kuang, and C.X. Ling

We plot their learning curves for the hierarchical F-measure and the hierarchi-
cal precision on the four datasets in Figure 4. As we can see in the figure, both
AC+Q and AC+P achieve better performance of the hierarchical F-measure
than AC+. By introducing more negative examples, both methods maintain or
even increase the hierarchical precision (see the bottom row of Figure 4). As
we mentioned before, AC+Q may waste queries when the parent oracle answers
“No”. However, we discover that the average number of informative examples
obtained per query for AC+Q is much larger than AC+ (at least 0.2 higher per
query). It means that it is actually worthwhile to issue another query in AC+Q.
Another question is whether AC+P introduces noise to the training sets. Ac-
cording to our calculation, the noise rate is at most 5% on all the four datasets.
Hence, it is reasonable that AC+Q and AC+P can further improve AC+.

However, between AC+Q and AC+P, there is no consistent winner on all
the four datasets. On 20 Newsgroup and DMOZ, AC+P achieves higher per-
formance, while on OHSUMED and RCV1, AC+Q is more promising. We also
try to make a simple combination of Query and Predict with AC+ (we call
it AC+QP), but the performance is not significantly better than AC+Q and
AC+P. We will explore a smarter way to combine them in our future work.

Finally, we compare the improved versions AC+Q and AC+P with the non-
active version RD. We find that AC+Q and AC+P can save approximately 74%
to 90% of the total queries. The savings for the four datasets are 74.1%, 88.4%,
83.3% and 90% respectively (these numbers are derived from Figures 2 and 4).

To summarize, we propose several improved versions (AC+, AC+Q and
AC+P) in addition to the standard version (AC ) of our hierarchical active learn-
ing framework. According to our empirical studies, we discover that in terms
of the hierarchical F-measure, AC+Q and AC+P are significantly better than
AC+, which in turn is slightly better than AC, which in turn outperforms RD
significantly. In terms of query savings, our best versions AC+Q and AC+P
need significantly fewer queries than the baseline learner RD.

6 Conclusion

We propose a new multi-oracle setting for active learning in hierarchical text
classification as well as an effective active learning framework for this setting.
We explore different solutions which attempt to utilize the hierarchical relation
between categories to improve active learning. We also discover that propagating
positive examples to the ancestor categories can improve the overall performance
of hierarchical active learning. However, it also decreases the precision. To handle
this problem, we propose two additional strategies to leverage negative examples
in the hierarchy. Our empirical study shows both of them can further boost the
performance. Our best strategy proposed can save a considerable number of
queries (74% to 90%) compared to the baseline learner. In our future work,
we will extend our hierarchical active learning algorithms with more advanced
strategies to reduce queries further.
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Abstract. In this paper, we introduce several approaches for maintain-
ing weights over the aggregate skill ratings of subgroups of teams during
the skill assessment process and extend our earlier work in this area to
include game-specific performance measures as features alongside aggre-
gate skill ratings as part of the online prediction task. We find that the
inclusion of these game-specific measures do not improve prediction ac-
curacy in the general case, but do when competing teams are considered
evenly matched. As such, we develop a “mixed” classification method
called TeamSkill-EVMixed which selects a classifier based on a thresh-
old determined by the prior probability of one team defeating another.
This mixed classification method outperforms all previous approaches
in most evaluation settings and particularly so in tournament environ-
ments. We also find that TeamSkill-EVMixed’s ability to perform well
in close games is especially useful early on in the rating process where
little game history is available.

Keywords: Player rating systems, competitive gaming, perceptron,
passive aggressive algorithm, confidence-weighted learning.

1 Introduction

In games, the challenge of ascertaining one player or team’s advantage over
their opponents continues to be an open research problem. In particular, the
rise of online multi-player games has put the task of skill assessment front and
center for game developers, wherein the long-term success or failure of a title
is linked, in part, to the ability of players to find similarly-skilled teammates
and opponents to play against. “Matchmaking”, an automated process used to
match players together for an online game, depends on accurate estimations of
player skill at all times in order to reduce the likelihood of imbalanced matches.
If one player or team is far superior to their opposition, the resulting game can
frustrate less-skilled players and potentially lead to customer churn.

For games which focus on the online multi-player experience, including pop-
ular titles such as Halo, Call of Duty, and StarCraft 2, the task of appropriately
matching up millions of players and teams of roughly equal skill is crucial - and
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daunting. With such large player populations, batch learning methods become
impractical, neccesitating an online skill assessment process in which adjust-
ments to a player’s skill rating happen one game at a time, depending only on
their existing rating and the outcome of the game. This task is made more diffi-
cult in titles centered around team-based competition, where interaction effects
between teammates can be difficult to model and integrate into the assessment
process.

Our work is concerned with this particular variant of the skill estimation prob-
lem. Although many approaches exist for skill estimation, such as the well-known
Elo rating system [1] and the Glicko rating system [2], [3], they were primarily
designed for one versus one competition settings (in games such as Chess or
tennis) instead of team-based play. They can be altered to accomodate competi-
tions involving teams, but, problematically, assume the performances of players
in teams are independent from one another, thereby excluding potentially useful
information regarding a team’s collective “chemistry”. More recent approaches
[4] have explicitly modeled teams, but still assume player independence within
teams, summing individual player ratings to produce an overall team rating.

“Team chemistry” is a widely-held notion in team sports [5] and is often cited
as a key differentiating factor, particularly at the highest levels of competition.
In the context of skill assessment in an online setting, however, less attention
has been given to situations in which team chemistry would be expected to
play a significant role, such as the case where the player population is highly-
skilled individually, instead using data from a general population of players for
evaluation [4].

Our previous work in this area [6] described several methods for capturing
elements of “team chemistry” in the assessment process by maintaining skill
ratings for subsets of teams as well as individuals, aggregating these ratings
together for an overall team skill rating. One of the methods, TeamSkill-AllK-EV
(hereafter referred to as EV), performed especially well in our evaluation. One
drawback of EV, however, was that it weighted each aggregate n-sized subgroup
skill rating uniformly in the final summation, leaving open the possibility that
further improvements might be made through an adaptive weighting process.

In this paper, we build on our previous work by introducing five algorithms
which address this drawback in various ways, TeamSkill-AllK-Ev-OL1 (OL1),
TeamSkill-AllK-Ev-OL2 (OL2), TeamSkill-AllK-Ev-OL3 (OL3), TeamSkill-AllK-
EVGen (EVGen), and TeamSkill-AllK-EVMixed (EVMixed). The first three -
OL1, OL2, and OL3 - employ adaptive weighting frameworks to adjust the
summation weights for each n-sized group skill rating and limit their feature
set to data common across all team games: the players, team assignments, and
the outcome of the game. For EVGen and EVMixed, however, we explore the
use of EV’s final prediction, the label of the winning team, as a feature to be
included along with a set of game-specific performance metrics in a variety of on-
line classification settings [7], [8], [9]. For EVMixed, a threshold based on EV’s
prior probability of one team defeating another is used to determine whether
or not to include the metrics as features and, if not, the algorithm defers to
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EV’s predicted label. EVGen, in contrast, always includes the metrics during
classification.

Evaluation is carried out on a carefully-compiled dataset consisting of tourna-
ment and scrimmage games between professional Halo 3 teams over the course
of two years. Halo 3 is a first-person shooter (FPS) game which was played
competitively in Major League Gaming (MLG), the largest professional video
game league in the world, from 2008 through 2010. With MLG tournaments
regularly featuring 250+ Halo teams vying for top placings, heavy emphasis is
placed on teamwork, making this dataset ideal for the evaluation of interaction
effects among teammates.

We find that EVMixed outperforms all other approaches in most cases, often
by a significant margin. It performs particularly well in cases of limited game
history and in “close” games where teams are almost evenly-matched. These re-
sults suggest that while game-specific features can play a role in skill assessment,
their utility is limited to contexts in which the skill ratings of teams are similar.
When they are not, the inclusion of game-specific information effectively adds
noise to the dataset since their values aren’t conditioned on the strength of their
opponents.

The outline of this paper follows. Section 2 briefly describes some of the work
related to the problem of skill assessment. In Section 3, we introduce our pro-
posed approaches - OL1, OL2, OL3, EVGen, and EVMixed. In Section 4, we
describe some of the key features of the dataset, our evaluation testbed, and
share the results of our evaluation in terms of game outcome prediction accu-
racy. We then conclude with Section 5, discussing the results and future work.

2 Related Work

The foundations of modern skill assessment approaches date back to the work
of Louis Leon Thurstone [10] who, in 1927, proposed the “law of comparitive
judgement”, a method by which the mean distance between two physical stimuli,
such as perceived loudness, can be computed in terms of the standard deviation
when the stimuli processes are normally-distributed. In 1952, Bradley-Terry-
Luce (BTL) models [11] introduced a logistic variant of Thurstone’s model,
using taste preference measurements for evaluation. This work in turn led to
the creation of the Elo rating system, introduced by Arpad Elo in 1959 [1], a
professor and master chess player who sought to replace the US Chess Feder-
ation’s Harkness rating system with one more theoretically sound. Similar to
Thurstone, the Elo rating system assumes the process underlying each player’s
skill is normally-distributed with a constant skill variance parameter β2 across
all players, simplifying skill updates after each game.

However, this simplification was also Elo’s biggest drawback since the “relia-
bilty” of a rating was unknown from player to player. To address this, the Glicko
rating system [3], a Bayesian approach introduced in 1993 by Mark Glickman,
allowed for player-specific skill variance, making it possible to determine the
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confidence in a player’s rating over time and produce more conservative skill
estimates.

With the release of the online gaming service Xbox Live in 2002, whose player
population quickly grew into the millions, there was a need for a more generalized
rating system incorporating the notion of teams as well as individual players.
TrueSkill [4], published in 2006 by Ralf Herbrich and Thore Graepel, used a
factor graph-based approach to meet this need. In TrueSkill, skill variance is
also maintained for each player, but in contrast to Glicko, TrueSkill samples an
expected performance given a player’s skill rating which is then summed over all
members of a team to produce an estimate of the collective skill of a team. Be-
cause the summation is over individual players, player performances are assumed
to be independent from one another, leaving out potentially useful group-level
interaction information. For team-based games in which highly-skilled players
may coordinate their strategies, this lost interaction information can make the
estimation of a team’s advantage over another difficult, especially as players
change teams.

Several other variants of the aforementioned approaches have also been in-
troduced, including BTL models [12], [13], [14] and expectation propagation
techniques for the analysis of paired comparison data [15].

3 Proposed Approaches

In our previous work [6], we sought to explicitly model group-level interac-
tion effects during the skill assessment process, introducing four methods which
took varying approaches to addressing this issue - TeamSkill-K, TeamSkill-AllK,
TeamSkill-AllK-EV, and TeamSkill-AllK-LS. These approaches had in common
the idea that ratings themselves need not be limited to individual players, but
subsets of teams as well. Here, we modified the Elo, Glicko, and TrueSkill rating
systems to be used as generic learners which maintained skill ratings for groups
of players. In doing so, both group and player-level skill could be captured, pro-
ducing a clearer picture of a team’s collective skill. The key differences between
these approaches was the amount of subgroup rating information used and the
ways in which aggregate group skill ratings were weighted during the summation
to produce a team’s skill rating.

One of the approaches, EV, performed especially well during evaluation, im-
proving on the unaltered versions of Glicko and TrueSkill, and, in most test
cases, the other TeamSkill approaches as well. The main idea behind EV is to
use all available group-level history, from groups of size k = 1 (individual play-
ers) to k = K (the size of the team), and sum together the expected skill rating
corresponding to each set of k-sized group ratings, weighting each uniformly:

s∗i =
K∑K

k=1 (|hi(k)| > 0)

K∑
k=1

E[hi(k)]

k
(3.1)
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Fig. 1. The group history problem. This figure illustrates the group history available
for a team of four players at three different time instances, proceeding chronologically
from left to right. Black font indicates that history is available for a given group while
red font indicates that history is not available.

In this notation, s∗i is the estimated skill of team i and hi(k) is a function
returning the set of skill ratings for player groups of size k in team i, including
the empty set ∅ if none exist. When hi(k)→ ∅, we let E[hi(k)] = 0.

Despite its excellent results, EV is a “naive” approach, lacking a means of
updating the summation weights, potentially leading to suboptimal performance.
To that end, we introduce three adaptive frameworks which allow the summation
weights to vary over time - TeamSkill-AllK-Ev-OL1 (OL1), TeamSkill-AllK-Ev-
OL2 (OL2), and TeamSkill-AllK-Ev-OL3 (OL3).

3.1 TeamSkill-AllK-Ev-OL1

When attempting to construct an overall team skill rating, one key challenge
to overcome is the fact that the amount of group history can vary over time.
Consider figure 1: after the first game is played, history is available for all possible
groups of players. Later, player 4 leaves the team and is replaced by player 5,
who has never played with players 1, 2, or 3, leaving only a subset of history
available and none for the team as a whole. Then in the final step, player 2
leaves and is replaced by player 6, who has played with player 3 and 5 before,
but never both on the same team, resulting in yet another variant of the team’s
collective group-level history. The feature space is constantly expanding and
contracting over time, making it difficult to know how best to combine the
group-level ratings together. In OL1, we address this issue by maintaining a
weight wk for each aggregate group skill rating of size k, contracting w during
summation by uniformly redistributing the weights from indicies in the weight
vector not present in the available aggregate group skill rating history. Given
the winning team i, wk is updated by computing to what extent each of the
aggregate rating’s prior probability of team i defeating some team j according
to TeamSkill-K [6], Pk(i > j), is better than random, increasing the weight of
wk for a correctly-predicted outcome.
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1 ≤ β ≤ ∞, w0
k =

1

K
,K ′ = min (max

k≤K
(|hi(k)| > 0),max

k≤K
(|hj(k)| > 0)) (3.2)

u =
1

K ′

∑
k>K′

wt
k (3.3)

w′t
(k≤K′) = wt

(k≤K′) + u (3.4)

s∗i =

K′∑
k=1

w′t
kE[hi(k)] (3.5)

wt+1
(k≤K′) = wt

(k≤K′)β
1
2+Pk(i>j) (3.6)

wt+1
k =

wt+1
k∑K

l=1 w
t+1
l

(3.7)

The main drawback of this approach is that the weight for k = 1 eventually
dominates the weight vector as it is the element of group history present in
every game and, therefore, the weight most frequently increased relative to the
weights of k > 1. Given enough game history, this classifier will converge to
exactly k = 1 - the classifier corresponding the an unmodified version of the
general learner (Elo, Glicko, or TrueSkill) it employs.

3.2 TeamSkill-AllK-Ev-OL2

OL2 attempts to remedy this by maintaining a weight matrix corresponding
to the lower triangular of a KxK grid, or one weight vector w for each of the
K possible summation situations given a team’s group-level game history. This
ameliorates the issue of the k = 1 weight increasing faster relative to the weights
of k > 1 since each row in the KxK grid pertains to a situation where the length
of the non-zero row elements equals K ′ (as defined previously).

s∗i =

K′∑
k=1

wt
(K′,k)E[hi(k)] (3.8)

wt+1
(K′,k≤K′) = wt

(K′,k≤K′)β
1
2+Pk(i>j) (3.9)

wt+1
(K′,k) =

wt+1
(K′,k)∑K′

l=1 w
t+1
(K′,l)

(3.10)

3.3 TeamSkill-AllK-Ev-OL3

OL3 works similarly to OL1 in most respects, but instead uses a predefined
window of the d most recent games in which k-sized group history was available
to compute its updates. In this way, the weights “follow” the most confidently-
correct aggregate skill ratings for each window d. In the following, let Ld,k be the
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number of games in the window d in which, for some k, TeamSkill-K incorrectly
predicted the outcome of a game.

s∗i =

K′∑
k=1

w′t
kE[hi(k)] (3.11)

wt+1
(k≤K′) = wt

(k≤K′)β
1
2+(d−Ld,k)/d (3.12)

wt+1
k =

wt+1
k∑K

l=1 w
t+1
l

(3.13)

3.4 Using Game-Specific Data during Classification

OL1, OL2, and OL3 - like the other TeamSkill approaches - only use data avail-
able in all team-based games, namely the players, their team associations, and
game outcome history. One natural question to ask is how well could we do if
we included game-specific data during the step in which the label of the win-
ning team is predicted. Though not ideal from a general implementation per-
spective, it is reasonable to assume that a carefully-chosen set of game-specific
performance metrics might help produce a more accurate prediction. Here, we
introduce two such methods - TeamSkill-AllK-EVGen (EVGen) and TeamSkill-
AllK-EVMixed (EVMixed).

3.5 TeamSkill-AllK-EVGen

In EVGen, we create a feature set xt from a combination of EV’s predicted label
{+1,−1} of the winning team, ÊV t, and a set of n game-specific metrics m.
For Halo 3, several logical metrics are available, such as kill/death ratio and
assist/death ratio (an assist is given to a player when they do more than half of
the damage to a player who is eventually killed by another player), and act as
rough measures of a team’s in-game efficiency since players respawn after each
death throughout the duration of a game. After compiling these metrics for each
team, we take the difference between them for use in xt, adding in ÊV t as the
final feature. EV was chosen because of its superior performance in previous
evaluations [6] as well as results from preliminary testing for this work, drawing
from the pool of all previous approaches (including OL1, OL2, and OL3).

xt = (ÊV t,m1,m2, ...,mn) (3.14)

Having constructed the feature set xt, we use a more traditional online clas-
sification framework to predict the label of the winning team ŷt, such as the
perceptron [7], online Passive-Aggressive algorithms [8], or Confidence-Weighted
learning [9] (Note: substitute μt for wt in the latter):

ŷt = sign(wt · xt) (3.15)

After classification, the weight vector over the feature set is then updated
according to the chosen learning framework.
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3.6 TeamSkill-AllK-EVMixed

EVMixed introduces a slight variant to EVGen’s overall strategy by selecting
a classification approach based on whether or not both teams are considered
relatively evenly-matched (that is, if a team’s prior probability of winning ac-
cording to EV, P t

EV (i > j), is close to 0.5). Here, if the prior probability of one
team winning is within some ε of 0.5, we use the EVGen model for prediction.
Otherwise we simply use EV’s label. The approach is simple, as is the intuition
behind it: if EV is sufficiently confident in its predicted label, then there is no
need for additional feature information.

ŷt =

{
sign(wt · xt) if |P t

EV (i > j)− 0.5| < ε

ÊV t otherwise
(3.16)

4 Evaluation

4.1 Dataset

We evaluate our proposed approaches using a dataset of 7,568 Halo 3 multiplayer
games between professional teams. Each was played over the Internet on Mi-
crosoft’s Xbox Live service in custom games (known as scrimmages) or on a local
area network at an MLG tournament and includes information such as the play-
ers and teams competing, the date of the game, the map and game type, the result
(win/loss) and score, and per-player statistics such as kills, deaths, and assists.

Characteristics unique to this dataset make it ideal for our evaluation pur-
poses. First, it is common for players to change teams between tournaments,
each of which is held roughly every 1-2 months, thereby allowing us to study the
effects of “team chemistry” on performance without the assumption of degraded
individual skill. Second, because every player is competing at such a high level,
their individual skill isn’t considered as important a factor in winning or losing
a game as their ability to work together as a team.

4.2 Overall Results

The prediction accuracy of OL1, OL2, OL3, EVGen, and EVMixed were evalu-
ated using a number of different subsets of the Halo 3 dataset:

– Games played in tournaments only, scrimmage games only, and both tour-
nament and scrimmage games.

– All of the games, or just those games considered “close” (i.e., prior proba-
bility of one team winning close to 50%).

For comparison, we include results from the previous TeamSkill approaches as
well. To compute the prior probability of t1 defeating t2, we use the negative
CDF evaluated at 0 for the distribution corresponding to the difference between
two independent, normally-distributed random variables (as in [6]). Games were
labeled as “close” using a variant of the “challenge” method [4] in which the top
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Table 1. Overall prediction accuracy for all test cases. Bold cells = highest accuracy;
bolded/italicized = 2nd-highest accuracy.

Learner Data Close? k=1 k=2 k=3 k=4 AllK AlKEV AlKLS OL OL2 OL3 EVGen EVMxd

Elo Both N 0.645 0.642 0.636 0.631 0.642 0.645 0.633 0.645 0.645 0.646 0.574 0.647
Y 0.512 0.494 0.497 0.485 0.493 0.5 0.489 0.495 0.495 0.502 0.523 0.521

Tourn. N 0.639 0.626 0.607 0.571 0.628 0.635 0.592 0.639 0.639 0.633 0.572 0.643
Y 0.518 0.497 0.482 0.464 0.5 0.51 0.474 0.531 0.536 0.51 0.549 0.544

Scrim. N 0.643 0.639 0.639 0.631 0.642 0.64 0.633 0.643 0.643 0.64 0.583 0.644
Y 0.503 0.487 0.492 0.476 0.496 0.488 0.476 0.499 0.498 0.487 0.529 0.512

Glicko Both N 0.636 0.63 0.632 0.635 0.64 0.64 0.633 0.637 0.637 0.64 0.581 0.641
Y 0.522 0.564 0.562 0.547 0.569 0.57 0.548 0.524 0.552 0.571 0.528 0.573

Tourn. N 0.638 0.637 0.616 0.588 0.644 0.647 0.613 0.637 0.637 0.647 0.566 0.657
Y 0.484 0.529 0.531 0.523 0.576 0.57 0.557 0.526 0.56 0.57 0.518 0.62

Scrim. N 0.631 0.635 0.637 0.637 0.643 0.637 0.634 0.635 0.636 0.637 0.582 0.638
Y 0.496 0.559 0.565 0.522 0.562 0.551 0.524 0.531 0.551 0.551 0.525 0.554

TrueSkill Both N 0.635 0.641 0.636 0.63 0.638 0.642 0.632 0.635 0.636 0.643 0.572 0.643
Y 0.516 0.555 0.542 0.542 0.552 0.56 0.548 0.536 0.544 0.562 0.522 0.561

Tourn. N 0.64 0.626 0.601 0.576 0.626 0.636 0.601 0.641 0.644 0.634 0.569 0.653
Y 0.5 0.497 0.479 0.474 0.508 0.51 0.495 0.531 0.547 0.508 0.542 0.573

Scrim. N 0.636 0.642 0.639 0.632 0.636 0.638 0.634 0.636 0.637 0.637 0.581 0.64
Y 0.504 0.55 0.542 0.53 0.541 0.54 0.533 0.548 0.55 0.543 0.522 0.542

20% closest games for one rating system are identified and presented to the other.
Because we are interested in performance beyond that of unmodified general
learners (i.e., k = 1), the closest games from k = 1 were presented to the other
TeamSkill approaches while EV’s closest games were presented to k = 1 (due to
its evaluated performance in [6]). The following defaults were used for Elo (α =
0.07, β = 193.4364, μ0 = 1500, σ2

0 = β2), Glicko (q = log(10)/400, μ0 = 1500,
σ2
0 = 1002), and TrueSkill (ε = 0.5, μ0 = 25, σ2

0 = (μ0/3)
2, β = σ2

0/2) according
to [4] and [3]. For OL1/OL2, β = 1.1, OL3, d = 20. For EVGen/EVMixed
(ε = 0.03), the Passive-Aggressive II algorithm [8] was used for classification (α =
0.1, C = 0.001, η = 0.9). The final feature set was comprised of cumulative and
windowed (10 games of history) versions of team differences in average team and
player-level kill/death ratio, assist/death ratio, kills/game, and assists/game.

From the results in table 1, it is clear that EVMixed performs the best overall,
and in the widest array of evaluation conditions. It has the best performance in
10 of the 18 test cases and 16 of 18 in which it was at least second best, a
testament to its consistency. EVGen’s overall performance, however, is roughly
7-10% lower on average over all games, exceeding EVMixed’s results only in 3
of the “close” game test cases.

4.3 Results over Time

Next we explore how these approaches perform over time by predicting the
outcomes of games occuring prior to 10 tournaments which took place during
2008 and 2009, using tournament data only in order to isolate conditions in
which we expect teamwork to be strongest. From figures 2 and 3, EVMixed’s
superior peformance is readily apparent. Of particular note, however, is how well
EVMixed does when little history is available, having a roughly 64% accuracy
just prior to the first tournament for all three learner cases. For close games,
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Fig. 2. Prediction accuracy over time for tournament games

1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

TeamSkill (Elo base)

1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

TeamSkill (Glicko base)

1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

TeamSkill (TrueSkill base)

 

 
k=1
k=2
k=3
k=4
AllK
AllK−EV
AllK−LS
OL1
OL2
OL3
EVGen
EVMixed

Fig. 3. Prediction accuracy over time for tournament games, close games only

both EVGen and EVMixed show strong results, eventually tapering off and
approaching the other competing methods as more game history is observed.

4.4 Online Classification Variants

For EVGen and EVMixed, we investigated a number of different online classi-
fication frameworks - the perceptron [7], Passive-Aggressive algorithms [8], and
Confidence-Weighted learning [9] - and evaluated themusing a subset of the testbed
from section 4.2. The results are shown in table 2. Though similar, the PA-II ap-
proach appears to be the most consistent overall (with CW-diag not far behind).

Table 2. Comparison of prediction accuracy by online classification framework using
Glicko as the general learner

EVGen EVMixed

Data Close? Perceptron PA-II CW-diag Perceptron PA-II CW-diag

Both N 0.575 0.581 0.584 0.641 0.641 0.641
Y 0.514 0.528 0.528 0.573 0.573 0.573

Tourn. N 0.543 0.566 0.564 0.655 0.657 0.657
Y 0.474 0.518 0.51 0.609 0.62 0.617

Scrim. N 0.575 0.582 0.586 0.638 0.638 0.637
Y 0.515 0.525 0.512 0.556 0.554 0.551
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5 Discussion

In sum, the results show EVMixed consistently outperforming competing ap-
proaches in a multitude of scenarios, often by great margins. Initially, we found
the subpar performance of EVGen somewhat surprising given that the only dif-
ference between it and EVMixed is the classifier choice according to a given
ε. Upon closer examination, the reason for this discrepency becomes clear: the
game-specific data used to supplement the feature set was not weighted accord-
ing to the strength of their opposition in each game, effectively adding “noise”
in cases where the games were not considered close. Only the skill rating is a
function of opposition skill, and as such, when the ratings of two teams are suffi-
ciently divergent, the additional features are not necessary, nor desired. It follows
that this is also the reason why both EVGen and EVMixed perform well in close
games. Here, because the difference in skill ratings is small, the supplemental
feature information tells us something about how two otherwise evenly-matched
teams might perform if they competed. This is also why EVGen and EVMixed
have excellent results when little game history has been observed - nearly all
games are considered “close” early in the rating process.

Turning our attention back to OL1, OL2, and OL3, it’s clear that little im-
provement was made relative to EV’s results for any of these approaches. In
fact, while the weights for OL1 eventually converge to the classifier k = 1, OL2’s
weights largely mimic EV’s, suggesting there are more subtle group-level dy-
namics we need to pay attention to as this would only arise if the classifiers
corresponding to 1 ≤ k ≤ K have somewhat similar ratings. OL3 also produces
results similar to EV (even moreso than OL2), adding to the previous observa-
tion. While the results for OL1, OL2, and OL3 are unfortunate, the naive means
by which EV weights each of the aggregated group-level skill ratings leaves the
door open for improvement.

Our future work takes two directions. The first is to more fully explore what
can be done to enhance the EVMixed model, perhaps by introducing a mecha-
nism by which ε can vary over time or weighting player performances in-game by
the strength of their opponents. The second is to derive an adaptive weighting
framework which does improve on EV’s results significantly, and then integrate
it into EVGen and EVMixed.

6 Conclusions

In this paper, we extended our previous work by introducing three methods
in which various strategies are used to maintain a set of weights over aggre-
gate group-level skill rating information. Additionally, we explored the utility
of incorporating game-specific data as features during the prediction process,
describing two such approaches: EVGen and EVMixed. EVMixed outperformed
all previous efforts in the vast majority of cases, leading to the conclusion that
game-specific data is best included when teams are relatively evenly-matched,
and disregarded otherwise.
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Abstract. Improvement of time series forecasting accuracy is an active
research area having significant importance in many practical domains.
Extensive works in literature suggest that substantial enhancement in
accuracies can be achieved by combining forecasts from different mod-
els. However, forecasts combination is a difficult as well as a challenging
task due to various reasons and often simple linear methods are used
for this purpose. In this paper, we propose a nonlinear weighted ensem-
ble mechanism for combining forecasts from multiple time series models.
The proposed method considers the individual forecasts as well as the
correlations in pairs of forecasts for creating the ensemble. A successive
validation approach is formulated to determine the appropriate combi-
nation weights. Three popular models are used to build up the ensemble
which is then empirically tested on three real-world time series. Obtained
forecasting results, measured through three well-known error statistics
demonstrate that the proposed ensemble method provides significantly
better accuracies than each individual model.

Keywords: Time Series Forecasting, Ensemble Technique, Box-Jenkins
Models, Artificial Neural Networks, Elman Networks.

1 Introduction

Time series forecasting has indispensable importance in many practical data
mining applications. It is an ongoing dynamic area of research and over the
years various forecasting models have been developed in literature [1,2]. A major
concern in this regard is to improve the prediction accuracy of a model without
sacrificing its flexibility, robustness, simplicity and efficiency. However, this is not
at all an easy task and so far no single model alone can provide best forecasting
results for all kinds of time series data [3,4].

Combining forecasts from conceptually different methods is a very effective
way to improve the overall forecasting precisions. The earliest use of this prac-
tice started in 1969 with the monumental work of Bates and Granger [5]. Till
then, numerous forecasts combination methods have been developed in litera-
ture [6,7,8]. The precious role of model combination in time series forecasting can
be credited to the following facts: (a) by an adequate ensemble technique, the
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forecasting strengths of the participated models aggregate and their weaknesses
diminish, thus enhancing the overall forecasting accuracy to a great extent, (b)
often, there is a large uncertainty about the optimal forecasting model and in
such situations combination strategies are the most appropriate alternatives to
use, and (c) combining multiple forecasts can efficiently reduce errors arising
from faulty assumptions, bias, or mistakes in the data [3].

The simple average is the most widely used forecasts combining technique. It
is easy to understand, implement and interpret. However, this method is often
criticized because it does not utilize the relative performances of the contributing
models and is quite sensitive to the extreme errors [1,3]. As a result, other
forms of averaging, e.g. trimmed mean, Winsorized mean, median, etc. have
been studied in literature [9]. Another common method is the weighted linear
combination of individual forecasts in which the weights are determined from
the past forecast errors of the contributing models. But, this method completely
ignores the possible relationships between two or more participating models and
hence is not so adequate for combining nonstationary and chaotic data. Various
modifications of this linear combination technique have also been suggested by
researchers [9,10,11].

In this paper, we propose a weighted nonlinear framework for combining mul-
tiple time series models. Our approach is partially motivated by the work of
Freitas and Rodrigues [12]. The proposed technique considers individual fore-
casts from different methods as well as the correlations between pairs of fore-
casts for combining. We consider three models, viz. Autoregressive Integrated
Moving Average (ARIMA), Artificial Neural Network (ANN) and Elman ANN
to build up the ensemble. An efficient methodology, based on a successive valida-
tion approach is formulated for finding the appropriate combination weights. The
effectiveness of the proposed technique is tested on three real-world time series
(one stationary and two nonstaionary financial data). The forecasting accura-
cies are evaluated in terms of the error measures: Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Average Relative Variance (ARV).

The rest of the paper is organized as follows. Section 2 describes a number
of common forecasts combination techniques. Our proposed ensemble scheme is
presented in Sect. 3. In Sect. 4, we describe the three time series forecasting
models, which are used here to build up the ensemble. Experimental results are
reported in Sect. 5 and finally Sect. 6 concludes this paper.

2 Forecasts Combination Methods

Let the actual time series be Y = {y1, y2, . . . , yN} and Ŷ(i) = {ŷ(i)1 , ŷ
(i)
2 , . . . , ŷ

(i)
N }

be its forecast obtained from the ith method (i = 1, 2, . . . , N). Then the series
obtained from linearly combining these n forecasted series is given by:⎧⎪⎪⎨⎪⎪⎩

Ŷ(c) = {ŷ(c)1 , ŷ
(c)
2 , . . . , ŷ

(c)
N },

ŷ
(c)
k = w1ŷ

(1)
k + w2ŷ

(2)
k + · · ·+ wnŷ

(n)
k =

n∑
i=1

wiŷ
(i)
k

∀k = 1, 2, . . . , N

(1)



40 R. Adhikari and R.K. Agrawal

where, wi is the weight assigned to the ith forecasting method. To ensure un-
biasedness, sometimes it is assumed that the weights add up to unity. Different
combination techniques are developed in literature which are based on different
weight assignment schemes; some important among them are discussed here:

• In the simple average, all models are assigned equal weights, i.e. wi =
1/n (i = 1, 2, . . . , n) [9,10].

• In the trimmed average, individual forecasts are combined by a simple arith-
metic mean, excluding the worst performing k% of the models. Usually, the
value of k is selected from the range of 10 to 30. This method is sensible only
when n ≥ 3 [9,10].

• In the Winsorized average, the i smallest and largest forecasts are selected

and set to the (i+ 1)
th

smallest and largest forecasts, respectively [9].
• In the error-based combining, an individual weight is chosen to be inversely
proportional to the past forecast error of the corresponding model [3].

• In the outperformance method, the weight assignments are based on the
number of times a method performed best in the past [11].

• In the variance-based method, the optimal weights are determined by mini-
mizing the total Sum of Squared Error (SSE) [7,10].

All the combination techniques, discussed above are linear in nature. The lit-
erature on nonlinear forecast combination methods is very limited and further
research works are required in this area [10].

3 The Proposed Ensemble Technique

Our ensemble technique is an extension of the usual linear combination method
in order to deal with the possible correlations between pairs of forecasts and is
partially motivated from the work of Freitas and Rodrigues [12].

3.1 Mathematical Description

For simplicity, here we describe our ensemble technique for combining forecasts
from three methods; but, it can be easily generalized . Let, the actual test dataset

of a time series be Y = [y1, y2, . . . , yN ]
T

with Ŷ(i) =
[
ŷ
(i)
1 , ŷ

(i)
2 , . . . , ŷ

(i)
N

]T
being

its forecast obtained from the ith method (i = 1, 2, 3). Let, μ(i) and σ(i) be the
mean and standard deviation of Ŷ(i) respectively. Then the combined forecast

of Y is defined as: Ŷ(c) =
[
ŷ
(c)
1 , ŷ

(c)
2 , . . . , ŷ

(c)
N

]T
, where

ŷ
(c)
k = w0 + w1ŷ

(1)
k + w2ŷ

(2)
k + w3ŷ

(3)
k

+ θ1v
(1)
k v

(2)
k + θ2v

(2)
k v

(3)
k + θ3v

(3)
k v

(1)
k (2)

v
(i)
k =

(
y
(i)
k − μ(i)

)
/
(
σ(i)

)2

, ∀i = 1, 2, 3; k = 1, 2, . . . , N.
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In (2), the nonlinear terms are included in calculating ŷ
(c)
k to take into account

the correlation effects between two forecasts. It should be noted that for com-
bining n methods, there will be

(
n
2

)
nonlinear terms in (2).

3.2 Optimization of the Combination Weights

The combined forecast defined in (2) can be written in vector form as follows:

Ŷ
(c)
k = Fw +Gθ (3)

where,

w = [w0, w1, w2, w3]
T
, θ = [θ1, θ2, θ3]

T
.

F =
[
1|Ŷ(1)|Ŷ(2)|Ŷ(3)

]
N×4

.

1 = [1, 1, . . . , 1]T .

G =

⎡⎢⎢⎣
v
(1)
1 v

(2)
1 v

(2)
1 v

(3)
1 v

(3)
1 v

(1)
1

...
...

...

v
(1)
N v

(2)
N v

(2)
N v

(3)
N v

(3)
N v

(1)
N

⎤⎥⎥⎦
N×3

.

The weights are to be optimized by minimizing the forecast SSE, given by:

SSE =
N∑

k=1

(
yk − ŷ

(c)
k

)2

= (Y − Fw −Gθ)
T
(Y − Fw−Gθ)

= YTY − 2wTb+wTVw+
2wTZθ − 2θTd+ θTUθ

(4)

where,

V =
[
FTF

]
4×4

,b =
[
FTY

]
4×1

,Z =
[
FTG

]
4×3

,

d =
[
GTY

]
3×1

,U =
[
GTG

]
3×3

.

Now from (∂/∂w) (SSE) = 0 and (∂/∂θ) (SSE) = 0, we get the following system
of linear equations: {

Vw + Zθ = b
ZTw +Uθ = d

(5)

By solving (5), the optimal combination weights can be obtained as:{
θopt =

(
U− ZTV−1Z

)−1 (
d− ZTV−1b

)
wopt = V−1 (b− Zθopt)

(6)

These optimal weights are determinable if and only if all the matrix inverses,
involved in (6) are well-defined.
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3.3 Approach for Weights Determination

The optimal weights in the proposed ensemble technique solely depend on the
knowledge of the forecast SSE value. But, in practical applications it is unknown
in advance, since the dataset Y to be forecasted is unknown. Due to this reason,
we suggest a robust mechanism for estimating the combination weights from the
training data. Here, we divide the available time series into a suitable number of
pairs of training and validation subsets and determine the optimal weights for
each pairs; the desired combination weights are then calculated as the mean of
all these pairwise optimal weights. In this way, the past forecasting performances
of the participating models are effectively utilized for weights determination.

The necessary steps of our ensemble scheme are outlined in Alg. 1.

Algorithm 1. Weighted nonlinear ensemble of multiple forecasts

Inputs: The training data: Y = [y1, y2, . . . , yN ]T of the associated time series and its
n forecasts, obtained from the models: Mi (i = 1, 2, . . . , n).

Output: The combined forecast vector Ŷ(c) =
[
ŷ
(c)
1 , ŷ

(c)
2 , . . . , ŷ

(c)
N

]T
.

Steps:
1. Select base size, validation window and the positive integer k, such that:

base size+ k × validation window = N.

2. Set j ← 1.
3. W ← empty,Θ ← empty

// initially set both the final weight matrices W and Θ as the empty matrices of
orders n× 1 and

(
n
2

)
× 1, respectively.

4. while j ≤ k do
5. Define:

α = base size+ (j − 1)× validation window.
Ytrain = [y1, y2, . . . , yα]

T .
Yvalidation = [yα+1, yα+2, . . . , yα+validation window ]

T .
// this step selects a pair of training and validation subsets of Y.

6. Train each model Mi (i = 1, 2, . . . , n) on Ytrain to forecast the corresponding
Yvalidation dataset.

7. Determine the optimal combination weight vectors wk and θk using (6).
8. W = [W|wk], Θ = [Θ|θk]// augment the currently found weight vectors to the

corresponding weight matrices.
9. j ← j + 1.
10. end while
11. Calculate the final weight vectors wcomb and θcomb as:

wcomb = mean (W, row-wise) .
θcomb = mean (Θ, row-wise) .

12. Use wcomb and θcomb to calculate the combined forecast vector according to (3).
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4 Three Time Series Forecasting Models

In this paper, we consider three popular time series forecasting methods to build
up our proposed ensemble. These three methods are briefly described here.

4.1 Autoregressive Integrated Moving Average (ARIMA)

The ARIMA models are the most widely used methods for time series forecasting,
which are developed by Box and Jenkins in 1970 [2]. These models are based
on the assumption that the successive observations of a time series are linearly
generated from the past values and a random noise process. Mathematically, an
ARIMA(p, d, q) model is represented as follows:

φ (L) (1− L)
d
yt = θ (L) εt . (7)

where,

φ (L) = 1−
p∑

i=1

φiL
i, θ (L) = 1 +

q∑
j=1

θjL
j, and Lyt = yt−1 .

The terms p, d, q are the model orders, which respectively refer to the autore-
gressive, degree of differencing and moving average processes ; yt is the actual
time series and εt is a white noise process. In this model, a nonstationary time
series is transformed to a stationary one by successively (d times) differencing
it [2,4]. A single differencing is often sufficient for practical applications. The
ARIMA(0, 1, 0), i.e. yt − yt−1 = εt is the popular Random Walk (RW) model
which is frequently used in forecasting financial and stock-market data [4].

4.2 Artificial Neural Networks (ANNs)

ANNs are the most efficient computational intelligence models for time series
forecasting [10]. Their outstanding characteristic is the nonlinear, nonparametric,
data-driven and self-adaptive nature [4,13]. The Multilayer Perceptrons (MLPs)
are the most popular ANN architectures in time series forecasting. MLPs are
characterized by a feedforward network of an input layer, one or more hidden
layers and an output layer, as depicted in Fig. 1. Each layer contains a number
of nodes which are connected to those in the immediate next layer by acyclic
links. In practical applications, usually a single hidden layer is used [4,10,13].

The notation (p, h, q) is commonly used to refer an ANN with p input, h hidden
and q output nodes. The forecasting performance of an ANN model depends on
a number of factors, e.g. the selection of a proper network architecture, training
algorithm, activation functions, significant time lags, etc. However, no rigorous
theoretical framework is available in this regard and often some experimental
guidelines are followed [13]. In this paper, we use popular model selection criteria,
e.g. Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) [13,14] for selecting suitable ANN structures. The Resilient Propagation
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(RP) [15,16] is applied as the network training algorithm and the logistic and
identity functions are used as the hidden and output layer activation functions,
respectively.
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Fig. 1. Example of a multilayer feedforward ANN

4.3 Elman Artificial Neural Networks (EANNs)

Elman networks belong to the class of recurrent neural networks in which one
extra layer, known as the context layer is introduced to recognize the spatial
and temporal patterns in the input data [17]. The Elman networks contain two
types of connections: feedforward and feedback. At every step, the outputs of
the hidden layer are again fed back to the context layer, as shown in Fig. 2. This
recurrence makes the network dynamic, so that it can perform non linear time-
varying mappings of the associated nodes [16,17]. Unlike MLPs, there seems to
be no general model selection guidelines in literature for the Elman ANNs [10].
However, it is a well-known fact that EANNs require much more hidden nodes
than the simple feedforward ANNs in order to adequately model the temporal
relationships [10,16]. In this paper, we use 24 hidden nodes and the training
algorithm traingdx [16] for fitting EANNs.
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Fig. 2. Architecture of an Elman network
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5 Experiments and Discussions

To empirically examine the performances of our proposed ensemble technique,
three important real-world time series are used in this paper. These are the
Wolfs sunspots, the daily closing price of S & P 500 index and the exchange
rates between US Dollar (USD) and Indian Rupee (INR) time series. These time
series are obtained from the Time Series Data Library (TSDL) [18], the Yahoo!
Finance [19] and the Pacific FX database [20], respectively and are described
in Table 1. The natural logarithms of the S & P data are used in our analysis.
All three time series are divided into suitable training and testing sets. The
training sets are used for fitting the three forecasting models as well as to build
up the proposed ensemble; the testing sets are used to evaluate the out-of-sample
forecasting performances of the fitted models and the ensemble.

The experiments in this paper are performed using MATLAB. For fitting
ANN and EANN models, the neural network toolbox [16] is used. Forecasting
efficacies of the models are evaluated through three well-known error statistics,
viz. Mean Absolute Error (MAE), Mean Squared Error (MSE), and Average
Relative Variance (ARV), which are defined below:

MAE =
1

n

n∑
t=1

|yt − ŷt| , MSE =
1

n

n∑
t=1

(yt − ŷt)
2
,

ARV =

(
n∑

t=1

(yt − ŷt)
2

)
/

(
n∑

t=1

(μ− ŷt)
2

)
,

where, yt and ŷt are the actual and forecasted observations, respectively; N is
the size and μ is the mean of the test set. For an efficient forecasting model, the
values of these error measures are expected to be as less as possible.

The sunspots series is stationary with an approximate cycle of 11 years, as
can be seen from Fig. 3(a). Following Zhang [4], the ARIMA(9, 0, 0) (i.e. AR(9))

Table 1. Description of the time series datasets

Time Series Description Size 

Sunspots 
The annual number of observed sunspots 

(1700–1987). 

Total size: 288 

Training: 171 

Testing: 67 

S & P 500
Daily closing price of S & P 500 index (2 Jan. 

2004–31 Dec. 2007)  

Total size: 1006 

Training: 800 

Testing: 206 

Exchange Rate 
USD to INR exchange rates (1 July 2009–16 

Sept. 2011) 

Total size: 681 

Training: 565 

Testing: 116 
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and the (7, 5, 1) ANN models are fitted to this time series. The EANN model is
fitted with same numbers of input and output nodes as the ANN, but with 24
hidden nodes. For combining, we take base size = 41, validation window = 20
and the number of iterations k = 9.

The S & P and exchange rate are nonstationary financial series and both ex-
hibit quite irregular patterns which can be observed from their respective time
plots in Fig. 4(a) and Fig. 5(a). The RW-ARIMA model is most suitable for
these type of time series1. For ANN modeling, the (8, 6, 1) and (6, 6, 1) net-
work structures are used for S & P and exchange rate, respectively. As usual,
the fitted EANN models have the same numbers of input and output nodes as
the corresponding ANN models, but 24 hidden nodes. For combining, we take
base size = 200, validation window = 50, k = 12 for the S & P data and
base size = 165, validation window = 40, k = 10 for the exchange rate data.

In Table 2, we present the forecasting performances of ARIMA, ANN, EANN,
simple average and the proposed ensemble scheme for all three time series.

Table 2. Forecasting results for the three time series

Error Measures ARIMA ANN EANN Average Ensemble
MAE 17.63 15.58 14.71 13.59 12.50

Sunspots MSE 483.5 494.9 492.7 384.3 274.7
ARV 0.216 0.308 0.280 0.218 0.120
MAE 12.68 12.33 13.27 10.43 9.368

S & P 5002 MSE 28.27 21.58 24.61 15.69 13.59
ARV 0.344 0.378 0.397 0.271 0.230

Exchange Rate
MAE 0.255 0.140 0.137 0.134 0.133
MSE 0.105 0.032 0.030 0.029 0.028
ARV 0.188 0.070 0.064 0.064 0.053

From Table 2, it can be seen that our ensemble technique has provided low-
est forecast errors among all methods. Moreover, the proposed technique has
also achieved considerably better forecasting accuracies than the simple average
combination method, for all three time series. However, we have empirically ob-
served that like the simple average, the performance of our ensemble method is
also quite sensitive to the extreme errors of the component models.

In this paper, we use the term Forecast Diagram to refer the graph which shows
the actual and forecasted observations of a time series. In each forecast diagram,
the solid and dotted line respectively represents the test and forecasted time
series. The forecast diagrams, obtained through our proposed ensemble method
for sunspots, S & P and exchange rate series are depicted in Fig. 3(b), Fig. 4(b)
and Fig. 5(b), respectively.

1 In RW-ARIMA, the preceding observation is the best guide for the next prediction.
2 Original MAE=Obtained MAE×10−3; Original MSE=Obtained MSE×10−5.
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Fig. 3. (a) The sunspots series, (b) Ensemble forecast diagram for the sunspot series
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Fig. 4. (a) The S & P series, (b) Ensemble forecast diagram for the S & P series

0 150 300 450 600 700
42

44

46

48

50

52

1 21 41 61 81 101 116
44

45

46

47

48

(a) (b)

Fig. 5. (a) Exchange rate series, (b) Ensemble forecast diagram for exchange rate series
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6 Conclusions

Improving the accuracy of time series forecasting is a major area of concern in
many practical applications. Although numerous forecasting methods have been
developed during the past few decades, but it is often quite difficult to select
the best among them. It has been observed by many researchers that combining
multiple forecasts effectively reduces the prediction errors and hence provides
considerably increased accuracy.

In this paper, we propose a novel nonlinear weighted ensemble technique
for forecasts combination. It is an extension of the common linear combina-
tion scheme in order to include possible correlation effects between the partic-
ipating forecasts. An efficient successive validation mechanism is suggested for
determining the appropriate combination weights. The empirical results with
three real-world time series and three forecasting methods demonstrate that our
proposed technique significantly outperforms each individual method in terms
of obtained forecast accuracies. Moreover, it also provides considerably better
results than the classic simple average combining technique. In future works,
our ensemble mechanism can be further explored with other diverse forecasting
models as well as other varieties of time series data.

Acknowledgments. The first author sincerely expresses his profound gratitude
to the Council of Scientific and Industrial Research (CSIR) for the obtained
financial support, which helped a lot in performing this research work.
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Abstract. Averaged n-Dependence Estimators (AnDE) is a family of
learning algorithms that range from low variance coupled with high bias
through to high variance coupled with low bias. The asymptotic error
of the lowest bias variant is the Bayes optimal. The AnDE family of
algorithms have a training time that is linear with respect to the training
examples, learn in a single pass through the data, support incremental
learning, handle missing values directly and are robust in the face of
noise. These characteristics make the algorithms particularly well suited
to learning from large data. However, for higher orders of n they are
very computationally demanding. This paper presents data structures
and algorithms developed to reduce both memory and time for training
and classification. These enhancements have enabled the evaluation and
comparison of A3DE’s effectiveness. The results provide further support
for the hypothesis that as the number of training examples increases,
decreasing error will be attained by members of the AnDE family with
increasing levels of n.

Keywords: naive Bayes, semi-naive Bayes, probabilistic prediction.

1 Introduction

The classical classification learning paradigm performs search through a hypoth-
esis space to identify a hypothesis that optimizes some objective function with
respect to training data. Averaged n-Dependence Estimators (AnDE) [10] is an
approach to learning without search or hypothesis selection, which represents a
fundamental alternative to the classical learning paradigm.

The new paradigm gives rise to a family of algorithms, of which, Webb et. al.
[10] hypothesize, the different members are suited for differing quantities of data.
The algorithms range from low variance with high bias through to high variance
with low bias. Webb et. al. suggest that members with low variance are suited
for small datasets whereas members with low bias are suitable for large datasets.
They claim that the asymptotic error of the lowest bias variant is Bayes optimal.

The algorithms in the family possess a unique set of features that are suitable
for many applications. In particular, they have a training time that is linear
with respect to the number of examples and can learn in a single pass through
the training data without any need to maintain the training data in memory.
Thus, they show great potential for very accurate classification from large data.
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Further, they have direct capacity for incremental and anytime [6] learning,
are robust in the face of noise and directly handle missing values. Importantly,
evaluations have shown that their classification accuracy is competitive with the
state-of-the-art in machine learning [10].

AnDE extends the underlying strategy of Averaged One-Dependence Estima-
tors (AODE) [9], which relaxes the Naive Bayes (NB) independence assumption
while retaining many of Naive Bayes’s desirable computational and theoretical
properties. The third member of the AnDE family, A2DE, has been shown to
produce strong predictive accuracy over a wide range of data sets [10].

Although evaluations to date support the hypothesis that the predictive accu-
racy of AnDE increases for larger datasets with higher orders of n, the expected
increase in accuracy comes at the cost of increased computational requirements.
The current implementations further complicate the matter due to their inef-
ficiencies. Thus, efficient implementation is critical. Except in cases of lower
dimensional data, the computational requirements defeat a straightforward ex-
tension of Weka’s AODE [11] to handle A3DE.

This paper presents data structures and algorithms that reduce both memory
and time required for both training and classification. These improvements have
enabled us to evaluate the effectiveness of A3DE on large datasets. The results
provide further evidence that members of the AnDE family with increasing n
are increasingly effective at classifying datasets of increasing size.

The remainder of the paper starts by introducing the AnDE family of al-
gorithms. Section 3 outlines the memory representation developed to reduce
memory usage. The enhancements made to reduce testing times are outlined in
Section 4. Section 5 presents the results of evaluating the effectiveness of the
enhancements. It also compares the effectiveness of A3DE with AnDE members
with lower n. Finally, conclusions are outlined.

2 The AnDE Family of Algorithms

The classification problem can be stated as estimating, from a training sample
τ of classified objects, the probability P(y | x) that an example x = 〈x1, . . . , xa〉
belongs to class y, where xi is the value of the ith attribute and y ∈ c1, . . . , ck
that are k classes. As P(y | x) ∝ P(y,x), we only need to estimate the latter.

The naive Bayes (NB) algorithm extrapolates to P̂(x, y) from each two di-
mensional probability estimate P̂(xi | y), by assuming that attributes are inde-
pendent given the class. Based on this assumption,

P(x | y) =
a∏

i=1

P(xi | y). (1)

Hence we classify using

P̂NB(y,x) = P̂(y)

a∏
i=1

P̂(xi | y). (2)
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We assume herein that NB and the other AnDE family members are imple-
mented by compiling at training time a table of observed low-dimensional prob-
abilities. Under this strategy, the complexity of building this model is O(ta),
where t is the number of training examples and a the number of attributes. As
the model simply stores the frequency of each attribute value for each class after
scanning the training examples, the space complexity is O(kav), where k is the
number of classes and v is the average number of attribute values. As the classi-
fier only needs to estimate the probability of each class for the attribute values
of the test case, the resulting complexity at classification time is O(ka).

Despite the attribute independence assumption, NB delivers relatively ac-
curate results. However, greater accuracy can be achieved if the attribute-
independence assumption is relaxed. New algorithms based on NB have been
developed, referred to as semi-Naive Bayesian techniques, that achieve greater
accuracy by doing this, as real-world problems generally do have relationships
among attributes [12].

Of numerous semi-naive Bayesian techniques, SP-TAN [7], Lazy Bayesian
Rules (LBR) [13] and AODE [9] are among the most accurate. However, SP-
TAN has very high computational complexity at training time and LBR has
high computational complexity for classification. Contrastingly, AODE a more
efficient algorithm, avoids some of the undesirable properties of those algorithms
to achieve comparable results.

2.1 AODE

AODE extends NB’s strategy of extrapolating from lower dimensional probabili-
ties to make use of three-dimensional probabilities. It averages across over all of a
class of three-dimensional models, which are called super-parent one-dependence
estimators (SPODE). Each SPODE relaxes the attribute independence assump-
tion of NB by making all other attributes independent given the class and one
privileged attribute, the super-parent xα.

AODE seeks to use

P̂(y,x) =

a∑
α=1

P̂(y, xα)P̂(x | y, xα)/a. (3)

In practice, AODE only uses estimates of probabilities for which relevant exam-
ples occur in the data. Hence,

P̂AODE(y,x) =

⎧⎪⎪⎨⎪⎪⎩
a∑

α=1

δ(xα)P̂(y, xα)P̂(x | y, xα)/
a∑

α=1

δ(xα) :
a∑

α=1

δ(xα) > 0

P̂NB(y,x) : otherwise

(4)

where δ(xα) is 1 if attribute-value xα is present in the data, otherwise 0. In other
words, AODE averages over all super-parents whose value occurs in the data,
and defaults to NB if there is no such parent.
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2.2 AnDE

AnDE [10] generalises AODE’s strategy of search free extrapolation from low-
dimensional probabilities to high-dimensional probabilities. The first member
of the AnDE family (where n = 0) is NB, the second member is AODE and
the third is A2DE. Investigation into the accuracy of higher dimensional models
with different training set sizes shows that a higher degree model might be
susceptible to variance in a small training sample, and consequently that a lower
degree model is likely to be more accurate for small data. On the other hand,
higher degrees of AnDE may work better for larger training sets as minimizing
bias will be of increasing importance as the size of the data increases [3].

For notational convenience we define

xi,j,...,q = 〈xi, xj , . . . , xq〉. (5)

For example, x2,3,4 = 〈x2, x3, x4〉.
AnDE classifies using:

P̂AnDE(y,x) =

⎧⎪⎨⎪⎩
∑

s∈(An)

δ(xs)P̂(y, xs)P̂(x | y, xs)/
∑

s∈(An)

δ(xs) :
∑

s∈(An)

δ(xs) > 0

P̂A(n−1)DE(y,x) : otherwise.
(6)

Attributes are assumed independent given the parents and the class. Hence,
P(x | y, xs) is estimated by

P̂(x | y, xs) =

a∏
i=1

P̂(xi | y, xs) (7)

Given sufficient training data, A2DE has lower error than AODE, but at the
cost of significantly more computational resources.

3 Optimising Memory Consumption

In order to support incremental learning, AnDE classifiers compile a table of
observed joint frequencies of attribute-value combinations during training. The
frequencies table is used in testing to calculate posterior probabilities of class
membership. The AnDE classifier requires the joint frequencies of n attribute
value combinations per class. Additionally, as the classifier defaults to lower
orders of n, for super-parents whose values do not occur in the data, the classifier
also requires frequencies of all combinations of length up to n per class. As the
space requirement for storing these joint frequencies for higher orders of n is
undesirable, we developed a new representation that reduces the required space.

The frequency matrix for AODE is a 3-D matrix, where each cell holds the
frequency of a (class, parent, child) combination. As an example, consider the
frequency matrix for a dataset with two attributes (A and B). Attribute A
has two values (a1 and a2), while attribute B has three values (b1, b2 and b3).
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Fig. 1. AODE Parent Child Combinations

The parent and child dimensions of the frequency matrix is illustrated in Fig. 1a.
It contains cells for each parent-child combination and the (n,n) locations are
reserved for frequencies of parents. The 2-D structure is replicated for each class
to form the 3-D frequency matrix for AODE.

The representation for A2DE is a 4-D matrix that is a collection of tetrahe-
dral structures for each class. Each cell contains the frequencies of (class, par-
ent1, parent2, child) combinations. The matrix reserves (class, parent1, parent1,
parent1) cells for storing frequencies of class-parent1 combinations and (class,
parent1, parent2, parent2) cells for storing class-parent1-parent2 combinations.

AnDE requires a matrix of n + 2 dimensions to store frequencies of all at-
tribute value combinations. The outer dimension has k elements for each class.
The n middle dimensions represent the n parent attribute values and the final
dimension represents the child attribute values. The inner dimensions have av
elements, where a is the number of attributes and v is the average number of
attribute values (including missing values). Consequently, as the size of the fre-
quency matrix is determined by figurate numbers (Pn+1(av) =

(
av+n
n+1

)
), resulting

in a memory complexity of O(k
(
av+n
n+1

)
).

Although this representation allows for straight forward access of the fre-
quency of a class-parent-child combination, the matrix has to be implemented
as a collection of arrays. This incurs overhead and the does not guarantee that a
contiguous block of memory is allocated for the matrix, reducing the possibility
that required parts of the matrix are available in the system’s cache.

The frequency matrix can be stored compactly with the elements of each row
stored in consecutive positions. This representation minimises the overheads that
can occur with multi-dimensional arrays. Taking AODE as an example, the rows
in the 2-D matrix, which are all combinations involving the corresponding parent,
can be stored sequentially in a 1-D array as shown in Fig. 1b.

Allocating slots for all combinations of attribute values in the frequency ma-
trix simplifies access. However, this produces a sparse matrix containing unused
slots allocated for impossible combinations. As training and testing cases have
only single valued attributes, combinations of attribute values of the same at-
tribute are impossible. In the case of the AODE example, the frequency matrix
contains slots to record frequencies of a1a2, b1b2, b1b3 and b2b3, which are im-
possible combinations (shaded in black in Fig. 2a). The size of the frequency
matrix can be reduced by avoiding the allocation of memory for such impossible
combinations. In the AODE example, the size of the 2-combinations matrix can
be reduced from 10 to 6. The size of the n combinations matrix is

(
a

n+1

)
vn+1.
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To avoid allocating space for impossible combinations and simplify indexing,
the frequency matrix is decomposed into a series of structures for storing at-
tribute value combinations of a specific length. Taking the AODE example, the
set of 1-D arrays for storing only possible attribute value combinations is shown
in Fig. 2b. Array freq1 contains frequencies of each attribute value and Array
freq2 contains frequencies of all valid attribute value pairs.

4 Optimising Testing Time

AnDE classifies a test instance by calculating posterior probabilities of class
membership. They are calculated by iterating through all parent-child permu-
tations, resulting in a time complexity of O(ka(n+1)). We reduced the overall
testing time by reorganising the frequency matrix and the looping structure to
taking advantage of locality of reference.

The CPU cache is a fast but limited memory resource, which stores copies of
most frequently used data. It is used to reduce average time to access memory.
We reorganized the memory representation and minimized data retrieval from
memory to improve the likelihood of availability of data in the CPU cache.

The compact memory representation for the frequency matrix is a 2-D array,
which contains k copies of arrays that record n-combination attribute value fre-
quencies per class. For example, Fig. 3a illustrates the memory representation
for a dataset with two attributes (A and B) and two classes (c1 and c2). The
2-D representation is poorly suited for accessing all class frequencies of some
attribute-value combination. Especially, in the case of datasets with large collec-
tion of attributes, this representation reduces the likelihood of all the per-class
frequencies of some attribute value combination being available in the system’s
high-speed access cache.

� ����

� ����

Fig. 2. Valid AODE Parent Child Combinations

a1b1c1 a1b2c1 a1b3c1a2b1c1 a2b2c1 a2b3c1c1

c2 a1b1c2 a1b2c2 a1b3c2a2b1c2 a2b2c2 a2b3c2

Class = {c1, c2}

a1b1c1 a1b2c1 a1b3c1a1b1c2 a2b2c2 a1b3c2a2b1c1 a2b3c1a2b1c2 a2b3c2...
b)

a)

Fig. 3. Storing per Class Frequencies in Sequence
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The locality of reference of attribute-value combinations for all classes can be
improved by storing them next to each other. Taking AODE as an example, the
2-D frequency matrix (Fig. 3a) can be represented in a 1-D array by interleaving
the per class frequencies as shown in Fig. 3b. This representation improves the
chances of the frequencies of attribute-value combinations for both the classes
being available in high-performance memory. In order to take full advantage of
locality of reference of class frequency combinations the looping structure of the
classifier also had to be rearranged from looping through each class, parent and
child to loop through each parent, child and class.

AnDE requires conditional probabilities for all parent child permutations. It-
erating through all permutations requires all relevant offsets to be retrieved,
indexes to be calculated and the relevant frequencies to be retrieved. Although
these retrievals would be loaded into the CPU cache, they are only used once.
In order to reuse data and improve the likelihood of data being available in the
CPU cache, we modified the implementation to only iterate over unique com-
binations. During each iteration conditional probabilities for all permutations
of each combination are calculated. This results in reducing the iterations from
ka(n+1) to ka(n) and reducing the total number of memory accesses.

The conditional probability of a parent-child attribute permutation is calcu-
lated by dividing the frequency of parent-child attributes occurring together by
the frequency of parents. The numerator is constant for all permutations of a
parent combination. The improved implementation also allows this numerator to
be reused, reducing the amount of frequency fetches and the number of index cal-
culations. Overall, this reduces the number of frequency accesses of parent-child
attribute value combinations to 1

2 for AODE, 1
3 for A2DE and 1

4 for A3DE.

5 Evaluation

The effectiveness of the improvements to reduce memory usage and testing
times were evaluated on a collection of Datasets from the UCI machine learning
repository[1]. The evaluation was focused on three members of the AnDE family
of algorithms: AODE, A2DE and A3DE. Although NB is the first member of the
AnDE family, it was not evaluated as the improvements are unlikely to have any
impact. The improvements were compared against the Weka version of AODE
and naive versions of A2DE and A3DE.

5.1 Test Environment

We selected nine datasets, described in Table 1, from the UCI machine learning
repository for the comparisons. The chosen collection includes small, medium
and large datasets with small, medium and high dimensionality. The datasets
were split into two sets, with 90% of the data used for training and the remaining
10% used for testing. The experiments were conducted on a single CPU single
core virtual Linux machine running on a Dell PowerEdge 1950 with dual quad
core Intel Xeon E5410 processor running at 2.33GHz with 8 GB of RAM.
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Table 1. Datasets used for experiments

Dataset Cases Att Values Classes

Abalone 4177 8 24 3
Adult 48842 14 117 2
Connect-4 67557 42 126 3
Covertype 581012 54 118 7
Dermatology 366 34 132 6

Dataset Cases Att Values Classes

House Votes 84 435 16 48 2
Sonar 208 60 180 2
SPAM E-mail 4601 57 171 2
Waveform-5000 5000 40 120 3

The implementations of the three algorithms of the AnDE family are lim-
ited to categorical data. Consequently, all numerical attributes are discretized.
When MDL discretization [5], a common discretization method for NB, was
used within each cross-validation fold, we identified that many attributes have
only one value. So, we discretized numerical attributes using three-bin equal-
frequency discretization prior to classification for these experiments.

The memory usage of the classifier was measured by the ‘Classmexer’ tool [4],
which uses Java’s instrumentation framework to query the Java virtual machine
(JVM). It follows relations of objects, so that the size of the arrays inside arrays
are measured, including their object overhead and padding.

Accurately measuring execution time for the Java platform is difficult. There
can be interferences due to a number of JVM processes such as garbage col-
lection and code profiling. Consequently, to make accurate execution time mea-
surements, we use a Java benchmarking framework [2] that aims to minimize
the noise during measurements. The framework executes the code for a fixed
time period (more than 10 seconds) to allow the JVM to complete all dynamic
optimizations and forces the JVM to perform garbage collection before mea-
surements. All tests are repeated in cases where the code is modified by the
JVM. The code is also executed a number of times with the goal of ensuring the
cumulative execution time to be large enough for small errors to be insignificant.

5.2 Optimised Memory Consumption

The memory usage for AnDE was reduced by the introduction of a new data
structure that avoids the allocation of space for impossible combinations. The
reductions in memory usage for the enhanced AnDE implementations were com-
pared against the respective versions of AnDE that stores the frequency matrix
in a single array. We do not present the memory reductions of compacting the
multi-dimensional array into one dimension as they are specific to Java.

The reductions in memory usages are summarised in Fig. 4a. Results show that
the memory reduction for AODE ranged from 1% to 14%. The highest percentage
in reduction was observed for the adult dataset, which had a reduction of 9.67KB.
The main reason for the large reduction is the high average number of attribute
values of 8.36 for the adult dataset. In contrast, the other datasets have average
number of attribute values of around 3.
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(a) Memory Usage (b) Mean Testing Times

Fig. 4. Proportions of Reductions in Memory Usage and Testing Times

The memory usage for A2DE was reduced by a minimum of 9% to a maximum
of 53%. The maximum amount of reduction in memory was observed for the
high-dimensional Covertype dataset, which had a reduction of around 4.68MB.

The enhanced version of A3DE resulted in the highest reduction in memory
usage with reductions ranging from 13% to 64%. The reductions in memory
usage for the high dimensional Covertype, Dermatology, Sonar Classification
and SPAM E-mail datasets were over 100MB.

5.3 Optimised Testing

The total testing times of the algorithms were compared using the test envi-
ronment. The proportions of reduction in mean test times for AnDE are given
in Fig. 4b. The optimisations result in reductions in average testing times for
all three algorithms. The reductions for A3DE were highest, with a 61% (0.83s)
mean reduction for the small but high-dimensional Dermatology dataset and
60% (8.89ks) reduction for the large and high-dimensional Covertype dataset.
The improvements also reduced the testing times of low dimensional datasets of
Abalone (6%) and House Votes (28%).

The reductions in testing times were substantial for A2DE, with reductions
ranging from 16% (for Abalone) to 50% (Covertype). The improvements to
AODE also resulted in reduced total execution times ranging from 23% to 30%.
The highest percentage of reduction was exhibited for the dataset with the largest
number of attributes, Sonar Classification.

6 The Evaluation of A3DE

We evaluated the classification accuracy of AnDE algorithms comparing how
their performance varies as n increases within the AnDE framework. Previous
research [10] has compared the effectiveness of AODE to A2DE, but only limited
experimental results were presented for A3DE as the Weka implementation failed
on high dimensional datasets due to its high memory requirements.
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We compared the effectiveness the AnDE members using the enhanced ver-
sions implemented in the Weka workbench on the 62 datasets that were used
to evaluate the performance of A2DE [10]. Each algorithm was tested on each
dataset using the repeated cross-validation bias-variance estimation method [8].
We used two-fold cross validation to maximise variation in the training data be-
tween trials. In order to minimise the variance in our measurements, we report
the mean values over 50 cross-validation trials.

The experiments were conducted on the same virtual machine used to evaluate
the effectiveness of the improvements. Due to technical issues, including memory
leaks in the Weka implementation, increasing amounts of memory is required
when multiple trials are conducted. Consequently, we were unable to get bias-
variance results for four datasets (Audiology, Census-Income, Covertype and
Cylinder bands), that were of high dimensionality. We compared the relative
performances of AODE, A2DE and A3DE on the remaining 58 datasets. The
lower, equal or higher outcomes when the algorithms are compared to each other
is summarised as win/draw/loss records in Tab. 2.

The results show that the bias decreases as n increases at the expense of
increased variance. The bias of A3DE is lower significantly more often than not
in comparison to A2DE and AODE. The bias of A2DE is lower significantly more
often relative to AODE. In contrast, the variance of AODE is lower significantly
more often than A2DE and A3DE. The variance of A2DE is lower significantly
more often relative to A3DE.

None of the three algorithms have a significantly lower zero-one loss or RMSE
on the evaluated datasets. We believe that this is due to the wide range sizes
of datasets used in the evaluation. We hypothesize that members of the AnDE
family with lower n, that have a low variance, are best suited for small datasets.
In contrast, members with higher degrees of n are best suited for larger datasets.

6.1 A3DE Performance on Large Datasets

To assess the hypothesis that increasing values of n within the AnDE family
are suited to increasing data quantity, we compared A3DE to lower-order fam-
ily members on datasets with over 10,000 cases. Out of the 58 datasets, seven
datasets (Adult, Connect-4 Opening, Letter Recognition, MAGIC Gamma Tele-
scope, Nursery, Pen Digits and Sign) satisfied this criterion. The number of cases

Table 2. Win/Draw/Loss: AnDE, n = 1, 2 and 3 on 58 data sets

A3DE vs A2DE A3DE vs AODE A2DE vs AODE

W/D/L p W/D/L p W/D/L p

Bias 34/3/21 0.052 40/1/17 0.002 43/0/15 <0.001
Variance 17/2/39 0.002 15/2/41 <0.001 16/1/41 <0.001
Zero-one loss 24/3/31 0.209 24/2/32 0.175 29/2/27 0.447
RMSE 24/3/31 0.209 28/0/30 0.445 31/1/26 0.298
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Table 3. Win/Draw/Loss: AnDE, n=1,2 and 3 on large data sets

A3DE vs A2DE A3DE vs AODE

W/D/L p W/D/L p

Bias 6/0/1 0.063 7/0/0 0.008
Variance 2/0/5 0.227 1/0/6 0.063
Zero-one loss 7/0/0 0.008 7/0/0 0.008
RMSE 7/0/0 0.008 7/0/0 0.008

of the chosen datasets ranged from just over 10,000 cases (Pen Digits) to over
60,000 cases (Connect-4 Opening).

The evaluation results are summarised as win/draw/loss records in Table 3.
As expected, the results show A3DE has a lower bias and higher variance than
A2DE and AODE. The zero-one loss and the RMSE of A3DE are lower for all
the evaluated datasets in comparison to A2DE and AODE (p=0.008). These
results confirm that A3DE performs better than its lower-dimensional variants
at classifying larger datasets.

7 Conclusions

The AnDE family of algorithms perform search-free learning. The parameter n
controls the bias-variance trade-off such that n = a provides a classifier whose
asymptotic error is the Bayes optimum. We presented techniques for reducing the
memory usage and the testing times of the AnDE implementations that make
A3DE feasible to employ for higher-dimensional data. As A3DE is superior to
AnDE with lower values of n when applied to large data, and as the linear
complexity and single pass learning of AnDE make it particularly attractive
for learning from large data, we believe these optimizations have potential for
considerable impact.

We developed a new compact memory representation for storing the frequen-
cies of attribute-value combinations that stores all frequencies in a 1-D array
avoiding the allocation of space for impossible attribute-value combinations.
The evaluation results showed that the enhancements substantially reduced the
memory requirements. The enhancements reduced the overall A3DE memory
requirements ranging from 13% to 64%, including reductions of over 100MB for
the high-dimensional datasets.

The classification times of the AnDE algorithms were improved by reorganis-
ing the memory representation to maximise locality of reference and minimising
memory accesses. These enhancements resulted in substantial reductions to the
total testing times for the AnDE family of algorithms. In the case of A3DE, the
maximum reduction in total testing time was 8.89ks, which was a reduction of
60%, for the Covertype dataset.

The enhancements to the AnDE algorithms opened the door for evaluating
the performance of A3DE. As expected, the results showed that A3DE has lower
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bias in comparison to A2DE and AODE. The results for zero-one error between
A3DE, A2DE and AODE did not produce a clear winner. However, A3DE pro-
duced the lowest error for large datasets (with over 10,000 cases).

The computational complexity of AnDE algorithms is linear with respect to
the number of training examples. Their memory requirements are dictated by
the number of attribute values in the data. Consequently, the most accurate and
feasible member of the AnDE algorithm for a particular dataset will have to be
decided based on the dataset’s size and its dimensionality.

References

1. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases,
http://www.ics.uci.edu/~mlearn/MLRepository.html

2. Boyer, B.: Robust Java benchmarking (2008),
http://www.ibm.com/developerworks/java/library/j-benchmark1.html

3. Brain, D., Webb, G.I.: The Need for Low Bias Algorithms in Classification Learning
From Large Data Sets. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD
2002. LNCS (LNAI), vol. 2431, pp. 62–73. Springer, Heidelberg (2002)

4. Coffey, N.: Classmexer agent, http://www.javamex.com/classmexer/
5. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes

for classification learning. In: Proc. of the 13th Int. Joint Conference on Artificial
Intelligence, pp. 1022–1029. Morgan Kaufmann (1993)

6. Hui, B., Yang, Y., Webb, G.I.: Anytime classification for a pool of instances. Ma-
chine Learning 77(1), 61–102 (2009)

7. Keogh, E., Pazzani, M.: Learning augmented Bayesian classifiers: A comparison
of distribution-based and classification-based approaches. In: Proc. of the Interna-
tional Workshop on Artificial Intelligence and Statistics, pp. 225–230 (1999)

8. Webb, G.I.: Multiboosting: A technique for combining boosting and wagging. Ma-
chine Learning 40(2), 159–196 (2000)

9. Webb, G.I., Boughton, J., Wang, Z.: Not so naive Bayes: Aggregating one-
dependence estimators. Machine Learning 58(1), 5–24 (2005)

10. Webb, G.I., Boughton, J., Zheng, F., Ting, K.M., Salem, H.: Learning by ex-
trapolation from marginal to full-multivariate probability distributions: Decreas-
ingly naive Bayesian classification. Machine Learning 86(2), 233–272 (2012),
doi:10.1007/s10994-011-5263-6

11. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann (2005)

12. Zheng, F., Webb, G.I.: A comparative study of semi-naive Bayes methods in clas-
sification learning. In: Simoff, S.J., Williams, G.J., Galloway, J., Kolyshakina, I.
(eds.) Proc. of the 4th Australasian Data Mining Conference (AusDM 2005), pp.
141–156 (2005)

13. Zheng, Z., Webb, G.I.: Lazy learning of Bayesian rules. Machine Learning 41(1),
53–84 (2000)

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ibm.com/developerworks/java/library/j-benchmark1.html
http://www.javamex.com/classmexer/


An Aggressive Margin-Based Algorithm

for Incremental Learning

JuiHsi Fu� and SingLing Lee

National Chung Cheng University
168 University Road, Minhsiung Township,

Chiayi 62162, Taiwan, R.O.C.
{fjh95p,singling}@cs.ccu.edu.tw

Abstract. In incremental learning, the classification model is incremen-
tally updated using the small datasets. Different with existing methods,
our approach updates the current classifier according to each sample in
the dataset, respectively. The classifier is updated by adjusting more
than the margin of each sample. Then the new classifier is generated
by carefully analyzing classifier adjustments caused for labeled samples.
Additionally the new classifier shall correct prediction mistakes of the
previous classifier as many as possible. In details, we formulate sim-
ple constrained optimization problems and then the updated classifier is
the solution derived using Lagrange multipliers. In our experiments, 13
real-world dataset are used to present the effectiveness of the proposed
approach. The experimental results are shown that our update strategy
is able to adjust the classifier properly. And it is also shown that the
proposed incremental learning approach is suitable to be applied for the
requirement of frequently adjusting the existing classifiers.

Keywords: Incremental Learning, Margin-based Approaches, Passive-
Aggressive (PA) Algorithm, Period Datasets, Classifier Adjustment.

1 Introduction

Requests of analyzing collected period data have been emerged in recent prac-
tical applications that includes network traffic analysis [1], anomaly detection
[2], and intrusion detection [3]. Generally, those applications are implemented
for adjusting classifiers/detectors periodically. Most of incremental learning ap-
proaches have been proposed based on decision-tree [4], neural network [5,6],
and Support Vector Machines (SVM) [3,7,8,9,10]. Typically they are designed
to build the statistic classification model based on the previously seen samples
and to correct its prediction mistakes on new labeled samples. While focus-
ing on the sample space, SVM generalizes the separating hyperplane (classifier)
based on the whole sample distribution, and maximizes the margins of labeled
samples (support vectors). The margin of a sample is a distance between the
sample and the separating hyperplane. And SVM is theoretically proven that
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the hyperplane is able to well separate samples with different labels. In [10],
an incremental batch SVM approach was designed to update the classifier by
solving a constrained optimization problem based on each set of collected sam-
ples. An example is illustrated in Fig. 1 (a) where the classifier wi is adjusted as
wi+1 depending on the set of samples, {xi

1, x
i
2, x

i
3}. This approach should solve a

complicated constrained optimization problem since those collected samples are
adopted simultaneously. Other approaches [8,9] adjusted SVM classifiers incre-
mentally by identifying each new sample as a support vector or not. Different
with [10], in Fig. 1 (b) the classifier wi is adjusted as wi

1 using first sample xi
1

in the set, and then wi
1 is updated as wi

2 using xi
2. Thus wi is incrementally ad-

justed as wi+1 depending on each sample in the set. The advantage of [8,9] is to
maintain useful samples that were previously seen as support vectors and to ob-
tain efficient update steps without solving a constrained optimization problem.
But in those SVM approaches, the hyperplanes might not be quickly adjusted
when encountering diverse sample distribution. In other words, the diverse sam-
ples have small chances to be support vectors because the distribution of those
samples is significantly different with the distribution of samples in the set. Thus
in this paper, our approach is to simplify the constrained optimization problem
for update steps and to adapt the diverse sample distribution for classifiers.

wi

wi+1

xi
1

xi
2

xi
3

(a) wi is ad-
justed by
all samples
simultaneously.

wi

wi+1

xi
1

xi
2

xi
3

wi
1

wi
2

wi
3

(b) wi is adjusted incre-
mentally by each sample.

wi

wi+1

xi
1

xi
2

xi
3

wi
1

wi
2

wi
3

Selection

(c) wi is adjusted by one sam-
ple in the set.

Fig. 1. Concepts of solving problems of adjusting classifiers. wi and wi+1 are the
current classifier and the next one. xi

1, x
i
2, and xi

3 are samples used for adjusting wi.

Rather than training the SVM classifier based on each sample or each set
of collected samples, our approach adjusts the current classifier incrementally
according one sample in each collected set. Thus for each potential update, we
formulate an optimization problem with single constraint. Additionally our up-
dated classifier shall correct prediction mistakes of the previous classifier as many
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as possible. Compared with [10], we divide a complicated constrained optimiza-
tion problem into several simpler ones. In other words, the classifier is adjusted
as several potential ones depending on different samples. An example is illus-
trated in Fig. 1 (c). The classifier wi is adjusted as wi

1, w
i
2, and wi

3 respectively
using xi

1, x
i
2, and xi

3. And then the classifier that adjusts the most wi’s mistakes
is selected as the next wi+1. In this paper, we are motivated by the simplicity of
online Passive-Aggressive (PA) algorithm [11]. One sample’s margin is selected
as the basis for classifier adjustment. Thus in our approach, while a sample is
used for updating and its sign is incorrectly predicted, the classifier adjustment
is aggressively achieved within the margin. Additionally the updated classifier
shall correct prediction mistakes of the previous classifier as many as possible.
In this paper, we formulate a simple constrained optimization problem for each
sample and then the candidate updated classifier is the solution derived using
Lagrange multipliers. It is noted that, we get a closed form solution for each
potential updated classifier. Particularly the selected new classifier, updated by
the suitable margin, shall obtain the best classification accuracy on the collected
dataset. It is expected that, this selection strategy is able to avoid the new clas-
sifier being extremely specific to the previous one. And the updated classifier
could flexibly adapt the diverse sample distribution because there is no need for
the proposed approach to maintain previously seen samples.

Basically PA has the ability to frequently update the classifiers, but its two
straightforward approaches may not be able to achieve impressive results. Firstly,
PA update steps are specific to each labeled sample whether it is inconsistent
or not. The consequence is that updated classifiers would obtain the unstable
prediction ability. Secondly, the other PA approach is to update the classifier re-
spectively using each sample. Then the selected classifier among all updated ones
shall have the best classification accuracy on the collected dataset. Compared
with our proposed approach, this approach does not actively correct prediction
mistakes of the previous classifier. Thus these two approaches do not fully uti-
lize the learning knowledge in each collected dataset. Moreover our approach is
similar with re-sampling approaches, like bagging [12], to obtain improved classi-
fication accuracy by depending on subsets of the sample set. The major difference
is that, we focus on designing efficient update steps for online applications so
that a closed form solution for the updated classifier could be obtained.

The rest of our paper is organized as follows. The online PA algorithm is
reviewed in Section 2. In Section 3, we detailedly describe the proposed approach
and build the mathematic model. Experimental results are presented in Section
4. Finally, we conclude the paper in Section 5.

2 Online Passive-Aggressive Algorithm

In online learning, each training sample is discarded after it is used to update
the classifiers. Some research works like the Perceptron algorithm [13,14,15] and
margin-based approaches [16,17] have been proven to be effective in a board
range of applications. Additionally it is worth noting the Passive-Aggressive
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(PA) Algorithm [11] is a margin-based online learning approach that could be
applied for various prediction tasks. PA uses linear predictors for label prediction
of each incoming sample. And each update step of PA is executed depending on
the margin of the labeled sample. The objective of PA update is to adjust the
previous classifier as less as possible while the condition of classifier adjustment
is satisfied. At the round t, let wt be the vector of weights, xt be the sample,
yt ∈ {+1,−1} be xt’s true label, and the term yt(wt·xt) be the signed margin.
The new classifier wt+1 is the solution to the following constrained optimization
problem,

wt+1 = argminw∈Rn

1

2
||w − wt||2 s.t. l(w, (xt, yt)) = 0, (1)

where l(w, (xt, yt)) is the hinge loss of w’s prediction on xt.

l(w, (x, y)) =

{
0, y(w·x) ≥ 1
1− y(w·x), otherwise (2)

Typically whenever the loss is zero, PA is passive and wt+1 = wt means no clas-
sifier adjustment. And while the loss is positive (less than 1), wt is aggressively
updated by adjusting more than the margin, yt(wt·xt), and then the constrain
l(wt+1, (xt, yt)) = 0 can be satisfied. Then the Lagrangian of the optimization
problem in Eq. (1) is defined as Eq. (3).

L(w, τ) =
1

2
||w − wt||2 + τ(1 − yt(w·xt)) (3)

Let the partial derivation of l with respect to w be zero and then let the deviation
of τ with respect to τ be zero, we have

w = wt + τytxt

τ =
1− yt(wt·xt)

||xt||2

Ultimately the PA update is performed by solving the constrained optimization
problem in Eq. (1). And it is theoretically shown that the aggressive update
strategy of PA modifies the weight vector as less as possible. The effectiveness
of PA in solving problems of classification and regression is formally analyzed in
[11]. Based on this well-defined learning model of PA, several online algorithms
[18,19] have been proposed for adding confidence information and handling non-
separable data.

3 Incremental Passive-Aggressive Learning Algorithm

While each set of labeled period samples comes, the existing classifier shall be
periodically updated for adapting the latest sample distribution. In this pa-
per, we propose an incremental learning algorithm, named Incremental Passive-
Aggressive (IPA). It adjusts the current classifier incrementally using one sample
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in each collected set. For each potential sample, there are two update steps in
IPA: 1) to correct prediction mistakes of the current classifier, and 2) to ag-
gressively update the current classifier by adjusting more than the margin. At
last, the error minimization classifier on the collected dataset is selected as the
next classifier. Before formulating the model of the proposed approach, we de-
fine some notations. Given the labeled dataset Kt collected at the round t, there
are |Kt| sample-label pairs, {(x1, y1), ..., (x|Kt|, y|Kt|)}. wt is the classifier at the
round t, the vector of weights. When using each labeled sample xk ∈ Kt, the
updated classifier wt+1 shall correct mistakes of the previous classifier wt as
many as possible and wt shall be adjusted as less as possible. Aggressively, if xk

obtains the incorrect predicted sign from wt, then the adjustment for wt should
be achieved within more than xk’s margin. Thus these update steps to wt are
formulated as the constrained optimization problem,

f(wt, (xk, yk),K
t) = argminw∈Rn{1

2
||w − wt||2

+ C0

∑
xi∈Kt,xi �=xk

l(w, (xi, yi))}

s.t. l(w, (xk, yk)) = 0, (4)

where C0 is a constant to control the tradeoff between the classifier deviation and
the corrected prediction mistakes, and l(w, (xi, yi)) is the hinge loss function.

Furthermore, after wt is updated using every sample xk ∈ Kt according to Eq.
(4), those updated classifiers, {f(wt, (xk, yk),K

t) : 1 ≤ k ≤ |Kt|}, are the candi-
dates for the new classifier. In order to avoid the new classifier being extremely
specific to the current classifier, the selection strategy is to find the proper clas-
sifier which has the most accurate classification performance on Kt. When more
than one updated classifiers have the highest classification accuracy, we select
the updated classifier which has the smallest difference with wt. Hence the new
classifier wt+1, selected among the candidate set of the updated classifiers, is the
solution to the optimization problem,

wt+1 = argminw∈{f(wt,(xk,yk),Kt) : 1≤k≤|Kt|}C
∑

xi∈Kt

l(w, (xi, yi)) + ||w − wt||,

(5)
where C is a large constant in order to select w strongly depending on the errors.

To solve the problem in Eq. (4), let C0 = 1 and κt, the subset of |Kt|, be
the set of samples of which predicted labels are incorrectly decided by wt. While
the loss of each sample in κt is positive (less than 1), the Lagrangian of the
constrained optimization problem is defined as Eq. (6):

L(w, τ) =
1

2
||w − wt||2 +

∑
xi∈κt,xi �=xk

(1− yi(w·xi)) + τ(1 − yk(w·xk)) (6)
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Let the partial derivation of l with respect to w be zero,

�wL(w, τ) = w − wt −
∑

xi∈κt,xi �=xk

yixi − τykxk

=> w = wt +
∑

xi∈κt,xi �=xk

yixi + τykxk (7)

Then substituting Eq. (7) into Eq. (6), we have

L(τ) =
1

2
||
∑
xi∈κt

yixi + τykxk||2

+
∑

xi∈κt,xi �=xk

(1− yi((w
t +

∑
xi∈κt,xi �=xk

yixi + τykxk)·xi))

+ τ(1 − yk((w
t +

∑
xi∈κt,xi �=xk

yixi + τykxk)·xk)) (8)

At last let the deviation of Eq. (8) with respect to τ be zero,

0 = −τy2k||xk||2 + (1− yk(w
t·xk))− ykxk

∑
xi∈κt,xi �=xk

yixi

=> τ =
1− yk(w

t·xk)− ykxk

∑
xi∈κt,xi �=xk

yixi

||xk||2
(9)

Ultimately, each update of the proposed incremental learning algorithm is per-
formed by solving the constrained optimization in Eq. (4) and the updated clas-
sifier is determined by solving Eq. (5). It is theoretically presented in Eq. (7)
and (9) that the update to the current classifier wt is performed by correcting its
prediction mistakes κt, and by adjusting it within the margin when the sample is
incorrectly predicted. Overall the proposed algorithm is presented in Algorithm
1. At each round t, the dataset Kt is collected to update the current classifier
wt. And the samples of which predicted labels are incorrectly assigned by wt are
identified as κt, at line 4-5. Then for each sample xk ∈ Kt, the current classifier
wt is individually updated as the candidate classifier wk according to Eq. (7)
and (9), at line 7-8. At last, the classifier wk is selected as wt+1 if it gains the
least prediction errors on Kt, at line 10. Particularly at the first round, w1 is
initialized as (0, ..., 0) and its prediction result is always positive. Thus the w1 is
adjusted as the first updated classifier w2 depending on the false positive sample
that could cause the minimum ||w2 − w1||. Moreover in addition to minimizing
the classifier deviation, we correct mistakes of the previous classifier. In terms of
convergence, each classifier is adjusted as small as possible. Also it is expected
that, our approach is able to adaptively enhance the degree of adjusting classi-
fiers when encountering diverse sample distribution that would cause significant
prediction losses.
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Algorithm 1. Incremental PA Learning Algorithm

input : C0

Initialize: w1 = (0, ..., 0), C = 10, 000 ;1

for t=1,2,... do2

receive the collected labeled dataset Kt ;3

predict ŷx=sign(wt·xk) for each xk ∈ Kt ;4

collect κt = {xk|xk ∈ Kt and yx �= ŷx} ;5

for each xk ∈ Kt do6

set τk =
1−yk(wt·xk)−ykxk

∑
xi∈κt,xi �=xk

yixi

||xk||2 ;7

update wk = wt +
∑

xi∈κt,xi �=xk
yixi + τykxk ;8

end9

select wt+1 = argminw∈{wk : 1≤k≤|Kt|}C
∑

xi∈Kt l(w, (xi, yi)) + ||w − wt|| ;10

end11

4 Experiments

In this section, our experiments are designed to present the performance of our
approach in classification accuracy while the classifier is incrementally updated
by several small training sets. To present the effectiveness of updating classifiers
in our approach, we also implement the online PA and an incremental batch
SVM [9]. Additionally in order to show the effectiveness of correcting mistakes
of the previous classifier in eq. (4), the performance of our approach with C0 = 0
is also compared in following experiments. In terms of evaluating classification
accuracy of a classifier, we would like to significantly present classification results
of samples in two different classes. We use the measurement of micro-average ac-
curacy to average the classification accuracies that are calculated in two classes,
respectively. For consistence, the summations of loss errors in the eq. (4) and (5)
are also revised as (1 - micro-average accuracy).

Table 1 presents 13 real-world data collections from 4 different sources used in
our experiments. The multi-domain sentiment dataset 1 contains product reviews
downloaded from Amazon.com from four product types (domains): Kitchen,
Books, DVDs, and Electronics. Each domain has several thousand reviews, but
the exact number varies by domain. In this experiment, only Books, DVDs are
used for evaluating performance of those learning approaches. From the second
data source, the dataset at ECML/PKDD-2006 discovery challenge2 is used to
decide whether received emails are spam or non-spam. Especially there are over
10,000 features in those three datasets, Books, DVDs, and Emails. But it is dif-
ficult to analyze performance of the SVM classifiers implemented in Matlab [9]
because the execution is time consuming on those high dimensional datasets.
Thus we randomly select a part of documents, as presented in Tab. 1, in fol-
lowing experiments. From the third data source, Spamming Bots [20] is the
set of response codes of the sent emails, collected in National Chung Cheng

1 Sentiment. http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
2 ECML/PKDD-2006. http://www.ecmlpkdd2006.org/challenge.html
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Table 1. 10 real-world datasets: sizes of the classes and the size of feature dimensions

Dataset Source Class(size) Class(size) Dimensions

DVDs Sentiment positive(292) negative(300) 1488

Books Sentiment positive(289) negative(287) 1548

Emails ECML/PKDD spam(210) non-spam(445) 1034

Connectionist Bench UCI 1(111) 2(97) 60

Ionosphere UCI b(126) g(225) 34

German UCI Good(700) Bad(300) 23

Australian Credit Approval UCI 0(383) 1(307) 14

Statlog (Heart) UCI 1(150) 2(120) 13

yeast UCI CYT(463) ME1(44) 9

abalone UCI 10(634) 4(57) 8

Pima Indians Diabetes UCI 0(500) 1(268) 8

ecoli UCI cp(143) im(77) 8

Spamming Bots CCU normal(1560) spamming(150) 5

University (CCU). It is used to analyze the behavior of each email sender and
then to detect the spamming bots. At last the other datasets are the benchmarks
in the UCI repository 3. While we evaluate classification performance of learning
approaches, we randomly divide each dataset into 10 subsets, and one of subsets
is received at each round. In other words, one subset is used for initially training
the classifier and deciding the value of C0 in eq. (4) by obtaining the highest
classification accuracy on the first subset. Then others are received at each of
9 rounds. The classification accuracy at each round is measured by classifica-
tion results of the classifier updated at previous rounds. To reduce variability in
experimental results, we arrange 10 subset-round permutations on each dataset
and average those 10 classification accuracies at each round.

At first these experiments, except on Diabetes in Fig. 2, are demonstrated
that the proposed IPA has better performance than IPA with C0 = 0. That
means, in addition to minimizing the classifier deviation, it is effective in eq.
(4) to correct mistakes for updating the previous classifier. And on Diabetes,
correction of mistakes to the classifier could not improve the classification ac-
curacy on latter samples. It seems, on Diabetes previous learning knowledge is
not useful for latter label prediction. Secondly on Australian, Ionosphere, Bots,
and 10+4 in Fig. 3-4, it is presented that the online PA method can not obtain
the remarkable classification performance since its update strategy is specific to
each labeled sample. That means, the online PA method tends to be updated
by inconsistent samples. Furthermore, except experimental results on Australian
and Ionosphere in Fig. 3, it is shown that our approach obtains the best (or
similar) classification accuracy in comparison with other approaches. We update
the classifier by carefully analyzing classifier adjustment caused for the labeled
dataset. Then the remarkable classification accuracy is obtained at each round
after the classifier is incrementally updated on most of datasets. Also it is shown

3 UCI Repository. http://archive.ics.uci.edu/ml/
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Fig. 2. Classification results of incremental learning approaches on Diabetes
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Fig. 3. Classification results of incremental learning approaches on Australian and
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Fig. 4. Classification results of incremental learning approaches on bot and 10+4

that our approach has the ability to adapt the diverse sample distribution for
classifiers because we obtain better performance in accuracy than the SVM ap-
proach of which support vectors are maintained as informative samples. Mention
to the performance on Australian and Ionosphere, it seems ambiguous or noise
samples exist so that the approaches (PA and IPA) to incrementally update the
classifier by one sample do not have impressive results. In this case, collected
samples in the set might be simultaneously used for updating classifiers, like the
incremental batch SVM, to filter out misleading or noise samples.
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Fig. 5. Classification results of incremental learning approaches on heart and Connec-
tionist
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Fig. 6. Classification results of incremental learning approaches on BOOK and DVD
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Fig. 7. Classification results of incremental learning approaches on CYT+ME1 and
cp+im

Interestingly on CYT+MEI, cp+im, German, and Emails in Fig. 7-8, the
incremental batch SVM approach has biased results. It is observed that, in es-
timating performance of the classifier, it focuses on non-weighting estimated
errors, instead of average weights for errors on two respective classes. Still on
those datasets, proposed IPA has the practical ability to obtain the best clas-
sification accuracy. Hence, our approach to update classifiers is not affected by
biased classification results.
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Fig. 8. Classification results of incremental learning approaches on German and Emails

5 Conclusion

In this paper, we propose an efficient incremental learning approach to deal
with the practical requirement of frequently updating classifiers. Our approach is
proposed to adjust the classifier incrementally using one sample in each collected
set. That is, the classifier is aggressively updated by adjusting more than the
margin of a sample, and its prediction mistakes are corrected as more as possible.
For each potential update step, we get a closed form solution for the updated
classifier through solving a simple constrained optimization problem. At last the
selected classifier shall have the least prediction errors on the collected dataset.
Our experimental results are presented that, when updating a classifier, it is
effective to correct its prediction mistakes, in addition to minimizing the classifier
deviation. And it is also shown that our approach has the ability to adapt the
diverse sample distribution for classifiers. Except several datasets that consist of
some misleading or noise samples, the classifier that is incrementally adjusted
by our approach is able to gain remarkable classification accuracy. Therefore it
is presented that the proposed approach is suitable to be applied for effectively
adjusting the existing classifiers using periodically collected datasets.

References

1. Sena, G.G., Belzarena, P.: Early traffic classification using support vector machines.
In: 5th International Latin American Networking Conference, pp. 60–66. ACM,
New York (2009)

2. Robertson, W.K., Maggi, F., Kruegel, C., Vigna, G.: Effective Anomaly Detection
with Scarce Training Data. In: The Network and Distributed System Security
Symposium. ISOC (2010)

3. Du, H., Teng, S., Yang, M., Zhu, Q.: Intrusion Detection System Based on Improved
SVM Incremental Learning. In: International Conference on Artificial Intelligence
and Computational intelligence, pp. 23–28. IEEE Press (2009)

4. Utgoff, P.E.: Incremental Induction of Decision Trees. J. Machine Learning 4, 161–
186 (1989)

5. Mohamed, S., Rubin, D., Marwala, T.: Incremental Learning for Classification of
Protein Sequences. In: International Joint Conference on Neural Networks, pp.
19–24. IEEE Press (2007)



An Aggressive Margin-Based Algorithm 73

6. Chen, Z., Huang, L., Murphey, Y.L.: Incremental Learning for Text Document
Classification. In: International Joint Conference on Neural NetWorks, pp. 2592–
2597. IEEE Press (2007)

7. Ruping, S.: Incremental Learning with Support Vector Machines. In: International
Conference on Data Mining, pp. 641–642. IEEE Press (2001)

8. Xiao, R., Wang, J., Zhang, F.: An Approach to Incremental SVM Learning Algo-
rithm. In: International Conference on Tools with Artificial Intelligence, pp. 268–
273. IEEE Press (2000)

9. Cauwenberghs, G., Poggio, T.: Incremental and Decremental Support Vector Ma-
chine Learning. In: Neural Information Processing Systems, vol. 13. MIT Press,
Cambridge (2001)

10. Liu, Y., He, Q., Chen, Q.: Incremental Batch Learning with Support Vector Ma-
chines. In: 5th World Congress on Intelligent Control and Automation, pp. 1857–
1861. IEEE Press (2004)

11. Crammer, K., Dekel, O., Keshet, J., Shwartz, S.S., Singer, Y.: Online Passive-
Aggressive Algorithms. J. Machine Learning Research 7, 551–585 (2006)

12. Zhu, X.: Lazy Bagging for Classifying Imbalanced Data. In: 7th IEEE International
Conference on Data Mining, pp. 763–768 (2007)

13. Freund, Y., Schapire, R.E.: Large Margin Classification Using the Perceptron Al-
gorithm. J. Machine Learning 37, 277–296 (1999)

14. Ng, H.T., Goh, W.B., Low, K.L.: Feature selection, perceptron learning, and a us-
ability case study for text categorization. In: International Conference on Research
and Development in Information Retrieval, pp. 67–73. ACM, New York (1997)

15. Cesa-Bianchi, N., Conconi, A., Gentile, C.: A Second-Order Perceptron Algorithm.
J. Computing 34(3), 640–668 (2005)

16. Wang, S., San, Y., Wang, S.: An Online Modeling Method Based on Support
Vector Machine. In: International Conference on COmputer Science and Software
Engineering, pp. 98–101. IEEE Press (2008)

17. Sculley, D., Wachman, G.M.: Relaxed Online SVMs for spam filtering. In: Inter-
national Conference on Research and Development in Information Retrieval, pp.
415–422. ACM, New York (2007)

18. Dredze, M., Crammer, K., Pereira, F.: Confidence-Weighted Linear Classification.
In: International Conference on Machine Learning, pp. 264–271. ACM, New York
(2008)

19. Crammer, K., Kulesza, A., Dredze, M.: Adaptive Regularization of Weight Vectors.
In: Neural Information Processing Systems. MIT Press, Cambridge (2009)

20. Lin, P., Yen, T., Fu, J., Yu, C.: Analyzing Anomalous Spamming Activities in a
Campus Network. In: TANET (2011)



Two-View Online Learning

Tam T. Nguyen, Kuiyu Chang, and Siu Cheung Hui

School of Computer Engineering
Nanyang Technological University

50 Nanyang Avenue, Singapore 639798

Abstract. We propose a two-view online learning algorithm that uti-
lizes two different views of the same data to achieve something that is
greater than the sum of its parts. Our algorithm is an extension of the
single-view Passive Aggressive (PA) algorithm, where we minimize the
changes in the two view weights and disagreements between the two clas-
sifiers. The final classifier is an equally weighted sum of the individual
classifiers. As a result, disagreements between the two views are tolerated
as long as the final combined classifier output is not compromised. Our
approach thus allows the stronger voice (view) to dominate whenever the
two views disagree. This additional allowance of diversity between the
two views is what gives our approach the edge, as espoused by classical
ensemble learning theory. Our algorithm is evaluated and compared to
the original PA algorithm on three datasets. The experimental results
show that it consistently outperforms the PA algorithm on individual
views and concatenated view by up to 3%.

1 Introduction

In applications where large amount of data arrives in sequence, e.g., stock market
prediction and email filtering, simple online learning such as Perceptron [1],
second-order Perceptron [2], and Passive Aggressive (PA) [4] algorithms can be
easily deployed with reasonable performance and low computational cost.

For some domains, data may originate from several different sources, also
known as views. For example, a web page may have a content view comprising
text contained within it, a link view expressing its relationships to other web
pages, and a revision view that tracks the different changes that it has undergone.

When the various data sources are independent, running several instances of
the same algorithm on it and combining the output via an ensemble learning
framework works well. A simple concatenation of the two sources in a vector
space model could unnecessarily favor sources with larger number of dimensions.
On the other hand, training a separate model on each source fails to make good
use of the relationship among the sources, even for a baseline ensemble classifier.

To take advantage of data with multiple views, various methods such as SVM-
2K [7] and alternatives [9] have been proposed. However, the two-view methods
proposed so far utilizes support vector machine (SVM) [3], which is fundamen-
tally a batch learning algorithm that cannot be easily tailored to work well on
large scale online streaming data.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 74–85, 2012.
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One simple approach to extend the online learning model to handle two view
data is to train one model for each view independently, and combine the clas-
sifier outputs just like in classical ensemble learning. However, this approach
ignores the relationship between the two views. Instead of using the same idea
as SVM-2K where data in one view is used to improve the SVM performance [3]
on another view (single view), we take advantage of the relationship between the
two views to improve the combined performance. Specifically, we propose a novel
online learning algorithm based on the PA algorithm, called Two-view Passive
Aggressive (Two-view PA) learning. Our approach minimizes the difference be-
tween the two classifier outputs, but allows the outputs to differ as long as the
weighted sum of each output leads to the correct result. In classical ensemble
learning, the more diverse the classifier, the better the combined performance. In
a way, the Two-view PA can be viewed as an ensemble of two online classifiers,
except that the two views are jointly optimized.

2 Related Work

Online learning has been researched for more than 50 years. Back in 1962, Block
proposed the seminal Perceptron [1] algorithm, while Novikoff [11] later provided
theoretical findings, which started the first wave of Artificial Intelligence research
in the mid twentieth century. The Perceptron is known to be one of the fastest
online learning algorithms. However, its performance is still far from satisfactory
in practice. Recently in 2005, Cesa-Bianchi et al. [2] proposed the Second-order
Perceptron (SOP) algorithm, which takes advantage of second-order data to
improve the accuracy of the original Perceptron. Compared with Perceptron,
SOP works better in terms of accuracy but requires more time to train.

In 2006, Crammer et al. [4] proposed another Perceptron-based algorithm,
namely the Passive Aggressive (PA) algorithm, which incorporates the margin
maximizing criterion of modern machine learning algorithms. They not only have
better performance than that of the SOP algorithm but also run significantly
faster. Moreover, algorithms that improved upon the PA algorithm include the
Passive-Aggressive Mahalanobis [10], the Confidence-Weight (CW) Linear Clas-
sifier [6], and its latest version, multi-class CW [5]. The CW algorithm updates
its weight by minimizing the Kullback-Leibler divergence between the new and
old weights. However, similar to the SOP algorithm, these algorithms are time
consuming compared to the first-order PA.

The PA algorithm works better than the SOP in terms of both speed and
accuracy. However, it can only process one data stream at one time. On the
other hand, in batch learning, Farquhar et al. [7] proposed a large margin two-
view Support Vector Machine (SVM) [3] algorithm called the SVM-2K, which is
an extension of the well-known SVM algorithm. The two-view learning algorithm
was shown to give better performance compared to the original SVM on different
image datasets [7]. Thus, SVM-2K provides the inspiration for our current work.
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3 Two-View Online Passive Aggressive Learning

3.1 Problem Setting

Online learning aims to learn the weight w of a linear prediction function
f(x) = sign(w · x). The online learning algorithm operates in rounds, as in-
put data arrives sequentially. Let xt ∈ Rn be an example arriving at round t.
The algorithm predicts its label ŷt ∈ {−1,+1}, after which it receives the true
label. If its prediction is correct, the learning process proceeds to the next round.
Otherwise, it suffers a loss �(yt, ŷt), and updates its weight w accordingly. The
loss can be modeled using the hinge-loss function, which equals to zero when the
margin exceeds 1, as follows.

�(wt; (xt, yt)) =

{
0 if yt(wt · xt) ≥ 1
1− yt(wt · xt) otherwise

(1)

The overall objective is to minimize the cumulative loss over the entire sequence
of examples. From this, Crammer et al. [4] formulated three optimization prob-
lems; one based on hard margin and two using soft margins, respectively named
PA, PA-I, and PA-II with weight update equations as follows.

wt+1 = wt + τtytxt

where the coefficient τt has one of three forms.

τt =
1− yt(wt · xt)

‖ xt ‖2
(PA)

τt = min
{
C,

1− yt(wt · xt)

‖ xt ‖2
}
(PA-I)

τt =
1− yt(wt · xt)

‖ xt ‖2 + 1
2C

(PA-II)

The performance of the soft margin based PA-I and PA-II algorithms are al-
most identical, and both performed better than the hard margin based PA al-
gorithm [4]. Therefore, in this work, our proposed algorithm will be developed
based on the PA-I algorithm.

For the two-view online learning setting, training data are triplets
(xA

t ,xB
t , yt) ∈ Rn × Rm × [−1,+1], which arrives in sequence where xA

t ∈ Rn is
the first view vector, xB

t ∈ Rm is the second view vector, and yt is their com-
mon label. The goal is to learn the coupled weights (wA

t ,wB
t ) of a hybrid model

defined as follows.

f(xA
t ,xB

t ) = sign
1

2
(wA

t · xA
t +wB

t · xB
t )
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To incorporate the hybrid classifier, we modify the loss function as follows.

�((wA
t ,wB

t ); (x
A
t ,xB

t , yt)) =⎧⎪⎨⎪⎩
0 if

1

2
yt(w

A
t · xA

t +wB
t · xB

t ) ≥ 1

1− 1

2
yt(w

A
t · xA

t +wB
t · xB

t ) otherwise

(2)

3.2 Relationship between Views

The primary challenge of multi-view learning is to properly define the related-
ness among the different views. In other words, the relatedness quantifies the
agreement among the views. Moreover, one could simply disregard the agree-
ment between the two prediction functions, but instead learn the hybrid predic-
tion function. Specifically, we want the hybrid prediction function f(xA

t ,xB
t ) =

sign1
2 (w

A
t ·xA

t +wB
t ·xB

t ) to optimally predict the correct labels of examples. In
this case, we do not really care whether f(xA

t ) or f(x
B
t ) can individually classify

the example correctly; what we want is for their equally weighted sum f(xA
t ,xB

t )
to correctly predict the class label.

Generally, we want the two views to agree with one another. This can be
enforced by minimizing their L1-norm or L2-norm disagreements as follows.

T∑
t=1

|wA
t · xA

t −wB
t · xB

t | or

T∑
t=1

(wA
t · xA

t −wB
t · xB

t )
2 (3)

where | · | denotes the absolute function. Here we use L1-norm instead of L2-
norm because it is harder to find a close-form solution for the latter. In the next
section, we will define an optimization problem based on the L1-norm relatedness
measure.

3.3 Two-View Passive Aggressive Algorithm

The ideal objective function should include both the new loss function in (2)
and the view relatedness function in (3). Similar to the PA algorithm, the new
weights of the two-view learning algorithm are updated based on the optimiza-
tion problem as follows.

(wA
t+1,w

B
t+1) = argmin

(wA,wB)∈Rn×Rm

1

2
‖ wA −wA

t ‖2 +
1

2
‖ wB −wB

t ‖2

+γ|ytwA · xA
t − ytw

B · xB
t |+ Cξ

s.t. 1− 1

2
(ytw

A · xA
t + ytw

B · xB
t ) ≤ ξ; ξ ≥ 0

where γ and C are positive agreement and aggressiveness parameters respec-
tively. While γ is used to adjust the importance of the agreement between the
two views, C is used to control the aggressiveness property of the PA algorithm.
Note that the yt multiplier in the agreement is there just for subsequent deriva-
tion convenience.
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For the absolute function, we have

|ytwA · xA
t − ytw

B · xB
t | = max(ytw

A · xA
t − ytw

B · xB
t , ytw

B · xB
t − ytw

A · xA
t )

Suppose z = |ytwA · xA
t − ytw

B · xB
t |, the above optimization problem can be

expressed as follows.

(wA
t+1,w

B
t+1) = argmin

(wA,wB)∈Rn×Rm

1

2
‖ wA −wA

t ‖2 +
1

2
‖ wB −wB

t ‖2 +γz + Cξ

s.t. 1− 1

2
(ytw

A · xA
t + ytw

B · xB
t ) ≤ ξ;

ξ ≥ 0;
z ≥ ytw

A · xA
t − ytw

B · xB
t ;

z ≥ ytw
B · xB

t − ytw
A · xA

t .

Next, we define the Lagrangian of the optimization problem as follows.

L =
1

2
‖ wA −wA

t ‖2 +
1

2
‖ wB −wB

t ‖2 +γz + Cξ

+τ
(
1− ξ − 1

2
(ytw

A · xA
t + ytw

B · xB
t )
)
− λξ

+α(ytw
A · xA

t − ytw
B · xB

t − z) + β(ytw
B · xB

t − ytw
A · xA

t − z)

=
1

2
‖ wA −wA

t ‖2 +
1

2
‖ wB −wB

t ‖2 +(γ − α− β)z + (C − λ− τ)ξ

+(α− β − 1

2
τ)ytw

A · xA
t + (β − α− 1

2
τ)ytw

B · xB
t + τ

(4)

where α, β, τ , and λ are positive Lagrangian multipliers.
Setting the partial derivatives of L with respect to the weight wA to zero, we

have,

0 =
∂L
∂wA

= wA−wA
t +(α−β− 1

2
τ)ytx

A
t ⇒ wA = wA

t − (α−β− 1

2
τ)ytx

A
t (5)

Similarly, for the other view we have

wB = wB
t − (β − α− 1

2
τ)ytx

B
t (6)

Setting the partial derivatives of L with respect to weight z to zero, we have

0 =
∂L
∂z

= (γ − α− β)⇒ α+ β = γ (7)

Setting the partial derivatives of L with respect to weight ξ to zero, we have,

0 =
∂L
∂ξ

= (C − λ− τ)⇒ λ+ τ = C (8)

Note that λ ≥ 0, thus we can conclude that 0 ≤ τ ≤ C.
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Substituting (5), (6), (7), and (8) into (4), we have,

L =
1

2
(α− β − 1

2
τ)2 ‖ xA

t ‖2 +
1

2
(β − α− 1

2
τ)2 ‖ xB

t ‖2

+(α− β − 1

2
τ)yt

(
wA

t − (α − β − 1

2
τ)ytx

A
t

)
xA
t

+(β − α− 1

2
τ)yt

(
wB

t − (α − β − 1

2
τ)ytx

B
t

)
xB
t + τ

= −1

2
(α− β − 1

2
τ)2 ‖ xA

t ‖2 −
1

2
(β − α− 1

2
τ)2 ‖ xB

t ‖2

+(α− β − 1

2
τ)ytw

A
t · xA

t + (β − α− 1

2
τ)ytw

B
t · xB

t + τ

(9)

Setting the partial derivatives of L with respect to weight τ to zero, we have,

0 =
∂L
∂τ

=
1

2
(α− β − 1

2
τ) ‖ xA

t ‖2 +
1

2
(β − α− 1

2
τ) ‖ xB

t ‖2

+1− 1

2
(ytw

A
t · xA

t + ytw
B
t · xB

t )

⇒ τ =
2

‖ xA
t ‖2 + ‖ xB

t ‖2
(
(α− β)(‖ xA

t ‖2 − ‖ xB
t ‖2) + 2�t

)
where the loss �t = 1− 1

2
(ytw

A
t · xA

t + ytw
B
t · xB

t ). For the sake of simplicity, we

denote,

a =
2

‖ xA
t ‖2 + ‖ xB

t ‖2
and b =‖ xA

t ‖2‖ xB
t ‖2 (10)

As mentioned in Equation (8), we have τ +λ = C and λ ≥ 0 so we can conclude
that τ ≤ C. Now τ can be determined as follows:

τ = min
{
C, a

(
(α− β)(‖ xA

t ‖2 − ‖ xB
t ‖2) + 2�t

)}
(11)

Substituting (11) into (9), we have,

L = −1

2
a
(
(α − β) ‖ xB

t ‖2 −�t

)2

‖ xA
t ‖2 −

1

2
a
(
(β − α) ‖ xA

t ‖2 −�t

)2

‖ xB
t ‖2

+a((α− β) ‖ xB
t ‖2 −�t)ytw

A
t · xA

t + a((β − α) ‖ xA
t ‖2 −�t)ytw

B
t · xB

t

+a
(
(α− β)(‖ xA

t ‖2 − ‖ xB
t ‖2) + 2�t

)
(12)

Setting the partial derivatives of L with respect to weight α to zero, we have,

0 =
∂L
∂α

= a
(
(α− β) ‖ xB

t ‖2 +�t

)
b + a

(
(β − α) ‖ xA

t ‖2 +�t

)
b

+a(‖ xB
t ‖2 ytw

A
t · xA

t − ‖ xA
t ‖2 ytw

B
t · xB

t + ‖ xA
t ‖2 − ‖ xB

t ‖2)
= a

(
(α− β) ‖ xB

t ‖2 +�t)
)
b+ a

(
(β − α) ‖ xA

t ‖2 +�t)
)
b

+a(‖ xA
t ‖2 �Bt − ‖ xB

t ‖2 �At )

where �At = 1 − ytw
A
t · xA

t and �Bt = 1 − ytw
B
t · xB

t . We also have α + β = γ.
Therefore, we can conclude that
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α =
γ

2
+

1

2

1

‖ xA
t ‖2 + ‖ xB

t ‖2
( �Bt
‖ xB

t ‖2
− �At
‖ xA

t ‖2
)

(13)

Similarly, we have

β =
γ

2
− 1

2

1

‖ xA
t ‖2 + ‖ xB

t ‖2
( �Bt
‖ xB

t ‖2
− �At
‖ xA

t ‖2
)

(14)

Recall that we have α ≥ 0, β ≥ 0, and α+β = γ. Hence, we can conclude that α ≤
γ and β ≤ γ. Finally, we obtain our Two-view Passive Aggressive formulation as
shown in Algorithm 1. The optimal value of the two tuning parameters C and
γ can be estimated via cross validation in practice.

Algorithm 1. Two-view Passive Aggressive Algorithm

Input:
C = positive aggressiveness parameter
γ = positive agreement parameter

Output:
None

Process:
Initialize wA

1 ← 0; wB
1 ← 0;

for t = 1, 2, . . . do
Receive instances xA

t ∈ Rn and xB
t ∈ Rm

Predict ŷt = sign
1

2
(wA

t · xA
t +wB

t · xB
t )

Receive correct label yt ∈ {−1,+1}
Suffer loss �t ← max

{
0, 1− yt

1

2
(wA

t · xA
t +wB

t · xB
t )
}

if �t > 0 then
Set �At ← 1− ytw

A
t · xA

t ; �
B
t ← 1− ytw

B
t · xB

t

α← max
{
0,min{γ, 1

2

(
γ +

�Bt
‖xB

t ‖2 − �At
‖xA

t ‖2

‖ xA
t ‖2 + ‖ xB

t ‖2
)
}
}

β ← max
{
0,min{γ, 1

2

(
γ −

�Bt
‖xB

t ‖2 − �At
‖xA

t ‖2

‖ xA
t ‖2 + ‖ xB

t ‖2
)
}
}

τt ← min
{
C,

(α− β)(‖ xA
t ‖2 − ‖ xB

t ‖2) + 2�t
‖ xA

t ‖2 + ‖ xB
t ‖2

}
Update wA

t+1 ← wA
t − (α− β − 1

2
τt)ytx

A
t

wB
t+1 ← wB

t − (β − α− 1

2
τt)ytx

B
t

end

end
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4 Performance Evaluation

In this section, we evaluate the online classification performance of our pro-
posed Two-view PA on 3 benchmark datasets, Ads [8], Product Review [9], and
WebKB [12]). The single-view PA algorithm serves as the baseline. We use a
different PA model for each view, naming them PA View 1 and PA View 2. We
also concatenate the input feature vectors from each view to form a larger fea-
ture set, and report the results. We denote this alternative approach as PA Cat.
The dataset summary statistics are shown in Table 1. We note that the Ads and
WebKB datasets are very imbalanced, which led us to use F-measure instead
of accuracy to evaluate the classification performance. To be fair, we choose
C = 0.1 and γ = 0.5 for all PA algorithms. All experiments were conducted
using 5-fold cross validation.

Table 1. Summary statistics of 3 datasets

View Sample Count
Name #Dimension #Positive #Negative #Total

Ads img & dest url 929 459 2820 3279
alt & base url 602

WebKB page 3000 230 821 1051
link 1840

Product Review lexical 2759 1000 1000 2000
formal 5

4.1 View Difference Comparison

At round t, the view difference is defined as |wA
t · xA

t −wB
t · xB

t |, which shows
the difference in prediction output between the two views. Figures 1(a), 2(a),
and 3(a) show the view differences for the three datasets, respectively.

Figures 1(b), 2(b), and 3(b) plot the cumulative view difference at round t,
1
T

∑T
t=1 |wA

t · xA
t − wB

t · xB
t |. This measures the relationship between the two

views as the algorithm adapts to the dataset. The smaller it is, the more related
the two views.

Compared to the Product Review and WebKB datasets, the view difference
for the Ads dataset varies very much. This means that the agreement between the
two views is not stable. As expected, its cumulative view difference turns out to
be the largest among the three datasets. Hence, we would expect a classifier based
on simple concatenation of the two views to yield poor classification performance.
This is in fact confirmed subsequently in the poor PA Cat result for the Ads
dataset in Table 2.

On the other end of the spectrum, both the average and cumulative view
difference for the WebKB dataset is the smallest. Therefore, one should be able
to combine the two views into a single view and just run a simple PA algorithm
to obtain a decent classification performance. This hypothesis is confirmed in
Table 2, where the PA Cat result outperforms either view by more than 2%.
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4.2 Ads Dataset

The Ads dataset was first used by Kushmerick [8] to automatically filter ad-
vertisement images from web pages. The Ads dataset comprises more than two
views. In this experiment, we only use four views including image URL view,
destination URL view, base URL view, and alt view. The first and second orig-
inal views were concatenated as View 1 and the remaining two original views
were concatenated as View 2. This dataset has 3279 examples, including 459
positive examples (ads), with the remaining as negative examples (non-ads).
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Fig. 1. View Difference of the Ads Dataset

Table 2. F1 measure on 3 datasets

Dataset PA View 1 PA View 2 PA Cat Two-view PA

Ads 83.69 ± 3.04 76.01 ± 2.88 81.08 ± 1.99 85.74± 1.97

Product Review 86.46 ± 4.59 69.20 ± 5.20 86.87 ± 3.99 88.54± 1.85

WebKB 92.83 ± 1.72 92.71 ± 3.66 94.97 ± 1.80 97.50± 1.80

The experimental results on the Ads dataset are shown in Table 2, where the
F-measure of the proposed algorithm is the best. The Two-view PA performed up
to 2% better than the runner-up, PA View 1. As previously discussed, PA View
1 is better than PA Cat since the two views have quite different classification
outputs.

4.3 Product Review Dataset

The Product Review dataset is crawled from popular online Chinese cell-phone
forums [9]. The dataset has 1000 true reviews and 1000 spam reviews. It consists
of two sets of features: one based on review content (lexical view) and the other
based on extracted characteristics of the review sentences (formal view).
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The experimental results on this dataset are shown in Table 2. Again, Two-
view PA performs better than the other algorithms. The improvement is more
than 2% compared with the runner-up. In this dataset, PA Cat performed better
than either view alone. This is expected since the view difference between the
two views are quite small, as shown in Figure 2.

Moreover, PA Cat is only 0.41% better than the best individual PA View 1.
This is because PA Cat does not take into account the view relatedness informa-
tion. The best performer here is the Two-view PA, which beats the runner-up
by almost 2%.

4.4 WebKB Course Dataset

The WebKB course dataset has been frequently used in the empirical study of
multi-view learning. It comprises 1051 web pages collected from the computer
science departments of four universities. Each page has a class label, course or
non-course. The two views of each page are the textual content of a web page
(page view) and the words that occur in the hyperlinks of other web pages point-
ing to it (link view), respectively. We used a processed version of the WebKB
course dataset [12] in our experiment.
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Fig. 2. View Difference of the Product Review Dataset

The performance of PA Cat here is also better than the best single view PA.
However, the view difference of Two-view PA is much smaller than that of the
PA algorithm as shown in Figure 3. Hence, Two-view PA performed more than
3% better than PA Cat, and 5% better than the best individual view PA.

Compared to the Ads and Product Review datasets, the view difference on
the WebKB dataset is the smallest. It means that we are able to combine the
two views into a single view. Therefore, the PA Cat performance on the WebKB
dataset is improved more than 2% compared with the individual view PA.
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Fig. 3. View Difference of the WebKB Dataset

5 Conclusion and Open Problems

In this paper, we proposed a hybrid model for two-view passive aggressive al-
gorithm, which is able to take advantage of multiple views of data to achieve
an improvement in overall classification performance. We formulate our learning
framework into an optimization problem and derive a closed form solution.

There remain some interesting open problems that warrant further investiga-
tion. For one, at each round we could adjust the weight of each view so that the
better view dominates. In the worst case where the two views are completely
related or co-linear, e.g., view 1 is equal to view 2, our Two-view PA degener-
ates nicely into a single view PA. We would also like to extend Two-view PA to
handle multiple views and multiple classes. Formulating a multi-view PA is non-
trivial, as it involves defining multi-view relatedness and minimizing (V choose
2) view agreements, for a V-view problem. Formulating a multi-class Two-view
PA should be more feasible.
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Abstract. In named entity recognition (NER) for biomedical literature,
approaches based on combined classifiers have demonstrated great performance
improvement compared to a single (best) classifier. This is mainly owed to suf-
ficient level of diversity exhibited among classifiers, which is a selective prop-
erty of classifier set. Given a large number of classifiers, how to select different
classifiers to put into a classifier-ensemble is a crucial issue of multiple classifier-
ensemble design. With this observation in mind, we proposed a generic genetic
classifier-ensemble method for the classifier selection in biomedical NER. Vari-
ous diversity measures and majority voting are considered, and disjoint feature
subsets are selected to construct individual classifiers. A basic type of individ-
ual classifier – Support Vector Machine (SVM) classifier is adopted as SVM-
classifier committee. A multi-objective Genetic algorithm (GA) is employed as
the classifier selector to facilitate the ensemble classifier to improve the overall
sample classification accuracy. The proposed approach is tested on the bench-
mark dataset – GENIA version 3.02 corpus, and compared with both individual
best SVM classifier and SVM-classifier ensemble algorithm as well as other ma-
chine learning methods such as CRF, HMM and MEMM. The results show that
the proposed approach outperforms other classification algorithms and can be a
useful method for the biomedical NER problem.

1 Introduction

With the wide applications of information technology in biomedical field, biomedical
technology has developed very rapidly. This in turn produces a large amount of biomed-
ical data such as human gene bank. Consequently, biomedical literature available from
the Web has experienced unprecedented growth over the past few years. The amount
of literature in MEDLINE grows by nearly 400,000 citations each year. To mine infor-
mation from the biomedical databases, a helpful and useful pre-processing step is to
extract the valuable biomedical named entity. In other words, this step needs to identify
some names from scientific text that is not structured as traditional databases and clas-
sify these different names. As a result, biomedical named entity recognition (BioNER)
becomes one of the most important issues in automatic text extraction system. Many
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popular classification algorithms have been applied to this bioNER problem. These
algorithms include Support Vector Machine (SVM) [1,18,19], Conditional Random
Fields (CRFs) [3], the Hidden Markov Model (HMM) [5], the Maximum Entropy (ME)
[15], decision tree [16], and so on. While successful, each classifier has its own short-
comings and none of them could consistently perform well over all different datasets.
To overcome the shortcomings of individual methods, ensemble method has been sug-
gested as a promising alternative.

Ensemble method is more attractive than individual classification algorithm in that it
is an effective approach for improving the prediction accuracy of a single classification
algorithm. An ensemble of classifiers is a set of classifiers whose individual decisions
are combined in some way (typically by weighted or unweighted voting) to classify new
examples [8,11]. One of the most active areas of research in supervised learning has
been to study methods for constructing good ensembles of classifiers. The most impor-
tant property of successful ensemble methods is if the individual classifiers have error
rate below 0.5 when classifying sample data while these errors are uncorrelated at least
in some extent. That is, a necessary and sufficient condition for an ensemble of classi-
fiers over its individual members is that the classifiers are accurate and diverse. Several
recent studies indicate that the ensemble learning could improve the performance of a
single classifier in many real world text classification [6,7,9,10,12,13,14,23,24].

In this paper, we propose a generic genetic classifier-ensemble approach, which em-
ploys multi-objective genetic algorithm and SVM based classifiers to construct an en-
semble classifier. Each SVM based classifier is trained on a different feature subset
and used as the classification committee. The rest of the paper is organized as follows:
Section 2 discusses the generic genetic classifier-ensemble approach in detail. Experi-
mental results and analysis are provided in Section 3. Conclusions and future work are
presented in Section 4.

2 The Generic Genetic Classifier-Ensemble Approach

Classifier-ensemble is a popular technique in pattern recognition domain. It reflects
the generalization accuracy if an ensemble depends not only on the performances of
the individual classifier but also on the diversity among the classifiers [6,8,10,7,12,22].
Therefore, a classifier-ensemble system is usually made up of two major components:
the classifiers forming the ensemble members and the combination scheme. In order
to achieve this goal, we develop a generic genetic classifier-ensemble algorithm. In the
proposed approach, SVM is used as the basic classifier and the genetic algorithm was
used to search the optimal solution of weighted classifier combination.

2.1 Feature Set and SVM Based Classifier

Since the main issue using machine learning method for BioNER task is to design a
proper feature set, choosing the suitable feature is very important for improving the
performance of the system. Here various types of features have been considered for
bioNER task in different combinations (see Table 1).
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– Word: All words appearing in the training data.
– Orthography: Table 2 shows the orthographic features. If the token has more than one feature,

then we used the feature list of Table 2 from left to right and from up to down orderly.
– Prefix: Uni-,bi-, and tri-grams(in letters) of the starting letters of the current token.
– Suffix: Uni-,bi-, and tri-grams(in letters) of the ending letters of the current token.
– Lexical: POS tags, base phrase classes, and base noun phrase chunks. POS tags are generated

by Geniatagger1.
– Preceding class: The prediction of the classifier for the preceding tokens are computed dy-

namically and used as feature.
– Surface word: Surface words forming a list of tokens that are tagged as an entity in the

training data. In our system, the surface word includes simple surface word lists, name aliases
and trigger words [17,21].

Table 1. The features in our generic genetic classifier-ensemble system

Feature Value
words all words in the training data
orthographic capital, symbol, etc.(see Table 2)
prefix 1,2, and 3 gram of starting letters of word
suffix 1,2, and 3 gram of ending letters of word
lexical POS tags, base phrase classes, and base noun phrase chunks
preceding class -4,-3, -2, -1
surface word simple surface word lists, name aliases and trigger words

Table 2. Orthographic features

Feature Example Feature Example
DigitNumber 15 Greek alpha
SingleCap M CapsAndDigits I2
TwoCaps RalGDS LettersAndDigits p52
InitCaps Interleukin LowCaps kappaB
Lowercase kinases Hyphen -
Backslash / OpenSquare [
CloseSquare ] Colon :
SemiColon ; Pecent %
OpenParen ( CloseParen )
Comma , FullStop .
Determiner the Conjunction and
Other * @

1 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
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Table 3. The parameters of Yamcha

Parameter Value
kernel polynomial
degree of kernel 1,2,3
direction of parsing forward, backward
windows position 9 words(position -4, -3,-2,-1,0,+1,+2,+3,+4)
multi-class pair-wise

Next, due to the fact that support vector machines(SVMs) are powerful methods
for learning a classifier and have been applied successfully to many NLP tasks, SVMs
construct the base classifier in BioNER. The general-purpose text chunker named Yet
Another Multipurpose Chunk Annotator-Yamcha2 uses TinySVM3 for learning the clas-
sifiers. Yamcha is utilized to transform the input data into feature vectors usable by
TinySVM [18,19]. Table 3 shows the Yamcha parameters. Accordingly, each classifier
is unique in at least one of the following properties: window size, degree of the poly-
nomial kernel, parsing direction as well as feature set. Consequently, this constructs 46
individual SVM classifier committees [17,20,21].

2.2 Generic Genetic Classifier-Ensemble Algorithm

The genetic algorithm (GA) was developed in the 1970s by Holland as an effective
evolutionary optimization method [25]. In GA the two core elements are chromosome
and fitness. Chromosome is used to encode representation of the optimal solution to the
classifier-ensemble problem. Fitness is designed to measure the chromosome’s perfor-
mance.

Genetic Classifier-Ensemble-I. The basic idea behind the genetic classifier-ensemble-
I is that different classes in each classifier differ with contributing degrees of prediction
classes. In other words, each class in each classifier has been assigned a weight which
corresponds with the contributing degree of prediction class. To use genetic algorithm,
we first need to represent the problem domain as a chromosome. Here, we want to find
an optimal set of weight for classifier ensemble scheme shown in Figure 1. Assume
that there are totally N tags (classes) corresponding to the named entities considered
in the BioNER task. Set the total number of available classifiers denoted by M. The
optimal weight solution of the classifier ensemble scheme is encoded in the form of a
weight chromosome,which has N*M genes. First N genes belong to the first classifier
and the next N genes the second classifier and so on. The encoding of a chromosome is
illustrated in Figure 1. Each value of gene in the chromosome is initialized to a small
random number, said within the range[0,1]. Thus, we obtain a chromosome.

The second step is to define a fitness function for evaluating the chromosome’s per-
formance. This function must estimate the performance of a given classifier-ensemble

2 http://cl.aist-nara.ac.jp/∼taku-ku/software/yamcha/
3 http://chasen.org/∼taku/software/TinySVM/
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Fig. 1. Genetic Classifier-Ensemble-I

problem with weights. We define the fitness of a chromosome as the full object F-score
provided by the weighted majority voting type decision combination rule [12,17,22].
In this rule, the class receiving the maximum combined score is selected as the joint
decision. By the definition of the combined score of a particular class,

f(ci) =

M∑
m=1

Fm · w(m, i)

we obtain the fitness as follows:

fn(cl) = max(f(c1), f(c2), · · · , f(cn))

where M denotes the total number of classifiers and Fm denotes the full object F-score
of mth classifier. w(m,i)is assigned to a weight value in the gene of ith class of mth
classifier in the chromosome.

The third step is to choose the genetic operators-crossover and mutation. A crossover
operator takes two parent chromosomes and creates two children with genetic material
from both parents. In the proposed approach, either uniform or two point crossover
method is randomly selected with equal probability. The selected operator is applied
with a probability pcross to generate two offspring. A mutation operator randomly se-
lects a gene in offspring chromosomes with a probability pmut and adds a small ran-
dom number within the range[0,1] to each weight in the gene. In addition, we still need
to specify the tournament size,elitism, population size and the number of generations.
Tournament size is used in tournament selection during the reproduction. Elitism is ap-
plied at the end of each iteration where the best elit size% of the original population are
used to replace those in the offspring producing the lowest fitness.

Genetic Classifier-Ensemble-II. The basic principle behind the genetic classifier-
ensemble-II is that different classifiers have different contributing degrees of prediction
of classes. In other words, each classifier can be assigned a weight which corresponds
with the contributing degree of prediction of class. Suppose each chromosome is en-
coded as a weight string having M genes, one for each classifier(see Figure 2). If the
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value of a gene is wm, this means that the contributing degree of the mth classifier in
this ensemble is wm. Accordingly, the combined score of a given class can be redefined
as:

f(ci) =

M∑
m=1

Fm · wm

Fig. 2. Genetic Classifier-Ensemble-II

At the same time, all parameters of this algorithm described above including pop-
ulation size, the number of generations, crossover and mutation rate etc. are kept the
same.

Genetic Classifier-Ensemble-III. Based on the above consideration in both subsec-
tions 2.2.1 and 2.2.2, not only contributing degrees of prediction classes among
different classes in the same classifier are different, but also contributing degrees of
prediction classes among different classifiers differ. Thus, the chromosome is made
up of the chromosome in genetic classifier-ensemble-I and the chromosome in genetic
classifier-ensemble-II, and has (N+1)*M genes (see Figure 3). Therefore, the combined
score of a given class is determined as:

f(ci) =

M∑
m=1

Fm · w(m, i) · wm

Similarly, all the other parameters are kept the same.
After given the definition of chromosome and fitness as well as all parameters, the

complete genetic classifier-ensemble algorithm can be described in the following steps:

1. Generate randomly an initial chromosome population of size MAX POPULATION
2. For each chromosome in the population

2.1 Apply weighted majority to all classifiers vector
2.2 Compute full object F-score as fitness of the chromosome
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Fig. 3. Genetic Classifier-Ensemble-III

3. For generation index in 1 ...MAX GENERATION
3.1 For chromosome index in 1 ...MAX POPULATION

– Select two parents from the old population
– Crossover the two parents to produce two offspring with probability pcross
– Mutate each gene of each offspring with probability pmut

– Apply weighted majority to each of the offspring
– Compute full object F-score as fitness of each offspring

3.2 Replace the worst ELIT SIZE% of the offspring with the best chromosomes from the
original population to form the new population

4. Select the best chromosome as the resultant ensemble

Figure 4 presents the flow of the proposed generic genetic classifier-ensemble
algorithm.

Fig. 4. The flow of the proposed generic genetic classifier-ensemble algorithm

The overall system architecture is illustrated in Figure 5. The best-fitting solution
of weighted classifier-ensemble is obtained by using the classifier outputs generated
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through three-fold cross-validation on the training data. In our proposed algorithm, the
training data is initially partitioned into three parts. Each classifier is trained using two
parts and then tested with the remaining part. This procedure is repeated three times and
the whole set of training data is used for computing the best-fitting solution. Multi-class
SVM is used for all individual classifier. The major differences among the individual
classifiers are in their modeling parameter values and feature sets. Each classifier is
different from the rest in at least one modeling parameter or the feature set. During
testing, the outputs of the individual classifiers are combined by using the computed
best-fitting solution of weight classifier-ensemble.

Fig. 5. Overall system architecture

3 Experiments and Results

To conduct the experiment, we use the latest GENIA4 version 3.02 corpus provided by
the shared task in COLING 2004 JNLPBA. The corpus includes the training dataset
and the testing dataset. The training dataset consists of 2000 MEDLINE abstracts of
the GENIA corpus with named entities in IOB2 format. The testing dataset consists
of 404 abstracts. There are 18546 sentences and 492551 words in the training dataset
and 3856 sentences and 101039 words in the testing dataset. Each word is tagged with
“B-X”, “I-X”, or “O” to indicate that the word is at the “beginning”(B) or “inside”(I)
of a named entity of type X, or “outside”(O) of a named entity. For BioNER task, the
named entity types are DNA, RNA, cell line, cell type, and protein. Table 4 shows the
number of 5 different biomedical named entities in this corpus. For each entity, two
different tags(classes) result in 10 tags for the named entities and one additional tag
for all non-named entities called class. Accordingly, this translate to a total of N=11
classes. Besides, we present M=46 single SVM base classifier committees on the basis

4 http://www-tsujiii.is.s.u-tokyo.ac.jp/GENIA/
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of different combination within feature set and Yamcha parameter. The experimental
performance is evaluated by the standard measures, namely precision, recall and F-
score which is the harmonic mean of precision and recall.

Table 4. Number of different biomedical named entities in GENIA 3.02 corpus

Types Train data Test data
DNA 9,534 1,056
RNA 951 118
Cell line 3,830 500
Cell type 6,718 1,921
Protein 30,269 5,067
Total 51,302 8,662

In the simulation experiments, The tournament size, crossover probability, mutation
probability and elitism ratio are empirically computed as 40, 0.7, 0.02, and 20%, respec-
tively. The population size of the generic genetic classifier-ensemble algorithm is set to
100. This means that one hundred different ensemble candidates evolve simultaneously.
The algorithm is run for 10000 iterations. The weight classifier-ensemble correspond-
ing to the chromosome with the highest fitness value in the last generation is selected
as the optimal solution. We perform simulation experiments repeatedly by changing the
weight values of these chromosomes and selected the weight genes of the chromosome
providing the best performance of BioNER on the training data. In the testing, the test
data is measured by using the optimal solution. This solution provides the best-fitting
ensemble parameter with weights in the simulation experiments.

Table 5 shows the performance of the proposed three genetic classifier-ensemble
scheme on precision, recall, and Fscore for BioNER. In this table, the genetic classifier-
ensemble-III gets the better results compared with the genetic classifier-ensemble-I and
genetic classifier-ensemble-II, where the performance of precision, recall and Fsore
reach 75.65%, 78.52%, and 77.85% respectively.

It can be seen that in Table 6 we compare our best result with those of the recent work
that employ support vector machines as classifier. The individual best SVM-classifier
has the full feature set and optimal setting parameters[20,21]. Dimililer et al. used a
vote-based classifier selection approach to construct a classifier ensemble and effec-
tive post-processing techniques for biomedical named entity recognition task[17,20,21].
Compared with the individual best SVM-classifier and SVM-classifier ensemble, our
method outperforms them. It means that our generic genetic classifier-ensemble ap-
proach which searched the best-fitting ensemble parameter with weights can be power-
ful and efficient to combine orderly individual SVM base classifier with their strengths
through giving the corresponding weights and to avoid individual classifier’s weakness.

Table 7 shows that the best result of our experiment outperforms that of other indi-
vidual classifier algorithms [26]. Their approaches include the Hidden Markov Model
(HMM) [5], the Maximum Entropy Markov Model (MEMM) [4] and the Conditional
Random Field (CRF) [3], which use deep knowledge resources with extra costs in
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Table 5. The performances of different biomedical named entities on three genetic classifier-
ensemble schemes

Genetic Classifier-ensemble-I Genetic Classifier-ensemble-II Genetic Classifier-ensemble-III

Types Precision Recall F-score Precision Recall F-score Precision Recall F-score

DNA 73.54 74.25 72.92 70.68 70.98 70.76 74.65 75.59 75.21
RNA 74.33 75.85 75.22 71.15 70.25 70.46 75.88 76.79 76.42

Cell line 72.50 71.56 72.12 68.25 67.20 67.82 74.60 73.82 74.36
Cell type 73.15 72.87 72.04 69.62 72.58 70.37 74.85 75.39 75.06
Protein 83.36 76.58 79.65 80.56 71.25 75.86 84.58 80.06 83.57

Total 74.33 73.52 73.86 71.28 71.02 71.16 75.65 78.52 77.85

Table 6. The comparison with individual best SVM classifier and Vote-based SVM-classifier
selection for bioNER task

Approaches Precision Recall F-score
Single best SVM-classifier[20,21] 69.40 70.60 69.99
Vote-based SVM-classifier selection[20,21] 71.74 73.76 72.74
Genetic classifier-ensemble-III 75.65 78.52 77.85

Table 7. The comparison with other different individual classifier algorithms on bioNER task

Approaches Precision Recall F-score
Zhou and Su[1] 69.42 75.99 72.55
Finkel et al.[2] 68.56 71.62 70.06
Settles[3] 69.30 70.30 69.80
Song et al.[4] 64.80 67.80 66.30
Zhao[5] 61.00 69.10 64.80
Genetic classifier-ensemble-III 75.65 78.52 77.85

pre-processing and post-processing. For instance, Zhou and Su [1] used name alias
resolution, cascaded entity name resolution, abbreviation resolution and an open dic-
tionary (around 700,000 entries). Finkel et al. used gazetteers and web-querying [2].
Settles used 17 lexicons that include Greek letters, amino acids, and so forth [3]. In
contrast, our system did not include these similar processing.

4 Conclusion and Future Work

We proposed a generic genetic classifier-ensemble approach to recognizing the biomed-
ical named entities. The contributions of this paper are that a novel genetic classifier-
ensemble algorithm with weights is provided to deal with bioNER task and improve the
BioNER performance compared with both of SVM-based classifiers as well as other
individual machine learning algorithms. In the future, we will incorporate much more
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effective features and more classifiers using different machine learning algorithms in
our ensemble approach, and include some post-processing techniques and comparison
of computational cost.
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Abstract. Ensemble methods (EMs) have become increasingly popular
in data mining because of their efficiency. These methods(EMs) gener-
ate a set of classifiers using one or several machine learning algorithms
(MLAs) and aggregate them into a single classifier (Meta-Classifier, MC).
Of the MLAs, k-Nearest Neighbors (kNN) is one of the most well-known
used in the context of EMs. However, handling the parameter k can
be difficult. This drawback is the same for all MLA that are instance
based. Here, we propose an approach based on neighborhood graphs as
an alternative. Thanks to these related graphs, like relative neighborhood
graphs (RNGs) or Gabriel graphs (GGs), we provide a generalized ap-
proach with less arbitrary parameters. Neighborhood graphs have never
been introduced into EM approaches before. The results of our algo-
rithm : Neighborhood Random Classification are very promising as they
are equal to the best EM approaches such as Random Forest or those
based on SVMs. In this exploratory and experimental work, we provide
the methodological approach and many comparative results.

Keywords: Ensemble methods, neighborhood graphs, relative neigh-
borhood Graphs, Gabriel Graphs, k-Nearest Neighbors.

1 Introduction

Ensemble methods (EMs) have proved their efficiency in data mining, especially
in supervised machine learning (ML). An EM generates a set of classifiers using
one or several machine learning algorithms (MLA) and aggregates them into a
single classifier (meta-classifier, MC) using, for example, a majority rule vote.
Many papers [3,18,2,14] have shown that a set of classifiers produces a better
prediction than the best among them, regardless of the MLA used. Theoretical
and experimental results have encouraged the implementation of EM techniques
in many fields of application such as physics [6], face recognition [17], ecology [12],
recommender systems [9] and many others too numerous to mention here. The
efficiency of EMs lies in the fact that aggregating different and independent
classifiers reduces the bias and the variance of the MC [8,1,5,3], which are two
key concepts for effective classifiers.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 98–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Neighborhood Random Classification 99

Instance based (IB) MLAs such as k-Nearest Neighbors (kNN) are very popu-
lar because of their straightforwardness. To implement them, it is simply neces-
sary to define a dissimilarity measure on the set of observations and fix the value
of k. Thus, using the kNN principle as an EM algorithm is immediate. How-
ever, handling the parameter k can be difficult for some users. To simplify this
problem, we can use approaches based on neighborhood graphs as alternatives.
For example, Relative Neighborhood Graphs (RNG) or Gabriel Graphs (GG)
are “good” candidates. Like kNN , for an unlabeled observation, the classifier,
based on neighborhood graphs, assigns a label according to the labels in the
neighborhood. As an example, we can simply use the majority rule vote in the
neighborhood of the unlabeled observation. While there have been many studies
using kNN in the context of EM, we did not find any study that assesses the ad-
vantages of such neighborhood graphs, based more particularly on RNGs, in EM
approaches. In this paper, we propose an EM approach based on neighborhood
graphs. We provide comparisons with many EM approaches based on kSVM,
Decision Tree (Random Forest), kNN etc. We carried out our experiments on
an R platform.

This paper is organized as follows. In section 2, we introduce and recall certain
notations and definitions. In section 3, we introduce the EMs based on neigh-
borhoods. Besides the classic kNN neighborhood, we will present RNG and GG
neighborhoods. Section 4 is devoted to evaluations and comparisons. Section 5
provides the main conclusions of this study.

2 Basic Concepts

2.1 Notations

Let Ω be a set of individuals represented by p attributes Xj, j = 1, . . . , p in a
representing space �, and a membership class Y ∈ K = {y1, . . . , yK}. Let X
be the function mapping an individual to its representation and Y the function
mapping to the class :

X : Ω −→ �
ω �−→

(
Xj(ωi)

)
j=1,...,p

Y : Ω −→ K
ω �−→ y

Let us consider a training sample El of n individuals (ωi)1...n. For an individual
ωi, Xi denotes the vector (Xj(ωi))j=1,...,p and Yi its membership class Y (ωi).
Below, we will refer to an individual ω or to a point X(ω) with the same meaning,
indistinguishably.

