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Introduction

Cyanobacteria are unique in the wide range of symbiotic asso-
ciations they form with eukaryotic hosts including plants, fungi,
sponges, and protists (for reviews, see Adams 2000; Adams and
Duggan 2012; Adams et al. 2012; Rai et al. 2000; Rai et al. 2002;
Bergman et al. 2003, 2008). Cyanobacteria are photoautotrophs,
and in many cases facultative heterotrophs and nitrogen fixers, and
can provide nonphotosynthetic hosts with both nitrogen and car-
bon. Even if the benefit to the host is clear, that to the cyanobacteria
is less obvious. They often receive carbon from photosynthetic
hosts, but they are capable of carbon fixation themselves. Perhaps,
in the enclosed environment provided by the host, a more likely
advantage is protection from predation and from environmental
extremes, such as high light intensity and desiccation.

The cyanobacterial symbionts of plants all possess at least
two essential characteristics—the ability to differentiate hetero-
cysts, which are specialized nitrogen-fixing cells (for reviews, see
Adams and Duggan 1999; Zhang et al. 2006), and hormogonia,
which are short, gliding filaments that lack heterocysts and
provide a means of dispersal (Adams 2000; Meeks 2003, 2009;
Gusev et al. 2002; Meeks et al. 2002; Meeks and Elhai 2002;
Bergman et al. 2007). The hormogonia serve as the infective

agents in most plant symbioses; some plants enhance their
chances of infection by producing chemical signals that stimu-
late hormogonia formation and also chemoattractants that
direct hormogonia into the plant tissue. Cyanobacteria are not
restricted to the roots of plants but can infect thalli, stems, and
leaves. The major hosts are bryophytes (see the section
© “Cyanobacterial Symbioses with Hornworts and Liverworts”
in this chapter), the angiosperm Gunnera (see the section
© “Interactions in the Nostoc-Gunnera Symbiosis” in this
chapter), the aquatic fern Azolla (see the section ©® “The Azolla
Symbiosis” in this chapter), fungi (forming lichens; see the
section @ “Cyanolichens” in this chapter), the fungus Geosiphon
(see the section © “The Geosiphon pyriformis:. Nostoc
Endocyanosis and its Relationship to the Arbuscular Mycorrhiza
(AM)” in this chapter), and cycads (see the section on © “The
Cycad Symbioses” in this chapter).

Cyanobacterial Symbioses with Hornworts
and Liverworts

The division Bryophyta consists of the Hepaticae (liverworts),
the Anthocerotae (hornworts), and the Musci (mosses), all of
which are small, nonvascular terrestrial plants, some of which
form epiphytic or endophytic associations with cyanobacteria,
primarily of the genus Nostoc (Adams 2002a, b; Meeks 2003;
Solheim et al. 2004; Adams et al. 2006, 2012; Adams and Duggan
2008; Bergman et al. 2007, 2008). Moss-associated cyanobacteria
are mostly epiphytic (Solheim and Zielke 2002; Solheim et al.
2004; Gentili et al. 2005), apart from those found in two Sphag-
num species in which the cyanobacteria are found in water-filled,
hyaline (dead) cells, where they may be protected from the
acidic bog environment (Solheim and Zielke 2002). Even these
associations can be considered epiphytic as the hyaline cells are
connected via pores to the outside environment. A wide range of
cyanobacteria, including members of the non-heterocystous,
filamentous genera Phormidium and Oscillatoria and even
the unicellular Microcystis, have been found as moss
epiphytes (Solheim et al. 2004), although members of the
filamentous, heterocyst-producing genera Nostoc, Stigonema,
and Calothrix are the most common (DeLuca et al. 2002, 2007;
Gentili et al. 2005; Houle et al. 2006). These epiphytic
associations will not be discussed further here, but they are of
ecological importance as they are commonly the major source
of combined nitrogen in ecosystems where mosses are
abundant, such as northern hemisphere forests (Zielke et al.
2002, 2005; Solheim and Zielke 2002; Nilsson and Wardle
2005; DeLuca et al. 2008; see also Adams et al. 2012).

In their natural habitat, the liverworts and hornworts grow
as a prostrate gametophyte thallus a few centimeters in length,
attached to the substratum by primitive roots known as rhizoids.
Mature symbiotic colonies can be seen as dark spots 0.5-1.0 mm
in diameter within the plant tissue (@ Fig. 16.1). Of the more
than 340 liverwort genera, only four are known to develop
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@ Fig. 16.1

The liverwort Blasia pusilla, collected from the wild, showing the
thick midribs of the thallus surrounded by the dark spots of Nostoc
colonies (From Adams (2000), with permission)

associations with cyanobacteria: two (Marchantia and Porella)
forming epiphytic associations and two (Blasia and Cavicularia)
forming endophytic associations (Meeks 1990). Four of the six
hornwort genera (Anthoceros, Phaeoceros, Notothylas, and
Dendroceros) form endophytic associations (Meeks 1990). The
epiphytic associations are more common than once thought but
are poorly understood (Dalton and Chatfield 1985; Brasell
et al. 1986), whereas the endophytic associations have been
well studied because of the ease with which they can be grown
in the laboratory. The hornworts Anthoceros and Phaeoceros and
the liverwort Blasia can all be grown conveniently in shaken
liquid culture (© Fig. 16.3b), with or without their symbiotic
partners, and can be readily reinfected with their original
partner or with cyanobionts from Gunnera, cycads, lichens,
and even some free-living strains (Enderlin and Meeks 1983;
Meeks 1988, 1990, 2003; Kimura and Nakano 1990; Babic 1996;
West and Adams 1997; Adams 2002a, b; Duckett et al. 2004;
Adams and Duggan 2008; © Fig. 16.3¢).

The Symbionts

For a cyanobacterium to establish a successful plant symbiosis, it
must possess at least two essential characteristics—the ability to
differentiate both heterocysts, which are specialized nitrogen-
fixing cells (for reviews, see Adams and Duggan 1999; Zhang
et al. 2006), and hormogonia, which are short, gliding filaments

that lack heterocysts and provide a means of dispersal (Campbell
and Meeks 1989; Johansson and Bergman 1994; Bergman et al.
1996). Heterocysts fix dinitrogen for both partners, and the
motile hormogonia, which are a transient phase of the life
cycle, enable the otherwise immotile cyanobacterial filaments
to gain entry to the plant host (see the section © “Bryophyte
Structures and Their Infection” in this chapter). The symbioti-
cally competent cyanobacteria are hormogonia-forming strains
of mostly the genus Nostoc, although Calothrix and
Chlorogloeopsis strains have been shown to reconstitute the
symbiosis with Blasia and Phaeoceros (West and Adams 1997).
In the field, a single liverwort or hornwort thallus can become
infected by many different Nostoc strains (West and Adams 1997;
West et al. 1999; Costa et al. 2001; Rasmussen and Nilsson 2002;
Adams and Duggan 2008).

Hormogonia differentiation is triggered by environmental
stimuli, including the dilution of liquid cultures, or their transfer
to solid medium or exposure to red light (Herdman and Rippka
1988; Tandeau de Marsac 1994). Their formation can also be
triggered by exudates from plants such as Anthoceros (Campbell
and Meeks 1989), Blasia (Knight and Adams 1996), Gunnera
(Rasmussen et al. 1994), and wheat roots (Gantar et al. 1993;
Knight and Adams 1996). The first 24 h of Nostoc punctiforme
hormogonia development, induced by hormogonia-inducing
factor (HIF, see section © “Bryophyte Structures and Their
Infection” in this chapter) or combined nitrogen starvation
(Campbell et al. 2007, 2008), is characterized by many changes
in gene expression, with the transcription of 944 genes
upregulated and 856 downregulated (Campbell et al. 2007).
The upregulated genes reflect the importance of signal sensing
and chemotaxis because a majority of the encoded proteins are
involved in signal transduction and transcriptional regulation,
and others have putative roles in chemotaxis and pilus biogen-
esis (Meeks et al. 2001; Klint et al. 2006; Campbell et al. 2007).

Abundant type IV pili (Tfp) cover the surface of Nostoc
hormogonia but are absent from vegetative cells (@ Fig. 16.2).
In a wide range of bacteria, Tfp have roles in adhesion, motility,
pathogenesis, and DNA uptake (Mattick 2002; Nudleman and
Kaiser 2004; Burrows 2005). Both adhesion (to the plant surface)
and motility (together with chemotaxis, to locate the host plant
symbiotic structures) are likely to be essential factors in the
successful infection of plants. Tfp are involved in motility in
some unicellular cyanobacteria (Bhaya 2004) and may also have
a role in the gliding of hormogonia, although this is so far
unproven (Duggan et al. 2007). In Nostoc punctiforme, the
mutation of genes such as pilTand pilD, thought to be involved
in Tfp function, greatly reduces the infectivity of the mutant
hormogonia in the liverwort Blasia (Duggan et al. 2007). How-
ever, it is not clear if this is due to loss of motility (and with it,
chemotaxis) or interference with another potential function of
the pili, such as recognition of, or adhesion to, the plant surface.

The ability of hormogonia to infect a particular host can be
affected by subtle aspects of their behavior. For example, the
infection frequency of Nostoc punctiforme hormogonia in
the liverwort Blasia is influenced by mutations in cyaC, which
encodes adenylate cyclase, the enzyme responsible for the
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O Fig. 16.2

Pili on the surface of Nostoc punctiforme hormogonia. Pili are absent from the cell surface of vegetative filaments (a) but are abundant on

the surface of hormogonia (b). Scale bars represent 1 pm. For electron microscopy, platinum was evaporated onto the surface of
each sample which was then viewed using a JEOL1200EX transmission electron microscope at 80 kV (From Duggan et al. (2007) with

permission)

biosynthesis of the intracellular messenger cAMP, adenosine
3’, 5'-cyclic monophosphate (Adams and Duggan 2008; Chapman
et al. 2008). However, mutation in two different domains of this
multi-domain enzyme results in hormogonia with very different
infection frequencies in Blasia, one having a three- to fourfold
greater infection frequency than the wild type and the other
showing a 75 % reduction in frequency compared with the
wild type (Chapman et al. 2008). The explanation of these
different infection phenotypes is not readily apparent, as both
mutants have cellular cAMP levels 25 % of the wild type, and the
mutant hormogonia, induced in the presence of Blasia, show no
differences in their frequency, motility, or piliation.

Bryophyte Structures and Their Infection

In the bryophyte-cyanobacteria symbioses, the symbionts infect
existing plant structures. In the liverwort Blasia, the
cyanobacteria occupy roughly spherical structures, known as
auricles, on the underside of the thallus (@ Fig. 16.3c, d). These
develop from a three-celled mucilage hair that undergoes
extensive elaboration (Renzaglia et al. 2000). The thallus of the
hornworts Anthoceros and Phaeoceros is much thicker than that
of Blasia, and the cyanobacteria are found in slime cavities,
within the thallus, that open to the ventral surface via slit-like
pores or mucilage clefts (@ Fig. 16.3a). The mucilage clefts,

which resemble stomata but are not thought to be related
(Villarreal and Renzaglia 2006), are formed by the separation
of adjacent epidermal cells, and their formation is followed by
the development of a slime cavity directly beneath the cleft
(Renzaglia et al. 2000). Blasia auricles have two slime papillae,
one of which (the inner slime papilla) partly fills the auricle
cavity, whereas the other (the outer slime papilla) arises from the
thallus adjacent to the auricle (@ Fig. 16.3d). In the hornwort
Leiosporoceros dussii (@ Fig. 16.4a), the slime cavities take the
form of elongated mucilage-filled “canals” (@ Fig. 16.4b) that
result from the separation of plant cell walls along their middle
lamellae and are connected to the outside by mucilage clefts
(© Figs. 16.4c, d) through which Nostoc can gain entry.
Branching of the canals results in an integrated network,
enabling the symbiont to invade the whole thallus (Villarreal
and Renzaglia 2006). The cyanobacteria enter Blasia auricles,
and presumably hornwort slime cavities, as hormogonia (see the
preceding section © “The Symbionts”), whereupon they lose
motility and differentiate heterocysts (Kimura and Nakano
1990; Babic 1996).

Bryophyte-Cyanobacterium Signal Exchange

unidentified, low-
that  stimulates

Anthoceros
molecular-mass,

punctatus  releases an
heat-labile  product
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@ Fig. 16.3

The hornwort and liverwort symbioses. (a) Fluorescence micrograph of the hornwort Phaeoceros sp. stained with calcofluor. Hormogonia
gain entry to the slime cavities within the thallus via slit-like entrances (one of which is arrowed). (b) View of the liverwort Blasia
pusilla grown free of cyanobacteria in shaken liquid medium in an Erlenmeyer flask (viewed from below). (c) Liquid-grown Blasia
pusilla infected in the laboratory with two different Nostoc strains, one brown pigmented (the two auricles to the /eft) and the other
blue-green. (d) Fluorescence micrograph of an uninfected Blasia auricle stained with calcofluor. The auricle has one inner (lower arrow)
and one outer (upper arrow) slime papilla. Bars 50 um (Photographs (a) and (d) courtesy of S. Babic. (a, d) From Adams (2000) with
permission; (b) from Adams (2002a) with permission; (d) from Adams and Duggan (1999) with permission)

hormogonia formation in Nostoc strains (Campbell and Meeks
1989). This hormogonia-inducing factor (HIF) seems to be
produced as a result of nitrogen starvation, as it is not present
when the hornwort is cultured in medium containing excess
NH,*. Compounds with similar activity to HIF are found in
Gunnera stem gland mucilage (Rasmussen et al. 1994), wheat
root exudates (Gantar et al. 1993), and Blasia exudates (Babic
1996; Watts et al. 1999; Watts 2000). To attract hormogonia,
a potential host must release a chemoattractant, such as that
produced by the liverwort Blasia when nitrogen starved (Knight
and Adams 1996; Watts 2000; Adams and Duggan 2008).
However, hormogonia chemoattractants can also be produced
by nonhost plants such as Trifolium repens (Nilsson et al. 2006)
and germinating wheat seeds (Knight and Adams 1996; Watts
2000; Adams and Duggan 2008). Although the chemical identity
of these chemoattractants is not known, they are thought to be
sugar-based molecules (Watts 2000), and in keeping with this,
simple sugars such as arabinose, glucose, and galactose are
known to attract hormogonia (Nilsson et al. 2006).

As a symbiotic colony develops, filamentous protrusions
grow from the host plant into the colony, possibly to enhance
nutrient exchange between host and symbiont (see the section
© “Morphological Modifications to Bryophyte and Symbiont”
in this chapter). What signal induces these changes in the host is
not known; however, arabinogalactan proteins (AGPs) are released
by many cyanobacteria (Bergman et al. 1996; Jackson et al. 2012),
and such AGPs are thought to have important roles in plant
growth and development (Pennell 1992). Liverworts also pro-
duce AGPs (Basile 1990), the inner and outer slime papillae of
Blasia and the slime cavity of Phaeoceros staining with both Yariv
reagent, which is specific for AGPs, and with anti-AGP mono-
clonal antibodies (Watts 2000; Jackson et al. 2012).

Another group of potential signaling molecules in
cyanobacteria-plant symbioses is the flavonoids; these are
secreted by legumes and are involved in the initial signaling in
the symbiosis with Rhizobium, by binding to the transcriptional
activator NodD (Fisher and Long 1992). Seed rinse from
Gunnera, an angiosperm that forms symbiosis with Nostoc, can
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@ Fig. 16.4

The hornwort Leiosporoceros dussii with symbiotic Nostoc. (a) The young rosette to the left lacks the upright sporophytes that are
abundant on the surface of the older thallus to the right. (b) The Nostoc colonies can be seen as long “strands” (some of which
are arrowed) within the thallus, parallel to the main axis. S = sporophyte. (c) Light micrograph of a nearly transverse section of the

mucilage clefts (arrows) that serve as the point of entry for cyanobacterial infection; the filaments of Nostoc subsequently

spread through channels that result from the separation of hornwort cells along their middle lamellae. (d) Scanning electron
micrograph of a mucilage cleft. Bars 10 mm in (a), 2 mm in (b), 15 pm in (c) and 20 pum in (d) (From Villarreal and Renzaglia (2006)

with permission)

induce expression of nod genes in Rhizobium (Bergman et al.
1996; Rasmussen et al. 1996; Rai et al. 2000), and the flavonoid
naringin induces expression of hrmA (see the sections
© “Cell Division Control and Hormogonia Formation” and
© “The Hrm Operon” in this chapter) in Nostoc punctiforme
(Cohen and Yamasaki 2000). Expression of the N. punctiforme
hrmA gene is also induced by a combination of components,
including deoxyanthocyanins, found in extracts of the
water fern Azolla which forms symbioses with Anabaena
(Cohen et al. 2002).

The lectins are another group of signaling compounds
of importance in bacterial symbioses. Although little is
known about their potential involvement in cyanobacteria-
plant symbioses, they are produced by the plant host in
bryophyte and Azolla symbioses and bind to sugars on
the surface of symbiotic Nostoc strains (Lehr et al. 2000;
see also: Rai et al. 2000; Adams 2000; Rikkinen 2002; Adams
et al. 2006, 2012). They have also been suggested to be involved
in fungus-partner recognition in lichens (Lehr et al. 2000;
Elifio et al. 2000; Rikkinen 2002; Legaz et al. 2004; Sacristan
et al. 2006).

Host-Cyanobiont Interactions Post Infection

Cell Division Control and Hormogonia
Formation

In symbiosis with Anthoceros, the doubling time of Nostoc
can be 240 h, compared with 45 h in the free-living state
(Meeks 1990). This slowed growth of the cyanobiont ensures
that its growth rate matches that of the host plant. The mecha-
nism of this growth control is unknown, but it seems not to be
nitrogen limitation, even though the host takes most of
the nitrogen fixed by its partner (see the section © “Nitrogen
Fixation and Transfer of Fixed Nitrogen” in this chapter).

As well as controlling the growth rate of the cyanobiont, the
host must control hormogonia formation. Prior to infection,
the host plant stimulates the development of hormogonia
in potential partners by releasing HIF (see the section
© “Bryophyte-Cyanobacterium Signal Exchange” in this
chapter). However, once infection has occurred, the plant must
prevent hormogonia differentiation because hormogonia lack
heterocysts and so cannot form a viable, nitrogen-fixing colony.
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A hormogonia repressing factor (HRF), found in aqueous
extracts of Anthoceros tissue (Cohen and Meeks 1997; Meeks
1998), inhibits HIF-induced hormogonia formation in wild-
type N. punctiforme. The expression of two genes, hrmA and
hrmU; is induced by HRF but not by HIE These observations
imply that the gene products of the hrmUA operon block hor-
mogonium formation, perhaps by the production of an inhib-
itor or by the catabolism of an activator (Cohen and Meeks 1997;
see the section © “Genetic Analysis of the Nostoc-Anthoceros
Association” in this chapter).

