
Chapter 4
Theory of Optical Feedback in Semiconductor
Lasers

A semiconductor laser with optical feedback is an excellent model for generating
chaos in its output power and the system has proven to be very useful in practical
applications. This chapter concerns the theoretical background for instability and
chaos induced by optical feedback in narrow-stripe edge-emitting semiconductor
lasers, such as Pabry-Perot lasers, multi-quantum well (MQW) lasers, and distrib-
uted feedback (DFB) lasers. Particular dynamics of feedback-induced instability and
chaos in semiconductor lasers are separately discussed in the following chapter. In
this chapter, we focus on the theoretical treatment of optical feedback effects in
semiconductor lasers. Lasers show the same or similar dynamics as far as rate equa-
tions are described by the same equations. We here assume single mode operations
for semiconductor lasers. The dynamics for multimode cases will be discussed in
Chap. 8.

4.1 Theory of Optical Feedback

4.1.1 Optical Feedback Effects and Classifications of Optical
Feedback Phenomena

The effects of optical feedback in semiconductor lasers have been studied from
the beginning of their development (Risch and Voumard 1977; Voumard 1977;
Gavrielides et al. 1997). In early 1980, Lang and Kobayashi published a milestone
paper on the effects of optical feedback in semiconductor lasers, which initiated an
enormous research effort devoted to the study of the dynamics induced by optical
feedback. Since then, bistability, instability, self-pulsations, and coherence collapse
states have been observed in feedback-induced irregular oscillations in semiconduc-
tor lasers (Mils et al. 1980; Glas et al. 1983; Lenstra et al. 1985; Cho and Umeda
1986). In semiconductor lasers, self-optical-feedback effects are frequently used for
the control of oscillation frequency, selection of mode, and suppression of side modes.
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Indeed, the linewidth of laser oscillations can be stabilized by a strong optical feed-
back and chirping of oscillation frequency can be compensated by optical feedback
(Goldberg et al. 1982; Tamburrini et al. 1983; Agrawal 1984; Lin et al. 1984). On the
other hand, the semiconductor laser shows unstable oscillations for a certain range
of optical feedback levels. The dynamics of semiconductor lasers induced by optical
feedback in this range are very interesting not only from the viewpoint of fundamen-
tal physics but also for practical applications, since optical feedback effects appear
everywhere in optical systems including optical communication systems, optical data
storages, and optical measurements. These irregular oscillations are induced by the
dynamics involved in laser systems known as chaos described by nonlinear delay
differential equations.

Cleaved facets were frequently used as a laser resonator in semiconductor lasers
in the early days. Therefore, the reflectivity of laser facets of semiconductor lasers
is much lower than that of other lasers such as gas lasers. Since light in a cavity
of a semiconductor laser is reflected perpendicularly to the laser facet, the internal
amplitude reflectivity r0 is given by

r0 = η − 1

η + 1
(4.1)

where η is the refractive index of the laser material. For example, the refractive index
η of the AlGaAs semiconductor laser without any optical coating is about 3.6 and the
amplitude reflectivity of the facet is calculated to be r0 = 0.565. The corresponding
intensity reflectivity is R0 = r2

0 = 0.32. Only 32 % of the light generated by the
stimulated emission is fed back into the laser cavity and the other photons dissipate
from the laser cavity (Zah et al. 1987). To make a high power laser, the laser facets
are coated appropriately by dielectric films. Then, the rear facet of the cavity usually
has a high reflectivity of more than 90 % and the front fact has a low reflectivity of
less than 10 %. This is quite different from other lasers where both facets have high
reflectivities close to 100 %.

In spite of such a dissipative laser structure, laser oscillations are still possible
in semiconductor lasers due to the high efficiency of the conversion from pump to
light. For example, the conversion efficiency of electricity to light in semiconductor
lasers is usually up to fifty percent. This makes semiconductor lasers different from
other lasers. Thus, light goes away from the cavity after a few reflections within the
resonator. In other words, semiconductor lasers are easily affected by external light
due to optical feedback or optical injection from a different laser. Indeed, the use of
optical isolators is essential in optical communication systems to prevent unstable
laser operations generated by feedback light from optical components and optical
fiber facets. Optical feedback induces various instabilities in semiconductor lasers,
for example, noises (actually they are chaotic fluctuations as discussed later) are
much enhanced by optical feedback. In optical communications, the quality of signal
transmissions has priority, so that optical isolators are used at the expensive of system
sizes and costs to reduce feedback noises. On the other hand, optical information
equipment, for example, optical data storages, in which serious problems by optical
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feedback are encountered for the performance of operations, the cost of the system
is most important. In those systems, the reduction and control of noises (actually
chaotic oscillations) are essential issues for good systems. For such purpose, the idea
of chaos control, which is discussed in Chap. 9, can be applied.

There are many parameters to characterize instabilities and chaos in semicon-
ductor lasers. Every parameter is important for describing the characteristics, how-
ever, one important and most useful parameter to figure out the characteristics is
the reflectivity of the external mirror. Tkach and Chraplyvy (1986) investigated the
instabilities of semiconductor lasers with optical feedback and categorized them into
the following five regimes, depending on the feedback fraction.

Regime I. Very small feedback (the feedback fraction of the amplitude is less than
0.01 %) and small effects. The linewidth of the laser oscillation becomes broad or
narrow, depending on the feedback fraction (Kikuchi and Okoshi 1982).
Regime II. Small, but not negligible effects (less than ∼0.1 % and the case for
C > 1, where the C parameter is a measure of instability, discussed in Sect. 4.2).
Generation of the external modes gives rise to mode hopping among internal and
external modes (Tkach and Chraplyvy 1985).
Regime III. This is a narrow region around ∼0.1 % feedback. The mode hopping
noise is suppressed and the laser may oscillate with a narrow linewidth (Tkach
and Chraplyvy 1986).
Regime IV. Moderate feedback (around 1 %). The relaxation oscillation becomes
undamped and the laser linewidth is broadened greatly. The laser shows chaotic
behavior and sometimes evolves into unstable oscillations in a coherence collapse
state. The noise level is enhanced greatly under this condition (Lenstra et al. 1985).
Regime V. Strong feedback regime (higher than 10 % feedback). The internal and
external cavities behave like a single cavity and the laser oscillates in a single
mode. The linewidth of the laser is narrowed greatly (Fleming and Mooradian
1981a,b).

