
Chapter 2
Chaos in Laser Systems

Starting from the Maxwell equation in a laser medium based on the model of two-level
atoms, we derive the time-dependent Maxwell–Bloch equations for field, polariza-
tion of matter, and population inversion. Then, we prove that the three differential
equations are the same as those of Lorenz chaos. Well above the laser threshold, the
laser reaches an unstable point at a certain pump level, which is called second laser
threshold. However, only a few real lasers show chaotic dynamics with a second
threshold and most other lasers do not have the second threshold, resulting in stable
oscillations for the increase of the pump. Stable and unstable oscillations of lasers are
related to the scales of the relaxation times for the laser variables. We discuss stability
and instability of lasers based on the rate equations and present their classifications
from the stability point of view.

2.1 Laser Model and Bloch Equations

2.1.1 Laser Model in a Ring Resonator

The theory of lasers should be treated by the interaction between matter and elec-
tromagnetic field based on quantum mechanics. However, we employ here the semi-
classical treatment followed by Haken (1985) and van Tartwijk and Agrawal (1998),
which is very easy to understand. Figure 2.1 shows a ring resonator for a laser model
with two-level atoms. The model treats only unidirectional wave propagation with-
out considering the backward propagation of light, therefore the development of the
equations for the model is very easy. Actual lasers are composed of a Fabry–Perot
resonator and have forward and backward waves of light propagations in the laser
medium. A few contain a unidirectional ring resonator. The semiconductor laser,
which is the main issue of this book, is also basically a Fabry–Perot laser (Abraham
et al. 1988). Although the model is not always applicable to real lasers, the descrip-
tion for a unidirectional traveling-wave ring resonator is very simple and the theory
can be easily extended to ordinary Fabry–Perot lasers.
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The light propagation equation in the laser medium is derived first. The electric
field E (vector field) is written by a time-dependent Maxwell equation as

∇2E(z, t)− 1

c2

∂2εE(z, t)

∂t2 = μ0
∂2P(z, t)

∂t2 (2.1)

where P is the polarization vector of matter, ε is the electric permittivity tensor,
c is the speed of light in vacuum, and μ0 is the magnetic permeability in vacuum.
Assuming a uniform refractive index of the laser medium and linearly polarized
spatial modes for the x and y directions with the propagation for the z axis, the field
and the polarization of matter reduce to scalar quantities propagating only to the z
direction and (2.1) can be reduced to the following scalar equation:

∂2E(z, t)

∂z2 − η2

c2

∂2E(z, t)

∂t2 = μ0
∂2P(z, t)

∂t2 (2.2)

where η is the refractive index of the laser medium.
The field and the polarization propagate for the z direction with the wavenumber

k = ηω0/c and the angular oscillation frequency ω0, are then written as

E(z, t) = 1

2
E(z, t) exp[i(kz − ω0t)] + c.c. (2.3)

P(z, t) = 1

2
P(z, t) exp[i(kz − ω0t)] + c.c. (2.4)

Here, c.c. represents the complex conjugate of the preceding terms. E(z, t) and
P(z, t) are the amplitudes of the respective variables and are assumed to vary slowly
compared with the optical frequency (Slowly Varying Envelope Approximation:
SVEA). Neglecting the second order small infinities and substituting (2.3) and (2.4)
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into (2.2), we obtain an equation for the amplitudes

∂E(z, t)

∂z
+ η

c

∂E(z, t)

∂t
= i

k

2ε0η2 P(z, t) (2.5)

2.1.2 Light Emission and Absorption in Two-Level Atoms

Before deriving the complete form of the propagation equation, we discuss absorption
and emission of light from two-level atoms based on the semi-classical quantum
theory and, then, derive the Bloch equation. Using the Hamiltonian H0 without
perturbation for the electric field E , the Hamiltonian H of the two-level atom is
given by

H = H0 − μ · E (2.6)

where μ = er is the moment of the transition between the two levels (r and e are the
position vector and the fundamental electric charge). For the eigenstatesϕ j ( j = 1, 2)
of the two levels and the energy of each level as �ω j (� being the Planck constant),
the interaction between the two levels is written by

