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Abstract Cohesive sediment soils are encountered throughout Egypt at many
locations, posing various physical and chemical characteristics in beds of lakes,
estuaries and flash flood flows. The entire delta region is made up of clayey soil
formed from various consecutive Nile floods before construction of the High Dam.
Thus, it is very important to determine the erosional stability of such cohesive soils
as a function of sediment chemical properties and mineral content. In the current
research, 48 samples are collected from various locations throughout Egypt. All
samples are subject to physical tests for grain size distribution, and X-ray dif-
fraction analysis for mineral contents. Laboratory experiments are carried out on
these samples for finding the difference in terms of erosion characteristics caused
by different sediment composition among all samples. Assuming other properties
of cohesive soils constant, the gene expression programming (GEP) algorithms are
applied to relate the clay mineral content to experimental critical shear stress.
Results show an excellent potentiality for the GEP for being applied on finding
relations between complex parameters with nonlinear relationships with respect to
soil erosion.

1 Introduction

One of the most important factors controlling the interaction of flow and the evo-
lution/change of bed morphology as a result of such flow is the soil erodibility, i.e.,
the potential for soil surface to being transported by the moving water. This
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P. Rowiński (ed.), Experimental and Computational Solutions of Hydraulic Problems,
GeoPlanet: Earth and Planetary Sciences, DOI: 10.1007/978-3-642-30209-1_27,
� Springer-Verlag Berlin Heidelberg 2013

375



erodibility is linked to the water velocity and, therefore to the shear stresses that
erode soil. The soil erodibility is directly related to the soil grain size (especially for
non-cohesive soil), i.e., larger soil particles need higher velocity for removal and
transport. Non-cohesive soils represent sandy type soils, and Hydraulic Engineering
Circular, HEC-18 (FHWA 2001) contains several established erodibility models for
non-cohesive soils. Richardson and Davis (1995) presented various established
scour predictors for sandy soils. However, sandy soils are only available on the
shores of Egypt, while the entire delta region is made up of clayey soil formed from
various consecutive Nile floods before construction of the High Dam (a pivot of
Egypt industrialization, controlling flood waters and generating hydropower,
www.en.wikipedia.org/wiki/Aswan_Dam) posing various physical and chemical
characteristics in beds of lakes, estuaries and flash flood flow areas. The clayey soil
found mostly in the delta region is considered to be from the cohesive type soil.
Cohesive type soils follow an opposite regime with respect to erodibility than non-
cohesive soils, where cohesive soils erosion resistance increase with the decrease in
particle diameter and thus increase in plasticity. Many attempts have been made to
correlate critical shear stress with various common parameters of cohesive soils
(water content, unit weight, plasticity index, percent of silt and clay particles by
weight passing sieve # 200, undrained shear strength) leading to the development of
a database of 91 Erosion Function Apparatus (www.humboldtmfg.com/pdf2/
hm4000ds.pdf) EFA tests, which was used to perform regression analyses and
obtain correlation equations; however, all attempts failed to reach a model that
describes the various contributing parameters with reasonable value for the coef-
ficient of determination, R-squared (Cao et al. 2002). Other phenomena impact the
erosion properties of cohesive soils, such as those developing when clay dries, and
diagenetic bonds due to aging, such as those developing when clay turns into rock
under pressure over geologic time. Due to the complexity of interaction between
these parameters, it is very difficult to predict critical shear stress empirically on the
basis of few properties. However, investigating the impact of such parameters
individually on the erosion resistance of cohesive soils remained a topic that is
frequently visited. Many researchers studied the impact of individual parameters on
the erosion resistance of cohesive soils (mainly clay) and reported some empirical
formulas, e.g., Dunn (1959); Enger et al. (1968), Hydrotechnical, Lyle and Smer-
don (1965); Smerdon and Beasly (1959); Arulanandan (1975); Kelly and Gularte
(1981) and Cao et al. (2002). Many of the related parameters were studied thor-
oughly except for the mineral content of clay, which did not receive such attention
and thus in various reports the impact of many soil parameters on critical shear
stress is documented, with no data on the impact of soil minerals as seen in Table 1
(Independent Levee Investigation Team 2006).

Recently, evolutionary algorithms have been used as a superior alternative for
regression analysis and artificial neural networks, for finding relations between
various parameters and producing a higher R-squared value and less mean error in
prediction using a newly developed equation. Applications of evolutionary algo-
rithms, especially gene expression programming (GEP) in water and environ-
mental engineering, are not as numerous as the other soft computing tools of
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artificial neural networks. They are restricted to finding functions in relatively
fewer sub-areas including scour prediction downstream of hydraulic structures
(Guven and Gunai 2008), stage discharge relationship prediction (Guven et al.
2009), predicting sediment transport in sewer pipe systems (Ghani and Azamat-
hulla 2011), and prediction of bridge pier scour (Azmathulla et al. 2009).