In the above regimes, the quoted fraction is that of the actual optical feedback
level into the active layer and it does not mean the reflectivity of the external mirror,
since there are scattering and absorption losses of light through optical components.
Furthermore, a diffraction loss of light due to a collimator lens usually put in front
of the laser facet is not negligible, because the thickness of the active layer is as
small as 0.1μm in ordinary edge-emitting lasers. Therefore, the fraction of optical
feedback actually fed back into the active layer becomes one-tenth or less than
the intensity reflectivity of the external mirror. However, semiconductor lasers are
sensitive enough to destabilize their output power by a small amount of optical
feedback of less than 1 % of the amplitude. Therefore, an isolation of 40 dB is usually
required in optical communication systems to avoid optical feedback effects.

The investigated dynamics of the above regimes were for a DFB laser with a
wavelength of 1.55 μm, so that the feedback fraction corresponding to each dynamics
scenario described above is not always true for other lasers. However, the dynamics
for other lasers show similar trends for the variations of feedback fraction. The lasers
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show the same or similar dynamics as far as the rate equations are written in the
same forms. As has already been discussed, the rate equations for narrow-stripe
edge-emitting semiconductor lasers, such as Fabry-Perot, MQW, and DFB lasers, are
described by the same forms. Therefore, these lasers exhibit similar chaotic dynamics,
though the parameters may have different values. We are very interested in regime IV
that shows chaotic dynamics (Sacher et al. 1989; Mørk et al. 1990a, 1992), though
it is a small level of optical feedback (the intensity fraction of the feedback is only
0.01 %). In actual applications of semiconductor lasers, this regime is important
because, for example, the feedback fraction of laser amplitude in Compact Disk
systems corresponds to regime IV (Gray et al. 1994). Thus, regime IV is important
for the studies of both nonlinear dynamics and applications.

4.1.2 Theoretical Model

The static characteristics of semiconductor lasers with optical feedback can be theo-
retically investigated with the relations among the reflectivities of internal cavity and
external reflector, the gain in a medium, and other static laser parameters. However,
the dynamic characteristics must be described by time-dependent equations of the
systems. The equations for semiconductor lasers in the presence of optical feedback
are easily obtained by modifying the rate equations for the solitary laser discussed
in Chap. 3. The schematic model of a semiconductor laser with optical feedback is
shown in Fig. 4.1. For a while, we consider that the external reflector is a conventional
plain reflection mirror. The effects of other reflectors such as grating and phase con-
jugate mirrors will be discussed later. Light from a laser is reflected from an external
mirror and fed back into the laser cavity with time delay. We assume that the mirror
is positioned within the coherence length of the laser. Also, the laser is assumed to
be operated at a single mode, although this is not always true in actual situations.
The laser sometimes oscillates at multimode under certain parameter conditions of
optical feedback even when the laser oscillates at a single mode in the solitary con-
dition. The external feedback effect is added to the equation for the complex field of
(3.47) and the field equation is written in the following form (Lang and Kobayashi
1980):

dE(t)

dt
= 1

2
(1 − iα)Gn{n(t) − nth}E(t) + κ

τin
E(t − τ) exp(iω0τ) (4.2)

where κ is the feedback coefficient due to the external optical feedback, τ = 2L/c
(L being the length of the external cavity) is the round trip time of light within the
external cavity, ω0 is the angular oscillation frequency of the laser. The extra term
has a delay time τ and the complex field is described by a delay differential equation
and this is the origin of instability and chaotic dynamics in semiconductor lasers.
The equation is known as the Lang-Kobayashi equation after their derivation.

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 4.1 Model of semi-
conductor laser with optical
feedback
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The feedback coefficient κ can be calculated from considering the multiple-
reflection effects of light in the external cavity. In Fig. 4.1, we consider the fields
propagating forward and backward within the cavity and the extra term added to the
laser field from the optical feedback in front of the facet of the resonator. For the
steady-state oscillation in the presence of external feedback, the relation between
the forward and backward traveling fields at the laser facet, E f (t) exp(−iω0t) and
Eb(t) exp(−iω0t), is given by (Lang and Kobayashi 1980)

Eb(t) = r0

{
E f (t) + 1 − r2

0

r0
r

∞∑
m=1

(−r0r)m−1 E f (t − mτ) exp(imω0τ)

}
(4.3)

where r is the amplitude reflectivity of the external mirror. In the parenthesis of the
above equation, the first term is the ordinary field of reflection in the internal cavity
and the second is the effect of the external optical feedback. The semiconductor laser
is easily destabilized and shows chaotic dynamics even for a small level of feedback
less than a few percent of the amplitude reflectivity. We here consider a steady-state
solution as E f (t − mτ) ∼ E f (t) and only assume a single reflection for a small
external reflection r . Then, the feedback coefficient κ is written by (Tartwijk and
Lenstra 1995)

κ = (1 − r2
0 )

r

r0
(4.4)

We assume that the reflectivities for the front and back facets of the laser cavity are
the same at r0. It is not always true for actual lasers, but the feedback rate for different
reflectivities can be calculated straightforwardly. Recent semiconductor lasers have
a low intensity reflectivity of the front facet as small as 10 % or less by optical coating
and, therefore, the lasers are much affected by optical feedback.

The time-dependent phase in the presence of optical feedback plays an important
role, since the phase couples with the other variables. For the carrier density, we need
not consider the modification of the equation. Similar to the derivations for the rate
equations in (3.59)–(3.61), we obtain the rate equations in the presence of optical
feedback as follows (Ohtsubo 2002):

dA(t)

dt
= 1

2
Gn{n(t) − nth}A(t) + κ

τin
A(t − τ) cos θ(t) (4.5)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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dφ(t)

dt
= 1

2
αGn{n(t) − nth} − κ

τin

A(t − τ)

A(t)
sinθ(t) (4.6)

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t) − n0}A2(t) (4.7)

θ(t) = ω0τ + φ(t) − φ(t − τ) (4.8)

We can investigate the dynamics of semiconductor lasers with optical feedback by
numerically solving the above equations. In the rate equations for a solitary laser
derived from (3.59)–(3.61), the phase does not affect the other variables and, there-
fore, a semiconductor laser is only described by the field amplitude and carrier density
equations. However, we must consider the phase for a time development in the pres-
ence of optical feedback, since the phase is related to the other variables through the
optical feedback term as shown in the above equations. Then, three coupled equations
are essential for semiconductor lasers with optical feedback and they show unstable
oscillations and chaotic dynamics in their output powers like three coupled equa-
tions in Lorenz systems. In the numerical simulations, the fourth-order Runge-Kutta
algorithm is frequently used for the sake of the accuracy of the calculations (Press
et al. 1986).

