
Chapter 12
Chaos Synchronization in Semiconductor Lasers

Another important application of chaotic semiconductor lasers is chaotic secure
communications. The key to chaotic communications is chaos synchronization
between two nonlinear systems. If two nonlinear chaotic systems operate indepen-
dently, the two systems never show the same output because of the sensitivity of
chaos for the initial conditions. However, when a small portion of a chaotic output
from one nonlinear system is sent to the other, the two systems synchronize with each
other and show the same output under certain conditions of the system parameters.
This scheme is called chaos synchronization. It is very surprising that two chaotic
systems share the same waveform, since chaos is sensitive to the initial conditions
and its future is unpredictable. In this chapter, we overview chaos synchronization in
chaotic semiconductor laser systems for the introduction of the secure chaos com-
munications discussed in Chap. 13.

12.1 Concept of Chaos Synchronization

12.1.1 Chaos Synchronization

We cannot expect the same chaotic oscillation for two nonlinear systems even when
they are the same configuration having the same parameter values, because chaos
has strict sensitivity to the initial conditions of the parameters. For example, two
chaotic systems with the same parameters may at first output similar signals when
the difference between the initial conditions is small enough in the ordinary sense.
Then, the two signals show a small difference with lapse of time and, then, the
difference rapidly increases for further time development. Finally, the two systems
behave in a completely different manner in as far as the difference between the initial
conditions is not zero. However, there is a possibility of showing the same output
in two nonlinear systems if the two systems possess a common subsystem with the
same parameter values, otherwise if a small amount of the signal from one of the
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Fig. 12.1 General idea of
chaos synchronization of
a one-to-one transmitter–
receiver system
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two systems is transmitted to the other. Under this condition, the systems output
completely the same chaotic signal. The scheme is called “chaos synchronization.”

The idea of chaos synchronization between two nonlinear systems was proposed
by Pecora and Carroll in 1990 (Pecora and Carroll 1990, 1991). They used a Lorenz
system with three variables for the demonstration. In their system, an output from
one of the variables as a subsystem in a transmitter was sent to a receiver. Then,
they showed chaotic synchronization between the transmitter and receiver systems.
After their proposal, synchronization phenomena in various chaotic systems includ-
ing lasers have been reported. The idea and principle of chaos synchronization are
described in Appendix A.4. Chaos synchronization between two nonlinear systems
is not self-evident and this is a real surprise, since we cannot expect the same output
even for the same two chaotic systems as far as the two systems are isolated from each
other. The origin of chaos synchronization has not been fully understood yet and the
theoretical background has not been established. However, chaos synchronization has
been observed by numerical simulations and experiments in various nonlinear sys-
tems. In laser systems, synchronization of chaos was experimentally demonstrated in
CO2 lasers (Sugawara et al. 1994) and solid-state lasers (Roy and Thornburg 1994).
After that, many theoretical and experimental researches for chaos synchronization
in various laser systems including semiconductor lasers were published.

Here, we show the general idea of chaos synchronization. Figure 12.1 is a one-
to-one system of chaos synchronization. The receiver of chaotic system 2 consists of
the same configuration as chaotic transmitter system 1 and also has the same device
characteristics as those of system 1. A small portion of the transmitter output is sent
to the receiver. In Fig. 12.1a, the transmitter signal is unidirectionally coupled to the
receiver and the chaotic output from the receiver synchronizes with the transmitter
under an appropriate condition. In laser systems, an optical isolator is usually used to
realize unidirectional coupling and the laser output from the transmitter is optically
injected to the receiver laser. As a matter of fact, transmitter and receiver lasers
may not be the same types as chaotic light sources, or even the transmitter may
not be the same kind of laser as the receiver laser. As far as the transmitter can
simulate and transmit a possible chaotic waveform of the receiver laser with the same
optical frequency, successful chaos synchronization can be achieved. Indeed, a virtual
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Fig. 12.2 Multiple transmitter–receiver systems of chaos synchronization

chaotic waveform numerically simulated by a computer is also used as a transmitter
signal to a real receiver laser for chaos synchronization. Chaos synchronization is
realized for a negative value of the maximum conditional Lyapunov exponent for
the difference between the transmitter and receiver signals. Figure 12.1b is a chaos
synchronization system of the mutual coupling of signals. Unidirectional systems
are mainly used for secure chaotic data communications, however, we can perform
simultaneous data transmissions using mutual coupling systems and the properties
of those systems have been studied as a chaos synchronization scheme.

Chaos synchronization is attained not only in one-to-one transmitter–receiver sys-
tems but also in the multiple transmitter–receiver systems shown in Fig. 12.2. In this
system, all the transmitters and receivers may be the same system, but each transmit-
ter laser exhibits different chaotic output from the others. In this case, the parameter
values for each pair of the transmitter and receiver systems must be the same and
they become the key for chaos synchronization. Otherwise, a transmitter is a different
system from each other and one of the receivers may play a counterpart to the trans-
mitter. Chaotic signals from the transmitters are sent through a single transmission
line and broadcasted to each receiver. In the receiver systems, each chaotic sig-
nal from the transmitters only synchronizes with the corresponding receiver having
the same system and device characteristics. Indeed, chaos synchronization has been
demonstrated in a few of multiple transmitter–receiver systems (Liu and Davis 2000).
Other examples are one-to-many and many-to-one optical chaos synchronization and
communication systems (Zhang et al. 2008). They numerically demonstrated chaos
synchronization in such systems and successfully recovered original messages both
for one-to-many and many-to-one systems.

In the proposal of chaos synchronization by Pecora and Carroll, the system is
divided into two subsystems. In their model, the transmitter has two subsystems,
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while the receiver has only one of the two subsystems (for details, the reader is
referred to Appendix A.4). The chaotic signal from one of the subsystems is trans-
mitted to the receiver. Then, the receiver conforms the complete chaotic system
by the signal transmission and the receiver synchronizes with the transmitter under
an appropriate condition of the parameters. The idea of chaos synchronization was
immediately applied in real electronic circuit systems after the proposal by Pecora and
Carroll (Cuomo et al. 1993). However, the method is not straightforwardly applicable
to laser systems, since we cannot divide the dynamics of laser variables into subsys-
tems.

