
Chapter 6
Dynamics in Semiconductor Lasers
with Optical Injection

Since the semiconductor laser has unique features of high gain, low facet reflectiv-
ity, and amplitude-phase coupling through the α parameter, it is also sensitive to
optical injection from a different laser. Locking and unlocking phenomena in opti-
cally injected semiconductor lasers have been extensively studied. Especially optical
injection locking has been appreciated as a useful tool for controlling and stabiliz-
ing laser oscillations. The general application of optical injection is to control the
laser and the locking condition is extensively investigated to distinguish the unlock-
ing phenomena. However, little attention has been paid to the unlocking dynamics.
Recent studies proved that rich varieties of dynamics, such as the four-wave mixing,
period-doubling route to chaos, and non-locking beating, are involved in the unlock-
ing region. In this chapter, we focus on the dynamic characteristics of locking and
unlocking regimes in optically injected semiconductor lasers.

6.1 Optical Injection

6.1.1 Optical Injection Locking

Optical injection technique can be used in various applications, for example it is
used to reduce intensity, frequency, and partition noises in semiconductor lasers
(Furusawa 1996; Schunk and Petermann 1986; Genest et al. 1997), generating
microwave signals (Chan and Liu 2004), or producing chaotic signals for secure
communications (Liu et al. 2001). The technique is originally developed to lock
the frequency and stabilize the oscillation of an optically injected laser. The injec-
tion locking system is very simple, as shown in Fig. 6.1. Injection locking is useful
for stabilizing the injected laser; however, the lasers sometimes show instability
and exhibit a rich variety of dynamics. For optical injection locking, we prepare
two lasers with almost the same oscillation frequencies and the frequency detuning
between them must usually be within several GHz. A light from a laser under a single
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Fig. 6.1 Optical injection
system in semiconductor
lasers
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Isolator

mode oscillation (master laser) is fed into the active layer of the other laser (slave
laser). Then, the two lasers synchronize with each other in the same optical frequency
under the appropriate conditions of the frequency detuning and the injection strength.
The remarkable characteristics of optical injection locking in semiconductor lasers
originated from the fact that the α parameter (linewidth enhancement factor) has a
nonzero definite value, which makes semiconductor lasers very different from other
lasers. As a viewpoint of laser dynamics, an optical injection from a different laser
means the introduction of an extra degree of freedom to the semiconductor laser.
Therefore, various dynamics are observed by optical injection, including stable and
unstable injection locking, instabilities and chaos, and four-wave mixing depending
on the locking conditions (Mogensen et al. 1985; Sacher et al. 1992; Lee et al. 1993;
Annovazzi-Lodi et al. 1994; Liu and Simpson 1994; Simpson et al. 1995, 1997;
Kovanis et al. 1995; Erneux et al. 1996; De Jagher et al. 1996; Gavrielides et al.
1997; Eriksson and Lindberg 2001).

Optical injection technique is originally developed for the stabilization of the
injected slave laser, so that, at first glance, it may be surprising that the laser is desta-
bilized by the optical injection. However, as already mentioned, the perturbed laser
is a candidate of a chaotic system. Figure 6.2a shows an example of bifurcation dia-
gram of the slave laser for the change of the frequency detuning between the master
and slave lasers at a fixed optical injection rate. We can see stable and unlocking
oscillations, and various unstable oscillation states for the change of the frequency
detuning. Figure 6.2b and c shows the time series and rf spectrum at the frequency
detuning of �ν = 1.0 GHz. Similarly to chaotic oscillations for the case of optical
feedback in the previous chapter, we can observe chaotic oscillations in optical injec-
tion systems. As we will see in the following, periodic and unstable oscillations are
observed in adjacent to the stable injection locking state. Also, unlocking oscillations
are distributed for large values of the frequency detuning. We will later present the
instabilities and chaotic dynamics by optical injection and, here, we investigate the
principle of optical injection locking in semiconductor lasers.

Again the tool for investigating the characteristics of optical injection locking is
the linear stability analysis. We assume that the frequency detuning �ν = �ω/2π
between the master and slave lasers is small and the fraction of the photon number
Sm (optical injection power Sm = |Em |2 = A2

m) from a master laser is also small
compared with the photon number Ss of a slave laser. As usual, the injection strength
to the slave laser may or may not be small, but for the moment, we consider the
case of a rather small optical injection. Here, we discuss the effects to understand
the principle of optical injection locking. It is also noted that a laser may show insta-
bility and chaotic oscillations for a small injection fraction under certain injection
conditions, as we will see in the following sections. We use a steady-state complex
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Fig. 6.2 a Bifurcation dia-
gram for the frequency detun-
ing at a fixed optical injec-
tion ration of rinj = 0.03
(amplitude) and a bias injec-
tion current of J = 1.3Jth.
b Example of the time series of
chaotic states at the frequency
detuning of �ν = +1.0 GHz.
c The rf spectrum correspond-
ing to b. Some examples of
oscillation states in a are
S stable injection locking
state, U unlocking state, P1
period-1 oscillation, P2
period-2 oscillation, Q quasi-
periodic oscillation, and C
chaotic oscillation
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field Em(t) = √
Sm exp{−iφm(t)} for a master laser and assume the complex field

Es(t) = √
Ss exp{−iφs(t)} for a slave laser. The phases φm and φs are generally

time-dependent functions, but the master laser is under steady-state operation and
its phase is assumed to be constant as φm = 0. Though the phase of the slave laser
generally fluctuates with time, it is approximated as a small fluctuation and assumed
to be a constant value in the following. Taking these assumptions into consideration,
the rate equation for the slave field is written by

dEs(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}Es(t)+ κinj

τin
Em(t) exp(−i�ωt) (6.1)

where�ω = 2π�ν = ωm −ωs is the detuning between the angular frequencies,ωm

and ωs , for the master and slave lasers, respectively, κinj is the injection coefficient,
and τin is the round trip time of light in the laser cavity as introduced before. κinj is
related to the actual fraction of the external injection ratio rinj (which is normalized
to the average of the absolute value of the field |Es | as

κinj = rinj

r0

√
1 − r2

0

η
(6.2)
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where r0 is the front facet reflectivity of the laser cavity and η is the refractive index
of the laser medium, which are the same definitions as before. Even in the presence
of optical injection, the carrier density equation accompanying to the field equation
remains the same as (3.51).

Sometimes a different equation from (6.1) is used for investigating theoretically
the dynamics of injection locking. In spite of the different expression, the same
results as those derived from the rate equation in (6.1) are of course obtained. In this
expression, using the angular frequency detuning parameter�ω, a new optical field
Ẽs(t) is defined as Es(t) = Ẽs(t) exp(−i�ωt). Substituting the variable into (6.1)
and eliminating the term exp(−i�ωt), we obtain the following new expression for
the optical field:

dẼs(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}Ẽs(t)+ κinj

τin
Em(t)+ i�ωẼs(t) (6.3)

In the meanwhile, the carrier equation only includes the term for the absolute value
of the field and has no modification. The field has an extra term of phase so that the
dynamics are different from those of the original field itself. However, the resulting
dynamics of the laser power and the carrier density remain the same as those derived
from (6.1) and can be compared with experiments.