4.2 Linear Stability Analysis for Optical Feedback Systems

4.2.1 Linear Stability Analysis

When the fluctuation of the output power is small even in the presence of optical
feedback in a semiconductor laser, we assume a steady-state solution for the average
field. In this case, we obtain the steady-state solutions for A(t) = As, φ(t) =
(ωs −ωth)t , and n(t) = ns from (4.5)–(4.7) as follows (Tromborg et al. 1984, 1987;
Agrawal and Dutta 1993):

A2
s = J/ed − ns/τs

Gn(ns − n0)
(4.9)

ωs − ωth = − κ

τin
{α cos(ωsτ) + sin(ωsτ)} (4.10)

ns = nth − 2κ

τinGn
cos(ωsτ) (4.11)

For zero feedback coefficient κ = 0, the above equations reduce to the solutions for
the solitary laser already given by (3.62)–(3.64). We rewrite (4.10) as

ωthτ = ωsτ + Csin(ωsτ + tan−1α) (4.12)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
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where the C parameter already introduced in the regimes of the dynamics for the
optical feedback level in Sect. 4.1.1 is defined by (Tartwijk and Lenstra 1995)

C = κτ

τin

√
1 + α2 (4.13)

From (4.12), we can calculate modes for laser oscillations in the presence of optical
feedback. The relation in (4.12) can be written by

	ωsτ = −Csin(ϕ0 + 	ωsτ) (4.14)

where 	ωs = ωs −ωth corresponds to the steady-state value of the phase difference
φ(t) − φ(t − τ) and ϕ0 = ωthτ + tan−1 α. When C < 1, there is only one solution
for (4.12), as already discussed, which is dynamically stable and can be identified
as a slightly changed solitary laser state. By increasing the C parameter value, the
number of the mode solutions increases but is always an odd number. The curves in
(C, ϕ0) space in Fig. 4.2 that separate the regions of equal number of solutions are
given by

ϕ0 = (2m + 1)π ± cos−1
(

1

C

)
∓ Csin

{
cos−1

(
1

C

)}
(4.15)

where C ≥ 1 and m is an integer number. This causes a pattern to arise in (C, ϕ0)

space, as shown in Fig. 4.2 where the roman numbers represent the number of solu-
tions. For C > 1, multiple steady-state solutions appear.

The solutions in (4.12) are also graphically calculated as intersections of the
curves y = ωthτ and y = ωsτ + C sin(ωsτ + tan−1 α) as shown in Fig. 4.3 (Fravre
1987; Murakami et al. 1997). When C < 1 (for a small optical feedback and a
short external cavity), (4.12) has only a single solution and the laser exhibits stable
oscillation. If C > 1, many possible modes for the laser oscillations (external modes
and anti-modes) are generated with the relation among the internal laser modes and
the excited external modes, and then the laser shows unstable operations. By adjusting
the position of the external mirror (which is equivalent to appropriate selection of the
round-trip time τ ) and setting ϕ0 = ωthτ + tan−1 α = 0 (where ωthτ = − tan−1 α

and, thus, the condition 	ωsτ = −Csin(	ωsτ) is satisfied), the higher bound of the
coefficient C for a single mode oscillation of the laser is easily obtained from Fig. 4.3
as C ∼ 3 π /2 (Petermann 1988). Above this value C > 3 π /2, many modes are
excited and the laser becomes unstable. Complicated dynamics are observable in the
output power, however, the laser does not always exhibit unstable oscillations. Even
for such unstable regimes, the laser may show stable oscillations. The details of the
dynamics will be discussed in Sect. 5.2.

When the C parameter well exceeds the value of unity, many modes are excited
in the laser output and the laser becomes truly unstable. Another representation for
possible oscillation modes is frequently used in the phase space of the oscillation
frequency and the carrier density. Figure 4.4 is such a representation for the parameter
space in the 	ωsτ versus 	ns plane. The relation is calculated from (4.10) and (4.11)

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 4.2 Number of solutions
for (4.14) in (C, ϕ0) space.
The roman numbers represent
the number of solutions
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Fig. 4.3 Dependence of
steady-state solutions for the
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C = 9.50, respectively. The
black circle denotes only one
solution for C < 1 and white
circles represent multiple
solutions for C > 1

-20 -15 -10 -5 0 5 10 15 20
-30

-20

-10

0

10

20

30

Solution for C<1
Solutions for C   1

ω
0τ

ωsτ

>−

by eliminating the sine and cosine functions and is given by (Henry 1986)

(
	ωsτ − ατ

2
Gn	n

)2 +
(τ

2
Gn	n

)2 =
(

κτ

τin

)2

(4.16)

where 	ωs = ωs − ωth and 	ns = ns − nth. The broken sinusoidal curve in the
figure denotes the deviation from the steady state of the oscillation angular frequency
	ωs and the other sinusoidal curve represents that of the carrier density 	ns . The
crossing points of these two curves are the locations of possible oscillations and they
are on the ellipsoid given by (4.16) (thick solid curve in the figure).Those in the
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Fig. 4.4 Carrier density
change 	n versus frequency
change 	ω for the possible
steady states under external
feedback. The crossing points
of the solid and broken sinu-
soidal waves are the locations
of the modes. Modes are on
an ellipsoid. The solid dot at
center is the solitary oscilla-
tion mode Δn
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lower half are the solutions for stable oscillations (external modes) and those in the
upper half are unstable oscillations. Solutions for unstable oscillations are sometimes
called anti-mode. The laser oscillates at one of the external modes and the maximum
gain mode is the most probable mode for laser oscillation. However, when the laser
oscillation is unstable due to external feedback, the mode hops around among the
external modes and the anti-modes, thus the laser exhibits chaotic oscillations. One
typical instability is the phenomenon known as low-frequency fluctuations (LFFs),
in which the laser output power shows frequent irregular dropouts having frequency
from MHz to hundred MHz (Mørk et al. 1988; Fischer et al. 1996). The details
for the origin of LFFs and their dynamics are again discussed in Sect. 5.3. The
solid dot at the center of the ellipsoid in the figure is the solution for the laser
oscillation in the solitary laser (solitary mode). The laser without optical feedback,
of course, has no fluctuation in the sense of chaotic dynamics and oscillates only at this
mode.