Chaos synchronization strategies developed for most nonlinear systems, such as
nonlinear circuits, cannot be directly implemented on semiconductor lasers because
of a number of significant differences between semiconductor lasers and other non-
linear dynamical systems. The differences are as follows:

1. A semiconductor laser is an integrated entity that cannot be easily decomposed
into subsystems.

2. For a given laser, it is not possible to arbitrarily adjust its intrinsic dynamical
parameters and they can be only varied through their linear dependence on the
laser power by varying the bias point of the laser.

3. One of its dynamical variables, the carrier density, is not directly accessible exter-
nally and, therefore, cannot be used to couple the transmitter and receiver lasers
for synchronization.

4. When the output laser field of the transmitter laser is transmitted and coupled to
the receiver laser, both its magnitude and phase are transmitted and coupled. It is
not possible to only transmit and couple the magnitude but not the phase, or only
the phase but not the magnitude.

By using a driving signal to link two chaotic systems, synchronization can be
achieved if the difference between the outputs of the two systems possesses a stable
fixed point with zero value. As an alternative technique in laser systems, the differ-
ence between certain variables in transmitter and receiver lasers can be used as con-
trol parameters for synchronization (Annovazzi-Lodi et al. 1996). In semiconductor
lasers, master–slave configurations are frequently used as chaos synchronization sys-
tems suitable for chaotic secure communications. The schemes of optical feedback,
optical injection, and optoelectronic feedback are used as typical chaotic generators
in semiconductor lasers. Chaos synchronization in particular systems is discussed
in the subsequent sections in this chapter. They are mostly numerical demonstra-
tions of chaos synchronization, however, several experimental results have been
reported.

12.1.2 Generalized and Complete Chaos Synchronization

There are two different origins of chaos synchronization in nonlinear delay dif-
ferential systems, such as in semiconductor laser systems of optical feedback
and optoelectronic feedback. One is synchronization of chaotic signals based on



12.1 Concept of Chaos Synchronization 419

optical injection phenomena. The other is complete chaos synchronization in which
the two systems can be written by a set of the identical rate equations in a mathemat-
ical sense. We will discuss the two synchronization schemes in this section. In the
ordinary sense, chaos synchronization occurs immediately after a receiver receives
a chaotic signal from a transmitter when the transmitter and receiver are divided into
several subsystems (see Appendix A.4). In this case, the time lag of the signal in the
receiver system is defined by time τc, which is the transmission time of signal from
the transmitter to the receiver. Namely, using the chaotic signals y(t) and y′(t) from
the transmitter and receiver systems, respectively, the relation

y′(t) = K py(t − τc) (12.1)

is obtained (Ohtsubo 2002a). In (12.1), K p is the proportional coefficient, and y and
y′ are essentially vector variables. In laser systems, this type of chaos synchroniza-
tion is achieved by optical injection locking and amplification of signals from the
transmitter to the receiver. This is the well-known phenomenon of injection locking
in laser systems. The receiver output is usually an amplified signal of the transmitted
signal (the gain is not necessary larger than unity). Therefore, an excellent synchro-
nized waveform is obtained in the receiver system when the amplification is faithfully
achieved. However, distortions are usually introduced to the injection-locked wave-
forms and the correlation between the transmitter and receiver outputs is less than
unity. This scheme is called generalized synchronization.

On the other hand, there exists a different scheme of chaos synchronization from
the generalized one in delay differential systems. We assume a system like a delay
differential system such as optical feedback or optoelectronic feedback in a semi-
conductor laser. The differential equation in the transmitter output y(t) is described
by

dy(t)

dt
= f (y(t),µp) + κp0y(t − τ) (12.2)

where µp is the vector of chaos parameters, κp0 is the feedback coefficient in the
system, τ is the delay time, and f is the nonlinear function describing the delay
differential system. Assuming that a small portion of the transmitter signal is sent to
the receiver, the receiver equation is written by

dy′(t)
dt

= f (y′(t),µp) + κp1y′(t − τ) + κp2y(t − τc) (12.3)

where κp1 is the feedback coefficient in the receiver system, κp2 is the coupling
coefficient between the transmitter and the receiver, τc is again the transmission time
of the signal from the transmitter to the receiver. From a comparison between (12.2)
and (12.3), we obtain the condition for the equivalent forms of the two differential
equations as

y′(t) = y(t − �τ) (12.4)
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Fig. 12.3 Time lag between
transmitter and receiver
waveforms in chaos syn-
chronization. Time lags a in
generalized chaos synchro-
nization and b in complete
chaos synchronization. τc is
the transmission time of the
signal from the transmitter
to the receiver and τ is the
optical feedback time in the
transmitter and receiver sys-
tems
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�t = τc − τ (12.5)

κp0 = κp1 + κp2 (12.6)

