
Chapter 8
Instability and Chaos in Various
Laser Structures

Narrow-stripe edge-emitting structure is not the only one for semiconductor lasers.
Other than these, various kinds of laser structures of semiconductor lasers have been
proposed and some of them are now in practical use. For example, self-pulsating
semiconductor lasers are used for light sources of optical mass data storage systems,
vertical cavity surface-emitting semiconductor lasers (VCSELs) are expected as the
next generation laser light sources for optical communications and optical memory
systems, and broad-area semiconductor lasers are promising light sources for high
power laser applications. Quantum-dot semiconductor laser is a new laser structure
expected as a light source for highly coherent beam emission. The region of light
emission from the laser is well confined in a certain spatial point in the active area,
namely a quantum dot, and the energy levels related to light emission are perfectly
quantized by a quantum-dot structure. Another example of recent semiconductor
laser is quantum-cascade laser, which is a THz light source. Though a quantum-
cascade laser is one of the semiconductor lasers, the laser structure and light emission
process are completely different from other semiconductor lasers based on interband
optical transitions. Such a laser also shows different dynamics from conventional
semiconductor lasers. They have their own unique characteristic properties. Here,
we do not discuss the details of each device structure and its characteristics, but we
introduce the rate equations for such lasers and present their dynamic properties.
These new laser structures have extra degrees of freedom and show instabilities and
chaotic dynamics without any introduction of external perturbations. In this chapter,
we discuss the dynamics of these new lasers both for solitary oscillations and external
perturbations.
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8.1 Multimode Lasers

8.1.1 Multimode Operation of Semiconductor Lasers

Before discussing the dynamics of semiconductor lasers with various structures
different from narrow-stripe edge-emitting lasers, we show the rate equations for
multimode operating narrow-stripe edge-emitting lasers. In the preceding chapters,
semiconductor lasers were assumed to be operating at a single longitudinal mode,
however, the laser sometimes oscillates at multimode due to noises when it is biased
at a low injection current close to the threshold, otherwise it oscillates at multimode
originating from their device structures even for a higher bias injection current.
It intrinsically oscillates at multimode by the introduction of external perturbations
such as optical external feedback. Figure 8.1 shows a multimode spectrum of a Fabry-
Perot semiconductor laser operating close to the threshold. Even for a laser operating
at a single mode with suppressed side mode, the side mode does not damp out by
optical feedback or optical injection, and the laser dynamics are much affected by
the mode behaviors as shown in Chap. 6. Semiconductor lasers at solitary condition
may be operated with multimode as a nature of the device structure, since the laser
has a broad gain bandwidth. The separation of the longitudinal modes of an ordinary
semiconductor laser is more than 100 GHz (the corresponding wavelength separation
is ∼1 nm) due to a short internal cavity length. However, the gain profile is as large
as 20 nm or more and it has the possibility of multimodal oscillations with several
oscillation lines. In semiconductor lasers of various device structures different from
narrow-stripe edge-emitting lasers, they usually operate at multimode without any
external perturbations, since they originally include extra variables (extra degrees of
freedom) besides those for narrow-stripe edge-emitting lasers. We will discuss these
dynamics later. Here, we first discuss the dynamics of narrow-stripe edge-emitting
semiconductor lasers operating at multimode.

Semiconductor lasers have broad gain bandwidth, which is a unique feature differ-
ent from other lasers. Therefore, there exist many possible oscillation lines within the
bandwidth. The gain curve is sometimes assumed as a parabolic function, although,
in actual fact, the gain profile has asymmetry. The gain for shorter wavelength
(higher energy of carrier or higher frequency oscillation) tends to be large by the
band-filling effects under the condition of constant temperature and carrier injection.
Also, semiconductor lasers with multimode operation are much affected by this effect
(Petermann 1988). The optical powers are equally distributed to respective modes
below the laser threshold. However, the transfer of the power to the side modes is
much restrained well above the threshold and the power of the main mode increases
resulting in a single mode oscillation. This phenomenon is well reproduced from
the calculations of the rate equations for taking into consideration the multimode
effects and the theory and experiments show good coincidence. The effect of side
mode suppression is strongly dependent on spontaneous emission of light and the
large spontaneous emission coefficient βsp forces the excitation of side modes.

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 8.1 Optical spectrum
of a multimode Fabry-Perot
semiconductor laser
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8.1.2 Theoretical Model of Multimode Lasers

The rate equations for the photon number and the carrier density for multimode
semiconductor lasers are given by the following equations (Petermann 1988):

dS j (t)

dt
= [Gn, j {n(t)− nth, j }]S j (t)+ Rsp(ω j ) (8.1)

dn(t)

dt
= J (t)

ed
− n(t)

τs
−

M∑

j=−M

Gn, j {n(t)− n0}S j (t) (8.2)

where subscript j is for the j th mode and 2M + 1 is the total mode number. j = 0 is
the main mode. The final term in (8.1) is the effect of spontaneous emission of light.
It is noted that it is not only a function of time but also a function of optical frequency.
For incoherent rate equations, we do not need to consider the phase equation, since
it does not couple with the other equations. The above two equations are enough to
describe the primary characteristics induced by multimode oscillations in a solitary
laser. On the other hand, in an actual situation, we must consider the nonlinear
saturation effect for the gain and the cross-saturation effect in the photon number
rate equation. Further, we must use the complex field equation instead of the photon
number rate equation, when we consider coherent effects such as optical feedback.
For coherent phenomena, the phase equation plays a crucial role for the dynamics as
has already been discussed. Such an instance will be treated later in this subsection.

At first, we study the side mode suppression ratio (MSR) in a multimode semicon-
ductor laser. Assuming 2M + 1 oscillation lines within the gain profile and approx-
imating the gain as a parabolic curve, the gain is written as

Gn, j = Gn

{
1 −

(
j

M

)2
}

(8.3)

where M = �νg/�νl ,�νg is the frequency width of the gain profile and �νl

the frequency of the longitudinal mode spacing. The laser output power of the j th
mode for the steady-state solution is calculated from the rate Eqs. (8.1) and (8.2) as
(Petermann 1988; Agrawal and Dutta 1993)
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S j ≈ Rsp(ω j )
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τph
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≈ τph Rsp(ω j )
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(

j
M

)2 (8.4)

where ns and n0 is the steady-state value of carrier density and carrier number at
transparency, and δ = 1 − Gnτph(ns − n0) = τph Rsp/S0. Note that the relation
Gnτph(ns − n0) ≈ 1 is used for the final form of (8.4). From this relation, we obtain
the side mode suppression ratio as

MSR = S0

S1
= 1 + 1

δM2 = 1 + S0

τph Rsp
(
�νl

�νg
)2 (8.5)

For a semiconductor laser which is assumed to be a single mode operation, the value
of MSR is larger than 20.

A single mode operation at a high bias injection current is expected for index-
guided semiconductor lasers, since the spontaneous emission coefficient is as small
as less thanβsp ∼ 10−4.However, the side mode suppression is weak for gain-guided
semiconductor lasers with a larger spontaneous emission coefficient of βsp ∼ 10−3

and the laser tends to be oscillated with multimode. As a primary effect, a side
mode is suppressed for the increase in the injection current above the threshold
and the optical power is concentrated to the main mode. In actual laser oscillation,
there are effects of spatial hole-burning due to standing-wave nature along the laser
propagation and spectral hole-burning due to the broadening of the gain profile for
the increase in the optical power. As results, the side mode is suppressed and the
optical power is transferred to the main mode (Agrawal and Dutta 1993). These
effects cause instabilities for the main mode and play an important role for chaotic
dynamics in semiconductor lasers. Similar effects are observed for optical injection
to semiconductor lasers as shown in Fig. 6.5. Other effects to destabilize the main
mode and enhance the side modes are the beating between the main and side modes
and the four-wave mixing in the oscillation modes. The effects are strongly dependent
on laser types, materials, and confinement of light in the active layer.

We have derived the multimode rate equations for semiconductor lasers in the
incoherent case. However, we must take into account the effects of the nonlinear gain
saturation and cross-gain saturation. Also, we must use the coherent rate equations
for a semiconductor laser when the laser is subjected to external optical feedback or
optical injection. When a semiconductor laser oscillates at a multimode with 2M +1
oscillation lines, the rate equations for the complex field and the carrier density are
written as (Ryan et al. 1994)

dE j (t)

dt
= 1

2
(1 − iα)Gn, j {n(t)− nth, j }E j (t)

− 1

2

(
εs j |E j (t)|2 +

M∑

m=−M

θmj |Em(t)|2
)

E j (t) (8.6)

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Table 8.1 Characteristic device parameters for a multimode semiconductor laser at an oscillation
wavelength of 780 nm (GaAs-GaAlAs laser)

Symbol Parameter Value

Gn gain coefficient 2.05×10−13 m3 s−1

α linewidth enhancement factor 4.00
r0 facet reflectivity 0.556
nth carrier density at threshold 4.00×1024 m−3

n0 carrier density at transparency 1.40 × 1024 m−3

τs lifetime of carrier 2.00 ns
τph lifetime of photon 1.88 ps
τin round trip time in laser cavity 6.00 ps
V volume of active region 1.25×10−16 m3

εs j nonlinear self-saturation coefficient 1.70×104s−1

θmj nonlinear cross-saturation coefficient 1.60 × 103s−1

dn(t)

dt
= J

ed
− n(t)

τs
−

M∑

m=−M

[Km Gn,m{n(t)− n0}]|Em(t)|2 (8.7)

where E j (t) is the field of the j th mode, εs j and θmj (m = j) are the nonlinear self-
and cross-saturation coefficients, respectively, and Km is the mode gain coefficient.
We omitted the Langevin noise terms in (8.6), however, it may be added where
necessary.

The nonlinear saturation coefficient α′ = −(∂Re[χ ]/∂S)/(∂Im[χ ]/∂S) for the
photon number discussed in Sect. 6.2 is ignored in the above equation. The satura-
tion coefficients εs j and θmj do not have large values and they are in the order of
104 s−1. In the carrier density equation, we also ignore the mode interferences for the
carrier recombination because it has small effects. A semiconductor laser operating
at multimode is an unstable laser and it is easily affected by external perturbations.
A multimode semiconductor laser shows mode competitions and mode switching
induced by the nonlinear interactions among the modes. Mode partition noise is
one of the dominant effects in multimode oscillating lasers and it is a non-negligible
effect (Ahamed and Yamada 2002). Each oscillation mode includes a very large rela-
tive intensity noise (RIN) and it sometimes causes problems in actual use. However,
as a total intensity, a multimode semiconductor laser with partition noise has the
same order of RIN as a single mode laser, since the partition noises are averaged out
(Petermann 1988). Using (8.6), the rate equation for the complex field in a multimode
semiconductor laser with optical feedback is given by

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 8.2 Bifurcation dia-
grams of carrier density for
optical feedback rate. a Single
mode laser. b Multimode laser
with five oscillation lines.
The external cavity length
is L = 10 cm, which cor-
responds to a frequency of
1.5 GHz. The relaxation oscil-
lation frequency of the laser
is assumed as 0.7 GHz. The
same device parameters are
assumed for both cases [after
Ryan et al. (1994); © 1994
IEEE]
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dE j (t)
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= 1

2
(1 − iα)Gn, j {n(t)− nth, j }E j (t)

− 1

2

(
ε j |E j (t)|2 +

M∑

m=−M

θmj |Em(t)|2
)

E j (t)

+ κ j

τin
E j (t − τ) exp(iω jτ) (8.8)

In the following, the dynamics of multimode semiconductor lasers subjected to exter-
nal optical feedback are numerically investigated. Table 8.1 shows typical values of
device parameters for a multimode semiconductor laser frequently used in numerical
simulations (Ryan et al. 1994).
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8.1.3 Dynamics of Multimode Semiconductor Lasers
with Optical Feedback

When the frequency corresponding to the round-trip time of light in the external
cavity is small enough compared with the relaxation oscillation frequency, the dif-
ference in the dynamics between single mode and multimode semiconductor lasers
is not distinct. However, if the external cavity length becomes short and the corre-
sponding frequency exceeds the relaxation oscillation frequency, they show different
dynamics. Figure 8.2 shows an example of the difference. Bifurcation diagrams in
the phase space of the carrier density and the external feedback rate are calculated
both for single mode and multimode semiconductor lasers (Ryan et al. 1994). For
the multimode laser, five modes are assumed. In Figs. 8.2a, b, the multimode laser is
stable compared with the single mode laser and a feedback level of ten times larger
than the solitary case is required to destabilize the laser. Namely, the multimode
semiconductor laser is less sensitive to optical feedback than the single mode semi-
conductor laser as far as the conditions of the device parameters are the same. This
result can be understood qualitatively by noting that all modes contribute to the damp-
ing of relaxation oscillations. Even though an individual mode may be unstable in
solitary oscillation, simultaneous lasing of all modes preserves the steady state over
a large range of the external feedback. The situation is quite similar to the effect of
averaged RIN in multimode semiconductor lasers (Petermann 1988). Also, chaotic
regions are much thinner compared to the single mode case.

At chaotic oscillations of a multimode semiconductor laser, the bifurcation dia-
grams cannot tell us whether all of the modes simultaneously oscillate, or whether
one of the modes, or a small number of them are the dominant oscillation modes.
Figure 8.3 shows the simulation result for waveforms of each oscillation mode in
a multimode semiconductor laser (Ryan et al. 1994). Figure 8.3 is the calculations
of waveforms without and with optical feedback. Each waveform is averaged for a
10 ns time window to clearly show the difference. Switching among the modes is not
distinct for the solitary oscillation, although the change of the main mode for the time
evolution is visible as shown in Fig. 8.3a. The solitary laser exhibits mode partition
fluctuations, but it remains multi-moded most of the time. The total optical power at
the solitary oscillation is almost constant for time. However, in Fig. 8.3b, only one of
the modes is dominant for a certain time duration and the other mode is suppressed,
when the laser shows chaotic dynamics induced by the optical feedback. The main
mode changes to the other mode after a certain time duration in a random manner.
At the moment of mode hopping, the total output power sustains irregular spikes.
Switching among modes is a typical feature of multimode semiconductor lasers sub-
jected to optical feedback. From the detailed study of the dynamics, it is understood
that only one or few of the possible oscillation modes become the dominant mode
for a certain time duration and the modes alternately switch in a random manner.
When the mode number is small, only one mode tends to oscillate in chaotic manner
and oscillations of the other modes are suppressed. Especially, a mode of shorter
wavelength tends to show chaotic oscillations for small optical feedback due to the
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Fig. 8.3 Waveform of each
mode in a multimode semicon-
ductor laser corresponding to
Fig. 8.2. Three modes are dis-
played. a Almost steady-state
oscillation without optical
feedback and b chaotic oscil-
lation with optical feedback.
The intensity feedback ratio
is 5 × 10−4 [after Ryan et al.
(1994); © 1994 IEEE]
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asymmetry of the gain profile. Indeed, this mode switching has been experimentally
observed (Ikuma and Ohtsubo 1998).

8.2 Self-Pulsating Lasers

8.2.1 Theory of Self-Pulsating Lasers

Self-pulsating semiconductor lasers are used as light sources for digital versatile
disks (DVD) in optical data storage systems, since noises (actually chaotic irregular
oscillations) induced by optical feedback from a disk surface are greatly suppressed
by self-pulsations. Also, a technique of high frequency injection current modulation
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Fig. 8.4 Model of self-
pulsating semiconductor
lasers. a Cross-section
of the front facet of the
laser, b carrier distribution,
and c optical profile. The
center is the active region
and both sides of the active
layer are the carrier absorbing
regions
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in CW operating semiconductor lasers is used to reduce optical feedback noises in
optical disk systems. Self-pulsating semiconductor lasers are fabricated to reduce
feedback noises using pulsation oscillations originating from their device structures
without external control circuits. The pulsation frequency depends on each device
and the bias injection current, and ranges typically from several hundreds of MHz
to the order of GHz. The self-pulsation semiconductor laser itself is unstable and
sometimes shows instability for a certain region of the bias injection current even
without external perturbations. The structure of self-pulsation lasers is almost the
same as edge-emitting lasers except for saturable absorbing regions adjacent to the
active layer as shown in Fig. 8.4. The width of the active region is usually the same
size as that of edge-emitting semiconductor lasers. However, this is not the only
structure of self-pulsating semiconductor lasers. The other example is a type of weak
index guide (WIG) and the saturable absorbing layer is installed above the active
region. The type of adjacent saturable absorbing layers (SALs) shown in Fig. 8.4
is assumed in the following discussion. However, the results are straightforwardly
applicable to the WIG model.

In Fig. 8.4a the cross-section of the front facet of a self-pulsating semiconductor
lasers is represented. The saturable absorbing regions are installed at both sides of
the active layer. Figure 8.4b is the carrier distribution along the active layer. The
size of the active region has almost the same dimension as that of common narrow-
stripe edge-emitting semiconductor lasers. Carriers injected into the active region
rapidly decay out to the regions of the saturable absorbers. Figure 8.4c is the profile
of the output power at lasing oscillation. The whole distributions of the carriers
and the optical power from the active layer to the saturable absorbing regions are
determined by the boundary conditions in the same manner as the treatment of the
light transmission in an optical wave guide (Yamada 1993). The time constant τ12
of the carrier diffusion from the active layer to the absorbers is given as
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τ12 = w2

2D
(8.9)

where w is the width of the active layer and D is the diffusion constant. At the
same time, the carrier diffusion also occurs from the saturable absorbing regions
to the active layer. Since the total number of the electrons V1n1 + V2n2 should be
unchanged, the time constant τ21 of the carrier diffusion from the absorbers to the
active layer is given as

τ21 = V2

V1
τ12 (8.10)

where V1 and V2 are the volumes of the active and absorbing regions, and n1 and
n2 are the carrier densities at the active and absorbing regions, respectively. The
linearized gains for the active and absorbing regions have different values, therefore
we must use appropriate gains for them in the numerical simulations. Also, the carrier
densities above which the lasing gain becomes positive, i.e., transparent, differ from
each other.

Before introducing the rate equations for self-pulsating semiconductor lasers,
the mechanism of self-sustained pulsating oscillations in a SAL type laser is briefly
explained. At the carrier number less than the laser threshold, carriers are accumulated
in the active region by the carrier injection. When the carrier number exceeds the
laser threshold, the laser oscillation starts. The carriers are rapidly absorbed by the
diffusion to the saturable absorbing regions. The carrier diffusion is reduced due to
the increase of the carrier number in the saturable absorbing regions, and this results
in the increase of the photon number. However, the increase of the photon number
causes the depletion of carriers in the active region and the decrease of the carrier
number is accelerated by the diffusion of the carriers to the saturable absorbing
regions. Then, the carrier number falls below the laser threshold and, finally, the
laser oscillation stops. After the halt of the laser oscillation, the carrier number again
increases and the next pulsating oscillation starts. This process repeats again and
again and the laser shows self-sustained pulsation oscillations. The accumulation
time of carriers to show lasing oscillation is typically about 1 ns (corresponding to a
pulsating oscillation frequency of 1 GHz) and the width of the pulses is ∼100 ps.

In the following, we assume a single mode oscillation for a self-pulsating semi-
conductor laser, however, actual lasers are more or less multimode oscillations.
Therefore, the dynamics derived from the theory do not always coincide well with
the experimental results unlike in the cases of narrow-stripe edge-emitting lasers.
However, we can discuss approximate characteristics of self-pulsating semiconduc-
tor lasers, such as pulsating oscillations, pulsing frequency, and L-I characteristics.
Several theoretical models have been proposed and some of them are listed in the
reference (Carr and Erneux 2001), although the fundamental idea of the models is
the same. Here, we assume a single mode model for a self-pulsating semiconductor
laser and we introduce an additional carrier density equation for the saturable absorb-
ing regions of the rate equations in a narrow-stripe edge-emitting semiconductor
laser (Yamada 1993, 1996). Due to the presence of the saturable absorbing regions,
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Fig. 8.5 L-I characteristic of a
self-pulsating semiconductor
laser. The laser is an AlGaInP
multi-quantum well laser
operating at a wavelength
of 650 nm and a maximum
output power of 5 mW
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carriers in the active region rapidly decay toward the absorbing regions and pulsa-
tions occur in the laser output. In such a structure, we must take into account the
carrier density equations in the absorbing regions.