Morphological Modifications to Bryophyte and
Symbiont

The cells of hornwort-associated Nostoc are often enlarged and
show irregularities of shape compared with the same strains
grown free living (Meeks and Elhai 2002). In free-living
cyanobacteria, heterocyst frequency is typically 4-10 % of cells,
whereas in symbiosis with hornworts and liverworts, frequencies
are usually considerably higher (Adams 2000; Adams et al. 2012;
© Table 16.1). Although, in at least Anthoceros, some heterocysts
seem to be senescent or dead (Meeks 1990), the increase in
heterocyst frequency is still correlated with elevated rates of
nitrogen fixation. Because heterocysts are unable to fix CO,,
this elevated heterocyst frequency results in a loss of CO,-fixing
capacity, which can be compensated by the supply of carbon
skeletons by the host. In Anthoceros, and presumably all endo-
phytic bryophyte associations, nitrogenase gene expression and
heterocyst development in the symbiotically associated Nostoc
appear to be controlled by plant signals and are independent of
the nitrogen status of the cyanobiont (Campbell and Meeks
1992; Meeks 2003, 2009).

Morphological changes are also observed in the bryophyte
following infection. In both Blasia and Anthoceros, branched,
multicellular filaments grow from the wall of the symbiotic
cavity and invade the colony, increasing the surface area of
contact between the cyanobacteria and the bryophyte (Rodgers
and Stewart 1974; Rodgers and Stewart 1977; Duckett et al. 1977;
Renzaglia 1982; Kimura and Nakano 1990; Gorelova et al. 1996).
In Blasia, these filaments are derived from the inner slime papilla
and possess transfer cell morphology, implying an involvement
in nutrient exchange. However, such wall ingrowths are not
found in other hornworts, including Leiosporoceros (Villarreal
and Renzaglia 2006).

The elevated rate of nitrogen (N,) fixation in bryophyte-
associated cyanobacteria broadly correlates with the increased
heterocyst frequency in symbiosis (@ Table 16.1). The N, fixa-
tion rate of the Anthoceros-Nostoc association is 4- to 35-fold
higher than that of free-living Nostoc (Steinberg and Meeks
1991). Such a high rate of N, fixation cannot be supported by

B Table 16.1

Summary of morphological and physiological changes in
cyanobacteria symbiotically associated with hornworts and

liverworts
Plant structure infected Slime cavities | Auricles
Cyanobiont Nostoc Nostoc ?
Location of cyanobiont Intercellular | Intercellular
Heterocyst frequency (%)° 30-50 30-50
Nitrogenase specific activityd 443 n.d.
Glutamine synthetase:
Amount of protein® ~86 n.d.
Specific activity® ~38 n.d.
Form of combined N released NH, * NH, *
Light-dependent CO, fixation %) |12 n.d.
RuBisCo:
Amount of protein® 100 n.d.
Specific activity® 12 n.d.

Abbreviations: RuBisCo ribulose bisphosphate carboxylase/oxygenase, n.d., not
determined, though likely to be similar to hornwort data

®The symbionts are Nostoc spp. in almost all cases; there have been rare
reports of Calothrix spp. as symbionts

PHeterocyst frequencies are expressed as a percentage of total cells. Typical
values for free-living cyanobacteria are 4-10 %

“Values are for the symbiont as a percentage of the same cyanobacterium in
the free-living state

dvalues are expressed as a percentage of those for the free-living
cyanobacteria

From Steinberg and Meeks (1989, 1991), Meeks (1990), Rai (1990), and Berg-
man et al. (1992a)

the reduced photosynthetic capacity of the cyanobiont and must
rely on reduced carbon derived from the plant.

Nitrogen fixed by the cyanobiont is released to the plant as
ammonia (@ Table 16.1) in both Anthoceros (Rodgers and
Stewart 1974; Stewart and Rogers 1977; Meeks et al. 1985a;
Meeks et al. 1985b) and Blasia (Rodgers and Stewart 1974;
Stewart and Rogers 1977), and initial uptake of the ammonia
occurs via the glutamine synthetase-glutamate synthase
(GS-GOGAT) pathway of the host (Meeks et al. 1983, 1985b;
Meeks 1990; Rai 1990). In Anthoceros, the cyanobiont retains as
little as 20 % of the nitrogen it fixes (Meeks et al. 1985a) yet
shows no signs of nitrogen deprivation. Ammonia is released by
the cyanobiont as a consequence of decreased activity of gluta-
mine synthetase, the first enzyme in the GS-GOGAT pathway,
which is the primary route of ammonia assimilation in
cyanobacteria (Muro-Pastor et al. 2005; Flores and Herrero
2005). In Anthoceros, the decreased activity of GS appears to be
the result of an undetermined posttranslational modification of
the enzyme because the amount of GS protein differs little in
filaments of free-living and symbiotically associated Nostoc
(Joseph and Meeks 1987; Lee et al. 1988; Meeks 1990, 2003,
2009; Meeks and Elhai 2002; © Table 16.1).
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Carbon Dioxide Assimilation and Transfer of
Carbon

The Calvin cycle is the primary route of CO, fixation in free-living
and symbiotically associated cyanobacteria, with ribulose-1,
5-bisphosphate carboxylase/oxygenase (RuBisCo) as the primary
carboxylating enzyme (Tabita 1994). The rate of light-dependent
CO, fixation in the Nostoc symbiont of Anthoceros immediately
after its separation from symbiosis is eightfold lower than that of
the same cyanobacterium in the free-living state (Steinberg and
Meeks 1989; Meeks 1990; © Tuble 16.1). However, the level of
RuBisCo protein is similar in the two cases (Rai et al. 1989;
Steinberg and Meeks 1989; Meeks 1990, 2003; Meeks and Elhai
2002), implying that activity is regulated by an unidentified
posttranslational modification of the enzyme (Steinberg and
Meeks 1989; Meeks 1990, 2003; Meeks and Elhai 2002). The
cyanobiont therefore grows photoheterotrophically, receiving
fixed carbon from its photosynthetic host, probably in the
form of sucrose (Stewart and Rogers 1977; Steinberg and
Meeks 1991). In at least Anthoceros, the presence of glycogen
granules in the cells of symbiotically associated Nostoc implies
that the symbiont is not starved of carbon (Meeks 1990).

Genetic Analysis of the Nostoc-Anthoceros
Association

Meeks and coworkers have developed genetic techniques,
including transposon mutagenesis, for the analysis of the
symbiotically competent cyanobacterium Nostoc punctiforme
strain ATCC 29133 (Cohen et al. 1994, 1998) and have used

B Table 16.2

these techniques to identify a number of genes involved in the
initial infection of Anthoceros. This has been aided by the avail-
ability of the complete genome sequence of Nostoc punctiforme
{DOE Joint Genome Institute website} (see [{http://www.jgi.
doe.gov}]).

The hrm Operon

In a transposon mutant of Nostoc 29133, characterized by an
increased rate of initial infection of Anthoceros (Cohen and
Meeks 1997; © Table 16.2), Meeks et al. (1999) identified
two open reading frames (ORFs), hrmU and hrmA, flanking
the site of transposition (@ Fig. 16.5). hrmA has no significant
similarity to sequences in major databases, whereas hrmU has
similarity to the sequences of mannonate oxidoreductase
genes and 2-keto-3-deoxygluconate dehydrogenase genes.
Expression of hrmUA is induced by an aqueous extract of
A. punctatus but not by the hormogonium-inducing factor,
HIFE. The aqueous extract appears to contain a hormogonium-
repressing factor (HRF) because it suppresses HIF-induced
hormogonia formation in the wild type but not in the mutant.
Whereas HIF is released into the growth medium, HRF
is probably released into the symbiotic cavity, suppressing
further hormogonium formation and permitting heterocyst
differentiation.

At the 5" end of hrmUA, three other ORFs (hrml, hrmR, and
hrmK) are followed by two ORFs coding for unknown
proteins, followed by hrmE, which has similarity to an aldehyde
reductase (@ Fig. 16.5). Hrml shows similarity to uronate isom-
erase, HrmR to the Lacl/GalR family of transcriptional

Effect of insertion mutations on the symbiotic infectiveness (expressed in column two as the number of symbiotic colonies per unit of
host tissue) and effectiveness (expressed in column three as acetylene reduction activity per g fresh weight of host tissue and in column
four as acetylene reduction activity per symbiotic colony) of Nostoc 29133 strains in association with Anthoceros punctatus

nmol C,H, reduced per min per:

Strain (gene) Colonies per mg dry wt per pg Chl a g of fresh weight Colony (x10~3) Gene induction factor(s)
ATCC 29133 (WT) 0.21 6.3 124 n.d.

UCD 328 (hrmA) 1.6 6.1 8.6 HRF

UCD 398 (sigH) 1.2 8.0 10.1 HIF

UCD 400 (tprN) 0.49 10.4 6.7 HIF and HRF

Abbreviations: Chl a, chlorophyll a; HRF, aqueous extract of A. punctatus containing hormogonium-repressing factor identified as inducing the hrm operon; WT,
wild type; HIF, exudate of A. punctatus containing hormogonium-inducing factor; and n.d., not determined (From Meeks et al. (1999). The standard deviations and

number of replicates have been omitted for simplicity)

500 bp
NV
| — 1
hrmE unk unk hrmK hrmR

@ Fig. 16.5

hrml hrmU  hrmA

Map of the open reading frames in the hrm locus of Nostoc punctiforme. The direction of transcription is indicated by the arrows. Unk are
unknown proteins. Sizes are approximate (Adapted from Campbell et al. (2003))
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repressors, and HrmK to gluconate kinases. HrmR is a DNA-
binding protein that binds sugar ligands and represses transcrip-
tion of hrmR and hrmE (Campbell et al. 2003). Galacturonate
abolishes in vitro binding of HrmR to DNA, implying that the in
vivo inducer may be a sugar molecule similar to or containing
galacturonate. These observations led Meeks and coworkers to
propose the following model for the way in which the HRF
external signal is transduced into Nostoc. HRF enters the Nostoc
cell and it, or a derivative similar to galacturonate, binds to
HrmR, rendering it incapable of binding to the hrmR
and hrmE operator regions; this derepresses transcription of
these genes, leading to inhibition of hormogonia formation
(Campbell et al. 2003).

sigH and ctpH

Mutation of the Nostoc 29133 sigH gene, which encodes an
alternative RNA polymerase sigma subunit, produces no obvi-
ous phenotype in filaments grown in medium with or without
combined nitrogen but results in an increased infection pheno-
type when they are cocultured with A. punctatus (Campbell et al.
1998; Meeks et al. 1999; Meeks and Elhai 2002; Meeks 2003;
© Table 16.2). Transcription of sigH is induced by Anthoceros
HIF, but not by HRE, and hrmA transcription is not altered in
a sigH mutant. Thus, although the hrmA and sigH mutants both
have an increased infection phenotype, it seems likely that
increased infection has a different basis in the two strains
(Meeks et al. 1999).

The gene ctpH lies immediately 5" of sigH and encodes a
protein with significant similarity to carboxy-terminal proteases
of the cyanobacterium Synechocystis PCC 6803 (Meeks et al.
1999). In Synechocystis 6803, this gene is required for processing
the carboxy-terminal portion of the photosystem II D1 protein
in the thylakoid lumen (Anbudurai et al. 1994). However, in
Nostoc 29133, ctpH seems to have a different physiological role
because it is not transcribed under vegetative growth conditions,
but transcription is induced by Anthoceros HIF. The significance
of this is not understood.

tprN

Lying 3’ of the gene devR, expression of which is essential for
heterocyst maturation is the gene tprN, which encodes a protein
with similarity to tetratricopeptide repeat proteins (Campbell
et al. 1996). These proteins have been studied primarily in
eukaryotes in which they are required for a variety of functions
from cell cycle control to transcription repression and protein
transport (Lamb et al. 1995). Inactivation of #prN in Nostoc
29133 has no apparent phenotypic effect in the free-living
growth state, but the mutant infects Anthoceros at about twice
the level of the wild type (@ Table 16.2). Transcription of tprN
occurs during vegetative growth but increases in the presence of
both HIF and HRF (Meeks et al. 1999). The significance of this
in the infection process is not known.

ntcA, hetR, and hetF

Nostoc punctiforme (Nostoc 29133) strains unable to develop
heterocysts because of mutations in either hetR or hetF can
still infect Anthoceros at a frequency similar to that of the wild
type, despite being incapable of forming a functional nitrogen-
fixing symbiosis (Wong and Meeks 2002). hetR is thought to
be the primary activator of heterocyst development
(Wolk 2000; Golden and Yoon 2003; Zhang et al. 2006), and
the HetF protein seems to be a positive activator of heterocyst
differentiation, enhancing transcription of hetR and ensuring
that HetR is localized to developing heterocysts (Wong and
Meeks 2001).

In cyanobacteria, NtcA functions as a nitrogen-
dependent global regulator (Herrero et al. 2004) and controls
the transcription of a number of genes, including hetR
(Fiedler et al. 2001; Herrero et al. 2001). The Nostoc
punctiforme ntcA mutant, UCD 444, forms motile hormogonia
with wild-type morphology but at only 5-15 % of the wild-
type frequency (Wong and Meeks 2002). However, rather
than infecting Anthoceros at a reduced frequency, as might
be expected, the ntcA mutant fails to infect at all. This
noninfective phenotype can be complemented with copies
of ntcA.

Interactions in the Nostoc-Gunnera Symbiosis

Although cyanobacterial-plant symbioses are the most wide-
spread of the nitrogen-fixing symbioses, with hosts through-
out the plant kingdom, those symbioses with angiosperms
(flowering plants) are presently restricted to one
monogeneric family, the Gunneraceae. This contrasts with
the more recently evolved rhizobia- or Frankia-angiosperm
symbioses, which involve a considerably wider angiosperm host
range. The scarcity is also unexpected as angiosperms form the
ecologically most successful plant division on earth, an area
discussed in recent reviews by Osborne and Bergman (2009)
and by Usher et al. (2007). In addition, cyanobacteria are
globally widespread with a morphological variation surpass-
ing most other prokaryotes. In spite of this, the
cyanobacterial range is narrow, with only one cyanobacterial
genus, Nosfoc, functioning as microsymbiont in Gunnera. How-
ever, as the Gunneraceae is one of the oldest angiosperm families
and with Gunnera and cyanobacterial fossils dating to some
90 million years ago (Ma) and three billion years ago (Ba),
respectively, this symbiosis is likely to have persisted for a long
time. Prior to the establishment of the Nostoc- Gunnera symbio-
sis, however, the same or a similar cyanobacterial genus may also
have given rise to chloroplasts by entering some ancestral
eukaryotic cell/organism. Indeed, the chloroplast genome of
Arabidopsis is more similar to that of Nostoc than to the unicel-
lular cyanobacteria tested (Martin et al. 2002; Deusch et al.
2008). This ancient endosymbiotic event (or series of events)
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was the origin of all plants and algae and therefore totally
revolutionized our biosphere and atmosphere (via oxygenic
photosynthesis).

A Unique Endosymbiosis

Although the Nostoc-Gunnera symbiosis was first described by
Reinke in 1873 (Reinke 1873), understanding of the infection
mechanism in this unique angiosperm symbiosis is incomplete.
In contrast to the other cyanobacterial-plant symbioses, the
Gunnera symbiosis is exclusively intracellular. Still, being
a facultative symbiosis, the cyanobiont is easily separated from
the plant and may be grown independently, and the symbiosis
can be reconstituted under laboratory conditions. This makes
the Nostoc- Gunnera symbiosis an excellent model for identifying
mechanisms involved in plant endosymbioses and indirectly in
plastid evolution. Also, since it is the only plant symbiosis in
which the cyanobacterium penetrates into the plant cells, the
symbiotic development in Gunnera may have evolved further
than that in all other plant symbioses in which the cyanobacte-
rium remains extracellular.

The Symbionts

The genus Gunnera was named by C. von Linné in honor of the
Norwegian bishop Gunnérus, a person Linné admired. The
approximately 30-50 Gunnera species are mostly subtropical to
tropical perennial herbs, the exception being the smallest,
G. herteri, which is annual (Wanntorp et al. 2001; Osborne and
Sprent 2002). The Gunnera plants are composed of large com-
pound spikes and are rhizomatous, or more seldom stolonifer-
ous, and have rhubarb-like leaves. Plant sizes vary considerably;
some are gigantic and may be the largest herbs on earth, such
as species in South America, Hawaii, and Asia, whereas others
are small and creeping, such as the stoloniferous species in
New Zealand. In nature, Gunnera spp. seem to be invariably
infected by cyanobacteria (Wanntorp et al. 2001; Osborne and
Sprent 2002).

Ever since the discovery of this peculiar symbiosis (Reinke
1873), cyanobacteria of the genus Nostoc, which are filamentous
and differentiate heterocysts, have been identified as the sole
cyanobionts (see Meeks et al. 2001; Meeks and Elhai 2002;
Bergman et al. 2003). The phenotypic range of the cyanobiont
of Gunnera is wide in terms of morphology, pigmentation, and
colony shape and size, which is obvious when isolates are culti-
vated (Bergman et al. 1992b; Rasmussen and Nilsson 2002;
Svenning et al. 2005; Papaefthimiou et al. 2008). A genotypic
variation has also been verified using genetic fingerprinting of 45
cultured isolates originating from 11 Gunnera species (Nilsson
et al. 2000; Rasmussen and Svenning 2001) and natural
cyanobacteria freshly collected from different Gunnera growing
in Chile (Guevara et al. 2002). One specific Gunnera plant may
also occasionally be infected with more than one Nostoc strain
(Nilsson et al. 2000), while no variation within one plant was

found in cyanobionts of Gunnera spp. sampled from natural
stands in Chile (Guevara et al. 2002) using the same fingerprint-
ing technique. 16S rRNA analyses also demonstrate that all
Gunnera isolates examined belong to the genus Nostoc
(Rasmussen and Svenning 2001). Svenning et al. (2005) dem-
onstrated that some cyanobacteria isolated from various
Gunnera spp. may form a distinct clade (based on the complete
16S rDNA gene sequence) suggesting host specificity, although
a few Gunneraisolates did not conform to this clade. Later it was
suggested that most cyanobionts are affiliated to two clusters in
which they are intermixed with free-living cyanobacteria
(Papaefthimiou et al. 2008).

Specificity and Recognition

Although all Nostoc strains form hormogonia (the plant coloni-
zation units) per definition, still only certain strains of Nostoc are
accepted as symbionts, which suggests the existence of other
selective recognition mechanisms (see Rasmussen and Nilsson
2002). The intracellular position of the cyanobiont in Gunnera
may also impose more severe restrictions on symbiotic partner
recognition than in other intercellular, and possibly less
intimate, plant symbioses. On the other hand, cyanobacterial
isolates from cycads and bryophytes readily invade Gunnera cells
and vice versa.