Under the above conditions, the receiver system is mathematically described by the
equivalent equation such as that of the transmitter system and the receiver generates
completely the same output as the transmitter (not an amplified signal but a complete
copy of the transmitter signal), since the two systems posses the same seeding signal
through the coupling. Therefore, the synchronization scheme is called complete chaos
synchronization and it is distinguished from generalized synchronization of chaotic
oscillations. The above examples are of chaos synchronization for unidirectionally
coupled nonlinear systems. However, we can consider mutually coupled systems for
chaos synchronization. In that case, there are also two types of chaos synchronization,
i.e., generalized and complete schemes. We will discuss chaos synchronization in
mutually coupled laser systems later in this chapter.
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The difference between the complete and generalized synchronization is clear
from (12.1) and (12.4) and the scheme of chaos synchronization in a particular sys-
tem is easily distinguished by investigating the time lag between the transmitter and
receiver outputs. Figure 12.3 shows the relations of time lags in the two schemes. The
receiver outputs a synchronized waveform immediately after it receives the transmit-
ter signal in generalized chaos synchronization in Fig. 12.3a. Therefore, the time lag
between the two outputs is τc. On the other hand, a synchronous chaotic signal in the
receiver is generated in advance to receiving the transmitter signal for complete chaos
synchronization as shown in Fig. 12.3b. The time lag �τ in the complete chaos syn-
chronization is less than the signal transmission between the transmitter and receiver
systems. Complete chaos synchronization is sometimes called anticipating chaos
synchronization due to its origin (Masoller 2001). However, it has been proved that
anticipating chaos synchronization is not a unique phenomenon in delay differen-
tial systems, but also it is universally observed in differential systems. Indeed, Voss
(2000) demonstrated anticipating chaos synchronization in a Rössler system that is
described by a set of simple differential equations. Further, it is proved that antici-
pating chaos synchronization is not equivalent to complete chaos synchronization.
Kusumoto and Ohtsubo (2003) observed anticipating chaos synchronization based
on the injection-locking phenomenon in semiconductor lasers with optical feedback.
The investigation of chaos synchronization for the mathematical and physical back-
grounds is still undergoing and many subjects are left for future study.

12.2 Theory of Chaos Synchronization in Semiconductor
Lasers with Optical Feedback

12.2.1 Model of Synchronization Systems

There are two schemes of chaos synchronization in delay differential systems. A
semiconductor laser subjected to optical feedback is a delay differential system and
different dynamics like the Lorenz system are observed (see Appendix A.4). The
systems of semiconductor lasers with optical feedback have been frequently used
for chaotic generators in chaos synchronization and numerous reports have been
published (Ohtsubo 2002b; Uchida et al. 2005 and the references therein). In the
following, detailed explanations of synchronization in chaotic semiconductor lasers
subjected to optical feedback are given. Examples for some other systems will be
presented later.

In laser systems, a small portion of the output from one of variables (usually
the laser output power or the complex field) is sent to the receiver laser instead
of sharing common variables. Chaos synchronization is very sensitive to parameter
mismatches between the transmitter and receiver systems. For example, even for
semiconductor lasers coming from the same wafer, we cannot expect exactly the
same oscillation frequencies for the transmitter and receiver lasers under the same
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Fig. 12.4 Schematic diagram
of chaos synchronization sys-
tems in semiconductor lasers
with optical feedback. a Sym-
metric unidirectional coupling
system, b asymmetric uni-
directional coupling system,
and c mutual coupling system.
LD T: transmitter laser, LD R:
receiver laser
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bias injection current. That is in itself a reason why chaos synchronization is difficult
to achieve in laser systems. However, laser frequency is easily tuned by changing the
bias injection current and a slave laser frequency can be locked to a master laser by
optical injection within a certain range of the frequency detuning. Therefore, we can
achieve robust chaos synchronization using the frequency-pulling effect by carefully
choosing the parameter conditions.

Chaos synchronization is achieved not only in a master–slave configuration of
transmitter and receiver systems but also in a mutual coupling system (Fujino and
Ohtsubo 2001; Heil et al. 2001). We can see complicated dynamics in mutual cou-
pling systems compared with those in unidirectionally coupled systems. A few stud-
ies have been reported for chaos synchronization in mutual coupling systems and
the study is still undergoing. We can still apply mutual coupling systems to chaotic
secure communications, but some modifications of data transfers between transmit-
ter and receiver lasers from that of unidirectional systems are necessary. The topic is
treated in Chap. 13. As other applications of mutually coupled systems, they are used
for phase locking and control of laser arrays (Winful and Rahman 1990; Sauer and
Kaiser 1998; Garcia-Ojalvo et al. 1999). Chaos synchronization has been extensively
studied in class B lasers and many experimental results have been reported. The semi-
conductor laser with optical feedback is the excellent model of chaos synchronization
both for the theoretical and experimental studies.

http://dx.doi.org/10.1007/978-3-642-30147-6_13
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We here discuss systems for chaos synchronization in semiconductor lasers with
optical feedback (Ohtsubo 2002a). Figure 12.4 schematically shows the chaos syn-
chronization systems. Figure 12.4a shows a unidirectional coupling system in which
the receiver laser is isolated from the transmitter laser by an optical isolator. Both the
transmitter and receiver systems have optical feedback loops and this configuration
is called a closed-loop system. In Fig. 12.4b, the system is also a unidirectional cou-
pling, but the receiver system does not have a feedback loop. This asymmetric system
is called an open-loop system. The robustness and accuracy of chaos synchronization
in the open-loop system are quite different from those in the closed-loop system. In
chaos synchronization, the transmitter must output a chaotic signal. However, the
receiver systems may or may not be chaotic without receiving the transmitter signal.
Chaos synchronization is achieved by an injection of a chaotic signal. As a matter of
fact, Fig. 12.4b shows a special case of Fig. 12.4a. Indeed, the system in Fig. 12.4a
reduces to the system in Fig. 12.4b, when we put the reflectivity of the external
reflector equal to zero. We mostly discuss chaos synchronization for the closed-loop
configuration of Fig. 12.4a, but the open-loop system is implicitly included in the
discussion. Figure 12.4c is a mutual coupling system. Here, the isolator in Fig. 12.4a
is removed. Then, each laser behaves as a transmitter and a receiver. In this system,
each laser outputs different chaotic signals or steady-state signals before coupling.
After the coupling, the two lasers output the same chaotic signal. In mutual coupling
systems, chaotic oscillations, and chaos synchronization are also possible without
the use of external mirrors. Namely, chaotic oscillations both for transmitter and
receiver lasers can be attained when the two lasers directly couple with each other
and one of the lasers plays a kind of a role for external mirror to the counterpart
laser. Also an open-loop system is another option for mutual coupling configuration.
There are also two synchronization schemes (complete and generalized schemes) in
the mutual coupling case.