〈ϕ j |H0|ϕk〉 = �ω jδ jk (2.7)

where δi j represents the Kronecker delta. The angular frequency of light emitted or
absorbed in the two-level atoms is given by ωA = ω2 − ω1. In the presence of the
optical field, the quantum state |ψ〉 of the two-level atoms is written by the linear
addition of the two states as

|ψ〉 = c1(t) exp(−iω1t)|ϕ1〉 + c2(t) exp(−iω2t)|ϕ2〉 (2.8)

Substituting the above equation into the Schrödinger equation, the coefficients c1
and c2 for the two states are calculated by solving the following coupled equations:

dc1(t)

dt
= c2(t)

i�
exp(−iωAt)〈ϕ1|μ · E|ϕ2〉 (2.9)

dc2(t)

dt
= c1(t)

i�
exp(iωAt)〈ϕ2|μ · E|ϕ1〉 (2.10)

These are known as the Bloch equations (1946).
Using the number NA of atoms in the unit volume, the macroscopic polarization

of the medium is defined by
P = NA〈ψ |μ|ψ〉 (2.11)
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From (2.8), the above equation reads as

P = NA{p(t)μ12 + p∗(t)μ21} (2.12)

Then, the microscopic polarization p(t) for each atom is given by

p(t) = c∗
1(t)c2(t) exp(−iωAt) (2.13)

μi j = 〈ϕ j |μ|ϕi 〉 (2.14)

where μi j (i, j = 1, 2) is the moment of the transition from the lower to the upper
state or vice versa. Finally, substituting the above equations into (2.9) and (2.10), we
obtain the equation for the polarization of atoms

d p(t)

dt
= −iωA p(t)+ i

�
E(t)μ21w(t) (2.15)

and the distribution w(t) = |c2(t)|2 − |c1(t)|2 for the population inversion of the
two-level atoms

dw(t)

dt
= 2

i�
E(t){p∗(t)μ21 − p(t)μ12} (2.16)

2.1.3 Maxwell–Bloch Equations

Rearranging the equations obtained for the field and the polarization and considering
the time development of the population inversion in the laser medium, we derive the
complete set of laser rate equations, which are the same expressions as those of
Lorenz chaos. Differentiating (2.4) with time and using the relations of (2.12) and
(2.15), the macroscopic polarization equation is calculated as

dP(z, t)

dt
= −i(ωA −ω0)P(z, t)+ iμ2

2�
W (z, t)[E(z, t)+ E∗(z, t) exp{−2i(kz −ω0t)}]

(2.17)
where W = NAw is the macroscopic population inversion and μ = |μ12|. From
(2.16), the equation for the population inversion is given by

dW (z, t)

dt
= 1

i�
[E(z, t)P∗(z, t)− E(z, t)P(z, t) exp{2i(kz −ω0t)} − c.c.] (2.18)

Since we are concerned with slowly varying variables compared with optical fre-
quency (Rotating-Wave Approximation: RWA), we can omit the terms related to
fast oscillation terms of the angular frequency 2ω0 in (2.17) and (2.18) (Milloni and
Eberly 1988).
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We need the external pump to lase, so that we add an extra term to (2.18) for lasing
in the actual laser. Further, we add the phenomenological terms for the damping
oscillations to (2.5), (2.17), and (2.18). The resulting equations, the Maxwell–Bloch
equations, for field E , polarization P , and population inversion W are given by

∂E(z, t)

∂z
+ η

c

∂E(z, t)

∂t
= i

k

2ε0η2 P(z, t)− η

2Tphc
E(z, t) (2.19)

∂P(z, t)

∂t
= −i(ωA − ω0)P(z, t)+ iμ2

2�
E(z, t)W (z, t)− P(z, t)

T2
(2.20)

dW (z, t)

dt
= 1

i�
{E(z, t)P∗(z, t)− E∗(z, t)P(z, t)} + W0 − W (z, t)

T1
(2.21)

where W0 is the population inversion induced by the pump at the laser thresh-
old. Tph, T2, and T1 are the relaxation times of the photons (photon lifetime), the
polarization (transverse relaxation), and the population inversion (longitudinal relax-
ation), respectively. The actual laser exhibits spontaneous emission and, then, sta-
tistical Langevin noise terms are added to each equation to explain the noise effects
(Petermann 1988; Risken 1996). However, statistical noises and irregular chaotic
oscillations are of different origins and they can be discussed separately. Chaos is a
phenomenon described by deterministic equations, so that such terms are excluded
for investigating the pure laser dynamics. Noises are only introduced to account for
the effects of laser oscillations when necessary. The Langevin noises will be briefly
discussed in Chap. 3.