6.1.2 Injection Locking Condition

Optical injection locking is a coherent phenomenon, so that the discussion must be
based on the complex field instead of the photon number. As the carrier density of
the slave laser is affected by optical injection, we put the fluctuation of it as δn. We
introduce a phase ψ(t) = φs(t) − φm(t) − �ω and a small deviation between the
photon numbers with and without the optical injection as Ss − S0s (S0s is the photon
number of the slave laser in the absence of the optical injection). By the use of the
representation of ψ(t) instead of φs(t)− φm(t), we can define the rate equations as
autonomous equations. Then, we obtain the solutions Ss − S0s, ψs , and δn for the
steady-state values (van Tartwijk and Agrawal 1998)

1

2
Gnδn + 1

τin

√
Sinj

Ss
cosψs = 0 (6.4)

�ω = 1

2
αGnδn − 1

τin

√
Sinj

Ss
sinψs (6.5)

δn = −
(

1

τs
+ Gn Ss

)
δn −

(
1

τph
+ Gnδn

)
(Ss − S0s) (6.6)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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where Sinj = κ2
injSm . In the above equation, replacing the fluctuation of the carrier

density with x = Gnδn and eliminating the variables φs and Ss , we obtain the
characteristic equation as follows:

− 1

4τs
(1 + α2)x3 +

{
1

4
(1 + α2)ω2

R + 1

τs

)
x2

−
(
α�ωω2

R + �ω2

τs
+ 1

τ 2
in

Gn Sinj

)
x + ω2

R

(
�ω2 − 1

τ 2
in

Sinj

S0s

)
= 0

(6.7)

From the above equation, we obtain the solutions for the fluctuation of the carrier
density. Eliminating δn in (6.4) and (6.5), we also obtain the relation between the
phase ψs and the laser powers as

ψs = sin−1

(
− τin�ω√

1 + α2

√
Ss

Sinj

)
− tan−1 α (6.8)

From this relation, we obtain the condition for the phase ψs as

− π

2
− tan−1 α ≤ ψs ≤ π

2
− tan−1 α (6.9)

On the other hand, from the steady-state condition for the carrier density ns under
the existence of optical injection, one reads

�ns = ns − nth = − 2

τinGn

√
Sinj

Ss
cosψs (6.10)

�ns should be positive, so that the phase has the condition asψs ≥ −π/2. Therefore,
the range of the phase for stable locking is totally given by Mogensen et al. (1985)

− π

2
≤ ψs ≤ cot−1 α (6.11)

Finally, the range of the angular frequency for the stable injection locking condition
is obtained as

−
√

1 + α2

τin

√
Sinj

Ss
= �ωL ≤ �ω ≤ 1

τin

√
Sinj

Ss
(6.12)

Successful optical injection locking occurs at a frequency satisfying the above equa-
tion for the injection fraction Sinj/Ss . The α parameter encountered in the above
equation plays an important role in optical injection locking.
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Fig. 6.3 Locking and unlock-
ing regions in phase space
of frequency detuning and
injection field
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Using the relation of (6.12), the fluctuation of the carrier density δn is given by

δn =
2α�ω ± 2

√
�ω2

L −�ω2

Gn(1 + α2)
(6.13)

In the above equation, the plus and minus signs denote that the corresponding solution
for (6.8) has a phase value of zero or π radian. There exist two solutions for the same
photon number Ss . One is a stable solution and the other is unstable. In general,
optical injection locking occurs at or close to the stable solution. Figure 6.3 shows
the areas of optical injection locking in the phase space for the frequency detuning
between the master and slave lasers and the injection ratio. The solid curves show
the boundaries between optical injection locking and non-locking regions. In the
non-locking region, we can expect various dynamics such as chaotic oscillations and
four-wave mixing when the detuning is not so far from zero. Indeed, we can observe
various dynamics when the frequency detuning and the injection ratio are small in
these regions. Within the region of the optical injection locking, there are stable and
unstable locking areas. The boundary of the unstable and stable injection locking
areas is denoted by a dotted curve. In the unstable injection locking area, we can also
observe chaotic bifurcations for certain parameter ranges. The asymmetric feature
of stable injection locking again originated from the fact that the α parameter has a
nonzero value in semiconductor lasers.
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6.2 Stability and Instability in Optical Injection Systems

6.2.1 Rate Equations

Side modes are sometimes excited in the oscillation of a semiconductor laser sub-
jected to optical injection even if it operates at a single mode under a solitary con-
dition. Therefore, we must take into account the effect of side modes into the rate
equations. The assumption of a single mode operation can be well applied to a DFB
semiconductor laser. However, a single mode Fabry–Perot semiconductor laser, it
is easily destabilized and oscillated at a multimode by the introduction of optical
injection. Here, we first rewrite the rate equations of an optically injected semicon-
ductor laser for a single-mode operation and, after that, we introduce the side mode
effect. To investigate the dynamics of optically injected semiconductor lasers, we
again introduce the equations of the field amplitudes for the master and slave lasers,
Am(t) and As(t), the phase ψ(t), and the carrier density n(t) as

dAs(t)

dt
= 1

2
Gn{n(t)− nth}As(t)+ κinj

τin
Am(t) cosψ(t) (6.14)

dψ(t)

dt
= 1

2
αGn{n(t)− nth} − κinj

τin

Am(t)

As(t)
sinψ(t)−�ω (6.15)

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t)− n0}A2

s (t) (6.16)

ψ(t) = φ(t)−�ωt (6.17)

In the above equations, we do not consider the gain saturation terms, however, the gain
saturation also plays an important role in multimode oscillations in semiconductor
lasers with optical injection. For such a case, we can use the relation of (3.45) or
(3.46) for the gain saturation effect.

When the side mode effects are important, the complex field for the main mode
is rewritten as Ryan et al. (1994).

dEs(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}Es(t)

− 1

2

{
ε′|Es(t)|2 + θc|Es′(t)|2

}
Es(t)+ κinj

τin
Em(t) exp(−i�ωt) (6.18)

where Es′ is the complex field of the side mode and θc is the cross-saturation coef-
ficient for the gain. Here, we consider the excitation of one side mode and also take
into account the self-saturation effect ε′ = εs(1 − iα)Gn . The rate equation for the
complex field of the side mode is given by

http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
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dEs′(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}Es′(t)

− 1

2

{
ε′|Es′(t)|2 + θ |Es(t)|2

}
Es′(t)− µd Es′(t) (6.19)

where the final term is the gain defect of the secondary mode and µd is the coupling
coefficient called gain defect.

Due to this gain defect, mode switching will be suppressed in this model and the
laser is assumed to be always oscillated at the main mode as far as the coefficient has
a significant value. Using these two modes, the carrier density equation is written by

dn(t)

dt
= J

ed
− n(t)

τs
− Gn {n(t)− n0}

{
|Es(t)|2 + |Es′(t)|2

}
(6.20)

In actual fact, many side modes may be excited in the laser oscillations due to optical
injection. However, it is proved that the model introduced here well explains mode
excitations for real oscillations in a Fabry–Perot semiconductor laser subjected to
optical injection.

The laser gain is usually linearized for the carrier density. However, in a strict
sense, it is also a function of the photon number and the gain term g′ = (1 − iα)
Gn{n(t)− nth} is replaced by

g′ = (1 − iα)Gn{n(t)− nth} + (1 − iα′)G P

{
|E(t)|2 − |E0|2

}
(6.21)

where G P is the expansion coefficient for the photon number S = |E |2, α′ is
the coefficient for the saturation of the output power, and E0 is the steady-state field
amplitude. For the model of a two-level atom in laser oscillations, we can approximate
the coefficient α′ equal to α, while it reduces to zero under the resonance condition
(Simpson et al. 2001). Stability and instability of semiconductor lasers for optical
injection are strongly dependent on the linewidth enhancement factor α and also on
the coefficient α′ of the saturation. It is proved in the following that this nonlinear
coefficient α′ is related to the suppression of the laser instabilities. Namely, the laser
is stabilized for a larger value of this factor, while it shows instabilities for a small
value of it. The damping term µd introduced in the side mode equation in (6.19) also
plays an important role in the dynamics as discussed in the following.