This chapter aims at experimentally investigating the impact of various mineral
constituents on the critical shear stress for soil erosion for selected Egyptian
cohesive soils using experimental methods and novel evolutionary algorithms
known as GEP, to relate various mineral constituents to the critical shear stress.
First, an overview of the basic theory of gene expression programming is given,
accompanied by implementation technique steps. Afterwards, a description for the
experimental setup used to collect erosion data is given with the results. Key
parameters considered are the mineral constituents of the soil samples with most of
the other parameters either constant or have little variation.

2 Gene Expression Programming

Gene expression programming was invented by Ferreira in 1999, and is the natural
development of genetic algorithms, GAs and genetic programming GP. GEP uses
the same kind of diagram representation of GP, but the entities produced by GEP
(expression trees) are the expression of a genome. Therefore, with GEP, the second
evolutionary threshold—the Phenotype Threshold—was crossed, providing new
and efficient solutions to evolutionary computation. So, the great insight of GEP
consisted in the invention of chromosomes capable of representing any expression
tree. GEP is a full-fledged genotype/phenotype systems, with the genotype com-
pletely separated from the phenotype, thus it surpasses the GP system by a factor
of 100–60,000 (Ferreira 2001).

The fundamental difference between GP and GEP resides in the nature of the
individuals forming the expression trees (Fig. 1). In GP, the individuals are non-
linear entities of different sizes and shapes called parse trees (or expression tree)
that represent a program/function, while in GEP, the individuals are also nonlinear
entities of different sizes and shapes, Expression Trees ET, but these complex
entities are encoded as simple strings of fixed length (chromosomes).

Table 1 Impact of various
soil parameters on critical
shear stress of cohesive soils
(clay)

When parameter increases Erosion change

Unit weight Decreases
Plasticity index Decreases
Undrained shear strength Increases
Void ratio Increases
Swell Increases
Percent passing sieve #200 Decreases
Clay minerals ——
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Initially, the chromosomes of each individual in the population are generated
randomly. Furthermore, the structure of chromosomes was designed to allow the
creation of multiple genes, each encoding a sub-expression tree. The genes are
structurally organized in a head and a tail, and it is this structural and functional
organization of GEP genes that always guarantees the production of valid pro-
grams, no matter how much or how profoundly the chromosomes are modified.
The individuals in the new generations are subject to development processes such
as expression of the genomes, confrontation of the selection environment, and
reproduction with modifications. These processes are repeated for a predefined
number of generations or until a solution is achieved as shown in the GEP flow
chart in Fig. 2 (Ferreira 2001).

GEP evolves computer programs to solve problems by executing the following
steps (Ferreira 2001);

Step1: One (or more) initial population of individuals is randomly generated
with functions and terminals related to the problem domain.

Step2: The implementation of GEP iteratively performs the following steps
until the termination criterion has been satisfied

(1) The fitness function for every individual is estimated to enable program to find
solution by itself.

(2) Chromosomes are created by choosing a set of terminals and appropriate
functions.

(3) The chromosome architecture is chosen including the length of the head and
the number of genes.

(4) The linking function is set for Expression Trees, ETs.
(5) The next generation is produced using the genetic operations (reproduction,

crossover and mutation).
(6) The termination criterion is checked. If it is not satisfied, the next iteration is

performed; if satisfied, go to step 3.

Step3: The result may be a solution to the problem domain.
The GEP fitting for the experimental data is done using the commercial soft-

ware GenXProTools, unconstrained and non-linear data mining software
(www.gepsoft.com).

Fig. 1 Expression tree
representation for a function
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3 Experimental Setup

The experiments are performed in a straight flume (Fig. 3), which is located at the
Irrigation and Hydraulics Department at Cairo University. The flume is composed
of steel skeleton with steel sheeting for the bed and plexiglass on both sides; it is
fed through a small centrifugal pump with a capacity of 150 L/s, through 8 inch
UPVC pipes. Water is circulated through the flume and then to the below tanks
beside the flume and mounted on the surface of the lab. The flume is 12 m long,
1.2 m deep and 0.30 m wide with adjustable bed slope that is set to 1/200 and an
average water depth of 0.40 m. The average manning roughness coefficient of
bottom and wall was calculated from velocity to water surface profile measure-
ments and is found to be approximately 0.01. The discharge is measured by an
orifice plate and a manometer installed on pipe on pump discharge side. Flow