The stability and instability of laser oscillations in the presence of optical feedback
are theoretically studied by the linear stability analysis for the steady-state solutions
of the laser variables. In the same manner as a solitary laser, using the rate equations
and taking the first order small infinities for the perturbations, the equations for the
field δE , the phase δφ, and the carrier density δn are calculated as (Tromborg et al.
1984)

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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dδA(t)

dt
= 1

2
Gn Asδn(t) − κ

τin
cos(ωsτ){δA(t) − δA(t − τ)}

− κ

τin
Assin(ωsτ){δφ(t) − δφ(t − τ)} (4.17)

dδφ(t)

dt
= α

2
Gn Asδn(t) + κ

τin

sin(ωsτ)

As
{δA(t) − δA(t − τ)}

− κ

τin
cos(ωsτ){δφ(t) − δφ(t − τ)} (4.18)

dδn(t)

dt
= −2Gn As(ns − n0)δA(t) −

(
Gn A2

s + 1

τs

)
δn(t) (4.19)

Assuming that the perturbations take the forms of δx(t) = δx exp(γ t) (x =
A, φ, and n), the characteristic equations for the condition having non-trivial
solutions for the variables δA, δφ, and δn are calculated from the following:

⎛
⎜⎜⎜⎜⎜⎜⎝

γ + κ

τin
K cos(ωsτ)

κ

τin
K Assin(ωsτ) − 1

2 Gn As

− κ

τin

K

As
sin(ωsτ) γ + κ

τin
K cos(ωsτ) − 1

2αGn

2As Gn(ns − n0) 0 γ + Gn A2
s + 1

τs

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0 (4.20)

where K = 1−exp(−γ τ). The oscillation modes for the perturbations are calculated
by solving the characteristic equation

D(γ ) = γ 3 + 2{−R + κ

τin
K cos(ωsτ)}γ 2

+
{

ω2
R − 4κKR

τin
cos(ωsτ) +

(
κ

τin
K

)2
}

γ

− 2κK 2R

τin
+ κKω2

R

τin
{cos(ωsτ) − αsin(ωsτ)} = 0 (4.21)

In the above equation, R and ωR are the previously defined parameters of the
damping factor and angular frequency of the relaxation oscillation at the solitary
mode.

We cannot calculate explicit forms of the solutions for (4.21), since the equation
includes the exponential form for the variable γ and, then, the solutions are numer-
ically calculated. The real part of the solution is related to the stability of the mode
and the imaginary part of it represents the oscillation frequency of the mode as has
already been discussed. When the real part (damping factor) takes a negative value,
the mode is stable and the excited oscillation damps out for the time development
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with a frequency calculated from the imaginary part. On the other hand, the mode
is unstable for a positive value of the real part and the laser shows either regular or
irregular oscillations with a typical frequency corresponding to the imaginary part.
If the level of optical feedback is low or the condition κτ/τin � 1 is satisfied, we
can assume |γ τ | � 1 and obtain the analytical form of the solution for γ . Then,
the real and imaginary parts, ′

R and ω′
R , of the solution are given by (Agrawal and

Dutta 1993)
′

R = R (4.22)

ω′
R = ωR

√
1 + (κc − ακs)τ/τin

(1 + κcτ/τin)2 + (κsτ/τin)2 (4.23)

where κc = κ cos(ωsτ) and κs = κ sin(ωsτ). Of course, (4.22) and (4.23) are equal
to (3.70) and (3.71) at no optical feedback, respectively.

The relaxation frequency in the presence of optical feedback shifts from that of
the solitary oscillation. Increase or decrease of the frequency shift depends on the
signs of κc and κs , however, it is usually enhanced at moderate optical feedback and
takes a larger value than that of the solitary oscillation. For a laser oscillation, the
sign of the expression inside the square root in (4.23) must be positive and we obtain
the stability condition (Acket et al. 1984; Lenstra et al. 1984)

1 + C cos(ωsτ + tan−1α) > 0 (4.24)

Equation (4.24) denotes that the laser becomes unstable for C > 1 as expected, while
it is stable for C < 1 even if optical feedback is present in semiconductor lasers.
We calculated oscillation modes for perturbations of the steady-state values for the
variables. The solutions obtained from such characteristic equations are called linear
modes, the name comes from the linear stability analysis.

4.2.2 Linear Mode, and Stability and Instability
in Semiconductor Lasers

For certain ranges of optical feedback level, the output of a semiconductor laser
evolves from stable states to chaotic states via unstable periodic oscillations. One or
a few frequencies for the solutions derived from the characteristic equation in (4.21)
are equal to or close to the typical frequency corresponding to the response of the
system. Periodic oscillations in chaotic states are generally not harmonic oscillations,
but they include an obscure fundamental frequency and its higher harmonics. In quasi-
periodic oscillations, frequency peaks become obscured due to irregular oscillations
and no clear spectral peak is observable in complete chaotic states, like white noises.
In semiconductor lasers with optical feedback, modes generated by the internal and
external cavities are mixed and the laser oscillates at one or several modes. The other

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 4.5 Linear mode distributions at the external cavity length of L = 10 cm and the bias injection
current of J = 1.3 Jth. The highest mode corresponds to the relaxation oscillation and the second
mode to the external cavity mode. With increasing external feedback, the real part of each mode
increases and the laser becomes less stable

important frequency of laser oscillations besides these modes is the frequency of the
relaxation oscillation. Since chaos is a nonlinear phenomenon, many modes are not
only related to the internal and external modes and the relaxation oscillation modes
but also their sums and differences, and higher harmonics are excited (Cohen et al.
1988; Helms and Petermann 1990; Levine et al. 1995). For a chaotic bifurcation,
the laser first becomes unstable with a frequency close to the relaxation oscillation,
which is called period-1 oscillation. Next, the external mode is also excited. After
that, many modes are excited and the laser oscillates at quasi-periodic oscillation.
Then, the laser evolves into chaotic oscillations with complicated and broadened
frequency components.

Figure 4.5 is an example of numerically calculated linear modes from (4.21)
(Murakami and Ohtsubo 1998). In the figure, the change of modes is shown for the
increase of the amplitude reflectivity from the external mirror. The vertical axis is
the damping factor (the real part of the solution of the characteristic equation) and the
horizontal axis is the frequency of the oscillation (the imaginary part of the solution).
For a negative value of the damping factor, the mode damps out for a time evolution
even if it is once excited. The value of the real part is negative for the highest mode in
the absence of optical feedback (around the frequency of 2.5 GHz in this case) and the
laser never gets into unstable oscillations. The frequency corresponds to the relaxation
oscillation at the solitary mode. With the increase of the external feedback, the real
part of the highest mode at first exceeds zero and the laser becomes unstable with
a frequency of the relaxation oscillation (period-1 oscillation). Under the condition
in this figure, the C parameter at which the laser at first exhibits unstable oscillation
has a value of C = 2.8 (calculated from the external reflection of 0.4 %). The
value is slightly less than C = 3 π/2, which was estimated in the previous section,
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but the assumption in the previous section is proved to be reasonable. With further
increase of the external reflectivity, the damping rates for all the modes increase and
the laser becomes less stable. The second highest mode in the presence of optical
feedback corresponds to the external cavity mode and the frequency is about 1.5 GHz
(approximately equal to the frequency calculated from the external cavity length of
10 cm). With this mode, the laser shows higher periodic oscillations and it evolves
into chaotic oscillations through a bifurcation for the increase of optical feedback
(Ye and Ohtsubo 1998). As we recognize from the figure, the external frequency
does not have a fixed value, but shifts with the increase of the reflectivity, except for
the relaxation oscillation mode, which always almost has a fixed value.