In semiconductor laser systems of optical injection, optical feedback, and opto-
electronic feedback, we can observe multi-stability and coexistence states of chaotic
oscillations in the dynamics. At coexistence states, the respective chaotic attractor
is completely different from others even for a particular set of the parameter values.
Which state we can observe is strongly dependent on the initial conditions of the
systems. Coexistence states of attractors are not only simulated by numerical calcu-
lations, but also experimentally observed. Some such examples in optical injection
systems will be discussed in Sect. 6.2.4.
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6.2.2 Chaotic Bifurcations by Optical Injection

The important parameters in the dynamics of optically injected semiconductor lasers
are the frequency detuning between the master and slave lasers and the injection
strength from the master to the slave. Figure 6.4 shows the experimental results of
the dynamic characteristics in a semiconductor laser subjected to optical injection
(Simpson 2003). The figure shows the plots of optical frequencies observed by a
Fabry–Perot spectrometer (left column) and rf power spectra obtained by a spectrum
analyzer (right column). Chaotic bifurcations are well demonstrated by the plots. We
can assume a single mode operation for the semiconductor laser even in the presence
of optical injection, since the laser used is a DFB laser. As is easily recognized from
the stability map in Fig. 6.3, the slave laser operates outside of the stable locking
region for a small optical injection. When the injection fraction exceeds a certain
threshold, the laser is injection-locked by the master laser and operates stably. It is
noted that the injection strength defined in the figure is counted outside of the laser
and not exactly equal to the intensity injected into the active layer.

In Fig. 6.4a, for a small level of the injection rate of 0.14, the slave laser shows
four-wave and multi-wave mixing associated with the unlocked slave laser frequency
and has a side peak in the spectrum due to regenerative amplification. The effect of
multi-wave mixing becomes distinct in the laser output power at the injection rate
of 0.23 in Fig. 6.4b. At the same time, the component corresponding to the relax-
ation oscillation becomes non-vanishing and the oscillation close to the relaxation
oscillation frequency of 4.7 GHz is excited. Also, the spectrum is much broadened.
The multi-wave mixing effect is recognized as the phase-modulation like Adler-type
frequency pulling toward locking (Simpson 2003). However, the frequency pulling
here is somewhat different from the ordinary effect and it is an unstable phenom-
enon accompanying the relaxation resonance. Frequency-pulled multi-wave mixing
components disappear at the injection rate of 0.41 and the multi-wave mixing fea-
tures are pulled to the injection frequency as shown in Fig. 6.4c. As a result, a sharp
and enhanced component of the relaxation oscillation is observed. Therefore, the
laser shows a stable oscillation under the condition. Incommensurate frequency is
encountered in the dynamics at the injection rate of 0.52 in Fig. 6.4d and the floor
of the spectrum becomes broadened. This is a typical feature of the onset of quasi-
periodic bifurcation and chaos. The floor of the spectrum further becomes broadened
at the injection rate of 0.77 in Fig. 6.4e and several spectral peaks appear except for
the relaxation oscillation component. Within the main peak, we can see two visible
peaks. This indicates that the laser corresponds to period-3 oscillation. The oscilla-
tion mode within the relaxation oscillation frequency reduces as a single peak at the
injection rate of 1.02 and the laser shows period-2 oscillation as shown in Fig. 6.4f.
When the injection fraction is large enough at the injection rate of 1.30 in Fig. 6.4g,
the laser oscillates at period-1 oscillation with the main frequency corresponding to
the relaxation oscillation. The higher harmonics of the period-1 oscillation is also
visible. Finally in Fig. 6.4h, at a strong injection rate of 3.01, the laser is completely
locked to a certain frequency and shows period-1 oscillation. The locked frequency
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Fig. 6.4 Experimentally observed optical frequencies and rf power spectra corresponding to chaotic
bifurcation in semiconductor lasers under optical injection. On the left are optical spectra and the
right are rf spectra. The laser is a single mode DFB laser at a wavelength of 1.557 µm and a bias
injection current of J = 2.0Jth
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Fig. 6.4 (continued) The relaxation oscillation frequency at solitary oscillation is 4.7 GHz. The
injection rate (intensity) is changed as a 0.14, b 0.23, c 0.41, d 0.52, e 0.77, f 1.02, g 1.30, and h 3.01,
respectively, at the fixed frequency detuning of +2 GHz [after Simpson (2003); © 2003 Elsevier]
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is different from the relaxation oscillation frequency at the solitary oscillation. This
phenomenon is related to the enhancement of the cutoff frequency for the modula-
tion bandwidth of the laser as discussed in the following. In this example, the chaotic
evolution is observed for a fixed frequency detuning (+2 GHz). The dynamics are
not always the same as those for other conditions of the detuning, but they exhibit
typical chaotic routes when the absolute value of the frequency detuning is within
several GHz.

In accordance with stable and unstable oscillations in optically injected semicon-
ductor lasers, chaotic bifurcations are numerically calculated taking into considera-
tion the effects of side mode excitation. Figure 6.5 shows chaotic bifurcations for a
change of the injection ratio at a fixed frequency detuning of +2 GHz (Simpson 2003).
In Fig. 6.5a, the laser is assumed to be oscillated at a single mode, since it includes
the effect of a larger defect with µd = 0.1. The laser once evolves from periodic to
chaotic oscillations and, then, takes an inverse route of chaotic bifurcations for the
increase of the injection ratio. Finally, it reduces to the period-1 state. The behaviors
are quite similar to the chaotic route for a single mode laser discussed in Fig. 6.4 On
the other hand, the instability of the laser is suppressed because of the leakage of
the power from the main mode to the side mode when the effect of the defect is as
small as µd = 0.001 in Fig. 6.5b. Under this condition, the laser shows no typical
chaotic bifurcations. Figure 6.5c shows the plot of the relative circulating power level
in the main mode for single and multimode operations. The power of the main mode
is transferred to the side mode and the instability of the laser oscillation is greatly
suppressed, when there is a side mode and the injection strength is small. However,
the side mode is never excited for a larger value of the defect and the assumption of
a single mode oscillation is well established.

6.2.3 Chaos Map in the Phase Space of Frequency
Detuning and Injection

We discuss chaos maps in the phase diagram of the frequency detuning and the
injection ratio. Stable injection locking is achieved in a region for a certain combina-
tion of the frequency detuning and the injection ratio; however, various unstable and
chaotic dynamics are observed in unstable locking and unlocking regions. Figure 6.6
shows the chaotic map obtained experimentally from the behaviors of the optical
spectra in Fig. 6.5 (Simpson 2003). The laser is operated at a single mode even in
the presence of optical injection and the side mode is suppressed in this laser. It is
noted that the vertical axis and the horizontal axis are replaced compared with the
plot in Fig. 6.3. The diamond-filled symbol shows in the negative frequency detuning
is the boundary between unstable and stable operations. This corresponds to the sad-
dle node boundary between stable locked and unlocked operations. Open diamonds
show the unlocking-locking transition in a region of bistability and torus bifurcation.
The square mark close to zero detuning is the Hopf bifurcation boundary between
stable locked and limit cycle dynamics. The triangle is the boundaries for regions of
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Fig. 6.5 Bifurcation diagram
as a function of the injection
ratio at a frequency detuning
of +2 GHz. a Bifurcation
diagram for large gain defect
of µd = 0.1. The laser
oscillates at a single mode.
b Bifurcation diagram for a
small gain defect of µd =
0.001. Significant power leaks
into the side mode. c Relative
circulating power. The symbol
of diamonds is for the single
mode oscillation, while open
squares denote the case of
multimode oscillations [after
Simpson (2003); © 2003
Elsevier]
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Fig. 6.6 Experimentally
obtained chaotic map from
measured optical spectra of a
single mode DFB laser under
optical injection. The meaning
of each symbol is referred to
the text [after Simpson (2003);
© 2003 Elsevier]
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Fig. 6.7 Experimentally
obtained chaotic map from
measured optical spectra in a
Fabry–Perot laser operating
at 827.6 nm. A side mode is
excited by optical injection.
The bias injection current is
J = 1.67Jth. The detail of the
map is discussed in the text
[after Hwang and Liu (2000);
© 2000 Elsevier]
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period-2 dynamics. These period-2 regions include complex dynamics and they are
shown by the shaded lines and crosses in the figure. Bounded by the circles is a region
of period-4 operation. At injection levels below the saddle node bifurcation line and
at low offset frequencies, multi-wave mixing and Adler-type frequency pulling to
locking are observed in the lightly shaded regions.