The Site of Gunnera Infection: The Gland

Infection occurs via a peculiar bright red gland (® Fig. 16.6),
already clearly visible at the developing cotyledon (see Bergman
2002; Bergman and Osborne 2002; Bergman et al. 2003; Chiu
etal. 2005; Khamar et al. 2010). The development of the glands is
a response to the nitrogen status of the Gunnera plant, and they
only fully develop under nitrogen-deplete conditions. The plant

O Fig. 16.6
Gunnera seedling with red stem glands out of which viscous
mucilage is released
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Schematic illustration of the Nostoc infection process in Gunnera.
Vegetative cells of Nostoc with heterocysts (5-10 %) are attracted
to the mucilage pouring out of the Gunnera stem and stolon
glands. The motile hormogonial stage is induced by the mucilage,
and the cyanobacterium proceeds toward the interior of the
gland. At the bottom of the channel, the cyanobacterial filaments
penetrate the plant cell walls, and intact Nostoc filaments enter
the Gunnera cells. After internalization, a cyanobacterial
phenotype with larger cells and supernumerous heterocysts (up
to 80 %) develops. The arrow indicates the direction of infection

hormone auxin is positively involved, potentially communicat-
ing the C:N status of the plant (Chiu et al. 2005; Khamar et al.
2010). Gland development is further accelerated under
N-limited conditions if modest levels of sugars (0.5-1.0 %
sucrose) are added (Chiu et al. 2005). This strengthens the
significant role of the glands in plant nitrogen acquisition.
Furthermore, high levels of carbohydrates (glucose and fruc-
tose), known to support symbiotic nitrogen fixation (Wouters
et al. 2000), accumulate in the mature glands prior to the
colonization by the cyanobacterium, while in Nostoc-colonized
glands (in which nitrogen is replenished via nitrogen fixation)
soluble sugar quantities are highly reduced (Khamar et al. 2010).

The glands secrete a carbohydrate-rich mucilage
(© Fig. 16.7) when non-infected, and new glands continuously
develop at the base of each new leaf petiole, i.e., near the growing
stem apices, which also become covered by the mucilage.
Cyanobacteria-colonized glands are closed and do not release
mucilage. Although root primordia were earlier suggested to be
the point of entry (Schaede 1951), the present consensus is that
glands are the sole cyanobacterial entry point (Silvester and
McNamara 1976; Bonnett and Silvester 1981; Towata 1985;
Johansson and Bergman 1992; Khamar et al. 2010). It has been
proposed that these modified glands should be termed “nod-
ules” (Silvester and McNamara 1976) and indeed a distinct and
well-functioning symbiotic “organ,” restricted in time and space,
develops below the gland surface on colonization. Each gland, and
possibly also each of the channels that penetrate into the gland
(see the section © “The Infection Process” in this chapter),
functions as an independent colonization conduit, which would
explain why several cyanobionts may be found inside one indi-
vidual gland (Johansson and Bergman 1992; Nilsson et al. 2000).

The involvement of other microorganisms in the establish-
ment of the Gunnera symbiosis, as proposed by Towata (1985), is
not likely. This can be demonstrated by, for instance, reconsti-
tution experiments under sterile laboratory conditions (Silvester
and McNamara 1976; Johansson and Bergman 1992). In addi-
tion, some cells of the gland have heavy tannin depositions,
which have been suggested to prevent the invasion of non-
compatible or unwanted microorganisms (fungi and bacteria),
which often reside together with cyanobacteria in the channel
mucilage (Towata 1985).

The focus has so far primarily been on morphological and adaptive
changes in the cyanobiont. The plasticity of Nostoc, in this respect,
is utilized by the plant throughout the colonization process and
is likely a key factor contributing to its success as a Gunnera
symbiont. A typical feature of the Nostoc-Gunnera symbioses is
the tight regulation by the plant of cyanobacterial behavior such
as cell division (considerably slowed down in planta), cell dif-
ferentiation (the development of supernumerous heterocysts),
and physiological performance (high nitrogen fixation rates).

Hormogonium Differentiation

A terrestrial cyanobacterium like Nostoc would (under normal
free-living conditions) primarily occur as nonmotile, vegetative
filaments with heterocysts at regular intervals (about 5-10 % of
the total cell number; © Fig. 16.7). On contact with Gunnera,
the gland and the plant apex are, however, soon covered by
a cyanobacterial “biofilm” composed of tightly packed hormo-
gonia (Osborne et al. 1991; Johansson and Bergman 1992;
Johansson and Bergman 1994; Chiu et al. 2005). Differentiation
of these small-celled motile hormogonia is essential for the
whole Gunnera colonization and cell penetration process; they
act as a means for the cyanobacterium both to reach and to
invade the Gunnera organ (the gland; © Fig. 16.7). The mucilage
has a pivotal role during this process (Rasmussen et al. 1994). It
is composed of highly glycosylated arabinogalactan proteins
(AGPs; Rasmussen et al. 1996) and stimulates not only growth
but also hormogonium differentiation. A low-molecular-weight
(<12kDa), heat-labile protein, not yet characterized, which acts as
hormogonium-inducing factor (HIF), has been identified in the
mucilage (Rasmussen et al. 1994). In contrast, the soluble sugars
of Nostoc-colonized glands inhibit hormogonium differentia-
tion (Khamar et al. 2010). This is needed to stimulate heterocyst
differentiation and nitrogen fixation, the “essence” of the sym-
biosis. Molecular mechanisms behind the induction of hormo-
gonia and their differentiation are still largely unexplored.
Preliminary studies, using subtractive hybridization and
proteomics (two-dimensional [2-D] gel electrophoresis coupled
to mass spectrometry) of soluble Nostoc proteins treated with
Gunnera mucilage show that the induction of hormogonium
differentiation is also reflected in a differential expression of



370 1 6 Cyanobacterial-Plant Symbioses

genes and proteins, whose expression is either up- or
downshifted or both. For instance, three mucilage-induced hie
(host-induced expression) genes have been identified, including
a putative precursor of a pheromone-like signaling peptide
(HieA), an outer membrane or secreted glycoprotein (HieB),
and a protein probably involved in adaptation to acidity (HieC;
Liaimer et al. 2001). The latter may be important as the Gunnera
mucilage has a pH of 4-5 (Rasmussen et al. 1994), a pH at the
lower limit of the cyanobacterial tolerance range. Another set of
proteins was also identified as being differentially expressed in
hormogonia (Klint et al. 2006). These proteins, which were
predominantly surface associated, may have roles in motility,
recognition, adhesion, as well as in communication with
host plants. The mucilage therefore appears to have important
functions at earlier stages of the Gunnera infection process.

Entrance and Penetration

The Gunnera glands are composed of a set of up to nine papillae
surrounding a central papilla (Johansson and Bergman 1992;
Uheda and Silvester 2001; Chiu et al. 2005). Between the papil-
lae, and leading into the stem tissue, are deep invaginations
through which the mucilage is released. The hormogonia use
these narrow channels to enter the dark interior of the Gunnera
stems (@ Fig. 16.7). As this is against the normal positive pho-
totactic behavior of Nostoc, a potent attractant must be released
by the plant, possibly carried by the mucilage. Motility is crucial
at this stage, as the direction of infection is opposite to that of the
flow of mucilage. Upon reaching the bottom of the gland chan-
nels, the cyanobacterium penetrates the thin walls of smaller
meristematic and dividing cells lining the channel (Silvester and
McNamara 1976; Johansson and Bergman 1992; Johansson and
Bergman 1994; Uheda and Silvester 2001). A delimited tissue
of Nostoc-infected Gunnera cells is formed within a few days of
inoculation. The mechanism(s) involved in the actual host cell
penetration is still unknown, although Towata (1985) suggested
the occurrence of pectolytic or cellulolytic activities in the muci-
lage of G. kaalensis. Also lining the channel are the thick-walled
secretory cells releasing the mucilage (Towata 1985).

Signal Exchange Between the Cyanobacterium
and the Host

Besides HIFs, the plant signals involved in hormogonium dif-
ferentiation still await genetic identification and chemical char-
acterization, as do the cellular response signaling cascades in
Nostoc. In this context, a highly interesting question is whether
the differentiation of hormogonia resulting from a biotic stim-
ulus (such as Gunnera mucilage) triggers specific genes (such as
those involved in “symbiotic competence”) but not those trig-
gered by any abiotic stimulus (such as red light). Also interesting
are mechanisms involved in the initial rapid cell division and the
machinery behind motility. All studies do, however, verify that
the plant influences cyanobacterial morphology and behavior at

all stages of the infection process and that this includes several
fundamental cyanobacterial processes such as growth, cell divi-
sion, cell differentiation, ammonia assimilation, and phototactic
behavior. The question is whether this is triggered by plant
compounds or by the environment within the plant. For
instance, the symbiotic tissue is low in oxygen and light, which
may have consequences for gene expression.

Another open question is to what extent the release of the auxin
IAA (indole-3-acetic acid) by Nostoc (Sergeeva et al. 2002) acts as
a signal or influences the development of the symbiotic Gunnera
tissues. The influence of auxin has recently been stressed (Chiu
et al. 2005). Indeed, cyanobacteria seem to have the potential to
produce major phytohormones (Liaimer and Bergman 2003)
and also to release “AGP-like” proteoglucans, which may also
influence plant development (Bergman et al. 1996).

Internalization of the cyanobiont elicits novel, dramatic modi-
fications of cyanobacterial morphology and function
(© Fig. 16.7). Because hormogonia lack heterocysts, they are
unable to fix nitrogen. Thus, the hormogonium stage is lethal
under free-living conditions (unless combined nitrogen is avail-
able), and hence is, of necessity, transient. Redifferentiation into
vegetative filaments with heterocysts occurs after 1-2 days. The
maintenance of a continuous vegetative stage with heterocysts is
a prerequisite for the symbiosis to persist as an efficient provider
of combined nitrogen. Repression of hormogonium differenti-
ation in Gunnera may be achieved by homologues to the hor-
mogonium-repressing factor(s) (HRFs) identified in the
bryophyte symbiosis (see Meeks and Elhai 2002). One compo-
nent of this repression machinery may be the inhibitory effects
on hormogonium development by the soluble sugars present in
Nostoc-colonized glands (Khamar et al. 2010).

When inside the Gunnera cells, the cyanobacterial cells
enlarge, and cell division is considerably restricted (S6derbick
and Bergman 1992). In addition, the filaments remain
surrounded by the host cell plasmalemma through the pinocy-
tosis process. This membrane, like the peribacteroid membrane
in Rhizobium-legume symbioses, acts as the interface between
the symbionts through which the exchange of metabolites takes
place. The Gunnera cells eventually become filled with
cyanobacterial filaments, which soon start to differentiate an
abnormally high frequency of heterocysts (® Fig. 16.7). Once
infection is complete, the host must tightly control cyanobiont
growth to avoid being outgrown, and this may explain the
enlargement of cyanobacterial cells typical for the endosymbi-
otic stage (see Rai et al. 2000; Bergman 2002).

The dramatic morphological transitions seen in Nostoc on
entering Gunnera cells are also reflected in the transcription of
genes (and the corresponding proteins) related to heterocyst
differentiation and nitrogen fixation (see Table 1 in Bergman
2002). For instance, the expression of the hefR gene (the master
gene for heterocyst differentiation) correlates positively with the
increase in heterocyst frequency, as does the expression of the
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Phylogram of 11 Gunnera species representing varying sizes and geographical origin. Myrothamnus is an African shrub-like plant

growing in dry areas, as opposed to Gunnera species that prefer wet environments characterized by high humidity and high rainfall

(From Wanntorp et al. (2001))

nitrogen-responsive transcription factor encoded by ntcA, whereas
nifH expression is (as expected) already high, close to the grow-
ing apex. By contrast, the expression of the glnB gene, encoding
the signal transduction protein Pyj, decreases along the same
symbiotic profile (Wang et al. 2004). The overexpression of
both hetR and ntcA and the contrasting downregulation of
glnB are features indicating important regulatory differences
between the symbiotic and free-living life stages. Later, Ekman
et al. (2006) identified a differential protein expression pattern in
a cyanobacterium isolated from Gumnnera manicata when using
proteomic analysis. Changes were primarily related to cell enve-
lope and membrane-associated proteins and to changes in cel-
lular activities of C and N metabolism, including upregulation
of nitrogenase and proteins of the oxidative pentose phosphate
pathway and a downregulation of Calvin-Benson cycle enzymes.
The significance of these findings in relation to cyanobacterial
cell differentiation and the establishment and maintenance of an
efficient nitrogen-fixing cyanobacterial-plant symbiosis now
needs to be further explored.

Cross-sectioning of rhizomes of mature plants reveals the
final outcome of the symbiosis: distinct and bright blue-green
pigmented but restricted and delimited cyanobacterial colonies
seen scattered in the rhizome or along the stolons of the smaller
Gunnera plants (Osborne et al. 1991). However, the sites of
infection comprise only a small proportion of the total plant
biomass, particularly in the large Gunnera species.

As with most other plant symbioses, the main function of
the cyanobacterium in Gunnera is to cover the total combined
nitrogen requirement of the host via nitrogen fixation

(Silvester and Smith 1969; Silvester 1976; Bonnett and Silvester
1981; Osborne et al. 1992; Khamar et al. 2010). The heterocysts
act as the nitrogen-producing entities, holding all the nitroge-
nase (Soderbick et al. 1990; Soderbick 1992), and are capable of
supporting the entire symbiosis with combined nitrogen. In addi-
tion, the cyanobacterium attains enhanced nitrogen fixation capac-
ities compared to its free-living relatives (Silvester 1976; Bonnett
and Silvester 1981). This may be related to the high heterocyst
frequency or to an enhanced nitrogen starvation signal caused
by the continuous N-drainage from the cyanobiont.

Up to 90 % of the nitrogen fixed is exported from the
cyanobacterium to the host (Silvester et al. 1996). This is likely
due to downregulation of glutamine synthetase protein levels,
specifically in heterocysts, as well as other activities in symbiosis
(Soderbick 1992). As in most nitrogen-fixing plant symbioses,
the nitrogen fixed is released primarily as NH," (Silvester et al.
1996). The Nostoc-infected Gunnera tissues are always well
invested with vascular strands that facilitate exchange of metab-
olites such as nitrogen and carbohydrates (see © Fig. 16.8 in
Bergman et al. 1992b). Multiple vascular strands (polystele)
persist in Gunnera, which may be reminiscent of an aquatic
ancestry (Osborne et al. 1991). Stock and Silvester (1994)
showed, using pulse-chase labeling with '°N, that the nitrogen
fixed was efficiently transported from mature to young parts
(with lower heterocyst frequencies) in G. monoica stolons and
that N-translocation occurs via the phloem.

As Nostoc inside the Gunnera cells is excluded from light, the
host must supply the cyanobiont with fixed carbon via its
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photosynthesis. Hence, the cyanobiont must adapt to
a heterotrophic, or at least a mixotrophic, mode of life
to generate enough reductant and ATP to support the
demanding nitrogen fixation process (Soderbick and Bergman
1992, 1993; Black et al. 2002; Khamar et al. 2010). Nevertheless,
total pigment and ribulose-1,5-bisphosphate carboxylase levels
remain constant along the developmental sequence, from young
to old parts, although values decrease if related to cell volume as
this increases in older cells (Soderbdck and Bergman 1992).
The high frequency of heterocysts also drastically
diminishes the number of vegetative cells, but the use of gas
chromatography with mass spectrometry (GC-MS) has
shown that still only the vegetative cells are actively taking
up C (Black et al. 2002). Following '*C translocation in
Nostoc-infected Gunnera stolons reveals that the Nostoc-
infected tissues at the apex of G. magellanica stolons are
particularly efficient sinks for newly fixed plant carbon
(Soderback and Bergman 1993). The phloem of Gunnera
has the unusual capacity to contemporaneously transport
N outward and C inward toward the symbiotic tissue
(Stock and Silvester 1994). A tight interaction of nitrogen
and carbon metabolism in the Gunmnera symbioses is also
suggested (see, e.g., Chiu et al. 2005; Khamar et al. 2010).
hetR expression in symbiotically competent Nostoc (PCC 9229)
is negligible in the absence of a carbon source in
darkness but pronounced in the presence of fructose (Wouters
et al. 2000).

Our understanding of the ecology and significance (e.g., as
a nitrogen fixer) of this ancient plant and its cyanobiont is
still rudimentary. For a detailed review of the ecology of
Gunnera, the reader is referred to Osborne and Sprent (2002).
The geographic range of Gunnera was considerably wider in
the past when the climate was more favorable (Osborne et al.
1991; Osborne and Sprent 2002). Today, Gunnera
typically grows in super-humid habitats and often at high ele-
vations or on steep cliffs. The genus is found in all continents,
except in Europe and polar regions (see Wanntorp et al. 2001;
Osborne and Sprent 2002). Some large Gunnera species
were introduced into Europe as ornamental plants at the end
of the nineteenth century, and eventually some plants escaped
and became invasive in, e.g., western Ireland, the Channel
Islands, and the Azores (Osborne et al. 1991; Osborne and
Sprent 2002).

The genetics (rbcL and rpsl6 introns) of Gunnera plant
species have recently been analyzed (@ Fig. 16.8). The large
species in South America and Hawaii distinctly group together
in one clade, the often smaller species of New Zealand and
Southeast Asia group in another, while G. perpensa (the first
Gunnera to be described by Linné) and G. herteri (with the
smallest size) are sister groups, representing Africa and Brazil,
respectively (Wanntorp et al. 2001).

From a cyanobacterial perspective, the Nostoc-Gunnera symbi-
osis may on the one hand seem wasteful; the cyanobiont merely
functions as an N-producing entity with highly suppressed
growth and is possibly deprived of producing a new generation
of cyanobionts, being enclosed in tissues in a long-lived plant.
On the other hand, it may be beneficial; the cyanobiont no
doubt extends its ecological niche to also include symbiotically
competent cells of an angiosperm. In this way, the cyanobacte-
rium not only gains access to plant leaves and roots and their
nutrient acquisition capacities but it also finds shelter from all
possible predators, being the sole organism in this “golden cage.”
The data obtained so far clearly show that cyanobacterial
morphology and protein and gene expression patterns are dras-
tically affected prior to, during, and after the establishment of
the Nostoc-Gunnera symbiosis, although no symbiosis-specific
genes and proteins, equivalent to the nod genes and Nod-factors
in the Rhizobium-legume symbioses, have yet been discovered.
However, it seems logical to assume that equally advanced
molecular mechanisms must persist in a cyanobacterial-
angiosperm endosymbiosis to generate this potentially very
long-lived, well-coordinated, and successful interaction.