The rate equations for the complex amplitude E and the carrier densities n1 and n2
for the active and absorbing regions describing self-pulsation semiconductor lasers
are written as

dE(t)

dt
= 1

2
(1 − iα)[Gn1{n1(t)− nth1} + Gn2{n2(t)− nth2}]E(t) (8.11)

dn1(t)

dt
= J

ed
− n1(t)

τs1
− n1(t)− n2(t)

τ12
− Gn1{n1(t)− n01}|E(t)|2 (8.12)

dn2(t)

dt
= −n2(t)

τs2
− n2(t)− n1(t)

τ21
− Gn2{n2(t)− n02}|E(t)|2 (8.13)

Here, subscripts 1 and 2 denote the quantities for the active and absorbing regions,
respectively, and τ12 and τ21 are the carrier diffusions from regions 1–2 and vice versa,
respectively, as has already been defined. In the field equation, we ignored the non-
linear gain saturation effect. However, it may play an important role in self-pulsating
semiconductor lasers, since the photon density becomes large due to pulsating oscil-
lations even for a short time duration. We take into account the nonlinear gain in such
a case as discussed in Sect. 3.3.4. However, we can simulate approximate character-
istics of self-pulsating semiconductor lasers without considering the gain saturation
effect and the term is sometimes omitted. Self-pulsation semiconductor lasers were
originally aimed to reduce the effect of optical feedback noises, however, the RIN is
sometimes enhanced under certain conditions of the feedback. Furthermore, they are
essentially unstable lasers and they sometimes show unstable or chaotic oscillations
under certain ranges of the bias injection current even at solitary oscillations.

http://dx.doi.org/10.1007/978-3-642-30147-6_3


250 8 Instability and Chaos in Various Laser Structures

Time [ns] Frequency [MHz]

Po
w

er
 [

lin
ea

r/
 a

.u
.]

O
ut

pu
t P

ow
er

 [
a.

u.
]

0

1
(a)

(b)

0

1

0

1

0

1

0 10 20 30 40 50 0 500 1000

Fig. 8.6 Waveforms and rf spectra in Fig. 8.5. a Unstable region at a bias injection current of 74 mA
and b stable regular pulsating oscillation at 80 mA

8.2.2 Instabilities at Solitary Oscillations

The self-pulsating semiconductor laser itself is an unstable laser and regular pul-
sating oscillation is considered as a kind of period-1 state on the way to chaotic
evolution. Typical features of chaotic states in a self-pulsating semiconductor laser
are pulsing oscillations with irregular pulse amplitude and jitters. The characteristics
of self-pulsating semiconductor lasers are strongly dependent on the device structure
and parameters. Figure 8.5 shows an example of an experimental L-I characteristic
of a self-pulsating semiconductor laser at solitary oscillation. The laser is a SAL type
and has a maximum output power of 5 mW with an oscillation wavelength of 650 nm.
The oscillation above the threshold is divided into unstable and stable regions for the
bias injection current. The threshold current is about 70 mA, which is much higher
than that of ordinary narrow-stripe edge-emitting semiconductor lasers, because the
strong carrier dissipation exists due to the presence of the saturable absorbing regions.
Another difference is the vague threshold. The laser power does not linearly increase
for the bias injection current close to the threshold, but it has a hysteresis. As demon-
strated later, bistability is reproduced by the numerical simulations from the rate
equations.

In the L-I characteristic, the laser output shows the bistable state above the thresh-
old. In this region, the laser exhibits pulsating oscillation, but it is unstable. A
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Table 8.2 Characteristic device parameters for a self-pulsating semiconductor laser at an oscillation
wavelength of 650 nm (AlGaInP laser)

Symbol Parameter Value

Gn1 gain coefficient in active region 3.08 × 10−12 m3s−1

Gn2 gain coefficient in satruable 1.24 × 10−13m3s−1

absorbing region
α linewidth enhancement factor 4.00
n01 carrier density at transparency 1.40 × 1024 m−3

in active region
n02 carrier density at transparency 1.60 × 1024 m−3

in satuarble absorbing region
τs1 lifetime of carrier in active region 2.49 ns
τs2 lifetime of carrier in saturable 1.25 ns

absorbing region
τ12 diffusion time 2.65 ns
τph lifetime of photon 2.72 ps
V1 volume of active region 0.72 × 10−16 m3

V2 volume of saturable absorbing region 0.46 × 10−16 m3

waveform and its rf spectrum in this region are plotted in Fig. 8.6a. The pulse peak
changes irregularly and the waveform shows a broad chaotic spectrum. Well above
the laser threshold, the laser shows regular pulsing states with constant peak and sep-
aration as shown in Fig. 8.6b. However, even for such stabilized operations at solitary
mode, the laser may be destabilized by optical feedback. Stability or instability of
the laser operations for optical feedback is discussed in the next subsection. It is
noted that every self-pulsating semiconductor laser does not always show the same
L-I characteristics as in Fig. 8.5. A laser with regular pulsing states is suitable for a
read-light source in DVD systems to avoid optical feedback from a disk surface.

The L-I characteristic is numerically calculated from the rate Eqs. (8.11)–(8.13).
Typical parameter values of red light self-pulsating semiconductor lasers are listed in
Table 8.2. Because of the pulsation characteristics of laser oscillations, the values of
the gain coefficients are larger than those of narrow-stripe edge-emitting semiconduc-
tor lasers. Figure 8.7 is an example of the calculated L-I characteristic (van Tartwijk
and San Miguel 1996). After the lasing oscillations, the laser shows bistability for the
bias injection current between 48 and 58 mA and chaotic pulsating oscillations are
observable in this region. For the bias injection current from 58 to 125 mA, the laser
oscillates at stable regular pulsing states. Over the bias injection current of 125 mA,
the laser shows stable CW oscillations. In the numerical simulations, noises induced
by spontaneous emission strongly affect the pulsing frequency. At regular pulsing
states without considering noises, the pulsing frequency smoothly increases with the
increase of the bias injection current. In the presence of noises, a kink is observed in
the characteristic curve of the pulsing frequency and the bias injection current (van
Tartwijk and San Miguel 1996; Mirasso et al. 1999).
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Fig. 8.7 Theoretically calcu-
lated L-I characteristic of a
self-pulsating semiconductor
laser [after van Tartwijk and
San Miguel (1996); © 1996
IEEE]
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The theoretical calculation in Fig. 8.7 well reproduces the behaviors of unstable
and stable pulsating oscillations. However, the CW operation of self-pulsating lasers
is not observable in experiments. The CW operation in Fig. 8.7 is achieved at a high
bias injection current and such a high bias injection current may damage the laser.
Another example of discrepancy between the theory and the experiment is the pulse
width of the waveform. The theoretically calculated pulse width is much smaller
than the actual width. For example, the calculated pulse width is typically 10 ps,
but the observed pulse usually has a width of around 100 ps. As has already been
mentioned, the improvement of the theoretical model of the rate equations is still
required to explain well the experimental data (Yamada 1998b). The other reason for
the discrepancy is the assumption of a single mode operation for self-pulsating lasers.
It is well known that self-pulsating semiconductor lasers oscillate at multimode with
many oscillation lines.

Characteristics of InGaN self-pulsating semiconductor lasers with an operating
wavelength of 395 nm have been investigated (Tronciu et al. 2003). Since the dif-
ference between the carrier lifetimes of the active and saturable absorbing layers
is much greater than that of red light self-pulsating semiconductor lasers, the lasers
show quite different dynamics from red self-pulsating lasers. For example, the carrier
lifetime of the active layer is 2.0 ns, while that of the saturable absorbing layer is
only 0.1 ns. The rate equations are fundamentally the same as those in (8.11)–(8.13),
but Tronciu et al. took into account the effects of the outer regions besides the active
and absorbing layers in the numerical simulations. Figure 8.8 shows some numeri-
cal and experimental results. They used the model of a WIG-type laser. Close to the
threshold, the laser oscillates at the CW operation without hysteresis like in Fig. 8.8a,
which is quite different from the operation of red self-pulsating lasers. At a certain
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Fig. 8.8 Characteristics of an
InGaN self-pulsating semi-
conductor laser with an oscil-
lation wavelength of 395 nm.
a Calculated bifurcation dia-
gram for a laser cavity length
of 500 µm. The self-pulsation
region is observable from 125
to 200 mA. The other range
of the injection current is a
stable CW operation. b Self-
pulsation range in the plane
of laser cavity length versus
injection current. Experi-
mentally obtained ranges of
the self-pulsation are indi-
cated with dotted lines [after
Tronciu et al. (2003); © 2003
IEEE]
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bias injection current, the laser at first shows self-pulsating oscillation. However, the
laser recovers stable states for a bias injection current above 200 mA. The dynamics
is strongly dependent on the laser cavity length. The self-pulsation range (SP) for
the laser cavity length is investigated in Fig. 8.8b. We can see the agreement between
the theoretical and experimental results.

8.2.3 Instability and Chaos by Optical Feedback

The self-pulsating semiconductor laser is fabricated as a low noise light source in
optical data storage systems. However, the reduction of feedback noise is not always
achieved for every feedback condition. The self-pulsating semiconductor laser has
a periodic pulsation with a frequency ranging from several hundreds MHz to GHz
depending on the bias injection current. There is a congenial range of optical feedback
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lengths to suppress feedback noise. The self-pulsating semiconductor laser sustains
a forced oscillation due to the device structure and the feedback noise is reduced for
a wide range of the feedback conditions. On the other hand, outside this region, the
laser undergoes more noises than that of edge-emitting semiconductor lasers. Also,
the laser shows chaotic behaviors for the modulation under certain bias injection
current ranges. At first, we consider feedback induced noises in a self-pulsating
semiconductor laser. There are two schemes of optical feedback in self-pulsating
semiconductor lasers; coherent and incoherent feedback depending on the relation
between the pulse separation and the feedback length. When the feedback length
is small enough compared with the pulsing separation and close or less than the
pulse width, the effect is coherent. For the condition Tp > τ(Tp being the pulse
separation), the rate equation for the complex field is given by

dE(t)

dt
= 1

2
(1 − iα)[Gn1{n1(t)− nth1} + Gn2{n2(t)− nth2}]E(t)

+ κ

τin
E(t − τ) exp(iω0τ) (8.14)

The equation is the same as that for the coherent case of narrow-stripe edge-emitting
semiconductor lasers except for the effects of the gain term in the saturable absorbing
regions. The rate equations for the carrier densities under coherent feedback remain
unchanged as in (8.12) and (8.13).

On the other hand, the rate equation of the complex field is written the same as
(8.11) for incoherent optical feedback, however, the carrier density equation for the
active layer in (8.12) must be changed and the incoherent feedback term is added to
this equation, when Tp < τ . The rate equation for the carrier density is given as

dn1(t)

dt
= J

ed
− n1(t)

τs1
− n1(t)− n2(t)

τ12
− Gn1{n1(t)− n01}

× {|E(t)|2 + κi (1 − R2
0)R|E(t − τ)|2} (8.15)

where R0 and R are the intensity reflectivities of the front facet of the laser and
the external reflector, respectively, and κi is the intensity coupling coefficient to the
active layer.

We show some numerical results for the dynamics of self-pulsating semiconductor
lasers subjected to coherent optical feedback. Figure 8.9 is an example (Yamada
1998a,b). Figure 8.9a shows the time series of the laser oscillation without optical
feedback. In the figure, n1 and n2 are the carrier densities of the active and saturable
absorbing regions, respectively, and S is the photon number. n4 is the carrier density
at the current blocking region installed above the saturable absorbing layer. The
laser oscillates at the regular pulsing state and the pulsing frequency is 1.29 GHz.
The calculated RIN at the solitary oscillation is less than −130 dB/Hz for the lower
frequency component. Figure 8.9b shows the waveforms for the same variables under
optical feedback. The feedback ratio is set to be 3.3 % in the average field amplitude.
In the presence of optical feedback, the laser still shows a pulsating oscillation.
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Fig. 8.9 Times series of the variables in a self-pulsating semiconductor laser at J = 1.69Jth.
a Without optical feedback and b with optical feedback of 3.3 % of the average field amplitude.
The external cavity length is L = 4 cm. n1: carrier density in active region, n2: carrier density in
saturable absorbing region, n4: carrier density in current blocking region, and S: photon number
[after Yamada (1998a); © 1998 IEICE]

However, the laser output power is disturbed by the feedback and the laser shows a
chaotic oscillation. The pulse period is larger than that of the solitary oscillation and
its average frequency is 1.07 GHz. It is noted that the pulse height also fluctuates and
the RIN is greatly enhanced up to −90 dB/Hz for the lower frequency component.

van Tartwijk and San Miguel (1996) numerically studied the effects of optical
feedback in self-pulsating semiconductor lasers and calculated pulse periods and
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jitters (the standard deviation from the average period) without and with optical
feedback. As results, the pulse period decreases with the increase of the bias injection
current and, at the same time, the jitter becomes small. Increasing the feedback
time, the pulse period increases and, then, a sudden jump-down is observed at a
certain feedback distance. The jump in the pulse period must be attributed to a
switch of the locked-pulse frequency to a neighboring compound cavity mode, i.e.,
the resulting resonance frequency of the laser mode with relaxation oscillations and
one of the external cavity resonance frequencies. A similar trend can be observed
for the pulse jitter. There is also phase sensitivity of coherent optical feedback in a
self-pulsating semiconductor laser as expected from (8.14). When the feedback is
small, the pulse period keeps almost the same value as that of the solitary oscillation.
However, the jitter has the minimum value at a certain small feedback ratio. The
increase in jitter after the optimum value manifests itself by a multi-peaked, very
broad pulse period distribution. The effects agree well with the period-doubling
route to chaos (Kuznetsov et al. 1986). The dynamics of coherent optical feedback is
extensively studied in self-pulsating semiconductor lasers, because the lasers are used
as light sources for DVD systems in which the optical feedback length is typically
within several centimeters. On the other hand, the typical feedback length is several
tens of centimeters to meters when the lasers are used as light sources for optical
measurements. The effects for this range are incoherent.

8.2.4 Instability and Chaos by Injection Current Modulation

A few studies have been reported for the modulation properties of self-pulsating
semiconductor lasers. The lasers show unstable oscillations by the modulation to the
bias injection current, and also exhibit chaotic behaviors at large modulation index.
For the variations of irregular pulse peaks, we can see similar chaotic bifurcations to
those in ordinary narrow-stripe edge-emitting semiconductor lasers such as discussed
in Chap. 7 (Winful et al. 1986; Juang et al. 1999, 2000; Jones et al. 2001). It is shown
that the occurrence of chaotic oscillations is critically dependent on the modulation
frequency. Periodic bands of chaotic dynamics are found to exist at multiples of
the relaxation oscillation frequency. Not only stable pulsations resonance to the
modulation frequency (locking oscillation), but also unstable pulsations and unique
frequency-locked pulsations in which multiple spikes appear within some modulation
period are found.

Fukushima et al. (2002) investigated experimentally and theoretically the dynam-
ics of self-pulsating semiconductor lasers with injection current modulated and
observed chaotic bifurcations for the pulsation frequency and the pulse height.
Figure 8.10 shows some typical output waveforms observed by the experiments.
The scales in the figure denote the period of modulation. The modulation index for
the bias injection current is set to be m = 1.06. Each periodic state is defined as
Pl

k , where k stands for the ratio of the fundamental period of the pulse train to the
modulation period and l stands for the number of spikes in the fundamental period

http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 8.10 Experimentally
observed temporal wave-
forms of the output optical
pulses at a bias injection
current of 59.5 mA and
a modulation index of
m = 1.06. a Without rf
modulation, b P2

1 pulsation at
fm = 300.0 MHz, c P3

2 pulsa-
tion at fm = 327.0 MHz, d P1

1
pulsation at fm = 360.0 MHz,
e unstable pulsation at
fm = 562.0 MHz, f P3

4 pulsa-
tion at fm = 584.0 MHz, g P2

3
pulsation at fm = 592.0 MHz,
h P1

2 pulsation at fm =
650.0 MHz, and i P1

3 pulsation
at fm = 1000.0 MHz. The bar
in each plot is the fundamental
period of the modulation [after
Fukushima et al. (2002); ©
2002 JSAP]
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Fig. 8.11 a Characteristics of pulsation frequency versus modulation frequency under rf modula-
tion. b Dependence of the pulse height on the modulation frequency under the frequency-locked
pulsations of P1

1, P1
2, and P1

3 [after Fukushima et al. (2002); © 2002 JSAP]

of the pulse train. Without rf modulation, the laser shows stable pulsation at a self-
pulsation frequency of 245.7 MHz, as shown in Fig. 8.10a. Under rf modulation, as
the modulation frequency fm increases, the output optical pulse train is locked to
the modulation frequency (P1

1 pulsation) or its subharmonics (P1
2 and P1

3 pulsations)
as shown in Fig. 8.10d, h, and i. In the boundary regions of these frequency-locked
pulsations, unstable pulsation occurs as shown in Fig. 8.10e. It is speculated that the
unstable region contains both quasi-periodic pulsation and chaotic pulsation. In the
boundary regions, unique frequency-locked pulsations are also observed. One is P2

1
pulsation in which two spikes appear within one modulation period, as shown in
Fig. 8.10b. Another is P3

2 pulsation in which two spikes and a single spike appear
alternately. The others are P3

4 and P2
3 pulsations in which three or two spikes appear

within four or three modulation periods as shown in Fig. 8.10f, g, respectively.
The experimental results are summarized in Fig. 8.11. Figure 8.11a shows the

characteristics of pulsation frequency versus modulation frequency. The figure shows
the regions of frequency-locked states for the modulation frequency. In between
the frequency-locked states for the modulation frequency, we can observe unstable
and chaotic oscillations as shown in Fig. 8.11e. Figure 8.11b shows the dependence
of the pulse height on the modulation frequency under P1

1,P1
2, and P1

3 pulsations.
Under P1

1 pulsation, the pulse height decreases gradually as the modulation frequency
increases and eventually the pulsation becomes unstable at the modulation frequency
of 560 MHz. Then P1

2 pulsation occurs at 647 MHz. Here, the pulse height again
returns to a high level. The same phenomenon is observed under P1

2 and P1
3 pulsations.

The modulation index used in this experiment is rather high. However, similar trends
in those results were obtained for lower modulation index, although each region
of frequency-locked state shifts for lower modulation frequency. Fukushima et al.
(2002) also compared the theoretical results with those experiments and demonstrated
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that the theory based on the rate equations of (8.11)–(8.13) with injection current
modulation well explains their experiments.

8.3 Vertical-Cavity Surface-Emitting Lasers

8.3.1 Vertical-Cavity Surface-Emitting Lasers

Vertical-cavity surface-emitting lasers (VCSELs) are promising devices of light
sources for optical information processing and communications. Currently, VCSELs
from visible wavelengths to near infrared (1.5 µm) are fabricated and their output
powers reach as high as several tens of milliwatts. Also, a device that has a high mod-
ulation bandwidth of over 10 GHz with a low RIN of less than −140 dB is fabricated.
A VCSEL has a disk structure with light coming out from the top or bottom of the
substrate surface. Various types of device structures have been proposed. Index- and
gain-guiding structures are used for the confinements of carrier and light in VCSELs
such as those for edge-emitting semiconductor lasers. Each guiding structure has
merits and demerits in the laser oscillations, but the differences of the stable and
unstable effects between those device structures are usually small compared with
those in edge-emitting semiconductor lasers, since the length of the laser cavity is
much smaller than that of edge-emitting semiconductor lasers. The details of VCSEL
structures can be found in the book by Li and Iga (2002). Here, we do not discuss
the details of device structures and device characteristics, but discuss the dynamics.
As an example, the distributed Bragg reflector (DBR) VCSEL is shown in Fig. 8.12.
The thickness of the active layer is approximately equal to the wavelength of light λ.
The top view of the laser looks like a disk and its diameter is several to tens of μm.
For special use, a disk diameter over 100 µm has been fabricated. In these devices,
the reflectivity of the bottom surface is almost 100 % and the top reflectivity of the
DBR structure is more than 99 %. The laser light comes out from the top. Though the
internal reflectivity is very high compared with edge-emitting semiconductor lasers,
VCSELs are also sensitive to optical feedback and optical injection. The photon
number in the active volume is much less than that of edge-emitting lasers, and a few
external photons would cause instabilities in the laser oscillations. VCSELs even for
different device structures are described by the same or similar rate equations for the
field and the carrier density.

There are many advantages of VCSELs for practical purposes. Since the VCSEL
has a symmetric space structure, we can expect a circular beam as its output, while
the beam profile of the edge-emitting laser has astigmatism. Due to a short cavity
length compatible with the wavelength of light and very high reflectivity of light in
the internal cavity, the laser is a very low threshold device, as low as ∼μA. From
this same reason, we can produce a stabilized oscillation with a single mode that
has a large mode separation (∼40 THz). Another merit of VCSELs is the easiness of
devising laser arrays because of the surface-emitting structure. However, VCSELs
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Fig. 8.12 Distributed Bragg
reflector VCSEL structure Light Output
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have unstable features for their operations even without any external perturbations. In
addition to the time-dependent phenomena, the space structures and the polarization
modes give rise to instability and chaotic dynamics in VCSELs. Spatial hole-burning
and multi-transverse mode oscillations are often observed in the laser output to cause
instabilities such as spatial-mode and polarization switching. Therefore, the VCSEL
itself is an unstable laser. To describe the dynamics of VCSELs, several models have
been proposed. Each model has the advantages for explaining respective particular
dynamics of real VCSELs. In the following, some of them are introduced.