For the sake of illustration, we will use the toy example shown in Table 1.
This is a two-class data set of 17 individuals mapped into a two-dimensional
space � = IR2.In the figure, the class y1 = 1 is indicated by a bold dot and the
class y2 = 2 by an empty dot.
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Table 1. Set of points in IR2 with two classes

El X1 X2 Y El X1 X2 Y

ω1 2.13 2.33 2 ω10 0 2.33 2
ω2 2.13 4.11 2 ω11 5.64 5.17 2
ω3 2.22 1.76 2 ω12 7.87 2.33 1
ω4 3.37 6.88 1 ω13 5.64 7.5 1
ω5 6.77 0.67 1 ω14 4.53 8.1 1
ω6 4.53 1.16 1 ω15 3.37 4.31 1
ω7 3.37 0 1 ω16 5.64 4.11 2
ω8 1.8 6.47 2 ω17 7.87 4.11 2
ω9 0 5.77 2 1
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The goal of any machine learning algorithm is to produce a classifier capable
of predicting, with high accuracy, the membership class Y (ω) for any individual
ω whose attribute values X(ω) are known. Basically, the prediction is based on
the knowledge we can obtain on the probability distribution:

P (Y/X) = (p(Y = yk/X); k = 1, . . . ,K) .

Generally, a classifier φ helps, for all individuals ω, to estimate P̂ which is the
membership probability vector for all classes. Thanks to the learning sample El,
the predicted membership class is ŷk the most likely one, determined as follows:

ŷk is such that p̂(Y = ŷk/X) = max
k=1,...,K

p̂(Y = yk/X)

By thresholding at the maximum value for this vector, the membership class
can be represented by a zero vector except for the most likely class by a value
of 1 at the corresponding rank: P̂ = (0, . . . , 0, 1, 0, . . . , 0). If the classifier φ is
considered as being reasonably reliable, then predicting of the membership class
for an individual ω is φ(X(ω)) ∈ {y1, . . . , yk, . . .}.

2.2 Neighborhood Structure

There are many types of neighborhood that can be used to build a classifier.
Among the most well known are:

– The well-known k-nearest neighbors;
– The ε-neighbors, which are defined by the subset of El that are in the ball

of radius ε, centered on the individual, i.e. a point in Euclidean space;
– The neighborhood regions brought about by a decision tree where each leaf

defines a subregion of the space. An individual that falls in a specific leaf
has, as neighbors, those of the learning sample located in the same leaf.

– Parzens window neighbors;
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– The neighbors in random spaces. For example, we can cite the weak models
approach [7] where neighbors are obtained after a random projection along
axes.

– The neighbors in the sense of a specific property. For example, Gabriel
Graph (GG) neighbors are given by the subset of individuals of the learning
sample that fulfill a certain condition. Likewise, we can define the relative
neighbors (RN), the minimum spanning tree’s (MST) neighbors or the De-
launay’s polyhedron neighbors and so forth [13];

2.3 Neighborhood Classifiers

The neighborhood classifiers depend on three components :

1. Neighborhood set P : the set of all subsets of El . This is the set of all
possible neighbors to which each individual will be connected.

2. The neighborhood function V : this defines the way in which an individual
is linked to an element in the neighborhood set:

V : � −→ P
X �−→ v = V(X)

This function links any point X to a subset of El which contains its
neighbors.

3. The decision rule C: this leads to probability distribution of the classes

C : � × P −→ SK

X, v �−→ Πv(X) = (p1, p2, . . . , pK)

where SK =
{
(p1, . . . , pK) ∈ [0, 1]K s.t.

∑
pk = 1

}
Hence, we can define a neighborhood classifier φ as based on a combination of
the triplet (P ,V , C) :

φ(ω) = ΠV(X(ω))(X(ω))

2.4 Partition by Neighborhood Graphs

Here we focus on geometrical graphs, We thus build P using neighborhood
graphs, such as Voronoi diagrams [13] or their dual (the Delaunay poly-
hedral), Gabriel graphs [10], relative neighbors graphs [16] or the minimum
spanning tree [11]. In such graphs, points are linked according to a specific prop-
erty. Below we give the properties that define RNGs and GGs:

For a given distance measure d, a learning sample El and a set of individuals
ω1, ω2, . . ., any two points ωi and ωj are linked by the following rules :

– Gabriel graph (GG) :

ωj ∈ VGG(ωi)⇐⇒ ∀ω ∈ El − {ωi, ωj} d(ωi, ωj) ≤
√

d2(ωi, ω) + d2(ω, ωj);
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– Relative neighbors graph (RNG) :

ωj ∈ VRNG(ωi)⇐⇒ ∀ω ∈ El − {ωi, ωj} d(ωi, ωj) ≤ max (d(ωi, ω), d(ω, ωj));

All these geometric structures induce a related neighborhood graph with a sym-
metric neighborhood relationship. Figures 1 and 2 show the neighbor structures
of the relative neighbor graph and the Gabriel graph, using the dataset intro-
duced above (cf 2.1).
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Fig. 1. Graph of relative neighbours
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Fig. 2. Gabriel graph

3 Ensemble Method Classifier Based on Neighborhood

We call this framework “Random Neighborhood Classifier (RNC)”. The principle
of EMs is to generate M classifiers and then aggregate them into one (see 3). To
do so, M randomized iterations are performed. At iteration m, RNC:

1. generates a new learning set Em
l with a given size;

2. generates a new classifier φm = (Pm,Vm, Cm);
3. uses the generated classifier to determine the membership class of the un-

classified individuals ω ∈ Et.

Following these steps, the RNC then aggregates the M predicted values related
to an unclassified individual to determine its final membership class. The two
key points in this procedure are the sampling procedure for generating the M
classifiers and the procedure for combining the M predictions. Below, we provide
some details of the two key points:
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3.1 Sampling Procedures

El

E1
l E2

l
. . . EM

l

φ1 φ2 . . . φM

φ1(Et) φ2(Et) . . . φM (Et)

Φ(Et)

Et

sampling

learning

simple classification

agregation

Fig. 3. EM procedure

From the training data set El

which is an n× p table of values,
we carry out M random samples.
The sampling can be achieved in
different ways:

– Sampling on rows with or
without replacement;

– Sampling on columns;
– Building new columns by a

linear combination of existing
columns (oblique projection);

– Generating new individuals
by a linear combination of
columns;

– Randomly adding x% of rows
and/or columns.

Each sample produced leads to a
specific classifier.

3.2 Aggregating Function

Generally, the aggregating func-
tion is based on the majority rule
vote. However, many other possibilities can be used [15]. Of these, we can cite:

– Vote of classifiers, which aggregate the responses of each classifier and nor-
malize them. The majority rule vote is a particular example of this.

– Average vector where the score for each class is the mean of the answers for
all the classifiers.

– Weighted version (majority or mean)
– Maximum Likelihood calculated as the product of the answers for all the

classifiers, for each class. The winning class is the one that has the highest
value.

– Naive Bayes [15].
– Decision Templates [15]. This method is based on the concept of a decision

template, which is the average vector over the individuals of a test sample
belonging to each class, and a decision profile, which is the set of responses of
all classifiers. The membership class is determined according to the Euclidean
distance between the decision profile and the decision template. The winning
class is the one that minimizes this distance.

– Linear regression. In this method, we assume that the probability of a class
is the linear combination of the probabilities of class for each classifier.



104 D.A. Zighed, D. Ezzeddine, and F. Rico

4 Evaluation

To assess the performance of RNC, we carried out many experiments on differ-
ent data sets taken from the UCI Irvine repository. For this, we made a number
of distinctions depending on the type of neighborhood used. As our work was
motivated by the absence of studies on EMs based on geometrical graphs such as
RNGs, we designed two separate experiments for RNC. One was based on RNGs
and the other on kNN where k = 1, 2, 3. The comparison was also extended
to random forests (RFs), K support vector machines (KSVMs), Adaboost, dis-
criminant analysis (DA), logistic regression (RegLog) and C4.5. All experiments
were carried out using R software.

4.1 Implementation of RNC

In our test, RNC use Relative Neighborhood classifiers. Each iteration uses the
following scheme (see Figure 3) :

– Sampling : describing variables and individuals from learning sets are sam-
pled (see the sampling procedure section 3 p.103).
• For individuals we use a bootstrap for small data sets (less than 1000
individuals) and a proportion of 66% for the others.

• For variables, we use a proportion of 50% of the variable for small di-
mensions (i.e. the dimension p is less than 20) and 10

p for the others.
100 iterations were carried out, providing 100 classifiers.

– Learning : Mahalanobis distance between individuals is computed to con-
struct the graph. The variance matrix needed to compute Mahalanobis
distance is evaluated thanks to the learning set.

– Simple classification :
• The neighborhood of a point ω ∈ Et is computed using a Relative Neigh-
bors Graph (RNG see section 2.3) :

V(ω) = VRNG(ω)

• The decision rule is the proportion of each class in the Neighborhood :

φ(ω) = (p1, . . . , pK)

such that pi =
#({ω′ ∈ V(ω)s.t.Y (ω′) = i})

# (V(ω))

where # (·) is the cardinal of a set.
– Agregation : the results are aggregated using Decision Templates (DT).

4.2 Other Methods

The implementation of RF is the randomForest library using 500 trees. We used
the R kernlab library to apply the KSVM algorithm with classification type
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C-svc. For DA and RegLog, we used the lda and glm functions of the R MASS

library and for C4.5, the J48 function of the RWeka library using the control of
the Weka learner.

For kNN, we simply replaced the neighborhood graph with the k-nearest
neighbors in the RNC algorithm using the same distances and the same number
of classifiers. The aggregation method is majority voting. Three values of k were
tested : k = 1, 2 or 3.

4.3 The Test

We used 14 quantitative data sets. We ran the same protocol over all the methods
mentioned above. For each experiment, we applied 10-Cross Validations to obtain
an estimation of the error rates. For each dataset, we used the Wilcoxon test [4]
to evaluate the results.

The results are shown in Table 2. For each dataset, we computed the average
error rate, the rank of each method among the others and the p-values detected
by the Wilcoxon test.

As can be seen in Table 2, RNCs based on RNGs performed well in comparison
to kNN as well as in comparison to the other methods. Indeed, from the 14 data
sets, RNC placed first once, second 6 times and third 4 times. RNCs were thus
one of the 3 top methods in most cases.

We also computed the mean rank. This was done twice, using or not the
classifiers adaBoost and Logistic Regression (which could not give an answer
for more than 2 classes). The results are shown in Table 3 where the RNCs
come out first. To see if the difference is significant, we applied the simple Fried-
man test [4], which showed a difference with a p-value of 6.849 × 10−6 and
the post-hoc test (comparing each classifier by pair) gave the results shown in
Table 4.

These results are very encouraging, because we believe that they can be im-
proved by varying certain parameters such as:

– The choice of neighborhood structure, especially as we know that the neigh-
borhood graphs are particularly sensitive to the dimension of the represen-
tation space.

– The type of base classifier. Should we use the closest connected homogeneous
component? How can this notion of proximity be defined, precisely ? Should
we take into consideration the size of the database or other characteristics
of the neighborhood such as density, etc...?

– The selection methods to improve the quality of the data sets or the classi-
fiers.

All these issues are currently being studied and should produce significant im-
provements for RNCs based on geometrical graphs.
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Table 2. Comparison of RNC with several classification algorithms

Glass Image Ionosphere Iris
% Err. Rank Wilcox % Err. Rank Wilcox % Err. Rank Wilcox % Err. Rank Wilcox

RNC 21.4 2 2.52 3 4 1 4.66 3 =
Random Forest 18.6 1 = 1.83 1 < 5% 6.29 4 = 5.33 4.5 =
KSVM 31.4 7 < 5% 5.57 7 < 1% 5.71 3 = 5.33 4.5 =
adaBoost - na - na 7.14 6 = - na =
DA 38.5 8 < 5% 8.34 8 < 1% 12.3 10 < 1% 2 1 =
Log. Reg. - na - na 12 9 < 1% - na =
C4.5 29.5 6 < 5% 3.17 5 = 8.86 7.5 < 5% 5.99 6.5 =
kNN1 25.7 3 = 2.17 2 = 6.58 5 < 5% 5.99 6.5 =
kNN2 27.6 5 = 3.34 6 < 5% 5.43 2 < 5% 8 8 =
kNN3 29.5 4 < 5% 3.13 4 < 5% 8.86 7.5 < 1% 4 2 =

Letter (RvsB) Musk Diabete (Pima) Ringnorm
% Err. Rank Wilcox % Err. Rank Wilcox % Err. Rank Wilcox % Err. Rank Wilcox

RNC 1.05 2 = 3.02 3 24.9 6 = 2.26 2
Random Forest 1.78 5 = 2 1.5 < 1% 23. 2 = 5.24 4 < 1%
Ksvm 1.38 4 = 3.46 5 = 24.1 5 = 1.56 1 =
adaBoostv 2.03 6 < 5% 2 1.5 < 1% 23.8 4 = 3.4 3 < 1%
DA 6.84 10 < 1% 5.58 10 < 1% 22.2 1 = 38.1 10 < 1%
Log. Reg. 6.25 9 < 1% 4.84 8 < 1% 23.7 3 = 34.8 9 < 1%
C4.5 5 8 < 1% 3.13 4 = 25.7 9 = 13.9 7 < 1%
kNN1 0.92 1 = 3.61 6 < 5% 25 7 = 6.37 5 < 1%
kNN2 3.48 7 < 5% 5.24 9 < 1% 30.1 10 = 24.2 8 < 1%
kNN3 1.32 3 = 4.49 7 < 1% 25.4 8 = 8.82 6 < 1%

Sat Sonar Threenorm Twonorm
% Err. Rank Wilcox % Err. Rank Wilcox % Err. Rank Wilcox % Err. Rank Wilcox

RNC 10.8 4 12.5 2 13.3 2 = 2.64 3.5
Random Forest 7.79 1 < 1% 14.5 4.5 = 13.6 3 = 3.4 7 < 5%
Ksvm 9.49 2 < 5% 17 7 = 12.4 1 = 2.69 5 =
adaBoostv - na 16 6 = 15.1 6 = 4.48 8 < 1%
DA 16. 8 < 1% 26 8 < 5% 16.6 7.5 < 1% 2.56 2 =
Log. Reg. - na 28 9 < 5% 16.6 7.5 < 1% 2.83 6 =
C4.5 13.7 7 < 1% 31 10 < 1% 28.5 10 < 1% 16.7 10 < 1%
kNN1 10.6 3 = 11 1 = 14.6 5 = 2.64 3.5 =
kNN2 12.3 6 < 5% 14.5 4.5 = 25.7 9 < 1% 10 9 < 5%
kNN3 11.9 5 < 5% 12.5 3 = 14.4 4 = 2.4 1 =

Waveform Wisc. Breast Cancer
% Err. Rank Wilcox % Err. Rank Wilcox

RNC 14.8 4 2.65 2.5
Rand. Forest 14.4 3 = 2.5 1 =
Ksvm 13.3 1 < 5% 4.12 9 < 5%
adaBoostv - na 3.09 5 =
DA 13.8 2 < 5% 3.82 8 =
Log. Reg. - na 3.24 6.5 =
C4.5 24.1 7 < 1% 4.41 10 < 5%
kNN1 16.9 6 < 1% 3.08 4 =
kNN2 29.6 8 < 1% 2.65 2.5 =
kNN3 15.9 5 < 1% 3.24 6.5 =

Table 3. Mean rank of the methods

RNC Random Forest Ksvm adaBoost DA Log. Reg. C4.5 KNN1 KNN2 KNN3

All methods 2.88 3.19 4,04 5,06 6,58 7,56 7,46 4,15 7,04 4,58

Without adaBoost & LogReg 2.64 2.86 3.96 5.79 6.64 3.86 6.00 4.25
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Table 4. p-value for the difference

RNC Random Forest Ksvm DA C4.5 KNN1 KNN2 KNN3

RNC 1 0.84 0.015 0.0004 0.89 0.0067 0.66
Random Forest 0.93 0.032 0.0011 0.96 0.015 0.80

Ksvm 0.50 0.072 1 0.35 1
DA 0.98 0.42 1 0.71
C4.5 0.052 1 0.16
KNN1 0.28 1
KNN2 0.55
KNN3

4.4 Computational Analysis

The theoretical complexity for graph computation using n individuals repre-
sented by p variables is O(n3+n2p2). Indeed, for each pair of individuals ω1, ω2,
it is necessary to test the RNG condition :

∀ω ∈ El − {ω1, ω2} d(ω1, ω2) ≤ max (d(ω1, ω), d(ω, ω2)); (1)

So, this means computing the distance d(ω1, ω2) for each possible pair (O(p2)
each for Mahalanobis) and compare the distance d(ω1, ω2) with all distance
d(ω1, ω) dans d(ω2, ω) for each individuals ω.

But optimization can be carried out :

– Distance can be computed using matrix representation and a powerful linear
algrebra library (BLAS).

– Using the RNG condition, it is only necessary to test 1 for all ω such that
d(ω1, ω) ≤ d(ω1, ω2).

– For a given individual ω1, sorting all distance d(ω1, ω) by increasing order.
Then, we test the condition 1 following this order. If the distance d(ω1, ω2)
is large compared to the others, we reject the edge between ω1 and ω2 faster.

Practically, computing the results using RNG graphs is several times slower than
using k-NN. For example with k=3, and the data set Twonorm (almost 2000
individuals), it takes 40s for k-NN method and 1min44s for the RNG method
to compute N=100 classifiers. These tests use the BLAS library atlas, on a
Intel

TM

Core
TM

i5 2.60GHz computer with 4G memory.

5 Conclusion and Further Work

Here we have provided a new approach for using neighborhood structures in
ensemble methods. The results obtained show that they are challenging the
most powerful techniques such as random forests and kSVM. Methods based
on geometrical neighborhood graphs outperform the classic methods such as
kNN . There are many possibilities for improving RNC based on RNG. A library
containing all the functionalities that have been achieved is available by emailing
the authors.
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Abstract. Machine learning algorithms perform differently in settings
with varying levels of training set mislabeling noise. Therefore, the choice
of a good algorithm for a particular learning problem is crucial. In this
paper, we introduce the “Sigmoid Rule” Framework focusing on the de-
scription of classifier behavior in noisy settings. The framework uses an
existing model of the expected performance of learning algorithms as a
sigmoid function of the signal-to-noise ratio in the training instances. We
study the parameters of the above sigmoid function using five different
classifiers, namely, Naive Bayes, kNN, SVM, a decision tree classifier,
and a rule-based classifier. Our study leads to the definition of intuitive
criteria based on the sigmoid parameters that can be used to compare
the behavior of learning algorithms in the presence of varying levels of
noise. Furthermore, we show that there exists a connection between these
parameters and the characteristics of the underlying dataset, hinting at
how the inherent properties of a dataset affect learning. The framework
is applicable to concept drift scenaria, including modeling user behavior
over time, and mining of noisy data series, as in sensor networks.

Keywords: classification, classifier evaluation, handling noise, concept
drift.

1 Introduction

Transforming vast amounts of collected — possibly noisy — data into useful
information, through such processes as clustering and classification, is a really
interesting research topic. The machine learning and data mining communities
have extensively studied the behavior of classifiers — which is the focus of this
work — in different settings (e.g., [13,20,8,9]), however the effect of noise on the
classification task is still an interesting and open problem. The importance of
studying noisy data settings is augmented by the fact that noise is very common
in a variety of large scale data sources, such as sensor networks and the Web.
Thus, there rises a need for a unified framework studying the behavior of learning
algorithms in the presence of noise, regardless of the specifics of each algorithm.
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In this work, we study the effect of training set mislabeling noise1 on a clas-
sification task. This type of noise is common in cases of concept drift, where a
target concept shifts over time, rendering previous training instances obsolete.
Essentially, in the case of concept drift, feature noise causes the labels of previ-
ous training instances to be obsolete and, thus, equivalent to mislabeling noise.
Drifting concepts appear in a variety of settings in the real world, such as the
state of a free market or the traits of the most viewed movie. Giannakopou-
los and Palpanas [10] have shown that the performance2 of a classifier in the
presence of noise can be effectively approximated by a sigmoid function, which
relates the signal-to-noise ratio in the training set to the expected performance
of the classifier. We term this approach the “Sigmoid Rule”.

In our work, we examine how much added benefit we can get out of the
sigmoid rule model, by studying and analyzing the parameters of the sigmoid in
order to detect the influence of each parameter on the learner’s behavior. Based
on the most prominent parameters, we define the dimensions characterizing the
algorithm behavior, which can be used to construct criteria for the comparison
of different learning algorithms. We term this set of dimensions the “Sigmoid
Rule” Framework (SRF). We also study, using SRF, how dataset attributes (i.e.,
the number of classes, features and instances and the fractal dimensionality [6])
correlate to the expected performance of classifiers in varying noise settings.

In summary, we make the following contributions. We define a set of intu-
itive criteria based on the SRF that can be used to compare the behavior of
learning algorithms in the presence of noise. This set of criteria provides both
quantitative and qualitative support for learner selection in different settings. We
demonstrate that there exists a connection between the SRF dimensions and the
characteristics of the underlying dataset, using both a correlation study and re-
gression modeling. In both cases we discovered statistically significant relations
between SRF dimensions and dataset characteristics. Our results are based on
an extensive experimental evaluation, using 10 synthetic and 14 real datasets
originating from diverse domains. The heterogeneity of the dataset collection
validates the general applicability of the SRF.

2 Background and Related Work

Given the variety of existing learning algorithms, researchers are often inter-
ested in obtaining the best algorithm for their particular tasks. This algorithm-
selection is considered part of the meta-learning domain [11]. According to the
No-Free-Lunch theorems (NFL) described in [22] and proven in [23], [21], there
is no overall best classification algorithm. Nevertheless, NFL theorems, which
compare the learning algorithms over diverse datasets, do not limit us when we
focus on a particular dataset. As mentioned in [1], the results of NFL theorems

1 For the rest of this paper we will use the term noise to refer to this type of noise,
unless otherwise indicated.

2 In this paper, by performance of an algorithm, we mean classification accuracy.
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hint at comparing different classification algorithms on the basis of dataset char-
acteristics. Concerning the measures of performance that help distinguish among
learners, in [1] the authors compared algorithms on a large number of datasets
(100), using measures of performance that take into consideration the distribu-
tion of the classes within the dataset, thus using the characteristics of datasets.
The Area Under the receiver operating Curve (AUC) is another measure used
to assess machine learning algorithms and to divide them into groups of classi-
fiers which have statistically significant difference in performance [2]. In all the
above studies, the analysis of performance has been applied on datasets without
noise, while we study the behavior of classification algorithms in noisy settings.
Our present study is based on the work of G. Giannakopoulos and T. Palpanas
[10] on concept drift, which illustrated that a sigmoid function can efficiently
describe performance in the presence of varying levels of training set mislabeling
noise. In this work, we analytically study the sigmoid function to determine a
set of parameters that can be used to support learner selection in different noisy
classification settings.

The behavior of machine learning classifiers in the presence of noise was also
considered in [14]. The artificial datasets used for classification were created
on the basis of predefined linear and nonlinear regression models, and noise was
injected in the features, instead of the class labels as in our case. Noisy models of
non-markovian processes using reinforcement learning algorithms and Temporal
Difference methods are analyzed in [18]. In [4], the authors examine multiple-
instance induction of rules for different noise models. There are also theoretical
studies on regression algorithms for noisy data [19] and works on denoising, like
[17], where a wavelet-based noise removal technique was shown to increase the
efficiency of four considered machine learners. In both noise-related studies [19],
[17] attribute noise was considered. However, we study class-related noise and
do not consider specific noise models, which is a different problem. Class-related
noise is mostly related to concept drift, as was also discussed in the introduction.
In an early influential work, the problem of concept attainment in the presence
of noise was indicated and studied in the STAGGER system [16]. To the best of
our knowledge, there has been no work related to the selection of a classifier in
a concept drift setting, based on the level of noise and other qualitative criteria,
which will be reported below.

3 The Sigmoid Rule Framework

In order to describe the performance of a classifier, the “sigmoid rule” of [10]
considers a function which relates signal-to-noise ratio of the training set to the
expected performance. This function is called the characteristic transfer function
(CTF) of a learning algorithm. In this work we will call it also the sigmoid
function of an algorithm. The function is of the form

f(Z) = m+ (M −m)
1

1 + b · exp(−c(Z − d))
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where m ≤M ; b, c > 0; Z = log(1+S)− log(1+N); S is the amount of “signal”
or true data, while N is the amount of “noisy” or distorted data; hence, Z is
the signal-to-noise ratio. As was shown in [10] the sigmoid function effectively
approximates the performance of a classifier in noisy settings.

The behavior of different machine learning algorithms in the presence of noise
can be compared on several axes of comparison, based on the sigmoid function
parameters. Related to performance we can use (a) the minimal performance
m; (b) the maximal performance M ; (c) the width of the performance range
ralg = M − m, that defines the width of the interval in which the algorithm
performance varies. Related to the sensitivity of performance to the change of
the signal-to-noise ratio we want to know (a) within which range of noise levels
there is a significant change in performance when changing the noise; (b) how
we can tell apart algorithms that improve their performance even when the
signal-to-noise levels are low over those which only improve in high ranges of
signal-to-noise ratio; (c) how we can measure the stability of performance of an
algorithm against varying noise; (d) at what noise level an algorithm reaches
its average performance. To address these requirements we perform an analytic
study of the sigmoid CTF of an algorithm. This analysis helps devise measurable
dimensions that can answer our questions.

The domain of the sigmoid is in the general case Z ∈ (−∞,+∞). The range
of values is (m,M). Based on the first three derivatives, we determine the point
Zinf = d+ 1

c log b, which is the point of inflection (curvature sign change point).
In the case of the sigmoid function, this point is also the centre of symmetry.
Furthermore, Zinf indicates the shift of the sigmoid with respect to the origin

of the axes. The zeros of the third order derivative are Z
(3)
1,2 = d − 1

c log
2±

√
3

b ,
which can be used to estimate the slope of the sigmoid curve. Figure 1 illustrates
the sigmoid curve and its points of interest.

ra lg

da lg

Z*

Z2
3( )

Zinf

Z1
3( )

Z*

Z

f Z( )

Fig. 1. Sigmoid function and points of interest

In the following section, we formulate and discuss dimensions that describe
the behavior of algorithms, based on our axes of comparison.
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3.1 Sigmoid Rule Framework (SRF) Dimensions

We define several SRF dimensions based on the sigmoid properties, in addition to
m,M, ralg defined in Section 3. We define as active noise range a range [Z∗, Z

∗]
where the change of noise induces a measurable change in the performance. To
calculate [Z∗, Z

∗], let us assume that there is a good-enough performance for a
given task, approaching M for a given algorithm. We know that f(Z) ∈ (m,M)
and we say that the performance is good enough if f(Z) = M − (M − m) ∗
p, p = 0.053. We define the size of the signal-to-noise interval in which f(Z) ∈
[m + (M − m) ∗ p,M − (M − m) ∗ p] to be the learning improvement of the
algorithm. Then, using the inverse function f−1(y) we calculate the points Z∗

(corr. Z∗) which is the bottom (corr. top) point in Figure 1 for a given p. We
term the distance dalg = Z∗ −Z∗ as the width of the active area of the machine
learning classifier (see Figure 1). Then,

ralg

dalg
describes the learning performance

improvement over signal-to-noise ratio change; we term this measure the slope
indicator, as it is indicative of the slope of the CTF.

In the following paragraphs we describe how the analysis of the CTF allows
to compare learning algorithm performance in the presence of noise.

3.2 Comparing Algorithms

Given the performance dimensions described above, we can compare algorithms
as follows. For performance we can use: m,M, ralg. Algorithms not affected by
the presence or absence of noise will have a minimal ralg value. In a setting
with a randomly changing level of noise this parameter is related to the possible
variance in performance. Related to the sensitivity of performance to the change
of the signal-to-noise ratio we can use: (a) the active noise range [Z∗, Z

∗]. The
width of the active area of the algorithm dalg = Z∗−Z∗, which is related to the
speed of changing performance for a given ralg in the domain of noise. A high
dalg value indicates that an algorithm varies its performance in a broad range of
signal-to-noise ratios, implying less stability of performance in an environment
with heavily varying degrees of noise. We say that the algorithm operates when
the level of noise in the data is within the active noise range of the algorithm;
(b) the lower bound Z∗ of the active noise range, which suggests which algo-
rithm operates earlier in noisy environment and which can reach its maximal
performance fast; (c) the point of inflection Zinf , that shows the signal-to-noise
ratio for which an algorithm gives the average performance. Zinf can be used to
choose the algorithm that reaches its average performance under more noise.

A parameter related to both performance and sensitivity is the slope indica-
tor

ralg

dalg
. It can be used to determine whether reducing the noise in a dataset is

expected to have a significant impact on the performance. An algorithm with a
high value of

ralg

dalg
, implies that reducing noise would be very beneficial. Further-

more, using the same dimension one can choose more stable algorithms, when the

3 The value 0.05 can be any value close to 0, describing a normalized measure of
distance from optimal performance.
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variance of noise is known. In this case, one may choose the algorithm with the
lowest value of

ralg

dalg
, in order to limit the corresponding variance in performance.

Based on the above discussion, we consider the algorithms with higher maximal
performance M , larger width of performance range ralg , higher slope indicator
ralg

dalg
and shorter width of the active area of the algorithm dalg to behave better:

we expect to get high performance from an algorithm if the level of noise in the
dataset is very low, and low performance if the level of noise in the dataset is
very high. Decision makers can easily formulate different criteria, based on the
proposed dimensions and particular settings.

4 Experimental Evaluation

In the following paragraphs, we describe the experimental setup, the datasets
and the results of our experiments.

In our study, we used the following machine learning algorithms, implemented
in Weka 3.6.3 [12]: (a) IBk — K-nearest neighbor classifier; (b) Naive Bayes clas-
sifier; (c) SMO— support vector classifier (cf. [15]); (d) NbTree — a decision tree
with naive Bayes classifiers at the leaves; (e) JRip — a RIPPER [5] rule learner
implementation. We have chosen representative algorithms from different fami-
lies of classification approaches, covering very popular classification schemes [24].

We used a total of 24 datasets for our experiments.4 Fourteen of them are real,
and ten are synthetic. All the datasets were divided into groups according to the
number of classes, attributes (features) and instances in the dataset as is shown
on Figure 2. There are 12 possible groups that include all combinations of the
parameters. Two datasets from each group were employed for the experiments.

Classes 

low high 

<7 ≥7 

Attributes 

low high 

<10 ≥10 

medium 

Instances 

low high 

<50
0 ≥5000 

50
0≤

x<
50

00
 

Fig. 2. Datasets grouping labels

We created artificial datasets in the cases were real datasets with a certain
set of characteristics were not available. We produced datasets with known in-
trinsic dimensionality. The distribution of dataset characteristics is illustrated
in Figure 3. The traits of the datasets illustrated are the number of classes,
the number of attributes, the number of instances and the estimated intrinsic
(fractal) dimension.

The ten artificial datasets we used were built using the following procedure.
Having randomly sampled the number of classes, features and instances, we

4 Most of the real datasets come from the UCI Machine learning repository [7], and
one from [10]. For a detailed list with references check the following anonymous
online resource: http://tinyurl.com/3g4fmsf.

http://tinyurl.com/3g4fmsf
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Fig. 3. Distribution of real (triangles) and artificial (circles) dataset characteristics

sample the parameters of each feature distribution. We assume that the fea-
tures follow the Gaussian distribution with mean value (μ) from the interval
[−100, 100] and standard deviation(σ) from the interval [0.1, 30]. The μ and σ
intervals allow overlapping features across classes.

Noise was induced as follows. We created stratified training sets, equally sized
to the stratified test sets. To induce noise, we created noisy versions of the
training sets by mislabeling instances. Using different levels ln of noise, ln =
0, 0.05, ..., 0.95 5, a training set with ln noise is a set where there is a ln probability
that a training instance will be assigned a different label than their true one.
Hence, we obtained 20 dataset versions with varying noise levels.

4.1 Using SRF

We performed experiments of “noisy” classification using the generated datasets,
performing 10-fold cross validation per algorithm, and calculated the average
performance for varying noise levels. Given the 20 levels of signal-to-noise ratio
and the corresponding algorithm performance, (i.e., classification accuracy) we
estimated the parameters of the sigmoid. The search in the parameter space
is performed by a genetic algorithm, estimating an approximate good set of
parameters as was proposed in [10]. The quality of estimation is checked using
the Kolmogorov-Smirnov test. The results obtained are statistically significant.

A sample of true and sigmoid-estimated performance graphs for varying levels
of noise can be seen in Figure 4. In our experiments, the parameters of the
sigmoid were estimated offline, but SRF can be applied in an online scenario, as
well, using a training period.

Figure 5 illustrates the means of the SRF parameters per algorithm, over all
24 datasets. As an example of interpretation of the figure using SRF, the plots

5 We note that high levels of noise such as 95% are often observed in the presence
of concept drift, e.g., when learning computer-user browsing habits in a network
environment with a single IP, and several different users sharing it.
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Fig. 4. Sigmoid CTF of SMO (left) and IBk (right) for “Wine” dataset. Green solid
line: True Measurements, Dashed red line: estimated sigmoid.

indicate that (for the studied range of datasets) SMO is expected to improve
its performance faster than all other algorithms, when the signal-to-noise ratio
increases. This conclusion is based on the slope indicator (

ralg

dalg
) values. Also,

IBk has a smaller potential for improvement of performance (but also smaller
potential for loss) than SMO when noise levels change, given that the width of
the performance range ralg is higher for SMO. This difference can also be seen
in Figure 4, where the distance between minimum and maximum performance
values is bigger for the SMO case (see Figure 4(left)).
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We stress that parameter estimation does not require previous knowledge of
the noise levels, but it is dataset dependent. In the special case of a classifier
selection process, having an estimate of the noise level in the dataset helps to
reach a decision through the use of SRF.

4.2 Statistical Analysis

We now study the connection between the dataset characteristics and the sig-
moid parameters (using the same 24 datasets), irrespective of the choice of the
algorithm. We consider the results obtained from all the algorithms as different
samples of SRF parameters for a particular dataset. We use regression analy-
sis to observe the cumulative effect of the dataset characteristics on a single
parameter, and we use correlation analysis to detect any connection between
each (dataset characteristic, sigmoid parameter) pair. We examine the connec-
tions between dataset characteristics and the sigmoid parameters both individ-
ually, and all together, in order to draw the complete picture.

Regression Analysis. We wanted to examine how the number of classes (x1),
number of features (x2), number of instances (x3), and intrinsic dimensional-
ity6 (as fractal correlation dimension [3]) (x4) of a dataset influence the CTF
parameters.

We applied a leave-one-out process, where one dataset is left out from train-
ing and used for testing on every run. We used in turn m, M , ralg, dalg, and
ralg

dalg
as dependent variables. The results of model fitting and prediction of SRF

dimensions are reported in Table 1, where average errors between observed and
predicted SRF dimensions are shown. For each SRF dimensions chosen, we have
observed 5 values (since 5 machine learning algorithms were used), and having
estimated them for 24 datasets, we end up with 120 predictions for a single SRF
dimension. We calculated four types of errors: (1) MSE — mean square error;
(2) MAE — mean absolute error; (3) RMSE — relative mean square error and
(4) RMAE — relative mean absolute error. The last column of Table 1 shows
the average of the adjusted R2 statistic for models that where estimated for
all the SRF dimensions (average on the 24 datasets). Figure 6 illustrates how
our models fit the test data, showing that in most cases the true values of the
sigmoid parameters for each dataset (illustrated by circles that correspond to
5 algorithms for each test dataset i, i = 1, 2, ..., 24) are within the 95% confi-
dence level zone around the estimated values. This finding further supports the
connection between the dataset parameters and SRF dimensions. According to
the results, the chosen parameters of the datasets can be used to predict the
parameters of the sigmoid of the algorithms.

Correlation Analysis. We used three different correlation coefficients — Pear-
son correlation for linear correlation, Spearman’s rho and Kendall’s tau for

6 The authors would like to thank Christos Faloutsos for kindly providing the code
for the fractal dimensionality estimation.
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Table 1. Prediction error of linear regression models

Parameters
Error measures

average(R2
a)MSE MAE RMSE RMAE

m 0.11 0.09 148.92 29.17 0.54
M 0.35 0.30 0.51 0.41 0.88
ralg 0.32 0.27 0.71 0.46 0.85
dalg 1.98 1.41 0.97 0.68 0.67
ralg
dalg

0.37 0.27 4.83 1.46 0.55
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Fig. 6. Real and estimated values of the sigmoid parameters. Real values: Black rect-
angles, Estimated values: circles, Gray zone: 95% prediction conf. interval.

monotonic correlation — to analyze the connection between the parameters of
the datasets and the CTF parameters (cf. Table 2). We qualitatively interpret the
strength of the correlation as follows: [0.0; 0.1)→No Correlation, [0.1; 0.3)→Low
Correlation, [0.3; 0.5)→Medium Correlation, [0.5; 1]→Strong Correlation.

Summarizing the results from all the correlation coefficients (refer to Table 2),
some interesting conclusions can be drawn. First, the number of classes (x1) is in-
versely correlated to

ralg

dalg
, ralg and M . Thus, the higher the number of classes is,

the lower the sensitivity to noise variation (check on
ralg

dalg
); the lower the number

of classes, the higher the impact of reducing noise on performance (check ralg and
M). These conclusions are also supported by the direct correlation between the
number of classes and the width of the active area of the algorithm dalg. We also
note the complete lack of significant correlation between the minimum perfor-
mance m and all of the SRF dimensions: given enough noise an algorithm always
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Table 2. Correlation between dataset parameters and SRF parameters. Colored cells:

statistically significant correlation (p − value < 0.05: underlined bold, p − value < 0.1: italics-

bold). Green (dark) : medium correlation, gray (light) : low correlation.

Pearson’s corr.

Parameter
m M ralg dalg

ralg

dalg

x1 -0.03 -0.26 -0.21 0.13 -0.29

x2 -0.07 -0.31 - 0.23 0.13 -0.21

x3 0.14 0.08 -0.01 -0.12 0.12

x4 0.04 -0.16 -0.16 0.13 -0.09

Spearman’s rank corr.

m M ralg dalg
ralg

dalg

0.02 -0.26 -0.25 0.31 -0.34

0.03 -0.26 -0.24 0.14 -0.20

-0.05 0.03 0.02 -0.21 0.18

-0.03 -0.20 -0.18 0.06 -0.11

Kendall’s τ rank corr.

m M ralg dalg
ralg

dalg

0.01 -0.17 -0.18 0.22 -0.24

0.02 -0.18 -0.16 0.10 -0.14

-0.05 0.01 0.01 -0.14 0.12

-0.03 - 0.12 -0.11 0.04 -0.07

performs badly. Thus, the number of classes significantly influences the behavior
of an algorithm, regardless of the family of the algorithm. Second, the number
of features (x2) provides a minor reduction of sensitivity to noise variation (re-
sulting from low correlation to dalg). This conclusion is also supported by the
negative influence on

ralg

dalg
, ralg. We also note that the number of features affects

the maximal performance M , which shows (rather contrary to intuition) that
more features may negatively affect performance in a noise-free scenario. This is
most probably related to features that are not essentially related to the labeling
process, thus inducing feature noise. Third, there is a correlation between the
number of instances (x3) and

ralg

dalg
. This shows that larger datasets (providing

more instances) reduce sensitivity to noise variation. Last, fractal dimensional-
ity (x4) of a dataset has low, but statistically significant negative influence on
M and on ralg . Fractal dimensionality is indicative of the “complexity” of the
dataset. Thus, if the dataset is complex (high x4) machine learning is difficult
even at low noise levels. We note that low ralg may be preferable in cases where
the algorithm should be stable even for low signal-to-noise ratios.

The correlation analysis demonstrates the connection between dataset char-
acteristics and SRF dimensions. Consequently, the SRF can be used to reveal
a-priori the properties of an algorithm with respect to a dataset of certain char-
acteristics. This allows an expert to select a good algorithm for a given setting,
based on the requirements of that settings. Such requirements may, e.g., relate to
the stability of an algorithm in varying levels of noise and the expected maximum
performance in non-noisy datasets.

5 Conclusions

Machine learning algorithms are often used in noisy environments. Therefore,
it is important to know a-priori the properties of an algorithm with respect to
a dataset of certain characteristics. In this work, we investigate whether some
simple dataset properties (namely, number of classes, number of features, number
of instances and fractal dimensionality) can help in the above direction.

We propose the “Sigmoid Rule” Framework, which describes a set of dimen-
sions that may be used by a decision maker to choose a good classifier, or to
estimate SRF dimensions, based on a range of dataset characteristics. Our ap-
proach is applicable to user modeling tasks, when the user changes behavior
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over time, and to any concept drift problems for data series mining. We showed
that the parameters related to the behavior of learners correlate with dataset
characteristics, and the range of their variation may be predicted using regres-
sion models. Therefore, SRF is a useful meta-learning framework, applicable to
a wide range of settings that include noise. However, using these SRF mod-
els for parameter prediction does not provide enough precision to be used for
performance estimation.

As part of our ongoing work, we examine whether the “Sigmoid Rule” also
stands in the case of sequential classification. Preliminary experimental results
on the “Climate” UCI dataset (taking into account its temporal aspect) indicate
that, indeed, the “Sigmoid Rule” and therefore SRF are directly applicable, and
can be used as a means to represent the behavior of an HMM-based classifier
in the presence of noise. This finding may open the way to a broader use of the
SRF, including sequential learners.

Acknowledgements. This research was partially supported by FP7 EU IP
project KAP (grant agreement no. 260111).
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Abstract. Learning in imbalanced datasets is a pervasive problem preva-
lent in a wide variety of real-world applications. In imbalanced datasets,
the class of interest is generally a small fraction of the total instances,
but misclassification of such instances is often expensive. While there
is a significant body of research on the class imbalance problem for bi-
nary class datasets, multi-class datasets have received considerably less
attention. This is partially due to the fact that the multi-class imbal-
ance problem is often much harder than its related binary class problem,
as the relative frequency and cost of each of the classes can vary widely
from dataset to dataset. In this paper we study the multi-class imbalance
problem as it relates to decision trees (specifically C4.4 and HDDT), and
develop a new multi-class splitting criterion. From our experiments we
show that multi-class Hellinger distance decision trees, when combined
with decomposition techniques, outperform C4.4.

1 Introduction

One of the fundamental problems in data mining classification problems is that of
class imbalance. In the typical binary class imbalance problem one class (negative
class) vastly outnumbers the other (positive class). The difficulty of learning
under such conditions lies in the induction bias of most learning algorithms.
That is, most learning algorithms, when presented with a dataset in which there
is a severely underrepresented class, ignore the minority class. This is due to the
fact that one can achieve very high accuracy by always predicting the majority
class, especially if the majority class represent 95+% of the dataset [3].

The multi-class classification problem is an extension of the traditional binary
class problem where a dataset consists k classes instead of two. While imbalance
is said to exist in the binary class imbalance problem when one class severely
outnumbers the other class, extended to multiple classes the effects of imbalance
are even more problematic. That is, given k classes, there are multiple ways
for class imbalance to manifest itself in the dataset. One typical way is there is
one “super majority” class which contains most of the instances in the dataset.
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Another typical example of class imbalance in multi-class datasets is the result
of a single minority class. In such instances k−1 instances each make up roughly
1/(k − 1) of the dataset, and the “minority” class makes up the rest.

The multi-class imbalance problem is therefore interesting for two important
reasons. First, as before, most learning algorithms do not deal with the wide vari-
ety of challenges multi-class imbalance presents. Secondly, a number of classifiers
do not easily extend to the multi-class domain.

As a result, researchers have sought to exploit theoretical and empirical per-
formance benefits of binary approaches for the multi-class problem. One common
technique to do so is to decompose the multi-class problems into a set of binary
class problems. This enables users to learn binary class classifiers on each of the
subproblems which can then be combined into an ensemble in order to solve the
multi-class problem. Such examples include “One-Versus-All” (OVA) and “Error
Correcting Output Codes” (ECOC) [7].

One important distinction between an ensemble created using a decomposition
technique, and a traditional ensemble in the binary class literature, is no single
classifier in the decomposition ensemble can classify an instance in the multi-
class domain. Thus while we use the word ensemble in this paper, we do not
compare against traditional ensemble techniques (e.g., bagging [1], and AdaBoost
[9]) as they are outside the scope of this paper. In order to avoid confusion,
ensembles built using decomposition techniques will be known as “decomposition
ensembles”.

Contributions. While the multi-class imbalance problem is a serious problem in
data mining, there has been little study on the effectiveness of decision trees on
the multi-class imbalanced learning problem. Recently Hellinger distance deci-
sion trees (HDDTs) have been proposed as a way of solving the class imbalance
problem for decision trees without sampling. Building upon this method, we
propose a modified HDDT algorithm which improve its performance on multi-
class datasets, along with an analytic result to explain the relative weaknesses
of HDDT in the multi-class domain. We then demonstrate the effectiveness of
various decomposition techniques on improving the performance of decision trees
(both C4.4 and HDDT). We then specifically demonstrate how these techniques
exploit the nature of HDDT on binary imbalanced datasets to build decom-
position ensembles of HDDT classifiers which outperform other decision tree
methods on two widely used metrics. Finally, we provide recommendations for
building decision trees for the multi-class imbalance problem.

2 Methods

We apply a variety of methods to better understand the performance of decision
trees in the class imbalance problem. Due to space restrictions, we limit the
study to two popular decomposition techniques (OVA and ECOC), as well as
building single trees.
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2.1 Decomposition Techniques

As previously discussed, decomposition techniques have become a powerful tool
in the data mining community to transfer (less studied) multi-class problems into
(more studied) binary class problems. When considering decomposition tech-
niques, an important factor is the size of the generated decomposition ensemble.
Since one of the criteria when selecting decomposition methods to consider was
the amount of computation time required, we selected two techniques which
(generally) generate vastly different sized decomposition ensembles (and thus
require vastly different computation time).

One-Versus-All Decomposition. The OVA technique is one of the simplest
and most natural techniques for decomposing the multi-class problem into mul-
tiple binary class problems. In OVA, given c classes, c classifiers are built such
that each one considers one of the classes to be the “positive” class while the
remainder are combined into a “negative” class. When a new instance is seen,
each classifier returns a probability estimate for the instance. An overall proba-
bility estimate is then obtained by combining each of the individual probability
estimates into a vector of length c, and normalizing.

One of the main advantages of the OVA technique is that it is conceptually
simple. Rifkin and Klautau [16] argue that this simplicity, combined with its
superior performance, make OVA a very desirable technique which should be
considered over its more complicated alternatives.

Error Correcting Output Codes Decomposition. ECOC is another pop-
ular method developed by Dietterich and Bakiri [7], which uses the concept of
error correcting codes to learn a decomposition ensemble of classifiers. The choice
of error correcting codes is a natural one as, assuming the codewords have ham-
ming distance d, a maximum of �d−1

2 � errors can be made by the decomposition
ensemble before misclassification occurs. This is a strong guarantee, and allows
users to customize the size of the decomposition ensemble based on how many
errors they expect versus the size of the codewords which they will allow.

More specifically, in ECOC each class is given an n-bit binary string called
a “codeword”. These codewords are generated such that the hamming distance
between all codewords is maximized. Let c be an m× n matrix (where m is the
number of classes), such that cij denote the jth bit for the codeword of class i.
Given this, we can now learn a decomposition ensemble of n classifiers. For each
classifier, the positive and negative classes are determined by the jth column
of c. That is, if cij = 1, then class i is considered part of the positive class in
classifier j. Otherwise, if cij = 0, class i is considered part of the negative class.

One of the most important considerations when building an ECOC decompo-
sition ensemble is the length of the codewords. The maximum codeword length
is 2m−1 − 1. While building decomposition ensembles of this size results in the
one most robust to errors, it also requires the most training time. Specifically, for
11 classes this method requires building a decomposition ensemble of size 1024.
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While given the computing power available today this is of reasonable size, as the
number of classes grows the problem quickly becomes intractable. Since having
so many classes is rare in practice, and does not in fact occur for any datasets
in this paper, we build codewords of maximum size for all datasets.

2.2 Decision Trees

Decision trees are one of the fundamental learning algorithms in the data mining
community. The most popular of decision tree learning algorithm is C4.5 [14].
Recently Hellinger distance decision trees (HDDTs) [4] have been proposed as
an alternative method for building decision trees for binary class datasets which
exhibit class imbalance.

Provost and Domingos [13] recommend a modification to C4.5 known as C4.4.
In C4.4 decision trees are constructed by building unpruned and uncollapsed
C4.5 decision trees which use Laplace smoothing at the leaves. These choices
are due to empirical results [13] demonstrating that a fully built unpruned,
uncollapsed tree with Laplace smoothing outperforms all other configurations,
and thus are used in all experiments in this paper.

The important function to consider when building a decision tree is known as
the splitting criterion. This function defines how data should be split in order to
maximize performance. In C4.4 this function is gain ratio, which is a measure of
purity based on entropy [14], while in HDDT this function is Hellinger distance.
In the next section we motivate Hellinger distance as a splitting criterion, and
then subsequently devise a strategy for improving its performance on multi-class
datasets.

Hellinger Distance Splitting Criterion. Hellinger distance is a distance met-
ric between probability distributions used by Cieslak and Chawla [4] to create
Hellinger distance decision trees (HDDTs). It was chosen as a splitting criterion
for the binary class imbalance problem due to its property of skew insensitivity.
Hellinger distance is defined as a splitting criterion as [4]:

dH(X+, X−) =

√√√√√ p∑
j=1

(√
|X+j |
|X+|

−
√

|X−j |
|X−|

)2

(1)

whereX+ is the set of all positive examples,X− is the set of all negative examples
and X+j (X−j) is the set of positive (negative) examples with the jth value (of
p distinct values) of the relevant feature.

Since Hellinger distance defines the distance between probability distributions,
it does not naturally extend to the multi-class problem. This is in contrast to gain
ratio — which is based on entropy — which is easily extensible to any number
of classes. Specifically, since Hellinger distance is a distance metric, any natural
extension would be attempting to determine the distance between c probability
distributions, where c is the number of classes. Since this is not a well defined
problem, we propose an extension to the HDDT algorithm for the multi-class
problem.
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Algorithm 1. Calc Multi Class Hellinger

Require: Training set T , Feature f , Set of classes C
1: Let Hellinger ← −1.
2: Let Vf be the set of values of feature f .
3: for each pair of subsets of C: C1 ⊂ C, C2 = C \ C1: do
4: for each value v ∈ Vf do
5: Let w ← Vf \ v
6: cur value ← (

√
|Tf,v,+|/|T+| −

√
|Tf,v,−|/|T−|)2 + (

√
|Tf,w,+|/|T+| −√

|Tf,w,−|/|T−|)2
7: if cur value > Hellinger then
8: Hellinger ← cur value
9: end if
10: end for
11: end for
12: return

√
Hellinger

Multi-Class HDDT. In order to overcome the shortcomings of Hellinger dis-
tance as a splitting criterion for the multi-class problem, we employ techniques
similar to the decomposition algorithms described in Section 2.1. That is, given
the set of classes C, we consider each unique pair of subsets: C1 ⊂ C, C2 = C\C1

and consider all classes in C1 as the positive class, and all classes in C2 as the
negative class1

Algorithm 1 outlines the approach to incorporating Hellinger distance in learn-
ing multi-class decision trees. Let TC indicate the subset of training set T which
has its class in set C, and Tk,j,C identifies the subset which has its class in set
C and has value j for feature k.

The important aspect of this version of the Hellinger distance splitting crite-
rion is the reduction of the multiple classes into all relevant binary class possi-
bilities. This choice enables Hellinger distance to try find the best split between
all possible choices of positive and negative class, and thus any meaningful split
available to it in the multi-class domain.

This distance calculator can then be used as the splitting criterion in a decision
tree algorithm in order to build multi-class HDDTs (MC-HDDTs). Comparing
MC-HDDTs further to HDDT shows us that for the binary class problem, exactly
the same tree will be learned as the original version. Our algorithm can therefore
be recommended in lieu of HDDT, as it returns the same tree for the binary case
while offering better performance on the multi-class problem.

3 Analysis of the Splitting Criteria

One of the major research questions in this paper is why the performance of
HDDT suffers in the multi-class case when compared to C4.4, especially in light

1 Note that two pairs of subsets (e.g., (C1, C2) and (D1, D2)) are considered equal if
C1 = D1 or C1 = D2.
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(a) Effects of 100:1 imbal-
ance ratio.

(b) Effects of 100:1:100:1
imbalance.

(c) Effects of OVA on
100:1:100:1 imbalance.

(d) Effects of 100:1 imbal-
ance.

(e) Effects of 100:1:100:1
imbalance.

(f) Effects of OVA on
100:1:100:1 imbalance.

Fig. 1. Comparison of the effects of various class distributions on the ability of in-
formation gain (top) and Hellinger distance (bottom) to correctly determine the class
boundary which optimizes AUC

of their performances on binary class imbalanced datasets. In this section we
present an analytic example which demonstrates how HDDT and C4.4 behave
when a binary class problem is transformed into a multi-class problem and then
back again. Due to space limitations we limit ourselves to a single example which
demonstrates an example of Hellinger distance performing poorly in the multi-
class case.

For our analytic example we created a simulated dataset with 4 classes, with
centers on the corners of a square, such that their means were separated by 2σ.
In the upper left and lower right corners, we simulated 10,000 examples, while
in the lower left and upper right corners we simulated only 100 examples. This
gives us a class imbalance ratio of 10,000:100:10,000:100 ( C.V.: 0.98). We then
decomposed the 4 class problem into a binary class problem by removing the
lower half of the square (as depicted in Figure 3). In order to determine their
performance, each of the experiments was run 100 times, and the (W)AUROC
(defined in Section 4) computed.

Figures 1(a) and 1(d) are representative examples of the effects of gain ratio
and Hellinger distance (respectively) on the binary class problem. From the
splits, we see that Hellinger distance is much more aggressive when splitting
into the majority class. When considering their performance, we see that, based
on AUROC, HDDT wins 85 out of the 100 runs. This increase in performance
is therefore an effect of Hellinger distance aggressively attempting to capture as
much of the minority class as possible, while gain ratio remains very conservative.
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In the multi-class case (Figures 1(b) and 1(e)) Hellinger distance once again
is very aggressive in attempting to capture as much of the minority class as
possible, while C4.4 is much more conservative. Due to the nature of this prob-
lem, however, the more conservative approach is better able to capture the
multi-distributional aspect of the problem. This is demonstrated by the fact
that, based on WAUROCs, C4.4 wins 82 of the 100 runs. Thus, for multi-class,
Hellinger distance is not able to adequately separate the two classes, instead
being overwhelmed by the spurious information from the extra classes.

In order to better understand this phenomena, consider the right-most hor-
izontal split Hellinger makes in the multi-class case. For this split, Hellinger
distance considers the “top” points to be the positive class and the “bottom”
points to be the negative class. As evidenced by the inaccuracy of the top left
points, Hellinger distance is not able to accurately partition the space. Gain
ratio, on the other hand is able to arrive at a better split point which more
accurately represents the boundary for this problem.

Finally we consider the case of OVA decomposition on the dataset. Figure
1(f) shows Hellinger distance is very good at capturing the minority class. This
favorable splitting is exactly what would be expected from such a binary class
imbalanced dataset, and thus explains the performance increase HDDT sees over
C4.4 when used in conjunction with OVA. This hypothesis is further confirmed
when we note that HDDT obtains a higher AUROC in 80 of the 100 runs, thus
confirming that it is the preferred classifier to use.

Given these results, we now better understand the dynamics of Hellinger dis-
tance in the binary class problem which result in inferior performance in the
multi-class domain. Further research into overcoming these challenges might
prove useful in developing a single decision tree approach which, without sam-
pling, is able to outperform the others in the case of multi-class imbalance.

4 Experiments

We implemented MC-HDDT in WEKA [10], and used WEKA’s built-in OVA
and ECOC to train each of the classifiers. In order to make fair comparisons, we
split the experiments into three separate categories, namely: single trees, OVA
decomposition, and ECOC decomposition. This separation is done to highlight
the difference in performance of HDDT and C4.4 under different decomposi-
tion techniques. That is, by comparing each method within a category, we are
providing a fair comparison of the different decision tree techniques.

Table 1 gives the relevant simple statistics about the datasets used in this
paper. One of the main goals when choosing the datasets to consider was ensuring
that they were imbalanced. To measure imbalance in multi-class datasets, we use
the “coefficient of variation” (C.V.) as recommended by Cieslak and Chawla [5].
Specifically, C.V. is the proportion of the deviation in the observed number of
examples for each class versus the expected number of examples in each class.
In this paper we consider datasets with a C.V. above 0.35 – a class ratio of 2:1
on a binary dataset – imbalanced. This leaves us with the 17 datasets listed.
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4.1 Configuration

In order to ensure a fair comparison of the methods, we ran 50 iterations [15] of
2-fold cross-validation. We chose 2-fold cross-validation due to the small number
of instances of some classes in the datasets. Due to space restrictions, we only
consider weighted area under the receiver operating characteristic (WAUROC)
[19]. We chjse this metrics as it is a commonly used criterion when comparing
classifiers in the multi-class imbalance case.

Table 1. Statistics for the datasets used in this paper. C.V. is the coefficient of varia-
tion, # Ftrs is the number of features, and # Insts is the number of instances.

Dataset C.V. # Ftrs # Insts # Classes
abalone 0.711 9 4177 4
artificial 0.594 8 5109 5
auto-mpg 0.621 8 398 3
balance-scale 0.541 5 625 3
bgp 1.260 9 24984 4
car 1.082 7 1728 4
connect-4 0.714 43 67557 3
dermatology 0.455 35 366 6
dna 0.394 180 3186 3
glass 0.761 9 214 6
page-blocks-5 1.747 10 5473 5
sat 0.372 36 6435 6
segment 0.535 20 2310 3
solar-flare-2 0.535 12 1066 6
splice 0.393 61 3190 3
vehicle 0.370 19 846 3
yeast 1.005 9 1484 9

4.2 Statistical Tests

While many different techniques have been applied to attempt to compare clas-
sifier performance across multiple datasets, Demšar suggests comparisons based
on ranks. We follow this recommendation and rank the performance of each
classifier by its average performance, with 1 being the best. Since we seek to
determine whether or the HDDT methods are statistically significantly better
than the existing methods, we use the Friedman and Bonferroni-Dunn tests as
was recommended by Demšar [6].

The Friedman test is first applied to determine if there is a statistically sig-
nificant difference between the rankings of the classifiers. That is, it tests to see
if the rankings are not merely randomly distributed. Next, as recommended by
Demšar, we preform the Bonferroni-Dunn test to compare each classifier against
the control classifier.

4.3 Results

As stated previously we break the experiment into three different categories.
Each of the categories corresponds to a different level of computational effort
required to construct the classifier, with single trees requiring the least amount
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Table 2. WAUROC values for the various methods over each of the datasets. Bold
numbers indicate overall best performance. The number in parenthesis indicates the
rank in the category. A � indicates that the method performs statistically significantly
worse than the other method in its category at the relevant confidence level.

Single Tree OVA ECOC
Dataset C4.4 MC-HDDT C4.4 HDDT C4.4 HDDT
abalone 0.71484 (1) 0.71007 (2) 0.73751 (2) 0.74073 (1) 0.74869 (1) 0.74803 (2)
artificial 0.87548 (2) 0.87932 (1) 0.87913 (2) 0.88178 (1) 0.90344 (2) 0.90474 (1)
auto-mpg 0.90093 (2) 0.90806 (1) 0.91153 (2) 0.91476 (1) 0.91153 (2) 0.91476 (1)
balance-scale 0.90607 (1) 0.90495 (2) 0.90486 (2) 0.90651 (1) 0.90486 (2) 0.90651 (1)
bgp 0.80268 (1) 0.79698 (2) 0.81378 (2) 0.81414 (1) 0.82418 (2) 0.82446 (1)
car 0.97662 (2) 0.98652 (1) 0.98209 (2) 0.99244 (1) 0.98262 (2) 0.99413 (1)
connect-4 0.87879 (1) 0.85156 (2) 0.88971 (1) 0.87900 (2) 0.88971 (1) 0.87900 (2)
dermatology 0.97794 (2) 0.98283 (1) 0.98357 (2) 0.99079 (1) 0.99594 (2) 0.99682 (1)
dna 0.97508 (1) 0.96680 (2) 0.98436 (1) 0.98232 (1) 0.98436 (1) 0.98232 (2)
glass 0.80585 (1) 0.79370 (2) 0.83867 (2) 0.84393 (1) 0.88161 (2) 0.88348 (1)
page-blocks-5 0.98104 (2) 0.98111 (1) 0.98446 (2) 0.98480 (1) 0.98731 (2) 0.98940 (1)
sat 0.96262 (1) 0.96124 (2) 0.97273 (2) 0.97471 (1) 0.98679 (2) 0.98715 (1)
segment 0.98656 (2) 0.98848 (1) 0.99437 (2) 0.99650 (1) 0.99437 (2) 0.99650 (1)
solar-flare-2 0.91886 (2) 0.92032 (1) 0.91683 (2) 0.91856 (1) 0.92098 (1) 0.92035 (2)
splice 0.97459 (2) 0.97476 (1) 0.98457 (1) 0.98262 (2) 0.98457 (1) 0.98262 (2)
vehicle 0.95696 (2) 0.96139 (1) 0.97164 (2) 0.97717 (1) 0.97164 (2) 0.97717 (1)
yeast 0.73156 (1) 0.71541 (2) 0.76973 (2) 0.77137 (1) 0.80843 (2) 0.80871 (1)
Avg. Rank 1.52941 1.47059 1.82353 1.17647 1.70588 1.29412
α = 0.05 �
α = 0.10 � �

of work, and ECOC requiring the most. For the sake of space, however, the
WAUROC values for each of the methods is presented in Table 2.

Table 2 also contains the results of the statistical test described in Section
4.2. A classifier receives a check mark if it is considered statistically significantly
worse than the best classifier (i.e., the classifier with the lowest average rank) in
its category (e.g., single tree, OVA, ECOC) at the noted confidence level.

Single Tree Performance. When considering the single tree performances,
C4.4 and MC-HDDT perform equivalently. This is an interesting result for multi-
class imbalanced data sets, and further corroborates the intuition established
with the illustrations in Section 3. As discussed, this is mainly due to the aggres-
sive nature of the splits which Hellinger distance tries to create. The consequence
of this analysis is further evidenced in the OVA performance.

Hellinger distance, as a criterion, is limited in capturing the multi-class diver-
gences. Nevertheless, we recommend MC-HDDT as a decision tree classifier, as
it reduces to HDDT for binary class datasets (achieving statistically significantly
superior performance over C4.4 [4]), and is a competitive alternative to C4.4 for
multi-class datasets (no statistically significant variation in performance).

OVA Performance. When considering OVA performance, HDDT significantly
outperforms C4.4. This result confirms our understanding of the binary class
performances of each of the classifiers. That is, when decomposing the multi-
class problem into multiple binary problems, the binary class problems obtained
are (often) extremely imbalanced. This fact is further exacerbated by the fact
that the multi-class dataset itself is highly imbalanced.
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Thus in the OVA approach, each binary classifier in the decomposition ensem-
ble must deal with the class imbalance problem. Since HDDT has been shown
to perform statistically significantly better than C4.4 in this scenario, we expect
to see HDDT outperforming C4.4 when using the OVA approach. Based on the
observations obtained, we can conclude that our intuition is correct and, further-
more, that when using OVA decomposition for multi-class imbalance, HDDT are
the appropriate decision tree learning to choose.

ECOC Performance. When comparing the relative performance of the clas-
sifiers, we see that HDDT outperforms C4.4 almost as well as in the OVA ap-
proach. While the statistical significance is only α = 0.10, we see that it is not
statistically significant at the α = 0.05 threshold by one dataset. As Table 2
shows, some of the performance differences were quite small. Thus it seems rea-
sonable to believe that with more datasets we might see the same statistical
significance with this method as was shown in OVA, as we would expect the
same performance gains of using HDDT over C4.4 in this case as well.

This expectations of better performance of HDDT over C4.4 is due to similar
reasoning as the OVA case. That is, by decomposing the problems into multi-
ple binary problems, the class imbalance will still be a major concern. However,
the ECOC approach will result in 2m−1 − 1 binary datasets. Some of these will
be highly imbalanced, while others may be balanced depending on the respec-
tive class distributions. Nevertheless, HDDT is able to capitalize with ECOC.
It is able to achieve stronger separability on highly imbalanced combinations,
and achieves comparable performance to C4.4 on the relatively balanced class
combinations, and thus, as a collective, it is able to outperform C4.4.

Overall Performance. When considering the overall performance of each
method as given in Table 2, we see that, in general, the more computational
power used, the better the performance. That is, the ECOC methods outper-
form the OVA methods which outperform the single tree methods.

This is an unsurprising result, as a wealth of data mining literature demon-
strates that combining a large number of classifiers into an ensemble is a powerful
technique for increasing performance. The decomposition ensemble techniques
employed in this paper are also of particular interest, as the diversity of the clas-
sifiers created in the decomposition ensembles is quite high. That is, since the
class values under consideration are changing between datasets, the classifiers
are not merely learning on different permutations of the underlying instances,
instead having the decision boundaries themselves change. It is well known that
diversity is important to creating good ensembles [11].

5 Related Work

A number of methods have been proposed to counter the class imbalance is-
sue, however a large portion has focused on the binary class problem. Sampling
methods have emerged as a de facto standard, but present numerous challenges
when being extended to multiple classes. This is due to the complexity aris-
ing from the combination of multiple class imbalance types, different amounts
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of sampling, different sampling methods, and different cost matrices. Thus to
apply any reasonable optimization criteria to discovering the optimal sampling
amount is computationally prohibitive.

Rescaling [8] is a general method for cost-sensitive and class-imbalance prob-
lems which changes the distribution of the original data [20]. As there are many
methods that can change the distribution, rescaling can be realized in numerous
ways (e.g., by sampling, instance-weighting, threshold moving, etc.). Sampling
is a widely used rescaling method to deal with the class-imbalance problem. The
method balances the distribution modifying the training set to either increase
the presence of the minority class (e.g., random oversampling, SMOTE [2]),
or reduce the majority class (e.g., undersampling). Another popular rescaling
method is instance-weighting. In this method, instead of removing or adding in-
stances, a weight is generated for each instance according to its misclassification
cost, which is passed to a cost-blind classifier which uses instance weights [17].
A final common approach is threshold moving, wherein the decision threshold is
modified in order to achieve the minimal cost in cost-sensitive learning [8,21].

Cost sensitive learning methods have been developed to deal with the differ-
ent costs of misclassification [18]. For example, the cost of misclassifying a can-
cer patient as healthy is much higher than the cost of misclassifying a healthy
patient as having cancer. Given this, cost sensitive problems require the min-
imization of the misclassification cost rather than misclassification errors. The
class-imbalance problem can thus be considered a cost-sensitive problem where
the costs are unequal and unknown [12]. Most cost-sensitive learning methods
are actually based on rescaling [20], and therefore it is natural that by assigning
the appropriate misclassification cost for each class, cost-sensitive approaches
can be used to deal with the class-imbalance problems.

6 Conclusion and Discussion

In this paper we compared different methods of building C4.4 and Hellinger
distance decision trees for multi-class imbalanced datasets. Given the different
amounts of computation time required by each method, we investigated the
problem in three separate categories: single tree, OVA, and ECOC.

In the single tree case we found that MC-HDDT performs comparably to C4.4.
While MC-HDDT does not statistically significantly outperform C4.4, it is a
reasonable alternative to C4.4 for all classification problems. This is an important
result as it gives practitioners another viable tool to use when confronted with
a new dataset.

Alternatively, when the analysis was extended to build decomposition ensem-
bles of binary classifiers HDDT became the clear choice. Given the skew insen-
sitivity of Hellinger distance as a splitting criterion, coupled with the nature
of skew in the resulting problems, the gains in performance become significant.
With this in mind, we recommend HDDT for all multi-class imbalanced learning
when used in a decomposition method.

Another important observation stems from the overall performance. Specifi-
cally we see that the more complex (and thus more computationally intensive)
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algorithms give real gains in performance. We can therefore revise our recom-
mendation, this time recommending the use of HDDT in an ECOC decomposi-
tion ensemble if the user has enough computational power. Otherwise, the user
should consider an OVA decomposition ensemble with HDDT, and, finally, if
not enough computational power exists for such a decomposition, building MC-
HDDTs. We recommend MC-HDDTs over C4.4, as even though the difference
between them is not statistically significant for multi-class datasets, MC-HDDT
reduces to HDDT for binary class datasets, where it has been demonstrated to
be strongly skew insensitive and statistically significantly over C4.4. As a result,
MC-HDDT may be considered the recommended decision tree algorithm.

Finally, Section 3 illustrated the challenges Hellinger distance faces in the
multi-class domain. With this understanding further research can now explore
the problem of multi-class Hellinger distance and attempt to overcome the
demonstrated difficulties to provide a robust classifiers for multi-class problems.
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and an Application to Boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS,
vol. 904, pp. 23–37. Springer, Heidelberg (1995)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Exp. News. 11(1), 10–18 (2009)

11. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active
learning. In: NIPS, pp. 231–238 (1995)

12. Maloof, M.A.: Learning when data sets are imbalanced and when costs are unequal
and unknown. In: ICML WLIDS (2003)

13. Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine
Learning 52(3), 199–215 (2003)



134 T.R. Hoens et al.

14. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
15. Raeder, T., Hoens, T., Chawla, N.: Consequences of Variability in Classifier Per-

formance Estimates. In: ICDM, pp. 421–430 (2010)
16. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. JMLR 5, 101–141

(2004)
17. Ting, K.M.: An instance-weighting method to induce cost-sensitive trees.

TKDE 14(3), 659–665 (2002)
18. Turney, P.D.: Types of cost in inductive concept learning. In: ICML, pp. 15–21

(2000)
19. Van Calster, B., Van Belle, V., Condous, G., Bourne, T., Timmerman, D., Van

Huffel, S.: Multi-class auc metrics and weighted alternatives. In: IJCNN, pp. 1390–
1396 (2008)

20. Zhou, Z.-H., Liu, X.-Y.: On multi-class cost-sensitive learning. In: AAAI, pp. 567–
572 (2006)

21. Zhou, Z.-H., Liu, X.-Y.: Training cost-sensitive neural networks with methods ad-
dressing the class imbalance problem. TKDE 18(1), 63–77 (2006)



Scalable Random Forests for Massive Data

Bingguo Li, Xiaojun Chen, Mark Junjie Li, Joshua Zhexue Huang,
and Shengzhong Feng

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
Shenzhen 518055, China

{bg.li,xj.chen,jj.li,zx.huang,sz.feng}@siat.ac.cn

Abstract. This paper proposes a scalable random forest algorithm SRF
with MapReduce implementation. A breadth-first approach is used to
grow decision trees for a random forest model. At each level of the trees, a
pair of map and reduce functions split the nodes. A mapper is dispatched
to a local machine to compute the local histograms of subspace features
of the nodes from a data block. The local histograms are submitted to
reducers to compute the global histograms from which the best split
conditions of the nodes are calculated and sent to the controller on the
master machine to update the random forest model. A random forest
model is built with a sequence of map and reduce functions. Experiments
on large synthetic data have shown that SRF is scalable to the number of
trees and the number of examples. The SRF algorithm is able to build a
random forest of 100 trees in a little more than 1 hour from 110 Gigabyte
data with 1000 features and 10 million records.

Keywords: MapReduce, Random forests, Histogram.

1 Introduction

Data with millions of records and thousands of features present a big challenge
to current data mining algorithms. On one hand, it is difficult to build classifi-
cation models from such massive data with serial algorithms running on single
machines. On the other hand, most classification algorithms are not capable
of building accurate models from extremely high dimensional data with thou-
sands of features. However, such high dimensional massive data exist in many
application domains, such as text mining, bio-informatics and e-commerce.

Random forests [1] is an effective ensemble model for classifying high dimen-
sional data [2]. A random forest consists of K decision trees, each grown from a
data set randomly sampled from the training data with replacement. At each node
of a decision tree, a subset ofm features is randomly selected and the node is split
according to the m features. Breiman [1] suggested m = Log2(M) + 1 where M
is the total number of features in data. For very high dimensional data, M is very
big and m is much smaller than M . Therefore, decision trees in a random forest
are grown from subspaces of features [3][4][5]. The random forest classifies data ac-
cording to the majority votes of individual decision trees. Due to the computation
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of a large number of decision trees, it is extremely difficult to build random forest
models from large data sets with millions of records on single servers.

MapReduce [6][7][8] is a simple programming model for distributed comput-
ing. It abstracts away many low-level details such as task scheduling and data
management, and conceptualizes a computational process as a sequence of map
and reduce functions. In a map phase, the same map function is dispatched to
all computing nodes and executes the same set of operations in parallel. In the
reduce phase, the reduce function merges results from different mapper tasks.
If the data file is large, more data blocks are created and distributed on more
computing nodes. The map and reduce functions are automatically dispatched
to more computing nodes. Therefore, MapReduce model is scalable to large data.

To implement the random forest algorithm in MapReduce, a straightforward
method is to build one decision tree from each data block. This assumes that each
data block is one training data sampled from the large training data set. The
decision tree algorithm is implemented in one map function so it is dispatched
to all computing nodes to build all decision trees from the local data blocks.
The majority voting is performed in the reduce function. Such implementation is
adopted in Apache Mahout1. Two main drawbacks in this simple implementation
are: 1) The data blocks are hard partitions of the large training data and can
have biased distributions different from the training data. This problem results in
weak and biased trees; 2) As the map function builds a decision tree recursively,
it can cause memory leakage if the tree is large and complex.

In this paper, we propose a new scalable random forest algorithm (SRF) for
constructing random forest models from massive data. The SRF algorithm takes
advantages of MapReduce programming model to gain high scalability on large
data. Instead of using the recursive process to grow trees, a breadth-first tree
growing method is adopted. Starting from the root nodes, all trees grow on level
basis. The nodes of all trees on each level split up into children nodes in one pair
of map and reduce functions. A random forest model is built with a sequence of
D pairs of map and reduce functions where D is the depth of the highest tree in
the forest. To split nodes on each level, one pair of map and reduce functions are
used. The histograms of features for each node are calculated first in the map
function and all sets of histograms for the same node in a tree are merged into
one set of global histograms in the reducer job. We employ the method in SPDT
[9] to calculate the histograms from each local data block and merge them into
the global histograms to split the node. The reducer also calculates the node split
function such as information gain and determines the split conditions of data to
generate the children nodes. At start, a reference table is generated to record the
data sets for different trees that are randomly sampled from the training data
with replacement (bagging).

We have conducted a series of experiments on both synthetic and real-life data
sets and compared SRF with SPDT and random forests in Mahout. The result
showed that SRF obtained higher accuracy than SPDT and accuracy of SRF was
similar to the random forests inMahout. To further compare SRFwithMahout, we

1 http://mahout.apache.org
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added noise to OCR data set. On this noise data, the accuracy of random forests
in Mahout reduced to 51.9% while the accuracy of SRF was 78.6%. On a sepa-
rate sparse data Real-sim2, Mahout random forests was not able to produce a
model and generated stack overflow error message due to memory leakage but
SRF worked fine. We used a large synthetic data with more than one thousand
attributes and millions of records, to test the scalability of SRF. With 30 comput-
ing nodes, SRF was able to build a random forest with 100 trees in a little more
than 1 hour from amassive data set of 110Gigabyteswith 1000 features and 10mil-
lion records. This was indeed a significant result. SRF also demonstrated a linear
property with respect to number of trees and number of examples.

The rest of the paper is organized as follows. Section 2 gives a brief review
of the SPDT algorithm. In Section 3, we present the SRF algorithm in details.
We present experiment results on real-life data and scalability tests in Section
4. The paper is concluded in Section 5.

2 Related Work

Building decision trees is the major function of building a random forest. Tra-
ditional decision algorithms [10][11] use a recursive process to create a decision
tree from a training data set. These algorithms will have problems if the train-
ing data or the tree is too big to fit in the main memory. Scalable decision tree
algorithms have been proposed to handle large data. Some take an approach to
pre-sort the training data before building the decision tree, such as SLIQ [12],
SPRINT [13] and ScalParC [14]. Others compute the histograms of attributes
and split the training data according to the histograms, such as BOAT [15],
CLOUDS [16], SPIES [17] and SPDT [9]. The later are more scalable as the
tree growing process is no longer relevant to the size of training data after all
histograms are created. The creation of histograms can be easily parallelized.
Google also proposed PLANET [18] for regression trees based on MapReduce
programming model. PLANET only supports sampling without replacement.

In this work, we use a breadth-first method to construct decision trees for a
random forest. We select the streaming parallel decision tree algorithm SPDT
recently developed at IBM as a framework to develop the breadth-first tree
growing process. Figure 1 sketches the process of the SPDT algorithm. It runs
in a distributed environment with one master node and several workers. Each
worker stores 1/W percentage of the data where W is the number of workers.
To grow a decision tree, the master node instructs workers to compute the local
histograms of features from their local data blocks. After local histograms are
complete, the workers send them to the master which merges them into the global
histograms. The global histograms are then used to compute the conditions to
split the nodes and grow the decision tree. After the nodes in the same level are
split, the master node instructs the workers again to compute histograms for
the newly generated children nodes. This process continues until no node needs
further split.

2 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html
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Fig. 1. The parallel framework of the SPDT algorithm

3 Scalable Random Forest Algorithm

In this section, we present a scalable random forest algorithm that uses SPDT
node split method to grow decision trees in building a random forest model. The
process of random forest building is implemented in the MapReduce program-
ming model and runs on a distributed cloud computing platform.

3.1 Breadth-First Random Forest Construction

In a distributed environment, we create K decision trees for a random forest
in parallel. Instead of the recursive process, we use the breadth-first method to
create multiple decision trees. For example, to create three decision trees A, B, C
in Figure 2, we first generate three root nodes. Then, we compute the best splits
of the three root nodes in parallel and generate 6 children nodes, two from each
root. We continue this process to generate grand children nodes, great grand
children nodes, and etc. At each node, if the pre-defined stop conditions meet,
the node is treated as a leaf node and no further split is necessary. After all
leaf nodes are found, the tree growing process terminates and a random forest
is obtained.

3.2 Scalable Random Forest Algorithm

With MapReduce programming model, we not only distribute map and reduce
functions to create decision trees, but also partition the training data into data
blocks and distribute them on different computing nodes. To create sample data
sets for decision trees, we create an index table, called bagging table with K
columns, each recording the examples that were selected in the sample data for
a decision tree with the method of sampling with replacement. This bagging
table is also distributed together with data blocks.
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Fig. 2. Breadth-first method to grow decision trees for a random forest

The scalable random forest algorithm is composed of a sequence of map and
reduce functions. Each mapper and reducer iteration creates one set of nodes
in the same level of K trees, as shown in Figure 2. In the distributed cloud
environment, each computing node stores a fixed number of data blocks. Each
data block is accessed by one mapper dispatched by the controller that runs on
the master node. The mapper is used to create the local histograms of subspace
features for all nodes in the current level for all K trees. The split conditions of
a node in a tree and the bagging table are used to select the objects that belong
to the node. At a root node, no split condition exists and only the bagging table
tells which objects in a data block are selected for the tree to be created.

After all local histograms are computed by all mapper jobs, they are sorted on
the tree ids. The local histograms for the same tree are sent to the same reducer
to compute the global histograms at each node. The reducer also calculates the
best split from the global histograms and send the best split conditions back to
the controller to update the random forest model. After a pair of map and reduce
functions completed, each decision tree grows a new level of nodes, which are
taken as the current level of nodes for the next pair of map and reduce functions.
If a node satisfies the stop condition, it is marked as the leaf node.

3.3 Mapper, Reducer and Controller

The pseudocode of the mapper procedure is described in Algorithm 1. Each
record of the data block is checked against the bagging table T . If it belongs
to the sample data for the tree, it is used to compute the local histograms of
subspace features. After scanning all the training set,the local histograms for all
decision trees are obtained.

At the end of the map phase, the mapper sends all local histograms in a set
of (key, value set) pairs to reducers. The key is the id of a decision tree and the
value is local histograms of nodes in that tree. In this way, we ensure all local
histograms for the same decision tree are sent to one reducer.
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Algorithm 1. Mapper Procedure

1: Input:
2: - D∗ : the training dataset;
3: - M : the random forests model, it contains the random forests constructed

so far, nodes in the current level of all trees contain selection conditions of
objects;

4: - T : the bagging table, it records the bagging indexes of each tree.
5:

6: Output: Generate histogram tuples hist-tup for nodes of all trees in the
current level;

7: Method:
8: for each record (x, y) ∈ D∗ do
9: for all decision tree k ∈ M do

10: if tree k has nodes to build AND the record is specified for tree k in
bagging table T then

11: hist-tupk ← update(record, num) //update histograms for tree k
12: end if
13: end for
14: end for
15: for all decision tree k ∈ M do
16: Output(treeId of k, hist-tupk) // output pairs of tree id and histogram

tuples
17: end for

The pseudocode of the reducer procedure is described in Algorithm 2. The
reducer receives pairs of (key, value set) from different mappers. The key values
are sorted ids of decision trees and the value sets are the local histograms of the
trees from all mappers. The reducer merges the value sets of local histograms
into global histograms with respect to the tree id and the node. The reducer
computes the best split conditions from the global histograms for the node. If
the split does not justify a split, the node is marked as a leaf node and no further
split will occur. Otherwise, new children nodes are created under the node and
the split conditions are recorded in node tuples for the children nodes. After all
histograms are processed, the reducer sends the pairs of (id, node-tuple) to the
controller. The controller adds the new nodes to the random forest model with
the split conditions.

The pseudocode of the controller procedure is described in Algorithm 3. The
controller starts with initialization of an empty model M . Vector N is used to
record the number of nodes to split in a level of each tree. N is initialized with
each tree having one root node. N = [1, 1, 1] in the root level of Figure 2. Each
iteration of a map and reduce pair generates a new N recording the number of
nodes for each tree in the newly split level. For example, N = [2, 2, 2] in the
level above the root and N becomes [4, 2, 2] afterwards. N = [0, 0, 0] after the
last level.
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Algorithm 2. Reducer Procedure

1: Input:
2: - k : the id of tree;
3: - V : the value set, receiving from different mappers.
4:

5: Output: Calculate the best split conditions at nodes for decision trees;
6: Method:
7: hist-tupk ← merge(V) // merge local histograms into global ones
8: for all built node i in tree k do
9: The histogram of node i is hist-tupk(i)

10: if hist-tupk(i) satisfies stop condition then
11: node-tupi ← leaf
12: else
13: candidSplits← Uniform(hist-tupk(i)) // compute the best split con-

ditions
14: node-tupi ← split
15: end if
16: end for
17: Output(k, node-tup)

The loop of the controller checks whether N contains non-zero elements and
terminates if all elements in N are zeros. Inside the loop, the controller configures
a MapReduce job first and then dispatches it to the computing nodes to perform
a pair of map and reduce functions on one level of nodes of all decision trees. The
controller also passes the information of the nodes in the current level to each
mapper for computing local histograms. The controller calculates the number
of reducers for the MapReduce job according to the number of nodes in N to
balance the load to reducers. After all reducers complete, parseOutput function
processes the results from reducers and generates the new node information in
tree-tup. The tree-tup data is used to update the random forest model M and
computes a new N to record the number of new nodes generated in each tree.

4 Experiments

In this section we show the classification results of SRF on large complex data
sets and comparisons of them with those by SPDT and Mahout. We also demon-
strate the scalability of SRF to very large data sets. The results show the capa-
bility of SRF in building random forest models from extremely large data with
10 million records and 1000 features in less than 2 hours. Such models would be
very difficult, if not impossible, to build via traditional random forest algorithms.

4.1 Data Sets

Two data sets were used in experiments. The first set was used to test the
classification performance of SRF in accuracy and compare classification results
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Algorithm 3. Controller Procedure

1: Input:
2: - M : the random forests model, M = φ;
3: - N : the vector, N = [1, 1, ...].
4:

5: Output: Construct a random forests model with MapReduce;
6: Method:
7: while N has non-zero elements do
8: ConfigureMapReduce(job)
9: Dispatch(job)

10: tree-tup = parseOutput(job)
11: N = updateForests(M , tree-tup)
12: end while

with those by SPDT and Mahout. Four real-life data sets were selected and these
data sets were used in evaluating SPDT in [9]. The characteristics of these data
sets are summarized in Table 1. They can be downloaded from UCI repository
and Pascal Large Scale Learning Challenge3.

Table 1. Real-life data sets used in accuracy experiments

Dataset #Features #Train Set #Test Set %Classes
Isolet 617 6,238 1,559 26

Multiple Features 649 2000 2000 10
Face Detection 900 1,000,000 100,000 2

OCR 1,156 1,000,000 100,000 2

The second set contained four synthetic data sets that were generated for
scalability test of SRF. The four synthetic sets are listed in Table 2. The points
in the same class in these data sets have Gaussian distributions. To generate
separable classes in the synthetic data, we specified several central points with
labels first and calculated the distance between a generated record and the cen-
tral points. We set the class label of the record as the label of the central point
that had the minimum distance to the record.

4.2 Experiment Settings

The experiment environment was composed of 30 machines, each having 8 cpus
and 15 GB memory running CentOS Linux operating system. Hadoop was in-
stalled on these machines to form a MapReduce runtime environment. Each
machine was configured with 8 mappers and 8 reducers. The size of data block
was 64 MB by default.

3 ftp://largescale.ml.tu-berlin.de/largescale
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Table 2. Characteristics of synthetic sets for scalability evaluation

Dataset #Features #Train Set #Classes %Size of data(GB)
D1 1,000 10,000,000 5 110
D2 1,200 7,000,000 10 91.6
D3 1,400 5,000,000 15 76
D4 1,600 2,000,000 20 32.4

50 bins were used to build histograms. In performance experiment, a random
forest had 100 decision trees and the size of subspace at each node was log2(M)+
1, where M was the number of features in training data.

In scalability experiment, we investigated the scalability of SRF with respect
to four factors, i.e., the number of decision trees, the size of data, the size of
data block and the number of machines. For the number of decision trees, we
started with 1 single tree and added to 20 trees, then increased 20 more trees
other times. For size of data, we started with 200,000 examples and increased
the size of data with 200,000 more examples each time. For size of data block,
we started with 16 MB of data block and double the size of data block each
time. For the number of machines, we started with 15 machines, and increased
5 more machines each time.

4.3 Performance Results

Table 3 lists the classification results in term of accuracy of SPDT, Mahout and
SRF on the four real-life data sets described in Table 1. We can see that the
accuracies of SRF were higher than that of SPDT on all the four data sets. The
most prominent result was from the OCR data set that had 1156 features and
one million records. The increase of accuracy over SPDT was 19%. This result
demonstrated that SRF could get better performance than SPDT in handling
massive and high dimensional data, as SRF is a random forests algorithm, it
can get better performance than decision tree algorithm (SPDT) in handling
massive data.

Table 3. Accuracies of SPDT, Mahout and SRF on four real-life data sets

Dataset #Acc.(%) of SPDT #Acc.(%) of Mahout #Acc.(%) of SRF
Isolet 77.42 92.6 92.8

Multiple Features 91.5 98.5 97
Face Detection 96.69 91.5 97.47

OCR 60.65 78.9 79.5

For Mahout and SRF, the accuracy of SRF was closely similar with Mahout
random forests on Isolet and Multiple Features training data sets. The reason is
that the size of these two training data sets was no more than 64 MB, Mahout
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and SRF constructed all decision trees based on one data block, thus these
two algorithms degenerated into traditional random forests algorithms. On the
other hand, SRF could obtained higher accuracy than Mahout random forests
on massive data, such as Face Detection training set.

To illustrate the fact that random forests in Mahout builds all decision trees
on the first data block when the number of blocks is larger than the number
of decision trees, we added a block size of noise records, which was generated
randomly for two labels, in front of the OCR training set. The accuracy of
random forests in Mahout decreased rapidly from 78.9% to 51.9% while the
accuracy of SRF decreased from 79.5% to 78.6% on the noised OCR training
set. The reason is that, for Mahout, all decision trees were built on the first
data block, which contained the added noise data. As a result, SRF outperforms
Mahout in handling massive data.

In addition, Mahout may lead to memory leakage problem while handling
massive data. For example, Mahout random forests generated stack overflow
error message when dealing with Real-sim training data set, which has 35,000
examples and 20,958 features. As random forests in Mahout built decision trees
with depth-first mode, which may cause memory leakage problem.

4.4 Scalability

Figure 3 shows the scalability on four synthetic data sets with respect to the
number of trees in random forests, the number of examples in data, the size of
data block and the number of machines used. Figure 3(a) shows that the time
used to build a random forest model increased linearly as the number of trees
increased in the model. The run times for building one tree model for data sets
D1-D4 are 1174s, 1377s, 1654s and 1866s respectively. The run time increases
slowly as more trees are added to the model. For instance in data set D4, only
less than 4 extra seconds were added to the total run time when each additional
tree was added to the model. The larger the data set, more time it takes when
more trees are added. However, the speed of time increase is very slow. This
result demonstrates that SRF is scalable to the number of trees in the model.

Figure 3(b) shows the scalability of run time on four synthetic sets with respect
to the number of examples in data. We can see a linear increase in time as more
examples were added in building random forest models. When the number of ex-
amples was small, the differences of run times for the four data sets were very small.
As more examples were involved, the run time increased but very slow. The large
the data size, the larger the increase of run time. However, the speed of increase
was not fast. This demonstrates that SRF is also scalable to the data size.

Figure 3(c) shows the change of run time over the change of the size of data
block. The size of data block had impact on the run time of SRF. On the one
hand, the smaller data block generates more mappers. However, if the number of
mappers exceeds the mapper capacity of the system, the run time will increase
rapidly. On the other hand, the larger data block generates heavy load mapper.
From the chart, we can see that the proper size of data block is 32MB or 64MB
for the data sets.
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(a) Run time w.r.t. no. of trees. (b) Run time w.r.t. no. of examples.

(c) Run time w.r.t. data block size. (d) Run time w.r.t. no. of nodes.

Fig. 3. Scalability results on large synthetic data sets

Figure 3(d) shows the scalability of SRF with respect to the number of ma-
chines involved. We can see that the run time dropped rapidly as more machines
added. This demonstrates that SRF is able to handle very large data by adding
more machines.

5 Conclusions

We have presented the scalable random forest algorithm SRF and its implemen-
tation in MapReduce. In the algorithm, we adopted the breadth-first approach to
build decision trees in a sequence of pairs of map and reduce functions to avoid
the memory leakage in the depth-first recursive approach and make the algorithm
more scalable. We have demonstrated the scalability of SRF with very large syn-
thetic data sets and the results have shown SRF’s ability in building random forest
models from data with millions of records. Our future work is to further optimize
SRF in the area of load balance to make it more efficient and scalable.
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Abstract. Random forests are a popular classification method based on
an ensemble of a single type of decision tree. In the literature, there are
many different types of decision tree algorithms, including C4.5, CART
and CHAID. Each type of decision tree algorithms may capture different
information and structures. In this paper, we propose a novel random
forest algorithm, called a hybrid random forest. We ensemble multiple
types of decision trees into a random forest, and exploit diversity of the
trees to enhance the resulting model. We conducted a series of exper-
iments on six text classification datasets to compare our method with
traditional random forest methods and some other text categorization
methods. The results show that our method consistently outperforms
these compared methods.

Keywords: Random Forests, Hybrid Random Forest, Classification, De-
cision Tree.

1 Introduction

Random forests [1,2] are a popular classification method which builds an ensem-
ble of a single type of decision tree. The decision trees are often either built using
C4.5 [3] or CART [4], but only one type was exploited within a single random
forest. In recent years, random forests have attracted increasing attention due
to (1) its competitive performance compared with other classification methods,
especially for high-dimensional data, (2) algorithmic intuitiveness and simplic-
ity, and (3) its most important capability - “ensemble” using bagging [5] and
stochastic discrimination [2].

The most popular forest construction procedure was proposed by Breiman [1],
novelly using bagging to generate training data subsets for building individual
trees. A subspace of features is then randomly selected at each node to grow
branches of a decision tree. The trees are then combined as an ensemble into a
random forest [1].

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 147–158, 2012.
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In the literature, different types of decision trees algorithms have been pro-
posed, including C4.5, CART and CHAID [6]. Each type of decision tree algo-
rithms employs a different tree building process and captures different
discriminative information.

Random forests gain some of their performance advantage through the diver-
sity of the trees in the resulting ensemble. We can add another kind of diversity
to the random forest framework by removing any potential bias from using a
single type of decision tree. We propose to use several different types of decision
trees for each training data subset, and select the best tree as the individual tree
classifier in the random forest model.

Our method is motivated by the experiences of foresters in dealing with the
development and care of hybrid forests. An important concept in Forestry is
that of a “hybrid forest.” Such a forest uses multiple tree species as a mixed
planting in accordance with soil structure (moisture, nutrients, acidity). This
method has demonstrated highly economic, ecological and practical value in
forestry research. Mimicing this idea, we have developed a hybrid random forest
method to explore whether we can further enhance the classification performance
of a random forest ensemble classifier. Specifically, we build three different types
of tree classifiers (C4.5, CART and CHAID) for each training data subset. We
then evaluate the performance of the three classifiers and select the best tree.
In this way, we build a hybrid random forest which may include different types
of decision trees in the ensemble. The added diversity of the decision trees can
effectively improve the accuracy of each tree in the forest, and hence the accuracy
of the ensemble.

To demonstrate the effectiveness of our proposed method, we apply it to the
popular application of text classification. With the ever-increasing volume of
text data from the Internet, databases, and archives, text categorization has
become a key technique for handling and organizing text data. It has received
growing attention in recent years. A set of popular and mature machine learn-
ing approaches have been deployed for categorizing text documents, including
random forests [8], support vector machines (SVM) [9], naive Bayes (NB) [10],
k-nearest neighbors (KNN) [11], and decision trees. Due to algorithmic simplic-
ity and prominent classification performance for high dimensional data, random
forests have become a preferred method.

In this paper, we compare the performance of our random forest with that of
other three random forest methods, i.e., C4.5 random forest, CART random for-
est and CHAID random forest, and other three mainstream text categorization
methods, i.e., support vector machines, naive Bayes and k-nearest neighbors,
on six datasets. The experimental results show that our hybrid random forest
achieves improved classification performance over these six compared methods.

The rest of this paper is organized as follows. Section 2 introduces the frame-
work for building a hybrid Random Forest, and gives a brief analysis of the
method. The evaluation methods are presented in Section 3, we present exper-
imental results in Section 4. Our conclusions and future work are presented in
Section 5.
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2 Hybrid Random Forests

In this section, we introduce a general framework for building hybrid random
forests. We then briefly review three types of decision tree algorithms, i.e., C4.5,
CART and CHAID. We also present our hybrid random forest algorithm that
integrates the best trees from the different types of decision tree algorithms.

2.1 Framework for Building Hybrid Random Forest

As an ensemble learner, the performance of a random forest is highly dependent
on two factors: the diversity among the trees and the accuracy of each tree
[12]. Diversity is commonly obtained by using bagging and random subspace
sampling. We introduce a further element of diversity by using different types of
trees.

Continuing our analogy with forestry, the different data subsets from bagging
represents the “soil structures.” Different decision tree algorithms represent “dif-
ferent tree species”. Our approach has two key aspects: one is to use three types
of decision tree algorithms to generate three different tree classifiers for each
training data subset; the other is to evaluate the accuracy of each tree as the
measure of tree importance. In this paper, we use the out-of-bag accuracy to
assess the importance of a tree.

Following Breiman, we use bagging to generate a series of training data subsets
from which we build trees. For each tree, the data subset used to grow the tree
is called the “in-of-bag” (IOB) data and the remaining data subset is called the
“out-of-bag” (OOB) data. Since OOB data is not used for building trees we can
use this data to objectively evaluate each tree’s accuracy and importance. The
OOB accuracy gives an unbiased estimate of the true accuracy of a model.

Given n instances in a training dataset D and a tree classifier hk(IOBk) built
from the k’th training data subset IOBk, we define the OOB accuracy of the
tree hk(IOBk) for each di ∈ D as:

OOBAcck =

∑n
i=1 I(hk(di) = yi; di /∈ IOBk)∑n

i=1 I(di /∈ IOBk)
(1)

where I(.) is an indicator function. The larger the OOBAcck, the better classi-
fication quality a tree has.

We use the out-of-bag data subset OOBi to calculate the out-of-bag accuracies
of the three types of trees (C4.5, CART and CHAID) with evaluation values A1,
A2 and A3 respectively.

Fig. 1 illustrates the procedure for building a hybrid random forest model.
Firstly, a series of IOB/OOB datasets are generated from the entire train-
ing dataset by bagging. Then, three types of tree classifiers (C4.5, CART and
CHAID) are built using each IOB dataset. The corresponding OOB dataset is
used to calculate the OOB accuracies of the three tree classifiers. Finally, we
select the tree with the highest OOB accuracy as the final tree classifier, which
is included in the hybrid random forest.
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Fig. 1. The Hybrid Random Forests framework

Building a hybrid random forest model in this way will increase the diversity
among the trees. The classification performance of each individual tree classifier
is also maximized.

2.2 Decision Tree Algorithms

The core of our approach is the diversity of decision tree algorithms in our
random forest. Different decision tree algorithms grow structurally different trees
from the same training data. Selecting a good decision tree algorithm to grow
trees for a random forest is critical for the performance of the random forest. Few
studies have considered how different decision tree algorithms affect a random
forest. We do so in this paper.

The common decision tree algorithms are as follows:

Classification Trees 4.5. (C4.5) is a supervised learning classification algo-
rithm used to construct decision trees. Given a set of pre-classified objects, each
described by a vector of attribute values, we construct a mapping from attribute
values to classes. C4.5 uses a divide-and-conquer approach, which is similar to re-
cursive partitioning, to grow decision trees. C4.5 selects the test that maximizes
the information gain ratio (IGR) [3].

Classification and Regression Tree. (CART) is a recursive partitioning
method that can be used for both regression and classification. Beginning with
the entire dataset, a tree is constructed by splitting subsets of the dataset by
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considering all predictor variables for splitting. The best predictor is chosen
at each node using a variety of impurity or diversity measures. The goal is to
produce subsets of the data which are homogeneous with respect to the target
variable [4]. The main difference between C4.5 and CART is the test selection
and evaluation process.

Chi-squared Automatic Interaction Detector. (CHAID) method is based
on the chi-square test of association. A CHAID decision tree is constructed by
repeatedly splitting subsets of the space into two or more nodes. To determine
the best split at any node, any allowable pair of categories of the predictor
variables is merged until there is no statistically significant difference within the
pair with respect to the target variable [6,7].

From these decision tree algorithms, we can see that the difference lies in the
way to split a node, such as the split functions and binary branches or multi-
branches. In this work we use these different decision tree algorithms to build a
hybrid random forest.

2.3 Algorithm

In this subsection, we present our hybrid random forest algorithm which inte-
grates the three types of tree classifiers. The detailed steps are introduced in

Algorithm 1.
In Algorithm 1, lines 10-17 loop to build K decision trees. In the loop, Line

11 samples the training data D by sampling with replacement to generate an
in-of-bag data subset IOBi for building a decision tree. Lines 12-15 build three
types of tree classifiers (C4.5, CART and CHAID). In this procedure, Line 13
calls the function createT reej() to build a tree classifier. Line 14 calculates the
out-of-bag accuracy of the tree classifier. After this procedure, Line 16 selects
the tree classifier with the maximum out-of-bag accuracy. K decision trees are
thus generated to form a hybrid random forest model M .

Generically, function createT reej() first creates a new node. Then, it tests
the stopping criteria to decide whether to return to the upper node or to split
this node. If we chose to split this node, then we randomly select m features as a
subspace for node splitting. These features are used as candidates to generate the
best split to partition the node. For each subset of the partition, createT reej()
is called again to create a new node under the current node. If a leaf node is
created, it returns to the parent node. This recursive process continues until a
full tree is generated.

3 Evaluation Methods

We use two measures to evaluate the classification performance of the hybrid
random forest, the test accuracy and the F1 metric. The test accuracy measures
the performance of a random forest on a separate test dataset. The F1 metric is
a commonly used measure of classification performance.
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Algorithm 1. Hybrid Random Forest Algorithm

1: Input:
2: - D : the training dataset,
3: - A : the features space {A1, A2, ..., AM},
4: - Y : the class features space {y1, y2, ..., yq},
5: - K : the number of trees,
6: - m : the size of subspaces.
7:

8: Output: A random forest M ;
9: Method:

10: for i = 1 to K do
11: draw a bootstrap sample in-of-bag data subset IOBi and out-of-bag data

subset OOBi from training dataset D;
12: for j = 1 to 3 do
13: hi,j(IOBi) = createT reej();
14: use out-of-bag data subset OOBi to calculate the out-of-bag accuracy

OOBAcci,j of the tree classifier hi,j(IOBi) by Equation (1);
15: end for
16: select hi(IOBi) with the highest out-of-bag accuracy OOBAcci as best

tree i;
17: end for
18: combine the K optimal tree classifiers h1(IOB1), h2(IOB2), ..., hK(IOBK)

into a random forest M
19:

20: Function createTree()
21: create a new node N ;
22: if stopping criteria is met then
23: return N as a leaf node;
24: else
25: randomly select m features as a subspace;
26: use these m features as candidates to generate the best split for the node

to be partitioned;
27: call createTree() for each split;
28: end if
29: return N ;

Test Accuracy. Let Dt be a test dataset and Yt be the class labels. Given
di ∈ Dt, the number of votes for di on class j is

N(di, j) =

K∑
k=1

I(hk(di) = j) (2)
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The test accuracy is calculated as

Acc = 1
n

n∑
i=1

I(N (di, yi)−maxj �=yi N (di, j) > 0) (3)

where n is the number of objects in Dt and yi indicates the true class of di.

F1 Metric. To evaluate the performance of classification methods in dealing
with an unbalanced class distribution, we use the F1 metric introduced by Yang
and Liu [13]. This measure is equal to the harmonic mean of recall (α) and
precision (β). The overall F1 score of the entire classification problem can be
computed by a micro-average and a macro-average.

Micro-averaged F1. This is computed globally over all classes, and emphasizes
the performance of a classifier on common classes. Define α and β as follows:

α =

∑q
i=1 TPi∑q

i=1(TPi + FPi)
, β =

∑q
i=1 TPi∑q

i=1(TPi + FNi)
(4)

where q is the number of classes. TPi (True Positives) is the number of objects
correctly predicted as class i, FPi (False Positives) is the number of objects that
are predicted to belong to class i but do not. The micro-averaged F1 is computed
as:

MicroF1 =
2αβ

α+ β
(5)

Macro-averaged F1. This is first computed locally over each class, and then
the average over all classes is taken. It emphasizes the performance of a classifier
on rare categories. Define α and β as follows:

αi =
TPi

(TPi + FPi)
, βi =

TPi

(TPi + FNi)
(6)

F1 for each category i and the macro-averaged F1 are computed as:

F1i =
2αiβi

αi + βi
, MacroF1 =

∑q
i=1 F1i
q

(7)

The larger the MicroF1 and MacroF1 values are, the better the classification
performance of the classifier.

4 Experiments

In this section, we conduct experiments to demonstrate the effectiveness of the
hybrid random forest algorithm for classifying text data. Text datasets with var-
ious sizes and characteristics are used in the experiments. The experimental
results show that the hybrid random forest algorithm not only outper-
forms single-tree type random forest algorithms, i.e., C4.5 RF, CART RF
and CHAID RF, in classification accuracy, but also outperforms other three
mainstream text categorization methods, i.e., SVM, NB and KNN.
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4.1 Datasets

In the experiments, we used six real-world text datasets. These text datasets are
selected due to their diversities in the number of terms or features, the number
of documents, and the number of classes. Their dimensionalities vary from 2000
to 11,465, numbers of instances vary from 918 to 11,162 and the minority class
rate varies from 0.32% to 6.43%. In each text dataset, we randomly select 70% of
documents as the training dataset, and the remaining data as the test dataset.
Detailed information of the six text datasets is listed in Table 1.

Table 1. Summary statistic of 6 text datasets

Dataset #Terms #Documents #Classes %Minority class
Fbis 2000 2463 17 1.54
Re0 2886 1504 13 0.73
Oh5 3012 918 10 6.43
Re1 3758 1657 25 0.6
Wap 8460 1560 20 0.32

Ohscal 11465 11162 10 6.35

These datasets are frequently used as text document classification bench-
mark data [14]. Dataset Fbis was compiled from Foreign Broadcast Information
Service TREC-5 [15]. The datasets Re0 and Re1 were selected from Reuters-
21578 text categorization test collection Distribution 1.0 [16]. Datasets Oh5 and
Ohscal are from the OHSUMED subset of the MEDLINE database [17]. Wap
is from the WebACE project (WAP) [18].

4.2 Test Accuracy Improvement

The purpose of this experiment is to evaluate the effect of the hybrid random
forest method on accuracy. The six text datasets were analyzed and results
were compared with other three random forest methods (C4.5 RF, CART RF
and CHAID RF). For each text dataset, we ran each random forest algorithm
against different sizes of feature subspaces. Since the number of features in these
datasets was very large, we started with a subspace of 15 features and increased
the subspace with 5 more features each time. For a given subspace size, we built
100 trees for each random forest model. In order to obtain a stable result, we
built 80 random forest models for each subspace size, each dataset and each
algorithm, and computed the averages of the test accuracy as the final result for
comparison.

Fig. 2 shows the plots of the average test accuracy of the four random for-
est models in different sizes generated with the four methods from the six text
datasets. For the same number of features, the higher the accuracy, the better
the result. From these figures, we can observe that the hybrid random forest
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Fig. 2. Test accuracy changes against the number of features in the subspace on the 6
text datasets

algorithm consistently performs better than the other three random forest algo-
rithms. The advantages are more obvious in the smaller subspaces. The hybrid
random forest algorithm quickly achieves high accuracy as the subspace size
increases. The other three random forest algorithms require larger subspaces
to achieve a similar accuracy. These results illustrate that the hybrid random
forest algorithm outperforms the other three random forest algorithms in the
classification accuracy results on all the six text datasets.

To further investigate the performance of the hybrid random forest, we com-
puted the average accuracy of the trees in each single-type random forest. This
is compared to the average accuracy of the trees of the same type within the
one hybrid random forest. In all comparisons, the subspace size of

√
M features
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Table 2. A comparison of the average accuracy of trees within a single-type random
forest and the average accuracy of trees of that same type within the hybrid random
forest

Name
C4.5 CART CHAID

C4.5 RF Hybrid RF CART RF Hybrid RF CHAID RF Hybrid RF

Fbis 0.6379 0.6489 0.6102 0.6414 0.6382 0.6536

Re0 0.6132 0.6324 0.6271 0.6478 0.6171 0.6304

Oh5 0.6516 0.6664 0.6134 0.6515 0.6245 0.6607

Re1 0.6611 0.6793 0.6058 0.6608 0.6516 0.6718

Wap 0.5267 0.5343 0.5086 0.5396 0.5195 0.5297

Ohscal 0.5391 0.5448 0.4732 0.5004 0.4665 0.5204

was used, where M is the total number of features in the dataset. The results
are shown in Table 2. For example, for tree type C4.5 and dataset Fbis, the
average accuracy of all trees from the random forest built using C4.5 (named
as C4.5 RF) is 0.6379. The average accuracy of all C4.5 trees from the hybrid
random forest (named as Hybrid RF) is 0.6489. It is clearly seen in Table 2 that
tree classifiers of any given type in our hybrid random forest always have higher
average classification accuracy than those using only trees of the same one type.

4.3 Performance Comparisons of other Text Classification Method

We conduct a further experimental comparison against other three widely used
text categorization methods, i.e., support vector machines (SVM), Naive Bayes
(NB), and k-nearest neighbor (KNN). The SVM uses a linear Kernel with a
regularization parameter of 0.03125, which is often used in text categorization.
For Naive Bayes, we adopted the multi-variate Bernoulli event model that is fre-
quently used in text classification [19]. For k-nearest neighbor (KNN), we set the
number of neighbors as 13. In the experiments, we use WEKA’s implementation
for these three text classification methods [20]. We use a single subspace size of
90 features in all the six datasets to run the random forest algorithms, which
provides a consistent result as shown in Fig. 2. In order to obtain stable results,
we built 20 random forest models for each random forest algorithm and each
dataset, and present the average results, we can see that the range of values are
less than ±0.005 and the hybrid trees are always more accurate.

The comparison results are listed in Fig. 3, 4 and 5. While the improvement
is often quite small, there is always an improvement demonstrated. We observe
that our proposed method always outperforms the compared mainstream text
categorization methods.

5 Conclusion and Future Work

We have presented a new hybrid random forest algorithm which increases di-
versity amongst the ensemble of trees by choosing different tree algorithms. We
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Fig. 3. Accuracy of the seven model builders

Fig. 4. MicroF1 for the seven model builders

Fig. 5. MacroF1 for the seven model builders

demonstrate the advantage of our method in categorization. Our algorithm con-
sistently improves classification performance. In the future work, we will consider
alternative options for combining the three types of trees, rather than using the
simple approach of keeping just one tree. For example, the results from the three
trees might be combined into a single decision. Finally, alternative decision tree
algorithms, or even other types of model builders, will be considered within this
hybrid framework.
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Abstract. There always exists some kind of label dependency in multi-
label data. Learning and utilizing those dependencies could improve the
learning performance further. Therefore, an approach for multi-label
learning is proposed in this paper, which quantifies the dependencies
of pairwise labels firstly, and then builds a tree structure of the labels
to describe them. Thus the approach could find out potential strong la-
bel dependencies and produce more generalized dependent relationships.
The experimental results have validated that compared with other state-
of-the-art algorithms, the method is not only a competitive alternative,
but also has shown better performance after ensemble learning especially.

Keywords: classification; multi-label instance; multi-label learning; la-
bel dependency.

1 Introduction

Classification is to predict possible labels on unlabeled instance given a set of
labeled training instances. Traditionally, it is assumed that each instance is as-
sociated with only one label. However, an instance often has multiple labels
simultaneously in practice [1,2]. For example, a report about religion could also
be viewed as a politics report. Classification for this kind of instance is called
multi-label learning. Nowadays, multi-label learning is receiving more and more
concerns, and becoming an important topic.

Various methods have been developed for multi-label learning, and these
methods mainly fall into two categories [2]: (1) algorithm adaptation, which
extends traditional single-label models so that they can deal with multi-label
instances directly. Several adapted traditional models include Bayesian method,
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AdaBoost, decision tree, associative rules, k-NN, etc. [3,4,5,6,7]. (2) problem
transformation, which converts a multi-label problem into one or several single-
label problems. Thus traditional single-label classifiers can be used directly with-
out modification. Recently, many methods have been proposed to learn label
dependency as a way of increasing learning performance [1,2,8,9,10,11,12]. How-
ever, most of them do not give an explicit description of label dependency. For
example, classifier chain, a model proposed recently [9], links the labels into a
chain randomly and assumes that each label is dependent on all its preceding
labels in the chain. However, each label may be independent with its preceding
labels while dependent on its following labels since they are linked randomly.
Moreover, more complex dependency such as a tree or DAG-like hierarchical
structure of labels often exists in practice, thus more appropriate models are
needed to describe them.

Hence, we propose one kind of novel method for aforementioned issues. We
quantify the dependencies of pairwise labels firstly, building a complete undi-
rected graph that takes the labels as the set of vertices and the dependent val-
ues as edges. A tree is then derived to depict the dependency explicitly, so the
unrelated labels can be removed for each label and the dependency model is
generalized into a tree model. Furthermore, we also use ensemble technique to
build multiple trees to capture the dependency more accurately. The experimen-
tal results would show our proposed method is competitive and could further
enhance learning performance on most of datasets.

The remainder of this paper is organized as follows: We review the related
works in section 2. A formal definition of multi-label learning is given in section 3.
In section 4, we describe and analyze our proposed methods in detail. Section 5 is
devoted to the experiment design and result analysis. The last section concludes
this paper and gives some potential issues with further research.

2 Related Work

Many methods have been proposed to cope with multi-label learning by exploit-
ing label’s dependencies. According to the order of dependency be learned, these
methods mainly fall into following categories.

(1) No label dependency is learned. Basic BR (Binary Relevance) method
decomposed one multi-label problem into multiple independent binary classifi-
cation problems, one for each label [2]. Boutell et al. used BR for scene classi-
fication [13]. Zhang et al. proposed ML-KNN, a lazy method based on BR [7].
Tsoumakas et al. proposed HOMER to deal with a large number of labels [14].

(2) Learning the dependencies of pairwise labels. Hullermeier et al. proposed
the RPC method that learned the pairwise preferences and then ranked the
labels [15]. Furnkranz et al. extended the RPC by introducing a virtual label [16].
Madjarov et al. proposed a two stage architecture to reduce the computational
complexity of the pair-wise methods [17].

(3) Learning the dependencies within multiple labels. Basic LP (Label Power-
set) method treated the whole set of labels as a new single label and learned
dependencies within all them [2]. Tsoumakas et al. proposed the RAkELd
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method that divided the label set into disjoint subsets of size k randomly [18].
Stacking-base method was proposed to aggregate binary predictions to form
meta-instances [19]. Read proposed the PS, which decomposed the instance’s la-
bels until a threshold was met [8]. Read et al. proposed the CC (Classifier Chain)
algorithm to link the labels into a chain randomly [9]. Dembcynski et al. pro-
posed PCC, a probabilistic framework that solved the multi-label classification
in terms of risk minimization [10].

A number of models have also been used to depict the labels dependencies
explicitly, which include multi-dimensional Bayesian network, conditional depen-
dency networks, conditional random fields [11,20,21,22,23]. Dembczynski et al.
formally explained the difference between the conditional dependency and un-
conditional dependency [24]. Similar with these methods, our proposed method
uses the tree to learn the label dependency explicitly. the difference is that we
simply ignore the feature set in the process of constructing a tree, whereas others
[11] build the models conditioned on the feature set.

3 The Concept of Multi-label Learning

Let X be the instance space, and L = (l1, l2, . . . , lm) be a set of labels. Given a
training instance set D = {(x1, C1), (x2, C2), . . . , (xn, Cn)}, where xk ∈ X is an
instance, and Ck ⊂ L is a subset of L denoting xk’s true labels, the target of
multi-label learning is to build a classifier: f : X → 2L, that is a mapping from
the instance space to a set of label subset, where 2L is the power set of L. Ck

can also be represented by a Boolean vector (bk1, bk2, . . . , bkm), where bkj = 1
indicates label lj is xk’s true label (lj ∈ Ck), while bkj = 0 indicates the opposite.

Let x ∈ X be an unlabeled instance, y = (y1, y2, . . . , ym) be its Boolean
vector of predicted labels, we can also make prediction by calculating the joint
conditional probabilityP (y|x). For each label lk, let Parent(lk) denote the set
of labels that label lk is dependent on, Parent(yk) is the corresponding Boolean
counterpart. Hence P (y|x) can be transformed as Eq.(1).

P (y|x) =
m∏

k=1

P (yk|parent(yk), x) (1)

where yk denotes the kth label. Hence we can get the label vector’s posterior
probability by calculating each label’s posterior probability respectively, so the
transformation of Eq.(1) is a kind of problem transformation. A key issue is how
to exactly find the set of dependent labels for each label in order to calculate
the posterior probability more accurately.

4 Learning a Tree Structure of Labels

As mentioned above, to eliminate weak dependencies in CC model, and fit the
real data more accurately, we propose a new algorithm named as LDTS (Learning
dependency from Tree Structure of Labels) in this section.
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LDTS firstly measures the dependency for each pairwise labels li and lj , no-
tated as dependency(li, lj), thus an undirected complete graph G(L,E) is con-
structed, where the label set L denotes the vertices, andE = {dependency(li, lj) :
li ∈ L, lj ∈ L} denotes the edges. To determine the dependent labels for each
label, a maximum spanning tree is then derived using Prim algorithm, and each
label is assumed to be dependent on its ancestor labels. A dataset is then created
for each label and their dependent labels are added into the feature set, so we
could utilize these dependency since the classifiers is trained based on the new
feature set. The whole training process is outlined in Algorithm 1.

Algorithm 1. The process of training LDTS classifier

Input:
The training dataset: D = {(x1, C1), (x2, C2), . . . , (xn, Cn)};
The algorithm for training base classifier: B.

Output:
Classifiers: (f1, f2, . . . , fm).

1: for each pair of labels (li, lj), measure their dependency: dependency(li, lj)
2: create a undirected full graph G = (L,E)
3: use the Prim algorithm to derive a maximum spanning tree: T
4: for label l1, l2, ..., lm, get the set consists of its ancestor labels: Parent(li)
5: for i = 0 to m do
6: let the Di = D
7: for j = 0 to m do
8: if lj �∈ Parent(li) then
9: delete this label from Di

10: end if
11: end for
12: for the Di, set li as its only label, train the classifier fi
13: end for
14: return the m classifiers: (f1, f2, . . . , fm)

At step 1, mutual information is used to compute the dependencies of pairwise
labels. Its definition is shown as follows [25].

H(X,Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
(2)

where X and Y are two variables, x and y are their all possible values.
The labels is organized using a tree for two purposes. Firstly, the properties

of maximum spanning tree ensure that each label is more dependent on its
ancestor labels than other labels, since they have greater mutual information
value. Hence it could eliminate weak dependency further by assuming each label
is only dependent on its ancestor labels. When generating the graph and tree of
labels, we simply assume that label dependency is independent with the feature
set and only consider the mutual influence among the labels, this is one kind
of the unconditional dependency described in [24]. Secondly, various kinds of
dependencies including tree hierarchy and DAG of dependency may exist within
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labels. Therefore, we expect the performance could be improved, especially on
the datasets in which the labels are organized into a tree indeed.

It is also should be noted that the main purpose of our method is to find more
accurate label dependency, and it does not impose a hierarchy on labels since
labels have the same parent or in different paths could exist simultaneously.
This is different from the hierarchical classification that impose a strict label
hierarchy. Although the randomness in not eliminated fully, we do reduce it to
only select the strong dependency randomly. One possible issue is that a full
graph of labels needs to be learned with the computational complexity O(n2),
the efficiency needs further improvement to cater for a large number of labels.

When classifying an unlabeled instance x, each label li can not be predicted
until its dependent labels are all predicted. Hence the labels should be predicted
from the root of the tree and then its children recursively until all the leaves
are reached. The detailed process is depicted in Algorithm 2. For each label, the
labels dependencies are considered since its prediction is based on the feature
set and the predictions of its dependent labels.

Algorithm 2. The process of classification using LDTS classifier

Input:
A unlabeled instance x that needs to be classified.

Output:
The prediction Y = (y1, y2, . . . , ym).

1: set the vector to be empty, Y ← ()
2: set the root label as the current label need to be predicted: t
3: predict current label t for x using corresponding classifier ft
4: add ft(x) into Y , Y ← Y

⋃
ft(x)

5: use the result ft(x) to update the x, x = (x, ft(x))
6: find all the children labels of t
7: repeat
8: for each children labels ci of t do
9: repeat the step 2-6
10: end for
11: until all the labels are predicted
12: return the predicted vector Y

When generating the directed tree in LDTS, the root node is selected ran-
domly. However, selecting a different label will result in a different tree and thus
generating different dependent labels for each label. Another issue is the label
dependency could not be utilized fully, since the dependency of pairwise labels
li, lj calculated here is mutual and useful equally to each other. One possibility
is that a label may also depend on its children labels, but the directed tree does
not allow for this situation. To address such issues, the ensemble learning is used
to generate multiple LDTS classifiers iteratively. In each iteration, the classifier
is trained on a sampling of the original dataset, and the root label is reselected
randomly. Hence each iteration will get a different label tree and combining them
will reduce the influence of the root’s randomness and take full advantage of the
label dependency. We call this extended method ELDTS(Ensemble of LDTS).
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The detail process is depicted in Algorithm 3. Given an unlabeled instance x,
all predictions of these classifiers will be aggregated into a final result by voting
simply.

Algorithm 3. The process of training ELDTS classifier

Input:
The training dataset: D = {(x1, C1), (x1, C1), . . . , (xn, Cn)};
The algorithm for training base classifier: B;
The number of iteration: n.

Output:
An ensemble of LDTS classifiers F = (f1, f2, . . . , fm).

1: set the F to be empty: F = ()
2: for i = 0 to m do
3: generate a new dataset Di by sampling on the original dataset with replacement

4: select the root label ri randomly;
5: train a LDTS classifier ti using B, based on the dataset Di and root label ri
6: add fi into F
7: end for
8: return the ensemble of classifiers: F

All above are the description and analysis of our proposed algorithms. Com-
parison with other state-of-the-art algorithms and further analysis will be given
in the following section.

5 Experiment Design and Analysis

5.1 The Description of Datasets

We take several datasets from multiple domains for the experiments, and table
1 depicts them in detail.

Table 1. Description of the datasets used in experiments

Dataset Domain Instances Attributes Labels LC LD DLS

emotions music 593 72 6 1.869 0.311 27
enron text 1702 1001 53 3.378 0.064 753
medical text 978 1449 45 1.245 0.028 94
scene image 2407 294 6 1.074 0.179 15
yeast biology 2417 103 14 4.237 0.303 198

Several statistics as follows have been used to characterize these datasets.
(1) Label cardinality: LC = 1

n

∑n
i=1 |Ci|. It calculates the average number

of labels for each instance, where |Ci| is the number of true labels of the ith
instance.

(2) Label density: LD = 1
n

∑n
i=1

∣∣Ci

m

∣∣. It is calculated by dividing the label
cardinality by m, the size of original label set.
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(3) Distinct label sets: DLS(D) = |{C|∃(x,C) ∈ D}|. It counts the number of
distinct label sets that appear in the dataset.

Seen from table 1, these datasets cover many domains including text catego-
rization, scene classification, emotion analysis, biology etc.. It should be noted
that there are no label hierarchies in these datasets and we use them to examine
whether our methods could find more strong label dependency and gain bet-
ter performance. More detail description can be found on the official website of
Mulan1.

5.2 Evaluation Criteria

In order to evaluate the algorithm performance, the criteria should be specified.
Let D = {(x1, C1), (x2, C2), . . . , (xn, Cn)} be a dataset, where xi is the ith in-
stance, and Ci ⊂ L is its true labels. Given a classifier f and an instance xi,
Yi denotes the predicted labels for xi, while rank(xi) or ranki denotes the pre-
dicted rank of labels, and rank(xi, l) denotes the label l’s position in the rank.
All the criteria we used are as follows.

(1) Hamming loss: It is proposed by Schapire and Singer [4].

H-Loss(f,D) =
1

n

n∑
i=1

Yi

⊕
Ci

m
(3)

The operator
⊕

calculates the symmetric difference of two sets, which is the
number of misclassified labels for an instance.

(2) Accuracy: It calculates the ratio between the intersection and union of the
predicted set of labels and the true set of labels for the instances on average.

Accuracy(f,D) =
1

n

n∑
i=1

∣∣∣∣Yi

⋂
Ci

Yi

⋃
Ci

∣∣∣∣ (4)

(3) One-error: It calculates how many times that top-ranked label is not a
true label of the instance.

One-Error =
1

n

n∑
i=1

δ(argmin
l∈L

rank(xi, l)) (5)

where δ(x) = 1 if l is a true label of the instance, otherwise δ(x) = 0.
(4) Ranking loss: It expresses the number of times when the irrelevant labels

are ranked before the true labels.

R-Loss=
1

n

n∑
i=1

1∣∣Ci

∣∣ |Ci|
∣∣{(la, lb) : rank(xi, la) > rank(xi, lb), (la, lb) ∈ Ci × Ci}

∣∣
(6)

1 http://mulan.sourceforge.net/
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(5) Average precision: This measurement calculates the average fraction of
labels ranked above a particular label l ∈ Ci, which are all also in Ci.

AvePrec =
1

n

n∑
i=1

1∣∣Ci

∣∣ ∑
l∈Ci

|{l′ ∈ Ci : rank(xi, l
′) ≤ rank(xi, l)}|

rank(xi, l)
(7)

These criteria evaluate the different aspects of these methods. While Hamming
loss and accuracy do not consider the relation between different predictions, the
other 3 criteria take such a relation into considerations, since they are based on
the ranking of the probabilities predicted for all labels. Because our methods are
intended to get a more accurate probability for each label by finding more strong
labels dependencies, thus for each label, it should be predicted more accurately
and the true labels should be given greater possibilities. Therefore, we expect
that our method could gain better performance under Hamming loss and ranking
loss, since Hamming loss examines the predictions of all labels independently and
ranking loss focuses on whether the true labels are given greater probabilities
than other labels. For other 3 criteria, our method may be effective, but they
are not what our method optimize for.

5.3 Algorithms and Settings

The algorithms used for comparison are listed in table 2 with their abbreviations
respectively. To examine the effect of label dependency, BR algorithm is used as
a baseline since it does not consider the label dependency, then we compare our
proposed LDTS and ELDTS with CC and ECC methods to see their effectiveness
after eliminating weak dependencies. RAkELd and RAkEL are also used for
comparison as other ways of learning label dependency.

The experiments are divided into two parts, according to the two purposes
mentioned in section 4. One part is on the five aforementioned datasets without
label hierarchy to see whether our method can find more strong dependency and
thus gain better performance, the other part is on the dataset rcv1v2, a dataset
in which there exists a tree hierarchy of labels, to see its performance when a
tree structure is learned. Since only one tree exists in rcv1v2, we do not use the
ensemble method on it.

Table 2. The algorithms used for comparison

Compared with LDTS Compared with ELDTS

BR: Binary relevance method EBR: Ensemble of BR
CC: Classifier chain ECC: Ensemble of CC
RAkELd: Random disjoint k label subsets RAkEL: Random k label subsets

All algorithms are implemented on the Mulan framework [26], an open plat-
form for multi-label learning. The parameter values are chosen as those used in
the paper [9]. For the RAkEL, we set the k = m

2 . For the RAkELd, we set the
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k = 3. For the ensemble algorithms, the number of iterations is 10, and for each
iteration, 67% of the original dataset is sampled with replacement to form the
training dataset. SMO, a support vector machine classifier implemented in Weka
[27], is used as the base classifier. All algorithms are executed 5 times using 10-
fold cross validation on all datasets expect rcv1v2 with different random seeds
1, 3, 5, 7, 11, respectively, and the final results are the averaged values. For the
rcv1v2, only 100 attributes are kept, and 10-fold cross validation is used only
one time since it has a huge amount of instances and attributes.

5.4 Experimental Results and Analysis

Based on above setup, we get the final results and the following tables display
them in detail. The bold result indicates the best one, and result with the black
dot “•” indicates our proposed algorithm is better than itself indicated algorithm.

Table 3. The hamming loss of each algorithm on the datasets

Dataset BM CC LDTS EBM ECC ELDTS RAkEL

emotions 0.1939 0.2159• 0.2038 0.1947• 0.2108• 0.1932 0.2283•
enron 0.0601 0.0606• 0.0602 0.0540• 0.0536• 0.0535 0.0541•
medical 0.0101• 0.0098 0.0099 0.0098• 0.0096• 0.0095 0.0102•
scene 0.1046 0.1037 0.1056 0.1020• 0.0997• 0.0968 0.1047•
yeast 0.1990 0.2115• 0.2060 0.1991 0.2106• 0.2034 0.2371•

Table 4. The accuracy of each algorithm on the datasets

Dataset BM CC LDTS EBM ECC ELDTS RAkEL

emotions 0.5199• 0.5336• 0.5727 0.5226• 0.5451• 0.5808 0.5119•
enron 0.4058• 0.4083• 0.4085 0.4370• 0.4110• 0.4396 0.4063•
medical 0.7580• 0.7750 0.7670 0.7655• 0.7799 0.7759 0.7686•
scene 0.5999• 0.6949 0.6496 0.6137• 0.7020 0.6783 0.6281•
yeast 0.5003• 0.4879• 0.5073 0.5031• 0.4929• 0.5249 0.4692•

As shown from table 3 to table 7, our proposed LDTS method performs better
on the majority of datasets evaluated by the criteria. It is superior to CC on
3 datasets under the Hamming loss, accuracy, one-error, and ranking loss, but
inferior under other metrics. LDTS algorithm does not improve all the time or
the improvement is not significant. The possible reason is that although LDTS
algorithm could learn the dependency further, it still ignore lots of useful de-
pendency since it only considers unidirectional dependency of pairwise labels,
especially when the labels are dependent mutually. We expect that ensemble
learning that combines different trees can further utilize the label dependency ,
since the dependent direction between pairwise labels is changed in a different
tree by choosing a different root.

To validate above assumption, we also use ensemble learning on these algo-
rithms and compare them each other. Also shown from table 3 to table 7, our
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proposed ELDTS has a substantial improvement after the employing ensemble
learning. Under all 5 criteria, ELDTS is superior to ECC on most datasets. These
results show that through learning multiple label trees by ensemble learning, the
influence of the root label’s randomness could be mitigated, and the label de-
pendencies are learned more effectively. Although ECC algorithm also changed
the order of labels, it could not make sure that only the strong dependency is
considered each time, since it’s totally random when determining the dependent
relationship within labels.

It can be observed that the proposed algorithms do not perform well on two
datasets medical and scene. Seen from the table 1, these two datasets have very
small label cardinality, which means there tend to be less label dependency in
them and overemphasis on label dependency may not be preferable. Thus the
algorithms we propose are more suitable for the datasets that there are indeed
strong label dependency in them.

The results gotten on rcv1v2, a dataset with tree structure of labels, are also
given in table 8. We can clearly see that our proposed LDTS method is superior
under Hamming loss and ranking loss, the criteria it optimize for. Therefore,
it has been proven that our method is more effective when there is complex
dependency within labels.

Table 5. The one-error of each algorithm on the datasets

Dataset BM CC LDTS EBM ECC ELDTS RAkEL

emotions 0.2989 0.3700• 0.3103 0.2534 0.3181• 0.2563 0.3096•
enron 0.4912• 0.4938• 0.4897 0.3078• 0.3071• 0.3054 0.3210•
medical 0.2029• 0.1847 0.1932 0.1407• 0.1415• 0.1397 0.1634•
scene 0.3389• 0.2793 0.3132 0.2553• 0.2609• 0.2485 0.2777•
yeast 0.2557 0.2559• 0.2557 0.2557• 0.2583• 0.2551 0.2895•

Table 6. The rank loss of each algorithm on the datasets

Dataset BM CC LDTS EBM ECC ELDTS RAkEL

emotions 0.2778• 0.2876• 0.2334 0.2169• 0.2317• 0.1743 0.1964•
enron 0.2915 0.2929• 0.2925 0.1648• 0.1640• 0.1622 0.1784•
medical 0.0952• 0.0926 0.0932 0.0537• 0.0516 0.0518 0.0598•
scene 0.1718• 0.1576 0.1664 0.1162• 0.1115• 0.0945 0.1110•
yeast 0.3188• 0.3351• 0.3181 0.2739• 0.2771• 0.2273 0.2300•

Table 7. The average precision of each algorithm on the datasets

Dataset BM CC LDTS EBM ECC ELDTS RAkEL

emotions 0.7384• 0.7159• 0.7634 0.7814• 0.7573• 0.8040 0.7734•
enron 0.4682• 0.4702 0.4693 0.6284• 0.6287• 0.6314 0.6011•
medical 0.7977• 0.8115 0.8066 0.8672• 0.8710 0.8707 0.8524•
scene 0.7752• 0.8048 0.7881 0.8353• 0.8351• 0.8479 0.8285•
yeast 0.6697• 0.6611• 0.6728 0.7003• 0.6975• 0.7253 0.7048•
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Table 8. The performance of algorithms on dataset rcv1v2

criterion BM CC LDTS RAkELd

H-Loss 0.0235 0.0294• 0.0235 0.0237•
Accuracy 0.1810• 0.2529 0.2237 0.1783•
One-Error 0.7638• 0.7065 0.7120 0.9538•
R-Loss 0.3560• 0.3508• 0.3381 0.4590•
AvePrec 0.2537• 0.3085 0.2940 0.1001•

6 Conclusion

In this paper, one kind of novel approaches are proposed to exploit the label depen-
dency. Specifically, the dependency degree of pairwise labels is calculated firstly
and then a tree is build to represent the dependency structure of labels. The meth-
ods assume that the dependencies only exist between each label and its ancestor
labels, resulting in reducing the influence of weak dependency. At the same time,
they also generalize the label dependency into a treemodel. Furthermore,we utilize
ensemble learning to learn and aggregate multiple label trees to reflect the labels
dependencies fully.The experimental results show that the algorithmsweproposed
perform better, especially after boosted by the ensemble learning.

One potential problem is that using mutual information to measure the de-
pendency will give equal values to both of the labels, which assumes that the
dependency for pairwise labels is mutual and equal for each other. However, the
label dependency could be directed possibly and this assumption is often vio-
lated in reality. Hence how to measure the directed label dependency should be
one of the next directions. Additionally, how to generalize the tree structure of
labels further to graph or forest structure is another issue in the future work.
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Abstract. Record linkage is the process of identifying records that refer
to the same entities from different data sources. While most research
efforts are concerned with linking individual records, new approaches
have recently been proposed to link groups of records across databases.
Group record linkage aims to determine if two groups of records in two
databases refer to the same entity or not. One application where group
record linkage is of high importance is the linking of census data that
contain household information across time. In this paper we propose a
novel method to group record linkage based on multiple instance learning.
Our method treats group links as bags and individual record links as
instances. We extend multiple instance learning from bag to instance
classification to reconstruct bags from candidate instances. The classified
bag and instance samples lead to a significant reduction in multiple group
links, thereby improving the overall quality of linked data. We evaluate
our method with both synthetic data and real historical census data.

Keywords: Multiple instance learning, record linkage, entity resolution,
instance classification, historical census data.

1 Introduction

Within many organisations, data are collected from various sources and through
different channels, and they are stored in databases with different structures
and formats. As organisations collaborate, data often need to be exchanged and
integrated. The objective of such data integration is to identify and match all
records that correspond to the same real-world entity, such as the same customer,
patient, or taxpayer [10]. Record linkage (also known as data matching or entity
resolution) is a key step to effectively mine rich information that is not available
in a single database. This technology has been used in many areas, such as
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Fig. 1. An example of group (household) record linkage, and the corresponding MIL
setting. Links between individual records correspond to instances while a bag is made
of all links between the records in two groups.

electronic health record systems, the retail industry, business analytics, fraud
detection, demographic tracking, and government administration [10].

As one application of record linkage, linking of historical census records across
time can greatly enhanced their values by, for example, enabling tracking of
households and providing new insights into the dynamic character of social,
economic and demographic changes. In recent years, researchers have tried to
link records between census datasets using automatic or semi-automatic meth-
ods [3,15,19,21]. Unfortunately, these attempts have not been not very successful
in linking records that correspond to individuals in a household [20].

Several reasons make the linking of historical census records a challenging
undertaking. First, the quality of historical census data is poor, because large
amounts of errors and inaccurate information have been introduced during the
census collection and digitisation processes [19]. Second, a large portion of records
contain the same or similar values. It is not uncommon to find different people
with the same name, the same age, and living in the same street in one dataset.
Third, the structure of households and their members can change significantly
between two censuses (which were normally collected every five or ten years).
Therefore, simply comparing individual records does not lead to reliable linkage
outcomes. Considering household information in the linkage process can help
overcome this challenge.

In this research, we tackle the problem of linking individual records and house-
holds in historical census data. A household link will likely contain several links
between individual record pairs for its household members. If two households are
matching, at least one of their record links has to be a match. On the contrary,
if two households are not matching, none of their record links shall be matched.
This is a typical multiple instance learning (MIL) setting. MIL is a supervised
learning method proposed by Dietterich et al. [9]. In MIL, data are represented
as bags, each of which contains some instances. In a binary classification setting,
a positive bag contains both positive and negative instances, while a negative
bag only consists of negative instances. In the training stage, the class labels are
only available at the bag-level but not at the instance-level. The goal of MIL is
to learn a classifier which can predict the label of an unseen bag. When applying



Multiple Instance Learning for Group Record Linkage 173

MIL to the group record linkage problem, group links are treated as bags, and
record links become the instances in these bags. A model can then be learned
to classify a group link as a match or non-match. Figure 1 shows an example of
group linking and its relationship to the MIL setting.

Because an individual record in one census dataset has generally a high simi-
larity with several records in different households in another dataset, a household
in one census dataset is often linked to different households in another dataset.
Although such results can be helpful, e.g. in generating family trees, social sci-
entists are often interested in tracking the majority of household members as
a whole entity over time [20]. This suggests one-to-one household matches are
needed. To reduce the number of multiple household matches, we can employ
a group linking method [17,18], which generates a household match score for
each household pair. Then the household pairs with the highest match score are
selected as the final match results. Such an approach requires the detection of all
matched record pairs in a household, which is equivalent to classifying instances
within a bag as matches or non-matches. This is a problem that has not been ad-
equately addressed in MIL research [16]. In traditional MIL methods [4,14], when
instance selection is concerned, only the optimal positive instances are explored,
whilst no explicit instance classification solution has been given. Therefore, there
is a gap between MIL and its application to group record linkage.

We extend the above mentioned MIL methods to instance level classification
by grouping negative instances from the training set with an instance to be
classified. This transforms the instance into a bag. We can then employ the bag-
level classification model for explicit instance classification. We show that this
method can effectively classify both household and record links.

This paper makes two contributions. First, we extend the MIL method to
instance classification via bag reconstruction. Second, we propose a practical so-
lution to linking households between historical census datasets by group linkage
using MIL. Our method is general in nature and it can be applied to other record
linkage applications that require groups of records rather than individual records
to be linked.

2 Related Work

In recent years, many methods have been developed for record linkage in the
fields of machine learning, data mining and database systems [10]. Among them,
supervised learning has been intensively investigated. It uses labelled record
pairs with known match status (match or non-match) to learn a classification
model. Bilenko et al. [2] proposed a solution based on support vector machines
(SVM) [23] to compute the similarity between strings. Alternatively, Christen [6]
has constructed inputs for a SVM using a pre-selection step which retrieves
record pairs that with high confidence correspond to matches or non-matches.
These pairs then become the positive and negative training samples for a SVM
classifier. This method can be considered as a combination of supervised and
un-supervised techniques.
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Group record linkage methods have been developed to process groups rather
than individual records [18]. On et al. [17] defined group similarity from two
aspects, the similarity between matched record pairs and the fraction of matched
record pairs between two groups of records. A group similarity can then be
calculated using a maximum weight bipartite matching.

Multiple instance learning is a paradigm of machine learning that deals with a
collection of data called bags. The original work by Dietterich et al. [9] attempted
to recover an optimal axis-parallel hyper-rectangle in the instance feature space
to separate instances in positive bags from those in negative bags. Departing
from this model, several researchers have extended the framework, such as MI-
SVM [1], DD-SVM [5], SMILE [24], MILES [4] and MILIS [14].

Among these works, we are particularly interested in the Multiple Instance
Learning with Instance Selection (MILIS) method because it allows efficient and
effective instance prototype selection for target concept representation [14]. This
is an important property for (historical) census record linkage, which works on
potentially large numbers of households and their records, and contains signifi-
cant amounts of uncertainty because of low data quality.

MILIS is an extension of MIL using an embedded instance selection (MILES)
method [4]. The general idea of these two methods is to map each bag into a
feature space defined by selected instances, which is based on bag-to-instance
similarity. It generates a feature vector for each bag, whose dimension is the
number of selected instances. In this manner, the MIL problem is converted into
a supervised learning problem, for which a SVM can be used for classification.

The major difference between MILES and MILIS methods is on the instance
selection step. In MILES, all instances in the training set are used for feature
mapping, then important features are selected by a 1-norm SVM. Because the
total number of instances in a training set may be very large, MILES can be
very time consuming. MILIS, however, only selects one instance prototype (IP)
from each bag for the embedding. It generates a feature space with much smaller
dimension than MILES. The selection of IPs is done through a two-step optimi-
sation framework, which updates IPs and a SVM classifier iteratively.

3 Group Linkage Using Multiple Instance Learning

In this section, we introduce a group record linkage method based on multiple
instance learning. Here, we treat a group link as a bag and its record links as
instances in a bag, as shown in Figure 1. As mentioned before, group linking
requires prediction on whether or not two records match, which is equivalent to
instance classification. Therefore, we extend the MILIS algorithm so that a single
instance can be grouped with negative instances in the training set to create a
new bag. Then the bag can be classified using the learned bag-level classifier.

3.1 Instance Selection and Classifier Learning

To commence, we give formal definitions of the notion used in the method. Let
B+ = {B+

1 , . . . , B+
n+} be a set of positive bags, B− = {B−

1 , . . . , B−
n−} be a set
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of negative bags, and n = n+ + n− be the total number of bags in the training
set. A bag Bi contains mi instances denoted by xi,j for j = 1, . . . ,mi, with
the value for mi varying from bag to bag. Each instance xi,j is associated with
a label yi,j ∈ {1,−1} that is not directly observable in the MIL setting, with
yi,j = 1 corresponding to a match and yi,j = −1 to a non-match. The purpose
is, therefore, to predict the binary label value yi ∈ {1,−1} for a novel test bag
Bi = {xi,1, . . . ,xi,k}, and yi,j for an instance xi,j .

Following the idea of instance-based embedding in [4] and instance prototype
selection in [14], we generate bag-level feature representation using the similarity
between a bag and an instance

s(Bi,x) = max
xi,j∈Bi

exp (−γ||xi,j − x||2), (1)

where γ is a feature mapping parameter that controls the similarity. Then a bag
can be represented as an n-dimensional vector

zi = [s(Bi,x
∗
1), . . . , s(Bi,x

∗
i ), . . . , s(Bi,x

∗
n)], (2)

where x∗
i are the prototype instances selected from the training set.

As proposed in [14], instance prototypes can be generated by selecting the
least negative instance from each positive bag and the most negative instance
from the negative bag. This requires modelling of the distribution of negative
instances, and computing the probability that an instance has been generated
from the negative population. Given an instance x and its k-nearest negative
instances from the negative bags X−

k , the likelihood of x being negative is

p(x|X−) =
1

Z

k∑
j=1

exp
(
−β||x− x−

j ||
)
, (3)

where x−
j ∈ X− is the jth nearest negative neighbour of x, Z is a normalisation

factor, and β is a parameter to control the contribution from training samples.
We then select the instance with the lowest likelihood value from each positive
bag as the positive instance prototypes (PIPs), and the instance with the highest
likelihood value from each negative bag as negative instance prototypes (NIPs).
These PIPs and NIPs form the set of instance prototypes (IPs) used in the
feature mapping. Using Equations 2 and 3, we can represent bags in the training
set in vector form, and then train a SVM classifier by solving the following
unconstrained optimisation problem:

min
w

||w||2

2
+ C

∑
i

max(1− yi(w
T zi), 0), (4)

where yi ∈ {1,−1} is the label for bag i, w is a set of parameters that define a
separating hyper-plane, and C is the regularisation parameter [23].
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3.2 Instance Classification

Both MILES and MILIS can find the most positive instance in a positive bag.
This is achieved by selecting an instance in the bag that has the lowest likeli-
hood value using Equation 3, because a positive bag should contain at least one
positive instance. However, when it comes to the situation where a bag contains
more than one positive instance, neither method provides an explicit solution to
finding all the positive instances. Although a threshold may be set for decision,
with instances whose likelihood is higher than the threshold classified as positive,
and visa versa, it is practically difficult to find an appropriate threshold.

Here we propose a method for instance classification by bag reconstruction.
We treat each instance in a positive bag as a seed, and group the instance
with negative instances to create new bags. Then we apply the trained bag-
level classifier to these new bags. If a new bag is classified as positive, then
the seed instance is classified as positive. Otherwise, it is classified as negative.
This method is based on the fact that if a seed is negative, the reconstructed
bag consists of negative instances only, and thus will be classified as negative.
Otherwise, the new bag contains one positive instance, therefore, is very likely
to be classified as positive.