The Azolla Symbiosis

Taxonomy and Distribution

The Azolla symbiosis is a mutualistic association between the
aquatic fern Azolla, the filamentous, heterocystous, nitrogen-
fixing cyanobacterium Nostoc (formerly classified as Anabaena),
and endosymbiotic bacteria. The genus Azolla has been reported
to contain seven extant species that are divided into two sections
on the basis of spore morphology. Section Azolla (New World
species) has included A. caroliniana, A. mexicana, A. filiculoides,
A. microphylla, and A. rubra. However, the taxonomy of the New
World species of Azolla has been the subject of much debate. In
2004, a comprehensive review of the literature was carried out
along with original observations of type specimens using optical
and scanning electron microscopy (Evrard and Van Hove 2004).
This study confirmed the opinion of some that A. caroliniana
and A. microphylla are synonyms of the previously described
A. filiculoides. To clarify the taxonomic classification, the authors
suggested the need to rehabilitate the Mettenius concept,
and then according to the priority rule, the section Azolla
species must be named A. cristata and A. filiculoides.
Section Rhizosperma (Old World species) includes A. pinnata
and A. nilotica. Geographically, A. pinnata is found in Australia,
New Zealand, Japan, Asia, and Africa, and A. nilotica is primarily
found in Africa (Saunders and Fowler 1993). Species from the
section Azolla are more widely distributed around the world and
are found in Europe, Asia, Africa, Australia, and America.
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However, the distribution of A. rubra is restricted to
New Zealand and Australia (Large and Braggins 1993). The
distribution of some species has been impacted by human effects
(Janes 1998a).

Morphology

The plant’s shape, color, and size change significantly under
different growth conditions (Janes 1998b). The rhizome is
branched, bearing alternate leaves that are bilobed. The ventral
lobe is transparent and serves to float the plant on the surface of
the water, whereas the dorsal photosynthetic lobe contains
a leaf cavity in which the symbionts are found. The roots are
adventitious. The shedding of roots and branches is related to
environmental and physiological factors and enables the plant
to reproduce via vegetative fragmentation. Factors affecting the
growth of Azolla include genotype, temperature, light (intensity,
quality, and photoperiod), water chemistry (including pH,
salinity, and nutrients), and influence of pests and diseases
(see Singh and Singh 1997).

General Characteristics

The association has been most frequently used as an alternative
nitrogen fertilizer in rice fields, as well as a supplemental animal
fodder. Azolla provides the cyanobiont with nutrients, including
fixed carbon, and the cyanobiont provides the host with com-
bined nitrogen (via nitrogen fixation). The exact role of the
endosymbiotic bacteria in the association remains unclear;
however, some possible functions have been suggested.

Cyanobacterial Symbionts

Identification

The filamentous, heterocystous, nitrogen-fixing cyanobacterial
symbionts in the Azolla association have been extensively stud-
ied using both traditional and modern molecular techniques. In
addition to characterization of the cyanobionts after they have
been directly extracted from the association, there have been
a number of studies in which cyanobacteria were isolated and
cultured, in attempts to study the cyanobacterial symbionts in
a free-living state. While numerous researchers have reported
success in isolation and cultivation of the symbiotically associ-
ated cyanobacteria (Newton and Herman 1979; Tel-Or et al.
1983; Gebhardt and Nierzwicki-Bauer 1991; see Braun-Howland
and Nierzwicki-Bauer 1990), molecular studies (primarily based
on restriction fragment length polymorphism [RFLP] analyses)
have indicated that none of the isolates represent the
major cyanobacterial symbionts in the association (Gebhardt

and Nierzwicki-Bauer 1991). Though not conclusively

demonstrated, major as well as some minor cyanobacteria may
be present in the association, with the more readily cultured
cyanobacteria representing minor symbionts (Gebhardt and
Nierzwicki-Bauer 1991). The other possible explanation is that
the isolates presumably obtained from the association are actu-
ally epiphytes. However, recent studies of the genetic diversity of
cultured cyanobionts of diverse species of Azolla revealed
a genetic distinctness of the cultured Azolla cyanobionts as
compared to free-living cyanobacterial strains of the genera
Anabaena and Nostoc and symbiotic Nostoc strains from
Anthoceros, Cycas, and Gunnera (Sood et al. 2008). These find-
ings support the coexistence of minor species rather than epi-
phytes. Regardless, based on molecular studies, it has not been
demonstrated that the major cyanobacterial symbiont from
the association can be cultured in a free-living state. In fact,
with the genome sequencing of the major cyanobiont of an
A. filiculoides strain, there is now strong evidence (described
below) that there has been ongoing selective streamlining of
the cyanobiont genome which has resulted in an organism
devoted to nitrogen fixation and devoid of autonomous growth
(Ran et al. 2010).

Given the challenge of studying the cyanobacterial symbi-
onts in a free-living state, direct molecular studies have been
used for accurate identification. Restriction fragment length
polymorphism (RFLP) analyses (Gebhardt and Nierzwicki-
Bauer 1991), polymerase chain reaction (PCR) fingerprinting
(Zheng et al. 1999), random amplified polymorphic DNAs
(RAPDs; Van Coppenolle et al. 1995), as well as fluorescence in
situ hybridizations (FISH) (Bushnell 1998) have been used to
examine the identity of the symbiotic cyanobacteria. Regardless
of the approach used, the cyanobiont referred to as “Anabaena
azollae” has in most instances been described as being somewhat
related to Anabaena or Nostoc (Plazinski et al. 1990b; Gebhardt
and Nierzwicki-Bauer 1991). A study (Baker et al. 2003) using
comparisons of sequences of the phycocyanin intergenic spacer
and a fragment of the 16S rRNA gene places the Azolla
cyanobiont in the order Nostocales but in a separate group
from Anabaena or Nostoc. Additionally, near full-length
(1,500 bp) 16S rRNA sequencing and phylogenetic analysis of
major cyanobionts from a variety of Azolla species yielded sim-
ilar results (Milano 2003). In 1989, Komarek and Anagnostidis
placed the Azolla cyanobiont in a revised genus named
“Trichormus” on the basis of morphology (Komarek and
Anagnostidis 1989). This is not inconsistent with the most
recent molecular-based findings.

Recently, the genome sequencing of a cyanobacterium
from Azolla filiculoides leaf cavities has provided the most
comprehensive information on its identity (Ran et al. 2010).
Surprisingly, the phylogenetic analysis places the cyanobiont
(Nostoc azollae 0708) most closely with Raphidiopsis brookii D9
and Cylindrospermopsis raciborskii CS 505, the two multicellular
cyanobacteria with the smallest known genomes (Stucken et al.
2010). However, it shares the highest number of protein groups
with Nostoc sp. PCC 7120, Anabaena variabilis ATCC 29413, and
N. punctiforme PCC 73102 (Ran et al. 2010).
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The taxonomy of the cyanobionts is generally in agreement
with the taxonomy of the host plant (Plazinski 1990; Van
Coppenolle et al. 1993; Zheng et al. 1999). These findings,
taken in conjunction with the continuous maintenance of the
symbiosis throughout the life cycle of the plant (see the section
© “The Infection Process” below), suggest coevolution of the
cyanobionts and the host plant.

Developmental Profile Along the Main Stem Axis

The growth of the endophyte is coordinated with the growth of
the plant. In the apical meristem and younger leaves, the
cyanobacterial vegetative cells are smaller than in older leaves
and undergo frequent cell divisions. Increases in leaf age are
accompanied by a decrease in cell division and increased size
of the cyanobacterial vegetative cells, as well as increased hetero-
cyst frequencies (Hill 1975). The number of heterocysts and the
nitrogen fixation rates vary in leaves of different ages, as well as
in different Azolla species (Hill 1977). Heterocyst frequencies
can reach up to 20-30 % of the cells within a filament in the
symbiotically associated cyanobiont. These are much higher
than the typical 10 % heterocyst frequency in free-living
Anabaena/Nostoc species.

Bacterial Symbionts

The presence of bacteria residing within the leaf cavity of Azolla
has been recognized for many years (Carrapico 1991), yet still
unclear is the specific function(s) of most of the bacteria in this
symbiosis. Initial attempts to study the symbiotic bacteria
employed traditional microbiological, biochemical, and physio-
logical techniques for the identification of bacteria isolated
from a variety of Azolla species. Utilizing these approaches,
there were many reports of Arthrobacter spp. (most frequently
A. globiformis) occurring in symbiotic association with Azolla
(Gates et al. 1980; Wallace and Gates 1986; Forni et al. 1989,
1990; Nierzwicki-Bauer and Aulfinger 1991; Shannon et al.
1993). Agrobacterium has also been reported to be isolated
from different Azolla species (Plazinski et al. 1990a; Shannon
et al. 1993; Serrano et al. 1999). Other bacteria, such as
Staphylococcus sp., Rhodococcus spp., Corynebacterium jeikeium,
and Weeksella zoohelcum, were identified by BIOLOG and API
tests as being in association with Azolla (Serrano et al. 1999).
A detailed review of the identification of bacteria isolated from
Azolla species is provided in Lechno-Yossef and Nierzwicki-
Bauer (2002). Molecular techniques, in particular 16S rDNA
gene amplification, cloning, screening, sequencing, and
phylogenetic analysis, have provided more detailed information
on the identity of the symbiotic bacteria (Lechno-Yossef 2002;
Milano 2003). In the accessions studied, sequence similarity
found that the most abundant bacterial symbionts in
A. caroliniana and A. filiculoides were Frateuria aurantia and
Agrobacterium albertimagni and in A. mexicana, Agrobacterium
tumefaciens (Lechno-Yossef 2002). More recent research
studying the endophytic bacteria within A. microphylla using

PCR-DDGE and electron microscopy revealed a complex and
divergent bacterial community with Bacillus cereus as the dom-
inant species (Zheng et al. 2008).

The Leaf Cavity

In the association, the symbionts reside in a leaf cavity, an
extracellular compartment in the dorsal lobe of the leaf. In
mature leaves, the symbionts (cyanobacteria and bacteria) are
located in the periphery of the leaf cavity in mucilaginous
material between internal (Nierzwicki-Bauer et al. 1989) and
external envelopes (Uheda and Kitoh 1991). Electron micro-
scopic analysis combined with specific staining showed that
the inner envelope does not have a tripartite structure typical
of a membrane and is rich in lipids (Nierzwicki-Bauer et al.
1989). The external three-layered envelope is believed to contain
cutinic and suberic substances, as revealed by response to chem-
ical treatments of degradation using hot alkali methanol
(de Roissart et al. 1994).

The adaxial epidermis of the leaf cavity contains a pore that
is surrounded by two cell layers (Veys et al. 1999, 2000).
One layer inside the pore is composed of teat-shaped cells
that are extended from the adaxial epidermis. The other layer
corresponds to the inner epidermis, which lines the inside of the
cavity. Three to four tiers of teat cells form a cone-like pore with
an average diameter at the base of 80 um. The pore opening is
larger in younger leaves, and the morphology of the teat cells
suggests that their function is as a physical barrier to prevent
particles and organisms from entering the cavity and the
symbionts from exiting (Veys et al. 2002).

The Infection Process

Azolla is a heterosporous water fern that is capable of both sexual
and asexual reproduction. Unlike any of the other cyanobacterial
symbioses, the host is in continual association with the symbi-
onts, making this the only known permanent symbiosis. Thus,
rather than reinfect Azolla, the symbionts retain coordinated
growth in association with the host throughout its life cycle.
Descriptions of the processes involved in maintaining the con-
tinual association during sexual and asexual reproduction are
described briefly below.

Sexual Reproduction

Sporulation is the sexual reproduction process in Azolla. During
sexual reproduction, the host produces both mega- and
microsporocarps. The partitioning of the cyanobacterial fila-
ments into the developing sporocarps and the reestablishment
of the symbiosis following embryogenesis were originally
described for A. mexicana (Perkins and Peters 1993; Peters and
Perkins 1993). The symbionts that are used as inoculum to the
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developing sporocarps come from the dorsal lobe of the same
leaf in which the sporocarps are developing. Recently,
a comprehensive study of cellular responses in the
cyanobacterial symbionts during its vertical transfer via
megasporocarps between plant generations in the A. microphylla
symbiosis was reported (Zheng et al. 2009). During colonization
of the megasporocarp, the cyanobacterium entered through
pores at the top of the indusium as motile hormogonium fila-
ments. Subsequently, the cells differentiated into akinetes in
a synchronized manner. Also discovered was that this process
was accompanied by cytoplasmic reorganizations within the
cyanobionts and the release of numerous membrane vesicles,
most of which contained DNA, and the formation of a highly
structured biofilm (Zheng et al. 2009). These data revealed
complex adaptations in the cyanobacterium during transition
between plant generations that merit further investigation.

The cyanobiont akinetes (which function as spores) and the
bacterial symbionts (which do not always show ultrastructural
characteristics of spore envelopes; Aulfinger et al. 1991) found in
the megasporocarps are transferred to the developing spores and
sporelings. After separation of the megasporocarp from the
plant, part of the indusium is shed, and the proximal half
becomes the indusium cap. The symbionts reside in a space
called “the inoculation chamber” (Peters and Perkins 1993),
located between the indusium cap and the apical membrane of
the megasporocarp. Following fertilization and the beginning of
embryogenesis, the symbionts resume metabolic activity. With
the assistance of cotyledonary hairs, the symbionts are intro-
duced into the embryonic leaf before it displaces the indusium
cap (Peters and Perkins 1993). Leaves, which grow from the
meristem, are initially unlobed but contain a structure similar
to the leaf cavity that contains the symbionts. As the frondling
continues to grow, the symbionts are distributed into the
developing leaf cavities by a mechanism similar to the transfer
mechanism used during asexual reproduction via vegetative
fragmentation (see next section).

Asexual Reproduction

The main form of reproduction in Azolla is vegetative fragmen-
tation. The apical meristem of each branch contains a colony of
undifferentiated cyanobacterial cells. Cyanobacterial filaments
from the apical colony are introduced into the leaf primordium
before the development of the leaf and leaf cavity are complete.
The partitioning of the endophytes into the developing leaves is
facilitated by entanglement around primary branched hair
(PBH) cells of Azolla (Calvert and Peters 1981). The leaf cavity
starts to develop and engulf the cyanobacterial colony in the
fourth or fifth leaf along the stem axis. In this way, symbionts are
inoculated into every leaf cavity that is formed. The develop-
ment of the leaf cavity is also accompanied by the formation of
simple hair cells by Azolla (Peters and Calvert 1983).

“Artificial” In Vitro Infection of Cyanobacteria
In sporulating Azolla, sexual hybridization between different
Azolla species, as well as the formation of new combinations of

Azolla and Nostoc, has been somewhat successful (Watanabe
1994; Watanabe and Van Hove 1996). For example, Nostoc
from A. microphylla (MI4031) was successfully introduced into
A. filiculoides (F11034) by exchange of the indusium cap of the
megaspore (Lin et al. 1989). Successful sexual hybridizations
between A. microphylla (megasporocarp) and A. filiculoides
(microsporocarp; Wei et al. 1988; Do et al. 1989), between A.
filiculoides (megasporocarp) and A microphylla
(microsporocarp; Watanabe et al. 1993), and between A.
mexicana and A. microphylla (Zimmerman et al. 1991) have
also been reported. The key to these successes has been having
the cyanobacteria at the appropriate stage of development (dur-
ing akinete germination and vegetative cell growth) that mimics
what naturally occurs in situ.

The recognition between Azolla and Nostoc azollae is facilitated
by lectins in both the plant (Mellor et al. 1981) and the
cyanobionts (Kobiler et al. 1981, 1982). Additionally,
bacteria isolated from A. pinnata and A. filiculoides have been
shown to contain lectins (Serrano et al. 1999). The presence of
Rhizobiaceae symbionts in association with different Azolla
species and cultures examined would suggest that this group of
bacteria has a role in the symbiosis. Plazinski et al. (1991)
showed that the nodL and nodABC genes gave hybridization
signals to a plasmid and the chromosome of the isolate AFSR-
1 from A. filiculoides. These authors suggest that the nod genes, if
active in the bacterial symbionts of Azolla, play a regulatory role
in the development of the symbiosis or in the maintenance of
bacterial association with the plant.

Morphological Modifications to Host and
Cyanobacteria

The leaf cavity and inner and external envelopes of Azolla do not
appear to be present only when it is symbiotically associated
with the cyanobionts. These structures are present in both
Nostoc-free and Nostoc-containing Azolla (Nierzwicki-Bauer
et al. 1989). This evidence excludes the involvement of the
cyanobionts in the formation of these structures. However,
given that the cyanobiont-free plants examined still contained
symbiotic bacteria, a possible role of bacteria in the synthesis of
the leaf cavity envelopes cannot yet be excluded.

Nitrogen Fixation and Transfer of Fixed Nitrogen
Nitrogen fixation is carried out by the heterocysts of the

cyanobiont. In leaf cavities of different ages along the stem
axis of Azolla, the heterocyst frequencies and nitrogen fixation
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rates vary. Nitrogen fixation, as determined by the acetylene
reduction assay, occurs in the apical (younger) leaves but not
in the stem apex, increases and reaches a peak in leaves of middle
age, and then decreases in the older leaves (Canini et al. 1990).
Ammonium, the product of nitrogen fixation, is released from
heterocysts and assimilated by Azolla into glutamate using the
glutamine synthetase (GS)-glutamate synthase (GOGAT) sys-
tem (Peters and Calvert 1983). Nitrogenous compounds in the
form of glutamate, glutamine, ammonia, and other glutamate
derivatives are transferred from the mature leaf cavities to the
stem apex (Peters et al. 1985). In Nostoc azollae, the activity and
protein content of GS are only 5-10 % of that of free-living
Anabaena (Orr and Haselkorn 1982). However, the nitrogen
fixation activity is much higher because of the increased number
of heterocysts. Some of the bacteria found in this association can
fix nitrogen. Immunoelectron microscopy studies using anti-
bodies against the Fe and FeMo protein subunits of nitrogenase
revealed that a subset of the bacteria in the A. caroliniana and
A. filiculoides associations contained these nitrogenase subunits
(Lindblad et al. 1991). The potential nitrogen-fixing contribu-
tion of the bacteria in the association separate from that of
cyanobacterial symbionts could not be measured because they
coexist in the leaf cavities and, once removed, are likely to have
altered capabilities.

Carbon Assimilation and Transfer of Fixed
Carbon

The cyanobiont, Nostoc azollae, has photosynthetic capabilities;
however, in the symbiotic state, it is believed to contribute less
than 5 % of the total CO, fixed in the association (Kaplan and
Peters 1988). Pulse-chase studies have shown that sucrose from
the plant is supplied to and accumulated by the cyanobiont
(Peters et al. 1985). Simple hair cells of Azolla are involved in
the transport of sugars from the photosynthetic mesophyll cells
to the leaf cavity. Simple hair cells have ATPase activity in their
plasmalemma and some accumulation of starch in their chloro-
plasts (which do not possess ribulose 1, 5 bisphosphate carbox-
ylase, RuBisCO), suggesting active transfer of sugars from the
simple hairs to the leaf cavity (Carrapico and Tavares 1989).
Additionally, primary branched hair cells, having the morphol-
ogy of a transfer cell, are believed to be involved in nutrient
transfer from the plant to the cyanobiont(s) (Peters et al. 1985).