Figure 6.7 shows the experimental result for the map in a semiconductor laser
with side mode excitation by optical injection (Hwang and Liu 2000). The laser used
is a conventional Fabry–Perot type edge-emitting laser with a quantum well struc-
ture. The back facet of the laser is coated for high reflection and the front output
facet is coated for a reflection of a few percent. At the free running state of the laser
oscillation, the side mode is suppressed as low as less than 0.5 %. The symbols in
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the figure are 4: a perturbation spectrum with weak regenerative amplification and
four-wave mixing sidebands, S: stable injection locking, P1: limit cycle oscillation,
P2: period doubling, P4: period quadrupling, chaos: deterministic chaos, M: multi-
wave mixing with most output on another longitudinal mode, SR: sub-harmonic res-
onance, hatched regions: principal output on another longitudinal mode, thin curves:
smooth transition between dynamic regions, thick dotted curves: abrupt mode hop
transitions with minor hysteresis, thick broken curves with an arrow: one-way mode
hops out of mode, and thick full curves: abrupt transition to/from a region of chaos
or multi-wave mixing where there is significant power in another longitudinal mode,
from/to a region with power primarily in the principal mode.

For a small injection, the optical injection acts as a perturbation generating weak
sidebands at the offset frequency, regenerative amplification, and equally and oppo-
sitely shifted four-wave mixing. With increasing both of the frequency detuning and
the injection ratio, various instabilities appear in the laser output power. The ten-
dency of periodic bifurcations and chaotic islands in the unstable region is the same
as that for a DFB laser. However, distinct chaotic bifurcation is not observable for
a Fabry–Perot laser in the region of negative frequency detuning along the stable
boundary, while it was observed for a DFB laser (see Fig. 6.6). There is an abrupt
mode hop near the locking–unlocking boundary at negative detuning which has a
small hysteresis. Analytical studies of the locking–unlocking boundary at negative
detuning have shown that there is a region of bistability associated with the locking–
unlocking transition (Li, 1994a,b). The bistability results from competing attractors
representing locked and unlocked solutions for the coupled equations (Lenstra et al.
1993). The carrier density is larger than that for the steady-state ns under the unlocked
solution, while it stays a smaller value for the locked solution. The gain of the side
mode increases with the increase of the carrier density and the refractive index of
the active layer accordingly changes. The change induces the transfer of the opti-
cal energy from the main mode to side modes. Then, the gain of the main mode
is reduced and this sometimes results in frequent mode hop. However, the chaotic
dynamics disappears in the output power. On the contrary, instabilities still remain
in the dynamics of a single mode laser without the excitation of the side mode as
shown in Fig. 6.6.

Considering the gain defect and using the Eqs. (6.18)–(6.20), stable and unstable
maps in the phase space of the frequency detuning and the injection ratio like in
Figs. 6.6 and 6.7 can be calculated (Simpson 2003). The results are quite consistent
with the experimental results. Namely, the suppression of chaotic dynamics for the
excitation of the side mode is well reproduced. Hwang and Liu (2000) numerically
calculated maps of stable and unstable regions in the phase space of the frequency
detuning and the injection ratio by changing the parameters in the rate equations.
They studied the dependence of the parameters for the cavity decay rate γc = 1/τph,
the carrier relaxation rate γs = 1/τs , the differential relaxation rate γn , and the non-
linear carrier relaxation rate γπ . For the change of those parameters, they obtained
the following results. (1) The carrier decay rate γs affects little change, since the
carrier relaxation is usually induced by spontaneous emission of light and it is a
small perturbation for the field strength. (2) The laser is stabilized for a small value
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of the differential relaxation rate γn , since the fast carrier diffusion reduces unstable
regions. (3) When the nonlinear carrier relaxation rate γπ increases, the unstable
region shrinks and the laser is stabilized. The increase of the nonlinear carrier relax-
ation rate γπ results in the change of the carrier density in the active layer and the
fluctuation of the optical phase is suppressed. This results in the suppression of fre-
quency fluctuations. Therefore, the laser is stabilized. (4) For a larger value of the
α parameter, instability of laser oscillation is enhanced. (5) Stability and instabil-
ity of semiconductor lasers subjected to optical injection are also dependent on the
bias injection current. With increasing the bias injection current, the stable region
in the map expands. When a laser is operated at a higher injection current level, the
coherent optical power stored in the cavity is higher, thus allowing the laser to be
more resistant to the perturbation of the externally injected optical field. This is why
stronger externally optical perturbation is required to observe instabilities and chaos
in the system at a higher injection current level.

6.2.4 Coexistence of Chaotic Attractors in Optically Injected
Semiconductor Lasers

A nonlinear system has the nature of multi-stability under a certain condition of
the parameters. Namely, the system may have coexistent states of different chaotic
attractors for the same parameter set. Which attractor the system converges to strongly
depends on the initial conditions. Indeed, coexistence of chaotic orbits has been
observed in various systems of semiconductor lasers (Masoller and Abraham 1998;
Heil et al.1998, 1999; Sukow et al. 1999; Viktorov and Mandel 2000). In optically
injected semiconductor lasers, multi-stability and coexistence of chaotic attractors
have also been studied (Wieczorek et al. 2000, 2001a, 2001b, 2001c, 2002). Here,
we present such examples. Under a certain experimental configuration, we always
observe a particular chaotic attractor, since the process of obtaining chaotic oscillation
is generally the same. Therefore, we usually observe a chaotic oscillation for one
of the chaotic attractors in a fixed experimental condition even if multi-stabilities
are involved in the system. However, if the separation between the two coexisting
attractors in the high-dimensional phase space is not so far away, switching from
one attractor to the other may occur due to, for example, noises involved in the
system. Indeed, transition of the state from one chaotic oscillation to another has
been experimentally observed (Heil et al. 1998, 1999).

Using the bifurcation theory, it is easy to know whether a nonlinear system has
coexisting attractors under the operating condition when the system exhibits bistabil-
ity or multi-stability. However, the characteristics of the coexisting attractors cannot
be obtained using the bifurcation analysis. With the simulation method, the existence
of the bistability or multi-stability is found by numerically simulating the system with
different initial conditions under the same operating conditions. Figure 6.8 shows the
numerical result for the map of coexistence states in semiconductor lasers subjected
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Fig. 6.8 Bifurcation diagram
showing coexistence states in
a phase space of normalized
frequency detuning and injec-
tion ratio. The vertical axis
is the normalized frequency
of ωnor = �ω/ωR , and the
horizontal axis of the injec-
tion ratio is also normalized
as κnor = κinj Am/ωRτin A0s .
P1 period-doubling bifurca-
tions, SL saddle-nodes of limit
cycles, T torus, H Hopf bifur-
cation, and SN saddle-node
bifurcation [after Wieczorek
et al. (2000); © 2000 Elsevier]
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to optical injection (Wieczorek et al. 2000). The plot is a similar one in the phase
space as shown in Figs. 6.6 and 6.7, but normalized axes are used. Each point in
this plane corresponds to a particular phase portrait, which contains more than one
attractor. Black parts of bifurcation curves correspond to supercritical bifurcations
in which attractors bifurcate and gray parts correspond to subcritical bifurcations of
repelling objects. Subcritical bifurcations are less important from an experimental
point of view, but we trace them out as they may produce stable objects for instance
in a subcritical torus bifurcation or change to supercritical.

In Fig. 6.8, the region inside the straight line from zero detuning to negative
detuning is the stable injection locking area. A detailed explanation of the map is
found in the reference (Wieczorek et al. 2000). We here focus on the points that weigh
with actual observations. In the stable region, there exist areas for the saddle-node
bifurcation (SN) and the Hopf bifurcation (H). When the black part of SN is crossed,
one of the bifurcating stationary points is an attractor. It physically corresponds
to the laser operating at constant power and at the frequency of the injected light,
meaning that the laser locks to the input signal. On the other hand, along the gray
part of the curve SN, a repellor and a saddle point bifurcate. Along the black part
of H, an attracting periodic orbit is born from the attracting stationary point and this
corresponds physically to the undamping of the relaxation oscillation. Physically, the
appearance of a new orbit means that some resonance in the laser gets excited, often
because the operational parameters κnor = κinj Am/ωRτin A0s and ωnor = �ω/ωR

drive the laser close to the relaxation frequency or its multiples. In Fig. 6.8, the two
saddle nodes of the limit cycle bifurcation curves starting with a cusp at ωnor ≈ ±1
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Fig. 6.9 Coexistence state of attractors at κnor = 0.29 and ωnor = −1.37. a Simultaneous plot of
three attractors, b running phase solution, c large periodic orbit, and d quasi-periodic motion on a
torus [after Wieczorek et al. (2000); © 2000 Elsevier]

represent a resonance between the relaxation oscillation frequency of the laser and
the detuning of the injected light from the free running laser frequency.