8.3.2 Spatial-Mode Expansion Model

The rate equations for VCSELs are similar to those for the narrow-stripe edge-
emitting laser except for the spatial terms. For a certain polarization mode, the field
equation is given as (Valle et al. 1995a,b; Law and Agrawal 1997a,b)

dE j (t)

dt
= 1

2
(1 − iα)Gnj {n(r, φ, t)− nth, j }E j (t) (8.16)

where n(r, φ, t) is the space-dependent carrier density for the radial coordinates
(r, φ, z) and nth, j is the threshold carrier density for the j th spatial mode. E j is the
field amplitude for the laser oscillation of the j th spatial component, and the total
complex amplitude from a VCSEL is written as

Etotal(r, φ, z, t) = 1

2

M∑

j=1

ê j E j (t)ψ j (r, φ)A0sin(βz z) exp(−iωth, j t)+c.c. (8.17)

where M is the total number of the spatial modes, ê j is the polarization vector for the
j th mode, ψ j is the eigen-function for the j th mode, βz is the propagation constant
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for the z direction, and A0 is the normalization coefficient. Since the carrier diffusion
in the radial direction must be taken into account for the VCSEL oscillation, the rate
equation for the carrier density is written as

d

dt
n(r, φ, t) = D∇2

T n(r, φ, t)+ J (r, φ)

ed
− n(r, φ, t)

τs

− �d

d

M∑

j=1

Gnj {n(r, φ, t)− n0}|E j (t)ψ j (r, φ)|2 (8.18)

where D is the coefficient for the carrier diffusion, the subscript T denotes the
operation for the transverse coordinates, and �d is the confinement factor for the
longitudinal direction in the active layer given as

�d =
d∫

0

|A0sin(βz)|2dz (8.19)

Here, the thickness of the active layer d is smaller than the total length of the laser
cavity L , thus�d < 1. In the derivation of the carrier density Eq. (8.18), we must con-
sider the depletion of carriers for laser emission and take into account the interference
terms for the external product of the vector polarizations. However, the frequency
difference of the modes is usually of the order of several tens of GHz to one hundred
GHz. As a result, the beating of these i and j terms, exp{−i(ωl − ω j )t}, has a high
frequency and the carrier cannot follow the oscillation. Therefore, we can neglect
this effect and Eq. (8.18) becomes a good approximation for the dynamics of the
carrier density.

The eigenfunction for the j th mode ψ j is a function of the polar coordinate
calculated for a particular structure of the VCSEL. For example, for a weak index-
guide cylindrical structure with two polarization states corresponding to the spatial
LP01mode, it is written by the Bessel function of the first kind J0(z) and the modified
Bessel function of the second kind K0(z) and has the following form:

ψ j (r, φ) =
⎧
⎨

⎩

J0(u1 j r/Ra)

J0(u1 j )
for r ≤ Ra

K0(w1 j r/Ra)

K0(w1 j )
for r > Ra

(8.20)

where Ra is the radius of the active area and u1 j and w1 j are the first roots of the
eigenvalue equation for the j th polarization mode

u j J1(u j )

J0(u j )
= w j K1(w j )

K0(w j )
(8.21)

They have a relation of u2
1 j + w2

1 j = V 2
j .Vj is the normalized frequency defined as



262 8 Instability and Chaos in Various Laser Structures

Vj =
2πRa

√
η2

1 j − η2
j

λ
(8.22)

where λ is the wavelength of light in vacuum and η1 j and η j are the refractive indices
for the j th mode in the active area and the clad region.

8.3.3 Spin-Flip Model

The spatial mode model well represents the spatial behaviors of VCSELs, however,
it takes a long time to perform numerical calculations. Alternative models to show
the dynamics of VCSELs have been proposed. The spin-flip model is an excellent
one for analyzing the behaviors of polarization switching and polarization-mode
oscillation in the lowest spatial mode. In the derivation of the rate equations in
the previous subsection, we consider the polarization effects in VCSELs in (8.17).
However, in the physical terms, we must take into account the effects of electron
spin states associated with light emission in the polarization dynamics of VCSELs.
Specifically, left and right circularly polarizations of laser light emission are related
to spin states of electrons in the conduction and valence bands. This is the origin
of the polarization oscillations in VCSELs, and results in a rich variety of polariza-
tion dynamics including polarization switching frequently observed in VCSELs. San
Miguel et al. proposed a spin-flip model for the rate equations of VCSELs by taking
into account spin dynamics (San Miguel et al. 1995; Martín-Regalado et al. 1997;
Sciamanna et al. 2002a,b). The model couples the polarization state of the electric
field to the semiconductor medium by including the magnetic sublevels of the con-
duction and valence bands (the angular momentum numbers of electron ) in quantum
well devices. It is shown that laser dynamics depend significantly on the value of
the relaxation rate. The polarization switching is included by the assumption of the
population difference between the carrier densities with positive- and negative-spin
values. From these equations, the dynamics of the laser oscillations for the lower
order spatial mode can be easily explained, and the results are entirely coincident
with the model discussed in the previous subsection. Although the dynamics of polar-
ization dynamics in VCSELs can be well-defined by the model, these rate equations
are usually applicable to the lowest spatial mode oscillation. In the following, we
derive the expressions for the rate equations based on the spin dynamics.

In VCSELs, the thickness of the laser cavity is thin and less than the optical
wavelength and light comes out vertically from the substrate surface (along the
z-direction), so that the degeneration of spin states of electrons in heavy-hole and
light-hole bands is resolved along the z-direction and we must take into account the
difference between down- and up-spin states. In the case of edge-emitting semicon-
ductor laser, the thickness of the active layer is also very thin, however, light comes
out perpendicular to the z-direction and we need not consider the spin states. Only the
total carrier number is important for the dynamics in edge-emitting semiconductor
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Fig. 8.13 Four-level spin-flip model for polarization dynamics in quantum-well VCSEL

laser, while the sum and difference of carrier number play the important role in the
VCSEL dynamics. Figure 8.13 shows the four-level model for polarization dynamics
in quantum-well VCSELs (San Miguel et al. 1995; Martín-Regalado et al. 1997).
In Fig. 8.13, γ−1

J is the spin relaxation time. In the spin dynamics model of laser
transitions, the magnetic quantum numbers in the lower edge of the conduction band
have Jz = ±1/2 in accordance with down- and up-spin states. On the other hand,
the magnetic quantum numbers for heavy holes in the upper valence band have val-
ues of Jz = ±3/2, since we can neglect the effect of light holes in quantum-well
VCSELs. In the quantum state numbers, the same sign corresponds to the same spin
state. Photon emitted from + spin state corresponds to left circular polarization,
while photon from − spin state to right circular polarization. In the model, the decay
rate γJ accounts for the mixing of the populations with opposite value of Jz . This
parameter is introduced to model spin-flip relaxation processes.

We next consider the effects of cavity anisotropies, which can be modeled in
the two equations for the time evolution of the field amplitudes with two circular
polarizations by replacing the linear loss rate with a matrix whose Hermitian part
is associated with amplitude losses and whose anti-Hermitian part gives linear and
circular phase anisotropies (also known as birefringence and circular dichroism,
respectively). For VCSELs, it is known that there are two preferred modes of linear
polarization that coincide with the crystal axes. These two modes have a frequency
splitting associated with the birefringence of the medium. This can be modeled
by a linear phase anisotropy given by a parameter γp, which represents the effect
of different indexes of refraction for the orthogonal linearly polarized modes. In
addition, the two modes may have a slightly different gain-to-loss ratio that can be
related to the anisotropic gain properties of the crystal; the slightly different position
of the frequencies of the modes with respect to the gain versus frequency curve,
and different cavity geometries for the differently polarized modes. These effects
can be modeled by an amplitude anisotropy with parameter γa . We assume here for
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simplicity that the directions of linear phase and amplitude anisotropy coincide, so
that both are diagonalized by the same basis states.

We now derive the rate equations for double crossed linearly polarized light.
Electron spin is associated with photon spin. We start the description of circularly
polarized light for the fields of photons in such a case. The laser light field is coupled
to two population inversion variables; n is the sum of the upper state and lower state
populations and n J is the number of the difference between the population inver-
sions (upper and lower state population difference) on the two distinct channels with
positive or negative value of Jz (quantum spin number). Namely, in semiconductor
lasers, n represents the total carrier number in excess of its value at transparency.
Then the rate equations for the fields with right (+) and left (−) circularly polarized
states are given as (San Miguel et al. 1995)

dE±(t)
dt

= 1

2
(1 − iα)Gn

{
n±(t)− 1

Gnτph

}
E±(t)− (γa − iγp)E∓(t) (8.23)

where n±(t) = n(t) ± n J (t) − n0(n0 is the total carrier density at transparency),
and γa and γp are the linear anisotropies representing dichroism and birefringence
discussed above. Note that signs between the spin states and the subscripts of the
fields are opposite. The rate equations for the carrier density with spin-down and
spin-up, n±, are written as

dn±(t)
dt

= J

ed
− 1

2τs
{n+(t)+ n−(t)} ∓ 1

2τJ
{n+(t)− n−(t)} − 2Gnn±(t)|E±(t)|2

(8.24)
where 1/τJ is the spin-flip rate.

Using the conversion relations between linearly polarized lights and circularly
polarized lights, Ex = (E+ + E−)/

√
2 and Ey = i(E+ − E−)/

√
2, and also the

relations of the sum of the carrier number of down- and up-spin states n and the
spin-state difference n J , n+ = n + n J − n0 and n− = n − n J − n0, the equations
for the linearly polarized fields are given as

dEx (t)

dt
= 1

2
(1−iα)Gn[{n(t)−nth}Ex (t)−in J (t)Ey(t)]−(γa −iγp)Ex (t) (8.25)

dEy(t)

dt
= 1

2
(1−iα)Gn[{n(t)−nth}Ey(t)+in J (t)Ex (t)]+(γa −iγp)Ey(t) (8.26)

The rate γp reads to a frequency difference of 2γp between the x- and y-polarized
solutions (the x-polarized solution having the lower frequency when γp is positive).
The decay rate γa reads to threshold difference for these two linearly polarized solu-
tions, with the y-polarized solution having the lower threshold when γa is positive.
In actual fact, the frequency difference between the two linear modes depends on
both the parameters γp and γa . Similarly, the equations for the total carrier density
and the difference of the spin states are calculated as
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Fig. 8.14 L-I characteristics of VCSELs. a Experimental L-I characteristic and b L-I characteristic
calculated by the spin-flip model

dn(t)

dt
= J

ed
− n(t)− n0

τs
− Gn{n(t)− n0}{|Ex (t)|2 + ∣∣Ey(t)

∣∣2}
+ iGnn J (t){(Ey(t)E

∗
x (t)− Ex (t)E

∗
y(t)} (8.27)

dn J (t)

dt
= −n(t)

τJ
− Gnn J (t){|Ex (t)|2 + ∣∣Ey(t)

∣∣2}
+ iGn{n(t)− n0}{(Ey(t)E

∗
x (t)− Ex (t)E

∗
y(t)} (8.28)

The total carrier number n has a decay rate 1/τs associated with spontaneous decay,
while the carrier differnce n J has a decay rate 1/τJ = 1/τs + 2γJ . The rate γJ

accounts for the mixing of the populations with opposite value of Jz , which was
introduced to model spin-flip relaxation processed and assumed to have the same
value for the conduction and valence bands.

One of the typical features of VCSELs is a sharp polarization switching for the
increase or decrease of the bias injection current. Figure 8.14 shows an example of
polarization switching in VCSELs. Figure 8.14a, b are an experimentally observed LI
characteristic and a simulation result calculated from (8.25)–(8.28) using the parame-
ter values of γp = 1.0 ns−1 and γa = 45 ns−1. In this case, the y-polarization mode
is the starting main mode above the threshold and it switches to the x-polarization
mode for the increase of the bias injection current. Though the switching point does
not correspond with each other, a sharp polarization switching is well reproduced
by the numerical simulation. It is noted that the frequency difference of the laser
oscillations between y- and x-polarization modes is about +6 GHz at a bias injec-
tion current of 4 mA, although the lasing power of the x-polarization mode is very
small at this bias injection current.

Normalized versions of the above rate equations are widely used for numerical
investigations of VCSEL dynamics (Martín-Regalado et al. 1997). Using the nor-
malizations of the variables as E±′ = √

τs Gn E± and n±′ = n′ ± n J
′ = Gnτphn±

(n′ = Gnτph(n − n0) and n J
′ = Gnτphn J ), the field and carrier density equations
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for circularly polarized states read as

dE±′(t)
dt

= 1

2τph
(1 − iα){n±(t)− 1}E±′(t)− (γa − iγp)E∓′(t) (8.29)

dn±′(t)
dt

= 1

τs
μ− 1

2τs
{n+′(t)+n−′(t)}∓ 1

2τJ
{n+′(t)−n−′(t)}− 2

τs
n±′(t)|E±′(t)|2

(8.30)
where μ is the current density normalized to the threshold, μ = J/Jth. On the
other hand, for linearly polarized case, the field equations of the two components are
written as

dEx
′(t)

dt
= 1

2τph
(1 − iα)[{n′(t)− 1}Ex

′(t)− in′
J (t)Ey

′(t)] − (γa − iγp)Ex
′(t)

(8.31)
dEy

′(t)
dt

= 1

2τph
(1 − iα)[{n′(t)− 1}Ey

′(t)+ in J
′(t)Ex

′(t)] + (γa − iγp)Ey
′(t)

(8.32)
The equations for the total carrier density and the carrier difference are given as

dn′(t)
dt

= − 1

τs
[n′(t){1 + (

∣∣Ex
′(t)

∣∣2 +
∣∣∣E ′

y(t)
∣∣∣
2
)} − μ

− in J
′(t){Ey

′(t)Ex
′∗(t)− Ex

′(t)Ey
′∗(t)}] (8.33)

dn J
′(t)

dt
= − 1

τJ
n′

J (t)− 1

τs
[n J

′(t){∣∣Ex
′(t)

∣∣2 + ∣∣Ey
′(t)

∣∣2}
− in′(t){Ey

′(t)Ex
′∗(t)− Ex

′(t)Ey
′∗(t)}] (8.34)

Several spin relaxation processes for electrons and holes have been identified in
semiconductors, such as scattering by defects, exchange interactions between elec-
trons and holes, and exciton–exciton exchange interactions (Martín-Regalado et al.
1997). From experimental measurements of spin relaxation times in quantum wells,
the relaxation time is of the order of tens of picoseconds. Since typically τs ∼ 1 ns,
and τph ∼ 1 ps, the spin mixing τJ occurs on an intermediate timescale between that
of the field decay and that of the total carrier population difference decay. Hence,
the dynamics of the difference in spin states n J cannot be adiabatically eliminated
for the timescales of interest. The rate equations including the magnetic sublevels
of the conduction and valence bands are applied to analyses for the dynamics of
VCSEL polarizations such as polarization switching and polarization instabilities
(Sciamanna et al. 2003b,c; Sciamanna and Panajotov 2005, 2006; Masoller et al.
2006). In particular, fruitful results are obtained for explanations of the dynamics
for orthogonal optical injection and stabilization in VCSELs. For the treatments of
dynamics related to higher spatial modes, we need the rate equations discussed in
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the previous subsection. The spin-flip model is essentially developed for explaining
the polarization dynamics in VCSELs in the fundamental spatial mode. However,
it can be extended to the model including higher spatial modes (Valle et al. 2007).
In this book, we use mainly the theoretical treatments in the previous subsection,
which includes the spatial effects. However, the model of the magnetic sublevels is
also used for VCSEL dynamics when necessary.

8.3.4 Two-Gain Model

The rate equations for narrow-stripe edge-emitting semiconductor lasers have been
modified and used to study the dynamics of VCSELs, since they are very simple and
easier to perform steady-state analyses and numerical simulations (Danckaerta et al.
2002; Hong et al. 2005). In the rate equations, the complex fields Ex and Ey for the
two polarization directions in the orthogonal x and y coordinates at a single spatial
mode oscillation are given as

dEx (t)

dt
= 1

2
(1 − iα)Gn,x {n(t)− nth,x }Ex (t) (8.35)

dEy(t)

dt
= 1

2
(1 − iα)Gn,y{n(t)− nth,y}Ey(t) (8.36)

where Gn,x and Gn,y are the gain coefficients for the polarization modes, and nth,x
and nth,y are the carrier densities at threshold. We here introduced the different gain
coefficients for the orthogonal polarization modes. The carrier density equation is
given as

dn(t)

dt
= J

ed
− n(t)

τs
−Gn,x {n(t)−n0,x }|Ex (t)|2−Gn,y{n(t)−n0,y}|Ey(t)|2 (8.37)

where n0,x and n0,y are the carrier densities at transparency for the respective modes.
For the main lasing mode above the threshold, the gain is saturated, however,

the gain of the counterpart polarization mode is a function of the bias injection cur-
rent. At a certain bias injection current, the oscillation mode is switched from the
main polarization mode to the sub-polarization mode. Then, the gain of the sub-
mode saturates and the gain of the original main mode decreases for the further
increase of the bias injection current. Figure 8.15 is an example of two orthogonal
gain coefficients calculated from the spatial model, which is discussed in Sect. 8.3.2.
In this case, the y-polarization mode is the main oscillation mode above the thresh-
old. At a bias injection current μ = 2.04, the laser oscillation is switched to the
x-polarization mode. During the oscillation mode, the corresponding gain is clamped
to a constant value, while the counterpart mode linearly increases or decreases for the
change of the bias injection current. Therefore, from the gain coefficients in Fig. 8.15,
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Fig. 8.15 Example of gain
coefficients for two orthog-
onal polarization modes for
increase of bias injection
current calculated from the
spatial mode model discussed
in Sect. 8.3.2. μ is the normal-
ized bias injection current to
the threshold as μ = J/Jth.
The polarization switching
point is set to μ = 2.04
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we introduce the difference of the gain coefficients Gn,x and Gn,y as

Gn,y − Gn,x = G0

(
1 − J

Jsw

)
(8.38)

where G0 is a certain constant and Jsw is the switching current at which the polariza-
tion alteration occurs. We here assume that the y-polarization mode is the original
laser oscillation mode above the threshold and x-polarization mode is the sub-mode.
Also, the gains below or above the polarization switching current are defined as

Gn,y = G0y = constant for J ≤ Jsw (8.39a)

Gn,x = G0x = constant for J > Jsw (8.39b)

For the example of the spatial mode model in Fig. 8.15, we obtain the gain con-
stants as G0 = 2.00×10−15 m3 s−1 and G0y = G0x = 1.39×10−13 m3 s−1. Using
the two-gain model, we can describe a sharp polarization switching such as observed
in Fig. 8.14. In the spatial mode model in Sect. 8.3.2, the difference between the gain
coefficients of the two polarization modes is implicitly included through the refrac-
tive indices in the orthogonal gains defined in (8.18), so that we do not explicitly
introduce the terms for the gain difference in the rate equations. While the difference
is explicitly included as the parameters of birefringence and dichroism, γp and γa ,
in the spin-flip model in Sect. 8.3.3.
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Fig. 8.16 Spatial mode dis-
tributions for LP01, LP11, and
LP21 modes in VCSELs. The
radius of the disk is assumed
as 4 µm
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8.3.5 Characteristics of VCSELs in Solitary Oscillations

Even in the absence of external perturbations, VCSELs sometimes show unsta-
ble behaviors depending on the bias injection current. Spatial and polarization
modes play important roles in the dynamic behavior of VCSELs. Higher spatial
modes are easily excited for a higher bias injection current. Figure 8.16 shows the
beam profiles for the lowest three spatial modes along the radial direction of a
VCSEL (Linearly Polarized modes; LP01,LP11, and LP21 modes). These modes are
calculated from (8.20)–(8.22). Due to the spatial hole-burning effects, the carrier
distribution has a dip at the center of the disk in a VCSEL and the higher spatial
modes tend to oscillate for a large bias injection current (Law and Agrawal 1997b).
Figure 8.17 shows the experimentally obtained near-field images of the oscillation
modes (Degen et al. 1999). The disk diameter of the VCSEL is 6 µm. The pat-
terns are obtained by changing the bias injection current. Higher spatial modes are
excited for the increase of the bias injection current. The excitation of higher modes
strongly depends on the disk diameter. For ordinary applications of VCSELs, a cir-
cular Gaussian beam of the lowest mode is desirable. To obtain such a clean beam,
the diameter of a VCSEL must be small, but it is difficult to attain a high power
operation at the same time.