The Azolla symbiosis is of tremendous ecological importance,
having both positive and negative impacts. On the positive side,
the association has been extensively used as a biofertilizer, pro-
viding a source of combined nitrogen in the form of ammo-
nium, thereby reducing or eliminating the need for the addition
of chemical fertilizers. This role has been most extensively used
in conjunction with rice paddies or fertilization of fields. The

growth of Azolla into thick mats also makes it effective in
suppressing weed growth. Owing to its high protein content,
Azolla is used as a fodder for sheep, pigs, ducks, etc. The ability
of Azolla to remove nitrates and phosphorous from water has
resulted in improvement of water quality. Additionally, Azolla
has been used to remove heavy metals from water. Ten useful
characteristics attributed to this association have been described
(Van Hove and Lejeune 1996; Lejeune et al. 1999), with the
capacity to fix atmospheric nitrogen, high productivity, high
protein content, and a depressive influence on both aquatic
weeds and NH; volatilization being considered unquestionably
useful.

The same characteristic feature that makes Azolla useful for
weed suppression and biofertilization of fields (namely, the
ability to grow in thick mats) also results in a number of negative
ecological impacts. For example, growth of Azolla mats in
streams in Zimbabwe has been shown to have a negative impact
on animal biodiversity (Gratwicke and Marshall 2001). In many
regions where Azolla is an invasive species, it has overgrown
many native species. In efforts to control Azolla growth, biolog-
ical controls such as the introduction of a frond-feeding weevil
(McConnachie et al. 2004) or the flea beetle (Hill and
Oberholzer 2002) are being explored. Thus, the overall ecolog-
ical impact of the Azolla association continues to expand and
may reach even to Mars, since Azolla is currently being used in
studies examining possible bioregenerative life support on Mars
(http://www.highmars.org/niac/niac04.html, The Caves of
Mars Project website).

The most important recent advancements related to the Azolla
symbiosis have been proteomic (Ekman et al. 2008) and geno-
mic analyses (Ran et al. 2010) of the cyanobacterium of the
A. filiculoides symbiosis. In brief, proteomic analyses revealed
that processes related to energy production, nitrogen, and car-
bon metabolism and stress-related functions (e.g., superoxide
dismutase and peroxiredoxins) were upregulated in the
cyanobiont compared with a free-living strain, whereas photo-
synthesis and metabolic turnover rates were downregulated
(Ekman et al. 2008). Genome sequencing of the cyanobiont of
A. filiculoides strongly suggests that these cyanobionts are at the
initial phase of a transition from a free-living organism to
a nitrogen-fixing plant entity. There has been coevolution
between Azolla and the cyanobiont with genome degradation
and signs of reductive genome evolution resulting in an organ-
ism devoted to nitrogen fixation and devoid of autonomous
growth (Ran et al. 2010). Noteworthy is the loss of function
within gene categories for basic metabolic processes such as
glycolysis, replication, and nutrient uptake. This genomic anal-
ysis now opens the door for obtaining a much better under-
standing of this ecologically and evolutionarily important
symbiosis.
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The Cycad Symbioses

Introduction

First appearing in the Pennsylvanian era some 300 million
years ago, cycads are the most primitive and longest-lived of
present day seed plants (gymnosperms). They are also the
only gymnosperms that enter into symbiotic associations
with cyanobacteria. Once plentiful during the Jurassic, occupy-
ing far reaching habitats stretching from Alaska and Siberia
to the Antarctic, they are now found in diminishing numbers
in certain subtropical and tropical regions of mostly the
southern hemisphere, including Australia, parts of Southern
Asia, and South Africa (Brenner et al. 2003; Vessey et al. 2005).
There are two or three extant families with some 300 species in
10 genera (Chaw et al. 2005; Vessey et al. 2005; Bergman et al.
2007; see also Lindblad 2009). Cycads are long-lived, cone-
bearing evergreen palm-like plants which can reproduce either
asexually (producing stem offshoots or suckers) or sexually.
They grow terrestrially, with the exception of Zamia
pseudoparasitica which is the only true epiphytic cycad and
hangs from branches by the tap and lateral roots
(Stevenson 1993).

In general, cycads have a stout trunk with a large crown
of tough spiny leaves and can vary in height from a few tens of
centimeters to almost 20 m at maturity. Most cycads
produce different root types—a thick taproot that extends
some 9—12 m beneath the soil surface, lateral roots, and coralloid
roots which are highly specialized lateral roots named for
their resemblance to coral. Coralloid roots exhibit negative
geotropism, growing sideways and upward toward the soil sur-
face, and are the sites in which symbiotic cyanobacteria can
be found (Costa and Lindblad 2002; Lindblad and Costa
2002; Brenner et al. 2003; Vessey et al. 2005; Bergman et al.
2007, 2008).

Cyanobacteria living in association with cycads were first
reported in the nineteenth century (Reinke 1872), and this
partnership is still the only known example of a naturally occur-
ring plant root-cyanobacterial symbiosis. All cycad species
examined to date are able to form symbiosis with nitrogen-
fixing cyanobacteria, visible as a dark blue-green band
(the cyanobacterial zone) between the inner and outer coralloid
root cortex (@ Fig. 16.9). The association between the cycad
Zamia furfuracea and its native cyanobiont Nostoc sp. strain
FUR 94201 has been separated and reconstituted successfully
under axenic laboratory conditions (Ow et al. 1999). The same
authors also showed for the first time that a cycad symbiosis
could be established with the soil cyanobacterium Nostoc 2S9B,
a strain previously shown to form loose associations with wheat
roots. The ability of cycads to thrive in nutrient-poor soils is
often attributed to the associations they form with
cyanobacteria. Nitrogen fixation in cycads not only contributes
to the nitrogen metabolism of the plant but also up to
18.8 kg N ha ™! year ' to the local nitrogen economy (see: Rai
et al. 2000; Vessey et al. 2005).

O Fig. 16.9

The cycad-Nostoc symbiosis. (a) A cycad coralloid root, the site of
cyanobacterial infection. (b) Transverse section of the root
showing the dark cyanobacterial band between the inner and
outer cortical layers [(a) From Lindblad et al. (1985a) with
permission. (b) From Rai et al. (2000) with permission]

Heterotrophic bacteria have been found associated with
cyanobacteria recovered from coralloid roots (Chang et al.
1988), although these bacteria have not been found in the
cyanobacterial zone within the coralloid cortex (Grilli Caiola
1980). However, bacteria have been found inside the periderm of
the coralloid roots of several different cycads (Joubert et al.
1989). It has been suggested that phenolic substances,
detected in the mucilaginous material of the cyanobacterial
zone and in the cortical cells surrounding the cyanobacterial
zone, have antimicrobial properties that exclude organisms
other than cyanobacteria (Grilli Caiola 1980; Obukowicz
et al. 1981). Phenolics are among the most widespread
plant secondary metabolites and have been shown to func-
tion as signaling molecules in the establishment of legume-
rhizobial symbiosis and vesicular-arbuscular mycorrhiza,
and there is some evidence that phenolic compounds may
also influence the formation of symbiosis between
cyanobacteria and cycads, as well as their metabolism (see
Lobakova et al. 2004).
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The toxic properties of cycads have been noted for centuries,
with the azoxyglycosides, cycasin and macrozamine, and the
neurotoxic nonprotein amino acid B-methylamino-r-alanine
(BMAA), receiving the most documentation. BMAA synthesis
has been associated with the cyanobionts of cycads (Cox et al.
2003) as well as the host plant (e.g., Vega and Bell 1967;
Polsky et al. 1972; Marler et al. 2010) and has since been found
in all known groups of free-living cyanobacteria (Cox et al. 2005;
Banack et al. 2007). BMAA has been linked to the high incidence
of the progressive neurodegenerative disease amyotrophic lateral
sclerosis/parkinsonism-dementia complex (ALS-PDC) in the
Chamorro people on the island of Guam. They were thought
to have acquired damaging levels of the toxin through the
ingestion of cycad seed-eating flying foxes in which the toxin is
believed to have been “biomagnified” (Banack and Cox 2003;
Cox et al. 2003; Banack et al. 2006). However, this hypothesis is
controversial (see Marler et al. 2010; Snyder and Marler 2011)
not least because of difficulties in reliable separation and detec-
tion of BMAA. Some groups have confirmed the presence of
BMAA in cyanobacteria and cycad seeds (Esterhuizen and
Downing 2008; Spacil et al. 2010), whereas contradictory results
have been obtained following analysis of underivatized samples
(e.g., Rosén and Hellenis 2008; Kriiger et al. 2010). These latter
studies were, however, able to detect 2, 4-diaminobutyric acid
(DAB), a neurotoxic isomer of BMAA (Rosén and Hellenis
2008; Kriiger et al. 2010). The recent work by Banack et al.
(2010) addressed the issues concerning effective BMAA analysis,
and they were able to reliably and consistently separate BMAA
from 2,4 DAB as well as distinguish it from other compounds
previously mistaken for BMAA during chloroformate
derivitization for GC analysis (Banack et al. 2010). They con-
cluded that cyanobacteria do indeed produce BMAA and its
neurotoxic structural isomer 2, 4-DAB.

The biological significance of the toxins remains unclear,
although possible roles include protection from herbivory, com-
petition with other plants, or antibacterial and antifungal
defense mechanisms (Castillo-Guevara and Rico-Gray 2003).
BMAA is, however, heavily concentrated in the coralloid roots,
raising the suggestion that the primary function of this toxin is
not anti-herbivory (Marler et al. 2010). An alternative role might
be in communication involved in the initiation and mainte-
nance of the symbiotic association (Marler et al. 2010; Snyder
and Marler 2011).

The cyanobionts of cycads are filamentous, heterocystous spe-
cies, largely restricted to the genus Nostoc, although Calothrix
spp. have occasionally been found (Grobbelaar et al. 1987; Costa
and Lindblad 2002; Rasmussen and Nilsson 2002; Gehringer
et al. 2010; Thajuddin et al. 2010). Cycads can host multiple
cyanobacterial strains in single plants as well as in single roots
(Zheng et al. 2002; Thajuddin et al. 2010). However, taxonomic

studies have revealed little if any specificity between cycads and
their cyanobionts (Lindblad et al. 1989; Lotti et al. 1996; Costa
et al. 1999; Zheng et al. 2002; Costa et al. 2004; Gehringer et al.
2010); the cyanobiont species found within a host plant is
probably determined by the predominant symbiotically compe-
tent species available within the immediate rhizosphere
(Gehringer et al. 2010).

Coralloid root development begins with the initiation of
precoralloid root formation in the seedling (Rai et al. 2000;
Lindblad 2009). Cyanobacteria are not found in precoralloids,
and their presence is not necessary for the initiation of
precoralloid development (Staff and Ahern 1993), although
exposure to light is considered significant in many cycad genera
(Webb 1983a, b). Infection by cyanobacteria can occur at any
stage of precoralloid root maturation, and their presence triggers
further growth and the developmental changes required to
transform precoralloids into coralloids. The mode of entry of
the cyanobacteria is still unclear, although suggested access
points have included lenticels, breaks in the dermal tissue, or
via the papillose sheath (see Bergman et al. 2007; Lindblad
2009). In addition, bacteria and fungi in the cycad rhizosphere
may cause local degradation of the cell wall, enabling the
cyanobacteria to penetrate the root (Lobakova et al. 2003).
Following entry into the root, the cyanobiont migrates toward
the cyanobacterial zone, between the inner and outer cortex,
through a channel created through the outer cortex, believed to
be caused by the separation, distortion, and destruction of
cortical cells (Nathanielsz and Staff 1975).

The process of coralloid formation is irreversible, with one of
the most significant changes being a conversion from negative to
positive geotropism, resulting in growth sideways and upward
toward the soil surface. Other changes include the loss of the
papillose sheath, proliferation of apical lenticels, and early dif-
ferentiation of the conspicuous cyanobacterial zone (Ahern and
Staff 1994; see also Rai et al. 2000). Some cycad cells within the
cyanobacterial zone undergo a distinct differentiation process to
interconnect the two adjacent cortical layers, and this may facil-
itate the transfer of nutrients between the partners (Lindblad
et al. 1985a; Lindblad et al. 1991; Pate et al. 1988; Costa and
Lindblad 2002; Vessey et al. 2005; see also Lindblad 2009).
Although the cyanobiont location is extracellular, there have
been reports of intracellular cyanobionts in Cycas revoluta
Thunb. and Macrozamia communis L. (see Lindblad 2009 and
references therein).

So, how do cyanobacteria living in the soil reach the sites
of infection within the coralloid roots of cycads? As is the case
with other plant hosts, cyanobacteria entering into functional
symbiosis with cycads produce transient motile filaments
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known as hormogonia that are highly adapted to sense and
respond to environmental stimuli, including chemicals released
by potential host plants. Water extracts from macerated seeds of
the cycad Zamia furfuracea induce the development of motile
hormogonia (Ow et al. 1999) and exhibit some chemoattractive
properties. Chemotaxis of hormogonia in response to plant-
derived attractants is likely to be of particular importance
in the infection of cycad tissue, where the sites of infection
receive little or no light, because the plant-derived signals must
be able to override the natural phototactic response of the
hormogonia.

Other Symbiotic Competence Factors

Laboratory attempts to reconstitute a functional symbiosis
between Nostoc PCC 73102 (originally isolated from the cycad
Macrozamia sp.) and Nostoc ATCC 29133 (believed to be the
same isolate as PCC 73102 but with a different laboratory
history and morphology; see Ow et al. 1999 and references
there in) have been unsuccessful (Ow et al. 1999). This is sur-
prising because, as described elsewhere in this chapter, Nostoc
ATCC 29133 readily enters into functional symbiosis with a wide
range of plants such as liverworts, hornworts, and the angio-
sperm Gunnera. This implies the existence of a recognition and
compatibility selection process that is able to select certain
cyanobacteria and exclude others. Alternatively, successful
cyanobionts may have evolved mechanisms to protect against
or disguise themselves from the host’s natural defense system.

As the coralloid roots of most cycad species are located beneath
the soil surface, their cyanobionts receive little or no light and
are assumed to have a heterotrophic metabolism, possibly using
fixed carbon supplied by the host and/or by their own dark CO,
fixation (Lindblad 2009). Freshly isolated cyanobionts from
Cycas revoluta coralloid roots fail to fix CO, in vivo under
light or dark conditions (Lindblad et al. 1987), but their crude
extracts have similar activities of RuBisCo and phosphoribu-
lokinase to those in free-living cultures (Lindblad et al. 1987).
The lack of CO, fixation by the cyanobiont might be due to
a reversible inhibitor of RuBisCo, which is lost by dilution in the
in vitro assay (see Meeks and Elhai 2002). Alternatively, the
photosystems of the cyanobiont may be nonfunctional, or
other enzymes of the Calvin cycle may be lacking (Lindblad
et al. 1987).

In a study of the Nostoc-like cyanobiont of Zamia skinneri,
a fully developed photosynthetic apparatus containing thyla-
koids with distinct phycobilisomes, harboring phycobili-
proteins, was revealed (Lindblad et al. 1985a). Carboxysomes
were also noted, although photosynthesis is unlikely to occur as
the coralloid roots were collected from below the soil surface.
However, high rates of photosynthetic oxygen evolution
have been found in the cyanobacteria isolated from the roots

of Cycas circinalis which are known to develop at or close to the
soil surface where the cyanobacteria may be exposed to light
(Perraju et al. 1986). Nevertheless, it is unclear why the
dark-associated cycad cyanobionts retain a full photosynthetic
apparatus, associated pigments, and carbon-fixing potential
(cellular levels of RuBisCo are comparable with those in free-
living counterparts).

Nitrogenase protein is restricted to the heterocysts, including
contiguous heterocysts, in both free-living heterocystous
cyanobacteria and those in symbiosis with cycads (Bergman
etal. 1986). Nitrogenase activity is some three- to fivefold higher
in cycad-associated Nostoc than in the free-living cultures
(Lindblad et al. 1985b). Although nitrogenase activity parallels
increasing heterocyst frequency, it reaches a maximum at het-
erocyst frequencies of around 25-35 % (Lindblad et al. 1985b) at
a location where single heterocysts predominate, and declines
thereafter, although heterocyst frequency continues to increase
and contiguous heterocysts become common (Lindblad et al.
1985b). The possibility that some of the heterocysts within these
clusters are metabolically inactive cannot be ruled out (Bergman
etal. 1986). Indeed, the decrease in nitrogenase activity observed
in older parts of the coralloid roots of Cycas and Zamia is
believed to be in part due to the aging of the cyanobacteria
located there (Lindblad 1990).

Cyanobacteria freshly isolated from older coralloid root
sections, as well as those located close to the apex of Macrozamia
riedlei, an Australian cycad in which the coralloid roots can
develop up to 0.5 m below the soil, show marked light-
stimulated nitrogenase activity (measured by both acetylene
reduction and "°N, fixation), providing they are maintained
under low (<1 %) O, levels (Lindblad et al. 1991). The low
level of nitrogenase activity recorded in freshly isolated
cyanobionts incubated in darkness probably results from loss
or damage of heterotrophic mechanisms that previously func-
tioned to provide the necessary ATP to support nitrogenase
activity within the intact coralloid roots (Lindblad et al. 1991;
see also Lindblad 2009). The authors suggested that damage
caused by separation of the cyanobacteria from the host plant
disrupts the intercellular microenvironment and any biochem-
ical interactions provided by the intact cyanobiont-coralloid
root association (Lindblad et al. 1991).

In free-living cyanobacteria, the
from nitrogen fixation is primarily assimilated via the
glutamine synthetase-glutamate synthase (GS-GOGAT) path-
way (Muro-Pastor et al. 2005; Flores and Herrero 2005). In
many cyanobacteria-plant symbioses, the release, to the host,
of ammonia that would otherwise be assimilated by the
cyanobiont is achieved partly by a host-mediated decrease in
GS activity in the cyanobiont. However, xylem sap analysis of

ammonia derived

freshly detached Nostoc-colonized coralloid roots has
revealed that the nitrogen fixed by the cyanobiont is instead
translocated to the host as either a combination of the amino
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acids citrulline and glutamine (in Zamiaceae) or glutamine
alone (although in the Boweniaceae and Cycadaceae glutamic
acid is also present; Pate et al. 1988; Costa and Lindblad 2002;
Bergman et al. 2007). The possibility that ammonium is not the
transferred N-solute in cycad associations is supported by
the findings that cyanobionts of Cycas revoluta, Ceratozamia
mexicana, and Zamia skinneri all have high in vitro GS
activity and GS protein levels similar to those found in
free-living cyanobacteria, including strains originally isolated
from cycads (Lindblad and Bergman 1986).