Starting from different initial conditions, the nonlinear system may have different
attractors in the phase space, even if the parameters have the same values as shown
in the previous figure. Figure 6.9 shows examples of attractors in multistability states
in the phase space of the imaginary part of the field, Ey (where the complex field E
is given by E = Ex + i Ey), and the carrier density n (Wieczorek et al. 2000). The
plots are the same conditions as those in Fig. 6.8. Figure 6.9a shows the plot of three
attractors. Figure 6.9b and c is periodic states of period-1 with small amplitude and
large periodic orbit, respectively. Figure 6.9d corresponds to a quasi-periodic oscil-
lation on a torus. As has already been discussed, which of the attractors the system
settles down to depends on the initial conditions. Furthermore, when a parameter
is swept gradually through a region of multi-stability, then one will find hysteresis
loops with sudden jumps from one attractor to another at different values of the
parameter, depending on the direction of the sweep.
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6.3 Enhancement of Modulation Bandwidth and Generation
of High Frequency Chaotic Oscillation by Strong
Optical Injection

6.3.1 Enhancement of Modulation Bandwidth by Strong
Optical Injection

The modulation bandwidth of a semiconductor laser at free running state is limited
by the relaxation oscillation frequency. However, when a semiconductor laser is
strongly injected under stable conditions, the modulation bandwidth of the slave laser
is greatly enhanced. At the same time, the suppression of laser noises is achieved,
but the strong modulation gives rise to frequency chirping in the laser oscillation.
The effects of noises and frequency chirping under optical injection are critical
for the laser operation (Piazzolia et al. 1986; Yabre 1996). In a locking–unlocking
bistable state, a large modulation current can unlock the laser. In a state near or
beyond the Hopf bifurcation boundary, the dynamic instability of the laser can lead
to high broadband noise and large frequency chirping. Also, the enhancement of
the modulation bandwidth of semiconductor lasers subjected to strong injection has
been demonstrated (Simpson et al. 1995, 1996; Simpson and Liu 1997; Chen et al.
2000; Wang et al. 1996, 2008). For weak optical injection and optical feedback, the
modulation bandwidth is increased due to the increase of the photon number within
the internal cavity, since the relaxation oscillation frequency is proportional to the
square root of the photon number (see (3.71)). The amount of the shift of the cutoff
frequency is up to ten percent at most. However, the cutoff frequency of the laser
under strong optical injection is greatly enhanced up to several times the relaxation
oscillation frequency of the free running laser. Therefore, a different explanation for
the origin of the enhanced modulation bandwidth may be required to understand
the phenomenon. The bandwidth-enhanced semiconductor laser is very useful as a
broadband light source for optical communications.

Figure 6.10 is an example of experimental results of the enhancement of the mod-
ulation bandwidth. For a modulation of a small sinusoidal wave of 12 GHz to the
bias injection current, the modulated laser output attenuated and is only −27.49
dBm without optical injection as shown in Fig. 6.10a, since the modulation is far
away from the relaxation oscillation frequency (about 3 GHz). On the other hand, the
modulation efficiency is increased up to 10 dBm by a strong optical injection (Fig.
6.10b). As will be discussed in Chap. 13, chaotic carrier frequency is the measure
of the maximum data transmission rate in secure optical communications based on
chaos synchronization in semiconductor laser systems. The chaotic carrier frequency
is also increased by a strong optical injection and a large capacity of the channels for
the communication is expected.

The enhancement of the modulation bandwidth in a semiconductor laser under
strong optical injection is numerically studied based on the rate equations. Wang
et al. (1996) investigated the modulation response for a small signal to the bias injec-

http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_13
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Fig. 6.10 Experimental result of the modulation bandwidth of a strongly optical injection-locked
semiconductor laser. The laser is modulated by a small sinusoidal signal at 12 GHz. The modulation
efficiency without optical injection is −27.49 dBm. The efficiency with optical injection is −19.05
dBm. The relaxation oscillation frequency of the DFB laser used is 3 GHz at free running state

M(ω)/M(0) [dB]

Modulation Frequency [GHz]

Fig. 6.11 Normalized modulation response of a semiconductor laser at J = 2.4Jth. a free running
laser, b Sinj/Ss = 0.011, c Sinj/Ss = 0.092, d Sinj/Ss = 0.44. Sinj and Ss are the photon numbers
injected from the master laser and the steady-state value of the free running slave laser [after Wang
et al. (1996); © 1996 IEEE]

tion current using a linear stability analysis. Figure 6.11 is the result. The frequency
detuning between the master and slave lasers is assumed to be zero in this case. The
cutoff frequency read from the resonance frequency is 12.6 GHz for the injection
ratio of Sinj/Ss = 0.44 (curve d), while the relaxation oscillation frequency is 3.4
GHz at the free running state (curve a). In addition, the response is almost flat well
below the cutoff frequency and the modulation bandwidth is enhanced up to four
times compared with that of the free running state. As has already been discussed,
the relaxation oscillation frequency is proportional to the square root of the photon
number and the photon number is a function of the bias injection current. To obtain
the equivalent modulation bandwidth of 12 GHz for the free running laser, we would
require the bias injection current to be seven times larger than that of the free running
state, which corresponds to almost 13 times the threshold injection current and might
damage the laser. Thus, the method of strong optical injection is effective for greatly
enhancing the modulation bandwidth in semiconductor lasers. Wang et al. (1996)
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conducted a linear stability analysis for the cutoff frequency under strong optical
injection and obtained the approximate solution as

νenhanced = 1

2
√

3π

[
Ke −

(
Ka

Ss

)2
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{(

Ka

Ss

)2

− 4Ke

(
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Ss

)2

+ K 2
e − 6Ka KbαG2

n(ns − n0)

}1/2]1/2

(6.22)

where the parameters in the above equation are given by

Ke = 1

τ 2
in

Sinj

Ss
(6.23)

Ka = 2

τin

√
SinjSs cos(φs − φm) = −

{
Gn(ns − n0)(1 − εs Ss)− 1

τph

}
Ss − Rsp

(6.24)

Kb = 1

τin

√
Sinj

Ss
sin(φs − φm) = 1

2
αGn(ns − n0)−�ω (6.25)

As will be shown later, the cutoff frequency is linearly proportional to the injection
power. Therefore, the origin of the enhancement of the modulation bandwidth does
not simply come from the increase of the photon number in the active layer. It is
explained by the interference between the optical frequency of the original laser
oscillation and the shifted frequency due to the strong optical injection.