We have adopted two strategies for the bag reconstruction, Random and
Greedy, to cope with multiple positive instances in a candidate bag. The first
strategy randomly selects negative instances from the training set and groups
them with the seed. Therefore, both the random negative instances from the
training set and the seed instance contribute to the embedding step in MIL. The
second strategy is built on top of the random option. With randomly selected
negative instances, a greedy algorithm is adopted which reconstructs new bags
and predicts the label of the newly added instance simultaneously. This guar-
antees not only the seed, but also the negative instances in the candidate bag,
contribute to the embedding step. For each instance x in the candidate bag, we
compute its Hausdorff distance to a bag G that contains NIPs x∗−

i only:

d(G, x) = min
x∗−
i ∈G

||x− x∗−
i ||2 (5)

Using this distance measure, we can get the similarity between an instance and
the negative instances inG. By ranking the distances, we can construct a new bag
by sequentially adding into the bag an instance with the lowest distance among
the rest of the instances in the candidate bag. Evaluating the new bag using the
bag-level SVM classifier, we can get the label of the newly added instance. For a
candidate bag that contains both positive and negative instances, initially, the
added instances are negative. Therefore, the bag is predicted as negative. When
the prediction becomes positive after a new instance is added, the new instance
is classified as positive. We then replace the positive instance with an instance
that has a larger distance, and re-evaluate the new bag. This process continues
until all instances in the candidate bag have been traversed. We summarise this
strategy in Algorithm 1.
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Algorithm 1. Instance Classification using Greedy Bag Reconstruction

Input:
- A set B− containing all negative bags in the training set
- A bag G containing all NIPs
- A candidate bag Bi that contains mi instances xi,j for j = 1, . . . ,mi

- Trained bag-level SVM model Φ

- An empty bag B̃
Output:
- Labels yi,j ∈ {1,−1} for instances xi,j ∈ Bi, for j = 1, . . . ,mi

1: Randomly sample negative instances from B−, and add them into B̃
2: For xi,j ∈ Bi do
3: Compute Hausdorff distance d(G,xi,j) using Equation 5
4: Sort d(G,xi,j) for j = 1, . . . ,mi

5: Find xi,j with the minimum d(G,xi,j) in Bi

6: Add xi,j into B̃. Remove xi,j from Bi

7: Classify B̃ using Φ

8: If B̃ is negative
9: yi,j = −1
10: Else

11: yi,j = 1. Remove xi,j from B̃
12: Goto step 5

3.3 Group Record Linkage

The MIL step may generate a number of false positive bags. In the context of
group record linkage, this means that a group in one dataset is possibly matched
to several groups in another dataset. For applications such as linking households
in (historical) census data, a one-to-one linkage of groups is often required, e.g.,
to track the majority of members of a household across time. We therefore use
the group linkage method proposed by On et al. [18] to reduce the number
of multiple matches between groups. This method computes a similarity score
between two groups, which is based on the number of record pairs that have been
matched between two groups and the total number of records in the two groups.
This is equivalent to selecting a bag that has been classified as positive in the
MIL step, and using the instance labels to compute a similarity score for this
bag. In [18], the similarity is calculated using the following normalised weight of
the matched individual record pairs in the two groups:

Si,j =

∑
(ra,rb)∈M sim(ra, rb)

mi +mj − |M | , (6)

where M is the set of record pairs matched between groups Hi and Hj , ra and rb
are the records in the two groups, and mi and mj are the number of records in
the two groups. The set of all links between Hi and Hj is the bag, and the link
between ra and rb is one instance in this bag. Therefore, the similarity function
sim(ra, rb) can take on the label predicted by the MIL model, i.e. sim(rai , r

b
j) = 1

for matched record pairs and sim(rai , r
b
j) = −1 for non-matched pairs. This

approach reduces the group linking problem to computing the Jaccard index
between two groups [22]. A final set of matched groups is then extracted by
selecting the group links with the highest similarity value Si,j among all pairs of
groups. When several group links generate the same highest value, all of them
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are considered as matches. Thus, the final output may still contain multiple links
per group, but a much smaller number of them.

4 Experiments and Evaluation

We performed experiments on one synthetic dataset and six real census datasets
using both the MILES and MILIS methods for the multiple instance learning
step. For the implementation of MILES, we have used the MOSEK1 system
to solve the linear programming formulation in the one-norm SVMs. To train
the MILIS algorithm, we have used LIBLINEAR [11]. The SVM regularisation
parameter C was set using grid search on the training data. For Equation 3, we
set K = 10 which is the same as in [14]. The feature mapping parameter γ in
Equation 1 and the scale parameter β for the likelihood estimation in Equation 3
are both set to 1. For bag reconstruction in instance classification for the census
data experiments, we have grouped a seed with 5 random negative instances.
This is based on the fact that by average, a bag in the census datasets contains
5.65 instances, as can be calculated from Table 2.

For comparison purpose, we have implemented an alternative solution for
bag and instance classification based on the group linkage method proposed
by On et al. [18]. This method computes the sum of the similarity scores for
each record pair, and then separates pairs into matches and non-matches by
comparing the similarity sum with a threshold parameter ρ. The decision on the
optimal ρ can be made based on the trade-off between the number of household
pairs with multiple matches or unique matches. The matched households are
then generated by grouping all matched record pairs that belong to the same
matched household.

4.1 Synthetic Data Results

We have conducted experiments on synthetic data to evaluate the effectiveness
of our instance classification method. The synthetic data generation follows the
method in [14]. We randomly generated 1,000 positive instances and 5,000 nega-
tive instances, with each class generated from two Gaussian distributions. Then
we constructed 50 positive bags by random sampling from both positive and
negative instances, and 50 negative bags sampling from negative instances only.
The number of instances in each bag is also randomly selected between 1 and
10. In this way, both bag and instance labels are known.

We split these bags into a training and a testing set, each containing 25
positive and 25 negative bags. We then trained bag-level classifiers using both
the MILES and MILIS methods, and used them to classify instances in the
testing set. This test is repeated 500 times over random partitions. The results
show that the bag reconstruction method for instance classification presented in
Section 3.2 is very effective. The random bag reconstruction method has achieved

1 http://www.mosek.com
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Table 1. Number of records and households in the historical census datasets

1851 1861 1871 1881 1891 1901

Number of records 17,033 22,429 26,229 29,051 30,087 31,059
Number of households 3,295 4,570 5,575 6,025 6,379 6,848

Table 2. Number of bags and instances extracted from the historical census datasets

1851–1861 1861–1871 1871–1881 1881–1891 1891–1901

Number of instances 2,104,171 2,200,876 2,459,272 3,043,786 3,318,738
Number of bags 325,921 441,355 472,239 494,270 588,436

an accuracy of 92.03± 2.21% using the MILES model, and 92.32± 2.43% using
the MILIS model, while the greedy extension has achieved 92.89 ± 2.89% and
95.50± 2.47% on MILES and MILIS, respectively.

4.2 Historical Census Data Results

We used six census datasets from the district of Rawtenstall in the United King-
dom that were collected in ten-year intervals from 1851 to 1901. These census
data contain twelve attributes per record, including the address, first and family
name, age, gender, relationship to head, industry (occupation), and place of birth
of each individual2. Because these data are of low quality, we have cleaned and
standardised them using the Febrl data cleaning and record linkage system [7].
Details of this step can be found in Fu et al. [12]. Table 1 shows the number of
records and households in each dataset.

The record level linkage was also conducted using Febrl. Instead of compar-
ing all possible record pairs between two datasets, we used a traditional block-
ing technique combined with a Double-Metaphone encoding technique to index
(block) the datasets [8]. We used a variety of approximate string comparison
functions to calculate the similarity between individual record pairs following
the approach given by Fu et al. [13]. The similarity scores calculated for a record
pair were concatenated into a vector and then used in the MIL classification
step.

We have manually labelled 1,000 household links from the 1871 and 1881
datasets, consisting of 500 matched and 500 non-matched households. To show
the performance of the MILES and MILIS methods on household link classifica-
tion, we performed 100-fold cross validation on the randomly split labelled data,
with half used for training and half for testing.

Both the MILES and MILIS methods show similar performance, achieving
84.54 ± 1.33% and 83.75 ± 1.34% accuracy on household link classification, re-
spectively. When efficiency is concerned, MILIS shows superior performance
than MILES. The MILES method took 29.22 ± 6.37 seconds for training, and

2 www.uk1851census.com
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Table 3. Number of positive bags and instances classified in the different pairs of
historical census datasets using the different methods described in this paper

1851–1861 1861–1871 1871–1881 1881–1891 1891–1901

MILES-bag 7,728 9,644 9,705 9,650 12,583
MILIS-bag 8,832 11,369 9,870 9,175 11,282
Group-linkage-bag 47,249 50,494 49,306 48,212 50,058

MILES-random-instance 22,439 22,478 23,329 27,577 29,065
MILIS-random-instance 20,431 20,236 20,680 23,914 24,410
MILES-greedy-instance 22,063 21,771 23,170 27,019 28,987
MILIS-greedy-instance 20,738 21,436 22,228 25,050 24,872
Group-linkage-instance 67,122 67,340 65,528 65,595 67,483

After result fusion 775 1099 1484 1620 1689

0.88±0.03 seconds for testing, while MILIS only took 2.17±0.10 and 0.25±0.04
seconds for each task. We did not evaluate the instance classification performance
because the true record pair labels were not available to us.

In the next experiment, we re-trained the MILES and MILIS models using
all the labelled data, and then classified all household and record links from any
pair of consecutive census datasets, e.g. 1851 with 1861, 1861 with 1871, and
so on. Because we were mainly interested in finding record matches in matched
households, the instance classification was only performed on positively classi-
fied bags. As shown in Table 3, MILES and MILIS showed mixed performance
on the bag-level classification, each having generated more positive bags than
the counterpart on some datasets. By comparing the number of matched house-
holds with the total number of households in each census dataset (see Table 1),
one can observe that the results contain multiple matches. This is expected be-
cause of two reasons. First, a household may split into several households, for
example, due to the move-out of grown-up children, or two households might
merge when widowed individuals form a new household. Second, there are many
similar record pairs among different households, which may have generated false
positive results. On the instance-level classification, the MILES-based models
have consistently generated more positive instances than the MILIS-based mod-
els. The random bag reconstruction method, on the other hand, has achieved
performance close to that of the greedy bag reconstruction method.

From Table 3, it can be observed that the group linkage method developed
by On et al. [18] has generated many more household and record matches, i.e.
more positive bags and instances, than the proposed MIL based methods. Statis-
tics show that the MILES and MILIS based methods can reduce the number of
matched bags in average between 79.98% and 79.40% respectively, when com-
pared against the group linkage method described by On et al. [18]. Please note
due to the lack of ground truth on household and record pair links, we have not
used traditional measures such as accuracy and F-score for evaluation purposes.

We next applied the group linkage method introduced in Section 3.3 to reduce
the number of multiple household matches, i.e. where one household is matched
with multiple households. Figure 2 shows the performance of the proposed meth-
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Fig. 2. Household matching results after group linkage step

ods and the thresholdingmethod in [18]. The results indicate that the thresholding
method generates the highest number of matches, followed by the MILES-based
methods. The MILIS and greedy bag reconstruction combination has generated
the smallest number of matches for all dataset pairs, which makes it the most re-
liable option in finding household matches between census datasets.

Finally, we performed results fusion so as to let the proposed methods vote
for the most consistent household matches. This was performed by selecting
household matches where all four options, i.e. MILES-random, MILES-greedy,
MILIS-random, and MILIS-greedy, have agreed upon in their decision. These
are the most reliable household matches that can be presented to researchers for
further analysis. The last line in Table 3 shows the number of household matches
after this fusion process.

5 Conclusion

We have introduced a group record linkage method based on multiple instance
learning (MIL), and evaluated this method on real historical census data. In
this method, group links are considered as bags and associated record links are
treated as instances, with only the bag-level labels provided. The multiple in-
stance learning paradigm has provided the group linkage problem with a suitable
supervised learning tool to classify groups, even if the labels of record links are
not available. We have shown the effectiveness of the proposed method on both
synthetic and real historical census data from the UK.

In the future, we plan to extend the instance classification work so that
instances selected for bag reconstruction better characterise the data distribu-
tion, and we will investigate approaches that allow linking records and households
across several census datasets in an iterative fashion.Wewill also apply ourmethod
to other applications with a similar setting, such as bibliographic databases.
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Abstract. In this paper, we present a set recommendation framework
that proposes sets of items, whereas conventional recommendation meth-
ods recommend each item independently. Our new approach to the set
recommendation framework can propose sets of items on the basis on the
user’s initially chosen set. In this approach, items are added to or deleted
from the initial set so that the modified set matches the target classi-
fication. Since the data sets created by the latest applications can be
quite large, we use ZDD (Zero-suppressed Binary Decision Diagram) to
make the searching more efficient. This framework is applicable to a wide
range of applications such as advertising on the Internet and healthy life
advice based on personal lifelog data.

Keywords: recommendation, classification, collaborative filtering, zero-
suppressed binary decision diagram.

1 Introduction

Several techniques on information filtering and information recommendation
such as collaborative filtering and content-based filtering have been reported
[5][1][11]. In conventional collaborative filtering, items are recommended on the
basis of their relevance to the user’s preferences. Each item is recommended in-
dependently of the others; that is, the relationship of a recommended item to
the other items is not considered.

In the real world, however, a user is often interested in a combination of items,
such as the keywords in an advertisement and the places to be visited during a
sightseeing tour. Recently proposed set recommendation techniques[12,10] con-
sider the unit of recommendation to be a set of items and the constraints and
requirements among them.
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In this paper, we extend this approach to incorporate the use of an algorithm
to present recommendations for modifying the user’s initially chosen set. In
our incremental set recommendation framework, it is assumed that each record
(”item set”) in a database has been classified as a class such as positive/negative,
and modifications are recommended that would change the item set so that it
matched the target classification.

An example application of our framework is a recommendation system that
uses a database in which the action history data for a group of people are stored.
The data could be exercise history or dietary behavior, for example. Each person
in the database is classified as either a success or failure w.r.t. to some target
(e.g., weight loss). Those in the ”failure” group could use the system to obtain
recommendations for specific behavior improvements that are based on the data
for those in the ”success” group. The recommendations are made on the basis of
the differences between the two groups and should change the user’s actions and
lifestyle as little as possible. ”Behavior improvements” for the exercise history
example means the addition and/or deletion of item sets representing the type
and amount of exercises performed, while for the dietary behavior example,
it means the addition and/or deletion of item sets representing the type and
quantity of food eaten. Another example application is a system for describing
the items for sale on an Internet shopping site. The descriptions of poorly selling
items would be modified on the basis of the descriptions of items that sell well.

The rest of the paper is organized as follows: Section 2 gives the basic def-
initions. In Section 3, we describe the implementation of our framework using
a Zero-suppressed Binary Decision Diagram (ZDD) data structure. We present
and discuss the results of its evaluation in Section 4. We conclude in Section 5
with a brief summary, some additional comments, and a mention of future work.

2 Definition

We will provide some definitions and notations as follows :

Definition 1 (Item). An item is an atomic entity that represents a character-
istic or feature and is denoted by a lower-case character, a, b, c, . . .. A set of all
items to be considered is denoted by Σ.

In the exercise history example, each item could be the name of an exercise.

Definition 2 (Data Record and Class). A data record is a collection of
items that represent the attributes or characteristics of the target object (we use
D to represent a data record). A class is a name for a set of data records, and
is denoted by α, β, γ, ω or φ. Each data record belongs to only one class.

“Positive” or “Negative” is an example of a class.

Definition 3 (Pattern Set/Class Membership). A pattern set is a set of
pairs, each of which consists of an item set and its weight (natural number). If the
weight values are all the same, they can be omitted. A pattern set is denoted by
Cω where ω is the class identifier (Cω = {p : wp|p ∈ 2Σ, wp ∈ N}). If q : wq ∈ Cω

(simply we write q ∈ Cω), q is called a pattern of class ω.
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Example : Let Cα = {{a, b, c} : 2, {a, b, d} : 1, {b, c, d} : 3}. {a, b, c} is a pattern
of class α, whereas {a, b}, {a, b, c, d} and {b, d, e} are not. We sometimes use
polynomial notation for pattern set such as Cα = 2abc+abd+3bcd. A difference
of two pattern set, such as Cα − Cβ , is defined as a difference of polynomials.

Definition 4 (Removable/Universal/Addable Items). For a data record
D, the items in D can be divided into removable items (D−) and universal items
(D∗). The recommendation algorithm can suggest the deletion of items only if
they are elements of D−. A set of addable items, denoted by D+, is the set of
items that can be added to D.

Universal items intuitively correspond to essential features of the record. If no
universal item is specified, D∗ = ∅.

Definition 5 (Delete/Add-Constraints). The upper bounds on the numbers
of items that can be added or deleted for a data record D are denoted by ND

add,
ND

delete, respectively.

Definition 6 (Recommendation Candidate). For a data record D ∈ Cφ(D �∈
Cω), if there could be a candidate D′ ∈ Cω(D

′ �∈ Cφ) that is a modification of D
by adding and/or deleting items under the conditions of ND

add and ND
delete, and if

the weight of D′ in Cω−Cφ is equal to or greater than the given natural number
M (called weight condition), D′ is called a recommendation candidate for class
ω that satisfies ND

add, N
D
delete and M .

Example: Let ND
add = 1 and ND

delete = 1 for D = {a, b, f} and weight condition
M = 2 in the above example, D′ = {a, b, c} is a recommendation candidate for
class Cα.

3 Set Recommendation Based on Class Differences

In general, the number of instances of each class could be quite large. For ex-
ample, the number of articles for sale or the number of customers on a major
Internet shopping site could reach several million. As another example, lifelog
services using mobile devices generates enormous amount of data in recent years.
To handle such huge numbers of data records, we use a ZDD (Zero-Suppressed
Binary Decision Diagram) data structure. In this section, we first present an
example of our set recommendation framework based on class differences. We
then briefly introduce ZDD and our recommendation algorithm which uses the
ZDD structure.

3.1 Example

Suppose we have pattern sets for classes α and β as follows:

Cα = {{a, b, c} : 1, {b, c} : 2, {c} : 1, {d, e} : 2, {e} : 3} (1)

Cβ = {{a, c} : 1, {a, b, d} : 1} (2)
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Suppose further that Σ = {a, b, c, d, e} and D = {a, c} (D ∈ Cβ). The rec-
ommendation for D would consist of the following candidates (D′) under the
condition that ND

add = ND
delete = 1 and the weight condition M = 1: “Add b”,

“Delete a and add b”, “Delete a”. After those modification, D′ would be identi-
fied as class α, rather than as class β. If we restrict the recommendation so that
M = 2, we get only “Delete a and add b”.

In this work, we use a VSOP (Valued-Sum Of Products) calculator based on
ZDD for calculating the recommended items. We review ZDD and VSOP briefly
in the next subsection.

3.2 ZDD and VSOP

Binary decision diagrams[2,4] (BDDs) are well-known and widely used for ef-
ficiently manipulating large-scale Boolean function data. A BDD is a directed
graph representation of the Boolean function. The reduction rules in BDD con-
sist of “node deletion rule” (delete all redundant nodes with two edges that point
to the same node) and “node sharing rule” (share all equivalent sub-graphs).

ZDDs (Zero-suppressed BDDs) [6,4] are special type of BDDs which are suit-
able for implicitly handling large-scale combinatorial item set data. The reduc-
tion rules of ZDDs are slightly different from those of BDDs. They are illustrated
in Fig. 1 (a).

– Share equivalent nodes as well as ordinary BDDs.
– Delete all nodes whose 1-edge directly points to the 0-terminal node, and

jump through to the 0-edge’s destination.

ZDDs are especially more effective then BDDs for representing “sparse” com-
binations such as purchase history data. For instance, sets of combinations se-
lecting 10 out of 1000 items can be represented by ZDDs up to 100 times more
compactly than by ordinary BDDs.

VSOP (Valued-Sum-Of-Products Calculator)[7] is a program developed for
calculating a combinatorial item set where each product term has a value, speci-
fied by symbolic expressions based on ZDD techniques. The value of each product
can also be considered as a coefficient or a weight for each term. For example, the
formula (5abc+3ab+2bc+ c) represents a VSOP with four terms abc, ab, bc and
c, each of which is valued as 5, 3, 2, and 1, respectively. VSOP supports numer-
ical arithmetic operations based on Valued-Sum-Of-Products algebra, such as
addition, subtraction, multiplication, division, and numerical comparison. The
details of the algebra and arithmetic operations of a VSOP calculator are de-
scribed in [6,7].

When dealing with integer values in binary coding, we have to consider the
expression of negative numbers. VSOP adopted another binary coding[8] based
on (−2), namely, each bit represents 1(= (−2)0),−2(= (−2)1), 4(= (−2)2),−8(=
(−2)3), 16(= (−2)4), . . .. For example, −12 can be decomposed into (−2)5 +
(−2)4 + (−2)2. In this encoding, each integer number as a coefficient can be
uniquely represented.
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Fig. 1 (b) shows the example of the VSOP representation for abc− ac+2bc+
c + 2de + 3e − abd. Since ac satisfies the top nodes labeled +1 and −2, the
coefficient of item ac can be calculated by +1− 2 = −1.

Fig. 1. ZDD Representation

3.3 Set Recommendation with ZDD Structure

In this subsection, we show the method for calculating a set of items to be
recommended using ZDD. We first consider the following polynomials (valued
sum of products) for (1) and (2) in Section 3.1:

Cα − Cβ = abc− ac+ 2bc+ c+ 2de+ 3e− abd

For a given D, we have to output a set of terms from Cα−Cβ , that are mod-
ification of D under the constraints of Nadd and Ndelete, and whose coefficients
are equal to or larger than given integer M .

Fig. 2 shows an example search process on the ZDD structure for Cα − Cβ ,
where Nadd = Ndelete = 1 and D = ac. In this figure, the search process starts
with each top node +1,−2,+4 respectively and then item sets satisfying the
constraints are extracted for each top node +1,−2,+4. The pair of numbers
for item addition and deletion is attached to each edge, as shown in Fig. 2. If
the pair does not satisfy condition Nadd or Ndelete, searching along that path is
terminated. For example, since the pair on the edge from c (left side in Fig. 2)
is (0, 2), which does not satisfy the Ndelete condition, searching along the path
below that node is terminated.

Item sets that need to be found under the condition of M = 2 must satisfy
one of (0, 0, 1), (1, 0, 1), (0, 1, 1), or (1, 1, 1) for the top nodes (+1,−2,+4) in
Fig. 2. For example, suppose D = ac,Nadd = 1 and Ndelete = 1. Since the
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Fig. 2. Search on ZDD Structure

numbers of added items and deleted items w.r.t bc are 1 and 1 respectively, and
since bc satisfies (0, 1, 1) for the top nodes (+1,−2,+4), bc is a recommendation
candidate under the condition of M = 2. As another example, since the numbers
of added items and deleted items w.r.t abc are 1 and 0 respectively, and since
the candidates abc satisfies (1, 0, 0) for the top nodes (+1,−2,+4), abc could
be a recommendation candidate under the condition of M = 1 as well as bc
described above. By the same way, c is also a recommendation candidate under
the condition of M = 1

The naive search algorithm on a ZDD structure is shown in Algorithm 1.

4 Experiments

We first evaluate the efficiency of our approach based on ZDD, using artificial
data, and then we show the examples using actual Internet application data.

4.1 Performance Evaluation

The problem we provided for performance evaluation in this experiment consists
of 170 items in total (|Σ| = 170), and each record contains 5 items. There are
two classes: positive and negative.

There are two execution scenarios: one used a random data set, and the other
used a fixed pattern data set. In the random data set, items occurs randomly in
each record; in the fixed pattern data set, fixed positive and negative patterns
were prepared (20 patterns for each class), and each pattern consisted of three
items.

In the fixed pattern data set, three items in each record are taken from the
fixed patterns, and two are taken from the random patterns. In actual applica-
tions, such as an Internet purchase history, there would be some fixed patterns
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Algorithm 1. Naive Search Algorithm on ZDD structure

Given D (target items), Nadd, Ndelete (upper limits of number of “add” items,
“delete” items), M(≥ 1) (weight condition), ZDD (ZDD structure whose top nodes
are 1, . . . , N (ex. -1,-2,4,. . . )).

for i = 1 to N do
initialize (pathi = {}, AddList = {}, DeleteList = {})
L = L+ get candidate(pathi, i, AddList,DeleteList)

end for
merge output(L,M) (merge the results for each node (1, . . . , n) and output the re-
sults whose coefficients ≥ M)

Function get candidate(path,n, AddList,DeleteList) {n is a node of ZDD}
if |DeleteList| > Ndelete or |AddList| > Nadd then

return null
else if n is a terminal node 1 then

return path
else if n is a terminal node 0 then

return null
else

let n0, n1 : node which is connected by 0 edge, 1 edge of node n, respectively.
if n ∈ D then

get candidate(path, n0, AddList,DeleteList+ {n})
get candidate(path+ {n}, n1, AddList,DeleteList)

else
get candidate(path, n0, AddList,DeleteList)
get candidate(path+ {n}, n1, AddList+ {n}, DeleteList)

end if
end if
End Function

in both classes. In this experiment, we used three data set sizes for each class:
1, 5, and 10 million records.

The system was implemented in Java, and the experiments were run on SUSE
Linux Enterprise Server 10 with a quad-core AMD Opteron 3 GHz CPU, and
512 GB RAM. The execution times are shown in Table 1. The times shown are
an average for ten trials. In the tables, “sequential search” in which all items in
each record were ordered and stored in memory was done for comparison.

With the random data sets, there were no substantial differences between
the ZDD-based search and the sequential search. This is because a ZDD data
structure is not much more compact or efficient rather than a flat data structure.
The number of ZDD nodes for the random data sets were respectively 2696527,
11789288, and 20738481. Their relationship is almost linear. In contrast, with the
fixed pattern data sets, there were marked differences between the two searches.
The ZDD-based search was more efficient due to the compact representation by
ZDD. The numbers of ZDD nodes for the fixed pattern data sets were respectively
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Table 1. Experimental Results for Performance Evaluation

(a) For Random Data Set (Time : msec)

ZDD-based Search Sequential Search
1M 5M 10M 1M 5M 10M

Nadd = 1, Ndelete = 1,M = 1 13 12 17 63 255 514

Nadd = 2, Ndelete = 2,M = 1 16 27 47 70 349 652

Nadd = 3, Ndelete = 3,M = 1 72 326 522 92 496 1152

Nadd = 3, Ndelete = 3,M = 2 74 308 521 93 513 1123

Nadd = 3, Ndelete = 3,M = 3 73 328 541 98 502 1163

(b) For Fixed Pattern Data Set (Time : msec)

ZDD-based Search Sequential Search
1M 5M 10M 1M 5M 10M

Nadd = 1, Ndelete = 1,M = 1 6 5 7 72 279 564

Nadd = 2, Ndelete = 2,M = 1 6 8 9 79 384 609

Nadd = 3, Ndelete = 3,M = 1 7 9 13 94 450 784

Nadd = 3, Ndelete = 3,M = 2 7 9 17 95 419 769

Nadd = 3, Ndelete = 3,M = 3 7 9 15 94 424 776

313594, 363112, and 377979. These data sets were relatively small and did not
linearly increase in size. This was reflected in the total execution times.

In actual applications, there are usually fixed patterns in item occurrences for
each class. Although actual application data are not as strongly biased as in our
experiment, we can nevertheless conclude that the ZDD-based search approach
is well suited for actual applications.

4.2 Example : Internet Shopping Advertising

As one Internet application, we used data from Rakuten Ichiba [13], the largest
online shopping mall in Japan, with over 30,000 online stores (September 2009).
The company has released some of their data for use in academic research[13].

We investigated the relationship between article descriptions at the time of
article introduction for sale and the number of user reviews attached to each
article. The descriptions had been written (in Japanese) by a person working
for the shop where the article was to be sold. Article descriptions are important
because they attract customers through on-line searching.

The data fields in the original data are shop code, purchase article id, article
name, article description, price, category, and number of reviews. There are 31
top categories in total. We used data labeled with the category “Ladies Fashion”
and “Japanese Sake” (liquor).

In order to define characteristics from each description, we first extracted the
nouns, adjectives, verbs, and adverbs from the descriptions using the Japanese
language morphological analysis program called Chasen1. After some modifi-

1 http://chasen.naist.jp
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cations (n-gram word concatenation to generate collocation, word selection by
TF × IDF measurement, etc.), the item sets (Σ) were defined. The explanatory
variables for each article consists of the occurrences of the selected words in
the article descriptions. The class of the article was determined by the number
of reviews. That is, we classified an article “positive” if it had more than two
reviews and “negative” if it had no reviews.

In the Japanese Sake category, there were 517 items in total (|Σ| = 517), 3085
positive records, and 3372 negative records. Each record generally had five to
ten items. We set Ndelete and Nadd to respectively 2 and 4. In the Ladies Fashion
category, there were 1475 items in total (|Σ| = 1475), 3166 positive records, and
7194 negative records. Both Ndelete and Nadd were set to 3.

Table 2 shows some of the results translated from the original Japanese.We as-
sumed that all items in D (original item set) were removable (i.e., it did not con-
tain any universal items) and set weight condition M to 1. For the Japanese Sake
category, we found that keywords that created attractive images were preferred
rather than technical keywords such as “rice malt” and “carefully screened.”
These results reflect the Internet shopping situation for Japanese Sake; that is,
people who like to buy Japanese sake on the Internet generally put more empha-
sis on the image or feeling of drinking sake rather than the technical details, un-
like those who buy it in actual shops. For the Ladies Fashion category, keywords
giving specific descriptions of each article, such as “tiered skirt,” “hemline,” and
“shoulder strap adjustment” were preferred to ones that created a visual image
of their usage or that described the technical details. That is, people shopping on
the Internet for fashion prefer specific images and specifications, unlike people
shopping in actual shops.

4.3 Example : AOL Search Logs

As the other Internet application, we used data from AOL’s Search Log Collec-
tion [14]. This collection consists of about 21 million web search queries input by
about 650,000 AOL users from March to May 2006. The records include ‘Query,’
‘ItemRank,’ and ‘ClickURL’ (the last two items were included only if the user
had clicked on a search result).

We used records in which there was a ‘ClickURL’ entry and the ‘ItemRank’
was less than 5 as the positive data and those without a ‘ClickURL’ entry as
negative data. The objective of this analysis was to present sets of items to be
deleted from or added to the original queries so as to increase the likelihood that
the user would click on a search result.

The results are shown in Table 3 (words preceded by “*” are universal items).
We found that, if the user wants to find specific information about travel, it would
be better to add a specific place-name such as europe, south africa, or italy. From
the last example in the table, the keyword ‘cheap’ would not be adequate if the
user wanted a reasonable price. Better keywords would be ‘discounts,’ ‘best,’ and
’packages.’
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Table 2. Example : Internet Shopping Advertising

Category Original Added Items Deleted Items

Sake rice malt, production area, box,
gift

plum brandy,
woman

rice malt, produc-
tion area

low temperature, slow, distilla-
tion, actual producer, distilled
spirit, flavor , production area

rich, black malt,
tasty

low temperature,
slow, distillation

river-bed water, carefully-
screened, actual producer,
distilled spirit, characteristics,
production area, flavor, tasty

deepness, barley
distilled spirit

river-bed water,
carefully-screened,
characteristics

cold storage, representative, re-
fined sake, barm, acid degree

bright, limited, fla-
vor

representative,
refined sake

recommend, cold storage, barm,
father, acid degree

wonderful, brand
sake

recommend, father

Ladies skirt, casual, polyurethane, hip,
real scale

tiered skirt, appeal casual,
polyurethane,
hip

shopping, travel, event, import hemline, casual shopping
love, casual, travel, event, import shoulder strap ad-

justment, beautiful
leg

love, casual, travel

boot-cut, straight, pants,
polyurethane, silhouette, body

camel-hair, autumn
and winter

pants

These results shows that our recommendation flamework can suggest possi-
ble candidates for query modifications, in order to get more appropriate search
results for users.

5 Summary and Future Works

In this paper, we have described a new approach to the set recommendation prob-
lem: changes (item addition and deletion) to a set of items are recommended on
the basis of class differences. Since recommendation services are becoming more
and more popular, our framework should be effective for actual applications
rather than simply being used for collaborative filtering. The use of our algo-
rithms, which use the ZDD data structure, results in efficient calculation for
huge data sets, especially when the data is biased, as it generally is in actual
applications. Although we only considered the case of two classes for simplicity,
we can easily consider a case in which there are three or more classes or there
are multiple classification criteria for the input data.

In related work, Dong et al.[3] proposed using an emerging patterns approach
to detecting differences in classes and using a classification framework based on
the emerging patterns. While frequent pattern mining generally cannot detect
the characteristic item pattern for each class, their approaches focus on detecting
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Table 3. Example : AOL Search Logs

Original Added Items Deleted Items

adventure,*travel,blogs tours,student blogs
africa blogs
family blogs
italy adventure
south,africa adventure

*family,travel,vacations europe vacations
packages,rome vacations
best travel
cheap travel
packages travel

cheap,*europe,*vacation discounts cheap
best cheap
packages cheap

item sets that are meaningful for classification. Although their motivation is very
similar to ours, they have not yet reported a recommendation procedure based
on emerging patterns.

Other researchers have developed set recommendation procedures based on
certain constraints such as recommendation costs, orders and other conditions
[12,10]. These procedures are practically applicable to trip advice and univer-
sity course selection, for example. Although we do not assume any constraint
between items as pre-defined knowledge, incorporating such constraints into our
recommendation framework should improve its effectiveness.

Searching under the constraints described in this paper is closely related to
searching based on the Levenshtein distance (edit distance). Efficient algorithms,
such as dynamic programming approach, have been developed to calculate the
distance, and many implementations including approximation approaches have
been introduced [9]. The problem we focused on in this paper is slightly different
from those for the edit distance. Our problem is to find similar items from given
polynomials under the constraints of a limited number of item additions and
deletions with a weight constraint. A comparison of the problems remains for
future work.

Future work also includes extending our results in several directions :

– The search procedure based on the ZDD structure described in this paper
still contains redundant processes. Efficient search strategies such as using a
cache of pre-searched results need to be investigated.

– We assume in this framework that items occur only positively in patterns.
In actual applications, however, “don’t care” plays an important role in
recommendation. We need to investigate ways to incorporate such items.

Acknowledgment. We are grateful to Rakuten, Inc., for providing the Internet
shopping data used in this research.
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Abstract. Cross Language Text Categorization (CLTC) is the task of
assigning class labels to documents written in a target language (e.g.
Chinese) while the system is trained using labeled examples in a source
language (e.g. English). With the technique of CLTC, we can build clas-
sifiers for multiple languages employing the existing training data in only
one language, therefore avoid the cost of preparing training data for each
individual language. One challenge for CLTC is the culture differences
between languages, which causes the classifier trained on the source lan-
guage doesn’t perform well on the target language. In this paper, we
propose an active learning algorithm for CLTC, which takes full advan-
tage of both labeled data in the source language and unlabeled data in
the target language. The classifier first learns the classification knowledge
from the source language, and then learns the cultural dependent knowl-
edge from the target language. In addition, we extend our algorithm to
double viewed form by considering the source and target language as two
views of the classification problem. Experiments show that our algorithm
can effectively improve the cross language classification performance.

Keywords: Cross Language Text Categorization, Active Learning.

1 Introduction

Due to the explosive growth of electronic documents in different languages,
there’s an urgent need for effective multilingual text organizing techniques. Cross
Language Text Categorization (CLTC) is the task of assigning class labels to doc-
uments written in a target language (e.g. Chinese) while the system is trained
using labeled examples in a source language (e.g. English). With the technique
of CLTC, we can build classifiers for multiple languages employing the exist-
ing training data in only one language, thereby avoiding the cost of preparing
training data for each individual language.

The basic idea under CLTC is the documents in different languages may share
the same semantic information [14], although they’re in different representations.
Previous works on CLTC have tried several methods to erase the language barrier
and show promising results. However, despite language barrier, there’s another
problem for CLTC. That is the differences between cultures, which may cause
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topic drift between languages. For example, news of the category sports from
China (in Chinese) and US (in English) may concern different topics. The former
may talk more about table tennis and Liu Xiang while the later may prefer NBA
and NFL. As a result, even if the language barrier is perfectly erased, some
knowledge of the target language still can’t be learned from the training data in
the source language. This will inevitably affect the performance of categorization.
To solve this problem, making use of the unlabeled data in the target language
will be helpful. Because these data is often easy to obtain and contains knowledge
of the target language. If we can provide techniques to learn from it, the resulting
classifier is expected to get more fit for the target language, thereby give better
categorization performance.

In this paper, we propose an active learning algorithm for cross language text
categorization. Our algorithm makes use of both labeled data in the source lan-
guage and unlabeled data in the target language. The classifier first learns the
classification knowledge from the source language, and then learns the cultural
dependent knowledge from the target language. In addition, we extend our al-
gorithm to double viewed form by considering the source and target language
as two views of the classification problem. Experiments show that our algorithm
can effectively improve the cross language classification performance. To the best
of our knowledge, this is the first study of applying active learning to CLTC.

The rest of the paper is organized as follows. First, related works are re-
viewed in Section 2. Then, our active learning approach for CLTC is presented
in Section 3 and its extension to double viewed form is introduced in Section 4.
Section 5 presents the experimental results and analysis. Finally, Section 6 gives
conclusions and future work.

2 Related Work

Several previous works have addressed the task of CLTC. [2] proposes practical
approaches based on machine translation. In their work, two translation strate-
gies are considered. The first strategy translates the training documents into
the target language and the second strategy translates the unlabeled documents
into the source language. After translation, monolingual text categorization is
performed. [12] introduces a model translation method, which transfers classifi-
cation knowledge across languages by translating the model features and takes
into account the ambiguity associated with each word. Besides translation, in
some other studies multilingual models are learned and used for CLTC, such as
the multilingual domain kernels learned from comparable corpora [5] and the
multilingual topic models mined from Wikipedia [8]. Moreover, there are also
some studies of using lexical databases (e.g. WordNet) for CLTC [1].

All the previous methods have somehow solved the language barrier between
training documents and unlabeled documents. But only a few have considered
the culture differences between languages. In these works, authors try to solve
this problem by employing some semi-supervised learning techniques. [12] em-
ploys a self-training process after the model translation. This process applies
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the translated model to predict a set of unlabeled documents in target language
and iteratively chooses the most confident classified documents to retrain the
model. As a result, the model is adapted to better fit the target language. [9]
proposes an EM based training algorithm. It consists of an initialization step
that trains a classifier using translated labeled documents and an iteration step
that repeats the E and M phases. In the E phase, the classifier predicts the
unknown labels of a collection of documents in the target language. In the M
phase, these documents with labels obtained in E phase are used to estimate the
parameters of the new classifier. [16] investigates the use of co-training in cross
language sentiment categorization. In their work, Chinese and English features
are considered as two independent views of the categorization problem.

The common idea of above methods is to automatically label and use the
documents in target language. To reduce the noises introduced by classification
errors, the documents with low prediction certainty are usually underutilized. In
this paper, we consider such documents to contain important information and
will explore them through our active learning algorithm.

3 Active Learning for CLTC

3.1 Cross Language Text Categorization

Given a collection TRe of labeled documents in language E and a collection
TSc of unlabeled documents in language C, in the scenario of CLTC, we would
like to train a classifier using TRe to organize the documents in TSc. E and C
is usually referred as the source language and target language respectively. In
this paper, we suppose E is English and C is Chinese. In practice, they can be
replaced with any other language pairs.

To solve the language barrier between training and test documents, we can
employ a machine translation tool. The translation can be performed in two
directions: the first direction translates all training documents into Chinese and
the second direction translates all test documents into English. Both approaches
convert the cross language problem into monolingual one. In this section, we
choose the training set translation approach. First, we translate TRe into Chi-
nese, denoting it by TRe-c. Then, we learn a classifier Ce-c based on TRe-c.
Suppose the translation process gives accurate enough results, Ce-c obtains the
classification knowledge transferred from English.

Ce-c can be applied to the unlabeled Chinese documents directly. Since the
documents of same topic in different languages may share some common se-
mantics, Ce-c may be able to make very certain predications for some Chinese
documents by the classification knowledge transferred from English. However,
for some other documents, Ce-c may get confused, as the class-discriminative in-
formation of these documents can’t be detected. The latter case is usually caused
by culture differences. For instance, a classifier trained using English sports sam-
ples may not be able to recognize Liu Xiang, a famous Chinese hurdle athlete, in
a Chinese document. We can then make an observation that Chinese documents,
which are uncertain to be classified by Ce-c, usually contain culture dependent
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classification knowledge that can’t be learnt from the translated training data.
From this observation, we derive the active learning algorithm to improve Ce-c.

3.2 Apply Active Learning to CLTC

Active learning [11] is a form of learning algorithm for situations in which un-
labeled data is abundant but labeling data is expensive. In such a scenario, the
learner actively selects examples from a pool of unlabeled data and asks the
teacher to label.

In the context of CLTC, we can assume an additional collection Uc of unla-
beled documents in target language (Chinese in this paper) is available, since
the unlabeled data is usually easy to obtain. Our algorithm consists of two steps.
In the first step, we train a classifier using the translated training set TRe-c, this
classifier can be considered as an initial learner which has learnt the classification
knowledge transferred from the source language. In the second step, we apply
this classifier to the documents in Uc and select out the documents with lowest
classification certainty. Such documents are expected to contain most culture
dependent classification knowledge. We label them and put them into the train-
ing set. Consequently, the classifier is re-trained. The second step is repeated
for several iterations, in order to let the classifier learn the culture dependent
knowledge from the target language. Figure 1 illustrates the whole process.

Fig. 1. The active learning process

In our approach, a basic classification algorithm is required to train the initial
classifier. We employ support vector machine, as it has been well studied in pre-
vious work for active learning [15,6,11]. Note that our algorithm is independent
on specific classification techniques.

Given the translated labeled set TRe-c, each example can be represented as
(x, y), where x ∈ Rp is the feature vector and y ∈ {1, 2, . . . k} is the corresponding
class label. A classifier learnt from TRe-c can predict the unknown class label
for a document d in Uc. To measure the prediction certainty, we can refer to the
membership probabilities of all possible classes.

However, SVM can’t give probabilistic outputs directly. Some tricks have been
proposed in [7]. For binary-class SVM, given the feature vector x ∈ Rp, and the
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label y ∈ {−1, 1}, the membership probability p(y = 1|x) can be approximated
using a sigmoid function,

P (y = 1|x) = 1/(1 + exp(Af(x) +B)), (1)

where f(x) is the decision function of SVM, A and B are parameters to be
estimated. Maximum likelihood estimation is used to solve for the parameters,

min
(A,B)

−
l∑

i=1

(ti log pi + (1− ti) log (1− pi)),

where,

pi =
1

1 + exp(Af(xi) +B)
,

ti =

{
N++1
N++2 if yi = 1;

1
N−+2 if yi = −1.

(2)

N+ and N− are the number of positive and negative examples in the training
set. Newton’s method with backtracking line search can be used to solve this
optimization problem [7]. For multi-class SVM, we can obtain the probabilities
through pair coupling [18]. Suppose that rij is the binary probability estimate
of P (y = i|y = i or j, x), and pi is the probability P (y = i|x), the problem can
be formulated as

minp
1

2

k∑
i=1

∑
j,j �=i

(rjipi − rijpj)
2,

subject to

k∑
i=1

pi = 1 and pi ≥ 0, ∀i,

(3)

where k denotes the number of classes. This optimization problem can be solved
using a direct method such as Gaussian elimination, or a simple iterative algo-
rithm [18].

In practice, we employ the toolbox LibSVM [4], which is widely used in data
mining tasks [13]. It implements the above methods for multi-class probability
estimation. After obtaining the class membership probabilities of a document,
we use the best against second best (BVSB) approach [6] to estimate the classi-
fication certainty. This approach has been demonstrated to be effective for multi
class active learning task [6]. It measures the certainty by the difference between
the probability values of the two classes having the highest estimated proba-
bilities. The larger the difference, the higher the certainty is. Suppose c is the
classifier, d is the document to be classified, i and j are the two classes with
highest probabilities, then we calculate the certainty score using

Certainty(d, c) = P (y = i|d, c)− P (y = j|d, c). (4)

Based on the discussions above, we describe the proposed algorithm in Algo-
rithm 1.
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Algorithm 1. Active learning algorithm for CLTC

Input:
The labeled set in the source language, TRe;
The unlabeled set in the target language, Uc;

Output:
Classifier C;

1: Translate examples in TRe into the target language, and denote the translated set
by TRe-c

2: Let TrainingSet = TRe-c

3: Repeat I times:
4: Train classifier C using TrainingSet
5: Classify documents in Uc by C and measure the prediction certainty using

Equation 4
6: Let S be a set of n documents with the lowest prediction certainty
7: Remove S from Uc

8: Label documents in S by the teacher
9: Add the newly labeled examples to TrainingSet
10: Return C

4 Double Viewed Active Learning

In this section, we extend our algorithm to double viewed form. In chief, the
source and target language are considered as two views of the classification
problem. The same idea was utilized in [16].

4.1 Two Views of the Problem

In Section 3, we convert the cross language problem into monolingual one with
the help of a machine translation tool. As illustrated in Figure 2, the translation
can be performed in two directions. The first direction translates the training set
TRe into Chinese and the second direction translates both the test set TSc and
additional unlabeled set Uc into English. Each direction gives us a monolingual
view of the problem. In Section 3, we apply our active learning algorithm based
on the Chinese view. In this section, we will show how to take advantage of both
views and extend our algorithm to double viewed active learning.

First, we perform the translation following both directions. As a result, each
document is associated with two views: the Chinese view and the English view.
We denote the double viewed training set, test set and additional unlabeled set
by TR, TS and U respectively. Then, two initial classifiers are trained using TR
based on Chinese view and English view individually. We apply both of them to
the unlabeled set U .

Since predictions made by the two classifiers are based on individual views
of one document, they may have different certainties. As illustrated in Figure
3, the pool of unlabeled documents is split into four regions. In region C, the
English classifier is certain on the documents, while the Chinese classifier is not.
In region D, it’s the opposite. For these scenarios, we can employ a co-training
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Fig. 2. Two directions of translation Fig. 3. Certainty distribution over the un-
labeled documents

[3] approach, which labels documents according to the confident classifier and
generate new training examples for the unconfident one. In other words, the two
learners can teach each other in some times, needn’t always ask the teacher.
Based on this idea, we present the double viewed active learning algorithm in
the next section.

4.2 Double Viewed Active Learning

Given a document d and two classifiers Ce and Cc, we measure whether both
classifiers are certain about its prediction by the average certainty,

Average Certainty(d, Ce, Ct) = (Certainty(d, Ce) + Certainty(d, Cc))/2. (5)

To measure whether a classifier is more certain than the other, we refer to the
difference between their certainties,

Certainty Difference(d ,Ce ,Cc) = Certainty(d, Ce)− Certainty(d, Cc). (6)

Our double viewed active learning algorithm is described by Algorithm 2.
After the learning phase, we get two classifiers Ce and Cc. As a result, in the

classification phase we can obtain two predictions for a document. Since both
classifiers output class membership probabilities, they can be combined in the
following way to give the overall prediction,

P (y = i|x) = (P (y = i|x,Cc) + P (y = i|x,Ce))/2. (7)

5 Evaluation

5.1 Experimental Setup

We choose English-Chinese as our experimental language pair. English is re-
garded as the source language while Chinese is regarded as the target language.
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Algorithm 2. Double viewed active learning algorithm for CLTC

Input:
The labeled set in the source language, TRe;
The unlabeled set in the target language, Uc;

Output:
Classifiers Ce and Cc;

1: Generate two-view labeled set TR by translate TRe into the target language
2: Generate two-view unlabeled set U by translate Uc into the source language
3: Let TrainingSet = TR
4: Repeat I times:
5: Train classifier Ce using TrainingSet based on the source language view
6: Train classifier Cc using TrainingSet based on the target language view
7: Classify U by Ce and Cc respectively
8: Let S be the n documents from U having lowest Average Certainty(d)
9: Let L be the documents from U having Certainty(d,Cc) > h or Certainty(d,

Ce) > h, where h is the certainty threshold
10: Let Ee and Ec be m documents from L having highest Certainty Difference(d,

Ce, Cc) and Certainty Difference(d ,Cc,Ce) respectively
11: Remove Ee, Ec and S from U
12: Label Ee and Ec according to Ce and Cc respectively; Label S by the teacher
13: Add Ee, Ec, S to TrainingSet
14: Return Ce and Cc

Since there is not a standard evaluation benchmark available for cross language
text categorization, we build a data set from the Internet. This data set contains
42610 Chinese and English news pages during the year 2008 and 2009, which fall
into eight categories: Sports, Military, Tourism, Economy, Information Technol-
ogy, Health, Autos and Education. The main content of each page is extracted
and saved in plain text.

In our experiments, we select 1000 English documents and 2000 Chinese doc-
uments from each class. The set of English documents is treated as the training
set TRe. For the Chinese documents, we first randomly select 1000 documents
from each class to form the test set TSc, and leave the remaining documents as
the additional unlabeled set Uc.

As we will use the two views of each document in our algorithm, we em-
ploy Google T ranslate 1 to translate all Chinese documents into English and
all English documents into Chinese. Then, for all Chinese or Chinese trans-
lated documents, we segment the text with the tool ICTCLAS 2, afterwards
remove the common words. For all English or English translated documents, the
EuropeanLanguageLemmatizer 3 is applied to restore each word in the text to
its base form. Then we use a stop words list to eliminate common words.

Each document is transformed into an English feature vector and a Chinese
feature vector with TF -IDF format. The LibSVM package is employed for the

1 http://translate.google.com
2 http://ictclas.org/
3 http://lemmatizer.org/



Active Learning for Cross Language Text Categorization 203

basic classifier. We choose linear kernel due to its good performance in text
classification task. Since we need probabilistic outputs, the b option of LibSVM
is selected for both training and classification. The cost parameter c is set to 1.0
as default. We use Micro-Average F1 score as the evaluation measure, as it’s a
standard evaluation used in most previous categorization research [10,17].

5.2 Results and Discussions

In this section, we present and discuss the experimental results of the proposed
algorithms.

Single Viewed Active Learning. In the first experiment, we would like to
verify the effectiveness of our active learning algorithm described in Algorithm
1. An initial classifier is trained using the translated labeled set TRe-c and then
applied to the Chinese unlabeled set Uc. In each iteration, 10 documents with the
lowest prediction certainty are selected and labeled by the teacher. To validate
this selecting strategy, we also implement another strategy which selects 10 doc-
uments randomly for comparison. In each iteration, a new classifier is retrained
on the expanded labeled set and its performance is evaluated on the testing set
TSc. The corresponding micro average F1 curves are plotted in Figure 4.

Fig. 4. Micro-F1 curves of single viewed algorithm

We can observe that, the initial classifier doesn’t perform well on the Chinese
test set. As the number of iterations increases, the performance is significantly
improved. The certainty-based strategy shows an obvious advantage over the
random strategy. This verify our assumption that documents with low predic-
tion certainty usually contain culture dependent classification knowledge and
therefore are most informative for the learner. After 20 iterations, the Micro av-
erage F1 measure on the 8000 test documents is increased by about 11 percents
while the additional cost is to label 200 selected examples.

Double Viewed Active Learning. In the following experiments, we verify the
double viewed algorithm described in Algorithm 2. First, two initial classifiers
are trained using the labeled set based on English and Chinese view individually.
Then the active learning process is performed. We set the parameter n to 10,
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which means in each iteration 10 examples having lowest average certainty are
selected and labeled by the teacher; and we setm to 5, which means each classifier
labels 5 examples for the other. The certainty threshold h is set to 0.8, in order to
reduce the error introduced by automatically labeled examples. In each iteration,
the two classifiers are retrained and applied to the test set. We combine their
predictions based on each view to get the overall prediction. Figure 5 shows the
micro average F1 curves of the Chinese, English and overall classifiers. The curve
of the single viewed algorithm is plotted as well for comparison.

We can observe that, the English classifier generally has better performance
than the Chinese one, a possible reason is that more noises are introduced in
Chinese view due to the text segmentation process. The overall classifier has
highest accuracy, as it combines the information from both views. All the three
classifiers generated by double viewed algorithm outperform the one of the single
viewed algorithm. Because in each iteration they get 10 more labeled examples
(each classifier automatically labels 5 examples for the other).

In our double viewed algorithm, the classifiers learn from each other and the
teacher.We would like to investigate the effect of the two approaches individually.
This can be done by set the parameter n and m in Algorithm 2. We first set
n to 10 and m to 0, then set n to 0 and m to 5. The corresponding curves are
showed in Figure 6.

Fig. 5. Micro-F1 curves of double viewed
algorithm

Fig. 6. Compare effects of the two learn-
ing approaches

As we can see, learning from the teacher makes a significant contribution
to the improvement of the performance, while the effect of learning from the
partner is weaker. The latter maybe caused by two reasons: first, there may be
some errors introduced by the automatically labeled examples; second, since the
Chinese and English views of one document are not completely independent, the
C and D region illustrated in Figure 2 may be very limited. However, learning
from the partner is still helpful, and it reduces the labor of the teacher to achieve
the same performance.
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Table 1. Comparison of different methods

Category
ML MTE MTC

Single Viewed
(n=10,

20 iterations)

Double Viewed
(n=10,m=5,20

iterations, overall)

P R F P R F P R F P R F P R F

sports 94.0 89.3 91.6 86.2 72.1 78.5 83.6 73.8 78.4 86.5 85.5 86 84.3 91.2 87.6
military 92.9 94.2 93.5 68.7 85.2 76.1 67.1 84.7 74.9 78.5 93.7 85.4 82.0 95.8 88.4
tourism 87.4 91.8 89.5 72.3 68.2 70.2 75.7 71.2 73.4 83.2 85.4 84.3 85.8 83.9 84.8
economy 87.5 87.2 87.3 88.4 56.2 68.7 85.2 62.7 72.2 84.2 80.4 82.3 83.9 87.8 85.8

IT 90.4 90.3 90.3 72.1 80.2 75.9 71.6 75.2 73.4 86.9 85.7 86.3 91.7 83.3 87.3
health 92.1 91.2 91.6 69.1 81.4 74.7 73.2 79.7 76.3 85.0 87.3 86.1 87.6 85.6 86.6
autos 93.7 91.4 92.5 65.3 88.5 75.2 62.5 89.8 73.7 85.1 92.6 88.7 89.7 92.3 91.0

education 88.4 90.1 89.2 87.9 58.1 70.0 88.9 53.9 67.1 87.8 64.7 74.5 86.3 70.5 77.6

Comparison. In Table 1, we present the detailed classification results of our
algorithms, comparing with two basic machine translation based methods. The
first one, denoted as MTC, translates the training set TRe into Chinese and
trains a classifier; the second one, denoted as MTE, trains a classifier in English
and translates the test set TSc into English. In addition, we also build a mono-
lingual classifier (ML) by using all documents in Uc as training data. The ML
method plays the role of an upper-bound, since the best classification results are
expected when monolingual training data is available.

We can observe that, the ML classifier has the best performance as expected,
since it’s trained on the labeled data in the target language, so that there’s no
drawback caused by language barrier or cultural differences. Comparing with
the two basic machine translation methods MTE and MTC, our active learn-
ing algorithms, both single viewed and double viewed, significantly improve the
classification performance of each class. The double viewed algorithm has better
performance than the single viewed one, as it combines the information from
both views and makes use of the automatically labeled examples.

6 Conclusions and Future Works

In this paper, we proposed the active learning algorithm for cross language text
categorization. The proposed method can effectively improve the cross language
classification performance by learning from unlabeled data in the target lan-
guage. For the future work, we will incorporate more metrics in the selecting
strategy of active learning. For instance, can we detect the scenario in which the
classifier is pretty certain but actually wrong? If such examples can be detected
and labeled for retraining, the classifier will be further adaptable for the target
language.
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Abstract. Machine learning has yield significant advances in decision-making
for complex systems, but are they robust against adversarial attacks? We gener-
alize the evasion attack problem to the multi-class linear classifiers, and present
an efficient algorithm for approximating the optimal disguised instance. Experi-
ments on real-world data demonstrate the effectiveness of our method.

1 Introduction

Researchers and engineers of information security have successfully deployed systems
using machine learning and data mining for detecting suspicious activities, filtering
spam, recognizing threats, etc. [2,12]. These systems typically contain a classifier that
flags certain instances as malicious based on a set of features. Unfortunately, evaded
malicious instances that fail to be detected are inevitable for any known classifier. To
make matters worse, there is evidence showing that adversaries have investigated sev-
eral approaches to evade the classifier by disguising malicious instance as normal in-
stances. For example, spammers can add unrelated words, sentences or even paragraphs
to the junk mail for avoiding detection of the spam filter [11]. Furthermore, spammers
can embed the text message in an image. By adding varied background and distorting
the image, the generated junk message can be difficult for OCR systems to identify but
easy for humans to interpret [7]. As a reaction to adversarial attempts, authors of [5]
employed a cost-sensitive game theoretic approach to preemptively adapt the decision
boundary of a classifier by computing the adversary’s optimal strategy. Moreover, sev-
eral improved spam filters that are more effective in adversarial environments have been
proposed [7,3].

The ongoing war between adversaries and classifiers pressures machine learning re-
searchers to reconsider the vulnerability of classifier in adversarial environments. The
problem of evasion attack is posed and a query algorithm for evading linear classifiers
is presented [10]. Given a malicious instance, the goal of the adversary is finding a dis-
guised instance with the minimal cost to deceive the classifier. Recently, the evasion
problem has been extended to the binary convex-inducing classifiers [13].

We continue investigate the vulnerability of classifiers to the evasion attack and gen-
eralize this problem to the family of multi-class linear classifiers; e.g. linear support
vector machines [4,6,9]. Multi-class linear classifiers have become one of the most
promising learning techniques for large sparse data with a huge number of instances
and features. We propose an adversarial query algorithm for searching minimal-cost
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disguised instances. We believe that revealing a scar on the multi-class classifier is the
only way to fix it in the future. The contributions of this paper are:

1. We generalize the problem of evasion attack to the multi-class linear classifier,
where the instance space is divided into multiple convex sets.

2. We prove that effective evasion attack based on the linear probing is feasible under
certain assumption of the adversarial cost. A description of the vulnerability of
multi-class linear classifiers is presented.

3. We propose a query algorithm for disguising an adversarial instance as any other
classes with minimal cost. The experiment on two real-world data set shows the
effectiveness of our algorithm.

2 Problem Setup

Let X = {(x1, . . . , xD) ∈ RD |L ≤ xd ≤ U for all d} be the feature space. Each
component of an instance x ∈ X is a feature bounded by L and U which we denote
as xd. A basis vector of the form (0, . . . , 0, 1, 0, . . . , 0) with a 1 only at the dth feature
terms δd. We assume that the feature space representation is known to the adversary,
thus the adversary can query any point in X .

2.1 Multi-class Linear Classifier

The target classifier f is a mapping from feature space X to its response space K;
i.e. f : X → K. We restrict our attention to multi-class linear classifiers and use
K = {1, . . . ,K},K ≥ 2 so that

f(x) = argmax
k

wkx
T + bk, (1)

where k = 1, . . . ,K and wk ∈ RD, bk ∈ R. Decision boundaries between class k and
other classes are characterized by wk and bk. We assume that w1, . . . ,wK are linearly
independent. The classifier f partitions X into K sets; i.e. Xk = {x ∈ X | f(x) = k}.

2.2 Attack of Adversary

As a motivating example, consider a text classifier that categorizes incoming emails
into different topics; e.g. sports, politics, lifestyle, spam, etc. An advertiser of pharma-
cological products is more likely to disguise the spam as lifestyle rather than politics in
order to attract potential consumers while remaining inconspicuous.

We assume the adversary’s attack will be against a fixed f so the learning method of
decision boundaries and the training data used to establish the classifier are irrelevant.
The adversary does not know any parameter of f but can observe f(x) for any x by
issuing a membership query. In fact, there are a variety of domain specific mechanisms
that an adversary can employ to observe the classifier’s response to a query. Moreover,
the adversary is only aware of an adversarial instance xA in some class, and has no
information about instances in other classes. This differs from previous work which
require at least one instance in each binary class [10,13]. In practice, xA can be seen as
the most desired instance of adversary; e.g. the original spam. The adversary attempts
to disguise xA so that it can be recognized as other classes.
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2.3 Adversarial Cost

We assume that the adversary has the access to an adversarial cost function a(x,y) :
X × X → R0+. An adversarial cost function measures the distance between two in-
stances x,y in X from the adversary’s prospective. We focus on a linear cost function
which measures the weighted �1 distance so that

a(x,y) =

D∑
d=1

ed|xd − yd|, (2)

where 0 < ed < ∞ represents the cost coefficient of the adversary associates with
the dth feature, allowing that some features may be more important than others. In
particular, given the adversarial instance xA, function a(x,xA) measures different costs
of using some instances as compared to others. Moreover, we use B(y, C) = {x ∈
X | a(x,y) ≤ C} to denote the cost ball centered at y with cost no more than C.

In generalizing work [10], we alter the definition of minimal adversarial cost (MAC).
Given a fixed classifier f and an adversarial cost function a we define the MAC of class
k with respect to an instance y to be the value

MAC(k,y) = min
x:x∈Xk

a(x,y), k �= f(y).

2.4 Disguised Instances

We now introduce some instances with special adversarial cost that the adversary is
interested in. First of all, instances with cost of MAC(k,y) are termed instances of
minimal adversarial cost (IMAC), which is formally defined as

IMAC(k,y) = {x ∈ Xk | a(x,y) = MAC(k,y), k �= f(y)} .

Ideally, the adversary attempts to find IMAC(k,xA) for all k �= f(xA). The most
naive way for an adversary to find the IMAC is performing a brute-force search. That
is, the adversary randomly samples points in X and updates the best found instance
repetitively. To formulate this idea, we further extend the definition of IMAC. Assume
X̃ is the set of adversary’s sampled or observed instances so far and X̃ ⊂ X , we define
instance of sample minimal adversarial cost (ISMAC) of class k with respect to an
instance y to be the value

ISMAC(k,y) = argmin
x:x∈X̃∩Xk

a(x,y), k �= f(y).

Note, that in practice the exact decision boundary is unknown to the adversary, thus
finding exact value of IMAC becomes an infeasible task. Nonetheless, it is still tractable
to approximate IMAC by finding ε-IMAC, which is defined as follows

ε-IMAC(k,y) = {x ∈ Xk | a(x,y) ≤ (1 + ε) ·MAC(k,y), k �= f(y), ε > 0} .

That is, every instance in ε-IMAC(k,y) has the adversarial cost no more than a fac-
tor of (1 + ε) of the MAC(k,y). The goal of the adversary now becomes finding
ε-IMAC(k,xA) for all classes k �= f(xA) while keeping ε as small as possible.
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3 Theory of Evasion Attack

We discuss the evasion attack from a theoretical point of view. Specifically, by describ-
ing the feature space as a set of convex polytopes, we show that IMAC must be attained
on the convex surface. Under a reasonable assumption of adversarial cost function, ef-
fective evasion attack can be performed by linear probing. Finally, we derive bounds
for quantitatively studying the vulnerability of multi-class linear classifiers to linear
probing.

Lemma 1. Let Xk = {x ∈ X | f(x) = k}, where the classifier f is defined in (1).
Then Xk is a closed convex polytope.

Proof. Let x be a point in Xk. As x ∈ X it follows that

xT ≥ L · 1D and − xT ≥ U · 1D, (3)

where 1D is a D-dimensional unit vector (1, . . . , 1). Moreover, since f(x) = k, it
follows that ⎛⎜⎝wk −w1

...
wk −wK

⎞⎟⎠xT ≥

⎛⎜⎝ b1 − bk
...

bK − bk

⎞⎟⎠ . (4)

Thus, the foregoing linear inequalities define an intersection of at most (K + 2D − 1)

half-spaces. Denote H+
i = {x ∈ X | w̃ix

T ≥ b̃i}, where 1 ≤ i ≤ (K + 2D −
1). We have Xk =

⋂
i H

+
i , which establishes a half-space representation of convex

polytope [8,14]. ��
Lemma 1 indicates that the classifier f decomposes RD into K convex polytopes.

Following the notations and formulations introduced in [8], we represent a hyperplane
Hi as the boundary of a half-space ∂H+

i ; i.e. Hi = ∂H+
i = {x ∈ X | w̃ix

T =

b̃i}. Let Xk =
⋂Pk

p=1 H
+
p , where {H+

1 , . . . , H+
Pk
} is irredundant1 to Xk. Let Hk =

{H+
1 , . . . , H+

Pk
} be an irredundant set that defines Xk, then Xk ⊂ intX provided that

none half-space in Hk is defined by (3). Moreover, we define the pth facet of Xk as
Fkp = Hp ∩ Xk, and the convex surface of Xk as ∂Xk =

⋃Pk

p=1 Fkp.

Theorem 1. Let y be an instance in X and k ∈ K \ f(y). Let x be an instance in
IMAC(k,y) as defined in Section 2.3. Then x must be attained on the convex surface
∂Xk.

Proof. We first show the existence of IMAC(k,y). By Lemma 1, Xk defines a feasible
region. Thus minimizing a(x,y) onXk is a solvable problem. Secondly,Xk is bounded
in each direction of the gradient of a(x,y), which implies that IMAC(k,y) exists.

We now prove that x must lie on ∂Xk by contrapositive. Assume that x is not on
∂Xk thus is an interior point; i.e. x ∈ intXk. Let B(y, C) denote the ball centered at
y with cost no more than a(x,y). Due to the convexity of Xk and B(y, C), we have
intXk ∩ intB(y, C) �= ∅. Therefore, there exists at least one instance in Xk with cost
less than a(x,y), which implies that x is not IMAC(k,y). ��

1 Let C be a convex polytope such that C =
⋂n

i=1 H
+
i . The family {H+

1 , . . . ,H+
n } is called

irredundant to C provided that
⋂

1≤j≤n,j �=i H
+
j �= C for each j = 1, . . . , n.
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Theorem 1 restricts the searching of IMAC to the convex surface. In particular, when
cost coefficients are equal, e.g. e1 = · · · = eD, we can show that searching in all
axis-aligned directions gives at least one IMAC.

Theorem 2. Let y be an instance inX such thatXf(y) ⊂ intX . Let P be the number of
facets ofXf(y) and Fp be the pth facet, where p = {1, . . . , P}. Let Gd = {y+θδd | θ ∈
R}, where d ∈ {1, . . . , D}. LetQ = {Gd∩Fp | d = 1, . . . , D, p = 1, . . . , P}, in which
each element differs from y on only one dimension. If the adversarial cost function
defined in (2) has equal cost coefficients, then there exists at least one x ∈ Q such that
x is IMAC(f(x),y).

Proof. Let Hp be the hyperplane defining the pth facet Fp. Consider all the points
of intersection of the lines Gd with the hyperplanes Hp; i.e. I = {Gd ∩ Hp | d =
1, . . . , D, p = 1, . . . , P}. Let x = argminx∈I a(x,y). Then x is our desired instance.

We prove that x ∈ Q by contrapositive. Suppose x /∈ Q , due to the convexity of
Xf(y), the line segment [x,y] intersects ∂Xf(y) at a point on another facet. Denote this
point as z, then z differs from y on only one dimension and a(z,y) < a(x,y).

Next, we prove x is IMAC(f(x),y) by contrapositive. Let B(y, C) denote the reg-
ular cost ball centered at y with cost no more than a(x,y). That is, each vertex of the
cost ball has the same distance of C with y. Suppose x is not IMAC(f(x),y), then
there exists z ∈ Xf(x) ∩ intB(y, C). By Theorem 1, z and x must lie on the same
facet, which is defined by a hyperplane H∗. Let Q∗ be intersection points of H∗ with
lines G1, . . . , GD; i.e. Q∗ = {Gd ∩H∗ | d = 1, . . . , D}. Then there exists at least one
point v ∈ Q∗ such that v ∈ intB(y, C). Due to the regularity of B(y, C), we have
a(v,y) < a(x,y). ��

We now define special convex sets for approximating ε-IMAC near the convex sur-
face. Given ε > 0, the interior parallel body ofXk isP−ε(k)={x ∈ Xk | B(x, ε) ⊆ Xk}
and the corresponding exterior parallel body is defined as P+ε(k) =

⋃
x∈Xk

B(x, ε).
Moreover, the interior margin of Xk isM−ε(k) = Xk \ P−ε(k) and the corresponding
exterior margin is M+ε(k) = P+ε(k) \ Xk . By relaxing the searching scope from the
convex surface to a margin in the distance ε, Theorem 1 and Theorem 2 immediately
imply the following results.

Corollary 1. Let y be an instance in X and k ∈ K \ f(y). For all ε > 0 such that
M−ε(k) �= ∅, ε-IMAC(k,y) ⊆M−ε(k).

Corollary 2. Let y be an instance in X and ε be a positive number such that
P+ε(f(y)) ⊂ intX . Let P be the number of facets of P+ε(f(y)) and Fp be the pth

facet, where p = {1, . . . , P}. Let Gd = {y + θδd | θ ∈ R}, where d ∈ {1, . . . , D}.
Let Q = {Gd ∩ Fp | d = 1, . . . , D, p = 1, . . . , P}, in which each element differs from
y on only one dimension. If adversarial cost function defined in (2) has equal cost
coefficients, then there exists at least one x ∈ Q such that x is in ε-IMAC(f(x),y).

Corollary 1 and Corollary 2 point out an efficient way of approximating ε-IMAC with
linear probing, which forms the backbone of our proposed algorithm in Section 4.

Finally, we consider the vulnerability of a multi-class linear classifier to linear prob-
ing. The problem arises of detecting convex polytopes in X with a random line. As one
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can easily scale any hypercube to a unit hypercube with edge length 1, our proof is
restricted to the unit hypercube in RD.

Definition 1 (Vulnerability to Linear Probing). Let X = [0, 1]D, andX1, . . . ,XK be
the sets that tile X according to the classifier f : X → {1, . . . ,K}, with K ≥ 2. Let G
be a random line in RD that intersects X . Denote Z the number of sets intersect G, the
vulnerability of classifier f to linear probing is measured by the expectation of Z .

When EZ is small, a random line intersects small number of decision regions and not
much information is leaked to the adversary. Thus, a robust multi-class classifier that
resists linear probing should have a small value of EZ .

Theorem 3. Let f be the multi-class linear classifier defined in (1), then the expectation

of Z is bounded by 1 < EZ < 1 +
√
2(K−1)
2D .

Proof. By Lemma 1, we have K convex polytopes X1, . . . ,XK . Let F be the union of
all facets of polytopes. Observe that each time the line touches a convex polytope, it
only touches its surface twice. The exit point is the entrance point for a new polytope,
except at the end-point. Thus, the variable that we are interested in can be represented as

Z = |F ∩G|,

where | · | represents the cardinality of a set. Obviously, EZ is bounded by 1 < EZ <
K . We will give a tighter bound in the sequel.

Let G be the class of all lines of RD, and μ be the measure of G. Following the
notation introduced in [15], we denote the measure of G that meet a fixed bounded
convex set C as μ(G;G ∩ C �= ∅). Considering an independent Poisson point process on
G intensity measure μ, let N be the number of lines intersecting X . We emphasize that
N is a finite number, so that one can label them independently G1, . . . , GN . It follows
that Gn, n = 1, . . . , N are i.i.d.. Given a fixed classifier f , we have

E

N∑
n=1

|F ∩Gn| = E

N∑
n=1

[
P (N = n)

n∑
i=1

|F ∩Gi|
]

=
N∑

n=1

[P (N = n) · n · E|F ∩G1|]

= EN · (EZ). (5)

Remark that G1, . . . , GN follow the Possion point process, we have EN = μ(G;G ∩
X �= ∅). Therefore we can rewrite (5) as,

EZ =
E
∑N

n=1 |F ∩Gn|
μ(G;G ∩ X �= ∅) . (6)
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Next, we compute E
∑N

n=1 |F ∩ Gn|. Let M = |F|. Due to the convexity of Xk, any
given line can hit a facet no more than once. Therefore, we have

E

N∑
n=1

|F ∩Gn| = E

N∑
n=1

M∑
m=1

|Fm ∩Gn|

=

M∑
m=1

E

∣∣∣{n ∈ {1, . . . , N}|Fm ∩Gn �= ∅
}∣∣∣

=
M∑

m=1

μ(G;G ∩ Fm �= ∅). (7)

By substituting (7) into (6) we obtain

EZ =

∑M
m=1 μ(G;G ∩ Fm �= ∅)
μ(G;G ∩ X �= ∅) . (8)

Assume that μ is translation invariant, by Cauchy-Crofton formula we can rewrite (8)
as

EZ =

∑M
m=1 A(Fm)

A(X )
, (9)

where A(·) denotes the surface area2. Note, that the numerator of (9) depends on the
shape of each polytope and relates to the training method of classifier. Thus, it is difficult
to compute the exact value of EZ . Nonetheless, we can bound the expectation by using
the fact A(X ) <

∑M
m=1 A(Fm) < A(X ) +

√
2(K − 1) (see [1] for the upper bound).

Remark that the surface area A(X ) of a unit hypercube is 2D. We yield

1 < EZ < 1 +

√
2(K − 1)

2D
,

which concludes our proof. ��

We remark that Theorem 3 implies a way to construct a robust classifier that resists
evasion algorithm based on linear probing, e.g. by jointly minimizing (9) and the error
function in the training procedure.

4 Algorithm for Approximating ε-IMAC

Based on theoretical results, we present an algorithm for deceiving the multi-class linear
classifier by disguising the adversarial instance xA as other classes with approximately
minimal cost, while issuing polynomially many queries in: the number of features, the
range of feature, the number of classes and the number of iterations.

An outline of our searching approach is presented in Algorithms 1 to 3. We use a
K × D matrix Ψ for storing ISMAC of K classes and an array C of length K for

2 The surface area in R
D is the (D − 1)-dimensional Lebesgue measure.
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the corresponding adversarial cost of these instances. The scalar value W represents
the maximal cost of all optimum instances. Additionally, we need a K × I matrix T
for storing the searching path of optimum instances in each iteration. The kth row of
matrix Ψ is denoted as Ψ[k, :]. We consider Ψ, T, C,W as global variables so they are
accessible in every scope. After initializing variables, our main routine MLCEvading
(Algorithm 1 line 4) first invokes MDSearch (Algorithm 2) to search instances that is
close to the starting point xA in all classes and saves them to Ψ. Then it repetitively
selects instances from Ψ as new starting points and searches instances with lower ad-
versarial cost (Algorithm 3 line 6–7). The whole procedure iterates I times. Finally, we
obtain Ψ[k, :] as the approximation of ε-IMAC(k,xA) .

We begin by describing RBSearch in Algorithm 3, a subroutine for searching in-
stances near decision boundaries along dimension d. Essentially, given an instance x,
an upper bound u and a lower bound l, we perform a recursive binary search on the line
segment {x+ θδd | l ≤ θ ≤ u} through x. The effectiveness of this recursive algorithm
relies on the fact that it is impossible to have xu and xl in the same class while xm is in
another class. In particular, if the line segment meets an exterior margin M+ε(k) and
ε-IMAC(k,x) is the intersection, then RBSearch finds an ε-IMAC. Otherwise, when
the found instance y yields lower adversarial cost than instance in Ψ does, Algorithm 4
is invoked to update Ψ. The time complexity of RBSearch is O(u−l

ε ).
We next describe Algorithm 2. Given x which is known as ISMAC(k,xA) and the

current maximum cost W , the algorithm iterates (D − 1) times on P+ε(Xf(x)) for
finding instances with cost lower than W . Additionally, we introduce two heuristics to
prune unnecessary queries. First, the searched dimension in the previous iteration of x is
omitted. Second, we restrict the upper and lower bound of the searching scope on each
dimension. Specifically, knowing W and a(x,xA) = c, we only allow RBSearch to
find instance in [xd − W−c

ed
, xd +

W−c
ed

] since any instance lying out of this scope gives
adversarial cost higher than W . This pruning is significant when we have obtained
ISMAC for every class. Special attention must be paid to searched dimensions of x
(see Algorithm 2 line 5–7). Namely, if d is a searched dimension before the (i − 1)th

iteration, then we relax the searching scope to [xA
d − W−c

ed
, xA

d + W−c
ed

] so that no low-
cost instances will be missed.

Algorithm 1. Query algorithm for evasion of multi-class linear classifiers

(Ψ, C) ←MLCEvading(xA, e, D, L, U,K, I, ε):

for k ← 1 to K do1

Ψ[k, :] ← 0, T [k, :] ← 0, C[k] ← +∞2

C[1] ← 03

MDSearch(xA,xA, e, 1, 0, D, L, U, 1, ε)4

for i ← 2 to I do5

for k ← 2 to K do6

MDSearch(Ψ[k, :],xA, e, k, C[k], D, L, U, i, ε)7
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Algorithm 2. Multi-dimensional search from ISMAC(k,xA)

MDSearch(x,xA, e, k, c, D,L, U, i, ε):

for d ← 1 to D do1

if d �= T [k, i− 1] then2

δ ← W−c
ed

3

u = min{U, xd + δ}, l = max{L, xd − δ}4

if d ∈ {T [k, 1], . . . , T [k, i− 2]} then5

if xd > xA
d then l = max{L, xA

d − δ}6

else u = min{U, xA
d + δ}7

xu ← x, xl ← x8

xu
d ← u, xl

d ← l9

if f(xu) �= k then RBSearch(xd, u,x, d, i, ε)10

if f(xl) �= k then RBSearch(l, xd,x, d, i, ε)11

Algorithm 3. Recursive binary search on dimension d

RBSearch(l, u,x, d, i, ε):

x∗ ← x1

if u− l < ε then2

x∗
d ← u3

k ← f(x∗), c ← a(x∗)4

if c < C[k] then Update(x∗, k, c, d, i)5

xu ← x, xl ← x, xm ← x6

xu
d ← u, xl

d ← l, xm
d ← u+l

2
7

if f(xm) = f(xl) then8

RBSearch(m,u,x, d, i, ε)9

else if f(xm) = f(xu) then10

RBSearch(l,m,x, d, i, ε)11

else12

RBSearch(l,m,x, d, i, ε)13

RBSearch(m,u,x, d, i, ε)14

Algorithm 4. Update ISMAC(k,xA)

(Ψ, C, T,W ) ←Update(x∗, k, c, d, i):

Ψ[k, :] ← x∗1

C[k] ← c2

T [k, i] ← d3

W ← max{C[1], . . . , C[K]}4



216 H. Xiao, T. Stibor, and C. Eckert

Theorem 4. The asymptotic time complexity of our algorithm is O(U−L
ε DKI).

Proof. Follows from the correctness of the algorithm and the fact that the time com-
plexity of RBSearch is O(u−l

ε ). ��

5 Experiments

We demonstrate the algorithm3 on two real-world data sets, the 20-newsgroups4 and
the 10-Japanese female face5. On the newsgroups data set, the task of the adversary is
to evade a text classifier by disguising a commercial spam as a message in other top-
ics. On the face data set, the task of adversary is to deceive the classifier by disguising
a suspect’s face as an innocent. We employ LIBLINEAR [6] package to build target
multi-class linear classifiers, which return labels of queried instances. The cost coeffi-
cients are set to e1 = · · · = eD = 1 for both tasks. For the groundtruth solution, we
directly solve the optimization problem with linear constraints (3) and (4) by using the
models’ parameters. We then measure the average empirical ε for (K−1) classes, which

is defined as ε̂ = 1
K−1

∑
k �=f(xA)

[
C[k]

MAC(k,xA)
− 1

]
, where C[k] is the adversarial cost

of disguised instance of class k. Evidently, small ε̂ indicates better approximation of
IMAC.

5.1 Spam Disguising

The training data used to configure the newsletter classifier consists of 7, 505 docu-
ments, which are partitioned evenly across 20 different newsgroups. Each document
is represented as a 61, 188-dimensional vector, where each component is the number
of occurrences of a word. The accuracy of the classifier on training data is 100% for
every class. We set the category “misc.forsale” as the adversarial class. That is, given
a random document in “misc.forsale”, the adversary attempts to disguise this docu-
ment as from other category; e.g. “rec.sport.baseball”. Parameters of the algorithm are
K = 20, L = 0, U = 100, I = 10, ε = 1. The adversary is restricted to query at most
10, 000 times. The adversarial cost of each class is depicted in Fig. 1 (left).

5.2 Face Camouflage

The training data contains 210 gray-scaled images of 7 facial expressions (each with
3 images) posed by 10 Japanese female subjects. Each image is represented by a 100-
dimensional vector using principal components. The accuracy of the classifier on train-
ing data is 100% for every class. We randomly pick a subject as an imaginary suspect.
Given a face image of the suspect, the adversary camouflage this face to make it be
classified as other subjects. Parameters of the algorithm are K = 10, L = −105, U =

3 A Matlab implementation is available at
http://home.in.tum.de/˜xiaoh/pakdd2012-code.zip

4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 http://www.kasrl.org/jaffe.html

http://home.in.tum.de/~xiaoh/pakdd2012-code.zip
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.kasrl.org/jaffe.html
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Fig. 1. Box plots for adversarial cost of disguised instance of each class. (Left) On the 20-
newsgroups data set, we consider “misc.forsale” as the adversarial class. Note, that feature values
of the instance are non-negative integers as they represent the number of words in the document.
Therefore, the adversarial cost can be interpreted as the number of modified words in the dis-
guised document comparing to the original document from “misc.forsale”. The value of ε̂ for 19
classes is 0.79. (Right) On the 10-Japanese female faces data set, we randomly select a subject as
the suspect. The box plot shows that the adversarial cost of camouflage suspicious faces as other
subjects. The value of ε̂ for 9 classes is 0.51. A more illustrative result is depicted in Fig. 2.
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Fig. 2. Disguised faces given by our algorithm to defeat a multi-class face recognition system.
The original faces (with neutral expression) of 10 females are depicted in the first row, where the
left most one is the imaginary suspect and the remaining 9 people are innocents. From the second
row to sixth row, faces of the suspect with different facial expressions are fed to the algorithm
(see the first column). The output disguised faces from the algorithm are visualized in the right
hand image matrix. Each row corresponds to disguised faces of the input suspicious face on the
left. Each column corresponds to an innocent.
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105, I = 10, ε = 1. The adversary is restricted to query at most 10, 000 times. The
adversarial cost of each class is depicted in Fig. 1 (right). Moreover, we visualize dis-
guised faces in Fig. 2. Observe that many disguised faces are similar to the suspect’s
face by humans interpretation, yet they are deceptive for the classifier. This visualization
directly demonstrates the effectiveness of our algorithm.

It has not escaped our notice that an experienced adversary with certain domain
knowledge can reduce the number of queries by careful selecting cost function and
employing heuristics. Nonetheless, the goal of this paper is not to design real attacks
but rather examine the correctness and effectiveness of our algorithm so as to understand
vulnerabilities of classifiers.

6 Conclusions

Adversary and classifier are Yin and Yang of information security. We believe that un-
derstanding the vulnerability of classifiers is the only way to develop resistant classifiers
in the future. In this paper, we showed that multi-class linear classifiers are vulnerable
to the evasion attack and presented an algorithm for disguising the adversarial instance.
Future work includes generalizing the evasion attack problem to the family of general
multi-class classifier with nonlinear decision boundaries.
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3. Bratko, A., Filipič, B., Cormack, G., Lynam, T., Zupan, B.: Spam filtering using statistical

data compression models. JMLR 7, 2673–2698 (2006)
4. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass prob-

lems. Machine Learning 47(2), 201–233 (2002)
5. Dalvi, N., Domingos, P., et al.: Adversarial classification. In: Proc. 10th SIGKDD, pp. 99–

108. ACM (2004)
6. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large

linear classification. JMLR 9, 1871–1874 (2008)
7. Fumera, G., Pillai, I., Roli, F.: Spam filtering based on the analysis of text information em-

bedded into images. JMLR 7, 2699–2720 (2006)
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Abstract. Mining class-imbalanced data is a common yet challenging problem
in data mining and machine learning. When the class is imbalanced, the error
rate of the rare class is usually much higher than that of the majority class. How
many samples do we need in order to bound the error of the rare class (and the
majority class)? If the misclassification cost of the class is known, can the cost-
weighted error be bounded as well? In this paper, we attempt to answer those
questions with PAC-learning. We derive several upper bounds on the sample size
that guarantee the error on a particular class (the rare and majority class) and
the cost-weighted error, with the consistent and agnostic learners. Similar to the
upper bounds in traditional PAC learning, our upper bounds are quite loose. In
order to make them more practical, we empirically study the pattern observed in
our upper bounds. From the empirical results we obtain some interesting implica-
tions for data mining in real-world applications. As far as we know, this is the first
work providing theoretical bounds and the corresponding practical implications
for mining class-imbalanced data with unequal cost.

1 Introduction

In data mining, datasets are often imbalanced (or class imbalanced); that is, the number
of examples of one class (the rare class) is much smaller than the number of the other
class (the majority class).1

This problem happens often in real-world applications of data mining. For example,
in medical diagnosis of a certain type of cancer, usually only a small number of people
being diagnosed actually have the cancer; the rest do not. If the cancer is regarded as
the positive class, and non-cancer (healthy) as negative, then the positive examples may
only occur 5% in the whole dataset collected. Besides, the number of fraudulent actions
is much smaller than that of normal transactions in credit card usage data. When a clas-
sifier is trained on such an imbalanced dataset, it often shows a strong bias toward the
majority class, since the goal of many standard learning algorithms is to minimize the
overall prediction error rate. Thus, by simply predicting every example as the majority
class, the classifier can still achieve a very low error rate on a class-imbalanced dataset
with, for example, 2% rare class.

When mining the class-imbalanced data, do we always get poor performance (e.g.,
100% error) on the rare class? Can the error of the rare class (as well as the majority
class) be bounded? If so, is the bound sensitive to the class imbalance ratio? Although

1 In this paper, we only study binary classification.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 219–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the issue of class imbalance has been received extensive studies [9,3,2,7,4,5], as far as
we know, no previous works have been done to answer those questions.

In fact, PAC learning (Probably Approximately Correct Learning) [8,6] is an appro-
priate model to study the bounds for classification performance. The traditional PAC
learning model studies the learnability of the general concept for certain kinds of learn-
ers (such as consistent learner and agnostic learner), and answers the question that how
many examples would be sufficient to guarantee a low total error rate. However, pre-
vious works [9] point out that accuracy or total error rate are inappropriate to evaluate
the classification performance when class is imbalanced, since such metrics overly em-
phasize the majority class and neglect the rare class which is usually more important in
real-world applications. Thus, when class is imbalanced, better measures are desired.
In our paper, we will use error rate on the rare (and majority) class and cost-weighted
error2 to evaluate the classification performance on class-imbalanced data. The error
rate on the rare (and majority) class can reflect how well the rare (and majority) class
is learned. If the misclassification cost of the class is known, we can adopt another
common measure (cost-weighted error) to deal with imbalanced data. By weighting the
error rate on each class by its associated cost, we will get higher penalty for the error
on the rare class (usually the more important class).

In our paper, we attempt to use the PAC-learning model to study, when class is im-
balanced, how many sampled examples needed to guarantee a low error on a particu-
lar class (the rare class or majority class) and a low cost-weighted error respectively.
A bound on cost-weighted error is necessary since it would naturally “suppress” er-
rors on the rare class. We theoretically derive several upper bounds for both consistent
learner and agnostic learner. Similar to the upper bounds in traditional PAC learning,
the bounds we derive are generally quite loose, but they do provide a theoretical guar-
antee on the classification performance when class-imbalanced data is learned. Due to
the loose bounds, to make our work more practical, we also empirically study how
class imbalance affects the performance by using a specific learner. From our experi-
mental results, some interesting implications can be found. The results in this paper can
provide some theoretical foundations for mining the class-imbalanced data in the real
world.

The rest of the paper is organized as follows. We theoretically derive several up-
per bounds on the sample complexity for both consistent learner and agnostic learner.
Then we empirically explore how class imbalance affects the classification performance
by using a specific learner. Finally, we draw the conclusions and address our future
work.

2 Upper Bounds

In this section, we take advantage of PAC-learning theory to study the sample complex-
ity when learning from the class-imbalanced data. Instead of bounding the total error
rate, we focus on the error rate on a particular class (rare class or majority class) and
the cost-weighted error.

2 We will define it in the next section.
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2.1 Error Rate on a Particular Class

First of all, we introduce some notations for readers’ convenience. We assume that the
examples in training set T are drawn randomly and independently from a fixed but un-
known class-imbalanced distribution D. We denote p (0 < p < 0.5) as the proportion of
the rare class (the positive class) in D. For the class-imbalanced training set, p can be
very small (such as 0.001). The number of total training examples is denoted as m and
the number of positive and negative training examples are denoted as m+ and m− re-
spectively. For any hypothesis h from the hypothesis space H, we denote eD(h), eD+(h),
and eD−(h) as the total, the positive, and the negative generalization error, respectively,
of h, and we also denote eT (h), eT+(h), and eT−(h) as the total, the positive, and the
negative training error, respectively, of h.

Given ε (0 < ε < 1) and δ (0 < δ < 1), the traditional PAC learning provides up-
per bounds on the total number of training examples needed to guarantee eD(h) < ε
with probability at least 1− δ . However, it guarantees nothing about the positive er-
ror eD+(h) for the imbalanced datasets. As we discussed before, the majority classifier
would predict every example as negative, resulting in a 100% error rate on the positive
(rare) examples. To have a lower positive error, the learner should observe more posi-
tive examples. Thus, in this subsection, we study the upper bounds of the examples on
a particular class (say positive class here) needed to guarantee, with probability at least
1− δ , eD+(h)< ε+, given any ε+ (0 < ε+ < 1).

We first present a simple relation between the total error and the positive error as
well as the negative error, and will use it to derive some upper bounds.

Theorem 1. Given any ε+ (0 < ε+ < 1) and the positive class proportion p (0 < p <
0.5) according to distribution D and target function C, for any hypothesis h, if eD(h)<
ε+× p, then eD+(h)< ε+.

Proof. To prove this, we simply observe that,

eD(h) = eD+(h)× p+ eD−(h)× (1− p)≥ eD+(h)× p.

Thus,

eD+(h)≤
eD(h)

p
.

Therefore, if eD(h)< ε+× p, eD+(h)< ε+.

Following the same direction, we can also derive a similar result for the error on
negative class eD−(h). That is, given ε− (0 < ε− < 1), if eD(h) < ε− × (1− p), then
eD−(h)< ε−.

Theorem 1 simply tells us, as long as the total error is small enough, a desired positive
error (as well as negative error) can always be guaranteed. Based on Theorem 1, we can
”reuse” the upper bounds in the traditional PAC learning model and adapt them to be
the upper bounds of a particular class in the class-imbalanced datasets. We first consider
consistent learner in the next subsection.
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Consistent Learner. We consider consistent learner L using hypothesis space H by
assuming that the target concept c is representable by H (c ∈ H). Consistent learner
always makes correct prediction on the training examples. Let us assume that UB(ε,δ )
is an upper bound on the sample size in the traditional PAC-learning, which means that,
given ε (0 < ε < 1) and δ (0 < δ < 1), if the total number of training examples m ≥
UB(ε,δ ), a consistent learner will produce a hypothesis h such that with the probability
at least (1− δ ), eD(h) ≤ ε . The following theorem shows that we can adapt any upper
bound in the traditional PAC-learning to the bounds that guarantee a low error on the
positive class and negative class respectively.

For any upper bound of a consistent PAC learner UB(ε,δ ), we can always replace
ε in UB(ε,δ ) with ε+× p or ε− × (1− p), and consequently obtain a upper bound to
guarantee the error rate on that particular class.

Theorem 2. Given 0 < ε+ < 1, if the number of positive examples

m+ ≥UB(ε+× p,δ )× p,

then with probability at least 1− δ , the consistent learner will output a hypothesis h
having eD+(h)≤ ε+.

Proof. By the definition of the upper bound for the sample complexity, given 0 < ε < 1,
0 < δ < 1, if m ≥UB(ε,δ ), with probability at least 1− δ any consistent learner will
output a hypothesis h having eD(h)≤ ε .

Here, we simply substitute ε in UB(ε,δ ) with ε+ × p, which is still within (0, 1).
Consequently, we obtain that if m ≥ UB(ε+ × p,δ ), with probability at least 1− δ
any consistent learner will output a hypothesis h having eD(h)≤ ε+× p. According to
Theorem 1, we get eD+(h)< ε+.

Also, m = m+
p , thus we know, m ≥UB(ε+× p,δ ) equals to

m+ ≥UB(ε+× p,δ )× p.

Thus, the theorem is proved.

By using the similar proof to Theorem 2, we can also derive the upper bound for the
negative class. Given 0 < ε− < 1, if the number of negative examples m− ≥UB(ε−×
(1− p),δ )× (1− p), then, with probability at least 1− δ , the consistent learner will
output a hypothesis h having eD−(h)≤ ε−.

The two upper bounds above can be adapted to any traditional upper bound of con-
sistent learners. For instance, it is well known that any consistent learner using finite
hypothesis space H has an upper bound 1

ε × (ln|H|+ ln 1
δ ) [6]. Thus, by applying our

new upper bounds, we obtain the following corollary.

Corollary 1. For any consistent learner using finite hypothesis space H, the upper
bound on the number of positive sample for eD+(h)≤ ε+ is

m+ ≥ 1
ε+

(ln|H|+ ln
1
δ
),
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and the upper bound on the number of negative sample for eD−(h)≤ ε− is

m− ≥ 1
ε−

(ln|H|+ ln
1
δ
).

From Corollary 1, we can discover that when the consistent learner uses finite hy-
pothesis space, the upper bound of sample size on a particular class is directly related
to the desired error rate (ε+ or ε−) on the class, and the class imbalance ratio p does
not affect the upper bound. This indicates that, for consistent learner, no matter how
class-imbalanced the data is (how small p is), as soon as we sample sufficient examples
in a class, we can always achieve the desired error rate on that class.

Agnostic Learner. In this subsection, we consider agnostic learner L using finite hy-
pothesis space H, which makes no assumption about whether or not the target concept
c is representable by H. Agnostic learner simply finds the hypothesis with the mini-
mum (probably non-zero) training error. Given an arbitrary small ε+, we can not ensure
eD+(h)≤ ε+, since very likely eT+(h)> ε+. Hence, we guarantee eD+(h)≤ eT+(h)+ ε
to happen with probability higher than 1− δ , for such h with the minimum training
error. To prove the upper bound for agnostic learner, we adapt the original proof for
agnostic learner in [6]. The original proof regards drawing m examples from the distri-
bution D as m independent Bernoulli trials, but in our proof, we only treat drawing m+

examples from the positive class as m+ Bernoulli trials.

Theorem 3. Given ε+ (0 < ε+ < 1), any δ (0 < δ < 1), if the number of positive ex-
amples observed

m+ >
1

2ε2
+

(ln|H|+ ln
1
δ
),

then with probability at least 1−δ , the agnostic learner will output a hypothesis h, such
that eD+(h)≤ eT+(h)+ ε+

Proof. For any h, we consider eD+(h) as the true probability that h will misclassify a
randomly drawn positive example. eT+(h) is an observed frequency of misclassification
over the given m+ positive training examples. Since the entire training examples are
drawn identically and independently, drawing and predicting positive training exam-
ples are also identical and independent. Thus, we can treat drawing and predicting m+

positive training examples as m+ independent Bernoulli trials.
Therefore, according to Hoeffding bounds, we can have,

Pr[eD+(h)> eT+(h)+ ε]≤ e−2m+ε2
.

According to the inequation above, we can derive,

Pr[(∃h ∈ H)(eD+(h)> eT+(h)+ ε)]≤ |H|e−2m+ε2
.

This formula tells us that the probability that there exists one bad hypothesis h making
eD+(h) > eT+(h)+ ε is bounded by |H|e−2m+ε2

. If we let |H|e−2m+ε2
be less than δ ,
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then for any hypothesis including the outputted hypothesis h in H, eD+(h)−eT+(h)≤ ε
will hold true with the probability at least 1− δ . So, solving for m+ in the inequation
|H|e−2m+ε2

< δ , we obtain

m+ >
1

2ε2
+

(ln|H|+ ln
1
δ
).

Thus, the theorem is proved.

In fact, by using the similar procedure, we can also prove the upper bound for the
number of negative examples m− when using agnostic learner: 1

2ε2
−
(ln|H|+ ln 1

δ ).

We can observe a similar pattern here. The upper bounds for the agnostic learner are
also not affected by the class imbalance ratio p.

From the upper bound of either consistent learner or agnostic learner we derived,
we learned that when the amount of examples on a class is enough, class imbalance
does not take any effect. This discovery actually refutes a common misconception that
we need more examples just because of the more imbalanced class ratio. We can see,
the class imbalance is in fact a data insufficiency problem, which was also observed
empirically in [4]. Here, we further confirm it with our theoretical analysis.

In this subsection, we derive a new relation (Theorem 1) between the positive error
and the total error, and use it to derive a general upper bound (Theorem 2) which can
be applied to any traditional PAC upper bound for consistent learner. We also extend
the existing proof of agnostic learner to derive a upper bound on a particular class for
agnostic learner. Although the proof of the theorems above may seem straightforward,
no previous work explicitly states the same conclusion from the theoretical perspective.

It should be noted that although the agnostic learner outputs the hypothesis with the
minimum (total) training error, it is possible that the outputted hypothesis has 100%
error rate on the positive class in the training set. In this case, the guaranteed small dif-
ference ε+ between the true positive error and the training positive error can still result
in 100% true error rate on the positive class. If the positive errors are more costly than
the negative errors, it is more reasonable to assign higher cost for misclassifying positive
examples, and let the agnostic learner minimize the cost-weighted training error instead
of the flat training error. In the following part, we will introduce misclassification cost
to our error bounds.

2.2 Cost-Weighted Error

In this subsection, we take misclassification cost into consideration. We assume that
the misclassification cost of the class is known, and the cost of a positive error (rare
class) is higher than (at least equals) the cost of a negative error. We use CFN and
CFP to represent the cost of misclassifying a positive example and a negative example,
respectively.3 And we denote r as the cost ratio, CFN

CFP
(r ≥ 1). Here we define a new type

of error, named cost-weighted error.

3 We assume the cost of correctly predicting a positive example and a negative example is 0,
meaning that CT P = 0 and CT N = 0.
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Definition 1 (Cost-Weighted Error). Given the cost ratio r, the class ratio p, eD+ as
the positive error on D, eD− as the negative error on D, the cost-weighted error on D
can be defined as,

cD(h) =
rpeD+ +(1− p)eD−

rp+(1− p)
.

By the same definition, we can also define the cost-weighted error on the training set T

as cT (h) =
rpeT++(1−p)eT−

rp+(1−p) . The weight of the error on a class is determined by its class
ratio and misclassification cost. The rp is the weight for the positive class and 1− p is
the weight for the negative class. In our definition for the cost-weighted error, we use
the normalized weight.

In the following part, we study the upper bounds for the examples needed to guaran-
tee a low cost-weighted error on D. We give a non-trivial proof for the upper bounds of
consistent learner, and the proof for the upper bound of agnostic learner is omitted due
to its similarity to that of the consistent learner (but only with finite hypothesis space).

Consistent Learner. To derive a relatively tight upper bound of sample size for cost-
weighted error, we first introduce a property. That is, there exist many combinations of
positive error eD+ and negative error eD− that can make the same cost-weighted error
value. For example, given rp = 0.4, if eD+ = 0.1 and eD− = 0.2, cD will be 0.16, while
eD+ = 0.25 and eD− = 0.1 can also produce the same cost-weighted error. We can let the
upper bound to be the least required sample size among all the combinations of positive
error and negative error that can make the desired cost-weighted error.

Theorem 4. Given ε (0 < ε < 1), any δ (0 < δ < 1), the cost ratio r (r ≥ 1) and the
positive proportion p (0 < p < 0.5) according to the distribution D, if the total number
of examples observed

m ≥ 1+ r
ε(rp+(1− p))

(ln|H|+ ln
1
δ
),

then, with probability at least 1− δ , the consistent learner will output a hypothesis h
such that the cost-weighted error cD(h)≤ ε .

Proof. In order to make cD(h)≤ ε , we should ensure,

rpeD+ +(1− p)eD−

rp+(1− p)
≤ ε. (1)

Here, we let X = rp
rp+(1−p) , thus 1−X = (1−p)

rp+(1−p) . Accordingly, Formula (1) can be

transformed into XeD+ +(1−X)eD− ≤ ε . To guarantee it, we should make sure,

eD− ≤
ε −XeD+

1−X
.

According to Corollary 1, if we observe,

m− ≥ 1
ε−XeD+

1−X

(ln|H|+ ln
1
δ
), (2)
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we can also ensure eD−(h)≤
ε−XeD+

1−X with probability at least 1−δ to happen. Besides,
in order to have eD+ on positive class, we also need to observe,

m+ ≥ 1
eD+

(ln|H|+ ln
1
δ
). (3)

To guarantee Formula (2) and (3), we need to sample at least m examples such that
m = MAX(m+

p , m−
1−p). Thus,

m ≥ MAX(
1

eD+ × p
,

1
ε−XeD+

1−X × (1− p)
)(ln|H|+ ln

1
δ
)).

However, since eD+ is a variable, different eD+ will lead to different eD− , and thus
affect m. In order to have a tight upper bound for m, we only need,

m ≥ MIN
0≤eD+≤ ε

X

(MAX(
1

eD+ × p
,

1
ε−XeD+

1−X × (1− p)
)(ln|H|+ ln

1
δ
)).

When 1
eD+×p > 1

ε−XeD+
1−X ×(1−p)

, MAX( 1
eD+×p ,

1
ε−XeD+

1−X ×(1−p)
) = 1

eD+×p , which is a de-

creasing function of eD+ , but when 1
eD+

×p < 1
ε−XeD+

1−X ×(1−p)
, it becomes an increas-

ing function of eD+ . Thus, the minimum value of the function can be achieved when
1

eD+
×p = 1

ε−XeD+
1−X ×(1−p)

. By solving the equation, we obtain the minimum value for the

function,
1

ε(1−p)
p+X−2X p × p

(ln|H|+ ln
1
δ
).

If we recover X with rp
rp+(1−p) , then it can be transformed into 1+r

ε(rp+(1−p))(ln|H|+ ln 1
δ ).

Therefore, as long as,

m ≥ 1+ r
ε(rp+(1− p))

(ln|H|+ ln
1
δ
),

then with probability at least 1− δ , the consistent learner will output a hypothesis h
such that cD(h)≤ ε .

We can see that the upper bound of cost-weighted error for consistent learner is related
to p and r. By performing a simple transformation, we can transform the above upper
bound into r+1

ε((r−1)p+1)(ln|H|+ ln 1
δ ). It is known that r ≥ 1, thus r−1≥ 0. Therefore, as

p decreases within (0, 0.5), the upper bound increases. It means that the more the class is
imbalanced, the more examples we need to achieve a desired cost-weighted error. In this
case, class imbalance actually affects the classification performance in terms of cost-
weighted error. If we make another transformation to the upper bound, we can obtain,
1
pε +

2p−1
ε(rp2+(1−p)p)

(ln|H|+ ln 1
δ ). Since 0 < p < 0.5, 2p− 1 < 0. Thus, as r increases,

the upper bound also increases. It shows that a higher cost ratio CFN
CFP

would require
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more examples for training. Intuitively speaking, when class is imbalanced, the cost-
weighted error largely depends on the error on the rare class. As we have proved before,
to achieve the same error on the rare class, we need the same amount of examples on the
rare class, thus more class-imbalanced data requires more examples in total. Besides,
higher cost on the rare class leads to higher cost-weighted error, thus to achieve the
same cost-weighted error, we will also need more examples in total.

Agnostic Learner. As mentioned before, the hypothesis with the minimum training
error produced by agnostic learner may still lead to 100% error rate on the rare class.
Hence, instead of outputting the hypothesis with minimum training error, we redefine
agnostic learner as the learner that outputs the hypothesis with the minimum cost-
weighted error on the training set. Generally, with higher cost on positive errors, the
agnostic learner is less likely to produce a hypothesis that misclassifies all the posi-
tive training examples. The following theorem demonstrates that, for agnostic learner,
how many examples needed to guarantee a small difference of the cost-weighted errors
between the distribution D and the training set T .

Theorem 5. Given ε (0 < ε < 1), any δ (0 < δ < 1), the cost ratio r (r ≥ 1) and the
positive proportion p (0 < p < 0.5) according to the distribution D, if the total number
of examples observed

m ≥
r
√

p+
√

1− p

2ε2(rp+(1− p))
(ln|H|+ ln

1
δ
),

then, with probability at least 1−δ , the agnostic learner will output a hypothesis h such
that cD(h)≤ cT (h)+ ε .

The proof for Theorem 5 is very similar to that of Theorem 4, thus here we omit the
detail of the proof. Furthermore, we can also extract the same patterns from the upper
bound here as found for the upper bound in Theorem 4: more examples are required
when the cost ratio increases or the class becomes more imbalanced.

To summarize, in this section we derive several upper bounds to guarantee the error
rate on a particular class (rare class or majority class) as well as the cost-weighted error,
for both consistent learner and agnostic learner. We found some interesting and useful
patterns from those theoretical results: the upper bound for the error rate on a particular
class is not affected by the class imbalance, while the upper bound for the cost-weighted
error is sensitive to both the class imbalance and the cost ratio. Although those pattern
may not be so surprising, as far as we know, no previous work theoretically proved it
before. Such theoretical results would be more reliable than the results only based on
the empirical observation.

Since the upper bounds we derive are closely related to the hypothesis space, which
is often huge for many learning algorithms, they are generally very loose (It should be
noted that in traditional PAC learning, the upper bounds are also very loose). In fact,
when we practically use some specific learners, to achieve a desired error rate on a class
or cost-weighted cost, usually the number of examples needed are much less than the
theoretical upper bounds. Therefore, in the next section, we will empirically study the
performance of a specific learner, to see how the class imbalance and cost ratio influence
the classification performance.
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3 Empirical Results with Specific Learner

In this section, we empirically explore the patterns found in the theoretical upper bounds.
We hope to see, in practice, how the class imbalance and cost ratio affect the actual ex-
amples needed and whether the empirical results reflect our theories. Those empirical
observations can be useful for practical data mining or machine learning with class-
imbalanced data. In our following experiments, we will empirically study the perfor-
mance of unpruned decision tree (consistent learner) on class-imbalanced datasets.4

3.1 Datasets and Settings

We choose unpruned decision tree for our empirical study, since it is a consistent learner
in any case. It can be always consistent with the training data of any concept by building
up a full large tree, if there are no conflicting examples with the same attribute values but
different class labels. For the specific implementation, we use WEKA [10] and select
J48 with the pruning turned off and the parameter MinNumOb j = 1.

We create one artificial dataset and select two real-world datasets. The artificial
dataset we use is generated by a tree function with five relevant attributes, A1−A5, and
six leaves, as shown in Figure 1. To simulate the real-world dataset, we add another 11
irrelevant attributes. Therefore, with 16 binary attributes, we can generate 216 = 65,536
different examples, and label them with the target concept (28,672 positive and 36,864
negative). We also choose two UCI [1] real-world datasets (Chess and Splice). In order
to make the unpruned decision tree with all the training examples, the conflicting exam-
ples (i.e., the examples with identical attribute values but different labels) are eliminated
during the pre-process.

A1

-A5

-++A4

A3A2

+ -

0

0

0

0

1

11

1

1

0

Fig. 1. Artificial tree function

3.2 Experimental Design and Results

To see how class imbalance affects the error rate on a particular class (here we choose
positive class), we compare the positive error under different class ratios but with the
same number of positive examples in the training set.

Specifically, we manually generate different data distributions with various class ra-
tios where training set and test set are drawn. For example, to generate a data distribu-
tion with 10% positive proportion, we simply set the probability of drawing a positive

4 Due to the limited pages, we only empirically study the consistent learner here.



Foundation of Mining Class-Imbalanced Data 229

Artificial data Chess Splice
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Fig. 2. Positive error of unpruned decision tree on three datasets
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Fig. 3. Cost-weighted error of unpruned decision tree on the artificial data

example to be 1/9 of the probability of drawing a negative example, and the probabil-
ity of drawing examples within a class is uniform. According to the data distribution,
we sample a training set until it contains a certain number of positive examples (we
set three different numbers for each dataset), and train a unpruned decision tree on it.
Then, we evaluate its performance (positive error and cost-weighted error) on another
sampled test set from the same data distribution. Finally, we compare the performance
under different data distributions (0.1%, 0.5%, 1%, 5%, 10%, 25%, 50%) to see how
class imbalance ratio affects the performance of the unpruned decision tree. All the
results are the average value over 10 independent runs.

Figure 2 presents the positive error on three datasets. The three curves in each sub-
graph represent three different numbers of positive examples in the training set. For the
artificial dataset, since the concept is easy to learn, the number of positive examples
chosen is smaller than that of the UCI datasets. We can see, generally the more the
positive examples for training, the flatter the curve and the lower the positive error. It
means, as we have more positive examples, class imbalance has less negative effect on
the positive error in practice. The observation is actually consistent with Corollary 1.

To see how class imbalance influences the cost-weighted error, we compare the cost-
weighted error under different class ratios with fixed cost ratio. To explore how cost
ratio affects the cost-weighted error, we compare the cost-weighted error over different
cost ratios with fixed class ratio. For this part, we only use the artificial dataset to show
the results (see Figure 3). We can see, generally, as the class becomes more imbalanced
or the cost ratio increases, the cost-weighted error goes higher. It is also consistent with
our theory (Theorem 4).

We have to point out that, our experiment is not a verification of our derived theories.
The actual amount of examples we used in our experiment is much smaller compared to
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the theoretical bounds. Despite of that, we still find that the empirical observations have
similar patterns to our theoretical results. Thus, our theorems not only offer a theoretical
guarantee, but also has some useful implications for real-world applications.

4 Conclusions

In this paper, we study the class imbalance issue from PAC-learning perspective. An
important contribution of our work is that, we theoretically prove that the upper bound
of the error rate on a particular class is not affected by the (imbalanced) class ratio. It
actually refutes a common misconception that we need more examples just because of
the more imbalanced class ratio. Besides the theoretical theorems, we also empirically
explore the issue of the class imbalance. The empirical observations reflect the patterns
we found in our theoretical upper bounds, which means our theories are still helpful for
the practical study of class-imbalanced data.

Although intuitively our results might seem to be straightforward, few previous
works have explicitly addressed these fundamental issues with PAC bounds for class-
imbalanced data before. Our work actually confirms the practical intuition by theoretical
proof and fills a gap in the established PAC learning theory. For imbalanced data issue,
we do need such a theoretical guideline for practical study.

In our future work, we will study bounds for AUC, since it is another useful measure
for the imbalanced data. Another common heuristic method to deal with imbalanced
data is over-sampling and under-sampling. We will also study their bounds in the future.
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Abstract. It is well known that the noise in labels deteriorates the
performance of active learning. To reduce the noise, works on multiple
oracles have been proposed. However, there is still no way to guaran-
tee the label quality. In addition, most previous works assume that the
noise level of oracles is evenly distributed or example-independent which
may not be realistic. In this paper, we propose a novel active learning
paradigm in which oracles can return both labels and confidences. Un-
der this paradigm, we then propose a new and effective active learning
strategy that can guarantee the quality of labels by querying multiple
oracles. Furthermore, we remove the assumptions of the previous works
mentioned above, and design a novel algorithm that is able to select the
best oracles to query. Our empirical study shows that the new algorithm
is robust, and it performs well with given different types of oracles. As
far as we know, this is the first work that proposes this new active learn-
ing paradigm and an active learning algorithm in which label quality is
guaranteed.

Keywords: Active learning, multiple oracles, noisy data.

1 Introduction

It is well known that the noise in labels deteriorates learning performance, espe-
cially for active learning, as most active learning strategies often select examples
with noise on many natural learning problems [1]. To rule out the negative effects
of the noisy labels, querying multiple oracles has been proposed in active learn-
ing [2,3,4]. This multiple-oracle strategy is reasonable and useful in improving
label quality. For example, in paper reviewing, multiple reviewers (i.e., oracles
or labelers) are requested to label a paper (as accepted, weak accepted, weak
rejected or rejected), so that the final decision (i.e., label) can be more accurate.

However, there is still no way to guarantee the label quality in spite of the
improvements obtained in previous works [3,4,5]. Furthermore, strong assump-
tions, such as even distribution of noise [3], and example-independent (fixed)
noise level [4], have been made. These assumptions, in the paper reviewing ex-
ample mentioned above, imply that all the reviewers are at the same level of
expertise and have the same probability in making mistakes.
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Obviously, the assumptions may be too strong and not realistic, as it is ubiqui-
tous that label quality (or noise-level) is example-dependent in real-world data.
In the paper reviewing example, the quality of a label given by a reviewer should
depend heavily on how close the reviewer’s research is to the topic of the paper.
The closer it is, the higher quality the label has. Thus, it is necessary to study
this learning problem further.

In this paper, we propose a novel active learning paradigm, under which or-
acles are assumed to return both labels and confidences. This assumption is
reasonable in real-life applications. Taking paper reviewing as an example again,
usually a reviewer is required to give not only a label (accept, weak accept, weak
reject or reject) for a paper, but also his confidence (high, medium or low) for
the labeling.

Under the paradigm, we propose a new active learning strategy, called c-
certainty learning. C-certainty learning guarantees the label quality to be equal
to or higher than a threshold c (c is the probability of correct labeling; see
later) by querying oracles multiple times. In the paper reviewing example, with
the labels and confidences given by reviewers (oracles), we can estimate the
certainty of the label. If the certainty is too low (e.g., lower than a given c),
another reviewer has to be sought to review the paper to improve the label
quality.

Furthermore, instead of assuming noise level to be example-independent in the
previous works, we allow it to be example-dependent. We design an algorithm
that is able to select the Best Multiple Oracles to query (called BMO) for each
given example. With BMO, fewer queries are required on average for a label to
meet the threshold c compared to random selection of oracles. Thus, for a given
query budget, BMO is expected to obtain more examples with labels of high
quality due to the selection of best oracles. As a result, more accurate models
can be built.

We conduct extensive experiments on the UCI datasets by generating various
types of oracles. The results show that our new algorithm BMO is robust, and
performs well with the different types of oracles. The reason is that BMO can
guarantee the label quality by querying oracles repeatedly and ensure the best
oracles can be queried. As far as we know, this is the first work that proposes
this new active learning paradigm.

The rest of this paper is organized as follows. We review related works in
Section 2. Section 3 introduces the learning paradigm and the calculation of
certainty after querying multiple oracles. We present our learning algorithm,
BMO, in Section 4 and the experiment results in Section 5. We conclude our
work in Section 6.

2 Previous Works

Labeling each example with multiple oracles has been studied when labeling is
not perfect in supervised learning [5,6,7]. Some principled probabilistic solutions
have been proposed on how to learn and evaluate the multiple-oracle problem.
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However, as far as we know, few of them can guarantee the labeling quality to
be equal to or greater than a given threshold c, which can be guaranteed in our
work.

Other recent works related to multiple oracles have some assumptions which
may be too strong and unrealistic. One assumption is that the noise of oracles
is equally distributed [3]. The other type of assumption is that the noise level of
different oracles are different as long as they do not change over time [4,8]. Their
works estimate the noise level of different oracles during the learning process and
prefer querying the oracles with low noise levels. However, it is ubiquitous that
the quality of an oracle is example-dependent. In this paper, we remove all the
assumptions and allow the noise level of oracles vary among different examples.

Active learning on the data with example-dependent noise level was studied
in [9]. However, it focuses on how to choose examples considering the tradeoff
between more informative examples and examples with lower noise level.

3 c-Certainty Labeling

C-Certainty labeling is based on the assumption that oracles can return both
labels and their confidences in the labelings. For this study, we define confidence
formally first here. Confidence for labeling an example x is the probability that
the label given by an oracle is the same as the true label of x. We assume that
the confidences of oracles on any example are greater than 0.51.

By using the labels and confidences given by oracles, we guarantee that the
label certainty of each example can meet the threshold c (c ∈ (0.5, 1]) by querying
oracles repeatedly (called c-certainty labeling). That is, a label is valid if its
certainty is or equal to than c. Otherwise, more queries would be issued to
different oracles to improve the certainty.

How to update the label certainty of an example x after obtaining a new
answer from an oracle? Let the set of previous n − 1 answers be An−1, and the
new answer be An in the form of (P, fn), where P indicates positive and fn is the
confidence. The label certainty of x, C(TP |An), can be updated with Formula 1
(See Appendix for the details of its derivation).

C(TP |An) =

⎧⎪⎨⎪⎩
p(TP )×fn

p(TP )×fn+p(TN )×(1−fn)
, if n = 1 and An = {P, fn}

C(TP |An−1)×fn
C(TP |An−1)×fn+(1−C(TP |An−1))×(1−fn)

, if n > 1 and An = {P, fn},

(1)

where TP and TN are the true positive and negative labels respectively. Formula
1 can be applied directly when An is positive (i.e., An = {P, fn}); while for a
negative answer, we can transform it as An = {N, fn} = {P, (1 − fn)} such that

1 This assumption is reasonable, as usually oracles can label examples more correctly
than random.
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Formula 1 is also applicable. In addition, Formula 1 is for calculating the cer-
tainty of x to be positive. If C(TP |An) > 0.5, the label of x is positive; otherwise,
the label is negative and the certainty is 1−C(TP |An). With Formula 1, the pro-
cess of querying oracles can be repeated for x until max(C(TP |An), 1−C(TP |An))

is greater than or equal to c.
However, from Formula 1 we can see that the certainty, C(TP |An), is not

monotonic. It is possible that the certainty dangles around and is always lower
than c. For example, in paper reviewing, if the labels given by reviewers are with
low confidence or alternating between positive and negative, the certainty may
not be able to reach the threshold c even many reviewers are requested.

To guarantee that the threshold c is reachable, we will propose an effective
algorithm to improve the efficiency of selecting oracles.

4 BMO (Best-Multiple-Oracle) with c-Certainty

To improve the querying efficiency, the key issue is to select the best oracle for
every given example. This is very different from the case when the noise level is
example-independent [4,8], as in our case the performance of each oracle varies
on labeling different examples.

4.1 Selecting the Best Oracle

How to select the best oracle given that the noise levels are example-dependent?
The basic idea is that an oracle can probably label an example x with high
confidence if it has labeled xj confidently and xj is close to x. This idea is
reasonable as the confidence distribution (expertise level) of oracles is usually
continuous, and does not change abruptly. More specifically, we assume that
each of the m oracle candidates (O1, · · · , Om) has labeled a set of examples Ei

(1 ≤ i ≤ m). Eki (1 ≤ i ≤ m) is the set of k (k = 3 in our experiment) nearest
neighbors of x in Ei (1 ≤ i ≤ m). BMO chooses the oracle Oi such that examples
in Eki are of high confidence and close to the example x. The potential confidence
for each oracle in labeling x can be calculated with Formula 2.

Pci =
1
k
×
∑k

j=1 f
oi
xj

1 + 1
k
×
∑k

j=1 |x− xj |
, (2)

where xj ∈ Eki , f
oi
xj

is the confidence of oracle Oi in labeling xj, and |x−xj | is the
Euclidean distance between xj and x. The numerator of Formula 2 is the average
confidence of the k nearest neighbors of x. The last item in the denominator
is the average distance, and the 1 is added to prevent the denominator from
being zero. High confidence and short distance indicate that the oracle Oi will
more likely label x with a higher confidence. Thus, BMO selects the oracle Oi if
i = argmax

i
(Pc1 , · · · , Pci , · · · , Pcm).
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4.2 Active Learning Process of BMO

BMO is a wrapper learning algorithm, and it treats the strategy of selecting
examples to label as a black box. Any existing query strategies in active learning,
such as uncertainty sampling [10], expected error reduction [11] and the density-
weighted [12] method can be fit in easily.

We assume that BMO starts with an empty training set, and the learning
process is as follows. For an example xi (xi ∈ Eu) selected by an example-selecting
strategy (e.g.,uncertain sampling), BMO selects the best oracle among the ones
that have not been queried for xi yet to query, and updates the label certainty of
xi with Formula 1. This process repeats until the certainty meets the threshold c.
Then BMO adds xi into its labeled example set El. This example-labeling process
continues until certain stop criterion is met (such as the predefined query budget
is used up in our experiment). (See Algorithm 1 for details.)

Algorithm 1. BMO (Best Multiple Oracles)

Input: Unlabeled data: Eu; oracles: O; oracles queried: Oq ; threshold: c;
queries budge: budget;

Output: labeled example set El

begin1

while budget > 0 do2

xi ← selection with uncertain sampling (xi ∈ Eu);3

Oq ← null; certainty ← 0;4

while certainty < c do5

for each Oi ∈ (O −Oq) do6

Po ci ←Formula 2;7

end8

Om ← oracle with maximal Pc;9

certainty ← update with Formula 1;10

Oq ← Oq ∪ Om; budget ← budget− 1;11

end12

El ← El ∪ anditscertainty;13

update the current model;14

end15

return El;16

end17

By selecting the best oracles, BMO can improve the label certainty of a given
example to meet the threshold c with only a few queries (See Section 5). That is,
more labeled examples can be obtained for a predefined query budget compared
to random selection of oracles. Thus, the model built is expected to have better
performance.

5 Experiments

In our experiment, to compare with BMO, we implement two other learning
strategies. One is Random selection of Multiple Oracles (RMO). Rather than
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selecting the best oracle in BMO, RMO selects oracles randomly to query for a
given example and repeats until the label certainty is greater than or equal to
c. The other strategy is Random selection of Single Oracle (RSO). RSO queries
for each example only once without considering c, which is similar to traditional
active learning algorithms.

Since RSO only queries one oracle for each example, it will have the most
labeled examples for a predefined query budget but with the highest noise level.
To reduce the negative effect of noisy labels, we weight all labeled examples ac-
cording to their label certainty when building final models. To make all the three
strategies comparable, we also use weighting in BMO and RMO. In addition, all
the three algorithms take uncertain sampling as the example-selecting strategy
and decision tree (J48 in WEKA [13]) as their base learners. The implementation
is based on the WEKA source code.

The experiment is conducted on UCI datasets [14], including abolone, anneal,
cmc new, credit, mushroom, spambase and splice, which are commonly used in
the supervised learning research. As the number of oracles cannot be infinite
in real world, we only generate 10 oracles for each dataset. If an example has
been presented to all the 10 oracles, the label and the certainty obtained will be
taken in directly. The threshold c is predefined to be 0.8 and 0.9 respectively.
The experiment results presented are the average of 10 runs, and t-test results
are of 95% confidence.

In our previous discussion, we take the confidence given by an oracle as the
true confidence. However, in real life, oracles may overestimate or underestimate
themselves intentionally or unintentionally. If the confidence given by an oracle
O does not equal the true confidence, we call O an unfaithful oracle; otherwise, it
is faithful. To observe the robustness of our algorithm, we conduct our empirical
studies with both faithful and unfaithful oracles2 in the following.

5.1 Results on Faithful Oracles

As no oracle is provided for the UCI data, we generate a faithful oracle as follows.
Firstly, we select one example x randomly as an “expertise center” and label it
with the highest confidence. Then, to make the oracle faithful, we calculate the
Euclidean distance from each of the rest examples to x, and assign them confi-
dences based on the distances. The further the distance is, the lower confidence
the oracle has in labeling the example. Noise is added into labels according to
the confidence level. Thus the oracle is faithful.

The confidence is supposed to follow a certain distribution. We choose three
common distributions, linear, normal and dual normal distributions. Linear dis-
tribution assumes the confidence reduces linearly as the distance increases. For
normal distribution, the reduction of confidence follows the probability density
function f(x) = 1√

2πσ2
exp(− x2

2σ2 ) − 0.55. Dual normal distribution indicates that

2 Actually it is difficult to model the behaviors of unfaithful oracles with a large
confidence deviation. In our experiment, we show that our algorithm works well
given unfaithful oracles slightly deviating from the true confidence.



Active Learning with c-Certainty 237

1

0.55
Expertise center 

Linear distribution 
1

0.55
Expertise center 

Normal distribution 
1

0.55

Center 1 

Normal distribution 

Center 2 

Fig. 1. Three distributions

anneal c=0.8

0.15

0.2

0.25

0.3

0.35

0.4

0.45

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Query budget

E
rr

o
r 

ra
te

BMO

RMO

RSO

anneal c=0.9

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Query budget

E
rr

o
r 

ra
te

Fig. 2. Error rate on faithful oracles
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Fig. 3. The number of examples and label quality

the oracle has two “expertise centers” (see Figure 1). As mentioned earlier, we
generate 10 oracles for each dataset in this experiment. Among the 10 oracles,
three of them follow the linear distribution, three the normal distribution and
four the dual normal distribution.

Due to the similar results of different datasets, we only show the details of
one dataset (anneal) in Figure 2 and a summary of the comparison afterwards.
Figure 2 shows the testing error rates of BMO, RMO and RSO for the threshold
0.8 (left) and 0.9 (right) respectively. The x axis indicates the query budgets while
the y axis represents the error rate on test data. On one hand, as we expected
that, for both thresholds 0.8 and 0.9, the error rate of BMO is much lower than
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that of RMO and RSO for all different budgets, and the performances of the
latter two are similar. On the other hand, the curve of RMO when c = 0.8 is not
as smooth as the other ones.

The different performances of the three learning strategies can be explained
by two factors, the noise level and the number of examples. Due to limited space,
we only show how the two factors affect the performances through one dataset
(anneal) when the query budget is 500 in Figure 3.

Figure 3 shows that on average BMO only queries about 1.4 (c = 0.8) and
1.7 (c = 0.9) oracles for each example; while RMO queries more oracles (1.7 and
2.0). That is, BMO obtains more labeled examples than RMO for a given bud-
get. Moreover, the examples labeled by BMO have much higher label certainty
than that by RMO3. On the other hand, the examples labeled by RSO is much
more noisy than BMO (i.e., the red portion is much larger). It is the noise that
deteriorates the performance of RSO. Thus, BMO outperforms the other two
strategies because of its guaranteed label quality and the selection of the best
oracles to query.

By looking closely into the curves in Figure 2, we find that the curve of RMO
when c = 0.8 is not as smooth as the other ones. The reason is that RMO of
c = 0.8 has fewer labeled examples when compared to BMO and RSO of c = 0.8

and has more noise when compared to that of c = 0.9. Fewer examples make the
model learnt more sensitive to the quality of each label; while the label quality of
c = 0.8 is not high enough. Thus, the stability of RMO when c = 0.8 is weakened.

In addition, we also show the t-test results in terms of the error rate on all the
seven UCI datasets in Table 1. As for each dataset 10 different query budgets
are considered, the total times of t-test for each group is 70. Table 1 shows that
BMO wins RMO 94 times out of 140 (c = 0.8 and c = 0.9) and wins RSO 86 out
of 140 without losing once. It is clear that BMO outperforms RMO and RSO
significantly.

Table 1. T-test results on 7 datasets with 10 different budgets

BMO vs. RMO BMO vs. RSO RMO vs. RSO
c=0.8 c=0.9 c=0.8 c=0.9 c=0.8 c=0.9

Win 43 51 40 42 0 9
Draw 27 19 30 38 70 51
Lose 0 0 0 0 0 10

In summary, with faithful oracles, the experiment results show that BMO does
work better by guaranteeing the label quality and selecting the best oracles to
query. On the other hand, even though RMO also can guarantee the label qual-
ity, its strategy of randomly selecting oracles reduces the learning performance.
Furthermore, the results of RSO illustrate that weighting with the label quality
may reduce the negative influence of noise but still its effect is limited.

3 Some of the examples still have certainty lower than c due to the limited oracles in
our experiment.
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5.2 Results on Unfaithful Oracles

Unfaithful oracles are generated for each dataset by building models over 20%
of the examples. More specifically, to generate an oracle, we randomly select
one example x as an “expertise center”, and sample examples around it. The
closer an example xi is to x, the higher the probability it will be sampled with.
Thus, the oracle built on the sampled examples can label the examples closer
to x with higher confidences. The sampling probability follows exactly the same
distribution in Figure 1. For each data set, 10 oracles are generated and three
follow the linear distribution, three the normal distribution and four the dual
normal distribution.
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Fig. 4. Experiment results on unfaithful oracles

As sampling rate declines with the increasing distance, the oracle built may
fail to give true confidence for the examples that are far from the “center”.
As a result, the oracle is unfaithful. That is, the oracles are unfaithful due to
“insufficient knowledge” rather than “lying” deliberately.

We run BMO, RMO and RSO on the seven UCI datasets and show the testing
error rates and the number of labeled examples on one data set (anneal) in
Figure 4 and a summary on all the datasets afterwards. It is surprising that the
performances of BMO on unfaithful oracles are similar to that on faithful oracles.
That is, the error rate of BMO is much less than that of RMO and RSO, and
the latter two are similar. The examples labeled by BMO are more than that by
RMO and its label quality is higher than that of both RMO and SMO, which
are also similar to that on faithful oracles.
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The comparison shows clearly that BMO is robust even for unfaithful oracles.
The reason is that BMO selects the best multiple oracles to query, and it is
unlikely that all the best oracles are unfaithful at the same time as our unfaithful
oracles do not “lie” deliberately as mentioned. Thus, BMO still performs well.

Table 2 shows the t-test results on 10 different query budgets for all the
seven UCI datasets. We can see that BMO wins RMO 95 times out of 140 and
wins RSO 98 out of 140, which indicates that BMO works significantly better
than RMO and RSO under most of the circumstances. However, BMO loses
to RMO 19 times and RSO 10 times, which are different from the results on
faithful oracles. Thus, even though BMO is robust, still it works slightly worse
on unfaithful oracles than on faithful ones.

Table 2. T Test results for all datasets and budgets on unfaithful oracles

BMO vs. RMO BMO vs. RSO RMO vs. RSO
c=0.8 c=0.9 c=0.8 c=0.9 c=0.8 c=0.9

Win 53 42 53 45 12 0
Draw 6 22 17 15 50 50
Lose 11 8 0 10 8 20

In summary, BMO is robust for working with unfaithful oracles, even though
its good performance may be reduced slightly. This property is crucial for BMO
to be applied successfully in real applications.

6 Conclusion

In this paper, we proposed a novel active learning paradigm, c-certainty learning,
in which oracles can return both labels and confidence. Under this new paradigm,
the label quality is guaranteed to be greater than or equal to a given threshold c

by querying multiple oracles. Furthermore, we designed the learning algorithm
BMO to select the best oracles to query so that the threshold c can be met
with fewer queries compared to selecting oracles randomly. Empirical studies are
conducted for both faithful and unfaithful oracles. The results show that BMO
works robustly and outperforms other active learning strategies significantly on
both faithful and unfaithful oracles, even though its performance can be affected
slightly by unfaithful oracles.
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Appendix: Derivation of Formula 1

C(TP |An)

=
P (An|TP )× P (TP )

P (An)

=
P (An−1, An|TP )× P (TP )

P (An)

=
P (An−1|TP )× P (TP )× P (An|TP )× P (An−1)

P (An−1)× P (An)

= C(TP |An−1)× p(An|TP )×
p(An−1)

p(An)
(3)

The last item in Equation 3 can be further transformed as follows.

p(An−1)

p(An)

=
p(An−1)

p(An|TP )× p(TP ) + p(An|TN )× p(TN)

=
p(An−1)

p(An−1|TP )× p(TP )× p(An|TP ) + p(An−1|TN )× p(TN)× p(An|TN )

=
1

(C(TP |An−1))× p(An|TP ) + C(TN |An−1)× p(An|TN ))

As An = (P, fn),

C(TP |An)

=
C(TP |An−1)× p(An|TP )

C(TP |An−1)× p(An|TP ) + (1− C(TP |An−1))× p(An|TN )

=
C(TP |An−1)× fn

C(TP |An−1)× fn + (1−C(TP |An−1))× (1− fn)
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Abstract. Text classification (TC) has long been an important research
topic in information retrieval (IR) related areas. In the literature, the
bag-of-words (BoW) model has been widely used to represent a docu-
ment in text classification and many other applications. However, BoW,
which ignores the relationships between terms, offers a rather poor docu-
ment representation. Some previous research has shown that incorporat-
ing language models into the naive Bayes classifier (NBC) can improve
the performance of text classification. Although the widely used N-gram
language models (LM) can exploit the relationships between words to
some extent, they cannot model the long-distance dependencies of words.
In this paper, we study the term association modeling approach within
the translation LM framework for TC. The new model is called the term
association translation model (TATM). The innovation is to incorporate
term associations into the document model. We employ the term trans-
lation model to model such associative terms in the documents. The
term association translation model can be learned based on either the
joint probability (JP) of the associative terms through the Bayes rule or
the mutual information (MI) of the associative terms. The results of TC
experiments evaluated on the Reuters-21578 and 20newsgroups corpora
demonstrate that the new model implemented in both ways outperforms
the standard NBC method and the NBC with a unigram LM.

Keywords: Term association, mutual information, Bayes, translation
language model, text classification.

1 Introduction

Text classification (TC) is the task of classifying documents into a set of pre-
defined categories. It has long been an important research topic in information
retrieval (IR). Many statistical classification methods and machine learning (ML)
techniques have been developed to TC, such as the naive Bayes classifier [12],
the support vector machines [10], the k-nearest neighbor method [20], and the
boosting method [16]. In addition, text classification based on term associations
[1] is also a promising approach. The performance of text classification highly
depends on the document representation. Most of the existing methods repre-
sent a document using a vector space model (VSM) or a language model (LM).
Generally, the bag-of-words (BoW) method is a widely used data representation

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 243–253, 2012.
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in IR and TC. Under this scheme, each document is modeled as a vector with
a dimension equal to the size of the dictionary, and each element of the vector
denotes the frequency that a word appears in the document. Basically, all the
words are treated independently.

One of the important restrictions in most of the existing TC methods may lie in
that the individual terms are usually too general and that these methods do not
consider the associations between words in the documents. In some cases of TC,
individual words are not sufficient to represent the accurate information of the doc-
ument. For example, a document with “shuttle launch” may be assumed to belong
to the “ball game” class. However, if the word “NASA” is an association term, it is
very likely that the document should be assigned to the “aeronautics” class.

It is well-known that the relationships between words are very important for
statistical language modeling. Using LM for TC has been studied recently [2,14].
Although N -gram LM can exploit the relationships between words, they only
consider the dependencies of neighboring words [5]. For example, the trigram
LM is unable to characterize word dependence beyond the span of three succes-
sive words. In [22], the trigram LM was improved by integrating with the trigger
pairs, which extract the word relationships from the sequence of historical words.
Nevertheless, a trigger pair is word order dependent. In other words, a word can
only be triggered by the previous context. Recent studies have revealed that
modeling term associations could provide richer semantics of documents for LM
and IR [4,18,19]. Cao et al. [4] integrated the word co-occurrence information and
the WordNet information into language models. Wei and Croft [18] investigated
the use of term associations to improve the performance of LM-based IR. In [19],
the word associations were integrated into the topic modeling paradigm. Adding
word associations to represent a document inevitably increases the model’s com-
plexity, but the new information reduces the ambiguity mentioned above. Gen-
erally, any set of words co-occur in the contexts can be considered having a
strong association and collected as the associative words, e.g., “uneven bars” and
“balance” in the class of gymnastics and “aerofoil” and “jet engine” in the class
of airplane transportation. However, the associative words are not necessary to
co-occur in a document. We believe that a language model considering term
associations would be definitely more useful in TC.

In this paper, we propose a novel model for text classification by incorporate
the strengths of term associations into the translation LM framework. Different
from the traditional TC techniques and algorithms in the literature, we model
the associations between words existing in the documents of a class. To discover
the associative terms in the documents, we learn the translation language model
based on the joint probability (JP) of the associative terms through the Bayes
rule and based on the mutual information (MI) of the associative terms.

The remainder of this paper is organized as follows. In Section 2, we briefly
review the framework of the naive Bayes classifier and language models. The
proposed models for text classification are presented in Section 3. Experimental
setup and results are discussed in Section 4. Finally, we give the conclusions in
Section 5.
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2 Related Work

2.1 Terminology

We begin by defining the notation and terminology in this paper. A word or
term is a linguistic building block for text. A word is denoted by w ∈ V =
{1, 2, . . . , |V |}, where |V | is number of distinct words/terms. A document, rep-
resented by d = {w1, · · · , wnd

}, is an ordered list of nd words. A query, denoted
by q = {q1, · · · , qT }, is a string of T words. A collection of documents is de-
noted by D = {d1, · · · ,d|D|}, where |D| is the number of documents in collection
D. A background model, denoted by MB, is the language model estimated in
collection D. A set of class labels is denoted by C = {c1, · · · , c|C|}, where |C|
is the number of distinct classes. A LM M is a probability function defined on
a set of word strings. This includes the important special case of the probability
P (w|M) of a word w. A class LM, denoted by MC , is the language model
estimated based on class c.

2.2 Naive Bayes Classifier

The naive Bayes classifier (NBC) is a popular machine learning technique for
text classification. The method assumes a probabilistic generative model for text.
A common and simple representation of a document in TC is the bag of words
(BoW) model. The model ignores the word order and just captures the number
of occurrences of each word in the document. The NBC classifies a document
through two stages: the learning stage and the classifying stage. It is assumed
that the probability of each word in a document is independent to that of other
words, and each document is drawn from a multinomial distribution of words. In
the learning stage, the naive Bayes classifier estimates the conditional probability
P (c|d), which represents the probability that a document c belongs to a class d.
Using the Bayes rule, we have

P (c|d) =
P (d|c)P (c)

P (d)
=

P (d|c)P (c)∑
c P (d|c)P (c)

, (1)

where P (d|c) is the likelihood of document d under class c. By assuming that
all words in d are independent of each other, P (d|c) can be further decomposed
into the product of individual feature (word) probabilities as follows

P (d|c) =
∏

w∈V

P (w|c). (2)

The word probability P (w|c) and the class prior probability P (c) are estimated
from the training documents with Laplace smoothing as follows

P (w|c) =
1 + n(w, c)
|V | + N(c)

, (3)

P (c) =
1 + n(d, c)
|C| + |D| , (4)
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where n(w, c) is the number of times word w occurs in the training documents
that belong to class c; N(c) is the total number of words in the training doc-
uments that belong to class c; n(d, c) denotes the number of documents that
belong to class c; and |D| is total number of training documents.

Several extensions of the naive Bayes classifier have been proposed. For exam-
ple, Nigam et al. [13] combined the Expectation-Maximization (EM) algorithm
and the naive Bayes classifier to learn from both labeled and unlabeled doc-
uments in a semi-supervised manner. More recently, Dai et al. [7] proposed a
transfer learning algorithm to learn the naive Bayes classifier for text classifica-
tion, which allowed the distributions of the training and test data to be different.
However, these methods all assume that the words in a document are indepen-
dent of each other; hence, they cannot cope well with the term dependence and
association.

2.3 Language Models for Information Retrieval

Statistical language modeling plays an important role in automatic speech recog-
nition (ASR) and IR. Most ASR systems are built by combining the N -gram
language model and the acoustic hidden Markov model (HMM) to predict the
best word sequence corresponding to an input speech utterance. In an IR sys-
tem, the word sequence of an input query is adopted to retrieve the relevant
text documents. In Ponte and Croft’s work that applied LM in IR [15], the re-
trieval performance was improved by statistical modeling of natural language.
According to the maximum a posteriori decision rule, the ranking function f(·)
is established as a posterior probability,

d̂ = argmax
dm

f(q,dm) = argmax
dm

P (dm|q) = arg max
dm

P (q|dm)P (dm). (5)

Assuming that the documents {d1, · · · ,d|D|} have an equal prior probability of
relevance, the ranking can be done according to the likelihood of the N -gram
language model

P (q|dm) = P (q1, · · · , qT |dm) =
T∏

t=1

P (qt|qt−1
t−n+1,dm), (6)

where each word qt only depends on its n − 1 historical words qt−1
t−n+1 =

{qt−n+1, · · · , qt−1}. P (qt|qt−1
t−n+1,dm) can be estimated according to the maxi-

mum likelihood (ML) criterion as follows,

PML(qt|qt−1
t−n+1,dm) =

c(qt
t−n+1,dm)

c(qt−1
t−n+1,dm)

, (7)

where c(qt
t−n+1,dm) denotes the number of times that word qt follows the his-

torical words qt−1
t−n+1 in document dm and c(qt−1

t−n+1,dm) denotes the number
of times that the historical words qt−1

t−n+1 occur in document dm. The unigram
document model is generally adopted in the IR community [15]. However, the
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document terms are often too few to train a reliable ML-based model because
the unseen words lead to zero unigram probabilities. Zhai and Lafferty [21] have
used several smoothing methods to deal with the data sparseness problem in
LM-based IR.

Since previous research [4,18,19] have shown that some relationships exist
between words, we utilize them in the document model rather than using the
traditional unigram document model for text classification.

3 The Term Association Translation Models

3.1 Language Models for Text Classification

LM was first introduced to TC by Peng and Schuurmans [14]. The score of a
class c for a given document d can be estimated by (1). Then, the class of the
document can be decided as follows

c∗ = arg max
c∈C

P (d|c) = arg max
c∈C

P (d|c)P (c). (8)

Assuming that P (c) is uniformly distributed and applying the unigram class LM
in the task, the decision can be rewritten as

c∗ = arg max
c∈C

P (d|c)

= arg max
c∈C

nd∏
i=1

P (wi|c). (9)

The traditional naive Bayes classifier usually uses Laplace smoothing to deal
with the zero probability problem. However, some previous research has shown
that it is not as effective as the smoothing methods for language modeling [2,14].
Therefore, we can interpolate a unigram class LM with the unigram collection
background model by using the Jelinek-Mercer smoothing method as follows,

P (wi|MC) = λP (wi|c) + (1 − λ)P (wi|MB), (10)

where λ can be tuned empirically. In this paper, the method based on (10) is
denoted as NBC-UN, and λ is set to 0.5.

In order to discover the association between two terms wi and w, we are
interested in Pt(wi|w), the probability that word wi will occur given that w
occurs. The term translation probability Pt(wi|w) is different from the bigram
probability P (wi|w) in that the words wi and w are not limited to occur in
order and adjacently in the former. Then, the term association information can
be integrated into the unigram class model as follows,

P (wi|c) =
∑
w∈c

P (wi|w)P (w|c), (11)
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where P (w|c) reflects the distribution of words in the training documents of class
c, which can be computed via the maximum likelihood estimate. By replacing
P (wi|c) in (10) with the one computed by (11), we have

P (wi|MC) = λ[
∑
w∈c

P (wi|w)P (w|c)] + (1 − λ)P (wi|MB). (12)

The model in (12) is obviously more computationally intensive than the model
in (9). Therefore, we need to build a global term translation model for all classes
and the word probability distribution for each class beforehand. To discover the
associative terms in the training documents, we learn the translation LM based
on the joint probability of the associative terms through the Bayes rule and
based on the mutual information (MI) of the associative terms.

3.2 Translation Model Estimation Using Joint Probability Model

This section describes our first way of constructing the term translation proba-
bility Pt(wi|w). By definition, we can express the conditional probability as the
joint probability of words wi and w over the probability of word w

Pt(wi|w) =
P (wi, w)

P (w)
, (13)

where the join probability of wi and w can be expressed as

P (wi, w) =
∑

c

P (wi, w|c)P (c) =
∑

c

P (wi|c)P (w|c)P (c), (14)

if wi and w are assumed sampled independently and identically from the unigram
class model c, and the probability of w can be expressed as

P (w) =
∑

c

P (w|c)P (c). (15)

After re-normalizing P (wi, w) in (14) and P (w) in (15), and considering a uni-
form prior P (c), we obtain

Pt(wi|w) =
∑

c P (wi|c)P (w|c)∑
c P (w|c) . (16)

The method based on (12) with Pt(wi|w) computed by (16) is denoted as TATM-
JP (the term association translation model estimated by the joint probability of
terms).

3.3 Translation Model Estimation Based on Mutual Information

Our second way of constructing the term translation probability Pt(wi|w) is
based on the mutual information (MI). In information theory, the MI of two
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random variables is a quantity that measures their mutual dependence. MI is
a good measure to assess how two words are related to each other [6,22]. We
use the average mutual information (AMI) [22] to measure the strength of the
association between words wi and w. The AMI between wi and w is defined as
follows

AMI(wi, w) = P (wi, w)log
P (wi, w)

P (wi)P (w)
+ P (wi, w̄)log

P (wi, w̄)
P (wi)P (w̄)

(17)

+ P (w̄i, w)log
P (w̄i, w)

P (w̄i)P (w)
+ P (w̄i, w̄)log

P (w̄i, w̄)
P (w̄i)P (w̄)

where P (wi, w) is estimated as the ratio of the number of documents that contain
both wi and w, i.e., cd(wi, w), and the total number of documents |D| as follows

P (wi, w) =
cd(wi, w)

|D| ; (18)

P (wi, w̄) is computed by

P (wi, w̄) =
cd(wi) − cd(wi, w)

|D| , (19)

where cd(wi) is the number of documents that contain wi; P (w) is estimated as
the ratio of the number of documents that contain w and the total number of
documents; P (w̄) is estimated as the ratio of the number of documents that do
not contain w and the total number of documents; and the other probabilities
are estimated in a similar way. According to [11], the term translation probabil-
ity Pt(wi|w) can be calculated by normalizing the mutual information score as
follows

Pt(wi|w) =
AMI(wi, w)∑
wj

AMI(wj , w)
. (20)

If the two words wi and w tend to associate with each other, the probability
would be higher. The method based on (12) with Pt(wi|w) computed by (20) is
denoted as TATM-MI (the term association translation model estimated based
on the mutual information of terms).