Despite supplying the host with most of the nitrogen
they fix, the cyanobionts do not show signs of nitrogen starva-
tion, as they retain abundant sources of combined nitrogen.
These include cyanophycin, which is a specialized nitrogen
reserve (consisting of a copolymer of arginine and aspartic
acid), carboxysomes, and phycobiliproteins (accessory
photopigments), all of which can be degraded under conditions
of nitrogen starvation (Meeks and Elhai 2002).

Cycad cyanobionts generally show little morphological change
compared with their free-living counterparts, apart from
an increased heterocyst frequency. Baulina and Lobakova
(2003a, b) observed cyanobionts with vegetative cells and het-
erocysts showing considerable degradation of the peptidoglycan
layer. However, it is not clear if such cells are functional or are in
various states of senescence. In free-living cyanobacteria, het-
erocysts largely occur singly at almost regularly spaced intervals
within a filament of photosynthetic vegetative cells (reviewed by
Zhang et al. 2006). In return for the fixed carbon (possibly
sucrose; see Meeks and Elhai 2002 for further discussion) they
receive from neighboring vegetative cells, the heterocyst pro-
vides fixed nitrogen. In symbiosis, there is a developmental
gradient of heterocysts from low (a heterocyst frequency of
16.7 % of total cells) in the growing tips of the coralloid roots
to high (46 %) in the base (older parts) of the roots. Indeed, at
the very growing tips of the coralloid roots of some cycad species
are short “free-living” type filaments that resemble hormogonia.
There are few heterocysts, those present being restricted mostly
to the filament poles (Grilli Caiola 1980). In various cycad
species, multiple contiguous heterocysts (double to quadruple)
are found frequently in older root tissue but rarely at the tip (see
Lindblad et al. 1985a, 1985b; Lindblad et al. 1991: also
reviewed by Lindblad 2009). However, these contiguous
heterocysts in older tissue may not be metabolically active
(Bergman et al. 1986).

Cyanolichens

Lichens are associations of symbiotic fungi and green algae
(bipartite lichens) or symbiotic fungi, green algae, and

cyanobacteria (tripartite lichens). A lichen thallus is quite dis-
tinct in appearance from either of its symbionts, and its name
refers to the dominating fungal partner (the mycobiont). Lichen
thalli represent an integration of the mycobiont’s heterotrophic
metabolism and the autotrophic metabolism of the photosyn-
thetic partners (the photobionts: green algae and
cyanobacteria). In tripartite lichens, the cyanobacterial partner
(the cyanobiont) is also referred to as the “secondary
photobiont,” whereas the green algal partner is referred to as
the “primary photobiont.” All lichens having a cyanobiont,
either as the sole photobiont or as a secondary photobiont, are
called “cyanolichens” For lack of space, this review on
cyanolichens is brief. The reader can find further details in
books and reviews elsewhere (Galun 1988; Ahmadjian 1993;
Nash 1996; Rai et al. 2002; Rikkinen 2002). The journal Bryol-
ogist regularly lists recent literature on lichens, and a literature
search is also possible at Mattick’s Literature Index website
([{http://www.toyen.uio.no/botanisk/bot-mus/lav/sok_rll.htm}]).

There are approximately 1,550 known species of
cyanolichens, representing roughly 12-13 % of all known
lichens; among these, two-thirds are bipartite and the rest tri-
partite species. Lichen symbioses are thought to have arisen
independently on several occasions. An estimated 100
lichenization events have occurred during diversification of
extant fungi (Aptroot 1998; see also Rikkinen 2002).

Mycobionts

The current classification of fungi is in transition, and molecular
approaches are being used to fine-tune it (Tehler et al. 2000; see
also Rikkinen 2002). Approximately 13,500 species of lichen-
forming fungi presently belong mostly to the Ascomycetes
(98 %) and very few to the Basidiomycetes (1.6 %) and fungi
imperfecti (0.4 %). About 15-18 orders of Ascomycetes (nearly
130 genera from 50 families) include lichen-forming taxa (see
Rikkinen 2002). Most are from two orders, the Lecanorales and
Lichinales. Nearly 1,700 species of fungi associate with different
types of cyanobacteria. A fairly comprehensive list of these has
been provided earlier (Rikkinen 2002).

Cyanobionts

A variety of heterocyst-producing and unicellular cyanobacteria
occur as cyanobionts in cyanolichens where the mycobiont is an
ascomycete. Among heterocystous forms, Nostoc is the most
common. Others are Scytonema, Calothrix, Dichothrix, and
Fischerella  (including  Hypomorpha,  Stigonema, and
Mastigocladus). Unicellular forms that occur as cyanobionts in
cyanolichens include Gloeocapsa (also Chroococcus), Gloeothece,
Synechocystis (also Aphanocapsa), Chroococcidiopsis, Hyella, and
Myxosarcina (see Rai et al. 2000; Rikkinen 2002). The range of
cyanobionts in cyanolichens where the mycobiont is
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a basidiomycete is rather limited. Only two cyanobacteria
(Chroococcus and Scytonema) are reported as cyanobionts in
basidiolichens (see Schenk 1992).

Analyses of tRNA™" (UAA) introns and 16S rDNA
sequences have been used as genetic markers to study the diver-
sity of Nostoc cyanobionts (Paulsrud and Lindblad 1998;
Paulsrud et al. 1998, 2000, 2001; Lohtander et al. 2002; Rikkinen
et al. 2002). These studies have shown that genetic
variation among lichen-forming Nostoc strains is considerable.
Within symbiotic Nostoc strains, there seem to be several
subgroups. For example, one subgroup of Nostoc strains seems
to occur only in epiphytic cyanolichens, whereas another
includes strains that occur as cyanobionts in terricolous
cyanolichens and other symbiotic systems (Rikkinen 2002;
Rikkinen et al. 2002). Miura and Yokoto (2006) have reported
the occurrence of two cyanobionts in the same lichen. Based on
morphological observations and 16 s rDNA sequences of
cyanobacterial isolates from lichens, they reported the
occurrence of Nostoc, Calothrix, Cylindrospermum, Phormidium,
Leptolyngbya, Microcystis, and Chroococcidiopsis.

Lichen thalli have a stable and organized structure quite distinct
from any of their symbionts. The thalli appear to be crustose
(small lobes and scales; e.g., Collema), foliose (flat and dorsi-
ventral lobes; e.g., Peltigera), or fruiticose (round or flat thalli,
upright, or hanging down from the substratum; e.g.,
Stereocaulon). In foliose or fruticose thalli, the fungal hyphae
form an outer pseudoparenchymatous zone (the cortex) that
covers or encloses a more loosely interwoven medulla. Within
the thallus, the partners remain extracellular to each other and
can be isolated and grown in culture, but the symbiosis is fairly
stable in nature because of the balanced and synchronized
growth and development of the symbionts. Thinner cell walls
(less sheath material) and specialized hyphae and haustoria,
showing transfer cell ultrastructure, enable close contact
between the mycobiont and the cyanobiont. Since the bulk of
the thallus consists of the heterotrophic mycobiont, the thallus
interior is microaerobic (see Rai et al. 2000).

In bipartite lichens, cyanobionts either are dispersed
throughout the thallus (e.g., Collema) or occupy a distinct
layer below the upper cortex (e.g., P. canina). In tripartite
lichens, the cyanobiont is located in cephalodia, which occur at
the upper surface of the thallus (external cephalodia; e.g., in P.
aphthosa) or inside the medulla (internal cephalodia; e.g., in
Nephroma arcticum). In some cases, internal cephalodia are
found close to the lower surface of the thallus (e.g., in P. venosa).
In tripartite lichens, direct contact between the cyanobiont and
the phycobiont (green algal partner) is never direct.

Lichen symbioses perpetuate by direct transmission of the
cyanobiont from one generation to the next and, as a result of
the acquisition, by the mycobiont of fresh cyanobiont from the
environment. For example, a lichen thallus can develop from
propagules (phyllidia, isidia, soredia, and hormocystangia) of

a preexisting thallus (direct transmission) or from fresh synthesis
(fresh acquisition of cyanobiont from the environment). The
former mode of transmission allows prolonged continuity of the
partners. Similar modes of cyanobiont acquisition also apply to
the development of cephalodia (see Rai et al. 2000). Cyanobionts
are essential for the formation of thalli or cephalodia in
cyanolichens. They may stimulate thallus morphogenesis but
do not determine the kind of thallus formed; the mycobiont
determines the structure and chemistry of a cyanolichen.
Different lichen fungi form different lichen thalli even if
associating with the same cyanobiont (see Rai 1990; Rai et al.
2000, 2002).

Because they are slow growing, the initiation and develop-
ment of lichens is difficult to study in nature. Development of
a lichen thallus afresh involves germination of the mycobiont
spore, development of the hyphal mat, contact, recognition, and
acquisition of the cyanobiont, and structural-functional integra-
tion of the symbionts. While a thallus may result within months
when starting from propagules, it takes years when starting from
isolated partners. During laboratory synthesis of lichens, the
partners initially form undifferentiated aggregates that later dif-
ferentiate into thalli (see Rai et al. 2000). Fresh synthesis in nature
may also start from mycobiont hyphae that become detached
and acquire a fresh cyanobiont (Smith and Douglas 1987).

Development of each cephalodium is a new event. External
cephalodia develop on the main thallus by entrapment of
a cyanobiont by hairs on the thallus surface, followed by involve-
ment of medullary hyphae immediately below. Internal
cephalodia may develop in a similar fashion starting with
cyanobiont entrapment by cortical hyphae or rhizines. The
cyanobiont, enmeshed by a thick layer of mycobiont, is pressed
into the thallus where the cephalodium eventually develops.
New cephalodia may develop from hormogonia released by
earlier cephalodia (Stocker-Worgotter 1995),  ensuring
cyanobiont homogeneity among cephalodia of a thallus. In
laboratory synthesis, however, cephalodia developed by attach-
ment of hyphae from primordia (containing cyanobiont and
mycobiont) to the green thallus (Stocker-Worgotter and Turk
1994). The latter mode of cephalodia development, if prevalent
in nature, should cause considerable heterogeneity among sym-
biont populations within a single thallus, but this is not the case.
Occasional reports of different cyanobionts (see Rai 1990) or
different strains of a cyanobiont (Paulsrud et al. 2000) among
cephalodia of a single thallus may, however, indicate instances of
cephalodia development by capture of a fresh cyanobiont in
some lichens. Entry of the cyanobiont for development of inter-
nal cephalodia is from the lower surface of the thallus, but
occasionally, when the cyanobiont enters from above, the
phycobiont layer is pressed deep into the medulla.

For the right symbionts to enter into a lichen symbiosis, signal
exchange must occur between the partners. Transformation of
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Nostoc colonies into the symbiotic state occurred without the
necessity for direct contact with the mycobiont during
resynthesis of Peltigera praetextata (Yoshimura and Yamamoto
1991). This suggests that the substance responsible for Nostoc
transformation may be a diffusible soluble substance from the
mycobiont. The exact identity of such a substance is not known,
but lichen-forming fungi do produce a large number of unique
secondary metabolites and compounds, and their possible roles
in signal exchange need to be investigated. Lectins (glycopro-
teins) of mycobiont origin have been implicated in the recogni-
tion of the cyanobiont by a mycobiont (Rai 1990; Kardish et al.
1991; Lehr et al. 1995, 2000). Cyanobiont cell surfaces possess
specific sugars, fimbriae (pili), and in some cases, lectins, which
may have a role in recognition and adherence (Stewart et al.
1983; Kardish et al. 1991; see Rai et al. 2000).

Direct observations, lectin-binding experiments, and
tRNA™" intron analysis all indicate a broader cyanobiont-
mycobiont specificity in lichens than that in other
cyanobacterial symbioses. Different lichen species can have the
same cyanobiont, and different cyanobionts have been reported
among cephalodia of a single lichen thallus. Different Nostoc
strains have been found in different lichen species from the same
site, while different lichen species from distant places had the
same Nostoc strain. In chimeroid thalli, both bipartite and tri-
partite morphotypes are reported to have the same cyanobiont
strain (Paulsrud et al. 1998, 2000, 2001). Overall, there is a great
deal of cyanobiont diversity among the lichens, and much of it
might be contributed by the mode of cyanobiont acquisition
during the development of the lichen thallus and cephalodia
(Rai et al. 2000).

Many cyanolichens share similar environmental require-
ments and may depend on a common pool of cyanobionts.
Many cyanolichen species having identical cyanobiont
strains co-occur in a particular habitat, forming character-
istic communities or “guilds” (Rikkinen et al. 2002). Within
a guild, the cyanobionts of all lichens are closely related, but the
mycobionts are not. While some guilds include different
mycobiont genera or even families, some closely related
mycobionts belong to different guilds (associate with different
types of cyanobionts).

Cyanobionts undergo structural-functional changes in the
symbiosis that permit a close interaction and development
of nutrient exchange between the partners. These changes
include increased cell size, altered cell shape, lack of
polyphosphate reserves, fewer carboxysomes, less sheath
material, and slower growth and cell division (Rai et al.
2000).

The cyanobionts are photosynthetically active and fix CO,
via the C; pathway. In addition, there is a significant level of dark
CO, fixation (15-20 % of that in the light) via the C, pathway
(Rai et al. 2000; Palmqvist 2002). However, CO, fixation by
cyanobionts in internal cephalodia, particularly those on the

lower surface (e.g., Peltigera venosa), may be minimal due to
low light and RuBisCo. In the tripartite Nephroma arcticum, the
Nostoc cyanobiont has 70 % fewer carboxysomes compared with
that in the bipartite P. canina (Bergman and Rai 1989).

In free-living cyanobacteria, heterocysts are regularly
spaced and represent about 5-10 % of the cell population.
There is a change in the spacing pattern of heterocysts and an
increase in their frequency in the cyanobionts in tripartite
lichens (heterocyst frequency 15-35 %) but not in bipartite
lichens. Heterocyst frequency correlates with the status of
fixed carbon in the cyanobiont; in bipartite lichens, the
cyanobiont bears the burden of providing both fixed nitrogen
and fixed carbon to the mycobiont, whereas in tripartite
lichens, it provides fixed nitrogen only. Indeed heterocyst
frequency increases when Nostoc isolates are grown in the
dark with sugars. In many cyanobacterial-plant symbioses,
where the cyanobiont receives fixed carbon from the plant
host, heterocyst frequencies of up to 80 % can occur (see Rai
et al. 2002).

In free-living cyanobacteria, glutamine synthetase (GS) is
the primary ammonia assimilating enzyme, and GS levels in
heterocysts are twofold higher than those in vegetative cells
(Bergman et al. 1985). In cyanobionts, the GS activity and
protein levels decrease by over 90 %, and the remaining GS is
uniformly distributed among heterocysts and vegetative cells
(Bergman and Rai 1989; Rai 2002). GS activity is undetectable
in the mycobiont, but mycobiont hyphae in contact with
cyanobiont cells show high levels of nicotinamide adenine dinu-
cleotide phosphate (NADP*)-dependent glutamate dehydroge-
nase (GDH) activity.

Nitrogen fixation occurs in all lichens containing hetero-
cystous cyanobionts. The rates are higher in tripartite lichens
owing to the higher heterocyst frequency of the cyanobiont
(see Rai et al. 2000; Rai 2002). In contrast to free-living forms,
cyanobionts in bipartite lichens and in excised cephalodia con-
tinue to fix N, even in the presence of nitrate or ammonia
(Stewart and Rowell 1977; Rai et al. 1980). However, nitrogen
fixation by the cyanobiont in cephalodia attached to the main
thallus of the tripartite lichen P. aphthosa was repressed by
nitrate and ammonia. The effect was obviously mediated via
the phycobiont. Significant levels of N, fixation have also been
reported in darkness, and under these conditions ammonia
has an inhibitory effect (Rai et al. 1981a, 1983b). As in the
free-living forms, nitrogenase is located only in the heterocysts,
despite the microaerobic conditions in lichen thalli (Bergman
et al. 1986).

The extent of the changes described above varies from young
to older, more mature parts of the thallus. While growth rate
gradually declines, cell division and GS levels, the levels of N,
fixation, CO, fixation, and heterocyst frequency of the
cyanobiont increase. There is a parallel increase in the GDH
activity in the mycobiont (Rowell et al. 1985; Hill 1989;
Rai 2002). Still undetermined is whether these changes are
caused by the mycobiont or by endogenous regulation due to
special environmental conditions offered by the host in the
symbiosis.
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Most studies on nutrient exchange relate to carbon and nitrogen
transfer from the cyanobiont to the mycobiont in foliose lichens,
particularly Peltigera species. Such nutrient transfer is biotrophic
in nature and varies along the lichen thallus. From young to
mature parts of the lichen thallus, the cyanobiont increases
fixation and release of nitrogen and carbon. Specialized
mycobiont hyphae and haustoria showing transfer cell ultra-
structure (TCU) may play an important role in the nutrient
exchange (see Rai et al. 2000).

In bipartite cyanolichens, 70-80 % of the CO, fixed is
released by the cyanobiont to the mycobiont. The transfer of
fixed carbon occurs mostly in the light and in the form of
glucose. Cyanobionts in tripartite lichens transfer little (<5 %
of CO, fixed) or no fixed C to the mycobiont. Their primary role
seems to be the provision of fixed nitrogen. It would be inter-
esting to know whether the cyanobionts in internal cephalodia
occurring deep in the medulla or on the undersurface of a lichen
thallus actually receive any fixed carbon from the phycobiont
(either directly or via the mycobiont). The glucose transferred to
the mycobiont is converted to mannitol, which serves as botha C
source and a physiological buffer. Mannitol production by
lichenized fungi could be an effective way of sequestering the
fixed carbon since the other partners cannot use it. The mech-
anism underlying glucose transfer is not fully understood, but
the glucose is thought to originate from a glucan pool rather
than directly from CO, fixation. Altered cell wall synthesis may
lead to a diversion of sugars from cell wall synthesis to simple
release. Release of glucose declines sharply and stops soon after

the isolation of the cyanobiont, indicating the influence of
mycobiont and symbiotic conditions in the thallus on this pro-
cess (Smith and Douglas 1987; Meindl and Loos 1990; Rai 1990;
Palmqvist 2002).