The enhancement of the modulation bandwidth is also strongly dependent on fre-
quency detuning between the master and slave lasers. Figure 6.12 shows the depen-
dence of the modulation response in the presence of frequency detuning between
the master and slave lasers (Chen et al. 2000). The conditions of the numerical sim-
ulations are as follows; the laser is assumed to be an index-guided GaAs/AlGaAs
quantum-well laser and is biased at Ĵ = 0.67 (corresponding to J = 1.67Jth), where
Ĵ is the scaled injection current defined by Ĵ = (J/ed − ns/τs)/(ns/τs). The injec-
tion parameter defined by κ ′

nor = (κinjτph Am)/(τin As) is fixed at a moderate level
of κ ′

nor = 0.2, while different values of frequency detuning representing different
locking conditions are chosen. At κ ′

nor = 0.2, the stable locking region is bounded
by �ν = 1 GHz and �ν = −13 GHz, where �ν = 1 GHz is the Hopf bifurcation
boundary. Between �ν = −13 GHz and �ν = −22 GHz is a region of locking–
unlocking bistability, where the laser can be either locked or unlocked depending
on the initial condition. Under that condition, the laser cannot be locked when the
frequency detuning is more negative than −22 GHz. Relative to the free running
laser, a broadband noise reduction occurs in the locked region when the injection
field is negatively detuned beyond �ν = −3 GHz. The three representative values
of frequency detuning chosen in this case are �ν = 1 GHz on the Hopf bifurcation
boundary (dash-dotted curves in the figures), �ν = −10 GHz in the stable lock-
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Fig. 6.12 Normalized current modulation response in the presence of frequency detuning �ν
between master and slave lasers. Dash–dotted curve injection locking at�ν = 1 GHz. Solid curve
injection locking at �ν = −10 GHz. Dashed curve: injection locking at �ν = −18 GHz. Dotted
curve free running. The curves in the upper plot are the response for m=1 %, and those in the lower
plot are the responses for m=100 %. The 0 dB in the lower plot corresponds to the 0 dB in the upper
plot in order to make all the response curves comparable [after Chen et al. (2000); © 2000 Elsevier]

ing region (solid curves), and �ν = −18 GHz in the locking-unlocking bistability
region (dashed curves).

In the figure, the upper plot shows the response for a small modulation index of
m = 1 % and the graphs are normalized to the low frequency response of the laser in
its free running condition, under the four different operating conditions. The lower
plot in Fig. 6.12 shows the distorted current modulation response when the modula-
tion index reaches m = 100 %. At a given modulation strength, negatively shifting
the frequency detuning of the injected optical field generally reduces the distortion
in the current modulation response if the laser remains stably locked. However, when
the laser is injection-locked in the bistability region, a high modulation index can
cause instability by unlocking the laser. As a result, the modulation response in
such an operating condition becomes very irregular, as can be seen from the dashed
curve (−18 GHz) in the lower plot of Fig. 6.12. For weak current modulation with
small values of the modulation index, the modulation response will be obscured by
the intrinsic laser noise. For the change of the modulation index, the laser noise
induces insignificant differences between the overall response due to the combined
modulation current and intrinsic noise and the modulation response alone when the
modulation index m is larger than 1 %. Below m = 1 %, the relative importance
of the laser noise gradually increases and the laser noise induces fluctuations in the
response that obscure the modulation response.

Nevertheless optical feedback is strong, the optical injection power in the previous
examples is still smaller than the solitary slave laser emission power. For stronger
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Fig. 6.13 Enhanced reso-
nance frequency as a function
of detuning frequency and
injection ratio. Each value
denotes the enhanced bound-
ary resonance frequency [after
Lau et al. (2008); © 2008
OSA]
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optical injection above the slave optical power, we can expect much broader band-
width enhancement. Figure 6.13 shows such an example. Lau et al. (2008) experi-
mentally investigated modulation bandwidth for the condition of ultra strong optical
injection more than +10 dB and large frequency detuning of about ±100 GHz. The
figure shows the boundaries of enhanced resonance frequencies in the phase space
of the optical injection ratio and the frequency detuning within the stable region of a
used laser. The laser used is an InGaAsP DFB laser of the cavity length of 500 µm
operating at a wavelength of 1.55 µm. The bias injection current is 1.3Jth and the
corresponding relaxation oscillation frequency at solitary mode is νR = 3 GHz. For
an optical injection of 18 dB (the actual optical injection is estimated as about 14
dB due to losses in the optical system) and the frequency detuning from the soli-
tary laser of +67 GHz, the modulation bandwidth is enhanced up to 107 GHz. By
strong optical injection ratio with large frequency detuning, the stable area is largely
expanded, especially in the region of strong optical injection. The attained value of
the resonance frequency of 107 GHz is not the limitation of the device characteristic
itself, but the result is limited only by the response of the equipment. Lau et al. also
studied an enhancement of a modulation bandwidth for a VCSEL of a wavelength
of 1.55 µm. The laser is biased at 3Jth with the corresponding relaxation frequency
of 5 GHz. The resonance frequency enhancement of 104 GHz is obtained for the
optical injection of 13.6 dB and the frequency detuning of +102 GHz.

One of merits of optical injection locking in semiconductor lasers is the increase
of rf gain. However, there exists a tradeoff between the enhancement of modulation
bandwidth and the increase of rf gain. For a fixed optical injection ratio, the rf gain
of a small amplitude modulation for the bias injection current varies with detuning.
For a large positive frequency detuning, one can obtain a sharp and high peak of the
resonance frequency; however, the gain for the lower frequency component tends to
be lower than that for a case of smaller frequency detuning. On the other hand, a
high rf gain but a small peak of the resonance frequency is attained for an optical
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Fig. 6.14 Tradeoff between resonance frequency and rf gain. a Resonance frequency of four
VCSELs versus wavelength detuning. b rf gain measured at 1 GHz for four VCSELs versus wave-
length detuning [after Chrostowski et al. (2006); © 2006 IEEE]

injection with a small frequency detuning. Figure 6.14 shows a summary for such
examples obtained by experiments (Chrostowski et al. 2006). Figure 6.14a is a plot
for enhanced modulation frequencies for four VCSELs with almost the same optical
injection ratios versus wavelength detuning. For the increase of the detuning, the
modulation bandwidth is increased (it is noted that the graph is plotted not for the
frequency but for the optical wavelength). While, Fig. 6.14b is a plot for enhanced
resonance frequency at the injection–current modulation of 1 GHz versus wavelength
detuning. With the increase of the frequency detuning, the rf gain decreases. The
tradeoff is not a particular feature for VCSELs but other types of semiconductor
lasers, and the similar trend can be expected for edge-emitting semiconductor lasers.

6.3.2 Origin of Modulation Bandwidth Enhancement

The origin of the enhancement of modulation bandwidth by strong optical injection
is explained by Murakami et al. (2003). They consider the frequency shift of the
slave laser induced by strong optical injection. The expansion of the modulation
bandwidth is realized by the interference between the original optical frequency at
the free running state and the shifted frequency after the injection. According to their
explanation, the difference between the two frequencies corresponds to the expanded
modulation bandwidth. Figure 6.15 schematically shows the model of the frequency
shift. Let the angular frequency of the slave laser at the free running state be given
by ω0 and that of the master laser be ωinj. In the figure, the frequency detuning is
assumed to be positive, but the other case will be reduced to the same result. By a
strong optical injection, the carrier density in the slave laser increases. This induces
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Fig. 6.15 Resonant condition
of a semiconductor laser in the
presence of optical injection.
a Spectrum before optical
injection. ω0 is the angular
frequency of the solitary laser,
ωinj is the frequency of the
injected light, and�ωinj is the
frequency detuning between
them. b Cavity resonant
condition under injection
locking. ωshift is the cavity
resonance frequency shifted
from ω0 by �ωshift due to
optical injection

(a)

(b)
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the change of the optical frequency of the laser oscillation and results in red-shift
of the oscillation frequency. Using the change of the carrier density δn, the laser
once oscillates at an optical angular frequency ωshift and the shift of the laser angular
frequency after the injection is given by

�ωshift = 1

2
αGnδn (6.26)

The change of the carrier density δn is proportional to the strength of optical injection.
The frequency shift given by (6.26) has the same form as the first term in (6.5). In
actual fact, the frequency of the slave laser is locked to the frequency of the injection
laser (angular frequency ofωinj). Accordingly, the injection-locked laser may operate
at a frequency different from its cavity resonance condition, namely operating at
ωinj, not at ωshift. Such frequency detuning between ωinj and ωshift influences the
modulation bandwidth, as predicted by Simpson et al. (1996).