4 Experiments

4.1 Corpora

We evaluate the proposed TC methods on two standard document collec-
tions: Reuters-21578 (Reuters)1 and 20 Newsgroups (20NG)2. According to the
ModApte split, the Reuters corpus is separated into 7,194 documents for training
and 2,788 documents for testing. 135 categories have been defined, but only 118
1 http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
2 http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 1. Statistics of the Reuters collection

Category Training Set Test Set
earn 2877 1087
acq 1650 719

money-fx 538 179
grain 433 149
crude 389 189
trade 369 118

interest 347 131
wheat 212 71
ship 197 89
corn 182 56

categories have documents assigned to them. Following Debole and Sebastiani’s
work in [8], we consider the most frequent ten categories in the experiments.
The 10 categories and the numbers of documents used for training and test-
ing in each category are listed in Table 1. The 20NG dataset is a collection of
19,974 documents collected from 20 different newsgroups. We consider the 20
newsgroups as the 20 categories. For each category, we randomly select 60% of
the documents for training and the remaining 40% for testing. Since the 20NG
collection distributes roughly evenly across 20 newsgroups, each category has
almost the same number of training (or testing) documents.

4.2 Performance Measure

In the following experiments, the performance of text classification is evaluated
in terms of the recall (R), precision (P), and F -measure (F), calculated as follows:

recall =
# of correct postive predictions

# of postive examples
, (21)

precision =
# of correct postive predictions

# of postive predictions
, (22)

F =
2 × recall × precision

recall + precision
. (23)

To evaluate the average performance across classes, we use the micro-averaged
score and macro-averaged score [20]. The micro-averaged score is calculated by
mixing together the documents across all the classes. The macro-averaged score
is obtained by taking the average of the recall, precision, and F -measure values
for each category

4.3 Experimental Results

We compare our term association translation models (TATM-JP and TATM-
MI) with the naive Bayes classifier with Laplace smoothing (NBC) and the
naive Bayes classifier with the unigram language model (NBC-UN).
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Table 2. Experimental results (in F -measure) for the Reuters collection

NBC NBC-UN TATM-JP TATM-MI
earn 0.814 0.825 0.819 0.824
acq 0.801 0.811 0.801 0.802

money-fx 0.511 0.521 0.543 0.539
grain 0.578 0.583 0.616 0.634
crude 0.577 0.596 0.610 0.618
trade 0.439 0.434 0.477 0.465

interest 0.483 0.477 0.516 0.502
wheat 0.490 0.506 0.577 0.603
ship 0.571 0.583 0.624 0.639
corn 0.466 0.468 0.527 0.491

micro-averaged 0.709 0.720 0.727 0.731

Table 3. The micro/macro-averaged precision, recall, and F -measure of different meth-
ods evaluated on the 20NG dataset

Micro-averaged Macro-averaged
P R F P R F

NBC 0.802 0.800 0.801 0.817 0.795 0.806
NBC-UN 0.809 0.807 0.808 0.822 0.802 0.812
TATM-JP 0.818 0.815 0.817 0.827 0.810 0.818
TATM-MI 0.821 0.819 0.820 0.829 0.814 0.821

Table 2 shows the results of text classification experiments evaluated on the
Reuters collection. The measure used is the F -measure on the ten most populated
Reuters-21578 categories and the micro-averaged F -measure (micro-F ) over all
categories. Comparing the results of NBC and NBC-UN, it is obvious that us-
ing language models improves the classification effectiveness of the naive Bayes
classifier. Both proposed methods consistently outperform NBC and respectively
perform better than NBC-UN in four out of ten categories. The micro-average
F -measure of TATM-MI is 0.731, which is better than that of TATM-JP (0.727),
NBC-UN (0.720) and NBC (0.709). The relative improvement in the micro-F
by TATM-MI is 3.1% over NBC and 1.5% over NBC-UN.

Table 3 shows the experimental results for the 20NG dataset in terms of the
micro/macro-averaged precision, recall, and F -measure. The micro-F of TATM-
JP is 0.817 and TATM-MI is 0.82, which is better than that obtained by NBC
(0.801) and NBC-UN (0.808). The relative improvement by TATM-JP over NBC
and NBC-UN is 2%, and 1.11%, respectively. Similarly, the relative improvement
in micro-F by TATM-MI over NBC and NBC-UN is 2.37%, and 1.49%, respec-
tively. The improvements of TATM-JP and TATM-MI over NBC and NBC-UN
are statistically significant according to the t -test. In addition, the term associ-
ation translation model estimating based on the mutual information for all data
sets is more efficient than learning the term association translation model by the
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joint probability. As expected, the performance in micro-F on the 20NG dataset
is very similar to that in macro-F because each class has a similar number of
training and testing documents. Again, we can see that TATM-MI performs the
best.

Several observations can be drawn from the results. First, the performance of
text classification can be improved by incorporating language models into the
naive Bayes classifier. Second, the proposed document model with term associ-
ation modeling leads to improvements over NBC and NBC-UN. The new model
could be applied to other topic document models.

5 Conclusion and Future Work

The use of term associations for TC has attracted great interest. This paper
has presented a new term association translation model, which models term
associations, for TC. The proposed model can be learned based on the joint
probability of the associative terms through the Bayes rule or based on the
mutual information of the associative terms. The experimental results show that
the new model learned in either way outperforms the traditional TC methods.
For future work, we plan to investigate the effect of the feature selection method
[17] for the selection of associative terms. In addition, we will integrate our model
into the topic models such as probability latent semantic analysis (PLSA) [9] or
latent Dirichlet allocation (LDA) [3] for text classification. Another interesting
direction is to combine the term association document model with the relevance-
based document model, and apply the combined model in TC.
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Abstract. Nowadays, many applications need to handle large amounts
of streaming data, which often presents a skewed distribution, i.e. one or
more classes are largely under-represented in comparison to the others.
Unfortunately, little effort has been directed towards the classification of
skewed data streams, although class-imbalance learning has already been
studied in the area of pattern recognition on static data. Furthermore,
while existing class-imbalance learning methods increase the recognition
accuracy on minority class, they often harm the global classification ac-
curacy. Motivated by these observations, we develop an approach suited
for classifying skewed data streams, which integrates two ensembles of
classifiers, each one suited for non-skewed and skewed data. This ap-
proach substantially increases the global accuracy compared to existing
classification methods for skewed data. Experimental tests have been
carried out on three public datasets showing interesting results. As a
further contribution, we will study metrics to evaluate the performance
of skewed data streams classification. We will also review the literature
on class-imbalance learning, and skewed data streams classification.

1 Introduction

These days many applications deal with large amounts of transaction data, i.e.
network traffic data, sensor network data and web usage data [3]. Such data,
also referred to as data streams in the rest of the paper, often present skewed
distributions, i.e. some classes are not sufficiently represented while instances of
other classes are over-represented.

Class imbalance exists in a large number of real-world domains and, hence,
learning on the static imbalanced data has received great focus [4,6]. Existing
solutions can be divided into the following four categories: (i) under-sampling the
majority class, so that its size matches that of the minority class(es); (ii) over-
sampling the minority class so as to match the size of the other class(es); (iii)
internally biasing the learning process so as to compensate for class imbalance;
(iv) multi-experts systems. Despite such efforts, most of these methods, while
increase the accuracy on the minority class, decrease the global accuracy in
comparison with traditional learning algorithms.
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Turning our attention to data streams classification, recent research has been
directed towards the topic of data streams classification [7,15,8,16]. Few methods,
however, have been designed to classify skewed data streams [9].

Therefore, skewed data streams classification deserves more attention. In this
respect, we propose here a classification method for skewed data streams, pre-
senting the following contributions: (i) we discuss the pros and cons of metrics
for performance evaluation under class skew; (ii) we present a review of the lit-
erature concerning classification methods for both static and streaming skewed
datasets; (iii) we propose a new approach for skewed data streams classification.
Comparing with existing methods, our proposed method improves not only the
accuracy on each class but also the global recognition accuracy, as confirmed by
experiments carried out on three public datasets.

The rest of the paper is organized as follows: we present background and
motivations in section 2, where we also review related work. In section 3, we
introduce our approach in detail. In section 4, we report the experimental results.
Finally, we conclude the paper in section 5.

2 Background and Motivations

In this paper, we consider two-classes skewed data classification problems, where
the minority and majority instances belong to the positive and negative classes
respectively, and the positive class is largely under-represented in comparison to
the negative one. The skewness of a dataset denotes the degree of data imbalance,
and its value is equal to the a priori probability of an instance belonging to the
majority class.

2.1 Performance Metrics

For a two-classes classification task, table 1 shows the corresponding confusion
matrix which is usually used to assess the performance of a recognition system.
We denote n− = FP + TN and n+ = TP + FN as the numbers of samples in
the negative and positive classes, respectively.

The global recognition accuracy, referred to as acc, is a traditional measure for
evaluating the performance of a classifier. For a two-classes classification task,
acc = (TP+TN)/(n−+n+). It is notable that such a measure is sensitive to class
skew because it considers values reported in all columns of the confusion matrix.
As an example, consider the Credit Card dataset with a skewness of 97.79% (see
also subsection 4.1). A classification system would achieve an accuracy as high
as acc = 97.79% if it arbitrarily labels all test samples as negative. However, it
would fail to recognize all positive cases, so it cannot meet the need of skewed
data classification applications.

As a complementary metric for acc on skewed data, we introduce the geomet-
ric mean of accuracies (gacc) for class-imbalance learning, which is a performance

measure used in the literature [12]: gacc =
√∏c

i=1
nii

n+i
, where nii is the num-

ber of elements of class i correctly labeled and n+i is the number of samples
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Table 1. Confusion matrix of a two-classes problem

Actual positive Actual negative

Hypothesis positive True Positive (TP ) False Positive (FP )

Hypothesis negative False Negative (FN) True Negative (TN)

belonging to class i. Hence, nii/n+i represents the accuracy for each class. It is
clear that gacc ranges in [0, 1]. For two-classes skewed data classification tasks,
we further introduce the following two metrics which specialize in measuring the
performance of a classifier on the two different classes:

– True Positive Rate or Recall, which is defined as TPrate = acc+ = TP
TP+FN ;

– True Negative Rate, which is defined as TNrate = acc− = TN
TN+FP ;

From above definitions, for two classes recognition problem, we obtain gacc =√
acc+ · acc−. On one side, to get a large value of gacc, both accuracies should

be large. On the other side, gacc will be low if either accuracy value is low.
Hence, gacc is a balance of acc+ and acc−. Nevertheless, if we only use the gacc
value to evaluate a classifier’s performance, we can not distinguish its separate
performance on the two different classes. As an example, consider the classifier
for the Credit Card mentioned above. Its acc− value is 100% but, since its acc+ is
0%, the gacc value for this classifier is 0%. This example confirms that neither acc
nor gacc on its own is enough to reflect the overall performance of the classifier
on skewed data, motivating the use of acc+ and acc−.

As a short summary, the metrics of acc, gacc, acc+ (or acc−) should be used
together as a joint measure to evaluate classification performance on skewed data
streams. Indeed, on the one hand, acc measures the global recognition rate and,
on the other hand, gacc reflects how much classifier performance is balanced. In
addition, acc+ (or acc−) reports separate classification performance on the two
different classes.

2.2 Classification Methods for Skewed Data

Researches for the learning of static imbalanced data can be classified into the
following four categories:

1. Under-sampling the majority class by resizing the training sets (TS), makes
the class distribution more balanced. The main drawback is the removal
of the potentially useful samples. One-sided selection is an under-sampling
method that tries to overcome tries to overcome this limitation removing
borderline and redundant majority class samples, and without touching mi-
nority class samples. [2,12].

2. Over-sampling the minority class so as to match the size of the majority one.
Synthetic minority over-sampling technique (SMOTE) is an over-sampling
approach creating synthetic samples in the feature space along the line seg-
ments to join any/all of the k minority class nearest neighbors [5]. Depending
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on the amount of needed samples, member samples from the k nearest neigh-
bors are randomly chosen.

3. Internally biasing the discrimination-based process to compensate class im-
balance without altering the class distributions. It should assign different
weights to prototypes of different classes [13], or use a weighted distance
function in the classification phase compensating the TS imbalance without
altering the class distribution [1].

4. Multi-experts systems (MES). In MES, each composing classifier Ci is
trained on a TS composed of a sample subset Ni of the majority class N
and all instances from the minority class P . So after sampling a subset Ni

from N , Ci is trained on Ni ∪ P . Later for the test data, the outputs of Ci

on the test samples are combined to make the final predication [11]. The
main motivation of this approach lies in the observation that a MES gen-
erally produces better results than those provided by any of its composing
classifiers.

2.3 Classification Methods for Streaming Data

Very fast decision tree learner (VFDT) is an early work for data stream clas-
sification [7]. It builds a decision tree incrementally using constant memory. It
starts with a single leaf, decides which attribute is the best for splitting the tree,
and selects via Hoeffding bound a small subset of examples passing through the
nodes. VFDTc [8] is an improvement over VFDT that can handle continuous
data, incorporate new information online and classify the samples with a single
scan of the data.

MES is also applied to data streams building separate classifiers on sequential
batches [15]. The performance of existing classifiers are tested using the new
batch of data. As a constant number of classifiers is kept, the extra classifiers
with worst classification accuracies will be eliminated. The final predication is
made by combining the outputs of remaining classifiers through majority voting.
In the following, we refer to this method as SEA.

Gao et. al. proposed a classification method for skewed data streams [9], which
is referred to as SDM07 in the rest of the paper. To make the class distributions
of the TS balanced, they (1) collect minority samples that have appeared over
in the new batch and all the past batches, (2) use only the majority instances
randomly sampled in the new batch. Samples from steps (1) and (2) are then
merged into a new TS used to build a classifier. Moreover, to make more accurate
classifications, they generate several such TSs at each new batch by running step
(2) several times. The outputs of the set are then combined by majority voting.

2.4 Motivations

The review of the literature reported so far shows that recent research has
focused, on the one hand, on class-imbalance learning on static data and, on
the other hand, on classifying non-skewed data streams. However, conventional
methods for non-skewed data streams usually do not give enough attention to
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skewed streams, whereas static class-imbalance learning methods often harm the
accuracy on majority class, although they increase the recognition accuracy on
the minority class.

Table 2. Experimental results on Credit Card dataset using Näıve Bayes

Batch SEA SDM07 Our approach
acc gacc acc+ acc− acc gacc acc+ acc− acc gacc acc+ acc−

1 0.9084 0.5233 0.2839 0.9644 0.8422 0.6507 0.4843 0.8743 0.8613 0.6551 0.4793 0.8955

2 0.9019 0.5154 0.2773 0.9578 0.8564 0.6335 0.4495 0.8928 0.8731 0.6062 0.4015 0.9154

3 0.9029 0.5074 0.2682 0.9598 0.8634 0.6215 0.4280 0.9024 0.8704 0.6088 0.4065 0.9120

4 0.8942 0.5357 0.3030 0.9472 0.8676 0.6196 0.4230 0.9075 0.8699 0.6152 0.4156 0.9106

5 0.9142 0.4516 0.2086 0.9774 0.8773 0.6143 0.4106 0.9192 0.8803 0.5892 0.3750 0.9256

To better illustrate such motivations, columns 2-9 of Table 2 compare the
classification performance achieved by two methods, namely SDM07 [9] and SEA
[15], on the Credit Card dataset with skewness of 97.79%. In Table 2, we observe
that data streams classification method designed for training under class skew,
i.e. SDM07, achieves more balanced performance measured in terms of gacc than
a conventional classifier adopting learning method tailored for non-skewed data,
i.e. SEA, due to the fact that the minority class classification accuracy (acc+) of
SDM07 is larger than SEA. However, although acc+ is improved, we observe that
acc values returned by SDM07 is always smaller than those provided by SEA,
confirming our observation that global accuracy decreases for existing methods
handling skewed data streams.

Thus, we are motivated to develop a new skewed data streams classification
method that can increase both the global recognition accuracy and the accuracy
on minority class.

3 Proposed Method

As reported in section 2.4, we have noticed that balancing the accuracies for
each class has the side effect of decreasing the global recognition accuracy (acc).
Therefore, we present in the following a method aiming at achieving larger acc
while still improving acc+ or gacc.

3.1 Framework of the Method

Since it is very difficult for a class-imbalance learner to achieve high performance
on both acc and gacc, we decide not to pursue perfect performance on both
measures separately, but to develop a classification method that can balance
them simultaneously, harming the global accuracy less than previous methods.

So, how can we balance acc with gacc? We utilize a multi-objective optimiza-
tion technique selecting the final output of the classification system between
the output of a classifier trained according to a learning method addressing the
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course of class imbalance, and the output of a classifier adopting a training
method for non-skewed data [14]. This choice is driven by a parameter, referred
to as threshold t∗ in the following, whose value maximizes two objective func-
tions, i.e. the global accuracy (acc) and the geometric mean accuracies (gacc),
on a validation set.

The framework of our method, shown in Fig. 1 (left), is based on two en-
sembles of classifiers. They are referred to as non-skewed ensemble of classifiers
(NEC), and skewed ensemble of classifiers (SEC). The former is trained on
the original skewed distribution, whereas the latter is trained on an artificially
balanced training set, applying MES scheme suited for imbalanced data. In our
implementation, we use SEA [15] for NEC, and SDM07 [9] for SEC. This frame-
work is adapted to data streams by means of dividing the training streams into
batches, and each batch is further divided into training and validation sets.
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Fig. 1. Framework of Proposed Method (left) and Example of Acc-Gacc curves (right)

Given an instance x belonging to test set, the final label O(x) is determined
as follows:

O(x) =

{
ONEC(x) if φ(x) ≥ t∗

OSEC(x) otherwise
(1)

When the reliability φ(x) provided by NEC is larger than the threshold t∗, the
final label corresponds to the label returned by NEC because it is reasonable to
assume that NEC is likely to provide a correct classification. But, when φ(x) is
below t∗, O(x) is equal to the label assigned by SEC, i.e. a classification method
tailored specially for skewed data. Indeed, in this case, the value of the reliability
suggests that the decision returned by NEC may not be safe. We will explain
the rationale of reliability estimation in subsection 3.3.
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3.2 Multi-objective Optimization

According to our proposal, we will first train NEC and SEC on the training set
of a given batch. Next, both of them are used to classify instances belonging
to the validation set of the batch to determine the best value of t∗ to be used
with the test data. Finally for test data, we apply equation 1 to set the final
classification. As reported above, the choice between the outputs of NEC and
SEC is driven by t∗. Since t∗ is an important threshold parameter, how do we
set this parameter? In order to answer this question, recall that gacc measures
how much the accuracies on two classes are balanced, whereas acc estimates the
global performance of the classification system. Let us represent gacc and acc on
the X and Y axes respectively, and vary a threshold t to generate a set of points
that can be used to plot a curve using samples belonging to validation set. The
curve extrema at t = 0 and t = 1 correspond to NEC and SEC performance,
respectively. In this plot, the ideal point is C = (1, 1); hence, the nearer the
curve to this point, the better the performance obtained. Therefore, the value
t∗ is given by argmint(||p(t) −C||), where p(t) is the pair of gacc(t) and acc(t)
values measured on the validation set when the threshold t is used.

Fig. 1 (right) shows two examples of this curve, corresponding to two different
situations that may occur. The first situation is represented by the continuous
line in the figure. In this case, the proposed method selects a value of t∗ that
permits to improve both gacc and acc in comparison to individual performance
of NEC and SEC, i.e. points marked with t = 0 and t = 1. The second situation
is represented by the dashed curve. In this case, the proposed method selects
a value of t∗ that improves gacc with respect to both NEC and SEC, while it
reduces slightly the value of acc in comparison to NEC. We deem that such
a reduction can be accepted since final performance are more balanced than
individual ones returned by NEC and SEC.

Algorithm 1 shows the algorithm implementing our proposal presented so far.
The training stream is divided into sequential batches (line 1), and each batch is
further divided into training and validation sets (line 3-(a)). Using the training
set, we train NEC and SEC (line 3-(b)). Next we compute t∗ using a validation
set and applying the method given in subsection 3.2, (line3-(c)). As NEC and
SEC are both ensemble of classifiers, we collect the member classifiers in line
3-(d). To classify test instances, we apply step 3-(e) according to equation 1.

3.3 Reliability Estimation

This subsection answers to the following question: what is the reliability and
why is it useful in the proposed method?

Utilizing information derived from classifier outputs allows for estimating the
reliability of each classification act. Reliability takes into account many issues
that influence the achievement of a correct classification, such as the noise affect-
ing the samples domain, and the differences between the objects to be recognized
and those used for training the classifiers.

Let φ(x) denote the reliability of a classification act on any instance x, and
the value range within [0, 1]. For two-class classifiers, φ(x) is computed using
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Algorithm 1. Algorithm of the proposed method

1. Divide the labeled dataset Z into n batches D1, D2, . . . , Dn.
2. Let ZTe be the test set.
3. For each batch:

(a) Divide the samples into training and validation sets, denoted by ZTr , ZV a.
(b) Train the non-skewed ensemble classifier (NEC) and a skewed ensemble clas-

sifier (SEC) on ZTr.
(c) Find the best threshold t∗ s.t. the system achieve the largest values of both

acc and gacc.
(d) Collect trained NECi and SECi, with i = 1, 2, . . . , n.
(e) Apply NECi and SECi to ZTe, using the following classification rule

O(x) =

{
ONEC(x) if φ(x) ≥ t∗

OSEC(x) otherwise

where x is a sample, ONEC(x) and OSEC(x) are the outputs provided by NEC
and SEC, φ(x) is the reliability of NEC, and O(x) is the final label.

the difference of predictions on the two different classes. A low value of φ(x)
will suggest that the classification decision made on instance x is not safe since,
for instance, it may be a borderline instance or it can be affected by noise in
the feature space; while a large value of φ(x) would suggest that the classifier is
more likely to have provided a correct classification [10].

In order to explain the rationale of using the reliability for skewed data clas-
sification, let us consider Fig. 2, where we report the experimentally measured
distributions of reliability values for test samples labeled by a classifier (i.e. NEC)
trained on a skewed distribution. On the one hand, when we apply NEC, the
minority class samples are more likely to receive low reliability values (see the
left part of Fig. 2). On the other hand, although low reliability values can also be
found for true negative instances, instances with high reliability values are more
likely to belong to the majority (negative) class (see the right part of Fig. 2).

In short, there are two main reasons for using reliability estimations on skewed
data stream classifiers: (1) applying NEC, samples with high reliability values
are more likely to belong to negative (majority) class. Hence, we can use reli-
ability values to distinguish between positive and negative instances; (2) SEC
is trained on artificially balanced training sets, so it should recognize not only
positive instances, but also negative ones. Therefore, although instances with
low reliability values can contain negative (majority) instances, SEC should be
able to correctly classify most of them.

4 Experimental Evaluation

In this section, we first describe the datasets used for the experiments. Second,
we introduce the experimental protocol and, third, we report the experimental
results.
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Fig. 2. Examples of reliability distributions for majority and minority class samples

4.1 Datasets

We use the three datasets shown in table 3. These datasets vary in both num-
ber of features and skewness. The prediction task for the Adult dataset is to
determine whether a person makes over 50K income a year. We only use two
classes of the Forest Cover dataset: Ponderosa and Lodgepole Pine. The task of
the Forest Cover dataset is to predict the forest cover type. The Credit Card
dataset was provided by the 2009 UCSD/FICO data mining contest1 and used
for predicting whether a transaction is an anomaly or not.

Table 3. Datasets description

Datasets Number of instances Skewness Number of features Source

Adult 44848 70.70% 14 UCI

Forest Cover 319055 88.79% 54 UCI

Credit Card 94682 97.79% 19 UCSD

4.2 Experimental Protocol

We test our approach on the above mentioned datasets. For each dataset, we
divide the data into batches, and the last two batches are left for testing only.
We vary the size of the batches in our tests: each batch in the Credit Card data
contains 10,000 transactions, the size of a batch in the Forest Cover dataset is
20,000, and it is 5,000 for the Adult data.

1 http : //mill.ucsd.edu
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Table 4. Experimental results on Credit Card dataset using Logistic Regression

Batch SEA SDM07 Our approach
acc gacc acc+ acc− acc gacc acc+ acc− acc gacc acc+ acc−

1 0.9095 0.5161 0.2757 0.9663 0.7886 0.6490 0.5182 0.8128 0.8692 0.5896 0.3808 0.9130

2 0.9029 0.5469 0.3129 0.9558 0.8027 0.6721 0.5472 0.8256 0.7989 0.6652 0.5381 0.8223

3 0.9082 0.4861 0.2442 0.9677 0.8084 0.6804 0.5571 0.8309 0.8113 0.6725 0.5414 0.8355

4 0.9151 0.5253 0.2839 0.9717 0.8200 0.6729 0.5356 0.8455 0.8740 0.5819 0.3684 0.9193

5 0.9139 0.4941 0.2508 0.9734 0.8084 0.6804 0.5571 0.8309 0.8158 0.6735 0.5397 0.8405

6 0.9084 0.4764 0.2343 0.9688 0.8109 0.6777 0.5505 0.8343 0.8138 0.6658 0.5281 0.8394

7 0.9034 0.4767 0.2359 0.9633 0.8207 0.6844 0.5546 0.8445 0.8664 0.6097 0.4098 0.9073

8 0.9130 0.4625 0.2194 0.9752 0.8147 0.6860 0.5621 0.8373 0.8792 0.5729 0.3543 0.9263

As there are few methods for skewed data stream classification, we implement
SDM07 [9] for SEC and we apply SEA [15] for NEC. These two methods were
chosen because both of them are well recognized methods for classifying skewed
or non-skewed data streams. Since both NEC and SEC are classifier ensembles,
we use C4.5, Näıve Bayes and Logistic Regression as the base learners in our
experiments. Performance are estimated measuring acc, gacc, acc+, and acc−.

4.3 Results

Tables 2, 4 and 5 report the results of the tests we performed on the Credit Card
dataset. Tables 6 and 7 show a portion of the test results on both Adult and
Forest Cover datasets. It is worth noting that SEA usually achieves the largest
acc value but has the smallest gacc value. The case is reversed for SDM07, with
the largest value for gacc but the smallest value for acc. Our proposed method,
however, achieves a balanced performance between the two above methods. As
discussed in section 2, this occurs because SEA is a learning method that usually
ignores the minority class in skewed data. SDM07, on the other hand, is biased
toward the minority class but harms the recognition accuracy on majority class.
Unlike the other two methods, our proposed approach balances acc and gacc
simultaneously.

We now provide a deeper analysis of the results achieved on the Credit Card
dataset (Tables 2, 4 and 5). We notice that: (i) SEA usually achieves the best
values of acc, while SDM07 often has the best values of both acc+ and gacc;
(ii) Sometimes the gacc values of our method are as large as or even larger than
SDM07; (iii) Our method increases the values of the acc+ of SEA by up to 70%.
Our method also outperforms SEA in terms of gacc by 25%; (iv) Our method
does not outperform SEA in terms of acc. With respect to SEA, our method
decreases acc by approximately 4%, but the decrease in acc is usually 13% in
the case of SDM07.

In summary, the above observations show that the proposed method takes into
account minority class instances without harming the global accuracy as much as
existing methods. We owe this fact to both the double-ensemble framework and
the multi-objective optimization technique embedded in the learning algorithm,
which dynamically adapts its threshold to variation in data distribution.
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Table 5. Experimental results on Credit Card dataset using C4.5

Batch SDM07 Our approach
acc gacc acc+ acc− acc gacc acc+ acc−

1 0.6908 0.7315 0.7839 0.6825 0.7143 0.7251 0.7384 0.7121

2 0.7261 0.7460 0.7707 0.7221 0.7531 0.7383 0.7210 0.7560

3 0.6952 0.7284 0.7707 0.6884 0.8000 0.6974 0.5944 0.8144

4 0.7153 0.7330 0.7641 0.7109 0.7326 0.7269 0.7202 0.7337

5 0.7101 0.7415 0.7815 0.7307 0.8090 0.6970 0.5681 0.8290

6 0.7163 0.7469 0.7856 0.7100 0.7086 0.7357 0.7699 0.7031

7 0.7124 0.7468 0.7906 0.7054 0.7880 0.7271 0.6614 0.7993

8 0.7100 0.7387 0.7748 0.7042 0.7410 0.7387 0.7359 0.7415

Table 6. Experimental results on Adult dataset using C4.5

Batch SDM07 Our approach
acc gacc acc+ acc− acc gacc acc+ acc−

1 0.7867 0.8051 0.8438 0.7681 0.7941 0.8092 0.8406 0.7790

2 0.8012 0.8181 0.8535 0.7842 0.8026 0.8136 0.8363 0.7916

3 0.8158 0.8242 0.8411 0.8075 0.8339 0.8021 0.7458 0.8606

4 0.7987 0.8181 0.8589 0.7791 0.8120 0.8087 0.8024 0.8151

5 0.8105 0.8137 0.8201 0.8074 0.8334 0.7841 0.7017 0.8762

Similar results were also found in the experiments with the other two datasets.
The results are shown in Table 6 and Table 7.

Table 7. Experimental results on Forest Cover dataset using Näıve Bayes

Batch SEA SDM07 Our approach
acc gacc acc+ acc− acc gacc acc+ acc− acc gacc acc+ acc−

1 0.9430 0.9274 0.9077 0.9475 0.9272 0.9332 0.9411 0.9254 0.9440 0.9262 0.9038 0.9491

2 0.9403 0.9326 0.9228 0.9425 0.9244 0.9360 0.9511 0.9211 0.9393 0.9330 0.9262 0.9398

3 0.9385 0.9308 0.9209 0.9408 0.9249 0.9348 0.9477 0.9220 0.9363 0.9313 0.9250 0.9377

4 0.9403 0.9319 0.9211 0.9428 0.9253 0.9345 0.9465 0.9226 0.9371 0.9289 0.9185 0.9395

5 0.9413 0.9333 0.9232 0.9436 0.9264 0.9354 0.9472 0.9237 0.9403 0.9336 0.9252 0.9422

6 0.9421 0.9313 0.9176 0.9452 0.9262 0.9358 0.9485 0.9233 0.9390 0.9326 0.9244 0.9408

7 0.9379 0.9328 0.9264 0.9393 0.9246 0.9366 0.9525 0.9210 0.9396 0.9318 0.9218 0.9418

8 0.9412 0.9334 0.9235 0.9434 0.9253 0.9363 0.9508 0.9221 0.9369 0.9353 0.9331 0.9374

9 0.9390 0.9319 0.9229 0.9411 0.9239 0.9367 0.9534 0.9202 0.9378 0.9316 0.9237 0.9395

10 0.9396 0.9313 0.9206 0.9420 0.9254 0.9363 0.9506 0.9223 0.9406 0.9303 0.9172 0.9436

Finally, we report the elapsed time during training and test phases of each
method. The running time increases with the batch size. Using C4.5 as the base
learner on Credit Card data, the proposed method takes 353 seconds, whereas
SDM07 spends 280 seconds. In the case of the Adult data, the proposed method
and SDM07 use 274 and 234 seconds, respectively. These results are reasonable,
because the proposed method trains two ensembles of classifiers. Hence, the
training time is slight longer than that of SDM07.
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5 Conclusions

In this paper, we have presented a classification method for skewed data streams.
This method is based on two classifier ensembles suited for learning with and
without class skew. While still improving the accuracy on each class, the pro-
posed method does not decrease the global recognition accuracy as much as
existing methods. Future work will be directed towards extending our study to
multi-class data streams.
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Abstract. We consider the problem of generating balanced training
samples from an unlabeled data set with an unknown class distribu-
tion. While random sampling works well when the data is balanced, it
is very ineffective for unbalanced data. Other approaches, such as ac-
tive learning and cost-sensitive learning, are also suboptimal as they are
classifier-dependent, and require misclassification costs and labeled sam-
ples. We propose a new strategy for generating training samples which
is independent of the underlying class distribution of the data and the
classifier that will be trained using the labeled data.

Our methods are iterative and can be seen as variants of active learn-
ing, where we use semi-supervised clustering at each iteration to perform
biased sampling from the clusters. Several strategies are provided to es-
timate the underlying class distributions in the clusters and increase
the balancedness in the training samples. Experiments with both highly
skewed and balanced data from the UCI repository and a private data
show that our algorithm produces much more balanced samples than
random sampling or uncertainty sampling. Further, our sampling strat-
egy is substantially more efficient than active learning methods. The
experiments also validate that, with more balanced training data, classi-
fiers trained with our samples outperform classifiers trained with random
sampling or active learning.

1 Introduction

Supervised learning algorithms can provide promising solutions to many real-
world problems such as text classification, anomaly detection and information
security. A major limitation of supervised learning is the difficulty in obtaining
labeled data to train predictive models. Ideally, one would like to train classifiers
on diverse labeled data representative of all classes. In many domains, such as
text classification or security, there is an abundant amount of unlabeled data, but
obtaining a representative subset is challenging: data is typically highly skewed
and sparse.

There are two widely used approaches for selecting data to label—random
sampling and active learning. Random sampling, a low-cost approach, produces
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a subset of the data with a similar distribution to the original data set, producing
skewed training data for unbalanced data. Training with unbalanced labeled data
yields poor results as reported in recent work on the effect of class distribution on
learning and performance degradation [1–3]. Active learning produces training
data incrementally by identifying the most informative data to label at each
phase [4–6]. However, active learning requires knowing the classifier in advance,
which is not feasible in many real applications, and requires costly re-training
at each step.

In this paper, we present new strategies to generate training samples from
unlabeled data to overcome limitations in random and existing active sampling
methods. Our core algorithm is an iterative method, in which we generate a
small fraction (e.g., 10%) of the desired training set each iteration, indepen-
dently of both the original data distribution as well as the target classifier. More
specifically, we first label a small number of randomly selected samples and
subsequently apply semi-supervised clustering to embed prior knowledge (i.e.,
labeled samples) to produce clusters approximating the true classes [7–9]. We
then estimate the class distribution of the clusters, and increase the balancedness
of the training sample via biased sampling.

A simplistic strategy for biased sampling would be to assume that the class
distribution of a cluster is the same as the distribution of labeled samples in
the cluster, and to draw samples proportionally to the estimated class distri-
butions. However, this assumption does not hold in early iterations when the
number of labeled samples is small, and there is high uncertainty about the
class distributions. We present two hybrid approaches to address this issue that
perform well in practice. The first approach is to combine the estimated class
distribution-based sampling and random sampling. As the number of labeled
samples increases, we decrease the influence of random sampling favoring the es-
timation based on previously labeled samples. The second approach is for cases
where additional domain knowledge is available. We use the domain knowledge
to estimate class distributions. Domain knowledge may come in many forms,
such as conditional probabilities and correlation, e.g., there is a heavy skew in
the geographical location of servers hosting malware[10]. We perform a similar
transition between the domain knowledge-based density estimation and previ-
ously labeled sample-based estimation.

We have validated these strategies on 14 data sets from the UCI data reposi-
tory [11] as well as a private data set authorizing users to systems (i.e., labeled
grant and deny). These data sets reflect a range of parameters: some are bal-
anced and others highly skewed; and some have binary classes while others have
multiple classes. We compare our strategies to random sampling as well as un-
certainty based active sampling based on three classifiers: Naive Bayes, Logistic
Regression, and SVM. The experiments show that, for highly skewed data sets,
our sampling algorithm produces substantially more balanced samples than ran-
dom sampling. For mildly skewed data sets, our method results in about 25%
more minority samples. Similarly, our algorithm performs better than uncer-
tainty sampling based methods for highly skewed samples, producing more than
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20% more minority samples on average. For mildly skewed data sets, our algo-
rithm’s results are not statistically different from uncertainty sampling based
on logistic regression. Given that uncertainty sampling requires one to fix the
classifier to be trained and is much slower, we conclude that our algorithm is
always preferable to both random and uncertainty based sampling. We test the
domain knowledge based strategy on the access control permission datasets. Our
result show that, in most cases, the addition of domain knowledge significantly
improves the convergence of the sampling so we can produce balanced sample
sets more quickly.

The quality of training data can best be evaluated by the performance of
classifiers trained on this data. We have compared various sampling strategies by
training and testing a range of classifiers. Our tests show that the classifiers built
with our training data outperform other classifiers in most of the experimental
scenarios and produce more consistent performance. Further, our classifiers often
outperform uncertainty sampling on AUC and F1 measures, even when sampling
and classification used the same classifier. The experimental results confirm that
our sampling methods are very generic and can produce highly balanced training
data irrespective of the underlying data distribution and the target classifier.

2 Related Work

There is an extensive body of work on generating “good” training data sets. A
common approach is active learning, which iteratively selects informative sam-
ples, e.g., near the classification border, for human labeling [6, 12–14]. The sam-
pling schemes most widely used in active learning are uncertainty sampling and
Query-By-Committee sampling [13, 15, 16]. Uncertainty sampling selects the
most informative sample determined by one classification model, while QBC
sampling determines informative samples by a majority vote. A major problem
with active learning is that the update process is very expensive as it requires
classification of all data samples and retraining of the model at each iteration.
This cost is prohibitive for large scale problems. Techniques such as batch mode
active learning [17, 18] have been proposed to improve the efficiency of uncer-
tainty learning. However, as the batch size grows, the effectiveness of active
learning decreases [18–20].

Another approach is re-sampling, i.e., over- and under-sampling classes [21,
22], however this requires labeled data. Recent work combines active learning
and re-sampling to address class imbalance in unlabeled data. Tomanek and
Hahn [23] propose incorporating a class-specific cost in the framework of QBC-
based active learning for named entity recognition. By setting a higher cost for
the minority class, this method boosts the committee’s disagreement value on
the minority class resulting in more minority samples in the training set. Zhu
and Hovy [24] incorporate over- and under-sampling in active learning for word
sense disambiguation. Their algorithm uses active learning to select samples for
human experts to label, and then re-samples this subset. In their experiments,
under-sampling caused negative effects but over-sampling helps increase bal-
ancedness. However, both [24] and [23] are primarily designed and applied to
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binary classification problems for text and are hard to generalize to multi-class
problems and non-text domains.

Our approach is iterative like active learning, but it differs crucially in that
it relies on semi-supervised clustering instead of classification and selects target
samples based on estimated class distribution in each cluster. This makes it
more general where the best classifier is not known in advance. Ours is the
first attempt at using active learning with semi-supervised clustering instead of
classification and thus does not suffer from over-fitting. Furthermore, since most
classification methods require the presence of at least two different classes in
the training set, there is a challenge in providing the initial labeling sample for
active learning; an arbitrary insertion of instances from at least two classes is
required. Our method does not have this limitation, and, although not shown
in the experiments, performs as well with a random initial sample. Our work
provides a general framework which is domain independent and can be easily
customized to specific domains.

3 Generating Balanced Training Data

Our strategy for generating balanced training sets are described in this section.
Section 3.1 presents a high level overview of the algorithm, and later sections
provide a more formal description and specific instantiations of the key steps
and discuss various tradeoffs.

3.1 Overview

Given an unlabeled dataset with unknown class distribution, potentially skewed,
our goal is to produce balanced labeled samples for training predictive models.
Formally, we can define the balanced training set problem as follows:

Definition 1. Let D be an unlabeled data set containing � classes from which
we wish to select T , a subset of D of size N . Let L(T ) be the labels of the training
data set T , then the balancedness of T is defined as the distance between the
label distribution of L(T ) and the discrete uniform distribution with � classes,
i.e., D(Uniform(�) ‖ Multi (L(T ))). The balanced training set problem is the
problem of finding a training data set that minimizes this distance.

If we know the class labels in a given set, then we can use over- and under-
sampling to draw balanced sample set [21, 22, 25]. However, the class labels are
not known, so instead we must use a series of approximations to approach the
results of this ideal solution. We apply an iterative semi-supervised clustering
algorithm to estimate the class distribution in the unlabeled data set and guide
the sample selection to produce a balanced set. In each iteration, the algorithm
draws a batch of samples (B), and domain experts provide the labels of the
selected samples. The labeled samples are used in subsequent iterations.

Algorithm 1 is a high level description of our strategy. It takes three inputs: D,
an unlabeled data set; �, the number of target classes in D; and N , the number
of training samples to generate. We note that the value of the input parameters



270 Y. Park et al.

TrainingSetGeneration(D, 
,N, [B])
if B is undefined then

B ← min
(⌊

|D|
10

⌋
, N
10

)
;

end

maxcluster ←
⌊

|D|
10

⌋
;

T ← L(B randomly selected samples);
while |T | < N do

{C1, . . . , Ck} ← SemiSupervisedClustering (D, T ,maxcluster );
T ′ ← ∅;
foreach j = 1 to k do

numj ← DetermineOptimalNumberToSample(Cj);
Tj ← MaximumEntropySampling(Cj , numj);
T ′ ← T ′ ∪ Tj ;

end
T ← T ∪ L(T ′);

end

Algorithm 1. High level steps of the proposed algorithm

are previously determined in most applications. The number of samples to select
in each iteration, B, can be determined automatically based on D and N , or
users can optionally set the batch size as an input parameter.

To start, we select B samples randomly and obtain the labels. Then, a semi-
supervised clustering algorithm is applied to embed the labels obtained from
the prior steps into the clustering process (Section 3.2), which can be used to
approximate the class distributions in the clusters. The key intuition behind the
process is that we want to extract more samples from clusters which are likely
to increase the balancedness of the overall training set. Our algorithm tries to
infer the class distribution of each cluster and use this to over- or under-sample.
Section 3.3 describes key details of the class density estimation process, the
various tradeoffs and their influence on the ultimate results. Once we determine
how much to sample from each cluster, we obtain diverse samples using maximum
entropy sampling (Section 3.5). We note that there is an implicit secondary
optimization of maximizing the entropy of the sampled points, H(T ), which is
the byproduct of the real objective, maximizing the performance of a classifier
trained on T .

3.2 Semi-supervised Clustering

Semi-supervised clustering is a technique which incorporates existing informa-
tion into clustering. A number of approaches have been proposed to embed
constraints into existing clustering algorithms [9, 26]. We explore two differ-
ent strategies: a distance metric technique for multi-variate numeric data and a
heuristic to add class labels in the feature set for categorical data. We use Rele-
vant Component Analysis (RCA) [7] for distance metric-based semi-supervised
clustering, This is a Mahalanobis metric technique which finds a new space with
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the most relevant features in the side information. It learns a global distance met-
ric parameterized by a transformation matrix Ĉ to capture relevant features in
the labeled sample set. It maximizes the similarity between the original data set
X and the new representation Y constrained by the mutual information I(X,Y ).

By projecting X into the new space through transformation Y = Ĉ− 1
2X , two

projected data objects, Yi, Yj , in the same connected component have a smaller
distance.

Here, we sketch the steps to compute the “within-chunklet” covariance matrix
(transformation matrix), Ĉ. Given a data set X = {xi}Ni=1 and a labeled sample
set L ⊂ X , suppose u connected components (i.e., chunklets) M = {Mj}uj=1

are obtained based on L, which satisfies X =
⋃u

i=1 Mj. Let the data points in

a component Mj be denoted as {xji}|Mj |
i=1 for 1 ≤ j ≤ u. Then, the covariance

matrix Ĉ is defined by Equation 1, where mj is the centroid of Mj.

Ĉ =
1

N

u∑
j=1

|Mj |∑
i=1

(xji −mj)(xji −mj)
T (1)

After projecting the data set into a new space using RCA, the data set is re-
cursively partitioned until all the clusters are smaller than a predetermined
threshold, maxcluster . Algorithm 2 summarizes our semi-supervised clustering
algorithm using RCA.

SemiSupervisedClustering(X,L(T ),maxcluster )
Ĉ = RCA(X,L(T ));
Y = Ĉ− 1

2 X;
C ← {C1, C2} = BinaryClustering(Y );
while ∃Ci ∈ C, |Ci| > maxcluster do

{Ci1, Ci2} ← BinaryClustering(Ci);
C ←
(
C \ Ci

)
∪ {Ci1, Ci2} ;

end

Algorithm 2. Semi-supervised clustering algorithm to divide a data set into
balanced clusters

The RCA algorithm makes several assumptions regarding the distribution of
the data. Primarily, it assumes the data is multivariate normally distributed,
and, if so, produces the optimal result. It has also been shown to perform well
on datasets when the normally distributed assumption fails [7], including many
of the UCI datasets used in this work. However, it is not known to work well
for Bernoulli or categorical distributed data, such as the access control datasets,
where it produces a marginal improvement, at best. Instead, we choose a simple
method by augmenting the feature set with labels of known samples, i.e., F ‖ L,
and assigning a default feature value, or holding out feature values, for unlabeled
samples. For example, if we have � class labels, we will add � new binary features.
If the sample has class j, we will assign feature j a value of 1, and all other label
features a zero. Unlabeled samples are assigned a feature corresponding to the
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prior, the fraction of labeled samples with that class label. As before, we use the
recursive binary clustering technique described previously to cluster the data.
We find that this simple heuristic produces good clusters and yields balanced
samples more quickly for categorical data.

3.3 Determine the Optimal Number to Samples from Each Cluster

Once we have clustered the data, the key step is to estimate the class density in
the clusters and use this information to perform biased sampling to increase the
overall balancedness in the sample set. We assume that the semi-supervised clus-
tering step has produced biased clusters allowing us to approximate a solution
of drawing samples with known classes.

The first approach is to assume that the class distribution of the cluster is
exactly the same as the class distribution of the labeled samples in this cluster.
This is based on the optimistic assumption that the semi-supervised clustering
works perfectly and groups together elements similar to the labeled sample.
First, we determine how many samples we wish to draw from each class in this
iteration from the total B samples to draw. Let �ji be the number of instances of

class j sampled after iteration i, and ρji be the normalized proportion of samples

with class label j, i.e., ρji =
�ji∑
r �ri

. To increase balancedness, we want to sample

inverse proportionally to their current distribution [21, 22, 25], i.e., nj =
1−ρj

i

�−1 ∗B,
where � is the number of classes. Next, we use the estimated class distribution
in each cluster to determine the appropriate number of samples to draw from
each class. Let θji be the probability of drawing a sample with class label j from
the previously labeled subset of cluster i. By our assumption, this is exactly the
probability of drawing a sample with class label j from the entire cluster. To

sample nj samples with label j, we draw nj
θj
i∑

k
l=1 θj

l

samples from cluster i, where

k is the number of clusters. Another strategy is to draw all nj samples from the
cluster with the maximum probability of drawing class j, however our method
selects a more representative subset, and we can obtain good results even if our
estimation of cluster densities is incorrect and reduces later classifier over-fitting.

In early stages of the iteration process, where there are few labeled samples,
this approach does not work well. We use a hybrid approach where we select a
certain percentage of B samples based on the estimates of class distribution and
select remaining samples randomly from all clusters. We increase the influence
of labeled samples over time as we obtain more labeled samples and thus better
estimates on class distribution. Let BL be the number of samples to select based
on labeled samples, and Br be the number of samples to select randomly. Then,
we compute BL = ω ·B and Br = (1−ω) ·B using a sigmoid function ω = 1

1+e−λt ,
where t is the iteration number and λ a parameter that controls the rate of
mixing. As t increases (i.e., number of labeled samples increases), we decay the
influence of random sampling favoring empirical estimates.
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3.4 Leveraging Domain Knowledge

In Section 3.3, we presented a hybrid sampling method that combines sampling
based on the class distribution of each cluster and random sampling. In many
settings, domain experts may have additional knowledge regarding the distri-
bution of class labels and correlations with given features or feature values. For
instance, in the problem of detecting malicious web sites, there is a heavy skew in
geographical location of the web servers [10]. In access control datasets, one can
expect correlations between the department of the employee and granted per-
missions. This section outlines a method where we can incorporate such domain
knowledge to estimate the class distribution within a cluster. We use domain
knowledge in the form of a correlation value between a feature and a class label.
For example, corr(Department = 20, class = grant) = +0.1. These correlations
may be noisy and incomplete, pertaining to only a small number of features or
feature values. Without loss of generality, we will only consider binary labels;
the technique can readily be extended to non-binary labels.

Given a small number of feature-class and feature-value-class correlations and
the feature distribution within a cluster, we can estimate the class density. We
leverage some of the ideas from the MYCIN model of inexact reasoning [27]. They
note that domain knowledge is often logically inconsistent and non-Bayesian. For
example, given expert knowledge that p (class = grant | Department = 20) = 0.6,
we cannot conclude that p (class �= grant | Department = 20) = 0.4. Further, a
näıve Bayesian approach requires an estimation of the global class distribution,
which we assume is not known a priori. Instead, our approach is based on inde-
pendently aggregative suggestive evidence and leverages properties from fuzzy
logic. The correlations correspond to inference rules (e.g., Department = 20 →
class �= grant), where the correlation coefficients are the confidence weights of
the inference rules, and the feature density within each class is the degree that
the given inference rule is fired. We evaluate each inference rule in support (pos-
itive correlation) and refuting (negative correlation) the class assignments, and
aggregate the results using the Product T-Conorm, norm(x, y) = x + y − x ∗ y.
We combine evidence supporting and refuting a class assignment using the rule
“class 1 and not class 2,” and T-Norm for conjunction, f(x, y) = x ∗ (1 − y).
Finally, we use domain knowledge-based estimates to supplement the empiri-
cal estimates BL. Let Bd be the number of samples to select based on domain
knowledge, then we select B = BL + Bd samples in each iteration. As domain
knowledge is inexact and noisy, we decay the influence of its estimates over time,
favoring the empirical estimates using the sigmoid ω described in Section 3.3,
i.e., Bd = (1− ω) · B.

3.5 Maximum Entropy Sampling

Finally, given the set of clusters {Ci}ki=1, and the number of samples to select
from each cluster, we sample to maximize the entropy of the sample L(T ). We
assume that the data in each cluster follows a Gaussian distribution. For a
continuous variable x ∈ Ci, let the mean be μ, and the standard deviation be
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σ, then the normal distribution N (μ, σ2) has maximum entropy among all real-
valued distributions. The entropy for a multivariate Gaussian distribution [28]
is defined as:

H(X) =
1

2
d (1 + log (2π)) +

1

2
log (|Σ|) (2)

where d is the dimension, Σ the covariance matrix, and |Σ| the determinant of
Σ. Thus, more variation the covariance matrix has along the principal directions,
the more information it embeds.

Note that the number of possible subsets of r elements from a cluster C
can grow very large (i.e.,

(|C|
r

)
), so finding a subset with the global maximum

entropy can be computationally very intensive. We use a greedy method that
selects the next sample which adds the most entropy to the existing labeled
set. Our algorithm performs the covariance calculation O(rn) times, while the
exhaustive search approach requires O(nr). If there are no previously labeled
samples, we start the selection with the two samples that have the longest dis-
tance in the cluster. The maximum entropy-based sampling method is presented
in Algorithm 3.

MaximumEntropySampling(T , C, num)
CU ← unlabeled samples in C;
TC ← ∅;
while |TC | < num do

u ← argmaxui∈CU H(T ∪ {ui}) ;
TC ← TC ∪ {u} ;
CU ← CU \ {u} ;

end
Return T ∪ TC

Algorithm 3. Maximum entropy sampling strategy

4 Experiments and Evaluation

This section presents a performance comparison of our sampling strategies with
random sampling and uncertainty based sampling on a diverse collection of data
sets. Our results show that our algorithm produces significantly more balanced
sets than random sampling in almost all datasets. Our technique also performs
much better than uncertainty based sampling for highly skewed sets, and our
training samples can be used to train any classifier. We also describe results
which confirm the benefits of domain knowledge.

4.1 Evaluation Setup

To evaluate the sampling strategies, we selected 14 data sets from the UCI
repository [11] and a private data set containing the assignment of access control
permissions to users. The data sets span a wide range of parameters and are
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Table 1. Description, size, and distribution of experimental data sets

Data #Samples #Classes Class Distribution

Breast Cancer 699 2 65.52% vs. 34.48%

Ionosphere 351 2 35.90% vs. 64.10%

KDD’99 49,180 2 97.35 vs. 2.65%

Page Blocks 5,028 2 97.71% vs. 2.29%

Pima Indians 768 2 65.10% vs. 34.90%

Breast Cancer (BC) Wisconsin 198 2 76.26% vs. 23.74%

Spambase 4,601 2 60.60% vs. 39.40%

SPECT 267 2 79.40% vs. 20.60%

Iris 150 3 balanced

Wine 178 3 39.89% 26.97% 33.15%

Statlog (Landsat Satellite) 6,435 6 23.82% to 9.73%

Pen Digits 10,992 10 balanced

Poker Hand 25,010 10
Two major (42.4%–50%) &
eight minor (4.8%–0.02%)

Letter Recognition 20,000 26 balanced

Access Permission 3,068 2 91.72% vs. 8.28%

summarized in Table 1: some are highly skewed while others are balanced, some
are multi-class while others are binary.

All UCI data sets are used unmodified except the KDD Cup’99 set which
contains a “normal” class and 20 different classes of network attacks. In this
experiment, we selected only “normal” class and “guess password” class to create
a highly skewed data set. When a data set is provided with a training set and
a test set separately (e.g., ‘Statlog’), we combined the two sets. The features
in the access control data set are typically organization attributes of a user:
department name, job roles, whether the employee is a manager, etc. These
categorical features are converted to binary features. Since, such access control
permissions are assigned based on a combination of attributes, these data sets
are also useful to assess the benefits of domain knowledge.

For each data set, we randomly select 80% of the data to be used as un-
labeled data, from which training samples are generated. The remaining 20%
of the samples is used to test classifiers trained with the training samples. For
uncertainty-based active learning, we use three widely used classification al-
gorithms, Naive Bayes, Logistic Regression, and SVM, and these variants are
labeled Un Naive, Un LR, and Un SVM respectively. We used the C-support
vector classification (C-SVC) SVM with a radial basis function (RBF) kernel,
and Logisitc Regression with RBF kernel. All classification experiments were
conducted using RapidMiner, an open source machine learning tool kit [29]. Lo-
gistic Regression in RapidMiner only supports binary classification, and thus
it was extended to a multi-class classifier using “one-against-all” strategy for
multi-class data sets [30]. All experimental results reported here are the average
of 10 runs of the experiments.
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Table 2. Distance of the sampled class distributions to the uniform distribution. The
best performing algorithm for each data set is highlighted in bold.

Distribution Data Sample Size Random Un Naive Un LR Un SVM Our

Highly Skewed
Poker Hand 2,000 0.574 0.570 0.540 0.557 0.540
Page Blocks 2,000 0.676 0.657 0.646 0.656 0.642
KDD’99 2,000 0.670 0.680 0.291 0.479 0.282
Access Permission 2,000 0.594 0.592 0.535 0.492 0.472

Mildly Skewed
Statlog 2,000 0.150 0.247 0.067 0.049 0.118
SPECT 110 0.427 0.419 0.278 0.212 0.320
BC Wisconsin 80 0.361 0.318 0.359 0.377 0.324
Wine 75 0.114 0.184 0.046 0.077 0.039
Breast Cancer 280 0.229 0.190 0.170 0.201 0.028
Pima Indians 310 0.215 0.083 0.007 0.056 0.086
Ionosphere 140 0.208 0.140 0.061 0.089 0.076
Spambase 1,845 0.151 0.199 0.018 0.048 0.093

Uniform
Iris 60 0.055 0.335 0.078 0.401 0.051
Letter Recognition 2,000 0.020 0.129 0.094 0.137 0.069
Pendigits 2,000 0.020 0.238 0.060 0.064 0.084

4.2 Comparison of Class Distribution in Training Samples

We first evaluate the five sampling methods by comparing the balancedness of
the generated training sets. For each run, we continue sampling till the selected
training sample contains 50% of the unlabeled samples or we have 2,000 samples,
whichever is smaller. The evaluation metrics we use are the balancedness of the
training data and the recall of the minority class. As noted above, each run is
done with a random 80% of the underlying data set and the results are averaged
over 10 runs. We measure the balancedness of a data set as the distance of
the sampled class distribution from the uniform class distribution as defined in
Definition 2.

Definition 2. Let X be a data set with k different classes. Then the uniform
distribution over X is the probability density function (PDF), U(X), where Ui =
1
k , for all i ∈ k. Let P (X) be a PDF over the classes produced by a sampling
method. Then the balancedness of the sample is defined as the Euclidean distance

between the distributions U(X) and P (X) i.e. d =
√∑k

i=1(Ui − Pi)2.

Table 2 summarizes the results of balancedness comparison, and Table 3 shows
the recall of minority class for all the data sets respectively. Our method produces
significantly better results compared to pure random sampling. On KDD’99, our
sampling algorithm yields 10x more minority samples on average than random.
Similarly for Page Blocks and the access permission data set, our method pro-
duces about 2x more balanced samples. For mildly skewed data sets, our method
also produces about 25% more minority samples on the average. For the data
sets which are almost balanced, random is the best strategy as expected. Even
in this case, our method produces results which are statistically very close to
random. Thus, our method is always preferable to random sampling.
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Table 3. The recall rates for the binary class data sets. Min. Ratio refers to the ratio
of the minority class in the unlabeled data set. For the access permission data, the
average and the standard deviation over multiple data sets are reported.

Data Min. Ratio Random Un Naive Un LR Un SVM Our

Poker Hand 0.02 15.00 0.00 0.00 0.00 62.50
Page Blocks 2.29 47.61 77.07 93.91 77.83 100.00
KDD’99 2.65 5.06 3.63 56.53 30.89 57.70
Access Permission 8.04 (5.98) 24.82 25.39 (5.60) 46.32 (22.34) 60.79 (23.87) 58.83 (26.31)
Statlog 9.73 39.98 59.18 49.84 49.80 35.85
SPECT 20.56 48.18 50.91 75.91 87.50 66.59
BC Wisconsin 23.90 51.58 52.89 51.84 49.21 57.11
Wine 27.03 46.15 42.05 60.77 52.82 57.95
Breast Cancer 34.46 49.07 53.06 41.30 51.97 75.44
Pima Indians 34.96 48.56 63.63 71.77 64.84 62.28
Ionosphere 35.94 48.88 55.54 64.95 60.59 62.28
Spambase 39.41 49.91 45.66 62.00 67.85 55.12

Since uncertainty based sampling methods are targeted to cases where the
classifier to be trained is known, the right comparison with these methods should
include the performance of the resulting classifiers. Further, these algorithms
are not very efficient due to re-training at each step. With these caveats, we
can directly compare the balancedness of the results. For highly skewed data
sets, our method performs better especially when compared to Un SVM and
Un Naive methods. On KDD’99, we produce 20x and 2x more minority samples
compared to Un Naive and Un SVM respectively, while Un LR performs almost
as well as our algorithm. Similarly for Page Blocks, we perform about 20% better
than these methods. We note that our method found all minority samples for all
10 split sets for the Page Blocks set. For other data sets, our algorithm shows
no significant statistical difference compared to these methods on almost all
cases and sometimes we do better. Based on these results, we also conclude that
our method is preferable to the uncertainty-based methods based on broader
applicability and efficiency.

Figure 1 pictorially depicts the performance of our sampling algorithm as well
as the uncertainty based sampling for a few data sets to highlight cases where our
method performs better. These figures show the distance from uniform against
the percentage of sampled data over iterations. The results show that our sam-
pling technique consistently converges towards balancedness while there is some
variation with uncertainty techniques, which remains true for other data sets
as well. Note that the distance increases in Page Blocks and Access Permission
data sets after 20% point is because our method exhausted all minority samples.

4.3 Comparison of Classification Performance

In this section, we evaluate the quality of the training samples by comparing
the performance of classifiers trained on them. We apply the training samples
from the five strategies to train the same type of classifiers (Naive, LR, and
SVM), resulting in 15 different “training-evaluation” scenarios. Due to space
limitations,wepresent inTable4theAUCandF1-measure forbinaryclassdatasets.
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Breast Cancer Iris

Page Blocks Access Permission

Fig. 1. Progress of balancedness increase over iterations

We expect the performance of the uncertainty sampling methods paired with
their respective classifier, e.g., Un SVM with SVM and Un LR with Logistic
Regression, to perform best. We observe this behavior on KDD and PIMA,
but the off-diagonal entries for uncertainty based sampling show poor results.
However, on other datasets such as Breast Cancer and SPECT data sets, our
approach outperforms the competing uncertainty sampling. Furthermore, our
method performs well consistently across all classifiers without being biased to
a single classifier and at reduced computation cost.

4.4 Impact of Domain Knowledge

The access control permission data sets are used to evaluate the benefit of ad-
ditional domain knowledge given as a correlation of a user’s attributes (e.g.,
department number, whether she is a manager, etc.) and the granted permis-
sion. Our evaluation of sampling with domain knowledge shows that domain
knowledge (almost) always helps. There are a few cases where adding domain
knowledge negatively impacts performance as shown in Fig 2(b). However, in
most cases, domain knowledge substantially improves the convergence of the al-
gorithm. The example depicted in Figure 2(a) is typical of the access control
datasets. Since such domain knowledge is mostly used in the early iterations, it
significantly helps speed up the convergence.
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Table 4. Performance comparison of the three classifiers trained with five different
sampling techniques. The figures in bold denote the best performing sampling technique
for each classifier. The figures in italics denote the best performing classifier excluding
the uncertainty sampling methods paired with their respective classifier.

Data Set Breast Cancer SPECT

Classifier Naive LR SVM Naive LR SVM

Sampling AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Random 0.959 93.52 0.982 91.16 0.549 4.41 0.796 50.38 0.713 34.96 0.823 49.12
Un Naive 0.970 94.04 0.979 76.78 0.541 4.74 0.777 47.97 0.734 43.15 0.812 48.12
Un LR 0.973 94.06 0.971 61.31 0.524 2.40 0.760 51.29 0.670 45.65 0.818 59.00
Un SVM 0.961 94.27 0.979 91.17 0.542 2.84 0.787 53.32 0.634 45.65 0.833 53.54
Our 0.987 94.41 0.985 91.67 0.552 52.92 0.766 54.29 0.736 45.67 0.839 56.47

Data Set Pima Indians KDD

Classifier Naive LR SVM Naive LR SVM

Sampling AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Random 0.785 60.81 0.771 11.17 0.658 22.54 0.972 61.94 0.999 46.74 0.978 79.91
Un Naive 0.808 61.14 0.745 26.53 0.593 28.93 0.964 63.30 0.997 21.56 0.954 69.07
Un LR 0.800 60.10 0.768 55.93 0.611 41.19 0.905 28.56 0.999 96.81 0.998 97.37
Un SVM 0.785 60.15 0.761 44.02 0.610 31.18 0.979 59.24 0.998 92.74 0.988 98.10
Our 0.805 59.5 0.808 51.62 0.649 32.78 0.910 30.54 0.999 90.90 0.990 90.68

(a) Positive Impact (b) Negative Impact

Fig. 2. Comparison of our algorithm (‘Sigmoid’), our algorithm with domain knowledge
(‘+Domain’), and random sampling (‘Random’). The y-axis shows the minority class
density in the training data, and x-axis shows the recall of the minority class.

5 Conclusion

In this paper, we considered the problem of generating a training set that can
optimize the classification accuracy and also is robust to classifier change. We
confirmed through experiments that our method produces very balanced train-
ing data for highly skewed data sets and outperforms other methods in correctly
classifying the minority class. For a balanced multi-class problem, our algorithm
outperforms active learning by a large margin and works slightly better than
random sampling. Furthermore, our algorithm is much faster compared to ac-
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tive sampling. Therefore, the proposed method can be successfully applied to
many real-world applications with highly unbalanced class distribution such as
malware detection or fraud detection. In future work, we plan to apply kernel
methods for semi-supervised clustering which can discover clusters with non-
linear boundaries in the original space to better fit nonlinearly separable data.
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Abstract. Model selection is critical to least squares support vector machine
(LSSVM). A major problem of existing model selection approaches is that a
standard LSSVM needs to be solved with O(n3) complexity for each iteration,
where n is the number of training examples. In this paper, we propose an ap-
proximate approach to model selection of LSSVM. We use Nyström method to
approximate a given kernel matrix by a low rank representation of it. With such
approximation, we first design an efficient LSSVM algorithm, and then theoreti-
cally analyze the effect of kernel matrix approximation on the decision function
of LSSVM. Based on the matrix approximation error bound of Nyström method,
we derive a model approximation error bound, which is a theoretical guarantee of
approximate model selection. We finally present an approximate model selection
scheme, whose complexity is lower than existing approaches. Experimental re-
sults on benchmark datasets demonstrate the effectiveness of approximate model
selection.

Keywords: model selection, Nyström method, matrix approximation, least
squares support vector machine.

1 Introduction

Support vector machine (SVM) [18] is a learning system for training linear learning
machines in the kernel-induced feature spaces, while controlling the capacity to prevent
overfitting by generalization theory. It can be formulated as a quadratic programming
problem with linear inequality constraints. The least squares support vector machine
(LSSVM) [16] is a least squares version of SVM, which considers equality constraints
instead of inequalities for classical SVM. As a result, the solution of LSSVM follows
directly from solving a system of linear equations, instead of quadratic programming.

Model selection is an important issue in LSSVM research. It involves the selection
of kernel function and associated kernel parameters and the selection of regularization
parameter. Typically, the form of kernel function will be determined as several types,
such as polynomial kernel and radial basis function (RBF) kernel. In this situation, the
selection of kernel function amounts to tuning the kernel parameters. Model selection
can be reduced to the selection of kernel parameters and regularization parameter which
minimize the expectation of test error [4]. We usually refer to these parameters collec-
tively as hyperparameters. Common model selection approaches mainly adopt a nested
two-layer inference [11], where the inner layer trains the classifier for fixed hyperpa-
rameters and the outer layer tunes the hyperparameters to minimize the generalization
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c© Springer-Verlag Berlin Heidelberg 2012



Nyström Approximate Model Selection for LSSVM 283

error. The generalization error can be estimated either via testing on some unused data
(hold-out testing or cross validation) or via a theoretical bound [17,5].

The k-fold cross validation gives an excellent estimate of the generalization error
[9] and the extreme form of cross validation, leave-one-out (LOO), provides an almost
unbiased estimate of the generalization error [14]. However, the naive model selection
strategy based on cross validation, which adopts a grid search in the hyperparameters
space, unavoidably brings high computational complexity, since it would train LSSVM
for every possible value of the hyperparameters vector. Minimizing the estimate bounds
of the generalization error is an alternative to model selection, which is usually realized
by the gradient descent techniques. The commonly used estimate bounds include span
bound [17] and radius margin bound [5]. Generally, these methods using the estimate
bounds reduce the whole hyperparameters space to a search trajectory in the direction
of gradient descent, to accelerate the outer layer of model selection, but multiple times
of LSSVM training have to be implemented in the inner layer to iteratively attain the
minimal value of the estimates. Training LSSVM is equivalent to computing the inverse
of a full n × n matrix, so its complexity is O(n3), where n is the number of training ex-
amples. Therefore, it is prohibitive for the large scale problems to directly train LSSVM
for every hyperparameters vector on the search trajectory. Consequently, efficient model
selection approaches via the acceleration of the inner computation are imperative.

As pointed out in [5,3], the model selection criterion is not required to be an unbiased
estimate of the generalization error, instead the primary requirement is merely for the
minimum of the model selection criterion to provide a reliable indication of the mini-
mum of the generalization error in hyperparameters space. We argue that it is sufficient
to calculate an approximate criterion that can discriminate the optimal hyperparame-
ters from the candidates. Such considerations drive the proposal of approximate model
selection approach for LSSVM.

Since the high computational cost for calculating the inverse of a kernel matrix is a
major problem of LSSVM, we consider to approximate a kernel matrix by a “nice” ma-
trix with a lower computational cost when calculating its inverse. The Nyström method
is an effective technique for generating a low rank approximation for the given kernel
matrix [19,13,8]. Using the low rank approximation, we design an efficient algorithm
for solving LSSVM, whose complexity is lower than O(n3). We further derive a model
approximation error bound to measure the effect of Nyström approximation on the deci-
sion function of LSSVM. Finally, we present an efficient approximate model selection
scheme. It conforms to the two-layer iterative procedure, but the inner computation has
been realized more efficiently. By rigorous experiments on several benchmark datasets,
we show that approximate model selection can significantly improve the efficiency of
model selection, and meanwhile guarantee low generalization error.

The rest of the paper is organized as follows. In Section 2, we give a brief introduc-
tion of LSSVM and a reformulation of it. In Section 3, we present an efficient algorithm
for solving LSSVM. In Section 4, we analyze the effect of Nyström approximation on
the decision function of LSSVM. In Section 5, we present an approximate model selec-
tion scheme for LSSVM. In Section 6, we report experimental results. The last section
gives the conclusion.
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2 Least Squares Support Vector Machine

We use X to denote the input space and Y the output domain. Usually we will have
X ⊆ Rd, Y = {−1, 1} for binary classification. The training set is denoted by

S = ((x1, y1) , . . . , (xn, yn)) ∈ (X × Y)n .

We seek to construct a linear classifier, f (x) = w ·φ(x)+b, in a feature space F , defined
by a feature mapping of the input space, φ : X → F . The parameters (w, b) of the linear
classifier are given by the minimizer of a regularized least-squares training function

L =
1
2
‖w‖2 + 1

2μ

n∑

i=1

[yi − w · φ(xi) − b]2, (1)

where μ > 0 is called regularization parameter. The basic training algorithm for LSSVM
[16] views the regularized loss function (1) as a constrained minimization problem

min
1
2
‖w‖2 + 1

2μ

n∑

i=1

ε2
i ,

s.t. εi = yi − w · φ(xi) − b.

(2)

Further, we can obtain the dual form of Equation (2) as follows

n∑

j=1

α jφ(x j) · φ(xi) + b + μαi = yi, i = 1, 2, . . . , n, (3)

where
∑n

i=1 αi = 0. Noting that φ(xi) ·φ(x j) corresponds to the kernel function K(xi, x j),
we can write Equation (3) in a matrix form

[
K + μIn 1

1T 0

] [
α
b

]
=

[
y
0

]
, (4)

where K = [K(xi, x j)]n
i, j=1, In is the n×n identity matrix, 1 is a column vector of n ones,

α = (α1, α2, . . . , αn)T ∈ Rn is a vector of Lagrange multipliers, and y ∈ Yn is the label
vector.

If we let Kμ,n = K + μIn, we can write the first row of Equation (4) as

Kμ,n(α + K−1
μ,n1b) = y. (5)

Therefore,α = K−1
μ,n(y−1b). Replacingαwith K−1

μ,n(y−1b) in the second row of Equation
(4), we can obtain

1TK−1
μ,n1b = 1TK−1

μ,ny. (6)

The system of linear equations (4) can then be rewritten as
[
Kμ,n 0
0T 1TK−1

μ,n1

] [
α + K−1

μ,n1b
b

]
=

[
y

1TK−1
μ,ny

]
. (7)
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Since Kμ,n = K + μIn is positive definite, the inverse of Kμ,n exists.
Equation (7) can be solved as follows: we first solve

Kμ,nρ = 1 and Kμ,nν = y. (8)

The solution (α, b) of Equation (4) are then given by

b =
1Tν

1Tρ
and α = ν − ρb. (9)

The decision function of LSSVM can be written as f (x) =
∑n

i=1 αiK(xi, x) + b.
If Equation (8) is solved, we can easily obtain the solution of LSSVM. However, the

complexity of calculating the inverse of the matrix Kμ,n is O(n3). In the following, we
will demonstrate that Nyström method can be used to speed up this process.

3 Approximating LSSVM Using Nyström Method

We first introduce a fundamental result of matrix computations [10]: for any matrix
A ∈ Rm×n and positive integer k, there exists a matrix Ak such that

‖A − Ak‖ξ = min
D∈Rm×n:rank(D)≤k

‖A − D‖ξ

for ξ = F, 2. ‖ · ‖F and ‖ · ‖2 denote the Frobenius norm and the spectral norm. Such Ak

is called the optimal rank k approximation of the matrix A. It can be computed through
the singular value decomposition (SVD) of A. If A ∈ Rn×n is symmetric positive semi-
definite (SPSD), A = UΣUT, where U is a unitary matrix and Σ = diag(σ1, . . . , σn) is
a real diagonal matrix with σ1 ≥ · · · ≥ σn ≥ 0. For k ≤ rank(A), Ak =

∑k
i=1 σiUiUiT,

where Ui is the ith column of U.
We now briefly review the Nyström method [8,19]. Let K ∈ Rn×n be an SPSD matrix.

The Nyström method generates a low rank approximation of K using a subset of the
columns of the matrix. Suppose we randomly sample c columns of K uniformly without
replacement. Let C denote the n × c matrix formed by theses columns. Let W be the
c × c matrix consisting of the intersection of these c columns with the corresponding
c rows of K. Without loss of generality, we can rearrange the columns and rows of K
based on this sampling such that:

K =
(

W KT
21

K21 K22

)
, C =

(
W
K21

)
. (10)

Since K is SPSD, W is also SPSD. The Nyström method uses W and C from Equation
(10) to construct a rank k approximation K̃ of K for k ≤ c defined by:

K̃ = CW+
k CT ≈ K, (11)

where Wk is the optimal rank k approximation to W and W+
k is the Moore-Penrose

generalized inverse of Wk. Since W is SPSD, Wk =
∑k

i=1 σiUiUiT and therefore W+
k =∑k

i=1 σ
−1
i UiUiT for k ≤ rank(W).
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If we write the SVD of W as W = UWΣWUT
W , then

W+
k = UW,kΣ

+
W,kUT

W,k, (12)

where ΣW,k and UW,k correspond the top k singular values and singular vectors of W.
The diagonal elements of ΣW,k are all positive, since W is SPSD and k ≤ rank(W).

If we plug Equation (12) into Equation (11), we can obtain

K̃ = CUW,kΣ
+
W,kUT

W,kCT

= CUW,k

√
Σ+W,k︸���������︷︷���������︸

V

(
CUW,k

√
Σ+W,k

)T

︸��������������︷︷��������������︸
VT

, (13)

where we let V := CUW,k

√
Σ+W,k ∈ Rn×k.

For LSSVM, we need to solve the inverse of K + μIn. To reduce the computational
cost, we intend to use the inverse of K̃ + μIn as an approximation of the inverse of
K + μIn. Since VVT is positive semi-definite, the invertibility of K̃ + μIn is guaranteed.

To efficiently calculate the inverse of K̃ + μIn, we further introduce the Woodbury
formula [12]

(A + XYZ)−1 = A−1 − A−1 X
(
Y−1 + Z A−1 X

)−1
Z A−1, (14)

where A ∈ Rn×n, X ∈ Rn×k, Y ∈ Rk×k and Z ∈ Rk×n.
Now, we can obtain

(μIn + K)−1

≈
(
μIn + VVT

)−1

=
1
μ

(
In − V

(
μIk + VTV

)−1
VT

)
.

(15)

The last equality of Equation (15) is directly derived from the Woodbury formula with
A = μIn, X = V, Y = Ik and Z = VT.

The essential step of solving LSSVM is to solve Equation (8). If we let u = [ρ, ν]
and z = [1, y], Equation (8) is equivalent to

(μIn + K) u = z.

Using Equation (15) to replace μIn + K with μIn + K̃, we can obtain

u =
1
μ

(
z − V

(
μIk + VTV

)−1
VT z

)
. (16)

We further introduce a temporary variable t to efficiently solve Equation (16):

t :
(
μIk + VTV

)
t = VT z,

u =
1
μ

(z − Vt).
(17)

We now present an algorithm of solving LSSVM (Algorithm 1).
We estimate the computational complexity of Algorithm 1 in Theorem 1.
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Algorithm 1. Approximating LSSVM using Nyström method
Input: n × n kernel matrix K, label vector y, c < n, k < c, μ;
Output: (α, b);
1: Calculate C, UW,k and Σ+W,k according to (10) and (12) using Nyström method;

2: Calculate V = CUW,k

√
Σ+W,k according to (13);

3: Let z = [1, y] and solve the linear system
(
μIk + VTV

)
t = VT z to obtain t;

4: Calculate u =
1
μ

(z − V t) and let ρ, ν be the first and second column of u;

5: Calculate b =
1Tν

1Tρ
and α = ν − ρb according to (9);

return (α, b);

Theorem 1. The computational complexity of Algorithm 1 is O(c3 + nck).

Proof. The computational complexity of step 1 is O(c3), since the main computational
part of this step is the SVD on W. In step 2, matrix multiplications are required, so
its complexity is O(kcn). In step 3, the inverse of

(
μIk + VTV

)
is solved by computing

Cholesky factorization of it with the complexity O(k3). The complexity of VT z is O(nk).
The last matrix multiplication to obtain t requires O(k2). Therefore the total complexity
of step 3 is O(k3 + nk). The complexity of step 4 is O(nk). The complexity of step 5 is
O(n), since the multiplication and subtraction between two vectors need to be done. For
Nyström approximation, we have k < c < n, so the total complexity of Algorithm 1 is
O(c3 + nck). For large scale problems, we usually set c 	 n.

Compared to Related Work. Theorem 1 shows that if Nyström approximation is
given, we can solve LSSVM in O(k3). Williams et al. [19] used Nyström method to
speed up Gaussian Process (GP) regression. After Nyström approximation was given,
they solved GP regression with O(nk2) complexity. Cortes et al. [6] scaled kernel ridge
regression (KRR) using Nyström method. The complexity of their method is O(n2c)
with Nyström approximation (Section 3.3 of [6]).

4 Error Analysis

In this section, we analyze the effect of Nyström approximation on the decision function
of LSSVM.

We assume that approximation is only used in training. At testing time the true kernel
function is used. This scenario has been considered by [6]. The decision function f
derived with the exact kernel matrix K is defined by

f (x) =
n∑

i=1

αiK(x, xi) + b =

[
α
b

]T [
kx

1

]
,

where kx = (K(x, x1), . . . ,K(x, xn))T. We define κ > 0 such that K(x, x) ≤ κ and
K̃(x, x) ≤ κ.
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We first consider the effect of Nyström approximation on ρ of Equation (8). Let ρ′
denote the solution of (K̃ + μIn)ρ′ = 1. We can write

ρ′ − ρ = (K̃ + μIn)−11 − (K + μIn)−11

= −
[
(K̃ + μIn)−1(K̃ − K)(K + μIn)−1

]
1.

(18)

For last equality, we used the identity A−1 − B−1 = −A−1(A − B)B−1 for any two
invertible matrices A, B. Thus, ‖ρ′ − ρ‖2 can be bounded as follows:

‖ρ′ − ρ‖2 ≤ ‖(K̃ + μIn)−1‖2 ‖K̃ − K‖2 ‖(K + μIn)−1‖2 ‖1‖2
≤ ‖1‖2
μ2
‖K̃ − K‖2 =

√
n
μ2
‖K̃ − K‖2.

(19)

Since K̃ and K are positive semi-definite matrices, the eigenvalues of K̃+μIn and K+μIn

are larger than or equal to μ. Therefore the eigenvalues of (K̃ + μIn)−1 and (K + μIn)−1

are less than or equal to 1/μ.
We further consider ν of Equation (8). Replacing 1 with y, we can obtain the similar

bound

‖ν′ − ν‖2 ≤ ‖y‖2
μ2
‖K̃ − K‖2 =

√
n
μ2
‖K̃ − K‖2. (20)

As the assumptions, we use the true kernel function at testing time, so no approxi-
mation affects kx. For simplicity, we assume the offset b to be a constant ζ. Therefore,
the approximate decision function f ′ is given by f ′(x) = [α′; ζ]T[kx; 1].

We can obtain

f ′(x) − f (x) =

⎛⎜⎜⎜⎜⎜⎝
[
α′
ζ

]T

−
[
α
ζ

]T⎞⎟⎟⎟⎟⎟⎠
[
kx

1

]
=

[
α′ − α

0

]T [
kx

1

]
= (α′ − α)T kx. (21)

By Schwarz inequality,

| f ′(x) − f (x)| ≤ ‖α′ − α‖2‖kx‖2 =
√

nκ‖α′ − α‖2. (22)

From Equation (9), we know that α = ν − ρb = ν − ρζ, so

‖α′ − α‖2 ≤ ‖ν′ − ν‖2 + ζ‖ρ − ρ′‖2
≤
√

n
μ2
‖K̃ − K‖2 + ζ

( √
n
μ2
‖K̃ − K‖2

)

≤ (1 + ζ)

√
n
μ2
‖K̃ − K‖2.

(23)

We let μ0 = μ/n. Substituting the upper bound of ‖α′ − α‖2 into Equation (22), we can
obtain

| f ′(x) − f (x)| ≤ √nκ(1 + ζ)

√
n

n2μ2
0

‖K̃ − K‖2 = κ(1 + ζ)
nμ2

0

‖K̃ − K‖2. (24)

We further introduce a kernel matrix approximation error bound of Nyström method
[13] to upper bound ‖K̃ − K‖2.
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Theorem 2. Let K ∈ Rn×n be an SPSD matrix. Assume that c columns of K are sampled
uniformly at random without replacement, let K̃ be the rank-k Nyström approximation

to K, and let Kk be the best rank-k approximation to K. For ε > 0, η =
√

log(2/δ)g(c,n−c)
c

with g(a, s) = as
a+s−1/2 · 1

1−1/(2 max{a,s}) , if c ≥ 64k/ε4, then with probability at least 1 − δ,

‖K − K̃‖F ≤ ‖K − Kk‖F + ε
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
n
c

∑

i∈D(c)

Kii

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√√
n

n∑

i=1

K2
ii + ηmax(nKii)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
2

,

where
∑

i∈D(c) Kii is the sum of largest c diagonal entries of K.

Since ‖K − K̃‖2 ≤ ‖K − K̃‖F , if we combine Equation (24) with Theorem 2, we can
directly obtain the following theorem.

Theorem 3. Let K ∈ Rn×n be an SPSD matrix. Assume that c columns of K are sampled
uniformly at random without replacement, let K̃ be the rank-k Nyström approximation

to K, and let Kk be the best rank-k approximation to K. For ε > 0, η =
√

log(2/δ)g(c,n−c)
c

with g(a, s) = as
a+s−1/2 · 1

1−1/(2 max{a,s}) , if c ≥ 64k/ε4, then with probability at least 1 − δ,

| f ′(x) − f (x)| ≤ κ(1 + ζ)
nμ2

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
‖K − Kk‖F + ε

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
n
c

∑

i∈D(c)

Kii

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√√
n

n∑

i=1

K2
ii + ηmax(nKii)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where
∑

i∈D(c) Kii is the sum of largest c diagonal entries of K.

Theorem 3 measures the effect of kernel matrix approximation on the decision func-
tion of LSSVM. It enables us to bound the relative performance of LSSVM when the
Nyström method is used to approximate the kernel matrix. We refer to the bound given
in Theorem 3 as a model approximation error bound.

5 Approximate Model Selection for LSSVM

In order to find the hyperparameters that minimize the generalization error of LSSVM,
many model selection approaches have been proposed, such as the cross validation,
span bound [17], radius margin bound [5], PRESS criterion [1] and so on. However,
when optimizing model selection criteria, all these approaches need to solve LSSVM
completely in the inner layer for each iteration.

Here we discuss the problem of approximate model selection. We argue that for
model selection purpose, it is sufficient to calculate an approximate criterion that can
discriminate the optimal hyperparameters from candidates. Theorem 3 shows that when
Nyström approximation is used, the change of learning results of LSSVM is bounded,
which is a theoretical support for approximate model selection. In the following, we
present an approximate model selection scheme, as shown in Algorithm 2.

We use the RBF kernel K
(
xi, x j

)
= exp

(
−γ‖xi − x j‖2

)
to describe the scheme, but

this scheme is also suitable for other kernel types.
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Algorithm 2. Approximate Model Selection Scheme for LSSVM
Input: S = {(xi, yi)}ni=1;
Output: (γ, μ)opt;
Initialize: (γ, μ) = (γ0, μ0);
repeat

1: Generate kernel matrix K;
2: Calculate α and b for LSSVM with K and μ using Algorithm 1;
3: Calculate model selection criterion T using α and b;
4: Update (γ, μ) to minimize T ;

until the criterion T is minimized ;
return (γ, μ)opt;

Let S denote the iteration steps of optimizing model selection criteria. The complex-
ity of solving LSSVM by calculating the inverse of the exact kernel matrix is O(n3). For
radius margin bound or span bound [5], a standard LSSVM needs to be solved in the
inner layer for each iteration, so the total complexity of these two methods is O(S n3).
For PRESS criterion [1], the inverse of kernel matrix also needs to be calculated for
each iteration, so its complexity is O(S n3). From Theorem 1, we know that using Algo-
rithm 1, we could solve LSSVM in O(c3 + nck). Therefore, if we use the above model
selection criteria in the outer layer, the complexity of approximate model selection is
O(S (c3 + nck)). For t-fold cross validation, let S γ and S μ denote the grid steps of γ and
μ. If LSSVM is directly solved, the complexity of t-fold cross validation is O(tS γS μn3).
However, the complexity of approximate model selection using t-fold cross validation
as outer layer criterion will be O(tS γS μ(c3 + nck)).

6 Experiments

In this section, we conduct experiments on several benchmark datasets to demonstrate
the effectiveness of approximate model selection.

6.1 Experimental Scheme

The benchmark datasets in our experiments are introduced in [15], as shown in Table 1.
For each dataset, there are 100 random training and test pre-defined partitions1 (except
20 for the Image and Splice dataset). The use of multiple benchmarks means that the
evaluation is more robust as the selection of data sets that provide a good match to the
inductive bias of a particular classifier becomes less likely. Likewise, the use of multiple
partitions provides robustness against sensitivity to the sampling of data to form training
and test sets.

In Rätsch’s experiment [15], model selection is performed on the first five training
sets of each dataset. The median values of the hyperparameters over these five sets are
then determined and subsequently used to evaluate the error rates throughout all 100
partitions. However, for this experimental scheme, some of the test data is no longer

1 http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
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Table 1. Datasets used in experiments

Dataset Features Training Test Replications

Thyroid 5 140 75 100
Heart 13 170 100 100
Breast 9 200 77 100
Banana 2 400 4900 100
Ringnorm 20 400 7000 100
Twonorm 20 400 7000 100
Waveform 21 400 4600 100
Diabetes 8 468 300 100
Flare solar 9 666 400 100
German 20 700 300 100
Splice 60 1000 2175 20
Image 18 1300 1010 20

statistically “pure” since it has been used during model selection. Furthermore, the use
of median of the hyperparameters would introduce an optimistic bias [3]. In our ex-
periments, we perform model selection on the training set of each partition, then train
the classifier with the obtained optimal hyperparameters still on the training set, and
finally evaluate the classifier on the corresponding test set. Therefore, we can obtain
100 test error rates for each dataset (except 20 for the Image and Splice dataset). The
statistical analysis of these test error rates is conducted to assess the performance of
the model selection approach. This experimental scheme is rigorous and can avoid the
major flaws of the previous one [3]. All experiments are performed on a Core2 Quad
PC, with 2.33GHz CPU and 4GB memory.

6.2 Effectiveness

Following the experimental setup in Section 6.1, we perform model selection respec-
tively using 5-fold cross validation (5-fold CV) and approximate 5-fold CV, that is,
approximate model selection by minimizing 5-fold CV error (as shown in Algorithm
2). The CV is performed on a 13 × 11 grid of (γ, μ) respectively varying in [2−15, 29]
and [2−15, 25] both with step 22. We set c = 0.1n and k = 0.5c in Algorithm 1.

We compare effectiveness of two model selection approaches. Effectiveness includes
efficiency and generalization. Efficiency is measured by average computation time for
model selection. Generalization is measured by the mean test error rate (TER) of the
classifiers trained with the optimal hyperparameters produced by different model selec-
tion approaches.

Results are shown in Table 2. We use the z statistic of TER [2] to estimate the sta-
tistical significance of differences in performance. Let x̄ and ȳ represent the means of
TER of two approaches, and ex and ey the corresponding standard errors, then the z

statistic is computed as z = (x̄ − ȳ)/
√

e2
x + e2

y and z = 1.64 corresponds to a 95% sig-

nificance level. From Table 2, approximate 5-fold CV is significantly outperformed by
5-fold CV only on the Splice dataset, but the difference is just 2.5%. Besides, according
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Table 2. Comparison of computation time and test error rate (TER) of 5-fold cross validation
(5-fold CV) and approximate 5-fold CV

Dataset
5-fold CV Approximate 5-fold CV

Time(s) TER(%) Time(s) TER(%)

Thyroid 1.043 4.680±2.246 0.508 4.800±2.359
Heart 1.127 16.750±3.616 0.623 16.080±3.678
Breast 1.671 27.012±4.636 0.725 26.454±4.675
Banana 7.105 10.758±0.590 1.960 10.941±0.713
Ringnorm 7.601 2.044±0.358 2.058 2.872±3.895
Twonorm 7.097 2.528±0.234 2.213 2.446±0.163
Waveform 7.423 10.172±0.783 2.378 10.352±1.054
Diabetes 10.760 23.583±1.738 2.727 23.406±1.700
Flare solar 19.477 34.230±1.965 5.446 34.230±1.860
German 24.501 23.890±2.231 6.740 23.943±2.304
Splice 42.210 11.326±0.547 14.275 13.862±1.304
Image 141.792 2.876±0.725 28.743 4.628±0.944

to the Wilcoxon signed rank test [7], neither of 5-fold CV and approximate 5-fold CV
is statistically superior at the 95% level of significance.

However, Table 2 also shows that approximate 5-fold CV is more efficient than 5-fold
CV on all datasets. It is worth noting that the larger the training set size is, the efficiency
gain is more obvious, which is in accord with the results of complexity analysis.

7 Conclusion

In this paper, Nyström method was first introduced into the model selection problem.
A brand new approximate model selection approach of LSSVM was proposed, which
fully exploits the theoretical and computational virtue of Nyström approximation. We
designed an efficient algorithm for solving LSSVM and bounded the effect of kernel
matrix approximation on the decision function of LSSVM. We derived a model approx-
imation error bound, which is a theoretical support for approximate model selection.
We presented an approximate model selection scheme and analyzed its complexity as
compared with other classic model selection approaches. This complexity shows the
promise of the application of approximate model selection for large scale problems. We
finally verified the effectiveness of our approach by rigorous experiments on several
benchmark datasets.

The application of our theoretical results and approach to practical large problems
will be one of major concerns. Besides, a new efficient model selection criterion directly
dependent on kernel matrix approximation will be proposed in near future.

Acknowledgments. The work is supported in part by the Natural Science Foundation
of China under grant No. 61170019, and the Natural Science Foundation of Tianjin
under grant No. 11JCYBJC00700.
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Abstract. Hierarchical multi-label classification is a variant of traditional clas-
sification in which the instances can belong to several labels, that are in turn
organized in a hierarchy. Existing hierarchical multi-label classification algo-
rithms ignore possible correlations between the labels. Moreover, most of the
current methods predict instance labels in a “flat” fashion without employing the
ontological structures among the classes. In this paper, we propose HiBLADE
(Hierarchical multi-label Boosting with LAbel DEpendency), a novel algorithm
that takes advantage of not only the pre-established hierarchical taxonomy of the
classes, but also effectively exploits the hidden correlation among the classes that
is not shown through the class hierarchy, thereby improving the quality of the pre-
dictions. According to our approach, first, the pre-defined hierarchical taxonomy
of the labels is used to decide upon the training set for each classifier. Second,
the dependencies of the children for each label in the hierarchy are captured and
analyzed using Bayes method and instance-based similarity. Our experimental re-
sults on several real-world biomolecular datasets show that the proposed method
can improve the performance of hierarchical multi-label classification.

Keywords: Hierarchical multi-label classification, correlation, boosting.

1 Introduction

Traditional classification tasks deal with assigning instances to a single label. In multi-
label classification, the task is to find the set of labels that an instance can belong to
rather than assigning a single label to a given instance. Hierarchical multi-label classi-
fication is a variant of traditional classification where the task is to assign instances to
a set of labels where the labels are related through a hierarchical classification scheme
[1]. In other words, when an instance is labeled with a certain class, it should also be
labeled with all of its superclasses, this is known as the hierarchy constraint.

Hierarchical multi-label classification is a widely studied problem in many domains
such as functional genomics, text categorization, image annotation and object recogni-
tion [2]. In functional genomics (which is the application that we focus on in this paper)
the problem is the prediction of gene/protein functions. Biologists have a hierarchical
organization of the functions that the genes can be assigned to. An individual gene or
protein may be involved in more than one biological activity, and hence, there is a need
for a prediction algorithm that is able to identify all the possible functions of a particular

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 294–305, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) Flat (b) Hierarchical

Fig. 1. Flat versus Hierarchical classification. (a) Flat representation of the labels (b) Hierarchical
representation of the same set of labels.

gene [2]. There are two types of class hierarchy structures: a rooted tree structure, such
as the MIPS’s FunCat taxonomy [17], and a directed acyclic graph (DAG) structure,
such as the Gene Ontology (GO) [7]. In this paper, we use the FunCat scheme.

Most of the existing research focuses on a “flat” classification approach, that oper-
ates on non-hierarchical classification schemes, where a binary classifier is constructed
for each label separately as shown in Figure 1(a). This approach ignores the hierarchi-
cal structure of the classes shown in Figure 1(b). Reducing a hierarchical multi-label
classification problem to a conventional classification problem allows the possibility
of applying the existing methods. However, since the prediction of the class labels has
to be performed independently, such transformations are not capable of exploiting the
interdependencies and correlations between the labels [6]. Moreover, the flat classifica-
tion algorithm fails to take advantage of the information inherent in the class hierarchy,
and hence may be suboptimal in terms of efficiency and effectiveness [9].

1.1 Our Contributions

In this paper, we propose, HiBLADE, a hierarchical multi-label classification frame-
work for modeling the pre-defined hierarchical taxonomy of the labels as well as for
exploiting the existing correlations between different labels, that are not given by the
taxonomical classification of the labels, to facilitate the learning process.

To the best of our knowledge, there is no work related to the hierarchical multi-
label classification setting that exploits the correlations between different labels other
than the domain-based pre-established taxonomical classification of the classes. Our
intuition is that the domain-based taxonomical classification of the classes should be
used as additional features while label dependencies are inferred from the data. Specif-
ically, a novel approach to learn the label dependencies using a Bayesian framework
and instance-based similarity is proposed. Bayesian framework is used to characterize
the dependency relations among the labels represented by the directed acyclic graph
(DAG) structure of the Bayesian network. As opposed to other hierarchical multi-label
classification algorithms, our algorithm has the following advantages:

1. The underlying pre-defined taxonomy of the labels is explicitly expressed which
allows us to gain further insights into the learning problem.
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2. It is capable of addressing correlations and interdependencies among the children
of a particular label using the Bayesian framework and instance-based similarity.

3. The use of a shared boosting model for the child labels for each label in the hierar-
chy using the obtained correlations leads to efficient and effective results.

The rest of the paper is organized as follows: related work is discussed in Section 2.
Our proposed method, HiBLADE, is presented in Section 3. In Section 4, we report our
experimental results on several biomolecular datasets. Then, we conclude and discuss
further research directions in Section 5.

2 Related Work

Since conventional classification methods, such as binary classification and multi-class
classification, were not designed to directly tackle the hierarchical classification prob-
lems, such algorithms are referred to as flat classification algorithms [18]. It is important
to mention that flat classification and other similar approaches are not considered to be
a hierarchical classification approach, as they create new (meta) classes instead of using
pre-established taxonomies.

Different approaches have been proposed in the literature to tackle the hierarchi-
cal multi-label classification problem [4,21,16]. Generally, these approaches can be
grouped into two categories: the local classifier methods and the global classifier meth-
ods. Moreover, most of the existing methods use a top-down class prediction strategy
in the testing phase [3,16,18]. The local strategy treats any label independently, and
thus ignores any possible correlation or interdependency between the labels. There-
fore, some methods perform an additional step to correct inconsistent predictions. For
example, in [3], a Bayesian framework is developed for correcting class-membership
inconsistency for the separate class-wise models approach. In [1], a hierarchical multi-
label boosting algorithm, named HML-Boosting, was proposed to exploit the hierarchi-
cal dependencies among the labels. HML-Boosting algorithm relies on the hierarchical
information and utilizes the hierarchy to improve the prediction accuracy.

True path rule (TPR) is a rule that governs the annotation of GO and FunCat tax-
onomies. According to this rule, annotating a gene to a given class is automatically
transferred to all of its ancestors to maintain the hierarchy constraint [12]. In [20], a
true path ensemble method was proposed. In this method, a classifier is built for each
functional class in the training phase. A bottom-up approach is followed in the test-
ing phase to correct the class-membership inconsistency. In a modified version of TPR
(TPR − w), a parent weight is introduced. The weight is used to explicitly modulate
the contribution of the local predictions with the positive predictions coming from the
descendant nodes. In [5], a hierarchical bottom-up Bayesian cost-sensitive ensemble
(HBAYES-CS), is proposed. Basically, a calibrated classifier is trained at each node in
the taxonomy. H-loss is used in the evaluation phase to predict the labels for a given
node. In a recent work [2], we proposed a novel Hierarchical Bayesian iNtegration
algorithm HiBiN, a general framework that uses Bayesian reasoning to integrate het-
erogeneous data sources for accurate gene function prediction. On the other hand, sev-
eral research groups have studied the effective exploitation of correlation information
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among different labels in the context of multi-label learning. However, these approaches
do not assume the existence of any pre-defined taxonomical structure of the classes
[6,11,14,23,24].

3 HiBLADE Algorithm

Let X = �d be the d-dimensional input space and Y = {y1, y2, ..., yL} be the finite set
of L possible labels. The hierarchical relationships among classes in Y are defined as
follows: Given y1, y2 ∈ Y, y1 is the ancestor of y2, denoted by (↑ y2) = y1, if and only
if y1 is a superclass of y2.

Let a hierarchical multi-label training set D = {< x1,Y1 >, ..., < xN ,YN >},
where xi ∈ X is a feature vector for instance i andYi ⊆ Y is the set of labels associated
with xi, such that yi ∈ Yi ⇒ y′i ∈ Yi, ∀(↑ yi) = y′i. Having Q as the quality criterion
for evaluating the model based on the prediction accuracy, the objective function is
defined as follows: a function f : D → 2y. Here, 2y is the power set of Y , such that Q
is maximized, and y′ ∈ f(x) ⇒ y ∈ f, ∀(↑ y′) = y. The function f is represented here
by the HiBLADE algorithm.

Hierarchical multi-label learning aims to model and predict p(child class | parent
class). Our goal is to make use of hierarchical dependencies as well as the extracted
dependencies among the labels yk where 1 ≤ k ≤ L and (↑ yk) = ym such that
for each example we can better predict its labels. The problem then becomes how to
identify and make use of such dependencies in an efficient way.

3.1 Training Scheme

The training of each classifier is performed locally. During classification, the classifier
at each class will only be presented with examples that are positive at the parent class
of the current class. Hence, the reached examples are positive examples to the current
class and/or to the siblings of that class. In other words, the training for each classifier is
performed by feeding as negative training examples, the positive examples at the parent
of the current class that are not positive examples at the current class.

3.2 Extending the Features

The feature vector for each example is extended to include the class labels of the levels
higher in the hierarchy than the current level as given in line 9 of Algorithm 1. More
formally, the feature vector for each instance j that belongs to a class i will have the
following form: fi,j =< xj,1, ..., xj,d, x̄j,d+1, ..., x̄j,d+k >, where < xj,1, ..., xj,d > is
the original feature vector and < x̄j,d+1, ..., x̄j,d+k > are the additional features.

3.3 Label Correlation

The other type of dependencies is modeled using Bayesian structure and instance-based
similarity as shown in line 10 of Algorithm 1. For each class i, we get the children
classes of class i and sharedModels algorithm (shown in Algorithm 2) is invoked.
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Algorithm 1. HiBLADE

1: Input: A pair < Y,L > where Y is a tree-structured set of classes and L is the total number
of classes of Y .

2: Output: For each class yl ∈ Y , the final composite classifier yl = sign[Fl(x)].
3: Algorithm:
4: for i = 1, ...,L do
5: if class i is a leaf class then
6: Do nothing
7: else
8: Let children(i) = y1i, ..., yki be the k children classes of i
9: Form the new feature vectors by adding the labels of the classes at the higher levels to

the current feature vectors.
10: Learn classifiers for children(i) using the shared models Algorithm
11: end if
12: end for

In each boosting iteration t, the entire pool is searched for the best fitted model other
than the model that was built directly for that label and its corresponding combination
weights, the best fitted model is called ht

l . We refer to the best fitted model as the
candidate model. The chosen model ht

c is then updated based on the following formula:

γij =
εii

εii + εji
∗ βij (1)

where εji is the error results from applying model ht
j on the examples in class i and εii

is the error results from applying the model ht
i on the examples in class i. βij controls

the proportional contribution of Bayesian-based and instance-based similarities. βij is
computed as follows:

βij = φ ∗ bij + (1− φ) ∗ sij (2)

where bij is the Bayesian correlation between class i and class j, and it is estimated
as bij = |i ∩ j|/|j|, where |i ∩ j| is the number of positive examples in class i and
class j and |j| is the number of positive examples in class j. sij is the instance-based
similarity between class i and class j. Each instance from one class is compared to each
other instance from the other class. In HiBLADE, sij is computed using the Euclidean
distance between the positive examples in both classes that has the following formula:

sij =

√∑
l

(il − jl)
2 (3)

where l is the corresponding feature in the two vectors. sij is normalized to be in the
range of [0, 1]. φ is a threshold parameter that has a value in the range [0, 1]. Setting φ
to 0 means that only instance-based similarity is taken into consideration in the learning
process. While setting it to 1 means that only Bayesian-based correlation is taken into
consideration. On the other hand, any value of φ between 0 and 1 combines both types
of correlation. It is important to emphasize that these computations are performed only
for the class that is found to be the most useful class with respect to the current class.
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In the general case, both classes, the current class and the candidate class, contribute
to the final prediction. In other words, any value of εji other than 0, indicates the level
of contribution from the candidate class. More specifically, if the error of the candidate
class, εji, is greater than the error of the current class, εii, the value of γij will be small
indicating that only a limited contribution of the candidate class is considered. In con-
trast, if the error of the current class, εii, is greater than the error of the candidate class,
εji, then γij will be high, and hence, the prediction decision will be dependable more
on the candidate class. Finally, the models for the current class and the used candidate
class are replaced by the new learned models. At the end, the composite classifiers Fc

provide the prediction results.
Algorithm 2 shows the details of the shared models algorithm. The shared models al-

gorithm takes as input the children classes of a particular class together with the feature
vectors for the instances that are positive at the parent class. These instances will form
the positive and negative examples for each one of the children classes. The algorithm
begins by initializing a pool of M models, where M is the number of children classes,
one for each class that is learned using a boosting-type algorithm such as ADABOOST.
The number of base models to be generated is determined by T . In each iteration t
and for each label in the set of the children labels, we look for the best fitted model,
ht
l(x) and the corresponding combination weights, αt

l . The contribution of the selected
base model, ht

l(x), to the overall classifier, Fc(x), depends on the current label. In other
words, if the error, εji of the candidate classifier is 0, this will be a perfect model for
the current label. Hence, equation (1) will be reduced to γij = βij . In this case, the
contribution of that model depends on the level of correlation between the candidate
class and the current one. On the other hand, if the current model is a perfect model,
i.e., the error εii = 0, then equation 1 will be reduced to γij = 0, which means that for
the current iteration, there is no need to look at any other classifier.

Algorithm 2. SharedModels

1: Input: D = {(xi, Yi) : i = 1, ..., N}, where xi ∈ X is a feature vector for instance i and
Yi ⊂ Y is the set of labels associated with xi and M is the number of labels under study. φ:
a threshold parameter.

2: Output: yc = sign[Fc(x)]
3: Algorithm:
4: Set Fc(x) = 0 for each label c = 1, ..,M
5: Initialize a pool of candidate shared models: SMp = h1(.), ..., hM (.) where hi(.) is a model

learned on the label i using the boosting-type algorithm.
6: for t = 1, ..., T do
7: for c = 1, ...,M do
8: Find αt

l and ht
l ∈ SMp where c �= l that minimize the loss function on label c.

9: Fc(x) = Fc(x) + ht
c(x) ∗ αt

c ∗ (1− γcl) + ht
l(x) ∗ αt

l ∗ γcl
10: Replace ht

c(x) and ht
l(x) in SMp with the new learned models using the boosting-type

algorithm.
11: end for
12: end for
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4 Experimental Details

We chose to demonstrate the performance of our algorithm for the prediction of gene
functions in yeast using four bio-molecular datasets that were used in [20]. Valentini
[20] pre-processed the datasets so that for each dataset, only genes that are annotated
with FunCat taxonomy are selected. To make this paper self-contained, we briefly ex-
plain the data collection process and the pre-processing steps performed on the data.
Uninformed features that have the same value for all of the examples are removed.
Class “99” in FunCat corresponds to an “unclassified protein”. Therefore, genes that
are annotated only with that class are excluded. Finally, in order to have a good size of
positive training examples for each class, selection has been performed to classes with
at least 20 positive examples. Dataset characteristics are summarized in Table 1.

Table 1. The characteristics of the four bio-molecular datasets used in our experiments

Dataset Description Samples Features classes
Gene-Expr Gene expression data 4532 250 230

PPI-BG PPI data from BioGRID 4531 5367 232

Pfam-1 Protein domain binary data 3529 4950 211

PPI-VM PPI data from Von Mering experiments 2338 2559 177

The gene expression dataset, Gene-Expr, is obtained by merging the results of two
studies, gene expression measures relative to 77 conditions and transcriptional responses
of yeast to environmental stress measured on 173 conditions [10]. For each gene prod-
uct in the protein-protein interaction dataset, PPI-BG, a binary vector is generated that
implies the presence or absence of protein-protein interaction. Protein-protein interac-
tion data have been downloaded from BioGRID database [19,20]. In Pfam-1 dataset,
a binary vector is generated for every gene product that reflects the presence or ab-
sence of 4950 protein domains obtained from Pfam (Protein families) database [8,20].
For PPI-VM dataset, Von Mering experiments produced protein-protein data from yeast
two-hybrid assay, mass spectrometry of purified complexes, correlated mRNA expres-
sion and genetic interactions [22].

Table 2. Per-level F1 measure for Gene-Expr dataset using Flat, HiBLADEI , HiBLADEC

with φ = 0.5 and HiBLADEB for boosting iterations=50

Level Flat HiBLADEI HiBLADEC HiBLADEB

φ = 0.0 φ = 0.5 φ = 1.0

1 0.3537 0.2328 0.2301 0.2336
2 0.1980 0.4052 0.4427 0.4094
3 0.1000 0.3575 0.4019 0.3742
4 0.2000 0.2714 0.3598 0.2874
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4.1 Evaluation Metrics

Classical evaluation measures such as precision, recall and F-measure are used by un-
structured classification problems and thus, they are inadequate to address the hierarchi-
cal natures of the classes. Another approach that is used for the hierarchical multi-label
learning is to use extended versions of the single label metrics (precision, recall and F-
measure). To evaluate our algorithm, we adopted both, the classical and the hierarchical
evaluation measures. F1 measure considers the joint contribution of both precision (P)
and recall (R). F1 measure is defined as follows:

F1 =
2× P ×R

P +R
=

2TP

2TP + FP + FN
(4)

where TP stands for True Positive, TN for True Negative, FP for False Positive and
FN for False Negative. When TP=FP=FN=0, we made F1 measure to equal to 1 as the
classifier has correctly classified all the examples as negative examples [9]. Hierarchical
measures are defined as follows:

hP =
1

|l(P (x))|
∑

p∈l(P (x))

|C(x)∩ ↑ p|
| ↑ p| (5)

hR =
1

|l(C(x))|
∑

c∈l(C(x))

| ↑ c ∩ P (x)|
| ↑ c| (6)

hF =
2× hP × hR

hP + hR
(7)

where hP, hR and hF stands for hierarchical precision, hierarchical recall and hierarchi-
cal F-measure, respectively. P (x) is a subgraph formed by the predicted class labels for
the instance x while C(x) is a subgraph formed by the true class labels for the instance
x. p is one of the predicted class labels and c is one of the true labels for instance x.
l(P (x)) and l(C(x)) are the set of leaves in graphs P (x) and C(x), respectively. We
also computed both micro-averaged hierarchical F-measure (hFμ

1 ) and macro-averaged
hierarchical F-measure hFM

1 . hFμ
1 is computed by computing hP and hR for each

path in the hierarchical structure of the tree and then applying equation (7). On the other
hand, hFM

1 is computed by calculating hF1 for each path in the hierarchical structure
of the classes independently and then averaging them. Having high hierarchical pre-
cision means that the predictor is capable of predicting the most general functions of
the instance, while having high hierarchical recall indicates that the predictor is able to
predict the most specific classes [20]. The hierarchical F-measure takes into account the
partially correct paths in the overall taxonomy.

4.2 Experimental Results and Discussion

We analyzed the performance of the proposed framework at each level of the Fun-
Cat taxonomy, and we also compared the proposed method with four other methods
that follow the local classifier approach, namely, HBAYES-CS, HTD, TPR and TPR-w.
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Table 3. Per-level F1 measure for PPI-BG dataset using Flat, HiBLADEI , HiBLADEC with
φ = 0.5 and HiBLADEB for boosting iterations=50

Level Flat HiBLADEI HiBLADEC HiBLADEB

φ = 0.0 φ = 0.5 φ = 1.0

1 0.0808 0.2014 0.1833 0.2052
2 0.0267 0.6904 0.6984 0.6998
3 0.0001 0.6446 0.6304 0.6520
4 0.0001 0.6743 0.6454 0.6747

HBAYES-CS, TPR and TPR-w are described in the Related Work Section. HTD (Hier-
archical Top-Down) is the baseline method that belongs to the local classifier strategy
and performs hierarchical classification in a top-down fashion. Since HiBLADE also
belongs to the local classifier strategy, it is fair to have a comparison against a local
classifier approach that does not consider any type of correlation between the labels.
We also analyzed the effect of the proper choice of the threshold φ on the performance
of the algorithm. The setup for the experiments is summarized as follows:

– Flat: This is the baseline method that does not take the hierarchical taxonomy of the
classes into account and does not consider label dependencies. A classifier is built
for each class independently of the others. We used AdaBoost as the base learner
to form a baseline algorithm for the comparison with the other methods.

– HiBLADEI : The proposed algorithm that considers Instance-based similarities
only. Here φ is set to zero.

– HiBLADEB: The proposed algorithm that considers classes correlation based on
Bayesian probabilities only. Here φ is set to one.

– HiBLADEC : The proposed algorithm that considers a combination of both
instance-based similarity and classes correlation. Here φ is set to 0.5.

Table 4. Per-level F1 measure for Pfam − 1 dataset using Flat, HiBLADEI , HiBLADEC

with φ = 0.5 and HiBLADEB for boosting iterations=50

Level Flat HiBLADEI HiBLADEC HiBLADEB

φ = 0.0 φ = 0.5 φ = 1.0

1 0.1133 0.0924 0.0827 0.1085
2 0.0267 0.8524 0.8702 0.7273
3 0.1000 0.7473 0.7946 0.6824
4 0.2222 0.5122 0.5135 0.5085

First, we performed a level-wise analysis of the F-measure of the FunCat classification
tree on the four datasets. In measuring the level-wise performance, level 1 reflects the
root nodes while all other classes are at depth i, where 2 ≤ i ≤ 5. We show the
results for the top four levels in the hierarchy for the proposed method and the flat
method. Moreover, we show the performance of the proposed framework with different
φ’s values while setting the number of boosting iterations to 50 iterations. Tables 2, 3, 4
and 5 show the results of per-level evaluation for Gene-Expr, PPI-BG, Pfam-1 and PPI-
VM datasets, respectively. The most significant measures for each level are highlighted.
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The proposed algorithm outperforms the flat classification method in most of the cases
with significant differences in the performance measurements. The results in Tables 2,
3, 4 and 5 indicate that the deeper the level the better the performance of the proposed
algorithm compared to the flat classification method. For example, in all of the datasets,
the proposed algorithm outperformed the flat classification method in all the levels that
are higher than level 1. This result is consistent with our understanding of both of the
classification schemes. In other words, the proposed method and the flat classification
method have a similar learning procedure for the classes in the first level. However, the
proposed method achieved better results for the deeper levels in the hierarchy.

Table 5. Per-level F1 measure for PPI-VM dataset using Flat, HiBLADEI , HiBLADEC with
φ = 0.5 and HiBLADEB for boosting iterations=50

Level Flat HiBLADEI HiBLADEC HiBLADEB

φ = 0.0 φ = 0.5 φ = 1.0
1 0.1631 0.1266 0.1029 0.1193
2 0.1786 0.6033 0.6758 0.6601
3 0.0001 0.5802 0.6822 0.6957
4 0.0001 0.6931 0.5246 0.5417

To get more insights into the best choice of φ threshold, we compare hierarchical
precision, hierarchical recall, hierarchical Fμ

1 measure and hierarchical FM
1 measure

for Gene-Expr, PPI-BG, Pfam-1 and PPI-VM datasets for φ = 0.0, 0.5 and 1.0, re-
spectively, for 50 boosting iterations. Table 6 shows the results of the comparisons.
The most significant measures are highlighted. As shown in Table 6, the combination
of Bayesian-based correlation and instance-based similarity achieved the best perfor-
mance results in most of the cases. For example, six of the highest performance values,
in general, in this table are achieved when φ = 0.5.

Table 6. Hierarchical precision, hierarchical recall, hierarchical FM
1 and hierarchical Fμ

1 mea-
sures of HiBLADE for all the four datasets using boosting iterations =50

Measure
Gene-Expr PPI-BG

φ = 0.0 φ = 0.5 φ = 1.0 φ = 0.0 φ = 0.5 φ = 1.0

hP 0.820 0.808 0.826 0.878 0.924 0.875
hR 0.644 0.630 0.627 0.662 0.686 0.701
hFM

1 0.702 0.689 0.692 0.735 0.769 0.756
hFμ

1 0.722 0.708 0.712 0.755 0.787 0.778

Measure
Pfam-1 PPI-VM

φ = 0.0 φ = 0.5 φ = 1.0 φ = 0.0 φ = 0.5 φ = 1.0

hP 0.763 0.836 0.875 0.716 0.748 0.719
hR 0.625 0.663 0.637 0.542 0.551 0.557
hFM

1 0.669 0.720 0.714 0.590 0.605 0.601
hFμ

1 0.687 0.740 0.737 0.617 0.635 0.628

Furthermore, we conducted comparisons of hierarchical F-measure with HBAYES-
CS, HTD, TPR and TPR-w methods. HBAYES-CS is using Guassian SVMs as the base
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learners, while HTD, TPR and TPR-w are using Linear SVMs as the base learners.
Figure 2 shows the F-measure of the different methods. By exploiting the label de-
pendencies, the classifiers performance are effected positively. Our results show that
the proposed algorithm significantly outperforms the local learning algorithms. Al-
though there is no clear winner among the different versions of HiBLADE algorithm,
HiBLADE always achieved significantly better results than the other methods.

Fig. 2. Hierarchical F-measure comparison between HBAYES-CS, HTD, TPR, TPR-w,
HiBLADEI , HiBLADEC and HiBLADEB . For the HiBLADE algorithm, the number
of boosting iterations is 50 and φ = 0.5 for HiBLADEC .

5 Conclusion
In this paper, we proposed a hierarchical multi-label classification framework for in-
corporating information about the hierarchical relationships among the labels as well
as the label correlations. The experimental results showed that the proposed algorithm,
HiBLADE, outperforms the flat classification method and the local classifiers method
that builds independent classifier for each class. For future work, we plan to generalize
the proposed approach to general graph structures and develop more scalable solutions
using some other recent proposed boosting strategies [13,15].
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Abstract. In this paper, we investigate how the diversity of nominal
classifier ensembles affects the AdaBoost performance [13]. Using 5 real
data sets from the UCI Machine Learning Repository and 3 different di-
versity measures, we show that Q Statistic measure is mostly correlated
with AdaBoost performance for 2-class problems. The experimental re-
sults suggest that the performance of AdaBoost depend on the nominal
classifier diversity that can be used as a stopping criteria in ensemble
learning.

1 Introduction

Boosting is an adaptive approach, which makes it possible to correctly classify
an object that can be badly classified by an ordinary classifier. The main idea
of Boosting is to build many classifiers who complement each other, in order
to build a more powerful classifier. Adaboost (Adaptive Boosting) is the most
known method of Boosting for classifiers generation and combination.

AdaBoost algorithm is iterative. At first, it selects a subset of instances from
the learning data set (different subset from the training data set in each itera-
tion). Then, it builds a classifier using the selected instances. Next, it evaluates
the classifier on the learning data set, and it starts again T times.

It has been found that this ingenious manipulation of training data can fa-
vorise diversity especially for linear classifiers [11]. However, there is no study
concerning the role of diversity on Nominal Concepts classifiers [13]. In this
paper, we study how diversity changes according to the nominal classifier num-
bers and we show when adding new classifiers to the team can’t provide further
improvements.

This paper is organized as follows: section 2 presents the principle of Classifier
of Nominal Concepts (CNC ) used in Boosting [7,13]. In section 3, we discuss
the diversity of classifiers and the different measures that can be exploited in
the classifiers ensembles generation. Section 4 presents the experimental results
that prove when the diversity can be useful in Boosting of Nominal Concepts.
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2 Boosting of CNC

CNC is a classifier based on the Formal Concept Analysis. It is distinguished
from the other Formal Concept Analysis methods by handling nominal data.
It generates Nominal Concept that is used as classification rule. Comparative
studies and experimental results have proved the benefits of CNC compared to
existing ones (GRAND, RULEARNER, CITREC, IPR) [13].

2.1 Nominal Concepts

A nominal classifier can be build using the whole of training instances O =
{o1, ..., oN} described by L nominal attributes AN (which are not necessary
binary).

AN = {ANl|l = {1, .., L}}. (1)

At first, the pertinent nominal concept AN ∗ is extracted from the training in-
stances by selecting the nominal attribute which minimises the measure of Infor-
mational Gain [13]. Then, the associated instances are selected with each value
v j (j = {1,..,J} and J the number of different value of a nominal attribut) from
this attribute as δ(AN∗ = vj). The δ operator is defined by:

δ(AN∗ = vj) = {o ∈ O|AN∗(o) = vj}. (2)

Then, the other attributes describing all the extracted instances are determined
(using the closure operator δ ◦ ϕ (AN∗ = vj)) as follows:

ϕ(B) = {vj |∀o, o ∈ B and ∃ANl ∈ AN|ANl(o) = vj}. (3)

In [13], a method called BNC (Boosting Nominal Concepts) has been proposed.
The advantage of BNC is to build a part of the lattice covering the best nominal
concepts (the pertinent) which is used as classification rules (the Classifier Nom-
inal Concepts). The BNC has the particularity to decide the number of nominal
classifiers in order to control the time of application and to provide the best
decision.

2.2 Learning Concept Based Classifiers

For K -class problem, let Y = {1, ..,K} the class labels, with yi∈Y is the class
label associated for each instance oi (i=1 to N ). To generate T classifiers in
AdaBoost, the distribution of the weight of oi is initially determined as :

D0(i) = (1/N). (4)

The weight of oi is:

w1
i,y = D0(i)/(K − 1) for each y ∈ Y − {yi} (5)
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On each iteration t from 1 to T, we define:

W t
i =

∑
y �=yi

wt
i,y and we set qt(i, y) =

wt
i,y

W t
i

for each y �= yi (6)

The distribution of weights is calculated by:

Dt(i) =
W t

i∑N
i=1 W

t
i

(7)

Each generated nominal classifier ht provides an estimated probability pt(oi,yi)
to the class yi from the entry oi. Three cases are presented:

– If pt(oi,yi) = 1 and pt(oi,y) = 0, ∀y �=yi, ht has correctly predicted the class
of oi.

– If pt(oi,yi) = 0 and pt(oi,y) = 1, ∀y �=yi, ht has an opposed prediction of
the class of oi.

– If pt(oi,yi) = pt(oi,y), ∀y �=yi, the class of oi is selected randomly (y or yi).

The error rate of ht is calculated on the weighted training set. If an instance oi is
correctly classified by ht, then the weight of this instance is reduced. Otherwise,
the weightis increased. The pseudo-loss of the classifier ht is defined as:

εt = 0.5×
N∑
i=1

Dt(i)(1 − pt(oi, yi) +
∑
y �=yi

qt(i, y)pt(oi, y)) (8)

The weights are then updated according to βt:

βt = εt/(1− εt) (9)

The procedure is repeated T times and the final result of BNC is determined
via the combination of the generated classifier outputs:

hfin(oi) = argmax
y∈Y

T∑
t=1

log(1/βt)× pt(oi, yi). (10)

The first variant of the AdaBoost algorithm is called Adaboost.M1 [5,6] that uses
the previous process and stops it when the error rate of a classifier becomes over
0.5. The second variant is called AdaBoost.M2 [6] which has the particularity of
handling multi-class data and operating whatever the error rate is. In this study,
we use AdaBoost.M2 since Adaboost.M1 has the limit to stop Boosting if the
learning error exceeds 0.5. In some experiments, Adaboost.M1 can be stopped
after the generation of first classifier thus we cannot calculate the diversity of
classifier ensemble in this particular case.

Recent researches have proved the importance of classifier diversity in improv-
ing the performance of AdaBoost [1,4,8]. We shall discuss about that in the next
section.
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3 Classifier Diversity

According to [4], linear classifiers should be different from each other, otherwise
the decision of the ensemble will be of lower quality than the individual decision.
This difference, also called diversity, can lead to better or worse overall decision
[3].

In [14], the authors found a consistent pattern of diversity showing that at the
beginning, the generated linear classifiers are highly diverse but as the learning
progresses, the diversity gradually returns to its starting level. This suggests
that it could be beneficial to stop AdaBoost before diversity drops. The authors
confirm that there are a consistent patterns of diversity with many measures
using linear classifiers. However, they report that the pattern might change if
other classifier models are used. In the paper, we will prove that this pattern is
the same with nominal classifiers.

Many measures can be used to determine the diversity between classifiers [11].
In this section, we present three(3) of them: Q Statistic, Correlation Coefficient
(CC) and Pairwise Interrater Agreement (kp). These pairwise measures have
the same diversity value (0) when the classifiers are statistically independent.
They are called pairwise because they consider the output classifiers, two at a
time and then they average the calculated pairwise diversity. These measures
are computed based on the agreement and the disagreement between each 2
classifiers (see Table 1).

Table 1. The agreement and disagreement between two classifiers

hk correct (1) hk incorrect (0)

hj correct (1) N11 N10

hj incorrect (0) N01 N00

N=N00+N01+N10+N11

Nvw(v,w=1,0) is the number of instances correctly or incorrectly classified by
the two classifiers: hj and hk (j,k = 1..T ).

The Q Statistic: Using table 1, this measure is calculated as follows:

Qj,k =
N11N00 −N10N01

N11N00 +N10N01
(11)

Q Statistic varies between -1 and 1. Classifiers that tend to recognize correctly
the same instances, have positive Q values, and classifiers that commit errors
on different instances have negative Q values. In [11], the authors showed that
the negative dependency of linear classifiers can offer a dramatic improvement
in Boosting.



310 N. Meddouri, H. Khoufi, and M.S. Maddouri

The Correlation Coefficient: The correlation between 2 classifiers is given
by:

ρj,k =
N11N00 −N10N01√

(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
(12)

The Pairwise Interrater agreement: For this measure, the agreement be-
tween each pair of classifiers is calculated as:

kpj,k = 2
N11N00 −N10N01

(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
(13)

For any pair of classifiers, Q and ρ have the same sign. The maximum value of
ρ and kp is 1 but the minimum value depends on the individual performance of
the classifiers.

In [11], it is reported that there is not unique choice of diversity measure.
But, for linear classifiers, the authors recommended the use of Q Statistic for
it’s simplicity and it’s significant results. Then, it’s interesting to compare the
previous measures in Boosting Nominal Concept.

4 Experimental Study

The goal of this section is to study the relationship between the nominal classi-
fiers diversity and AdaBoost performance for 2-class problems.

Table 2. Characteristics of used data sets

Data Sets Instances Attributes Data diversity

Credit German 1000 20 98.59%
Diabetes 768 8 22.83%
Ionosphere 351 4 90.2%
Tic Tac Toe 958 9 100%
Transfusion 748 4 1.07%

The experiments are performed on 5 real data sets extracted from UCI Ma-
chine Learning Repository1 [2] and the algorithms are implemented in WEKA2, a
widely used toolkit.

The characteristics of these data sets are reported in Table 2. For each data
set, we respectively give the number of instances and the number of attributes.
Also, we present the data diversity rate that indicates the samples which are
different (including the class label) in the data [9].

1 http://archive.ics.uci.edu/ml/
2 http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 1. Diversity and error rates of BNC on Credit German

The performance of BNC is evaluated in terms of error rates. To calculate
this performance, we report the average of 10 experimentations. Each experiment
was performed using 10 cross-validations, that is the most used method in the
literature for validation [10].
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Fig. 2. Diversity and error rates of BNC on Diabetes
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Fig. 3. Diversity and error rates of BNC on Ionosphere
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Fig. 4. Diversity and error rates of BNC on Tic Tac Toe
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Fig. 5. Diversity and error rates of BNC on Transfusion
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It consists on dividing the data sample into 10 subsets. In turn, each subset
will be used for testing and the rest are assembled together for learning. Finally,
the average of these 10 runs is reported.

Figures 1, 2, 3, 4 and 5 present the performance of BNC and the values of
the 3 diversity measures on the Credit German, Diabetes, Ionosphere, Tic Tac
Toc and Transfusion data sets respectively.

In figure 1.1, we remark that the performance of BNC starts to stabilize when
using ensembles of 20 classifiers, for high diversity data (DD=98.59%). The
classifiers generated are negatively depend (Q ≤ -0.02). The minimum values
of Q Statistic are obtained with classifier numbers varying between 10 and 20.
From figure 1.3 and figure 1.4, the values of the 2 measures CC and Kp are very
divers and the variation curves are ascending, while the curve of the values of Q
is upward then downward.

In figure 2.1, the best performance of BNC is obtained with divers classifier
ensembles (with Q=-0.3 as minimum average values). In figure 2.2, the min-
imum values of Q Statistic are obtained with 20 classifiers. For Diabetes data
(DD=22.83%), there is a relation betweenQ Statistic and the BNC performance.

With high divers data (figure 3.2), the first generated classifiers are indepen-
dent but the rest are negatively depend (Q ≤ -0.15). The minimum values of Q
Statistic are obtained with classifier numbers varying between 15 and 30. With
less than 20 classifiers, the error rate decreases about 40% (figure 3.1).

From figure 4.1, the difference between the error rates of the first classifier
and the generated thereafter, is not important. This show that Boosting can
converge to the best performance with few classifiers. For this case, Q Statistic
is informative. In Figure 4.3 and 4.4, the values of Kp and CC vary an a very
arbitrary way.

For the Transfusion data set (DD=1.07%), the classifier generation does not
help to increase BNC performance. We conclude that it is not recommanded to
use AdaBoost for this type of data.

Concerning diversity measures, we can note that for 2-class problems, the
values of ρ and kp are not correlated with AdaBoost performance using nominal
classifiers. The Q Statistic seems like a good measure of model diversity that
has a relationship with the performance of AdaBoost and then for can be used
to stop classifier learning .

5 Conclusions

In this paper, we have study the diversity of nominal classifiers in AdaBoost.M2.
We have compared 3 diversity measures for 2-class problems. We have found
that the Q Statistic is significantly correlated with the AdaBoost performance,
especially for very divers data sets. Then, it’s possible to use this measure as
a stopping criteria for ensemble learning . But for very correlated data sets, no
measure is useful. This results should be confirmed with more correlated data.
The diversity of data sets should then be taken into account in AdaBoost learning
process. It’s also interesting to study Q Statistic diversity to see if it can be used
in AdaBoost for many class problems.
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Abstract. Depending on the domain, there may be significant ramifi-
cations associated with the occurrence of an extreme event (for e.g., the
occurrence of a flood from a climatological perspective). However, due
to the relative low occurrence rate of extreme events, the accurate pre-
diction of extreme values is a challenging endeavor. When it comes to
zero-inflated time series, standard regression methods such as multiple
linear regression and generalized linear models, which emphasize esti-
mating the conditional expected value, are not best suited for inferring
extreme values. And so is the case when the the conditional distribution
of the data does not conform to the parametric distribution assumed by
the regression model. This paper presents a coupled classification and re-
gression framework that focuses on reliable prediction of extreme value
events in a zero-inflated time series. The framework was evaluated by
applying it on a real-world problem of statistical downscaling of precipi-
tation for the purpose of climate impact assessment studies. The results
suggest that the proposed framework is capable of detecting the timing
and magnitude of extreme precipitation events effectively compared with
several baseline methods.

1 Introduction

The notion behind being able to foretell the occurrence of an extreme event in a
time series is very appealing, especially in domains with significant ramifications
associated with the occurrence of an extreme events. Predicting pandemics in
an epidemiological domain or forecasting natural disasters in a geological and
climatic environment are examples of applications that give importance to detec-
tion of extreme events. Unfortunately, the accurate prediction of the timing and
magnitude of such events is a challenge given their low occurrence rate. More so,
the prediction accuracy depends on the regression method used as well as char-
acteristics of the data. On the one hand, standard regression methods such as
generalized linear model (GLM) emphasize estimating the conditional expected
value, and thus, are not best suited for inferring extremal values. On the other
hand, methods such as quantile regression are focused towards estimating the
confidence limits of the prediction, and thus, may overestimate the frequency
and magnitude of the extreme events. Though methods for inferring extreme
value distributions do exist, combining them with other predictor variables for
prediction purposes remains a challenging research problem.
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Standard regressionmethods typically assume that the data conform to certain
parametric distributions (e.g., from an exponential family). Such methods are in-
effective if the assumed distribution does not adequately model characteristics of
the real data. For example, a common problem encountered especially in model-
ing climate and ecological data is the excess probability mass at zero. Such zero-
inflated data, as they are commonly known, often lead to poor model fitting using
standard regression methods as they tend to underestimate the frequency of ze-
ros and the magnitude of extreme values in the data. One way for handling such
type of data is to identify and remove the excess zeros and then fit a regression
model to the non-zero values. Such an approach, can be used, for example, to pre-
dict future values of a precipitation time series [13], in which the occurrence of wet
or dry days is initially predicted using a classification model prior to applying the
regression model to estimate the amount of rainfall for the predicted wet days. A
potential drawback of this approach is that the classification and regressionsmod-
els are often built independent of each other, preventing the models from gleaning
information from each other to potentially improve their predictive accuracy. Fur-
thermore, the regression methods used in modeling the zero-inflated data do not
emphasize accurate prediction of extreme values.

The paper presents an integrated framework that simultaneously classifies
data points as zero-valued or not, and apply quantile regression to accurately
predict extreme values or the tail end of the non-zero values of the distribution
by focussing on particular quantiles.

We demonstrate the efficiency of the proposed approach on modeling climate
data (precipitation) obtained from the Canadian Climate Change Scenarios Net-
work website [1]. The performance of the approach is compared with four baseline
methods. The first baseline is the general linear model (GLM) with a Poisson
distribution. The second baseline used is the general linear model using an ex-
ponential distribution coupled with a binomial distribution classifier(GLM-C).
A zero-inflated Poisson was used as the third baseline method (ZIP). The fourth
basesline was quantile regression. Empirical results showed that our proposed
framework outperforms the baselines for majority of the weather stations inves-
tigated in this study.

In summary, the main contributions of this paper are as follows:

– We compare and analyze the performance of models created using variants
of GLM, quantile regression and ZIP approaches to accurately predict values
for extreme data points that belong to a zero-inflated distribution.

– We present a approach optimized for modeling zero-inflated data that out-
performs the baseline methods in predicting the value of extreme data points.

– We successfully demonstrated the proposed approach to the real-world prob-
lem of downscaling precipitation climate data with application to climate
impact assessment studies.

2 Related Work

The motivation behind the presented model is accurately predicting extreme
values in the presence of zero-inflated data. Previous studies have shown that



320 F. Xin and Z. Abraham

additional precautions must be taken to ensure that the excess zeros do not
lead to poor fits [2] of the regression models. A typical approach to model a
zero-inflated data set is to use a mixture distribution of the form P (y|x) =
απ0(x) + (1 − α)π(x), where π0 and π are functions of the predictor variables
x and α is a mixing coefficient that governs the probability an observation is
a zero or non-zero value. This approach assumes that the underlying data are
generated from known parametric distributions, for example, π may be Poisson
or negative binomial distribution (for discrete data) and lognormal or Gamma
(for continuous data).

Generally, simple modeling of zero values may not be sufficient, especially
in the case of zero-inflated climate data such as that of precipitation where
extreme value observations, (that could indicate floods, droughts, etc) need to be
accurately modeled. Due to the significance of extreme values in climatology and
the increasing trend in extreme precipitation events over the past few decades, a
lot of work needs to be done in analysing the trends in precipitation, temperature,
etc., for regions in United states, Canada, among others [3]. Katz et al. introduces
the common approaches used in climate change research, especially with regard
to extreme values[4].

The common approaches to modeling extreme events are based on general
extreme value theory [5], Pareto distribution [10], generalized linear modeling
[6], hierarchical Bayesian approaches [9], etc. Gumbel [8] and Weibull [12] are the
more common variants of general extreme value distribution used. There are also
Bayesian models [11] that try augmenting the model with spatial information.
Watterson et al. propose a model that also deals with the skewness of non-
zero data/intermittency of precipitation using gamma distribution to interpret
changes in precipitation extremes [7]. In contrast, the framework presented in
this paper handles the intermittency of the data by coupling a logistic regression
classifier to the quantile regression part of the model.

3 Preliminaries

Consider a multivariate time series L = (xt, yt), where t ∈ {1, 2, · · · , n} is a
discrete-valued index for time, xt is a d-dimensional vector of predictor vari-
ables at time t, and yt is the corresponding value for the response (target)
variable. Given an unlabeled sequence of multivariate observations xτ , where
τ ∈ {n+ 1, · · · , n+ m}, our goal is to learn a target function f(x,β) that best
estimates the values of the response variable by minimizing the expected loss
Ex,y[L(y, f(x,β))]. The weight vector β denotes the regression coefficients to be
estimated from the training data L.

Multiple linear regression (MLR) is one of most widely used regression meth-
ods due to its simplicity. It assumes f(x,β) = βTx (where x is a (d + 1)-
dimensional vector whose first element x0 = 1 and β ∈ �d+1 is the weight
vector) and the response variable y is related to f(x,β) via the following equa-
tion:

y = βTx+ ε, ε ∼ N(0, σ2).
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As a result, P (y|x) ∼ N(βTx, σ2) and Ey|x[y] =
∫
yP (y|x)dy = βTx. Since the

predicted value of the response variable for a test data point xτ is βTxτ , this
implies that the predictions made by MLR focus primarily on the average value
of y given xτ . This explains the limitation of MLR in terms of inferring extreme
values in a given time series. The parameter vector β in MLR can be estimated
using the maximum likelihood (ML) approach to obtain

β̂ = (XTX)−1XTy,

where X is the n × (d + 1) design matrix and y is an n × 1 column vector for
the observed values of the response variable.

The drawback of simple linear regression is that it is built on a strong assump-
tion -namely, normality. Unfortunately, real world data may not always have a
normal distribution and may be skewed to one side or may not cover the whole
range of real numbers or may have a heavier tail than the normal distribution,
etc. Hence, alternative approaches that are not constrained by such assumptions
such as GLM may be used.

3.1 Generalized Linear Model(GLM) and 2-Step GLM (GLM-C)

The generalized linear model is one of most widely used regression methods due
to its simplicity. Generally, a GLM consists of three elements:

1. The response variable Y, which has a probability distribution from the
exponential family.

2. A linear predictor η = Xβ
3. A link function g(·) such that E(Y|X) = μ = g−1(η)

where, Y ∈ Rn×1 is the response variables vector, X ∈ Rn×d is the design
matrix with all 1 in the last column. β ∈ Rp×1 is the parameter vector. Since
the link function shows the relationship between the linear predictor and the
mean of the distribution, it is very important to understand the detail about
the data before arbitrarily using the canonical link function. In our case, since
the precipitation data are always non-negative and values represented using a
millimeter scale, the non-zero data may be treated as count data allowing us
to use Poisson distribution or an exponential distribution to describe the data.
Hence, in our experiments we always choose log(·) as the link function and choose
to use Poisson distribution. We scale the Y used in the regression model to be
10× Y :

(10× Yi)|Xi ∼ Poi(λi)

E((10× Yi)|Xi) = λi = g−1(ηi) = g−1(Xiβ);

The histogram in Figure 1 is a representation of the data belonging to station-
1. It is clear that the number of zero is too large. The second histogram which
is without zero looks similar to a kind of Poisson or exponential distribution.

Considering the large number of zeros, one is motivated to perform classifi-
cation first to eliminate the zero values before any regression. There are many
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Fig. 1. Comparison of the histogram of the original distribution of data at Station-1
with its truncated counterpart

classification methods available. But for the purpose of our experiments, we use
logistic regression (which is also a variation of GLM) to do the classification.
The response variable Y ∗ of logistic regression is a binary variable defined as:

Y ∗ =

{
1 Y > 0,

0 Y = 0

The detail of the model is as follows: The link function is a logit link g(p) =

log(
p

1− p
), such that,

Y ∗
i |Xi ∼ Bin(pi)

E(Y ∗
i |Xi) = pi = g−1(ηi) = g−1(Xiβ);

When we derive the fitted values, they will be transferred to be binary:

f∗ =

{
1 1 ≥ Ŷ ∗ > 0.5,

0 0.5 ≥ Ŷ ∗ ≥ 0

The second part is a GLM with exponential distribution, the response variable
Y ′ is just those non-zero data, and the link function is g(·) = log(·):

Y ′
i |Xi ∼ Exp(λi)

E(Y ′
i |Xi) = λi = g−1(ηi) = g−1(Xiβ);

Then, we got fitted-value f ′ for all Xi

Finally, we report the product of those two fitted-values Ŷ = f∗ × f ′

To fit the GLM model, we use iteratively reweighted least squares(IRLS)
method for maximum likelihood estimation of the model parameters.



Extreme Value Prediction for Zero-Inflated Data 323

3.2 Zero Inflated Poisson Regression(ZIP)

Differing from the methods above, zero inflated poisson regression treats the
zero as a mixture of two distributions: a Bernoulli distribution with probability
πi to get 0, and a Poisson distribution with parameter μ (let Pr(·;μ) denote the
probability density function). In fact, the ZIP regression model is defined as:

Pr(Y = yi|xi) =

{
πi + (1− πi)Pr(Yi = 0;λi) yi = 0,

(1− πi)Pr(Y = yi;λi) yi > 0

where 0 < πi < 1, and

logit(πi) = log(
πi

1− πi
) = xiβ1

log(μi) = xiβ2

where β1, β2 are all regression parameter. Both of them could be found by
maximizing the likelihood function. For the purpose of the experiments, we used
the R package ’pscl’ to fit the model.

3.3 Quantile Linear Regression(QR) and 2-step QR(QR-C)

Quantile regression was used to estimate the specified quantile of a population.
Hence, if the objective of the regression is to estimate the conditional quan-
tile(e.g., median) of Y instead of a conditional mean like MLR and Ridge regres-
sion, one may use quantile regression. Its loss function for the linear regression
model is:

f(b) =
N∑
i=1

ρτ (Yi −XT
i b), and β̂ = argmin

b
f(b),

where

ρτ (u) =

{
τu u > 0

(τ − 1)u u ≤ 0

Let FY (y) = P (Y ≤ y) be the distribution function of a real valued random
variable Y. The τ th quantile of Y is given by:

QY (τ) = F−1(τ) = inf{y : FY (y) ≥ τ}

It can be proved that the ŷ which minimizes Eρτ (y − ŷ) should satisfy that
FY (ŷ) = τ . Thus, quantile regression will find the τ th quantile of a random
variable, for example:

Median(Y|X) = Xβ̂
qr
; β̂

qr
= argmin

b

∑
ρ0.5(yi −XT

i b)
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For the purpose of the experiments conducted, we always used τ = 0.95 to rep-
resent extreme high value. Unlike the least squares methods mentioned above
which could be solved by numerical linear algebra, the solution to quantile re-
gression is relatively non-trivial. Linear programming is used to solve the loss
function by converting the problem to the following form.

min
u,v,b

{τeTNu+ (1− τ)eTNv|Y −Xb = u− v;b ∈ Rp;u,v ∈ RN
+ }

For the same reason as mentioned in the Section 3.1, a classification method
should be incorporated along with the regression model. We used logistic regres-
sion for classification, and quantile regression on those nonzero Y . Finally, we
report the product of those two fitted values. Quantile regression may return a
negative value, which we force to 0. We do this because precipitation is always
non-negative.

4 Framework for Integrated Classification and Regression

Now that we have introduced quantile regression, which is an integral part
of our objective function we will elaborate the motivation behind the various
components of the proposed objective function. Since zero-inflated data is best
described with the help of a classifier that help identify non-zero values and
a regression component to address non-zero values, our framework consists of
both components. For the classifier component we use least square support vec-
tor machine and for the regression component, we use the intuition of quantile
regression to help focus the regression of extreme values. Since the final predic-
tion of the data point using this framework is a product of the regression and
classification component, the quantile regression component is built to work on
the eventual predicted return value, thereby integrating both the classifier and
regression components.

4.1 Integrated Classifier and Regression for Extreme Values(ICRE)

The classification and regression models developed in this study are designed to
minimize the following objective function:

arg min
ω1,ω2

L(ω1,ω2) =
1

n

n∑
i=1

(1− (2yi − 1)fi)
2 (1)

+
1

n∗

n∑
i=1

yiρτ (y
′
i − f ′

i × (fi + 1)/2) + λ(||ω1||2 + ||ω2||2)

where n∗ is the number of nonzero yi. Then it can be expanded as follows:

arg min
ω1,ω2

L(ω1,ω2) =
1

n

n∑
i=1

(1− (2yi − 1)(xT
i ω2))

2 (2)

+
1

n∗

n∑
i=1

yiρτ (y
′
i − (xT

i ω1)× (sign((xT
i ω2 + 1)/2)))

+ λ(||ω1||2 + ||ω2||2)
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The rationale for the design of our objective function is as follows. The first
term which corresponds to the regression part of the equation represents quantile
regression performed for only the observed non-zero values in the time series.
The regression model is therefore biased towards estimating the non-zero extreme
values more accurately and not be adversely influenced by the over-abundance of
zeros in the time series. The product f ′

i×(fi+1)/2 in the first term, corresponds
to the predicted output of our joint classification and regression model. The sec-
ond term in the objective function, which is the main classification component,
is equivalent to the least square support vector machine. And the last two terms
in the objective function are equivalent to the L2 norm used in ridge regression
models to shrink the coefficients in ω1 and ω2.

We consider each data point to be a representative reading at an instance of
time t ∈ {1, 2, · · · , n} in the time series. Each predictor variable is standardized
by subtracting its mean value and then dividing by its corresponding standard
deviation. The standardization of the variables is needed to account for the
varying scales.

The optimization method used while performing experiments is ’L-BFGS-
B’, described by Byrd et. al. (1995). It is a limited memory version of BFGS
methods. This method does not store a Hessian matrix, just a limited number
of update steps for it, and then it uses derivative information. Since our model
includes a quantile regression component, which is not differentiable, this method
of optimization is well suited to our objective function.

To solve the objective function, we used the inverse logistic function of xT
i ω2

instead of sign((xT
i ω2 +1)/2)). The decision was motivated by the fact that the

optimizer tries to do a line search along the steepest descent direction and finds
the positive derivative along this line, which would result in a nearly flat surface
for the binary component. Hence conversion of the binary report to an inverse
logistic function of xT

i ω2 was used to address this issue. During the prediction
stage, we use the binary-fitted values from the SVM component.

5 Experimental Evaluation

In this section, the climate data that are used to downscale precipitation is de-
scribed. This is followed by the experiment setup. Once the dataset is introduced,
we analyzed the behavior of baseline models and contrasted them with ICRE
in terms of relative performance of the various models when applied to this real
world dataset to forecast future values of precipitation.

5.1 Data

All the algorithms were run on climate data obtained for 29 weather stations in
Canada, from the Canadian Climate Change Scenarios Network website [1]. The
response variable to be regressed (downscaled), corresponds to daily precipita-
tion values measured at each weather station. The predictor variables correspond
to 26 coarse-scale climate variables derived from the NCEP Reanalysis data set



326 F. Xin and Z. Abraham

and the H3A2a data set(computer generated simulations), which include mea-
surements of airflow strength, sea-level pressure, wind direction, vorticity, and
humidity. The predictor variables used for training were obtained from the NCEP
Reanalysis data set while the predictor variables used for the testing were ob-
tained from the H3A2a data set. The data span a 40-year period, 1961 to 2001.
The time series was truncated for each weather station to exclude days for which
temperature or any of the predictor values are missing.