2.2 Lorenz–Haken Equations and Laser Thresholds

2.2.1 Lorenz–Haken Equations

We have derived the laser equations for field amplitudes and polarization, and popula-
tion inversion. In the following, we show that these equations are equivalent to Lorenz
equations, which describe a model of the convective fluid flow for the atmosphere.
Scaling the field E , the polarization P , and the population inversion W in (2.19),
(2.20), and (2.21) as E = √

ε0cη/2E, P = k/ε0η
2√ε0cη/2P , and w = σsW (with

σs = μ2ω0T2/2ε0�cη), and neglecting the term ∂E/∂z as a small mean field that
propagates in the zdirection, the Maxwell–Bloch equations are written as follows
(Haken 1975):

dE(t)

dt
= i

c

2η
P(t)− 1

2Tph
E(t) (2.22)

http://dx.doi.org/10.1007/978-3-642-30147-6_3


18 2 Chaos in Laser Systems

T2
dP(t)

dt
= −(1 − iδ)P(t)+ i E(t)w(t) (2.23)

T1
dw(t)

dt
= w0 − w(t)+ Im[E

∗
(t)P(t)]
Isat

(2.24)

where δ = (ω0 − ωA)T2 is the scaled atomic detuning and Isat = �
2cηε0/2μ2T1T2

is the saturation intensity.
In the meantime, Lorenz proposed the differential equations for three variables X ,

Y , and Z as a model of atmospheric flow (Rayleigh–Bénard configuration) and proved
the existence of chaos in the system (Lorenz 1963). Here, variables X , Y , and Z
represent circulatory fluid flow velocity, temperature difference between rising and
falling fluid regions, and distortion of vertical temperature profile, respectively. Using
chaotic parameters 
 (Prandtl number), R (Raleigh number), and β (a parameter
related to the geometrical boundary of the flow), the Lorenz equations are written as

dX (t)

dt
= −
{X (t)− Y (t)} (2.25)

dY (t)

dt
= R X (t)− Y (t)− X (t)Z(t) (2.26)

dZ(t)

dt
= −βZ(t)+ X (t)Y (t) (2.27)

Lorenz suggested that systems described by nonlinearly coupled differential equa-
tions with three variables are candidates for chaotic systems.

For the Maxwell–Bloch equations in laser model, using normalized variables as
x = √

b/Isat E, y = i(cTph/η)
√

b/Isat P , and z = (w0 − w)cTph/η, and replacing
time by t/T2 → t , the equations in (2.22)–(2.24) are written as

dx(t)

dt
= −σ {x(t)− y(t)} (2.28)

dy(t)

dt
= −(1 − iδ)y(t)+ {r − z(t)}x(t) (2.29)

dz(t)

dt
= −bz(t)+ Re[x∗(t)y(t)] (2.30)

where σ = T2/2Tph, b = T2/T1, and r = w0cTph/η. The above three equations
are almost the same as those of the Lorenz model and lasers described by two-level
atoms are essentially the same chaotic system as convective fluid in the atmospheric
flow. Therefore, (2.28)–(2.30) are called Lorenz–Haken equations. Figure 2.2 shows
an example of chaotic oscillations calculated from (2.28)–(2.30) for a parameter set
of σ = 3, δ = 0, r = 28, and b = 1. The normalized pump parameter r is well
above the second laser threshold and these parameters correspond to a bad cavity
condition for class C laser that is discussed in Sect. 2.2.3. Figure 2.2a, b is time series
of chaotic oscillation of the laser output and its chaotic attractor in the phase space
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Fig. 2.2 Lorenz–Haken
chaos of laser oscillation.
a Time evolution of laser
intensity for σ = 3, δ =
0, r = 28, and b = 1, and
b its attractor in a phase space
of the real parts of the field
and the polarization
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of the real parts of the field and the polarization, respectively. Under the condition,
the laser becomes unstable and shows chaotic oscillations. In the figure, one can see
pulsating and irregular oscillations of chaos in the laser intensity. The double scroll
trajectory is sometimes called butterfly attractor, which is commonly observed in
Lorenz-like chaos (see Appendix A.2). Thus, laser is in general categorized into a
chaotic system like Lorenz system.