Here, we consider the transient situation. The field corresponding to the shifted
cavity resonance ωshift is once excited and interference between the two components
of the angular frequencies ωshift and ωinj occurs. Then, the beat between the two
frequencies is induced in the output of the slave laser. However, sufficient gain
is not allocated to this mode and the oscillation of the mode rapidly decays out,
since this is a transient field. The oscillation angular frequency of the slave laser
is restored to ωinj. The laser output may exhibit a damping oscillation at the beat
frequency due to such transient interference. Note that this damped oscillation differs
from the relaxation oscillation in the physical mechanism, because the relaxation
oscillation results from an interaction or coupling between photon and carrier through
the stimulated emission. Therefore, from (6.5), the resonance angular frequency
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produced by the interference ωres = ωinj − ωshift is given by

ωres = �ωinj −�ωshift = − 1

τin

√
Sinj

Ss
sinψs (6.27)

Following the above explanation, the dependence of the resonance frequency in the
presence of strong optical injection is calculated (Murakami et al. 2003). Figure 6.16
shows the plots of dependence of the injection ratio (amplitude) and the frequency
detuning on the cutoff frequency. Figure 6.16a is the dependence of the cutoff fre-
quency on the injection ratio at the frequency detuning of +0.5 GHz. Under a strong
optical injection condition, the cutoff frequency is linearly proportional to the injec-
tion ratio in accordance with the prediction in (6.27). In the figure, three data are
plotted; the solid line is the prediction calculated from (6.27), circles are the direct
numerical calculation from the rate equations, and triangles are obtained from the
linear stability analysis. In strong optical injection of over 30 %, the three plots coin-
cide well with each other. Figure 6.16b is the plot of the cutoff frequency for the
frequency detuning at a high optical injection ratio of 40 %. The cutoff frequency
tends to increase with increased detuning from negative to positive values. Thus,
the enhancement of the cutoff frequency under strong optical injection is explained
by the interference between the injection laser frequency and the implicit frequency
shift of the slave laser induced by the strong optical injection.

The definition of the injection and average intensities, Sinj and Ss , in (6.27) are
the measures in the internal laser cavity. For the external injection intensity Sinj,ext,
it has the relation with the internal intensity as Lau et al. (2007)

Sinj = (1 − r2
0 )

2

r2
0

Ss

Ss,out
Sinj,ext (6.28)

where r0 is the laser facet reflectivity defined in (4.1) and Ss,out is the average intensity
of the slave laser outside of the cavity. For edge-emitting semiconductor lasers, the
orders of the magnitudes of internal and external injections are almost the same. In
the case of VCSELs, the amount of the internally injected intensity is very small
compared with that of the external intensity, since the facet reflectivity of VCSELs is
usually higher than 99 %. On the other hand, the injection efficiency is proportional
to 1/τin, so that the effect of optical injection to VCSELs is relatively strong due to
their short cavity lengths. From (6.27), the attainable maximum enhanced modulation
frequency is given by

ωres,max = 1

τin

√
Sinj

Ss
(6.29)

The above relation is well coincident with experimental results. From the detailed
study, an approximate relation including a small resonance frequency, ωres, due to
weak optical injection is obtained as Lau et al. (2007, 2008, 2009)

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 6.16 Dependence of
resonance frequency on a
injection rate and b frequency
detuning. Circles represent the
numerical results, triangles
are the results obtained from
the stability analysis, and the
solid line is the theoretical
curve of (6.27)
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ω2
enhanced ≈ ω2

R + ω2
res (6.30)

whereωR is the relaxation oscillation angular frequency of a solitary laser. For a large
resonance frequency of ωres � ωR (namely, strong optical injection), the relation
ωenhanced = ωres holds. In accordance with the enhancement of the modulation
bandwidth, the damping factor is also enhanced. The damping factor except for near
the resonance peak frequency under strong optical injection is approximated as

�enhanced ≈ �R − Gn(nth − n0) (6.31)

where �R is the damping factor of the solitary laser defined in (3.70). Note that �R

is taken as a negative value. Also the damping factor is enhanced by the reduction of
gain below threshold. The result is interpreted as follows; the injection-locked laser
resonance is primarily due to energy oscillating between the slave field and phase
interfering with the injected light from the master laser. The reduced gain allows a

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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portion of this oscillation energy to be lost to the carrier. We can observe the similarity
of the damping enhancement in an RLC oscillator in electric circuits. On the other
hand, the damping factor closed to the resonance frequency is given by

�enhanced,res ≈ α

τphωres
Gn Ss − Gn(nth − n0) (6.32)

Lau et al. (2009) also demonstrated theoretically and experimentally that the mod-
ulation bandwidth was further enhanced by amplitude and/or phase modulations of
the master laser under strong optical injection.

6.3.3 Modulation Response by Strong Optical Injection

The effects of the injection current modulation on the response distortion and the
noise compression can be evaluated by eye patterns with digital signals. The capabil-
ity of data transmission in optical communications is calculated in Fig. 6.17 (Chen
et al. 2000). The eye patterns are numerically calculated from the rate equations with
strong optical injection. In the numerical simulations, eye patterns are generated
by modulating the injection current of the semiconductor laser under the various
operating conditions with a train of random raised-cosine functions:

Jm =
n∑

K=0

CK h(t − K T ) (6.33)

h(t) =
sin

(
π t
T

)
cos

(
πβt t

T

)
π t
T

[
1 −

(
2πβt t

T

)2
] (6.34)

where CK is a series of random numbers with the value 0 or 1, which represents
digitized information, and T = 1/ fm , where the modulation frequency fm represents
the bit rate. The value of the parameter βt is chosen to be 0.3 in this simulation.

Figure 6.17 shows the eye patterns for different modulation indexes at the modula-
tion frequency of fm = 2.9 GHz. The modulation frequency is equal to the relaxation
oscillation frequency of the laser at the free running state. Three different modulation
indexes m = 10, 50, and 100 % are chosen to present the advantages of the injection-
locked laser in the stable locking region. The eye patterns obtained in the condition
when the laser is injection-locked at �ν = −10 GHz have clearer eye opening
with less distortion or less noise than those obtained in other operating conditions.
The relative eye opening shows the same tendency as the noise compression. For a
small modulation index of m = 10 %, the modulation efficiency is much improved
compared with that at the free running state. However, when the modulation index
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Fig. 6.17 Eye pattern for square wave modulations. The bit rate is chosen as the corresponding
resonance frequency for each operating condition: the bit rate fm = 2.9 GHz is chosen for the
free running operation, fm = 4.7 GHz for �ν = −18 GHz, and fm = 6.8 GHz for �ν = −10
GHz. The optical injection rate ξ is defined as ξ = τphκinj/τin. The eye opening obtained from the
operating condition �ν = 1 GHz is zero for the range of the bit rate we are concerned with, so
the eye patterns are not shown. The intensity of the eye patterns is the differential intensity above
or below the corresponding field intensity of the injection-locked laser without current modulation
for each operating condition [after Chen et al. (2000); © 2000 Elsevier]

increases, the modulation signal with a modulation index of m = 50 % unlocks the
laser for a large negative frequency detuning (�ν = −18 GHz), resulting in zero
eye opening. When the frequency detuning is positively shifted beyond the noise
compression region, the eye opening also rapidly decreases to zero. Therefore, the
eye opening obtained in the operating condition with �ν = 1 GHz is zero for a
modulation index of any value.