5.2 Experimental setup

The first step was to standardize the predictor variables by subtracting its mean
value and then dividing by its corresponding standard deviation to account for
their varying scales. The training size used was 10yrs worth of data and the
test size, 25yrs. During the validation process, the selection of the parameter λ
was done using the score returned by RMSE-95. Also, to ensure the experiments
replicated the real world scenario where the prediction for a future timeseries
needs to be performed using simulated values of the predictor variables for the
future time series, we used simulated values for the corresponding predictor
variables obtained from H3A2a climate scenario as XU , while XL are values
obtained from NCEP. All the experiments were run for 37 stations.

5.3 Baseline Algorithm

We compare the performance of ICRE with baseline models created using general
linear model(GLM), general linear model with classification (GLM-C), quantile
regression(QR), quantile regression with classification and zero-inflated Pois-
son(ZIP). Further details about the baselines are provided below.

General Linear Model (GLM). The baseline GLM refers to the generalized
linear model that uses a Poisson distribution as a link function, resulting in the
regression function log(λ) = Xβ, where E(Y |X) = λ

General Linear Model with Classification (GLM-C). Unlike the previous
baseline (GLM), GLM-C refers to a two step generalized linear model that uses
a Binomial distribution, for the classifier with the model described as logit(p) =
Xβ, and E(Y ′ = 1|X) = p which Y ′ = 1 when Y > 0 and Y ′ = 0 when Y = 0
and a second step that uses a generalized linear model with an exponential
distribution that is built only on non-zero response data points. The regression
function is log(λ) = Xβ, which E(Y |X) = λ. The eventual predicted value for
each data point is the product of the two respective fitted values.

Quantile Regression (QR). The baseline QR refers to the regular quantile
regression described earlier in the preliminary section 3
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Quantile Regression with Classification(QR-C). The baseline QR-C refers
to a two step model that has a GLM that uses a binomial distribution that acts
as a classifier and a regular quantile regression model that is built on non-zero
valued data points as described earlier in the preliminary section. These two
models that comprise QR-C are built independent of each other and the eventual
predicted value for each data point is the product of the two respective fitted
values.

Zero Inflated Poisson(ZIP). Zero Inflation Poisson model used as a baseline
and is similar to the ZIP model described in Section 3.

5.4 Evaluation Criteria

The motivation behind the selection of the various evaluation metrics was to
evaluate the different algorithms in terms of predicting the magnitude and the
timing of the extreme events.The following criteria to evaluate the performance
of the models are used:

– Root Mean Square Error (RMSE), which measures the difference between
the actual and predicted values of the response variable, i.e.:

RMSE =

√∑n
i=1(y

′
i−f ′

ifi)
2

n .

– RMSE-95, which we use to measure the difference between the actual and
predicted value of the response variable for only the extreme data points(j).
Extreme data points refer to the points whose actual value were 95 percentile
and above. The equation is with respect to 95 percentile, as throughout this
paper, we associate data points that are 95 percentile and above as extreme
values, i.e.:

RMSE-95 =

√∑n/20
j=1 (y′

j−fif ′
j)

2

n/20 .

– Confusion matrices will be computed to visualize the precision and recall of
extreme and non-extreme events. F-measure, which is the harmonic mean
between recall and precision values will be used as a score that evaluates the
precision and recall results.
F-measure = 2×Recall×Precision

Recall+Precision

To summarize, RMSE-95 is used for measuring magnitude and F-measure mea-
sures the correctness of the timing of the extreme events.

5.5 Experimental Results

The results section consists of two main sets of experiments. The first set of
experiments evaluates the impact of zero-inflated data on modeling extreme
values. The second section compares the performance of ICRE with the baseline
methods which are followed .
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Impact of Zero-Inflated Data on Extreme Value Prediction. Unlike
regular data which may be modeled using regression, modeling zero-inflated
data usually involves a classifier and a regression component. The classifier is
used to identify zero and non-zero values, which is followed by regression for
the non-zero values. But since the focus of the paper is on extreme data points
within zero-inflated data, the impact of the classifier is unclear. In this section,
we compare the impact of including the classifier in modeling extreme values of
zero-inflated data. We compared QR with QR-C and GCM with GCM-C and
show the results in Table 1. Note that the percentage of wins for F-measure,
recall, precision may not total to 100 in the case of a tie.

Table 1. Percentage of stations won

QR-C QR GLM-C GLM

RMSE-95 0 100 67.57 32.43
F-Measure 81.08 18.92 18.92 35.13

As shown in the Table 1, it isn’t clear that using an independent classifier
along with regression for modeling extreme values among zero inflated data is
preferred. But the results do indicate that the inclusion or exclusion of a classi-
fier with the regression model built independent of each other may compromise
either RMSE-95 (by overestimating the magnitude) or F-measure (mistiming
predicting an extreme value), without necessarily compromising both together.

Comparison of ICRE to Baseline Methods. Table 2 shows the relative per-
formance of ICRE to all the baseline methods in terms of percentage of stations
outperformed against the baseline method in terms of RMSE-95 values calcu-
lated on extreme rain days. In terms of RMSE of extreme rain days, as shown in
Table 2, ICRE outperformed the baselines (except QR) in almost every one of
the 37 stations. But QR was the best across all methods for RMSE-95 of extreme
days. In terms of F-measure that was computed based on recall and precision of

Table 2. Percentage of stations ICRE outperformed the baseline

QR-C QR GLM-C GLM ZIP

RMSE-95 91.89 0 97.3 97.3 97.3
F-Measure 43.24 62.16 89.19 89.19 91.9

identifying extreme events, ICRE again outperformed the baselines(except QR-
C) in majority of the 37 stations. But ICRE was only able to outperform QR-C
in 16 or the 37 stations in terms of F-measure. Although QR performed the best
in terms of estimating magnitude for those extreme events, it over-estimate the
timing of the events as seen by the relatively lower F-measure score. QR-C did
the reverse, it did reasonably well in terms of modeling the timing, but performed
very poorly in terms of the magnitude of the events by overestimating.



Extreme Value Prediction for Zero-Inflated Data 329

6 Conclusions

This paper compare and analyze the performance of models created using vari-
ants of GLM, quantile regression and ZIP approaches to accurately predict values
for extreme data points that belong to a zero-inflated distribution. An alter-
nate framework(ICRE) was present that outperforms the baseline methods and
the effectiveness of the model was demonstrated on climate data to predict the
amount of precipitation at a given station. For future work, we plan to extend
the framework to a semi-supervised setting.
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Abstract. Expert finding is concerned about finding persons who are knowl-
edgeable on a given topic. It has many applications in enterprise search, social
networks, and collaborative management. In this paper, we study the problem of
diversification for expert finding. Specifically, employing an academic social net-
work as the basis for our experiments, we aim to answer the following question:
Given a query and an academic social network, how to diversify the ranking list,
so that it captures the whole spectrum of relevant authors’ expertise? We precisely
define the problem and propose a new objective function by incorporating topic-
based diversity into the relevance ranking measurement. A learning-based model
is presented to solve the objective function. Our empirical study in a real system
validates the effectiveness of the proposed method, which can achieve significant
improvements (+15.3%-+94.6% by MAP) over alternative methods.

1 Introduction

Given a coauthor network, how to find the top-k experts for a given query q? How to
diversify the ranking list so that it captures the whole spectrum of relevant authors’ ex-
pertise? Expert finding has long been viewed as a challenging problem in many different
domains. Despite that considerable research has been conducted to address this prob-
lem, e.g., [3,17], the problem remains largely unsolved. Most existing works cast this
problem as a web document search problem, and employ traditional relevance-based
retrieval models to deal with the problem.

Expert finding is different from the web document search. When a user is looking
for expertise collaborators in a domain such as “data mining”, she/he does not typically
mean to find general experts in this field. Her/his intention might be to find experts on
different aspects (subtopics) of data mining (e.g., “association rules”, “classification”,
“clustering”, or “graph mining”). Recently, diversity already becomes a key factor to
address the uncertainty and ambiguity problem in information retrieval [12,21]. How-
ever, the diversification problem is still not well addressed for expert finding. In this
paper, we try to give an explicit diversity-based objective function for expert finding,
and to leverage a learning-based algorithm to improve the ranking performance.
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Fig. 1. Illustrative example of diversified expert finding. The query is “information retrieval”, and
the list on the left side is obtained by language model. All the top five are mainly working on
retrieval models. The right list is obtained by the proposed diversified ranking method with four
subtopics (indicated by different colors).

Motivating Examples. To illustrate this problem, Figure 1 gives an example of di-
versified expert finding. The list on the left is obtained by using language model, a
state-of-the-art relevance-based ranking model [2]. We see that all the top five experts
are mainly working on information retrieval models. The right list is obtained using
the proposed diversified ranking method with four subtopics. The top two experts are
working on information retrieval models, but the third one is working on multimedia
retrieval, the fourth is about digital library, and the fifth is about information retrieval
using natural language processing. The diversified ranking list is more useful in some
sense: the user can quickly gain the major subtopics of the query, and could refine the
query according to the subtopic that she/he is interested in. Additionally, the user can
have the hint about what the other users are recently interested in, as the ranking list is
obtained by learning from the user feedback (e.g., users’ click data).

We aim to conduct a systematic investigation into the problem of diversifying expert
finding with subtopics. The problem is non-trivial and poses a set of unique challenges.
First, how to detect subtopics for a given query? Second, how to incorporate the diver-
sity into the relevance-based ranking score? Third, how to efficiently perform the expert
ranking algorithm so that it can be scaled up to handle large networks?

Contributions. We show that incorporating diversity into the expert finding model
can significantly improve the ranking performance (+15.3%-+94.6% in terms of MAP)
compared with several alternative methods using language model, topic model and ran-
dom walk. In this work, we try to make the following contributions:

– We precisely formulate the problem of diversified expert finding and define an ob-
jective function to explicitly incorporate the diversity of subtopics into the relevance
ranking function.
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– We present a learning-based algorithm to solve the objective function.
– We evaluate the proposed method in a real system. Experimental results validate its

effectiveness.

Organization. Section 2 formulates the problem. Section 3 explains the proposed
method. Section 4 presents experimental results that validate the effectiveness of our
methodology. Finally, Section 5 reviews related work and Section 6 concludes.

2 Problem Definition

In this section, we formulate the problem in the context of academic social network
to keep things concrete, although adaption of this framework to expert finding in other
social-network settings is straightforward.

Generally speaking, the input of our problem consists of (1) the results of any topic
modeling such as predefined ontologies or topic cluster based on pLSI [9] or LDA [5]
and (2) a social network G = (V,E) and the topic model on authors V , where V is a
set of authors and E ⊂ V × V is a set of coauthor relationships between authors. More
precisely, we can define a topic distribution over each author as follows.

Topic distribution: In social networks, an author usually has interest in multiple topics.
Formally, each user v ∈ V is associated with a vector θv ∈ RT of T -dimensional topic
distribution (

∑
z θvz = 1). Each element θvz is the probability (i.e., p(z|v)) of the user

on topic z.

In this way, each author can be mapped onto multiple related topics. In the meantime,
for a given query q, we can also find a set of associated topics (which will be depicted
in detail in §3). Based on the above concepts, the goal of our diversified expert finding
is to find a list of experts for a given query such that the list can maximally cover the
associated topics of the query q. Formally, we have:

Problem 1. Diversified Expert Finding. Given (1) a network G = (V,E), (2) T -
dimensional topic distribution θv ∈ RT for all authors v in V , and (3) a metric function
f(.), the objective of diversified expert finding for each query q is to maximize the
following function:

T∑
z=1

f(k|z, G,Θ, q)× p(z|q) (1)

where f(k|z,G,Θ, q) measures the relevance score of top-k returned authors given
topic z; we can apply a parameter τ to control the complexity of the objective function
by selecting topics with larger probabilities (i.e., minimum number of topics that satisfy∑

z p(z|q) ≥ τ ). In an extreme case (τ = 1), we consider all topics.

Please note that this is a general formulation of the problem. The relevance metric
f(k|z,G,Θ, q) can be instantiated in different ways and the topic distribution can also
be obtained using different algorithms. Our formulation of the diversified expert finding
is very different from existing works on expert finding [3,16,17]. Existing works have
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mainly focused on finding relevant experts for a given query, but ignore the diversi-
fication over different topics. Our problem is also different from the learning-to-rank
work [11,23], where the objective is to combine different factors into a machine learn-
ing model to better rank web documents, which differs in nature from our diversified
expert finding problem.

3 Model Framework

3.1 Overview

At a high level, our approach primarily consists of three steps:

– We employ an unified probabilistic model to uncover topic distributions of authors
in the social network.

– We propose an objective function which incorporates the topic-based diversity into
the relevance-based retrieval model.

– We present an efficient algorithm to solve the objective function.

3.2 Topic Model Initialization

In general, the topic information can be obtained in many different ways. For exam-
ple, in a social network, one can use the predefined categories or user-assigned tags
as the topic information. In addition, we can use statistical topic modeling [9,5,20] to
automatically extract topics from the social networking data. In this paper, we use the
author-conference-topic (ACT) model [20] to initialize the topic distribution of each
user. For completeness, we give a brief introduction of the ACT model. For more de-
tails, please refer to [20].

ACT model simulates the process of writing a scientific paper using a series of prob-
abilistic steps. In essence, the topic model uses a latent topic layer Z = {z1, z2, ..., zT }
as the bridge to connect the different types of objects (authors, papers, and publication
venues). More accurately, for each object it estimates a mixture of topic distribution
which represents the probability of the object being associated with every topic. For ex-
ample, for each author, we have a set of probabilities {p(zi|a)} and for each paper d, we
have probabilities {p(zi|d)}. For a given query q, we can use the obtained topic model
to do inference and obtain a set of probabilities {p(zi|q)}. Table 1 gives an example of
the most relevant topics for the query “Database”.

3.3 DivLearn: Learning to Diversify Expert Finding with Subtopics

Objective Function. Without considering diversification, we can use any learning-to-
rank methods [11] to learn a model for ranking experts. For example, given a training
data set (e.g., users’ click-through data), we could maximize normalized discounted
cumulative gain (NDCG) or Mean Average Precision (MAP). In this section, we use
MAP as the example in our explanation. Basically, MAP is defined as:
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Table 1. Most relevant topics (i.e., with a higher p(z|q)) for query “Database”

Topic p(z|q)
Topic 127: Database systems 0.15
Topic 134: Gene database 0.09
Topic 106: Web database 0.07
Topic 99: XML data 0.05
Topic 192: Query processing 0.04

MAP (Q,k) =
1

|Q|

|Q|∑
j=1

∑k
i=1 Prec(aji)× rel(aji)∑k

i=1 rel(aji)
(2)

where Q is a set of queries in the training data; Prec(aji) represents the precision
value obtained for the set of top i returned experts for query qj ; rel(aji) is an indicator
function equaling 1 if the expert aji is relevant to query qj , 0 otherwise. The normalized
inner sum denotes the average precision for the set of top k experts and the normalized
outer sum denotes the average over all queries Q.

Now, we redefine the objective function based on a generalized MAP metric called
MAP-Topic, which explicitly incorporates the diversity of subtopics. More specifically,
given a training data set {(q(j), Aq(j) )}, where q(j) ∈ Q is query and Aq(j) is the set of
related experts for query q(j), we can define the following objective function:

O =
1

|Q|

|Q|∑
j=1

T∑
z=1

p(z|q)×
∑k

i=1 rel(aji)×
∑i

m=1 p(z|ajm)

i∑k
i=1 p(z|aji)× rel(aji)

(3)

where rel(aji) is an indicator function with a value of 1 if aji is in Aq(j) , 0 otherwise.

Linear Ranking Model. To instantiate the expert ranking model, we define differ-
ent features. For example, for expert finding in the academic network, we define fea-
tures such as the number of publications, h-index score of the author, and the language
model-based relevance score. For the i-th feature, we define φi(a, q) as the feature value
of author a to the given query q. Finally, without loss of generality, we consider the lin-
ear model to calculate the score for ranking experts, thus have

s(a, q) = wTΦ (a, q) =
N∑
i=1

wiφi (a, q) (4)

where wi is the weight of the i-the feature. Given a feature weight vector w, according
to the objective function described above, we can calculate a value, denoted as O(w),
to evaluate the ranking results of that model. Thus our target is to find a configuration
of w to maximizeO(w).

3.4 Model Learning

Many algorithms can be used for finding the optimal w in our model, such as hill
climbing [15], gene programming(GP) [10], random walk, gradient descent [4]. For the
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Algorithm 1. Model learning algorithm.
Input: training samples S
Output: learned parameters w
Initialize globalBestW,step
for circle = 1 → loop do

w ← empiricalV ector + randomV ector
repeat

wnew ← w + step
if O(wnew) > O(w) then

w ← wnew

else
Update step

end if
until convergence
if O(w) > O(globalBestW ) then

globalBestW ← w
end if

end for
return globalBestW

purpose of simplicity and effectiveness, in this paper, we utilize the hill climbing algo-
rithm due to its efficiency and ease of implementation. The algorithm is summarized in
Algorithm 1.

Different from the original random start hill climbing algorithm which starts from
pure random parameters, we add our prior knowledge empiricalV ector to the initial-
ization of w, as we know some features such as BM25 will directly affect the relevance
degree tends to be more important. By doing so, we could reduce the CPU time for
training.

4 Experiment

We evaluate the proposed models in an online system, Arnetminer1.

4.1 Experiment Setup

Data Sets. From the system, we obtain a network consisting of 1,003,487 authors,
6,687 conferences, and 2,032,845 papers. A detailed introduction about how the aca-
demic network has been constructed can be referred to [19]. As there is no standard data
sets available, and also it is difficult to create such an data sets with ground truth. For
a fair evaluation, we construct a data set in the following way: First, we select a num-
ber of most frequent queries from the query log of the online system; then we remove
the overly specific or lengthy queries (e.g., ‘A Convergent Solution to Subspace Learn-
ing’) and normalize similar queries (e.g., ‘Web Service’ and ‘Web Services’ to ‘Web

1 http://arnetminer.org

http://arnetminer.org
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Table 2. Statistics of selected queries. Entropy(q) = −
∑T

i=1 p(zi|q) log p(zi|q) measures
the query’s uncertainty; #(τ = 0.2) denotes the minimum number of topics that satisfy∑

P (z|q) ≥ τ .

Query Data Source Venue Entropy #(τ = 0.1) #(τ = 0.2)

Data Mining KDD 08-11 4.9 3 5
Information Retrieval SIGIR 08-11 4.8 3 8
Software Engineering ICSE 08-11 4.5 1 3
Machine Learning NIPS 08-11 & ICML 08-11 4.6 2 4

Service’). Second, for each query, we identify the most relevant (top) conferences. For
example, for ‘Web Service’, we select ICWS and for ‘Information Retrieval’, we select
SIGIR. Then, we collect and merge PC co-chairs, area chairs, and committee members
of the identified top conferences in the past four years. In this way, we obtain a list of
candidates. We rank these candidates according to the appearing times, breaking ties
using the h-index value [8]. Finally, we use the top ranked 100 experts as the ground
truth for each query.

Topic Model Estimation. For the topic model (ACT), we perform model estimation
by setting the topic number as 200, i.e., T = 200. The topic number is determined by
empirical experiments (more accurately, by minimizing the perplexity [2], a standard
measure for estimating the performance of a probabilistic model, the lower the better).
The topic modeling is carried out on a server running Windows 2003 with Dual-Core
Intel Xeon processors (3.0 GHz) and 4GB memory. For the academic data set, it took
about three hours to estimate the ACT model.

We produce some statistics for the selected queries (as shown in Table 2).
Entropy(q) measures the query’s uncertainty and #(τ = 0.2) denotes the minimum
number of topics that satisfy

∑
P (z|q) ≥ τ .

Feature Definition. We define features to capture the observed information for ranking
experts of a given query. We consider two types of features: 1) query-independent fea-
tures (such as h-index, sociability, and longevity) and 2) query-dependent features (such
as BM25 [13] score and language model with recency score). A detailed description of
the feature definition is given in Appendix.

Evaluation Measures and Comparison Methods. To quantitatively evaluate the pro-
posed method, we consider two aspects: relevance and diversity. For the feature-based
ranking, we consider six-fold cross-validation(i.e. five folds for training and the rest for
testing) and evaluate the approaches in terms of Prec@5, Prec@10, Prec@15, Prec@20,
and MAP. And we conduct evaluation on the entire data of the online system (including
916,946 authors, 1,558,499 papers, and 4,501 conferences). We refer to the proposed
method as DivLearn and compare with the following methods:

RelLearn: A learning-based method. It uses the same setting (the same feature defini-
tion and the same training/test data) as that in DivLearn, except that it does not consider
the topic diversity and directly use MAP as the objective function for learning.
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Table 3. Performance for expert search approaches (%)

Approach Prec@5 Prec@10 Prec@15 Prec@20 MAP

LM 21.1 18.3 15.6 13.6 26.3
BM25 17.8 16.7 14.8 14.7 27.1
ACT 23.3 22.8 21.5 21.4 32.3
ACT+RW 21.1 20.6 20.7 18.9 34.6
LDA 12.2 15 15.9 15.6 20.4
pLSI 21.1 21.1 19.3 18.6 31.8
RelLearn 27.8 24.4 24.8 26.1 35.8
DivLearn 35.6 28.3 26.7 25.8 41.3

Language Model: Language model(LM) [2] is one of the state-of-the-art approaches
for information retrieval. It defines the relevance between an expert (document) and a
query as a generative probability: p(q|d) =

∏
w∈q p(w|d).

BM25 [13]: Another state-of-the-art probabilistic retrieval model for information re-
trieval.

pLSI: Hofmann proposes the probabilistic Latent Semantic Indexing(pLSI) model in
[9]. After modeling, the probability of generating a word w from a document d can be
calculated using the topic layer: p(w|d) =

∑T
z=1 p(w|z)p(z|d). To learn the model, we

use the EM algorithm[9].
LDA: Latent Dirichlet Allocation (LDA) [5] also models documents by using a topic

layer. We performed model estimation with the same setting as that for the ACT model.
ACT: ACT model is presented in §3. As the learned topics is usually general and not

specific to a given query, only using it alone for modeling is too coarse for academic
search [22], so the final relevance score is defined as a combination with the language
model p(q|a) = pACT (q|a)× pLM (q|a).

ACT+RW: A uniform academic search framework proposed in [17], which combines
random walk and the ACT model together.

4.2 Performance Comparison

Table 3 lists the performance results of the different comparison methods. It can be
clearly seen that our learning approach significantly outperforms the seven comparison
methods. In terms of P@5, our approach achieves a +23% improvement compared with
the (LDA). Comparing with the other expert finding methods, our method also results
in an improvement of 8-18%. This advantage is due to that our method could combine
multiple sources of evidences together. From Table 3, we can also see that the learning-
based methods (both RelLearn and DivLearn) outperform the other relevance-based
methods in terms of all measurements. Our DivLearn considers the diversity of topics,
thus further improve the performance.

4.3 Analysis and Discussion

Now, we perform several analysis to examine the following aspects of DivLearn:(1)
convergence property of the learning algorithm; (2) effect of different topic threshold;
and (3) effect of recency impact function in Eq. 7.
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Fig. 2. Effect of topic threshold analysis

Convergence Property. We first study the convergence property of the learning al-
gorithm. We trace the execution of 72 random hill climbing runs to evaluate the con-
vergence of the model learning algorithm. On average, the number of iterations to find
the optimal parameter w varies from 16 to 28. The CPU time required to perform each
iteration is around 1 minute. This suggests that the learning algorithm is efficient and
has a good convergence property.

Effect of Topic Threshold. We conduct an experiment to see the effect of using dif-
ferent thresholds τ to select topics in the objective function (Eq. 3). We select the min-
imum number of topics with higher probabilities that statisfy

∑
z p(z|q) ≥ τ , then

re-scale this sum to be 1 and assign 0 to other topics. Clearly, when τ = 1, all topics
are counted. Figure 2a shows the value of MAP of multiple methods for various τ . It
shows that this metrics is consistent to a certain degree. The performance of different
methods are relatively stable with different parameter setting. This could be explained
by Figure 2b, which depicts the cumulated P (z|q) of top n topics. As showed, for a
given query, p(z|q) tends to be dominated by several top related topics. Statistics in
Table 2 also confirm this observation. All these observations confirm the effectiveness
of the proposed method.

Effect of Recency. We evaluate whether expert finding is dynamic over time. In Eq. 7,
we define a combination feature of the language model score and the recency score
(Func 1). Now, we qualitatively examine how different settings for the recency impact
function will affect the performance of DivLearn. We also compared with some other

recency function with Recency(p) = 2(
d.year - current year

λ ) (Func 2) [14]. Figure 3 shows the
performance of MAP with different parameter λ. The baseline denote the performance
without considering recency. It shows that recency is an important factor and both im-
pact functions perform better than the baseline which does not consider the recency.
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We can also see that both impact function perform best with the setting of λ ! 5. On
average, the first impact function (Func 1, used in our approach) performs a bit better
than Func 2.

5 Related Work

Previous works related to our learning to diversify for expert finding with subtopics
can be divided into the following three aspects: expert finding, learning to rank, search
result diversification. On expert finding, [17] propose a topic level approach over het-
erogenous network. [3] extended language models to address the expert finding prob-
lem. TREC also provides a platform for researchers to evaluate their models[16]. [7]
present a learning framework for expert finding, but only relevance is considered. Other
topic model based approaches were proposed either[17].

Learning to rank aims to combining multiple sources of evidences for ranking. Liu
[11] gives a survey on this topic. He categorizes the related algorithms into three groups,
namely point-wise, pair-wise and list-wise. To optimize the learning target, in this paper
we use an list-wise approach, which is similar to [23].

Recently, a number of works study the problem of result diversification by taking
inter-document dependencies into consideration [1,25,6,18]. Yue and Joachims [24]
present a SVM-based approach for learning a good diversity retrieval function. For
evaluation, Agrawal et al. [1] generalize classical information retrieval metrics to ex-
plicitly account for the value of diversification. Zhai et al. [25] propose a framework for
evaluating retrieval different subtopics of a query topic. However, no previous work has
been conducted for learning to diversify expert finding.

6 Conclusion

In this paper, we study the problem of learning to diversify expert finding results us-
ing subtopics. We formally define the problem in a supervised learning framework. An
objective function is defined by explicitly incorporating topic-based diversity into the
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relevance based ranking model. An efficient algorithm is presented to solve the ob-
jective function. Experiment results on a real system validate the effectiveness of the
proposed approach.

Learning to diversify expert finding represents a new research direction in both infor-
mation retrieval and data mining. As future work, it is interesting to study how to incor-
porate diversity of relationships between experts into the learning process. In addition,
it would be also interesting to detect user intention and to learn weights of subtopics via
interactions with users.
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Appendix: Feature Definition

This section depicts how we define features in our experiment. In total, we defined
features of two categories: query-independent and query-dependent.

– h-index: h-index equals h indicates that an author has h of N papers with at least h
citations each, while the left (N − h) papers have at most h citations each.

– Longevity: Longevity reflects the length of an author’s academic life. We consider
the year when one author published his/her first paper as the beginning of his/her
academic life and the last paper as the end year.

– Sociability: The score of an author’s sociability is defined based on how many co-
author he/she has. This score is defined as:

Sociability(A) = 1 +
∑

c∈A’s coauthors

ln(#co− paperc) (5)

where #co− paperc denotes the number of papers coauthored between the author
and the coauthor c.

– Language Model with Recency: We consider the effect of recency and impact factor
of conference. Thus the language model score we used for an author is redefined
as:

LM(q|a) =
∑

d∈{a’s publications}
p(q|d)× Impact(d.conference)×Recency(d) (6)

where Recency(d) for publication d is defined as:

Recency(d) = exp

(
d.year - current year

λ

)
(7)

– BM25 with Recency: It defines a similar relevance score as that in Eq. 6, except that
the p(q|d) is obtained by BM25.



An Associative Classifier for Uncertain Datasets

Metanat Hooshsadat and Osmar R. Zäıane
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Abstract. The classification of uncertain datasets is an emerging re-
search problem that has recently attracted significant attention. Some
attempts to devise a classification model with uncertain training data
have been proposed using decision trees, neural networks, or other ap-
proaches. Among those, the associative classifiers have inspired some of
the uncertain classification algorithms given their promising results on
standard datasets. We propose a novel associative classifier for uncertain
data. Our method, Uncertain Associative Classifier (UAC) is efficient
and has an effective rule pruning strategy. Our experimental results on
real datasets show that in most cases, UAC reaches better accuracies
than the state of the art algorithms.

1 Introduction

Typical relational databases or databases in general hold collections of records
representing facts. These facts are observations with known values stored in the
fields of each tuple of the database. In other words, the observation represented
by a record is assumed to have taken place and the attribute values are assumed
to be true. We call these databases “certain database” because we are certain
about the recorded data and their values. In contrast to “certain” data there is
also “uncertain data”; data for which we may not be sure about the observation
whether it really took place or not, or data for which the attribute values are
not ascertained with 100% probability.

Querying such data, particularly computing aggregations, ranking or discov-
ering patterns in probabilistic data is a challenging feat. Many researchers have
focused on uncertain databases, also called probabilistic databases, for managing
uncertain data [1], top-k ranking uncertain data [2], querying uncertain data [3],
or mining uncertain data [4,5]. While many approches use an existancial uncer-
tainty attached to a record as a whole, our model targets uncertain databases
with probabilities attached to each attribute value.

This paper addresses the problem of devising an accurate rule-based classi-
fier on uncertain training data. There are many classification paradigms but the
classifiers of interest to our study are rule-based. We opted for associative clas-
sifiers, classifiers using a model based on association rules, as they were shown
to be highly accurate and competitive with other approaches [6].

After briefly reviewing related work for associative classification as well as
published work on classifying in the presence of uncertainty, we present in Section
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3 our novel classification method UAC. Finally in Section 4 we present empirical
evaluations comparing UAC with other published works.

2 Related Works

Recently, a considerable amount of studies in machine learning are directed to-
ward the uncertain data classification, including: TSVC [7] (inspired by SVM),
DTU [8] (decision tree), UNN [9] (based on Neural Network), a Bayesian clas-
sifier [10], uRule [11] (rule based), uHARMONY [12] and UCBA [13] (based
on associative classifiers). However, models suggested by the previous work do
not capture some possible types of uncertainty. In previous studies, numerical
attributes are only modeled by intervals, while they may exist in other forms
such as probability vectors. Categorical attributes are modeled by a probability
distribution vector over their domain where the vector is unrealistically assumed
to be completely known. We use a probability on each attribute value.

High accuracy and strong flexibility are some of the advantageous characteris-
tics of the rule based classifiers. Investigating rule based uncertain data classifiers
has been the theme of many studies. One of these studies is uRule [11], which
defines the information gain metric in presence of uncertainty. The probability
of each rule classifying the instance is computed based on the weighting system
introduced by uRule.

Associative classification is a large category of rule based classification in
which the rule induction procedure is based on the association rule mining tech-
nique. Some of the prominent associative classifiers are CBA [14], ARC [15], and
CMAR [16]. In this paper, we introduce an associative classifier for uncertain
datasets, which is based on CBA. CBA is highly accurate, flexible and efficient
both in time and memory [14].

CBA directly adopts Apriori to mine the potential classification rules or strong
ruleitems from the data. Ruleitems are those association rules of form a → c,
where the consequence (c) is a class label and the antecedent (a) is a set of
attribute assignments. Each attribute assignment consists of an attribute and a
value which belongs to the domain of that attribute. For example, if A1 and A2

are two attributes and c is a class label, r = (A1 : u1, A2 : u2 → c) is a ruleitem.
r implies that if A1 and A2 have values of u1 and u2 respectively, the class label
should be c. A ruleitem is strong if its support and confidence are above the
predefined thresholds.

After mining the strong ruleitems, a large number of them are eliminated
by applying the database coverage approach. This method of filtering rules is
applied by all rule-based classifiers, particularly associative classifiers. However,
in the case of uncertain data, database coverage presents a significant challenge.
Rule based classifiers often need to evaluate various rules to pick the best ones.
This level is critical in maintaining a high accuracy. The evaluation often involves
the answer to the following question: To which training instances can a rule be
applied? Yet, the answer is not obvious for uncertain datasets. Many uncertain
dataset instances may satisfy the antecedent of a rule, each with a different



344 M. Hooshsadat and O.R. Zäıane

probability. Existing uncertain data rule based classifiers have suggested various
answers to this problem.

uHARMONY suggested a lower bound on the probability by which the in-
stance satisfies the rule antecedent. This approach is simple and fast, but the
difficulty or even impossibility of setting the threshold is a problem. This is ex-
plained in more detail in Section 3.2. uRule suggested to remove the items in the
antecedent of the rule from the instance, to leave only the uncovered part of the
instance every time. In contrast to uHARMONY, this method uses the whole
dataset but it may cause sensitivity to noise which is undesirable. UCBA, wich
is based on CBA, does not include the uncertainty in the rule selection process;
they select as many rules as possible. This method does not filter enough rules;
so may decrease the accuracy.

In UAC, we introduce a new solution to the coverage problem. This compu-
tation does not increase the running time complexity and needs no extra passes
over the dataset.

3 UAC Algorithm

In this section, we present our novel algorithm, UAC. Before applying UAC
to uncertain numerical attributes in the train sets, they are first transformed
into uncertain categorical attributes using U-CAIM [10], assuming the normal
distribution on the intervals. After discretization, the value of the i-th attribute
for the j-th instance is a list of value-probability pairs, as shown in Equation 1.

Aj,i = {(xj,i,1 : pj,i,1), (xj,i,2 : pj,i,2), .., (xj,i,k : pj,i,k)}
∀q ≤ k ;Aj .l ≤ xj,i,q ≤ Aj .uΣk

q=1 pj,i,q = 1.
(1)

Building an associative classifier consists of two distinct steps: 1- Rule Extrac-
tion, 2- Rule Filtering. In this section each step of UAC is explained. Later, the
procedure of classifying a new test instance is described.

3.1 Rule Extraction

In uncertain datasets, an association rule is considered strong if it is frequent and
its confidence (Conf) is above a user defined threshold called minimum confi-
dence. A ruleitem is frequent if its Expected Support (ES) is above a user defined
threshold called minimum expected support. The definitions of the expected sup-
port and the confidence are as follows.

Definition. If a is an itemset and c is a class label, expected support (ES) and
confidence (Conf) of a ruleitem are calculated by Equation 2. Here, the ruleitem
is denoted by r = a→ c and T is the set of all transactions.

ES(a) = Σ∀t∈TΠ∀i∈aP (i ∈ t)
ES(a→ c) = Σ∀t∈T,t.class=cΠ∀i∈aP (i ∈ t).

Conf(a→ c) = ES(a→c)
ES(a) .

(2)
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Some studies have criticized expected support and defined another measure
which is called probabilistic support [17] [18]. Probabilistic support is defined as
the probability of an itemset to be frequent with respect to a certain minimum
expected support. However, probabilistic support increases the time complexity
significantly. Therefore to be more efficient, UAC uses the expected support.

uHARMONY defines another measure instead of confidence which is called
expected confidence. The computation of this measure takes O(|T |2) time where
|T | is the number of instances. Computing confidence is only O(1), thus we use
confidence for efficiency reasons. Our experimental results in Section 4 empiri-
cally shows that our confidence based method can reach high accuracies.

Our rule extraction method is based on UApriori [4]. The candidate set is first
initialized by all rules of form a→ c where a is a single attribute assignment and
c is a class label. After removing all infrequent ruleitems, the set of candidates
is pruned by the pessimistic error rate method [19]. Each two frequent ruleitems
with the same class label are then joined together to form the next level candi-
date set. The procedure is repeated until the generated candidate set is empty,
meaning all the frequent ruleitems have been found. Those ruleitems that are
strong (their confidence is above the predefined threshold) are the potential clas-
sification rules. In the next section, the potential ruleitems are filtered and the
final set of rules is formed.

3.2 Rule Filtering

The outcome of the rule extraction is a set of rules called rawSet. Usually the
number of ruleitems in rawSet is excessive. Excessive rules may have negative
impact on the accuracy of the classification model. To prevent this, UAC uses
the database coverage method to reduce the set of rules while handling the
uncertainty. The initial step of the database coverage method in UAC is to sort
rules based on their absolute precedence to accelerate the algorithm. Absolute
precedence in the context of uncertain data is defined as follows:

Definition: Rule ri has absolute precedence over rule rj or ri " rj , if a) ri
has higher confidence than rj ; b) ri and rj have the same confidence but ri has
higher expected support than rj ; c) ri and rj have the same confidence and the
same expected support but ri have less items in its antecedent than rj .

When data is not uncertain, confidence is a good and sufficient measure to
examine whether a rule is the best classifier for an instance. But when uncertainty
is present, there is an additional parameter in effect. To illustrate this issue,
assume rules r1 : [m, t→ c1] and r2 : [n→ c2] having confidences of 0.8 and 0.7,
respectively. It is evident that r1 " r2. However, for a test instance like I1 : [(m :
0.4), (n : 0.6), (t, 0.3)→ x] where x is to be predicted, which rule should be used?
According to CBA, r1 should be used because its confidence is higher than that
of r2. However, the probability that I1 satisfies the antecedent of r1 is small,
so r1 is not likely to be the right classifier. We solve this problem by including
another measure called PI. PI or probability of inclusion, denoted by π(ri, Ik),
is described as the probability by which rule ri can classify instance Ik. PI is
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defined in Equation 3. In the example above π(r1, I1) is only 0.3 × 0.4 = 0.12,
While π(r2, I1) is 0.6.

π(ri, Ik) = Πw∈ri P (w ∈ Ik). (3)

Next, we define applicability, denoted by α(ri, Ik) in Equation 4. Applicability
is the probability by which rule ri correctly classifies instance Ik and is used as
one of the main metrics in UAC. For the previous example, α(r1, I1) = 0.096
and α(r2, I1) = 0.42. Thus, it is more probable that I1 is correctly classified by
r2 than r1.

α(ri, Ik) = ri.Conf × π(ri, Ik). (4)

Now based on the applicability, we define the concept of relative precedence of
rule ri over rule rj with respect to Ik. This is denoted by ri "[Ik] rj and is
defined as follows:

Definition: Rule ri has relative precedence over rule rj with respect to instance
Ik denoted by ri "[Ik] rj , if: a) α(ri, Ik) > α(rj , Ik) b) ri and rj have the same
applicability with respect to Ik but ri has absolute precedence over rj . Having
ri "[Ik] rj implies that ri is “more reliable” than rj in classifying Ik. It is evident
from the definition, that the concept of “more reliable” rule in an uncertain
data classifier is relative. One rule can be more reliable than the other when
dealing with an instance, and the opposite may be true for another instance.
In the previous example, r2 has relative precedence over r1, even though r1 has
absolute precedence over r2.

UAC uses the relative precedence as well as the absolute precedence to filter
rawSet. The database coverage algorithm of UAC has 3 stages that are explained
below.

Stage 1: Finding ucRules and uwRules. After sorting rawSet based on the
absolute precedence, we make one pass over the dataset to link each instance i in
the dataset to two rules in rawSet: ucRule and uwRule. ucRule is the rule with
the highest relative precedence that correctly classifies i. In contrast, uwRule
is the rule with the highest relative precedence that wrongly classifies i. The
pseudocode for the first stage is presented in Algorithm 1.

In Algorithm 1, three sets are declared. U contains all the rules that clas-
sify at least one training instance correctly. Q is the set of all ucRules which
have relative precedence over their corresponding uwRules with respect to the
associated instances. If i.uwRule has relative and absolute precedence over the
corresponding ucRule, a record of form < i.id, i.class, ucRule, uwRule > is put
in A. Here, i.id is the unique identifier of the instance and i.class represents the
class label.

To find the corresponding ucRule and uwRule for each instance, the procedure
starts at the first rule of the sorted rawSet and descends. For example, if there
is a rule that correctly classifies the target instance and has applicability of α,
we pass this rule and look for the rules with higher applicabilities to assign as
ucRule. Searching continues only until we reach a rule that has a confidence
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of less than α. Clearly, this rule and rules after it (with less confidence) have
no chance of being ucRule. The same applies to uwRule. Also as shown in
Algorithm 1 lines 4 and 6, the applicability values of ucRule and uwRule are
stored to expedite the process for the next stages.

The purpose of the database coverage in UAC is to find the best classifying
rule (coverage) for each instance in the dataset. The covering rules are then
contained in the final set of rules and others are filtered out. The best rule,
that is the covering rule, in CBA is the highest precedence rule that classifies an
instance. This definition is not sufficient for UAC because the highest precedence
rule may have a small PI.

To solve the aforementioned problem, uHARMONY sets a predefined lower
bound on the PI value of the covering rule, a method with various disadvantages.
Clearly, not only estimating the suitable lower bound is critical, but it is also
intricate, and even in many cases impossible. When predicting a label for an
instance, rules that have higher PI than the lower bound are treated alike. To
improve upon this, it is necessary to set the lower bound high enough to avoid low
probability rules covering the instances. However, it remains that it is possible
that the only classifying rules for some of the instances are not above that lower
bound and are removed. Additionally, setting a predefined lower bound filters
out usable information, while the purpose of the uncertain data classifiers is to
use all of the available information. Moreover, having a single bound for all of
the cases is not desirable. Different instances may need different lower bounds.

Given all the above reasons, we need to evaluate the suitable lower bound for
each instance. The definition of the covering rule in UAC is as follows, where we
use the applicability of i.ucRule as our lower bound for covering i.

Definition: Rule r covers instance i if: a) r classifies at least one instance
correctly; b) π(r, i) > 0; c) α(r, i) > α(i.ucRule, i) = cApplic. d) r " i.ucRule

cApplic represents the maximum rule applicability to classify an instance
correctly. Thus, it is the suitable lower bound for the applicability of the covering
rules. This will ensure that each instance is covered with the best classifying rule
(ucRule) or a rule with higher relative and absolute precedence than ucRule. In
the next two stages, we remove the rules that do not cover any instance from
rawSet.

Stage 2: Managing Replacements. In this stage (Algorithm 2), cases that
were stored in A at Stage 1 are managed. A contains all cases where i.uwRule
has relative and absolute precedence over i.ucRule, thus i.ucRule may not cover
i. If i.uwRule is flagged in Stage 1, i is covered by i.uwRule (lines 3, 4, and 5).
Otherwise based on the definition of the covering rule in Stage 1, i may get the
coverage by the other rules such as w which have the following characteristics:
a) w classifies i incorrectly; b) w has relative precedence over i.ucRule with
respect to i; c) w has absolute precedence over i.ucRule.

Function allCoverRules (line 7) finds all such rules as w within U , which are
called the replacements of i.ucRule. The replacement relation is stored in a DAG
(directed acyclic graph) called RepDAG. In RepDAG, each parent node has a
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Algorithm 1. UAC Rule Filtering: Stage 1

1: Q = ∅;U = ∅;A = ∅
2: for all i ∈ Dataset do
3: i.ucRule = firstCorrect(i)
4: i.cApplic = α(i.ucRule, i)
5: i.uwRule = firstWrong(i)
6: i.wApplic = α(i.uwRule, i)
7: U.add(ucRule)
8: ucRule.covered[i.class] + +
9: if (ucRule �[i] uwRule) and ucRule � uwRule then
10: Q.add(ucRule)
11: flag(ucRule)
12: else
13: A.add(< i.id, i.class, ucRule, uwRule >)
14: end if
15: end for

pointer to each child node via the replace set (line 12). The number of incoming
edges is stored in incom (line 14). Each node represents a rule and each edge
represents a replacement relation.

Each rule has a covered array in UAC where r.covered[c] is used to
store the total number of instances covered by r and labeled by class c. If
r.covered[r.class] = 0, then r does not classify any training instance correctly
and is filtered out. Starting from line 22, we traverse RepDAG in its topologically
sorted order to update the covered array of each rule. Rule ri comes before rj in
the sorted order, if ri " rj and there is no instance such as Ik where rj "[Ik] ri.
If a rule fails to cover any instance correctly (line 26), it does not have any effect
on the covered array of the rules in its replace set. At the end of this Stage,
enough information has been gathered to start the next stage, which finalizes
the set of rules.

Stage 3: Finalizing Rules. At stage 3 (Algorithm 3), the set of rules is fi-
nalized. In this Stage, UAC filters the rules based on a greedy method of error
reduction. Function computeError counts the number of instances that are cov-
ered by rule r but have a different class label than r.class. The covered instances
are then removed from the dataset. Function addDefaultClass finds the most
frequent class label among the remaining instances (line 6). In line 8, the number
of instances correctly classified by the default class is calculated. totalError is
the total errors made by the current rule r and the default class. In fact, each rule
with positive coverage over its class, is associated with a particular totalError,
defClass, and defAcc (line 10). After processing the rules, we break the set of
rules from the minimum error and assign default and defApplic. defApplic is
used in rule selection as an estimate of applicability of the default class.

Our rule filtering algorithm has a runtime of O(|T | × |R|) in the worst case
scenario, where |T | is the number of instances in the dataset and |R| is the size
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Algorithm 2. UAC Rule Filtering: Stage 2

1: RepDAG = ∅
2: for all < i.id, y, ucRule, uwRule >∈ A do
3: if flagged(uwRule) then
4: ucRule.covered[y]−−
5: uwRule.covered[y] + +
6: else
7: wSet = allCoverRules(U, i.id, ucRule)
8: if !RepDAG.contains(ucRule) then
9: RepDAG.add(ucRule)
10: end if
11: for all w ∈ wSet do
12: w.replace.add(< ucRule, i.id, y >)
13: w.covered++
14: ucRule.incom ++
15: if !w ∈ RepDAG then
16: RepDAG.add(w)
17: end if
18: end for
19: Q = Q.add(wSet)
20: end if
21: end for
22: S ← set of all nodes with no incoming edges
23: while S �= ∅ do
24: r = S.next() {next removes a rule from the set}
25: for all < ucRule, id, y >∈ r.replace do
26: if (r.covered[r.class] > 0) then
27: if id is covered then
28: r.covered[y]−−
29: else
30: ucRule.covered[y]−−
31: Mark id as covered.
32: end if
33: end if
34: ucRule.incom −−
35: if ucRule.incom = 0 then
36: S.add(ucRule)
37: end if
38: end for
39: end while

of rawSet. The worst case scenario is when at Stage 1, at least one ucRule or
uwRule is the last rule in the sorted rawSet. This case rarely happens because
the rules are sorted based on their absolute precedence. UAC also makes slightly
more than one pass over the dataset in the rule filtering step. Passes are made in
Stage 1 and 2. Note that arrayA is usually small, given that most of the instances
are usually classified by the highest ranked rules. The number of passes is an
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important point, because the dataset may be very large. Specially for datasets
that can not be loaded into memory at once, it is not efficient to make multiple
pases. This is an advantage for UAC over UCBA, which passes over the dataset
once for each rule in rawSet. Next section explains the rule selection that is the
procedure of classifying test instances based on the set of rules.

Algorithm 3. UAC Rule Filtering: Stage 3

1: C = ∅
2: for all r ∈ Q do
3: if r.covered[r.class] > 0 then
4: finalSet.add(r)
5: ruleErrors+ = computeError(r)
6: defClass = addDefaultClass()
7: defErrors = computeDefErr(defClass)
8: defAcc = addDefAcc(uncovered(D)− defErrors)
9: totalError = defErrors+ ruleErrors
10: C.add(r, totalError, defClass, defAcc)
11: end if
12: end for
13: Break C from the rule with minimum error
14: C contains the final set of rules
15: default = defClass.get(C.size)

16: defApplic = defAcc.get(C.size)
|T |

3.3 Rule Selection

Rule selection is the procedure of classifying a test instance. In the previous
sections, excessive rules were filtered out from rawSet. The remaining set of rules
is called finalSet and classifies the test instances. UAC selects one classifying rule
for each instance. The selected classifying rule has the highest relative precedence
with respect to the test instance.

The role of the default class (default in Algorithm 3 line 15) is to reduce the
number of rules. The default class predicts the labels of those instances that are
not classified by the rules in the finalSet. So the best predicting label for some of
the test instances may be default class. But UAC may prefer rules with small PI
values to the default class if we follow the procedure of “certain” data classifiers.
To prevent this, defApplic is used as an estimate for applicability of the default
rule. This value shows the number of training instances that were expected to
be classified by the default rule. For example, when two classes, such as a and b,
have the same population in the dataset but no rule labeled b exists, default rule
has a very important role. Consequently, the value of the default applicability is
high. As a result, if the highest precedence rule with respect to a test instance
has less applicability than the default rule, the default rule will predict the label
for that.
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4 Experiments and Results

We use an empirical study to compare UAC against the existing rule based meth-
ods. In all of the reported experiments on UAC, the minimum support is set to
1%, the minimum confidence to 0.5 and the maximum number of mined associ-
ation rules to 80, 000. Each reported number is an average over 10 repetitions of
10-fold cross validations.

Since there is no public repository of uncertain datasets, we synthetically
added uncertainty to 28 well known UCI datasets. This method was employed
by all the studies in the field including uHARMONY, DTU and uRule, uncertain
svm, UCBA, etc. and gives a close estimation of the classifier performance in the
real world problems. We selected the same datasets as in [12] to compare our
method with the results reported in their paper for uHARMONY, uRule and
DTU. This also ensures that we did not choose only the datasets on which our
method performs better.

To compare our method against other classifiers, we employ averaging tech-
nique and case by case comparison [20]. The same method was employed by
many other studies including CBA, uHARMONY, DTU and uRule to prove the
better performance of their algorithms. Table 1 provides a comparison between
UAC and other existing rule based methods in terms of accuracy. The reported
accuracies for uHARMONY (#3), DTU (#4) and uRule (#5) are reproduced
from [12]. We applied UAC (#2) to the same datasets generated by the same
procedure of adding uncertainty as [12] to make the comparison meaningful.
Value N/A, existing in the experiments reported by [12], shows that the classi-
fier has run out of resources in their experiments. In Table 1, uncertainty level
is U10@4 meaning that datasets have 10 percent uncertainty, where only four of
the attributes with the highest information gain are uncertain. To add a level 10
uncertainty to an attribute, it is attached with a 0.9 probability and the remain-
ing 0.1 is distributed randomly among the other values present in the domain.
The accuracies in this table are reported on already discretized versions of the
dataset that are available online and referenced in [12].

The accuracies reported show that in most cases UAC has reached higher
accuracies. For some datasets the improvement is significantly high, such as
wine dataset with 36.79% and bands dataset with 19.77% improvement over the
existing maximum accuracy. UAC reaches higher accuracies on the average too.

We have conducted further extensive experiments comparing UAC and UCBA
since both stem from CBA. Due to lack of space we report here only the summary
and refer the reader to [21] for further details. Using a new and more general
uncertainty model that we propose [21], we compared the accuracy of UAC and
UCBA on all 28 datasets as in the previous experiments in Table 1 and show
that UAC outperforms UCBA. On average, over the 28 datasets, the accuracy
of UAC was 74.7% while UCBA averaged 67.5% if a sampled-based model is
used when a numerical attribute is assigned a set of possible values; and respec-
tively 70.3% versus 66.7% if an interval-based model is used [21]. In short, for
a numerical attribute, the sampled-based model considers the attribute value
to be expressed by a set of values with their respective probabilities, while the
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Table 1. %Accuracy, reported by rule based classifiers on datasets modeled based on
[12] at level of uncertainty of U4@10

#1 Dataset #2 UAC #3 uHAR #4 DTU #5 uRule

australian 80.2 85.37 83.62 84.35
balance 84.9 89.3 56.32 62.88
bands 78.4 58.63 N/A N/A
breast 94.3 65.52 91.27 94.56
car 89.3 77.72 70.02 70.02

contracep 43.6 47.59 50.1 44.26
credit 78.1 85.95 84.35 74.35
echo 92 93.29 92.37 87.02
flag 45.7 52.42 59.28 44.85

german 71.9 69.6 72.3 70.1
heart 77.3 56.64 53.04 52.39

hepatitis 81.5 82.52 80 79.35
horse 72.4 82.88 85.33 N/A

monks-1 99 91.36 74.64 70.68
monks-2 75.5 65.72 65.72 65.72
monks-3 98.1 96.4 79.96 68.05
mushroom 100 97.45 100 99.98

pima 73.8 65.11 65.1 67.32
post oper 58 69.75 70 70
promoters 66 69 71.7 61.32

spect 81.8 80.19 79.03 81.65
survival 74 73.53 73.53 72.55
ta eval 50.4 45.04 48.34 33.77

tic-tac-toe 90.8 76.2 72.65 81.52
vehicle 69.8 63.44 64.78 N/A
voting 91.1 92.86 94.48 94.94
wine 87.9 51.11 42.13 41.57
zoo 92.3 88.76 92.08 89.11

Average 78.5 74.05 73.04 70.49

interval-based model considers the attribute value to be an interval with a prob-
ability distribution function. Moreover, comparing the training time, UAC was
in many cases about 2 orders of magnitude faster (i.e. X100) than UCBA and
produced significantly less rules for all tested uncertainty levels. This demon-
strates the efficacy of the rule pruning startegy managing to preserve a better
set of rules than UCBA.

5 Conclusion

In this paper we propose an effective way to prune associative classification rules
in the presence of uncertainty and present a complete associative classifier for
uncertain data that encompasses this pruning. Empirical results show that our
algorithm outperforms 4 existing rule-based methods in terms of accuracy on
average for 28 datasets and also show that UAC outperforms UCBA signifi-
cantly for these 28 datasets in terms of accuracy even though UAC produces
less classification rules and has a smaller runtime than UCBA.
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Abstract. This paper proposes a methodology for introducing a neigh-
borhood relation of clusters to the conventional cluster validity measures
using external criteria, that is, class information. The extended measure
evaluates the cluster validity together with connectivity of class distribu-
tion based on a neighborhood relation of clusters. A weighting function is
introduced for smoothing the basic statistics to set-based measures and
to pairwise-based measures. Our method can extend any cluster validity
measure based on a set or pairwise of data points. In the experiment, we
examined the neighbor component of the extended measure and revealed
an appropriate neighborhood radius and some properties using synthetic
and real-world data.

Keywords: cluster validity, neighborhood relation, weighting function.

1 Introduction

Clustering is a basic data mining task that discovers similar groups from given
multi-variate data. Validation of a clustering result is a fundamental but difficult
issue, since clustering is an unsupervised learning and is essentially to find latent
clusters in the observed data[3,7,14]. Up until now, various validity measures
have been proposed from different aspects, and they are mainly separated into
two types whether based on internal or external criteria[7,10,8]:

– Internal criteria evaluate compactness and separability[3] of the clusters
based only on distance between objects in the data space, that is learning
perspective. As such measures, older methods of Dunn-index[4], DB-index[2],
and recent CDbw[5] are well known. Surveys and comparisons of internal
cluster validity measures are [3,9].

– External criteria evaluate how accurately the correct/desired clusters are
formed in the clusters, that is user’s perspective. External criteria normally
uses class/category label together with cluster assignment. Purity, entropy,
F-measure, and mutual information are typical measures[10,12,14].

This paper focuses on using external criteria, that is provided by human inter-
pretation of data. It is more beneficial to use external criteria when class labels
are available.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 354–365, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In order to understand obtained clusters better, this work introduces a neigh-
borhood relation among clusters. A neighborhood relation is useful especially in
case of micro-clusters or, i.e., cluster number is larger than class number. Global
structure of clusters, which means not only individual (local) clusters, can be
evaluated with neighborhood relation of classes within each cluster.

The basic policies of introducing the neighborhood relation is as follows:

1. A data object which belongs to the same class should be in neighbor over
clusters. To evaluate this property, we introduce a weighting function based
on inter-cluster distance. The inter-cluster distance can be computed based
on either topology-based or Euclidean distance in the data space.

2. A weighting function is introduced into basic statistics that are commonly
used in the conventional measures. Therefore, our approach is generic, any
conventional cluster validity measure that uses these statistics can also be
extended in the same way.

Above mentioned conventional indices do not consider neighboring clusters,
while very few works introduce inter-cluster connectivity for prototype based
clustering[11]. The inter-cluster connectivity is introduced by the first and the
second best matching units, but this work is based on internal criterion. The
contribution of this work is to introduce neighborhood relation over clusters into
conventional external cluster validity indices.

The reason why we assume the situation to evaluate an unsupervised learning
by class labels is as follows. The fundamental difficulty of unsupervised learning
is that the features and the distance metric are derived from observation and
assumption, there is no information from human interpretation of data. On the
other hand, it is often the case that a small number of samples, or data from
the same domain, or simulated samples are available with class labels. In such
cases, an external validity measure works as a preliminary evaluation instead of
evaluating unlabeled target data.

This paper presents how to introduce the weighting function to smooth the
conventional clustering validity measures. In the experiment, we revealed the op-
timal smoothing radius and also examined several parameters, prototype (micro-
cluster) number, and class overlapping degree. We revealed the properties of our
extended measure and showed potential to validate a clustering result consider-
ing neighborhood relation of clusters.

2 Preliminaries

Definition 1. (Clustering) Given a set of v-dimensional objects S = {xi}Ni=1 ∈
Rv, a clustering produces a cluster set C = {Ci}Ki=1 with a cluster assignment
c(i) ∈ C for each object xi.

Definition 2. (Class) Let a class set be T = {Ti}Li=1, and t(i) ∈ T denotes a
class assignment for xi. Classes are provided independent from a clustering.
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Definition 3. (Inter-cluster distance) d(Ci, Cj) ∈ R is defined as inter-cluster
distance between clusters that can be computed either Euclidean-based or topology-
based distance.

Ex) Inter-cluster distance. Euclidean-based distances can be given by single
linkage, complete linkage, and other methods commonly used in an aggrega-
tive hierarchical clustering. While, topology-based distance by the number
of hops in a neighbor graph. The neighbor graph can be obtained by such
as a threshold on Euclidean-based distance or by k-nearest neighbor.

Note that though a neighbor graph is normally obtained independent from a
clustering process, some method produces cluster (vector quantization) with
topology preservation such as Self-Organizing Map(SOM)[6], which is also used
in this experiment.

The objective of this work is to evaluate density of class T within intra-cluster
C together with the neighbor relation based on inter-cluster distance d(Ci, Cj).

3 Neighborhood-Based Smoothing of Validity Measures

There are two types of cluster validity measures, namely set-based and pairwise-
based measures1. These two types of measures can be extended in different
manners.

3.1 Extension of Set-Based Cluster Validity Measures

First, the way to extend set-based cluster validity measures[10,12] such as cluster
purity and entropy are described in this section. The properties of each measure
were studied in the literature[1].

By considering neighborhood relation of clusters, the neighbor class distribu-
tion should be taken into account to the degree of certain class contained in a
cluster, that is, the data points of the same class in the neighbor clusters should
have a high weight, while those of distant clusters should have a low weight
based on the inter-cluster distance as the diagram is shown in Fig. 1.

Let f(u; l) be a density distribution of class label l ∈ T at u ∈ Ω, where
Ω denotes a data space, and h(u,v) : Ω × Ω �→ R be a weighting function
based on the neighborhood relation. Based on the above concept, a class density
distribution f(u; l), a data density distribution f(u), and a total volume of data
N are smoothed by the weighting function h(u,v) as follows:

f̂(u; l) =

∫
Ω

h(u,v)f(v; l)dv, (1)

f̂(u) =
∑
l∈T

f̂(u; l) =
∑
l∈T

∫
Ω

h(u,v)f(v; l)dv, (2)

1 This work introduces the smoothing function into several cluster validity measures,
in actual use, a measure should be selected according to the target application and
the aspects the user wants to evaluate.
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d i, jC
C

i
j

h i, j

Fig. 1. Extension of a set-based clustering measure. The basic statistics are weighted
by the neighborhood relation based on inter-cluster distance di,j . This example shows
topology-based distance.

N̂ =

∫
Ω

f̂(u)du =

∫
Ω

∑
l∈T

∫
Ω

h(u,v)f(v; l)dvdu. (3)

Discretizing eqs. (1) to (3), let Nl,i be the number of objects with class l in the ith

cluster Ci ∈ C;Nl,i = #{xk|t(k) = l, c(k) = Ci}, where # denotes the number of
elements. Ni denotes the number of objects in cluster Ci; Ni = #{xk|c(k) = Ci}.
Also N denotes the total number of objects; N = #{xk|xk ∈ S}. Eqs. (1) to (3)
can be rewritten as follows:

N ′
l,i =

∑
Cj∈C

hi,jNl,j , (4)

N ′
i =

∑
l∈T

N ′
t,i =

∑
l∈T

∑
Cj∈C

hi,jNl,j , (5)

N ′ =
∑
Ci∈C

N ′
i =

∑
Ci∈C

∑
l∈T

∑
Cj∈C

hi,jNl,j. (6)

Here, hi,j can be used any monotonically decreasing function, for example, the
often encountered Gaussian function: hi,j = exp(−di,j/σ

2), where di,j denotes
inter-cluster distance and σ(> 0) is a smoothing (neighborhood) radius.

Thus, weighted cluster purity and entropy, for example, are defined using the
weighted statistics of eqs. (4), (5), and (6) as follows:

weighted Cluster Purity (wCP)

wCP(C) =
1

N ′

∑
Ci∈C

max
l∈T

N ′
l,i. (7)

The original purity is an average of the ratio that a majority class occupies
in each cluster, whereas in the weighted purity a majority class is determined
by the neighbor class distribution {N ′

l,i}.
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i
j

c(i)

c(j)

c(i), c(j)

(a) Distance of data pair on a graph

d

likelihood( c(i) = c(j) )

hc(i),c(j)

(b) Likelihood function

Fig. 2. Extension of a pairwise-based clustering measure. A likelihood function is in-
troduced to represent a degree that a data pair belongs to the same cluster.

weighted Entropy (wEP)

wEP(C) =
1

|C|
∑
Ci∈C

Entropy(Ci), (8)

Entropy(Ci) = −
1

logN ′

∑
l∈T

N ′
l,i

N ′
i

log
N ′

l,i

N ′
i

, (9)

where |C| denotes a cluster number. The original entropy indicates the degree
of unevenness of class distribution within a cluster, whereas the extended
entropy includes unevenness of the neighboring clusters.

3.2 Extension of Pairwise-Based Cluster Validity Indices

This section describes an extension of pairwise-based cluster validity
measures[1,14]. Table 1 shows a class and cluster confusion matrix of data pairs,
where a, b, c, d are the number of data pairs where xi and xj do or do not belong
to the same class/cluster.

Table 1. Class and cluster confusion matrix of data pairs

t(i) = t(j) t(i) �= t(j)

c(i) = c(j) a b

c(i) �= c(j) c d

Here, we introduce likelihood(c(i) = c(j)) indicating a degree that a data
pair xi and xj belongs to the same cluster instead of the actual number of data
pairs. The likelihood is given by the inter-cluster distance of the data pair as
shown in Fig. 2(a). The same weighting function as in sec. 3.1 is available for the
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likelihood function (Fig. 2(b)); likelihood(c(i) = c(j)) = hc(i),c(j). Then, a, b, c, d
are replaced by summation of the likelihoods as follows:

a′ =
∑

{i,j|t(i)=t(j)}
hc(i),c(j), (10)

b′ =
∑

{i,j|t(i) �=t(j)}
hc(i),c(j), (11)

c′ =
∑

{i,j|t(i)=t(j)}

(
1− hc(i),c(j)

)
= a+ c− a′, (12)

d′ =
∑

{i,j|t(i) �=t(j)}

(
1− hc(i),c(j)

)
= b+ d− b′. (13)

With these extended a′, b′, c′ and d′, weighted pairwise accuracy and pairwise
F-measure are defined as follows:

weighted Pairwise Accuracy (wPA)

wPA(C) =
a′ + d′

a′ + b′ + c′ + d′
. (14)

The original pairwise accuracy is a ratio of the number of pairs in the same
class belonging to the same cluster, or the number of pairs in different classes
belonging to different clusters, against all pairs. The weighted PA is the de-
gree to which pairs in the same class belong to the neighbor clusters or that
pairs in different classes belong to distant clusters.

weighted Pairwise F-measure (wPF)

wPF(C) =
2 · P ·R
P +R

, (15)

where P = a′/(a′+b′) is precision, that is a measure of the same class among
each cluster, andR = a′/(a′+c′) is recall that is a measure of the same cluster
among each class. The original pairwise F-measure is a harmonic average of
the precision and the recall. While, the weighted PF is based on a degree
that the data pairs belong to the same cluster.

3.3 Weighting Function

For the weighting function for smoothing in the set-based and the likelihood
in pairwise-based measures, any monotonically decreasing function hi,j ≥ 0 is
feasible, including the Gaussian or a rectangle function. Note that the extended
measures are exactly the same as the original measures when hi,j = δi,j (δ is the
Kronecker delta).

The neighborhood radius effects the degree of smoothing and likelihood. Fig.
3 illustrates that the measure evaluates individual clusters, that is the original



360 K. Fukui and M. Numao

values, as the radius becomes zero (σ → 0). On the other hand, as the radius
becomes larger (σ →∞), the data space is smoothed by almost the same weights,
and all micro-clusters are treated as one big cluster. The way to find the optimal
radius is described in section 3.4.

Fig. 3. Example of the effect of smoothing radius. Values over the neighborhood rela-
tion of the clusters become smoother as the radius increases.

3.4 Optimal Smoothing Radius

Our smoothed measures include a neighborhood relation in the conventional
cluster validity measures. In order to evaluate a neighbor component within the
measure, we defined as:

Definition 4. (neighbor component) The quantity within the smoothed cluster
validity value (Eval) that are caused by the neighborhood relation.

Here, Eval refers to the output value of wCP, wEP, wPA, or wPF in this paper.
Then, the neighbor component (NC) can be computed by comparing Evals

with randomized neighborhood relation.

NC(σ) = |Eval − lim
n→∞

Evalrnd(n)| = |Eval(di,j)− Eval(d̄i,j))|, (16)

where Evalrnd(n) denotes an average of Eval when inter-cluster distances are n
times shuffled, and when n→∞ this value converges to Eval with the average of
all inter-cluster distances d̄i,j . It is assumed that the smoothing radius that max-
imizes the neighbor component is the optimal one, i.e., σ∗ = argmaxσ NC(σ).
Then, the optimal evaluation value can be Eval∗ = Eval(σ∗).

4 Evaluation of the Smoothed Validity Measures

This section describes the experiment to clarify the properties of the proposed
smoothed validity measures.
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4.1 Settings of Clustering and Neighborhood Relation

1. kmc-knn
Typical k-means clustering was used to produce a clustering and mutual k-
nearest neighbor (kmc-knn) was used to obtain the neighbor relation. With
parameters of the prototype (micro-cluster) number k1 and of nearest neigh-
bors k2, adjacent matrix A = (ai,j) can be given by:

ai,j =

{
1 if Cj ∈ O(Ci) and Ci ∈ O(Cj)
0 otherwise,

(17)

where O(Ci) denotes a set of k-nearest neighbor clusters from Ci, where
d(Ci, Cj) is given by Euclidean distance. Then, distance matrix D = (di,j)
can be given by topological distance, in this experiment the shortest path
between Ci and Cj is used, where the shortest path of all pairs are calculated
by Warshall-Floyd Algorithm.

2. SOM
Also the SOM[6] was used as an another type of producing micro-cluster
prototypes with neighbor relation. In the SOM, the neurons of prototypes
correspond to centroids of micro-clusters. The standard batch type SOM is
used in this work. A distance matrix D is given by di,j = ||ri − rj ||, where
r is a coordinate of a neuron within the topology space of the SOM.

4.2 Datasets

1. Synthetic data
In order to evaluate the proposed measure, two classes of two-dimensional
synthetic data were prepared, where 300 data points for each class were
generated from different Gaussian distributions. The data distribution and
examples of graphs are illustrated in Fig. 4.

2. Real-world data
Well-known open datasets2 were used as real-world data: Iris data (150
samples, 4 attributes, 3 classes), Wine data (178 samples, 13 attributes, 3
classes), and Glass Identification data (214 samples, 9 attributes, 6 classes).

4.3 Effect of Smoothing Radius - Finding the Optimal Radius

Fig. 5 shows the evaluation values of the smoothed validity measures for the
synthetic data using kmc-knn. The larger value is the better except entropy.
The values are average of 100 runs of randomized initial values.

Firstly, the total evaluation values (Eval) provides always better value than
that of random topology (Evalrnd) where neighborhood relation of the proto-
types is destroyed. This means that the proposed measures evaluate both cluster
validity and neighborhood relation of the clusters.

2 http://archive.ics.uci.edu/ml/
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(a) kmc-knn k1=10, k2=4 (b) kmc-knn k1=25, k2=4 (c) kmc-knn k1=50, k2=4

(d) kmc-knn k1=25, k2=8 (e) kmc-knn k1=25, k2=4,
random topology

(f) SOM 10x10

Fig. 4. Cluster prototypes (•) with topology-based neighbor relation on two dimen-
sional synthetic data. The data points (�,�) were generated from two Gaussian dis-
tributions; N(μ1, 1) and N(μ2, 1), where μ1 = (0, 0) and μ2 = (3, 0).

Secondly, as the smoothing radius becomes close to zero (σ → 0), the extended
measure evaluates individual clusters without neighborhood relation. Whereas,
as the radius becomes larger (σ →∞), the extended measure treats whole data
as one big cluster as mentioned before. Therefore, the solid and the broken lines
gradually become equal as the radius becomes close to zero or becomes much
larger.

Thirdly, the neighbor component has a monomodality against the radius in
all measures, since there exists an appropriate radius to the average class dis-
tribution. Since the smoothed measure is a composition of cluster validity and
neighborhood relation, the radius that gives the maximum Eval does not al-
ways match with that of neighbor component, for instance, wCP, wEP, and
wPF in Fig. 5. Therefore, the neighbor component should be examined to find
the appropriate radius. Also the appropriate radius depends on function of the
measure such as purity, F-measure, or entropy. This means that the user should
use different radius for each measure.

These three trends appear also in SOM (omitted due to page limitation).

4.4 Effect of Prototype Number

The effect of prototype number is examined by changing k1 = 10, 25, 50 (Fig. 6).
In wPF, k1 = 25 provides the highest neighbor component (0.116 at σ = 1.4)
among three (Fig. 6(b)). wPF can suggest an optimal prototype number in terms
of maximizing the neighbor component in the measure, which means neighbor
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(a) wCP (b) wEP (c) wPA (d) wPF
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Fig. 5. The effect of smoothing radius (synthetic data, kmc-knn(k1 = 25, k2 = 4));
total evaluation value (Eval), Eval with random topology (Evalrnd), neighbor com-
ponent (NC)
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Fig. 6. The effect of prototype number (synthetic data, kmc-knn(k2 = 4)). The maxi-
mum neighbor component (NC∗) and total values (wCP and wPF) are listed together
in the table.

relation of class distribution is maximized. However, the larger k1 the better in
wCP (Fig. 6(a)). This is because the function of cluster purity given by eq. (7),
that is, the smaller number of elements in some cluster tends to give better
purity.

4.5 Effect of Class Overlap

The effect of class overlap is examined (Fig. 7) by changing distance between
class centers μd = μx

2 − μx
1 from 2.0 to 3.0 in the synthetic data. Observing

Fig. 7, the lower class overlap is, the better the neighbor component and the
total values. However, the optimal radii are nearly the same even in different
class overlap. This means that our measure can determine the optimal radius
independent to class overlap, and can evaluate volume of overlap.
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(a) wCP
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(b) wPF
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Fig. 7. The effect of class overlap (synthetic data, SOM(10×10))
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(b) wPF
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Fig. 8. The effect of dataset, SOM (10×10)

4.6 Real-World Data

Fig. 8 shows the result for real-world data using SOM. Though there exists an
optimal radius, the optimal radii vary depending on dataset, i.e., the number
of classes and the class distribution. This result indicates that depending on
dataset and measure, a user should use different radius that gives the maximum
volume of neighbor component.

5 Conclusion

This paper proposed a novel and generic smoothed cluster validity measures
based on neighborhood relation of clusters with external criteria. The experi-
ments revealed the existence of an optimal neighborhood radius which maxi-
mizes the neighbor component. A user should use an optimal radius depending
on a function of measure and a dataset. Our measure can determine the optimal
radius independent to class overlap, and can evaluate volume of class overlap.
In addition, feature selection, metric learning[13,15], and a correlation index for
multilabels to determine the most relevant class are promising future directions
for this work.
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Abstract. Topic mining is regarded as a powerful method to analyze 
documents, and topic models are used to annotate relationships or to get a topic 
flow. The research aim in this paper is to get topic flows of entities and entity 
groups within one document. We propose two topic models: Entity Group 
Topic Model (EGTM) and Sequential Entity Group Topic Model (S-EGTM). 
These models provide two contributions. First, topic distributions of entities and 
entity groups can be analyzed. Second, the topic flow of each entity or each 
entity group can be captured, through segments in one document. We develop 
collapsed gibbs sampling methods for performing approximate inference of the 
models. By experiments, we demonstrate the models by showing the analysis of 
topics, prediction performance, and the topic flows over segments in one 
document. 

Keywords: Sequential topic model, Poisson-Dirichlet process, entity group. 

1 Introduction 

Analyzing documents on the Web is difficult due to the fast growing number of 
documents. Most of documents are not annotated, leading us to prefer unsupervised 
methods for analyzing document, and topic mining is one such method. This method 
is basically a probabilistic way to capture latent semantics, or topics, among 
documents. Since techniques like Probabilistic Latent Semantic Indexing (PLSI) [1] 
and Latent Dirichlet Allocation (LDA) [2] were first introduced, many studies have 
been derived from them: for example, to get relationships among entities in corpora 
[3, 4], to discover topic flows of documents in time dimension [5], or topic flows of 
segments in one document [6, 7], and so on. Capturing topic flows in one document 
(i.e., a fiction or a history) has special characteristics. For instance, adjacent segments 
in one document would influence each other because the full set of segments (i.e., the 
document) as a whole has some story. Moreover, the readers probably want to see the 
story in a perspective of each entity or each relationship. Although existing topic 
models tried to get topics of entity groups, no model has been proposed to obtain the 
topic flow of each entity or each relationship in one document. The topic flow in one 
document should also be useful for the readers to grasp the story easily. 
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In this paper, we propose two topic models, Entity Group Topic Model (EGTM) 
and Sequential Entity Group Topic Model (S-EGTM), claiming two contributions. 
First, topic distribution of each entity and of each entity group can be analyzed. 
Second, the topic flow of each entity and each relationship through segments in one 
document can be captured. To realize our proposal, we adopt collapsed gibbs 
sampling methods [8] to infer the parameters of the models. 

The rest of the paper is organized as follows. In the following subsection, we 
preview the terminology to set out the basic concepts. Section 2 discusses related 
works. Section 3 describes out approach and algorithms in detail. Section 4 presents 
experiments and results. Finally, Section 5 concludes. 

1.1 Terminology 

In this subsection, we summarize the terminology used in this paper to clarify the 
basic concepts. 
 
 Entity: Something which the user want to get information about it. It can be a 

name, an object, or even a concept such as love and pain. 
 Empty group (empty set): A group having no entity. 
 Entity group: A group having one or more entities. 
 Entity group size: The number of entities in the entity group. 
 Entity pair: A pair of two entities. 
 Topic (word topic): A multinomial word distribution. 
 Entity topic: A multinomial entity distribution of CorrLDA2. 
 Segment: A part of a document. It can be a paragraph, or even a sentence. 
 Topic flow: A sequence of topic distribution through segments of a document. 
 Relationship of entities: A topic distribution of the entity group. 

2 Related Work 

In this section, we describe related studies with respect to entity topic mining and 
sequential topic mining. 

The goal of entity topic mining is to capture the topic of each entity, or of each 
relationship of entities. Author Topic Model (ATM) [9] is a model for getting a topic 
distribution of each author. Although the model does not consider entities, it can be 
used for getting topics of entities by just considering an entity as an author. However, 
it does not involve a process of writing entities in the document. There are several 
studies about a model involving the process. The recent proposed model, named as 
Nubbi [4], tried to capture two kinds of topics, which are the word distributions of 
each entity and of each entity pair. However, since it takes two kinds of topics 
separately, the topics of entities will be different from that of entity pairs. Several 
topic models for analyzing entities were introduced in [3]. Especially, CorrLDA2 
showed its best prediction performance. The model captures not only topics, but also 
entity topics. The entity topic is basically a list of entities, thus each entity topic plays 
a role as an entity group. This implies that it has a lack of capability of getting 
relationship of a certain entity group. 
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As for sequential topic mining, there are works which tried to get topic flows in 
different dimensions. Dynamic Topic Model (DTM) [5] aimed to capture topic flows of 
documents in time dimension. Probabilistic way to capture the topic patterns on 
weblogs, in both of space dimension and time dimension, was introduced in [10]. Multi-
grain LDA (MG-LDA) [11] used topic distribution of each window in a document to 
get the ratable aspects. Although it utilizes sequent topic distributions to deal with multi-
grained topics, the objective of the model is not getting a topic flow of the document. 
STM and Sequential LDA tried to get a topic flow within a document. The both studies 
are based on a nested extension of the two-parameter Poisson-Dirichlet Process (PDP). 
The STM assumes that each segment is influenced by the document, while the 
Sequential LDA assumes that each segment is influenced by its previous segment 
except for the first segment. 

3 Sequential Entity Group Topic Model 

Existing works on entity topic mining and sequential topic mining, however, cannot 
be used to obtain topic flow of each entity and each relationship within one document. 
The topic flow of each entity or each relationship should also be useful for the readers 
to grasp the story more easily. This section introduces two topic models, Entity Group 
Topic Model (EGTM) and Sequential Entity Group Topic Model (S-EGTM). 

3.1 Entity Group Topic Model 

A graphical model of EGTM is shown in Figure 1(a). The meaning of notations is 
described in Table 1. We suggest an assumption that a relationship of entities must 
influence the topic distribution of every corresponding entity and entity group. To 
apply the assumption into our model, we employ a power-set. For example, if an 
entity group, having two entities A and B, have a relationship, then the relationship 
influences the topics of its power set such as entity A, entity B, and empty set(empty 
group). Thus, a topic distribution of the empty set will be very similar to that of the 
document, because it associates with every sentence. Formally, the generative process 
is represented in Figure 2. 

    

(a)                                         (b) 

Fig. 1. (a) Graphical model of EGTM. The colored circles represent the variables observable 
from the documents. (b) Graphical model of S-EGTM. 
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Fig. 2. The formal generative process of EGTM 

As a sentence has only one entity group or an entity, the size of power-set does not 
grow exponentially. If there is no observed entity in a sentence, then the sentence has 
an empty group. We developed a collapsed gibbs sampling. At each step of the 
Markov chain, the topic of the ith word is chosen using a conditional probability 
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The notations are described in Table 1, with a minor exceptional use of notation that     
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3.2 Sequential Entity Group Topic Model 

A graphical model of S-EGTM is Figure 1(b). Formally, the generative process is 
represented in Figure 3. As S-EGTM gets a topic flow in a document, the D must be 
1. A topic distribution of each segment is affected by that of previous segment, except 
that the first segment is affected by the document’s topic distribution. To model this, 
we adopted Poisson-Dirichlet Process (PDP), as [7] does. If we use Chinese 
Restaurant Process (CRP) notations, then a word is a customer. The topics are dishes  
 

1. Draw a word distribution Ф from Dirichlet(β) 
2. For each document d, 
    (1) For each entity group e, 
       draw a topic distribution θde from Dirichlet(α 
    (2) Draw an entity group dominance distribution πd from Dirichlet(ŋ) 

       (3) For each sentence s, 
        a. Choose an entity group xds from Multinomial(πd) 
        b. Given entity group xds, derive νds by multiplying θde which are  
          members of a power-set of the xds 

           c. For each word w, 
          (a) Choose a topic z from Multinomial(νds) 
          (b) Given the topic z, generate a word w from Multinomial(Фz) 

TW
kwC DET

dekC
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Table 1. Meaning of the notations. The upper part contains variables for graphical models. The 
bottom part contains variables for representing the conditional probabilities. 

Notations Meaning of the notation 
D the number of documents 
M the number of sentences 
N the number of words 
J the number of segments 
E the number of unique entity groups 
K the number of topics 
w observed word 
z topic 
ν multiplying of multiple θ 
x observed entity group 
θ multinomial distribution over topics 
Ф multinomial distribution over words 
π multinomial distribution over entity groups 
α Dirichlet prior vector for θ 
β Dirichlet prior vector for Ф 
ŋ Dirichlet prior vector for π 
a a discount parameter for PDP 
b a strength parameter for PDP 
zi the topic of ith word 

’ (quote) the situation that ith word is excepted 
z the topic assignments for all words 
e an entity group 
w a sequence of words of the document 
t 
 

in document d, the sequence of vectors which have 
table counts for each topic 

Tdje 

 
in segment j of document d, the number of tables 

associated with entity group e 
Ndje 

 
in segment j of document d, the number of words 

associated with entity group e 
tdjez 

 
in segment j of document d, the number of tables of 

entity group e, which are assigned the topic z 
ndjez 

 
in segment j of document d, the number of words of 

entity group e, which are assigned the topic z 
 the number of words that are assigned the topic k 
 
 

in the document d, the number of topics that appear in 
the sentence which the entity group e associates 

 a frequency of the entity group e in the document d 
P(dsx) 

 
the power-set of entity group of the sentence s 

in the document d 
 
 
 

the generalized Stirling number. Intuitively, this is 
the number of cases that N customers seat on T tables 

in different sequence 
 the Pochhammer symbol with increment C 
 The Pochhammer symbol same as  

udek An index of the first segment which has tduek=0 
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and the segments are restaurants. The table count t is the number of tables occupied 
by customers. The customers sitting around a table share a dish. Especially, in nested 
PDP, the number of tables of next restaurant is a customer of current restaurant.  
 

 

Fig. 3. The formal generative process of S-EGTM 

When we do a collapsed gibbs sampling for topics, removing ith topic zdgi=k affects 
the table counts and topic distributions of entity group e in the segment g. Therefore, 
we need to consider three cases of conditional probabilities in terms of udek, as 
following. 

First, when udek=1, 
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Second, when 1 < udek ≤ g, 
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Third, when g < udek, 
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The notations are described in Table 1, with a minor exceptional use of notation that     
in this expression exclude the ith word. At each step, we also sample a table count 
because a table count is affected by the number of words having the table’s topic and 

1. Draw a word distribution Ф from Dirichlet(β) 
2. For each document d, 
  (1) For each entity group e, draw a topic distribution θd0e from Dirichlet(α) 
  (2) Draw an entity group dominance distribution πd0 from Dirichlet(ŋ) 
  (3) Choose an entity group xd0 from Multinomial(πd0) 
  (4) For each segment j, 
      a. Draw an entity group dominance distribution πdj from Dirichlet(ŋ) 
      b. For each e, draw a topic distribution θdje from PDP(a, b, θd(j-1)e) 
      c. For each sentence s, 
         (a) Choose an entity group xdjs from Multinomial(πdj) 
         (b) Given entity group xdjs, derive νdjs by multiplying θdje 
            which are members of a power-set of the xdjs 

             (c) For each word w, 
            i. Choose a topic z from Multinomial(νdjs) 
            ii. Given the topic z, generate a word w from Multinomial(Фz) 

TW
kwC
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vice versa. If we assume that we remove a table count tdgek, then new table count is 
sampled as follows: 
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The notation g=1 means the first term is active only if it is the first segment, 1-(g=1) 
means the second term is active only if it is not the first segment. Γ is a gamma 
function. As considering every candidates of table count is intractable, we have to 
determine the window size of table count to consider. Among four parameters, we 
describe the approximate probabilities of two parameters as follows: 
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4 Experiments 

We used two data sets: the Bible and the fiction ‘Alice’. We removed stop-words and 
did stemming by Porter stemmer. The sentences were recognized by ‘.’, ‘?’, ‘!’, and 
“newline”. After the deleting stop-words, the Bible has 295,884 words and the fiction 
‘Alice’ has 11,605 words. As S-EGTM gets a topic flow in a document, it regards the 
Bible as a document consisting of 66 segments, and the fiction ‘Alice’ as a document 
consisting of 12 segments. In contrast, to compare EGTM with other models, we 
divided each document into separated files as segments. For every experiment, we set 
α=0.1, β=0.01, η=1, a=0.5, b=10, and the window size was 1. 

4.1 The Size of Power-Set of Entity Groups 

When we input a list of entities to consider, then a preprocessing will make a power-
set hierarchy of existing entity groups in a document. Since a sentence is restricted to 
have an entity group, each entity group usually does not have more than three entities. 
Thus, as shown in Figure 4, the size of power-set does not grow exponentially. The 
used data is the Bible. 
 

 

Fig. 4. The number of unique entity groups. The horizontal axis is the number of entities and 
the vertical axis represents the number of unique entity groups. 
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4.2 Topic Discovery 

We used the Bible as a data and set the number of topics to be 20. We performed 
inference with 2,000 iterations. In Table 2 and Table 3, five topics of two models, 
LDA and EGTM, are shown. The obtained topics of the models are similar to each 
other because the empty group of EGTM associates with every sentence. The topics 
are coherent and specific to understand. EGTM additionally gives entity lists and 
relationship lists about each topic. With the lists, we can understand what are the 
topics that each entity or entity group associates with. For example, the topic Mission 
work, which is about missionary acts of apostles, is mostly handled in the Act written 
by Paul who lived in different era with Abraham. Nevertheless, the relationship 
{God,Abraham} has the topic Mission work the most, in the Act. This is caused by 
Paul’s writing about the covenant between God and Abraham. Since the covenant is 
that ‘through your offspring all peoples on earth will be blessed’, the relationship 
{God,Abraham} has the topic Mission work in Act. Thus, EGTM helps us to grasp the 
documents in perspective of an entity or relationship. 

Table 2. Topics obtained from LDA. The topic names are manually labeled. The listed chapters 
have a big proportion of the corresponding topic. 

Topics Gospel Journey of 
Jesus & disciples 

Mission 
work 

Kingdom of 
Israel 

Field life & 
Sanctuary 

 Christ disciple Jew king Egypt 
 faith father Jerusalem Israel gold 
 love son spirit Judah curtain 
 sin crowd holy son Israelite 
 law reply sail temple cubit 

Top spirit ask Antioch reign blue 
words gospel heaven prison Jerusalem altar 

 grace truth apostle father mountain 
 church answer gentile priest ring 
 truth kingdom Ship prophet acacia 
 hope Pharisee Asia Samaria pole 
 power teacher travel altar ephod 
 dead law province servant tent 

Chapters Romans~  
Jude 

Matthew~ 
John 

Acts Kings Exodus 

4.3 Entity Prediction 

We compared the EGTM with CorrLDA2 by entity prediction performance. We also 
made a model, named as Entity-LDA, which is a baseline. The Entity-LDA just counts 
the number of topics in sentences which have each entity, after LDA estimation. We used 
the Bible as data and varied the number of topics from 10 to 90. We used an entity list 
consisting of 16 entities: God, Jesus, Petro, Judas, Paul, Mary, David, John, Abraham, 
Sarai, Solomon, Moses, Joshua, Aaron, Jeremiah, and Jonah. For fair comparison, we 
made CorrLDA2 to use the entity list, rather than automatic Named Entity Recognition 
methods. For CorrLDA2, we set the number of entity topics same as the number of word 
topics, because we observed that the prediction results are similar with different numbers 
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of entity topics. We did 10-fold cross validation for the comparison, and got the 
prediction results using the process in Figure 5. 

Table 3. Topics obtained from EGTM. The topic names are manually labeled. 

Topics Gospel Journey of
Jesus & disciples

Mission
work 

Kingdom of
Israel 

Field life & 
Sanctuary 

 Christ disciple Jew king land 
 faith father Jerusalem Israel Egypt 
 love son holy Judah curtain 
 law crowd spirit temple Israelite 
 sin reply sail Jerusalem cubit 

Top grace truth ship son gold 
words gospel ask gentile reign mountain 

 world Pharisee speak Samaria altar 
 spirit kingdom disciple prophet ring 
 hope teacher believe father frame 
 church world Christ priest blue 
 life heaven Antioch altar tent 
 boast answer prison servant pole 

Chapters Romans ~  
Jude 

Matthew ~
John 

Acts Kings Exodus 

 
Entities 

 
God, Jesus, 
Paul, John 

God, Jesus, Mary, 
Judas, David, 

Abraham, 
Joshua, Moses 

God, Jesus, 
Paul, Judas, 
John, David, 

Abraham, 
Moses 

God, David, 
Abraham, 
Solomon, 

Moses 

God, Abraham, 
Moses, Joshua, 

Aaron 

 
 

Relation- 
ships 

{God,Jesus}, 
{God,Paul}, 
{God,John}, 
{Jesus,Paul} 

{God,Jesus}, 
{Abraham,Jesus}, 

{Jesus,David},
{Abraham,Joshua,

David} 

{God,Jesus}, 
{Paul,Jesus}, 
{Paul,Judas}, 
{John,Jesus},

{David,Judas}, 
{Paul,John}, 

{God,Abraham}

{God,David}, 
{Solomon,

David}, 
{God, 

Solomon}, 
{David,God,

Solomon} 

{God,Abraham}, 
{God,Moses, 
Abraham}, 

{Aaron,God}, 
{Moses,Joshua}, 
{Moses,Abraham

} 

 

Fig. 5. The process of the entity prediction 
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The test data consists of sentences which have at least one entity. If a sentence has 
multiple entities, then choosing one of them is regarded as a correct choice. As 
depicted in Figure 6(a), the CorrLDA2 shows fixed performance because the 
resampling makes P(t|d) to be fixed. EGTM outperforms other models because  
the topics of Entity-LDA have nothing to do with entities and CorrLDA2 does not get 
the topic distribution of each entity. The performance of EGTM grows as the number 
of topics grows because the Bible covers various topics. EGTM shows better 
performances than CorrLDA2 because of two reasons. First, CorrLDA2 does not 
directly get the topic distribution of each entity and it disperses the topic distribution 
of each entity into multiple entity topics. Second, CorrLDA2 takes data exclusively. 
To be specific, the data already used for entity topics will not be used for word topics. 

 

    
(a)                     (b)                      (c) 

Fig. 6. (a) The entity prediction performances of three models. The horizontal axis is the 
number of topics. The vertical axis means a prediction rate. (b) The entity pair prediction 
performances. (c) The entity group prediction performances. 

4.4 Entity Pair Prediction 

We compared the entity pair prediction performance between EGTM and CorrLDA2. 
For fair comparison, we used entity-entity affinity of [3]. The entity-entity affinity, 
defined as P(ei|ej)/2+P(ej|ei)/2, is to rank true pairs and false pairs. The true pairs 
exist in only unseen document, while the false pairs do not exist. The prediction 
performance is the number of true pairs in half of high ranked pairs, divided by the 
number of total pairs. We prepared 50 true pairs and 50 false pairs. The models have 
different methods to get P(ei|ej) which is obtainable from                 . Entity-
LDA just counts the number of each topic. CorrLDA2 uses entity topic distributions. 
For example,                       where et means each entity topic. Figure 6(b) 
describes the prediction performance. Because the most entities of the Bible old 
testament usually do not appear in the Bible new testament, the overall prediction 
performances is low. EGTM outperforms CorrLDA2 and Entity-LDA, because 
EGTM directly takes a topic distribution of each entity. 

4.5 Entity Group Prediction 

We do not compare the prediction performance with other models because the other 
models lack ability to get topic distributions of entity groups. Instead, we demonstrate 
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prediction performance with different entity group sizes. The predictive distribution 
is                                            , where eg represents the entity group, 
and d represents each training document. Figure 6(c) shows the prediction 
performance. The accuracy is the number of correct predictions divided by the 
number of total predictions. The prediction performance of smaller entity group is 
better than that of larger entity group, because it is harder to predict more entities. 

4.6 Topic Flow 

We compare the topic flow of S-EGTM with the topic distributions of EGTM. To 
show the topic consistency between the two models, we trained S-EGTM boosted 
from the trained EGTM with 2,000 iterations. The Bible new testament and the fiction 
‘Alice’ are used as data. We analyze the entity Alice with 10 topics, and analyze a 
relationship {Jesus, God} with 20 topics. Figure 7 and Figure 8 show the topic flows 
of the entity Alice and the relationship {Jesus, God}, respectively. 
 

     
           (a)                          (b)                                (c) 

Fig. 7. (a) The confusion matrix by Hellinger distance, with the fiction ‘Alice’ as a data, where 
S-EGTM topics run along the Y-axis. (b) Topic flow of entity Alice by EGTM. (c) Topic flow 
of entity Alice by S-EGTM. 

  
        (a)                     (b)                                     (c) 

Fig. 8. (a) The confusion matrix by Hellinger distance, with the Bible new testament as a data, 
where S-EGTM topics run along the Y-axis. (b) Topic flow of relationship {Jesus, Paul} by 
EGTM. (c) Topic flow of relationship {Jesus, Paul} by S-EGTM. 

Figure 7(a) and Figure 8(a) show the confusion matrices of the topic distributions 
generated by EGTM and S-EGTM. The diagonal cells are darker than others, 
meaning that the corresponding topics have low Hellinger distance. Thus, the topics 
of two models are consistent. Other than the Figure 7(a) and Figure 8(a), the 
horizontal axis means each segment, while the vertical axis represents topic 
proportion. Clearly, in Figure 7(b), each topic appears in totally different segments, 
which gives no idea about a topic flow through the segments. In contrast, in Figure 
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7(c), we can see the pattern that the topic 8(pink color) flows through every segment. 
As the topic 8 is about Alice’s tracking the rabbit, its flow through every segment is 
coherent with the story. Consider the case of the relationship {Jesus, God} in more 
detail. In Figure 8(b), the topic Gospel (topic 14) is dominant in four separated parts, 
meaning that the relationship {Jesus, God} associates with the topic Gospel in only 
those separated four parts. This is caused by that the relationship has sparse topic 
distribution because it reflects only the sentences having the relationship. The 
separated appearance of the topic is not coherent with the Bible, because a purpose of 
the Bible new testament associates with the topic Gospel which is strongly about the 
news of the relationship {Jesus, God}. In contrast, in Figure 8(c), the topic Gospel 
appears like a flow from Acts to Revelation. This means the relationship {Jesus, God} 
associates with the topic Gospel without any cutting, through the segments. This is 
more coherent with the Bible. Thus, S-EGTM helps us to grasp the topic flow of an 
entity or a relationship by smoothing the sparse topic distribution of EGTM. 

5 Conclusion 

In this paper, we proposed two new generative models, Entity Group Topic Model 
(EGTM) and the Sequential Entity Group Topic Model (S-EGTM). S-EGTM reflects 
the sequential structure of a document in the hierarchical modeling. We developed 
collapsed gibbs sampling algorithms for the models. EGTM employs a power-set 
structure to get topics of entities or entity groups. S-EGTM is a sequential version of 
the EGTM, and employs nested two-parameter Poisson-Dirichlet process (PDP) to 
capture a topic flow over the sequence of segments in one document. We have 
analyzed the topics obtained from EGTM, and showed that topic flows generated by 
S-EGTM are coherent with the original document. Moreover, the experimental results 
show that the prediction performance of EGTM is better than that of CorrLDA2. 
Thus, we believed that the intended mechanisms of the EGTM and S-EGTM models 
work. 
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Abstract. In many fields of application, the choice of proximity measure directly
affects the results of data mining methods, whatever the task might be: clustering,
comparing or structuring of a set of objects. Generally, in such fields of appli-
cation, the user is obliged to choose one proximity measure from many possible
alternatives. According to the notion of equivalence, such as the one based on pre-
ordering, certain proximity measures are more or less equivalent, which means
that they should produce almost the same results. This information on equiva-
lence might be helpful for choosing one such measure. However, the complexity
O(n4) of this approach makes it intractable when the size n of the sample exceeds
a few hundred. To cope with this limitation, we propose a new approach with less
complexity O(n2). This is based on topological equivalence and it exploits the
concept of local neighbors. It defines equivalence between two proximity mea-
sures as having the same neighborhood structure on the objects. We illustrate our
approach by considering 13 proximity measures used on datasets with continuous
attributes.

Keywords: proximity measure, pre-ordering, topological equivalence.

1 Introduction

In order to understand and act on situations that are represented by a set of objects,
very often we are required to compare them. Humans perform this comparison subcon-
sciously using the brain. In the context of artificial intelligence, however, we should be
able to describe how the machine might perform this comparison. In this context, one
of the basic elements that must be specified is the proximity measure between objects.

Certainly, application context, prior knowledge, data type and many other factors
can help in identifying of the appropriate measure. For instance, if the objects to be
compared are described by boolean vectors, we can restrict our comparisons to a class
of measures specifically devoted to this data type. However, the number of candidate
measures might still remain quite large. Can we consider that all those remaining are
equivalent and just pick one of them at random? Or are there some that are equivalent
and, if so, to what extent? This information might interest a user when seeking a specific
measure. For instance, in information retrieval, choosing a given proximity measure is
an important issue. We effectively know that the result of a query depends on the mea-
sure used. For this reason, users may wonder which one more useful? Very often, users

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 379–391, 2012.
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try many of them, randomly or sequentially, seeking a ”suitable” measure. If we could
provide a framework that allows the user to compare proximity measures and therefore
identify those that are similar, they would no longer need to try out all measures.

The present study proposes a new framework for comparing proximity measures.
We deliberately ignore the issue of the appropriateness of the proximity measure as it
is still an open and challenging question currently being studied. Comparing proximity
measures can be analyzed from different angles:

– Axiomatically, as in the works of [1], [2] and [7], where two measures are consid-
ered equivalent if they possess the same mathematical properties.

– Analytically, as in the works of [2], [3] and [7], where two measures are considered
equivalent if one can be expressed as a function of the other.

– Emperically, as in [20], where two proximity measures are considered similar if,
for a given set of objects, the proximity matrices brought about over the objects
are somewhat similar. This can be achieved by means of statistical tests such as
the Mantel test [13]. We can also deal with this issue using an approach based on
preordonance [7][8][18], in which the common idea is based on a principle which
says that two proximity measures are closer if the preorder induced in pairs of
objects does not change. We will provide details of this approach later on.

Nevertheless, these approaches can be unified depending on the extent to which they
allow the categorization of proximity measures. Thus, the user can identify measures
that are equivalent from those that are less so [3][8].

In this paper, we present a new approach for assessing the similarity between prox-
imity measures. Our approach is based on proximity matrices and hence belongs to
empirical methods. We introduce this approach by using a neighborhood structure of
objects. This neighborhood structure is what we refer to as the topology induced by the
proximity measures. For two proximity measures ui and u j, if the topological graphs
produced by both of them are identical, then this means that they have the same neigh-
borhood graph and consequently, the proximity measures ui and u j are in topological
equivalence. In this paper, we will refer to the degree of equivalence between proxim-
ity measures. In this way, we can calculate a value of topological equivalence between
pairs of proximity measures which would be equal to 1 for perfect equivalence and 0
for total mismatch. According to these values of similarity, we can visualize how close
the proximity measures are to each other. This visualization can be achieved by any
clustering algorithm. We will introduce this new approach more formally and show the
principal links identified between our approach and that based on preordonnance. So
far, we have not found any publication that deals with the problem in the same way as
we do here.

The present paper is organized as follows. In Section 2, we describe more pre-
cisely the theoretical framework and we recall the basic definitions for the approach
based on induced preordonnance. In Section 3, we introduce our approach, topological
equivalence. In section 4, we provide some results of the comparison between the two
approaches, and highlight possible links between them. Further work and new lines
of inquiry provided by our approach are detailed in Section 5, the conclusion. We also
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make some remarks on how this work could be extended to all kinds of proximity
measures, regardless of the representation space: binary [2][7][8][26], fuzzy [3][28] or
symbolic, [11][12].

2 Proximity Measures and Preordonnance

2.1 Proximity Measures

In this article we limit our work to proximity measures built on Rp. Nevertheless, the
approach could easily be extended to all kinds of data: quantitative or qualitative. Let
us consider a sample of n individuals x,y, . . . in a space of p dimensions. Individuals
are described by continuous variables: x = (x1, . . . ,xp). A proximity measure u between
two individual points x and y is defined as follows:

u : Rp×Rp �−→ R

(x,y) �−→ u(x,y)

with the following properties, ∀(x,y) ∈ Rp×Rp:
P1: u(x,y) = u(y,x).
P2: u(x,x)≤ u(x,y) , P2’: u(x,x)≥ u(x,y).
P3: ∃α ∈ R: u(x,x) = α.

We can also define δ : δ (x,y) = u(x,y)−α a proximity measure that satisfies the fol-
lowing properties, ∀(x,y) ∈ Rp×Rp:

T1: δ (x,y) ≥ 0.
T2: δ (x,x) = 0.
T3: δ (x,x) ≤ δ (x,y).
T4: δ (x,y) = 0⇒∀z δ (x,z) = δ (y,z).
T5: δ (x,y) = 0⇒ x = y.

T6: δ (x,y)≤ δ (x,z)+ δ (z,y).
T7: δ (x,y)≤max(δ (x,z),δ (z,y)).
T8: δ (x,y) + δ (z, t) ≤ max(δ (x,z) +

δ (y, t),δ (x, t)+ δ (y,z)).

A proximity measure that verifies properties T1, T2 and T3 is a dissimilarity measure.
If it satisfies the properties T5 and T6 it becomes a distance. As shown in [1], there are
some implications between these properties: T7⇒ T 6⇐ T 8

In Table 1, we give a list of 13 conventional proximity measures.
For our experiments and comparisons, we took many datasets from the UCI-

repository and we carried out a lot of sub sampling on individuals and variables. Table
4 shows the datasets used in this work.

2.2 Preorder Equivalence

Two proximity measures, ui and u j generally lead to different proximity matrices. Can
we say that these two proximity measures are different just because the resulting matri-
ces have different numerical values? To answer this question, many authors,[7][8][18],
have proposed approaches based on preordonnance defined as follows:
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Table 1. Some proximity measures

MEASURE SHORT FORMULA

EUCLIDEAN EUC uE(x,y) =
√

∑p
j=1(x j−y j)2

MAHALANOBIS MAH uMah(x,y) =
√

(x−y)t ∑−1(x−y)

MANHATTAN MAN uMan(x,y) = ∑p
j=1 |x j−y j|

MINKOWSKI MIN uMinγ (x,y) = (∑p
j=1 |x j−y j|γ )

1
γ

TCHEBYTCHEV TCH uT ch(x,y) = max1≤ j≤p |x j−y j|
COSINE DISSIMILARITY COS uCos(x,y) = 1− <x,y>

‖x‖‖y‖
CANBERRA CAN uCan(x,y) = ∑p

j=1
|x j−y j |
|x j |+|y j |

SQUARED CHORD SC uSC(x,y) = ∑p
j=1(

√
x j−

√
y j)

2

WEIGHTED EUCLIDEAN WE uW E(x,y) =
√

∑p
j=1 αi(x j−y j)2

CHI-SQUARE χ2 uχ2 (x,y) = ∑p
j=1

(x j−mj)
2

mj

JEFFREY DIVERGENCE JD uJD(x,y) = ∑p
j=1(x j log x j

mj
+y j log y j

mj
)

PEARSON’S CORRELATION ρ uρ (x,y) = 1−|ρ(x,y)|
NORMALIZED EUCLIDEAN NE uNE(x,y) =

√
∑p

j=1(
x j−y j

σ j
)2

Where p is the dimension of space, x = (x j) j=1,...,p and y = (y j) j=1,...,p two points in Rp,
(α j) j=1,...,p ≥ 0, ∑−1 the inverse of the variance and covariance matrix, σ2

j the variance, γ > 0,

m j =
x j+y j

2 and ρ(x,y) denotes the linear correlation coefficient of Bravais-Pearson.

Definition 1. Equivalence in preordonnance: Let us consider two proximity measures
ui and u j to be compared. If for any quadruple (x,y,z, t), we have: ui(x,y)≤ ui(z, t)⇒
u j(x,y)≤ u j(z, t), then, the two measures are considered equivalent.

This definition has since reproduced in many papers such as [2], [3], [8] and [28]. This
definition leads to an interesting theorem which is demonstrated in [2].

Theorem 1. Equivalence in preordonnance: with two proximity measures ui and u j,
if there is a strictly monotonic function f such that for every pair of objects (x,y) we
have: ui(x,y) = f (u j(x,y)), then ui and u j induce identical preorder and therefore they
are equivalent. The converse is also true.

In order to compare proximity measures ui and u j, we need to define an index that could
be used as a similarity value between them. We denote this by S(ui,u j). For example,
we can use the following similarity index which is based on preordonnance.

S(ui,u j) =
1
n4 ∑x ∑y ∑z ∑t δi j(x,y,z, t)

where δi j(x,y,z, t) =
{1 if [ui(x,y)− ui(z, t)]× [u j(x,y)− u j(z, t)]> 0

or ui(x,y) = ui(z, t) and u j(x,y) = u j(z, t)
0 otherwise

S varies in the range [0, 1]. Hence, for two proximity measures ui and u j, a value of 1
means that the preorder induced by the two proximity measures is the same and there-
fore the two proximity matrices of ui and u j are equivalent.
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The workflow in Fig 1 summarizes the process that leads to the similarity matrix
between proximity measures.

Fig. 1. Workflow of preorder equivalence

As an example, in Table 2 we show the similarity matrix between the 13 proximity
measures. This is the result of the work flow on the iris dataset.

Table 2. Preordonnance similarities: S(ui,u j)

S uE uMah uMan uMinγ uT ch uCos uCan uSC uW E uχ2 uJD uρ uNE

uE 1
uMah .713 1
uMan .966 .709 1
uMinγ .987 .712 .955 1
uT ch .954 .694 .927 .965 1
uCos .860 .698 .848 .864 .857 1
uCan .889 .678 .888 .886 .869 .861 1
uSC .947 .703 .935 .946 .926 .880 .932 1
uW E 1 .713 .966 .987 .954 .860 .889 .947 1
uχ2 .951 .705 .939 .950 .930 .881 .930 .995 .951 1
uJD .949 .704 .937 .947 .928 .880 .931 .998 .949 .997 1
uρ .857 .682 .845 .862 .856 .940 .839 .865 .857 .866 .865 1

uNE .911 .751 .915 .905 .882 .838 .872 .898 .911 .901 .899 .830 1

The comparison between indices of proximity measures has also been studied by
[19], [20] from a statistical perspective. The authors proposed an approach that com-
pares similarity matrices, obtained by each proximity measure, using Mantel’s test [13],
in a pairwise manner.

3 Topological Equivalence

This approach is based on the concept of a topological graph which uses a neighborhood
graph. The basic idea is quite simple: we can associate a neighborhood graph to each
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proximity measure ( this is -our topological graph- ) from which we can say that two
proximity measures are equivalent if the topological graphs induced are the same. To
evaluate the similarity between proximity measures, we compare neighborhood graphs
and quantify to what extent they are equivalent.

3.1 Topological Graphs

For a proximity measure u, we can build a neighborhood graph on a set of individuals
where the vertices are the individuals and the edges are defined by a neighborhood rela-
tionship property. We thus simplify have to define the neighborhood binary relationship
between all couples of individuals. We have plenty of possibilities for defining this re-
lationship. For instance, we can use the definition of the Relative Neighborhood Graph
[16], where two individuals are related if they satisfy the following property:

If u(x,y)≤max(u(x,z),u(y,z)); ∀z �= x, �= y then, Vu(x,y) = 1 otherwise Vu(x,y) = 0.
Geometrically, this property means that the hyper-lunula (the intersection of the two

hyper-spheres centered on two points) is empty. The set of couples that satisfy this
property result in a related graph such as that shown in Figure 2. For the example shown,
the proximity measure used is the Euclidean distance. The topological graph is fully
defined by the adjacency matrix as in Figure 2.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vu . . . x y z t u . . .
...

...
...

...
...

...
... . . .

x . . . 1 1 0 0 0 . . .
y . . . 1 1 1 1 0 . . .
z . . . 0 1 1 0 1 . . .
t . . . 0 1 0 1 0 . . .
u . . . 0 0 1 0 1 . . .
...

...
...

...
...

...
... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 2. Topological graph built on RNG property

In order to use the topological approach, the property of the relationship must lead
to a related graph. Of the various possibilities for defining the binary relationship, we
can use the properties in a Gabriel Graph or any other algorithm that leads to a related
graph such as the Minimal Spanning Tree, MST. For our work, we use only the Relative
Neighborhood Graph, RNG, because of the relationship there is between those graphs
[16].

3.2 Similarity between Proximity Measures in Topological Frameworks

From the previous material, using topological graphs (represented by an adjacency ma-
trix), we can evaluate the similarity between two proximity measures via the similarity
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Fig. 3. Workflow of topological equivalence

between the topological graphs each one produces. To do so, we just need the adjacency
matrix associated with each graph. The workflow is represented in Figure 3.

Note that Vui and Vu j are the two adjacency matrices associated with both proximity
measures. To measure the degree of similarity between the two proximity measures, we
just count the number of discordances between the two adjacency matrices. The value
is computed as:

S(Vui ,Vu j) =
1
n2 ∑x∈Ω ∑y∈Ω δi j(x,y) where δi j(x,y) =

{1 if Vui(x,y) =Vu j(x,y)
0 otherwise

S is the measure of similarity which varies in the range [0,1]. A value of 1 means that
the two adjacency matrices are identical and therefore the topological structure induced
by the two proximity measures in the same, meaning that the proximity measures con-
sidered are equivalent. A value of 0 means that there is a full discordance between the
two matrices ( Vui(x,y) �=Vu j(x,y) ∀ω ∈Ω 2 ). S is thus the extent of agreement between
the adjacency matrices. The similarity values between the 13 proximity measures in the
topological framework for iris are given in Table 3.

Table 3. Topology similarities: S(ui,u j)

S uE uMah uMan uMinγ uT ch uCos uCan uSC uWE uχ2 uJD uρ uNE

uE 1
uMah .978 1
uMan .988 .974 1
uMinγ .998 .977 .987 1
uT ch .980 .966 .971 .982 1
uCos .973 .972 .968 .973 .959 1
uCan .982 .975 .984 .981 .967 .971 1
uSC .989 .979 .984 .987 .973 .974 .988 1
uWE 1 .978 .988 .998 .980 .973 .982 .989 1
uχ2 .989 .979 .984 .987 .973 .974 .988 1 .989 1
uJD .989 .979 .984 .987 .973 .974 .988 1 .989 1 1
uρ .971 .971 .967 .970 .958 .980 .969 .971 .971 .971 .971 1

uNE .985 .979 .984 .984 .971 .972 .983 .985 .985 .985 .985 .970 1
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4 Relationship between Topological and Preordonnance
Equivalences

4.1 Theoretical Results

We have found some theoretical results that establish a relationship between topolog-
ical and preordonnance approaches. For example, from Theorem 1 of preordonnance
equivalence we can deduce the following property, which states that in the case where
f is strictly monotonic then if the preorder is preserved this implies that the topology is
preserved and vice versa. This property can be formulated as follows:

Property 1. Let f be a strictly monotonic function of R+ in R+, ui and u j two proximity
measures such that: ui(x,y)→ f (ui(x,y)) = u j(x,y) then,

ui(x,y) ≤ max(ui(x,z) , ui(y,z))⇔ u j(x,y) ≤ max(u j(x,z) , u j(y,z)).

Proof. Let us assume that max(ui(x,z) , ui(y,z)) = ui(x,z),
by Theorem 1, we provide ui(x,y)≤ ui(x,z)⇒ f (ui(x,y))≤ f (ui(x,z)),
again, ui(y,z) ≤ ui(x,z)⇒ f (ui(y,z)) ≤ f (ui(x,z))

⇒ f (ui(x,z)) ≤ max( f (ui(x,z)), f (ui(y,z))),
hence the result, u j(x,y)≤ max(u j(x,z),u j(y,z)).
The reciprocal implication is true, because if f is continuous and strictly monotonic

then its inverse f−1 is continuous in the same direction of variation as f . ��

Proposition 1. In the context of topological structures induced by the relative neigh-
bors graph, if two proximity measures ui and u j are equivalent in preordonnance, they
are necessarily topologically equivalent.

Proof. If ui ≡ u j (preordonnance equivalence) then,
ui(x,y)≤ ui(z, t)⇒ u j(x,y)≤ u j(z, t) ∀x,y,z, t ∈ Rp.

We have, especially for t = x = y and z �= t,
ui(x,y)≤ ui(z,x)⇒ u j(x,y)≤ u j(z,x)
ui(x,y)≤ ui(z,y)⇒ u j(x,y)≤ u j(z,y)

we deduce, ui(x,y)≤ max(ui(z,x),ui(z,y))⇒ u j(x,y)≤ max(u j(z,x),u j(z,y))
using symmetry property P1,

ui(x,y)≤ max(ui(x,z),ui(y,z))⇒ u j(x,y)≤ max(u j(x,z),u j(y,z))
hence, ui ≡ u j (topological equivalence). ��

It is easy to show the following theorem from the proof of property 1.

Theorem 2. Equivalence in topology. Let ui and u j be two proximity measures, if there
is a strictly monotonic function f such that for every pair of objects (x,y) we have:
ui(x,y) = f (u j(x,y)) then, ui and u j induce identical topological graphs and therefore
they are equivalent.

The converse is also true, i.e. two proximity measures which are dependent on each
other induce the same topology and are therefore equivalent.
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4.2 Empirical Comparisons

Comparison of Proximity Measures. We want to visualize the similarities between
the proximity measures in order to see which measures are close to one another. As we
already have a similarity matrix between proximity measures, we can use any classic
visualization techniques to achieve this. For example, we can build a dendrogram of
hierarchical clustering of the proximity measures. We can also use Multidimensional
scaling or any other technique such as Laplacian projection to map the 13 proximity
measures into a two dimensional space. As an illustration we show (Figure 4) the results
of the Hierarchical Clustering Algorithm, HCA, on the iris dataset according to the two
similarity matrices (Table 2 and Table 3) associated with each approach.

a) Topological structure: (RNG) b) Pre-ordonnance

Fig. 4. Comparison of hierarchical trees

Now the user has two approaches, topological and preordonnance, to assess the
closeness between proximity measures relative to a given dataset. This assessment
might be helpful for choosing suitable proximity measures for a specific problem. Of
course, there are still many questions. For instance, does the clustering of proximity
measures remain identical when the data set changes? What is the sensitivity of the
empirical results when we vary the number of variables or samples within the same
dataset? To answer these questions we carried out a series of experiments. The core
idea of these experiments was to study whether proximity measures are clustered in the
same way regardless of the dataset used. To this end, given a dataset with N individuals
and P variables, we verified the effect of varying the sample size, N, and dimension, P,
within a given dataset and using different datasets. All datasets in our experiments were
taken from the UCI repository, [24], as shown in Table 4.
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Table 4. Datasets used in our experiments

Dataset Id Name Dimension
1 Breast Tissue 106 × 9
2 Connectionist Bench 208 × 60
3 Iris 150 × 4
4 Libras movement 360 × 91
5 Parkinsons 195 × 23
6 Waveform Database Generator (Version 2) 5000 × 40
7 Wine 178 × 13
8 Yeast 1484 × 8

– Sensitivity to change in dimension: To examine the effect of changing the dimen-
sion within a given dataset, the wave form data setwas used. 4 samples were gener-
ated by taking 10, 20, 30, and 40 variables from the dataset with 2000 individuals
for the topological approach and 200 samples for the preorder approach. The re-
sults given in Tables 5 and 6 respectively show that there was a slight change in the
clustering but that we could observe some stability.

– Sensitivity to change in sample size: To examine the influence of changing the num-
ber of individuals, we generated five samples from the waveform dataset varying
the sample size from 1000 to 5000 for the topological approach and 100 to 400
for the preorder approach because of the complexity of the algorithm. The number
of variables, 40, was the same for all experiments. The results of HCA clustering
using each approach are shown in Tables 7 and 8 respectively. Clearly, there was a
slight change in the clustering but it seems there was a relative stability.

– Sensitivity to varying data sets: To examine the effect of changing the data sets, the
two approaches were tested with various datasets. The results are shown in Tables
9 and 10. In the topological approach, regularity {chSqr, SC, JD} and {Euc, EucW,
Min} was observed regardless of the change in individuals and variables within the
same dataset or across different datasets.

Table 5. The influence of varying number of variables in a data set, topological

Expt Data set Cluster of Proximity Measures
1 wave form[2000, 10] {Tch}, {Man, Can}, {Cos, Pir}, {chSqr, Sc, JD, Euc, EucW, Min, NEuc, Mah}
2 wave form[2000, 20] {Tch}, {Man, Can}, {chSqr, Sc, JD, NEuc}, {Euc, EucW, Min, Cos, Pir, Mah}
3 wave form[2000, 30] {Tch}, {Man, Can}, {chSqr, Sc, JD, NEuc, Mah}, {Euc, EucW, Min, Cos, Pir}
4 wave form[2000, 40] {Tch}, {Man, Can}, {chSqr, Sc, JD, NEuc, Mah}, {Euc, EucW, Min, Cos, Pir}
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Table 6. The influence of varying number of variables in a data set, preorder

Expt Data set Cluster of Proximity Measures
1 wave form[200, 10] {Cos, Pir}, {Mah, NEuc}, {chSqr, Sc, JD, Man, Can}, {Tch, Min, Euc, EucW}
2 wave form[200, 20] {Tch}, {Mah}, {chSqr, Sc, JD, NEuc, Man, Can}, {Pir, Cos, Min, Euc, EucW}
3 wave form[200, 30] {Tch}, {Mah}, {chSqr, Sc, JD, NEuc, Man, Can}, {Pir, Cos, Min, Euc, EucW}
4 wave form[200, 40] {Tch}, {Mah}, {ChSqr, Sc, JD, NEuc, Man, Can}, {Pir, Cos, Min, Euc, EucW}

Table 7. The influence of varying size of individuals in a data set, topological

Expt Data set Cluster of Proximity Measures
1 wave form[1000, 40] {Tch}, {Mah}, {Man, Can}, {Euc, EucW, Cos, Min, Pir, ChSqr, Sc, JD, NEuc}
2 wave form[2000, 40] {Tch}, {Mah, Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc}
3 wave form[3000, 40] {Tch}, {Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc, Mah}
4 wave form[4000, 40] {Tch}, {Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc, Mah}
5 wave form[5000, 40] {Tch}, {Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc, Mah}

Table 8. The influence of varying size of individuals in a data set, preorder

Expt Data set Cluster of Proximity Measures
1 wave form[100, 40] {Tch}, {Mah}, {Pir, Min, Cos, Euc, EucW}, {ChSqr, Sc, JD, NEuc, Man, Can}
2 wave form[200, 40] {Tch}, {Mah}, {Pir, Min, Cos, Euc, EucW}, {ChSqr, Sc, JD, NEuc, Man, Can}
3 wave form[300, 40] {Can}, {Man, Tch, Pir}, {Euc, EucW, Cos, Min}, {ChSqr, Sc, JD, NEuc, Mah}
5 wave form[400, 40] {Min, ChSqr}, {Man, JD, Mah, Sc, NEuc}, {Cos, Pir}, {Tch, Can, Euc, EucW}

Table 9. The influence of varying datasets, topological

Expt Data set Cluster of Proximity Measures
1 Iris [150, 4] {Pir, Cos}, {Mah}, {Euc, EucW, Min, Tch} , {chSqr, Sc, JD, NEuc, Man, Can}
2 Breast Tissue[106, 9] {Sc, JD}, {Euc, EucW, Min, Tch, Man, chSqr}, {Cos, Pir}, {Mah, Can, NEuc}
3 Parkinsons [195, 23] {chSqr, Sc, JD }, {Euc, EucW, Min, Man, Tch}, {Pir, Cos}, {NEuc, Can, Mah}
4 C.Bench [208, 60] {chSqr, Sc, JD }, {Tch}, {Can, NEuc}, {Euc, EucW, Min, Cos, Pir, Man, Mah}
5 Wine [178, 13] {chSqr, Sc, JD}, {Euc, EucW, Min, Man, Tch}, {Cos, Pir}, {Mah, Can, NEuc}
6 Yeast [1484, 8] {chSqr}, {JD}, {Tch}, {Cos, Pir, Sc, Euc, EucW, Min, Mah, NEuc, Man, Can}
7 L.Movement [360, 91] {JD}, {Mah}, {Cos, Pir, Tch}, {Euc, EucW, Min, NEuc, chSqr, Sc, Man, Can}
8 wave form[5000, 40] {Tch}, {Man, Can}, {Euc, EucW, Cos, Min, Pir}, {ChSqr, Sc, JD, NEuc, Mah}

Table 10. The influence of varying datasets, preorder

Expt Data set Cluster of Proximity Measures
1 Iris [150, 4] {Mah}, {Cos, Pir}, {Euc, EucW, Min, Man, Tch, NEuc} , {Can, chSqr, Sc, JD}
2 Breast Tissue[106, 9] {Cos, Pir}, {Sc, JD}, {Mah, Can, NEuc}, {Euc, EucW, Min, Tch, Man, chSqr}
3 Parkinsons [195, 23] {Mah}, {Can, NEuc}, {Cos, Pir}, {chSqr, Sc, JD ,Euc, EucW, Min, Man, Tch}
4 Wine [178, 13] {Mah}, {Can, NEuc}, {Cos, Pir}, {chSqr, Sc, JD, Euc, EucW, Min, Man, Tch}
5 L.Movement [360, 91] {Can, NEuc, WEuc, Euc, Pir}, {Man, Min}, {Mah, Tch, Sc}, {JD, Cos, ChSqr}

5 Conclusion

In this paper, we have proposed a new approach for comparing proximity measures
with complexity O(n2). This approach produces results that are not totally identical to
those produced by former methods. One might wonder which approach is the best. We
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believe that this question is not relevant. The topological approach described here has
some connections with preordonnance, but proposes another point of view for compar-
ison. The topological approach has a lower time complexity. From theoretical analysis,
when a proximity measure is a function of another proximity measure then we have
shown that the two proximity measures are identical for both approaches. When this is
not the case, the experimental analysis showed that there is sensitivity to sample size,
dimensionality and the dataset used.

References

1. Batagelj, V., Bren, M.: Comparing resemblance measures. In: Proc. International Meeting on
Distance Analysis, DISTANCIA 1992 (1992)

2. Batagelj, V., Bren, M.: Comparing resemblance measures. Journal of classification 12, 73–90
(1995)

3. Bouchon-Meunier, M., Rifqi, B., Bothorel, S.: Towards general measures of comparison of
objects. Fuzzy Sets and Systems 84(2), 143–153 (1996)

4. Clarke, K.R., Somerfield, P.J., Chapman, M.G.: On resemblance measures for ecological
studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for
denuded assemblages. Journal of Experimental Marine Biology & Ecology 330(1), 55–80
(2006)

5. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied
Mathematics (2003)

6. Kim, J.H., Lee, S.: Tail bound for the minimal spanning tree of a complete graph. Statistics
& Probability Letters 64(4), 425–430 (2003)
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Abstract. With the opinion explosion on Web, there are growing re-
search interests in opinion mining. In this study we focus on an important
problem in opinion mining — Aspect Identification (AI), which aims to
extract aspect terms in entity reviews. Previous PLSA based AI methods
exploit the 2-tuples (e.g. the co-occurrence of head and modifier), where
each latent topic corresponds to an aspect. Here, we notice that each
review is also accompanied by an entity and its overall rating, resulting
in quad-tuples joined with the previously mentioned 2-tuples. Believ-
ing that the quad-tuples contain more co-occurrence information and
thus provide more ability in differentiating topics, we propose a model
of Quad-tuple PLSA, which incorporates two more items — entity and
its rating, into topic modeling for more accurate aspect identification.
The experiments on different numbers of hotel and restaurant reviews
show the consistent and significant improvements of the proposed model
compared to the 2-tuple PLSA based methods.

Keywords: Quad-tuple PLSA, Aspect Identification, Opinion Mining.

1 Introduction

With the Web 2.0 technology encouraging more and more people to participate
in online comments, recent years have witnessed the opinion explosion on Web.
As large scale of user comments accumulate, it challenges both the merchants
and customers to analyze the opinions or make further decisions. As a result,
opinion mining which aims at determining the sentiments of opinions has become
a hot research topic.

Additionally, besides the simple overall evaluation and summary, both cus-
tomers and merchants are becoming increasingly concerned in certain aspects
of the entities. Take a set of restaurant reviews as example. Common restau-
rant aspects include “food”, “service”, “value” and so on. Some guests may be
interested in the “food” aspect, while some may think highly of the “value” or
“service” aspect. To meet these personalized demands, we need to decompose
the opinions into different aspects for better understanding or comparison.

On the other hand, it also brings out perplexity for merchants to digest all
the customer reviews in case that they want to know in which aspect they
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lack behind their competitors. As pointed out in [12], the task of aspect-based
summarization consists of two subtasks: the first is Aspect Identification (AI),
and the second is sentiment classification and summarization. The study in this
paper mainly focuses on the first task, which aims to accurately identify the
aspect terms in the reviews for certain type of entities.

Hotel:  Quality Inn & Suites Downtown                             Rating: 

Review1:  If you are looking for the most elegant hotel, this is not it. If you are looking for 

the cheapest, this is not it. If you are looking for the best combination of price, location, 

rooms, and staff , the Quality Inn and Suites is a no brainer. A few blocks from the French 

Quarter, clean nice rooms, great price, and the staff was awesome.       ----by Sabanized

Hotel:  L.A. Motel                                                     Rating: 

Review2:  Good motel location and good quality! The front desk was helpful, by the way, the 

beds could be larger.                                                     ----by Jim Porter 

Hotel:  Hotel Elysee                                                  Rating: 

Review3:  The manager was impatient. Beds were small and dirty. Hot water was not 

running and the room was smelly. Anyway, it was cheap.                ----by Kate Jeniffer

Fig. 1. Sample Reviews

As shown in Figure 1, there are 3 reviews on different hotels, where the de-
scription for the same aspect is stained in the same color. One of a recent works
in this area argues that it is more sensible to extract aspects from the phrase
level rather than the sentence level since a single sentence may cover different
aspects of an entity (as shown in Figure 1, a sentence may contain different col-
ored terms) [5]. Thus, Lu et al. decompose reviews into phrases in the form of
(head, modifier) pairs. A head term usually indicates the aspect while a modifier
term reflects the sentiment towards the aspect. Take the phrase “excellent staff”
for example. The head “staff” belongs to the “staff/front desk” aspect, while the
modifier “excellent” shows a positive attitude to it. Utilizing the (head, modifier)
pairs, they explore the latent topics embedded in it with aspect priors. In other
words, they take the these 2-tuples as input, and output the latent topics as the
identified aspects.

In this study, we observe that besides the (head, modifier) pairs each review
is often tied with an entity and its overall rating. As shown in Figure 1, a hotel
name and an overall rating are given for each review. Thus, we can construct
the quad-tuples of

(head, modifier, rating, entity),

which indicates that a phrase of the head and modifier appears in the review
for this entity with the rating. For example, the reviews in Figure 1 include the
following quad-tuples,
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( price, good, 5, Quality Inn); ( staff, awesome, 5, Quality Inn);
( location, good, 4, L.A.Motel); (bed, small, 1, Hotel Elysee).

With these quad-tuples from the reviews for a certain type of entities, we further
argue that they contain more co-occurrence information than 2-tuples, thus pro-
vide more ability in differentiating terms. For example, reviews with the same
rating tend to share similar modifiers. Additionally, reviews with the same rating
on the same entity often talk about the same aspects of that entity (imagine that
people may always assign lowest ratings to an entity because of its low quality in
certain aspect). Therefore, incorporating entity and rating into the tuples may
facilitate aspect generation.

Motivated by this observation, we propose a model of Quad-tuple PLSA
(QPLSA for short), which can handle two more items (compared to the pre-
vious 2-tuple PLSA [1,5]) in topic modeling. In this way we aim to achieve
higher accuracy in aspect identification. The rest of this paper is organized as
follows: Section 2 presents the problem definition and preliminary knowledge.
Section 3 details our model Quad-tuple PLSA and the EM solution. Section 4
gives the experimental results to validate the superiority of our model. Section 5
discusses the related work and we conclude our paper in Section 6.

2 Problem Definition and Preliminary Knowledge

In this section, we first introduce the problem, and then briefly review Lu’s
solution–the Structured Probabilistic Latent Semantic Analysis (SPLSA) [5].
The frequently used notations are summarized in Table 1.

Table 1. Frequently used notations

Symbol Description

t the comment

T the set of comments

h the head term

m the modifier term

e the entity

r the rating of the comment

q the quad-tuple of (h,m,r,e)

z the latent topic or aspect

K the number of latent topics

Λ the parameters to be estimated

n(h,m) the number of co-occurrences of head and modifier

n(h,m, r, e) the number of co-occurrences of head,modifier, rating and entity

X the whole data set
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2.1 Problem Definition

In this section, we give the problem definition and the related concepts.

Definition 1 (Phrase). A phrase f = (h,m) is in the form of a pair of head
term h and modifier m. And SPLSA adopts such (head, modifier) 2-tuple phrases
for aspect extraction.

Definition 2 (Quad-tuple). A quad-tuple q = (h,m, r, e) is a vector of head
term h, modifier m, rating r and entity e. Given a review on entity e with rating
r, we can generate a set of quad-tuples, denoted by

{(h,m, r, e)|Phrase (h,m) appears with rating r in a review of entity e}.

Aspect Cluster. An aspect cluster Ai is a cluster of head terms which share
similar meaning in the given context. We represent Ai = {h|G(h) = i}, where G
is a mapping function that maps h to a cluster aspect Ai.

Aspect Identification. The goal of aspect identification is to find the mapping
function G that correctly assigns the aspect label for given head term h.

2.2 Structured PLSA

Structured PLSA (SPLSA for short) is a 2-tuple PLSA based method for rated
aspect summarization. It incorporates the structure of phrases into the PLSA
model, using the co-occurrence information of head terms and their modifiers.
Given the whole data X composed of (head, modifier) pairs, SPLSA arouses a
mixture model with latent model topics z as follows,

p(h,m) =
∑
z

p(h|z)p(z|m)p(m). (1)

The parameters of p(z|m), p(h|z) and p(m) can be obtained using the EM algo-
rithm by solving the maximum log likelihood problem in the following,

log p(X|Λ) =
∑
h,m

n(h,m) log
∑
z

p(z|m)p(h|z)p(m), (2)

where Λ denotes all the parameters. And the prior knowledge of seed words
indicating specific aspect are injected in the way as follows:

p(h|z;Λ) =
∑

m n(h,m)p(z|h,m;Λold) + σp(h|z0)∑
h
′
∑

m n(h′ ,m)p(z|h′ ,m;Λold) + σ
, (3)

where z0 denotes the priors corresponding to the latent topic z, and σ is the
confidential parameter of the head term h belonging to aspect z0. And each h is
grouped into topic z with the largest probability of generating h, which was the
aspect identification function in SPLSA: A(h) = argmaxz p(h|z).
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3 QPLSA and EM Solution

3.1 QPLSA

In SPLSA, aspects are extracted based on the co-occurrences of head and mod-
ifier, namely a set of 2-tuples. Next, we will detail our model–QPLSA, which
takes the quad-tuples as input for more accurate aspect identification.

z
e

z
2 tuple >Quad tuple z

h m
mh r

Fig. 2. From SPLSA Model to QPLSA Model

Figure 2 illustrates the graphical model of QPLSA. The directed lines among
the nodes are decided by the understandings on the dependency relationships
among these variables. Specifically, we assume that given a latent topic z, h and
m are conditionally independent. Also, a reviewer may show different judgement
toward different aspects of the same entity. Thus, rating r is jointly dependent
on entity e and latent topic z. From the graphic model in Figure 2, we can write
the joint probability over all variables as follows:

p(h,m, r, e, z) = p(m|z)p(h|z)p(r|z, e)p(z|e)p(e). (4)

Let Z denote all the latent variables, and given the whole data X, all the param-
eters can be approximated by maximizing the following log likelihood function,

log p(X|Λ) = log
∑
Z

p(X,Z|Λ) =
∑

h,m,r,e

n(h,m, r, e) log
∑
z

p(h,m, r, e, z|Λ),

(5)
where Λ includes the parameters of p(m|z), p(h|z), p(r|z, e), p(z|e) and p(e). The
derivation of EM algorithm is detailed in next subsection.

3.2 Deriving the EM Solution

Traditionally, the Expectation-Maximization(EM) algorithm is utilized for opti-
mization of PLSA based methods. In our model, we also adopt the EM algorithm
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to maximize the log likelihood function in Equation (5). Specifically, the lower
bound (Jensen’s inequality) L0 of (5) is:

L0 =
∑
z

q(z) log{p(h,m, r, e, z|Λ)
q(z)

}. (6)

where q(z) could be an arbitrary function, and here we set q(z) =
p(z|h,m, r, e;Λold) and substitute into (6):

L0 =
∑
z

p(z|h,m, r, e;Λold) log p(z, h,m, r, e|Λ)︸ ︷︷ ︸
L

−
∑
z

p(z|h,m, r, e;Λold) log{p(z|h,m, r, e;Λold)}︸ ︷︷ ︸
const

= L+ const.
(7)

E Step: Constructing L. For the solution of (5),we have:

L =
∑

h,m,r,e,z

n(h,m, r, e)p(z|h,m, r, e;Λold) · log[p(e)p(z|e)p(h|z)p(m|z)p(r|e, z)],

(8)
where

p(z|e, h,m, r) =
p(e)p(z|e)p(h|z)p(m|z)p(r|e, z)∑
z p(e)p(z|e)p(h|z)p(m|z)p(r|e, z)

. (9)

M Step: Maximizing L. Here we maximize L with its parameters by La-
grangian Multiplier method. Expand L and extract the terms containing p(h|z).
Then, we have L[p(h|z)] and apply the constraint

∑
h p(h|z) = 1 into the following

equation:
∂[L[p(h|z)] + λ(

∑
h p(h|z)− 1)]

∂p(h|z) = 0, (10)

we have

p̂(h|z) ∝
∑
m,r,e

p(z|h,m, r, e;Λold). (11)

Note that p̂(h|z) should be normalized via

p̂(h|z) =
∑

m,r,e n(h,m, r, e)p(z|h,m, r, e;Λold)∑
h
′
,m,r,e n(h

′ ,m, r, e)p(z|h′ ,m, r, e;Λold)
. (12)

Similarly, we have:

p(e) =

∑
z,h,m,r n(h,m, r, e)p(z|e, h,m, r;Λold)∑

h,m,r,e n(h,m, r, e;Λold)
, (13)
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p(z|e) =
∑

h,m,r n(h,m, r, e)p(z|e, h,m, r;Λold)∑
h,m,r,z′ n(h,m, r, e)p(z′|e, h,m, r;Λold)

, (14)

p(m|z) =
∑

e,h,r n(h,m, r, e)p(z|e, h,m, r;Λold)∑
e,h,r,m′ n(h,m′, r, e)p(z|e, h,m′, r;Λold)

, (15)

p(r|z, e) =
∑

h,m n(h,m, r, e)p(z|e, h,m, r;Λold)∑
h,m,r′ n(h,m, r′, e)p(z|e, h,m, r′;Λold)

. (16)

3.3 Incorporating Aspect Prior

For specific aspect identification, we may have some domain knowledge about
aspects. For instance, the aspect “food” may include a few seed words such
as “breakfast”, “potato”, “drink” and so on. Specifically, we use a unigram
language model p(h|z) to inject the prior knowledge for the aspect z. Take
the aspect “food” as an example, we can assign the conditional probability
p(breakfast|food), p(potato|food) and p(drink|food) with a high value of proba-
bility τ (e.g., τ(0 ≤ τ ≤ 1) is a pre-defined threshold).

Similarly with the method in Lu et al. [5], we introduce a conjugate Dirichlet
prior on each unigram language model, parameterized as Dir(σp(h|z) + 1), and
σ denotes the confidence for the prior knowledge of aspect z. Specifically, the
prior for all the parameters is given by:

p(Λ) ∝
∏
z

∏
h

p(h|z)σp(h|z) (17)

where σ = 0 if we have no prior knowledge on z. Note that adding the prior can
be interpreted as increasing the counts for head term h by σ + 1 times when
estimating p(h|z). Therefore, we have:

p(h|z;Λ) =

∑
m,r,e n(h,m, r, e)p(z|h,m, r, e;Λold) + σp(h|z)∑
h′ ,m,r,e n(h

′ ,m, r, e)p(z|h′ ,m, r, e;Λold) + σ
. (18)

3.4 Aspect Identification

Our goal is to assign the head term h to a correct aspect label, and we follow
the mapping function G as SPLSA [5]:

G(h) = argmax
z

p(h|z), (19)

where we select the aspect which generates h with the largest probabilty as the
aspect label for head term h.

4 Experiments

In this section, we present the experimental results to evaluate our model QPLSA.
Firstly, we introduce the data sets and implementation details, and then give the
experimental results in the following subsections.
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4.1 Data Sets

We adopt two different datasets for evaluation, which are detailed in Table 2.
The first dataset is a corpus of hotel reviews provided by Wang et al. [14]. The
data set includes 246,399 reviews on 1850 hotels with each review associated
with an overall rating and 7 detailed ratings about the pre-defined aspects, and
the value of the rating ranges from 1 star to 5 stars. Table 2 also lists the prior
knowledge of some seed words indicating specific aspects.

The other dataset is about restaurant reviews from Snyder et al. [11], which
is much sparser than the previous one. This dataset contains 1609 reviews on
420 restaurants with each review associated with an overall rating and 4 aspect
ratings. For both of the datasets, we decompose the reviews into phrases utilizing
a set of NLP toolkits such as the POS tagging and chunking functions1.

4.2 Implementation Details

terms and manually label them as knowledge base. Specifically, for the hotel
reviews we select 408 head terms and categorize them into 7 specific aspects.
While for the restaurant reviews, we select 172 head terms and label them with
4 specific aspects. The details of the categorization are summarized in Table 3,
and A1 to A7 corresponds to the aspects in Table 2. Here we only evaluate
the results of specific aspect identification and compare our model QPLSA with
SPLSA.

Table 2. Pre-defined Aspects and Prior Knowledge

Hotel Reviews

Aspects Prior Words Aspect No.

Value value,price,quality,worth A1

Room room,suite,view,bed A2

Location location,traffic,minute,restaurant A3

Cleanliness clean,dirty,maintain,smell A4

Front Desk/Staff staff,check,help,reservation A5

Service service,food,breakfast,buffet A6

Business business,center,computer,internet A7

Restaurant Reviews

Food food,breakfast,potato,drink A1

Ambience ambience,atmosphere,room,seat A2

Service service,menu,staff,help A3

Value value,price,quality,money A4

1 http://opennlp.sourceforge.net/
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Table 3. Aspect Identification Accuracy on Two Datasets

Hotel Reviews Restaurant Reviews All

A1 A2 A3 A4 A5 A6 A7 A1-7 A1 A2 A3 A4 A1-4 All

Categorized 52 108 93 35 39 64 17 408 73 32 42 25 172 580

QPLSA 29 69 45 21 31 47 12 254 29 21 23 22 95 349

SPLSA 29 61 46 20 28 46 4 234 4 0 7 5 16 250

Q-accuracy 0.56 0.64 0.48 0.60 0.79 0.73 0.71 0.62 0.39 0.66 0.55 0.88 0.55 0.60

S-accuracy 0.56 0.56 0.49 0.57 0.72 0.72 0.24 0.57 0.05 0 0.17 0.2 0.09 0.43

4.3 Experimental Results

Aspect Identification. We present the accuracy of aspect identification of
all the head terms in Table 3. Since we focus on specific aspect extraction, our
discussions only detail the results on specific aspects. In the table, Ai denote the
i-th specific aspect as described in Table 2, and “A1-7” and “A1-4” denote the
sum of the specific aspects for hotel reviews and restaurant reviews, respectively.
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Fig. 3. Accuracy on different numbers of hotels
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In Table 3, Q-accuracy denotes the accuracy of QPLSA, and S-accuracy rep-
resents that of SPLSA. From the results reported in Table 3, apparently, QPLSA
achieves better performance compared to SPLSA. As can be seen, the accuracy
of QPLSA for all the reviews is much higher than that of SPLSA, which indicates
that quad-tuples exploits more information for specific aspect generation as op-
posed to 2-tuples. All the experimental results demonstrate the effectiveness of
incorporating entity and its rating for aspect identification.

To further validate the superiority of QPLSA over SPLSA, we conduct sys-
tematic experiments on different data sets of hotel reviews for comparison. We
carry out experiments on different numbers of hotels (e.g., 300, 600, 900, 1200,
1500 and 1850), and all the results are shown in Figure 3.

As illustrated in Fig. 3, in particular, the performance of QPLSA varies for
different aspects due to the skrewness of corpse over specific topics. Nevertheless,
for different numbers of hotels, that the overall accuracy of QPLSA always out-
performs that of SPLSA strongly supports that Aspect Identification of QPLSA
can benefit from the additional information of entity and its rating.

Representative Term Extraction. Table 4 lists representative terms for the
7 specific aspects of hotel reviews and the 4 aspects of the restaurant reviews. For
each aspect, we choose 20 head terms with the largest probability, and the terms
that are correctly associated with the aspects are marked with bold and italic.

Table 4. Representative terms for Different Aspects

Hotel Reviews

Aspects Representative Terms By QPLSA Representative Terms By SPLSA

Value
hotel location experience value price size vacation walk value price rates side york parking

rates choice deal job way surprise atmosphere station tv orleans quality distance standards
quality selections money holiday variety spots screen light money end charge line bus

Room
room bed view pool bathroom suits ocean room quarters area bed view pool transportation

shower style space feel window facilities touch bathroom suits towels shower variety lobby
balcony chair bath amenities pillows furnished space window facilities balcony chair bath sand

Location
places restaurants area walk resort beach city time restaurants day night resort trips beach
street shopping minutes bus distance quarters doors street way minutes years week hour

building tourist store tour lobby attractions cafe visit weekend block island evening morning

Cleanliness
water decor towels fruit tub air appointed sand floor level water flight air noise music class

cleaning smell maintained noise music club worlds cleaning smell maintained condition wall
condition garden republic done design francisco francisco car eggs anniversary notch afternoon

Front Desk
staff reservation guests checking manager house staff desk people guests checking person couples
airporter receptions desk help island eggs lady manager fun lounge children member receptions

attitude smiles lounge museum kong man concierge towers guys reservation cart trouble attitude lady

Service
service breakfast food bar drinks buffet tv service breakfast food access bar tub shuttle

coffee meals wine bottle items dinner drinks buffet coffee meals fruit wine bottle
juice tea snacks dish screen car shuttle connected weather juice beer tea snacks

Business
floor access internet side parking station shopping problem building complaints ones

standards light end class line sites wall stop internet traveller points bit tourist store cafe
Service business connected center district towers level deal thing attractions issue star sites items city

Total 89 correct terms 64 correct terms

Restaurant Reviews

Food
food potato sauce ribs wine taste drinks fries food potato sauce ribs wine sause taste drinks
parking fee dogs toast breakfast bun cajun gravy diversity reduction feast charcoal
pancakes croissants lasagna pies cinnamon plus brats nature tiramisu cauliflower goods

Ambience
atmosphere style cheese shrimp room seated music atmosphere area style room seated feeling music
tomatoes decor game dressing tip orders onion manner piano band poster arts cello movie
mushroom garlic cocktail setting piano mousse blues appearance folk medium francisco avenue

Service
service staff menu wait guy guests carte chili help service staff menu attitude guests gras mousse

attitude space downtown section become women maple behavior tone lettuce defines future excuse
employees critic poster market waitstaff office smorgasbord sports networkers supper grandmothers

Value
priced value quality done management legs anniversary priced value quality parking rate money ravioli
rate money thought cafeteria informed croutons bags fee pupils flaw heron inside winter education aiken

elaine system bomb proportions recipes buy standbys drenched paying year-old-home veteran

Total 47 correct terms 42 correct terms

All 136 correct terms 108 correct terms
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Totally, for the 7 aspects of hotel reviews, there are 105 head terms accurately
selected by QPLSA compared to 64 by SPLSA. Also for the 4 aspects of restau-
rant reviews, more correct words are captured by QPLSA than SPLSA. In all,
QPLSA extracts 136 correct terms compared to 108 of SPLSA. All these results
demonstrate that incorporating entity and its rating for aspect identification(or
extraction) is effective.

Note that both QPLSA and SPLSA obtain much better results on dataset
hotel reviews than those on restaurant reviews. The reason is that both methods
are based on generative model that models the co-occurrence information. As
we know, hotel review dataset is much more dense, and thus can provide enough
co-occurrence information for learning.

5 Related Work

This section details some interesting study that is relevant to our research. Pang
et al. [8] give a full overview of opinion mining and sentiment analysis, after
describing the requests and challenges, they outlined a series of approaches and
applications for this research domain. It is pointed out that sentiment classifica-
tion could be broadly referred as binary categorization, multi-class categoriza-
tion, regression or ranking problems on an opinionated document.