4.2.3 Gain Reduction Due to Optical Feedback

Though direct analyses for the rate equations are essential for investigating the
dynamics of semiconductor lasers with optical feedback, the steady-state analysis is
still useful and important to obtain parameter conditions for stable and unstable laser
operations. Here, we calculate the gain in the presence of optical feedback under
a steady-state condition. We assume the same reflectivities calculated in (4.4) (the
internal reflectivity r0 and the external reflectivity r ), the effective reflectivity at the
front facet taking into account the external mirror at steady state is given by (Koelink
et al. 1992; Osmundsen and Gade 1983; Kakiuchida and Ohtsubo 1994; Katagiri and
Hara 1994)

reff = r0 + r exp(iω0τ)

1 + r0r exp(iω0τ)
(4.25)

We investigate the gain of laser oscillation in the presence of optical feedback under
the condition of a small external reflectivity r � 1. From the above equation, the
effective reflectivity is written by

reff = |reff | exp(iφr ) ≈ r0 + (1 − r2
0 )r exp(iω0τ) (4.26)

where φr is the phase of the effective reflectivity. Also, the effective reflectivity
κ = (1 − r2

0 )r/r0 defined in (4.4) is small enough. Then, the absolute value and
phase of the effective reflectivity are approximated as

|reff | = r0{1 + κ cos(ω0τ)} (4.27)

φr = κsin(ω0τ) (4.28)

The condition of laser oscillation under optical feedback is also given by the same
equation as (3.3) and reads as

r0reff exp{2ikl + (g − a)l} = 1 (4.29)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Therefore, the condition of the gain is

gc = a + 1

l
ln

(
1

r0|reff |
)

(4.30)

The difference between the gains with and without optical feedback for a small value
of κ is given by

gc − gth = −κ

l
cos(ω0τ) (4.31)

The gain in the presence of optical feedback depends on the round-trip time τ and
it changes periodically for the variation of the external cavity length. The mode
for the maximum gain is attained at ω0τ = 2mπ (m being an integer). As the
gain varies depending on the optical feedback level, we can control or suppress
the adjacent modes from the main oscillation mode by using the gain difference in
accordance with (4.31) when the external mirror is positioned close to the laser facet.
The difference of gains between successive modes in edge-emitting semiconductor
lasers is as small as 0.1cm−1 and the condition κ/ l < 0.1 is required for stable
laser oscillations (Petermann 1988). For example, with an internal reflectivity of the
laser facet of r0 = 0.56 and the internal cavity length of l = 300 μm, we obtain the
condition of the stable laser oscillation for the external amplitude reflectivity as about
r < 2 × 10−3. This value corresponds to that in regimes III to IV already discussed
in Sect. 4.1.1 and is equal to the boundary of the regimes between the stable and
unstable oscillations.

4.2.4 Linewidth in the Presence of Optical Feedback

The linewidth of laser oscillations in the presence of optical feedback is also cal-
culated in the same manner as in Sect. 3.5.6. We consider small perturbations for
the steady-state values of the variables in the presence of optical feedback and
derive the linewidth from the power spectrum for the time derivative equations for the
perturbations. The calculation is rather lengthy but straightforward, so that only the
result is given here (Tromborg et al. 1984). Using the linewidth 	v without optical
feedback, the linewidth 	vex in the presence of optical feedback is calculated as

	vex = 	v

F2 (4.32)

The coefficient F = dωth/dωs for the reduction (or the broadening) of the spectral
line width is calculated from (4.12) and given by

F = dωth

dωs
= 1 + C cos(ωsτ + tan−1α) (4.33)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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The minimum spectral linewidth is attained when the phase adjustment condition
ωsτ = − tan−1 α is satisfied. Then, the spectral linewidth at the minimum condition
is given by

	vex = 	v

(1 + C)2 (4.34)

On the other hand, the linewidth for the maximum gain condition at ωsτ = 2mπ is
calculated to be

	vex = 	v(
1 + κ τ

τin

)2 (4.35)

The linewidth with optical feedback at the maximum gain condition is always less
than the value of the solitary oscillation. These results hold for stable laser operations
even when the laser is subjected to optical feedback. However, for optical feedback
above a certain level, the laser does not oscillate at one of the modes but many
modes are simultaneously excited or even drifting or wandering among the modes
(external modes and anti-modes) occur. Such oscillations give rise to much noise
(actually chaotic fluctuations) and even result in the collapse of coherence. These
are the typical features in regimes III and IV in the preceding discussion. At this
state, the linewidth of the laser is much broadened to as large as over GHz or more.
However, the coherence of the laser recovers and the linewidth becomes narrow for
a sufficiently strong optical feedback at regime V.

4.3 Feedback from a Grating Mirror

Other than conventional optical feedback reflectors, a grating mirror is frequently
used to select the oscillation line in a semiconductor laser or stabilize the oscilla-
tion frequency. Grating optical feedback is originally applied for the stabilization of
laser oscillations, however, it sometimes induces instabilities in lasers. Before dis-
cussing instabilities, we present the theoretical background of grating feedback and
stabilization of optical frequency. For a small feedback coefficient and also small
detuning between the laser and grating frequencies, the complex field equation can
be approximately written by a similar equation of conventional optical feedback as

dE(t)

dt
= 1

2
(1− iα)Gn{n(t)−nth}E(t)+ κg

τin
E(t −τ) exp(−i	ωt + iωgτ) (4.36)

where κg is the feedback coefficient from the grating mirror and 	ω is the angular
frequency detuning given by 	ω = ωg − ω0 (ωg being the angular frequency of the
grating feedback). However, in general, the optical feedback from the grating mirror
is strong and the frequency detuning between the laser oscillation and the grating is
as large as up to several nanometers in wavelength. Therefore, the approximation in
(4.36) is only valid within a small range of grating feedback. To treat the dynamics
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of grating feedback in a strict sense, the relation of the phase between the complex
fields for the forward and backward propagations as a multiple-reflection model must
be taken into account (Pittoni et al. 2001). Instead, we here consider the static model
of the grating feedback and some stable and unstable features of the dynamics are
presented.