N tracer studies in P. aphthosa (tripartite) and P. canina
(bipartite) have concluded that fixed N is transferred from
cyanobiont to the mycobiont as ammonia (Rai et al. 1981b,
1983a). Over 90 % of the N, fixed in P. aphthosa (and
about 50 % in P. canina) is released by the cyanobiont because
GS in heterocysts is repressed. The partitioning of fixed N among
the partners is proportionate to their contribution to the thallus
composition. In P. aphthosa, the ammonium released by
the cyanobiont is primarily assimilated by the mycobiont
in cephalodia, and the phycobiont receives fixed N via
the mycobiont. The mechanism of ammonia release by the
cyanobiont and its uptake by the mycobiont at the
cyanobiont-mycobiont interface have not been investigated.
However, diffusion of NH; from heterocysts can occur in the
absence of ammonia assimilation by GS. Ammonia assimilation
in the mycobiont occurs via GDH followed by aminotransfer-
ases. In pulse-chase experiments, much of the '°N label accu-
mulated as alanine in the mycobiont of P. aphthosa cephalodia.
Alanine could be the principal compound transferred to the rest
of thallus (® Fig. 16.10).

Lichens are ubiquitous, occurring in terrestrial as well as aquatic
habitats from the equator to the highest latitudes, at sea level to



384 1 6 Cyanobacterial-Plant Symbioses

9,000-m altitude, and in the wettest to driest habitats. They are
excellent colonizers of nutrient-poor habitats (sand dunes,
rocks, forest floors, and the surfaces of other vegetation), form
dominant vegetation in tundra and arctic-alpine regions, and
contribute significantly to the N economy of these ecosystems.
Lichens are good bioindicators of air pollution.

Cyanobionts endow mycobionts with N and C autotrophy
and thereby widen their potential habitats. In a lichen thallus,
cyanobionts gain a safe habitat and protection from uncertainty
of fluctuating nutrient availability and climatic conditions in
nature.

Outlook

Many interesting aspects of the lichen symbioses remain to be
elucidated. These include release and uptake of nutrients at the
cyanobiont-mycobiont interface, cyanobiont acquisition, and
regulatory mechanisms enforcing synchronized growth and
development of the partners. Furthermore, whether the struc-
tural-functional changes in symbionts are a result of endogenous
regulation due to the symbiotic environment (e.g.,
microaerobiosis, restricted growth, and cell division) or whether
they are directly caused by the mycobiont will need to be resolved.

The Geosiphon pyriformis - Nostoc
Endocyanosis and Its Relationship to the
Arbuscular Mycorrhiza (AM)

The Geosiphon pyriformis Symbiosis

The fungus Geosiphon pyriformis (Kiitz.) v. Wettstein (von
Wettstein 1915) forms the only known fungal endocyanosis
(endocytobiotic association with cyanobacteria). The coeno-
cytic fungus forms unicellular, multinucleated cells (“bladders”)
of up to 2 mm in size (@ Fig. 16.11), harboring endosymbiotic,
filamentous cyanobacteria of the genus Nostoc. There have been
only six reports describing this symbiosis in nature at locations
ranging from eastern Germany to Austria. Probably, the symbi-
osis is geographically widespread in Central Europe but, due to
its small size, rarely reported. Presently, field sites around the
small village of Bieber in the Spessart Mountains (Germany) are
the only known stable natural habitats worldwide (Mollenhauer
1992; Schiuffler and Wolf 2005).

The species name “Geosiphon pyriforme” was sometimes
used for the fungus as well as for the symbiosis because the latter
was often regarded as a “phycomycetous lichen.” Nowadays
endosymbiotic associations are usually excluded from lichen
definitions (Hawksworth and Honegger 1994). Thus, the species
name should be used for the fungus only, also because phyloge-
netically the Geosiphon fungus belongs to the arbuscular mycor-
rhiza (AM)-forming and related fungi, the Glomeromycota
(© Fig. 16.12). Here, the association between the fungus and
cyanobacteria is referred to as the Geosiphon-Nostoc symbiosis,
or simply the Geosiphon symbiosis, and the species name of the

@ Fig. 16.11

The Geosiphon-Nostoc symbiosis, isolated from a laboratory
culture on natural substrate, incubated in liquid medium. The
dark bladders are about 1.5 mm in length. The insert shows
Geosiphon pyriformis spores, which have a diameter of about
250 pm

fungus is used in its orthographically correct form, Geosiphon
pyriformis (Schiiller 2002).

The Symbionts

Geosiphon pyriformis

After its original description as Botrydium pyriforme, a siphonal
alga (Kiitzing 1849), Geosiphon pyriformis (as G. pyriforme) was
recognized as a phycomycete (fungus with aseptate hyphae;
Knapp 1933). Sixty years later, based on suggestions by Walter
Gams, it was suggested that Geosiphon could be related to
Glomus-like fungi (Mollenhauer 1992). Such fungi form the
arbuscular mycorrhiza (AM) symbiosis with land plants which
is extremely important ecologically and economically, therefore
verification of the phylogenetic relationship of Geosiphon would
make it conceivable that Geosiphon may also be capable of such
association.

Because the systematics of AM fungi in the last century was
based mainly on the characteristics of their spore structure,
morphological and ultrastructural criteria of Geosiphon spores
were compared with those of some AM fungi (Schiifiler et al.
1994). This indeed revealed similarities between G. pyriformis
and AM fungi like Diversispora epigaea BEG47 (at that time
named Glomus versiforme; see Schifller et al. 2011). Final evi-
dence showing that Geosiphon is closely related to AM fungi was
based on small subunit ribosomal RNA (SSU rRNA) gene
sequences (Gehrig et al. 1996). The AM fungi, together with
Geosiphon, formed a distinct clade not closely related to any
other group of the zygomycetes. Further sequence analyses
(Schiiller 1999; Redecker et al. 2000b) showed that Geosiphon
is closely related to an AM fungus forming two different spore
morphs, at that time named Acaulospora gerdemannii.
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Phylogenetic tree of AM fungi (Glomeromycota), including Geosiphon (Modified and updated from SchiiB8ler et al. 2001; SchiiB8ler and
Walker 2010, http://www.amf-phylogeny.com). Families (represented by red branches) and genera are given, except for Entrophospora

and Otospora, for which placement is yet unclear

Nowadays, the clade containing these lineages is defined as
the order Archaeosporales, which represents one of the basal
main phylogenetic lineages in the phylum containing the AM
fungi and Geosiphon, the Glomeromycota (Schiiller et al. 2001).
In this order, the Geosiphonaceae clusters as sister to the
Ambisporaceae, thus appearing to be more derived than the
Archaeosporaceae, which branch earlier. This means that
Geosiphon does not represent a sister lineage to the AM fungi,
as was sometimes wrongly suggested. It was the analysis of the
phylogeny of Geosiphon that eventually led to the erection of the
Glomeromycota, a widely accepted fungal phylum and, eventu-
ally to the phylogenetically based, revised classification of the
Glomeromycota (Schufller and Walker 2010).

The Geosiphon-Nostoc symbiosis attracted interest from
the field of AM research. The AM symbiosis is formed by

~80 % of all vascular plants studied (Brundrett 2009) and
moreover also by lower plants (Read et al. 2000; Schiif8ler 2000),
despite their lack of roots. Considering this huge number of
plants that form AM, it is obvious that the AM must be one of
the most important factors in land ecosystems (Smith and Read
2008).

Nostoc punctiforme

The endosymbiont in the Geosiphon symbiosis (@ Fig. 16.13) is
N. punctiforme, which belongs to a clade of cyanobacteria
containing many symbiosis-forming members. In laboratory
cultures (Schiifller and Wolf 2005), a strain that originally was
isolated from the Geosiphon symbiosis was used (Mollenhauer
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O Fig. 16.13
Endosymbiotic Nostoc cells (about 7 x 6 um in size), within
a Geosiphon bladder. One heterocyst is in focus (arrowhead)

1992). However, various other strains of N. punctiforme from
other symbiotic systems (e.g., Anthoceros, Blasia, Gunnera) are
also capable of forming symbiosis with G. pyriformis. In the field,
G. pyriformis was usually found together with Anthoceros, and
the cyanobionts of G. pyriformis associate in symbioses with
Anthoceros and Blasia (Mollenhauer 1992).

It has to be noted that Geosiphon harbors another prokary-
otic endosymbiont, the so-called BLOs (bacteria-like organisms;
© Fig. 16.14), which are not enclosed by a fungal host membrane
but live freely in the cytoplasm (Schifler et al. 1996; Schiifiler
2012). These endosymbiotic bacteria, and those living in most of
the AM fungi that were studied for their occurrence, have the
same typical ultrastructure. Because they are found in very
diverse branches of the Glomeromycota, they were considered
to be widespread, Gram-positive glomeromycotan symbionts
(Schiiller et al. 1994).

The BLOs are indeed ancestral and typical endobacteria in
AM fungi. New findings regarding their phylogeny and occur-
rence in very diverse AM fungal lineages (Naumann et al. 2010)
showed that the BLOs are related to the cell-wall-lacking
Mollicutes. We now know that they are monophyletic and later-
ally transferred within the AM fungi for more than 450 million
years. Their phylogeny and biotrophic lifestyle are shared with
the related mycoplasmas, despite the obvious difference of
possessing a murein sacculus.

The Geosiphon symbiosis is facultative for one of the partners
(Nostoc can be cultivated without the fungus) and obligate for
the other one (Geosiphon is obligatory symbiotic). It is conceiv-
able that the fungus is not restricted to the cyanobacteria as
symbiotic partner but also forms symbioses with land plants
(see below). However, this assumption is still speculative.
Regardless, Geosiphon belongs to the Glomeromycota, and the
Nostoc symbiosis bears functional and structural similarities to
the AM. Thus, the Geosiphon-Nostoc symbiosis can play a role as
amodel symbiosis (Schiifiler 2012) for the AM, which is difficult
to investigate but extremely important. For example, the

O Fig. 16.14

Electron micrograph of a “bacteria like organism” (BLO) in
Geosiphon pyriformis. BLOs have a diameter of about 0.5 pm and
are not enclosed by a host membrane (arrow). The insert shows
the plasma membrane of the BLO (arrowhead), as well as the thick
murein sacculus. Recent studies show them to be Mycoplasma-
related, despite the Gram-positive appearance

characterization of symbiosis-related genes is facilitated by use
of this symbiosis (e.g., Schiifller et al. 2006).

Infection Process, Development, and Structure
of the Symbiosis

Infection Process

Both symbiosis partners live in the upper layer and on the
surface of humid soil, where they make contact. The interaction
is considered to be specific for two reasons: (1) Only certain
Nostoc punctiforme strains can form this symbiosis. (2) For
a successful interaction with the fungus, Nostoc has to be differ-
entiated into a specific stage represented by an early immobile
stage of the cyanobacterial developmental cycle, the so-called
primordium (Mollenhauer et al. 1996). The motile filaments
(hormogonia) and late primordial, as well as vegetative stages
of Nostoc, are not recognized by the fungus. When contacting
Nostoc, the tip of the fungal hypha bulges out and surrounds part
of a cyanobacterial filament, thus incorporating the Nostoc cells
(© Fig. 16.15). Usually, 5-15 Nostoc cells are taken up during this
process, whereas the heterocysts are never incorporated but “cut
off” by the fungus (see below). These events are documented in
a scientific film available in German and English (Mollenhauer
and Mollenhauer 1997).
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Confocal laser scanning microscopy (CLSM) projection of a short
hypha branching from a main hypha (horizontally oriented,

4-6 pm in diameter) and “bulging out” to enclose a part of

a Nostoc filament. The extracellular polysaccharides of Nostoc and
the outer layer of the fungal cell wall are labeled by the
fluorescence-coupled lectin ConA (green). The Nostoc cells (red
autofluorescence, ~4 x 3 pm in size) that are taken up by the
fungal structure show strong deformations and irregular and
reduced pigment fluorescence

Development of the Symbiosis

Studies on the development of the Geosiphon-Nostoc symbiosis
showed that a successful interaction depends on the appropriate
developmental stage of the cyanobacterium (Mollenhauer et al.
1996; Wolf and Schiifiler 2005). The life cycle of Nostoc starts
from akinetes (spore-like resting stages) leading to vegetative
colonies. These colonies release motile trichomes (hormogonia)
which are positively phototactic in dim light and negatively in
strong light. As a consequence, the hormogonia often congre-
gate just below the soil surface where they spread and meet their
symbiotic partners. They eventually undergo a transformation
into an aseriate stage called a primordium. This then differenti-
ates into so-called vegetative cells, which divide and form gelat-
inous colonies (“thalli”). Only the very early primordial stage of
Nostoc can interact with the fungal partner to give rise to the
symbiotic consortium.

The life cycle of the fungal partner starts from resting spores
formed in the upper soil layer. The spores (Schiifiler et al. 1994)
germinate by the outgrowth of a hypha (sometimes more than
one), which branches to form a small mycelium of up to 2-3 cm
in the soil. When a hyphal tip contacts a compatible early Nostoc
primordium, the fungal hypha bulges out just below the apex.
This bulging process is repeated several times so that eventually
the hyphal tip forms an irregularly shaped structure surrounding
a part of a Nostoc primordium. After this incorporation into the
fungal hypha, large amounts of cytoplasm stream into this
Nostoc-containing structure, which then starts swelling and
develops the fungal bladder (© Fig. 16.16).

Each individual incorporation event results in the formation
of a single pear-shaped aboveground bladder (Knapp 1933).

@ Fig. 16.16

Young Geosiphon bladders, 100-150 pm in size, formed on the
fungal mycelium 7-10 days after initial uptake of the
cyanobacteria (left). The irregular structures in the background
are vegetatively growing Nostoc colonies. At the right, two mature
bladders of about 1 mm length, together with a young bladder,
are shown

Each bladder represents a polyenergid cell, coenocytic with the
fungal mycelium, in which the symbiotic Nostoc cells divide
and become physiologically active. Laboratory culturing exper-
iments have shown that, as for AM, phosphate limitation
(1-2 uM) of the nutrient solution triggers the stable establish-
ment of the symbiosis. N limitation seems not to be a crucial
factor. The same situation is found in the natural habitat, so
P limitation seems to be a driving factor for the establishment of
this symbiosis.

Within the first hours after incorporation into the fungal
cytoplasm, the Nostoc filaments become heavily deformed, and
some cells may die during this process. The photosynthetic
pigments degrade considerably (© Fig. 16.15; Mollenhauer
et al. 1996; Schiifller and Wolf 2005). These alterations and
significant changes in ultrastructure suggest that during the
initial state of endocytotic life, the incorporated cyanobacteria
suffer severe stress. Within 2-3 days, the enclosed Nostoc cells
recover and begin to multiply and grow to reach as much as six
times the volume of free-living cells (Schiifiler et al. 1996;
Mollenhauer and Mollenhauer 1997). Under phosphate limita-
tion, the endosymbiotic cyanobacteria divide much faster and
form a much higher biomass compared with the free-living ones
(unpublished). In the symbiosis, the Nostoc cells arrange in
filaments in which heterocysts are formed with the same fre-
quency as in the filaments outside the bladders (if cultured
under nitrogen limitation). Mature Geosiphon bladders can
then reach more than 2 mm in length and up to 6 months in
lab cultures. They possess a turgor pressure of about 0.6 MPa
(=6 bar) (Schiifiler et al. 1995).

Structure and Compartmentation of the
Geosiphon Bladder

The Geosiphon bladder is effectively a multikaryotic cell, coeno-
cytic with the fungal mycelium in the soil. It shows a strong
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O Fig. 16.17
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Schematic representation of the compartmentation of the Geosiphon-Nostoc symbiosis (left). At the right, a magnification of the
peripheral part of a bladder is shown. The Nostoc cells are about 6 um in diameter. Drawings are based on electron microscopical
observations. BLO bacteria-like organism, CW cell wall, M mitochondrion, N nucleus, NC, Nostoc cell, PM plasma membrane,

SM symbiosome membrane, V vacuole

polarity and has a photosynthetically active region in the apical
part of the cell exposed to light and air and a whitish-appearing
storage region, containing many lipid droplets, in the basal part
embedded in the soil surface. The center of the bladder is highly
vacuolated. Schematic drawings of the compartmentation of
Geosiphon are shown in © Fig. 16.17. Ultrastructural observa-
tions show the G. pyriformis symbiosis as a system with very
close contact between the partners. In fact, it is a symbiotic
consortium of three organisms: (1) the fungus, supplying the
consortium with inorganic nutrients like phosphate, trace ele-
ments, and water; (2) the cyanobacteria, supplying the consor-
tium with carbohydrates by photosynthesis and, at least under
some conditions, nitrogen compounds by N, fixation; (3) the
“bacteria-like organisms” (BLOs), which are Mollicutes-related
endobacteria, with yet unknown function.

Within the bladders, the cyanobacteria are located periph-
erally in a single, cup-shaped (often invaginated) compartment,
the symbiosome. The Nostoc cells divide and are physiologically
active as endosymbionts in this compartment. Within the cyto-
plasm of the fungus, glycogen granules exist as storage com-
pounds. No dictyosomes are found; microtubules can rarely be
observed. Fixation of the bladders during preparation for elec-
tron microscopy is often inadequate, probably due to the low cell

wall permeability, but can be improved by using microwave
acceleration.

Preparation of the G. pyriformis spores for electron micros-
copy (SchuBiler et al. 1994) is even more difficult. This problem,
caused by the thick spore wall being only slowly permeable to
fixatives, also exists with other glomeromycotan species (Maia
et al. 1993). Two main storage compounds occur inside the
spores: lipid droplets of different sizes and “structured granules”
that occupy about 25 % of the volume. The latter are discussed
below with respect to element analysis. They show
paracrystalline inclusions, as are also found in spores of some
other glomeromycotan fungi. Small vacuoles are found in ger-
minating spores and hyphae, often containing dark deposits.
These are similar to the deposits in AM fungi and probably
polyphosphate precipitates. The ultrastructure of the Geosiphon
symbiosis was first studied by Schnepf (1964), and this was the
crucial investigation leading to the theory of the compartmen-
tation of the eukaryotic cell. The space between the symbiosome
membrane and the wall of the enclosed Nostoc cells is only
30-40 nm wide and contains a layer of electron microscopically
opaque and amorphous-appearing material which was origi-
nally assumed to be slime produced by the endosymbiont
(Schnepf 1964). Later wultrastructural and confocal laser



Cyanobacterial-Plant Symbioses 1 6 389

symbiotic interface/—

—

sucrose

?
(fructose)
: glucose '
i <—MSTH mannose H
plant cell : galactose ;
g (xylose) '
d ? i Nostoc
extracellular
D. polysaccharides D
fungus ' fungus
\ ——— phosphate ~ —{PT)—> '
arbuscular % plant or Geosiphon
mycorrhiza \ Qostoc / symbiosis

N

@ Fig. 16.18

The symbiotic interface and bidirectional nutrient flows in the Geosiphon symbiosis, in comparison with those in the arbuscular

mycorrhiza (AM) (From SchiiBller et al. 2006)

scanning microscopical (CLSM) studies by means of affinity
techniques revealed that this amorphous layer inside the
symbiosome contains chitin (Schiiller et al. 1996), confirmed
by labeling with wheat germ agglutinin (WGA)-gold conjugates.
Thus, the electron opaque layer within the symbiosome repre-
sents a “rudimentary” fungal cell wall, showing that the
symbiosome membrane surrounding the Nostoc cells is homol-
ogous with a fungal plasma membrane.