Hu and Liu [2] adopt association mining based techniques to find frequent
features and identify the polarity of opinions based on adjective words. However,
their method did not perform aspect clustering for deeper understanding of
opinions. Similar work carried out by Popescu and Etzioni [10] achieved better
performance on feature extraction and sentiment polarity identification, however,
there is still no consideration of aspects.

Kim et al. [3] developed a system for sentiment classification through combin-
ing sentiments at word and sentence levels, however their system did not help
users digest opinions from the aspect perspective. More approaches for sentiment
analysis could be referred to [9,13,15,7], although none of these methods attach
importance to aspects.

Topic models [14,4,6,5] are also utilized to extract aspects from online re-
views. Lu et al. adopt the unstructured and structured PLSA for aspect identi-
fication [5], however, in their model, there is no consideration of rating or entity
in the aspect generation phase. Wang et al. [14] proposed a rating regression ap-
proach for latent aspect rating analysis on reviews, still in their model they do
not take account of entity. Mei et al. [6] defined the problem of topic-sentiment
analysis on Weblogs and proposed Topic-Sentiment Mixture(TSM) model to
capture sentiments and extract topic life cycles. However, as mentioned before,
none of these topic models extracts aspects in view of quads.

A closely related work to our study could be referred to Titov and McDon-
ald’s [12] work on aspect generation. They construct a joint statistical model
of text and sentiment ratings, called the Multi-Aspect Sentiment model(MAS)
to generate topics from the sentence level. They build local and global topics
based on the Multi-Grain Latent Dirichlet Allocation model (MG-LDA) for bet-
ter aspect generation. One recent work [4] by Lakkaraju et al. also focused on
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sentence level aspect identification. However, according to our observation, a
single sentence may address several different aspects and therefore we generate
aspects from the phrase level, while they extract topics from the sentence level.
Moreover, in their model, there is no consideration of entity.

6 Conclusion

In this paper, we focus on aspect identification in opinion mining and propose a
quad-tuple PLSA based model which novelly incorporates the rating and entity
for a better aspect generation. Compared to traditional 2-tuple(head, modifier)
PLSA based modeling methods, our model exploits the co-occurrance informa-
tion among quad-tuples(head, modifier, rating, entity) and extract aspects from
a finer grain. After formally describing our quad-tuple PLSA(QPLSA) and ap-
plying the EM algorithm for optimization, we carry out systematic experiments
to testify the effectiveness of our algorithm. Experimental results show that this
method achieves better performance in aspect identification and representative
term extraction compared to SPLSA(a 2-tuple PLSA based method). Our future
work will focus on aspect rating prediction and sentiment summarization.
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Abstract. Privacy is one of major concerns when data containing sen-
sitive information needs to be released for ad hoc analysis, which has
attracted wide research interest on privacy-preserving data publishing in
the past few years. One approach of strategy to anonymize data is gener-
alization. In a typical generalization approach, tuples in a table was first
divided into many QI (quasi-identifier)-groups such that the size of each
QI-group is no less than k. Clustering is to partition the tuples into many
clusters such that the points within a cluster are more similar to each
other than points in different clusters. The two methods share a com-
mon feature: distribute the tuples into many small groups. Motivated by
this observation, we propose a clustering-based k-anonymity algorithm,
which achieves k-anonymity through clustering. Extensive experiments
on real data sets are also conducted, showing that the utility has been
improved by our approach.

Keywords: privacy preservation, algorithm, proximity privacy.

1 Introduction

Privacy leakage is one of major concerns when publishing data for statistical
process or data analysis. In general, organizations need to release data that may
contain sensitive information for the purposes of facilitating useful data analysis
or research. For example, patients’ medical records may be released by a hospital
to aid the medical study. Records in Table 1 (called the microdata) is an example
of patients’ records published by hospitals. Note that attribute Disease contains
sensitive information of patients. Hence, data publishers must ensure that no
adversaries can accurately infer the disease of any patient. One straightforward
approach to achieve this goal is excluding unique identifier attributes, such as
Name from the table, which however is not sufficient for protecting privacy
leakage under linking-attack [1, 2]. For example, the combination of Age and
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Table 1. Microdata T

Age Zip Diesease
Andy 20 25 Flu
Bob 20 30 Bronchitis
Jane 30 25 Gastritis
Alex 40 30 Penumonia
Mary 50 10 Flu
Lily 60 5 Bronchitis
Lucy 60 10 Gastritis

Table 2. Generalization T ∗

G-ID Age Zip Diesease
1 [20-20] [25-30] Flu
1 [20-20] [25-30] Bronchitis
2 [30-40] [25-30] Gastritis
2 [30-40] [25-30] Penumonia
3 [50-60] [5-10] Flu
3 [50-60] [5-10] Bronchitis
3 [50-60] [5-10] Gastritis

Zipcode can be potentially used to identify an individual in Table 1, and has
been called a quasi-identifier (QI for short)[1] in literatures. If an adversary has
the background knowledge about Bob, that is: Age=20 and Zipcode=30, then
by joining the background knowledge to Table 1, he can accurately infer Bob’s
disease, that is bronchitis.

To protect privacy against re-identifying individuals by joining multiple public
data sources, k-anonymity (k ≥ 2) was proposed, which requires that each record
in a table is indistinguishable from at least k − 1 other records with respect to
certain quasi-identifiers. Generally, to achieve k-anonymity, generalization [1–3]
is a popular methodology of privacy preservation for preventing linking attacks.
Enough degree of generalization will hide a record in a crowd with at least k
records with the same QI-values, thereby achieving k-anonymity. Table 2 demon-
strates a generalized version of Table 1 (e.g., the Zip 30 of Bob, for instance, has
been generalized to an interval [25, 30]). The generalization results in 3 equiva-
lence classes, as indicated by their group-IDs. Each equivalence class is referred
to as a QI-group. As a result, given Table 2, even if an adversary has the exact
QI-values of Bob, s/he still can not exactly figure out the tuple of Bob from the
first QI-group.

1.1 Motivation

Although generalization-based algorithms have successfully achieved the privacy
protection objective, as another key issue in data anonymization utility still
needs to be carefully addressed. Great efforts have been dedicated to develop-
ing algorithms that improve utility of anonymized data while ensuring enough
privacy-preservation. One of the direct measures of the utility of the generalized
data is information loss. In order to make the anonymized data as useful as
possible for certain applications, it is required to reduce the information loss as
much as possible. In general, the less total information loss leads to better utility,
which reflects its usefulness as one of the steps in exploratory data analysis.

Clustering [4] is a method commonly used to automatically partition a data
set into many groups. As an example of clustering is depicted in Figure 1-3. The
input points are shown in Figure 1, and the steps to the desired clusters are
shown in Figure 2 and Figure 3. Here, points belonging to the same cluster are
given the same color.
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Fig. 3. Data Clustering
(Step 2)

Then, we may wonder: Can we significantly improve the utility while pre-
serving k-anonymity by clustering-based approaches ? The answer depends on
whether it is possible to partition microdata into clusters with less information
loss while still ensuring k-anonymity. Intuitively, data points within a cluster
are more similar to each other than they are to a point belonging to a different
cluster.

The above observation motivates us to devise a new solution to improve the
data utility of clustering-based solutions. As an example, we illustrate the details
to generalize Table 1 by our approach. Let gen be a generalization function that
takes as input a set of tuples and returns a generalized domain. Firstly, Table
1 is divided into 2 clusters, denoted by red and blue in Figure 2, respectively.
Then, the cluster denoted by blue is further divided into 2 cluster, denoted by
black and green color in Figure 3. Finally, tuples with same color are general-
ized as a QI-group, that is, tuple Andy and Bob consists of the first QI-group,
and assign gen({Andy, Bob})=〈[20− 20], [25 − 30]〉 to the first QI-group. Sim-
ilarly, {Jane,Alex}, {Mary, Lily, Lucy} make the second and third QI-group.
Eventually, table 2 is the final result by our approach.

In this paper, we mainly focused on the basic k-anonymity model due to the
following reasons: (i) k-anonymity is a fundamental model for privacy protection,
which has received wide attention in the literatures; (ii) k-anonymity has been
employed in many real applications such as location-based services [5, 6], where
there are no additional (sensitive) attributes; (iii) There is no algorithm that
is suitable for so many privacy metrics such as l-diversity[7], t-Closeness [8],
but algorithms for k-anonymity are simple yet effective, and can be further
adopted for other privacy metrics. Apart from the k-anonymity model, we also
consider the scenarios with stronger adversaries, extending our approach to l-
diversity(Section 4)

The rest of the paper is organized as follows. In Section 2, we give the defini-
tions of basic concept and the problem will be addressed in this paper. In Section
3, we present the details of our generalization algorithm. Section 4 discusses the
extension of our methodology for l-diversity. We review the previously related
research in Section 5. In Section 6, we experimentally evaluate the efficiency and
effectiveness of our techniques. Finally, the paper is concluded in Section 7.
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2 Fundamental Definitions

Let T be a microdata table that contains the private information of a set of
individuals and has d QI-attributes A1, ..., Ad, and a sensitive attribute As. We
consider that As is numerical, and every QI-attribute Ai(1 ≤ i ≤ d) can be
either numerical or categorical. All attributes have finite and positive domains.
For each tuple t ∈ T, t.Ai(1 ≤ i ≤ d) denotes its value on Ai, and t.As represents
its SA value.

2.1 Basic Concept

A quasi-identifier QI = {A1, A2, · · · , Ad} ⊆ {A1, A2, · · · , An} is a minimal set
of attributes, which can be joined with external information in order to reveal
the personal identity of individual records.

A partition P consists of several subsets Gi(1 ≤ i ≤ m) of T , such that each
tuple in T belongs to exactly one subset and T =

⋃m
i Gi. We refer to each subset

Gi as a QI-group.

2.2 K-means Clustering

K-means clustering [4] is a method commonly used to automatically partition
a data set into K groups. It proceeds by selecting K initial cluster centers and
then iteratively refining them as follows:

Step 1. Each tuple ti is assigned to its closest cluster center.

Step 2. Each cluster center Cj is updated to be the mean of its constituent
instances.

The algorithm converges when there is no further change in assignment of tu-
ples to clusters. In this work, we initialize the clusters using instances picked at
random from the data set. The data sets we used are composed solely of either
numeric features or categorical features. For both numeric and categorical fea-
tures, we adopt the normalized certainty penalty(see the definition 1) to measure
the distance.

The final issue is how to choose K. To keep the algorithm simple in this paper,
we consider binary partitioning, that is, K is fixed as 2.

2.3 Problem Definition

Some methods have been developed to measure the information loss in anonymiza-
tion. In this paper, we adopt the normalized certainty penalty to measure the
information loss.

Definition 1 (Normalized Certainty Penalty [9]). Suppose a table T is
anonymized to T ∗. In the domain of each attribute in T , suppose there exists a
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global order on all possible values in the domain. If a tuple t in T ∗ has range
[xi, yi] on attribute Ai(1 ≤ i ≤ d), then the normalized certainty penalty in t on

Ai is NCPAi(t) = |yi−xi|
|Ai| , where |Ai| is the domain of the attribute Ai. For

tuple t, the normalized certainty penalty in t is NCP (t) =
∑d

i wi · NCPAi(t),
where wi is the weight of attribute Ai. The normalized certainty penalty in T is∑

t∈T∗ NCP (t).

Now, we are ready to give the formal definition about the problem that will be
addressed in this paper. Information loss is an unfortunate consequence of data
anonymization. We aim to generate a utility-friendly version anonymizaiton for
a microdata such that the privacy can be guaranteed by k-anonymity and the
information loss quantified by NCP is minimized. Now, we are ready to give
the formal definition about the problem that will be addressed in this paper.
(Limited by space, all proofs are omitted.)

Definition 2 (Problem Definition). Given a table T and an integer k,
anonymize it by clustering to be T ∗ such that T ∗ is k-anonymity and the to-
tal information loss is minimized measured by NCP .

Theorem 1. (Complexity) The problem of optimal clustering-based anonymiza-
tion is NP-hard under the metric NCP .

3 Clustering-Based Generalization Algorithm

In this section, we will present the details of our clustering-based anonymization
approach. The key of our algorithm is to divide all tuples into more compact
clusters efficiently and correctly. We now proceed to a discussion of our modifi-
cations to the K-means algorithm.

To keep the algorithm simple, we consider binary clustering. That is, in each
round, we partition a set of tuples into two subsets by clustering. In order to
reduce the total information loss, we will cluster the microdata following the idea:
distribute tuples sharing the same or quite similar QI-attributes into the same
cluster. We adopt the NCP to measure the distance. The detailed partitioning
procedure is presented in Figure 4. Initially, S contains T itself (line 1); then,
each G ∈ S is divided into two generalizable subsets G1 and G2 such that
G1 ∪G2 = G, G1 ∩G2 = ∅ (line 5-7).

The size of the two subsets should ≥ k, otherwise adjustment is needed (line
8). Without loss of generality, assume that G1 < k, we need to borrow k − |G1|
tuples from G2 to make sure that G1 has a cardinality ≥ k.

The tries to converges will cost unacceptable time, to accelerate the partition-
ing, the attempts to cluster G are tried r times and tuples of G are randomly
shuffled for each time (line 4). Our experimental results show that most of G can
be partitioned into two sub-tables by up to k = 15 tries. The algorithm stops
when no sub-tables in S can be further partitioned.

By the Lemma in the paper [9, 10] that the optimal k-anonymity partitioning
of microdata does not contain groups of more than 2k− 1 records, we have that
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the partitioning algorithm will terminate when the size of all groups is between
k and 2k − 1. If at least one group contains a cardinality more than 2k − 1, the
partitioning algorithm will continue.

In the above procedure, the way that we partition G into two subsets G1 and
G2 is influential on the information loss of the resulting solution. In the first
round, we randomly choose two tuples t1, t2 as the center points C1, C2 , and
then insert them G1 and G2 separately. Then, we distribute each tuple w ∈ G:
for each tuple w, we compute Δ1 = NCP (C1∪w) and Δ2 = NCP (G2∪w), and
add tuple w to the group that leads to lower penalty (line 7). If Δ1 = Δ2, assign
the tuple to the group who has lower cardinality. After successfully partitioning
G, remove the tuples t1 and t2 from G1 − {t1} and G2 − {t2}. At the later each

round, the center points Ci are conducted as follows: Ci =
∑

t∈Gi
t

|Gi| , i = 1, 2. that

is, for each attribute Aj(1 ≤ j ≤ d), Ci.Aj =
∑

t∈Gi
t.Aj

|Gi| , i = 1, 2.

After the each partition, if the current partition is better than previous tries,
record the partition resultG1, G2 and the total sum of NCP (G1) and NCP (G2).
That is, we pick the one that that minimizes the sum ofNCP (G1) andNCP (G2)
as the final partition among the r partitions(line 9). Each round of G can be
accomplished in O(r · (|G| · (6 + λ))) expected time, where λ is the cost of
evaluating loss. The computation cost is theoretically bounded in Theorem 2.

Theorem 2. For microdata T , the clustering-based algorithm can be accom-
plished in O(r · |T | · log(|T |)) average time, where r is the number of rounds , and
|T | is the cardinality of microdata T .

Input: A microdata T , integers k and rounds r
Output: anonymized table T ∗;
Method:
/* the parameter r is number of rounds to cluster G*/
1. S = {T};
2. While(∃G ∈ S that |G| ≥ 2k)
3. For i = 1 to r
4. Randomly shuffle the tuples of G;

5. Set Center Ci =
∑

t∈Gi
t

|Gi| ;

6. Set G1 = G2 = ∅;
7. Distribute each tuple w in G:

compute Δ1 = NCP (w ∪ C1) and Δ2 = NCP (w ∪ C2);
If(Δ1 < Δ2) then add w to G1, else add w to G2;

8. Adjust G1, G2 that each group has at least k tuples;
9. If the current partition is better than previous tries, record G1 and G2;
10. Remove G from S, and add G1, G2 to S;
11. Return S;

Fig. 4. The partitioning algorithm
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4 Extension to l-Diversity

In this section, we discuss how we can apply clustering-based anonymization
for other privacy principles. In particular, we focus on l-diversity, described in
Definition 3.

Definition 3 (l-diversity[7]). A generalized table T ∗ is l-diversity if each QI-
group QIi ∈ T ∗ satisfies the following condition: let v be the most frequent As

value in QIi, and ci(v) be the number of tuples t ∈ QIi, then
ci(v)
|QIi| ≤

1
l .

To generalize a table through clustering-based anonymization, we partition a
table into sub-tables Ti which satisfy l-diversity: after each round of the above
partitioning, if both (G1 and G2)) satisfy l-diversity, we remove G from S, and
add G1, G2 to S; otherwise G is retained in S. Then for each subset Ti ∈ S,
we conduct the splitting algorithm (see Figure 5) to produce the final l-diverse
partitions.

The principle l-diversity demands that: the number of the most frequent As

value in each QI-group QIi can’t exceed |QIi|
l . Motivated by this, we arrange

the tuples to a list ordered by its As values, then distribute the tuples in L into
QIi(1 ≤ i ≤ g) a round-robin fashion. The resulting splitting is guaranteed to
be l-diversity, which is stated in Theorem 3. (If table T with sensitive attribute

As satisfies max{c(v) : v ∈ T.As} > |T |
l , then there exists no partition that is

l-diversity.)

Input: table T , parameter l
Output: QI-groups QIj that satisfy l-diversity;
Method:

1. If max{c(v) : v ∈ T.As} ≥ |T |
l
, Return;

2. Hash the tuples in T into groups Q1, Q2, · · · , Qλ by their As values;
3. Insert these groups Q1, Q2, · · · , Qλ into a list L in order;

4. Let g = |T |
l
, set QI-groups QI1 = QI2 = · · · = QIg = ∅;

5. Assign tuple ti ∈ L (1 ≤ i ≤ |L|) to QIj , where j = (i mod g) + 1

Fig. 5. The splitting algorithm

Theorem 3. If table T with sensitive attribute As satisfies max{c(v) : v ∈
T.As} ≤ |T |

l (where c(v) is the number of tuples in T with sensitive value v), the
partition produced by our splitting algorithm fulfills l-diversity.

5 Related Work

In this section, previous related work will be surveyed. Existing generalization
algorithms can be further divided into heuristic-based and theoretical-based ap-
proaches. Generally, appropriate heuristics are general so that they can be used
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Table 3. Summary of attributes

Age 78   Numerical  
Gender 2   Categorical  

Education 17  Numerical  
Marital 6  Categorical  
Race 9   Numerical  

Work-class 10  Categorical  
Country 83   Numerical  

Occupation 50 Sensitive

 Attribute 
 Number of

distinct values
 Types  

  Age 78 Numerical
Occupation  711 Numerical

Birthplace 983 Numerical
 Gender 2 Categorical

Education 17 Categorical
Race 9 Categorical

Work-class 9  Categorical
 Marital 6 Categorical
Income    [1k,10k] Sensitive

 Number of
distinct values

 Types   Attribute 

(a) SAL (b) INCOME

Table 4. Parameters and tested values

k  250,200,150,100,50
cardinality n 100k,200k,300k,400k,500k

number of QI-attributes d  3,4,5,6

Parameter Values

in many anonymization models. To reduce information loss, efficient greedy so-
lutions following certain heuristics have been proposed [9–13] to obtain a near
optimal solution. Generally, these heuristics are general enough to be used in
many anonymization models. Incognito [14] provides a practical framework for
implementing full-domain generalization, borrowing ideas from frequent item set
mining, while [10] presents a framework mapping the multi-dimensional quasi-
identifiers to 1-Dimensional(1-D) space. For 1-D quasi-identifiers, an algorithm of
O(K ·N) time complexity for optimal solution is also developed. It is discovered
that k-anonymizing a data set is strikingly similar to building a spatial index
over the data set, so that classical spatial indexing techniques can be used for
anonymization [15]. To achieve k-anonymity, Mondrian [16] takes a partitioning
approach reminiscent of KD-trees.

The idea of non-homogeneous generalization was first introduced in [17], which
studies techniques with a guarantee that an adversary cannot associate a gener-
alized tuple to less than K individuals, but suffering additional types of attack.
Authors of paper [13] proposed a randomization method that prevents such type
of attack and showed that k-anonymity is not compromised by it, but its par-
titioning algorithm is only a special of the top-down algorithm presented in [9].
The model of the paper [13, 17], the size of QI-groups is fixed as 1.

The algorithms mentioned above work well on practical data sets, but do
not have attractive asymptotical performance in the worst case. This motivates
studies on the theoretical aspects of k-anonymity [16, 18]. Most of these works
show that the problem of optimal k-anonymity is NP-hard even a simple quality
metric is employed.
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6 Empirical Evaluation

In this section, we will experimentally evaluate the effectiveness and efficiency
of the proposed techniques. Specifically, we will show that by our technique
(presented in Section 3) have significantly improved the utility of the anonymized
data with quite small computation cost.

Towards this purpose, two widely-used real databases sets: SAL and IN-
COME(downloadable from http://ipums.org) with 500k and 600k tuples, respec-
tively, will be used in following experiments. Each tuple describes the personal
information of an American. The two data sets are summarized in Table 3.

In the following experiments, we compare our cluster-based anonymity algo-
rithm (denoted by CB) with the existing state-of-the-art technique: the non-
homogeneous generalization [13](NH for short). (The fast algorithm [10] was
cited and compared with NH in the paper [13], therefore, we omit the details of
the fast algorithm.)

In order to explore the influence of dimensionality, we create two sets of micro-
data tables from SAL and INCOME. The first set has 4 tables, denoted as SAL-3,
· · · , SAL-6, respectively. Each SAL-d (3 ≤ d ≤ 6) has the first d attributes in
Table 3 as its QI-attributes and Occupation as its sensitive attribute(SA). For
example, SAL-4 is 5-Dimensional, and contains QI-attributes: Age, Gender, and
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Education, Marital. The second set also has 4 tables INC-3, · · · , INC-6, where
each INC-d (3 ≤ d ≤ 6) has the first d attributes as QI-attributes and income
as the SA.

In the experiments, we investigate the influence of the following parameters
on information loss of our approach: (i) value of k in k-anonymity; (ii)number of
attributes d in the QI-attributes; (iii)number of tuples n. Table 4 summarizes the
parameters of our experiments, as well as their values examined.Default values
are in bold font. Data sets with different cardinalities n are also generated by
randomly sampling n tuples from the full SAL-d or INC-d (3 ≤ d ≤ 6). All
experiments are conducted on a PC with 1.9 GHz AMD Dual Core CPU and 1
gigabytes memory. All the algorithms are implemented with VC++ 2008.

We measure the information loss of the generalized tables using GCP, which
is first used in [10]. Note that GCP essentially is equivalent to NCP with only
a difference of constant number d × N . Specifically, under the same partition

P of table T , GCP (T ) = NCP (T )
d×N ( d is the size of QI-attributes), when all the

weights are set to 1.0.

6.1 Privacy Level K

In order to study the influence of k on data utility, we observe the evolution of
GCP that has been widely used to measure the information loss of the general-
ized tables by varying k from 50 to 250 with the increment of 50. In all following
experiments, without explicit statements, default values in Table 4 will be used
for all other parameters. The results on SAL-d and INC-d (3 ≤ d ≤ 6) data are
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shown in Figure 6 (a)-6(h). From the results, we can clearly see that information
loss of CB sustains a big improvement over NH, for the tested data except the on
SAL-3. Another advantage of our model over NH is that the utility achieved by
our model is less sensitive to domain size than NH. From the figures, we can see
that data sets generated by NH has a lower GCP on SAL-d than that on INC-d
(4 ≤ d ≤ 7) due to the fact that domain size of SAL is smaller than that of INC.
Such a fact implies that the information loss of NH is positively correlated to
the domain size. However, in our model, domain size of different data set has
less influence on the information loss of the anonymized data.

Results of this experiment also suggest that for almost all tested data sets the
GCP of these algorithms grows linearly with k. This can be reasonably explained
since larger k will lead to more generalized QI-groups, which inevitably will
sacrifice data utility. NH performs well when the dimensionality of QI-Attributes
is low and the domain size is small, see the experiment results in the paper[13].

6.2 QI-Attributes Dimensionality d

Experiments of this subsection is designed to show the relation between the
information loss of these algorithms and data dimensions d. In general, the in-
formation loss will increase with d, since data sparsity or more specifically the
data space characterized by a set of attributes exponentially increases with the
number of attributes in the set, i,e, dimensions of the table. Figure 7(a) and 7(b)
compare the information loss of the anonymization generated by the these four
methods with respect to different values of d on SAL-d and INC-d, respectively.
It is clear that the anonymization generated by the cluster-based method has a
lower global certainty penalty compared to that of NH. The advantage of CB is
obvious, and such an advantage of CB can be consistently achieved when d lies
between 4 to 6.

6.3 Cardinality of Data Set n

In this subsection, we investigate the influence of the the table size n on infor-
mation loss. The results of experiments on two data sets SAL-7 and INC-7 are
shown in Figure 8(a) and 8(b), respectively. We can see that the information
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loss of these methods on both two data sets decreases with the growth of n. This
observation can be attributed to the fact that when the table size increases more
tuples will share the same or quite similar QI-attributes. As a result, it is easier
for the partitioning strategies to find very similar tuples to generalize. Similar
to previously experimental results, our method is the clear winner since infor-
mation loss of CB is significantly small than that of NH, which is consistently
observed for various database size.

6.4 Efficiency

Finally, we evaluate the overhead of performing anonymization. Figure 9(a) and
9(b) show the computation cost of the these anonymization methods on two
data sets, respectively. We compare CB with NH when evaluating computational
cost. The running time of tow algorithms increases linearly when n grows from
100k to 500k, which is expected since more tuples that need to be anonymized
will cost longer time to finish the anonymization procedure. The NH method
is more efficient. Comparison results show that the advantages of our method
in anonymization quality do not come for free. However, in the worst case, our
algorithm can be finished in 500 seconds, which is acceptable. In most real appli-
cations quality is more important than running time, which justifies the strategy
to sacrifice certain degree of time performance to achieve higher data utility.

Summary. Above results clearly show that clustering-based anonymization
achieves less information loss than the non-homogeneous anonymization (NH)
in cases where the dimensionality of QI-attribute d > 3 . NH has a good perfor-
mance when the domain size is small, and the dimensionality of QI-Attributes
is low. This is due to its greedy partitioning algorithm.

7 Conclusion

As privacy becomes a more and more serious concern in applications involving
microdata, good anonymization is of significance. In this paper, we propose an
algorithm which is based on clustering to produce a utility-friendly anonymized
version of microdata. Our extensive performance study shows that our methods
outperform the non-homogeneous technique where the size of QI-attribute is
larger than 3.
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Abstract. Outlier detection is an important and attractive problem in knowledge
discovery in large datasets. Instead of detecting an object as an outlier, we study
detecting the n most outstanding outliers, i.e. the top-n outlier detection. Further,
we consider the problem of combining the top-n outlier lists from various indi-
vidual detection methods. A general framework of ensemble learning in the top-n
outlier detection is proposed based on the rank aggregation techniques. A score-
based aggregation approach with the normalization method of outlier scores and
an order-based aggregation approach based on the distance-based Mallows model
are proposed to accommodate various scales and characteristics of outlier scores
from different detection methods. Extensive experiments on several real datasets
demonstrate that the proposed approaches always deliver a stable and effective
performance independent of different datasets in a good scalability in compari-
son with the state-of-the-art literature.

1 Introduction

Outlier detection is an important knowledge discovery problem in finding unusual
events and exceptional cases from large datasets in many applications such as stock
market analysis, intrusion detection, and medical diagnostics. Over the past several
decades, the research on outlier detection varies from the global computation to the
local analysis, and the descriptions of outliers vary from binary interpretations to prob-
abilistic representations. Global outlier detection [3,4,5] identifies an observational ob-
ject with a binary label by the global computation. Local outlier detection [6,7,8,9]
provides a probabilistic likelihood called outlier score to capture how likely an object
is considered as an outlier. Outlier scores can be used not only to discriminate outliers
from normal data, but also to rank all the data in a database, such as the top-n outlier
detection. There are other efforts that transform the unsupervised outlier detection to a
classification via artificially generated outliers [10].
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Although there are numerous outlier detection methods proposed in the literature,
no one method performs better than the others under all circumstances, and the best
method for a particular dataset may not be known a priori. Each detection method is
proposed based on the specific priori knowledge. For example, the nearest neighbor
based methods assume that the feature space is well enough to discriminate outliers
from normal data, while the classification based and the statistical methods need to
suppose the distributions of outliers and normal objects, respectively. Hence, their de-
tection performances vary with the nature of data. This setting motivates a fundamental
information retrieval problem - the necessity of an ensemble learning of different de-
tection methods to overcome their drawbacks and to increase the generalization ability,
which is similar to meta-search that aggregates query results from different search en-
gines into a more accurate ranking. Like meta-search, ensemble learning in the top-n
outlier detection is more valuable than the fusion of the binary labels, especially in large
databases. There is the literature on the ensemble learning of outlier detection, such as
[13,14,15]. However, all these efforts state the problem of effectively detecting outliers
in the sub-feature spaces. Since the work of Lazarevic and others focuses on the fusion
of the sub-feature spaces, these methods are very demanding in requiring the full spec-
trum of outlier scores in the datasets that prevents them from the fusion of the top-n
outlier lists in many real-world applications.

Although the problem of ensemble learning in the top-n outlier detection shares a
certain similarity to that of meta-search, they have two fundamental differences. First,
the top-n outlier lists from various individual detection methods include the order infor-
mation and outlier scores of n most outstanding objects. Different detection methods
generate outlier scores in different scales. This requires the ensemble framework to pro-
vide a unified definition of outlier scores to accommodate the heterogeneity of different
methods. Second, the order-based rank aggregation methods, such as Mallows Model
[18], can only combine the information of the order lists with the same length, which
prevents the application of these rank aggregation methods in the fusion of top-k outlier
lists. Because, for a particular dataset, there are always several top-k outlier lists with
various length used to measure the performance and effectiveness of a basic outlier de-
tection method. In order to address these issues, we propose a general framework of
ensemble learning in the top-n outlier detection shown in Figure 1, and develop two
fusion methods: the score-based aggregation method (SAG) and the order-based ag-
gregation method (OAG). To the best of our knowledge, this is the first attempt to the
ensemble learning in the top-n outlier detection. Specifically, the contributions of this
paper are as follows:

– We propose a score-based aggregation method (SAG) to combine the top-n outlier
lists given by different detection methods without supervision. Besides, we propose
a novel method for transforming outlier scores to posterior probabilities, which is
used to normalize the heterogeneous outlier scores.

– We propose an order-based aggregation method (OAG) based on the distanced-
based Mallows model [16] to aggregate the different top-n outlier lists without su-
pervision, which can deal with the fusion of top-k outlier lists with various length.
This method only adopts the order information, which avoids the normalization of
outlier scores.
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Fig. 1. The general framework of ensemble learning

– Extensive experiments on real datasets validate the effectiveness of these aggre-
gation methods, where several state-of-the-art outlier detection methods, including
the nearest neighbor based and the classification based methods, are selected as
the individual methods for the ensemble learning. Besides, the robustness of the
proposed aggregation methods is evaluated based on the Uniform noise and the
Gaussian noise.

The remainder of this paper is organized as follows. Section 2 introduces the framework
of ensemble learning in the top-n outlier detection and the two novel aggregation meth-
ods: the score-based and the order-based methods. Section 3 reports the experimental
results. Finally, Section 4 concludes the paper.

2 Methodologies

We first introduce the general framework and the basic notions of ensemble learning in
the top-n outlier detection, and then introduce the score-based method with a unified
outlier score and the order-based method based on the distance-based Mallows model,
respectively.

2.1 Framework and Notions of Ensemble Learning

Let X = [x1, x2, x3, . . . , xd] be an object in a dataset D, where d is the number of
attributes and |D| is the number of all the objects.

As shown in Figure 1, there are K individual detection methods that process the orig-
inal data in parallel. Essentially, all the individual methods return outlier scores rather
than binary labels to generate the top-n outlier lists, where the number n is determined
by users. The top-n outlier list σi assigned to the i-th individual method is represented
as (σ−1(1), S(i1); · · · ;σ−1(n), S(in)), where σ−1(i) denotes the index of the object
assigned to rank i and S(σ−1(i)) is its outlier score. Correspondingly, σ(i) is the rank
assigned to object Xi. Let Rn be the set of all the top-n orderings over |D| objects, and
d : Rn × Rn −→ R be the distance between two top-n lists, which should be a right-
invariant metric. This means that the value of d(π, σ)|∀π, σ ∈ Rn does not depend on
how objects are indexed.
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The aggregation model combines K orderings {σi}Ki=1 to obtain the optimal top-
n outlier list. Clearly, the literature with respect to the fusion of sub-feature spaces
[13,14,15] can be included in this framework by using the detection model in a special
sub-feature space as an individual method. In this paper, we only focus on the unsuper-
vised aggregation models based on the order information and outlier scores.

2.2 Score-Based Aggregation Approach (SAG)

Since a top-n outlier list σi contains the order information and the corresponding outlier
scores, it is straightforward that combining these outlier scores from different meth-
ods improves the detection performance. As mentioned in the previous section, outlier
scores of the existing methods have different scales. For example, outlier scores vary
from zero to infinity for the nearest based method [6], while lying in the interval [−1, 1]
for the classification based method [10]. In this subsection, an effective method is pro-
posed to transform outlier scores to posterior probability estimates. Compared with
outlier scores, the posterior probability based on Bayes’ theorem provides a robust esti-
mate to the information fusion and a spontaneous measure of the uncertainty in outlier
prediction. Without loss of generality, we assume that the higher S(i), the more proba-
ble Xi to be considered as an outlier. Let Yi be the label of Xi, where Yi = 1 indicates
that Xi is an outlier and Yi = 0 if Xi is normal. According to Bayes’ theorem,

P (Yi = 1|S(i)) = P (S(i)|Yi = 1)P (Yi = 1)∑1
l=0 P (S(i)|Yi = l)P (Yi = l)

=
1

1 + P (S(i)|Yi=0)P (Yi=0)
P (S(i)|Yi=1)P (Yi=1)

(1)

Let ϕ(i) = P (S(i)|Yi=0)P (Yi=0)
P (S(i)|Yi=1)P (Yi=1) . ln

(
ϕ(i)

)
can be considered as the discriminant

function that classifies Xi as normal or outlier. Hence, ln
(
ϕ(i)

)
can be simplified to a

linear function, proportional to the Z-Score of S(i) as follows:

ϕ(i) = exp

(
− S(i)− μ

std
+ τ

)
(2)

where μ and std are the mean value and standard deviation of the original outlier scores,
respectively. In large datasets, these statistics can be computed by sampling the original
data. As a discriminant function, ln

(
ϕ(i)

)
< 0 means (S(i)− μ)/std > τ ; the object

Xi can be assigned as an outlier. In all the experiments, the default value of τ equals
1.5 based on Lemma 1.

Lemma 1: For any distribution of outlier score S(i), it holds that

P

(
S(i)− μ

std
> τ

)
≤ 1

τ2

Proof: According to Chebyshev’s inequality, it holds that,

P

(
S(i)− μ

std
> τ

)
≤ P

(
|S(i)− μ| > τ · std

)
≤ std2

(τ · std)2 =
1

τ2
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Lemma 1 shows a loose bound of deviation probability regardless of the distribution
of outlier scores. Supposing that outlier scores follow a normal distribution, τ = 1.5
means that much less than 10% of the objects deviate from the majority of data, which
follows the definition of Hawkins outlier [1].

For a top-n outlier list σi, objects in the dataset may not be ranked by σi. The simple
average posterior probabilities are not appropriate to the top-n ranking aggregation.
Clearly, objects that appear in all the ranking lists should be more probable to be outliers
than ones that are only ranked by a single list. Hence, we apply the following fusion
rules which are proposed by Fox and Show [12].

rel(i) = nr
d

∑
j

relj(i) r ∈ (−1, 0, 1) (3)

where nd is the number of the orderings that contain object Xi and relj(i) is the nor-
malized outlier score of Xi by the j-th individual method. When r = 1, the ultimate
outlier score is composed of the number of the orderings nd and the sum of its outlier
scores. When r = 0, the result is only the sum of its outlier scores. When r = −1,
it is equivalent to the average outlier scores of the orderings containing Xi. According
to Eq. 1 and Eq. 2, the posterior probabilities can be used to normalize outlier scores
directly. The detailed steps of SAG are shown in Algorithm 1.

Algorithm 1. Score-based aggregation method (SAG)

Input: ψ = {σk}Kk=1, γ

1. Transform outlier scores in ψ to posterior probabilities according to Eq. {1 2}.
2. Construct an union item pool U including all objects in ψ, and denote the size of U as |U |.
3. Compute the normalized outlier score {rel(i)}|U|

i=1 for each object in U according to Eq. 3.
4. Sort objects in U based on the normalized outlier scores, and output the optimal list π.

Output: π

2.3 Order-Based Aggregation Approach (OAG)

Given a judge ordering σ and its expertise indicator parameter θ, the Mallows model
[16]generates an ordering π given by the judge according to the formula:

P (π|θ, σ) = 1

Z(σ, θ)
exp(θ · d(π, σ)) (4)

where
Z(σ, θ) =

∑
π∈Rn

exp(θ · d(π, σ)) (5)

According to the right invariance of the distance function, the normalizing constant
Z(σ, θ) is independent of σ, which means Z(σ, θ) = Z(θ). The parameter θ is a non-
positive quantity and the smaller the value of θ, the more concentrated at σ the ordering
π. When θ equals 0, the distribution is uniform meaning that the ordering given by the
judge is independent of the truth.
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An extended Mallows model is proposed in [17] as follows:

P (π|θ,σ) = 1

Z(σ,θ)
P (π)exp

( K∑
i=1

θi · d(π, σi)
)

(6)

where σ = (σ1, · · · , σK) ∈ RK
n , θ = (θ1, · · · , θK) ∈ RK , P (π) is a prior, and the

normalizing constant

Z(σ,θ) = Z(θ) =
∑

π∈Rn

P (π)exp
( K∑

i=1

θi · d(π, σi)
)

(7)

In this extended model, each ordering σi is returned by a judge for a particular set
of objects. θi represents the expertise degree of the i-th judge. Eq. 6 computes the
probability that the true ordering is π, given the orderings σ from K judges and the
degrees of their expertise.

Based on the hypothesis of the distance-based Mallow model, we propose a genera-
tive model of OAG, which can be described as follows:

P (π,σ|θ) = P (σ|θ, π)P (π|θ) = P (π)
K∏
i=1

P (σi|θi, π) (8)

The true list π is sampled from the prior distribution P (π) and σi is drawn from the
Mallows model P (σi|θi, π) independently. For the ensemble learning of top-n outlier
lists, the observed objects are the top-n outlier lists σ from various individual detection
methods, and the unknown object is the true top-n outlier list π. The value of the free
parameter θi depends on the detection performance of the i-th individual method. The
goal is to find the optimal ranking π and the corresponding free parameter θi which
maximize the posteriori probability shown in Eq. 6. In this work, we propose a novel
EM algorithm to solve this problem. For obtaining an accurate estimation of θi by the
EM-based algorithm, we construct the observed objects by applying several queries
with different lengths {Nq}Qq=1, where N1 = n and Nq/1 > n. Clearly, it is to compute
the parameter θ = (θ1, · · · , θK) by considering the information of different scales. In
this paper, the default value of Q is 4 and the lengths meet the following requirement:
Nq = q · n.

2.4 Inference and Algorithm for OAG

The EM algorithm is widely used for finding the maximum likelihood estimates in the
presence of missing data. The procedure includes two steps. First, the expected value of
the complete data log-likelihood with respect to the unobserved objects φ = {πq|πq ∈
RNq}

Q
q=1, the observed objects ψ = {σq|σq ∈ RK

Nq
}Qq=1, and the current parameter

estimate θ′ = (θ′1, · · · , θ′K). Second, compute the optimal parameter θ that maximizes
the expectation value in the first procedure. According to the Mallows model and the
extended Mallows model, we have the following Lemmas:

Lemma 2: The expected log-likelihood ζ(θ, θ′) meets the following formula

ζ(θ,θ′) = E[logP (φ, ψ|θ)|ψ, θ′] =
∑

(π1,··· ,πQ)
L(θ) · U(θ′) (9)
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where

L(θ) =

Q∑
q=1

logP (πq)−
Q∑

q=1

K∑
i=1

logZq(θi) +

Q∑
q=1

K∑
i=1

θi · d(πq, σ
i
q) (10)

U(θ′) =
Q∏

q=1

P (πq|θ′,σq) (11)

Lemma 3: The parameter θ maximizing the expected value ζ(θ, θ′) meets the following
formula:

Q∑
q=1

Eθi(d(πq, σ
i
q)) =

∑
(π1,··· ,πQ)

Q∑
q=1

d(πq , σ
i
q) · U(θ′) (12)

The proofs for Lamma 2 and Lamma 3 are omitted due to lack of space. As shown
in Lamma 3, the value of the right-hand side of Eq. 12 and the analytical expression
of the left-hand side should be evaluated under the appropriate distance function to ob-
tain the optimal θ. Before introducing the detailed procedure of our EM-based learning
algorithm, we bring in an effective distance function d(π, σ) between the top-n order-
ings π and σ, which is proposed in [18]. To keep this work self-contained, this distance
function is introduced as follows.

Definition 1: Let Fπ and Fσ be the elements of π and σ respectively. Z = Fπ ∩ Fσ

with |Z| = z. P = Fπ \ Z , and S = Fσ \ Z (note that |P | = |S| = n − z = r).
Define the augmented ranking π̃ as π augmented with the elements of S assigned the
same index n + 1. Clearly, π̃−1(n + 1) is the set of elements at position n + 1 (σ̃ is
defined similarly). Then, d(π, σ) is the minimum number of the adjacent transpositions
needed to turn π̃ to σ̃ as follows, where I(x) = 1 if x > 0, and 0 otherwise.

d(π, σ) =

n∑
i=1

π̃−1(i)∈Z

Vi(π̃, σ̃) +

n∑
i=1

π̃−1(i)/∈Z

Ui(π̃, σ̃) +
r(r + 1)

2
(13)

where

Vi(π̃, σ̃) =

n∑
j=i

π̃−1(j)∈Z

I(σ̃(π̃−1(i))− σ̃(π̃−1(j))) +
∑

j∈π̃−1(n+1)

I(σ̃(π̃−1(i))− σ̃(j))

Ui(π̃, σ̃) =
n∑

j=i

π̃−1(j)∈Z

1

In each iteration of the EM process, θ is updated by solving Eq. 12. Based on Definition
1, Eθi(d(πq , σ

i
q)) is computed as follows:

Eθi(d(πq , σ
i
q)) =

Nqe
θi

1− eθi
−

Nq∑
j=r+1

jejθi

1− ejθi
+

r(r + 1)

2
− r(z + 1)

eθi(z+1)

1− eθi(z+1)
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This function is a monotonous function of the parameter θi. For estimating the right-
hand side of Eq. 12, we adopt the Metropolis algorithm introduced in [2] to sample from
Eq. 6. Suppose that the current list is πt. A new list πt+1 is achieved by exchanging
the objects i and j, which are randomly chosen from all the objects in πt. Let r =
P (πt+1|θ,σ)/P (πt|θ,σ). If r ≥ 1, πt+1 is accepted as the new list, otherwise πt+1 is
accepted with the probability r. Then, θ can be computed by the line search approach
with the average z of the samples. The steps of OAG are shown in Algorithm 2.

Algorithm 2. Order-based aggregation method (OAG)

Input: ψ = {σq}Qq=1 with |σi
q| = Nq , θ(0), ε, t = 1, T

1. Construct the sampling sets (πi, · · · , πQ) ∈ RQ
n by the Metropolis algorithm from Eq. 6.

2. Compute the value of the right-hand side of Eq. 12.
3. Adopt the line search approach to compute θ(t+1) based on Eq. 12
4. If t = T , or

∑K
i=1 |θ

t+1
i − θti | < ε, return θ(t+1) and the optimal top-n outlier list π

estimated by the sampling procedure; else t = t+ 1, goto the step 1.

Output: θ, π

3 Experiments

We evaluate the aggregation performances of SAG and OAG methods using a number
of real world datasets. We measure the robust capabilities of SAG and OAG methods
to the random rankers, which are generated based on the Uniform distribution and the
Gaussian distribution, respectively.

3.1 Aggregation on Real Data

In this subsection, we make use of several state-of-the-art methods, including LOF [6],
K-Distance [3], LOCI [7], Active Learning [10], and Random Forest [11] as the individ-
ual methods to return the original top-n outliers lists. Since the performances of LOF
and K-Distance depend on the parameter K that determines the scale of the neighbor-
hood, we take the default value of K as 2.5% of the size of a real dataset. Both LOF and
LOCI return outlier scores for each dataset based on the density estimation. However,
K-Distance [3] only gives objects binary labels. Hence, according to the framework of
K-Distance, we compute outlier scores as the distance between an object and its Kth
nearest neighbor. Active learning and Random Forest both transform outlier detection to
classification based on the artificial outliers generated according to the procedures pro-
posed in [10]. These two methods both compute outlier scores by the majority voting
of the weak classifiers or the individual decision trees.

The real datasets used in this section consist of the Mammography dataset, the Ann-
thyroid dataset, the Shuttle dataset, and the Coil 2000 dataset, all of which can be
downloaded from the UCI database except for the Mammography dataset.1 Table 1

1 Thank Professor Nitesh.V.Chawla for providing this dataset, whose email address is
nchawla@nd.edu
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Table 1. Documentations of the real data

Dataset Mammography Ann-thyroid Shuttle-1 Shuttle-2 Shuttle-3 Coil-2000
Number
of data

normal 10923 3178 11478 11478 11478 5474
outlier 260 73 13 39 809 348

Proportion of outliers 2.32% 2.25% 0.11% 0.34% 6.58% 5.98%

summarizes the documentations of these real datasets. All the comparing outlier de-
tection methods are evaluated using precision and recall in the top-n outlier list σ as
follows

Precision = TN/AN Recall = TN/ON

where TN is the number of outliers in ordering σ, AN is the length of σ, and ON
is the number of outliers in the dataset. For the quantity AN equals ON in this work,
precision has the same value with recall. Hence, only precision is used to measure the
performance of each compared method in this section. Clearly, if all the objects in σ are
outliers, its precision and recall both achieve the maximum value 100%. The Breadth-
first and Cumulative Sum methods proposed in Feature Bagging [13] are used as the
baselines. For Feature Bagging does not introduce how to normalize heterogeneous
outlier scores, the original outlier scores are processed by the typical normalization
method: Snorm(i) = S(i)−mean

std , where mean is the average score of all the objects
and std is the standard deviation of outlier scores. Besides, Cumulative Sum requires
that every object should be given an outlier score by every individual method. However,
for the top-n outlier lists, some objects lying in the ordering σi may not be ranked by
σj . This means that Cumulative Sum cannot be applied in the fusion of the top-n outlier
lists. Hence, we replace the sum of all the outlier scores with the average of the outlier
scores from the individual methods containing the corresponding object for Cumulative
Sum. The Mallows Model [18] is also used as the baseline. As discussed in the previous
section, for this algorithm can not combine the basic lists σ with various lengths to
achieve the true list π, it needs to use all the datasets to compute the expertise indicator
parameter θ.

Table 2 lists the experimental results of the individual methods and all the aggre-
gation methods. Figure 2 shows the posterior probability curves based on SAG for the
individual methods on the Mammography dataset. It is very clear that different detection
methods have different scales of outlier scores and posterior probability computed by
SAG is a monotonic increasing function of outlier scores. In the individual method pool,
LOF achieves the best performance on the Mammography and the Shuttle-2 datasets,
and K-Distance achieves the best performance on the Shuttle-1 dataset. LOCI detects
the most outliers on the Coil 2000 dataset with Active learning. Random Forest is supe-
rior to the other methods on the Ann-thyroid and Shuttle-3 datasets. However, none of
the outliers is detected by Random Forest on the Shuttle-1,2 datasets. The above results
have verified the motivation that there is a need of ensemble learning in the top-n outlier
detection.

From Table 2, we see that SAG with r = 1 and SAG with r = 0 achieve the similar
performance on all the real datasets. Clearly, for the probability-based SAG method,
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(a) LOF (b) K-Distance (c) LOCI

(d) Active Learning (e) Random Forest

Fig. 2. The posterior probability curves based on SAG and score histograms of various individual
methods on the Mammography dataset

Table 2. The precisions in the top-n outlier lists for all the individual methods and the aggregation
methods on the real data

�������Method

Dataset Mammography
(Top 260)

Ann-thyroid
(Top-73)

Shuttle-1
(Top-13)

Shuttle-2
(Top-39)

Shuttle-3
(Top-809)

Coil-2000
(Top-348)

LOF 19.0% 39.7% 23.1% 53.8% 28.4% 5.5%
K-Distance 13.8% 37.0% 29.8% 48.7% 34.5% 8.0%

LOCI 8.8% 28.8% 7.7% 33.3% 67.0% 8.9%
Active Learning 18.1% 28.8% 15.4% 0% 30.3% 8.9%
Random Forests 15.4% 41.1% 0% 0% 70.6% 8.6%
Average of All 15.0% 35.1% 15.2% 27.2% 46.2% 8.0%

Cumulative Sum 10.0% 31.5% 23.1% 58.9% 40.0% 10.3%
Breadth-first 14.2% 38.4% 0% 28.2% 46.9% 10.6%

Mallows Model 13.1% 38.4% 23.1% 51.3% 44.4% 8.0%
SAG (r= 1) 18.5% 34.2% 23.1% 48.7% 61.3% 9.8%
SAG (r= 0) 18.5% 34.2% 23.1% 48.7% 62.1% 9.5%
SAG (r=-1) 5.4% 26.0% 7.7% 43.6% 59.5% 10.9%

OAG 19.7% 42.5% 30.8% 53.8% 71.7% 9.1%

the number nd of the individual top-n outlier lists contributes little to the final fusion
performance. Compared with the above aggregation methods, the performance of SAG
with r = −1 varies with the nature of the data dramatically. SAG with r = −1 achieves
the best performance on the Coil 200 dataset. However, it performs more poorly than
SAG with r = {1, 0} and OAG on the other datasets. This demonstrates that the average
of the unified outlier scores does not adapt to the fusion of the top-n lists. In general,
since outlier scores are always either meaningless or inaccurate, the order-based ag-
gregation method makes more sense than the score-based method. OAG achieves the
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(a) Mammography (b) Shuttle-3

Fig. 3. The precisions of OAG and SAG (r = 1) varying with the number of random lists Kr on
the Mammography data and Shuttle-3 data

Table 3. The parameter θ of all the individual methods and five random lists on the Mammogra-
phy and Shuttle-3 datasets

�������Dataset

Method
LOF K-Distance LOCI

Active
Learning

Random
Forests

random lists
(Average)

Mammogrpahy
Uniform-Noise -0.0058 -0.0039 -0.0058 -0.0052 -0.0039 -0.00014
Gaussian-Noise -0.0061 -0.0033 -0.0055 -0.0054 -0.0044 -0.00016

Shuttle-3
Uniform-Noise -0.0014 -0.0016 -0.0014 -0.0018 -0.0037 -0.00001
Gaussian-Noise -0.0014 -0.0016 -0.0018 -0.0014 -0.0035 -0.00002

best performance than SAG on the Mammography, the Ann-thyroid, and the Shuttle-
1,3 datasets. Both Cumulative Sum and SAG are score-based fusion methods. Table 2
shows that the performance of SAG is more stable and effective, especially SAG with
r = 1. Breath-first, Mallows Model, and OAG are all the order-based fusion methods.
Although Breath-first can be used in the aggregation of top-n outlier lists, it is sensitive
to the order of the individual methods. Mallows Model supposes that there is a fixed
expertise indicator parameter θ for an individual method regardless of the nature of
the data. Experiment results indicates that this hypothesis is not appropriate for the en-
semble learning in the top-n outlier detection. Overall, SAG and OAG both achieve the
better performances than Average of All and the aggregation methods Breadth-first, Cu-
mulative Sum and Mallows Model, which means that the proposed approaches deliver a
stable and effective performance independent of different datasets in a good scalability.

3.2 Robustness of Two Aggregation Methods

In this subsection, the goal is to examine the behavior of the SAG and OAG methods
when poor judges are introduced into the individual method pool. For a dataset D, the
top-n outlier lists of the poor judges are generated from the underlying distribution U .
First, the outlier scores of all the data are sampled from the distribution U . Then, the
random top-n outlier lists are obtained by sorting all the data based on the outlier scores.
In our experiments, two alternative definitions of U are used: Uniform distribution on
the interval [0, 1] and standard Gaussian distribution. The corresponding top-n lists are
called Uniform-Noise and Gaussian-Noise. The individual method pool contains the



Unsupervised Ensemble Learning for Mining Top-n Outliers 429

previous five individual detection methods, and the Kr random lists of the poor judges,
where Kr varies from 1 to 5.

For lack of the space, only the results on the Mammography dataset and the Shuttle-
3 dataset are shown in the Figure 3. Clearly, OAG is more robust to the random poor
judges than SAG regardless of Uniform-Noise or Gaussian-Noise. Especially, OAG
achieves a better performance when the number Kr of random lists increases. Table 3
gives the value of the parameter θ of the individual method pool on the Mammogra-
phy and Shuttle-3 datasets. The parameter θ of each Uniform-Noise or Gaussian-Noise
is close to zero. This demonstrates that OAG learns to discount the random top-n lists
without supervision.

4 Conclusions

We have proposed the general framework of the ensemble learning in the top-n outlier
detection in this paper. We have proposed the score-based method (SAG) with the nor-
malized method of outlier scores, which is used to transform outlier scores to posterior
probabilities. We have proposed the order-based method (OAG) based on the distance-
based Mallows model to combine the order information of various individual top-n
outlier lists. Theoretical analysis and empirical evaluations on several real data sets
demonstrate that both SAG and OAG can effectively combine the state-of-the-art de-
tection methods to deliver a stable and effective performance independent of different
datasets in a good scalability, and OAG can discount the random top-n outlier lists with-
out supervision.
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Abstract. The increasing popularity of smart mobile devices and their
more and more powerful sensing ability make it possible to capture
rich contextual information and personal context-aware preferences of
mobile users by user context logs in devices. By leveraging such infor-
mation, many context-aware services can be provided for mobile users
such as personalized context-aware recommendation. However, to the
best knowledge of ours, how to mine user context logs for personalized
context-aware recommendation is still under-explored. A critical chal-
lenge of this problem is that individual user’s historical context logs
may be too few to mine their context-aware preferences. To this end, in
this paper we propose to mine common context-aware preferences from
many users’ context logs through topic models and represent each user’s
personal context-aware preferences as a distribution of the mined com-
mon context-aware preferences. The experiments on a real-world data set
contains 443 mobile users’ historical context data and activity records
clearly show the approach is effective and outperform baselines in terms
of personalized context-aware recommendation.

Keywords: Personalization, Recommender System, Context-Aware,
Mobile Users, Latent Dirichlet Allocation (LDA).

1 Introduction

Recent years have witnessed the increasing popularity of smart mobile devices,
such as smart phones and pads. These devices are usually equipped with multi-
ple context sensors, such as GPS sensors, 3D accelerometers and optical sensors,
which enables them to capture rich contextual information of mobile users and
thus support a wide range of context-aware services, including context-aware
tour guide [15], location based reminder [13] and context-aware recommenda-
tion [2,9,16,10], etc. Moreover, these contextual information and users’ corre-
sponding activity (e.g., browsing web sites, playing games and chatting by So-
cial Network Services) can be recorded into context logs to be used for mining

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 431–443, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



432 K. Yu et al.

users’ personal context-aware preferences. By considering both context-aware
preferences and the current contexts of users, we may be able to make more
personalized context-aware recommendations for mobile users.

Indeed, the personalized context-aware recommendations can provide better
user experiences than general context-aware recommendations which only take
into account contexts but not users’ different personal preferences under same
contexts. In recent years, many researchers studied the problem of personalized
context-aware recommendation [17,12,9]. However, most of this work is based
on item ratings generated by users, which are difficult to obtain in practise. In
contrast, user activity records in context logs are much easier to get for mobile
users.

To the best knowledge of ours, how to mine personal context-aware preferences
from context logs and then make personalized context-aware recommendations
is still under-explored. To this end, in this paper we attempt to leverage mining
user context logs for personalized context-aware recommendation. However, a
critical challenge of the problem is that individual user’s context logs usually
have no sufficient training data for mining personal context-aware preferences.
To be specific, as showed in Table 1, it can be observed that many context
records have no corresponding activity record. As a result, if we only leverage
individual user’s context logs for context-aware preference mining, it will be very
difficult to learn personal context preferences for recommendation, which is also
reflected by our experiments on a real world data set. To address this prob-
lem, in this paper, we propose to mine Common Context-aware Preferences
(CCPs) from many users’ context logs through topic models and represent each
user’s personal context-aware preferences as a distribution of the mined com-
mon context-aware preferences. To be specific, first we extract bags of Atomic
Context-Aware Preference (ACP) Features for each user from their historical
context logs. Then, we propose to mine CCPs from users’ ACP-feature bags
through topic models. Finally, we make recommendations according to the given
contexts and CCP distributions of users. Figure 1 illustrates our procedure for
generating personalized context-aware recommendation. In addition, we evalu-
ate our proposed approach in a real-world data set of context logs collected from
443 mobile phone users spanning for several months, which contains more than
8.8 million context records, 665 different interactions in 12 content categories.

User Context Logs Atomic Context-Aware 
Preference Features

ACP-Feature 1
ACP-Feature 2
ACP-Feature 3
ACP-Feature 4

…

User 3
ACP-Feature 1
ACP-Feature 2
ACP-Feature 3
ACP-Feature 4

…

User 2
ACP-Feature 1
ACP-Feature 2
ACP-Feature 3
ACP-Feature 4

…

User 1

u uu

zzz

u

f ffff ACP-Features

CCP

Users

User

Context

Recommendations
No.1 Games
No.2 SNS
…

Fig. 1. The procedure of personalized context-aware recommendation for mobile users
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Table 1. A toy context log from real-world data set

Timestamp Context Activity record

t1
{(Day name: Monday),(Time range: AM8:00-9:00)),
(Profile: General),(Location: Home)} Null

t2
{(Day name: Monday),(Time range: AM8:00-9:00)),
(Profile: General),(Location: On the way)} Play action games

t3
{(Day name: Monday),(Time range: AM8:00-9:00)),
(Profile: General),(Location: On the way)} Null

......

t359
{(Day name: Monday),(Time range: AM10:00-11:00),
(Profile: Meeting),(Location: Work place)} Null

t360
{(Day name: Monday),(Time range: AM10:00-11:00),
(Profile: Meeting),(Location: Work place)} Browsing sports web sites

......

t448
{(Day name: Monday),(Time range: AM11:00-12:00),
(Profile: General),(Location: Work place)} Play with Social Network Serivce

t449
{(Day name: Monday),(Time range: AM11:00-12:00),
(Profile: General),(Location: Work place)} Null

The results clearly demonstrate the effectiveness of the proposed approach and
indicate some inspiring conclusions.

The remainder of this paper is organized as follows. Section 2 provides a
brief overview of related works. Then, Section 3 presents the idea of making
personalized context-aware recommendation by mining context logs for mining
users’ context-aware preferences, and Section 4 presents how to mine common
context-aware preferences through topic models. Section 5 reports our experi-
mental results on a real world data set. Finally, in Section 6, we conclude this
paper.

2 Related Work

Today, the powerful sensing abilities of smart mobile devices enable to capture
the rich contextual information of mobile users, such as location, user activ-
ity, audio level, and so on. Consequently, how to leverage such rich contextual
information for personalized context-aware recommendation has become a hot
problem which dramatically attracts many researchers’ attention.

Many previous works about personalized context-ware recommendation for
mobile users have been reported. For example, Tung et al. [14] have proposed
a prototype design for building a personalized recommender system to recom-
mend travel related information according to users’ contextual information. Park
et al. [12] proposed a location-based personalized recommender system, which
can reflect users’ personal preferences by modeling user contextual information
through Bayesian Networks. Bader et al. [2] have proposed a novel context-
aware approach to recommending points-of-interest (POI) for users in an au-
tomotive scenario. Specifically, they studied the scenario of recommending gas
stations for car drivers by leveraging a Multi-Criteria Decision Making (MCDM)
based methods to modeling context and different routes. However, most of these
works only leverage individual user’s historical context data for modeling per-
sonal context-aware preferences, and do not take into account the problem of
insufficient personal training data.
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Actually, the problem of insufficient personal training data is common in
practice and many researchers have studied how to address this problem. For
example, Woerndl et al. [16] proposed a hybrid framework named “play.tools”
for recommending mobile applications by leveraging users’ context information.
This recommendation framework are based on what other users have installed
in similar context will be liked by a given user. Kim et al. [9] investigated several
Collaborative Filtering (CF) based approaches for recommendation and devel-
oped a memory based CF approach to providing context-aware advertisement
recommendation. Specially, the proposed approach can leverage a classification
rule of decision tree to understand users’ personal preference. Zheng et al. [17]
have studied a model based CF approach to recommending user locations and
activities according to users’ GPS trajectories. The approach can model user, lo-
cation and activity as a 3-dimensional matrix, namely tensor, and perform tensor
factorization with several constraints to capture users’ preferences. Alexandros
et al [10] proposed a model based CF approach for making recommendation
with respect to rich contextual information, namely multiverse recommenda-
tion. Specifically, they modeled the rich contextual information with item by
N-dimensional tensor, and proposed a novel algorithm to make tensor factor-
ization. In a word, most of these approaches are based on rating logs of mobile
users and the objective is to predict accurate ratings for the unobserved items
under different contexts. However, usually we cannot obtain such rating data
in user mobile devices. In contrast, it is easier to collect context logs which
contain users’ historical context data and activity records, which motivates our
work for exploring how to leverage context logs for personalized context-aware
recommendation.

The proposed approach in this paper exploits topic models for learning users’
CCPs. Indeed, topic models are widely used in text retrieval and information
extraction. Typical topic models include the Mixture Unigram (MU) [11], the
Probabilistic Latent Semantic Indexing (PLSI) [8], and the Latent Dirichlet Al-
location (LDA) [4]. Most of other topic models are extended from the above ones
for satisfying some specific requirements. In our approach, we exploit the widely
used LDA model.

3 Preliminary

As mentioned in Section 1, smart devices can capture the historical context
data and corresponding activity records of users through multiple sensors and
record them in context logs. For example, Table 1 shows a toy context log of
a mobile user, which contains several context records, and each context record
consists of a timestamp, the most detailed available context at that time, and
the corresponding user activity record captured by devices. A context consists of
several contextual features (e.g., Day name, Time range, and Location) and their
corresponding values (e.g., Saturday, AM8:00-9:00, and Home), which can be
annotated as contextual feature-value pairs. And we mention “available” because
a context record may miss some context data though which context data which
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should be collected is usually predefined. For example, the GPS coordinate is not
available when the user is indoor. Moreover, interaction records can be empty
(denoted as “Null”) because the user activities which can be captured by devices
do not always happen.

It is worth noting that we transform raw location based context data such as
GPS coordinates or cell Ids into social locations which have explicit meanings
such as “Home” and “Work place” by some existing location mining approaches
(e.g., [5]). The basic idea of these approaches is to find clusters of user location
data and recognize their social meaning by time pattern analysis. Moreover,
we also manually transform the raw activity records to more general ones by
mapping the activity of using a particular application or playing a particular
game to an activity category. For example, we can transform two raw activity
records “Play Angry Birds” and “Play Fruit Ninja” to same activity records
“Play action games”. In this way, the context data and activity records in context
logs are normalized and the data sparseness is some how alleviated for easing
context-aware preference mining.

Given a context C = {p} where p denotes an atomic context, i.e., a contex-
tual feature-value pair, the probability that a user u prefers activity a can be
represented as

P (a|C, u) =
P (a, C|u)P (u)

P (C, u)
∝ P (a, C|u) ∝

∏
p

P (a, p|u),

where we assume that the atomic contexts are mutually conditionally indepen-
dent given u.

Then the problem becomes how to calculate P (a, p|u). According to our pro-
cedure, we introduce a variable of CCP denoted as z, and thus we have

P (a, p|u) =
∑
z

P (a, p, z|u) ∝
∑
z

P (a, p|z, u)P (z, u) ∝
∑
z

P (a, p|z)P (z|u),

where we assume that a user’s preference under a context only relies on the
CCPs and his (her) context-aware preferences in the form of their distribution
on the CCPs, rather than other information of the user. Therefore, the problem
is further converted into learning P (a, p|z) and P (z|u) from many users’ context
logs, which can be solved by widely used topic models. In the next section,
we present how to utilize topic models for mining CCPs, i.e., P (a, p|z), and
accordingly make personalized context-aware recommendation.

4 Mining Common Context-Aware Preferences through
Topic Models

Topic models are generative models that are successfully used for document
modeling. They assume that there exist several topics for a corpus D and a
document di in D can be taken as a bag of words {wi,j} which are generated
by these topics. For simplicity, we refer the co-occurrence of a user activity a
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and the corresponding contextual feature-value pair p, i.e., (a, p), as Atomic
Context-aware Preference feature, and ACP-feature for short. Intuitively, if we
take ACP-features as words, take context logs as bags of ACP-features to cor-
respond documents, and take CCPs as topics, we can take advantage of topic
models to learn CCPs from many users’ context logs.

However, raw context logs are not naturally in the form of bag of ACP-features
so we need some preprocessing for extracting training data. Specially, we first
remove all context records without any activity record and then extract ACP-
feature from the remaining ones. Given a context record < Tid, C, a > where T id
denotes the timestamp, C = {p1, p2, ..., pl} denotes the context and a denotes
the activity, we can extract l ACP-features, namely, (a, p1), (a, p2), ..., (a, pl).
For simplicity, we refer the bag of ACP-features extracted from user u’s context
log as the ACP-feature bag of u.

Among several existing topic models, in this paper, we leverage the widely
used Latent Dirichlet Allocation model (LDA) [4]. According to LDA model, the
ACP-feature bag of user ui denoted as di is generated as follows. First, before
generating any ACP-feature bag, K prior ACP-feature conditional distributions
given context-aware preferences {φz} are generated from a prior Dirichlet distri-
bution β. Secondly, a prior context-aware preference distribution θi is generated
from a prior Dirichlet distribution α for each user ui. Then, for generating the
j-th ACP-feature in di denoted as wi,j , the model firstly generates a CCP z from
θi and then generates wi,j from φz. Figure 2 shows the graphic representation
of modeling ACP-feature bags by LDA.

Fig. 2. The graphical model of LDA

In our approach, the objective of LDA model training is to learn proper es-
timations for latent variables θ and φ to maximize the posterior distribution
of the observed ACP-feature bags. In this paper, we choose a Markov chain
Monte Carlo method named Gibbs sampling introduced in [6] for training LDA
models efficiently. This method begins with a random assignment of CCPs to
ACP-features for initializing the state of Markov chain. In each of the following
iterations, the method will re-estimate the conditional probability of assigning
a CCP to each ACP-feature, which is conditional on the assignment of all other
ACP-features. Then a new assignment of CCP to ACP-features according to
those latest calculated conditional probabilities will be scored as a new state of
Markov chain. Finally, after rounds of iterations, the assignment will converge,
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which means each ACP-feature is assigned a stable and final CCP. Eventually, we
can obtain the estimated values for two distributions {p̃(a, p|z)} and {p̃(z|u)},
which denote the probability that the ACP-feature (a, p) appears under the
CCP z, and the probability that user u has the context-aware preference z,
respectively.

p̃(a, p|z) =
n
(a,p)
(z) + β

n
(.)
(a,p) +Aβ

, p̃(z|u) =
n
(u)
(z) + α

n
(u)
(.) + Zα

,

where the n
(a,p)
(z) indicates the number of times ACP-feature (a, p) has been

assigned to CCP z, while n
(u)
(z) indicates the number of times a ACP-feature

from user u’s context log that has been assigned to CCP z. The A indicates the
number of ACP-features from u’s context log, and Z indicates the number of
CCPs.

LDA model needs a predefined parameter Z to indicate the number of CCPs.
How to select an appropriate Z for LDA is an open question. In terms of guaran-
teeing the performance of recommendation, in this paper we utilize the method
proposed by Bao et al [3] to estimate Z, and we set ζ to be 10% in our experi-
ments accordingly. Please refer to [1] for more information.

After learning CCPs represented by distributions of ACP-features, we can
predict users’ preference according to their historical context-aware preferences
and current contexts, i.e., P (a, C|u). Then, we recommend users a rank list
of different categories of contents according to the preference prediction. For
example, if we predict a user u is more likely willing to play action games than
listen pop music, the recommendation priority of popular action games will be
higher than that of recent hot pop music.

5 Experiments

In this section, we evaluate the performance of our LDA based personalized
context-aware recommendation approach, namely Personalized Context-aware
Recommendation with LDA (PCR-LDA), with several baseline methods in a
real-world data set.

5.1 Data Set

The data set used in the experiments is collected from many volunteers by a
major manufacturer of smart mobile devices. The data set contains context logs
with rich contextual information and user activities of 443 smart phone users
spanning for several months. The detailed statistics of our data set are illustrated
in Table 2. From table 2 we can observe that only 12.5% context records have
activities, which indicates the insufficient activity records for individual user in
practice. Moreover, Table 3 shows the concrete types of context data contained
in our data set. In addition, in our data set, all activities can be classified into 12
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Table 2. Statistics of our data set

Number

users 443
unique activities 665
unique context 4,391
context records 8,852,187

activity-context records† 1,097,189

† activity-context records denote the context records with non-empty
user activity records.

content categories, which are Call, Web, Multimedia, Management, Games, Sys-
tem, Navigation, Business, Reference, Social Network Service (SNS), Utility and
Others. Specifically, in our experiments, we do not utilize the categories Call and
others because their activity information is clear for making recommendations.
Therefore, in our experiments we utilize 10 activity categories which contain 618
activities appear in total 408,299 activity-context records.

Table 3. The types of contextual information in our data set

Data source Data type Value range

Time Info

Week {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
Is a holiday? {Yes, No}

Day period
{Morning(AM7:00-AM11:00), Noon(AM11:00-PM14:00),
Afternoon(PM14:00-PM18:00), Evening(PM18:00-PM21:00),
Night(PM21:00-Next day AM7:00)}

Time range
{AM0:00-AM1:00, AM1:00-AM2:00,
AM2:00-AM3:00, ... , PM23:00-PM24:00}

System Info Profile type {General, Silent, Meeting, Outdoor, Pager, Offline}
Geo Info Location {Home, Work Place, On the way}.

Fig. 3. The distribution of context coverage for all users

Figure 3 shows the distribution of context records and activity-context records
for all users. From the figure we can see that usually though the context records
of individual mobile users are sufficient, only small proportion of them have
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non-empty activity records and can be used as training data, which implies the
limit of learning personal context-aware preferences only from individual user’s
context logs.

5.2 Benchmark Methods

To evaluate the recommendation performance of our approach, we chose two
context-aware baseline methods as follows.

CPR stands for Context-aware Popularity based Recommendation which is
a basic context-aware recommendation approach without considering personal
context-aware preference. To be specific, in this approach, given a user u and
a context C, we predict user preferred activities by the most frequent activities
appear under C according to all users’ historical context logs and recommend
corresponding contents. This popularity based approach is widely used in prac-
tical recommender systems.

PCR-i stands for Personalized Context-aware Recommendation by only lever-
aging Individual user’s context logs. To be specific, in this approach, given a user
u and a context C, we rank each activity a by probability P (a|u,C), which can
be estimated by P (a|u,C) ∝ (

∏
p∈C P (a, p|u). The probability P (a, p|u) can

be calculated by P (a, p|u) =
na,p

n(.)
, where na,p and n(.) indicate the numbers

of ACP-feature (a, p) and all ACP-features appeared in the context log of u,
respectively.

5.3 Evaluation Metrics

In the experiments, we utilize 5-fold-cross validation to evaluate the performance
of each recommendation approaches. To be specific, we first randomly divide each
user’s context log into five equal parts, then use each part as test data while use
other four parts as training data for total 5-rounds of recommendation. In the test
process, we only take into account the context records with non-empty activity
records, and use the contexts and the content categories corresponding to the real
user activity as context input and ground truth, respectively. In our experiments,
each recommendation approach will return a ranked list of recommended content
categories according to predicted user activities. To evaluate the performance of
each approach, we leverage two different metrics as follows.

MAP@K stands for Mean Average Precision at top K recommendation re-

sults. To be specific, MAP@K =
∑

AP (u)@K
|U| , where AP (u)@K denotes the

average precision at top k recommendation results on the test cases of user
u, and |U | indicates the number of the users. AP (u)@K can be computed by
1
Nu

∑
i

∑K
r=1(Pi(r) × reli(r)), where Nu denotes the number of test cases for

user u, r denotes a given cut-off rank, Pi(r) denotes the precision on the i-th
test case of u at a given cut-off rank r, and reli() is the binary function on the
relevance of a given rank.

MAR@K stands for Mean Average Recall at top K recommendation results.

To be specific, MAR@K =
∑

AR(u)@K
|U| , where AR(u)@K denotes the average
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recall at top k recommendation results on the test cases of user u, and |U | indi-
cates the number of the users.AR(u)@K can be computed by 1

Nu

∑
i

∑K
r=1 reli(r),

where Nu denotes the number of test cases for user u, r denotes a given cut-off
rank, and reli() is the binary function on the relevance of a given rank.

5.4 Overall Results of Recommendation

To evaluate our PCR-LDA recommendation approach, we compare its recom-
mendation performance with other baselines. To be specific, according to the
parameter estimation approaches introduced in Section 4, the number of CCPs
for LDA training is set to be 15. In Section 5.5 we will further discuss the setting
of this parameter. For the LDA training, the two parameters α and β are empir-
ically set to be 50/Z and 0.2 according to discussion in [7]. Both PCR-LDA and
the two baselines are implemented by C++ and the experiments are conducted
on a 3GHZ×4 quad-core CPU, 3G main memory PC.

We first test the MAP@K performance of each recommendation approach
with respect to varying K, which are shown in Figure 4. From the results we can
observe that PCR-LDA outperforms other baselines with a significant margin.

Figure 5 shows the MAR@K of each recommendation approach. From the re-
sults we can observe our PCR-LDA can achieve 100% performance when K = 10,
which means they can return recommendation list contains at least one ground

Fig. 4. The MAP@K performance of each recommendation approach

Fig. 5. The MAR@K performance of each recommendation approach
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truth activities for all contexts. It is because PCR-LDA takes advantage of many
users’ context logs. In contrast, PCR-i has worse MAR@K due to the insufficient
training data in individual user’s context logs for mining context-aware prefer-
ence. Moreover, due to the different context-aware preference between users, the
popularity based approach CPR under-performs the other approaches.

5.5 Robustness Analysis

CPR-LDA needs a parameter Z to determine the number of CCPs. Although
we can empirically select Z by estimating perplexity, we still study the impact
of such parameter to our recommendation results. Figure 6 shows the MAP@10
of PCR-LDA with respect to varying Z. From the results we can observe that
the MAP@10 of PCR-LDA is impacted dramatically by a relatively small Z
and becomes stable with relatively big Z. It is because when a relatively small
Z is selected, all ACP-features may have strong relationships with each CCP.
Thus the approach is actually near to combine all users’ context logs as one log
for recommendation, which will introduce many noisy data. Another interesting
phenomenon is that the MAP@10 peaks when Z is set to be 15, which is consis-
tent with our experimental setting and implies the parameter selection method
if effective. The experimental results of MAP@K with other settings of K show
the similar phenomena.

Fig. 6. The MAP@10 performance of PCR-LDA to varying number of CCPs

5.6 Case Study

In addition to the studies on the overall performance of our recommendation ap-
proach, we also study the cases in which PCR-LDA outperforms the baselines.
For example, Table 4 shows the top 3 recommendation results of each approach
for two test cases of two different users given the “{(Is holiday: No), (Day pe-
riod: Evening), (Time range: PM22:00-23:00), (Day name: Monday), (Profile:
General), (Location: Home)}”, which may imply the users’ leisure time at home.
In this case, the activity records of user #152 and user #343’s test cases are
Multimedia and Web, respectively. From the results, we can observe that PCR-
LDA recommend relevant content categories in the top one position. In contract,
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PCR-i can only recommend relevant content categories in the top one position
for one test case, and the Popularity based approach CPR always recommend
same content categories for all users and thus sometimes performs not well.

Table 4. An example of recommendation results for user #152 and #343

Context
{(Time range: PM22:00-23:00),(Is holiday: No),(Day name: Monday),(Day period:
Night),(Profile: Offline),(Location: Home)}

Top 3 Recommendation Results for user #152
Ground truth Multimedia
PCR-LDA Multimedia (

√
), Web, Game

PCR-i Multimedia (
√
), Business, Management

CPR Web, System, Business

Top 3 Recommendation Results for user #343
Ground truth Web
PCR-LDA Web (

√
), Multimedia, SNS

PCR-i Multimedia, Game, Web
CPR Web (

√
), System, Business

6 Concluding Remarks

In this paper, we investigated how to exploit user context logs for personalized
context-aware recommendation by mining CCPs through topic models. To be
specific, first we extract ACP-Feature bags for each user from their historical
context logs. Then, we propose to mine users’ CCPs through topic models. Fi-
nally, we make recommendation according to the given context and the CCP
distribution of the given user. The experimental results from a real-world data
set clearly show that our proposed recommendation approach can achieve good
performance for personalized context-aware recommendation.
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Abstract. Mining temporal multivariate data by clustering techniques
is recently gaining importance. However, the temporal data obtained in
many of today’s applications is often complex in the sense that interest-
ing patterns are neither bound to the whole dimensional nor temporal
extent of the data domain. Under these conditions, patterns mined by
existing multivariate time series clustering and temporal subspace clus-
tering techniques cannot correctly reflect the true patterns in the data.

In this paper, we propose a novel clustering method that mines tempo-
ral coherent subspace clusters. In our model, these clusters are reflected
by sets of objects and relevant intervals. Relevant intervals indicate those
points in time in which the clustered time series show a high similarity.
In our model, each dimension has an individual set of relevant intervals,
which together ensure temporal coherence. In the experimental evalua-
tion we demonstrate the effectiveness of our method in comparison to
related approaches.

1 Introduction

Mining patterns from multivariate temporal data is important in many appli-
cations, as for example analysis of human action patterns [12], gene expression
data [8], or chemical reactions [17]. Temporal data in general reflect the possi-
bly changing state of an observed system over time and are obtained by sensor
readings or by complex simulations. Examples include financial ratios, engine
readings in the automotive industry, patient monitoring, gene expression data,
sensors for forest fire detection, and scientific simulation data, as e.g. climate
models. The observed objects in these examples are individual stocks, engines,
patients, genes, spatial locations or grid cells in the simulations. The obtained
data are usually represented by multivariate time series, where each attribute
represents a distinct aspect of observed objects; e.g., in the health care exam-
ple, each patient has a heart rate, a body temperature, and a blood pressure.
The attributes are often correlated; e.g. for the forest fire, the attributes tem-
perature and degree of smoke are both signs of fire. Unknown patterns in such
databases can be mined by clustering approaches, where time series are grouped
together by their similarity. Accordingly, clusters of time series correspond to
groups of objects having a similar evolution over time, and clusters represent
these evolutions.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 444–455, 2012.
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dimension 1
dimension 2

time

Fig. 1. Multivariate temporal pattern with two intervals

In many applications, however, existing approaches for clustering univariate
or multivariate time series are ineffective due to a specific aspect of the analyzed
data: patterns of interest that are neither bound to the whole dimensional nor
temporal extent of the time series. Since our method is designed for effective
mining under this scenario, we elaborate on this aspect in the next paragraph.

Temporal patterns of interest often only exist over a partial temporal extent
of analyzed time series, i.e. they are constrained to an interval, and a single
multivariate temporal pattern can have different intervals for each of its dimen-
sions, as it is illustrated in Fig. 1. More concretely, time series belonging to one
cluster only have similar values in these intervals, and values in the remaining
intervals are noisy. Also, for some clusters there are dimensions in which there
is no similarity between the time series. In the following, the intervals and di-
mensions belonging to a cluster are called relevant, while the remaining intervals
and dimensions are called non-relevant. If non-relevant intervals are considered
in distance measures that are used to decide which time series are grouped to-
gether, clusters can result that do not reflect the true patterns in the data.

Our novel, subspace clustering related approach handles this aspect by using
an effective cluster model that distinguishes explicitly between relevant and non-
relevant intervals for each cluster, and only relevant intervals are incorporated
into the similarity function used for deciding which time series belong to a specific
cluster. Our approach prevents incoherent time series clusters, i.e. clusters that
have points in time that do not belong to any of the cluster’s individual intervals.
This ensures that there are no single (incoherent) cluster which would better be
represented by several single (coherent) clusters.

Summarized, we propose a novel, subspace clustering related approach for
effective clustering of multivariate time series databases that

– uses a cluster definition that distinguishes explicitly between relevant and
non-relevant intervals for each individual dimension; the individual intervals
as a whole form a temporal coherent cluster.

– is efficient due a approximate computation of our model that delivers high
quality results.

This paper is structured as follows: in Section 2 we discuss related work. In
Section 3 we introduce our approach for effective clustering of multivariate time
series, for which an efficient algorithm is presented in Section 4. In Section 5 we
evaluate our approach and Section 6 contains concluding remarks.
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2 Related Work

Clustering of temporal data can roughly be divided into clustering of incoming
data stream, called stream clustering [9], and clustering of static databases, the
topic of this paper. Our method is related to two static clustering research areas,
namely time series clustering and subspace clustering, and we discuss these areas
in the following. In the experiments, we compare to methods from both areas.

Time Series Clustering. There is much research on clustering univariate time
series data, and we suggest the comprehensive surveys on this topic [4,11]. Clus-
tering of multivariate time series is recently gaining importance: Early work
in [14] uses clustering to identify outliers in multivariate time series databases.
Multivariate time series clustering approaches based on statistical features were
introduced in [2,19,20]. There are no concepts in these approaches to discover
patterns hidden in parts of the dimensional or temporal extents of time series.

Most clustering approaches are based on an underlying similarity measure
between time series. There is work on noise-robust similarity measures based
on partial comparison, called Longest Common Subsequences (LCSS) [18]. We
combined k-Medoid with LCSS as a competing solution.

There is another type of time series clustering methods, designed for ap-
plications in which single, long time series are mined for frequently appearing
subsequences. These methods perform subsequence clustering, with subsequences
being generated by a sliding window. Since we are interested in patterns that
occur in several time series at similar points in time and not in patterns that
occur in a single time series at arbitrary positions, those approaches cannot be
applied in our application scenario.

Subspace Clustering (2D) and TriClustering (3D). Subspace cluster-
ing [1,10,15,21] was introduced for high-dimensional (non-temporal) vector data,
where clusters are hidden in individual dimensional subsets of the data. Since
subspace clustering is achieved by simultaneous clustering of the objects and
dimensions of dataset, it is also known as 2D clustering. When subspace clus-
tering is applied to 3D data (objects, dimensions, time points), the time series
for the individual dimensions are concatenated to obtain a 2D space (objects,
concatenated dimensions). While subspace clustering is good for excluding irrel-
evant points in time, there are problems when it is applied to temporal data:
First, by the transformation described above, the correlation between the dimen-
sions is lost. Second, subspace clustering in general cannot exploit the natural
correlation between subsequent points in time, i.e. temporal coherence is lost.

Accordingly, for 3D data,Triclustering approaches were introduced [7,8,16,22],
which simultaneously cluster objects, dimensions, and points in time. Special
Triclustering approaches are for clustering two related datasets together [6],
which is a fundamentally different concept than the one in this paper. Gen-
erally, Triclustering approaches can only find block-shaped clusters: A cluster is
defined by a set of objects, dimensions, and points in time [22] or intervals [7,16].
The points in time or intervals hold for all objects and dimensions of a cluster.
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In contrast, our approach can mine clusters where each dimension has different,
independent relevant intervals.

3 A Model for Effective Subspace Clustering
of Multivariate Time Series Data

In the following we introduce our model for subspace clustering of multivariate
time series data. In Section 3.1, we introduce our definition for subspace clus-
ters of complex multivariate time series data, and in Section 3.2 we formalize
an optimal clustering that is redundancy-free and contains clusters of maximal
interestingness.

3.1 Time Series Subspace Cluster Definition

As input for our model we assume a database DB of multivariate time se-
ries where Dim = {1, . . . , Dimmax} denotes the set of dimensions and T =
{1, . . . , Tmax} the set of points in time for each time series. We use o[d, t] ∈ R

to refer to the attribute value of time series o ∈ DB in dimension d ∈ Dim at
time t ∈ T . As an abbreviation, o[d, t1 . . . t2] denotes the univariate subsequence
obtained from object o by just considering dimension d between points in time
t1 and t2. Our aim is to detect temporal coherent patterns, i.e. similar behaving
objects, in this kind of multivariate data.

Since we cannot expect to find temporal patterns over the whole extent of
the time series or within all dimensions, we have to restrict our considerations
to subsets of the overall domain. Naively, a cluster could be defined by a tuple
(O,S, I) where the objects O show similar behavior in subspace S ⊆ Dim and
time points I ⊆ T . This is straightforward extension of subspace clustering to
the temporal domain and is used in triclustering approaches like [7,16,22].

A model based on this extension is limited because each selected dimension
d ∈ S has to be relevant for each selected point in time t ∈ I. For example, if the
objects O are similar in d1 at time t1 and in d2 at t2 but not similar in d1 at time
t2, we cannot get a single cluster for the objects O. We either have to exclude
dimension d1 or time point t2 from the cluster. Thus, important information is
lost and clustering effectiveness degrades.

Our novel model avoids this problem by selecting per dimension an individual
set of intervals in which the time series are similar in (cf. Fig. 1). Such an interval,
which contains a specific temporal pattern, is denoted as interval pattern.

Definition 1. An interval pattern IP = (O, d, Int) is defined by:

– an object set O ⊆ DB
– one selected dimension d ∈ Dim
– an interval Int = {start, . . . , end} ⊆ T with length(Int) > 1 for

length(Int) := end− start+ 1, i.e. we only permit non-trivial intervals.
– a specific cluster property the corresponding subsequences o[d, start . . . end]

with o ∈ O have to fulfill. We use the compactness of clusters based on the
Maximum Norm: i.e., ∀o, p ∈ O ∀t ∈ Int : |o[d, t]− p[d, t]| ≤ w
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To avoid isolated points in time, i.e. where time series are rather similar by
chance, we require that length(Int) > 1. The cluster property defines how sim-
ilarity between subsequences is measured and how similar they need to be in
order to be included in the same interval pattern. This property can be chosen
by specific application needs. Besides the cluster compactness, which is also used
by other subspace clustering methods [13,15], other distance measures applicable
for time series including DTW [3] can be used.

dimension 1
dimension 2

1 10 25 35 40

Fig. 2. Example for incoherent patterns

Based on the introduced interval patterns, clusters are generated: for each
dimension, zero, a single, or even several interval patterns can exist in the cluster.
This allows our method to systematically exclude non-relevant intervals from the
cluster to better reflect the existing patterns in the analyzed data. However, not
all combinations of interval patterns correspond to reasonable temporal clusters.
The temporal coherence of the pattern is crucial. For example, let us consider a
set of objects O forming three interval patterns in the time periods 1-10, 25-40,
and 35-40, as illustrated in Fig. 2. Since for the remaining points in time no
pattern is detected, there is no temporal coherence of the patterns. In this case,
two individual clusters would reflect the data correctly.

To ensure temporal coherence, each point in time t ∈ T that is located between
the beginning a ∈ T and ending b ∈ T of a cluster, i.e. a ≤ t ≤ b, has to
be contained in at least one interval pattern of an arbitrary dimension. Thus,
by considering all dimensions simultaneously, the cluster has to form a single
connected interval, and each point in time can be included in several dimensions.

Definition 2. TimeSC. A coherent time series subspace cluster (TimeSC)
C = (O, {(di, Inti){1...m}}), i.e. an object set together with intervals in specific
dimensions, is defined by:

– for each interval i ∈ {1, . . . ,m} it holds that (O, di, Inti) is a valid interval
pattern.

– the intervals per dimension are disjoint, i.e.
∀i, j ∈ {1, . . . ,m}, i �= j : Inti ∩ Intj = ∅ ∨ di �= dj

– the cluster is temporal coherent, i.e. combined, we have a single connected
interval:
∃a, b ∈ T, a ≤ b :

⋃m
i=1 Inti = {a, . . . , b}.
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We require disjoint intervals per dimension because for overlapping intervals
single points in time could be included multiple times in the cluster, which is
obviously not beneficial for describing the cluster.

Overall, our novel cluster model avoids the drawbacks of previous methods
and flexibly identifies the coherent temporal patterns in complex multivariate
time series data.

3.2 Clustering Model: Redundancy Avoidance

Accounting for the properties of temporal data, an object can naturally occur in
several clusters. Definition 2 allows for grouping various objects within different
dimensions and time intervals. By generating the set Clusters = {C1, . . . , Ck} of
all TimeSC Ci, we a priori permit overlapping clusters. Overlap, however, poses
a novel challenge: the set Clusters potentially is very large and the contained
clusters differ only marginally. In the worst case, two clusters differ only by few
objects and hence one of theses clusters provides no novel information. Thus,
some clusters may be highly redundant and are not beneficial for the user. As
a solution, we aim to extract a subset Result ⊆ Clusters that contains no
redundant information.

In a set of clusters M ⊆ Clusters redundancy can be observed, if at least one
cluster C ∈M exists whose structural properties can be described by the other
clusters. More precisely: if we are able to find a set of clusters M ′ ⊆ M which
together group almost the same objects as C and that are located in similar
intervals, then C’s grouping does not represent novel knowledge.

Definition 3. Structural Similarity. A single time series subspace cluster
TimeSC C = (O, {(di, Inti){1...m}}) is structural similar to a set of TimeSC M ,
abbreviated C ≈M , iff

– |Obj(M)∩O|
|Obj(M)∪O| ≥ λobj (object coverage)

– ∀Ci ∈M : |Int(Ci)∩Int(C)|
|Int(Ci)∪Int(C)| ≥ λint (interval similarity)

with redundancy parameters λobj , λint ∈ [0, 1], Obj(M) =
⋃

(Oi,.)∈M Oi and

Int(C) representing C’s intervals via 2-tuples of dimension and point in time:
Int(C) = Int((O,K)) = {(d, t) | ∃(d, Int) ∈ K : t ∈ Int}.

The higher the redundancy parameter values λobj and λint are set, the more
time series (λobj) or intervals (λint) of C have to be covered by M so that M
is considered structural similar to C. In the extreme case of robj = rdim =
1, C’s time series and intervals have to be completely covered by M ; in this
setting, only few clusters are categorized as redundant. By choosing smaller
values, redundancy occurs more often.

The final clustering Result must not contain structural similar clusters to be
redundancy-free. Since, however, several clusterings fulfill this property, we intro-
duce a second structural property that allows us to choose the most-interesting
redundancy-free clustering. On the one hand, a cluster is interesting if it contains
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many objects, i.e. we get a strong generalization. On the other hand, a cluster
can represent a long temporal pattern but with less objects, corresponding to a
high similarity within the cluster. Since simultaneously maximizing both crite-
ria is contradictory, we introduce a combined objective function that realizes a
trade-off between the number of objects and the pattern length:

Definition 4. The Interestingness of a TimeSC C = (O, {(di, Inti){1...m}})
is defined by

Interest(C) = |O| ·
m∑
i=1

length(Inti)

By adding up the lengths of all intervals, overlap of intervals between different
dimensions is rewarded. The optimal clustering result is defined by demanding
the two introduced properties:

Definition 5. The Optimal Clustering of the set of all valid clusters
Clusters, i.e. Result ⊆ Clusters, fulfills

(1.) redundancy-free property:
∀C ∈ Result : ¬∃M ⊆ Result : C ≈M ∧C �∈M

(2.) maximal interestingness:
For all redundancy-free clusterings Res′ ⊆ Clusters it holds∑

C∈Result Interest(C) ≥
∑

C′∈Res′ Interest(C
′).

With this definition of an optimal clustering, the formalization of our novel
cluster model for subspace clustering multivariate time series data is complete.
In the next section, we will present an efficient algorithm for this model.

4 Efficient Computation

In this section we present an efficient algorithm for the proposed model. Due
to space limitations we just present a short overview. Since calculating the op-
timal clustering according to Def. 5 is NP-hard, our algorithm determines an
approximative solution. The general processing scheme is shown in Fig. 3 and
basically consists of two cyclically processed phases to determine the clusters.
Thus, instead of generating the whole set of clusters Clusters and selecting the
subset Result afterwards, we iteratively generate promising clusters, which are
added to the result.

Phase 1: In the first phase of each cycle a set of cluster candidates is generated
based on the following procedure: A time series p acting as a prototype for
these candidates is randomly selected, and this prototype is contained in each
cluster candidate of this cycle. The cluster candidates, i.e. groups of time series
Oi, are obtained by successively adding objects xi to the previous group, i.e.
Oi+1 = Oi ∪ {xi} with O0 = {p}. Since the interestingness of a cluster depends
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generate cluster candidates & 
select best cluster candidate

redundancy avoidance 
and optimization

clustering 
resultdatabase

cyclic processing of the two phases

Fig. 3. Processing scheme of the algorithm

on its size, which is constant for Oi, and the length of the intervals, the choice
of xi is completely determined based on the latter. Accordingly, the best object
x0 is the one which would induce the longest interval interval patterns w.r.t. p
(summed over all dimension).

An interval pattern for the prototype p and x0 at the beginning can poten-
tially include each point in time. Interval patterns for the subsequent objects
xi, however, have to be restricted to the relevant intervals of Oi. Overall, we
generate a chain of groups Oi containing objects with a high similarity to p.
Based on these candidates we select the set O+ with the highest interestingness,
i.e. according to Def. 4 we combine the size with the interval lengths.

Phase 2: In the second phase, a cluster C for the object set O+ should be
added to the current result Resj. In the first cycle of the algorithm the result is
empty (Res0 = ∅), whereas in later cycles it is not. Thus, adding new clusters
could induce redundancy. Accordingly, for cluster C we determine those clusters
C′ ∈ Resj with similar relevant intervals (cf. Def. 3). For this set we check
if a subset of clusters M covering similar objects as C exists. If not, we can
directly add C to the result. In case such a set M exists, we test whether the
(summed) interestingness of M is lower than the one of C. In this case, selecting
C and removing M is beneficial. As a further optimization we determine the
union of C’s and M ’s objects, resulting in a larger cluster U with potentially
smaller intervals. If U ’s interestingness exceeds the previous values, we select
this cluster. This procedure is especially useful if clusters of previous iterations
are not completely detected, i.e. some objects of the clusters were missed. This
step improves the quality of these clusters by adding further objects. Overall,
we generate a redundancy-free clustering solution and simultaneously maximize
the interestingness as required in Def. 5.

By completing the second phase we initiate the next cycle. In our algorithm
the number of cycles is not a priori fixed but it is adapted to the number of
detected clusters. We perform c · |Resj| cycles. The more clusters are detected,
the more prototypes should be drawn and the more cycles are performed. Thus,
our algorithm automatically adapts to the given data.

In the experimental evaluation, we will demonstrate the efficiency and effec-
tiveness of this algorithm w.r.t. large scale data.
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Fig. 4. Performance under different parameter settings

5 Experiments

We evaluate our TimeSC in comparison to six competing solutions, namely
kMeans, a kMeans using statistical features for multivariate time series [19],
Proclus [1], MineClus [21], and MIC [16]. We also included kMedoid, where we
used the Longest Common Subsequences (LCSS) [18] as a distance measure to
allow for partial comparison in the distance computation. We also compared
to TriCluster [22], which was provided by the authors on their webpage, but it
either delivered no result or the obtained accuracy was very low (≤ 3%); there-
fore we no longer included it in the experiments. For TimeSC, we used w = 30
for the compactness parameter. For the redundancy model, we used λobj = 0.5
and λint = 0.9. Some of the competing algorithms are not suitable for large
datasets; thus, in some experiments, we could not obtain all values. If not stated
otherwise, we use the following settings for our synthetic data generator: The
dataspace has an extend of [-100,+100], time series length is 200, clusters length
is 100, the dataset dimensionality is 10, the number of relevant dimensions per
cluster is 5, the number of clusters is 10, the average number of time series per
cluster is 25, and there is 10% noise (outliers) in the data. The experiments were
performed on AMD Opteron servers with 2.2GHz per core and 256GB RAM. In
the experiments, the F1 measure is used to measure accuracy of the obtained
clusterings [5,13], and the values are averages of three runs.
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Fig. 5. Performance w.r.t. different number of relevant dimensions and points in time

5.1 Evaluation w.r.t. Effectiveness

Performance on different variations of our standard dataset is analyzed in Fig. 4
and Fig. 5. In Fig. 4(a) and 4(b) we change the dataset size by enlarging either
the length of the included time series or the number of attributes per time series.
In both experiments, our TimeSC outperforms all competing solutions by a sig-
nificant margin. Runner ups are the 2D subspace clustering algorithms MineClus
and Proclus, which achieve about 80% accuracy. The standard fullspace cluster-
ing approach kMeans also performs surprisingly well with about 60% accuracy.
The statistical kMeans approach, which was specifically introduced for clustering
multivariate time series, however, performs worse than the original kMeans ap-
proach. The Triclustering (3D) approach MIC is outperformed by both kMeans
variants. This was not expected, as MIC is designed for temporal data. And
finally, the LCSS-based kMedoid only achieves about 20% accuracy in both ex-
periments.

Next, we enlarge the data by increasing the number of clusters (Fig. 4(c)) and
by increasing the number of time series per cluster (Fig. 4(d)). With an increas-
ing number of clusters, TimeSC and Proclus achieve stable results, while the
accuracies of the other competing approaches continuously sink. For an increas-
ing number of time series per cluster, all the algorithms achieve stable results.
Overall, TimeSC outperforms the competing solutions in all settings.

In Fig. 5(a) and 5(b) we change the number of relevant dimensions per cluster
and the number of relevant points in time per cluster, i.e. the minimal cluster
length. Overall, the obtained accuracies are similar to the preceding experiments.
TimeSC outperforms the other methods, and from these methods only the 2D
subspace clustering algorithms can achieve stable results of about 80% accuracy.
Also, as expected, with increasing relevant dimensions and relevant points in
time, finding clusters in the data becomes simpler which is expressed by the
strong increase in accuracy for the standard kMeans algorithm. This, however,
does not hold for the statistical kMeans, whose accuracy sinks with increasing
relevant dimensions and points in time.
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Fig. 6. Efficiency comparison (log. scale)

5.2 Evaluation w.r.t. Efficiency

Our algorithm is designed for larger datasets. To show this, we scaled the exper-
iments from Fig. 4 to much higher values, as shown in Fig. 6. For example, the
database size for the last step (70, 000 time series) in Fig. 6(d) is 12.32 GB. The
experiments illustrate that only the kMeans algorithms and TimeSC are suitable
for the larger datasets. Due to the high runtimes, many values could not be ob-
tained for the other approaches. From the subspace and triclustering algorithms,
only Proclus shows acceptable runtimes, while the results of MineClus and MIC
indicate that these algorithms are not applicable for larger datasets.

6 Conclusion

We introduced a novel model for subspace clustering of multivariate time se-
ries data. The clusters in our model are formed by individual sets of relevant
intervals per dimension, which together fulfill temporal coherence. We develop
a redundancy model to avoid structurally similar clusters and introduce an ap-
proximate algorithm for generating clusterings according to our novel model.
In the experimental comparison, we showed that our approach is efficient and
generates clusterings of higher quality than the competing methods.
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5. Günnemann, S., Färber, I., Müller, E., Assent, I., Seidl, T.: External evaluation
measures for subspace clustering. In: ACM CIKM, pp. 1363–1372 (2011)

6. Hu, Z., Bhatnagar, R.: Algorithm for discovering low-variance 3-clusters from real-
valued datasets. In: IEEE ICDM, pp. 236–245 (2010)

7. Jiang, D., Pei, J., Ramanathan, M., Tang, C., Zhang, A.: Mining coherent gene clus-
ters from gene-sample-time microarray data. In: ACM SIGKDD, pp. 430–439 (2004)

8. Jiang, H., Zhou, S., Guan, J., Zheng, Y.: gTRICLUSTER: A More General and
Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data. In: Li,
J., Yang, Q., Tan, A.-H. (eds.) BioDM 2006. LNCS (LNBI), vol. 3916, pp. 48–59.
Springer, Heidelberg (2006)

9. Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A., Holmes, G., Pfahringer,
B.: An effective evaluation measure for clustering on evolving data streams. In:
ACM SIGKDD, pp. 868–876 (2011)
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Abstract. Most methods for finding community structure are based on the prior 
knowledge of network structure type. These methods grouped the communities 
only when known network is unipartite or bipartite. This paper presents a vertex 
similarity probability (VSP) model which can find community structure without 
priori knowledge of network structure type. Vertex similarity, which assumes 
that, for any type of network structures, vertices in the same community have 
similar properties. In the VSP model, “Common neighbor index” is used to 
measure the vertex similarity probability, as it has been proved to be an effective 
index for vertex similarity. We apply the algorithm to real-world network data. 
The results show that the VSP model is uniform for both unipartite networks and 
bipartite networks, and it is able to find the community structure successfully 
without the use of the network structure type.  

Keywords: community structure, type of the network structure, vertex 
similarity, common neighbor index. 

1 Introduction 

As part of the recent surge of research on large, complex networks, attention has been 
devoted to the computational analysis of complex networks [1-4]. Complex networks, 
such as social networks and biological networks, are all highly dynamic objects which 
grow and change quickly over time. These networks have a common feature, namely 
“community structure”. Communities, also known as clusters or modules, are groups of 
vertices which could share common properties and/or have similar roles within the 
graph [5]. Finding community structure and clustering vertices in the complex network, 
is key to learning a complex network topology, to understanding complex network 
functions, to founding hidden mode, to link prediction, and to evolution detection. 
Through the analysis of community structure, researchers have achieved a lot results, 
such as in [6, 7], V. Spirin et al. revealed the relationship between protein function and 
interactions inherent; in [8, 9], Flake et al. found the internal relations of hyperlink and 
the main page; in [10, 11], Moody et al. identified the social organizations to evolve 
over time and so on.  



 A Vertex Similarity Probability Model for Finding Network Community Structure 457 

The most popular method for finding community structure is the modularity 
matrix method [12, 13] proposed by Newman et al. which is based on spectral 
clustering. The Modularity model proves that, if the type of the network structure is 
known, modularity optimization is able to find community structure in both unipartite 
and bipartite networks by the maximum or minimum eigenvalue separately. Then, 
some scientists have sought to detect the community in bipartite networks like Michael 
J. Barber [14]. BRIM proposed by Barber and his colleagues can determine the number 
of communities of a bipartite network. Furthermore, in [15], Barber and Clark use the 
label-propagation algorithm (LPA) for identifying network communities. However, 
[14, 15] can not be used without knowing the type of network. 

There are other methods to find community structure. Hierarchical clustering is 
adopted frequently in finding community structures, in which vertices are grouped into 
communities that further are subdivided into smaller communities, and so forth, as in 
[12]. Clauset, Moore and Newman propose HRG [16] using the maximum likelihood 
estimation to forecast the probability of connections between vertices. Hierarchical 
methods perform remarkably in clear hierarchy network, but not so impressive under 
contrary circumstance. Moreover, a hierarchical method always has high 
computational complexity. In 2009, Roger Guimera and Marta Sales-Pardo proposed a 
stochastic block model [17] based on HRG. Different from traditional concept which 
divide network by principle of “inside connection dense outside sparse”, in [17], the 
probability that two vertices are connected depends on the blocks to which they belong. 
However, the assumption that vertices in same blocks have same connection 
probability is not accurate. Recently, Karrer and Newman [18] also proposed a 
stochastic block model which considers the variation in vertex degree. This stochastic 
block model solves the heterogeneous vertex degrees problem and got a better result 
than other previous researches without degree correction. It can be used in both types of 
networks, but different types of networks should be dealt with separately none the less. 

In some cases, researchers have no priori knowledge of the network structure. For 
example, when we know the interaction of vertex in the protein network, we may have 
no knowledge of the network structure type. Moreover, when we get a network which 
consists of people’s relationships in schools, the type of network may not be sure. It is 
because that if links only exist between students, the network will be a unipartite 
network; or if links exist between students and teachers, the network will be a bipartite 
one. An effective method used for finding community structure in both unipartite and 
bipartite networks is needed.  

It is discussed before that most methods deal with the unipartite network or 
bipartite network separately, because the properties of networks are different in 
different types of the network structure. Unipartite networks assume that connections 
between the vertices in same community are dense, and between the communities are 
sparse, such as Social network [19], biochemical network [20] and information network 
[21]. However, some real networks are bipartite with edges joining only vertices of 
different communities, such as shopping networks [22], protein-protein interaction 
networks [23], plant-animal mutualistic networks [24], scientific publication networks 
[25], etc. Although the properties of “edges” in the two types of networks are different, 
vertices in the same communities should be similar because vertices in same 
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communities have similar properties. In this paper, we develop a uniform VSP model 
which is based on the vertex similarity. Therefore, the VSP model can be used in any 
type of networks as long as we put similar vertices in same communities. The VSP 
model gets ideal result both by theoretical proof and experimental analysis.  

The paper is organized as follows. In section 2, we prove vertex similarity theory is 
suitable for finding community structure. We present the VSP model and the method to 
group network into two communities in section 3. In section 4, we make the experiment 
in both unipartite and bipartite network. Compared with Newman’s modularity, the 
VSP model is an accurate uniform model which can find community structure without 
prior knowledge of type of the network structure. Finally, we draw our conclusions.  

2 Vertex Similarity in Finding Community Structure 

The concept of community informs that vertices in the same community should share 
common properties no matter in unipartite or bipartite network. It means that vertices in 
the same community should be similar, although edges in different type of the network 
structures are connected in different ways. Therefore, we change our focus from 
“edges” to “vertices” for finding communities. 

Vertex similarity is widely studied by researchers in complex network. It is 
sometimes called structural similarity, to distinguish it from social similarity, textual 
similarity, or other similarity types. It is a basic premise of research on networks that 
the structure of a network reflects real information about the vertices the network 
connects, so it is reasonable that meaningful structural similarity measures might exist 
[26]. In general, if two vertices have a number of common neighbors, we believe that 
these two vertices are similar. In community detection, we assume that two similar 
vertices have similar properties and should be grouped in the same community. 

Let 
xΓ  be the neighborhood of vertex x in a network, i.e., the set of vertices that 

are directly connected to x via an edge. Then
x yΓ ∩ Γ is the number of common 

neighbors of x and y. Common neighbor index, Salton index, Jaccard index, Sorenson 
index, LHN (Leicht-Holme-Newman) index, and Adamic-Adar index [27-31] are five 
famous methods for vertex similarity. Many researchers have analyzed and compared 
these methods. Liben-Nowell[32] and Zhou Tao[33] proved that the simplest 
measurement “common neighbor index” performs surprisingly well. We use “common 
neighbor index” to measure the vertex similarity in our VSP model. 

Definition 1. For two vertices x and y, if there is a vertex z to be the neighbor of x 
and y at the same time, we call x and y a pair, denoted as pair(x, y). z is called the 
common neighbor of pair(x, y). 

Since vertices which are in the same community have similar properties, we assume 
vertices in the same community are similar vertices. The more similar the vertices 
inside a community are the more common neighbors they have. The number of 
common neighbors 

ijN  of vertices i and j is given by,   

ij i jN = Γ ∩ Γ , and 0iiN = . 
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The sum of common neighbors with vertices in same communities inN is given by 

, same
commumity
i jin ijN N∈=∑ . 

And the sum of common neighbors with vertices in different communities outN is 

given by 

, same
commumity
i jout ijN N∉=∑ . 

Therefore, the task of maximizing the number of common neighbors in the same 
community is to get max( )inN  or to get min( )outN . The sum of common neighbors in 

the network R is given by 

 
,

1

2 iji j n
R N

∈
= ∑ .   

We define the adjacency matrix A to be the symmetric matrix with elements ijA . 

If there is an edge joining vertices i and j, 1ijA = ; if no, 0ijA = . Define ia as i th 

vector of A, so as A can be rewritten as [ ]A = 1 2 na ,a , ...,a . If and only if 1ik kjA A = , the 

vertex k is a common neighbor of vertices i and j. Therefore 
ijN  can be rewritten as 

ij ik kjk
N A A= = ⋅∑ i ja a , 

when i and j are two different vertices. As ik⋅ =i ia a , matrix N is  
T

kN A A= − Λ , 

where 
1 2( , ,..., )k ndiag k k kΛ = . It allows us to rewrite R as 

,
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(1)

Definition 2. According to Eq.(1), R is only related to a function of vertex degree. 
To analyze the relationship between a vertex x and common neighbor index, we define 
the function as a common neighbor degree index, denoted as 

xc . Let  

( 1) / 2x x xc k k= − . Therefore, 
xx n

R c
∈

=∑ .   
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Total number of common neighbors in the network equals the number of common 
neighbors in same communities plus the number of common neighbors different 
communities, R also can be written as 

in outR N N= + . 

The following proves that using common neighbor index in finding community 
structure is suitable in both unipartite networks and bipartite networks. 

2.1 Common Neighbor Index in Unipartite Network 

For a unipartite network, the basic community detection principle is “edges inside 
communities are dense, outside are sparse”. Let the sum of edges with vertices in 
different communities is

outA , where  

, same
commumity
i jout ijA A∉=∑ . 

The task is to minimize
outA , written as min( )outA . 

Suppose i and j are two vertices in different communities. If i and j are connected, 
there are 1ik −  pairs (where 

ik  is the degree of i) with a common neighbor i, each of 

which is formed by j and a neighbor of i. In a unipartite network, neighbors of a vertex 
are almost in the same community. As a result, for i, most of its neighbor should be in 
the same community with i except j (if j is a neighbor of i). As shown in Fig. 1. 

 

 

Fig. 1. An example of two vertices in different communities in a unipartite network 

If i and j are not connected, no common neighbor is counted. Therefore the 
number of common neighbors with pairs of vertices in different communities is 

, same
commumity

( 1)i jout ij iN A k∉= −∑  
(2)

A is symmetric which allows us to rewrite Eq.(2) as 

, same
commumity
and i<j

( 2)i j
out ij i jN A k k∉= + −∑   

(3)

For two vertices i and j in different communities, 
outN is related to 

ijA , ik and 
jk . 

If there is an edge between i and j, 
outA  will plus 1 and 

outN  will plus 2i jk k+ − . As 

2 0i jk k+ − ≥ , we consider  
outA  and 

outN have the same growth trend. It means 

getting min( )outN  is equivalent to getting min( )outA . The conclusion is in line with the 

basic principles of the unipartite network community detection. 
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2.2 Common Neighbor Index in Bipartite Network 

For a bipartite network, the basic community detection principle is “edges inside 
communities are sparse, outside are dense”. The task is to maximize

outA , written as 

max( )outA . 

In a bipartite network, almost all adjacent vertices are in different communities. 
For a pair of vertices which are in the same community, the common neighbor should 
be in a different community, as shown in Fig. 2.   

 

 

Fig. 2. An example of two vertices in same communities in a bipartite network 

As a result, for any pair of vertices i and j which are in the same community, 
ijN  

have 2 ijN edges between different communities. In the overall network, each edge will 

be counted ( 2)i jk k+ −  times. 

, same
commumity

2 ( 2)i jin ij i jN A k k∉= + −∑ . (4)

A is symmetric which allows us to rewrite Eq.(4) as 

, same
commumity
and i<j

( 2)i j
in ij i jN A k k∉= + −∑

 
 (5)

Similar as section 2.1, we consider 
outA  and 

inN have same growth trend. It 

means getting max( )inN  is equivalent to getting max( )outA . The conclusion is in line 

with the basic principles of the bipartite network community detection. 
In summary of section 2.1 and 2.2, the common neighbor index of vertex 

similarity is suitable for finding community structure in both unipartite and bipartite 
networks. 

3 A VSP Model for Finding Community Structure  

In this section, we propose our VSP model to find community structure. In [13], 
Newman et al. proved that a good division of a network in to communities “in which 
the number of edges inside groups is bigger than expected”. It can get a better result 
than the measures based on pure numbers of edges between communities. Similarly, a 
good division of a network into communities should be one which the number of 
common neighbors within communities is bigger than expected. Let 
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Q=(common neighbors within communities-

       expected number of such common neighbors)
. (6)

It is a function that divides the network into groups, with larger values indicating 
stronger community structure. We build a random network in which vertices have same 
common neighbor degrees as the vertices in the complex network, and assume the 
expected number of common neighbors as the number in the random network. In 
section 2, we have proved that common neighbor index can be used to find 

communities instead of edges. However, we can also find that outN  in unipartite 

network and inN in bipartite network are both affected not only by edges but also by 

vertex degree. It is known that common neighbor degree ic  is a function of ik  and R 

is the sum of ic . We use ic  to calculate the common neighbors in the random 
network. The probability of a random vertex to be a common neighbor of a particular 

vertex i depends only on the expected common neighbor degree ic . The probabilities 
of a random vertex to be a common neighbor of two vertices are independent on each 

other. This implies that the expected number of common neighbors ijP
between vertices 

i  and j  is the product 
( ) ( )i jf c f c

 of separate functions of the two common 
neighbor degrees, where the functions must be the same since 

ijP  is symmetric. Hence 

( )i if c Cc=  for some constant C, 

2 2

,
( ) ( )ij i ji j n i j

P f c f c C R
∈

= =∑ ∑ ∑  (7)

Vertices in random network have the same common neighbor degree just like in 

complex network, 
, ,

2ij iji j n i j n
P N R

∈ ∈
= =∑ ∑ . So, 2

C
R

= and 

 2
( )i if c c

R
=

 
 (8)

We get the expected number of common neighbors of pair(x, y) as follows, 

2
( ) ( ) x y

ij i j

c c
P f c f c

R
= = . (9)

The VSP model can be written, 

, same
community

21
[ ]

2
i j

i j ij

c c
Q N

R R
∈= −∑ . (10)

What we should notice is that, 

, ,

2
2 2

j ii j j n i n
iji j n i j n

c cc c
R N

R R
∈ ∈

∈ ∈
= = =
∑ ∑∑ ∑ . (11)
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Thus, 

,

21
[ ] 0

2
i j

iji j n

c c
N

R∈
− =∑  (12)

Let 

2 i j
ij ij

c c
B N

R
= − . (13)

B is the VSP matrix, and
,

0iji j n
B

∈
=∑ .  

We use the VSP matrix instead of modularity matrix to find the community 
structure. In the VSP model, the higher value of Q, the more similar vertices are in the 
same community. It can be applied to both unipartite networks and bipartite networks 
without knowing the exact type of network structure in advance. It is more flexible than 
the previous methods which deal with the grouping separately according to the type of 
the network structure. 

4 Experimental Results 

In this section, we apply the VSP model to a unipartite network and two bipartite 
networks with Pajek [34]. The unipartite network shows the dolphin social network 
studied by Lusseau et al. [35]. The bipartite networks show the interactions of women 
in the American Deep South at various social events [36] and Scotland Corporate 
Interlock in early twentieth century [37]. 

Since we know the actual communities for the real networks, we measure the 
accuracy of the VSP model by directly comparing with the known communities. We 
take use of the normalized mutual information Inormn [38] for the comparison. When the 
found communities match the real ones, we have Inorm=1, and when they are 
independent of the real ones, we have Inorm=0. 

We compare the VSP model with the Modularity model in unipartite networks and 
bipartite networks by three properties: the edges outside communities; Q of the 
Modularity model, where Q is the edges within communities minus expected number 
of such edges, written as Q-Modularity; and Inorm. 

4.1 Finding Community Structure in Unipartite Network 

Q in Eq. (6) is written as Q-VSP in this section. For a unipartite network, the VSP 
model maximizes Q-VSP to find the community structure, while the Modularity model 
maximizes Q-Modularity. 

The dolphin social network is a classical unipartite social network. The vertices in 
this network represent 62 bottlenose dolphins living in Doubtful Sound, New Zealand, 
with social ties between dolphin pairs established by direct observation over a period of 
several years. It is used a lot in community detection because the dolphin group split 
into two smaller subgroups following the departure of the population. Fig.3 shows the 
clustering results using the VSP model and the Modularity model respectively. 
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Two red vertices are grouped into the green community in the VSP model, while 
three red vertices are grouped into the green community in the Modularity model.  

In a unipartite network, edges inside the communities are dense, while outside are 
sparse. Edges outside communities should be small; Q-Modularity should be large; 
Inorm close to 1. Properties of the dolphin social network are shown in Table.1. It shows 
that two properties of VSP model are better than the Modularity model in this unipartite 
network. Q-Modularity of the VSP model is 0.381 which is approximately equal to the 
one of the Modularity model. The VSP model performs well in unipartite networks. 

 
Fig. 3. Finding community structures of the dolphin social network. The red and green vertices 
represent the division of the network. The solid curve represents the division of the VSP model.. 
The dotted curve represents the division of the Modularity model. 

Table 1. Properties of the dolphins social network 

 Edges outside communities Q-Modularity Inorm 

VSP 8 0.381 0.813 

Modularity 9 0.386 0.752 

4.2 Finding Community Structure in Bipartite Network  

In a bipartite network, the VSP model also maximizes Q-VSP to find the community 
structure, the Modularity model minimizes Q-Modularity, which is contrary to in the 
unipartite network. 

 
Fig. 4. Find community structures of Southern women network using the VSP model 

VSP

Modularity
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The Southern women data set describes the grouping of 18 women in 14 social 
events constitute a bipartite network; and an edge exists between a woman and a social 
event if the woman was in attendance at the event. We use this network here to group it 
into two communities, shown in Fig.4. It shows that the VSP model groups the network 
accurately into two communities of “women” and “events”. 

Although using other finding community structure methods can also get the same 
result, they should know the type of the network in advance. For example, in 
modularity, it gets the smallest value of the Modularity model but not the biggest 
because the southern women network is a bipartite network. 

As a second example of bipartite network, we consider a data set on Scotland 
Corporate Interlock in early twentieth century. The data set is characterized by 108 
Scottish firms, detailing the corporate sector, capital, and board of directors for each 
firm. The data set includes only those board members who held multiple directorships, 
totaling 136 individuals. Unlike the Southern women network, the Scotland corporate 
interlock is not connected. We got the division of one community with 102 vertices and 
the other with 142 vertices when Q-VSP is the maximum value. 

We also compare three properties of the VSP model and the Modularity model. In a 
bipartite network, edges inside the communities are sparse, while outside are dense. 
Edges outside communities should be large; Q-Modularity should be small; Inorm close 
to 1. Properties of the Scotland corporate interlock are shown in Table 2.  All the three 
properties of the VSP model are better than the Modularity model. It proves that the 
VSP model also finds community structure accurately in bipartite networks. 

Table 2. Properties of Scotland corporate interlock network 

 Edges inside communities Q-Modularity Inorm 

VSP 47 -0.372 0.767 

Modularity 150 -0.169 0.377 

 
In summary of section 4.1 and 4.2, the VSP model is a uniform model for finding 

community structure which can be used in both unipartite networks and bipartite 
networks. It is flexible and applicable to a wide range. For instance, in the protein 
network which people only knows its tip of iceberg, the VSP model can find the 
community structure only with the topology of the network, even when we have no idea 
of the type of the network structure. 

5 Conclusion 

In this paper, we define a VSP model for finding the community structure in complex 
networks. The VSP model is based on the vertex similarity using the common neighbor 
index. As common neighbor index is proved an effective measurement of the vertex 
similarity methods in complex network, it is applied to the VSP model to measure the 
vertex similarity. We prove that calculating the common neighbor inside communities 
of the network is equivalent to calculation the least edges outside communities in a 
unipartite network and the most edges outside communities in a bipartite network. 
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Therefore, it is suitable for finding community structure in both unipartite and bipartite 
network. Then we give the expectation of the common neighbor between any two 
vertices and gave the VSP model. At last, we apply our model in the dolphin social 
network, Southern women event network and Scotland corporate interlock network 
separately. Results showed that the VSP model is effective for finding community 
structure without the need of the network structure type. 
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Abstract. The wide development of mobile applications provides a considera-
ble amount of data of all types. In this sense, Mobile Context-aware Recom-
mender Systems (MCRS) suggest the user suitable information depending on 
her/his situation and interests. Our work consists in applying machine learning 
techniques and reasoning process in order to adapt dynamically the MCRS to 
the evolution of the user’s interest. To achieve this goal, we propose to combine 
bandit algorithm and case-based reasoning in order to define a contextual rec-
ommendation process based on different context dimensions (social, temporal 
and location). This paper describes our ongoing work on the implementation of 
a MCRS based on a hybrid-ε-greedy algorithm. It also presents preliminary re-
sults by comparing the hybrid-ε-greedy and the standard ε-greedy algorithm.  

Keywords: Machine learning, contextual bandit, personalization, recommender 
systems, exploration/exploitation dilemma. 

1 Introduction  

Mobile technologies have made access to a huge collection of information, anywhere 
and anytime. Thereby, information is customized according to users’ needs and prefe-
rences. This brings big challenges for the Recommender System field. Indeed, tech-
nical features of mobile devices yield to navigation practices which are more difficult 
than the traditional navigation task. 

A considerable amount of research has been done in recommending relevant informa-
tion for mobile users. Earlier techniques [8, 10] are based solely on the computational 
behavior of the user to model his interests regardless of his surrounding environment 
(location, time, near people). The main limitation of such approaches is that they do not 
take into account the dynamicity of the user’s context. This gives rise to another category 
of recommendation techniques that tackle this limitation by building situation-aware user 
profiles. However, these techniques have some problems, namely how to recommend 
information to the user in order to follow the evolution of his interest. 

In order to give Mobile Context-aware Recommender Systems (MCRS) the capa-
bility to provide the mobile user information matching his/her situation and adapted to 
the evolution of his/her interests, our contribution consists of mixing bandit algorithm 
(BA) and case-based reasoning (CBR) methods in order to tackle these two issues: 
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• Finding situations that are similar to the current one (CBR);  
• Making the deal between exploring the user interests and recommending the most 

relevant content according to the current situation (BA). 

The remainder of the paper is organized as follows. Section 2 reviews some related 
works. Section 3 presents the proposed recommendation algorithm. The experimental 
evaluation is described in Section 4. The last Section concludes the paper and points 
out possible directions for future work.  

2 Background 

We reference in the following recent relevant recommendation techniques that tackle 
the both issues namely: following the evolution of user’s interests and managing the 
user’s situation. 

2.1 Following the Evolution of User’s Interests 

The trend today on recommender systems is to suggest relevant information to users, 
using supervised machine learning techniques. In these approaches, the recommender 
system has to execute two steps: (1) The learning step, where the system learns from 
samples and gradually adjusts its parameters; (2) The exploitation step, where new 
samples are presented to the system to perform a generalization [14].  

These approaches suffer from difficulty in following the evolution of the user’s in-
terests. Some works found in the literature [3, 11] address this problem as a need for 
balancing exploration and exploitation studied in the “bandit algorithm”. A bandit 
algorithm B exploits its past experience to select documents that appear more fre-
quently. Besides, these seemingly optimal documents may in fact be suboptimal, due 
to imprecision in B’s knowledge. In order to avoid this undesired situation, B has to 
explore documents by actually choosing seemingly suboptimal documents so as to 
gather more information about them. Exploitation can decrease short-term user’s sa-
tisfaction since some suboptimal documents may be chosen. However, obtaining in-
formation about the documents’ average rewards (i.e., exploration) can refine B’s 
estimate of the documents’ rewards and in turn increase long-term user’s satisfaction. 
Clearly, neither a purely exploring nor a purely exploiting algorithm works best in 
general, and a good tradeoff is needed. The authors on [3, 11] describe a smart way to 
balance exploration and exploitation in the field of recommender systems. However, 
none of them consider the user’s situation during the recommendation. 

2.2 Managing the User’s Situation  

Few research works are dedicated to manage the user’s situation on recommendation. 
In [1, 4,5] the authors propose a method which consists of building a dynamic situa-
tion and user profile based on time and user’s experience. The user’s preferences and 
interests in the user profile are weighted according to the situation (time, location) and 
user behavior. To model the change on user’s preferences according to his temporal 
situation in different periods, like workday or vacations, the weighted association for 
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the concepts in the user profile is established for every new experience of the user. 
The user activity combined with the user profile are used together to filter and rec-
ommend relevant content. 

Another work [2] describes a MCRS operating on three dimensions of context that 
complement each other to get highly targeted. First, the MCRS analyzes information 
such as clients’ address books to estimate the level of social affinity among users. 
Second, it combines social affinity with the spatiotemporal dimensions and the user’s 
history in order to improve the quality of the recommendations.  

Each work cited above tries to recommend interesting information to users on con-
textual situation; however they do not consider the evolution of the user’s interest. 

To summarize, none of the mentioned works tackles both problems. This is pre-
cisely what we intend to do with our approach, exploiting the following new features:  

• Inspired by models of human reasoning developed by [7] in robotic, we propose to 
consider the user's situation in the bandit algorithm by using the case-based reason-
ing technique, which is not considered in [3, 4, 14].  

• In [3, 14] authors use a smart bandit algorithm to manage the explora-
tion/exploitation strategy, however they do not take into account the content in the 
strategy. Our intuition is that, considering the content when managing the explora-
tion/exploitation strategy will improve it. This is why we propose to use content-
based filtering techniques together with ε-greedy algorithm.  

In what follows, we summarize the terminology and notations used in our contribu-
tion, and then we detail our methods for inferring the recommendation.  

3 The Proposed MCRS Algorithm 

3.1 Terminology and Notations  

User Profile. The user profile is composed of the user’s personal data and other dy-
namic information, including his preferences, his calendar and the history of his inte-
ractions with the system.  

User Preferences. Preferences are deduced during user navigation activities. They 
contain the set of navigated documents during a situation. A navigation activity ex-
presses the following sequence of events: (i) the user logs in the system and navigates 
across documents to get the desired information; (ii) the user expresses his/her prefe-
rences on the visited documents. We assume that a visited document is relevant, and 
thus belongs to the user’s preferences, if there are some observable user’s behaviors 
through 2 types of preference:  

• The direct preference: the user expresses his interest in the document by inserting a 
rate, like for example putting stars (“*”) at the top of the document.  

• The indirect preference: it is the information that we extract from the user system 
interaction, for example the number of clicks or the time spent on the visited doc-
uments. 
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Let UP be the preferences submitted by a specific user to the system at a given situa-
tion. Each document in UP is represented as a single vector d=(c1,...,cn), where ci (i=1, 
.., n) is the value of a component characterizing the preferences of d. We consider the 
following components: the total number of clicks on d, the total time spent reading d, 
the number of times d was recommended, and the direct preference rate on d.  

History. All the interactions between the user and the system are stored together with 
the corresponding situations in order to exploit this data to improve the recommenda-
tion process. 

Calendar. The user’s calendar has information concerning the user’s activities, like 
meetings. Time and location information is automatically inferred by the system. 

User Situation. A situation S is represented as a triple whose features X are the values 
assigned to each dimension: S = (Xl, Xt, Xs), where Xl (resp. Xt and Xs) is the value of 
the location (resp. time and social) dimension. 

Suppose the user is associated to: the location "48.8925349, 2.2367939" from his 
phone’s GPS; the time "Mon Oct 3 12:10:00 2011" from his phone’s watch; and the 
meeting with Paul Gerard from his calendar.  To build the situation, we associate to 
this kind of low level data, directly acquired from mobile devices capabilities, more 
abstracted concepts using ontologies reasoning means.  

• Location: We use a local spatial ontology to represent and reason on geographic 
information. Using this ontology, for the above example, we get, from location 
"48.8925349, 2.2367939", the value “Paris” to insert in the location dimension of 
the situation.     

• Time: To allow a good representation of the temporal information and its manipu-
lation, we propose to use OWL-Time ontology [6] which is today a reference for 
representing and reasoning about time. We propose to base our work on this ontol-
ogy and extend it if necessary. Taking the example above, for the time value "Mon 
Oct 3 12:10:00 2011", we get, using the OWL-Time ontology, the value “work-
day”.  

• Social connection: The social connection refers to the information of the user’s 
interlocutors (e.g. a friend, an important customer, a colleague or his manager). We 
use the FOAF Ontology [9] to describe the social network by a set of concepts and 
properties. For example, the information about “the meeting with Paul Gerard” can 
yield the value “wine client” for the social dimension.  

3.2 The Bandit Algorithm 

In our MCRS, documents’ recommendation is modeled as a multi-armed bandit prob-
lem. Formally, a bandit algorithm proceeds in discrete trials t = 1,…T.  For each trial 
t, the algorithm performs the following tasks: 

• Task 1. It observes the current user ut and a set At of arms together with their fea-
ture vectors xt,a for a ∈ At. The vector xt,a summarizes information of both user ut 
and arm a, and is referred to as the context.  
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• Task 2. Based on observed rewards in previous trials, it chooses an arm at∈ At, and 
receives reward 

tatr ,
 whose expectation depends on both the user ut and the arm at.  

• Task 3. It improves its arm-selection strategy with the new observation, 
 (

tt attat rax ,, ,, ). It is important to emphasize here that no feedback (namely the re-

ward rt,a) is observed for unchosen arms a ≠ at. 

In tasks 1 to 3, the total T-trial reward of A is defined as ∑ =

T

t at t
r

1 ,
while the optimal 

expected T-trial reward is defined as [ ]∑ =
Ε T

t at t
r

1 , * where at
* is the arm with maxi-

mum expected reward at trial t. Our goal is to design the bandit algorithm so that the 
expected total reward is maximized.  

In the field of document recommendation, we may view documents as arms. When 
a document is presented to the user and this one selects it by a click, a reward of 1 is 
incurred; otherwise, the reward is 0. With this definition of reward, the expected re-
ward of a document is precisely its Click Through Rate (CTR). The CTR is the aver-
age number of clicks on a recommended document, computed diving the total number 
of clicks on it by the number of times it was recommended. Consequently, choosing a 
document with maximum CTR is equivalent, in our bandit algorithm, to maximizing 
the total expected rewards. 

3.3 The Proposed Hybrid-ε-greedy Algorithm 

There are several strategies which provide an approximate solution to the bandit prob-
lem. Here, we focus on two of them: the greedy strategy, which always chooses the 
best arms, thus uses only exploitation; the ε-greedy strategy, which adds some greedy 
exploration policy, choosing the best arms at each step if the policy returns the greedy 
arms (probability = ε) or a random arms otherwise (probability = 1 – ε). 

We propose a two-fold improvement on the performance of the ε-greedy algo-
rithm: integrating case base reasoning (CBR) and content based filtering (CBF). This 
new proposed algorithm is called hybrid-ε-greedy and is described in (Alg. 3).    

To improve exploitation of the ε-greedy algorithm, we propose to integrate CBR 
into each iteration: before choosing the document, the algorithm computes the simi-
larity between the present situation and each one in the situation base; if there is a 
situation that can be re-used, the algorithm retrieves it, and then applies an explora-
tion/exploitation strategy.  

In this situation-aware computing approach, the premise part of a case is a specific 
situation S of a mobile user when he navigates on his mobile device, while the value 
part of a case is the user’s preferences UP to be used for the recommendation. Each 
case from the case base is denoted as C= (S, UP). 

Let Sc=(Xl
c, Xt

c, Xs
c) be the current situation of the user, UPc the current user’s pre-

ferences and PS={S1,....,Sn} the set of past situations. The proposed hybrid-ε-greedy 
algorithm involves the following four methods. 

RetrieveCase() (Alg. 3) 
Given the current situation Sc, the RetrieveCase method determines the expected user 
preferences by comparing Sc with the situations in past cases in order to choose the 
most similar one Ss. The method returns, then, the corresponding case (Ss, UPs). 
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Ss is selected from PS by computing the following expression as it done in [4]: 
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PSS

,XXsimα =sS
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In equation 1, simj is the similarity metric related to dimension j between two situa-
tion vectors and αj the weight associated to dimension j. αj is not considered in the 
scope of this paper, taking a value of 1 for all dimensions. 

The similarity between two concepts of a dimension j in an ontological semantic 
depends on how closely they are related in the corresponding ontology (location, time 
or social). We use the same similarity measure as [12] defined by equation 2: 
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Here, LCS is the Least Common Subsumer of Xj
c and Xj

i, and depth is the number 
of nodes in the path from the node to the ontology root.  

RecommendDocuments() (Alg. 3) 
In order to insure a better precision of the recommender results, the recommendation 
takes place only if the following condition is verified: sim(Sc, Ss) ≥  B (Alg. 3), 
where B is a threshold value and  

( )∑
j

s
j

c
jj

sc ,XXsim) =, Ssim(S  

In the RecommendDocuments() method, sketched in Algorithm 1, we propose to 
improve the ε-greedy strategy by applying CBF in order to have the possibility to 
recommend, not the best document, but the most similar to it (Alg. 1). We believe this 
may improve the user’s satisfaction.  

The CBF algorithm (Alg. 2) computes the similarity between each document 
d=(c1,..,ck) from UP (except already recommended documents D) and the best docu-
ment db=(cj

b ,.., ck
b ) and returns the most similar one. The degree of similarity be-

tween d and db is determined by using the cosine measure, as indicated in equation 3: 
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Algorithm 1. The RecommendDocuments() method 
Input: ε, UPc, N  
Output:  D 
D = Ø 
For i=1 to N do  
    q = Random({0, 1})  
    j = Random({0, 1})     
         argmaxd (UP-D) (getCTR(d))             if j<q<ε  
    di=  CBF(UP

c-D, argmaxd (UP-D)(getCTR(d))    if q≤j≤ε  
         Random(UPc)                          otherwise   
    D = D ∪ {di} 
Endfor 
Return D 

∈

∈
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Algorithm 2. The CBF() method
Input: UP, db 
Output: ds 
ds= argmaxd (UP)(cossim(d

b, d)) 
Return ds  

UpdateCase() & InsertCase().  
After recommending documents with the RecommendDocuments method (Alg. 3), the 
user’s preferences are updated w. r. t. number of clicks and number of recommenda-
tions for each recommended document on which the user clicked at least one time. 
This is done by the UpdatePreferences function (Alg. 3).   

Depending on the similarity between the current situation Sc and its most similar 
situation Ss (computed with RetrieveCase()), being 3 the number of dimensions in the 
context, two scenarios are possible: 
- sim(Sc, Ss) ≠ 3: the current situation does not exist in the case base (Alg. 3); the In-
sertCase() method adds to the case base the new case composed of the current situation 
Sc and the updated UP. 
- sim(Sc, Ss) = 3: the situation exists in the case base (Alg. 3); the UpdateCase() me-
thod updates the case  having premise situation Sc with the updated UP. 

 

Algorithm 3. hybrid-ε-greedy algorithm  
Input:  B, ε, N, PS, Ss, UPs, Sc, UPc 
Output: D  
D = Ø  
(Ss, UPs) = RetrieveCase(Sc, PS)                 
if sim(Sc,Ss) ≥ B then  
      D = RecommendDocuments(ε, UPs, N)  
      UPc = UpdatePreferences(UPs, D) 
 if sim(Sc, Ss) ≠ 3 then 
        PS = InsertCase(Sc, UPc)       
 else  
        PS = UpdateCase(Sp, UPc) 
 end if 
else     PS = InsertCase(Sc, UPc);  
end if  
Return D 

4 Experimental Evaluation 

In order to empirically evaluate the performance of our algorithm, and in the absence 
of a standard evaluation framework, we propose an evaluation framework based on a 
diary study entries. The main objectives of the experimental evaluation are: (1) to find 
the optimal threshold B value of step 2 (Section 3.3) and (2) to evaluate the perfor-
mance of the proposed hybrid ε-greedy algorithm (Alg. 3) w. r. t. the optimal ε value 
and the dataset size. In the following, we describe our experimental datasets and then 
present and discuss the obtained results. 

∈
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4.1 Experimental datasets 

We conducted a diary study with the collaboration of the French software company 
Nomalys. To allow us conducting our diary study, Nomalys decides to provide the 
“Ns” application of their marketers a history system, which records the time, current 
location, social information and the navigation of users when they use the application 
during their meetings (social information is extracted from the users’ calendar).  

The diary study took 8 months and generated 16 286 diary situation entries. Table 
1 illustrates three examples of such entries where each situation is identified by IDS. 

Table 1. Diary situation entries 

IDS Users Time Place Client 
1 Paul 11/05/2011 75060 Paris NATIXIS 
2 Fabrice 15/05/2011 59100 Roubaix MGET 

    3    Jhon 19/05/2011    75015 Paris    AUNDI 

 
Each diary situation entry represents the capture, for a certain user, of contextual in-
formation: time, location and social information. For each entry, the captured data are 
replaced with more abstracted information using the ontologies. For example the situ-
ation 1 becomes as shown in Table 2. 

Table 2. Semantic diary situation 

IDS Users Time Place Client 
1 Paul Workday Paris Finance client 
2 Fabrice Workday Roubaix Social client 

   3    Jhon     Holiday    Paris Telecom client 
 

From the diary study, we obtained a total of 342 725 entries concerning user navi-
gation, expressed with an average of 20.04 entries per situation. Table 3 illustrates an 
example of such diary navigation entries. For example, the number of clicks on a 
document (Click), the time spent reading a document (Time) or his direct interest 
expressed by stars (Interest), where the maximum stars is five. 

Table 3. Diary navigation entries 

IdDoc IDS Click Time Interest 
1 1 2 2’ ** 
2 1 4 3’ *** 

   3     1     8   5’     ***** 

4.2 Finding the Optimal B Threshold Value 

In order to evaluate the precision of our technique to identify similar situations and 
particularly to set out the threshold similarity value, we propose to use a manual  
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classification as a baseline and compare it with the results obtained by our technique. 
So, we manually group similar situations, and we compare the manual constructed 
groups with the results obtained by our similarity algorithm, with different threshold 
values. 

 

Fig. 1. Effect of B threshold value on the similarity accuracy 

Figure 1 shows the effect of varying the threshold situation similarity parameter B 
in the interval [0, 3] on the overall precision P. Results show that the best perfor-
mance is obtained when B has the value 2.4 achieving a precision of 0.849. Conse-
quently, we use the identified optimal threshold value (B = 2.4) of the situation simi-
larity measure for testing effectiveness of our MCRS presented below. 

4.3 Experimental Datasets 

In this Section, we evaluate the following algorithms: ε-greedy and hybrid-ε-greedy, 
described in Section 3.3; CBR-ε-greedy, a version of the hybrid-ε-greedy algorithm 
without executing the CBF. 

We evaluated these algorithms over a set of similar user situations using the optim-
al threshold value identified above (B = 2.4).  

The testing step consists of evaluating the algorithms for each testing situation using 
the traditional precision measure. As usually done for evaluating systems based on ma-
chine learning techniques, we randomly divided the entries set into two subsets. The first 
one, called “learning subset”, consists of a small fraction of interaction on which the 
bandit algorithm is run to learn/estimate the CTR associated to each document. The other 
one, called “deployment subset”, is the one used by the system to greedily recommend 
documents using CTR estimates obtained from the learning subset. 

4.4 Results for ε Variation 

Each of the competing algorithms requires a single parameter ε. Figures 2 and 3 show 
how the precision varies for each algorithm with the respective parameters. All the 
results are obtained by a single run. 
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Fig. 2. ε Variation on learning subset  Fig. 3. ε variation on deployment subset 

 
As seen from these figures, when the parameter ε is too small, there is insufficient 

exploration; consequently the algorithms failed to identify relevant documents, and 
had a smaller number of clicks. Moreover, when the parameter is too large, the algo-
rithms seemed to over-explore and thus wasted some of the opportunities to increase 
the number of clicks. Based on these results, we choose appropriate parameters for 
each algorithm and run them once on the evaluation data. 

We can conclude from the plots that CBR information is indeed helpful for finding a 
better match between user interest and document content. The CBF also helps hybrid-ε-
greedy in the learning subset by selecting more attractive documents to recommend.  

 

Fig. 4. Learning data size  Fig. 5. Deployment data size 

4.5 Valuate Sparse Data 

To compare the algorithms when data is sparse in our experiments, we reduced data 
sizes of 30%, 20%, 10%, 5%, and 1%, respectively. 

To better visualize the comparison results, figures 4 and 5 show algorithms’ preci-
sion graphs with the previous referred data sparseness levels. Our first conclusion is 
that, at all data sparseness levels, the three algorithms are useful. A second interesting 
conclusion is that hybrid-ε-greedy’s methods outperform the ε-greedy’s one in  
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learning and deployment subsets. The advantage of hybrid-ε-greedy over ε-greedy is 
even more apparent when data size is smaller. At the level of 1% for instance, we 
observe an improvement of 0.189 in hybrid-ε-greedy’s precision using the deploy-
ment subset (0.363) over the ε-greedy’s one (0.174). 

5 Conclusion 

This paper describes our approach for implementing a MCRS. Our contribution is to 
make a deal between exploration and exploitation for learning and maintaining user’s 
interests based on his/her navigation history.  

We have presented an evaluation protocol based on real mobile navigation. We 
evaluated our approach according to the proposed evaluation protocol. This study 
yields to the conclusion that considering the situation in the exploration/exploitation 
strategy significantly increases the performance of the recommender system following 
the user interests. 

In the future, we plan to compute the weights of each context dimension and  
consider them on the detection of user’s situation, and then we plan to extend our 
situation with more context dimension. Regarding the bandit algorithms we plan to 
investigate methods that automatically learn the optimal exploitation and exploration 
tradeoff.   
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Abstract. The development of text classification techniques has been
largely promoted in the past decade due to the increasing availability
and widespread use of digital documents. Usually, the performance of
text classification relies on the quality of categories and the accuracy of
classifiers learned from samples. When training samples are unavailable
or categories are unqualified, text classification performance would be
degraded. In this paper, we propose an unsupervised multi-label text
classification method to classify documents using a large set of categories
stored in a world ontology. The approach has been promisingly evaluated
by compared with typical text classification methods, using a real-world
document collection and based on the ground truth encoded by human
experts.

1 Introduction

The increasing availability of documents in the past decades has greatly pro-
moted the development of information retrieval and organising systems, such as
search engines and digital libraries. The widespread use of digital documents has
also increased these systems’ accessibility to textual information. A fundamen-
tal theory supporting these information retrieval and organising systems is that
information can be associated with semantically meaningful categories. Such a
theory supports also ontology learning, text categorisation, information filtering,
text mining, and text analysis, etc. Text classification aims at associating tex-
tual documents with semantically meaningful categorises, and has been studied
in the past decades, along with the development of information retrieval and
organising systems [11].

Text classification is the process of classifying an incoming stream of docu-
ments into predefined categories. Text classification usually employs a supervised
learning strategy with the classifiers learned from pre-classified sample docu-
ments. The classifiers are then used to classify incoming documents. In terms
of supervised text classification, the performance is determined by the accuracy
of pre-classified training samples and the quality of the categorisation. The ac-
curacy of classifiers determines their capability of differentiating the incoming

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 480–492, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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stream of documents; the descriptive and discriminative capacity of categorisa-
tion reduces noise in classification, which is caused by sense ambiguities, sparsity,
and high dimensionality of the documents [7]. Text classification performance is
also affected by the topic coverage of categories. An inadequate category may
be assigned to a document if an in-comprehensive set of categories is employed,
because non-adequate categories can be found. The performance of text classifi-
cation relies upon the descriptive and discriminative capacity of categories and
the accuracy of classifiers learned from training sets.

However, there exist situations that a qualified training document set may
not be available (e.g., the “cold start” problem in recommender systems); a set
of categories with in-comprehensive topic coverage may be used for classifica-
tion; sometimes although a set of categories with comprehensive topic coverage
is available, the large number of classes would easily introduce noise in classifi-
cation results [5]. Traditionally, text classification models are designed to handle
only single-label problems. However, in some circumstances (e.g., categorizing
documents in library catalogue into multiple subjects), multi-label text clas-
sification is required and automatic classification is necessary, especially when
classifying a very large volume of documents [15]. To deal with these prob-
lems, in this paper we propose an automatic unsupervised text classification
approach to classify documents into multiple classes, without the requirement of
pre-classified sample documents for training classifiers. The approach consists of
three modules; pattern mining for document feature extraction; feature-subject
mapping for initial classification; knowledge generalisation for optimal classifica-
tion. The method incorporates comprehensive world knowledge stored in a large
ontology and classifies documents into the classes in the ontology without any
pre-classified training samples available. The world ontology is built from Library
of Congress Subject Headings (LCSH), which represents the natural growth and
distribution of human intellectual work [4]. The subject classes and semantic
relationships in the ontology are investigated and exploited to improve the clas-
sification results. The proposed method was experimentally evaluated using a
large library catalogue, by compared with typical text classification approaches.
The presented work makes three-fold contributions:

– An unsupervised text classification method that classifies documents into
multiple classes;

– A knowledge generalisation method to optimise text classification by
analysing the semantic relations of categories;

– An exploration of using the LCSH as a world knowledge to facilitate text
classification.