In semiconductor materials, there exists the difference of the refractive indices
between the components for the principal axis and the orthogonal axis to it because of
the distortion and birefringence of the materials. The difference between the indices
is very small and it is 10−3–10−4. For ordinary edge-emitting semiconductor lasers,
the difference can be ignored due to a large asymmetric configuration for the TE
and TM modes in the active layer and the laser usually operates at only TE mode.
However, the difference plays a crucial role for the operations of VCSEL, since it
has a circular disk structure of the light-emitting facet. Then, there is an ambiguity
for the polarization direction of the laser oscillation. A VCSEL usually oscillates at
a polarization mode along the optic axis of the material (y-polarization mode) when
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Fig. 8.17 Experimentally obtained near-field images of VCSEL with 6 µm diameter at an injection
current of a 3.0, b 6.2, c 14.7, and d 18 mA [after Degen et al. (1999); © 1999 OSA]

the laser is biased at a low injection current. However, the polarization mode may
switch from this mode to the orthogonal one (x-polarization mode) for the increase
of the bias injection current. This switching is mainly induced by the distortion or
the birefringence of the laser material as discussed above. Taking into consideration
the birefringence of laser materials, the polarization switching is well reproduced
by the numerical simulations from (8.16)–(8.18) (Giudici et al. 1999; Danckaerta
et al. 2002). At a low bias injection current, the carrier density has a maximum
value at the center of the disk in the active area and the carrier density smoothly
decreases toward the edge of the disk. However, for a large bias injection current,
hole-burning of carriers occurs at the center of the disk. Then, the carrier density
takes the maximum value a little away from the center of the disk. This induces
the excitation of the orthogonal mode and the suppression of the original mode,
since, for example, the hole-burning due to the birefringence causes the transfer of
the optical energy from the y-mode to the x-mode. Then, the laser oscillation is
switched from the y-mode to the x-mode. The effects are distinct for VCSELs with
large birefringence and small disk size.

The L-I characteristic of a VCSEL experimentally obtained for a disk diameter of
3 µm is already shown in Fig. 8.14. The laser is a typical single spatial mode VCSEL
of a wavelength of 780 nm and a maximum power of 2.0 mW, since the diameter is
rather small compared with spatially multimode VCSELs such as shown in Fig. 8.17.
In Fig. 8.14a, the laser at first oscillated at the main polarization mode (y-polarization
mode) above the threshold current of 3.1 mA, but it switched to the orthogonal polar-
ization mode (x-polarization mode) at the bias injection current of 5.2 mA. After the
switching, the laser stably oscillated at the orthogonal polarization mode. Usually,
the polarization switching has a hysteresis for the increase or the decrease in the bias
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injection current. Whether we can observe clear switching of the polarization modes
or not, strongly depends on the characteristics of the laser materials and the device
structures. Some VSCELs do not show clear polarization switching for the change
of the bias injection current. Different from edge-emitting semiconductor lasers, two
orthogonal polarization modes are easily excited simultaneously owing to a small
gain difference between the two modes. The laser is longitudinally a single mode,
since the total cavity length in VCSELs is as small as around 1 µm and the free spec-
tral range of the cavity is very large. For the same reason, the conversion efficiency
from the current to the frequency is very large compared with that of edge-emitting
semiconductor lasers (see Sect. 5.1.6). Indeed, the laser in Fig. 8.14a has a conversion
efficiency of 128 GHz/mA. Due to a short cavity length compared with edge-emitting
semiconductor lasers (usually, the cavity length is several hundred times less than
that of an edge-emitting semiconductor laser), the change of the refractive index for
the increase or decrease of the bias injection current causes a very large frequency
change in the laser oscillation through the relation of �ν ≈ c(1 − �η/η)/2ηl,
where �ν and �η are the frequency change and the change of the refractive index,
respectively.

Even in solitary oscillations, VCSELs show dynamic characteristics. One such
type of dynamics is the anti-phase irregular oscillation of the optical power between
the two polarization modes (Fujiwara and Ohtsubo 2004). Figure 8.18 shows an
experimental example of anti-phase oscillations of the y- and x-polarization modes in
a VCSEL. Unstable pulsations and bistability are sometimes observed at the switch-
ing point of the two polarization modes (Tang et al. 1997). However, not only at
the switching point of the two polarization modes but also at certain bias injec-
tion currents different from the switching point, does the laser show fast unstable
oscillations and the two polarization modes oscillate at anti-phase manner in time.
When the output power of the y-polarization mode goes down, the output power
of the x-polarization mode grows up, and vice versa. This anti-phase oscillation is
frequently observed in chaotic VCSELs subjected to optical feedback and injection
current modulation (Besnard et al. 1997, 1999).

8.3.6 Spatio-Temporal Dynamics in VCSELs

Lasers with spatial structures such as VCSELs and broad-area lasers have spatio-
temporal dynamics induced by diffraction of light and hole-burning of carriers in
the laser cavity. In the case of VCSELs, the cavity length is short, so that the
effect of the diffraction of light inside the cavity can be neglected. However, the
effect of carrier hole-burning plays a crucial role for transverse-mode oscillations.
The polarization dynamics of VCSEL are strongly related to carrier hole-burning,
and the laser shows picosecond instabilities even at solitary oscillations. Time aver-
aged polarization dynamics in VCSELs, such as dynamics of near-field patterns for
the bias injection current, were extensively studied, while a few studies of spatio-
temporal dynamics were reported (Mulet and Balle 2002; Barchanski et al. 2003;

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 8.18 Example of anti-
phase oscillations of y- and
x-polarization modes in
VCSEL at solitary oscillation
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Valle et al. 2007). In this subsection, we present some experimental results for the
spatio-temporally resolved polarization dynamics and discuss the underlining mech-
anism. Figure 8.19 shows the experimental results of spatiotemporal dynamics of a
VCSEL obtained by a temporally resolved imaging by differential analysis, which
allows us to extract the full two-dimensional evolution of the near-field intensity on
timescales of 10 ps (Barchanski et al. 2003). The laser used is an oxidized VCSEL
with an oscillation wavelength of 852 nm and a maximum output power of 3.8 mW.
The VCSEL has a disc diameter of 14 µm.

Figure 8.19a shows the laser outputs of the two polarization modes for the time
evolution after a step impulse, in which each polarization mode shows relaxation
oscillation after the switch-on. A period of 10 µs of the pulse prevents the occurrence
of thermal effects in the experiments. The laser is biased at 2.3Jth. At this bias
injection current, the frequency of the relaxation oscillation is about 3 GHz. In this
figure, the 90◦ polarization mode is the main oscillation mode. After about 3 ns
from switch-on, the laser settles down to steady-state oscillation. Figure 8.19b shows
snapshots for the evolution of the near-field intensity in the VCSEL after the second
relaxation oscillation peak. In order to allow measurements, a displacement prism was
used in the detection path to separate the laser beam into two orthogonal polarization
patterns. The near-field polarized patterns of the laser was detected as an integrated
image of 36,000 events by a CCD camera with a fast shutter time ∼200 ps using
gating triggers synchronized with the driving pulses for the bias injection current.
The images in Fig. 8.19b give evidence for a rich dynamical behavior in the emission
profile in both polarization directions. In the 0◦ polarization mode, the intensity
change of the center of the disc aperture is clearly seen, namely, the center is filled
with a bright spot at 1,720 ps, however, the center of the aperture remains mostly dark
at 10 ps later. The intensity at 1,740 ps is nearly uniform over the whole aperture,
and then the center is again dark at 1,750 ps. In the near-field patterns of the 90◦
polarization mode, we can see clear rotational flicker of the bright spots of the laser
oscillations. For example, bright spots of the intensity rotate by 5◦ counterclockwise
from 1,720 to 1,730 ps, while they rotate by 5◦ clockwise from 1,740 to 1,750 ps. This
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Fig. 8.19 a Evolution of
the relaxation oscillations
extracted from the differen-
tial images of the near-field
polarization-resolved patterns.
Gray curve 90 ◦ polarization
mode (dominant oscillation
mode), and black curve 0 ◦
polarization mode. b Snap-
shots for the evolution of
near-field intensity of the
VCSEL after the second
relaxation oscillation peak. In
each snapshot, the left shows
the 0 ◦ polarization mode and
the right 90 ◦ polarization
mode. The crossing point
of the overlaid crosshair is
the center of the laser [after
Barchanski et al. (2003) ©
2003 IEEE]
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kind of rotational flicker is attributed to the spatial hole burning of the carrier density
in the laser cavity. Spatial hole-burning has been identified as a very important effect
contributing to the observed dynamics on the examined timescales, especially for
lasers having a spatial structure. Similar nonlinear dynamical behaviors have already
been found and well investigated in the field of broad-area semiconductor lasers as
known filamentation effects, which will be discussed in the following section.

Every transverse mode in a VCSEL corresponds to a different wavelength. There-
fore, by spectrally resolving the near-field emission intensity, it is possible to inves-
tigate the dynamics of each mode separately. Figure 8.20 shows spectrally resolved
near-field patterns of the VCSELs. In the observations, a spectrometer was used in
the detection path to obtain spectrally resolved near-field patterns of the laser oscil-
lations. The horizontal axis represents the spatial coordinate, the vertical axis is a
combination of both spatial and spectral coordinates, with the wavelength increasing
from the bottom to top of each snapshot. The large birefringence splitting, which is
the spectral spacing among the fundamental Gaussian modes in orthogonal polar-
ization directions, is quite noticeable. The estimation of the birefringence splitting,
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Fig. 8.20 Spectrally resolved
near-field patterns for time
evolution. In each snapshot,
the left shows the 0 ◦ polar-
ization mode and the right
90 ◦ polarization mode. The
wavelength increases from
bottom to top of each snap-
shot. The snapshots show the
intensity change during 100 ps
[after Barchanski et al. (2003);
© 2003 IEEE]
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performed with an optical spectrum analyzer having a maximal resolution of 0.05 nm,
provides a value of approximately 0.11 nm, or 50 GHz, respectively. The first image
at 1,430 ps, within the second relaxation oscillation peak, shows two more mode
orders than during the first relaxation oscillation peak, though the near-field pattern
at the first relaxation oscillation peak is not shown here. At 1,930 ps, about ten modes
occur in the near-field intensity within the observed area. While the relative intensity
among the 90◦ polarization modes mostly remains uniform, there is a drastic change
in the modal behavior in the 0◦ polarization mode. Throughout the evolution, the
four-lobed mode, which is the second oscillation mode, remains as an oscillation
mode and all other modes of the 0◦ polarization direction show a relative smaller
intensity. The fundamental Gaussian mode in the 90◦ polarization mode is spectrally
aligned at the same position as the bright four-lobed mode in the 0◦ polarization mode.
This spectral alignment implies the importance of spectral interactions related to the
spatial carrier hole-burning effects. Namely, the fundamental mode, observed in the
90◦ polarization direction, has its intensity concentrated in the center of the aperture.
In contrast, the intensity of the four-lobed mode is concentrated in the periphery of
the aperture, resulting in a minimal spatial overlap of both modes. The complemen-
tary oscillation between the two polarization modes originates from a competition of
both polarization directions for the available gain in the active medium. The dynam-
ics of VCSELs even at solitary oscillation still remains an interesting research field,
providing further insight into the fundamental physics of semiconductor lasers and
promising device optimization.
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Table 8.3 Characteristic device parameters for a VCSEL at an oscillation wavelength of 850 nm

Symbol Parameter Value

Gn gain coefficient 2.90 × 10−12 m3s−1

�d confinement factor 0.1
α linewidth enhancement factor 3.80
r1 output facet reflectivity 0.9975
r2 bottom reflectivity 0.9995
nth carrier density at threshold 3.80 × 1024 m−3

n0 carrier density at transparency 1.75 × 1024 m−3

τs lifetime of carrier 1.00 ns
τph lifetime of photon 3.30 ps
γ−1

J lifetime of spin 30 ps
τin round trip time in laser cavity 22.6 fs
D diffusion constant 30 cm2 s−1

l cavity length 1.00 µm
d active layer thickness 0.20 µm
Ra radius of active layer 4.00 µm

8.3.7 Optical Feedback Effects in VCSELs

VCSELs have a high reflective mirror of the Bragg reflector within the cavity as
much as the internal reflectivity of higher than 99 % to realize a low laser threshold.
However, the total photon number within the cavity is much smaller than that of the
edge-emitting semiconductor laser and the laser is also affected by a small number
of photons from an external reflector. For a small optical feedback, (8.16) is modified
and the rate equations for the complex field are written as

dE j (t)

dt
= 1

2
(1−iα)Gnj {n(r, φ, t)−nth, j }E j (t)+ κ

τin
E j (t−τ) exp(iω0τ) (8.40)

The other equations for the total complex field amplitude and the carrier density
remain unchanged. Equation (8.40) looks like the same form as that for narrow-
stripe edge-emitting semiconductor lasers. However, the rate equations of the total
field and the carrier density are the functions not only of time but also space and, as
a result, the laser shows complicated behaviors compared with narrow-stripe edge-
emitting semiconductor lasers. Mutual interactions between the two polarization
modes also affect the dynamics. Spatial mode competitions may also play an impor-
tant role for the dynamics under a large bias injection current. Therefore, we must
take into account the essential terms of the spatial polarization modes for numerical
calculations of the dynamics.

Since the laser cavity length of a VCSEL is less than the optical wavelength and
much smaller than those of other semiconductor lasers, the separations both for the
longitudinal and transverse modes are much larger than for other lasers. Therefore,
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we can well apply the approximation for a single longitudinal mode operation as far
as the laser has a small disk size or is biased at a modest injection current. However,
the competition among spatial and polarization modes arises at a higher bias injection
current. In the following, we show some characteristics of optical feedback effects
in VCSELs. Unstable oscillations of VCSELs induced by optical feedback have
been numerically calculated (Law and Agrawal 1998). Table 8.3 is a typical set
of parameters used in the numerical simulations. Figure 8.21 shows a numerically
calculated time series of the laser output for the change of the external feedback ratio.
The diameter of the laser disk is 4 µm and the laser is oscillated with the lowest single
mode or the lowest two spatial modes (LP01 and LP11 modes). However, a single
polarization mode is assumed at solitary oscillation. From Fig. 8.21a–d, the two
modes show period-doubling like evolutions to chaotic states. However, once they
become a fixed oscillation in Fig. 8.21e and again evolve into fully chaotic oscillations
in Fig. 8.21f. Spontaneous emission of light is ignored in these calculations, however,
it strongly affects the dynamics when the laser oscillates at chaotic states. Some
such effects are the increase of noise floor and the broadening of the chaotic carrier
frequency.

As dynamics of narrow-stripe edge-emitting semiconductor lasers, low-frequency
fluctuations (LFFs) have been observed. LFFs are not only the typical features of
narrow-stripe edge-emitting semiconductor lasers, but also they are observed in
various types of semiconductor lasers. Fujiwara et al. (2003) have experimentally
observed LFFs in VCSELs with optical feedback from a distant reflector. Similar LFF
characteristics to those of narrow-stripe edge-emitting semiconductor lasers, sud-
den power dropout and gradual power recovery, are observed for the y-polarization
mode with the lowest spatial mode of LP01 at a low bias injection current. Under
an LFF oscillation for the y-polarization mode, the output power of the orthogo-
nal x-polarization mode also shows synchronous waveforms of LFFs with the y-
polarization mode, but it is an anti-phase oscillation. Similar to the dynamics of
narrow-stripe edge-emitting semiconductor lasers, coexistent states of LFFs and sta-
ble oscillations are sometimes observed close to the threshold current. The polar-
ization switching is suppressed or even eliminated by parallel optical injection at
higher optical feedback ratio, while the laser shows chaotic oscillations at a single
polarization mode when the feedback is not so strong (Hong et al. 2004; Aoyama
2011). Also, the coherence of the laser is fairly collapsed at LFF states. However,
the laser still holds a single longitudinal-mode operation, because of the large sep-
aration of the cavity modes (Von Lehmen et al. 1991). The dynamic properties of
LFFs in VCSELs have been demonstrated by numerical simulations using the model
of the population difference between the carrier densities with positive and negative
spin values, i.e., spin-flip model (Masoller and Abraham 1999a; Sciamanna et al.
2003a,b,c).

Figure 8.22 shows time-averaged effects of polarization-selected optical feedback
in a VCSEL. A VCSEL used in the experiments has the disc diameter of 16 µm and
the oscillation wavelength of 780 nm with a maximum optical power of 10 mW. The
external mirror is located at 90 cm away from the front facet of the laser. For a
reference, the L-I characteristics of solitary mode together with near-field oscillation
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Fig. 8.21 Temporal evolutions of output power under two-mode operation with 4 µm disc contact
(weak coupling) VCSEL for several feedback levels. Solid and dashed curves represent the LP01 and
LP11 modes, respectively. External feedback rate κ of a 0, b 1.6 × 10−4, c 5 × 10−4, d 8.9 × 10−4,
e 1.6 × 10−3, and f 2.8 × 10−3 [after Law and Agrawal (1998); © 1998 OSA]

patterns at 7.0, 12.0, 18.0, and 24.0 mA are displayed in Fig. 8.22a. For steady-
state oscillations, the complementary features of the oscillation patterns between
the two polarization modes are clear, especially at higher bias injection current,
which is the typical nature of VCSELs either for fast or slow dynamics. This laser
has no clear polarization switching between the crossed polarization modes. As
noted, L-I characteristics of VCSELs strongly depend on device structures and used
materials. Though the total L-I characteristic shows an almost linear relation for
the increase of the bias injection current, each polarization component has quite
different features depending on the respective VCSEL structures. For example, the
L-I characteristics of y- and x-polarization modes are quite different from those for
one in Fig. 8.14 that shows a clear polarization switching. As a result, the near-field
pattern for each VCSEL is also dependent on the device structures. For the case of
total optical feedback in Fig. 8.22b, the threshold of the y-polarization mode slightly
reduces from 6.4 to 6.2 mA, while the threshold of the x-polarization mode increases
from 6.4 to 6.8 mA. The slope efficiency increases due to the optical feedback, but
only slight changes of the L-I curves are visible. However, the spatial modes are
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Fig. 8.22 Effects of optical feedback in VCSELs. Experimentally obtained L-I characteristics
and near-field patterns for a solitary oscillations, b total optical feedback (intensity feedback of
9.8 %), c y-polarization feedback (feedback of 6.1 %), and d x-polarization feedback (feedback of
6.0 %). The upper mode patterns in the insets are for y-polarization mode, while the lower ones for
x-polarization mode

affected by the optical feedback, especially in higher bias injection current. In the
case of y-polarization optical feedback, the trends of the threshold reduction are
almost the same as for the case of the total optical feedback. However, the crossed
polarization component (x-polarization mode) is greatly suppressed. On the other
hand, two modes compete with each other in the case of y-polarization feedback. As
a result, the laser becomes less stable at this amount of the optical feedback and it is
oscillated with lower spatial orders. Polarization selective optical feedback provides
quite interesting dynamics of VCSELs, and it is very important from the viewpoint
of laser control.

VCSELs have been newly developed and they themselves show various dynamics
under solitary oscillations and external perturbations. Therefore, the dynamics have
not been well understood yet and studies are still undergoing. As another example of
dynamics in VCSELs, we here show self-oscillation properties when a portion of the
laser output power is injected back into the laser after having rotated its polarization
by 90◦ with respect to the initial laser polarization state (Jiang et al. 1993). When
the two polarization components of the lights are orthogonally returned to the laser
from a reflector with short distance, the y-polarization component coherently couples
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with the x-polarization component and the x-polarization component also coherently
couples with the y-polarization component in as far as the corresponding oscillation
wavelengths are assumed to be almost the same. Figure 8.23 shows the experimental
waveforms of self-modulations in VCSELs. In this experiment, a laser that shows a
clear polarization switching is used. Self-modulations are observed both for the bias
injection currents above and below the polarization switching point. As square wave
is observed for a long external feedback, while sinusoidal waveforms are observed
for a short external feedback. As can easily be recognized, the waveforms of the
y-and x-polarization components show anti-phase oscillations. The frequency of the
oscillation is half of the frequency for the external cavity length. The polarization
rotation feedback induces polarization injection locking in the VCSEL and leads to
a switching of the polarization state, then self-modulation occurs in its output. The
phenomenon is quite similar to injection locking in a regenerative amplifier, where
very weakly injected light is sufficient to lock the laser to the incident frequency.
Under the same configuration, a self-modulation with a frequency of 6 GHz is
obtained for a short cavity length of 1 cm. These self-modulation oscillations can
be used as light sources for high-speed pulse sequences. Masoller and Abraham
(1999a,b) presented the numerical simulations for the model considering the popu-
lation difference between the carrier densities with positive- and negative-spin val-
ues in VCSELs and obtained the generations of self-modulation square waves. It
is noted that similar square-wave generation is also observed in narrow-stripe edge-
emitting semiconductor lasers with polarization-rotated optical feedback as discussed
in Sect. 5.8.2. In that case, the frequency of pulses is also twice of the round-trip time
of light in the external feedback loop. Therefore, square wave generation is a universal
feature in any semiconductor lasers with polarization-rotated optical feedback.