12.2.2 Rate Equations in Unidirectional Coupling Systems

In this section, we investigate the theoretical treatment for chaos synchronization in
the unidirectional coupling closed-loop system shown in Fig. 12.4a. The rate equa-
tions for the transmitter and receiver lasers are written by the same equations as
those for the model discussed in Chap. 4 except for the light transmission term in the
receiver rate equations (Ahlers et al. 1998). The rate equations for the transmitter
laser are written by

dAT(t)

dt
= 1

2
Gn,T{nT(t) − nth,T}AT(t) + κT

τin,T
AT(t − τT) cos θT(t) (12.7)

dφT(t)

dt
= 1

2
αTGn,T{nm(t) − nth,T} − κT

τin,T

AT(t − τT)

AT(t)
sin θPT(t) (12.8)

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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dnT(t)

dt
= JT

ed
− nT(t)

τs,T
− Gn,T{nT(t) − n0,T}A2

T(t) (12.9)

θT(t) = ω0,Tτ + φT(t) − φT(t − τT) (12.10)

where subscript T represents the transmitter laser. The rate equations for the receiver
laser read

dAR(t)

dt
= 1

2
Gn,R{nR(t) − nth,R}AR(t)

+ κR

τin,R
AR(t − τR) cos θR(t) + κcp

τin,R
AT(t − τc) cos ξc(t) (12.11)

dφR(t)

dt
= 1

2
αRGn,R{nR(t) − nth,R} − κR

τin,R

AR(t − τR)

AR(t)
sin θR(t)

− κcp

τin,R

AT (t − τc)

AR(t)
sin ξc(t) (12.12)

dnR(t)

dt
= JR

ed
− nR(t)

τs,R
− Gn,R{nR(t) − n0,R}E2

R(t) (12.13)

θR(t) = ω0,Rτ + φR(t) − φR(t − τR) (12.14)

ξc(t) = ω0,Tτc + φR(t) − φT(t − τc) + �ωt (12.15)

where subscript R denotes the receiver lasers, κcp is the injection rate from the
transmitter to the receiver laser, and �ω is the angular frequency detuning. The last
terms in (12.11) and (12.12) are the effect of the chaotic signal from the transmitter.
When the external feedback is zero in the receiver system, i.e., κR = 0, the model
reduces to the open-loop system in Fig. 12.4b.

12.2.3 Generalized Chaos Synchronization

One of the origins of chaos synchronization in a semiconductor laser with optical
feedback is the injection-locking and amplification phenomenon in a system modeled
by delay differential equations. The condition for complete chaos synchronization,
which is discussed in the next subsection, is very strict and most cases of chaos
synchronization observed in lasers are based on the injection-locking and amplifica-
tion phenomenon. Therefore, experimental results of chaos synchronization in laser
systems were mostly for generalized chaos synchronization. We here consider the
condition for the generalized chaos synchronization in a system of a semiconduc-
tor laser with optical feedback. For generalized chaos synchronization, the average
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optical power injected to the receiver laser is large, as much as several tens of percent
in amplitude (several percent in intensity), while it is much less than several percents
for the case of complete chaos synchronization. In generalized chaos synchroniza-
tion, the relation between the field amplitudes for the transmitter and receiver lasers
is given by

AR(t) ∝ AT(t − τc) (12.16)

Namely, the synchronized chaotic output in the receiver is generated upon receiving
the transmitter signal. Therefore, the time lag between the outputs of the transmitter
and receiver lasers is equal to the transmission time τc.

12.2.4 Complete Chaos Synchronization

Next, we consider the conditions where the two systems of the transmitter and receiver
lasers are written by the identical set of equations, namely, the conditions for com-
plete chaos synchronization. The model of chaotic generators for the transmitter and
the receiver is also a semiconductor laser with optical feedback. We assume that
the device parameters in the two lasers are the same and the two lasers oscillate
at the same frequency, i.e., zero frequency detuning �ω = ω0,m − ω0,s = 0. Fur-
ther, the lasers are biased at the same injection current and the external feedback
conditions are also the same for the transmitter and receiver lasers, except for dif-
ferent values of the feedback coefficients, κT and κR. Under these assumptions, the
conditions for complete chaos synchronization read (Ohtsubo 2002b)

AR(t) = AT(t − �t) (12.17)

φR(t) = φT(t − �t) − ω0�t (mod 2π) (12.18)

nR(t) = nT(t − �t) (12.19)

κR = κT + ηc (12.20)

�t = τc − τ (12.21)

The delay differential Eqs. (12.11)–(12.13) in the receiver laser have completely
identical forms to those in (12.7)–(12.9) of the transmitter laser. The scheme is called
compete chaos synchronization. The receiver laser outputs the synchronous chaotic
signal before receiving the transmitted signal by anticipating it in advance to the time
τ = τT = τR. The parameters in the two laser systems must be identical to satisfy
the conditions for complete chaos synchronization, however, there are certain ranges
of tolerances for the parameter mismatches when we allow a little deterioration
of the correlation between the transmitter and receiver outputs. Usually, it is not
easy to achieve complete chaos synchronization in real laser systems, especially in



426 12 Chaos Synchronization in Semiconductor Lasers

delay optical feedback systems, and a few experimental studies for complete chaos
synchronization have been reported (Liu et al. 2002).