The paper is organised as follows. Section 2 discusses the related work; Section 3
introduces the research problem and the the conceptual model of proposed su-
pervised text classification method; Section 4 presents the technical detail of the
proposed method. The experiment design is described in Section 5, whereas the
results are discussed in Section 6. Finally, Section 7 makes conclusions.
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2 Related Work

Unsupervised text classification aims to classify documents into the classes with
absence of any labelled training documents. In many occasions the target classes
may not have any labelled training documents available. One particular example
is the “cold start” problem in recommender systems and social tagging. Unsu-
pervised classification can automatically learn an annotation model to make
recommendations or label the tags when the products or tags are rare and do
not have any useful information associated. Unsupervised classification has been
studied by many groups and many successful models have been proposed. With-
out associated training samples, Yang et al. [16] built a classification model for a
target class by analysing the correlating auxiliary classes. Though as similar as
theirs in investigating correlating classes, our work is different by exploiting a hi-
erarchical world knowledge ontology for classification, instead of only auxiliary
classes. Also exploiting a world knowledge base, Yan et al. [14] examined un-
supervised relation extraction from Wikipedia articles and integrated linguistic
analysis with web frequency information to improve unsupervised classification
performance. However, our work has different aims from theirs; ours aims to
exploit a world knowledge ontology to help unsupervised classification, whereas
Yan et al. [14] aims to extract semantic relations for Wikipedia concepts by using
unsupervised classification techniques. Cai et al. [2] and Houle and Grira [6] pro-
posed unsupervised approaches to evaluate and improve the quality of selecting
features. Given a set of data, their work is to find a subset containing the most
informative, discriminative features. Though the work presented in this paper
also relies on features selected from documents, the features are further investi-
gated with their referring-to ontological concepts to improve the performance of
classification.

Text classification models are originally designed to handle only single-label
problems, where each document is classified into only one class. However, in
many circumstances single-label text classification cannot satisfy the demand,
for example, in social network multiple labels may need to be suggested for a
tag [8]. Comparing with the work done by Katakis et al. [8], our work relies on
the semantic content of documents, rather than the meta-data of documents used
in [8]. As similar as the work conducted by Yang et al. [15], our work also targets
on multi-label text classification. However, Yang et al. [15]’ work is different in
adopting active learning algorithms for multi-label classification, whereas ours
exploits concepts and their structure in world knowledge ontologies.

Ontologies have been studied and exploited by many works to facilitate text
classification. Gabrilovich and Markovitch [5] enhanced text classification by
generating features using domain-specific and common-sense knowledge in large
ontologies with hundreds of thousands of concepts. Comparing with their work,
our work moves beyond feature discovery and investigates the hierarchical ontol-
ogy structure for knowledge generalisation to improve text classification. Camous
et al. [3] also introduced a domain-independent method that uses the Medical
Subject Headings (MeSH) ontology. The method observes the inter-concept rela-
tionships and represents documents by MeSH subjects. Similarly, Camous’ work
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considers the semantic relations existing in the ontological concepts. However,
their work focuses on only the medical domain, whereas our approach works on
general areas because exploiting the LCSH, a superior world knowledge ontol-
ogy. Another world ontology commonly used in text classification is Wikipedia.
Wang and Domeniconi [13] and Hu et al. [7] derived background knowledge from
Wikipedia to represent documents and attempted to deal with the sparsity and
high dimensionality problems in text classification. Instead of Wikipedia with
free-contributed entries, our work uses the superior LCSH ontology, which has
been under continuous development for a hundred years by knowledge engineers.

Many works utilise pattern mining techniques to help build classification mod-
els, which is similar as the strategy employed in our work. Malik and Kender [10]
proposed the “Democratic Classifier”, which is a pattern-based classification al-
gorithm using short patterns. Different from our work, their democratic classifier
relies on the quality of training samples and cannot deal with the “no training
set available” problem. Bekkerman and Matan [1] argued that most of informa-
tion on documents can be captured in phrases and proposed a text classification
method that employs lazy learning from labelled phrases. The phrases in their
work are in fact a special form of sequential patterns that are used in our work
for feature extraction of documents.

3 Unsupervised Multi-label Text Classification

Let D = {di ∈ D, i = 1, . . . ,m} be a set of text documents; S = {s1, . . . , sK} be a
large set of classes, whereK is the number of classes. If there is available a training
set Dt = {dj ∈ D, j = m + 1, . . . , n} with ykj = {0, 1}, k = 1, . . . ,K provided
for describing the likelihood of dj belonging to class sk, it is easy to learn a binary
prediction function p(yk|d) and use it to classify di ∈ D. However, our objective
is to learn a prediction function p(yk|d) to classify di into {sk} ⊂ S without Dt

available. We refer to this problem as unsupervised multi-label text classification.
The proposed classification method consists of three steps: feature extraction,

initial classification, and optimising classification, using a world ontology.

3.1 World Ontology

The world knowledge ontology is constructed from the Library of Congress Sub-
ject Headings (LCSH), which is a knowledge system developed for organising
information in large library collections. It has been under continuous develop-
ment for over a hundred years to describe and classify human knowledge. Because
of the endeavours dedicated by the knowledge engineers from generation to gen-
eration, the LCSH has become a de facto standard for concept cataloguing and
indexing, superior to other knowledge bases. Tao et al. [12] once compared the
LCSH with the Library of Congress Classification, the Dewey Decimal Classifica-
tion, and Yahoo! categorisation, and reported that the LCSH has broader topic
coverage, more meaningful structure, and more accurate semantic relations. The
LCSH has been widely used as a means for many knowledge engineering and
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management works [4]. In this work, the class set S = {s1, . . . , sK} is encoded
from the LCSH subject headings.

Definition 1. (SUBJECT) Let S be the set of subjects, an element s ∈ S is a
4-tuple s := 〈label, neighbour, ancestor, descendant〉, where
– label is a set of sequential terms describing s; lable(s) = {t1, t2, . . . , tn};
– neighbour refers to the set of subjects in the LCSH that directly link to s,

neighbour(s) ⊂ S;
– ancestor refers to the set of subjects directly and indirectly link to s and

locating at more abstractive level than s in the LCSH, ancestor(s) ⊂ S;
– descendant refers to the set of subjects directly and indirectly link to s and

locating at more specific level than s in the LCSH, descendant(s) ⊂ S. �
The semantic relationships of subjects are encoded from the references defined in
the LCSH for subject headings, including Broader Term, Used for, and Related
to. The ancestor(s) in Definition 1 returns the Broader Term subjects of s; the
descendant(s) is the reversed function of ancestor(s), with additional subjects
Used for s; the neighbour(s) returns the subjects Related to s.

With Definition 1, the world knowledge ontology is defined:

Definition 2. (ONTOLOGY) Let O be a world ontology. O contains a set of
subjects linked by their semantic relations in a hierarchical structure. O is a
3-tuple O := 〈S,R,HS

R〉, where
– S is the set of subjects defined in Definition 1;
– R is the set of relations linking any pair of subjects;
– HS

R is the hierarchical structure of O constructed by S ×R. �

3.2 Document Features

Various representations have been studied to formally describe text documents.
The lexicon-based representation is based on the statistic of occurring terms.
Such a representation is easy to understand by users and systems. However, along
with meaningful, representative features, some noisy terms are also extracted,
caused by sense ambiguity of terms. To deal with this problem, pattern-based
representation is studied, which uses frequent sequential patterns (phrases) to
represent document contents [9]. The pattern-based representation is superior
to lexicon-based, as the context of terms co-occurred in phrases is considered.
However, the pattern-based presentation suffers from a limitation caused by
the length of patterns. Though a long pattern is wealthy with information and
so more discriminative, it usually has low frequency and as a result, becomes
inapplicable. To overcome the problem, we represent the content of documents
by a set of weighted closed frequent sequential patterns discovered by pattern
mining techniques.

Definition 3. (FEATURES) Given a document d = {t1, t2, . . . , tn} as a se-
quential set of repeatable terms, the feature set, denoted as F(d), is a set of
weighted phrase patterns, {〈p, w(p)〉}, extracted from d that satisfies the follow-
ing constraints:
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– ∀p ∈ F(d), p ⊆ d.
– ∀p1, p2 ∈ F(d)(p1 �= p2), p1 �⊂ p2 ∧ p2 �⊂ p1.
– ∀p ∈ F(d), w(p) � ϑ, a threshold. �

3.3 Initial Classification

The initial classification of d to sk ∈ S is done through accessing a term-subject
matrix created by the subjects and their labels. Adopting the features discovered
previously, we use a feature-subject mapping approach to initially assign subject
classes to the document.

Definition 4. (TERM-SUBJECT MATRIX) Let T be the term space of S, T =
{t ∈

⋃
s∈S label(s)}, 〈S, T 〉 is the matrix coordinated by T and S, where a map-

ping exists:

μ : T → 2S , μ(t) = {s ∈ S|t ∈ label(s)}

and its reverse mapping also exists:

μ−1 : S → 2T , μ−1(s) = {t ∈ T |s ∈ μ(t)} �

Adopting Definition 3 and 4, we can initially classify di ∈ D into a set of
subjects using the following prediction:

ŷki = I(sk ∈ h ◦ g ◦ f(di)), i = 1, . . . ,m (1)

where I(z) is an indicator function that outputs 1 if z is true and zero, otherwise;
f(d) = {p|〈p, w(p)〉 ∈ F (d)}; g(ρ) = {t ∈ ∪p∈ρp}; h(τ) = {s ∈ ∪t∈τμ(t)}.

3.4 Generalised Classification

The initial classification process easily generates noisy subjects because of direct
feature-subject mapping. Against the problem, we introduce a method to gener-
alise the initial subjects to optimise the classification. We observed that in initial
classification some subjects extracted from the ontology are overlapping in their
semantic space. Thus, we can optimise the classification result by keeping only
the dominating subjects and pruning away those being dominated. This can be
done by investigating the semantic relations existing between subjects. Let s1
and s2 be two subjects and s1 ∈ ancestor(s2) (s2 ∈ descendant(s1)). s1 refers
to an broader semantic space than s2 and thus, is more general. Vice versa, s2
is more specific and focused than s1. Hence, if some subjects are covered by a
common ancestor, they can be replaced by the common ancestor without infor-
mation loss. The common ancestor is unnecessary to be chosen from the initial
classification result, as choosing an external common ancestor also satisfies the
above rule. After generalising the initial classification result, we have a smaller
set of subject classes, with no information lost but some focus. (The handling of
focus problem is presented in next section.)
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input : d = {t1, t2, . . . , tn} where n = |d|, a threshold ϑ.
output: The feature set F(d) = {〈p, w(p)〉}.
P (d) = ∅,F(d) = ∅, p = ∅;1
//Extracting sequential patterns;2
for (i = 1; i <= n; i + +) do3

for (j = i; j <= (n − i); j + +) do4
p = p ∪ {tj};5

end6
if p ∈ P (d) then w(p) + + for 〈p, w(p)〉 ∈ F(d)else P (d) = P (d) ∪ {p},7
F(d) = F(d) ∪ {〈p, 1〉};

end8
//Filtering F(d) for closed, frequent patterns;9
foreach 〈p, w(p)〉 ∈ F(d) do10

if w(p) < ϑ then F(d) = F(d)− {〈p, w(p)〉}else foreach 〈pk, w(pk)〉 ∈ F(d) do11
if p ⊂ pk and w(p) ≤ w(pk) then F(d) = F(d)− {〈p, w(p)〉}12

end13

end14
return F(d).15

Algorithm 1. Extracting Features from a Document

Definition 5. (GENERALISED CLASSIFICATION) Given a document d and
its initial classification result, a subject set denoted by SI(d), the generalised
classification result, denoted as SG(d), is the set of subjects satisfying:

1. ∀s ∈ SI(d), ∃s′ ∈ SG(d), s �= s′, s ∈ descendants(s′).
2. ∀s1, s2 ∈ SG(d)(s1 �= s2), s1 /∈ descendants(s2) ∧ s2 /∈ descendants(s1).

4 Implementation

In this section, we present the technical details for implementing the proposed
approach of unsupervised multi-label text classification.

Algorithm 1 describes the process of extracting features to represent a docu-
ment. The output is F(d), a set of closed frequent sequential patterns discovered
from d. Adopting the prediction in Eq. (1), with F(d) the initial set of subjects,
SI(d), can be assigned to classify d. Taking into account the weights of feature
patterns, we can evaluate t ∈ d:

w(t) =
∑

p∈{p|t∈g◦f(d),p∈f(d)}
w(p)

All s ∈ SI(d) can then be re-evaluated for their likelihood of being assigning to
d with consideration of term evaluation and term distribution in s ∈ SI(d). A
prediction function can then be used to assess initial classification subjects for
the second run of classification:

ŷ′
κ

i = I(
∑

t∈μ−1(sκ)

w(t)× log(
|SI(di)|

sf(t, SI(di))
) � θ), i = 1, . . . ,m (2)

where I(z � θ) returns the value of z if z � θ is true and zero, otherwise;
κ = 1, ...,K and SI(d) = {s1, . . . , sK} with |SI(d)| = K; θ is the threshold for
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input : Si = {s1, s2, . . . , sj} (subject classes assigned to di after Eq. (2)), O;
output: S′

i = {s1, s2, . . . , sk} (subject classes generalised for optimising classification).

S′
i = ∅, Stemp = ∅, Sredundant = ∅;1

foreach s ∈ Si do2
Extract S(s) from O where S(s) = {s′|s′ ∈ ancestor(s), δ(s �→ s′) ≤ 3}; foreach3
sn ∈ Si where sn �= s do

Extract S(sn) from O like Step 3;4
if S(s) ∩ S(sn) �= ∅ then5
{ŝ = LCA(S(s) ∪ S(sn)), str(i, ŝ) = str(i, s) + str(i, sn); Stemp = Stemp ∪ {ŝ};
Sredundant = Sredundant ∪ {s, sn}}

end6

if Stemp �= ∅ then {S′
i = S′

i ∪ Stemp; Si = Si − Sredundant; Stemp = ∅;7

Sredundant = ∅} else S′
i = S′

i ∪ {s}
end8

return S′
i.9

Algorithm 2. Generalising Subjects for Optimal Classification

filtering out noisy subjects. In experiments different values were tested for θ.
The results revealed that setting θ as the top fifth z in SI(di), a variable rather
than a static value, gave the best performance. (Refer to Section 6 for detail.)

In the generalisation phase, descendant subjects are replaced by their common
ancestor subject. However, the common ancestor should not be too far away from
the replaced descendants in the ontology structure. The focus will be significantly
lost, otherwise. In implementation, we use only the lowest common ancestor
(shortened by LCA) to replace its descendant subjects. The LCA is the common
ancestor of a set of subjects, with the shortest distance to these subjects in the
ontology structure. The LCA replaces descendant subjects with full information
kept and minimised focus lost.

Algorithm 2 describes the process of generalising the initial subject classes to
optimise classification. The function str(i, s) describes the likelihood of assign

s todi and returns the value of I(z � θ) in Prediction function ŷ′
κ

i in Eq. (2).
The function δ(s1 �→ s2) returns a positive real number indicating the distance
between two subjects. Such a distance is measured by counting the number of
edges travelled through from s1 to s2 in HS

R. The function LCA(S(s1) ∪ S(s2))
returns ŝ, the LCA of s1 and s2. Note that δ(s1 �→ s2) ≤ 3, which restricts
LCAs to three edges in distance. Subjects further than that in distance are too
general; whereas using a highly-general subject for generalisation would severely
jeopardise the focus of original subjects. (In the experiments, δ(s1 �→ s2) ≤ 3
and ≤ 5 were tested under the same environment in order to find a valid distance
for tracking the competent LCA. The testing results revealed that as of three
the distance was better.)

5 Evaluation

The experiments were performed, using a large corpus collected from the cat-
alogue of a library using the LCSH for information organising. The title and
content of each catalogue item were used to form the content of a document.
The subject headings associated with the catalogue items were manually assigned
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by specialist librarians who were trained to specify subjects for documents with-
out bias [4]. The documents and subjects provided an ideal ground truth in the
experiments to evaluate the effectiveness of the proposed classification method.
This objective evaluation methodology assured the solidity and reliability of the
experimental evaluation.

The testing set was crawled from the online catalogue of library of the Uni-
versity of Melbourne1. General text pre-processing techniques, such as stopword
removal and word stemming (Porter stemming algorithm), were applied to the
preparation of testing set for experiments. In the experiments, we used only doc-
uments containing at least 30 terms, resulted in 31,902 documents in the testing
set. Documents shorter than that could hardly provided substantial frequent
patterns for feature extraction, as revealed in the preliminary experiments.

Given that the LCSH ontology contains 394,070 subjects in our implementa-
tion, the problem actually became a K-class text classification problem where
K = |S| = 394, 070, a very large number. Hence, we chose two typical multi-
class classification approaches, Rocchio and kNN, as the baseline models in the
experiments.

The performance of experimental models was measured by precision and re-
call, the modern evaluation methods in information retrieval and organising. In
terms of text classification, precision was to measure the ability of a method to
assign a document with only focusing subjects, and recall the ability to assign a
document with all dealing subjects.

Taking into account K = |S| = 394070, in respect with the testing document
set and the ground truth featured by the LCSH, the classification performance
was evaluated by:

precision =
|FT (Stgt) ∩ FT (Sgrt)|

|FT (Stgt)|
and recall =

|FT (Stgt) ∩ FT (Sgrt)|
|FT (Sgrt)|

where FT (S) =
⋃

s∈S μ−1(s) (see Definition 4); tgt referred to the target model;
grt referred to the ground truth subjects.

F1 Measure as another common method used in information organising sys-
tems was also employed in evaluation. We used micro-F1, which evaluated each
document’s classification result first and then averaged the results for the final
F1 value. Greater F1 values indicate better performance.

6 Results and Discussions

Naming our proposed unsupervised classification approach as the UTC model,
the experiments were to compare the effectiveness performance of the UTC
model to the baselines, Rocchio and kNN models. Their effectiveness perfor-
mances are depicted in Fig. 1 for the number of documents with valid effective-
ness (> 0), where the value axis indicates the effectiveness rate between 0 and 1;
the category axis indicates the number of documents whose classification meets

1 http://www.library.unimelb.edu.au/
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Fig. 1. Effectiveness Performance Results

Table 1. Effectiveness Performance on Average

Precision Recall F-Measure

UTC 0.158 0.135 0.125
Rocchio 0.020 0.290 0.020
kNN 0.021 0.054 0.016

the respective accuracy rate. As shown in the figure, the effectiveness rates were
measured by precision, recall, and F1 Measure, where P (x) refers to the preci-
sion results of experimental model x, R(x) the recall results, and F (x) the F1

Measure results. Their overall average performances are shown in Table 1.
F1 Measure equally considers both precision and recall. Thus the F1 Measure

results can be deemed as an overall effectiveness performance. The average F1

Measure result shown in Table 1 reveals that the UTC model has achieved a much
better overall performance (0.125) than other two models (0.020 and 0.016). Such
a performance is also confirmed by the detailed results depicted in Fig. 1 - the
F (UTC) line is located at much higher bound level compared to the F (Rocchio)
and F (kNN) lines.

Precision measures how accurate the classification is. In terms of this, the UTC
model once again has outperformed the baseline models. The average precision
results shown in Table 1 demonstrates the achievement (UTC 0.158 vs. Rocchio
0.020 and kNN 0.021). The precision results depicted in Fig. 1 illustrate the
same conclusion; the P (UTC) outperformed others.

Recall measures the performance of classification by considering all dealing
classes. The recall performance in the experiments shows a slightly different
result, compared with those from F1 Measure and precision performance. The
Rocchio model achieved the best recall performance (0.290 on average), com-
pared to that of the UTC model (0.135) and the kNN model (0.054). The result
is also illustrated in Fig. 1, where R(UTC) lies in the middle of R(Rocchio) and
R(kNN).
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There was a gap between the recall performance of the UTC and the Rocchio
models. From the observation of recall results, we found that the classes as-
signed by the Rocchio model were usually a large set of subjects (935 on av-
erage), whereas the UTC model assigned documents with a reasonable number
of subjects (16 on average) and the kNN results had an average size of 106.
Due to the natural of recall measurement, more feature term would be cover
if the subject size became larger. As a result, the Rocchio classification with
the largest size achieved the best recall performance. The subject sets assigned
by the kNN model had larger size than those assigned by the UTC. However,
when expanding the classification by neighbours, a large deal of nosey data was
also brought into the neighbourhood - the average number of neighbours arisen
was 336. This was caused by the very large set and short length of documents
in consideration. As a result, the classification became inaccurate though only
the documents with the top cosine values were chosen to expand and only the
subjects with the top similarity values were chosen to classify a document.

Table 2. Performance Comparison for Finding the LCA

Precision Recall F-Measure

Level = 3 0.158 0.135 0.125
Level = 5 0.154 0.112 0.111

Different number of levels were tested in sensitivity study for choosing a right
number of levels to find the lowest common ancestor when generalising subjects
for optimal classification. Table 2 displays the testing results for finding such a
right level number. In the same experimental environment, if tracing three levels
to find a LCA the UTC model’s overall performance including F1 Measure,
precision, and recall was better than that of tracing five levels. In addition,
tracing three levels only would give us better complexity. Therefore, we chose
three levels to restrict the extent of finding CLAs.

7 Conclusions

Text classification has been widely exploited to improve the performance in
information retrieval, information organising, text categorisation, and knowl-
edge engineering. Traditionally, text classification relies on the quality of target
categorises and the accuracy of classifiers learned from training samples. Some-
times qualified training samples may be unavailable; the set of categories used
for classification may be with inadequate topic coverage. Sometimes documents
may be classified into noisy classes because of large dimension of categories.
Aiming to deal with these problems, in this paper we have introduced an un-
supervised multi-label text classification method. Using a world ontology built
from the LCSH, the method consists of three modules; closed frequent sequen-
tial pattern mining for feature extraction; extracting subjects from the ontology
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for initial classification; and generalising subjects for optimal classification. The
method has been promisingly evaluated by compared with typical text classi-
fication methods, using a large real-world corpus, based on the ground truth
encoded by human experts.
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Abstract. We present the Document-Entity-Topic (DET) model for semantic 
social network analysis which tries to find out the interested entities through the 
topics we aim at, detect groups according to the entities which concern the simi-
lar topics, and rank the plentiful entities in a document to figure out the most 
valuable ones. DET model learns the topic distributions by the literal descrip-
tions of entities. The model is similar to Author-Topic (AT) model, adding the 
key attribute that the distribution of entities in a document is not uniform but 
Dirichlet allocation. We experiment on the “Libya Event” data set which is col-
lected from the Internet. DET model increases the precision on tasks of social 
network analysis and gives much lower perplexity than AT model. 

Keywords: Semantic Social Network Analysis, Topic Model, Entity Modeling. 

1 Introduction 

As far as we know, topic modeling has become a most popular technology to model 
large collection of corpus[1-3], such as Latent Dirichlet Allocation[4]. The basic idea 
of topic modeling is that the latent topics can be used to describe the relationship be-
tween words and documents. In this paper we consider the problem of using latent 
topics to connect the words and entities in documents (such as person, location, or-
ganization). We focus on the news articles which contain lots of entities in order to 
convey the information about who, what, when and where. The purpose we want most 
is modeling the entities in terms of latent topics so that we can 1) find out the interest-
ed entities through the topics we aim at; 2)recognize groups with supposing that the 
entities (especially the persons) which concern the similar topics can be seen as a 
group; 3) rank the plentiful entities in a document to figure out the valuable ones by 
assuming that the more an entity contributes to a document’s topic(s), the more valu-
able it is in the precise one. We call the three tasks Semantic Social Network Analysis 
for the interactions been found based on the topics of the corpus. 

There are several related researches to achieve the relationship between words and 
entities (authors) with topic models. The Author-Topic (AT) model[5-6] learns  the 
topics of a document conditioned on the mixture of interests with the authors. AT 
model assumes that the authors equally contribute to the topics of a document. The 
SwitchLDA and GESwitchLDA[7-8] extend LDA to capture dependencies between 
entities and topics, referring to entities as additional classes of words.  



494 D. Yang et al.  

This paper presents the Document-Entity-Topic (DET) model, a directed graphical 
model by assuming that words were generated by the entities of the document. The 
model is similar to the AT model. However, it is not limited to the topic finding of 
authors, but tries to modeling topics of all related entities in the documents. For this 
application, we confront more unwanted entities of the corpus. In our experiments, 
there are more than five person entities in most documents, and some entities such as 
news reporters have little significance to the topic(s). If all entities in a document have 
been assumed to be equally contributed to the mixture of topics as AT model, it is not 
enough for us to rank the importance of entities and many noisy entities will disturb 
the topic modeling of corpus. So our DET model presumes that the entities have dif-
ferent topical contributions to their document. We use the Dirichlet allocation to de-
scribe the distribution between document and its entities; a document gives higher 
probabilities to several more valuable entities (not all entities) and valuable entities 
have more contributes to the topic modeling. 

The outline of the paper is as follows: Section 2 describes the Document-Entity-
Topic model, and section 3 outlines how to learn the parameters from the documents. 
Section 4 discusses the application of the model to the data set we collected from the 
internet. Section 5 contains a brief discussion and concluding comments. 

2 Document-Entity-Topic Model 

In this section we introduce the document-Entity-topic (DET) model. The DET model 
belongs to the family of generative models, in which each word w in a document is 
associated with two latent variables: an entity assignment x , and a topic assignment z . 

2.1 Dirichlet Priori on Document-Entity Distribution 

The entities in news may have different weights to be described by the words, for 
example, “a reporter covers that, Mr. A and B contact at a national conference and 
have an educational barging, trying to improve the intercommunion and friendship of 
both.” We find that the relationship between A and B is closer than that between re-
porter and the two people. In order to discover the different weights for different enti-
ties, we use Dirichlet allocation as the prior distribution to describe the importance of 
each entity in a document, which is similar to LDA model by using Dirichlet alloca-
tion to describe the relationship between topics and the document. 

The reason to choose the Dirichlet is that, firstly, it can reflect the characteristic of 
document-entity relation, a document has primary and minor entities, and the weights 
can be adjusted by the hyperparameter of Dirichlet. Secondly, the conjugate prior of 
multinomial distribution is Dirichlet allocation, so it can simplify the computation for 
the posterior distribution which has the same functional form as the prior.  

Thus, we propose the Document-Entity-Topic (DET) model for mining the seman-
tic description of entities and using the topical distribution to carry out the social net-
working tasks. The generative process of DET model for a document can be summa-
rized as follows: firstly, an entity is chosen randomly from the distribution over  
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entity-document; next, a topic label is sampled for each word from the distribution 
over topics associated with the entities of that word; finally, the words are sampled 
from the distribution over words associated with each topic. The plate 
representation[9] for all models are shown in figure 1. 
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Fig. 1. Two related models and the DET model. In all models, each word w is generated from a 
topic-specific multinomial word distribution; however topics are sampled differently in each of 
the models. In LDA, a topic is sampled from a document-specific topic distribution which is 
sampled from a Dirichlet with hyperparameter. In the AT model, a topic is sampled from an 
author-specific multinomial distribution, and authors are sampled uniformly from the docu-
ment’s author set. In DET, Dirichlet prior has been introduced to the document-entity distribu-
tion, a topic is sampled from an entity-specific multinomial distribution, and entity assignment 
is sampled from the Dirichlet allocation of that document. 

2.2 Generative Process of DET Model 

In DET model, the generative process of generating a word is according to the proba-
bility distributions of firstly picking an entity followed by picking a topic. 

a) For each document 1, ,d D= … choose ~ ( )d Dirichlet γψ ; 

For each entity 1, ,x X= … choose ~ ( )x Dirichlet αθ ; 

For each topic 1, ,t T= … choose ~ ( )t Dirichletφ β . 

b) For each document 1, ,d D= …  
       Given the vector of entities Xd, for each word wi, out of the Nd words 
 Conditioned on xd choose a persona ~ ( )i dx Dirichlet ψ ; 

 Conditioned on xi choose a topic ~ ( )
ii xz Dirichlet θ ; 

 Conditioned on zi choose a word ~ ( )
ii zw Dirichlet φ . 
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Under this generative process, each entity is drawn independently conditioned 
onΨ ; each topic is drawn independently conditionedΘ ; and each word is drawn 

independently conditioned onΦ and z. The probability of the corpus w, conditioned 
onΨ , Θ andΦ is shown as equation (1): 

( ) ( )| |
1

D
P P d

d
∏=
=

w Θ,Φ,Ψ w Θ,Φ,Ψ  (1)

Summing over the latent variables x and z, we can obtain the probability of the 
words in each document dw as equation (2): 

( ) ( )

( )

( ) ( ) ( )

1

1 11

1 11

11

| |

, , |

| , | , |

d

d d

d d

d

d i

d

N

d i
i

N X T

i i i
x ti

N X T

i i i i i
x ti

N T

x xt w t
x X ti

P P

P w z t x x

P w z t P z t x x P x x

ψ θ φ

=

= ==

= ==

∈ ==

=

= = =

= = = = =

= ⋅ ⋅

∏

∑∑∏

∑∑∏

∑ ∑∏

w Θ,Φ,Ψ w Θ,Φ,Ψ

Θ,Φ,Ψ

Φ Θ Ψ
 (2)

Factorizing in the third line of equation (2) uses the conditional independence assump-
tions of the model. The last line in the equations expresses the probability of the words w 

in terms of the parameter matricesΨ , Θ andΦ . ( )|iP x x= Ψ is the entity multinomial 

distribution dψ inΨ which corresponds to document d, ( )| ,i iP z t x x= = Θ is the multi-

nomial distribution xθ inΘ that corresponds to entity x, and ( )| ,i iP w z t= Φ  is the mul-

tinomial distribution tφ  in Φ  corresponding to topic t. 

3 Learning the DET Model from Data 

The DET model contains three continuous random variablesΨ ,Θ andΦ . The infe-
rence scheme used in this paper is based upon a Markov chain Monte Carlo (MCMC) 
algorithm or more specifically, Gibbs sampling. We estimate the posterior distribu-

tion ( )| , , ,trainP D γ α βΨ,Θ,Φ . The inference scheme is based upon the observation 

that 

( )
( ) ( )

,

| , , ,

| , , , , , , | , , ,

train

train train

z x

P D

P z x D P z x D

γ α β

γ α β γ α β=∑
Ψ,Θ,Φ

Ψ,Θ,Φ  (3)

Where z is the topic variable and x is the entity assignment. This inference process 
involves two steps. Firstly, we use Gibbs sampling to obtain an empirical  
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sample-based estimate of ( ), | , , ,trainP z x D γ α β . Second, we compute each specific 

sample corresponding to particular x and z using the conjugation trait between Dirich-
let and multinomial distribution.  

3.1 Gibbs Sampling 

Gibbs sampling is a widely applicable Markov chain Monte Carlo algorithm which 
can be viewed as a special case of Metropolis Hastings algorithm. It often yields rela-
tively simple algorithms for approximate inference in high-dimensional models such 
as topic models[9]. Here we wish to construct a Markov chain which converges to the 
posterior distribution over x and z in terms of , ,trainD γ α and β . Using Gibbs sam-

pling we can generate a sample from ( ), | , , ,trainP z x D γ α β by firstly sampling an 

entity assignment xi and a topic assignment zi for an individual word wi conditioned 
on initialized assignments of entities and topics for all other words in the corpus. Se-
condly, repeating this process for each word. A single Gibbs sampling iteration con-
sists of sequentially performing sampling of entity and topic assignments for each 
individual word in the corpus. 

( )| , , , , ,train
i iP z t D γ α β−= z x and ( )| , , , , ,train

i iP x x D γ α β−= x z can also be the 

Gibbs sampler. In this paper we use the blocked sampler where we sample xi and zi 
jointly. It can improve the mixing time of the sampler and the method also has been 
used similarly by Rosen-Zvi et al[5]. In Appendix, we derive the Gibbs sampler of 
document d and entity dx X∈ as equation (4) 

( )
, , ,

' , ' , ' ,' ' '

, | , , , , , ,i i i i i i

WT TX XD
wt i tx i xd i

WT TX XD
w t i t x i x d iw t x

P x x z t w w

C C C

C W C T C X

γ α β

β α γ
β α γ

− − −

− − −

− − −

= = =

+ + +
∝ ⋅ ⋅

+ + +∑ ∑ ∑

x z w

 (4)

Here XDC represents the document-entity count matrix, where ,
XD
xd iC − is the number 

of words assigned to entity x for document d excluding word wi. 
TXC is the topic-

entity count matrix, where ,
TX
tx iC − is the number of words assigned to topic t for entity x 

excluding the topic assignment to word wi. 
WTC is the number of words from the wth 

entry in the vocabulary assigned to topic t excluding the topic assignment to word wi. 
Finally, z-i, x-i , w-i stand for the vector of topic assignments, vector of entity assign-
ments and vector of word observations in corpus except for the ith word, respectively.  

3.2 The Posterior onΨ , Θ andΦ  

Given , , , ,trainD γ αz x and β , we can compute the posterior distributions on Ψ , 
Θ andΦ directly. Using the fact that the Dirichlet is conjugate to the multinomial, we 
have 
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These posteriors provide point estimates forΨ , Θ andΦ . Ψ corresponds to the 
posterior predictive distribution for the documents and entities, it obeys the Dirichlet 
allocation other than uniform distribution, and can get the more valuable entities who 
effect the topics of the document more. Θ corresponds to the posterior predictive 
distribution for the entities and topics, every entity has a vector of topics, it can tell us 
what topics the entity associates with and which entities are interested in the similar 
topics, so groups can be extracted fromΘ . Φ corresponds to the posterior predictive 
distribution for the topics and words, we can get the word description of topics.  

4 Experiment Result 

We train our DET model on the “Libya Event” dataset which is collected from Internet 
(http://www.ifeng.com). It contains 4165D = documents, 3784P = unique entities 
(most are person names), 782043N = tokens, and a vocabulary of 15812V = unique 
words. We preprocess the document set with tryout edition of ICTCLAS whose rights 
reserved by ictclas.org. All documents are written in Chinese, and we translate the re-
sults in English. 

We run the Markov chain for a fixed number of 2000 iterations. Furthermore, we 
find that the sensitivity to hyperparameters is not very strong, so that we use the fixed 
symmetric Dirichlet distributions 0.5, 0.1γ α= = , and 0.01β = in all our experiments. 
In the comparing experiment of AT model, the author set a are entities extracted from 
the documents. 

4.1 Perplexity Comparison between AT and DET 

Models for natural languages are often evaluated by perplexity as a measure of the 
goodness fit of models. The lower perplexity a model has, the better it predicts the 
unseen words. The perplexity of a previously unseen document d consisting of words 
wd can be defined as equation (6) when the entities xd are given: 

( )log ( | )
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Where ( )i
dn is the number of times token i has been observed in document d. 

iwφ can 

be determined by the training set, but xθ and dψ need to be derived by querying the 
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model. Firstly, initializing the algorithm by randomly assigning topics and entities to 
words of the test documents, and then performing a number of loops through the 
Gibbs sampling update: 

( ) ( ) ( )( ) ( )
, ,, | , , , ; t x

i i i i i i x i d iwtp z t x x w w n nϕ α γ− − − − −= = = Μ ∝ ⋅ + ⋅ +z x w  (8)

Where ( )
,
t

x in − is the number of topic t been assigned to persona x, and ( )
,
x

d in − is the 

number of entity x been assigned to document d. Both of them exclude the topic and 
entity assignment of word wi. We report the perplexities with different number of 
topics on “Libya Event” test data set with 109 documents, about 10% of the whole 
data set. 

 

 

Fig. 2. Perplexity comparison of AT and DET on “Libya” data set. DET model has significant-
ly better predictive power as AT over our document set. We can also find that the lowest per-
plexity obtained by DET is not achievable by AT with any topic number. It proves that DET 
can better adapt to the task of Semantic Social Network Analysis (SSNA), which discovers the 
topic-based relationship and group information of entities in documents.  

4.2 Semantic Social Network Analysis with DET 

Topics and Entities. We get the latent topics after applying the Gibbs sampling algo-
rithm to DET model. We use the topic significance ranking method[10] to rank the 
topics and show two most important topics in table 1. In each topic we list the most 
likely words in the topic with their probability and below that the most likely entities 
and the topic names are named by authors. 

During the experiment process, we have found that many topics own lots of same 
words with high probabilities, the reason we think is that all documents in “Libya 
Event” data set talk about one event (similar topics). We introduce in the idea of tf-idf 
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algorithm to decide which words have high probabilities. The probability of 
word w belonging to topic k depends on both of the DET result, i.e., ,k wφ and the tf_idf 

value, which ranges from 0 to 1 with standardization. So the final probability of a 

word belonging to a topic is ( )'
, , ,1 _ ,0 1k w k w k wtf idfφ δ φ δ δ= ⋅ + − ⋅ < < . 

The probability of entity x belonging to topic k is not only decided by ,x kθ , but also 

decided by the number of entity x appearing in documents. If x appears in docu-
ment d , the number adds 1, and the appearing frequency is xdf = | { } | | |x d D∈ . So 

the probability of entity x with topic k is '
, ,x k x x kdfθ θ= ⋅ . 

Table 1. Two topics with highest probabilities from a 100-topic DET running with “Libya 
Event” data. In each topic we list the most likely words in lowercase with their probabilities, 
and below that the most likely entities in uppercase with initial. 

Topic89: Conflicts of government and oppo-
sition in Libya 

Topic31: National transition committee 
comes into existence 

the opposition 0.751071 committee 0.313636 

demos 0.098968 transition 0.278701 

fremdness 0.018027 nation 0.213317 

relation 0.015836 admit 0.046756 

find out 0.013272 chairman 0.033091 

reason 0.011508 come into existence 0.024036 

in the past 0.008329 spokesman 0.020482 

hours 0.007549 intraday 0.013421 

with responsibility for 0.006162 leaguer 0.013068 

encounter 0.005506 promise 0.006441 

Qaddafi 0.060839 Abdul-Jelil 0.041501 

Bangh acirc 0.043085 Bangh acirc 0.026637 

Qatar 0.030726 Italy 0.025412 

Reuters 0.027212 
National Transition Commit-
tee 

0.025164 

Italy 0.020556 Qatar 0.023441 

Russia 0.014663 Bani Walid 0.019576 

Abdul-Jelil 0.014444 Abdul-Jelil 0.016731 

Egypt 0.013855 Beijing 0.016373 

Associated Press  0.008018 Paris 0.015959 

Muhammad 0.007668 London 0.015528 

Entity Significance Ranking. We suppose that if the topic distribution of an entity is 
much related to that of the document, the entity is significant to this document. Usual-
ly, KL divergence is used to measure the similarity between the entity and document. 
We show the KL divergences, probabilities and frequencies of all entities in two doc-
uments for particular information in table 2. 
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Table 2. KL divergences, probabilities and frequencies of all entities in two documents for 
particular information 

The National transition committee encounters plaster in Surt 

entity KL divergence probability frequency 

Misracirctah 0.205826 0.181452 1 

Abdul-Jelil 0.266745 0.181452 1 

Qaddafi 0.485460 0.149194 10 

Saif-Nasser 0.498184 0.125 1 

New York 0.435166 0.084677 2 

Niger 0.411440 0.060484 1 

Surt 0.598851 0.044355 3 

Bani Walid 0.494996 0.03629 1 

Tripoli 0.635240 0.03629 1 

Jerusalem 0.624283 0.028226 1 

UN’s high conference of Libya appeals to picking up the reconstruction 

entity KL divergence probability frequency 

Abdul-Jelil 0.018252 0.444015 1 

Wei Wei 0.591291 0.374517 1 

Libya 0.642270 0.104247 16 

UN 0.662659 0.042471 6 

New York 0.671120 0.019305 1 

Gu Zhengqiu 0.669310 0.003861 1 

XinHua Net 0.689017 0.003861 1 

UNSC 0.652071 0.003861 1 

Ban ki-moon 0.666539 0.003861 1 

In most instances, if an entity which has a lower KL divergence with the document, 
the probability it belongs to that document will be higher, and the frequency is not a 
key factor to influence the belonging probability. In order to compare the entity rank-
ing performances between AT and DET model on the whole data, we further adopt 
the weighted KL divergence which is defined as equations (9) and (10): 

( ), ,
1 1

1 1
_ ||

dD

x t d t
d ad

wKL AT KL
D

θ η
= =

= ⋅ ∑∑
a

a
  (9)
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( )( ), , ,
1 1

1
_ ||

dXD

d x x t d t
d x

wKL DET KL
D

ψ θ η
= =

= ⋅ ⋅∑∑  (10)

The smaller the weighted KL value is, the more similarity entities and documents 
own. In figure 3, we have shown the values with different topic numbers. 

 

 

Fig. 3. The weighted KL divergences of AT and DET model with different topic numbers. The 
values of DPT model are lower than AT model. It means that the more important entities (with 
lower KL divergence to document which they appear in) have higher probabilities belong to the 
document and contributes more to the topic generativity. 

5 Conclusions 

We have presented the Document-Entity-Topic model, a probabilistic model for ex-
ploring the interactions of words, topics and entities within documents. It applies the 
probabilistic model to the social network analysis based on latent topics. In order to 
avoid the side effects of noisy entities and find out the entities which mainly affect the 
topics, we have introduced in the Dirichlet allocation for document-entity distribution 
other than uniform allocation. The model can be applied to discovering topics  
conditioned on entities, clustering to find semantic social groups, and ranking the 
significance of entities in a document. 

However, while there is no entity in a document, the topics of that document can 
not be modeled. When such lack-of-entity documents arrive at a certain amount,  
the topic modeling of the corpus will be affected. Consequently, we try to improve  
the model for the application when there are many documents lacking of  
entities. 
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Appendix 

We need to derive ( ), | , , , , , ,i i i i i iP x x z t w w γ α β− − −= = = x z w , the conditional distri-

bution for word wi given all other words’ topic and entity assignments z-i and x-i  to 
give out the Gibbs sampling procedure for DET model. We begin with the joint prob-
ability of the whole documents corpora. Here we can make use of conjugate priors to 
simplify the integrals.  
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Where dxn is the number of tokens assigned to persona x and document d, xtn is the 

number of tokens assigned to topic t and persona x, tvn is the number of tokens of 

word w assigned to topic t. Using the chain rule, we can obtain the conditional proba-

bility conveniently. We define di
w− as all word tokens except the token

di
w : 
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Abstract. Parallel coordinates is frequently used to visualize multi-
dimensional data. In this paper, we are interested in how to effectively
visualize clusters of multi-dimensional data in parallel coordinates for
the purpose of facilitating knowledge discovery. In particular, we would
like to efficiently find a good order of coordinates for different emphases
on visual knowledge discovery. To solve this problem, we link it to the
metric-space Hamiltonian path problem by defining the cost between
every pair of coordinates as the number of inter-cluster or intra-cluster
crossings. This definition connects to various efficient solutions and leads
to very fast algorithms. In addition, to better observe cluster interactions,
we also propose to shape clusters smoothly by an energy reduction model
which provides both macro and micro view of clusters.

Keywords: Multi-dimensional Data Visualization, Parallel Coordinates,
Cluster, knowledge discovery, Graph Theory, Metric Space, Metric Hamil-
tonian path problem.

1 Introduction

Today the infusion of data from every facet of our society, through document-
ing, sensing, digitalizing and computing, challenges scientists, analysts and users
with its typical massive size and high dimension. Data mining and visualization
are two important areas in analyzing and understanding the data. The role of
data mining is to discover hidden patterns of the data. In particular, various
clustering techniques (see [19] for a review) have been proposed to reveal the
structures of these data and support exploratory data analysis. By contrast, the
role of visualization is to present the data in a clear and understandable man-
ner for people. Many visualization techniques have been developed to facilitate
exploratory analysis and analytical reasoning through the use of (interactive)
visual interfaces.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 505–516, 2012.
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However, despite these efforts, current research is far from perfect in integrat-
ing these two endeavors in a close and uniform fashion. Given the discovered
cluster structures from the data, how can we visualize them and provide users
better insight of the data? How can visualization techniques help reveal and ex-
pose underlying structures of the data? Those research questions are clearly very
critical for us to meet the challenges of the “data explosion”. In this paper, we
address those questions by developing a novel visualization model for visualizing
discovered clusters in large and multivariate datasets. Our goal is to efficiently
provide users different views of discovered clusters as well as preserve the de-
tails of these clusters to the maximal extent possible. Among many visualization
techniques for multidimensional data [33], parallel coordinates is one of the most
elegant yet simple tools, and we select it as the visualization platform for our
proposed algorithms.

Fig. 1. (a) Data visualization with parallel coordinates w, x, y, z; (b) Data projection
on wz plane

Parallel coordinates, which transforms multivariate data into 2D polylines
(or ’lines’ for short), has been widely used in many information visualization
applications [18,28] as well as data mining [35]. Figure 1(a) is an example of
visualizing 4-dimensional data by parallel coordinates. Wegman [30] shows Par-
allel Coordinates can be used to effectively reveal data correlation as well as
cluster interaction. For instance, Figure 1(b) is the projection of three clusters
in Figure 1(a) on the wz plane. Readers can easily observe what it implies for
two clusters that are generally crossing over each other between two coordinates
(e.g. wz coordinates in Figure 1), or generally parallel to each other. Such obser-
vation leads to important knowledge discovery. Using an example in [30] as an
illustration, let us imagine we are comparing one group of heavy cars with an-
other group of light cars, on weight, displacement, mileage, gear ratio, and price.
A visualization of these two clusters on gear ratio and weight would show these
two clusters generally cross each other, which implies that heavy cars would tend
to have a large engine but a lower gear ratio, while light cars are just the reverse.

As there is a factorial number of ways to order the parallel coordinates for vi-
sualizing different aspects of the data, a major challenge arises: How to efficiently
determine a good order of coordinates (i.e., columns or dimensions) for a spe-
cific knowledge discovery purpose? Such order is traditionally pre-determined,
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and made flexible in some systems by allowing user adjustment. For data sets
with many dimensions, this will impose unexpected challenge to end users, while
they may have inadequate knowledge and experiences. Moreover, data clusters
from aggregation and abstraction are even harder to be illustrated along multiple
coordinates, together with many polylines.

To address these challenges, in this paper, we visualize clusters in parallel
coordinates for visual knowledge discovery using a novel dimension ordering
approach which is further refined by an energy reduction model.

2 Related Works

Parallel Coordinates for Clusters. Wegman [30] promotes parallel coor-
dinates visualization in the aspects of geometry, statistics and graphics, which
has been widely applied in information visualization [28,25]. For visualizing clus-
tered data sets, many approaches have been conducted using parallel coordinates
[20,23,3]. In particular, instead of visualizing each individual data item as a poly-
line, each cluster pattern is visualized as a fuzzy stripe [13,20,3]. Fua et al. [9]
visualize clusters by variable-width opacity bands, faded from a dense middle to
transparent edges. Such visualization focuses on the global pattern of clusters,
but the general shape of a cluster might be adversely affected by a small number
of outliers inside a cluster. In comparison, instead of displaying a shape profile
of individual clusters, our method seeks to keep the line structures while high-
lighting clusters and their relationships, by seeking good orders of coordinates
as well as shaping them smoothly by a quadratic energy reduction model which
extends the linear system proposed in [36].

Dimension Ordering. The dimension ordering and permutation problem is
naturally associated with parallel coordinate visualization. It is discussed in
the early paper by Wegman [30] and the subsequent work by Hurley and Old-
ford [17,16]. In [30],Wegman points out the problem and gives a basic solution
on how to enumerate the minimum number permutations such that every pair
of coordinates can be visualized in at least one of the permutations. However,
it is rather inefficient to display parallel coordinates corresponding to all these
permutations. The grand tour animates a static display in order to examine
the data from continuous different views [29,32,31]. The method is effective by
seeking solution to temporal exploration for computational complex tasks such
as manifesting outliers and clusters. Ankerst et al. [1] propose to rearrange di-
mensions such that dimensions showing a similar behavior are positioned next
to each other. Peng et al. [27] try to find a dimension ordering that can mini-
mize the “clutter measure”, which is defined as the ratio of outliers to total data
points. Since permutation related problems are mostly NP-hard, the existing
work [1,27,34] primarily relies on heuristic algorithms to get a quick solution.

Ellis and Dix [8] use line crossings to reduce clutter. Dasgupta and Kosara [7]
recently use number of crossings as an indication of clutter between two adjacent
coordinates, and apply a simple Branch-and-Bound optimization for dimension
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ordering. Hurley [15] uses crossings to study the correlation between two dimen-
sions of a dataset as well as reduce clutters. Different from them, we define the
crossing as an order change between a pair of inter-cluster items (or intra-cluster
items, depending on the visualization focus) on two adjacent coordinates. Our
definitions lead to an effective and efficient solution to study cluster interactions
on parallel coordinates for visual knowledge discovery.

3 Dimension Ordering for Knowledge Discovery

Compared with the method of projecting data into a two dimensional plane for
analysis (e.g. Figure 1(b)), an n-dimensional dataset visualized by n parallel
coordinates is more efficient for data analysis as it displays data in n − 1 pairs
of dimensions at one time. It is obvious that different permutations of the n
dimensions show different aspects of the dataset. For datasets with discovered
clusters, different permutations give different views on the relations of those
clusters. As shown in Figure 1, the overall crossing between red and green clusters
on wz coordinates implies they are generally separable by a z = w + c′ line
on the zw plane, while the overall non-crossing between blue cluster and red
(or green) clusters on wz coordinates implies they are generally separable by a
z = −w + c′′ line on the zw plane. More importantly, cluster interactions often
connect to important knowledge discovery, as the large car and small car example
in Section 1 tells us. With today’s data explosion in many applications people
often have very limited time on viewing a dataset and would like to see the
most informative aspect at the first look. To fit these applications we do not use
coordinate permutation strategies in [30,17,16] (which generate many views of a
dataset) to visualize cluster interactions. Instead, we ask the following question.

Is it possible to quickly provide users a suggestive order of coordinates to
view cluster relationships for some given preference?

In statistics, people use data correlation (e.g. Pearson correlation) to describe
the relation between two vectors. However, there is no widely adopted simi-
lar measurement for the relation between two clusters to our knowledge. Thus,
analogous to data correlation, we use inter-cluster relation to describe the inter-
action between two clusters. We consider two clusters are clear positively-related
if they are generally in parallel or have few crossings, and two clusters are clear
negatively-related if they are generally crossing each other. The quantitative
measurement of the interaction between two clusters is the number of inter-
cluster crossings between them. This measurement links to knowledge discovery
on cluster interactions.

Similarly, one can also define intra-cluster crossings, which reveals relations
among data within a cluster. A coordinate order that minimizes intra-cluster
crossings also has significant meanings in knowledge discovery. It reduces visual
clutter caused by data interactions within a cluster, and thus is more likely
to manifest inter-cluster relations to users. We provide the definitions in the
following.
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3.1 Inter-cluster and Intra-cluster Crossings

An inter-cluster crossing is defined as an order change between two items from
two different clusters on two coordinates. For example, for two items i ∈ Clusterα
and j ∈ Clusterβ on two coordinates x and y, if xi ≺ xj and yi " yj, then we
say an inter-cluster crossing exists between item i and j on the xy-dimension.
Similarly, one can define an intra-cluster crossing as an order change between
two items from the same cluster on two coordinates.

Assume σx and σy are the order of data on the x-coordinate and the y-
coordinate, respectively. Our definitions can be formalized as follows:

Definition 1. The number of inter-cluster crossings between Clusterα and
Clusterβ on the coordinates x and y is |C(α,β)| where C(α,β) = {(i, j)|σx(i) ≺
σx(j) and σy(j) ≺ σy(i) and i ∈ Clusterα, j ∈ Clusterβ}. The number of intra-
cluster crossings among Clusterα on the coordinates x and y is |Cα| where Cα =
{(i, j)|σx(i) ≺ σx(j) and σy(j) ≺ σy(i) and i, j ∈ Clusterα}.

Definition 2. The number of total inter-cluster crossings on the coordinates x
and y is |A| where A = {(i, j)|σx(i) ≺ σx(j) and σy(j) ≺ σy(i) and i, j belong to
different clusters}. The number of total intra-cluster crossings on the coordinates
x and y is |B| where
B = {(i, j)|σx(i) ≺ σx(j) and σy(j) ≺ σy(i) and i, j belong to the same cluster}.

According to Definitions 1 and 2, we can calculate the four types of crossings on a
pair of coordinates in O(n2) time, where n is the number of data items (i.e. lines
in the parallel coordinates). It is interesting to observe that the definition of intra-
cluster crossing among one given cluster on a pair of coordinates (Second part of
Definition 1) corresponds to the Kendall’s Tau coefficient [21,26] in statistics, and
there is a O(n log n) algorithm [22] for calculating it. Although the inter-cluster
crossings do not correspond to the Kendall’s Tau coefficient, it is not difficult
to design a O(n logn) algorithm to calculate each type of crossings defined in
Definitions 1 and 2 (assuming the number of clusters is a constant). We omit
further details due to the space limit.

3.2 Optimization with Hamiltonian Path

After we get the number of crossings between every pair of coordinates, we need
to find an order of coordinates such that the number of crossings is minimized
or maximized for different knowledge discovery purposes. This problem can be
converted to the problem of finding a minimum (or maximum) weighted Hamil-
tonian path [10] in a complete graph, by turning each coordinate into a vertex,
adding an edge between every two vertices, and setting the edge weight to be
the number of crossings between the two corresponding coordinates. It is quite
obvious that the minimum or maximum weighted Hamiltonian path problem
for complete graphs is NP-hard, as it is easy to reduce the Hamiltonian path
problem for an unweighted graph, which is NP-complete, to this problem.
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Exact Solution. An exact solution for the minimum (or maximum) weighted
Hamiltonian path problem exhaustively tries all the permutations of vertices.
The complexity is O(n!) and the method becomes intractable when n is slightly
larger. However, in parallel coordinates visualization, it is not uncommon to
see a dataset with 10 or less coordinates. For these applications, the exhaustive
search algorithm is still one of the most simple and effective solutions. Ideas
in various branch and bound approaches for the Traveling Salesman Problem
(TSP for short) can be used to speed up the exhaustive search algorithm for the
minimum (or maximum) weighted Hamiltonian path problem. Interested readers
may refer to the TSP survey paper [24] for details.

Metric Space and Approximation Solutions. Since the exact solutions can-
not easily handle high-dimensional data, we seek fast approximate solutions when
the number of coordinates is large. As nice approximate algorithms for minimum
or maximum metric-TSPs exist (see solutions in [5] for minimum metric-TSP,
[12] for maximum Metric-TSP, [4] for minimum metric-TSP with a prescribed
order of vertices), we are wondering if our problems are metric Hamiltonian path
problems. If they are, can we have similar approximate algorithms? Fortunately,
we have a positive answer as stated in Lemma 1 (proof omitted due to space
limit) which extends the well-known fact that Kendall tau distance (corresponds
to intra-cluster crossings) is a metric :

Lemma 1. The graph G, constructed by converting each coordinate to a vertex
and setting the weight of each edge between two vertices to be the number of
inter-cluster crossings between the two corresponding coordinates, either within
two specific clusters or among all clusters, forms a metric space, in which edge
weights follow the triangle inequality.

Thus, it is not difficult to show that, if a graph G, with n vertices forms a
metric space (regardless whether there exists a prescribed order of some ver-
tices), a k-approximation solution for the minimum (or maximum) traveling
salesman problem implies 2k-approximation solutions for minimizing (or maxi-
mizing) inter-cluster (or intra-cluster) crossings.

In some special cases, it is possible to achieve even better approximation
ratio. For example, Hoogeveen [14] shows that Christofides’ 1.5 Approximation
algorithm [5] of minimum metric TSP can be modified for minimum metric
Hamiltonian path problem with the same approximation ratio, but the time
complexity of this algorithm or its modified version, though polynomial, is much
larger than linear. To achieve an even faster running speed for minimizing inter-
cluster (or intra-cluster) crossings, we implemented a linear 2-approximation
minimum metric Hamiltonian algorithm modified from the well-known linear
2-approximation algorithm for the minimum metric-TSP [6].

3.3 Empirical Study on Real Datasets

In this subsection, we report our empirical results on data extracted from the UC
Irvine Machine Learning Repository1, which has been widely used as a primary

1 http://archive.ics.uci.edu/ml/
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Table 1. Dataset characteristics and number of crossing changes

dataset characteristics number of crossing changes

Dataset Records Columns Clusters inter min inter max intra min

eighthr 2533 12 2 -24.3% +50.0% -15.1%

forestfires 517 6 6 -29.6% +24.7% -21.9%

parkinsons 194 7 4 -42.0% +40.8% -26.3%

pima-indians 767 7 10 -15.2% +20.6% -15.4%

water-treatment 526 11 3 -41.9% +13.6% -37.0%

wdbc 568 5 4 -14.3% +20.2% -10.6%

wine 177 7 4 -46.8% +13.4% -11.0%

source of machine learning and data mining datasets. The basic characteristics of
the datasets to be studied, are listed in Table 1. For our experiments, we chose
the well-known K-means algorithm [11] to cluster the data items into exclusive
clusters. We implemented the visualization program in JavaScript (web-based).
For this study, we tested our visualization implementation in Firefox 3.6.12 on a
mainstream desktop PCwith an Intel Core i5 2.67GHz CPU and 8 GB of memory.

In our empirical study, we are primarily interested in observing the effects of
proposed inter-cluster and intra-cluster ordering for visual knowledge discovery.
Maximizing intra-cluster crossings does not clearly connect to the study of cluster
interactions thus we omit it for the conciseness of the paper.

Table 1 reports the detailed changes of inter-cluster crossings after minimiza-
tion and maximization, and intra-cluster crossings after minimization, for dif-
ferent datasets. Although crossing changes are substantial, it is more interesting
to see what are the changes on the visualization results? A set of representative
results are as shown in Figure 2.

Minimizing and Maximizing Total Inter-cluster Crossings:
Figure 2 (b) and (c) shows the visualization results for minimizing total inter-
cluster crossings and maximizing total inter-cluster crossings, respectively, for
dataset “wine”. In the original order, i.e., Figure 2 (a), we can observe clusters
are generally negatively related between col 3 and col 4, between col 4 and col
5, between col 5 and col 6, between col 6 and col 7. Quite impressively, clusters
show much more positive relations in the adjacent coordinates in Figure 2 (b). In
contrast, clusters show even more negative relations in Figure 2 (c). These results
generally meet our expectation for the effects of minimizing and maximizing the
total inter-cluster crossings. Interestingly, we can observe the last two columns
(col 3 and col 7) in Figure 2 (c) contain a couple of strongly negatively-related
cluster pairs which are not revealed by Figure 2 (a) on its original order. By
checking the original data, we found col 3 corresponding to “alkalinity of ash”,
while col 7 corresponding to “proline”. This helps explain the negative relations
between clusters as alkalinity is the ability of a solution to neutralize acids, while
the proline is an α-amino acid. A high in alkalinity is more likely to result in low
α-amino acid.
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( )
(a) wine original (b) wine intercluster min (c) wine intercluster max

(d) parkinsons original (e) parkinsons intercluster
min

(f) parkinsons intercluster
max

(g) forestfires original (h) forestfires intercluster
min on (cyan, light green)

(i) forestfires intracluster
min on (cyan, light green)

(j) water-treatment original (k) water-treatment inter-
cluster min

(l) water-treatment inter-
cluster min 2-appr

Fig. 2. Visualization results (colors shown in the web version of this paper)

Similarly, Figure 2 (e) and (f) shows the visualization results for minimizing
total inter-cluster crossings and maximizing total inter-cluster crossings, respec-
tively, for dataset “parkinsons”, in which each col represents a measurement for
“parkinsons”. After our visualization, it is easy for health care providers to spot
measurements that are strongly positively-related in Figure 2 (e), and measure-
ments that are strongly negatively-related in Figure 2 (f).

Minimizing Inter-cluster and Intra-cluster Crossings on a Pair of
Clusters:
We would like to see the difference between minimizing inter-cluster crossings and
intra-cluster crossings. To ease our observation, we focus on only two clusters,
cyan and light green, in Figure 2 (g), which shows the dataset “forestfires” in its
original order. Figure 2 (h) and (i) show the visualization results corresponding
to minimizing inter-cluster crossings and intra-cluster crossings, respectively. In
Figure 2 (h) we can observe that the cyan cluster and the light green cluster are
generally positively-related in all adjacent columns. This is understandable as
the visualization goal is to minimize the inter-crossings between them. However,
Figure 2 (i) shows a strongly negative-relation between them on the last two
columns (col 2 and col 6). This is because the goal of minimizing intra-cluster
crossings does not care about the relations between the cyan cluster and light
green cluster. Rather, it tries to reduce crossing within the two clusters so as
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to reduce visual clutter and provide a better chance to observe the relations,
regardless of positive or negative, between the two clusters.

By checking the original data, we found col 2 corresponding to DMC and col 6
corresponding toRH.DMC is an indication (the larger themore likely) of the depth
that fire will burn in moderate duff layers and medium size woody material, while
RH is relative humidity. Thus, we understand the discovered result in Figure 2 (i)
that clusters tend to be negatively-related between DMC and RH.

Minimizing Inter-cluster Crossings by the 2-Approximation Algorithm:
In all the tested datasets, the exact algorithm finishes in no more than 100 mil-
liseconds except for the datasets “eighthr” and “water-treatment”. It takes about
2minutes to exactly order “eighthr” (12 columns), and about 15 seconds to exactly
order “water-treatment” (11 columns). This poses a concern on using exact algo-
rithms for ordering datasets with more than 10 columns, and justify the impor-
tance of approximation algorithms for ordering large datasets. In the following we
empirically study the effect of the popular 2-approximation algorithm (discussed
at the end of Section 3.2) on our visualization scheme. In order to get a better or-
dering through the 2-approximation algorithm, we try DFS search from each ver-
tex and find a lowest-cost result among all the 2-approximation results. Even with
multi-DFS search, the ordering time is still lightning fast. For all datasets, includ-
ing “eighthr” and “water-treatment”, the multi-DFS search finishes within a cou-
ple of milliseconds. This makes our visualization schemes work for large datasets.

Figure 2 (l) shows the visualization result of minimizing inter-cluster crossings
by the 2-approximation algorithm. Compared to the visualization result by the
exact algorithm as in Figure 2 (k), it is hard to tell the actual difference between
the two algorithms in revealing the positive relations among clusters. Detailed
data may explain this: The numbers of inter-cluster crossings minimized by the 2-
approximation algorithm are -23.0%,-29.6%,-42.0%,-8.4%,-41.6%,-14.3%,-46.8%,
respectively, for the datasets in Table 1 (from top to bottom). Thus we can
see there is very little performance degradation (in some datasets there is no
difference) with the 2-approximation algorithm but very significant speed-up
(linear vs factorial, in terms of complexity).

4 Shaping Clusters against Visual Clutters by an Energy
Reduction Model

For some figures (e.g., Figure 2(c) and (i)) in the previous section, inter-cluster
crossings are hard to discern even after ordering the coordinates for minimizing
intra-cluster crossings. This is because a substantial amount of lines from a
large-scale data set are typically entangled together in the limited space and
resolution of display devices, confounding their belongings to different clusters.
Consequently, the pattern and knowledge discovery of clustered data is hindered
and the usage of parallel coordinates is limited. A handful of works [3,2,20]
display the silhouette shape of individual clusters while the lines are intentionally
brushed out. The shape of a cluster is sensitive to a few outliers, and as a result,
the visualization of cluster relations is not satisfying. This scenario can be further
deteriorated, when the lines of a given cluster are even more sparsely distributed.
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(a) enhancement for Figure 2(c) (b) enhancement for Figure 2(i)

Fig. 3. visualization enhancement (colors shown in the web version of this paper)

To tackle these visual clutters for better knowledge discovery, We innovate
a quadratic energy reduction model to smoothly shape clusters against visual
clutters while preserving essential details of each cluster, by associating each
line i (with zi being its center) between two adjacent dimension x and y with a
“rubber band” effect with three potential energy:

Elastic Energy: EE(i) = (zi − xi+yi

2 )2

Attraction Energy: EA(i, ĉp) = (zi − ĉp)
2

Repelling Energy: ER(i, ĉp−1, ĉp+1) = (zi − ĉp−1)
2 + (zi − ĉp+1)

2

Here each cluster has an attracting center ĉp which may serve as a repelling center
for its adjacent clusters. We developed an efficient energy reduction model by
properly initializing and manipulating ĉp (omitted due to space limit).

The visualization effects are significantly enhanced by our energy reduction
model. Figure 3(a) and Figure 3(b) are examples of enhanced visualization re-
sults for Figure 2(c) and (i), respectively, by our energy reduction models. Read-
ers can easily observe more clusters and thus better understanding their rela-
tionships. It is easy to see the essential details of these clusters are not altered.
More specifically, if two clusters are negatively-related or positively-related, the
relationship not only remains after energy reduction, but gets further enhanced
for human observation. For example, we can observe the blue cluster is negatively
related to the pink cluster between the last two columns in Figure 3(a) while it
is almost impossible to see this in Figure 2(c). As another example, the negative
relation between cyan cluster and the light green cluster is more manifest in
Figure 3(b) than in Figure 2(i). Finally, instead of affecting the observation of
cluster interactions, outliers of each cluster can be easily identified as those few
lines far away from the majority of lines.

In summary, given an order of coordinates, our energy reduction model effi-
ciently provides better views of clusters for visual knowledge discovery at both
the macro level (i.e., cluster interactions) and the micro level (i.e., individual
lines with outliers clearly exposed).

5 Conclusion and Future Work

In this paper, we show a novel method to visualize discovered clusters in parallel
coordinates. First, we provide good orders of coordinates for different
knowledge discovery purposes. Second, we shape the clusters with a quadratic
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energy reduction model, such that cluster interactions are much easier to observe
without compromising their essential details. Our empirical study on visualizing
real datasets confirms that our method is effective and efficient. Our visual-
ization techniques can further be combined with other visualization tools for
better results, e.g, applying various visual rendering algorithms to enhance our
visualization effects.

Acknowledgement. This work was supported by the US National Science
Foundation under Grant #1019343 to the Computing Research Association for
the CIFellows Project.
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Abstract. Co-clustering has emerged as an important technique for
mining relational data, especially when data are sparse and high-
dimensional. Co-clustering simultaneously groups the different kinds of
objects involved in a relation. Most co-clustering techniques typically
only leverage the entries of the given contingency matrix to perform the
two-way clustering. As a consequence, they cannot predict the interaction
values for new objects. In many applications, though, additional features
associated to the objects of interest are available. The Infinite Hidden
Relational Model (IHRM) has been proposed to make use of these fea-
tures. As such, IHRM has the capability to forecast relationships among
previously unseen data. The work on IHRM lacks an evaluation of the
improvement that can be achieved when leveraging features to make pre-
dictions for unseen objects. In this work, we fill this gap and re-interpret
IHRM from a co-clustering point of view. We focus on the empirical eval-
uation of forecasting relationships between previously unseen objects by
leveraging object features. The empirical evaluation demonstrates the ef-
fectiveness of the feature-enriched approach and identifies the conditions
under which the use of features is most useful, i.e., with sparse data.

Keywords: Bayesian Nonparametrics, Dirichlet Processes, Co-
clustering, Protein-molecule interaction data.

1 Introduction

Co-clustering [11] has emerged as an important approach for mining relational
data. Often, data can be organized in a matrix, where rows and columns present
a symmetrical relation. Co-clustering simultaneously groups the different kinds
of objects involved in a relation; for example, proteins and molecules indexing
a contingency matrix that holds information about their interaction. Molecules
are grouped based on their binding patterns to proteins; similarly, proteins are
clustered based on the molecules they interact with. The two clustering processes
are inter-dependent. Understanding these interactions provides insight into the
underlying biological processes and is useful for designing therapeutic drugs.

Existing co-clustering techniques typically only leverage the entries of the
given contingency matrix to perform the two-way clustering. As a consequence,
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they cannot predict the interaction values for new objects. This greatly limits
the applicability of current co-clustering approaches.

In many applications additional features associated to the objects of interest
are available, e.g., sequence information for proteins. Such features can be lever-
aged to perform predictions on new data. The Infinite Hidden Relational Model
(IHRM) [36] has been proposed to leverage features associated to the rows and
columns of the contingency matrix to forecast relationships among previously un-
seen data. Although IHRM was originally introduced from a relational learning
point of view, it is essentially a co-clustering model that overcomes the afore-
mentioned limitations of existing co-clustering techniques. In particular, IHRM
is a nonparametric Bayesian model, which learns the number of row and column
clusters from the given samples. This is achieved by assuming Dirichlet Process
priors to the rows and columns of the contingency matrix. As such, IHRM does
not require the a priori specification of the numbers of row and column clusters
in the data.

Existing Bayesian co-clustering models [30,35,19] are related to IHRM, but
none makes use of features associated to the rows and columns of the contin-
gency matrix. As a consequence, these methods can handle missing entries only
for already observed rows and columns (e.g., for a protein and a molecule used
during training, although not necessarily in combination). In particular, IHRM
can be viewed as an extension to the nonparametric Bayesian co-clustering
(NBCC) model [19]. IHRM adds to NBCC the ability to exploit features as-
sociated to rows and columns, thus enabling IHRM to predict entries for unseen
rows and/or columns. The authors in [36] have applied IHRM to collaborative
filtering [27]. Co-clustering techniques have also been applied to collaborative
filtering [33,15,10], but again none of these involve features associated to rows
or columns of the data matrix.

The work on IHRM [36] lacks an evaluation of the improvement that can be
achieved when leveraging features to make predictions for unseen objects. In this
work, we fill this gap and re-interpret IHRM from a co-clustering point of view.
We call the resulting method Feature Enriched Dirichlet Process Co-clustering
(FE-DPCC). We focus on the empirical evaluation of forecasting relationships
between previously unseen objects by leveraging object features.

2 Related Work

Researchers have proposed several discriminative and generative co-clustering
models, e.g. [7,29]. Bayesian Co-clustering (BCC) [30] maintains separate Dirich-
let priors for row- and column-cluster probabilities. To generate an entry in the
data matrix, the model first generates the row and column clusters for the en-
try from their respective Dirichlet-multinomial distributions. The entry is then
generated from a distribution specific to the row- and column-cluster. Like the
original Latent Dirichlet Allocation (LDA) [5] model, BCC assumes symmetric
Dirichlet priors for the data distributions given the row- and column-clusters.
Shan and Banerjee [30] proposed a variational Bayesian algorithm to perform
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inference with the BCC model. In [35], the authors proposed a variation of BCC,
and developed a collapsed Gibbs sampling and a collapsed variational algorithm
to perform inference. All aforementioned co-clustering models are parametric,
i.e., they need to have specified the number of row- and column-clusters.

A nonparametric Bayesian co-clustering (NBCC) approach has been proposed
in [19]. NBCC assumes two independent Bayesian priors on rows and columns.
As such, NBCC does not require a priori the number of row- and column-clusters.
NBCC assumes a Pitman-Yor Process [24] prior, which generalizes the Dirich-
let Process. The feature-enriched method we introduce here is an extension of
NBCC, where features associated to rows and columns are used. Such features
enable our technique to predict entries for unseen rows/columns.

A related work is Bayesian matrix factorization. In [17], the authors allevi-
ated overfitting in singular value decomposition (SVD) by specifying a prior
distribution over parameters, and performing variational inference. In [26], the
authors proposed a Bayesian probabilistic matrix factorization method, that as-
signs a prior distribution to the Gaussian parameters involved in the model.
These Bayesian approaches to matrix factorization are parametric. Nonparamet-
ric Bayesian matrix factorization models include [8,32,25].

Our work is also related to collaborative filtering (CF) [27]. CF learns the
relationships between users and items using only user preferences to items, and
then recommends items to users based on the learned relationships. Various ap-
proaches have been proposed to discover underlying patterns in user consump-
tion behaviors [6,16,1,18,17,26,31,12,14]. Co-clustering techniques have already
been applied to CF [33,15,10]. None of these techniques involve features asso-
ciated to rows or columns of the data matrix. On the contrary, content-based
(CB) recommendation systems [3] predict user preferences to items using user
and item features. In practice, CB methods are usually combined with CF. The
approach we introduce in this paper is a Bayesian combination of CF and CB.

3 Background: Dirichlet Process

The Dirichlet process (DP) [9] is an infinite-dimensional generalization of the
Dirichlet distribution. Formally, let S be a set, G0 a measure on S, and α0

a positive real number. The random probability distribution G on S is dis-
tributed as a DP with concentration parameter α0 (also called the pseudo-
count) and base measure G0 if, for any finite partition {Bk}1≤k≤K of S:
(G(B1), G(B2), · · · , G(BK)) ∼ Dir(α0G0(B1), α0G0(B2), · · · , α0G0(BK)).

Let G be a sample drawn from a DP. Then with probability 1, G is a discrete
distribution [9]. Further, if the first N − 1 draws from G yield K distinct values
θ∗1:K with multiplicities n1:K , then the probability of the N th draw conditioned
on the previous N − 1 draws is given by the Pólya urn scheme [4]:

θN =

{
θ∗k, with prob nk

N−1+α0
, k ∈ {1, · · · ,K}

θ∗K+1 ∼ G0, with prob α0
N−1+α0
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The DP is often used as a nonparametric prior in Bayesian mixture mod-
els [2]. Assume the data are generated from the following generative procedure:

G ∼ Dir(α0, G0); θ1:N ∼ G;x1:N ∼
∏N

n=1 F (·|θn), where the F (·|θn) are probabil-
ity distributions known as mixture components. Typically, there are duplicates
among the θ1:N ; thus, multiple data points are generated from the same mix-
ture component. It is natural to define a cluster as those observations generated
from a given mixture component. This model is known as the Dirichlet process
mixture (DPM) model. Although any finite sample contains only finitely many
clusters, there is no bound on the number of clusters and any new data point has
non-zero probability of being drawn from a new cluster [20]. Therefore, DPM is
known as an “infinite” mixture model.

The DP can be generated via the stick-breaking construction [28]. Stick-
breaking draws two infinite sequences of independent random variables, vk ∼
Beta(1, α0) and θ∗k ∼ G0 for k = {1, 2, · · · }. Let G be defined as:

πk = vk

k−1∏
j=1

(1− vj) G =

∞∑
k=1

πkδ(θ
∗
k) (1)

where π = 〈πk|k = 1, 2, · · · 〉 are mixing proportions and δ(θ) is the distribution
that samples the value θ with probability 1. Then G ∼ Dir(α0, G0). It is helpful
to use an indicator variable zn to denote which mixture component is associated
with xn. The generative process for the DPM model using stick-breaking is as
follows (additional details on the DPM model can be found in [20,23]):

1. Draw vk ∼ Beta(1, α0), k = {1, 2, · · · } and calculate π as in Eq (1).
2. Draw θ∗k ∼ G0, k = {1, 2, · · · }
3. For each data point n = {1, 2, · · · , N}:

– Draw zn ∼ Discrete(π); Draw xn ∼ F (·|θ∗zn)

4 Feature Enriched Dirichlet Process Co-clustering

The observed data X of FE-DPCC are composed of three parts: the observed
row features XR, the observed column features XC , and the observed relational
featuresXE between rows and columns. If there are R rows and C columns, then
XR = 〈xR

r |r = {1, · · · , R}〉, XC = 〈xC
c |c = {1, · · · , C}〉, and XE = 〈xE

rc|r =
{1, · · · , R}, c = {1, · · · , C}〉. XE may have missing data, i.e., some entries may
not be observed.

∞
�πR

zRr

R

�θ∗Rk

GR
0

∞

GC
0

�θ∗Cl �πC

zCc

GE
0

C

αR
0 αC

0

�θ∗Ekl

�xR
r �xC

c

xE
rc

Fig. 1. FE-DPCC model

FE-DPCC is a generative model that assumes
two independent DPM priors on rows and columns.
We follow a stick-breaking representation to de-
scribe the FE-DPCC model. Specifically, assum-
ing row and column DP priors Dir(αR

0 , GR
0 ) and

Dir(αC
0 , GC

0 ), FE-DPCC draws row-cluster pa-
rameters θ∗R

k from GR
0 , for k = {1, · · · ,∞},

column-cluster parameters θ∗C
l from GC

0 , for l =
{1, · · · ,∞}, and co-cluster parameters θ∗E

kl from
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GE
0 , for each combination of k and l1; then draws row mixture proportion πR

and column mixture proportion πC as defined in Eq. 1. For each row r and each
column c, FE-DPCC draws the row-cluster indicator zRr and column-cluster in-
dicator zCc according to πR and πC , respectively. Further, FE-DPCC assumes
the observed features of each row r and each column c are drawn from two para-
metric distributions F (·|θ∗R

k ) and F (·|θ∗C
l ), respectively, and each entry, xE

rc, of
the relational feature matrix is drawn from a parametric distribution F (·|θ∗E

kl ),
where zRr = k and zCc = l.

The generative process for FE-DPCC is as follows and the FE-DPCC model
is illustrated in Figure 1.
1. Draw vRk ∼ Beta(1, αR

0 ), for k = {1, · · · ,∞} and calculate πR as in Eq (1)
2. Draw θ∗R

k ∼ GR
0 , for k = {1, · · · ,∞}

3. Draw vCl ∼ Beta(1, αC
0 ), for l = {1, · · · ,∞} and calculate πC as in Eq (1)

4. Draw θ∗C
l ∼ GC

0 , for l = {1, · · · ,∞}
5. Draw θ∗E

kl ∼ GE
0 , for k = {1, · · · ,∞} and l = {1, · · · ,∞}

6. For each row r = {1, · · · , R}, draw zRr ∼ Discrete(πR), and draw xR
r ∼ F (·|θ∗R

zRr
)

7. For each column c = {1, · · · , C}, draw zCc ∼ Discrete(πC), and draw xC
c ∼

F (·|θ∗C
zCc

)

8. For each entry xE
rc, draw xE

rc ∼ F (·|θ∗E
zRr zCc

)

4.1 Inference

The likelihood of the observed data is given by:

p(X|ZR,ZC ,θ∗R, θ∗C ,θ∗E) =(

R∏
r=1

f(xR
r |θ∗R

zRr
))(

C∏
c=1

f(xC
c |θ∗C

zCc
))(

R∏
r=1

C∏
c=1

f(xE
rc|θ∗E

zRr zCc
))

where f(·|θ∗R
k ), f(·|θ∗C

l ) and f(·|θ∗E
kl ) denote the probability density (or mass)

functions of F (·|θ∗R
k ), F (·|θ∗C

l ) and F (·|θ∗E
kl ), respectively; ZR = 〈zRr |r =

{1, · · · , R}〉; ZC = 〈zCc |c = {1, · · · , C}〉; θ∗R = 〈θ∗R
k |k = {1, · · · ,∞}〉;

θ∗C = 〈θ∗C
l |l = {1, · · · ,∞}〉; and θ∗E = 〈θ∗E

kl |k = {1, · · · ,∞}, l = {1, · · · ,∞}〉.
The marginal likelihood obtained by integrating out the model parameters

θ∗R, θ∗C , and θ∗E is:

p(X|ZR,ZC , GR
0 , G

C
0 , G

E
0 ) =

(
R∏

r=1

∫
f(xR

r |θ∗R
zRr

)g(θ∗R
zRr

|ζR)dθ∗R
zRr

)
(2)(

C∏
c=1

∫
f(xC

c |θ∗C
zCc

)g(θ∗C
zCc

|ζC)dθ∗C
zCc

)(
R∏

r=1

C∏
c=1

∫
f(xE

rc|θ∗E
zRr zCc

)g(θ∗E
zRr zCc

|ζE)dθ∗E
zRr zCc

)
where g(·|ζR), g(·|ζC) and g(·|ζE) denote the probability density functions of
GR

0 , G
C
0 and GE

0 , respectively. We assume F (·|θ∗R
k ) and GR

0 , F (·|θ∗C
l ) and GC

0 ,
and F (·|θ∗E

kl ) and GE
0 are all pairwise conjugate. Thus, there is a closed form

expression for the marginal likelihood (2). The conditional distribution for sam-
pling the row-cluster indicator variable zRr for the rth row xR

r is as follows. For
populated row-clusters k ∈ {ZR

r′}r′={1,··· ,r−1,r+1,··· ,R},

1 Every co-cluster is indexed by a row-cluster ID and a column-cluster ID. Thus, we
denote a co-cluster defined by the kth row-cluster and the lth column-cluster as (k, l).
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p(zR
r = k|xR

r , {xE
rc}c∈{1,··· ,C},X

R¬r,XE¬r,ZR¬r) ∝ (3)

N¬r
k

R − 1 + αR
0

(∫
f(xR

r |θ∗R
k )g(θ∗R

k |ζ∗R¬r
k )dθ∗R

k

) C∏
c=1

(∫
f(xE

rc|θ
∗E
kzCc

)g(θ∗E
kzCc

|ζ∗E¬r

kzCc
)dθ∗E

kzCc

)

where ¬r means excluding the rth row,N¬r
k is the number of rows assigned to the

kth row-cluster excluding the rth row, ζ∗R¬r
k is the hyperparameter of the pos-

terior distribution of the kth row-cluster parameter θ∗R
k given all rows assigned

to the kth row-cluster excluding the rth row, and ζ∗E¬r
kzC

c
is the hyperparameter

of the posterior distribution of the co-cluster (k, zCc ) given all entries assigned
to it excluding the entries in the rth row. When k /∈ {zRr′}r′={1,··· ,r−1,r+1,··· ,R},

i.e., zRr is being set to its own singleton row-cluster, the conditional distribution
becomes:

p(zR
r = k|xR

r , {xE
rc}c∈{1,··· ,C},X

R¬r ,XE¬r ,ZR¬r) ∝ (4)

αR
0

R − 1 + αR
0

(∫
f(xR

r |θ∗R
k )g(θ∗R

k |ζR)dθ∗R
k

) C∏
c=1

(∫
f(xE

rc|θ
∗E
kzCc

)g(θ∗E
kzCc

|ζ∗E¬r

kzCc
)dθ∗E

kzCc

)

The conditional distribution for sampling the column-cluster indicator variable
zCc for the cth column xC

c is obtained analogously. For populated column-clusters
l ∈ {ZC

c′ }c′={1,··· ,c−1,c+1,··· ,C},

p(zC
c = l|xC

c , {xE
rc}r∈{1,··· ,R},X

C¬c,XE¬c,ZC¬c) ∝ (5)

N¬c
l

C − 1 + αC
0

(∫
f(xC

c |θ∗C
l )g(θ∗C

l |ζ∗C¬c
l )dθ∗C

l

) R∏
r=1

(∫
f(xE

rc|θ
∗E
zRr l

)g(θ∗E
zRr l

|ζ∗E¬c

zRr l
)dθ∗E

zRr l

)

where ¬c means excluding the cth column, N¬c
l is the number of columns as-

signed to the lth column-cluster excluding the cth column, ζ∗C¬c
l is the hyper-

parameter of the posterior distribution of the lth column-cluster parameter θ∗C
l

given all columns assigned to the lth column-cluster excluding the cth column,
and ζ∗E¬c

zR
r l is the hyperparameter of the posterior distribution of the co-cluster

(zRr , l) given all entries assigned to it excluding the entries in the cth column. If
zCc /∈ {zCc′}c′={1,··· ,c−1,c+1,··· ,C}, i.e., zCc is being assigned to its own singleton
column-cluster, the conditional distribution becomes:

p(zCc = l|xC
c , {xE

rc}r∈{1,··· ,R},X
C¬c,XE¬c,ZC¬c) ∝ (6)

αC
0

C − 1 + αC
0

(∫
f(xC

c |θ∗C
l )g(θ∗C

l |ζC)dθ∗C
l

) R∏
r=1

(∫
f(xE

rc|θ∗E
zRr l)g(θ

∗E
zRr l|ζ

∗E¬c
zRr l )dθ∗E

zRr l

)

5 Experimental Evaluation

We conducted experiments on two rating datasets and two protein-molecule
interaction datasets. MovieLens2 is a movie recommendation dataset containing
100,000 ratings in a sparse data matrix for 1682movies rated by 943 users. Jester3

is a joke rating dataset. The original dataset contains 4.1 million continuous
ratings of 140 jokes from 73,421 users. We chose a subset containing 100,000
ratings. Following [30], we uniformly discretized the ratings into 10 bins.

2 http://www.grouplens.org/node/73
3 http://goldberg.berkeley.edu/jester-data/
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We also used two protein-molecule interaction datasets. The first dataset
(MP14) consists of G-protein coupled receptor (GPCR) proteins and their in-
teraction with small molecules [13]. These interactions are the product of an
experiment that determines whether a particular protein target is modulated by
a molecule. MP1 had 4051 interactions between 166 proteins and 2687 molecules.
The second dataset (MP25) [21] differs from MP1 in that the protein targets be-
long to a more general class and are not restricted to GPCRs. The use of targets
restricted to a specific group of proteins (GPCRs) is similar to a chemogenomics
approach where the assumption is that proteins in the same family have a similar
activity/interaction profile. MP2 had 154 proteins, 2876 molecules and a total
of 7146 positive interactions. Table 1 summarizes the dataset characteristics.

5.1 Experimental Methodology and Feature Information

Table 1. Training and Test Data

MovieLens Jester MP1 MP2

Train

# Rows 943 33459 1961 2674
# Columns 1650 140 61 149
# Entries 80000 80000 3000 5000
Density 5.142% 1.708% 2.508% 1.255%

Test

# Rows 927 14523 856 1647
# Columns 1407 139 68 145
# Entries 20000 20000 1051 2146
Density 1.533% 0.991% 1.806% 0.899%

We first compared FE-DPCC
with a variant of NBCC,
called Dirichlet Process Co-
clustering (DPCC). DPCC
restricts the Pitman-Yor pri-
ors of NBCC to the special
case of independent Dirichlet
Process priors on rows and
columns, so as to compare
with FE-DPCC fairly. So, the difference between FE-DPCC and DPCC is that
FE-DPCC augments DPCC to exploit row and column features. We ran 1000
iterations of Gibbs sampling for both FE-DPCC and DPCC. We used perplexity
as an evaluation metric to compare FE-DPCC with DPCC on all the test data.
The perplexity of a dataset D is defined as perplexity(D) = exp (−L(D)/N),
where L(D) is the log-likelihood of D, and N is the number of data points in D.
The higher the log-likelihood, the lower the perplexity, and the better a model
fits the data.

The relational features in our data are discrete. We assume f(·|θ∗E
kl ) is a

categorical distribution, Cat(·|θ∗E
kl ), and g(θ∗E

kl |ζE) is a Dirichlet distribution,
Dir(θ∗E

kl |ϕ), with ζE = ϕ. Because of conjugacy, we can marginalize out θ∗E
kl .

Without loss of generality, we assume that f(·|θ∗E
kl ) is a D-dimensional categor-

ical distribution with support {1, · · · , D}, and we denote the Dirichlet hyperpa-
rameter as ζE = ϕ = 〈ϕd|d = {1, · · · , D}〉. The predictive distribution of the
co-cluster (k, l) to observe a new entry xE

r′c′ = d, d ∈ {1, · · · , D}, is:

p(xE
r′c′ = d|ζ∗Ekl , zRr′ = k, zCc′ = l) =

∫
f(xE

r′c′ = d|θ∗E
kl )g(θ

∗E
kl |ζ∗Ekl )dθ∗E

kl =∫
Cat(xE

r′c′ = d|θ∗E
kl )Dir(θ∗E

kl |ϕ∗
kl)dθ

∗E
kl ∝ N d

(k,l) + ϕd

4 http://pharminfo.pharm.kyoto-u.ac.jp/services/glida/
5 http://pubchem.ncbi.nlm.nih.gov/
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Table 2. Average Test Perplexity

MovieLens Jester MP1 MP2

DPCC
Row and Column Observed 3.327 (0.020) 17.111 (0.031) 1.430 (0.011) 1.484 (0.013)
Row or Column Unseen 4.427 (0.047) 19.322 (0.025) 8.845 (0.011) 7.987 (0.011)
Overall Perplexity 4.424 (0.087) 18.116 (0.035) 8.843 (0.013) 7.980 (0.021)

FE-DPCC
Row and Column Observed 3.344 (0.021) 17.125 (0.040) 1.435 (0.024) 1.489 (0.023)
Row or Column Unseen 3.892 (0.026) 17.836 (0.053) 1.453 (0.026) 1.509 (0.024)
Overall Perplexity 3.889 (0.031) 17.836 (0.062) 1.450 (0.046) 1.501 (0.045)

where ϕ∗
kl is the posterior hyperparameter of the Dirichlet distribution of the

co-cluster (k, l), and N d
(k,l) is the number of entries assigned to the co-cluster

(k, l) and is equal to d.
In MovieLens, users (rows) are represented with age, gender, and occupa-

tion, whereas the movies (columns) are associated with a 19-dimensional genre-
representing binary vector. We assumed independence among the row features
and the column features conditional on row- and column-clusters. We modeled
age as drawn from a Poisson distribution, Poi(·|λ), with a conjugate Gamma
prior, Gamma(λ|", ς). We modeled gender as drawn from a Bernoulli distribu-
tion, Ber(·|ϑ), with a conjugate Beta prior Beta(ϑ|κ, $). The occupation feature
is categorical, modeled as Cat(·|φ), with Dirichlet prior, Dir(φ|ϕ). Thus, the row
feature parameter is given by θ∗R

k = 〈λ∗
k, ϑ

∗
k,φ

∗
k〉, and the row feature prior hy-

perparameter is ζR = 〈", ς, ϑ,ϕ〉. We denote the feature vector of a new user as
xR
r′ = 〈ar′ , gr′ , or′〉, where ar′ , gr′ , and or′ represent the age, gender and occupa-

tion, respectively. The predictive distribution of the kth row-cluster observing a
new user, xR

r′ , is:

p(xR
r′ |�∗k, ς∗k ,κ∗

k,�
∗
k,ϕ

∗
k, z

R
r′ = k) =

(∫
Poi(ar′ |λ∗

k)Gamma(λ∗
k|�∗k, ς∗k )dλ∗

k

)
(∫

Ber(gr′ |ϑ∗
k)Beta(ϑ

∗
k|κ∗

k ,�
∗
k)dϑ

∗
k

)(∫
Cat(or′ |φ∗

k)Dir(φ∗
k|ϕ∗

k)dφ
∗
k

)
(7)

where "∗k, ς
∗
k , κ

∗
k, $

∗
k, and ϕ∗

k are the posterior hyperparameters (k indexes the
row-clusters). Denote ζ∗Rk = 〈"∗k, ς∗k ,κ∗

k, $
∗
k,ϕ

∗
k〉. We assume that features as-

sociated with movies are generated from a Multinomial distribution, Mul(·|ψ),
with Dirichlet prior, Dir(ψ|ϕ). Accordingly, θ∗C

l = ψ∗
l , and ζC = ϕ. The pre-

dictive distribution of the lth column-cluster observing a new movie, xC
c′ , is:

p(xC
c′ |ϕ∗

l , z
C
c′ = l) =

∫
Mul(xC

c′ |ψ∗
l )Dir(ψ∗

l |ϕ∗
l )dψ

∗
l , where ζ∗Cl = ϕ∗

l is the poste-
rior hyperparameter of the Dirichlet distribution (l indexes the column-clusters).

In Jester, there are no features associated with the users (rows), thus row-
clusters cannot predict an unseen user. We used a bag-of-word representation
for joke features, and assumed each joke feature vector is generated from a
Multinomial distribution, Mul(·|ψ), with a Dirichlet prior, Dir(ψ|ϕ). The pre-
dictive distribution of the lth column-cluster observing a new joke, xC

c′ , is:
p(xC

c′ |ϕ∗
l , z

C
c′ = l) =

∫
Mul(xC

c′ |ψ∗
l )Dir(ψ∗

l |ϕ∗
l )dψ

∗
l .

For MP1 and MP2, rows represent molecules and columns represent proteins.
We extracted k-mer features from protein sequences. For MP1, we also used
hierarchical features for proteins obtained from annotation databases. We used
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a graph-fragment-based feature representation that computes the frequency of
different length cycles and paths for each molecule. These graph-fragment-based
features were derived using AFGEN [34] (default parameters were used), known
to capture structural aspects of molecules effectively. We assumed each pro-
tein was generated from a Multinomial distribution, Mul(·|ψp), with a Dirich-
let prior, Dir(ψp|ϕp). We also assumed each molecule was generated from a
Multinomial distribution, Mul(·|ψm), with a Dirichlet prior, Dir(ψm|ϕm). The
predictive distribution of the kth row-cluster observing a new molecule, xR

r′ , is:
p(xR

r′ |ϕ∗m
k , zRr′ = k) =

∫
Mul(xR

r′ |ψ∗m
k )Dir(ψ∗m

k |ϕ∗m
k )dψ∗m

k .
The predictive distribution of the lth column-cluster observing a new protein,

xC
c′ , is: p(x

C
c′ |ϕ

∗p
l , zCc′ = l) =

∫
Mul(xC

c′ |ψ
∗p
l )Dir(ψ∗p

l |ϕ
∗p
l )dψ∗p

l .

5.2 Results

We performed a series of experiments to evaluate the performance of FE-DPCC
across the four datasets. All experiments were repeated five times, and we re-
port the average (and standard deviation) perplexity across the five runs. The
experiments were performed on an Intel four core, Linux server with 4GB mem-
ory. The average running time for FE-DPCC was 1, 3, 3.5 and 2.5 hours on the
MovieLens, Jester, MP1 and MP2 datasets, respectively.

Feature Enrichment Evaluation. Table 2 shows the average perplexity (and
standard deviations) across five runs on the test data. To analyze the effect of new
rows and columns on the prediction capabilities of the algorithms, we split each
test set into subsets based on whether the subset contains new rows or columns
w.r.t. the corresponding training data. Table 2 shows that the overall perplexity
of FE-DPCC is lower than that of DPCC on all data, with an improvement of
12%, 1.5%, 84% and 81% for MovieLens, Jester, MP1 and MP2, respectively.

FE-DPCC is significantly better than DPCC on the portion of the test data
that contains unseen rows and/or columns. These test sets consist of entries
for rows and columns that are not included in the training set. The DPCC
algorithm does not use features; as such it can predict entries for the new rows
and columns using prior probabilities only. In contrast, the FE-DPCC algorithm
leverages features along with prior probabilities; this enables our approach to
predict values for the independent test entries more accurately. This ability is
a major strength of our FE-DPCC algorithm. For the portion of the test data
whose rows and columns are observed in the training as well, the perplexity values
of FE-DPCC and DPCC are comparable. The standard deviations indicate that
the algorithms are stable, yielding consistent results across different runs.

To accurately assess the performance of FE-DPCC, we performed a set of
experiments that involved a perturbation of the protein and molecule features
on MP1. Results are in Table 3. For these experiments, we used k-mer sequence
features. First, we took the protein sequences (i.e., columns) and shuffled the
ordering of the amino acids. This alters the ordering of the protein sequence
but maintains the same composition (i.e., the shuffled sequences have the same
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Table 3. Evaluation of fea-
ture enrichment on MP1

Perplexity

Shuffle P 3.034 (0.083)
Exchange M 2.945 (0.083)
Exchange P 2.932 (0.071)
Exchange M&P 2.991 (0.095)
Use Only M 7.235 (0.043)
Use Only P 7.789 (0.045)
Use M and P 1.450 (0.046)

Table 4. Evaluation
of protein features on
MP1

Perplexity

2-mer 1.471 (0.057)
3-mer 1.437 (0.044)
4-mer 1.441 (0.049)
5-mer 1.450 (0.046)
HF 1.413 (0.010)

Table 5. RMSE on Test Data

FE-DPCC Slope One

Movie 0.838 (0.031) 0.924 (0.035)
Jester 0.896 (0.062) 0.961 (0.065)

number of characters or amino acids). We refer to this scheme as “Shuffle”. It
achieves an average perplexity of 3.034, versus the average perplexity of 1.450
achieved by FE-DPCC (with no shuffling of features). We also devised a scheme
in which the row and/or column features are exchanged, e.g., the features of a
particular molecule are exchanged with the features of another molecule. Such
an exchange causes the inclusion of incorrect information within the FE-DPCC
algorithm. Our aim was to assess the strength of FE-DPCC when enriched with
meaningful and correct features. We refer to this scheme as “Exchange.” Table
3 shows the results of exchanging molecule features only (Exchange M), protein
features only (Exchange P), and both (Exchange M and P). We noticed an
average perplexity of 2.9 in each case. We also evaluated the FE-DPCC algorithm
when only molecule or only protein features are used (“Use Only M” and “Use
only P” in Table 3). The use of only one set of features prevents the co-clustering
algorithm from making inferences on the unseen rows or columns in the test set.

For MP1 we performed additional experiments to evaluate the sequence fea-
tures. The features are overlapping subsequences of a fixed length extracted from
the protein sequences. We used k-mer lengths of 2, 3, 4 and 5, and observed
that the average perplexity (Table 4) remained similar. As such, we used 5-mer
features in all the experiments. We also compared the sequence features for the
proteins to an alternate feature derived from a hierarchical biological annotation
of the proteins. For MP1 the hierarchical features were extracted as done in the
previous study [13,22]. From Table 4 we observe that the hierarchical features
(HF) achieved a slightly lower perplexity as compared to the 5-mer features. This
is encouraging, as it suggests that sequence features perform similarly to manual
annotation (hierarchy), that may not be easily available for all the proteins.

Comparative Performance. We compared FE-DPCC with a well known col-
laborative filtering model, Slope One [16]. We used a Slope One implementation
from the Apache Mahout machine learning library6. We used the root mean
square error (RMSE) [6] to compare FE-DPCC and Slope One on MovieLens
and Jester. Table 5 shows the RMSE values (and standard deviations) of FE-
DPCC and Slope One across five runs on the test sets7. These results show

6 http://mahout.apache.org/
7 No new rows or columns in the test sets w.r.t. the training sets.
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that incorporating row and column features is beneficial for the prediction of
relationships.

Visualization of Co-clusters. In Figure 2 we illustrate the co-cluster struc-
tures learned by FE-DPCC on MovieLens and Jester. We calculate the mean
entry value for each co-cluster, and plot the resulting mean values.

Data Density. We varied the density of MovieLens and Jester to see how it
affects the perplexity of FE-DPCC and DPCC. We varied the matrix density by
randomly sampling 25%, 50% and 75% of the entries in the training data. The
sampled matrices were then given as input to DPCC and FE-DPCC to train a
model and infer unknown entries on the test data. Figure 3 illustrates the results
averaged across five iterations. As the sparsity of the relational matrix increases
the test perplexity increases for both FE-DPCC and DPCC. But DPCC has
far higher perplexity for a sparser matrix. As the matrix sparsity increases, the
information within the relational matrix is lost and the FE-DPCC algorithm
relies on the row and column features. Thus, for sparser matrices FE-DPCC
shows far better results than DPCC. These experiments suggest the reason why
we see a more dramatic difference between the two algorithms for MP1 and MP2,
which are very sparse (see Table 1).

6 Conclusion

In this work, we focus on the empirical evaluation of FE-DPCC to predict rela-
tionships between previously unseen objects by using object features. We con-
ducted experiments on a variety of relational data, including protein-molecule
interaction data. The evaluation demonstrates the effectiveness of the feature-
enriched approach and demonstrates that features are most useful when data
are sparse.
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Abstract. One of the most famous algorithms for time series data
clustering is k-means clustering with Euclidean distance as a similarity
measure. However, many recent works have shown that Dynamic Time
Warping (DTW) distance measure is more suitable for most time series
data mining tasks due to its much improved alignment based on shape.
Unfortunately, k-means clustering with DTW distance is still not prac-
tical since the current averaging functions fail to preserve characteristics
of time series data within the cluster. Recently, Shape-based Template
Matching Framework (STMF) has been proposed to discover a cluster
representative of time series data. However, STMF is very computa-
tionally expensive. In this paper, we propose a Shape-based Clustering
for Time Series (SCTS) using a novel averaging method called Ranking
Shape-based Template Matching Framework (RSTMF), which can av-
erage a group of time series effectively but take as much as 400 times
less computational time than that of STMF. In addition, our method
outperforms other well-known clustering techniques in terms of accuracy
and criterion based on known ground truth.

Keywords: Time Series, Clustering, Shape-based Averaging.

1 Introduction

Time series data mining is increasingly an active research area since time series
data are ubiquitous, appearing in various domains including medicine [15], ge-
ology [13], etc. One of its main mining tasks is clustering, which is a method
to seperate unlabeled data into their natural groupings. In many applications
related to time series data [14], k-means clustering [2] is generally used with the
Euclidean distance function and amplitude averaging (arithmetic mean) as an
averaging method.

Although the Euclidean distance is popular and simple, it is not suitable for
time series data because its distance between two sequences is calculated in
one-to-one manner. As a result, k-means with Euclidean distance does not clus-
ter well because time shifting among data sequences in the same class usually
occurs. In time series mining, especially in time series classification, Dynamic
Time Warping (DTW) [1] distance has been proved to give more accurate re-
sults than Euclidean distance. Unfortunately, k-means clustering with the DTW
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distance still does not work practically [8][7] because current averaging function
does not return a characteristic-preserving averaging result. Traditional k-means
clustering fails to return a correct clustering result since this cluster centers do
not reflect characteristics of the data, as shown in Fig. 1. In this work, we will
demonstrate that our proposed method can resolve this problem.

a)

b) c)

Fig. 1. a) Sample 3-class CBF data [3] and its cluster centers from b) traditional k-
means clustering and from c) our proposed method

We propose a novel method called Shape-based Clustering for Time Series
(SCTS) which incorporates k-means clustering and DTW distance measure, to-
gether with our new averaging method, called Ranking Shape-based Template
Matching Framework (RSTMF) extended from Shape-based Template Match-
ing Framework (STMF) [10] for classification. Unlike STMF, our RSTMF uses
distances from clustering to approximate an order of sequences to be averaged,
giving a few orders of magnitude speedup comparing to STMF. Our evaluation
also shows that our proposed method outperforms other well-known clustering
techniques in terms of accuracy and criterion based on known ground truth. In
addition, the accuracy of our proposed method can future improve when a global
constraint [11] is utilized in distance calculation and data averaging.

The rest of the paper is organized as follows. In section 2 and 3, we offer back-
ground knowledge and related works. In section 4, we explain our new frame-
work for time series clustering, which is Shape-based Clustering for Time Series
(SCTS). The experiments and results are shown in section 5. Finally, conclusions
are provided in section 6.

2 Background

This section provides background knowledge on k-means clustering, Dynamic
Time Warping (DTW) distance measure, and global constraint.
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2.1 K-means Clustering

K-means clustering [2] is a well-known and very simple partitioning clustering
algorithm. Its algorithm tries to group similar data into the same cluster by
using an objective function that minimizes a sum of squared errors between a
cluster center to its members. The algorithm is done as follows:

1. Initialize k cluster centers.
2. Measure the similarity between each data and all cluster centers and assign

data into the most similar cluster.
3. Calculate a new cluster center of every cluster using an averaging function.
4. Repeat steps 2 and 3 until the cluster membership does not change.

K-means clustering consists of two major subroutines, which are a distance
function to measure the similarity between data sequences and an averaging
function to return a new cluster center. Generally, most time series clustering
works use Euclidean distance and amplitude averaging method. However, both
cluster centers and their cluster members are inaccurate. In this work, we resolve
this problem by using the DTW distance measure with our newly proposed
averaging method called RSTMF.

2.2 Dynamic Time Warping (DTW) Distance Measure

DTW distance [1] is an accurate similarity measurement which is generally
used for time series data [9], especially in classification [6]. An optimal align-
ment and distance between two sequences P = 〈p1, . . . , pi, . . . , pn〉 and Q =
〈q1, . . . , qj , . . . , qm〉 can be determined as follows.

DTW (P, Q) =
√

dist(pn, qm) (1)

dist(pi, qj) = (pi − qj)2 + min

⎧⎪⎨⎪⎩
dist(pi−1, qj)
dist(pi, qj−1)

dist(pi−1, qj−1)
(2)

DTW distance is computed through dynamic programming to discover the
minimum cumulative distance of each element in n×m matrix. In addition, the
warping path between two sequences can be found by tracing back from the last
cell.

In this work, DTW distance is used to measure the similarity between each
time series data and cluster centers to give more accurate results.

2.3 Global Constraint

The global constraint is used when we need to limit the amount of warping in the
DTW alignment. In some applications such as speech recognition [12], two data
sequences are considered the same class when only small time shifting occurs; so,
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Fig. 2. The warping window of P and Q is limited by the global constraint of size r

the global constraint is used to align the sequences more precisely. The Sakoe-
Chiba band [12], one of the most popular global constraints, has been originally
proposed for speech community and also has been used in various tasks in time
series mining [11]. The size of the warping window is defined by r (as shown in
Fig. 2), the percentage of the time series’ length, which is symmetric in both
above and on the right of a diagonal. In this work, we will show in experiments
that the global constraint plays an important role in improving the accuracy.

3 Related Work

In the past few decades, there are many clustering techniques proposed to cluster
time series data [5], for example, agglomerative hierarchical clustering [13], which
merges most similar objects until all objects are in the cluster. However, this
technique is still inaccurate, especially when outliers are present.

Another popular clustering technique is partitional clustering, which tries to
minimize an objective function. The well-known algorithms are k-medoids and
k-means clustering, which are different in their approaches to find new cluster
centers. For k-medoids clustering application [4], DTW distance is used as a
similarity measure among data sequences, and a sequence with minimum sum
of distance to the rest of the sequences in the cluster is selected as a new cluster
center. However, medoid is not always a centroid of a cluster, so the sequences
can be assigned to wrong clusters.

In contrast to k-medoids clustering, k-means clustering mostly uses Euclidean
distance as a distance metric, and an arithmetic mean or amplitude averaging
is simply used to find a new cluster center [14]. Although the DTW distance
is more appropriate for time series data, there currently is no DTW averaging
method that provides a satisfied averaging result.

According to this, many research works have tried to improve the quality
of the averaging result. Shape-based Template Matching Framework (STMF)
[10] was recently introduced to average time series sequences. Table 1 shows the
algorithm of this framework; the most similar pair of sequences is averaged by
Cubic-spline Dynamic Time Warping (CDTW) algorithm (in line 6).
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Table 1. Shape-based Template Matching Framework algorithm [10]

Algorithm STMF(D)
1. D is the set of time series data to be averaged
2. initialize weight ω = 1 for every sequences in D
3. while(size(D) > 1)
4. {C1, C2} = the most similar pair of sequences in D
5. Z = CDTW(C1, C2, ωC1 , ωC2)
6. ωZ = ωC1+ ωC2

7. add Z to D
8. remove C1, C2 from D
9. end while
10. return Z

Given C1 and C2 as the most similar sequences, first, we find the warping
path between these two sequences. The variables c1i and c2j are elements of C1

and C2, which are warped. The averaged sequence Z, which has coordinates zkx

and zky can be computed as follows.

zkx =
ωc1c1i + ωc2c2j

ωc1 + ωc2

(3)

zky =
ωc1c1ix + ωc2c2jy

ωc1 + ωc2

(4)

In equations 3 and 4, ωc1 and ωc2 are the weight of the sequences C1 and C2,
respectively. After we get the result, a number of points in the averaged sequence
is re-sampled by using cubic-spline interpolation [10]. As shown in Fig. 3a), the
averaging result from DTW averaging gives a sequence with 9 unequally spaced
data points, whereas in Fig. 3b), the sequence is resampled with cubic spline
interpolation to obtain a sequence of 7 equally spaced data points.
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a) b)

Fig. 3. The average sequences between C1 and C2 using DTW alignment a) before
applying cubic spline interpolation and b) after applying cubic spline interpolation
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However, according to this framework, finding the most similar pair for each
time of averaging is enormously computationally expensive because the DTW dis-
tance of every pair of the sequences must be computed. Therefore, our RSTMF will
mainly focus on improving its time complexity by estimating an order of sequences
before averaging while maintaining the accuracy of the averaging results.

4 Shape-Based Clustering for Time Series (SCTS)

In this paper, we propose Shape-based Clustering for Time Series (SCTS) by
incorporating k-means clustering and DTW distance, together with a novel aver-
aging function, Ranking Shape-based Template Matching Framework (RSTMF).
Although STMF can still be used to determine a cluster center, it is computation-
ally expensive; therefore, computational time of k-means clustering significantly
increase.

We provide an overview of the proposed clustering algorithm in Table 2; the
DTW distance is used instead of the Euclidean distance in a membership as-
signment process. After we finished assigning each data sequence into the most
similar cluster, RSTMF is utilized to average all of the sequences within each
cluster until all cluster centers are updated. Unlike STMF, RSTMF approxi-
mates an order of averaged sequences by looking at the Dist value, which is
the DTW distance between data sequences in M and all cluster centers in C.
Accordingly, RSTMF can provide the average sequence by using less compu-
tation time than that of STMF, which calculates the distance between every
pair of data and the most similar pair of sequences is averaged, making it very
computationally expensive.

Table 3 shows our RSTMF averaging algorithm, which determines a cluster
center by using Cubic-spline Dynamic Time Warping (CDTW) [10] to average a
pair of time series sequences. RSTMF utilizes Dist to approximate a similarity
distance between every sequence pair, defined by distapprox. After that, CDTW
is used to average a pair of sequences with the minimum distapprox value. Then,
we update S and continue the averaging until only one sequence remains.

In RSTMF algorithm, the distapprox between each pair of the sequences can
be computed by using the Dist value. Suppose P and Q are data sequences
in M , we have DistMP ,... = 〈DistMP ,C1 , . . . , DistMP ,Ck

, . . . , DistMP ,CK 〉 and
DistMQ,... =

〈
DistMQ,C1 , . . . , DistMQ,Ck

, . . . , DistMQ,CK

〉
where DistMP ,Ck

and
DistMQ,Ck

are the distance between P or Q and its kth cluster center, and K
is a number of cluster. By applying the triangular inequality theorem, pk and
qk are assumed to be two sides of a triangle. Then, the distapprox of P and Q,
which is another side of the triangle, can be approximated by equation 5 and
collected into S.

distapprox(DistMP ,..., DistMQ,...) = max
1≤k≤K

∣∣DistMP ,Ck
− DistMQ,Ck

∣∣ (5)

After finishing an averaging of two sequences, we insert the resulting sequence
into M and delete these two sequences. Then, we update S by using the algorithm
in Table 4.
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Table 2. Shape-based Clustering for Time Series (SCTS)

Algorithm SCTS(D, K)
1. D is the set of time series data
2. C is the set of cluster centers
3. K is the number of cluster in C
4. M is the set of data in each cluster
5. Dist is the matrix of the distance between data sequences and all cluster centers
6. initialize C as cluster centers of K clusters
7. do
8. for i = 1:size(D)
9. for k = 1:K
10. DistDi,Ck = DTW(Di, Ck)
11. end for
12. if(DistDi,Ck is minimal)
13. assign Di into Mk

14. end if
15. end for
16. for k = 1:K
17. Ck = RSTMF(Mk, Dist)
18. end for
19. while(the cluster membership changes)
20. return the cluster members and the cluster centers

Table 3. The RSTMF algorithm

Algorithm RSTMF(M , Dist)
1. M is the set of data in each cluster
2. Dist is the matrix of the distance between data sequences and all cluster centers
3. S is the matrix of the distance between data sequences in M
4. initialize weight ω = 1 for every sequences in M
5. for i = 1:size(M)
6. for j = i+1:size(M)
7. SMi,Cj = SMj,Ci= distapprox(DistMi,... ,DistMj ,... )
8. end for
9. end for
10. while(size(M) > 1)
11. SMi,Cj = minimum value in S
12. Mz = CDTW(Mi, Mj , ωMi , ωMj )
13. ωMz = ωMi+ ωMj

14. add Mz to M
15. UPDATE(S, i, j, z)
16. remove Mi, Mj from M
17. end while
18. return Mz
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Table 4. The UPDATE algorithm

Algorithm UPDATE(S, a, b, z)
1. S is the matrix of the distance between data sequences in M
2. for i = 1:size(S)
3. SMz,Mi = SMi,Mz = min(SMa,Mi , SMb,Mi )
4. end for
5. remove SMa,..., S...,Ma , SMb,..., S...,Mb from S

By using the distapprox and the UPDATE method, our RSTMF can achieve
large speedup because we can estimate an order of the sequences before aver-
aging. In contrast, the original STMF needs to calculate the DTW distance to
select the most similar pair of the sequences every time of averaging.

5 Experiments and Results

In this work, we evaluate our method by comparing it with other clustering
techniques, which are typical k-means clustering with the Euclidean distance
and amplitude averaging function, k-medoids clustering with the DTW distance
[4], and k-hierarchical clustering [13] using both the Euclidean and the DTW
distance. We compare our SCTS using RSTMF with that using the original
STMF. Our experiments are evaluated on ten datasets from the UCR datasets
classification/clustering archive [3] in diverse domains, as shown in Table 5.

Table 5. The details of datasets

Datasets Number of classes Length of data Size of training set Size of test set
Synthetic Control 6 60 300 300

Trace 4 275 100 100
Gunpoint 2 150 50 150

Lightning-2 2 637 60 61
Lightning-7 7 319 70 73

ECG 2 96 100 100
Olive Oil 4 570 30 30

Fish 7 463 175 175
CBF 3 128 30 900

Face Four 4 350 24 88

We execute each algorithm for 40 times with random initial cluster centers,
and the k value is set to the a number of classes in each dataset. With the luxury
of labeled datasets used in all experiments, an accuracy, which is the number of
correctly assigned data sequences in all clusters, is used evaluation. Fig. 4 shows
the accuracy of our proposed method, comparing other well-known clustering
methods mentioned above. According to the results, our method outperforms
others in almost all datasets.
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Fig. 4. The accuracy of our RSTMF method on 10 datasets, comparing with a) general
k-means clustering, b) k-medoids clustering, and k-hierarchical clustering using c) the
Euclidean distance and d) the DTW distance, respectively

To re-emphasize our finding, we also use another criterion based on known
ground truth [5] to measure a similarily between two sets of clusters, i.e., ground-
truth clusters and results from clustering algorithms. Suppose G and C are sets
of k ground truth clusters and the clusters from our clustering technique. The
similarity between G and C is calculated by the following equations.

Sim(G, C) =
1
k

k∑
i=1

max
1≤j≤k

Sim(Gi, Cj) (6)

Sim(Gi, Cj) =
2 |Gi ∩ Cj |
|Gi| + |Cj | (7)

In Fig. 5, we compare our proposed work with the general k-means clustering
and the k-medoids clustering using this criterion. The results show that the
clusters obtained from our method are more similar to the ground-truth clusters
because the RSTMF averaging method does give the new cluster centers that
represent the overall charactheristic of the data within each cluster.
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Furthermore, RSTMF can reduce the time complexity by a few orders of
magnitude (as shown in Fig. 6a), while still providing comparable accuracy to
STMF (as shown in Fig. 6b).
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Fig. 5. The criterion based on known ground truth, comparing our proposed method
with a) general k-means clustering and b) k-medoids clustering
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Fig. 6. a) The speedup achieved by our proposed work. b) The accuracy of our proposed
work comparing with that using STMF.

In some cases, it appears that SCTS with DTW distance achieves a lower
accuracy than the general k-means clustering. In an attempt to alleviate this
drawback, we experiment on the global constraint parameter of DTW, Sakoe-
Chiba band. We can improve the clustering accuracy, comparing with the orig-
inal k-means clustering (warping window size is 0%). Fig. 7 shows the accuracy
of our proposed RSTMF and STMF, which are comparable, as warping win-
dow sizes vary. In almost datasets, the larger warping window size does not
always provide the better accuracy; so, the appropriate warping window size is
around 20%. However, in some dataset such as ECG, the wider warping win-
dow can lead to pathological warping and make the accuracy of clustering de-
creases.
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Fig. 7. The accuracy of Shape-based clustering using STMF and our proposed RSTMF
of a) CBF, b) ECG, c) Trace, and d) Synthetic Control datasets

6 Conclusion

In this paper, we propose time series data clustering technique called Shape-
based Clustering for Time Series (SCTS), which incorporates k-means clustering
with a novel averaging method called Ranking Shape-based Template Matching
Framework (RSTMF).

Comparing with the other well-known clustering algorithms, our SCTS yields
better cluster results in terms of both accuracy and the criterion based on known
ground truth because our RSTMF averaging function provides cluster centers
that preserve characteristics of data sequences within the cluster (as shown in
Fig. 8). Furthermore, RSTMF does gives a comparable sequence averaging result
while consuming much less computational time than STMF in a few orders of
magnitude; therefore, RSTMF is practically applied in clustering algorithm. We
also used global constraint to increase an accuracy of our clusters. The results
show that our SCTS can provide more accurate clustering when the width of
warping window is about 20% of time series length.

a) b) c)

Fig. 8. The cluster centers obtained from a) our proposed method and b) the original
k-means clustering of c) sample 4-class Trace data
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Abstract. We consider the clustering problem in a private social net-
work, in which all vertices are independent and private, and each of them
knows nothing about vertices other than itself and its neighbors. Many
clustering methods for networks have recently been proposed. Some of
these works have dealt with a mixed network of assortative and disas-
sortative models. These methods have been based on the fact that the
entire structure of the network is observable. However, entities in real so-
cial network may be private and thus cannot be observed. We propose a
privacy-preserving EM algorithm for clustering on distributed networks
that not only deals with the mixture of assortative and disassortative
models but also protects the privacy of each vertex in the network. In
our solution, each vertex is treated as an independent private party, and
the problem becomes an n-party privacy-preserving clustering, where n
is the number of vertices in the network. Our algorithm does not reveal
any intermediate information through its execution. The total running
time is only related to the number of clusters and the maximum degree
of the network but this is nearly independent of the total vertex number.

1 Introduction

The analysis of social networks has attracted increasing amounts of attention in
recent years since there have been progressively more social applications used
in practice. Many clustering algorithms with respect to vertices in networks, on
the other hand, such as the graph min-cut and label propagation, have been
proposed. Most of these methods deal with a so-called assortative mixing model,
in which vertices are divided into groups such that the members of each group
are mostly connected to other members of the same group [1]. For example, in a
communication network (Fig. 1(a)), each student belongs to either of two clubs.
They communicate with other students in the same club more frequently than
they do with students outside the club. Thus, the methods used for the assorta-
tive mixing model could be used to detect the structures in this kind of network.
Inversely, in the disassortative mixing networks, vertices have most of their con-
nections outside their group. For example, there are two groups of people in Fig.
1(b), producers and consumers. Most of their exchanges, denoted by the edges,

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 542–553, 2012.
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will occur between these two classes. Even though both assortative and disassor-
tative mixing models have theoretical and practical significance, their mixture
is more meaningful in most practical applications. If, for example (Fig. 1(c)),
researchers in the same field were treated as one group, there would generally
be more connections inside each group. In addition, some cross-disciplinary re-
searchers, such as researchers in computational linguistics, may regularly connect
with researchers in other related fields, such as linguistics, psychology, and com-
puter science, although they may frequently also connect with other members
of the same group. Newman et al. [1] proposed a probabilistic mixture model
that could deal with an assortative and disassortative mixture using an EM al-
gorithm. Such a model is realistic for the clustering problem in social networks.

(a). Assortative model; 

(c) Mixture model of assortative and 
disassortative.(b). Disassortative model;

  

Fig. 1. Assortative model, disassortative model and mixture model

With increasing concerns about the issue of personal information and privacy
protection, many privacy-preserving data mining algorithms have been proposed.
In this paper, we consider the clustering problem on social networks, in which
each member contacts the others via various means of communication, such as
social applications (MSN, Yahoo Messenger, etc.), mobile phones of different
service providers, etc. Their records are stored in different organizations, such
as Microsoft, Yahoo, and mobile service providers. The collection of their data
always contains large commercial value. However, it is impossible to make these
competitors collaborate to perform data mining algorithms, such as clustering.
This motivate us to develop a secure clustering algorithm that can be performed
without any support of the organizations. Using this algorithm, not only vertices
in the network are clustered, but the privacy of each vertex is also protected.

We summarize the related works in section 2. Section 3 introduces some back-
ground knowledge and Section 4 formulates our problem. We develop two basic
secure summation protocols in Section 5, and propose our main EM-algorithm
for private clustering based on these protocols in Sections 6. In Section 7, we
discuss our evaluation of the performance of our protocols. The results of exper-
iments conducted to evaluate the performance of our protocols are explained in
Section 8, and concluding remarks are given in the last section.



544 B. Yang, I. Sato, and H. Nakagawa

2 Related Work

Newman et al. [1] proposed a probabilistic model for the mixture of assorta-
tive and disassortative models, and provided a corresponding EM algorithm, by
which all vertices are clustered so that vertices in the same cluster had the same
probabilities as if they had a connection with each vertex in the network.

Many kinds of privacy-preserving methods have been proposed to carry out
data mining while protecting privacy. In general, privacy-preserving K-means
clustering problems can be classified into horizontally partitioned K-means [4],
vertically partitioned K-means [5] and arbitrarily partitioned K-means [6]. Meth-
ods using privacy-preserving EM clustering have also been proposed [7]. All of
these methods deal with distributed databases with large numbers of data.

Secure data analysis in networks has recently attracted increasingly more at-
tention. Hay et al. [8] proposed an efficient algorithm to compute the distribution
of degrees of social networks. Another method of computing users privacy scores
in online social networks was provided by Liu et al. [9]. Sakuma et al. [10] used
the power method to solve ranking problems such as PageRank and HITS where
each vertex in a network was treated as one party and only knew about its
neighbors. Similar work was done by Kempe et al. [11].

Even though all these works provided valuable studies, clustering in private
peer-to-peer networks has not yet attracted adequate attention. We focus on the
clustering problem based on these kinds of private networks. In addition, we also
concentrate on the mixture of assortative and disassortative models.

3 Preliminaries

Let us consider an un-weighted directed network of n vertices, numbered 1, · · · , n.
The adjacency matrix of the network is denoted by A with elements Aij = 1, if
there is an edge from i to j, and 0 otherwise. If there is an adjacency from i to j,
we say that i is a parent of j, and j is a child of i. We denote pa(i) as the set of
all parents of vertex i and ch(i) as the set of its children. The union of pa(i) and
ch(i) is referred to as the neighbors of i. All vertices fall into C clusters, and gi
denotes the cluster to which vertex i belongs. These gis are treated as unknown
or hidden data, and the purpose of our model is to deduce gis from the adjacency
matrix A. We use the notation [C] to denote the collection, {1, 2, · · · , C}.

3.1 Probabilistic Mixture Model

Let θri denote the probability that a link from a vertex in cluster r is connected
to vertex i, and πr denote the fraction of vertices in cluster r. The normalization
conditions (

∑C
r=1 πr = 1,

∑n
i=1 θri = 1) are satisfied. Using the probabilistic

mixture model [1], the structural features in large-scale network can be detected
by dividing the vertices of a network into clusters, such that the members of
each cluster had similar patterns of connections to other vertices. We illustrate
this generative graphical model in Fig. 2.
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Fig. 2. Probabilistic generative model of mixture network

In Fig. 2, π expresses the vector (π1, π2, · · · , πC); θr expresses the vector
(θr1, θr2, · · · , θrn) and θ expresses the matrix (θ1, θ2, · · · , θC)

T . In this model,
hidden variables gis (the cluster labels of vertices) are generated from a discrete
probability distribution with parameter π, i.e., Pr(gi = k) = πk, which means
the probability that vertex i belongs to cluster k is πk. After all gis are deter-
mined, each vertex will choose some vertices with a multinomial distribution
with corresponding parameter θgi (the gthi row in θ), and connect itself to each
chosen vertex. Since the members of each cluster share the same parameter θgi ,
they have similar patterns of connections to other vertices in the network.

Newman et al. [1] also proposed an EM-algorithm to infer the probabilities of
these hidden variables. The E-step and M-step are derived as follows.

E-step: qir =
πr

∏n
j=1 θ

Aij

rj∑C
s=1 πs

∏n
j=1 θ

Aij

sj

; (1)

M-step: πr =
1

n

n∑
i=1

qir ; θrj =

∑n
i=1 Aijqir∑n

i=1(
∑n

j=1 Aij)qir
. (2)

Here qir is defined as the probability that vertex i is a member of cluster r:

qir = Pr(gi = r|A, π, θ) . (3)

Since qirs denote the probability of gi, inferring qirs is equivalent to inferring
gi. The adjacency matrix, A, is treated as observed data. qirs are initialized to
be arbitrary values in the beginning of the EM-algorithm, and converge to the
final results after several rounds of E-steps and M-steps.

3.2 Utilities of Privacy-Preserving Data Mining

Homomorphic Encryption. In a public key encryption system, a public key
pk, used to encrypt a given message, and a private key sk, used to decrypt the
cryptograph, are generated by an asymmetric key algorithm. The private key is
kept secret, while the public key may be widely distributed. Given a plaintext
m, c = Epk(m, t) denotes a random encryption of m, and d = Dsk(c) denotes the
decryption of c, where t is randomly generated from ZN , and N is a large positive
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integer. Paillier encryption [12] is a public key encryption system. It also satisfies
additive homomorphism, i.e., there is an operation “·”, s.t. ∀m1,m2 ∈ ZN ,

Epk(m1 +m2, t) ≡ Epk(m1, t1) ·Epk(m2, t2) (mod N2) , (4)

where t, t1 and t2 are random numbers. We will omit these random numbers
when they were not necessary. Using this property, we can securely compute the
cryptograph of the summation of two numbers, m1 and m2, only given their
cryptographs. The following condition can be obtained from (4).

Epk(m · k) ≡ Epk(m)k (mod N2) . (5)

Secure Summation Protocols. Suppose each party has a private input. All
the parties collaborate to compute the summation of all their inputs, without
any party obtaining any information about other parties. Such a protocol is
called a secure summation protocol. Many secure summation protocols, such as
those by Kantarcoglu et al. [13], have been proposed. But these methods have
been based on the assumption that any two parties are connected.

4 Problem Statement

We focus on the clustering problem in a social network described in Section 3.
Furthermore, we also protect the privacy of each vertex in the network.

4.1 Assumptions

We treat each vertex in the network as one party. Thus, a network containing
n vertices becomes an n-party system. We also assume that this network is
a connected network, in which there is at least one path between any pair of
vertices. There is no special vertex in the network, i.e., each vertex performs the
same operations. These assumptions are of practical significance. For example,
the relations of sending e-mail can be used to construct a network. Each vertex
(an e-mail user) can be seen as one party. Hence, each e-mail user knows its
neighbors, since it is connected to each neighbor using e-mail. Also, all e-mail
users in this network are equivalent.

Since the vertices, such as e-mail users, never want to reveal private informa-
tion about themselves in practice, we need to consider the privacy of each vertex
in the network. We specifically assume that each vertex only knows about itself
and its neighbors. First, it knows all information about itself. Second, it only
knows about the connections with its neighbors. Third, it knows nothing about
other vertices, not even whether they exist. Moreover, we assume all parties are
semi-honest, which means that they all correctly follow the protocol with the
exception that they keep a record of all their intermediate computations.

The knowledge range of any vertex is outlined in Fig. 3. We take the white
vertex as the current vertex. It only knows about its neighbors (gray) since there
is an edge between them. However, it does not know anything about the other
(black) vertices, and even does not know whether they exist. In addition, it even
does not know whether any pair of its neighbors is connected or not.
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Fig. 3. Range of vision of a vertex in private network

Table 1. Protocol 1 - Local Secure Summation Protocol

Inputs: Party i has an xi, for i = 0, 1, 2, · · · , m;
Outputs: Party 0 gets x =

∑m
i=0 xi; other parties get nothing;

01 Party m generates a set of keys (pk, sk);
02 pk is published to all parties; sk is known to party m only;
03 For i = 1 to m− 1
04 Party i encrypts its input: Xi = Epk(xi), and sends Xi to Party 0;
05 Party 0 generates a random number r0, and encrypts it: R0 = Epk(r0);

06 Party 0 computes Z = R0 ·
∏m−1

i=1 Xi, and sends Z to Party m;

07 Party m decrypts Z: z = Dsk(Z) = r0 +
∑m−1

i=1 xi;
08 Party m computes z′ = z + xm, and send z′ to Party 0;
09 Party 0 computes x = z′ − r0 + x0 =

∑m
i=0 xi.

4.2 Private Variables and Public Variables

In our private network, the variables Aij , πr, θrj, and qir are distributed into all
parties. The Aij denotes whether the pair of (i, j) is connected, so we treat it
as private information of parties i and j. The πr denotes the fraction of vertices
in cluster r. As it contains nothing about individual parties, we publish it to all
parties. The θrj expresses the relationship between cluster r and vertex j. We
assume it is only known to party j. The qir is similarly only known to party i.

5 Secure Summation Protocols on Networks

We propose two secure summation protocols for the private network.

5.1 Local Secure Summation Protocol

Suppose a party, numbered 0, has m children, numbered 1, 2, · · · ,m, in turn.
Each of these parties has a private input xi (i = 0, 1, · · · ,m). After this protocol
is executed, party 0 securely obtains the summation: x =

∑m
i=0 xi, while other

parties obtain nothing. We assume that party 0 only communicates with its
children, and these children do not communicate with each other.
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The detail of this protocol is shown in Table 1. Since only Partym can decrypt
messages, Party 0 can obtain nothing about xi from Xi (i ∈ {1, 2, · · · ,m− 1}).
From the homomorphism of encryption, Z = Epk(r0 +

∑m−1
i=1 xi), Party m can

then compute z = r0 +
∑m−1

i=1 xi. As Party m does not know r0, it can obtain

nothing about
∑m−1

i=1 xi from the values of z. In summary, nothing can be inferred
from the intermediate information other than the final result, x.

5.2 Global Secure Summation Protocol

The goal of this protocol is to securely sum up the inputs of all parties in our
distributed network without revealing the privacy of any party. The final result
is published to all parties throughout the network. Under the assumption in
Section 4, each party can only communicate with its neighbors. Nevertheless,
we can arbitrarily choose one party as a root and construct a spanning tree T
from the network, since the network is connected. We use T to accumulate and
distribute data.

Table 2. Protocol 2 - Global Secure Summation Protocol

Inputs: Party i has an xi, where i = 1, 2, · · · , n, (all vertices in the network)
where 1 is the root, and 2, 3, · · · ,m are all children of root in T;

Outputs: All parties get the summation x =
∑n

i=1 xi;
01 Choose a leaf party, called n, who has no child in T;
02 Party n generates a set of keys (pk, sk);
03 pk is published to all parties via the paths in T; sk is known to party n only;
04 Each party encrypts its input: Xi = Epk(xi);
05 Each party i computes Yi as the following
06 Yi := Xi ·

∏
j Yj (j is the child of i in T);

07 Party 1 sends Y1 to Party n via the paths in T;
08 Party n decrypts Y1: x = Dsk(Y1) =

∑n
i=1 xi;

09 Party n publishes x to all parties via the paths in T.

The detail of this protocol is shown in Table 2. The equation in line 06 implies
that each vertex accumulates the cryptographs of the summation of the sub-tree
of itself, and sends the result, Yi, to its parent in T. Hence Y1 in the root is
the cryptograph of the summation of all vertices. Moreover, since only Party n
can decrypt messages, nothing is revealed through the execution of the protocol
other than the final result.

6 Private Clustering on Networks

The main procedure in our private clustering is the same as the original method,
in which E-step and M-step were performed repeatedly until convergence. The
only difference is that we need to protect the privacy of each vertex in each step.
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6.1 Private E-step

In the private E-step, each Party i computes its private qirs in (1) without
revealing θrjs. We now simplify the E-step (1) by introducing a new variable:

αir = πr

n∏
j=1

θ
Aij

rj . (6)

Hence, the qir of party i can be rewritten as follows, for r ∈ [C].

qir =
αir∑C
s=1 αis

. (7)

If party i obtains the values of αirs (r ∈ [C]), the qirs can be directly computed.
Consequently, we focus on securely computing of αirs (6). Although (6) is a
product of n items, from the definitions of Aij , we could eliminate the term θrj
if party j is not a child of party i. In other words, the value of αir becomes the
product of πr and the θrjs of all children of party i, i.e.,

αir = πr ·
∏

Aij=1

θrj = πr ·
∏

j∈ch(i)

θrj . (8)

Hence, we have

logαir = log πr +
∑

j∈ch(i)

log θrj . (9)

Here, each log θrj can be seen as a private input of party j. Then, our goal
becomes to securely compute the summation of these log θrjs (j ∈ ch(i)). To
do this, we only need to perform Protocol 1 by treating these log θrjs (j ∈
ch(i)) as the parameters of this protocol (private inputs of children of party i).
Throughout this execution, the value of each θrj is kept secret with each party.

6.2 Private M-step

In the private M-step, each Party j computes θrjs and all parties obtain the πrs

in (2) without revealing any qirs. We now introduce a new variable:

βrj =

n∑
i=1

Aijqir, βr =

n∑
j=1

βrj . (10)

Similarly to (8), βrj can be rewritten as:

βrj =
∑

Aij=1

qir =
∑

i∈pa(j)

qir . (11)

Similarly, treating qirs as the private inputs of its parents, party j can securely
compute the value of βrj with Protocol 1 without revealing any information
about qirs. In addition, substituting the definition of βrj into (2), θrj becomes
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θrj =
βrj∑n
k=1 βrk

=
βrj

βr
. (12)

Since Party j does not know the values of βrks for k �= j, it cannot compute
the βr =

∑n
k=1 βrk. As βr does not include any private information, we publish

βr (r ∈ [C]) to all parties. The problem of computing βr becomes that of securely
computing the summation of the private inputs of all parties in the network and
publishing the final result to all parties. Hence, it can be solved with Protocol 2.
Given the values of βrs (r ∈ [C]), party j can compute θrjs using (12) by itself.

Using the definition of πr and treating qir as the private input of each party in
the network, securely computing πr is equivalent to securely summing all parties
in the entire network and it can thus be solved using Protocol 2.

7 Performance

We discuss the efficiency of our method here. Both computation and communi-
cation can be carried out in parallel in the execution of our protocol. As each
party performs operators with only one neighbor at the same time, evaluating
the total running time is equivalent to the edge coloring problem in graph theory.
The edge coloring of a graph is generally the assignment of “colors” to its edges
so that no two adjacent edges have the same color. Vizing [15] has shown that
the color index of a graph with maximum vertex-degree K is either K or K +1.

We now discuss the running time for one round of computation, which includes
one E-step and one M-step. In the E-step, each party i performs Protocol 1 with
all its children for C times. From Vizings conclusion [15], the total running time
for this stage is O(CK). In the M-step, the βrs and πrs are all accumulated with
Protocol 2. Because the running time for one duration of Protocol 2 is O(logK n)
and the βrs and πrs include 2C values, the running time for these accumulations
is O(C logK n). The secure computation of βrj involves C times of executions of
Protocol 1 with all its parents. From Vizings conclusion [15], the total running
time for this computation is at most O(CK).

In summary, the running time for one round of E-step and M-step is O(CK+
C logK n). Nevertheless, this is just an atomic operation of the entire EM-
algorithm. If we need to perform R rounds of E-step and M-step until they
converge, the entire running time will become O(RC(K + logK n)).

8 Experiments

We implemented the protocols in C++ using the OpenSSL library, which is an
implementation with large numbers. Our machines were standard personal com-
puters with Intel Pentium Core2 Duo CPUs, with a frequency of 2.67 GHz, and
2.00 GB of RAM. A homomorphic encryption system, the Paillier cryptosys-
tem [12], was used to implement the protocols. The network environment in our
experiments was a wireless LAN based on IEEE802.11g/IEEE802.11b.
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We used artificial and real data to evaluate the accuracy and efficiency of our
protocol. The artificial data were generated from generative models with differ-
ent parameters. We evaluated them by comparing the inferred results with the
corresponding parameters. Moreover, we selected a network of books about US
politics compiled by Valdis Krebs [16] as the real data, in which nodes repre-
sented books about US politics sold by Amazon.com and edges represented the
co-purchasing of books by the same buyers, as indicated by the customers who
bought this book also bought these other books feature on Amazon. Nodes were
given three labels to indicate whether they were liberal, neutral, or conservative.
We compared our inferred results with them.

8.1 Accuracy

We executed our protocol and counted the number of results that matched the
true values. We used matching rate, the percentage of matched data, to evalu-
ate accuracy. In Fig. 4, each line expresses the relation between the number of
vertices and the accuracy with respect to a special number of clusters. We found
that the results could be correctly inferred with our protocol for three clusters.
However, increasing the number of cluster will lead to a decrease in accuracy.
Fortunately, we could increase accuracy by increasing the number of vertices.
This can be verified from Fig. 4, in which each line is increasing. We also eval-
uated the speed of convergence by counting the number of necessary rounds of
computation until convergence occurred (Fig. 5). We found that convergence be-
came faster when there were far more vertices than numbers of clusters. We then
evaluated the data set of books about US politics [16]. Although this network
contains only 105 vertices and 441 pairs of edges, the accuracy was about 86%.
The intuitive image of these experimental results of real data are shown in Fig.
6. We found they are quite close to the original data.

8.2 Efficiency

We used two computers in this experiment to simulate distributed computation.
We executed the operators for each pair one-by-one by treating these two com-
puters as two adjacent parties and recording the running time for each step.
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Original data Experimental results

Fig. 6. Clustering result of real data
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We designed a parallel solution using Vizing’s solution [15], and calculated the
entire computational time in this parallel environment. All of our experimental
results also contained the communication time. Fig. 7 plots the relation between
the number of vertices and the total running time with respect to the different
number of cluster. Combined with Fig. 5, we also obtained the results in Fig. 8,
which illustrates one-round of running time with respect to different numbers of
clusters and vertices. An interesting phenomenon is that increasing the number
of vertices can decrease the entire running time (Fig. 7), although one-round run-
ning time (Fig. 8) is nearly independent of the number of vertices. This implies
our privacy-preserving schema for clustering can be applied to very large-scale
networks such as social networks. Fig. 9 also compares the running time with the
maximum degree. The one-round of running time is increased with the increase
in the maximum degree. We also found that the results in Fig. 9 agree with
our description in Section 7. We also evaluated the real data using the protocol
with encryption. It only needed 12 rounds of computations until convergence
occurred. The entire running time was about 11 sec. That implies the average
running time for one-round of computation is only about 1 sec.

9 Conclusion

We proposed a secure EM-algorithm to cluster vertices in a private network in
this paper. This method deals with the mixture of assortative and disassortative
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mixing models. Assuming that each vertex is independent, private, and semi-
honest, our algorithm was sufficiently secure to preserve the privacy of every
vertex. The running time for our algorithm only depended on the number of
clusters and the maximum degree. Since our algorithm does not become ineffi-
cient with larger amounts of data, it can be applied to very large-scale networks.

References

1. Newman, M.E.J., Leicht, E.A.: Grid Mixture models and exploratory analysis in
networks. Proc. Natl. Acad. Sci. USA 104, 9564–9569 (2007)

2. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: The 14th ACM
Conference on Computer and Communications Security (2007)

3. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: The 15th National
Conference on Artificial Intelligence (1998)

4. Jha, S., Kruger, L., McDamiel, P.: Privacy preserving clustering. In: The 10th
European Symposium on Research in Computer Security (2005)

5. Vaidya, J., Clifton, C.: Privacy-Preserving k-means clustering over vertically parti-
tioned data. In: The 9th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (2003)

6. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means cluster-
ing over arbitrarily partitioned data. In: The 11th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (2003)

7. Lin, X., Clifton, C., Zhu, M.: Privacy-preserving clustering with distributed EM
mixture. Knowledge and Information Systems, 68–81 (2004)

8. Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate estimation of the degree distri-
bution of private networks. In: The 9th IEEE International Conference on Data
Mining (2009)

9. Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online
social networks. In: The 9th IEEE International Conference on Data Mining (2009)

10. Sakuma, J., Kobayashi, S.: Link analysis for private weighted graphs. In: The 32nd
ACM SIGIR Conference (2009)

11. Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. Journal
of Computer and System Sciences 74(1), 70–83 (2008)

12. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

13. Kantarcoglu, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. In: The ACM SIGMOD Workshop on Re-
search Issues on Data Mining and Knowledge Discovery, DMKD 2002 (2002)

14. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

15. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz 3,
25–30 (1964)

16. Krebs, V.: http://www.orgnet.com/

http://www.orgnet.com/


Named Entity Recognition and Identification

for Finding the Owner of a Home Page

Vassilis Plachouras1,2, Matthieu Rivière2, and Michalis Vazirgiannis1,3
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Abstract. Entity-based applications, such as expert search or online so-
cial networks where users search for persons, require high-quality datasets
of named entity references. Obtaining such high-quality datasets can be
achieved by automatically extracting metadata from Web pages. In this
work, we focus on the identification of the named entity that corresponds
to the owner of a particular Web page, for example, a home page or an
organizational staff Web page. More specifically, from a set of named en-
tities that have already been extracted from a Web page, we identify the
one which corresponds to the owner of the home page. First, we develop
a set of features which are combined in a scoring function to select the
named entity of the Web page owner. Second, we formulate the problem
as a classification problem in which a pair of a Web page and named
entity is classified as being associated or not. We evaluate the proposed
approaches on a set of Web pages in which we have previously identified
named entities. Our experimental results show that we can identify the
named entity corresponding to the owner of a home page with accuracy
over 90%.

Keywords: named entity recognition, entity selection.

1 Introduction

Developing named entity-based datasets is a central task to applications such
as expert search engines and scientific digital library portals, where researchers
and organizations are the key entities to index and search for. However, devel-
oping such datasets is challenging because information must be extracted from
unstructured or semi-structured sources. One approach involves the extraction
of information from bibliographic metadata of scientific publications. DBLP1 is
an example of a site offering an index of the literature in Computer Science.
CiteSeerX2 crawls the Web to collect files that correspond to publications and

1 http://www.informatik.uni-trier.de/~ley/db/
2 http://citeseerx.ist.psu.edu/
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from which information is extracted. A complementary approach is to extract
information and to identify researchers from crawled Web pages of academic
institutions. By exploiting the publicly available Web sites of academic institu-
tions, this approach has the potential to achieve higher coverage when there is
no bibliographic metadata available.

In this work, we consider the latter approach to develop an entity-based
dataset of researchers, covering several research fields and different countries.
We describe a mechanism for identifying with high accuracy the named entity
that corresponds to the owner of a Web page. In other words, given a Web page
p, we identify the person entity e of the Web page’s owner. Such Web pages are
either home pages of people, or organizational staff Web pages, similar to online
business cards. For example, the owner’s named entity of a researcher’s home
page is the researcher’s name.

Related works propose to identify the owner of a home page by learning models
of the structure of home pages and the position of names on the Web page. For
example, Gollapalli et al. [8] select the first identified name on the Web page.
This simple heuristic is effective because the name of the owner of the home
page is likely to appear before any other name. However, the effectiveness of this
heuristic is highly dependent on the effectiveness of named entity recognition,
because if the first name is not identified correctly, then the selected name is
likely to be wrong.

We take a different approach, where we first apply a named entity recognizer
to extract all names appearing on a Web page and then, we exploit the likely
redundancy of the names’ occurrences on a Web page to identify the name of the
Web page’s owner. For example, the name of the Web page’s owner is likely to
appear more than once in the Web page. In addition, it may appear both in its
full form as well as in abbreviated forms in publication references. We develop
weighting functions for the identified named entities and select the top-scoring
ones as the named entities of a Web page’s owner. The weighting functions
are based on the output of the named entity recognizer and exploit similarities
between names by constructing a graph whose vertices are the named entities
that have been recognized in a Web page. Furthermore, we treat the problem of
selecting the named entity as a binary classification problem and train an SVM
classifier to identify those named entities.

An important advantage of our approach over existing ones is that it does not
depend on a particular named entity recognition model. Instead, it can use any
method that detects the named entities with the required granularity, that is,
given names, last names and middle names. The experimental results, based on
a dataset of 472 home pages manually annotated with the name of their owner,
show that our proposed approaches can achieve over 87% precision in identifying
the named entity of the Web page owner. When considering only the Web pages
in which the correct name has been recognized at least once by the named entity
recognition model, the introduced approaches achieve over 95% precision.

The remainder of this paper is organized as follows. In Section 2 we present
related works from the literature. In Section 3 we briefly describe the named
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entity recognition method and features we employ to identify the named entities
from which we select the Web page owner named entities. Section 4 introduces
a framework for the selection of named entities and describes two baseline ap-
proaches and one based the construction of a graph from named entities that are
similar, exploiting the redundancy in the named entity occurrences. In Section 5
we describe an approach based on supervised machine learning and, more specif-
ically, a binary SVM classifier, which is trained to select the named entities from
a home page. Section 6 describes our dataset and the experimental results we
have obtained. Finally, Section 7 closes this work with some concluding remarks.

2 Related Work

The approach to identify the named entity of the home page owner is primarily
related to named entity recognition, metadata extraction from Web pages, and
to coreference resolution.