Fig. 2 Flow chart of gene expression programming (Ferreira 2001)
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velocity and depth are controlled in the flume by gate valve on the pump discharge
side and a downstream sluice gate. The downstream end of the flume is left opened
with an adjustable tailgate for controlling the water level in the channel down-
stream. To ensure properly developed flow at the breach location, perforated
screens and 60 mm long honeycomb are places at the flume inlet. A point gauge is
used to measure water surface in channel with an accuracy of 0.1 mm on vernier
scale. A 10 MHz 3D nortek acoustic doppler velocimeter (ADV) is used to
measure 3D velocity and turbulent components of flow fields.

For the purpose of conducting erosion tests for cohesive soils, procedures and
test preparation are considered as in Salaheldin et al. (2004), who presented
methodology for prediction of erosion resistance and pattern for cohesive soils.
Their methodology operates on both undisturbed and remolded samples; they
suggested sample size and procedure for sample placement and onset of erosion of
sediment sample. Their procedure extends the erosion resistance determination by
scaling it up to prototype scale, yielding very similar results thereby indicating that
the methodology is not scale dependent. A false bottom is constructed over the bed
of the existing flume with a height of 8 cm above flume bottom and with width less
than the flume width by 1 cm to allow for placement in lab flume. The false
bottom is intended to enable placing a 20 9 20 cm steel box flushed with the false
floor for placement of cohesive soil samples in. The sample box has sides com-
pletely flushed with the false floor and placed at 8 m from the inlet of the flume to
have fully developed flow. The soil was initially trimmed flush with the bottom of
the flume at the location of the sample. Flow is gradually increased for steps and
each flow is maintained for a sufficient period of time to cause erosion and, if

Fig. 3 Experimental setup for bed erosion experiments
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erosion does not occur, the flow is further increased for the same amount of time
until the erosion is observed and water becomes muddy; this time is taken to be 2 h
(Salaheldin et al. 2004). The initiation of erosion is determined visually and in
conjunction with the formation of a small cloud of mud in water, the erosion
always starts from the upstream side of the sample.

Unlike the velocity measurements that needed only 2,000 sample to be accu-
rately determined, the turbulence parameters of flow need at least 5,000–10,000
sample. Critical bed shear stress at the onset of erosion of cohesive sediment
sample is determined in this study using the covariance method (COV). The COV
is considered to give unbiased estimates of s among the different methods avail-
able to estimate s from velocity measurements. Instantaneous velocities measured
by the ADV are used to obtain the instantaneous random fluctuation terms such
that u

0 ¼ U� �U, v
0 ¼ V� �V, w

0 ¼W� �W. The local mean covariance,

u0w0
; u0v0 ; v0w0 , is called Reynolds stress and used for fully turbulent flow to

calculate the near bed shear stress through s ¼ �q u0w0
� �

.

Undisturbed field soil samples that are used are collected from several locations
covering all various types of cohesive soils in Egypt from north to south. Samples
were collected from Aswan, Kafr ElSheikh, Shark El Tafreea, and Fayoum. These
samples are manually collected in big chunks, the surface layer is removed since it
is disturbed and contains debris, and then each chunk is cut into pieces of
40 9 40 cm and soil is shoveled to a depth of 20 cm and scooped from the
bottom. Samples are protected with plastic and in lab are cut with sharp knives to
fit in the flume groove. From each location, various samples are collected and
tested. Tests include grain size distribution, compaction tests, water content; and to
determine the mineral composition of soil samples, X-Ray Diffraction analysis was
performed.

4 Results and Discussions

To ensure repeatability of experiments and determine error in velocity measure-
ments, the experiment was run for several times and velocity components at a
selected location have been recorded; it was found that experiments are repeatable
and error in velocity measurements was less than 1 %. On the other hand, bed
shear stress as calculated by the COV method has been recorded for various soil
samples and ranged between 0.9 and 2.6 Pascal. Table 2 shows the critical shear
stress range obtained from this experiment versus that obtained by others for
cohesive soils. X-Ray Diffraction (XRD) analysis was performed on all samples to
determine the mineral composition of selected cohesive soils in Egypt. The
cohesive soils had colors from grey to reddish brown according to the location and
had considerable variations in mineral contents, as shown in Fig. 4.