8.3.8 Short Optical Feedback in VCSELs

In Sect. 5.4.2, we discussed typical regular pulse package dynamics with LFFs
induced in short cavity optical feedback in narrow-stripe edge-emitting semicon-
ductor lasers. Regular pulse package dynamics are also observed in VCSELs with
short cavity optical feedback. However, VCSEL has complex dynamics of orthogo-
nal polarization modes and the characteristics of the pulse package are substantially
affected by the polarization dynamics. Thus, we cannot observe exact regular pulse
oscillations as in the case of narrow-stripe edge-emitting semiconductor lasers, due
to the competitions of the crossed-polarization modes. Though the device structure of
VCSELs is fairly different from that of common semiconductor lasers, the relaxation
oscillation frequency is mainly determined by the gain coefficient and the photon
lifetime (see (3.71)). Thus, the relaxation oscillation frequency is almost the same
order as that of narrow-stripe edge-emitting semiconductor lasers as far as the emit-
ting light powers are the same. The definition of short cavity is that the cavity length
is within the length corresponding to the relaxation oscillation frequency, which is
usually less than centimeters. For example, in a VCSEL with a very short external

http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 8.23 Waveforms of
polarization self-modulation
signals corresponding to
extended cavity lengths of
a 16.5 cm and b 5.3 cm at
a bias injection current of
J = 1.51Jth. The bias injec-
tion current is above the point
of the polarization switching.
Upper trace y-polarization,
lower trace x-polarization
[after Jiang et al. (1993); ©
1993 AIP]
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cavity condition (∼10 µm), the laser and the external cavity conform a composite
cavity and one polarization mode shows a periodic undulation of the output power for
a period of λ/2 with the change of the external cavity length. In this state, the other
mode is also excited alternately to the orthogonal mode, thus showing anti-phase
oscillation for the external cavity length (Arteaga et al. 2006).

Tabaka et al. (2006) investigated the pulse package dynamics with LFFs including
polarization modes in a short external cavity VCSEL. As a result, for the increase
of the injection current, switching from one polarization mode to the other with
orthogonal polarization direction is observed. The existence of the two polarization
modes in VCSELs can give rise to an additional polarization mode competition
dynamics in the presence of feedback. Figure 8.24 shows the experimental results of
the polarization resolved dynamics. The VCSEL with an oscillation wavelength of
986 nm has the solitary threshold of Ith = 3.7 mA and shows polarization switching
at the bias injection current of I = 4.2 mA. The external cavity length is 6.5 cm and
the mirror reflectivity is 0.3, which results in a threshold reduction of 22 % from
the solitary laser oscillation. The relaxation oscillation frequency at I = 5.2 mA
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corresponds to the external cavity length of 6.5 cm. Therefore, the observed dynamics
in Fig. 8.24 satisfy the short cavity condition. In Fig. 8.24a the amplitude of the peaks
is still small and the shape of the single pulse package envelope is not very regular.
However, the envelope of the packages can be clearly identified, which indicates
that the pulse packages in the two polarization modes are almost periodic with a
characteristic frequency. The pulse package dynamics in the two polarization modes
can be much better recognized at I = 3.4 mA, in Fig. 8.24c. In actual fact, the
total intensity shows a quite regular pulse package oscillation, but the polarization
resolved pulse package dynamics is not as regular as for the total intensity. The
reason for this is that we observe polarization mode competition, underlying the
pulse package dynamics, reducing the regularity of the pulse package dynamics in
each polarization mode. This mechanism becomes more relevant at a higher injection
current, approaching the polarization switching point. A gradual loss of the regularity
in the pulse package dynamics as the bias injection current is increased from 3.2 to
3.8 mA. In the time series in Fig. 8.24, the pulse package dynamics temporarily take
place in one of the polarization modes only in some cases and the second mode is
almost turned off. In other cases the pulse package dynamics take place in the two
polarization modes simultaneously. The first case of dynamics, in which the pulses
are emitted in one polarization mode only, is referred to as type I pulse packages. The
second case of dynamics, in which the pulse package dynamics take place in the two
polarization modes simultaneously, is called type II pulse packages. Similar interplay
of the feedback induced complex dynamics and polarization mode competition has
been found numerically in the long external cavity regime (Sciamanna et al. 2003a)
and experimentally confirmed (Naumenko et al. 2003; Sondermann et al. 2003).

The cross-correlation functions corresponding to the left column are shown in
the right column of the figure. By increasing the injection current, we observe a
continuous decrease of the modulation amplitude at the timescale of the multi-
ples of the pulse package envelope until the peaks completely vanish, which we
demonstrate in Fig. 8.24h. At higher levels of the bias injection current, the laser
first emits pulses with high amplitudes while the amplitude of the following pulses
progressively decreases. Moreover, in the regime of high injection currents, well
above the polarization switching point, the cross-correlation function becomes neg-
ative for all time lags. This substantial change in the shape of the cross-correlation
function can be associated with a remarkable change of the pulse package dynamics,
reflecting a gradual transition from type II pulse package to type I one.

8.3.9 Optical Injection Dynamics in VCSEL

We have discussed optical injection phenomena in narrow-stripe edge-emitting semi-
conductor lasers in Chap. 6. The technique is developed for frequency-locking and
stabilizing injected lasers, but the lasers are sometimes destabilized by optical injec-
tion and show a rich variety of chaotic dynamics for certain ranges of the injection
parameters as has already been discussed. In the case of narrow-stripe edge-emitting

http://dx.doi.org/10.1007/978-3-642-30147-6_6


282 8 Instability and Chaos in Various Laser Structures

In
te

ns
ity

 [
a.

u.
]

Time [ns] Time [ns]
C

ro
ss

-C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

0.1

0

-10 -5 0 5 10

-0.2
-0.1

0
0.1

0.2

5 10 15 20 25 30 35 40

0.1

0

0.2

0.1

0

0.4
0.3
0.2
0.1

0

0.2

0

-0.2

0

-0.2

-0.4

0

-0.4

-0.2

(a) (b)

(c) (d)

(e) (f)

(h)(g)

Fig. 8.24 Polarization resolved dynamics of a VCSEL in the pulse package regime for the injection
current. Left column is time series and right column the corresponding cross-collation function.
a I = 3.2 mA, c I = 3.4 mA, e I = 3.8 mA, and g I = 5.0 mA. Gray plot corresponds y-
polarization and black plot x-polarization [after Tabaka et al. (2006); © 2006 AIP]

semiconductor laser, the laser usually emits a light with a linear polarization (TE
mode) and the same polarization is used as an injection light. Once in a while,
polarization-rotated optical injection (TM mode injection) is applied to obtain a
chaotic light source in narrow-stripe edge-emitting semiconductor lasers. Normally,
the excitation of the orthogonal mode is very small in ordinary edge-emitting semi-
conductor lasers. However, the situation completely changes in VCSELs, since the
lasers have the ambiguity of oscillations for polarization directions. In VCSELs, opti-
cal injection including the polarization direction plays a crucial role in the dynamics
of the laser oscillations even if the laser is oscillated at a certain fixed polarization
with a solitary mode. Depending on the injection conditions, the laser shows a rich
variety of dynamics; stable and unstable injection locking, and even chaotic oscilla-
tions by the optical injection. The typical feature of the dynamics is the polarization
switching between the two orthogonal polarization modes. Further, the polarization
is greatly affected by small changes of the bias injection current or the device tem-
perature may result in a polarization switching between the two linearly polarized
modes. Control of the VCSEL polarization is a major issue in telecommunication
applications. For well polarization controlled VCSELs, polarization switching may
be interesting for the development of all optical switches.
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The typical feature of VCSEL oscillations is the polarization switching for the
increase or decrease of the bias injection current. By optical injection, the laser shows
different dynamics depending on the injection direction for the polarization mode
and also the frequency detuning. As a general trend, the polarization switching cur-
rent is almost fixed to that of the solitary oscillation for a small optical injection. For
the increase of optical injection level, the switching current increases. Finally, the
polarization switching is eliminated for a strong optical injection like the effect of
optical feedback and the laser oscillates at only a single polarization mode (injected
polarization direction), although the particular mode may show chaotic oscillations.
In optical injection to a VCSEL, we can obtain a similar injection map of Fig. 6.6
in Sect. 6.2.3 as far as the injection polarization direction is the same as the oscilla-
tion mode of the VCSEL (Li et al. 1996; Ryvkinn et al. 2004; Hurtado et al. 2010).
However, polarization switching dynamics encounter for an orthogonal polarization
injection and the laser shows a rich variety of dynamics in its output power and
polarizations. Figure 8.25 shows examples of dynamic-state maps in the phase space
of the optical injection and the frequency detuning calculated from the spin-flip
model discussed in Sect. 8.3.3. Here, we show different conditions of the polar-
ization directions of optical injection and the bias injection points. The important
parameters related to the polarization switching current and the laser oscillation
frequency are set to γp = 30 rad·ns−1 and γa = 1 ns−1. Under this condition, the
normalized polarization switching current isμsw = 1.3 and the frequency difference
between the y- and x-polarization oscillations is about 9 GHz. Figure 8.25a, b are
the results for parallel optical injections, while Fig. 8.25c, d are those for orthogonal
optical injection. Figure 8.25a is the map for the optical injection to y-polarization
when the laser oscillates at y-polarization mode (μ = 1.2). On the other hand,
Fig. 8.25b is that for the optical injection to x-polarization under the laser oscillation at
x-polarization mode (μ = 1.4). The general trends of the dynamics are quite simi-
lar to the case of narrow-stripe edge-emitting semiconductor lasers. As is expected,
for higher bias injection, the stable oscillation region shrinks and chaotic oscil-
lation areas are expanded. Figure 8.25c is the map for the optical injection to x-
polarization when the laser oscillates at the y-polarization mode (μ = 1.2). While,
Fig. 8.25d is that for the optical injection to y-polarization under the laser oscillation at
x-polarization mode (μ = 1.4). In the maps of the orthogonal optical injections,
the offset frequency detunings of ±9 GHz correspond to the frequency differences
between the two polarization components of the laser oscillations. Except for the
offset of the frequency detuning, one obtains similar dynamics for parallel optical
injection to VCSELs. However, it is noted that unlocking regions are widely observed
at lower injection ratio in these cases.

In order to represent the richness of the polarization dynamics in VCSELs with
orthogonal optical injection including wide range of frequency detuning and also
large dynamic range of optical injection power, the map of the boundaries of different
dynamics is experimentally drawn as usual in the phase space of the frequency
detuning and the injection power in Fig. 8.26 (Altés et al. 2006; Gatare et al. 2006).
The laser is under the x-polarization oscillation with a single spatial mode (the
fundamental transverse mode) above the polarization switching point, hence the

http://dx.doi.org/10.1007/978-3-642-30147-6_6
http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 8.25 Maps of dynamic states of an optically injected VCSEL in the phase space of optical
injection rate and the frequency detuning between the injection laser and the VCSEL. The maps
are calculated from the spin-flip model. The polarization switching current is μ = 1.3. Parallel
optical injection maps for the oscillation modes at a μ = 1.2 (y-polarization mode is injected)
and b μ = 1.4 (x-polarization mode is injected). Orthogonal optical injection maps for the non-
oscillation modes at c μ = 1.2 (x-polarization mode is injected) and d μ = 1.4 (y-polarization
mode is injected)

main y-polarization mode is suppressed. The injection power in the horizontal axis
in Fig. 8.26 is normalized to the solitary oscillation power at this bias point. The
VCSEL is externally injected by the linear polarization light with y-polarization
mode and the x-polarization mode dynamics of the laser is investigated. The thin
solid and gray lines are the polarization switching boundaries (switch-on points) for
the increase of the bias injection current. While the dashed and the thick solid lines
are polarization switching boundaries (switch-off points) for the decrease of the bias
injection current. In the regions S1 and S2, the frequency of VCSEL emission is
locked to the master laser. However, in the case of S2, it is the first order transverse
mode and not the fundamental transverse mode that locks to the master laser, the
fundamental transverse mode then being suppressed. The unlocking of the first order
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transverse mode happens at smaller values of the injection power, describing bistable
region B2 between the fundamental and the first order transverse mode both with the
same polarization.

In Fig. 8.26, two polarization bistable regions are observed in a regime of fun-
damental mode emission, which correspond to two different ways of polarization
switching. The first one is with frequency locking in region B1 and is confined
between the gray and the thick solid lines. The second polarization bistable region
of B3 is confined between the dash and the thin solid lines where the polarization
switching happens without frequency locking. The two bistable regions are connected
at a detuning of 2 GHz, which coincides with the birefringence frequency splitting
between the two linear polarization modes. This means that when the master laser is
biased at the frequency of the y mode (the suppressed mode under the bias injection
current) a dramatic change of dynamics occurs from polarization switching with
injection locking to polarization switching without locking. For larger positive or
negative detunings, the switching power is larger, and moreover the switching power
is larger for a negative than for a positive detuning value. This experimental feature
agrees with theoretical results on a VCSEL rate equation model (Sciamanna and
Panajotov 2005). It is noted that the widths of the injection-locking regions S1 and
S2 and of the bistability region B1 increase with the detuning. On the other hand, the
width of the bistability region B3 remains approximately constant when changing the
frequency detuning. This bistable region B3 is also strongly influenced by the locking
of the first order linear polarization mode (S2). For small positive detunings rang-
ing from about 0–10 GHz, complicated dynamics like wave mixing, subharmonic
resonance, sustained limit cycle oscillation, period doubling, and chaotic regimes
(C) are observed as shown in the inset in Fig. 8.26. The example shown here is the
polarization dynamics of orthogonally injected VCSELs at the bias injection current
above the polarization switching point. Similar but somewhat different dynamics
can be found for the bias injection current below the polarization switching point
(y-polarization mode oscillations) and x-polarized optical injection (Sciamanna and
Panajotov 2005, 2006).

8.4 Broad-Area Semiconductor Lasers

8.4.1 Theoretical Model of Broad-Area Semiconductor Lasers

The high power semiconductor laser is a promising laser device for various industrial
applications of high-energy optical sources, since the power conversion efficiency
from electricity to light in those semiconductor lasers is much higher than in other
lasers (the efficiency is more than 50 %). Such high power and high efficiency lasers
can be used for light sources of laser welding, pumps for solid-state lasers, and
laser fusion. Also high power semiconductor lasers are used as light sources for
laser printing and laser display. Currently, a high power semiconductor laser over
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Fig. 8.26 Mapping of the dynamics of a VCSEL subject to optical injection in the phase space of
the frequency detuning and the optical injection power. The laser is oscillated at the y-polarization
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around the region of instabilities C [after Altés et al. (2006); © 2006 IEEE]

1 kW of output is deviced by stacking lasers as arrays. One of the technologies
for high power semiconductor lasers is a broad-area laser that has a broad stripe
width (∼100 µm which is about twenty times or more larger than that for ordinary
narrow-stripe edge-emitting semiconductor lasers). The broad-area semiconductor
laser has a broad stripe width of the active region as its name suggests. Therefore,
the effects of the carrier diffusion and the diffraction of light in the active region
are essential for such a structure (Diehl 2000; Gehrig and Hess 2003). Other than
that, the broad-area semiconductor laser has the same structure as ordinary narrow-
stripe edge-emitting semiconductor lasers. Figure 8.27 is an example of the device
structures. The thickness of the active layer is larger than that of ordinary narrow-
stripe edge-emitting semiconductor lasers, but the oscillation of the TE mode is
usually expected. However, under special installation of the device structures such
as stress-induced anisotropy for the device, a broad-area semiconductor laser may
oscillate at the TM mode. The internal cavity length is of the same order as for
narrow-stripe edge-emitting semiconductor laser or several times larger than that.
The longitudinal dimension is typically 1 mm. Except for wide stripe, the laser usually
has a high reflectivity of light at the back facet and a low reflectivity at the front facet
to avoid catastrophic optical damage (COD), which is discussed in Sect. 8.4. The
output power of a broad-area laser is more than 100 mW and even 10 W oscillation
is realized as a single emission light source.

Except for the advantage of high power operation, the qualities of the laser beam
show rather poor performances. For example, broad-area semiconductor lasers usu-
ally operate at multimode both for the longitudinal and transverse modes. Depending
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Fig. 8.27 Device structure of
a broad-area semiconductor
laser. The stripe width w of
the active layer is as broad as
∼100 µm
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on the bias injection current, spatial mode excitation or suppression occurs in the
laser beam. As an ordinary tendency, the laser transversely oscillates with a few lower
spatial modes at low bias injection current, while higher spatial modes are further
excited with the increase of the bias injection current. This effect originates from the
increased importance of carrier dynamics; with increasing current the nonlinear spa-
tial and spectral dynamics lead to an increased rise in the gain for the higher spatial
modes. Moreover, the carrier-induced refractive index induces dynamic filamenta-
tions in the gain medium, which is a principal cause of multimode dynamics. The
far-field pattern of a broad-area laser typically has a twin-peak at low bias injection
current. There exists a carrier hole-burning effect in the active region along the stripe
width at high bias injection current. The positions of the hole-burning change and
fluctuate with time and this gives rise to pulsating oscillations with picosecond and
fast spatio-temporal filamentations (Hess et al. 1995; Marciante and Agrawal 1998;
Scholz et al. 2008). Filamentation of broad-area semiconductor lasers, which shows
zigzag motions of high intensity peaks along the internal cavity (typically the time
size is several tens of picoseconds and the spatial size of several micron-meters), is
one of the typical features of broad-area semiconductor lasers and it much deterio-
rates the laser performance. The broad-area semiconductor laser is also sensitive to
external perturbations. In the following, we discuss the dynamics both without and
with external perturbations.

The broad-area semiconductor laser itself is also an unstable device due to the
spatial dependence in the laser oscillations (i.e., the spatial variation is an additional
degree of freedom). Broad-area semiconductor lasers usually oscillate with multi-
mode, however, we assume a single longitudinal mode operation for simplicity. Even
for the assumption, it is proved that we can well reproduce fundamental dynamics
of broad-area semiconductor lasers. Starting from the Helmholtz equation for the
complex laser field E(x, t)(x is the coordinate perpendicular to the laser thickness
in the active layer, i.e., the direction along the laser stripe width), the rate equation
is given as (Rahman and Winful 1994; Merbach et al. 1995; Levy and Hardy 1997)
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Table 8.4 Characteristic device parameters for broad-area semiconductor lasers at an oscillation
wavelength of 780 nm

Symbol Parameter Value

Gn gain coefficient 2.00 × 10−13 m3 s−1

α linewidth enhancement factor 3.00
r1 front facet reflectivity 0.05
r2 back facet reflectivity 0.95
nth carrier density at threshold 5.11 × 1024 m−3

n0 carrier density at transparency 1.30 × 1024 m−3

τs lifetime of carrier 3.00 ns
τph lifetime of photon 1.88 ps
τin round trip time in laser cavity 6.00 ps
De diffraction coefficient 1.44 m2 s−1

Dn carrier diffusion coefficient 30 cm2 s−1

l cavity length 500 µm
w stripe width 50 µm
d thickness of active layer 0.05 µm

∂E(x, t)

∂t
= i De

∂2 E(x, t)

∂x2 + 1

2
(1 − iα)Gn{n(x, t)− nth}E(x, t) (8.41)

where De = c/2k0η
2 is the diffraction coefficient of light (k0 being the wavenumber

in vacuum). The first term on the right-hand side of the equation is the diffraction
effect due to the broad active area. The diffusion effect must also be included in the
rate equation for the carrier density n(x, t) and it is written as

∂n(x, t)

∂t
= Dn

∂2n(x, t)

∂x2 + J

ed
− n(x, t)

τs
− Gn{n(x, t)− n0}|E(x, t)|2 (8.42)

where Dn is the diffusion coefficient of the carrier and it is defined as Dn = l2
d/

τs(ld is the diffusion length). In reality, the injection current is a function not only of
time but also of the x coordinate. The dynamics of broad-area semiconductor lasers
at solitary oscillations are numerically simulated from (8.41) and (8.42). Table 8.4 is
an example of characteristic parameters of broad-area semiconductor lasers.

To explain the dynamics not only for the externally emitting light field but also
within the laser cavity, a different model for broad-area semiconductor lasers is
sometimes employed. In this model, the field amplitude and carrier density in the
active region of a broad-area semiconductor laser fluctuate in time and space both for
the transverse and longitudinal directions, i.e., x and z directions (z is the direction of
light propagation). To analyze the internal local field and carrier density, we must take
into account the internal field for the propagating and counter propagating waves and
the polarization of the matter. Then, the electromagnetic field equation is numerically
solved by using a finite difference time domain (FDTD) method (Acachihara et al.
1993; Hess and Kuhn 1996a,b; Simmendinger et al. 1999). Therefore, such a model
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is sometimes used. In the model, the field equation for the forward and backward
propagations E+ (x, z, t) and E− (x, z, t) along the zdirection in the internal active
region is given as

± ∂E±(x, z, t)

∂z
+ η

c

∂E±(x, z, t)

∂t

= i

2k

∂2 E±(x, z, t)

∂x2 − (
αs

2
+ iγw)E

±(x, z, t)+ i

2

�(x)

η2ε0l
P±

N (x, z, t) (8.43)

and the carrier density n(x, z, t) reads as

∂n(x, z, t)

∂t
= Dn

{
∂2n(x, z, t)

∂x2 + ∂2n(x, z, t)

∂z2

}
+ J (x, z)

ed

− n(x, z, t)

τs
− G E,P (x, z, t) (8.44)

where l is the internal cavity length of the laser, αs is the linear absorption term, γw
is the parameter related to transverse and vertical variations of the refractive index
due to the waveguide structure, and � (x) is the confinement factor. P±

N (x, z, t) is
the nonlinear polarization of the matter accompanying the laser oscillation and is
written as

P±
N = 2

V

∑

k

dcv(k)p
±
r (k) (8.45)

where dcv(k) is the optical dipole matrix element and p±
r (k) is the microscopic

polarization function. The macroscopic generation rate G E,P in (8.44) is given as

G E,P (x, z, t) = −χ ′′ ε0

2�
(|E+(x, z, t)|2 + |E−(x, z, t)|2)

+ [−i

2�
{E+(x, z, t)P+∗

(x, z, t)

− E−(x, z, t)P−∗
(x, z, t)} + c.c.] (8.46)

where χ ′′ is the imaginary part of the susceptibility. When the variables for the z
direction in (8.43) and (8.44) change slowly in time, the equations reduce to the rate
equations at the exit face of the laser given by (8.41) and (8.42).