The effective reflectivity of the static model in grating feedback including the
laser facet and the grating mirror with multiple reflections is calculated in the same
manner as the conventional mirror in (4.25) and is given by (Binder et al. 1990; Genty
et al. 2000)

reff = |reff | exp(iφr ) = r0 + r(ω) exp(iωτ)

1 + r0r(ω) exp(iωτ)
(4.37)

The above equation has the same form as (4.25), but the external reflectivity by the
grating mirror is a function of the optical frequency v = ω/2π. The condition of
the laser oscillation can be written in the same form as (4.29) and the gain is also
given by (4.30). We here apply the steady-state analysis and calculate the conditions
for the phase and the gain. Putting the angular frequency of the laser oscillation as
ω = ωg , the phase condition in the presence of grating optical feedback reads as

2ηωgl/c + φr = 2mπ (4.38)

where m is an integer and 2ηωgl/c = 2m′π is the oscillation condition for a solitary
laser. From the relation 	(ηωg) = ωth	η+(ωg −ωth)η, the change in the round-trip
phase 	φd compared to 2mπ due to grating tuning is written by

	φd = 2l

c
{ωth	η + (ωg − ωth)η} + φr (4.39)

where 	η is expanded by the carrier density and the angular frequency as

	η = ∂η

∂n
(n − nth) + ∂η

∂ω
(ωg − ωth) (4.40)

Using the definition of the refractive index in (3.40), i.e., ηc = η− iη′, together with
the equalities

∂η

∂n
= α

∂η′

∂n
= − αc

2ωth

∂g

∂n
(4.41)

the relation between the carrier density and the gain is written as

∂η

∂n
(n − nth) = − αc

2ωth
(gg − gth) (4.42)

where gg is the gain in the presence of grating feedback. Substituting (4.40)–(4.42)
into (4.39) together with the relation in (3.8), the phase change reads as

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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	φd = −α(g − gth)l + 2ηel

c
(ωg − ωth) + φr (4.43)

Putting 	φd = 0 for a possible solution for the laser oscillation and using the
internal trip time of light τin = 2ηel/c, we obtain

ωg − ωth = 1

τin
{α(gg − gth)l − φr } (4.44)

Then, the reduction of gain in the presence of grating feedback is given by

gg − gth = 1

l
ln

1

r0|reff(ωg)| (4.45)

and the linewidth reduction factor is calculated as

Fg = dωth

dωg
= 1 + 1

τin

dφr

dωg
− α

τin

d

dωg

{
ln

1

|reff(ωg)|
}

(4.46)

The linewidth of a semiconductor laser with grating optical feedback is finally
written as

	vg = 	v

F2
g

(4.47)

where 	v is again the linewidth of the solitary laser defined by (3.114). When the
laser beam has a Gaussian profile and a certain diffraction order is selected by the
grating as a feedback light, the reflectivity is explicitly given by

r(ωg) = rg exp{− (ωg − ωG)2

	ω2
G

} (4.48)

where ωG is the selected angular frequency of the grating, rg is its reflectivity, and
	ωG is the width of the grating resolution at that angular frequency defined by
	ωG = ctanθ/w0 (θ is the incidence angle of light onto the grating and 2w0 is the
diameter of the Gaussian beam). The linewidth of a semiconductor laser is narrowed
by a grating feedback under stable oscillation. However, it is again noted that the
laser becomes unstable even by a grating feedback for a certain range of the feedback
strength, either for small or strong grating feedback.

4.4 Phase-Conjugate Feedback

A semiconductor laser is frequently used as a light source of phase-conjugate optics
(Pochi 1993). Or a phase-conjugate mirror is positively used to return light exactly
into the active region in a semiconductor laser, since the light reflected from the

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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phase-conjugate mirror is automatically fed back into the laser cavity due to the
generation of the conjugate wave without any additional optical components in the
external optical path. The phase-conjugate feedback induces instabilities in the laser
oscillation and the dynamics of the laser are not always the same as those from
the ordinary feedback reflector. The typical timescale in semiconductor lasers with
optical feedback is of the order of a nanosecond, defined by the laser relaxation oscil-
lation frequency. Therefore, typical effects of phase-conjugate feedback occur when
the phase-conjugate mirrors respond as fast as this timescale. Such phase-conjugate
mirrors are realized in quick-response Kerr media with large third-order suscepti-
bility and also quick-response photorefractive mirrors of semiconductor materials
(Agrawal and Klaus 1991; Agrawal and Gray 1992; Tartwijk et al. 1992; Langley
and Shore 1994; Gray et al. 1993, 1994; Bochove et al. 1997). On the other hand,
the dynamics for slow-response photorefractive mirrors, where the response is much
slower than the time variations of the laser dynamics, are the same as those for
ordinary plain reflection mirrors. For a slow-response photorefractive crystal, for
example a TiBaO3 crystal, the laser light automatically returns into the laser cavity,
however, the mirror produces the same dynamics of optical feedback as an ordi-
nary reflection mirror (Miltyeni et al. 1995; Liby and Statman 1996; Murakami and
Ohtsubo 1999). Only the spatial phase-conjugate characteristic is effective in such
optical feedback. In either case of fast or slow response phase-conjugate mirrors,
phase-conjugate feedback can be also applied to control the quality of oscillations
for semiconductor lasers (Gray et al. 1995; Kurz and Mukai 1996; Anderson 1999).