12.2.5 Mutual Coupling Systems

We discuss chaos synchronization in mutually coupled semiconductor lasers mod-
eled in Fig. 12.4c. For simplicity, we put the reflectivities of external mirrors in the
transmitter and receiver systems equal to zero without loss of generality, i.e., we
remove the external mirrors. In the mutual coupling system, each laser plays a role
for the virtual external mirror to the counterpart laser. Therefore, even without the
optical feedback loop, the lasers can show chaotic oscillations due to mutual optical
injections, as discussed in Chap. 6. Mutual coupling lasers with optical feedback is a
straightforward extension of the discussion here. We can also observe both complete
and generalized chaos synchronization in mutually coupled semiconductor lasers
(Hohl et al. 1997, 1999). The rate equations for one of the lasers are written by

dA1(t)

dt
= 1

2
Gn,1{n1(t) − nth,1}A1(t) + κinj,2

τin,1
A2(t − τc) cos θ1(t) (12.22)

dφ1(t)

dt
= 1

2
α1Gn,1{n1(t) − nth,1} − κinj,2

τin,1

A2(t − τc)

A1(t)
sin θ1(t) (12.23)

dn1(t)

dt
= J1

ed
− n1(t)

τs,1
− Gn,1{n1(t) − n0,1}A2

1(t) (12.24)

θ1(t) = ω0,1τ + φ1(t) − φ2(t − τc) + �ωt (12.25)

The rate equations for the other laser are also given by symmetrical forms as

dA2(t)

dt
= 1

2
Gn,2{n2(t) − nth,2}A2(t) + κinj,1

τin,2
A1(t − τc) cos θ2(t) (12.26)

dφ2(t)

dt
= 1

2
α2Gn,2{n2(t) − nth,2} − κinj.1

τin,2

A1(t − τc)

A2(t)
sinθ2(t) (12.27)

dn2(t)

dt
= J2

ed
− n2(t)

τs,2
− Gn,2{n2(t) − n0,2}E2

2(t) (12.28)

θ2(t) = ω0,2τ + φ2(t) − φ1(t − τc) − �ωt (12.29)

where subscripts 1 and 2 are for the respective lasers and �ω = ω1 − ω2 is the
angular frequency detuning between the two lasers.

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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In the mutual coupling systems, there are also two solutions of chaos synchroniza-
tion; one is based on injection-locking and amplification phenomena and the other
is complete chaos synchronization. For the case of synchronization due to injection-
locking, one of the two lasers plays the role of a master laser and the other is a slave.
Then, the relation between the two amplitudes is written by

A2(t) ∝ A1(t − τc) (12.30)

or
A2(t − τc) ∝ A1(t) (12.31)

These are no exact solutions for (12.22)–(12.29) in a mathematical sense. However,
these relations are confirmed by numerical simulations and experiments. Most cases
of chaos synchronization observed in real experiments in mutually coupled semi-
conductor lasers are based on generalized chaos synchronization. In these cases,
the optical transmission power is as large as several tens of percent of the average
amplitude of the chaotic variation. The percentage is almost the same as that in a uni-
directional coupling system of a generalized chaos synchronization scheme. Which
laser becomes master or slave (leader or lagger laser) is determined by the differences
of the operating conditions of the lasers and the parameter mismatches.

On the other hand, there is an identical solution for complete chaos synchroniza-
tion in mutually coupled semiconductor lasers, since the transmitter and receiver
systems have mathematically symmetrical forms as far as the device parameters and
driving conditions are identical. The conditions follow

�ω = 0 (12.32)

A2(t) = A1(t) (12.33)

A2(t) = A1(t) (12.34)

n2(t) = n1(t) (12.35)

Namely, the two lasers simultaneously output the same chaotic signals even for a
finite transmission time τc of light. The scheme is also considered as anticipating
chaos synchronization. However, the complete chaos synchronization under the cur-
rent configuration is only limited to the case without Langevin noises. In actual
systems, there exist Langevin noises and the synchronization is fairly affected by the
noises. An isochronal solution of complete chaos synchronization is easily reduced
to an achronal state due to the presence of the noises in spite of highly symmet-
rical conditions of two mutually coupling lasers. The detail is again discussed in
Sect. 12.7.1
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12.3 Chaos Synchronization in Semiconductor Lasers
with an Optical Feedback System

12.3.1 Chaos Synchronization—Numerical Examples

We here show some numerical simulations of chaos synchronization in the closed-
loop systems shown in Fig. 12.4b. Figure 12.5 shows examples of generalized and
complete chaos synchronization (Murakami and Ohtsubo 2002). Figure 12.5a shows
a chaotic signal to be transmitted. Figure 12.5b shows the receiver output under the
condition of generalized chaos synchronization and Fig. 12.5c shows the correlation
plot between the waveforms of Fig. 12.5a, b. Figure 12.5d shows the receiver output
under the condition of complete chaos synchronization and Fig. 12.5e is the correla-
tion plot between the waveforms of Fig. 12.5a and d. The optical transmission power
is 22 % (κcp/τin,R = 74.9 ns−1) in the generalized chaos synchronization. On the
other hand, it is as small as 1.5 × 10−4 % (κcp/τin,R = 1.96 ns−1) in the complete
case. The time for the light transmission between the transmitter and receiver lasers
is set to zero for simplicity in this figure. Therefore, the time lag between the two
lasers is zero for generalized synchronization, while it is −1 ns for complete chaos
synchronization. An excellent correlation between the transmitter and receiver out-
puts is obtained for the complete chaos synchronization. The difference of the time is
exactly equal to the theoretically expected time lag �τ . Thus, we can distinguish the
type of chaos synchronization by investigating the time lag between the transmission
signal and the receiver output.

The attractors in the transmitter and receiver lasers show the same orbit under com-
plete chaos synchronization, since the two systems follow completely the identical
equations. Then, the receiver output traces the same orbit as that of the transmitter due
to injection of a small seed from the transmitter. On the other hand, the receiver output
is an amplified copy of the transmitter signal in generalized chaos synchronization.
Therefore, the synchronized signal almost looks the same as the waveform of the
transmitter, however, the chaotic attractor in the receiver laser has some deviations
from that of the transmitter. Figure 12.6 shows chaotic attractors of the receiver laser
in the phase space of the laser output power and the carrier density. Figure 12.6a is
the chaotic attractor of the transmitter signal in Fig. 12.5a. Figure 12.6b is the chaotic
attractor of the receiver output corresponding to Fig. 12.5b. The general view of the
orbit is quite similar to Fig. 12.6a, but they are different. The extent of the orbit in
Fig. 12.6b is slightly larger than that of Fig. 12.6a and the receiver signal is ampli-
fied. Also, the carrier density in Fig. 12.6b is lowered to less than the threshold by
the strong optical injection from the transmitter laser and this results in the reduction
of the gain. For the case of complete chaos synchronization in Fig. 12.5d, the chaotic
orbit of the receiver laser is the same as in Fig. 12.6a. From these facts, general-
ized chaos synchronization is clearly a different phenomenon from complete chaos
synchronization.