2.2.2 First Laser Threshold

A laser oscillation starts when the population inversion exceeds a certain level,
namely the pumping threshold. The laser threshold can be calculated from (2.28)–
(2.30) based on the linear stability analysis. The linear stability analysis, which
applies small perturbations on the steady states of the laser variables, is frequently
used for obtaining the stability conditions. Assuming the stable solutions in (2.28)–
(2.30) as xs, ys, and zs, and applying small perturbations on the steady-state values, we
write the time developments of the variables as x(t) = xs +δx(t), y(t) = ys +δy(t),
and z(t) = zs +δz(t), where δx(t), δy(t), δz(t) are small perturbations. Substituting
these values into (2.28)–(2.30), we obtain the following differential equations for the
perturbations:
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dδx(t)

dt
= −σ {δx(t)− δy(t)} (2.31)

dδy(t)

dt
= −(1 − iδ)δy(t)− {r − δz(t)}δx(t) (2.32)

dδz(t)

dt
= −bδz(t)+ Re[δx∗(t)δy(t)] (2.33)

We can neglect the second small infinities such as δzδx and δx∗δy, thus the equations
are linearized.

When we put the time developments of the variables as δh = δh0 exp(γ t)(h =
x, y, z), the laser is stable for solutions of negative real parts of γ . On the other hand,
it is unstable for solutions of positive real parts and the solutions diverge to infinities
for the time development. Substituting the time developments δh = δh0 exp(γ t)
into (2.31)–(2.33), we obtain the following characteristic relation for the non-trivial
solutions: ∣

∣
∣
∣
∣
∣

γ + σ −σ 0
−r γ + 1 − iδ 0
0 0 γ + b

∣
∣
∣
∣
∣
∣

= 0 (2.34)

The real parts of the solutions in the above equations represent the measure for
stability or instability of the solutions and the imaginary parts denote the oscillation
frequencies of the corresponding solutions. Since b = T2/T1 is positive, one of the
solutions γ = −b is a stable solution with uniform convergence. The other solutions
are calculated by solving the following equations:

γ 2 + (σ + 1 − iδ)γ − σ(r − 1 + iδ) = 0 (2.35)

When the pumping r reaches a certain value, the laser exceeds the threshold and
laser oscillation starts. Above the threshold, the solutions of the imaginary parts
are enough to take into account. Putting the form of the solutions as γ = i and
substituting it into (2.35), we obtain the laser threshold from the conditions having
zero values for the real and imaginary parts of (2.35) as

r (1)th = 1 + δ2

(σ + 1)2
(2.36)

For the laser oscillation, there is an accompanying frequency ν = /2π that cor-
responds to the solution of the imaginary part for the characteristic equation. Using
the threshold, the frequency is given by

νR = σ

2π

√

r (1)th − 1 (2.37)
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The frequency νR is known as the relaxation oscillation frequency. When the detuning
δ is zero, the threshold is r (1)th = 1 or w0 = η/cTph, as expected. The extra term in the
threshold in (2.36) is the increase of the threshold, which compensates the loss due
to the detuning. As we discuss in the following section, there is another threshold
that is called second laser threshold. Therefore, r (1)th is called first laser threshold.