Clear similarities exist between the fungal cell wall material
present in the symbiosome space of the Geosiphon symbiosis and
the thin arbuscular cell wall bordering the symbiotic AM fungus
from the colonized plant cell: Both are electron dense after OsO,
fixation, about 30—40 nm thick, and show the same amorphous
structure and appearance. In general, the ultrastructural appear-
ance of G. pyriformis is similar to that of AM fungi. Considering
also the phylogenetic position of G. pyriformis and the known or
proposed nutrient flows between the symbiotic partners, it has
been suggested that the symbiotic interface in the AM and the
Geosiphon symbiosis are homologous (Schifller et al. 1996).
The main difference between the symbioses is the relation of
macro- and microbiont. In the Geosiphon symbiosis, the photo-
autotrophic partner (cyanobacterium) is the microsymbiont,
whereas in the AM, it is the macrosymbiont (plant)
(© Figs. 16.17,© 16.18).

Element Composition and Distribution

It is not yet known why AM fungi cannot be cultured axenically.
Also, there is little information available about their trace

element requirements and general element composition. Con-
sidering the fact that these fungi supply the majority of land
plants with inorganic elements, studies on the element compo-
sition and transport processes are interesting topics. We have
used PIXE (proton induced X-ray emission) measurements to
obtain the first indications of the macro- and microelement
composition of the spores and symbiotic bladders. The element
content of some subcellular compartments could be quantita-
tively measured and, by a differential approach, calculated.
PIXE, combined with STIM (scanning transmission ion micros-
copy), allowed elemental concentrations to be absolutely quan-
tified with a lateral resolution in the 1 pm range and with high
accuracy and precision (Maetz et al. 1999a).

Studies on the G. pyriformis symbiotic bladders (Maetz et al.
1999b) showed that the fungal partner of the symbiosis while
grown on a nutrient-poor solution (e.g., containing 1 pM
phosphate) accumulated P in high concentrations (about
2 %), but not in the symbiosome. The P is probably stored as
polyphosphate in the vacuoles, as for AM (and many other)
fungi. High amounts of Cl (about 2.5 %) and K (about 8 %),
which appear to play major roles in osmoregulation of the
fungus, are found (all values given here are related to dry weight,
ppm = pug/g DW). The symbiosome (including the
cyanobacteria) contains only small amounts of these elements.
This is in line with a presumed high concentration of monova-
lent ions in the fungal vacuoles. The macroelements Mg, S, and
Ca and the microelements Fe, Mn, Cu, and Zn occur in concen-
trations comparable with those found in plants. The Se concen-
tration is below 1 ppm. Mo is present within the symbiosome in
very low amounts, compared with the rest of the bladder,
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A “symbiosis network” between cyanobacteria, fungi and plants.
Associations or interactions which are highlighted with white
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although Mo is a constituent of nitrogenase, required for N,
fixation of the cyanobacteria. Reasons for this might be that
other Mo enzymes (e.g., nitrate reductase, sulfite oxidase)
occur in sufficient amounts in the fungal cytoplasm or that
Mo is located in the fungal vacuole. Mn and Ni, by contrast,
are present in the symbiosome in much higher concentrations
than in the rest of the bladder. Much of the Mn (approximately
50 ppm, which is comparable to values found in plant leaves) is
probably contained in the water-cleaving Mn protein of photo-
system II. Some may be from other enzymes, e.g., Mn-
superoxide dismutase (SOD). A likely candidate for enzymes
containing ~50 ppm Ni is cyanobacterial (or secreted fungal)
urease; other Ni-containing bacterial enzymes are Ni-SOD and
NiFe-hydrogenases.

Unpublished results on the element composition of the
Geosiphon spores show that the structured granules (SGs),
which are 4-6 um in diameter, located each within a vesicle,
together occupy about 25 % of the spore volume and contain
most of the total P, K, and S. The S concentration of the spore cell
wall is ~0.25 %, probably because of high protein content, as
shown for an AM fungus (Bonfante and Grippiolo 1984). Com-
pared with the bladders, Cl and K are concentrated within the
spores in much lower amounts.

Signal Exchange Between Host and
Cyanobacterium

It is not known what triggers the recognition process and the
morphological changes during the establishment of the symbi-
osis. Microscopical studies give no hints for any chemotactic or
otherwise directed growth toward the respective symbiosis part-
ner, but the symbiosis-compatible Nostoc stage can be synchro-
nized (SchiiBler and Wolf 2005) to study this in more detail.
Cells of particular strains of N. punctiforme can be incorporated
by Geosiphon, resulting in the formation of functional symbio-
ses. For other strains, although incorporated, the formation of

symbiotic bladders is blocked at an early stage of development.
Yet other N. punctiforme strains are not incorporated at all.
Further evidence for a specific recognition process is the fact
that, among the various developmental stages of Nostoc, only the
early primordia, existing for ~3—12 h during the life cycle, are
incorporated by the fungus. Not only is the physiological activity
of the primordia different from the other stages of the Nostoclife
cycle (Bilger et al. 1994) but so is the composition of the gelat-
inous envelope. When differentiating into “symbiosis-
compatible” primordia, a mannose-containing slime is pro-
duced by the cells, whereas other sugars within the extracellular
glycoconjugates can be detected only in earlier or later stages of
the life cycle (Schufller et al. 1997). The heterocysts (specialized
N,-fixing cells), differentiating at regular spacing along the
filaments of the Nostoc primordia when grown under nitrogen
limitation, always remain outside the fungal hypha during the
incorporation process (Mollenhauer et al. 1996). They are not
surrounded by a newly appearing mannose-containing
glycoconjugate (SchiifSler et al. 1997), also indicating a specific
recognition of the early primordial cell surface by the fungus.
Thus, alterations of extracellular glycoconjugates could be
involved in partner recognition. Some unpublished data further
indicate a lectin-mediated process.

Host-Cyanobiont Interactions Post Infection

Morphological Modifications of the Symbiosis
Partners

The most obvious morphological change taking place after
partner recognition is the formation of the Geosiphon bladder.
Mature bladders represent large cells, which are coenocytic with
the mycelium. They show a clear polarity, with the photosyn-
thetically active symbiotic compartment (symbiosome) located
in the apical part of the bladder (© Figs. 16.16,© 16.17).

The symbiosome is derived from the invaginated plasma
membrane of the fungus and contains the cyanobacteria,
which are morphologically modified by increasing in volume
about six- to eightfold compared with free-living vegetative cells.
This is probably caused by the high osmotic pressure inside the
bladders. In many plant symbioses, cyanobacteria are known to
increase in size (Bergman et al. 1992a; Grilli Caiola 1992),
probably as a reaction to the higher osmotic pressure of the
surrounding medium. High NaCl concentrations are also
known to cause an increase in volume of cyanobacteria
(Erdmann and Schiewer 1984). For Geosiphon bladders, the
iso-osmolar concentration of sorbitol was measured with oil-
filled microcapillaries and determined to be 220-230 mM,
corresponding to a turgor pressure (P) of about 0.6 MPa
(Schiifler et al. 1995).

However, despite the increase in size, the Nostoc cells inside
the Geosiphon bladder have an almost normal ultrastructure.
They contain a high number of thylakoids and carboxysomes;
one alteration is that the outer membrane is hardly recognizable
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electron microscopically. Heterocysts are formed with the same
frequency as in free-living colonies, but their cell wall is thinner
in the symbiosis, possibly indicating a lower surrounding O,
concentration.

N, and CO, Fixation and Transfer

"C-tracer studies have shown that the Geosiphon bladders fix
CO, both in light and in darkness, whereas the rate of CO,
fixation in light is much higher (Kluge et al. 1991). In light,
largely phosphate esters, poly-glucans, free sugars (including
trehalose and raffinose), some amino acids, and organic acids
trap '*C. In darkness only malic and fumaric acids together with
some amino acids appear as labeled products. High photosyn-
thetic activity of the endosymbiotic Nostoc cells is also shown by
photosystem II chlorophyll-fluorescence kinetics (Bilger et al.
1994). The symbiotic Nostoc cells achieve much higher steady-
state quantum yields and electron transport rates when com-
pared with free-living Nostoc.

The capability of N, fixation is indicated by the occurrence
of heterocysts, and considerable nitrogenase activity is shown
for the bladders (Kluge et al. 1992). In contrast to symbioses of
Nostoc with plants, where usually a great increase of the hetero-
cyst frequency indicates N, fixation as the major role of the
cyanobacteria, in Geosiphon the relative heterocyst number
does not change. Here, the major role of the endosymbiotic
Nostoc is photosynthesis. However, matter exchange between
the partners is still poorly investigated, and it is even possible
that the second bacterial endosymbiont (BLO; © Fig. 16.14),
which is typical for many glomeromycotan fungi, may contrib-
ute to N, fixation.

For the endosymbiotic Nostoc cyanobacteria, all inorganic
nutrients except N have to be provided by the fungus, as the
cyanobacteria live intracellularly. As shown by electrophysiolog-
ical experiments (unpublished), inorganic ions (nitrate, chlo-
ride) and small organic molecules (e.g., glycine, cysteine) lead to
rapid, transient depolarization of the plasma membrane poten-
tial of the G. pyriformisbladders, indicating that these substances
are actively taken up from the outside. By contrast, there are no
changes in membrane potential if hexoses and larger amino
acids are applied. In addition, metabolism of radioactively
labeled hexoses by the bladders cannot be detected after the
usual incubation times. Low cell wall permeability was consid-
ered the likely reason for the lack of uptake of monosaccharides.
This theory is supported by observations showing that the
presence of solutes with large molecule radii leads to irreversible
cytorrhysis, i.e., collapse of the whole bladder including the cell
wall, whereas in the presence of small solutes, plasmolysis
occurred (or cytorrhysis was quickly reversed). This different
transport behavior is presumably due to the selective permeabil-
ity of the bladder wall.

By systematically using solutes with known molecular radii,
it was shown that the limiting pore radius of the G. pyriformis
bladder wall is approximately 0.5 nm, which, compared with

other cell wall types, is very small (Schiifller et al. 1995). Such
a pore size is too small for an efficient permeation by, e.g., hexose
molecules from the outside, but it allows permeation of inor-
ganic hydrated ions like phosphate. If the hyphal cell wall also
has such a small pore size, the fungus would not be capable of
saprobic acquisition of organic molecules such as glucose,
sucrose, and larger amino acids. However, cell wall permeability
is a complex topic, and the thin hyphae formed by AM fungi
known as “branching absorbing structures” might possess dif-
ferent cell wall permeability.

Because AM fungi obtain up to 20 % of the plant-fixed CO,,
putatively as monosaccharides, the study of glomeromycotan
sugar transporters that could play a role in C transfer from
plants to AM fungi is important. Only one such
glomeromycotan monosaccharide transporter had been charac-
terized, and this (GpMST1) was from the Geosiphon symbiosis
(Schiifiler et al. 2006). This putatively symbiosome membrane-
located transporter was demonstrated also to transport sugars
potentially deriving from plant-cell-wall material (@ Fig. 16.18).
The GpMST1 sequence moreover provided valuable data for the
isolation of homologues from other AM fungi and could even-
tually lead to the better understanding of C flows in the AM.

Why the Symbiosis Is Mutualistic

The fungus in the Geosiphon symbiosis belongs to the
Glomeromycota (© Fig. 16.12) and is, like these, obligatorily
symbiotic. It is not yet known why glomeromycotan fungi are not
capable of nonsymbiotic life. Possibly it will be feasible in the future
to develop special culture methods for in vitro growth of AM fungi,
including Geosiphon. Generally, in nature, glomeromycotan
fungi seem incapable of saprotrophic existence but are depen-
dent on their symbiosis partners for C delivery. For Geosiphon
bladders, it was shown that only small molecules can pass the cell
wall (Schiiller et al. 1995). The narrow pores do not allow the
uptake of hexoses or disaccharides from the outside, but perme-
ation of inorganic ions like phosphate can occur. This might
reflect the situation in nature. However, it is also very possible
that the fine hyphae growing into the substrate show higher
permeability. In any case, by incorporating Nostoc, the fungus
obtains the required organic compounds.

Nostoc also benefits from the cooperation with the fungal
host, which probably facilitates the supply of the endosymbiont
with water, phosphate, and also CO,. It is interesting that all
inorganic nutrients, except N, have to be delivered by the fungus,
since the cyanobacteria live intracellularly. It should also be kept
in mind that the establishment of the Geosiphon symbiosis, as is
usually true for AM, is strongly promoted by P limitation, which
is a severe stress for the photobiont. The endosymbiotic Nostoc
cells thus divide and grow faster and bigger than their free-living
sisters. Preliminary studies moreover show that the intracellular
cyanobacteria are protected against heavy metals, which
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accumulate in the fungus (Scheloske et al. 2001). Therefore, as in
the AM, the photobiont seems to be protected against abiotic
stress factors in the Geosiphon symbiosis.

Evolutionary Implications with Ecological
Meaning

Most vascular plant species form AM (Smith and Read 2008),
including gametophytes and sporophytes of many ferns (Peter-
son et al. 1981) and Lycopodiaceae (Schmid and Oberwinkler
1993). Also, except for mosses, all groups of bryophytes contain
species with AM associations (Ligrone 1988; Ligrone and Lopes
1989; Stahl 1949; Fonseca et al. 2009), indicating an early origin
of the AM symbiosis.

In fact, the AM fungi have an ancient fossil record. Many of
the oldest and best preserved ~400 MY old AM fungal fossils in
association with plants are known from the Rhynie chert, radio-
metrically dated to the early Devonian (e.g., Remy et al. 1994;
Dotzler et al. 2009). The oldest known fossils of what appear to
be AM fungal spores and hyphae are from ~460 MY old Ordo-
vician dolomite rock of Wisconsin (Redecker et al. 2000a), and it
was concluded that terrestrial AM fungi already existed at a time
when the land flora most likely consisted only of bryophyte-like
“lower” plants.

From fossil cryptospore assemblages sharing characters with
those of extant liverworts (found in what was eastern Gond-
wana; Rubinstein et al. 2010), it is estimated that land plants are
more than 470 MY old (Early Middle Ordovician). The diversity
of these assemblages implies an earlier, perhaps even Cambrian,
origin of embryophytes. Early vascular plants already existed
~420 MY ago (Middle Silurian; Cai et al. 1996). A recent molec-
ular clock study (Smith et al. 2010) suggested an origin of land
plants around ~477 MY, but this dating in fact refers to the split
between bryophytes and the remaining lineages, not the (pre-
sumably earlier) origin of the land plant lineage itself. Therefore,
a minimum age of 420 MY for the liverwort-vascular plant
divergence must be assumed, and bryophyte-like land plants
were already present 510-470 MY ago.

Altogether, these data provide support for the hypothesis
(Pirozynski and Malloch 1975) that AM fungi symbioses played
a crucial role in the colonization of the land by plants, evolving
from a partnership between two aquatic types of organisms,
algae, and “oomycetous” fungi (the authors recognized the
difference between AM fungi and other “phycomycetes,” and
thus interpreted them as “oomycetes,” which are nowadays
known not to be fungi), as the initial step of land plant evolu-
tion. A mycotrophic lifestyle could have been essential for an
efficient supply of plants with water and nutrients from the soil
(Malloch et al. 1980; Marschner and Dell 1994). However,
molecular clock estimates always date the origin of the AM
fungal lineage to be at least 50, possibly more than 200 MY
earlier than that of land plants. If this holds true, it implies
that there were other types of associations formed by AM
fungi before land plants existed, whether saprobically, parasiti-

cally, or already mutualistically. Geosiphon pyriformis,

representing a symbiotic association between
a glomeromycotan fungus and a photoautotrophic prokaryote,
may reflect such an ancestral partnership, and thus, indirectly
but substantially, supports the hypothesis regarding pre-
Embryophyta associations of AM fungal predecessors
(Pirozynski and Malloch 1975). It is very plausible to assume
that at the beginning of terrestrial plant life, also other associa-
tions between glomeromycotan fungi and photoautotrophic
organisms (like the ubiquitous cyanobacteria) existed. The pre-
sent knowledge regarding AM fungi and AM symbiosis evolu-
tion was recently discussed and reviewed (Schiifler and Walker
2011).

In summary, glomeromycotan fungi may have adapted to
symbiotic life more than 500 MY ago. Without fossil support,
this is speculative, but G. pyriformis clearly confirms the ability
of glomeromycotan fungi to form symbioses with even prokary-
otic photoautotrophic organisms. Therefore, cyanobacterial
symbioses formed by glomeromycotan fungi could have been
an ecologically important step for the colonization of the land
habitat.

Arbuscular mycorrhizal fungi form symbioses with most
land plants, and individual AM fungi can be symbiotic with
widely divergent photoautotrophs such as hornworts and vas-
cular plants (Schtfller 2000). The genetic base for these interac-
tions is highly conserved (Wang et al. 2010). One can speculate
that there might even be very ancestral symbiotic mechanisms in
the AM that can be found in the Geosiphon-Nostoc symbiosis.
There are some very fundamental and conserved mechanisms of
plant-microorganism interactions present among the different
AM(—like) associations. When conducting ecophysiological
studies involving plants, it is important to consider that in
nature the mycorrhizal fungal partners are the main facilitators
of nutrient uptake, rather than the plant roots alone. If, as is
thought, the mechanisms of nutrient acquisition by land plants
coevolved since their origin with the AM fungi, ecologically and
economically important questions might be answered by using
the Geosiphon symbiosis as a model.

A Network Between Fungi, Cyanobacteria, and
Plants?

Against the above described evolutionary background, the inter-
esting question arises as to whether G. pyriformis itself can act as
a fungal partner to form AM. Unpublished results showed that
Geosiphon rDNA can be PCR amplified from plant roots and
bryophytes growing in the natural habitat of Geosiphon. How-
ever, it cannot be completely ruled out that the sensitive nested
PCR approach is detecting tiny amounts of DNA from externally
attached hyphae. Future studies at sites where the cyanobacteria
symbiosis of Geosiphon never occurs will have to show whether
Geosiphon is indeed forming an AM. If this were to be the case,
a complex network of ecological importance may be imagined
(© Fig. 16.19).

The molecular probes to screen for the occurrence of
Geosiphon in the soil and plant roots have been developed.
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If Geosiphon indeed forms AM with plants, a complex network
of biotic interactions would exist in the natural habitat. Within
such a network, symbiotic Nostoc could be exchanged between
Geosiphon and bryophytes, and Geosiphon could simultaneously
form endosymbiosis with Nostoc and AM with plants, thus, e.g.,
transporting and delivering N, fixed by the cyanobacteria to the
plants. Unfortunately, funding applications have been rejected,
with the consequence that laboratory cultures are no longer
available.
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