Optical injection is widely used for signal transmission from transmitter to receiver
lasers in chaotic communications. When we consider optical injection, the stable
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Fig. 12.5 Chaos synchronization in a closed-loop system. a Chaotic transmission signal, b receiver
output of generalized chaos synchronization at κcp/τin,R = 74.9ns−1, c correlation plot for a and
b, d receiver output of complete chaos synchronization at κcp/τin,R = 1.96ns−1, and e correlation
plot for a and d. The conditions are J = 1.3Jth, τ = 1ns, κT/τin,T = 1.96ns−1, and �ω = 0

and unstable map, which is discussed in Chap. 6, is very useful to know the
injection properties. Here, we show the conditions and distributions of successful
chaos synchronization using the map. Figure 12.7 presents the map of stable and
unstable injection-locking areas. The boundaries of stable and unstable injection-
locking, and unlocking for the solitary laser are shown as solid curves in the figure.
The vertical axis is the optical injection (in intensity) from the transmitter to the
receiver laser and the horizontal axis is the frequency detuning between the trans-
mitter and receiver lasers. Excellent chaos synchronization is attained at the dark

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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areas in the map. The error of chaos synchronization in the figure is defined by the
following equation:

σerror = 〈|ST − SR|〉
〈SR〉 (12.36)

where ST and SR are the intensities of the transmitter and receiver lasers, and 〈·〉
denotes the ensemble average. Generalized chaos synchronization occurs in a wide
range of the frequency detuning and the optical injection in the stable injection-
locking area, while complete chaos synchronization takes place at the unstable
injection-locking area. From the comparison of this map with Fig. 6.6, complete

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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chaos synchronization is attained at chaotic states within the unstable injection-
locking area in a simple optical injection-locked laser. The area of complete chaos
synchronization is very narrow with zero detuning and small optical injection due to
the requirement of strict parameter coincidence.

The effects of parameter mismatches between the transmitter and receiver sys-
tems are very important for applications of chaos synchronization to secure opti-
cal communications. Figure 12.8 shows the plots of synchronization errors for the
mismatches of various laser device parameters. Figure 12.8a shows the errors of
generalized chaos synchronization. The permissible errors for the parameter mis-
matches are large in generalized chaos synchronization and we can expect robust
chaos synchronization. However, the synchronization errors are always larger than
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1% of the average laser intensity variations, since the origin of the synchronization
comes from optical injection-locking and amplification phenomena, and distortions
of the synchronous waveform from the transmitter signal are always presented. From
the investigation of the transmitter and receiver waveforms, they are still quite similar
with each other when the errors for the parameter mismatches are less than a few per-
cent. It is noted that the best synchronization is not always attained at zero parameter
mismatches. Figure 12.8b is the effects of parameter mismatches in complete chaos
synchronization. As expected, chaos synchronization is achieved with high accuracy
at almost zero parameter mismatches and the synchronization errors rapidly increase
with the increase of the parameter mismatches. Thus, strict conditions are required
for successful chaos synchronization in the complete case.

12.3.2 Chaos Synchronization—Experimental Examples

Investigations on chaos semiconductor lasers with optical feedback have been
reported in real experimental systems (Takiguchi et al. 1999a,b,c; Fujino and Oht-
subo 2000; Fischer et al. 2000a,b; Sivaprakasam et al. 2000). In this section, we show
some examples of experimental results for chaos synchronization. Figure 12.9 shows
the experimental results of chaos synchronization in a closed-loop system discussed
in Fig. 12.4a. Figure 12.9a is the output waveforms of the transmitter and receiver
lasers without signal transmission. As far as the two lasers are isolated, the output
powers have no correlation as shown in Fig. 12.9b. When a fraction of the transmitter
output is sent to the receiver, the synchronous waveform in Fig. 12.9c is obtained.
The transmitted optical power from the transmitter to the receiver is rather strong,
as much as 4.6 % of the average power of the receiver laser. Therefore, the synchro-
nization is a generalized case. In Fig. 12.9a, the two lasers show chaotic outputs.
However, it is not always necessary for the receiver laser to be oscillated at a chaotic
state and the receiver laser may be a steady-state oscillation even in the presence of
optical feedback. The feedback level in the receiver laser is usually less than that in
the transmitter laser and the receiver laser may show a synchronous chaotic oscilla-
tion after the optical injection from the transmitter. Chaos synchronization has been
also demonstrated in an open-loop system. Of course, the receiver laser oscillates at
a steady-state without coupling of the transmitter signal in that case. The robustness
of chaos synchronization is much dependent on whether the system is an open- or
closed-system. We will again discuss the differences in Chap. 13.

Only a few experimental studies have been reported for complete chaos synchro-
nization, since the conditions of complete chaos synchronization are too severe to
be achieved in real experiments (Sivaprakasam et al. 2001; Liu et al. 2002). At com-
plete chaos synchronization, the time lag of the waveforms between the transmitter
and receiver lasers is given by �τ = τc − τ . Liu et al. (2002) conducted complete
chaos synchronization in an open-loop system of semiconductor lasers with opti-
cal feedback. They changed the external cavity length and examined the time lag
between the transmitter and receiver signals. They observed the change of the time

http://dx.doi.org/10.1007/978-3-642-30147-6_13
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Fig. 12.9 Experimental chaos synchronization in a closed-loop system. a Waveforms of transmitter
and receiver lasers without coupling. b Correlation plot for a. c Waveforms of transmitter and
receiver lasers with coupling. The transmitted optical power is 4.6 % of the average optical power
of the receiver laser. d Correlation plot for c

lag proportional to the external cavity length (the proportional coefficient is nega-
tive) and showed that their schemes were for complete chaos synchronization. In
their experiment, the parameters of the transmitter and receiver lasers were carefully
chosen to have almost the same characteristics and the initial frequency detuning
between the transmitter and receiver lasers was set to be less than several tens of
MHz.