6.3.4 Suppression of Frequency Chirping by Strong
Optical Injection

It has already been noted that the chirping of frequency due to injection current
modulation in a semiconductor laser is much suppressed by a strong optical injection.
We here demonstrate an example. Usually, a change in the carrier density causes a
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change in the refractive index of the laser medium. This change in the index generates
frequency chirping, which can place a considerable limitation on the modulation bit
rate. The frequency chirping is measured by the normalized chirp to the power ratio
CPR, which is defined as follows (Piazzolia et al. 1986):

CPR = 1

2πRP

∣∣∣∣dφ

dt

∣∣∣∣ (6.35)

where RP is the modulation response. The frequency chirp originates from the
linewidth enhancement factor α, which has a nonzero value in a semiconductor
laser. Neglecting noise effects in a semiconductor laser and applying a small sig-
nal analysis, the relation between the linewidth enhancement factor α and CPR can
be obtained by linearizing the rate equations around the locking operating point
(Simpson et al. 1996). This relationship between α and the CPR can be expressed as
follows:

1

2πRP

∣∣∣∣dφ

dt

∣∣∣∣ ≈ fmα

√
f 2
m + (u − v/α)2

f 2
m + (u + v/α)2

(6.36)

where u and v are given by

u = κinj

2πτin

∣∣∣∣ Am

As

∣∣∣∣ cosφL (6.37)

v = κinj

2πτin

∣∣∣∣ Am

As

∣∣∣∣ sinφL (6.38)

Here φL is the phase of the intracavity laser field relative to the injection field. An
effective linewidth enhancement factorαeff, which is the modified chirping parameter
under injection locking, can be defined as follows:

αeff ≈ α

√
f 2
m + (u − v/α)2

f 2
m + (u + v/α)2

(6.39)

Of course, the effective chirping parameter αeff is equal to α when the laser is at the
free running state (u = v = 0). The dependence of the effective chirping parameter
on the modulation frequency fm is shown in Fig. 6.18 (Chen et al. 2000). The injec-
tion locking of the laser at�ν = −10 GHz reduces the effective chirping parameter
more than injection locking the laser at�ν = −18 GHz does. Positive shifting of the
frequency detuning reduces the effective chirping parameter further until the bound-
ary of the Hopf bifurcation is reached. For a large modulation index, the effective
chirping parameter finally reaches that of the free running state. Therefore, the effect
of the suppression for the chirping is remarkable for lower modulation frequency.
When the effect of the intrinsic noise or that of the nonlinearity of the laser on the
frequency chirping are significant, the simple relationship in (6.39) between the CPR
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Fig. 6.18 Effective chirping parameter. Each curve corresponds directly to the curves in Fig. 6.12
that have the same style [after Chen et al. (2000); © 2000 Elsevier]

and α is no longer valid. In this situation, it is not possible to simply represent the
frequency chirping with an effective chirping parameter. Then, the measurement of
the frequency chirping including the effects of the intrinsic noise and the nonlinearity
of the laser dynamics under a large modulation current is better quantified directly
with the CPR.

From the detailed analysis for CPR, if the laser noise were not present, a signifi-
cant reduction of the frequency chirping could be achieved by optical injection, and
positively shifting the frequency detuning could further reduce the frequency chirp-
ing. In reality, however, when the modulation index is small, the chirp is dominated
by the laser noise. As a result, the chirp follows the same tendency as the power
noise. Therefore, reduction of the frequency chirping in a semiconductor laser is not
always guaranteed by injection locking (Chen et al. 2000). A semiconductor laser
injection-locked in a locking–unlocking bistable state cannot fully take such benefits
because a large modulation current can unlock the laser. Further, one cannot operate
in a state near or beyond the Hopf bifurcation boundary because of the high broad-
band noise and the large frequency chirping associated with the instability of the
laser. A semiconductor laser operated in a stable state generally has better current
modulation characteristics than in its free running state.

6.3.5 Generation of High-Frequency Chaotic Oscillation
by Strong Optical Injection

Main chaotic carrier frequency in a semiconductor laser system has almost the same
or nearly the relaxation oscillation frequency of the solitary laser. For example, the
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Fig. 6.19 Experimentally
obtained chaotic power spec-
trum with enhanced cutoff
frequency in a DFB semicon-
ductor laser subjected to both
optical feedback and strong
optical injection. The fre-
quency detuning between
the two lasers is −3.44
GHz and the injection ratio
is −5.61 dBm. The left and
right arrows indicate the
peaks for the chaotic carrier
frequencies without and with
optical injection, respectively

↑ ↑
Original relaxation
oscillation frequency

3 GHz

Enhanced cutoff
frequency

14 GHz

oscillation very close to the relaxation oscillation frequency is at first excited in a
semiconductor laser with optical feedback for the increase of the feedback strength.
For a further increase of the feedback, the laser typically shows chaotic oscillations
via period-doubling or quasi-period-doubling routes. Therefore, the relaxation oscil-
lation frequency of the laser is the measure of chaotic oscillations and it plays a
crucial role in the chaotic dynamics. Especially, the bandwidth of the chaotic signal
is important in the chaotic secure communications discussed in Chap. 13. In such
chaotic communications, the generation of a fast chaotic carrier signal is essential
for a message transmission with higher bit rate. We here consider the generation
of fast chaotic signals in semiconductor lasers both subjected to optical feedback
and optical injection. There are two ways for enhancing chaotic carrier frequency
by optical injection; one is a simple method in which a chaotic semiconductor laser
such as induced by optical feedback is strongly optical-injected by a stable mas-
ter laser (Wang et al. 2008). The other one is that a chaotic master laser light is
strongly injected to a slave laser (Someya et al. 2009). The slave laser may behave
stably at solitary mode. For either case, chaotic carrier frequency of an original relax-
ation oscillation of about 3 GHz is experimentally expanded up to 15–20 GHz under
appropriate optical injection conditions. In the preceding sections, we only treated the
enhancement of the modulation bandwidth due to optical injection in stable region.
However, outside of stable area in the phase space of the frequency detuning and
the optical injection ratio, there exist regions of chaotic oscillations as is discussed
in Fig. 6.6. Therefore, the discussion for chaotic carrier enhancement under optical
injection is not straightforward. In the following, we treat the case of the bandwidth
enhancement in chaotic semiconductor laser with optical feedback by strong optical
injection from a stable laser. Therefore, we here restrict the discussion of chaotic
carrier enhancement for stable region.

Figure 6.19 is a typical power spectrum of chaotic oscillations obtained from a
semiconductor laser which has both external optical feedback and strong optical
injection. Without a strong optical injection, the laser shows chaotic oscillation due

http://dx.doi.org/10.1007/978-3-642-30147-6_13
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Fig. 6.20 Numerically cal-
culated time series and power
spectra of chaotic oscillations
in a semiconductor laser with
strong optical injection. Time
series a with and b without
optical injection. Power spec-
tra c with and d without optical
injection corresponding to
Fig. 6.20a and b, respectively.
The parameter conditions are
Js,m = 1.3Jth, τ = 6 ns,
κ/τin = 2.33 × 1010s−1,

κinj/τin = 1.79 × 1010s−1,

and �ν = −4 GHz
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to the external optical feedback and the spectral peak (though it has a broad peak)
is about 3 GHz, which is comparable with the relaxation oscillation of the solitary
laser. The original relaxation oscillation frequency is shown by the arrow (left arrow).
On the other hand, the frequency of the maximum chaotic oscillation is increased
to 14 GHz (right arrow) by a strong optical injection, that is an increase by a factor
of 4.6. In this experimental example, the frequency detuning between the master
and slave lasers is −3.44 GHz and the optical injection ratio is −5.61 dBm. This
condition corresponds to the ordinary stable operation in the absence of external
optical feedback.

The enhancement of the chaotic carrier frequency is also numerically calcu-
lated based on the rate equations. Figure 6.20 is the result (Takiguchi et al. 2003).
Figure 6.20a and b is the time series of chaotic oscillations with and without opti-
cal injection, respectively. The relaxation oscillation frequency of the solitary laser
is about 2.7 GHz. Figure 6.20c and d is the corresponding rf spectra to Fig. 6.20a
and b, respectively. The feedback fraction to the slave laser is taken to be a large
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value of κ/τin = 2.33×1010s−1 to destabilize the strongly injection-locked laser. In
Fig. 6.20d, the chaotic oscillation rapidly decays out over the relaxation oscillation
frequency without optical injection. On the other hand, the spectrum in Fig. 6.20c
shows a bandwidth-enhanced chaotic oscillation in the presence of a strong opti-
cal injection. As can easily be seen both from the time series and the spectrum, the
chaotic carrier frequency is greatly expanded up to about 8 GHz by the strong optical
injection, which is as much as three times that without optical injection in Fig. 6.20d.
As shown in the figure, the chaotic carrier frequency is also greatly enhanced by
a strong optical injection. However, it is difficult to calculate analytically the exact
enhanced bandwidth of the chaotic carrier frequency.
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