8.4.2 Dynamics of Broad-Area Semiconductor Lasers
at Solitary Oscillations

In this subsection, the dynamics of broad-area semiconductor lasers at solitary
oscillations are described. The L-I characteristic is the same as that for narrow-stripe
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edge-emitting semiconductor lasers, but the threshold current is much higher because
of the broad stripe width and the need of the high carrier injection rate. The
laser threshold current is usually larger than 100 mA. In the previous theoreti-
cal model, we assume a single mode oscillation for a broad-area semiconductor
laser, however, most of the actual broad-area semiconductor laser oscillates with
multi-longitudinal mode. Therefore, we must use multimode equations for the real
laser model to compare with experiments. However, the single mode model can
reproduce well the fundamental characteristics of broad-area semiconductor lasers.
The following examples of the numerical simulations are the results for a single
longitudinal mode assumption.

As discussed, the rate equations depend on the x coordinate and the spatial modes
play a crucial role for the dynamics. Then, we cannot ignore the spatial dependence
and must take into account the higher transverse modes. Further, the laser undergoes
spatial and temporal complex dynamics due to the self-focusing effects induced
by the hole-burning of carriers and the diffraction of light. We will describe the
fast dynamics later and, instead, we here discuss the time-averaged far-field profile
of a laser oscillation. The output profile of broad-area semiconductor lasers has
a significant wavefront distortion and the effect is remarkable for the laser of the
gain-guided structure which is easy to fabricate. The far-field pattern of a broad-
area semiconductor laser typically has a twin-peak profile. For multi-transverse-
mode lasers, the beam quality factor is introduced to evaluate the beam quality.
The beam quality factor M2 of a far-field pattern for a laser is defined as (Hodgson
and Weber 1997)

M2 = Dmθm

d0θ0
≈

(
Dm

d0

)2

(8.47)

where d0 and Dm are the diameters of the ideal Gaussian beam and the observed
beam, and θ0 and θm are the divergence angles for the ideal and observed beams,
respectively. The value of the beam quality factor M2 is unity for the ideal beam, but
the value for broad-area semiconductor lasers usually ranges from 10−50 depending
on the bias injection current and the stripe width.

Figure 8.28 shows a plot of experimental far-field patterns of a broad-area semi-
conductor laser for a change of the bias injection current. The profile is spatially
averaged. At a lower bias injection current, the laser profile has a single lobe, while
the laser shows a typical twin-peak pattern for a higher injection current. The extent
of the divergence of the beam in the far field is roughly determined by the average par-
ticle size of the filamentation. From this relation, the spatial size of the filamentation
at the exit facet of the laser is given as (Hülsewede et al. 2001)

σ = 4λ

πθ
(8.48)

where θ is the diffraction angle at the far-field plane. In Fig. 8.28, the divergence
angle is θ = 0.17 radians and the corresponding spatial size of the filamentation at
I = 230 mA is estimated as 6 µm.
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Fig. 8.28 Experimental far-field beam profile of a broad-area semiconductor laser. The laser oscil-
lates at 780 nm and has a stripe width of 50 µm. The threshold current is 140 mA

A laser with a non-negligible spatial structure shows instabilities without any
external perturbations. Another example is VCSELs, as we have already discussed.
Next, we show a typical example of spatio-temporal dynamics in broad-area semicon-
ductor lasers. Figure 8.29 is numerically calculated near-field and far-field patterns
of a broad-area semiconductor laser for a stripe width of 50 µm at a bias injec-
tion current of J = 1.5Jth. Figure 8.29a, b are the time-resolved near-field and
far-field patterns with a time window of 1 ns. The horizontal axis is the position
of the exit face of the broad-area semiconductor laser and the vertical axis is the
time development of the output power. In the near-field pattern (NFP), we can see
that bright spot particles moves back and forth in a zigzag manner along the stripe
width. This coil-like pattern is called a filament and it is a typical structure of the
light output in broad-area semiconductor lasers. Figure 8.29b shows the correspond-
ing time-resolved far-field pattern (FFP). Figure 8.29c, d are the time-averaged NFP
and FFP. In the time-averaged NFP, the light outputs of the both edges in the active
region are enhanced. The corresponding time-averaged FFP shows a twin-peaked
pattern, which is typically observed in experiments. The calculated M2 factor in the
FFP is about M2=10. The filament structures are indeed observed in experiments.
Figure 8.30 is a filamentation oscillation experimentally observed by a streak cam-
era in a near-field output of a broad-area semiconductor laser (Fischer et al. 1996;
Burkhard et al. 1999). The width of migrating filaments is typically around 10 µm
and it takes them about several picoseconds to migrate from one edge of the active
region to the other. Figure 8.30a is the numerical simulation for the experiment for
Fig. 8.30b. Though the model is a single mode, the calculated filamentation is quite
similar to the experimental one. Filamentation is universally observed not only for
wide stripe lasers but also for semiconductor laser arrays.

The origin of dynamic filamentation in broad-area semiconductor lasers is not
fully understood yet. However, the phenomena can be related to the effects of self-
focusing, diffraction, and spatial hole-burning, which depends on spatial carrier
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Fig. 8.29 Time-resolved a near-field pattern (NFP) and b far-field pattern (FFP) of index-guided
structure broad-area semiconductor laser at bias injection current of J = 1.5Jth. The stripe width
is 50 µm. Time-averaged c NFP and d FFP

diffusion as the relevant physical mechanisms (Hess et al. 1995; Hess and Kuhn
1996b). The self-focusing tends to guide high intensity regions resulting in a decrease
of the optical gain. Thus, in the neighboring regions, the gain is higher. In addition,
diffraction couples light into this neighboring region so that the spot of high inten-
sity starts to migrate. At the edges of the active area, coupling via diffraction occurs
only to one side, leading to a change of direction of migration. Figure 8.31 shows the
intensity distribution of the internal cavity calculated from Maxwell-Bloch equations
discussed in the previous subsection that include both the space dependence and the
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Fig. 8.30 Near-field pattern of filamentation in a broad-area laser. a Numerical simulation of
filamentation. b Experimentally observed filamentation by streak camera. The bias injection current
is J = 2.0Jth. The laser has a stripe width of 100 µm and the oscillation wavelength is 814 nm. The
parameters of the theoretical result are compatible with those of the experiment. The horizontal
axis corresponds to the exit face of the active region and the vertical axis is the time evolution [after
Fischer et al. (1996); © 1996 EDP Sciences]

momentum dependence of the charge carriers and the polarization of matter (Hess
and Kuhn 1996b). The bottom of each plot is the front facet with a lower internal
intensity reflectivity of 0.33 and the top is the back facet with a higher reflectivity
of 0.99. Bright spots of filamentation move with the time evolutions. Other than
broad-area semiconductor lasers with constant stripe width, various types of broad-
area lasers have been proposed (Levy and Hardy 1997; Fukushima 2000). To control
and reduce the effect of filamentation, a flared laser having a tapered cavity has
been used. In such lasers, the filamentation has been reduced but different complex
spatio-temporal dynamics have been encountered.

We discussed the dependences of the laser dynamics on index- and gain-guide
structures in ordinary narrow-stripe edge-emitting semiconductor lasers and the dif-
ferences between them in Sect. 3.7.1. In the case of narrow-stripe edge-emitting
semiconductor lasers, the dynamics strongly depend on the structures not only for
solitary oscillations but also for oscillations under external perturbations. However,
the differences are reflected only to the parameter values in the rate equations and par-
ticular time-dependent dynamics only change for the ranges of the parameter values,
whether the laser is an index- or gain-guide structure. Nevertheless, lasers with gain-
guide structure show unstable oscillations from the dynamics point of view. On the
other hand, a broad-area semiconductor laser has a spatial structure along the stripe
width (index- and gain-guided structures) and the differences between the structures
give rise to large differences to the spatio-temporal dynamics. The dynamics of fila-
mentations, which are the typical fast dynamics in broad-area semiconductor lasers,
are strongly affected by the waveguiding structures.

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 8.31 Propagation of filamentary structures in a broad-area semiconductor laser. The individual
plots display snapshots showing the equi-intensity regions of the intracavity intensity. a At time
t = t0, b t0 + 1, c t0 + 2, d t0 + 2.8, e t0 + 3.5, and f t0 + 4.5 ps. Dark shading corresponds to
low intensity and bright colors to areas of high intensity. The out-coupling facet (mirror reflectivity
of 0.33) is located at the lower edge of each square. The highly reflecting back-coupling mirror
(mirror reflectivity of 0.99) is at the upper edge. The longitudinal extension corresponds to 250 µm;
the total transverse width (w = 50 µm) is 70 µm [after Hess and Kuhn (1996b); © 1996 APS]

Figure 8.32 shows the results of numerical simulations for filamentations in index-
and gain-guide structures in broad-area semiconductor lasers, which have the same
stripe width of 100 µm and the same bias injection current of 1.5Jth. In the numerical
simulations, the same form of the rate Eqs. (8.41) and (8.42) is assumed, but, in the
gain-guide laser, it is assumed that the gain, the refractive index, and the injection
current distribution have appropriate parabolic spatial distributions along the stripe
width. Figure 8.32a, b show the near-field patterns at the exit faces of the lasers and
their space–time correlation functions. The time and spatial sizes of the filaments in
the index-guide laser calculated from the correlation function are 4.1 µm and 27 ps,
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Fig. 8.32 Numerical simulations for near-field patterns in broad-area semiconductor lasers (left
column) and their spatio-temporal correlations (right column) at J = 1.5Jth. a and b Index-
guide semiconductor laser, and c and d gain-guide semiconductor laser. Both lasers have the same
stripe widths of 100 µm. Parabolic profiles for the gain, the refractive index, the injection current
distribution along the stripe width are assumed in the gain-guide semiconductor laser

respectively, while those for the gain-guide laser are 2.9 µm and 12 ps, respectively.
Namely, the gain-guide laser is less stable laser than the index-guide laser and the
filaments strongly migrate back and forth along the active layer in the gain-guide
laser as far as the values of the device parameters for both the structures are the same.
For the increase in the bias injection current, the spatio-temporal size of filaments
shrinks and filaments shows strong zig-zag motions along the active layer, as a result,
both the lasers similarly become less stable.
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Fig. 8.33 Averaged near-field patterns for index- and gain-guide semiconductor lasers for the
increase of the bias injection current. a Near-field pattern for an AlGaAs index-guide laser having
a stripe width of 100 µm and oscillating at the wavelength of 808 nm. The threshold current is
Ith=160 mA. b Near-field pattern for an AlGaInP gain-guide laser having a stripe width of 60 µm
and oscillating at the wavelength of 642 nm. The threshold current is Ith=191 mA. Courtesy of
SONY Cooperation

This fluctuation of microscopic filaments reflects the performances of macro-
scopic laser oscillations. Figure 8.33 shows experimental results of the time-averaged
intensity distributions at the exit faces of index- and gain-guide broad-area semicon-
ductor lasers for the bias injection current. The horizontal axis points to the exit face
of the laser and the intensity distribution at each bias injection current is normalized.
Each streak along the bias injection current corresponds to averaged filamentations.
We can see different dynamics for several levels of the bias injection current. As
already seen in Fig. 8.29, the enhancement of the powers at both edges of the active
layer is observable irrespective of the guided structures. Although the two lasers have
different stripe widths, values of device parameters, and oscillation frequencies, we
can recognize that the gain-guide laser is less stable laser (Asatuma et al. 2006).

8.4.3 Optical Feedback Effects in Broad-Area Semiconductor
Lasers

Instabilities in broad-area semiconductor lasers are enhanced by external pertur-
bations. In this subsection, we present some instabilities and chaotic dynamics in
broad-area semiconductor lasers subjected to optical feedback. The field equation in
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the presence of optical feedback is given as

∂E(x, t)

∂t
= i De

∂2 E(x, t)

∂x2 + 1

2
(1 − iα)Gn{n(x, t)− nth}E(x, t)

+ κ

τin
E(x, t − τ) exp(iω0τ) (8.49)

In the above equation, the feedback light is always returned to the original position
in the active area, however, the assumption may not always be true in experimental
situations. The light is intentionally fed back to a different position to control the
oscillation and beam profile. In that case, we must introduce the term for the space-
dependent optical feedback. The spatial coupling plays an important role in the laser
dynamics and a locking of the laser oscillations can be expected. The beam quality
inevitably deteriorates due to the broad stripe width, however, fabrication of high
power laser is at present the primary interest for the development for broad-area
lasers and few studies have been reported for the enhancement of beam qualities.
However, now the beam quality becomes the important issue for the applications of
broad-area semiconductor lasers, for example, a light source for the second harmonic
generation of solid-state lasers, laser welding and cutting, optical data storage, and
display. Thus, a beam with good quality is expected. One of the beam controls is
optical feedback. Figure 8.34 shows a numerical example of the effects of short
optical feedback in a broad-area semiconductor laser at the bias injection current of
J = 1.5Jth, the external amplitude reflectivity of r = 0.06, and the external mirror
length of L = 0.75 cm. In the optical feedback, a partial reflection mirror of the
width of 15 µm corresponding to the near field is used, so that the lower spatial
modes are enhanced in the resulting oscillation. Figure 8.34a is the time-resolved
NFP. Except for optical feedback, the condition is the same as that in Fig. 8.29. The
filaments shows a rather regular pattern compared with the irregular oscillation of
spatio-temporal pattern in Fig. 8.29a. At the same time, the side-peak intensities in
Fig. 8.29c in the time-averaged NFP are suppressed and the twin-peak pattern of FFP
in Fig. 8.29d becomes a single lobe pattern.

Dynamics similar to those of narrow-stripe edge-emitting semiconductor laser
have been experimentally observed by optical feedback to broad-area semiconductor
lasers. We show here one of the chaotic evolutions; the evolution of intermittent oscil-
lations to regular chaotic states for the increase of the injection current. Figure 8.35 is
an example of chaotic evolutions for the bias injection current at the external cavity
length of L = 30 cm. The threshold of the used laser is about 140 mA. Figure 8.35a
is the laser output power at the free running state just above the threshold. With the
optical feedback, the reduction of the threshold is also observed in the broad-area
semiconductor laser and the reduction rate is 13.9 % for the external feedback rate
of 6 % (in intensity). When the laser is biased at a low injection current, LFFs are
observed. In the power recovery process after the power dropout, the timescale of
each step is also the same as the time calculated from the external cavity length.
With the increase of the bias injection current, the frequency of LFFs changes and
the inverse LFFs in which power jump-ups instead of power dropouts appear are
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Fig. 8.34 Effect of short optical feedback with a partial reflection mirror of the width of 15 µm
corresponding to the near field. a Time-resolved NFP at the bias injection current of J = 1.5 Jth,
the external amplitude reflectivity of r = 0.06, and the external mirror length of L = 0.75 cm.
Time-averaged b NFP and c FFP

observed at the bias injection current of 170 mA. Around this bias injection cur-
rent, there is a kink of the L-I characteristic and the phase of the laser oscillation
changes to a different state. At a further increase of the bias injection current, the
laser behaves with normal chaotic oscillations, although the waveform still shows
LFF-like oscillation (not fully chaotic oscillation in ordinary sense).

In a short optical feedback regime, one can observe similar dynamics of pulse
packages as those in narrow-stripe semiconductor lasers. However, there are two
schemes of pulse packages; one is a periodic envelope of an LFF frequency with
a modulation of the fast oscillation corresponding to the external optical feedback
loop, which is a familiar pulse package observed in a narrow-stripe edge-emitting
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Fig. 8.35 Experimentally
observed chaotic evolution
for bias injection current in
broad-area semiconductor
laser. a Solitary oscillation at
140 mA. Optical feedback at
bias injection currents b 150,
c 162, d 170, and e 190 mA.
The external cavity length is
L = 30 cm and the external
feedback strength is 6 % in
intensity. The laser used is the
same as in Fig. 8.28 O
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semiconductor laser. The other one is a pulse package of an envelope of the external
optical feedback loop with the fast regular oscillation of filament pulses, which
is a unique feature in broad-area semiconductor lasers (Tachikawa et al. 2010).
Edge-emitting semiconductor lasers are also very sensitive to the phase. Phase sen-
sitivity also exists in broad-area semiconductor lasers subjected to optical feedback
and the dynamics are much affected by the absolute phase of the external cavity
(Martín-Regalado et al. 1996a,b). The other effects of frequency-filtered optical
feedback, spatial-filtered optical feedback, and grating feedback have been studied
(Gaciu et al. 2007). We return the subject of optical feedback in broad-area semicon-
ductor lasers from the viewpoint of laser control in Chap. 10.

One of the important issues for the practical applications of broad-area semicon-
ductor lasers, such as laser cutting, is catastrophic optical damage (COD) induced
by optical feedback from a target. In ordinary narrow-stripe edge-emitting semi-
conductor lasers, catastrophic optical damage is also a serious problem when the
laser is biased at a high injection current. The performance of the laser oscillations
is significantly degraded by catastrophic optical damage and, worst case, the laser
oscillation stops by the damage. The catastrophic optical damage is a critical prob-
lem in laser cutting using high power broad-area semiconductor lasers. Takiguchi
(2006) investigated the conditions for the occurrence of catastrophic optical damage
in broad-area semiconductor lasers from the viewpoint of laser dynamics. Figure 8.36
shows an example of catastrophic optical damage observed in an AlGaAs index-guide
broad-area semiconductor laser having a stripe width of 50 µm. Under filamentation
oscillations in broad-area semiconductor laser, a large power is concentrated to a
filament within a short time, and this effect together with a large optical feedback

http://dx.doi.org/10.1007/978-3-642-30147-6_10
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Exit Face Near Field Pattern

50mm

Fig. 8.36 Catastrophic optical damage (COD) induced by optical feedback in an index-guided
broad-area semiconductor laser with a 50 µm stripe width and an oscillation wavelength of 808 nm.
Left top view of the front facet. COD can be seen in the lower part of the laser. Right intensity profile
of the cathode luminescence image at the front facet. Dips of light emissions corresponding to the
front facet can be seen. Courtesy of SONY Cooperation

intensity may damage the laser. Thus, microscopic filamentations greatly affect the
catastrophic optical damage, but the detailed study for catastrophic optical damage
with the relation of laser dynamics has not been fully understood yet. The study is
very important to prevent fatal catastrophic optical damage in broad-area semicon-
ductor lasers as a practical issue.

8.4.4 Effects of Optical Injection in Broad-Area Semiconductor
Lasers

Similar to the optical feedback effects in broad-area semiconductor lasers, the injec-
tion of an external coherent resonant light can lead to the excitation and selection of
specific transverse modes depending on the power and spatial profile of the injected
light field (Gaciu et al. 2007; Takimoto et al. 2009). Except for the spatial dependence
of the injected field, the field in the presence of optical injection can be described by
the same equation as (6.1) and is given as

∂E(x, t)

∂t
= i De

∂2 E(x, t)

∂x2 + 1

2
(1 − iα)Gn{n(x, t)− nth}E(x, t)

+ κinj

τin
Em(x, t) exp(−i�ωt) (8.50)

Again, Em is the field of the injection laser, kinj is the injection fraction, and �ω is
the frequency detuning between the injection laser and the broad-area laser.