Thus, for each sample, we have the mineral composition—in percentages of
various minerals as obtained from the XRD—and the corresponding critical shear
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stress at the onset of initiation of erosion. As mentioned before, this study is
concerned about the mineral content of the clay and thus minerals are the only
parameters assumed to affect the initiation of erosion. Other parameters, such as
grain size, water content, and density were measured and variation is not observed
to be significant amongst all samples. The critical shear stress for clay samples can
be written as follow;

scritical ¼ f Kaolinite;Quartz;Halite; Illite;Calcite;Chlorite;Montmorillonnitef g
ð1Þ

To apply the GEP, we need to define the learning environment using a fitness
function, as suggested by Ferreira (2001). Previous experience with the GEP

Table 2 Critical shear stress
as obtained by various
researchers for clay

Study scritical(Pa)

Dunn (1959) 2–25
Enger et al. (1968) 15–100
Lyle and Smerdon (1965) 0.35–2.25
Smerdon and Beasley (1959) 0.75–5
Arulanandan et al. (1975) 0.1–4
Arulanandan (1975) 0.2–2.7
Kelly and Gularte (1981) 0.02–0.4
Current study 0.9–2.6

Fig. 4 Mineral composition of selected soil samples at a Aswan, b Shark El tafreea, c Fayoum,
d Kafr ElSheikh
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suggests the choice of root relative squared error (RRSE) as a fitness function; it
helps an efficient evolution for the model and allows it to travel fitness landscape
until it finds an optimal solution for the given problem. This function computes the
total squared error and normalizes it by the same dimensions as the quantity being
predicted; the root relative square error Ei of an individual program i is defined by
the following equation;

Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 P ijð Þ � Tj

� �2

Pn
j¼1 Tj � �T
� �2

vuut ð2Þ

Where P(ij) is the value predicted by the program i for fitness case j; Tj is the

target value for fitness case j; and �T ¼ 1=n
Pn
j¼1

Tj. For a perfect fit Ei = 0, and thus

the index of RRSE ranges from 0 to infinity, with zero corresponding to the ideal.
Thus, the fitness of an individual model fi can be calculated from the following
equation which ranges from 0 to 1,000, with 1,000 corresponding to perfect fit;

fi ¼ 1000:
1

1þ Ei
ð3Þ

The second step is to choose the chromosome architecture; this includes
determining the number of chromosomes, head size and number of genes. Each
gene is composed of a head and a tail; the head contains symbols that represent a
chosen function and the tail contains terminals. The length of the head h is chosen
such that it controls the size of the formed expression trees; the tail t is a function
of the head size and of the number of functions chosen n, such as t = h (n -

1) ? 1. Several trials with various head sizes need to be attempted to reach for the
best fitness and an optimum head. From practice with various problems, a head
size of three to five will always give the best models with respect to size and
predictability.

The GEP chromosomes are composed of one or more genes of equal length.
Each gene codes for a sub-expression tree and each of the sub expression trees
interact with each other, forming more complex expression trees. Choosing one
gene leads to a complex expression tree, while multigenic chromosomes are
always preferred in complex problems with nonlinear relations, where each gene
codes for a smaller and simpler building block. The gene number is determined by
trial runs and in general two to six genes will be more than sufficient in problems
with various complexities.

The third step is choosing the set of functions that will create the chromosomes.
These functions are the essence of evolution of the GEP; they allow modifications
without restrictions leading to compact correct programs for a specific function.
The choice of an appropriate function set is not the same for every problem and
depends mainly on the program performance with some chosen arguments. If the
evolution is not satisfactory, one can use a wider set of functions until optimum
fitness is achieved. However, a professional approach would be to initially use the
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basic mathematical operators (+, -, 9, /) to allow for production of simple
models. A second run of GEP is performed using a different set of functions as
shown in Table 3.
The fourth step is to set the linking function, which is the interaction between all
sub-expression trees of the model, these linking functions can be addition, sub-
traction, division, and multiplication. Obviously, it works only in case of multi-
genic models. The choice of linking functions depends on the complexity of the
problem and the experience of the model user and for simpler models for a certain
problem, addition or subtraction would be appropriate.

The fifth step is to set the values controlling various genetic operations con-
trolling the evolutionary process of GEP. The most efficient operator in GEP is the
mutation, which causes populations of individuals to adapt very efficiently,
allowing for the evolution of good solutions to all problems. Ferraire (2001)
recommends using a mutation rate equivalent to two one-point mutations per
chromosome. Mutations cause the expression trees to drastically change in size
with no constraints in kind of mutation and number of mutations in a chromosome.
Other genetic operations, such as inversion, transposition, and other operators
shown in the above flow chart, are of less importance and all depend on the value
assigned for mutation rate. Thus, default values are always assigned for all genetic
operations, as shown in Table 3, and the value of the mutation rate changes from
0.05 to 0.005 to test the evolution of the program.