Named Entity Recognition. Supervised machine learning techniques are typically
used to identify named entities in texts and Web pages. An example of a gener-
ative model is a Hidden Markov Model (HMM), in which the hidden states are
used to model the tag classes of words. Bikel et al. [1] develop a named entity
recognizer based on a HMM, where the hidden states of the HMM correspond to
a number of name classes, such as person names, or organization names, and the
features involve checking for capitalization, whether a word contains only letters,
or digits. Chieu and Ng[4] employ a Maximum Entropy Classifier, which classifies
each word in a text as the beginning of a named entity, the continuation, or the
last word of a named entity. The features employed by the Maximum Entropy
Classifier are binary. Takeuchi and Collier [14] explore the use of Support Vector
Machines for named entity recognition, computing features from a context of the
three previous and three following tokens. An approach that has been commonly
used and results in state-of-the-art performance is Conditional Random Fields
(CRF) [10], which is an undirected graphical model or a Markov Random Field.
Culota et al. [5] extract contact information from the home pages of persons
identified in email corpora. Minkow et al. [11] apply a CRF model to recognize
names in emails, using features which are primarily based on gazetteers for per-
son first and last names, names of organizations and locations, but not using
deep natural language processing. Zhu et al. [17] propose two-dimensional CRF,
which take into account not only the sequence of information objects in a Web
page, but also the dependencies between neighboring blocks. Shi and Wang have
proposed a dual-layer CRF, which aims to process more accurately cascades of
subtasks in Natural Language Processing [13]. For example, one such cascade
of tasks is the identification of the full person names in a text, as well as the
given and last names. In our work, we employ an approach similar to cascaded
CRFs where the predicted labels for the person names are used as a feature in
the prediction of the first and last names of persons. We discuss in more detail
the CRF model we employ in Section 3.
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Metadata Extraction. While we use named entity recognition to identify person
names on a Web page, the focus of our work is on selecting the name of the
owner of a professional or academic home page. Hence, our work is more closely
related to [9][3][8]. Kato et al. [9] employ the concept of information sender to
identify the author of a Web page or the organization to which the Web page
belongs. They treat the problem as a ranking problem evaluating at the top-5
results. The reported precision at ranks 1 and 5 is 0.586 and 0.752, respectively.
Changuel et. al [3] extract the author of Web pages, not necessarily home pages,
by building a decision tree with the C4.5 algorithm and employing a small set
of features. They report a precision of approximately 0.812 in identifying the
author of a web page. Gollapalli et al. [8] identify the owner of a home page
by applying a standard named entity recognition model and selecting the first
identified name. Zheng et al. [16] describe an approach based on Conditional
Random Fields to identify the metadata about authors from their home pages
using visual features, such as the position of DOM nodes on the rendered Web
page. Finally, Tang et al. [15] start from a dataset of bibliographic metadata
and create Web search engine queries to retrieve the home page of a user. Their
setting is different from ours where we aim to extract the names of persons,
without assuming that we have any information about the names a priori.

Coreference Resolution. The task of selecting the main entity from the set of
entities identified on a home page is related to coreference resolution, which
determines whether two textual expressions refer to the same entity or not.
Typical coreference resolution methods employ supervised learning [12][6] and
rely on the linguistic analysis of text to extract features. The task of identifying
the owner of a home page does not require the full resolution of all references,
and hence, it is not necessary to apply coreference resolution at a first step.

3 Named Entity Recognition

Before presenting our approach to named entity selection, we describe the Named
Entity Recognition (NER) system we first apply to extract names from home
pages. We have developed a NER system based on supervised learning of a
Conditional Random Field (CRF) to learn to recognize the full names of persons,
as well as their first, middle and last names. We did not employ an existing NER
system such as the Stanford Named Entity Recognizer3 [7] for two main reasons.
First, we require better granularity in identifying first, last and middle names
in addition to full names. Second, our objective is to process input from Web
pages. Hence, we develop features that exploit term frequency statistics in the
anchor text of incoming hyperlinks of Web pages.

To train the CRF model, we have manually annotated all the names in 95 Web
pages. We first split the textual content of a Web page in sentences using the
DOM tree and regular expressions. Next, we tokenize each sentence by splitting
tokens at non-alphanumeric characters, and we annotate the tokens. We use

3 Available from http://nlp.stanford.edu/software/CRF-NER.shtml

http://nlp.stanford.edu/software/CRF-NER.shtml
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the begin, inside, outside (BIO) convention for labels. For example the sentence
“Chris Bishop is a Distinguished Scientist at . . .”4 is tokenized and labeled as
follows:

Chris Bishop is a Distinguished Scientist at . . .
BPERSON IPERSON O O O O O

BFNAME BLNAME O O O O O

where BPERSON denotes the beginning of a full name, BFNAME denotes the be-
ginning of a first name, and BLNAME denotes the beginning of a last name. The
label IPERSON denotes that the corresponding token is inside a person name.
The label O denotes that the corresponding token does not belong to any of the
classes we consider.

Next, we train a CRF model using five types of features. The first type of
features corresponds to the tokens themselves. The second type corresponds to
two features, whose value depends on the form of the examined token. The first
feature indicates whether the token contains only numerical digits, or it is a
single upper case letter, or a punctuation symbol, or a capitalized word, etc.).
The second feature indicates whether the token is an alphanumeric string. The
third type of features relies on two gazetteers for first names and geographic
locations, respectively, and comprises two binary features indicating whether
the token is a first name, and whether the token is a geographic location. The
fourth type of features is based on a full-text index of Web pages and comprises
4 features. More specifically, two features correspond to the logarithm of the
number of documents in which the term occurs in the body, and the anchor
text of incoming links respectively. The two next features correspond to flags
indicating whether the term occurs in the title or the anchor text of incoming
links of the currently processed document. The fifth type of features comprises
one feature indicating whether the token occurs in the anchor text of an outgoing
hyperlink in the currently processed document, differentiating between links to
Web pages in the same or different domains. Note that the last two types of
features depend on the distribution of terms in a full text index of Web pages,
and the text associated with the link structure of Web pages. We employ the
implementation of CRF++5.

We learn the CRF model and apply it to unseen Web pages in the fol-
lowing way. First, we train a CRF to recognize full names and assign labels
BPERSON and IPERSON . The assigned labels are then used to learn a second
model where the assigned labels constitute an additional twelfth feature used
in the recognition of first, middle and last names, assigning labels BFNAME,
IFNAME, BMNAME, IMNAME, and BLNAME and ILNAME, respectively. After apply-
ing the CRF models to label tokens, we aggregate consecutive tokens with B
and I labels in an entity e. For each entity e, t(e) is the type of the entity where
t(e) ∈ {PERSON, FNAME, MNAME, LNAME}, c(e) is the average confidence of the label
assignment over the entity’s tokens, and s(e) is the concatenation of the tokens
to form the string representation of e.

4 Quoted from http://research.microsoft.com/en-us/um/people/cmbishop/
5 Available from http://crfpp.sourceforge.net/

http://research.microsoft.com/en-us/um/people/cmbishop/
http://crfpp.sourceforge.net/
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The accuracy of the named entity recognition could potentially be higher if
we employed language-specific features, such as Part Of Speech (POS) tags.
However, our aim is to apply the developed approaches to a wide range of input
Web pages, irrespectively of the language they are written in. We offset the
potentially lower accuracy of the CRF named entity recognition by weighting
the different occurrences of names, as described in the following section.

4 Finding Named Entities of Web Page Owner

In this section, we study the problem of selecting the named entity correspond-
ing to the owner of a home page. We operate on the output of the named
entity recognition process described in Section 3 to select the entity e with type
t(e) = PERSON . First, we describe the framework for weighting the identi-
fied entities (Section 4.1). Then, we introduce two baseline weighting functions
for entities based on the features used by the NER system (Section 4.2), and a
third weighting function based on a graph representation of the named entities
(Section 4.3).

4.1 Entity Selection Framework

We perform entity selection in the following framework. S(t, str) is the set of all
entities of type t(e) = t and string representation s(e) = str:

S(str) = {e|t(e) = t ∧ s(e) = str} (1)

When t = PERSON we write S(str) = S(PERSON, str). For each set S(str), we
compute a weight wstr and rank S(str) in descending order of wstr . The selected
named entities of the processed Web page are the ones belonging to the top
ranked S(str).

4.2 Baseline Entity Selection

A simple way to weight a set S(str) of PERSON entities with the same string
representation is to sum the confidence c(e) of the label assignment for each
entity e ∈ S(str):

wstr =
∑

e∈S(str)

c(e) (2)

The intuition for defining the weight wstr as the sum of the confidences is that
it reflects both the number of times the same string has been identified as a
PERSON entity as well as the confidence in the recognition.

The weighting of S(str) from Eq. 2 is only based on the average confidence
of the label assignment to each token of the entities in S(str). We can improve
the weighting by incorporating more information regarding the position of the
occurrences of entities.

wstr =
∑

e∈S(str)

(waanchor(e) + wttitle(e) + wcc(e)) (3)
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where anchor(e) = 1 if s(e) occurs in the anchor text of incoming hyperlinks
of the processed Web page, otherwise anchor(e) = 0. Similarly, title(e) = 1 if
s(e) occurs in the title of the processed Web page, otherwise title(e) = 0. The
parameters wa, wt, wc control the importance of each of the three features and
are set during training.

4.3 Graph-Based Entity Selection

The baseline weighting of set S(str) according to Eq. 2 and 3 only consider the
entities of type PERSONwith the same string representation. However, they ignore
any similarities between the identified entities in order to compute an improved
weight. Suppose that on a Web page the full name of a researcher appears only
twice at the top of the Web page, and the name of the most frequent co-author
appears in abbreviated form once for each publication of the researcher6. In such
a setting, the baseline weighting functions may select the abbreviated name of
the co-author as the named entity of the URL’s owner, instead of the full name
of the researcher.

{ e | t(e)=PERSON ^ s(e)=”Chris Bishop” } { e | t(e)=PERSON ^ s(e)=”C. Bishop” } 

{ e | t(e)=FNAME ^ s(e)=”Chris” } 

{ e | t(e)=LNAME ^ s(e)=”Bishop” } 

{ e | t(e)=FNAME ^ s(e)=”C.” } 

Type 1 edge

Type 2 edge

Type 3 edge

Fig. 1. The graph constructed from the sets of identified named entities in a Web page

We overcome the limitations of the baseline weightings by introducing a novel
graph-based weighting for sets of entities. We define a directed graph G = {V,E}
where V is the set of vertexes and E is the set of edges. Each set S(t, str) =
{e|t(e) = t ∧ s(e) = str} of entities with given type t and string representation
str, corresponds to a vertex of V . Hence, the graph is constructed from all
identified names in the Web page.

We define three types of directed edges in graph G. The set of vertices having
an edge of type i to S(t, str) is denoted by ini(t, str). When t = PERSON, we can
write ini(str). The three types of directed edges are defined as follows:

6 For example, http://www.cs.washington.edu/homes/pedrod/

http://www.cs.washington.edu/homes/pedrod/
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– A type 1 edge connects sets of FNAME, MNAME, LNAME entities to the corre-
sponding sets of PERSON entities in which they occur.

– A type 2 edge connects a set S(t, str1) to S(t, str2) when string str1 is an
abbreviated form of str2 and t ∈ {FNAME, MNAME, LNAME}.

– A type 3 edge connects a set S(str1) to S(str2) when the name str1 is
an abbreviated form of the name str2. Formally, S(str1) ∈ in3(S(str2))
if there exists S(t, str3) ∈ in1(PERSON, str1) ∩ in1(PERSON, str2) and there
exist S(t′, str4) ∈ in1(PERSON, str1)), S(t

′′, str5) ∈ in1(PERSON, str2) where
S(t′, str4) ∈ in2(t

′′, str5).

Figure 1 illustrates a graph constructed from a set of identified named entities.
The graph has two vertexes of type PERSON, one vertex of type LNAME for the
last name ’Bishop’ and two vertexes of type FNAME for the first name ’Chris’
and its abbreviated form ’C.’ There are four edges of type 1, linking the ver-
texes of type FNAME and LNAME to the corresponding vertexes of type PERSON.
There is one edge of type 2 which links the vertex S(FNAME, ’C.’) to the ver-
tex S(FNAME, ’Chris’). Finally, there is one edge of type 3 from S(’C. Bishop’)
to S(’Chris Bishop’) because both vertexes have incoming links from the same
vertex S(LNAME, ’Bishop’) and there is a type 2 edge between two of their FNAME
linking vertexes.

The graph G, which is constructed as described above, is a directed acyclic
graph (DAG). From the definition of type 1 edges, we cannot have a cycle in-
volving vertices of type PERSON and any other entity type because type 1 edges
always point to vertices of type PERSON. Hence, a cycle may involve either type
2 edges exclusively or type 3 edges exclusively. Since a type 3 edge exists only if
there is a type 2 edge, and the two edges cannot be in the same path, then there
exists a cycle with type 3 edges only if there exists a cycle with type 2 edges.
However, there cannot be a cycle with type 2 edges, because type 2 edges link
an abbreviated name to its full form. Hence, there cannot be any cycle in the
graph G.

Once we have constructed the graph from the named entities identified in a
Web page, we compute a weight for each vertex S(str), corresponding to the
sum of the Baseline 2 score from Eq. 3 plus the sum of the scores of vertices that
link to S(str).

wstr =
∑

e∈S(str)

(waanchor(e) + wttitle(e) + wcc(e)) +
∑

S(str′)∈ini(str)

wstr′ (4)

Finally, we select the set S(str) with the highest score wstr according to Eq. 4.
The intuition is that the scores of abbreviated named entities propagate to the
entities corresponding to full names.

5 Learning to Select Named Entities

The baseline and the graph-based scoring functions make use of the output
of the NER system to score entities found in a Web page and select the ones
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which are more likely to refer to the owner of the Web page. However, all three
functions will always produce a score for the entities, even when the named
entity of the owner of the Web page is not among the identified named entities.
For example, a researcher may have a set of Web pages documenting a software
he has written and released as open-source. The functions introduced earlier
will always select one set of entities as the owner for the considered Web page.
Moreover, extending these functions with arbitrary features is not trivial. In this
section, we investigate the problem of selecting the named entities as a binary
classification problem in a supervised learning setting.

In particular, we formulate the classification problem y(x) ∈ {−1, 1}, where
x ∈ X = {(URL, S(PERSON, str))}. The input x is a pair of a URL and
a set S(PERSON, str). For the output, y(x) = 1 when the named entities in
S(PERSON, str) correspond to the owner of Web page with URL, otherwise,
y(x) = −1. For each input point x, we compute 13 features:

– the graph-based score of S(PERSON, str) from Eq. 4
– the rank of S(PERSON, str) when all sets of PERSON entities are ordered in

ascending order of the Baseline 1, Baseline 2, graph-based scoring functions,
as well as in the order of occurrence (4 features)

– the sum of the cardinalities |S(t, str′)| where S(t, str′) ∈ ini(PERSON, str) for
each type of links (3 features)

– the number of edges of type i pointing to S(PERSON, str) for i = 1, 2, 3 (3
features)

– 1 if str appears in an email address found in the content of URL, otherwise
0

– 1 if str appears to be emphasized in the text of home page identified by
URL, otherwise 0

The feature values are normalized between -1 and +1 on a per home page basis.
We employ an SVM classifier with radial-basis kernel from LIBSVM7 [2]. For
a given home page identified by URL, if the SVM classifies as +1 more than
one pairs (URL, S(PERSON, str)), we select the one with the highest estimated
probability, as computed by the SVM classifier.

6 Experimental Results

In this section, we describe the experimental setting in which we evaluate the
introduced methods. First, we evaluate the CRF-based named entity recognition
(Section 6.1). Next, we describe the dataset we use for entity selection and we
present the obtained results (Section 6.2).

6.1 Named Entity Recognition Evaluation

In this section, we present evaluation results for the NER system we describe in
Section 3. Starting from a set of 95 annotated Web pages, we randomize their

7 Available from http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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order and split them in three folds. We use each fold once to test the CRF model
we learn on the other two folds. Table 1 reports the micro-averaged precision,
recall and F-measure for each of the labels we assign during the first and the
second passes of the CRF-based NER system, respectively.

The NER system assigns BPERSON and IPERSON labels with high precision and
recall. This is consistent with results reported for NER systems trained on much
larger corpora [7]. First and last names are identified with an accuracy of more
than 0.80. The obtained precision for middle names is significantly lower, mainly
due to the small number of training examples available.

Table 1. Number of annotated tokens, micro-averaged precision, recall, and F-measure
for each of the labels assigned in the first and second passes, respectively

Label # of Annotated Tokens Precision Recall F-Measure

Pass 1

BPERSON 3326 0.931 0.918 0.924
IPERSON 6552 0.955 0.913 0.934
O 35364 0.978 0.988 0.983

Pass 2

BFIRST 2942 0.820 0.900 0.858
BLAST 2956 0.818 0.879 0.848
BMIDDLE 131 0.290 0.344 0.315
IFIRST 1783 0.820 0.871 0.844
ILAST 777 0.832 0.793 0.812
IMIDDLE 120 0.542 0.375 0.443
O 36533 0.975 0.960 0.967

6.2 Evaluation and Experimental Results

We have evaluated the introduced approaches using a dataset of home pages,
for which we have manually identified the full name, as well as the first, middle
and last names of the home page owners. We have sampled a total of 472 home
pages from a large crawl of university and research organization Web sites.

The NER model, described in Section 3, has identified the correct name at
least once in 432 out of the 472 home pages. Out of the 432 pages, 66% of the
pages are written in English, 27% are written in French and 3% of the pages
are written in German. The remaining 4% of the pages are written in Danish,
Italian, Polish, Portuguese and Swedish. We distinguish between perfect and
partial matches of names. We have a perfect match when the entity weighting
ranks first a name matching perfectly the correct one. A partial match occurs
when the entity weighting ranks first an abbreviated version of the correct name.

Table 2 reports the accuracy of perfect and partial identifications over the 432
home pages for which the correct answer is among the identified named entities.
We also report results computed over the total number of home pages. The first
approach (Order) is a näıve heuristic where the first identified person name is
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selected as the owner’s name for the corresponding page. The effectiveness of
this heuristic depends on the accuracy of the underlying NER system because
any wrong identification of names will lead to an error in the selection [8]. The
two next approaches, Baseline 1 and Baseline 2, correspond to the selection of
entities using Eq. 2 and 3, respectively. The fourth and fifth rows in Table 2
display the results obtained with the graph-based and the SVM-based entity
selection approaches, respectively.

Table 2. Fraction of Web pages for which there is a perfect or partial match, when
using Order, Baseline 1, Baseline 2, Graph and SVM-based entity selection

Perfect Partial Perfect+Partial (Perfect+Partial)/All Pages

Order 0.847 0.035 0.882 0.807
Baseline 1 0.789 0.090 0.880 0.805
Baseline 2 0.875 0.039 0.914 0.837
Graph-based 0.944 0.014 0.958 0.877
SVM-based 0.954 0.009 0.963 0.881

The best-performing approach is the SVM-based one, which achieves perfect
matches in 95.4% of the home pages when the named entity recognition identifies
the correct name at least once. If we consider both perfect and partial matches,
then we have a match in 96.3% of the home pages. When we calculate the results
on all the home pages, including the ones in which named entity recognition did
not identify the correct named entity, we achieve a precision of 88.1%.

7 Conclusions

In this work, we have introduced a novel method to select among recognized
named entities in a home page the one corresponds to the owner. Our method
uses the output of a named entity recognition system and exploits the redun-
dancy and the similarities between names to select the correct one. The in-
troduced methods are developed independently of the employed named entity
recognition approach. Indeed, they can be used with any NER approach that
identifies person names, but also first, middle and last names. In a dataset of
more than 400 home pages, our methods identify the correct name for more than
90% of the home pages in which a NER system identifies at least once the correct
name in the processed page. The comparison of our methods with a heuristic
based on the order of names shows that our approaches achieve important im-
provements in effectiveness because they are more robust with respect to the
accuracy of the employed NER system.

We have applied the developed methods in the context of researchers’ home
pages. In the future, we will evaluate it in the context of different applications,
such as the automatic creation of online social networks, or people search. We
also aim to apply the developed methods for identifying the name of the owner
of a Web page as a feature to improve the classification of Web pages.



Finding the Owner of a Home Page 565

References

1. Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: a high-performance
learning name-finder. In: Procs. of the 5th ANLC, pp. 194–201 (1997)

2. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol. 2, 27:1–27:27 (2011)

3. Changuel, S., Labroche, N., Bouchon-Meunier, B.: Automatic web pages author
extraction. In: Procs. of the 8th FQAS, pp. 300–311 (2009)

4. Chieu, H.L., Ng, H.T.: Named entity recognition with a maximum entropy ap-
proach. In: Procs. of the 7th Conference on Natural Language Learning at HLT-
NAACL 2003, CONLL 2003, vol. 4, pp. 160–163 (2003)

5. Culotta, A., Bekkerman, R., McCallum, A.: Extracting social networks and contact
information from email and the web. In: CEAS (2004)

6. Culotta, A., Wick, M., Hall, R., McCallum, A.: First-order probabilistic models
for coreference resolution. In: Procs. of HLT/NAACL, pp. 81–88 (2007)

7. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Procs. of the 43rd Annual
Meeting on ACL, pp. 363–370 (2005)

8. Gollapalli, S.D., Giles, C.L., Mitra, P., Caragea, C.: On identifying academic home-
pages for digital libraries. In: Procs. of the 11th JCDL, pp. 123–132 (2011)

9. Kato, Y., Kawahara, D., Inui, K., Kurohashi, S., Shibata, T.: Extracting the author
of web pages. In: Procs. of the 2nd ACM WICOW, pp. 35–42 (2008)

10. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: Procs. of the 18th
ICML, pp. 282–289 (2001)

11. Minkov, E., Wang, R.C., Cohen, W.W.: Extracting personal names from email:
applying named entity recognition to informal text. In: Procs. of the Conf. on HLT
and EMNLP, HLT 2005, pp. 443–450 (2005)

12. Ng, V., Cardie, C.: Improving machine learning approaches to coreference reso-
lution. In: Procs. of the 40th Annual Meeting on ACL, ACL 2002, pp. 104–111
(2002)

13. Shi, Y., Wang, M.: A dual-layer crfs based joint decoding method for cascaded
segmentation and labeling tasks. In: Procs. of the 20th IJCAI, pp. 1707–1712 (2007)

14. Takeuchi, K., Collier, N.: Use of support vector machines in extended named en-
tity recognition. In: Procs. of the 6th Conference on Natural Language Learning,
COLING 2002, vol. 20, pp. 1–7 (2002)

15. Tang, J., Zhang, D., Yao, L.: Social network extraction of academic researchers.
In: Procs. of the 7th ICDM, pp. 292–301 (2007)

16. Zheng, S., Zhou, D., Li, J., Giles, C.L.: Extracting author meta-data from web
using visual features. In: Procs. of the 7th ICDMW, pp. 33–40 (2007)

17. Zhu, J., Nie, Z., Wen, J.R., Zhang, B., Ma, W.Y.: 2d conditional random fields for
web information extraction. In: Procs. of the 22nd ICML, pp. 1044–1051 (2005)



Clustering and Understanding Documents
via Discrimination Information Maximization

Malik Tahir Hassan and Asim Karim

Dept. of Computer Science, LUMS School of Science and Engineering
Lahore, Pakistan

{mhassan,akarim}@lums.edu.pk

Abstract. Text document clustering is a popular task for understanding and sum-
marizing large document collections. Besides the need for efficiency, document
clustering methods should produce clusters that are readily understandable as
collections of documents relating to particular contexts or topics. Existing cluster-
ing methods often ignore term-document semantics while relying upon geomet-
ric similarity measures. In this paper, we present an efficient iterative partitional
clustering method, CDIM, that maximizes the sum of discrimination informa-
tion provided by documents. The discrimination information of a document is
computed from the discrimination information provided by the terms in it, and
term discrimination information is estimated from the currently labeled docu-
ment collection. A key advantage of CDIM is that its clusters are describable by
their highly discriminating terms – terms with high semantic relatedness to their
clusters’ contexts. We evaluate CDIM both qualitatively and quantitatively on
ten text data sets. In clustering quality evaluation, we find that CDIM produces
high-quality clusters superior to those generated by the best methods. We also
demonstrate the understandability provided by CDIM, suggesting its suitability
for practical document clustering.

1 Introduction

Text document clustering discovers groups of related documents in large document col-
lections. It achieves this by optimizing an objective function defined over the entire
data collection. The importance of document clustering has grown significantly over
the years as the world moves toward a paperless environment and the Web continues
to dominate our lives. Efficient and effective document clustering methods can help in
better document organization (e.g. digital libraries, corporate documents, etc) as well
as quicker and improved information retrieval (e.g. online search).

Besides the need for efficiency, document clustering methods should be able to han-
dle the large term space of document collections to produce readily understandable
clusters. These requirements are often not satisfied in popular clustering methods. For
example, in K-means clustering, documents are compared in the term space, which
is typically sparse, using generic similarity measures without considering the term-
document semantics other than their vectorial representation in space. Moreover, it is
not straightforward to interpret and understand the clusters formed by K-means clus-
tering; the similarity of a document to its cluster’s mean provides little understanding
of the document’s context or topic.

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 566–577, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper, we present a new document clustering method based on discrimination
information maximization (CDIM). CDIM’s semantically motivated objective function
is maximized via an efficient iterative procedure that repeatedly projects documents
onto a K-dimensional discrimination information space and assigns documents to the
cluster along whose axis they have the largest value. The discrimination information
space is defined by term discrimination information estimated from the labeled docu-
ment collection produced in the previous iteration. This procedure maximizes the sum
of discrimination information provided by all documents. A key advantage of using
term discrimination information is that each cluster can be interpreted by a list of highly
discriminating terms. These terms serve as units of understanding, as demonstrated in
linguistics studies [1,2], describing a cluster in the document collection. We evaluate
the performance of CDIM on ten popular text data sets. In clustering quality evalua-
tion, CDIM is found to produce high quality clusters superior to those produced by
non-negative matrix factorization (NMF) and several K-means variants. Our results
suggest the practical suitability of CDIM for clustering and understanding of document
collections.

The rest of the paper is organized as follows. We discuss the related work and moti-
vation for our method in Section 2. CDIM, our document clustering method is described
in detail in Section 3. Section 4 presents our experimental setup. Section 5 discusses the
results of our experiments, and we conclude with future directions in Section 6.

2 Motivation and Related Work

Content-based document clustering continues to be challenging because of (1) the high
dimensionality of the term-document space, (2) the sparsity of the documents in the
term-document space, and (3) the difficulty of incorporating appropriate term-document
semantics for improved clustering quality and understandability. Moreover, real-world
document clustering often involves large document collections thus requiring the clus-
tering method to be efficient.

The K-means algorithm continues to be popular for document clustering due to its
efficiency and ease of implementation [3]. It is a partitional clustering method that opti-
mizes an objective function via an iterative two-step procedure. Usually, documents are
represented by terms’ weights, and documents are compared in the term space by the
cosine similarity measure. Several clustering objective functions can be optimized [4]
with the traditional objective of maximizing the similarity of documents to their clus-
ter means producing reliable clusterings. The Repeated Bisection clustering method,
which splits clusters into two until the desired number of clusters are obtained, has
been shown to produce better clusterings especially when K is large (greater than 20)
[5]. These K-means based methods are efficient and accurate for many practical ap-
plications. Their primary shortcoming is poor interpretability of the clusters where the
cluster mean vector is often not a reliable indicator of the documents in a cluster.

Some researchers have used external knowledge bases to semantically enrich the
document representation for document clustering [6,7]. In [6], Wikipedia’s concepts
and categories are adopted to enhance the document representation, while in [7] several
ontology-based (e.g. WordNet) term relatedness measures are evaluated for semanti-
cally smoothing the document representation. In both works, it has been shown that
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the quality of clusterings produced by the K-means algorithm improves over the base-
line (“bag of words”) document representation. However, extracting information from
knowledge bases is computationally expensive. Furthermore, these approaches suffer
from the same shortcomings of K-means regarding cluster understandability.

The challenge of high dimensional data clustering, including that of document clus-
tering, has been tackled by clustering in a lower dimensional space of the original
term space. One way to achieve this is through Non-Negative Matrix Factorization
(NMF). NMF approximates the term-document matrix by the product of term-cluster
and document-cluster matrices [8]. Extensions to this idea, with the goal of improv-
ing the interpretability of the extracted clusters, have also been proposed [9,10]. An-
other way is to combine clustering with dimensionality reduction techniques [11,12].
Nonetheless, these methods are restricted by their focus on approximation rather than
semantically useful clusters, and furthermore, dimensionality reduction based tech-
niques are often computationally expensive.

Recently, it has been demonstrated that the relatedness of a term to a context or
topic in a document collection can be quantified by its discrimination information [2].
Such a notion of relatedness, as opposed to the traditional term-to-term relatedness,
can be effectively used for data mining tasks like classification [13]. Meanwhile, mea-
sures of discrimination information, such as relative risk, odds ratio, risk difference,
and Kullback-Leibler divergence, are gaining popularity in data mining [14,15]. In the
biomedical domain, on the other hand, measures like relative risk have been used for a
long time for cohort studies and factor analysis [16,17].

3 CDIM – Our Document Clustering Method

CDIM (Clustering via Discrimination Information Maximization) is an iterative par-
titional document clustering method that finds K groups of documents in a K-
dimensional discrimination information space. It does this by following an efficient
two-step procedure of document projection and assignment with the goal of maximiz-
ing the sum of documents’ discrimination scores. CDIM’s clusters are describable by
highly discriminating terms related to the context/topic of the documents in the cluster.
We start our presentation of CDIM by formally stating the problem.

3.1 Problem Statement

Let X = [x1,x2, . . . ,xN ] ∈ �M×N be the term-document matrix in which the ith
document xi = [x1i, x2i, . . . , xMi]

T is represented by an M -dimensional vector (ith
column of matrix X). M is the total number of distinct terms in the N documents.
The weight of term j in document i, denoted by xji, is equal to the count of term j in
document i.

Our goal is to find K (usually in practice K ) min{M,N}) clusters Ck (k =
1, 2, . . . ,K) of documents such that if a document x ∈ Ck then x �∈ Cj, ∀j �= k. Thus,
we assume hard partitioning of the documents among the clusters; however, this as-
sumption can be relaxed trivially in CDIM but we do not discuss this further in our
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current work. In addition to the cluster composition, we will also like to find signifi-
cant describing terms for each cluster. Let Tk be the index set of significant terms for
cluster k.

3.2 Clustering Objective Function

CDIM finds K clusters in the document collection by maximizing the sum of discrimi-
nation scores of documents for their respective clusters. If we denote the discrimination
information provided by document i for cluster k by dik and the discrimination informa-
tion provided by document i for all clusters but cluster k by d̄ik , then the discrimination
score of document i for cluster k is defined as d̂ik = dik − d̄ik. CDIM’s objective
function can then be written as

J =

K∑
k=1

∑
xi∈Ck

rik(dik − d̄ik) (1)

where rik = 1 if document i is assigned to cluster k and zero otherwise. Document
discrimination information (dik and d̄ik) is computed from term discrimination infor-
mation that in turn is estimated from the current labeled document collection. These
computations are discussed in the following subsections.

Intuitively, CDIM seeks a clustering in which the discrimination information pro-
vided by documents for their cluster is higher than the discrimination information pro-
vided by them for the remaining clusters. It is not sufficient to maximize just the dis-
crimination information of documents for their respective clusters as they may also
provide high discrimination information for the remaining clusters.

The objective function J is maximized by using a greedy two-step procedure. In one
step, given a cluster assignment defined by rik, ∀i, k, J is maximized by estimating
dik, ∀i, k and d̄ik, ∀i, k from the labeled document collection. This estimation is done
using maximum likelihood estimation. In the other step, given estimated discrimina-
tion scores d̂ik, ∀i, k of documents, J is maximized by assigning each document to the
cluster k for which the document’s discrimination score is maximum. This two-step
procedure continues until the change in J from one iteration to the next drops below a
specified threshold value. Convergence is guaranteed because J is non-decreasing from
one iteration to the next and J is upper-bounded by a local maxima.

3.3 Term Discrimination Information

The discrimination information provided by a document is computed from the discrimi-
nation information provided by the terms in the document. The discrimination informa-
tion provided by a term for cluster k is quantified with the relative risk of the term for
cluster k over the remaining clusters. Mathematically, the discrimination information
of term j for cluster k and term j for all clusters but k is given by

wjk =

{
p(xj |Ck)

p(xj |C̄k)
when p(xj |Ck)− p(xj |C̄k) > t

0 otherwise
and (2)



570 M.T. Hassan and A. Karim

w̄jk =

{
p(xj |C̄k)
p(xj |Ck)

when p(xj |C̄k)− p(xj |Ck) > t

0 otherwise
(3)

where p(xj |Ck) is the conditional probability of term j in cluster k and C̄k denotes all
clusters but cluster k. The term discrimination information is either zero (no discrimina-
tion information) or greater than one with a larger value signifying higher discriminative
power. The conditional probabilities in Equations 2 and 3 are estimated via smoothed
maximum likelihood estimation.

3.4 Relatedness of Terms to Clusters

In Equations 2 and 3, t ≥ 0 is a term selection parameter that controls the exclusion
of terms that provide insignificant discrimination information. As the value of t is in-
creased from zero, fewer terms will have a discrimination information greater than one.

The index set of terms that provide significant discrimination information for cluster
k (Tk) is defined as Tk = {j|wjk > 0, ∀j}. These terms and their discrimination
information provide a good understanding of the context of documents in cluster k
in contrast with those in other clusters in the document collection. In general, Tk ∩
Tj �= ∅, ∀j �= k. That is, there may be terms that provide significant discrimination
information for more than one cluster. Also, depending on the value of t, there may be
terms that do not provide significant discrimination information for all clusters.

In a study discussed in [1], it has been shown that humans comprehend text by asso-
ciating terms with particular contexts or topics. These relationships are different from
the traditional lexical relationships (e.g synonymy, antonymy, etc), but are more funda-
mental in conveying meaning and understanding. Recently, it has been shown that the
degree of relatedness of a term to a context is proportional to the term’s discrimination
information for that context in a corpus [2]. Given these studies, we can consider all
terms in Tk to be related to cluster k and the strength of this relatedness is given by the
term’s discrimination information. This is an important characteristic of CDIM whereby
each cluster’s context is describable by a set of related terms. Furthermore, these terms
and their weights (discrimination information) define a K-dimensional space in which
documents are comparable by their discrimination information.

3.5 Document Discrimination Information

A document i is describable by the terms it contains. Each term j in the document
vouches for the context or cluster k according to the value of the term’s discrimina-
tion information wjk . Equivalently, each term j in the document has a certain degree
of relatedness to context or cluster k according to the value wjk . The discrimination
information provided by document i for cluster k can be computed as the average term
discrimination information for cluster k:

dik =

∑
j∈Tk

xjiwjk∑
j∈Tk

xji
. (4)
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A similar expression can be used to define d̄ik . The document discrimination informa-
tion dik can be thought of as the relatedness (discrimination) of document i to cluster
k. The document discrimination score is given by d̂ik = dik − d̄ik; the larger this value
is, the more likely that document i belongs to cluster k. Note that a term contributes
to the discrimination information of document i for cluster k only if it belongs to Tk
and it occurs in document i. If such a term occurs multiple times in the document then
each of its occurrence contributes to the discrimination information. Thus, the discrim-
ination information of a document for a particular cluster increases with the increase in
occurrences of highly discriminating terms for that cluster.

3.6 Algorithm

CDIM can be described more compactly in matrix notation. CDIM’s algorithm, which
is outlined in Algorithm 1, is described next.

Let W (W̄) be the M ×K matrix formed from the elements wjk, ∀j, k (w̄jk, ∀j, k),
D̂ be the N×K matrix formed from the elements d̂ik, ∀i, k, and R be the N×K matrix
formed from the elements rik, ∀i, k. At the start, each document is assigned to one of the
K randomly selected seeds using cosine similarity, thus defining the matrix R. Then,
a loop is executed consisting of two steps. In the first step, the term discrimination
information matrices (W and W̄) are estimated from the term-document matrix X and
the current document assignment matrix R. The second step projects the documents
onto the relatedness or discrimination score space to create the discrimination score
matrix D̂. Mathematically, this transformation is given by

D̂ = (XΣ)T (W − W̄) (5)

where Σ is a N ×N diagonal matrix defined by elements σii = 1/
∑

j xji. The matrix

D̂ represents the documents in the K-dimensional discrimination score space.
Documents are re-assigned to clusters based on their discrimination scores. A doc-

ument i is assigned to cluster k if d̂ik ≥ d̂ij , ∀j �= k (ties are broken arbitrarily). In
matrix notation, this operation can be written as

R = maxrow(D̂) (6)

where ‘maxrow’ is an operator that works on each row of D̂ and returns a 1 for the
maximum value and a zero for all other values. The processing of Equations 5 and 6
are repeated until the absolute difference in the objective function becomes less than a
specified small value. The objective function J is computed by summing the maximum
values from each row of matrix D̂.

The algorithm outputs the final document assignment matrix R and the final term
discrimination information matrix W. It is easy to see that the computational time
complexity of CDIM is O(KMNI) where I is the number of iterations required to
reach the final clustering. Thus, the computational time of CDIM depends linearly on
the clustering parameters.
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4 Experimental Setup

Our evaluations comprise of two sets of experiments. First, we evaluate the clustering
quality of CDIM and compare it with other clustering methods on 10 text data sets.
Second, we illustrate the understanding that is provided by CDIM clustering. The results
of these experiments are given in the next section. Here, we describe our experimental
setup.

Algorithm 1. CDIM – Document Clustering via Discrimination Information Maxi-
mization
Require: X (term-document matrix), K (no. of clusters)
1: R(0) ← initial assignment of documents to clusters
2: τ ← 0
3: J(0) ← 0
4: repeat
5: W(τ),W̄(τ) ← term discrimination info estimated from X and R(τ) (Eqs. 2 and 3)
6: D̂(τ+1) ← (XΣ)T (W(τ) − W̄(τ))
7: R(τ+1) ← maxrow(D̂(τ+1))
8: J(τ+1) ← sum of max discrimination scores from each row of D̂(τ+1)

9: τ ← τ + 1
10: until (|J(τ) − J(τ−1)| < ε)
11: return R (document assignment matrix), W (term discrimination info matrix)

4.1 Data Sets

Our experiments are conducted on 10 standard text data sets of different sizes, contexts,
and complexities. The key characteristics of these data sets are given in Table 1. Data
set 1 is obtained from the Internet Content Filtering Group’s web site1, data set 2 is
available from a Cornell University web page2, and data sets 3 to 10 are obtained from
Karypis Lab, University of Minnesota3. Data sets 1 (stopword removal) and 3 to 10
(stopword removal and stemming) are available in preprocessed formats, while we per-
form stopword removal and stemming of data set 2. For more details on these standard
data sets, please refer to the links given above.

4.2 Comparison Methods

We compare CDIM with five clustering methods. Four of them are K-means variants
and one of them is based on Non-Negative Matrix Factorization (NMF) [8].

The four K-means variants are selected from the CLUTO Toolkit [18] based on
their strong performances reported in the literature [5,3]. Two of them are direct K-
way clustering methods while the remaining two are repeated bisection methods. For

1 http://labs-repos.iit.demokritos.gr/skel/i-config/downloads/
2 http://www.cs.cornell.edu/People/pabo/movie-review-data/
3 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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Table 1. Data sets and their characteristics

# Name Documents (N ) Terms (M ) Categories (K)
1 pu 672 19868 2
2 movie 1200 38408 2
3 reviews 4069 23220 5
4 hitech 2301 13170 6
5 tr31 927 10128 7
6 tr41 878 7454 10
7 ohscal 11162 11465 10
8 re0 1504 2886 13
9 wap 1560 8460 20
10 re1 1657 3758 25

each of these two types of methods, we consider two different objective functions. One
objective function maximizes the sum of similarities between documents and their clus-
ter mean. The direct and repeated bisection methods that use this objective function are
identified as Direct-I2 and RB-I2, respectively. The second objective function that we
consider maximizes the ratio of I2 and E1, where I2 is the intrinsic (based on cluster
cohesion) objective function defined above and E1 is an extrinsic (based on separa-
tion) function that minimizes the sum of the normalized pairwise similarities of docu-
ments within clusters with the rest of the documents. The direct and repeated bisection
methods that use this hybrid objective function are identified as Direct-H2 and RB-H2,
respectively.

For NMF, we use the implementation provided in the DTU:Toolbox4. Specifically,
we use the multiplicative update rule with Euclidean measure for approximating the
term-document matrix.

In using the four K-means variants, the term-document matrix is defined by term-
frequency-inverse-document-frequency (TF-IDF) values and the cosine similarity mea-
sure is adopted for document comparisons. For NMF, the term-document matrix is
defined by term frequency values.

4.3 Clustering Validation Measures

We evaluate clustering quality with the BCubed metric [19]. In [20], it has been shown
that the BCubed precision and recall are the only measures that satisfy all desirable
constraints for a good clustering validation measure.

The BCUbed F-measure is computed as follows. Let L(o) and C(o) be the cate-
gory and cluster of an object o. Then, the correctness of the relation between objects
o and o′ in the clustering is equal to one, Correct(o, o′) = 1, iff L(o) = L(o′) ↔
C(o) = C(o′); otherwise Correct(o, o′) = 0. BCubed precision (BP ) and BCubed re-
call (BR) can now be defined as: BP = Avgo[Avgo′.C(o)=C(o′)[Correct(o, o′)]] and
BR = Avgo[Avgo′.L(o)=L(o′)[Correct(o, o′)]]. The BCubed F-measure is then given
by BF = 2 × BP×BR

BP+BR . The BCubed F-measure (BF ) ranges from 0 to 1 with larger
values signifying better clusterings.

4 http://cogsys.imm.dtu.dk/toolbox/
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5 Results and Discussion

5.1 Clustering Quality

Table 2 gives the results of the clustering quality evaluation. The desired number of
clusters K for each data set is set equal to the number of categories in that data set
(see Table 1). The shown values are average BCubed F-measure ± standard deviation,
computed from 10 generated clusterings starting with random initial partitions.

These results show that CDIM outperforms the other algorithms on the ten data sets
with five highest performance scores (shown in bold) and within 0.005 of the highest
scores on three more data sets. CDIM is much better than NMF while its performances
are closer to those of the K-means variants. We verified the consistency of these results
using the Freidman’s test, which is a non-parametric test recommended for evaluat-
ing multiple algorithms on multiple data sets [21]. At 0.05 significance level, CDIM
is found to be significantly better than Direct-H2, RB-H2, and NMF, while its perfor-
mance difference with Direct-I2 and RB-I2 is not statistically significant at this level.

An observation from our analysis is that CDIM consistently produces higher qual-
ity clusterings when the desired number of clusters is small (e.g. K < 5). This is
attributable to the lesser resolution power of the multi-way comparisons (d̂ik = dik −
d̄ik, ∀k) that are required for document assignment. One potential way to overcome this
shortcoming for larger number of clusters is to use a repeated bisection approach rather
than a direct K-way partitioning approach.

Table 2. Clustering quality evaluation (average BCubed F-measure ± standard deviation)

Data CDIM Direct-I2 Direct-H2 RB-I2 RB-H2 NMF
pu 0.706±0.06 0.565±0.02 0.553±0.02 0.565±0.02 0.553±0.02 0.612±0.04
movie 0.581±0.02 0.533±0.02 0.522±0.01 0.533±0.02 0.522±0.01 0.510±0.01
reviews 0.667±0.05 0.627±0.06 0.626±0.06 0.609±0.04 0.669±0.03 0.552±0.03
hitech 0.433±0.04 0.391±0.02 0.380±0.02 0.394±0.02 0.390±0.03 0.399±0.02
tr31 0.636±0.11 0.585±0.05 0.575±0.05 0.553±0.07 0.572±0.05 0.362±0.03
tr41 0.603±0.05 0.608±0.02 0.584±0.03 0.602±0.05 0.590±0.04 0.361±0.04
ohscal 0.429±0.02 0.422±0.02 0.417±0.03 0.432±0.01 0.427±0.01 0.250±0.02
re0 0.417±0.02 0.382±0.02 0.382±0.01 0.397±0.03 0.375±0.01 0.345±0.02
wap 0.442±0.05 0.462±0.01 0.444±0.01 0.465±0.02 0.438±0.02 0.299±0.02
re1 0.393±0.03 0.443±0.02 0.436±0.02 0.416±0.01 0.418±0.03 0.301±0.03

5.2 Cluster Understanding and Visualization

A key application of data clustering is corpus understanding. In the case of document
clustering, it is important that clustering methods output information that can readily
be used to interpret the clusters and their documents. CDIM is based on term discrim-
ination information and each of its cluster is describable by the highly discriminating
terms in it. We illustrate the understanding provided by CDIM’s output by displaying
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Table 3. Top 10 most discriminating terms (stemmed words) for clusters in ohscal data set

k Top 10 terms in cluster k

1 ‘platelet’, ‘kg’, ‘mg’, ‘dose’, ‘min’, ‘plasma’, ‘pressur’, ‘flow’, ‘microgram’, ‘antagonist’
2 ‘carcinoma’, ‘tumor’, ‘cancer’, ‘surviv’, ‘chemotherapi’, ‘stage’, ‘recurr’, ‘malign’, ‘resect’, ‘therapi’
3 ‘antibodi’, ‘antigen’, ‘viru’, ‘anti’, ‘infect’, ‘hiv’, ‘monoclon’, ‘ig’, ‘immun’, ‘sera’
4 ‘patient’, ‘complic’, ‘surgeri’, ‘ventricular’, ‘infarct’, ‘oper’, ‘eye’, ‘coronari’, ‘cardiac’, ‘morta’
5 ‘pregnanc’, ‘fetal’, ‘gestat’, ‘matern’, ‘women’, ‘infant’, ‘deliveri’, ‘birth’, ‘labor’, ‘pregnant’
6 ‘risk’, ‘alcohol’, ‘age’, ‘children’, ‘cholesterol’, ‘health’, ‘factor’, ‘women’, ‘preval’, ‘popul’
7 ‘gene’, ‘sequenc’, ‘dna’, ‘mutat’, ‘protein’, ‘chromosom’, ‘transcript’, ‘rna’, ‘amino’, ‘structur’
8 ‘contract’, ‘muscle’, ‘relax’, ‘microm’, ‘calcium’, ‘effect’, ‘respons’, ‘antagonist’, ‘releas’, ‘action’
9 ‘il’, ‘receptor’, ‘cell’, ‘stimul’, ‘bind’, ‘growth’, ‘gamma’, ‘alpha’, ‘insulin’, ‘0’
10 ‘ct’, ‘imag’, ‘comput’, ‘tomographi’, ‘scan’, ‘lesion’, ‘magnet’, ‘reson’, ‘cerebr’, ‘tomograph’

the top 10 most discriminating terms (stemmed words) for each cluster of the ohscal
data set in Table 3. The ohscal data set contains publications from 10 different medical
subject areas (antibodies, carcinoma, DNA, in-vitro, molecular sequence data, preg-
nancy, prognosis, receptors, risk factors, and tomography). By looking at the top ten
terms, it is easy to determine the category of most clusters: cluster 2 = carcinoma, clus-
ter 3 = antibodies, cluster 4 = prognosis, cluster 5 = pregnancy, cluster 6 = risk factors,
cluster 7 = DNA, cluster 9 = receptors, cluster 10 = tomography. The categories molec-
ular sequence data and in-vitro do not appear to have a well-defined cluster; molecular
sequence data has some overlap with cluster 7 while in-vitro has some overlap with
clusters 1 and 9. Nonetheless, clusters 2 and 8 still give coherent meaning to the docu-
ments they contain.

As another example, in hitech data set, the top 5 terms for two clusters are: (1)
‘health’, ‘care’, ‘patient’, ‘hospit’, ‘medic’, and (2) ‘citi’, ‘council’, ‘project’, ‘build’,
‘water’. The first cluster can be mapped to the health category while the second clus-
ter does not have an unambiguous mapping to a category but it still gives sufficient
indication that these articles discuss hi-tech related development projects.

Since CDIM finds clusters in a K-dimensional discrimination information space,
the distribution of documents among clusters can be visualized via simple scatter plots.
The 2-dimensional scatter plot of documents in the pu data set is shown in Figure 1 (left
plot). The x- and y-axes in this plot correspond to document discrimination information
for cluster 1 and 2 (di1 and di2), respectively. and the colored makers give the true
categories. It is seen that the two clusters are spread along the two axes and the vast
majority of documents in each cluster belong to the same category. Similar scatter plots
for Direct-I2 and NMF are shown in the middle and right plots, respectively, of Figure
1. However, these methods exhibit poor separation between the two categories in the pu
data set.

Such scatter plots can be viewed for any pair of clusters when K > 2. Since CDIM’s
document assignment decision is based upon document discrimination scores (d̂ik, ∀k),
scatter plots of documents in this space are also informative; each axis quantifies how
relevant a document is to a cluster in comparison to the remaining clusters.
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Fig. 1. Scatter plot of documents projected onto the 2-D discrimination information space
(CDIM), similarity to cluster mean space (Direct-I2), and weight space (NMF). True labels are
indicated by different color markers.

6 Conclusion and Future Work

In this paper, we propose and evaluate a new document clustering method, CDIM, that
finds clusters in a K-dimensional space in which documents are well discriminated. It
does this by maximizing the sum of the discrimination information provided by doc-
uments for their respective clusters minus that provided for the remaining clusters.
Document discrimination information is computed from the discrimination informa-
tion provided by the terms in it. Term discrimination information is estimated from the
document collection via its relative risk. An advantage of using a measure of discrim-
ination information is that it also quantifies the degree of relatedness of a term to its
context in the collection. Thus, CDIM produces clusters that are readily interpretable
by their highly discriminating terms.

Our experimental evaluations confirm the effectiveness of CDIM as a practically
useful document clustering method. Its core idea of clustering in spaces defined by
corpus-based discrimination or relatedness information holds much potential for future
extensions and improvements. In particular, we would like to investigate other measures
of discrimination/relatedness information, extend and evaluate CDIM for soft cluster-
ing, and develop a hierarchical and repeated bisection version of CDIM.
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niques for Document Clustering. In: Kégl, B., Lee, H.-H. (eds.) Canadian AI 2005. LNCS
(LNAI), vol. 3501, pp. 292–296. Springer, Heidelberg (2005)

12. Ding, C., Li, T.: Adaptive dimension reduction using discriminant analysis and k-means
clustering. In: Proceedings of the 24th International Conference on Machine Learning,
pp. 521–528. ACM (2007)

13. Junejo, K., Karim, A.: A robust discriminative term weighting based linear discriminant
method for text classification. In: Eighth IEEE International Conference on Data Mining,
pp. 323–332 (2008)

14. Li, H., Li, J., Wong, L., Feng, M., Tan, Y.P.: Relative risk and odds ratio: a data mining
perspective. In: PODS 2005: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (2005)

15. Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and delta-
discriminative emerging patterns. In: KDD 2007: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2007)

16. Hsieh, D.A., Manski, C.F., McFadden, D.: Estimation of response probabilities from aug-
mented retrospective observations. Journal of the American Statistical Association 80(391),
651–662 (1985)

17. LeBlanc, M., Crowley, J.: Relative risk trees for censored survival data. Biometrics 48(2),
411–425 (1992)

18. Karypis, G.: CLUTO-a clustering toolkit. Technical report, Dept. of Computer Science, Uni-
versity of Minnesota, Minneapolis (2002)

19. Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the vector space
model. In: Proceedings of the 36th Annual Meeting of the Association for Computa-
tional Linguistics and 17th International Conference on Computational Linguistics, vol. 1,
pp. 79–85. ACL (1998)
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Abstract. Nowadays many applications need to deal with evolving data
streams. In this work, we propose an incremental clustering approach for
the exploitation of user constraints on data streams. Conventional con-
straints do not make sense on streaming data, so we extend the classic
notion of constraint set into a constraint stream. We propose methods
for using the constraint stream as data items are forgotten or new items
arrive. Also we present an on-line clustering approach for the cost-based
enforcement of the constraints during cluster adaptation on evolving
data streams. Our method introduces the concept of multi-clusters (m-
clusters) to capture arbitrarily shaped clusters. An m-cluster consists of
multiple dense overlapping regions, named s-clusters, each of which can
be efficiently represented by a single point. Also it proposes the definition
of outliers clusters in order to handle outliers while it provides methods
to observe changes in structure of clusters as data evolves.

Keywords: stream clustering, semi-supervised learning, constraint-based
clustering.

1 Introduction

Clustering plays a key role in data analysis, aiming at discovering interesting
data distributions and patterns in data. Also it is widely recognized as means to
provide an effective way of maintaining data summaries and a useful approach
for outlier analysis. Thus clustering is especially important for streaming data
management. Streaming data are generated continuously at high rates and due
to storage constraints we are not able to maintain in memory the entire data
stream. Having a compressed version (synopsis) of data at different time slots,
data analysts are able to keep track of the previously arrived data and thus more
effectively extract useful patterns from the whole stream of data.

Semi-supervised clustering has received much attention in the last years, be-
cause it can enhance clustering quality by exploiting readily available background
knowledge, i.e. knowledge on the group membership of some data items or knowl-
edge on some properties of the clusters to be built. The available knowledge is
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represented in form of constraints (must-link and/or cannot-link constraints)
which are incorporating in the clustering procedure. There is much research on
semi-supervised clustering for static data [5,4,9,7,8,15], but less for streaming
data [13]. However a huge amount of data generated in everyday life can be
characterized as data streams (e.g. sensor data, web logs, Internet traffic, RFID)
while many of the applications that profit from semi-supervised clustering, are
essentially analyzing streaming data. For instance, consider a stream of news in
document form and an application that clusters documents in topics. When a
piece of news comes in as part of an already existing story, some news agencies
also provide links to previous documents of the story. These links can be con-
sidered as constraints that indicate which documents are correlated and thus
should be classified together.

Semi-supervised stream clustering requires an extension of the successful con-
cept of instance-level constraints : Any record in a stream is gradually forgotten;
if it is involved in a constraint, then the constraint itself has a limited lifetime.
At the same time, some of the arriving items may be labeled, implying new
constraints. We deal with both issues in our Semi-supervised Stream cluster-
ing method (further referred to as SemiStream). According to our approach a
clustering scheme is adapted to a continuous flow of items, some of which carry
labels and thus give raise to instance-level constraints. These labeled data are
mapped into Must-Link and Cannot-Link constraints, thus forming a constraint
stream that accompanies the data stream. Adaptation encompasses the elimina-
tion of old items and outdated constraints and the adjustment of the clusters to
newly arriving items, taking account of all to-date constraints.

SemiStream starts with an initial clustering based on a given set of constraints.
Then, at each period of observation ti, we adapt the clusters to accommodate
new data and satisfy new constraints, while old data are gradually forgotten and
obsolete constraints (on forgotten data) are eliminated. To this purpose, we pro-
pose a constraint-cost function that associates constraint violations with penalty
values. We use this function to assign each new data item to the cluster with the
most proximal representative and incurring minimal cost. We specify an upper
boundary to the cost that can be tolerated during cluster adaptation. Then, data
items that cannot be placed to clusters without exceeding this boundary are de-
clared as outliers and are accommodated to outlier groups. Finally, we identify
and merge overlapping clusters, thereby checking the value of the constraint-cost
function.
To summarize, the contributions of our work are as follows:

1) We propose an incremental approach for clustering evolving data streams
based on constraints. The notion of constraint stream is introduced so that we
efficiently describe the sequential fashion of labeled data that may emerge as
data flows.
2) Our approach adopts the use of i) multiple clusters to represent significant
neighboring dense areas in data, capturing thus arbitrarily shaped clusters, and
ii) outliers clusters to describe a small set of data whose characteristics seem to
deviate significantly from average behavior of the currently processed data.
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2 Related Work

Recently, a number of clustering algorithms have been proposed to deal with
streaming data. In [1], a framework of a stream clustering approach is proposed,
which includes two clustering phases. At the online phase, the proposed ap-
proach periodically maintain statistical information about local data in terms of
micro-clusters, while at the off-line phase, the decision maker uses these statis-
tics to provide a description of clusters in the data stream. The main drawback
of this algorithm is that the number of micro-clusters needs to be predefined.
HPStream [2] incorporates a fading cluster structure and a projection-based
clustering methodology to deal with the problem of high-dimensionality in data
streams. Another stream clustering algorithm is Denstream [6]. It is based on
the idea of DBSCAN [10] and it forms local clusters progressively by detecting
and connecting dense data item neighborhoods.

A version of the AP algorithm that is closer to handling streaming data is
presented in [16]. According to this approach, as data flows, data items are
compared one-by-one to the exemplars and they are assigned to their nearest
one if a distance threshold condition is satisfied. Otherwise, data are considered
outliers and they are put in a reservoir. A cluster redefinition is triggered if the
number of outliers exceeds a heuristic (user-defined) reservoir size or if a change
in data distribution is detected.

Though there is a lot of work on constraint-based clustering methods for static
data [3,8,15], the related work on clustering streaming data based on constraints
is limited. Ruiz et al. [14] have presented a conceptual model for constraints
on streams and extended the constraint-based K-means of [15] for streaming
data. In SemiStream, we refine this model by proposing a constraint stream
of instance-level constraints and we adapt the clusters incrementally instead
of rebuilding them from scratch. Moreover an extension of Denstream so that
constraints are taken into account during the clustering process is proposed in
[13]. C-Denstream ensures that all given constraints are satisfied. However this
is achieved at the cost of creating many small clusters. Moreover, in case of
conflicts among constraints, C-Denstream is unable to conclude in a clustering.

3 A Model for Constraint-Based Clustering on Streaming
Data

We study a stream of items, for some of which we have background knowledge
in the form of instance-level constraints. We model constraints and clusters over
a stream and then model the cost of assigning an item to a cluster, thereby
possibly violating some constraints.

3.1 Modeling a Stream of Constraints

Let t1, . . . , tn be a series of time points. The stream is partitioned in data snap-
shots D1, . . . , Dn, where Di consists of the items arriving during (ti−1, ti]. The
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Algorithm 1. DYNAMIC CONSTRAINT UPDATER(D,CS, t, ĈSold)

Data: Snapshot D at t, new constraint-set CS, set of active constraints ĈSold.
begin

ĈS = CS ∪ ĈSold. ;

for cs ∈ ĈS do.
;
Let cs =≺ x, y �;
if teenage(x, t) == 0 or teenage(y, t) == 0 then ĈSi = ĈS \ {cs}. ;
else weight(cs) = min{teenage(x, t), teenage(y, t)}. ;
return ĈS.;

end

dataset remembered at each ti, D̂i ⊆ ∪i
j=1Dj is determined by a decay age

function. Presently, we assume a sliding window of size w ∈ [0, n], so that

D̂i = ∪i
j=uDj for u = max{1, i − w + 1}. We further assign weights to the

items inside the window, so that more recent items acquire higher weights. So,
at time point ti, the weight of an item x that arrived at time point tj ≤ ti is

teenage(x, ti) = 1− ti−tj
w .

We consider Must-Link and Cannot-Link instance-level constraints [15]. Must-
link constraints indicate data items that should belong to the same cluster while
Cannot-link constraints refer to data items that should not be assigned to the
same cluster. Such constraints involve two items x, y and are denoted as≺ x, y ".
Since constraints refer to items that are associated with an age-dependent weight,
they also have weights. So, at ti, the weight of a constraint cs =≺ x, y " is

weight(cs, ti) = min{teenage(x, ti), teenage(y, ti)} (1)

At each time point ti, some items of the snapshotDi are involved in instance-level
constraints, together with items of earlier time points. These new constraints
constitute the new constraint-set CSi. From them, we derive the set of active
constraints at ti, ĈSi = ∪i

j=uCSj , u = max{1, i − w}. In Alg. 1, we depict

the DYNAMIC CONSTRAINT UPDATER, which builds ĈSi. At each t = t2, t3, . . .,
the DYNAMIC CONSTRAINT UPDATER reads the set of old active constraints ĈSold

and the current constraint-set CS. It combines them to produce the new set of
active constraints ĈS by (a) marking constraints on outdated items as obsolete,
(b) recomputing the weights of non-obsolete, i.e. active constraints and (c) taking

the union of the resulting set of constraints with CS to form ĈS.

3.2 Cost of Assigning Data Items to a Cluster

The assignment of an item x to a cluster c at time point t incurs a cost, which
reflects constraint violations caused by the assignment, as well as the distance
of x to the center of c. We first model the cost of constraint violations. Let ĈS
be the active set of constraints. From this set, we derive ML(x), the set of items
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that are involved in Must-Link constraints together with x, and CL(x), the
corresponding set of items for Cannot-Link constraints. Then, the constraint-
violation cost for assigning x to c is given by:

costCV (x, c, ĈS, t) =
∑

y∈ML(x),y /∈c weight(≺ x, y " , t)× fML(x, y)+∑
y∈CL(x),y∈cweight(≺ x, y " , t)× fCL(x, y)

(2)

In this formula, we consider the items that must be linked with x and are not
members of cluster c, as well as the items in c that should not be linked to x. For
such an item y, the weight of the corresponding constraint is weight(≺ x, y " , t),
according to Eq. 1.

The functions fML(·), fCL(·) denote the cost of violating a Must-Link, resp.
Cannot-Link constraint. We consider that the cost of violating a must-link con-
straint between two close points should be higher than the cost of violating
a must-link constraint between two points that are far apart. Thus we imple-
ment the cost function fML(·) as fML(x, y) = dmax − d(x, y), where dmax is the
maximum distance encountered between two items in the dataset. Similarly, the
cost of violating a cannot-link constraint between two distant points should be
higher than the cost of violating a cannot-link constraint between points that
are close. Then we define the fCL(·) function as the distance between the two
items involved in a cannot-link constraint and we set fCL(x, y) = d(x, y).

Then, the cost of assigning an item x to a cluster c for a given set of active
constraints ĈS at time point t consists of the cost of effected constraint violations
and the overhead of placing this item to this cluster. The latter is represented
by the distance of the item to the cluster center:

cost(x, c, ĈS, t) = costCV (x, c, ĈS, t) + d(x, rep(c)) (3)

3.3 A Clustering Model for Streaming Data

Our constraint-based clustering approach is based on the incremental adjustment
of the clusters to the arrival of new data and constraints and to the decay of old
data and constraints. In this approach, we distinguish between items that can
be assigned to a cluster and those that cannot, either because they violate some
constraints or because they are far away from any cluster. We call the latter
outlier items. As the stream of data and the stream of constraints proceed, it
may become possible to merge earlier clusters together and even place outlier
items to some cluster. We present here a model that captures those cases, by
distinguishing between s-clusters which correspond to core clusters of data, o-
clusters that are groups of outlier items and m-clusters that are the result of
merging core data clusters, i.e. dense areas in the dataset.

An s-cluster is a conventional cluster c, built at time point ti by a constraint-
based clustering algorithm like MPCK-Means. For such a cluster, we define con-
cepts that describe its structure and surroundings.

Definition 1 (s-cluster Nucleus). Let c be an s-cluster. We denote as rep(c)
the representative or conceptual center of c, consisting of the mean values of the
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items in c across all dimensions of the feature space. The within-cluster distance
of c is the average distance of a data item from the cluster representative:

withinClusterDistance(c) =

∑
x∈c d(x, center(c))

|c| (4)

With some abuse of conventions, we also use the term “radius” for the within-
cluster-distance, i.e. we set radius(c) ≡ withinClusterDistance(c). Then, the
items within the radius of c constitute its “nucleus”:

nucleus(c) = {x ∈ c|d(x, center (c) ≤ radius(c)} (5)

By Def. 1, we distinguish between items close to the s-cluster’s representative
(center) and remote ones. Pictorially, the former constitute the core or nucleus
of the s-cluster, while the latter form the rim of the s-cluster. Also data items
that are distant from the rest data are perceived as outliers.

Definition 2 (s-cluster Rim). Let c be a s-cluster. Assume that ξ is the cur-
rent clustering of streaming data. Then, the rim of c consists of the data items
that are outside the nucleus of c but their distance from the representative of c
is lower than some multiple τ > 1 of its radius:

rim(c) = {x ∈ c|radius(c) < d(x, rep(c)) ≤ τ × radius(c)}

whereby depending on the specification of τ , a cluster may have an empty rim.

Next to items that are too far from the center of their s-cluster, we have also items
whose assignment violates an instance-level constraint. For these data items, we
use the term outlier (items).

Definition 3 (Outlier Item). Assume that ξ is a clustering of streaming data

that has been defined at time point t based on a given set of active constraints ĈS.
We say that a data item x is an “outlier” for a s-cluster c ∈ ξ or, equivalently,
that x belongs to the set outliers(c, CS, t), if x is closest to c than any other
cluster in ξ, but
1) x does not belong to the rim of c (see Def. 2), and

2) the cost of assigning x to c with respect to ĈS exceeds a threshold τCS, i.e.

costCV (x, c, ĈS, t) > τCS

The threshold τCS is user-defined and indicates our tolerance to constraint
violation. Thus if τCS = 0 then none of the given constraints are allowed to be
violated.

At time point t, the items of a data batch are assigned to the existing s-clusters.
After assigning all items, the clusters’ nuclei, rims and outliers are recomputed. It
may then happen that two clusters have moved closer to each other so that their
rims overlap. If their nuclei also overlap, then they are candidates for merging.
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Definition 4 (Overlap between s-clusters). Let c1, c2 be two s-clusters built
at time point t. The overlap of c2 with respect to c1 is the number of items in
the nucleus of c2 that are within the nucleus of c1, normalized to the cardinality
of c1:

overlap(c1, c2) =
1

|c1| × |{x ∈ nucleus(c2)|d(x, rep(c1)) ≤ radius(c1)}| (6)

The overlap(c2, c1) is defined accordingly. We say that the s-clusters c1, c2 “over-
lap” if either overlap(c1, c2) or overlap(c2, c1) is larger than some threshold
τoverlap.

When two nuclei overlap, the s-clusters are so close that they can be merged
into one cluster, which we term as m-cluster.

Definition 5 (m-cluster). Let ξ be the set of s-clusters built at time point t.
A “multi-cluster” or “m-cluster” C ⊆ ξ is a group of s-clusters, such that:
1)For each s-cluster c ∈ C there is a s-cluster c′ ∈ C such that c, c′ overlap
according to Def. 4.
2) For each s-cluster c ∈ ξ such that there is a s-cluster c′ ∈ C that overlaps
with c it holds that c ∈ C.

Then we define the representatives of a m-cluster C as the set of its s-clusters’
representatives, i.e. rep(C) = {rep(c)|c ∈ C}.

By this definition, a m-cluster is a maximal set of overlapping s-clusters within
the clustering built at a certain time point. The reader should notice the sim-
ilarity to the definition of “cluster” in DBSCAN [10] as a maximal group
of overlapping neighborhoods. Our notion of “overlap” is the counterpart of
density-connectivity as proposed in [10]. The advantage of defining m-clusters
for constraint-based stream mining is that an algorithm like DBSCAN lends
itself elegantly to constraint enforcement, as has been shown in [12].

Definition 6 (o-cluster). Let ti be a time point and ξ be the set of s-clusters
built at this time point. A group of (constraint-based) outlier items co constitutes
an “outlier cluster” or “o-cluster” if and only if:
1) For each x, y ∈ co and for each c ∈ ξ it holds that d(x, y) < d(x, rep(c)) and
d(x, y) < d(y, rep(c)).
2)For each x, y ∈ co there is no Cannot-Link constraint < x, y >.

Similarly to a s-cluster, an o-cluster co has a representative rep(co) composed of
the mean of the elements of co. However, we define neither nucleus nor rim for
an o-cluster, since the assignment of items to it is not driven by proximity to
the o-cluster’s center but by remoteness to neighboring s-clusters.

The reader may have noticed that the above definition contains no specifi-
cation of maximality. In the next section, we explain how o-clusters are built
progressively and compensate for the absence of a maximality constraint here.
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4 Incremental Clustering towards a Constraint-Stream

Our incremental clusterer SemiStream takes as input a stream of data items
arriving in snapshots/batches D1, . . . , Dn, an accompanying stream of arriving
constraints CS1, . . . , CSn and the cost function of Eq. 3 for the assignment of
items to clusters, subject to Must-Link and Cannot-Link constraints.

At the beginning of the observation time t0, we assume an initial constraint-
based clustering with a conventional semi-supervised algorithm like MPCK-
Means [4]. At each subsequent time point ti, we assign all items of the batch
Di into s-clusters, re-compute the s-clusters’ nuclei, their rims and outlier items.
Then, we study the proximity of outliers to each other, eventually merging them
into o-clusters. Similarly, we check the proximity of s-clusters to their surround-
ings and merge them into m-clusters - or detach them accordingly.

Processing an Item of the Stream. Let Di be the set of data items arriving
at (ti−1, ti] and let ξ be the set of s-level clusters at this time point, where some
s-clusters may be part of an earlier formed m-cluster. For each item x ∈ Di we
consider the following cases:

1. There is a s-cluster c ∈ ξ so that x ∈ nucleus(c) and cost(x, c, CS, ti) < τCS :
x is assigned to c.

2. Otherwise, x is termed as outlier.

Building Outlier Clusters. If an item is defined to be an outlier, we check
whether there is another item that is proximal to it and with which it can be
grouped without violating any Cannot-Link constraints. The two items become
part of an outlier cluster.

When computing the proximity of an item to an s-cluster, we do so on the
basis of the cluster’s nucleus and radius. When considering the proximity of
an outlier to another outlier, we do not have such a basis. We therefore set a
constant ε and specify that an item x can be assigned to an outlier cluster co if
and only if d(x, rep(co) < ε and there is no violation constraint. The center of
an outlier cluster is defined as the mean of the points that belong to this cluster.
This allows us to group items together into an outlier cluster without allowing
the withinClusterDistance of the outlier cluster to grow exuberantly (cf. Def. 1).

The constant ε can be set to a small value, e.g. equal to the smallest nucleus
encountered at ti, thus allowing only groups of very proximal outliers. Alterna-
tively, ε may be set to a large value, e.g. equal to the largest encountered nucleus,
thus allowing rather distant outliers to form a cluster. In any case, when speci-
fying ε at each time point ti, it must be checked whether the constant will allow
an overlap between the outlier cluster and one of the s-clusters. In that case, the
clusters can be merged.

Moreover, we note that an outlier cluster can grow into a s-cluster. We con-
sider only o-clusters that are adequately large and homogeneous:

– An o-cluster is adequately large if its cardinality is comparable to the cardi-
nality of the smallest s-cluster.
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– An o-cluster is adequately homogeneous if its variance is comparable to the
average variance of s-clusters.

Candidates for Cluster Merging. After incorporating all items of Di into
the original clustering (i.e. previously defined clustering ξ), some clusters may
have grown or moved closer to each other. If their nuclei have come to overlap,
we can merge them into an m-cluster. At the same time, some clusters may have
moved apart from each other; if they were previously part of an m-cluster, then
we must detach them. In general, we consider the following types of candidate
clusters:

1. c, c′ are s-clusters, such that overlap(c, c′) > τoverlap or overlap(c′, c) >
τoverlap.

2. c, c′ are o-clusters, such that d((rep(c), rep(c′)) < ε; an o-cluster may consist
of a single item.

For each pair of candidates we check whether there is a Cannot-Link constraint
< x, y > such that x ∈ c, y ∈ c′. If cost(x, c′, CS) < τCS (or cost(y, c, CS) <
τCS), then the clusters can be merged. We merge s-clusters into an m-cluster,
so that nuclei and rims become part of the m-cluster.

As a third case, we may consider the merging of an s-cluster with an o-cluster
into an m-cluster, if the center of the o-cluster is within the nucleus of the s-
cluster and no Cannot-Link constraints are violated by the merge. However, we
consider only o-clusters that can grow into s-clusters, i.e. are adequately large
and homogeneous.

In the cases discussed above, the s-clusters may be already members of distinct
m-clusters. If this holds true, then the test for constraint violation is extended
to all members of each m-cluster involved.

The new clustering ξ′, defined after applying any of the above merging cases to
ξ, is evaluated based on clustering quality criteria (i.e. cluster compactness and
separation). The new clustering is acceptable if its quality does not significantly
changes with respect to the quality of ξ.

Candidates for M-Cluster Split. After considering the merging of clusters,
we also consider cases where m-clusters need to be split. This may happen be-
cause of new Cannot-Link constraints and because of changes in the clusters’
nuclei:

1. c is member of an m-cluster C and there is no c′ ∈ C such that overlap(c, c′)+
overlap(c′, c) > τoverlap.

2. c is an o-cluster and member of an m-cluster C and there is no c′ ∈ C such
that rep(c) ∈ nucleus(c′).

3. c is member of an m-cluster C and there is a Cannot-Link constraint such
that x ∈ c and y ∈ C \ c.

In all cases, the cluster is removed from the m-cluster, possibly causing further
cluster detachments. Similarly to the merging case, the clustering defined after
splitting is evaluated based widely known cluster quality criteria. Specifically, a
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cluster validity method is adopted to evaluate the results of the proposed incre-
mental clustering approach at specific time slots in terms of constraint accuracy
as well as clustering compactness and separation [11]. Then if the quality of
the newly emerged clustering ξ′ is comparable to the old clustering, ξ′ is an
accepted clustering. The cluster validity method may trigger the re-clustering of
data when significant changes are observed in the quality of currently defined
clusters.

5 Experimental Evaluation

In this section we present experimental evaluation of our approach using different
datasets. We implemented SemiStream in JAVA. All experiments were conducted
on a 2.53GHz Intel(R) Core 2 Duo PC with 6GB memory.

Data Sets and Constraints Generation. We generate some synthetic
datasets with different numbers of clusters and dimensions. For the sake of vi-
sualization, we chose here to present the performance of our approach on two-
dimensional datasets. Specifically, to evaluate the sensitivity of our algorithm
and its clustering quality in case of arbitrarily shaped clusters, we consider the
synthetic datasets depicted in Figure 1, which have also been used in [10]. We also
generated an evolving data stream, ESD, by choosing one of the three datasets
(denoted SD1, SD2, SD3 in Figure 1) 10 times. Each of the datasets contains
10, 000 points and thus the total length of ESD is 100, 000.

To generate constraints for our experimental study, we consider a set of labeled
data. Our algorithm is fed with constraints each time a new batch of data arrive.
Following a strategy similar to this used in the static semi-supervised approaches,
the constraints are generated from labeled data so that they correspond to a
percentage of data in the considered window.

Fig. 1. Visualization of synthetic datasets

Evaluation Criterion. Evaluation of quality of clustering amounts to measur-
ing the purity of defined clusters with respect to the true class labels. For exper-
imental purposes, we assume that we know the label of data items. We run our
approach on the set of unlabeled data and we assess the purity of the defined clus-

ters. Then we can define the purity measure as follows: Purity = 1
k ·

∑k
i=1

|Cd
i |

|Ci| ,
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(a) (b)

Fig. 2. Clustering purity vs Time points: a) SD1 dataset, horizon = 2, stream speed
= 250, b) ESD dataset, horizon = 2, stream speed = 1,000

Fig. 3. Execution time vs length of stream

where |Cd
i | denotes the number of majority class items in cluster i, |Ci| is the

size of cluster i and k is the number of clusters. The results of clustering purity
presented in the following section are an average of results over 5 runs of our
algorithm.

Clustering Quality Evaluation. First, we test the clustering quality of
SemiStream using the SD1 dataset. We consider that the stream speed is 250
data items per time point, the window size is set to 4 time points. Also a new set
of stream constraints is received as data arrives which corresponds to a percent-
age of data in the window. We can observe that the clusters are arbitrarily shaped
and thus the majority of clustering algorithms are not able to identify them. Our
study shows that the use of constraints can assist with the clustering procedure.
Since the points fades out as time passes, we compute the purity of clustering
results in a pre-defined horizon (h) from current time. Figure 2(a) presents the
purity of clustering defined by SemiStream in a small horizon (h = 2) when the
constraints are 1% and 10% of the arrived data. It can be seen that SemiStream
gives very good clustering quality. The clustering purity is always higher than
75%. Also Figure 2 (a) shows that increasing the number of constraints, the
purity of identified clusters is increased.

Then we evaluate the performance of our algorithm using the evolving data
stream ESD at different time units. We set the stream speed at 1, 000 points
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per time unit and horizon equals to 2. Figure 2 (b) depicts the clustering purity
results of our algorithm when the constraints correspond to 1% and 10% of the
arrived data. It can be seen that SemiStream achieves to identify the evolution
of the clusters as new data arrives, resulting in clusters with purity higher than
80%. Also we can observe the advantage that the use of constraints provides.
Using 10% of data as constraints, our approach can achieve a clustering model
with purity 99%.

Time Complexity. We evaluate the efficiency of SemiStream measuring the
execution time. The algorithm periodically stores the current clustering results.
Thus the execution time refers to the time that our algorithm needs to store clus-
tering results, read data from previous time slots and redefine clusters. Figure 3
shows execution time for synthetic dataset using different number of constraints.
We can observe that the execution time grows almost linearly as data stream
proceeds.

6 Conclusions

We present SemiStream, an algorithm that incrementally adapts a clustering
scheme to streaming data which are also accompanied by a set of constraints.
Modeling constraints as a stream and associating constraint violation with a
penalty function allowed us to design a cost-based strategy for cluster adaptation
to snapshots of arriving data and constraints.We introduce the use of i) s-clusters
to describe dense areas in the data set and ii) multiple clusters (m-clusters) to
represent overlapping dense areas in order to capture arbitrarily shaped clusters.
Moreover we use the structure of outliers clusters to describe a small set of
data whose characteristics seem to deviate significantly from average behavior
of the currently processed data. Based on a set of adaptation criteria SemiStream
achieve to observe changes in structure of clusters as data evolve.
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Abstract. Business intelligence focuses on the discovery of useful re-
tail patterns by combining both historical and prognostic data. Ultimate
goal is the orchestration of more targeted sales and marketing efforts. A
frequent analytic task includes the discovery of associations between cus-
tomers and products. Matrix co-clustering techniques represent a com-
mon abstraction for solving this problem. We identify shortcomings of
previous approaches, such as the explicit input for the number of co-
clusters and the common assumption for existence of a block-diagonal
matrix form. We address both of these issues and present techniques for
automated matrix co-clustering. We formulate the problem as a recur-
sive bisection on Fiedler vectors in conjunction with an eigengap-driven
termination criterion. Our technique does not assume perfect block-
diagonal matrix structure after reordering. We explore and identify off-
diagonal cluster structures by devising a Gaussian-based density estima-
tor. Finally, we show how to explicitly couple co-clustering with product
recommendations, using real-world business intelligence data. The final
outcome is a robust co-clustering algorithm that can discover in an au-
tomatic manner both disjoint and overlapping cluster structures, even in
the preserve of noisy observations.

1 Introduction

Graph structures constitute a prevalent representation form for modeling con-
nections between different entities. In particular, analysis of bi-partite graphs is
the focus on a wide spectrum of studies that span from social-network to busi-
ness analytics and decision making. In business intelligence, bi-partite graphs
may capture the connection between sets of customers and sets of products.
Analysis of such data holds great importance for companies that collect large
amounts of customer interaction data in their data warehouses.

One common analytic process for business intelligence is the identification of
groups of customers that buy (or do not buy) a subset of products. The avail-
ability of such information is advantageous to both sales and marketing teams,
as follows: sales people can use these insights for offering more accurate person-
alized product suggestions to customers by examining what ‘similar’ customers
buy. In a similar manner, identification of buying/not-buying preferences can
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assist marketing people to determine groups of customers interested in a set of
package products. This can help organize more focused marketing campaigns,
hence leading to a more appropriate allocation of the company’s marketing funds.

The described problem can be mapped to a co-clustering instance [1,4,11]. A
similar task is ‘matrix reordering’ which discovers a permutation of matrix rows
and columns such that the resulting matrix is as ‘compact’ as possible. We view
co-clustering as a matrix reordering with a subsequent clustering step for dense
area identification. For this work we provide examples from a particular setting,
where the rows represent customers and the columns identify the products that a
customer has bought; but our approach is applicable in different settings, too. An
example of a matrix reorganization is shown in Figure 1 a) and b). Existence of
a ‘one’ (black dot) signifies that a customer has bought a product, otherwise the
value is ‘zero’ (white dot). It is evident that the reordered matrix view provides
strong evidence on the existence of patterns in the data.

Fig. 1. Overview of our approach. a) Original matrix of customers-products, b) Ma-
trix is reorganized, c) ‘White spots’ within clusters are extracted and combined with
firmographic information, d) Product recommendations are constructed.

Existing co-clustering methods can face several practical issues which limit
both their efficiency and the interpretability of the results. For example, the
majority of co-clustering algorithms explicitly require as input the number of
clusters in the data. In most business scenarios, such an assumption is unrealis-
tic. We cannot assume prior knowledge on the data, but we require a technique
that allows data exploration. There exist some methodologies that attempt to
perform automatic co-clustering [3], i.e., determine the number of co-clusters.
They address the problem by evaluating different number of configurations and
retaining the solution that provides the best value of the given objective func-
tion (e.g., entropy minimization). Such a trial-based approach can significantly
affect the performance of the algorithm. Therefore, these techniques are bet-
ter suited for off-line data processing, rather than for interactive data analysis,
which constitutes a key requirement for our setting.

Another shortcoming of many spectral-based approaches is that they typically
assume a perfect block-diagonal form for the reordered matrix; “off-diagonal”
clusters are usually not detected. This is something that we accommodate in
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our solution, where existence of possible “off-diagonal” dense clusters is resolved
through a Gaussian-based density estimator algorithm. Because we are interested
in finding rectangular clusters, the algorithm discovers the parameters of those
rectangles (center, width, height) that best cover the highest density of “off-
diagonal” areas. Note, that using such an approach we can also support discovery
of overlapping co-clusters with no extra effort.

We use the discovered co-clusters for providing product recommendations to
customers. The customers in our setting are not individuals but large companies,
for whom we have extensive information such as company turnover, number of
employees, etc. We use this information to prioritize recommendations. Recall
that a co-cluster corresponds to a set of customers with similar buying patterns.
To this end, existence of ‘white spots’ within a discovered co-cluster represents
potential product recommendations. However, not all white areas within a cluster
are equally important. These recommendations need to be ranked. We rank the
quality and importance of each recommendation based on:

– The quality of the discovered co-cluster. For example, a single white spot in
a very dense and large co-cluster is more important than a white spot in a
smaller and sparse co-cluster.

– Firmographic and financial characteristics of the customer; recommendations
for customers that have bought more products in the past should be ranked
higher, because they have exhibited a higher buying propensity.

With the combination of the above two characteristics, the recommendations
exploit both global patterns as discovered by the co-clustering, and personalized
metrics.

In summary, our main contribution is providing a robust, unsupervised and
fast solution for co-clustering which can be used for interactive business intel-
ligence scenarios. We also demonstrate how to use our solution for providing
product recommendations. We perform a comprehensive empirical study using
real and synthetic data-sets to validate our solutions. To the best of our knowl-
edge, this is one of the few works that evaluate the performance of co-clustering
algorithms on real-world, business intelligence data.

2 Related Work

The principle of co-clustering was introduced first by Hartigan with the goal of
‘clustering cases and variables simultaneously’ [11]. Initial applications were for
the analysis of voting data. Hartigan’s method is heuristic in nature and may fail
to find existing dense co-clusters under certain cases. In [4] the authors present
an iterative algorithm that convergences to a local minimum of the same objec-
tive function as in [11]. [1] describes an algorithm which provides constant factor
approximations to the optimum co-clustering solution using the same objective
function. A spectral co-clustering method based on the Fiedler vector appeared
in [6]. Our approach uses a similar analytical toolbox as [6], but in addition is
automatic (number of clusters need not be given), and does not assume perfect
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block-diagonal form for the matrix. A different approach, views the input matrix
as an empirical joint probability distribution of two discrete random variables
and poses the co-clustering problem as an optimization problem from an infor-
mation theoretic perspective [7]. So, the optimal co-clustering maximizes the
mutual information between the clustered random variables. A method employ-
ing a similar metric as the one of [7] appeared in [20]; the latter approach also
returns the co-clusters in a hierarchical format. Finally, [16] provides a parallel
implementation of the method of [20] using the map-reduce framework. More
detailed reviews on the topic can be found in [14] and [21].

Our approach is equally rigorous with the above approaches; more impor-
tantly, it lifts important shortcomings of the spectral-based approaches and in
addition focuses on the recommendation aspect of co-clustering, something that
previous efforts do not consider.

3 Overview of Our Approach

3.1 Preliminaries

We denote by I,0,1 the identity matrix, all-zero, and all-one vector, respec-
tively, and the dimensions will become clear from the context. We define [m] :=
{1, 2, . . . ,m}. Let C be an m× n matrix. For a subset of its rows R and a sub-
set of its columns T we denote by CR,T the sub-matrix formed by rows R and
columns T .

Given an undirected graph G = (V,E) on n vertices with adjacency matrix
A, its Laplacian matrix is defined L := D −A, where D is a diagonal matrix
of size n with Dii =

∑
j Aij . Moreover, the normalized Laplacian matrix of G is

defined, when Dii > 0 for all i, as L̂ := I−D−1/2AD−1/2. The eigenvector of L̂
that corresponds to the second smallest eigenvalue of L̂ is known as the Fiedler
vector [8]. Let (S, S̄) be a bipartition of the vertex set of G. Denote by cut(S, S̄)
the sum of weights of the edges between the sets S and S̄.

3.2 Graph Partitioning

Partitioning a graph into two balanced vertex sets (i.e., two sets such that nei-
ther is much larger than the other one) while minimizing the number of edges
between them is a fundamental combinatorial problem with various applica-
tions [19]. Choosing a particular balancing condition gives rise to different related
measures of the quality of the cut including conductance, expansion, normalized
and sparsest cut. The two most commonly used balancing objective functions
are the ratio cut [10] and the normalized cut [17]. In ratio cut, the size of a
subset S ⊂ V of a graph is measured by its number of vertices |S|, where in
normalized cut the size is measured by the total weights of its edges, denoted by
vol(S). Here we will use the normalized cut objective function

Ncut(S, S̄) :=
cut(S, S̄)

vol(S)
+

cut(S, S̄)

vol(S̄)
.
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Note that the above objective function typically takes a small value if the bi-
partition (S, S̄) is not balanced, hence it favors balanced partitions. The goal of
graph partitioning is to solve the optimization problem

min
S⊂V

NCut(S, S̄). (1)

This problem is NP-hard. Many approximation algorithms for this problem have
been developed over the last years [2,12], however they turn out not to be per-
forming well in practice. In our approach, we employ a heuristic that is based
on spectral techniques and works well in practice [13,9]. Following the notation
of [13], for any S ⊂ V , define the vector q ∈ R

n as

qi =

{
+
√

η2/η1, i ∈ S;

−
√

η1/η2, i ∈ S̄,
(2)

where η1 = vol(S) and η2 = vol(S̄). The objective function in (1) can be written
(see [6] for details) as follows

min
q�Lq

q�Dq
, subject to q as in (2) and q�D1 = 0,

where the extra constraint q�D1 = 0 excludes the trivial solution where S = V
or S = ∅. Even though the above problem is also NP-hard, we adopt a spectral
2-clustering heuristic: first, we drop the constraint that q is as in Eqn. (2); this
relaxation is equivalent to finding the second largest eigenvalue and eigenvector
of the generalized eigensystem Lz = λDz. Then, we round the resulting eigen-
vector z (a.k.a. Fiedler vector) to obtain a bipartition of G. The rounding is
performed by applying 2-means clustering separately on the coordinates of z,
which can be solved exactly and efficiently.

4 The Algorithm

The proposed algorithm consists of two steps: in the first step, we compute a per-
mutation of the row set and column set using a recursive spectral bi-partitioning
algorithm; in the second step we use the permuted input matrix to identify any
remaining clusters by means of a Gaussian-based density estimator.

4.1 Recursive Spectral Bi-partitioning

In this section, we recall a graph theoretic approach to the co-clustering prob-
lem [6]. The input is an m× n matrix C. For illustration purposes, we assume
that C is a binary matrix, i.e., its elements are in {0, 1}, but our approach
is applicable in general. Given C, we can uniquely define a bipartite graph
G = (L ∪ R,E), |L| = m, |R| = n as follows: Each element of the left set of
vertices, L, corresponds to a row of C and each element of the right vertices
R to a column of C. We connect an edge between i ∈ L and j ∈ R if and
only if Cij = 1. Now given the bipartite graph G corresponding to C, we find a
balanced cut in G with few edges crossing the cut.
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Algorithm 1. Recursive Spectral Bipartition

1: procedure RecBipart(C) � C: an m× n binary matrix, EigenGap : a stopping
parameter

2: {(R1, R2), (T1, T2)} = SplitCluster(C).
3: if there is a split (R1, R2) and (T1, T2) then
4: Run RecBipart(CR1,T1)
5: Run RecBipart(CR2,T2)
6: end if
7: Output: A partition of the row and column set of C, i.e., ∪Ri = [m] and

∪Ti = [n].
8: end procedure

9: procedure SplitCluster(C) � C: binary matrix

10: Let L̂ be the normalized Laplacian of the bipartite graph that corresponds to
C

11: Let λ2 and z be the second smallest eigenvalue and eigenvector of L̂
12: if λ2 > EigenGap then
13: Bipartition the coordinates of z s.t. the sum of its intra-variances is mini-

mized.
14: end if
15: Output: A bipartition of the row set and the column set into (R1, R2) and

(T1, T2), respectively.
16: end procedure

4.2 Eigengap-Based Termination

A basic fact in spectral graph theory is that the number of connected components
in an undirected graph equals to the multiplicity of the zero eigenvalue of its
normalized Laplacian matrix. Cheeger’s inequality provides an “approximate”
version of the latter fact [5]. That is, a graph has a sparse (normalized) cut if
and only if there are at least two eigenvalues that are close to zero. Let the
conductance of a graph G = (V,E) defined as follows

c(G) := min
S⊆V,vol(S)≤ |E|

2

cut(S, S̄)

vol(S)
.

Cheeger’s inequality [5] tells us that 2c(G) ≥ λ2 ≥ c(G)2/2, where λ2 is the sec-
ond smallest eigenvalue of the normalized Laplacian of G. The first inequality of
the above equation implies that if λ2 is large, then G does not have sufficiently
small conductance. The latter implication supports our choice of the termination
criterion of the recursion of Algorithm 1 (see Step 11 of the SplitCluster proce-
dure). Roughly speaking, we want to stop the recursion when the matrix can not
be reduced (after permutation of rows and columns) to an approximately block
diagonal matrix, equivalently when the bipartite graph associated to the cur-
rent matrix does not contain any sparse cut. Using Cheeger’s inequality, we can
efficiently check if the bipartite graph has a sufficiently good cut or not. An illus-
tration of the algorithm’s recursion is explored in Fig.2. Our approach has many
similarities with Newman’s modularity partitioning but it is not identical [15].
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Fig. 2. Running example of Algorithm 1

4.3 Discovering Off-Diagonal Clusters

After termination of Algorithm 1, we expect to have produced a fairly good
reordering of the rows and columns of the input matrix C and moreover to have
discovered a set of co-clusters that have disjoint row and column sets. However,
in almost all instances of practical interest, we cannot expect the set of co-
clusters to have disjoint row and column sets; several “off-diagonal” co-clusters
may have appeared after the course of our reordering algorithm. In order not to
discard this potentially useful information, we apply as a post-processing step
a Gaussian-based density estimator on the matrix after removing the set of co-
clusters already discovered by Algorithm 1. This process is depicted in Figure 3.
In the first step, we remove all the clusters that have been already extracted by
Algorithm 1. In the second step we apply a density estimator to discover any
(possibly) remaining co-clusters. That is, we convolute a Gaussian mask over all
positions of the binary matrix to detect the most dense areas. Initially, we set a
sufficiently large size on the Gaussian mask1. We then progressively reduce the
size of the mask by a fixed constant. At each step, we record all sufficiently dense
areas (those for which the convolution exceeds some threshold) and remove the
co-cluster from further consideration.

Complexity: We briefly discuss the time complexity of Algorithm 1. For ease of
presentation, assume that the input is a square matrix of size n and let T (n) be
the time complexity. Moreover, we may assume2 that in every recursion step the
partitioning is balanced. Since the input matrix is sparse, the following recursion
holds T (n) ≈ 2T (n/2) + O(n log n), where the extra additive factor is due to
sorting (Lanczos method is used for computing the eigenvector). Solving the
recursion we get that T (n) = O(n log2 n) which implies that our method is only
more expensive than a single bi-partitioning by a poly-logarithmic factor.

1 We can over-estimate the size of the largest dense rectangle by the number of non-
zero entries of the input matrix.

2 We are allowed to do so, since a constant number of successive unbalanced cuts
indicate that the recursion should terminate.
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Step 1 Step 2 Final Outcome

Fig. 3. Discovering Off-diagonal Clusters

4.4 Recommendations

Algorithm 1 together with the density estimation step output a list of co-clusters.
In the business scenarios that we consider co-clusters will represent strongly
correlated customer and products subsets. We illustrate how this information
can be used to drive meaningful product recommendations.

Many discovered co-clusters are expected to contain “white-spots”. These
represent customers that exhibit similar buying pattern with a number of other
customers, they still have not bought a product within the co-cluster. These
are products that constitute good recommendations. Essentially, we exploit the
existence of globally-observable patterns for making individual recommendations.

Not all “white-spots” are equally important. We rank them by considering
firmographic and financial characteristics of the customers. The intuition is that
‘wealthy’ customers/companies that have bought many products in the past are
better-suited candidates. They are at financial position to buy a product and
they have already established a buying relationship. In our formula we consider
three factors:

– Turnover T is the revenue of the company as provided in its financial
statements.

– Past Revenue R is the revenue amount that our company made in its
interactions with the customer during the past 3 years.

– Industry Growth IG represents that predicted growth for the industry in
which the customer belongs for the upcoming year. This data is furnished
from marketing databases and is estimated from diverse global financial in-
dicators.

Therefore the rank r of a given white-spot that captures a customer-product
recommendation is given by:

r = w1T+ w2R+ w3IG,
∑
i

wi = 1,

In our scenario, the weights w1,w2,w3 are assumed to be equal but in general
they can be tuned appropriately.
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We have described how to rank the “white-spots” within a particular co-
cluster. In order to give a total ordering on the set of the recommendations, we
should normalize these ranking value with the importance of each co-cluster. We
define the importance of each co-cluster as the product of its area and density
normalized by the sum of the importance of all co-clusters. Hence, we normalize
all recommendations by the importance of the corresponding co-cluster.

5 Experiments

5.1 Comparison with other Techniques

We compare the proposed approach with two other techniques. The first one
(SPECTRAL) is described in [6] and is similar with the proposed approach.
The main difference is that the approach of [6] performs k-partition of the in-
put matrix using the eigenvectors that correspond to the smallest eigenvalues.
Moreover, in order to compute the clustering it utilizes k-means clustering which
makes the approach randomized, compared to our approach which is determinis-
tic. The second one (DOUBLE-KMEANS) is described in [1]. First, it performs
k-means clustering using as input vectors the columns of the input matrix and
then permutes the columns by grouping together columns that belong in the
same cluster. In the second step, it performs the same procedure on the rows
of the input matrix using a possible different number of clusters, say l. This
approach outputs k · l clusters. Typical values for k and l that we use, are be-
tween 3 and 5. We run all the above algorithms on synthetic data which we
produced by creating several block-diagonal and off-diagonal clusters. We intro-
duced “salt-and-pepper” noise in the produced matrix, in an effort to examine
the accuracy of the compared algorithms even in when diluting the strength of
the original patterns. The results are summarized in Figure 4. We observe that
our algorithm can detect with high efficiency the original patterns, whereas the
original spectral and k-Means algorithms present results of lower quality.

5.2 Compression-Based Evaluation

It is common to judge the effectiveness of a particular algorithm based on the
value of an objective function. However, it is not clear how to evaluate the
effectiveness of various co-clustering algorithms that are designed to optimize
different objective functions. It is even harder to fairly compare the quality of
two algorithms that output a different number of co-clusters. Therefore, we make
a comparison using compressibility metrics: we measure how many bytes the re-
ordered array will require when stored using Run-Length-Encoding (RLE) [18].
Recall that RLE replaces long blocks of repetitive values with just two numbers:
the value and the length of the “run”. For example, RLE encodes the sequence
0, 0, 0, 0, 0, 0, 0, 0, 0 as a tuple (9, 0). This simple metric allows to quantify how
appropriately each algorithm packed together zeros and ones. Understandably,
larger number of bytes for the reordered matrix under RLE compression, indi-
cates worse performance in placing zeros and ones in adjacent positions.
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Optimal Outcome Algorithm 1 SPECTRAL DOUBLE-KMEANS

RLE = 20382 RLE = 20438 RLE = 20416

(a) Diagonal with noise

RLE = 6278 RLE = 6572 RLE = 6394

(b) Diagonal with outliers

Fig. 4. The first column contains the ground truth and the remaining columns contains
the output of the three algorithms described in Section 5.1. All algorithms take as input
a randomly permuted (independently in rows and columns) version of the ground truth
instance.

The results using are depicted in Table 1. For this we extract matrices that rep-
resent buying patterns within our company for various industries of customers,
because different industries exhibit different patterns. We notice that the pro-
posed recursive algorithm results in compressed matrix sizes significantly smaller
than the competitive approaches, suggesting a more effective co-clustering pro-
cess.

Table 1. We compare the efficacy of the various co-clustering algorithms by report-
ing the number of bytes when the reordered matrix is compressed using Run-Length-
Encoding (RLE). We present results for buying patterns extracted from various cus-
tomer industries. Our approach results in reordered matrices that can be better com-
pressed.

Industry’s name Original Our Approach SPECTRAL DOUBLE-KMEANS

Computer Services 2004 108 306 544

Professional Services 1136 212 484 658

Banks 2810 372 1012 1348

Provincial Government 954 128 236 352

Other Productions Ind. 1458 288 648 720

Retail 5232 360 888 2148

Travel & Transport 1158 204 534 582

Wholesale distribution services 638 212 408 394
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5.3 Business Intelligence on Real Datasets

For this example we use real-world data provided by our sales department re-
lating to approximately 30,000 Swiss customers. The dataset contains all firmo-
graphic information pertaining to the customers, such as: industry categorization
(electronic, automotive, etc), expected industry growth, customer’s turnover for
last, past revenue. We perform co-clustering on the customer-product matrix..
We apply our algorithm on each industry separately, because sales people only
have access to their industry of specialization. Figure 5 shows the outcome of
the algorithm and the detected diagonal and off-diagonal clusters. The highest
ranked recommendations are detected within the blue cluster, and they suggest
that ‘white-spot’ customers within this cluster can be approached with an offer
for the product ‘System-I’. These customers were ranked higher based on their
financial characteristics.

Highest ranked recommendations.
For the detected white spots
offer product 'System I' to the respective customers.

Fig. 5. Example of our co-clustering algorithm when applied on customers of a partic-
ular industry (Life Sciences). We see that the algorithm can easily discern off-diagonal
clusters. For the illustrated “white-spot” customers within the blue cluster, there is a
product recommendation for ‘System I’.

6 Conclusion

Focus of this work was to explicitly show how co-clustering techniques can be
coupled with recommender systems for business intelligence applications. Con-
tributions of our approach include:

– An unsupervised spectral-based technique for detection of large ‘diagonal’ co-
clusters. We present a robust termination criterion and we depict its accuracy
on a variety of synthetic data where we compare with ground-truth.
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– AGaussian-based density estimator for identification of smaller ‘off-diagonal’
co-clusters.

– A comprehensive comparison of our approach with prevalent co-clustering
approaches using a compression-based metric.

– A direct application of our methodology in business recommender systems.
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Abstract. Collaborative Filtering (CF) is a popular strategy for rec-
ommender systems, which infers users’ preferences typically using either
explicit feedback (e.g., ratings) or implicit feedback (e.g., clicks). Explicit
feedback is more accurate, but the quantity is not sufficient; whereas im-
plicit feedback has an abundant quantity, but can be fairly inaccurate. In
this paper, we propose a novel method, Expectation-Maximization Col-
laborative Filtering (EMCF), based on matrix factorization. The con-
tributions of this paper include: first, we combine explicit and implicit
feedback together in EMCF to infer users’ preferences by learning latent
factor vectors from matrix factorization; second, we observe four differ-
ent cases of implicit feedback in terms of the distribution of latent factor
vectors, and then propose different methods to estimate implicit feedback
for different cases in EMCF; third, we develop an algorithm for EMCF
to iteratively propagate the estimations of implicit feedback and update
the latent factor vectors in order to fully utilize implicit feedback. We
designed experiments to compare EMCF with other CF methods. The
experimental results show that EMCF outperforms other methods by
combining explicit and implicit feedback.

1 Introduction

In the modern digital world, consumers are overwhelmed by the huge amount
of product choices offered by electronic retailers and content providers. Recom-
mender systems, which analyze patterns of user interests in products in order
to provide personalized recommendatons satisfying users’ tastes, have recently
attracted a great deal of attention from both academia and industry. Collabora-
tive filtering (CF) [9], which analyzes relationships among users and items (i.e.,
products) in order to identify potential associations between users and items, is
a popular strategy for recommender systems. Compared to content filtering [8],
which is the other recommendation strategy that depends on profiles of users
and/or items, CF has the advantage of being free of domain knowledge. Since CF
relies only on the history of user behavior, it can address the issues in creating
explicit profiles, which are difficult in many recommender system scenarios.

The history of user behavior for CF usually consists of user feedback, which
generally refers to any form of user action on items that may convey the infor-
mation about users’ preferences of items. There are two kinds of user feedback:

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 604–616, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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explicit feedback and implicit feedback. Explicit feedback is often in the form
of rating actions. For example, Amazon.com asks users to rate their purchased
CDs and books on a scale of 1-5 stars. Since explicit feedback directly represents
users’ judgments on items in a granular way, it has been widely used in many
traditional CF recommender systems [2] [9] [10]. However, explicit feedback re-
quires users to perform extra rating actions, which may lead to inconvenience for
the user. Given the overwhelming amount of items, it is burdensome for users
to rate every item they like or dislike.

Implicit feedback, on the other hand, does not need additional rating actions.
Implicit feedback generally refers to any user behavior that indirectly expresses
user interests. For example, a news website may cache a user’s clicking records
when browsing news articles, in order to predict what kind of news the user
may prefer. Other forms of implicit feedback include keyword searching, mouse
movement, and even eye tracking. Since it is relatively easier to collect such user
behaviors, implicit feedback attracts the interest of researchers who attempt to
infer user preferences from the much larger amount of implicit feedback. How-
ever, implicit feedback is less accurate than explicit feedback. For example, a
user may regret buying a product online after receiving the real product. It is
difficult to determine whether a user likes a product only based on the purchase
behavior, even though the user paid for the product.

Explicit feedback and implicit feedback are naturally complementary to each
other. With explicit feedback, the quality is more reliable, but the quantity is
limited. However, the quality of implicit feedback is less accurate, but there
is an abundant quantity. Most of the existing works have solely considered ei-
ther explicit feedback [3] or implicit feedback [4] [7] in recommender systems.
While there are few works that have tried to unify explicit and implicit feedback,
explicit feedback is just treated as a special kind of implicit feedback; and, the
implicit feedback is simply normalized to a set of numeric rating values. Without
carefully studying how to organically combine explicit and implicit feedback, we
will not be able to further improve the performances of recommender systems.

In this paper, we propose a novel recommender method based on matrix fac-
torization [5], called expectation-maximization collaborative filtering (EMCF).
The first contribution of this paper is that we combine explicit and implicit feed-
back together, in which both explicit feedback and implicit feedback are fully
utilized. The second contribution is that we observe different cases of implicit
feedback and develop the corresponding solutions to estimate implicit feedback
for different cases. The third contribution is that we design an expectation-
maximization-styled algorithm in EMCF to update the estimations of implicit
feedback and latent factor vectors.

Instead of treating explicit feedback as special implicit feedback, EMCF ini-
tializes a latent factor model with explicit feedback and then updates the latent
factor vectors based on the explicit feedback ratings and the implicit feedback
estimations. The key challenge in utilizing implicit feedback in matrix factoriza-
tion is that implicit feedback does not have the numeric rating value. Instead of
simply normalizing implicit feedback to a set of numeric rating values, EMCF
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estimates implicit feedback rating values based on the explicit feedback and
available latent factor vectors.

We observe that the implicit feedback can be categorized into four cases, in
terms of the distribution of latent factor vectors from the currently trained latent
factor model. For different cases, EMCF has corresponding solutions, which are
not only based on explicit feedback ratings and implicit feedback estimations,
but are also based on the graph-based structure of explicit and implicit feedback.

We also observe that only part of implicit feedback ratings can be esti-
mated based on the current situation of the model. Therefore, an expectation-
maximization-styled algorithm is designed in EMCF to: 1) propagate current
estimations of implicit feedback plus explicit feedback ratings towards the set of
implicit feedback that have not yet been estimated, so that more implicit feed-
back estimations can be added into the model training; 2) Re-train the latent
factor model based on all the available implicit feedback estimations and explicit
feedback ratings and then update the latent factor vectors of users and items for
further estimating. The algorithm not only fully utilizes implicit feedback with
explicit feedback, but also prevents noisy implicit feedback from affecting the
performance of the EMCF model.

Experiments have been conducted to compare the EMCF model with other
popular models. The experimental results show that EMCF outperforms those
models, especially when the percentage of explicit feedback is small.

The rest of the paper is organized as follows: in Section 2, a preliminary is
given including the formalization, the background of CF, and a related method
called co-rating; in Section 3, we present the observations of implicit feedback
and propose the solutions to estimate implicit feedback for different cases; in
Section 4, we describe the EMCF model and introduce the algorithm to train
the model; in Section 5, the experiments make the comparisons between EMCF
and other models; the conclusion and some future works are given in Section 6.

2 Preliminary

2.1 Formalization

In this paper, we use U = {u1, u2, . . . , um} to denote a set of m users and use
I = {i1, i2, . . . , in} to denote a set of n items. The explicit feedback and implicit
feedback are defined as the observable actions from U to I that may directly
and indirectly reflect users’ preferences of the items.

Explicit feedback is usually in the form of rating actions. A user rates items
by assigning numeric rating values. The observed rating values are represented
by a matrix R ∈ �m×n, in which each entry rui ∈ � is used to denote the rating
on item i given by user u. We use SE to denote the set of explicit feedback,
which consists of user-item-rating triples (u, i, rui).

Implicit feedback typically consists of various types of actions performed by
users on items that can be automatically tracked by systems. In some related
works [4] [6], implicit feedback is represented by a binary variable bui ∈ {0, 1},
in which 1 means user u performed some action on item i and 0 means u never
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touched i. In this paper, we assume that a user has no interest to an item if he/she
never touched this item. We use SI to denote the set of implicit feedback, which
consists of user-item pairs (u, i) for which u has implicit feedback on i.

2.2 Collaborative Filtering

There are two primary types of CF methods: nearest-neighbor methods and ma-
trix factorization methods. A brief introduction of these two types of methods is
given in this section.

Nearest-neighbor Methods. Nearest-neighbor methods are prevalent in CF
[2]. Generally, the procedures of nearest-neighbor methods follow a similar pat-
tern: first calculate the similarity, which reflects distance, correlation, or weight,
between two users or two items; then produce a prediction for the active user by
taking the weighted average of all the ratings.

In terms of different focuses in the similarity calculation, there are two types
of nearest-neighbor methods: item-based methods and user-based methods. As
the name suggests, item-based methods calculate the similarities between items,
try to find nearest-neighbor items for the target item, and then evaluate the
active user’s rating on the target item based on the ratings of its neighbors.
Similarly, user-based methods first identify nearest-neighbor users for the target
user by calculating the similarities between users, and then make predictions for
the target user to unrated items based on neighbor users’ ratings.

Matrix Factorization Methods. Matrix factorization is the other primary
type of approaches for CF. Latent factor models, which try to explain the rating
generation by vectors of latent factors inferred from the patterns of ratings, are
typically used in matrix factorization methods. In a sense, such latent factors
correspond to the dimensions in a latent space in which the profiles of both users
and items can be characterized. Koren et al. [5] gave some examples to interpret
latent factors: if the items are movies, the latent factors may measure obvious
dimensions such as comedy versus drama, less well-defined dimensions such as
depth of character development or quirkiness, or completely un-interpretable
dimensions; for users, each latent factor may measure how a user scores the
corresponding movie factor.

Matrix factorization methods map both users and items to a joint latent factor
space, so that each user is modeled by a user latent factor vector and each item
is modeled by an item latent factor vector. The rating for a user-item pair is
modeled as an inner product of this user’s latent factor vector and this item’s
latent factor vector.

2.3 Co-rating

Liu et al. [6] developed a matrix factorization model called co-rating, which tries
to unify explicit and implicit feedback. Co-rating treats explicit feedback as a
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special kind of implicit feedback, so that the entire set of explicit and implicit
feedback can be used simultaneously during the model training. For solving
the challenge of implicit feedback ratings having only binary values instead of
numeric values, co-rating normalizes the rating values of explicit feedback and
the binary values of implicit feedback into a range of [0, 1]. With the co-rating
method, latent factor vectors are learned by solving an objective function in
the matrix factorization model trained with explicit and implicit feedback. The
co-rating’s objective function is different from the one normally used in other
matrix factorization methods [1] [5]; an extra weighted term has been added,
which aims at controlling the loss when treating explicit feedback as implicit
feedback.

3 Explicit and Implicit Feedback

3.1 Matrix Factorization with Explicit Feedback

In this paper, we fully utilize explicit feedback and implicit feedback together to
train a latent factor model by the matrix factorization method. In the matrix
factorization method, each item i is associated with a latent factor vector qi ∈ �k,
and each user u is associated with a latent factor vector pu ∈ �k, where k is the
number of latent factors. For a given item i, the elements of qi measure the extent
to which the item possesses those factors. For a given user u, the elements of pu
measure the extent of u’s interest in items according to the corresponding factors.
The rating value rui is approximated by the dot product qᵀi pu. Therefore, the
rating matrix R is approximated by the product of the user latent factor matrix
MU ∈ �k×m and the item latent factor matrix MI ∈ �k×n as

R ≈Mᵀ
U ·MI . (1)

The matrix factorization method learns the individual latent factor vectors in
MU and MI by solving

argminq∗,p∗
∑

(u,i,rui)∈ST

(rui − qᵀi pu) + λ(‖qi‖2 + ‖pu‖2), (2)

where ST is the training set including the known rating values, the term rui −
qᵀi pu is the estimation of the goodness of the rating approximation, ‖qi‖2+‖pu‖2
is the regularization term to avoid model overfitting, and the constant λ is to
control the extent of regularization.

Before utilizing implicit feedback, we first use the set of explicit feedback
SE to initially train the model, so that ST ← SE at this stage. There are
two approaches to solve Equation 2: Stochastic Gradient Descent (SGD) [5] and
Alternating Least Squares (ALS) [11].

SGD is a popular approach that is easy to implement and has a relatively fast
running time. In SGD, the algorithm loops through all ratings in ST . For each
triple (u, i, rui), the algorithm computes the associated prediction error:
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eui = rui − qᵀi pu. (3)

The algorithm then modifies the parameters by a magnitude proportional to
γ in the opposite direction of the gradient as:

qi ← qi + γ · (eui · pu − λ · qi) (4)

pu ← pu + γ · (eui · qi − λ · pu) (5)

ALS is a different style of algorithm for learning the latent factor vectors.
In ALS, one of the unknown latent factor vectors is fixed in order to learn the
other vector; and, the latter vector is then fixed to learn the former vector. The
procedure is repeated until convergence is reached. With ALS, the optimization
of Equation 2 becomes quadratic and can be optimally solved. Although ALS is
slower and more complicated than SGD, it is usually favorable when paralleliza-
tion is needed. Due the space limitation, we are not going to give the details of
ALS here.

3.2 Enhance Explicit Feedback with Implicit Feedback

Matrix factorization methods require numeric rating values to learn the latent
factor vectors. Although explicit feedback satisfies this requirement, the amount
of explicit feedback ratings is usually not sufficient to train an accurate model.
On the other hand, the amount of implicit feedback is much larger than the
amount of explicit feedback due to the lack of additional rating actions. If there
is a way to assign a meaningful numeric estimation to implicit feedback, it can
be used to enhance the model trained only based on explicit feedback ratings.

After initializing the model based on explicit feedback ratings, latent factor
vectors can be attained for users and items that are included in SE . For each
user-item pair (u, i) in SI , there are four possible cases:

– Case 1: Both u and i have been assigned latent factor vectors pu and qi,
respectively, because u and i are also included in SE .

– Case 2: u has been assigned latent factor vector pu because u is also included
in SE , but i has no latent factor vector since i is not included in SE.

– Case 3: i has been assigned latent factor vector qi because i is also included
in SE , but u has no latent factor vector since u is not included in SE .

– Case 4: Both u and i have no latent factor vectors, because u and i are not
included in SE .

These four cases are demonstrated in Figure 1.
For Case 1, the target implicit feedback can be straightforwardly estimated

using the latent factor vectors of u and i. The estimation r̂Iui can be computed
as:

r̂Iui = qᵀi pu. (6)
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Fig. 1. Four cases of implicit feedback. The black circles and black squares are used
to represent users and items, respectively, on which the latent factor vectors have been
assigned, and the white circles and white squares are used to represent the users and
items, on which there is no latent factor vector assigned yet. The solid lines represent
the explicit feedback, and the dash lines represent the implicit feedback. The thick dash
lines are the targets of implicit feedback that we will estimate based on the current
situation.

For Case 2, the target implicit feedback cannot be directly estimated using latent
factor vectors due to the lack of qi. We use an item-based CF method to estimate
it. First, the similarity sim(i, j) between item i and item j is calculated using
Jaccard Similarity Coefficient as:

sim(i, j) =
|Ai

⋂
Aj |

|Ai

⋃
Aj |

, (7)

where Ai and Aj are the set of users who have either explicit or implicit feedback
actions on i and j respectively. Next, we look for the set of neighbor items Ni

of item i. In Ni, each neighbor item j has to satisfy the conditions as: 1) the
similarity sim(i, j) is larger than a pre-defined threshold; 2) a latent factor vector
has already been assigned on j. Then, the estimation r̂Iui for the target implicit
feedback can be computed as:

r̂Iui =

∑
j∈Ni

sim(i, j)qᵀj pu∑
j∈Ni

sim(i, j)
. (8)

Similarly for Case 3, the similarity sim(u, v) between user u and user v is also
calculated by Jaccard Similarity Coefficient as:

sim(u, v) =
|Au

⋂
Av|

|Au

⋃
Av|

, (9)

where Au and Av are the set of items on which u and v have either explicit
or implicit feedback actions respectively. The set of neighbor users Nu for user
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u is found, in which each neighbor user v has a value sim(u, v) larger than a
threshold and has an assigned latent factor vector. The estimation r̂Iui for the
target implicit feedback can be computed using a user-based CF method as

r̂Iui =

∑
v∈Nu

sim(u, v)qᵀi pv∑
v∈Nu

sim(u, v)
. (10)

For Case 4, there is no sufficient information to estimate the target implicit
feedback based on the current situation.

4 Expectation-Maximization Collaborative Filtering

The user neighbor set Nu and the item neighbor set Ni may have no eligible
members. Although some user or item is similar enough with the target user or
item, they still can not become eligible neighbors due to lack of latent factor
vectors. On the other hand, estimations from Equation 8 and 10 are based on
currently learned latent factor vectors, and latent factor vectors need to be up-
dated based on the updated training set, in which new estimations will be added
in. To address these issues, we design the Expectation-maximization Collabora-
tive Filtering (EMCF) algorithm. The basic idea is to iteratively propagate the
available implicit feedback estimations, plus the explicit feedback, towards the
unavailable implicit feedback, in order to make possible the estimations on such
implicit feedback.

If we treat CF model as the objective and treat latent factor matrices as
estimated parameters, we can map the classic EM into our problem scenario.
Our goal is to build CF model that uses the matrix factorization method. The
model depends on both user latent factor vectors and item latent factor vectors.
The parameters that we use to estimate latent factor vectors are explicit feed-
back ratings and implicit feedback estimations. The two steps are defined as the
following:

– E Step: Train the collaborative filtering model using all the explicit feedback
ratings and currently available estimations of implicit feedback.

– M Step: Estimate the implicit feedback based on latent factor vectors that
are output from the CF model trained in the previous E Step.

The EMCF algorithm is an iterative procedure. We begin by using explicit feed-
back ratings to initialize the CF model with the matrix factorization method,
which is introduced in Section 3.2. The set of implicit feedback is then catego-
rized based on four cases (Cases 1-4 above), in terms of whether the involved
users and item have latent factor vectors or not. Following the estimation meth-
ods introduced in Section 3.3, the implicit feedback ratings are estimated if
they are eligible. The estimated implicit feedback ratings are put together with
explicit feedback ratings to train the EMCF model again. Thus, for the user
and/or the item involved in the target implicit feedback, new latent factor vec-
tors are assigned if the user and/or the item do not yet have them. For other
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Algorithm EMCF

Input: Explicit feedback set SE , implicit feedback set SI , user set U, and item set I.

Output: User latent factor matrix MU and item latent factor matrix MI .

Initialization:

– Initialize training set ST with SE , train the latent factor vectors for users and items in ST , and assign them

back to MU and MI .
– Initialize an empty set ŜE , in which the implicit feedback estimation triples (u, i, r̂ui will be included.

BEGIN
Repeat:

For each user-item pair (u, i) in SI :
If both u and i have latent factor vectors:

Estimate rating r̂ui for (u, i);

Put (u, i, r̂ui) in ŜE by Equation 6;

Remove (u, i) from SI ;
Else If u has latent factor vector but i not:

Estimate rating r̂ui for (u, i) by Equation 8 when item neighbors of i can be found;

Put (u, i, r̂ui) in ŜE ;

Remove (u, i) from SI ;
Else If i has latent factor vector but u not:

Estimate rating r̂ui for (u, i) by Equation 10 when user neighbors of u can be found;

Put (u, i, r̂ui) in ŜE ;

Remove (u, i) from SI ;

Train model using ST ← ST ⋃
ŜE ;

Update the corresponding columns of MU and MI by updated latent factor vectors;
Evaluate the difference between the rating estimations produced by previous latent factor vectors and the
rating estimations produced by current latent factor vectors;

Until there is no new entry added in ŜE and the estimation difference is lower than the threshold.
END

Fig. 2. The formal description of EMCF algorithm

users and items that already have latent factor vectors, their latent factor vectors
are updated, since the EMCF model is re-trained using the updated rating set.
Therefore, the estimations of some non-eligible implicit feedback in the previous
round become possible. Then, EMCF algorithm is back to the step of estimating
implicit feedback, and the above steps are repeated. The algorithm is terminated
when there is no longer eligible implicit feedback to estimate and the rating es-
timation difference between the previous round and current round is lower than
a pre-defined threshold. The formal algorithm procedure description is shown in
Figure 2.

The EMCF algorithm has advantages by combining explicit feedback with im-
plicit feedback. First, the implicit feedback is categorized into the four disjoint
sets, in terms of the current situations of user and item latent factor vectors.
Therefore, we have a chance to deal with implicit feedback differentially. Sec-
ond, the estimation methods for different cases not only depend on the rating
calculation from the matrix factorization, but also consider the neighbor struc-
ture built by both explicit feedback and implicit feedback. Third, the iterative
procedure of EMCF fully utilizes implicit feedback by providing the opportu-
nity to include more estimations of implicit feedback, which are not eligible in
the previous operational round of the algorithm. Finally, the EMCF algorithm
prevents noisy implicit feedback from the model training procedure, so that the
performance of output model can be improved. Some implicit feedback is not
used, since there is no sufficent information for estimation. Usually, such implicit
feedback is suspected of being noise.
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5 Experiments

We design experiments to demostrate the performance of EMCF. MovieLens1 is
used in the experiments. The dataset consists of one million ratings from 6,000
users and 4,000 movies. In the dataset, 20% ratings are randomly selected and
held as the testing set, and the other 80% ratings are used as the training set.
In the training set, we follow the idea proposed in [1] to create implicit feedback
from explicit ratings data by considering whether a movie is rated by a user. In
each experiment, the percentage of implicit feedback is pre-defined, and the rest
of ratings in the training set are used as explicit feedback. The experiments are
conducted on Apache Mahout2, which is a recently popular machine learning
platform. On Mahout, we implement matrix factorization and co-rating using
ALS, and implement EMCF using SGD. All the methods are trained based on
the same sets of explicit and implicit feedback, and are tested on the same sets
of ratings. The root mean square error (RMSE) has been used as the evaluation
measure to compare the methods.

The first set of experiments aims at comparing the performances of EMCF
when only considering individual cases of implicit feedback. Given 20% of train-
ing set as explicit feedback, the baseline is the matrix factorization only using
explicit feedback, which is used to compare to EMCF with different cases of
implicit feedback. The results are shown in Table 1.

Table 1. Given 20% explicit feedback, experimental results of matrix factorization
only with explicit feedback (MF+Explicit), EMCF with implicit feedback of Case 1,
EMCF with implicit feedback with Case 2, EMCF with implicit feedback of Case 3,
EMCF with implicit feedback with Case 2 and Case 3, and EMCF with all the implicit
feedback

MF + Explicit EMCF + Case1 EMCF + Case2 EMCF + Case3 EMCF + Cases2+3 EMCF + All

RMSE 1.039 1.048 0.985 0.990 0.968 0.945

From the results, we can see that the performance of EMCF with implicit
feedback of Case 1 is worse than the baseline. It is because the implicit feed-
back of Case 1 is estimated by the latent factor vectors learned from the model
only based on explicit feedback. Without estimations of other cases of implicit
feedback, EMCF with Case 1 overfits the model. EMCF with implicit feedback
of Case 2 or Case 3 outperforms the baseline. But the improvements of perfor-
mance are not obvious. EMCF with the implicit feedback combination of Case
2 and Case 3 has a greater improvements compared to the baseline. However,
the implicit feedback is not fully utilized due to the lack of Case 1. EMCF with
all the implicit feedback has the best performance since the EM-style algorithm
of EMCF fully utilizes all the implicit feedback.

1 http://www.grouplens.org/node/73
2 http://mahout.apache.org/
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Fig. 3. The experimental results of matrix factorization (MF) only with explicit feed-
back, co-rating, and EMCF with different percentage of explicit feedback

The second set of experiments aims at comparing the performances of EMCF
with different percentages of explicit feedback. There are two baseline meth-
ods: matrix factorization only with explicit feedback (MF with Explicit) and
co-rating [6]. There are several differences between the co-rating method and
our EMCF method. First, EMCF does not treat explicit feedback as a form of
special implicit feedback. Instead, EMCF initializes a latent factor model with
explicit feedback and then updates the latent factor vectors based on explicit
feedback ratings and implicit feedback estimations. Second, EMCF does not
normalize explicit feedback and implicit feedback into the same scale. On the
contrary, EMCF estimates the ratings of implicit feedback in terms of the scale
of explicit feedback. Third, EMCF does not add any new term in the objective
function of the matrix factorization. The proposed Expectation-maximization-
styled algorithm in EMCF ensures that the estimations of implicit feedback can
be adjusted in order to improve the performance of EMCF. The experimental
results are shown in Figure 3.

From the results, we can see that EMCF outperforms the other two baseline
methods, especially when the percentage of implicit feedback is small. On one
hand, the results of the comparison between EMCF and matrix factorization
show that utilizing implicit feedback with explicit feedback truly outperforms
the method based only on explicit feedback. On the other hand, the results of
the comparison between EMCF and co-rating show that simply treating explicit
feedback as implicit feedback hurts the performance of the method. The reason
may be due to too much noisy implicit feedback added into the model training.
The EMCF not only differentially estimates implicit feedback, but also itera-
tively updates the estimations based on both explicit and implicit feedback, by
which noisy implicit feedback can be prevented from affecting the performance.
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6 Conclusion and Future Works

In this paper, we present a novel method, Expectation-Maximization Collabo-
rative Filtering (EMCF), which combines explicit and implicit feedback using
matrix factorization for recommender systems. EMCF is based on the fact that
explicit feedback and implicit feedback are naturally complementary to each
other, since explicit feedback has good accuracy, but the quantity is insufficient;
whereas, implicit feedback has abundant quantity, but does not have good accu-
racy. After initializing the EMCF model with explicit feedback, we observe that
the implicit feedback can be categorized into four cases, in terms of the distribu-
tion of latent factor vectors. We propose three methods to differentially estimate
the implicit feedback for the different cases. An EM-styled algorithm is then
designed to iteratively propagate the implicit feedback estimations and update
the latent factor vectors based on all the available explicit feedback ratings and
implicit feedback estimations. We conduct experiments to compare EMCF with
two other baseline methods. The experimental results show that EMCF outper-
forms the other two baselines, especially when the explicit feedback percentage
is small.

In the future, we will continue to study how explicit feedback should be com-
bined with implicit feedback in recommender systems. We will adapt different
recommender methods for explicit and implicit feedback. We will also consider
more complicated types of implicit feedback, such as mouse movements, and
more features of implicit feedback, such as the durations of implicit feedback
actions.
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Zäıane, Osmar R. I-342
Zeng, Ming II-280
Zhang, Baoxian I-431
Zhang, Chongsheng I-254
Zhang, Yan II-97
Zhang, Yang II-73
Zhang, Zhongfei(Mark) I-418
Zhang, Zili I-86
Zhao, Ye I-505
Zheng, Hui I-493
Zhou, Dequan I-604
Zhou, Jun I-171
Zhou, Weitao I-195
Zhou, Zhi-Hua I-122
Zhu, Hengshu I-431
Zhuang, Fuzhen I-392
Zighed, Djamel Abdelkader I-98, I-379
Zouzias, Anastasios I-591


	Title Page
	Preface
	Organization
	Table of Contents – Part I
	Supervised Learning: Active, Ensemble, Rare-Class and Online
	Time-Evolving Relational Classification and Ensemble Methods
	Introduction
	Related Work
	Temporal-Relational Classification Framework
	Temporal Granularity
	Temporal Influence: Links, Attributes, Nodes
	Temporal-Relational Classifiers

	Temporal Ensemble Methods
	Methodology
	Datasets
	Temporal Models

	Empirical Results
	Single Models
	Temporal-Ensemble Models

	Conclusion
	References

	Active Learning for Hierarchical Text Classification
	Introduction
	A Novel Multi-oracle Setting
	A New Framework of Hierarchical Active Learning 
	Unlabeled Pool Building Policy
	Leveraging Oracle Answers

	Experimental Configuration
	Datasets
	Performance Measure
	Active Learning Setup

	Empirical Study
	Standard Hierarchical Active Learner
	Leveraging Positive Examples in Hierarchy
	Leveraging Negative Examples in Hierarchy

	Conclusion
	References

	TeamSkill Evolved: Mixed Classification Schemes for Team-Based Multi-player Games
	Introduction
	Related Work
	Proposed Approaches
	TeamSkill-AllK-Ev-OL1
	TeamSkill-AllK-Ev-OL2
	TeamSkill-AllK-Ev-OL3
	Using Game-Specific Data during Classification
	TeamSkill-AllK-EVGen
	TeamSkill-AllK-EVMixed

	Evaluation
	Dataset
	Overall Results
	Results over Time
	Online Classification Variants

	Discussion
	Conclusions
	References

	A Novel Weighted Ensemble Technique for Time Series Forecasting
	Introduction
	Forecasts Combination Methods
	The Proposed Ensemble Technique
	Mathematical Description
	Optimization of the Combination Weights
	Approach for Weights Determination

	Three Time Series Forecasting Models
	Autoregressive Integrated Moving Average (ARIMA)
	Artificial Neural Networks (ANNs)
	Elman Artificial Neural Networks (EANNs)

	Experiments and Discussions
	Conclusions
	References

	Techniques for Efficient Learning without Search
	Introduction
	The AnDE Family of Algorithms
	AODE
	AnDE

	Optimising Memory Consumption
	Optimising Testing Time
	Evaluation
	Test Environment
	Optimised Memory Consumption
	Optimised Testing

	The Evaluation of A3DE
	A3DE Performance on Large Datasets

	Conclusions
	References

	An Aggressive Margin-Based Algorithm for Incremental Learning
	Introduction
	Online Passive-Aggressive Algorithm
	Incremental Passive-Aggressive Learning Algorithm
	Experiments
	Conclusion
	References

	Two-View Online Learning
	Introduction
	Related Work
	Two-View Online Passive Aggressive Learning
	Problem Setting
	Relationship between Views
	Two-View Passive Aggressive Algorithm

	Performance Evaluation
	View Difference Comparison
	Ads Dataset
	Product Review Dataset
	WebKB Course Dataset

	Conclusion and Open Problems
	References

	A Generic Classifier-Ensemble Approach for Biomedical Named Entity Recognition
	Introduction
	The Generic Genetic Classifier-Ensemble Approach
	Feature Set and SVM Based Classifier
	Generic Genetic Classifier-Ensemble Algorithm

	Experiments and Results
	Conclusion and Future Work
	References

	Neighborhood Random Classification
	Introduction
	Basic Concepts
	Notations
	Neighborhood Structure
	Neighborhood Classifiers
	Partition by Neighborhood Graphs

	Ensemble Method Classifier Based on Neighborhood
	Sampling Procedures
	Aggregating Function

	Evaluation
	Implementation of RNC
	Other Methods
	The Test
	Computational Analysis

	Conclusion and Further Work
	References

	SRF: A Framework for the Study of Classifier Behavior under Training Set Mislabeling Noise
	Introduction
	Background and Related Work
	The Sigmoid Rule Framework
	Sigmoid Rule Framework (SRF) Dimensions
	Comparing Algorithms

	Experimental Evaluation
	Using SRF
	Statistical Analysis

	Conclusions
	References

	Building Decision Trees for the Multi-class Imbalance Problem
	Introduction
	Methods
	Decomposition Techniques
	Decision Trees

	Analysis of the Splitting Criteria
	Experiments
	Configuration
	Statistical Tests
	Results

	Related Work
	Conclusion and Discussion
	References

	Scalable Random Forests for Massive Data
	Introduction
	Related Work
	Scalable Random Forest Algorithm
	Breadth-First Random Forest Construction
	Scalable Random Forest Algorithm
	Mapper, Reducer and Controller

	Experiments
	Data Sets
	Experiment Settings
	Performance Results
	Scalability

	Conclusions
	References

	Hybrid Random Forests: Advantages of Mixed Trees in Classifying Text Data
	Introduction
	Hybrid Random Forests
	Framework for Building Hybrid Random Forest
	Decision Tree Algorithms
	Algorithm

	Evaluation Methods
	Experiments
	Datasets
	Test Accuracy Improvement
	Performance Comparisons of other Text Classification Method

	Conclusion and Future Work
	References

	Learning Tree Structure of Label Dependency  for Multi-label Learning
	Introduction
	Related Work
	The Concept of Multi-label Learning
	Learning a Tree Structure of Labels
	Experiment Design and Analysis
	The Description of Datasets
	Evaluation Criteria
	Algorithms and Settings
	Experimental Results and Analysis

	Conclusion
	References

	Multiple Instance Learning for Group Record Linkage
	Introduction
	Related Work
	Group Linkage Using Multiple Instance Learning
	Instance Selection and Classifier Learning
	Instance Classification
	Group Record Linkage

	Experiments and Evaluation
	Synthetic Data Results
	Historical Census Data Results

	Conclusion
	References

	Incremental Set Recommendation Based on Class Differences
	Introduction
	Definition
	Set Recommendation Based on Class Differences
	Example
	ZDD and VSOP
	Set Recommendation with ZDD Structure

	Experiments
	Performance Evaluation
	Example : Internet Shopping Advertising
	Example : AOL Search Logs

	Summary and Future Works
	References

	Active Learning for Cross Language Text Categorization
	Introduction
	Related Work
	Active Learning for CLTC
	Cross Language Text Categorization
	Apply Active Learning to CLTC

	Double Viewed Active Learning
	Two Views of the Problem
	Double Viewed Active Learning

	Evaluation
	Experimental Setup
	Results and Discussions

	Conclusions and Future Works
	References

	Evasion Attack of Multi-class Linear Classifiers
	Introduction
	Problem Setup
	Multi-class Linear Classifier
	Attack of Adversary
	Adversarial Cost
	Disguised Instances

	Theory of Evasion Attack
	Algorithm for Approximating -IMAC
	Experiments
	Spam Disguising
	Face Camouflage

	Conclusions
	References

	Foundation of Mining Class-Imbalanced Data
	Introduction
	Upper Bounds
	Error Rate on a Particular Class
	Cost-Weighted Error

	Empirical Results with Specific Learner
	Datasets and Settings
	Experimental Design and Results

	Conclusions
	References

	Active Learning with c-Certainty
	Introduction
	Previous Works
	c-Certainty Labeling
	BMO (Best-Multiple-Oracle) with c-Certainty
	Selecting the Best Oracle
	Active Learning Process of BMO

	Experiments
	Results on Faithful Oracles
	Results on Unfaithful Oracles

	Conclusion
	References

	A Term Association Translation Model for Naive Bayes Text Classification
	Introduction 
	Related Work 
	Terminology 
	Naive Bayes Classifier 
	Language Models for Information Retrieval 

	The Term Association Translation Models 
	Language Models for Text Classification 
	Translation Model Estimation Using Joint Probability Model 
	Translation Model Estimation Based on Mutual Information

	Experiments 
	Corpora 
	Performance Measure 
	Experimental Results 

	Conclusion and Future Work 
	References

	A Double-Ensemble Approach for Classifying Skewed Data Streams
	Introduction
	Background and Motivations
	Performance Metrics
	Classification Methods for Skewed Data
	Classification Methods for Streaming Data
	Motivations

	Proposed Method
	Framework of the Method
	Multi-objective Optimization
	Reliability Estimation

	Experimental Evaluation
	Datasets
	Experimental Protocol
	Results

	Conclusions
	References

	Generating Balanced Classifier-Independent Training Samples from Unlabeled Data
	Introduction
	Related Work
	Generating Balanced Training Data
	Overview
	Semi-supervised Clustering
	Determine the Optimal Number to Samples from Each Cluster
	Leveraging Domain Knowledge
	Maximum Entropy Sampling

	Experiments and Evaluation
	Evaluation Setup
	Comparison of Class Distribution in Training Samples
	Comparison of Classification Performance
	Impact of Domain Knowledge

	Conclusion
	References

	Nyström Approximate Model Selection for LSSVM
	Introduction
	Least Squares Support Vector Machine
	Approximating LSSVM Using Nyström Method
	Error Analysis
	Approximate Model Selection for LSSVM
	Experiments
	Experimental Scheme
	Effectiveness

	Conclusion
	References

	Exploiting Label Dependency for Hierarchical Multi-label Classification
	Introduction
	Our Contributions

	Related Work
	HiBLADE Algorithm
	Training Scheme
	Extending the Features
	Label Correlation

	Experimental Details
	Evaluation Metrics
	Experimental Results and Discussion

	Conclusion
	References

	Diversity Analysis on Boosting Nominal Concepts
	Introduction
	Boosting of CNC
	Nominal Concepts
	Learning Concept Based Classifiers

	Classifier Diversity
	Experimental Study
	Conclusions
	References

	Extreme Value Prediction for Zero-Inflated Data
	Introduction
	Related Work
	Preliminaries
	Generalized Linear Model(GLM) and 2-Step GLM (GLM-C)
	Zero Inflated Poisson Regression(ZIP)
	Quantile Linear Regression(QR) and 2-step QR(QR-C)

	Framework for Integrated Classification and Regression
	Integrated Classifier and Regression for Extreme Values(ICRE)

	Experimental Evaluation
	Data
	Experimental setup
	Baseline Algorithm
	Evaluation Criteria
	Experimental Results

	Conclusions
	References

	Learning to Diversify Expert Finding with Subtopics
	Introduction
	Problem Definition
	Model Framework
	Overview
	Topic Model Initialization
	DivLearn: Learning to Diversify Expert Finding with Subtopics
	Model Learning

	Experiment
	Experiment Setup
	Performance Comparison
	Analysis and Discussion

	Related Work
	Conclusion
	References

	An Associative Classifier for Uncertain Datasets
	Introduction
	Related Works
	UAC Algorithm
	Rule Extraction
	Rule Filtering
	Rule Selection

	Experiments and Results
	Conclusion
	References


	Unsupervised Learning: Clustering, Probabilistic Modeling
	Neighborhood-Based Smoothing of External Cluster Validity Measures
	Introduction
	Preliminaries
	Neighborhood-Based Smoothing of Validity Measures
	Extension of Set-Based Cluster Validity Measures
	Extension of Pairwise-Based Cluster Validity Indices
	Weighting Function
	Optimal Smoothing Radius

	Evaluation of the Smoothed Validity Measures
	Settings of Clustering and Neighborhood Relation
	Datasets
	Effect of Smoothing Radius - Finding the Optimal Radius
	Effect of Prototype Number
	Effect of Class Overlap
	Real-World Data

	Conclusion
	References

	Sequential Entity Group Topic Model for Getting Topic Flows of Entity Groups within One Document
	Introduction
	Terminology

	Related Work
	Sequential Entity Group Topic Model
	Entity Group Topic Model
	Sequential Entity Group Topic Model

	Experiments
	The Size of Power-Set of Entity Groups
	Topic Discovery
	Entity Prediction
	Entity Pair Prediction
	Entity Group Prediction
	Topic Flow

	Conclusion
	References

	Topological Comparisons of Proximity Measures
	Introduction
	Proximity Measures and Preordonnance
	Proximity Measures
	Preorder Equivalence

	Topological Equivalence
	Topological Graphs
	Similarity between Proximity Measures in Topological Frameworks

	Relationship between Topological and Preordonnance Equivalences
	Theoretical Results
	Empirical Comparisons

	Conclusion
	References

	Quad-tuple PLSA: Incorporating Entity and Its Rating in Aspect Identification
	Introduction
	Problem Definition and Preliminary Knowledge
	Problem Definition
	Structured PLSA

	QPLSA and EM Solution
	QPLSA
	Deriving the EM Solution
	Incorporating Aspect Prior
	Aspect Identification

	Experiments
	Data Sets
	Implementation Details
	Experimental Results

	Related Work
	Conclusion
	References

	Clustering-Based $k$-Anonymity
	Introduction
	Motivation

	Fundamental Definitions
	Basic Concept
	$K$-means Clustering
	Problem Definition

	Clustering-Based Generalization Algorithm
	Extension to l-Diversity
	Related Work
	Empirical Evaluation
	Privacy Level $K$
	QI-Attributes Dimensionality $d$
	Cardinality of Data Set $n$
	Efficiency

	Conclusion
	References

	Unsupervised Ensemble Learning for Mining Top-n Outliers
	Introduction
	Methodologies
	Framework and Notions of Ensemble Learning
	Score-Based Aggregation Approach (SAG)
	Order-Based Aggregation Approach (OAG)
	Inference and Algorithm for OAG

	Experiments
	Aggregation on Real Data
	Robustness of Two Aggregation Methods

	Conclusions
	References

	Towards Personalized Context-Aware Recommendation by Mining Context Logs through Topic Models
	Introduction
	Related Work
	Preliminary
	Mining Common Context-Aware Preferences through Topic Models
	Experiments
	Data Set
	Benchmark Methods
	Evaluation Metrics
	Overall Results of Recommendation
	Robustness Analysis
	Case Study

	Concluding Remarks
	References

	Mining of Temporal Coherent Subspace Clusters in Multivariate Time Series Databases
	Introduction
	Related Work
	A Model for Effective Subspace Clustering of Multivariate Time Series Data
	Time Series Subspace Cluster Definition
	Clustering Model: Redundancy Avoidance

	Efficient Computation
	Experiments
	Evaluation w.r.t. Effectiveness
	Evaluation w.r.t. Efficiency

	Conclusion
	References

	A Vertex Similarity Probability Model for Finding Network Community Structure
	Introduction
	Vertex Similarity in Finding Community Structure
	Common Neighbor Index in Unipartite Network
	Common Neighbor Index in Bipartite Network

	A VSP Model for Finding Community Structure
	Experimental Results
	Finding Community Structure in Unipartite Network
	Finding Community Structure in Bipartite Network

	Conclusion
	References

	Hybrid-ε-greedy for Mobile Context-Aware Recommender System
	Introduction
	Background
	Following the Evolution of User’s Interests
	Managing the User’s Situation

	The Proposed MCRS Algorithm
	Terminology and Notations
	The Bandit Algorithm
	The Proposed Hybrid-ε-greedy Algorithm

	Experimental Evaluation
	Experimental datasets
	Finding the Optimal B Threshold Value
	Experimental Datasets
	Results for ε Variation
	Valuate Sparse Data

	Conclusion
	References

	Unsupervised Multi-label Text Classification Using a World Knowledge Ontology
	Introduction
	Related Work
	Unsupervised Multi-label Text Classification
	World Ontology
	Document Features
	Initial Classification
	Generalised Classification

	Implementation
	Evaluation
	Results and Discussions
	Conclusions
	References

	Semantic Social Network Analysis with Text Corpora
	Introduction
	Document-Entity-Topic Model
	Dirichlet Priori on Document-Entity Distribution
	Generative Process of DET Model

	Learning the DET Model from Data
	Gibbs Sampling
	The Posterior on Ψ , Θ and Φ

	Experiment Result
	Perplexity Comparison between AT and DET
	Semantic Social Network Analysis with DET

	Conclusions
	References

	Visualizing Clusters in Parallel Coordinates for Visual Knowledge Discovery
	Introduction
	Related Works
	Dimension Ordering for Knowledge Discovery
	Inter-cluster and Intra-cluster Crossings
	Optimization with Hamiltonian Path
	Empirical Study on Real Datasets

	Shaping Clusters against Visual Clutters by an Energy Reduction Model
	Conclusion and Future Work
	References

	Feature Enriched Nonparametric Bayesian Co-clustering
	Introduction
	Related Work
	Background: Dirichlet Process
	Feature Enriched Dirichlet Process Co-clustering
	Inference

	Experimental Evaluation
	Experimental Methodology and Feature Information
	Results

	Conclusion
	References

	Shape-Based Clustering for Time Series Data
	Introduction
	Background
	$K$-means Clustering
	Dynamic Time Warping (DTW) Distance Measure 
	Global Constraint

	Related Work
	Shape-Based Clustering for Time Series (SCTS)
	Experiments and Results
	Conclusion
	References

	Privacy-Preserving EM Algorithm for Clustering on Social Network
	Introduction
	Related Work
	Preliminaries
	Probabilistic Mixture Model
	Utilities of Privacy-Preserving Data Mining

	Problem Statement
	Assumptions
	Private Variables and Public Variables

	Secure Summation Protocols on Networks
	Local Secure Summation Protocol
	Global Secure Summation Protocol

	Private Clustering on Networks
	Private E-step
	Private M-step

	Performance
	Experiments
	Accuracy
	Efficiency

	Conclusion
	References

	Named Entity Recognition and Identification for Finding the Owner of a Home Page
	Introduction
	Related Work
	Named Entity Recognition
	Finding Named Entities of Web Page Owner
	Entity Selection Framework
	Baseline Entity Selection
	Graph-Based Entity Selection

	Learning to Select Named Entities
	Experimental Results
	Named Entity Recognition Evaluation
	Evaluation and Experimental Results

	Conclusions
	References

	Clustering and Understanding Documents via Discrimination Information Maximization
	Introduction
	Motivation and Related Work
	CDIM – Our Document Clustering Method
	Problem Statement
	Clustering Objective Function
	Term Discrimination Information
	Relatedness of Terms to Clusters
	Document Discrimination Information
	Algorithm

	Experimental Setup
	Data Sets
	Comparison Methods
	Clustering Validation Measures

	Results and Discussion
	Clustering Quality
	Cluster Understanding and Visualization

	Conclusion and Future Work
	References

	A Semi-supervised Incremental Clustering Algorithm for Streaming Data
	Introduction
	Related Work
	A Model for Constraint-Based Clustering on Streaming Data
	Modeling a Stream of Constraints
	Cost of Assigning Data Items to a Cluster
	A Clustering Model for Streaming Data

	Incremental Clustering towards a Constraint-Stream
	Experimental Evaluation
	Conclusions
	References

	Unsupervised Sparse Matrix Co-clustering for Marketing and Sales Intelligence
	Introduction
	Related Work
	Overview of Our Approach
	Preliminaries
	Graph Partitioning

	The Algorithm
	Recursive Spectral Bi-partitioning
	Eigengap-Based Termination
	Discovering Off-Diagonal Clusters
	Recommendations

	Experiments
	Comparison with other Techniques
	Compression-Based Evaluation
	Business Intelligence on Real Datasets

	Conclusion
	References

	Expectation-Maximization Collaborative Filtering with Explicit and Implicit Feedback
	Introduction
	Preliminary
	Formalization
	Collaborative Filtering
	Co-rating

	Explicit and Implicit Feedback
	Matrix Factorization with Explicit Feedback
	Enhance Explicit Feedback with Implicit Feedback

	Expectation-Maximization Collaborative Filtering
	Experiments
	Conclusion and Future Works
	References


	Author Index
	73010219.pdf