2.2.3 Second Laser Threshold

Laser oscillation starts above the first threshold and shows a stable output power at a
certain pump. Here, we again apply linear stability analysis for the laser operation. As
we are considering the oscillation above the threshold, the field and the polarization
vary with time at the same optical frequency for the steady-state values of xs, ys,
and zs. Assuming the difference of the angular detuning frequency �ω between the
laser oscillation and the internal cavity frequencies and the phase fluctuation φs of
the complex field, we put the forms of the steady-state solutions as

xs = x0 exp{−i(�ωst + φs)} (2.38)

ys = y0 exp(−i�ωst) (2.39)

zs = z0 (2.40)

where x0 = √
bz0, y0 =

√

r (1)th bz0, z0 = r − r (1)th ,�ωs = −δσ/(σ + 1), and
tanφs = δ/(σ + 1). The laser output power is given by the square of x0 and reads

x2
0 = b(r − r (1)th ) (2.41)

This is the well-known result that the laser output power linearly increases with the
increase of the pump r well above the threshold r (1)th .

For a pump below the laser threshold, the laser does not reach laser oscillation
and it only exhibits a faint light output due to spontaneous emission, thus the laser
is also under another stable condition. For the increase of the pump r over the
threshold, whether the laser output power increases with the increase of the pump
or not? In actual fact, there are nonlinear effects, such as saturation of gains of the
laser material, to limit the optical output power. The effects also induce the change
of laser parameter values describing the laser rate equations. Of course, what we
are considering is not such effects, but the nonlinear effects intrinsically involved
in the laser rate equations in (2.28)–(2.30). Here, consider the unstable phenomena
induced by the increase of the pump r for these equations. For this purpose, we again
employ the linear stability analysis for (2.38)–(2.40) near the steady-state values
for the variables. The procedure is almost the same as the previous calculations.
For simplicity, we calculate the stability solutions for the condition δ = 0 (zero
detuning condition). After some calculations, the same as the derivation for (2.35),
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the characteristic equation reads as

γ 3 + a2γ
2 + a1γ + a0 = 0 (2.42)

where a2 = σ + b + 1, a1 = b(σ + r), and a0 = 2bσ(r − 1). The stability solutions
are calculated by solving the above equation.

At the threshold of the stable solution, the variable γ is purely imaginary, and it
is assumed as γ = i. From the comparison between the real and imaginary parts
for the solution, we obtain the threshold as

r (2)th = σ(σ + b + 3)

σ − b − 1
(2.43)

Over the pump r exceeding the threshold r (2)th , the laser gets unstable states and
exhibits irregular oscillations of chaos via Hopf bifurcations (see Appendix A.1).
In actual evolution processes for bifurcations, there are various routes to chaos, for
example, chaos follows immediately after period-1 oscillation (quasi-period doubling
bifurcation). The other example is that instability to chaos follows after intermittent
oscillations like spiky irregular oscillations. The details of routes to chaos in semi-
conductor lasers will be demonstrated in the following chapters. The threshold r (2)th is

called second threshold to distinguish it from the first laser threshold r (1)th . For exam-
ple, for the conditions of T2 � T1, b ≈ 0, and σ = 2(T2 = 4Tph), the threshold

value is equal to r (2)th = 10 and it is much higher than the first threshold r (1)th = 1
without detuning. Actual unstable lasers have the second threshold values around
tens to one hundred. We already presented such an example in Fig. 2.2.

The typical frequency of the irregular pulsing can also be calculated from the
characteristic equation for the pure imaginary part value of the variable γ , and it is
given by

νR2 = 1

2π

√

b(σ + r (2)th ) (2.44)

For the existence of the second threshold, the condition of σ > b+1 must be satisfied
from (2.43). This is known as the bad-cavity condition of a laser that gives rise to
unstable laser oscillations. The bad-cavity condition is rewritten by using the actual
time constants as follows:

1

2Tph
>

1

T2
+ 1

T1
(2.45)

Namely, the bad-cavity of a laser oscillation is a lossy and dissipative system for
photons having a low quality factor Q of the resonator. Further discussion of the
bad-cavity conditions and instabilities above the second laser threshold can be found
in van Tartwijk and Agrawal (1998). Equations (2.43) and (2.44) were derived for
the condition of zero frequency detuning δ = 0. For nonzero detuning δ = 0, the
analysis becomes much more complex, but the expression for this case has been
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given and almost the same order of the second laser threshold r (2)th has been obtained
(Mandel and Zeghlache 1983; Zeghlache and Mandel 1985; Ning and Haken 1990).