Figure 4.6 shows an optical setup for generating a phase-conjugate wave by
four-wave mixing from a phase-conjugate mirror. We here assume that the phase-
conjugate mirror responds much faster than the typical chaotic fluctuations of semi-
conductor lasers. The angular frequencies of the signal and pump beams at the
phase-conjugate mirror are set to be ω0 and ωp, respectively, and the generated
phase-conjugate wave has a frequency ωc = 2ωp − ω0. Therefore, we consider the
angular frequency detuning 2δ = 2(ωp − ω0) between the laser angular frequency
and that of the feedback light. Thus, the equation of the complex field E for the
semiconductor laser with phase-conjugate feedback is given by

dE(t)

dt
= 1

2
(1−iα)Gn{n(t)−nth}E(t)+ κ

τin
E∗(t−τ) exp

{
−i2δ

(
t − τ

2

)
+ iφPCM

}
(4.49)

where φPCM is the phase shift induced by the reflection at the phase-conjugate mirror.
The final term in the above equation is the effect of phase-conjugate feedback. The
rate equations for the field amplitude, the phase, and the carrier density are written as

dA(t)

dt
= 1

2
Gn{n(t) − nth}A(t) + κ

τin
A(t − τ) cos θ(t) (4.50)

dφ(t)

dt
= 1

2
αGn{n(t) − nth} − κ

τin

A(t − τ)

A(t)
sinθ(t) (4.51)
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Fig. 4.6 Optical setup in
a semiconductor laser with
phase-conjugate optical feed-
back

Laser Diode ω0

Externally-pumped PCM

r ωp

L

ωc=2ωp-ω0 ωp

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t) − n0}A2(t) (4.52)

θ(t) = 2δ
(

t − τ

2

)
+ φ(t) + φ(t − τ) + φPCM (4.53)

Equations (4.50)–(4.52) are in the same form as (4.5)–(4.7), however, (4.53) is dif-
ferent from (4.8) even for zero detuning (δ = 0). This makes the laser dynamics
of phase-conjugate feedback different from those of an ordinary optical feedback
reflector.

A typical feature of the dynamics in phase-conjugate feedback is the phase lock-
ing phenomenon. The steady-state solutions for the field, the phase, and the carrier
density at zero detuning δ = 0 are given by

A2
s = J/ed − ns/τs

Gn(ns − n0)
(4.54)

φs = 1

2
tan−1(−α) (4.55)

ns = nth − 2κ cos(2φs)

Gn
(4.56)

Namely, the phase is locked to a certain value given by (4.55), while it changes
depending on the time of the feedback loop in the conventional external reflector and
it has multiple solutions for the laser oscillations (see (4.10)). The laser for ordinary
optical feedback is very sensitive to short variations of the external mirror compat-
ible with optical wavelength. However, the phase of the laser with phase-conjugate
feedback does not show any change for such a small variation of the external mirror.
Here, we discussed the case when the phase-conjugate mirror responds immediately
after the arrival of the signal beam. The laser dynamics of semiconductor lasers
with a finite response time in a phase-conjugate mirror have also been discussed
(DeTienne et al. 1997; van der Graaf et al. 1998). For a finite response of a phase-
conjugate mirror, the equation for the complex field is given by
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dE(t)

dt
= 1

2
(1 − iα)Gn{n(t) − nth}E(t)

+ κ

τin
exp

{
−i2δ

(
t − τ

2

)} ∫ t

−∞
E∗(t ′ − τ) exp

{
−(1 − iδtm)

(t − t ′)
tm

}
dt ′

(4.57)

where tm is the time that it takes the light to penetrate the phase-conjugate mirror.
Above, we assumed a fast-response phase-conjugate mirror, but similar dynamics
are obtained for a finite-response phase-conjugate mirror.

4.5 Incoherent Feedback

Coherent optical feedback effects are important in applications of semiconductor
lasers. For a long external cavity when the feedback light has an incoherent coupling
with the original light in the laser cavity, the rate equations in (4.5)–(4.7) are still
applicable for investigating the laser dynamics. Even in incoherent optical feedback,
a laser becomes unstable and shows instability and chaos in its output. For example,
the dynamics of long external optical feedback from a reflector over the coherence
length of a semiconductor laser is treated as those for incoherent schemes. Indeed, the
coherence length of a semiconductor laser is usually several tens to a hundred meters,
since the linewidth of the laser oscillations is around several mega hertz without any
frequency stabilization. Also, polarization-rotated optical feedback under certain
conditions is sometimes treated as a system of incoherent optical feedback. In these
case, the returned laser field does not interfere with the inner oscillation field, but
acts as the perturbation for carriers and has the coupling with them. Namely, the
feedback term is introduced to the carrier density in the rate equations. Through this
interaction, the laser shows instabilities.

The model is described by the following rate equations (Otsuka and Chern 1991):

dS(t)

dt
= Gn{n(t) − nth}S(t) (4.58)

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t) − n0}{S(t) + κ ′S(t − τ)} (4.59)

where κ ′ is the feedback coefficient coupled with the carrier density and τ has the
same definition as before (the round-trip time of light in the external cavity). We do
not have to consider the phase, since the phenomena come from the incoherent origin.
The rate equations are only written by two differential equations, however, they are
coupled with each other by the delay differential term. Thus, we can expect insta-
bilities and chaos in semiconductor lasers. One of the typical features in incoherent
optical feedback is sustained pulsations in the laser output. The gain saturation term
discussed in Sect. 3.3.4 must be taken into account for such pulsations. In incoherent

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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optical feedback in semiconductor lasers, we obtain not only irregular or chaotic
pulsations in the laser output but also regular pulsings (such as period-1 oscillations)
with high-speed oscillations as fast as picoseconds (Otsuka and Chern 1991). Those
regular fast pulsing oscillations are important for the application of light sources in
high-speed optical communications.

4.6 Polarization-Rotated Optical Feedback

Generally, narrow-stripe edge-emitting semiconductor laser oscillates at a transverse
electric mode (TE mode). On the other hand, the counter polarization mode, i.e.,
transverse magnetic mode (TM mode), is not a lasing mode and is scarcely excited.
The optical gain of a TM mode is slightly less than that of a TE mode and the
laser preferredly oscillates at the TE mode due to the nonlinear effect of lasing.
However, the TM mode starts to oscillate when the TE mode is coherently cou-
pled to the TM mode through the polarization-rotated optical feedback. We consider
here the case of strong optical feedback from a crossed-polarization component,
where the orthogonal-polarization component becomes the lasing mode. Figure 4.7
shows two examples of single path systems with orthogonal-polarization optical
feedback. Figure 4.7a is a ring-loop model for orthogonal-polarization optical feed-
back, by which we can avoid multiple-reflection scheme within optical feedback
loop. The main oscillated TE mode from a narrow-stripe edge-emitting laser goes
through a polarization beam splitter and is converted into a TM mode by λ/4 and λ/2
wave-plates. Figure 4.7b is another example of orthogonal-polarization feedback sys-
tems. The TE polarized beam enters a Faraday rotator (RT), whose input polarizer is
removed, and the beam’s polarization rotates 45◦. The beam reflected by the feed-
back mirror is reinjected to the rotator, and this creates an orthogonal polarized beam
to the laser oscillation mode (i.e., TM mode). In this configuration, the reflected ver-
tical beam from the laser facet is once passed through the rotator, but it is blocked
by the polarizer (PL). Thus, a single feedback loop is guaranteed in this setup. For
both systems, the effect of orthogonal-polarization feedback can be described by the
same rate equations. For a strong crossed-polarizing optical feedback (say, for exam-
ple, 10 times larger than ordinary parallel-polarization optical feedback to induce
chaotic oscillations), the TM oscillation merges in the laser output power besides
the TE oscillation mode. In this situation, we can observe quite different dynamics
compared with ordinary parallel-polarizing optical feedback and the detail of the
dynamics will be discussed in Chap. 5 (Heil et al. 2003).