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Figure 8.37 shows numerical results of optical injection to a broad-area semicon-
ductor laser (Takimoto et al. 2009). The stripe width of the active layer is 50 µm and
the continuous-wave injection beam has a rectangular shape with a width of 40 µm.
The beam is symmetrically injected related to the center of the active layer. The
frequency detuning is assumed to be �ω = 0 GHz at the bias injection current of
1.5Jth. The upper plots are the time-resolved filament patterns and the lower traces
are the time-averaged intensity profiles of the near-field patterns. The external injec-
tion ratio rinj defined by (6.2) is used as a measure of optical injection. At rinj = 0.4
in Fig. 8.37a, the laser still exhibits irregular oscillations, but the filament behavior
differs from that of a solitary oscillation (compare with the solitary oscillation in
Fig. 8.29) and the temporal duration of the filament is reduced. In the presence of
optical injection, the side peak intensities, which exist at solitary oscillation, are sup-
pressed and the laser beam has a flat top-hat profile, as shown in the time-averaged
profile. Such a flat top-hat beam shape is very important for practical applications.
At rinj = 1.2 in Fig. 8.37b, the laser still undergoes irregular oscillations, but some
regular structure can be seen in the pattern and the filament durations are shorter.
However, the flat-topped beam profile collapses and spatial periodicity is enhanced
with a further increase in the optical injection, thus resulting in the excitation of
higher spatial modes as shown in the time-averaged near-field pattern. At rinj = 1.6
in Fig. 8.37c, the near-field pattern shows a remarkable periodic structure and higher
spatial modes are strongly excited. Spatio-temproal and spatio-spectral dynamics
induced by optical injection are also studied by Gaciu et al. (2007).

8.5 Laser Arrays

Semiconductor laser arrays are also important devices for light sources with high
power radiation. The laser may be composed of arrays of broad-area lasers to make
an extremely high power laser device. However, here we assume that the arrays
consist of ordinary narrow-stripe edge-emitting lasers and consider the interaction
among the laser elements. When the separation between the laser arrays is very
small, each laser interferes and instability sometimes occurs in the total laser output.
In a strict sense, we must consider all the effects of the diffraction and the carrier
diffusion as already discussed in Sect. 8.4 (Münkel et al. 1996). However, we consider
the situation that the coupling of lights among arrays is a dominant effect and that
it is more important than those of the diffraction and the carrier diffusion. We also
assume that the coupling only between the neighborhood lasers is strong, as is often
the case. Thus, the rate equations for the field amplitude and the carrier density of
the j th element are given as (Winful and Rahman 1990; Winful 1992)

dE j (t)

dt
= 1

2
(1 − iα)Gn{n j (t)− nth}E j (t)− i

κa

τin
{E j+1(t)+ E j−1(t)} (8.51)

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 8.37 Numerical results of optical injection at the external injection ratios of a rinj = 0.4, b
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dn j (t)

dt
= J

ed
− n j (t)

τs
− Gn{n j (t)− n0}|E j (t)|2 (8.52)

where κa is the coupling ratio between the neighborhood laser elements. The spon-
taneous emission term is neglected in the above equations. For the numerical calcu-
lation of the rate equations, the number of laser arrays is N + 1 and the boundary
condition is E0 = EN = 0. The rate equation for the field amplitude has the same
form as the well-known equation of the coupled map lattice (CML). The CML shows
typical spatio-temporal instabilities and chaos. Therefore, semiconductor laser arrays
are essentially chaotic systems. Winful (1992) investigated chaotic dynamics and
synchronization of laser arrays based on this model.

As a different approach for the analysis of semiconductor laser arrays, the model
of periodic carrier confinement and injection is proposed by extending the theory
of broad-area semiconductor lasers (Merbach et al. 1995; Martín-Regalado et al.
1996a,b). In multi-stripe laser arrays, the rate equations remain the same as (8.41)
and (8.42). However, the laser is assumed to have a discrete multi-stripe structure
along the x-direction as shown in Fig. 8.38. The confinement of the gain arises peri-
odically in the active region. Then, we introduce a periodic confinement factor �(x)
in the wave-guide. Also, the bias injection current J (x) is assumed as a periodic
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Fig. 8.38 Model of a multi-
stripe semiconductor laser
array. Only three stripes are
displayed

w s

x

Contact Stripes

Active
Layer

Cladding

function with the same period. Using these assumptions, the dynamics of the multi-
stripe laser are numerically investigated. For the laser arrays, filamentations are also
observed. Figure 8.39 shows an example of numerically calculated filamentations
(Merbach et al. 1995). The laser has a ten-stripe. We can see filamentations among
laser arrays and the dynamics strongly depends on the bias injection current. In
Chap. 10, we also return to the control of unstable operation of laser arrays subjected
to optical feedback from the viewpoint of laser control.

8.6 Quantum-Dot Semiconductor Lasers

8.6.1 Quantum-Dot Semiconductor Lasers

Quantum-dot semiconductor laser is an important light source for high-speed data
communication applications, since it is insensitive to temperature variations and opti-
cal feedback, and provides features of high modulation bandwidth and low chirp. The
device structure of a quantum-dot laser is almost the same as common narrow-stripe
edge-emitting semiconductor lasers. However, in the active layer, small quantum dots
as small as nanometer size are fabricated, usually by a self-assembled method of the
crystal. A common quantum-dot semiconductor laser is not a single layer device,
but several thin quantum-well layers with quantum dots are piled up in the active
region. An electron and a hole are captured in a single dot and behave like zero-
dimensionally confined particles with a fixed energy state. Thus the light emitted
from a quantum-dot semiconductor laser shows a high coherence state. The crystal
growth, the device characteristics, and their theoretical treatments have been given in
a book of Sugawara (1999). Figure 8.40 is an example of a self-formed quantum-dot
structure of InAs in an active region of GaAs (Shoji et al. 1997). Figure 8.40a show
a plan view of quantum dots. It is desirable that quantum dots stand in a line on the
wetting quantum-well layer and the size of each quantum dot should be the same.
However, the control of the crystal growth is very difficult. In spite of irregularities of

http://dx.doi.org/10.1007/978-3-642-30147-6_10
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Fig. 8.39 Numerical plots of spatio-temporal output power of a ten-stripe laser array for two
different injection currents. a I = 34 mA: periodic state and b I = 44 mA: chaotic state. The
threshold current for each stripe is Ith = 36 mA. The stripe width is w = 5.0 µm and the stripe
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section view [after Shoji et al.
(1997)© 1997 IEEE]

50 nm20 nm

(a) (b)



8.6 Quantum-Dot Semiconductor Lasers 305

the size and the position, the laser can emit a high quality beam. The grown quantum
dots in Fig. 8.40b are 20 nm in diameter and 5 nm in height. The areal coverage is
about 10 %.

The behaviors of quantum-dot semiconductor lasers are interesting from the
viewpoint of nonlinear dynamics. We must consider electron and hole scatter-
ing rates to and from dots in the active layer. Therefore, we must introduce the
extra differential equations to describe the dynamics. In usual, an addition of
extra degree of freedom induces less stable operations for the system. Never-
theless, quantum-dot semiconductor laser is a stable light source even compared
with common narrow-stripe edge-emitting semiconductor lasers. Physically, this
stability is explained by the limitation of the light emitting region to a confined dot
structure. To describe the dynamics, we need to introduce a microscopic model of
the quantum-dot structure (Erneux et al. 2007; Lüdge et al. 2008, 2010; Lüdge and
Schöll 2009; Grillot et al. 2009; Lüdge 2011). Figure 8.41 is the model of the energy
band-structure of a quantum-dot semiconductor laser. Beside the two-level energy
states (conduction and valence bands) in common semiconductor lasers, the energy
band for a quantum dot is introduced. In this model, we here only consider the ground
state (GS) of the energy level for a quantum dot. As far as the bias injection current
is not large, the model can well describe the dynamics. For higher bias injection
current, the exited states of the energy level should be taken into account (Grillot
et al. 2009). In the microscopic model, the dynamics of electron and hole should be
treated separately, since the effective masses for electron and hole are different and
the carrier scattering rates form the wetting layer to a dot Sin and from a dot to the
wetting layer Sout are also different. In the figure, the subscripts of e and h stand for
electron and hole. In the microscopic model, the carrier scatterings into and from
quantum dots (Auger process and carrier-phonon interaction) play important roles
in the dynamics.

Using the band model in Fig. 8.41, the rate equation for the optical field is given
by (Lüdge and Schöll 2009)

dE(t)

dt
= 1

2
(1 − iα)

[
�W A{ne(t)+ nh(t)− N QD} − 1

τph

]
E(t) (8.53)

where � is the optical confinement factor, W is the Einstein coefficient, and A is the
area of the active region. N QD denotes twice the density of the active quantum dots,
taking into account spin degeneracy. ne and nh are the two-dimensional electron and
hole densities in the dots, i.e., the densities are defined as a unit of a single layer. The
rate equations for the densities of electrons we and holes wh in the quantum-well
wetting layer (WL) is given as

dwe(t)

dt
= J

e
− Sin

e
N sum

N QD {N QD − ne(t)} + Sout
e

N sum

N QD ne(t) (8.54)

dwh(t)

dt
= J

e
− Sin

h
N sum

N QD {N QD − nh(t)} + Sout
h

N sum

N QD nh(t) (8.55)
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Fig. 8.41 Energy band struc-
ture of quantum-dot semicon-
ductor lasers. WL quantum-
well wetting layer, QD quan-
tum dot, GS ground state level
of a quantum dot, E energy
level for corresponding state,
�E energy difference, Sin

capture rate, Sout escape rate

WL

WL

Ee
WL

Conduction Band

ΔEe

Ee
QD

QD

Eh
QD

GS

Valence Band

Se
in Se

out

hν

ΔEhEh
WL

Sh
in Sh

out

where J is the injection current density. N sum is twice the total quantum-dot density
as given by experimental surface imaging, which accounts for reduced gain because
due to the size distribution of the quantum dots, namely the active quantum dots
N QD, match the mode energy for lasing. A crucial contribution to the dynamics of
quantum-dot semiconductor lasers is given by non-radiative carrier–carrier scattering
rates. Sin

e and Sin
h are the electron and hole capture rates into the quantum-dot levels

in this process, while Sout
e and Sout

h are the electron and hole escape rates from
the quantum-dot levels. The scattering times for electrons and holes are given by
τe = 1/(Sin

e + Sout
e ) and τh = 1/(Sout

h + Sout
h ), respectively. As specific equations for

quantum-dot semiconductor lasers, we need the following carrier density equations
of quantum dots:

dne(t)

dt
= Sin

e {N QD−ne(t)}−Sout
e ne(t)−W A{ne(t)+nh(t)−N QD}|E(t)|2 (8.56)

dnh(t)

dt
= Sin

h {N QD−nh(t)}−Sout
h nh(t)−W A{ne(t)+nh(t)−N QD}|E(t)|2 (8.57)

As an example, the values of device parameters for quantum-dot semiconductor
lasers are listed in Table 8.5.

Strictly speaking, we must use the above five-variable model to explain the dynam-
ics of quantum-dot semiconductor lasers, however, for the easiness of analytical cal-
culations, such as an analysis for steady-state characteristics, a reduced model is
sometimes used (O’Brien et al. 2004; Erneux et al. 2007). In this model, the carrier
densities of electrons and holes in the wetting layer are assumed to be the same and
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Table 8.5 Characteristic device parameters for quantum-dot semiconductor lasers with five-
variable model at an oscillation wavelength of 1.30 µm

Symbol Parameter Value

W Einstein coefficient 0.7 ns−1

� confinement factor 2.25×10−3

A WL normalization area 4×10−9 m2

N QD twice total QD density of lasing group 0.6 × 1014 m−2

N sum twice total QD density 20 × 1014 m−2

α linewidth enhancement factor 0.9
τph lifetime of photon 10 ps
τin round-trip time in laser cavity 24 ps
�Ee ground state energy difference for electron 190 meV
�Eh ground state energy difference for hole 69 meV
me effective mass of electron 0.043 m0

mh effective mass of hole 0.45 m0

m0 mass of electron 9.11 × 10−31 kg
r0 facet reflectivity 0.565

the carrier densities in quantum dots also obey the same dynamics. Therefore, the
carrier density equations in the wetting layer reduce to a single carrier density equa-
tion. Also the carrier density equations in a quantum dot are replaced as a probability
density equation of a single carrier occupation. Then, this model contains three vari-
ables of the field E , the occupation probability density ρ of electron and hole pair in
a quantum dot, and the carrier density n in the wetting layer as follows:

dE(t)

dt
= 1

2
(1 − iα)[g0ϑ{2ρ(t)− 1} − 1

τph
]E(t) (8.58)

dρ(t)

dt
= −ρ(t)

τd
− g0{2ρ(t)− 1}|E(t)|2 + [{1 − ρ(t)}Rcap − ρ(t)Resc] (8.59)

dn(t)

dt
= J

e
− n(t)

τs
− 2Nd [{1 − ρ(t)}Rcap − ρ(t)Resc] (8.60)

where g0 is the gain coefficient, ϑ is the conversion coefficient from the total gain to
the two-dimensional surface given by ϑ = 2Nd�/dd , Nd is the total carrier density,
and dd is the thickness of quantum dots. Rcap and Resc are the carrier capture and
escape rates in and from a dot, respectively. The carrier capture rate is given by
Rcap = Cn2 + Bn, where C is the carrier–carrier scattering coefficient (Auger
capture coefficient) and B is the carrier–phonon scattering coefficient. These rates
correspond to the carrier–carrier scattering rates defined in (8.53)–(8.57), however
the rates for electrons and holes are assumed to be the same in (8.59). In the five-
variable model, these parameters are the functions of the carrier densities in the
wetting layer. In spite of a rough picture of the model, the fundamental dynamics
and the trends of the laser oscillations can be explained to some extent. The model is
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Table 8.6 Characteristic device parameters for quantum-dot semiconductor lasers with three-
variable model at an oscillation wavelength of 1.30 µm

Symbol Parameter Value

g0 gain coefficient 1.8 × 10−11 m3s−1

ϑ conversion coefficient 2.4 × 1022 m−3

Nd total carrier density 2×1015 m−2

dd thickness of dot 10 nm
α linewidth enhancement factor 1.2
r0 facet reflectivity 0.565
τph photon lifetime 3 ps
τd carrier lifetime in dot 1 ns
τs carrier lifetime in well 1 ns
τin round-trip time in laser cavity 8 ps
� confinement factor 0.06
Rcap carrier capture rate 1011 s−1

Resc carrier escape rate 1.25 × 1010 s−1

particularly useful for the primary study of the steady-state behaviors in quantum-dot
semiconductor lasers. The values of the parameters used in this model are listed in
Table 8.6.

8.6.2 Quantum-Dot Semiconductor Lasers in Solitary Oscillations

We here discuss some characteristics of quantum-dot semiconductor lasers at solitary
oscillation based on the five-variable model. The scattering rates are not constant but
they depend on the carrier densities in the quantum-well wetting layer. They are
calculated from microscopic Auger in- and out-scatterings. The calculation is not
straightforward and they are not given by analytical forms. Therefore, we here only
show examples of numerical results for the scattering rates. Figure 8.42 shows the
scattering rates of electrons and holes for the carrier densities in the wetting layer at
the ground state energy difference for electron of �Ee = 190 meV and the ground
state energy difference for hole �Eh = 69 meV. We can see the strong dependence
of the scattering rates on the carrier densities in the wetting layer. Figure 8.43a shows
the steady-state occupation probabilities of carriers in a dot as a function of the bias
injection current under the same condition of Fig. 8.42. For a low bias injection
current in Fig. 8.43a, the difference of occupations of electron and hole is large, but it
becomes small for the increase of the bias injection current and stays constant values.
On the other hand, the difference of the carrier densities in the wetting layer is rather
small for the all range of the bias injection current as shown in Fig. 8.43b. Thus, the
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Fig. 8.43 a Steady-state occupation probabilities of carriers in a dot for the bias injection current.
b Steady-state carrier densities in the quantum-well wetting layer for the bias injection current.
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difference of the occupation probabilities between electrons and holes in quantum
dots plays a crucial role in the dynamics of quantum-dot semiconductor lasers.

The damping rate for a step response of the laser output for the bias injec-
tion current in quantum-dot semiconductor lasers is very high compared with that
of quantum-well lasers. The fact is confirmed experimentally and theoretically.
Figure 8.44 shows a comparison of experimental and simulation results for some fun-
damental characteristics in a quantum-dot semiconductor laser (Lüdge and Schöll
2009). Figure 8.44a is a turn-on transients at the bias injection currents of 2.2Jth
and 2.7Jth. The symbol of stars corresponds to the experimental and the simu-
lation results are obtained from the five-variable model in (8.53)–(8.57). We can
see fast decays of the relaxation oscillations. Figure 8.44b–d are the frequency
of the relaxation oscillation νR , the width of the first relaxation oscillation peak
�tFWHM, and the turn-on delay τdelay for the variation of the bias injection current.
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Fig. 8.44 Characteristics of a quantum-dot semiconductor laser. a Step response of the bias injection
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The microscopic five-variable model well reproduces the experimental results.
Except for the fast damping rate in Fig. 8.44a, the other characteristics are com-
patible with those for quantum-well semiconductor lasers.

8.6.3 Optical Feedback Effects in Quantum-Dot
Semiconductor Lasers

Since quantum-dot semiconductor laser has a fast damping rate as discussed in the
previous subsection, it is robust for external perturbations such as optical feedback
and optical injection. The optical feedback effects in quantum-dot semiconductor
lasers have been studied theoretically and experimentally (O’Brien et al. 2004; Huyet
et al. 2004; Viktorov et al. 2006; Otto et al. 2010). For example, the field equation
with optical feedback in the microscopic model is written as
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Fig. 8.45 Chaotic bifurcation
diagrams induced by optical
feedback. Bifurcation dia-
grams for a quantum-well and
b quantum-dot semiconductor
lasers. The length of the exter-
nal reflector is L = 30 cm and
the bias injection current is set
to J = 1.5Jth

3

2

1In
te

ns
ity

 [a
.u

.]

0
1.0 2.0 3.0
External Reflectivity [%]

0

4

3

2

1In
te

ns
ity

 [a
.u

.]

0
1.0 2.0 3.0
External Reflectivity [%]

0

4

(a)

(b)

dE(t)

dt
= 1

2
(1 − iα)

[
�W A{ne(t)+ nh(t)− N QD} − 1

τph

]
E(t)

+ κ

τin
E(t − τ) exp(iω0τ) (8.61)

and the other four equations of the carrier densities in quantum-well and quantum-dot
layers remain the same as (8.53)–(8.57). Similar to the dynamics of quantum-well
semiconductor lasers, LFFs and fast chaotic oscillations are observed depending on
the length of an external reflector, the external reflectivity, and the bias injection
current. However, we need a larger external feedback power to destabilize the laser
compared with quantum-well semiconductor lasers. Figure 8.45 shows examples of
chaotic bifurcation diagrams induced by optical feedback for quantum-well and
quantum-dot semiconductor lasers. Since the device structure and the parameters are
different for the two lasers, it is difficult to perform completely direct comparisons of
the dynamics. However, the device parameters are carefully chosen to compare the
characteristics. The bifurcation diagram for the quantum-dot semiconductor laser is
calculated from the microscopic five-variable model. From the figures, we can con-
clude that the quantum-dot semiconductor laser is less sensitive to optical feedback
and we need much higher feedback power to destabilize the laser.
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8.6.4 Optical Injection Effects in Quantum-Dot
Semiconductor Lasers

Quantum-dot semiconductor laser has a high damping rate and a small α parameter.
This high damping and small α parameter have been cited as the principal reason
for the increased stability of such devices when subject to optical feedback, optical
injection, and mutual coupling configurations. Therefore, it behaves like a class A
laser rather than a class B laser for an optical injection (Goulding et al. 2007; Erneux
et al. 2010). A typical feature of optical injection to a class B laser with nonzero
α parameter is an asymmetric shape of the stable injection-locking region in the
phase-space map of the optical injection and the frequency detuning as shown in
Fig. 6.6. While, a class A laser such as He-Ne laser with visible oscillation shows
a symmetric shape of the stable injection-locking region. Quantum-dot semicon-
ductor laser with optical injection shows similar dynamics to a class A laser as for
optical injection, however, various dynamics can be found at the boundaries of the
stable optical injection-locking region. One of typical characteristics of quantum-
dot semiconductor lasers is a pulsation oscillation like the axon of the giant Atlantic
squid when perturbed above certain threshold level. The pulses are evidence of a large
excursion in the phase space of the system. Indeed, for optical injection, quantum-dot
semiconductor laser shows single pulses and double excitable pulses at one boundary
of the stable injection-locking region at high injection strength with finite frequency
detuning. Theoretical considerations show that these pulses are related to a saddle-
node bifurcation on a limit cycle as in the Adler equation.

Figure 8.46 shows the boundaries of the stable optical injection-locking region
in quantum-dot semiconductor laser (Erneux et al. 2010). Figure 8.46a is an exper-
imental result of the phase diagram for a DFB quantum dot semiconductor laser of
an oscillation wavelength of 1.30 µm. The bias injection current is set to 1.5Jth. The
solid lines in Fig. 8.46 are the boundary of saddle-node (SN) bifurcations, and the
dashed lines are that of Hopf (H) bifurcations. The inside of the lines are the stable
injection-locking region. Various dynamics are observed, but the one of different fea-
tures of injection locking from those of conventional quantum-well semiconductor
lasers is rather a symmetrical shape of the injection-locking region and the domain of
bistable operation, in which coexistence of two stable locking states exists. The Hopf
bifurcation line differs from that which occurs for an injected quantum-well semi-
conductor lasers and, in particular, it does not cross the zero detuning line as shown
in the inset in Fig. 8.46a. The phase diagram is not similar to that of ordinary class B
laser, but similar to that of class A laser. More precisely, quantum-dot semiconductor
lasers exhibit both Class A and Class B dynamics, depending on the carrier capture
parameters by analyzing a following three-variable rate-equation model.