2.3 Classifications of Lasers

2.3.1 Classes of Lasers

We have taken into consideration all of the time constants for the field, the polarization
of matter, and the population inversion in the laser rate equations. The second laser
threshold has been calculated for the inclusions of these parameters. However, lasers
do not always show instabilities and chaotic behaviors with increased pumping, and
most lasers are indeed stable. Only few lasers emitting infrared lines exhibit chaotic
oscillations. For stability and instability of lasers, we have assumed the model of a
ring laser with two-level atoms. On the other hand, most lasers in practical use are
modeled by three- or four-level atoms. Therefore, lasers must be modeled by these
in a strict sense and some modifications may be required for the above derivations.
However, the results derived for the two-level atoms can here be extended to three-
or four-level atoms and still be applicable for the discussion of the stability and
instability for practical lasers.

Even for the same material, the laser may have several oscillation lines. In such a
case, the laser has a different gain for each line and has different time constants for
the relaxation oscillations depending on the oscillation frequency. Therefore, a laser
with a certain material may be stable for a certain oscillation line and have no second
threshold, while it may be unstable and have the second threshold for another line.
The stability and instability of lasers intrinsically involved in laser rate equations are
classified according to the scales of time constants for the relaxation oscillations Tph,
T2, and T1 introduced in Sect. 2.2.1. Namely, one or two of the time constants among
the three in the differential equations may be adiabatically eliminated and one or two
of the laser rate equations are enough to describe actual laser operations. Depending
on the scales of the time constants, the stabilities of lasers are classified into the
following three classes; class A, B, and C lasers (Arecchi et al. 1984; Tredicce et al.
1985).

2.3.2 Class C Lasers

When the time constants of the relaxations are of the same order, we must consider
all of the Lorenz–Haken differential equations. As already discussed, the laser oscil-
lation starts at the first threshold with stable light output for a certain pump and it
reaches the second laser threshold for the increase of the pump. Over pumping above
the second threshold in the bad-cavity condition with low Q factor, the laser shows



24 2 Chaos in Laser Systems

0

70

0 16

0

70

0 16

0 5 10

f [MHz]

f [MHz]

S [dB]

S [dB]

t [µs]

(a)

(b)

(c)

(d)

(e)

Fig. 2.3 Experimentally observed chaotic time series in an infrared He–Ne laser. Stable oscillation
state a to chaotic state e. One of the mirrors in the laser cavity is tilted and the bad-cavity condition
is realized [after Weiss et al. (1983); © 1983 APS]

unstable oscillation like irregular pulsations and chaotic oscillations. According to
the classifications of laser operations by Arecchi et al. (1984), these lasers are called
class C lasers. Class C lasers are generally infrared gas lasers and far-infrared lasers
are almost classified into class C. This is originated from the fact that the three time
constants of the relaxation oscillations for the field, the polarization of matter, and
the population inversion tend to be of the same order. Examples of class C lasers are
NH3 lasers (Weiss et al. 1985; Hogenboom et al. 1985), Ne–Xe lasers (3.51 µm line)
(Casperson 1978; Abraham et al. 1985), and He–Ne lasers at 3.39 µm line (Weiss
and King 1982; Weiss et al. 1983). Though He–Ne lasers operating at infrared lines
are class C lasers, He–Ne lasers at visible oscillations are categorized into a different
class because the constants of the polarization and the population inversion have
different timescales from those of the infrared operations. In general, these class C
lasers do not have any commercial application.