For the crossed-polarization scheme with strong optical feedback, we must use a
coherent model for the laser oscillations, since both the amplitudes of TE- and TM-
modes are time-dependent functions and coherently couple with each other. Then
the rate equations of crossed-polarization feedback system are written as

dATE(t)

dt
= 1

2
Gn,TE{n(t) − nth,TE}ATE(t) (4.60)

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 4.7 Optical setups of orthogonal polarization feedback in semiconductor laser. a Ring-loop
feedback system. PBS: polarization beam splitter, RT: Faraday rotator, λ/4 : λ/4 waveplate, λ/2 :
λ/2 waveplate, ND: neutral density filter. b Single-pass feedback system. PL: polarizer

dφTE(t)

dt
= 1

2
αGn,TE{n(t) − nth,TE} (4.61)

dATM(t)

dt
= 1

2
Gn,TM{n(t) − nth,TM}ATM(t) + κ

τin
ATE(t − τ) cos θ(t) (4.62)

dφTM(t)

dt
= 1

2
αGn,TM{n(t) − nth,TM} − κ

τin

ATE(t − τ)

ATM(t)
sinθ(t) (4.63)

dn(t)

dt
= J

ed
− n(t)

τs
− {n(t) − n0}{Gn,TE A2

TE(t) + Gn,TM A2
TM(t)} (4.64)

θ(t) = ω0τ + φTM(t) − φTE(t − τ) (4.65)

where the subscripts TE and TM represent the variables and parameters for
TE- and TM-modes. The gain Gn and the carrier density at threshold nth has differ-
ent values for the TE- and TM-modes in a strict sense. When an optical feedback
is small, the terms for the TM-mode in (4.62) and (4.63) is eliminated and we can
put A2

TM(t) ∝ A2
TE(t − τ). Then replacing Eq. (4.60) for the photon number, the

relations of (4.58) and (4.59) hold. Crossed-polarization optical feedback plays an
important role in VCSELs as will be discussed in Chap. 8. In VCSELs, typical polar-
ization dynamics are observable even for a small amount of optical feedback with
crossed-polarization.

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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4.7 Filtered Feedback

We have discussed several optical feedback schemes and formulated the equations
for the models. We can consider systematic treatments for these models (Yousefi and
Lenstra 1999; Lenstra et al. 2005; Green and Krauskopf 2006). We here formulate
the preceding optical feedback models. Also, the formulation can be extended to
other feedback models such as optoelectronic feedback models, which will be dis-
cussed in Chap. 7. Through the introduction of systematic descriptions, we can give
rise to a good perspective for universal understanding of the dynamics in feedback
phenomena in semiconductor lasers, i.e., coherent and incoherent optical feedback,
phase-conjugate feedback, grating feedback, etc. Figure 4.8 shows the notation of
the system for filtered feedback. Assuming that the laser field E and the feedback
function given by an external device F are slowly time-dependent amplitudes, the
filtered feedback system is written as

dE(t)

dt
= 1

2
(1 − iα)Gn{n(t) − nth}E(t) + κfeedback

τin
F(t) (4.66)

We assume that the emitted laser field is E(t)e−iω0t + c.c. and the feedback field
F(t)e−iω0t + c.c.. For a linearly responding device, the function is given by

F(t) =
∫ t

−∞
r(t ′ − t)E(t ′)dt (4.67)

where r(t) represents the response function of the external devices. It is noted that,
in a case of phase-conjugate optical feedback, E in (4.67) must be replaced by E∗.
The carrier density equation remains the same and is given as

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t) − n0} |E(t)|2 (4.68)

For simplicity, the response function is assumed to be given by a simple Lorentzian
frequency filter. Indeed, the spectral form of the transfer function induced by optical
feedback from a grating or Fabry-Perot filter can be given by a Lorentzian shape as
will be discussed in Chap. 5. From the Fourier transform relation, the time-dependent
response function is given as

r(t) = � exp{−�|t | − i(ωc − ω0)t} (4.69)

where ωc is the central frequency of the Lorentz spectrum and � is the half-width
at half-maximum (HWHM) of the spectrum. Under this assumption, one obtains the
differential equation for the feedback as

dF(t)

dt
= �E(t − τ) exp(iω0τ) − {� + i(ωc − ω0)}F(t) (4.70)

http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 4.8 Notation of filtered
feedback
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In general, the response does not always have a Lorentzian spectral function in
coherent optical feedback. However, a general response function can be expanded
by a linear superposition of Lorentz functions and one can generally decompose the
response function as a sum of exponential functions of the same type of the equation
r(t) = � exp{−�|t | − i(ωc − ω0)t}.

From the above discussions, we can figure out general descriptions for the systems
with filtered optical feedback. In the following, we will study the explicit forms of
the feedback function for some limiting cases. In a conventional optical feedback
without frequency filter (usual plane mirror feedback), � is assumed to be infinity.
In this limit, the differential equation is simply reduced as

F(t) = E(t − τ) exp(iω0τ). (4.71)

The expression, of course, is the same as the extra term added to the field equation
of a semiconductor laser with optical feedback in (4.2). For a very narrow filter case,
i.e., � → 0, (one of such examples is optical injection from a different laser), the
feedback function is easily calculated as

F(t) = Einj(t) exp{−i(ωm − ω0)t}. (4.72)

Injection-locking instability will be discussed in Chap. 6. The third example is optical
feedback from a four-wave mixing phase-conjugate mirror with finite time response
time and where the feedback field is detuned from the solitary laser, which was
discussed in Sect. 4.4. In a four-wave mixing phase-conjugate optical feedback, the
differential equation of the response function is modified

dF(t)

dt
= �E∗(t − τ) exp

{
−2iδ(t − τ

2
)
}

− (� + iδ)F(t), (4.73)

where δ is the detuning of the angular frequency between the four-wave mixing
pump beam ωp and the reference frequency ω0, i.e., δ = ωp − ω0. A system with
optoelectronic feedback is also written by the same feedback function as discussed
here, and the dynamics of such systems will be treated in Chap. 7.
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