To investigate optical-injection dynamics, the following field equation of the three-
variable model is employed:

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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strength where the locking is via a saddle-node bifurcation for both signs of the detuning. b Ana-
lytic stability diagram calculated from three-variable model at J = 1.2Jth, a=1.2, and τph =2 ps.
SN saddle-node bifurcation point, H Hopf bifurcation point. The shaded region denotes the domain
of steady-state bistability. The dots are fold-Hopf points where Hopf and SN bifurcation lines
merge. The inset shows the stability diagram for an injected class A laser [after Erneux et al. (2010);
© 2010 OSA]

dE(t)

dt
= 1

2
(1 − iα)

[
g0ϑ{2ρ(t)− 1} − 1

τph

]
E(t)+ κinj

τin
Em(t) exp(−i�ωt)

(8.62)
The other two equations are the same as (8.59) and (8.60). Figure 8.46b shows the
phase diagram theoretically calculated from the three-variable model. The dots are
fold-Hopf points where Hopf and SN bifurcation lines merge. The shaded region
denotes the domain of steady-state bistability, which is compatible with the experi-
ment. At higher injection levels and for positive detuning, the locking is via a Hopf
bifurcation (H2), and there is no SN bifurcation. For negative detunings, there is a
domain of bistability between two locked states, because of a Hopf bifurcation that
stabilizes the lower intensity branch (H1). The dynamics is fairly similar to those
of an injected class A laser, which is shown in the inset in Fig. 8.46b. The general
trends of optical-injection dynamics in Fig. 8.46b are well coincident with those of
the experiment in Fig. 8.46a.
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8.7 Quantum-Cascade Semiconductor Lasers

8.7.1 Quantum-Cascade Semiconductor Lasers

Different from conventional quantum-well semiconductor laser, which uses optical
transitions between conduction and valence bands (inter-band), semiconductor laser
that is based on inter-subbanad optical transitions within conduction band has been
developed (Faist et al. 1994; Gmachl et al. 2001; Wójcik et al. 2011a,b; Scalari et al.
2009). The laser has several stages of cascades consisting of superlattice structures
and is called quantum-cascade semiconductor laser (QCL). The light emission of this
laser is based on inter-subband optical transitions, therefore the carrier related to laser
radiation is only electron. Quantum-cascade lasers emit THz light from mid-infrared
(wavelength of several μm) to far-infrared (several hundreds μm) oscillations either
at pulse or CW operations. However, it is difficult to obtain a laser from an oscillation
wavelength between 30 ∼ 60 µm, since the energy in this region corresponds to that
of longitudinal optical phonon (LO phonon). In a long optical wavelength, cooling for
the device is essential, however, a laser (GaInAs/AlInAs/InP quantum-cascade laser)
operating at room temperature is reported. Quantum-cascade semiconductor laser
can emit high power as much as 1 W and has a narrow oscillation linewidth as small
as 150 kHz, while conventional quantum-well semiconductor laser has a linewidth
around 10 MHz. Quantum-cascade lasers are of great interest, since they can be used
for detection of toxic chemicals and gases by mid-infrared spectroscopy. Their nar-
row linewidths make them attractive in coherent applications, such as free-space
short-range communications due to the Wi-Fi capabilities of terahertz waves and
large supposed bandwidth modulation. Also their large direct intensity modulation
bandwidth is attractive for optical communication systems. Some of different charac-
teristics of quantum-cascade semiconductor lasers from conventional quantum-well
semiconductor lasers are listed in Table 8.7. The main difference concerning the laser
dynamics is a short relaxation time of carriers due to the use of inter-subband optical
transitions.

Figure 8.47 shows a schematic model of the band structure in a quantum-cascade
semiconductor laser. The laser consists of a multi-stage quantum cascade. In the
figure, a single period is drawn. A single photon is emitted by the transition in the
subbands when an electron passes through each quantum cascade. Each stage consists
of the active region and the injection region. The electron that is once emitted photon
is reused in the next stage, therefore, the external quantum efficiency is very high
and the laser power is proportional to the number of the stages. In actual, each region
consists of several layers of quantum-well structures. For optical transitions, the laser
is described by a two-level model, however four energy levels are related to the light
emission as shown in the figure. A carrier is injected from the injection region and
goes through a tunnel barrier 4. The injected carrier at the level 3 emits a photon and
transitions to the level 2. The carrier is pulled out form the level 2 to the ground state 1
by the fast sub picosecond time relaxation process. This carrier is again injected to the
next stage. Several stages, usually several to more that ten stages, are piled up along
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Fig. 8.47 Schematic model
of a quantum-cascade laser
using an inter-subband four-
level active medium. Each
stage consists of active and
injection regions. 4 Injector,
3 upper level of laser emission,
2 lower level of laser emission,
and 1 ground state

One Period
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Table 8.7 Difference of characteristics between conventional quantum-well semiconductor lasers
(QWLs) and quantum-cascade semiconductor lasers (QCLs)

QWLs QCLs

Optical transitions interband inter-subband
Carriers electrons and holes electrons
α parameter large small
Oscillation linewidth broad (∼10 MHz) narrow (∼100 kHz)
Polarization mode TE TM
Output power proportional to proportional to injection current

injection current and number of cascades
Stripe width* few µm larger than 10 µm
Thickness of active region* less than 1 µm larger than 10 µm
Relaxation time of carrier ∼1 ns ∼1 ps
∗ Note that the size of QCL is strongly dependent on the emission wavelength

the direction perpendicular to the substrate and, thus, forming quantum cascades. The
emission wavelength is easily controlled by designing the thicknesses of the active
and injection regions and also the inside quantum-well layers, even for the same
material, which is quite different from conventional quantum-well semiconductor
lasers. Indeed, the design of the subband ranging from several tens to 100 meV is
possible for the same materials and we can obtain a quantum-cascade semiconductor
laser with a desired optical wavelength.
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8.7.2 Linewidth Enhancement Factor of Quantum-Cascade
Semiconductor Lasers

In conventional diode lasers, the linewidth enhancement factor (α factor) is typically
3∼7, and arises because the conduction and valence bands involved in the laser
transition have opposite curvature in k-space, resulting in a spectrally asymmetric
differential gain. In contrast, both laser subbands of a quantum-cascade semicon-
ductor laser are within the conduction band, and exhibit the same reciprocal space
curvature. It has thus been predicted that the lasers should display a symmetric dif-
ferential gain and a zero α factor. However, it is not true for real quantum-cascade
semiconductor lasers for several reasons and the lasers usually have small but nonzero
value of the linewidth enhancement factor. Therefore, the lasers behave like not class
B lasers as dynamic characteristics but rather class A lasers. There are several meth-
ods to measure a linewidth enhancement factor in a semiconductor laser and the
same techniques can be also applied to measure the parameter in a quantum-cascade
semiconductor laser. Among them, the measurement using self-mixing effect in semi-
conductor laser is a promising one due to the lack of compact and sensitive detectors
in the THz band (Staden et al. 2006; Green et al. 2008; Lim et al. 2011). The method
of self-mixing in semiconductor lasers is well studied in quantum-well semicon-
ductor lasers and applications including the measurement of linewidth enhancement
factor are discussed in Chap. 11.

Figure 8.48 shows an example of the measurements of linewidth enhancement fac-
tor using self-mixing effects in quantum-cascade semiconductor lasers
(Staden et al. 2006). The laser is a DFB quantum-cascade laser of an internal cavity
length of L= 1 mm, a width of the active region of w = 10 µm, and an oscilla-
tion wavelength of λ = 5.45 µm. The laser is cooled and its threshold current is
115 mA at 82 K. The linewidth enhancement factor has a value close to zero near
the threshold, however, it varies largely depending on the bias injection current and
has a large value at higher injection current. This is a remarkable difference with
respect to near-infrared interband semiconductor lasers, for which α is expected to
be approximately constant. One of possible reasons for this increase could be the
detuning effect of the resonator mode with respect to the gain curve. It is known that
for interband semiconductor lasers a relative red-shift of the resonator mode with
respect to the gain peak results in an increase of the linweidth enhancement factor
(α factor). For quantum-cascade semiconductor lasers, an increase of temperature
as well as an increase of injection current results in a red-shift of the gain spectrum.
Further, a steady-state analysis based on the rate equations discussed in the next sub-
section, the carrier densities of the upper and lower laser levels both increase above
threshold with increasing injection current, even though the difference of both densi-
ties above threshold remains constant, accounting for gain clamping. This behavior
follows from the rate equations for quantum-cascade semiconductor lasers and is
depicted in the inset of the figure. It is in contrast to inter-band semiconductor lasers,
where the carrier density is pinned above threshold. The monotonic increase of the
carrier density certainly influences the material susceptibility, and thus it alters the

http://dx.doi.org/10.1007/978-3-642-30147-6_11
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Fig. 8.48 α parameter as
a function of the injection
current. The inset shows the
dependence of the carrier
population of the upper and
lower levels on the pump
parameter Rp = J/Jth
[after Staden et al. (2006);
© 2006 OSA]
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linewidth enhancement factor. As another example, (Green et al. 2008) measured
the linewidth enhancement factor for a quantum-cascade semiconductor laser of an
optical wavelength of λ = 116 µm. They obtained the linewidth enhancement factor
from 0.2 to 0.5 depending on the bias current ranging form J to 2Jth. The variation
is small but it still depends on the bias injection current.

8.7.3 Rate Equations of Quantum Cascade Semiconductor Lasers

A quantum-cascade laser consists of a large number of layers constituting active
and injector regions. An accurate design requires a large number of rate equa-
tions (Donovan et al. 2001). However, it is not convenient to treat them for the
visualization of interplay between various parameters. Therefore, to obtain a reduced
set of equations, we here consider a two-level lasing quantum well together with a
lifetime describing carrier removal. As a result, the model of a quantum-cascade
laser of Np periods, are written by the following simple rate equations (Haldar 2005;
Petitjean et al. 2011; Meng and Wang 2012):

dS(t)

dt
= NpG{n3(t)− n2(t)}S(t)− S(t)

τph
+ β

n3(t)

τsp
(8.63)

dn3(t)

dt
= J

ed
− n3(t)

τ3
− G{n3(t)− n2(t)}S(t) (8.64)

dn2(t)

dt
= n3(t)

τ32
− n2(t)

τ2
+ G{n3(t)− n2(t)}S(t) (8.65)
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S is the photon number, n3 is the carrier density at energy level 3, and n2 is the carrier
density at energy level 2. Here, G is the gain coefficient, τph is the photon lifetime,
τsp is the spontaneous relaxation time, τ3 is the electron lifetime at level 3, τ32 the
phonon scattering time from level 3 to 2, τ2 is the electron lifetime at level 2, β is the
spontaneous emission factor. It is easily derived from the steady-state analysis that
the laser oscillation is attained when the condition of τ32 > τ2 is satisfied. Table 8.8
lists some parameter values used for numerical calculations in the above equations
(Petitjean et al. 2011).

One of the characteristics related to the dynamics in quantum-cascade semicon-
ductor laser is a very short carrier lifetime, by which the laser shows significant
differences in comparison with conventional semiconductor lasers based on inter-
band optical transitions. Due to fast carrier decay rate, the laser has a small damping
characteristic for a step response and behaves like class A lasers. Figure 8.49 shows
a small signal response of a quantum-cascade laser calculated from the above three
equations (Meng and Wang 2012). In an interband semiconductor laser, the mod-
ulation bandwidth is simply determined by the relaxation oscillation time and the
oscillation frequency is increased as the square root of the optical power. Thus, in
common semiconductor lasers, the relaxation oscillation frequency is usually several
to ten GHz within the operation injection current range. However, a high modula-
tion characteristic is obtained in a quantum-cascade semiconductor laser as shown
in Fig. 8.49. For the bias injection current of J = 4Jth, the 3-dB cutoff frequency
of 21 GHz is obtained. Further, resonance peak, which is usually observed close
to the cutoff frequency in conventional semiconductor lasers, is not visible in the
responses. The 3-dB optical bandwidth increases with optical power, but unlike that
for interband lasers, it initially increases approximately linearly with optical power,
not as the square root of the optical power. To explain the detailed dynamics of
quantum-cascade semiconductor lasers, the extraction time of the electrons to pass
through the different periods should be taken into account (Rana and Ram 2002;
Gensty and Elsäßer 2005; Petitjean et al. 2011). To account the extraction time of
the electrons to pass from the fundamental level of a certain period to the excited
one of the next period, one more equation has to be reintegrated. The rate equations
are consequently based on a three-level scheme with four equations (one for each of
the three levels of the electrons and one for the photons).

8.7.4 Nonlinear Interactions in Quantum-Cascade
Semiconductor Lasers

Nonlinear phase coupling of laser modes in quantum-cascade semiconductor lasers
leads to a variety of ultrafast and coherent phenomena; synchronization of transverse
modes, beam steering, multimode instability, and generation of mode-locked ultra-
short pulses. The inhomogeneous saturation leads to spectral and spatial hole burning,
which, in turn, gives rise to multimode operation and nonlinear coupling between
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Fig. 8.49 Numerical example of small signal response in a quantum-cascade laser at λ =
9µm, Np = 40, τph = 9.91 ps and τ3 = 0.66 ps [after Meng and Wang (2012);
© 2012 OSA]

laser modes. This nonlinear coupling is phase sensitive and under certain conditions
may lead to frequency and phase locking of laser modes. To discuss coherent inter-
plays in quantum-cascade semiconductor lasers, the equation for the field is necessary
instead of the photon number equation in the preceding subsection. For the purpose
of explaining nonlinear phase coupling in multimode quantum-cascade semiconduc-
tor lasers, the coherent rate-equation model based on the two-level Maxwell-Bloch
equations are derived (Wójcik et al. 2010, 2011a,b). The derivation is almost equal
to that derived in Chap. 2.

The electron flow through the typical active region of a quantum-cascade semi-
conductor laser can be roughly approximated by a four-level laser scheme. The
four-level scheme can be further reduced to the effective two-level scheme if we take
into account that the scattering time from lower laser level 3 to level 2 in Fig. 8.47 is
very short (∼0.2 ps) due to resonant LO-phonon emission. Therefore, level 3 stays
almost empty and we can neglect its population. Then one can write the equation for
the population inversion W = n3 − n2 between laser levels 3 and 2. The total field
is expanded by the eigenfunction of the x and y coordinates ψ(r⊥)(r⊥ = (x, y)) as

Etotal(r, t) =
∑

i

Ei (z, t)ψi (r⊥) (8.66)

where ψi is the eigenfunction for the i th mode. Then, the rate equations for the field
component Ei , the polarization P and the population inversion W are given by

http://dx.doi.org/10.1007/978-3-642-30147-6_2
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Table 8.8 Characteristic device parameters for quantum-cascade semiconductor lasers at an oscil-
lation wavelength of 103 µm

Symbol Parameter Value

ν frequency 2.9 THz
Np number of period 30
� confinement factor 0.27
w cavity width 80 µm
L cavity length 3.0 mm
r2 facet reflectivity 0.29
ηg mode-group index 3.3
αi cavity loss 2.4 × 10−3 m−1

G gain coefficient 6.75 × 10−9 m3s−1

Ith threshold current 200 mA
β spontaneous emission factor 1 × 10−5

τ2 electron lifetime at level 2 0.3 ps
τ3 electron lifetime at level 3 1.1 ps
τ31 phonon scattering time 3→1 2.4 ps
τ32 phonon scattering time 3→2 2.0 ps
τph photon lifetime 3.7 ps
τsp spontaneous relaxation time 7.0 ns

∂Ei (z, t)

∂t
+ c

ηi

∂Ei (z, t)

∂z
+ (αi + iδi )Ei (z, t) = i

4πω0

ηiσ

∫

ar

P(z, t)ψi (r⊥)dV

(8.67)

∂P(z, t)

∂t
+ γ⊥ P(z, t) = i NAμ

2

2�
W (z, t)

∑

i

Ei (z, t)ψi (r⊥) (8.68)

∂W (z, t)

∂t
+ γ||{W (z, t)− Wp} = i

�NA

∑

i

{E∗
i (z, t)P(z, t)− Ei (z, t)P∗(z, t)}

(8.69)
where γ⊥ is the longitudinal relaxation coefficient, γ|| is the transverse relaxation
coefficient, NA is the density of atoms in the unit volume, μ is the dipole moment of
the laser transition, Wp is the pump, ηi is the modal refractive index, αi is the modal
loss, δi = ωi − ω0 is the detuning of the i th mode (ωi ) from the central frequency
(ω0), and σ is the cross section of the waveguide. The integration in (8.67) is taken
over the active region.

The fast relaxation times for population inversion, γ−1
|| ∼ 1 ps, and polariza-

tion, γ−1
⊥ ∼ 0.1 ps, characteristic of quantum-cascade semiconductor lasers allow

us to adiabatically eliminate both variables. This remarkable stability of the trans-
verse mode locking is the consequence of another peculiar feature of the lasers;
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Fig. 8.50 Stable steady-state solutions for three TM modes (TM00, TM01, and TM02) as the function
of the linear gain normalized to the threshold gain for the TM02 mode. a Modal amplitudes and
b modal frequencies [after Wójcik et al. (2010); © 2010 SPIE]

ultrafast gain recovery time of the order of 1 ps. This timescale is much shorter than
the cavity roundtrip time and the photon lifetime, which makes the laser a class A
laser. Ultrafast gain recovery time leads to overdamped relaxation oscillations as
discussed in the previous subsection, which stabilizes phase locking, as compared to
class B lasers where phase locking of transverse modes is more difficult to achieve
because of prominent relaxation oscillation resonance. In common semiconductor
lasers, phase locking is primarily due to density modulation of free carriers, which
is proportional to the linewidth enhancement factor α. In quantum-cascade lasers,
the total electron density is not affected by the laser field and the linweidth enhance-
ment factor is much smaller. In this case, the mode coupling is due to gain saturation
across an inter-subband atomic-like laser transition and the concomitant strong spa-
tial hole-burning, which favors multimode operation. Figure 8.50 shows an example
of nonlinear phase couplings in quantum-cascade semiconductor lasers. The laser
is operated with three TM modes (TM00,TM01, and TM02), which are assumed in
coincident with a real experiment. Figure 8.50a, b are the amplitude and frequencies
of all stable steady-state solutions, respectively (only the field equation is taken into
account). The frequency of each mode in Fig. 8.50 is defined as a derivative of the
total phase; it is constant when the steady state is reached. The simulations reveal the
existence of a certain critical current above which there is only one stable steady-state
solution. A remarkable feature of this solution is that frequencies of all modes are
locked to the same frequency. Below this critical current, there are multiple steady-
state solutions with different uncorrelated frequencies and phases. The model can
well explain coherent interplays in real quantum-cascade semiconductor lasers with
multimode oscillations.
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8.7.5 Effects of Optical Feedback in Quantum-Cascade
Semiconductor Lasers

For coherent effects of optical feedback and optical injection in quantum-cascade
semiconductor lasers, a similar equation for the complex field E as those discussed
in the pervious sections can be employed instead of the photon number equation in
(8.63).

dE(t)

dt
= 1

2
(1 − iα)

[
NpG{n3(t)− n2(t)} − 1

τph

]
E(t) (8.70)

Quantum-cascade semiconductor lasers still have non-zero value of the α parame-
ter. Optical feedback or optical injection term is added to the right hind side of the
equation in (8.70) when necessary. The carrier density equations remain the same as
(8.64) and (8.65). Room temperature quantum-cascade semiconductor lasers are an
attractive solution for trace gas sensing applications that require fast, portable, high
sensitivity measurements such as environmental monitoring and medical diagnostics.
Therefore, the study of optical feedback effects in quantum-cascade semiconductor
lasers is important, since the coherence of the lasers is high (the oscillation linewidth
is as small as ∼100 kHz) and an isolator in this wavelength region is not available.
Nevertheless, a little study for the dynamics of quantum-cascade semiconductor
lasers with optical feedback has been conducted (Hugi et al. 2010). One of the rea-
sons for lacking the study is that the lasers behave like class A lasers and we need
much larger optical feedback to induce instabilities such as chaos in comparison with
conventional semiconductor lasers. Therefore, we here only remark some aspects of
the current study of the optical feedback effects. As the study for the optical feedback
from plain mirror and grating mirror, the effects for the linewidth narrowing, spec-
troscopic characteristics of laser oscillations, and RIN enhancement and reduction
have been reported (Luo et al. 2001; Totschnig et al. 2002; Petitjean et al. 2011).
The dynamic phenomena correspond to those of small optical feedback effects in
interband quantum-well semiconductor lasers. Also, the effect of optical injection
in quantum-cascade semiconductor lasers is an interesting issue left for the future
study.
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