Figure 2.3 is an example of experimentally observed chaotic waveforms in an
infrared He–Ne laser at 3.39 µm oscillation (Weiss et al. 1983). The bad-cavity
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Fig. 2.4 Experimentally
observed optical power spectra
in an infrared He–Ne laser for
period-doubling route to
chaos. Tilting of one of the
resonator mirrors leads to
oscillations to a period-1, b
period-2, c period-4, d period-
8, and e chaos [after Weiss
et al. (1983); © 1983 APS]
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condition was realized by tilting the angle of one of the mirrors in the laser resonator.
A stable laser state (Fig. 2.3a) evolves into unstable oscillations (Fig. 2.3b–d) to
chaotic state (Fig. 2.3e) with the increase of the mirror tilting angle. Figure 2.4 shows
the oscillation spectra of the laser corresponding to period doubling bifurcations to
chaos for the increase of the mirror tilting angle. Figure 2.5 is another experimental
example of chaos showing pulsation instability in a Xe laser at 3.51 µm oscilla-
tion (Casperson 1978). With increasing pump, period-1 pulsation at first appears in
Fig. 2.5a and the laser switches to period-2 pulsation in Fig. 2.5b. Thus, routes to
chaos are not unique and depend on systems and parameters.
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Fig. 2.5 Experimental plots of pulsation instabilities in an Xe laser at 3.51 µm oscillation for a
period-1 pulsation at a discharge current of 40 mA and b period-2 pulsations at a discharge current
of 50 mA [after Casperson (1978); © 1978 IEEE]

2.3.3 Class B Lasers

The time constant T2 of the polarization of matter (transverse relaxation) is small
enough compared with the other time constants, i.e., Tph, T1 � T2, the differen-
tial equation for the polarization is adiabatically eliminated and we obtain for the
representation of the polarization in (2.29) (Haken 1985)

y = r − z

1 − iδ
x (2.46)

Then, the laser rate equations can be described by the two differential equations for
the field x and the population inversion z. These lasers are called class B lasers and
they are stable in nature, since the lasers have the first threshold but do not have the
second threshold. The electric field is complex and the complex field equation can
be split into two differential equations, the amplitude and phase equations. However,
the phase equation has no effect on other variables, so that these systems can still be
characterized by two differential equations. Therefore, class B lasers are intrinsically
stable.

However, they are easily destabilized by the introduction of external perturba-
tions, resulting in the addition of extra degrees of freedom. If the equations for the
field amplitude and the phase couple with each other through a perturbation, the laser
must be described by the rate equations coupled with three variables. A laser coupled
with three variables becomes a chaotic system and shows instabilities. Examples of
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external perturbations are modulation for the accessible laser parameters, external
optical injection, and optical self-feedback from external optical components. Semi-
conductor laser, which is the main topic of this book, is classified into class B laser, as
discussed later. Indeed, semiconductor lasers are easily destabilized and show chaotic
behaviors by external perturbations, such as external optical feedback (van Tartwijk
and Agrawal 1998; Ohtsubo 2002). One of the typical features of class B lasers is
a relaxation oscillation of the laser output that is observed for a step-time response
when the population inversion does not follow the photon decay rate, i.e., T1 > Tph.
Many lasers are classified into class B lasers and other examples are CO2 lasers and
solid-state lasers including fiber lasers. It is noted that CO2 lasers are gas lasers and
have oscillation lines in infrared region of wavelength around 9.4–10.6µm, however
they are stable class B lasers since the oscillation mechanism is different from those
of common class C lasers. The oscillations of CO2 lasers are performed through
the excitations of molecular vibrations, which is different from the mechanism of
two-level atoms for class C lasers discussed in the previous section. Class B lasers
are important and widely used in practical applications.

2.3.4 Class A Lasers

When the lifetime of photons in a laser medium is large enough compared with the
other time constants of the relaxations, i.e., Tph � T1, T2, the differential equations
for the polarization of matter and the population inversion are adiabatically elimi-
nated. In the same manner as class B lasers, the adiabatical relation for the polarization
in (2.46) also holds and, in addition, the steady-state population inversion is given
by (Haken 1985)

z = 1

b
Re[x∗y] (2.47)

Then, the laser oscillation is only described by the differential equation for the field.
Lasers satisfying the relations are called class A lasers and they are the most stable
lasers with a high Q factor among the three classes. Even for class A lasers, they may
be destabilized and show chaotic behaviors by external perturbations with two or
more extra degrees of freedom as described in class B lasers. Visible He–Ne lasers,
Ar-ion lasers, and dye lasers are examples of class A lasers.
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