To test the performance of the developed model, the mean square error, MSE,
mean absolute error, MAE, and relative squared error, RSE, were used as indi-
cators, as calculated from the following equations, respectively

MSEi ¼
1
n

Xn

j¼1

PðijÞ � Tj

� �2 ð4Þ

Table 3 Optimal parameter settings for the GEP algorithms

Parameters Settings-GEPI Settings-GEPII

Number of generations 100,000 100,000
Number of chromosomes 30 30
Number of genes 3, 4 3, 4
Head size 3, 5, 8 3, 5, 8
Linking function Addition Addition
Fitness function error type RRSE RRSE
Mutation rate 0.05, 0.005 0.05, 0.005
Inversion rate 0.1 0.1
One point recombination rate 0.3 0.3
Two Point recombination rate 0.3 0.3
Gene recombination rate 0.1 0.1
Gene transposition rate 0.1 0.1
Function set +, -, 9, /, H, e, In +, -, 9, /, H, e,

In, cos, sin, arctan, 1/
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MAEi ¼
1
n

Xn

j¼1

PðijÞ � Tj

Tj

����
���� ð5Þ

RSEi ¼
Pn

j¼1 PðijÞ � Tj

� �2

Pn
j¼1 Tj � �T
� �2 ð6Þ

Results from both models; GEPI and GEPII, are shown in Table 4. According
to Table 4, GEPI model with chosen set of functions produced the best results with
a fitness value of 780 and an R-Square value of 0.94. On the other hand, GEPII
model with sin, cos and arctan, did not produce results with same accuracy. Both
models evolved with four genes and thus each function produced has four
expression trees. All expression sub trees are linked by addition and the gene
mutation was run using random constants for each gene. The best individual of all
generations for GEPI has the explicit formulation as follows

scritical ¼ e Cl3= Kt�Q�Clð Þf g9

� 0:85819
ffiffiffi
Il
p
þ 2M þ 0:795014þ Kt2 � Q2 � Kt

� 137:684Q�M Il� Cað Þ � Ca

þ H3 Kt � Qð Þ2þ64:444þ 16:0557 Kt � Qð Þ
h i

ð7Þ

where all minerals are in percentages and scriticalis in Pascal; Q = quartz,
Kt = kaolinite, Cl = chlorite, Il = ilite, M = montmorillonite, H = halite, and
Ca = calcite.

On the other hand, simpler equations can be obtained using the GEP when only
one gene is specified as the main chromosome architecture with rest of parameters
as in GEPI; however, the fitness of the model decreased to 745 with MAE of 0.105
and R-squared of 0.89; the following figure shows the architecture of the single
genetic expression tree;

According to the ET in Fig. 5, the equation is further simplified to

scritical ¼ M þ Q� Kt þ 0:44451Ca� 0:884949 � Ca� Q

þ M � Ilþ 5:947266Q½ �3 ð8Þ

where Q = quartz, Kt = kaolinite, Cl = chlorite, Il = ilite, M = montmoril-
lonite, H = halite, and Ca = calcite.

Table 4 Performance of
produced functions for
critical shear stress

Performance indicators GEPI GEPII

Fitness 780 756
MSE 0.0139 0.0158
MAE 0.0946 0.0946
RSE 0.09131 0.1036
R-Square 0.942 0.89
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As interpreted from the simplified equation, the critical shear stress for clay
depends on all minerals in the clay samples and thus its increase cannot be
attributed alone to the increase or decrease in a certain mineral. It is found that the
clay samples of Shark El Tafreea had the highest critical shear stress amongst all
other samples with an average value of 2 Pa. The main constituent of this sample
is quartz, followed by halite and kaolinite. On the other hand, the lowest shear
stress with an average value of 0.9 Pa was in the samples collected from Aswan
having kaolinite as major constituent followed by quartz and illite. Other soil
parameters are assumed to be constant such as water content and density.

5 Conclusions

The results show that gene expression programming (GEP) is capable of mapping
data into a high dimensional feature space with variety of methods to find relations
and trends in data. An equation linking the critical shear stress in clays with the
mineral composition has been presented and MAE reached less than 0.09. Despite
the fact that none of the other parameters, such as water content, percent passing
sieve 200, density, swelling, etc., has been included, the relation can be used to
provide estimates for critical shear stress versus soil type in Egypt, according to
soil mineral composition and location of samples.

Fig. 5 Expression tree produced by the GEPI, 1 gene used
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