12.3.3 Anticipating Chaos Synchronization

Anticipating chaos synchronization was at first introduced as a synchronization phe-
nomenon peculiar to nonlinear delay differential systems. Later, it was proved that
anticipating chaos synchronization is also observed in low dimensional dissipa-
tive systems described by simple differential equations (Ahlers et al. 1998; Voss
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2000; Ohtsubo 2002b). Voss demonstrated that anticipating chaos synchronization is
realized in a Rössler system (continuous system) that is described by three differ-
ential equations. Therefore, anticipating chaos synchronization is not only a unique
feature in delay differential systems, but also it is a universal phenomenon in chaotic
nonlinear systems. In chaos synchronization systems of semiconductor lasers with
optical feedback, anticipating chaos synchronization was also observed outside of
the parameter regions for ordinary complete chaos synchronization in the stable and
unstable injection-locking map. In that case, the chaos synchronization originated
from optical injection-locking and amplification effects, but the time lag of the wave-
forms between the transmitter and receiver lasers was equal to that of anticipating
synchronization.

Kusumoto and Ohtsubo (2003) conducted a detailed study of chaos synchroniza-
tion in the stable injection-locking area in Fig. 12.7. Figure 12.10 shows their results.
Figure 12.10a plots the anticipating chaos synchronization in the stable injection-
locking area. The time lag corresponds to that of anticipating synchronization, but
the synchronization originates from the ordinary injection-locking effect. Within the
white ellipsoid in the figure, the value of the correlation coefficient between wave-
forms of the transmitter and receiver lasers exceeds 0.94. In this open-loop system,
the optical feedback ratio in the transmitter system is as high as 0.3. Complete chaos
synchronization is achieved around the optical injection rate of 0.3 at zero frequency
detuning (marked A). Of course, the synchronization is an anticipating one under this
condition. However, the area of anticipating chaos synchronization expands over a
wide region in the stable injection-locking map. For example, the synchronization at
point B is still an anticipating one as a time lag of the waveforms, but the synchroniza-
tion originates from the injection-locking effect. Figure 12.10b plots the trajectories
of the transmitter and receiver outputs corresponding to point B in Fig. 12.10a. The
plot is in the phase space of the phase difference and the normalized carrier density.
Black trace denotes the trajectory for the transmitter laser and gray trace is for the
receiver laser. If the chaos synchronization is complete, the trajectory of the trans-
mitter laser perfectly overlaps with that of the receiver in the map. However, the
two trajectories are separated from each other in the phase space. This phase shift
between the two trajectories is equal to the frequency detuning between the two
lasers. Also the carrier density of the receiver laser is lowered by the optical injec-
tion. This fact proves that the phenomenon originates from optical injection-locking
and amplification. According to the detailed study by Peters-Flynn et al. (2006),
the laser output that is categorized as anticipating chaos synchronization in the sta-
ble injection-locking area in Fig. 12.10 sometimes shows a mixed state of wave-
forms corresponding to anticipating and injection amplification signals. The two
states irregularly switch in time in their numerical simulations. The details of the
phenomena and the origin of the switching are not fully understood yet. Anticipating
chaos synchronization is not a unique phenomenon accompanying complete chaos
synchronization, but it is a universal nature in nonlinear chaotic systems.
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12.3.4 Bandwidth Enhanced Chaos Synchronization

We discussed the enhancement of the cutoff frequency in a chaotic semiconductor
laser by a strong optical injection in Sect. 6.3. Such semiconductor lasers are used as
light sources of chaotic generators for chaos synchronization and communications
(Takiguchi et al. 2003; Someya et al. 2009). The cutoff frequency can be varied
by adjusting the fraction of the optical injection. For example, a modulation band-

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 12.11 Schematic diagram of bandwidth-enhanced chaos synchronization system. I-LD T and
I-LD R are the injection lasers to the transmitter and receiver lasers. LD T and LD R are the
transmitter and receiver lasers

width of ∼20 GHz for the original relaxation oscillation frequency of 3–4 GHz was
attained by strong optical injection. In chaotic communications, the maximum data
transmission rate is determined by the cutoff frequency of chaotic carrier signals and
the cutoff frequency is roughly equal to the maximum modulation bandwidth of the
laser. Higher modulation bandwidth is also demanded in various applications such as
direct modulations in semiconductor lasers. Figure 12.11 shows the schematic dia-
gram of open-loop chaos synchronization systems with enhanced chaotic frequency
(Takiguchi et al. 2003). Both the transmitter and receiver semiconductor lasers, LD
T and LD R, are strongly injected from external semiconductor lasers, LD1 and
LD2, with the same characteristics of the device parameters. Both the transmitter
and receiver lasers oscillate at the stable injection-locked state in the absence of opti-
cal feedback. Figure 12.12 demonstrates an example of bandwidth-enhanced chaos
synchronization. The conditions are the same as those in Fig. 6.20. Therefore, the
main chaotic frequencies of the two lasers at solitary oscillations are 2.7 GHz and
the main chaotic frequency is expanded to 8 GHz. The upper trace in Fig. 12.12a is
a time series of the transmitter output and the lower one is that of the receiver. The
frequency detuning between the transmitter and receiver lasers is set to be zero and
the observed time lag is equal to �t = τc − τ = −6 ns (τc = 0 and τ = 6 ns).
Therefore, the synchronization scheme is for the complete case or so-called antici-
pating chaos synchronization. Figure 12.12b is the correlation plot. The correlation
coefficient is calculated to be 0.954 and the two lasers show good synchronization.
However, we obtain a better figure of the correlation coefficient for complete chaos
synchronization in the absence of strong optical injection. The range for small syn-
chronization error is very narrow for the parameter mismatches in the complete case.
Even if the two lasers have the same device parameters and operate under the same
conditions, chaos synchronization is realized under the limited parameter values and
their ranges are usually very narrow.

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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12.3.5 Incoherent Synchronization Systems

The frequency detuning of the transmitter and receiver lasers plays a crucial role
for the performance of chaos synchronization when the two lasers coherently cou-
ple. The difference of the frequencies must be at least within a few GHz. As discussed
in Sect. 5.7, we can observe chaotic oscillations in systems of semiconductor lasers
with incoherent optical feedback. Chaos synchronization is also realized in incoher-
ent systems. We do not pay particular attention to the frequency detuning in this
system. In an incoherent optical setup, the feedback light in the transmitter system is
incoherently coupled with the internal laser field. We assume that the transmission
light is also incoherently coupled to the receiver laser. In incoherent chaos synchro-
nization, we do not need to consider the rate equation for the optical phase. Therefore,
the model is described by the equations for the photon number and the carrier density.
For the transmitter laser, we obtain (Rogister et al. 2001)

dST(t)

dt
= Gn,T{nT(t) − nth,T}ST(t) + Rsp,T (12.37)

http://dx.doi.org/10.1007/978-3-642-30147-6_6
http://dx.doi.org/10.1007/978-3-642-30147-6_5
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dnT(t)

dt
= JT

ed
− nT(t)

τs,T
− Gn,T{nT(t) − n0,T}

×
{

ST(t) + κT′
τin,s

ST(t − τT)

}
(12.38)

For the receiver

dSR(t)

dt
= Gn,R{nR(t) − nth,R}SR(t) + Rsp,R (12.39)

dnR(t)

dt
= JR

ed
− nR(t)

τs,R
− Gn,R{nR(t) − n0,R}

×
{

SR(t) + κR′
τin,R

SR(t − τR) + κcpST(t − τc)

}
(12.40)

Also, the subscripts T and R are for the transmitter and receiver lasers. The feedback
light is coupled to the carrier density as a delayed signal. The final term in (12.40) is
the coupling of incoherent light from the transmitter. Since the coupling between the
transmitter and receiver lasers is incoherent, the receiver laser is not injection-locked.
However, complete chaos synchronization is also achieved under the appropriate
conditions. Assuming all the device parameters of the two lasers to be the same, the
conditions read

SR(t) = ST(t − �t) (12.41)

nR(t) = nT(t − �t) (12.42)

where �t = τc − τ . Under these conditions, complete anticipating chaos synchro-
nization is realized. Indeed, the condition for the frequencies of the lasers is not
included in the coupling equations.

12.3.6 Polarization Rotated Chaos Synchronization

Chaotic oscillations of semiconductor lasers are observed not only by parallel-
polarization optical feedback, but also by polarization-rotated optical feedback. The
system of polarization-rotated optical was described in Sect. 4.6 and Sect. 5.8.1. The
dynamics of polarization-rotated chaos synchronization were studied theoretically
and experimentally (Sukow et al. 2004, 2005, 2006, Shibasaki et al. 2006; Takeuchi
et al. 2010). A semiconductor laser with polarization-rotated optical feedback can be
used as a light source for a system of chaotic synchronization and communications.
Here, we discuss chaos synchronization in a system of semiconductor lasers with
polarization-rotated optical feedback. As an example, take a chaotic generator shown
in Fig. 4.7b. The system we consider is shown in Fig. 12.13, in which the laser light

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 12.13 System of polarization-rotated open-loop chaos synchronization system. LD T: trans-
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with TE mode emitted from a transmitter laser (LD T) passes through a Faraday
rotator and is reflected by a mirror. The feedback light again passes through the Fara-
day rotator and fed back into the laser cavity as a TM mode light (cross-polarized
component to the TE mode). A part of the TE mode light is divided by a beam splitter
and is fed to the receiver laser through a set of an isolator and a Faraday rotator as the
TM mode light. Then the crossed-polarization light is injected to the receiver laser.
Thus, the polarization-rotated chaos synchronization is realized under appropriate
conditions for the transmitter and receiver lasers.

In the open-loop chaos synchronization system in Fig. 12.13, the rate equations
for the transmitter read (Shibasaki et al. 2006)

dET,TE(t)

dt
= 1

2
(1 − iαT)Gn,T,TE{n(t) − nth,T,TE}ET,TE(t) (12.43)

dET,TM(t)

dt
= 1

2
(1 − iαT)Gn,T,TM{n(t) − nth,T,TM}ET,TM(t)

+ κ

τin
ET,TE(t − τ) exp(−i�ωTE,TMt + iω0Tτ + iφT,TM(t) − iφT,TE(t − τ))

(12.44)

dn(t)

dt
= JT

ed
− n(t)

τs,T
− {n(t) − n0,T}

×
{

Gn,T,TE|ET,TE(t)|2 + Gn,T,TM|ET,TM(t)|2
}

(12.45)
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For the receiver systems, the rate equations are written by

dER,TE(t)

dt
= 1

2
(1 − iαR)Gn,R,TE{n(t) − nth,R,TE}ER,TE(t) (12.46)

dER,TM(t)

dt
= 1

2
(1 − iαR)Gn,R,TM{n(t) − nth,R,TM}ER,TM(t)

+ κcp

τin,R
ET,TE(t − τc) exp(−i�ωt + iω0Tτ + iφR,TM(t) − iφT,TE(t − τc))

(12.47)

dn(t)

dt
= JR

ed
− n(t)

τs.R
− {n(t) − n0.R}

× {Gn,R,TE|ER,TE(t)|2 + Gn,R,TM|ER,TM(t)|2} (12.48)

where subscripts TE and TM stand for two crossed polarization modes, subscript
T and R correspond to for the transmitter and receiver lasers, �ωTE,TM represents
the frequency detuning between TE and TM modes in the transmitter laser, �ω

is the frequency detuning between the transmitted light and the TM light in the
receiver laser. The other parameters are the same meaning defined in Sect. 12.2.2.
The dynamic properties of the transmitter and receiver lasers in polarization-rotated
chaos synchronization are numerically studied by using these coupling equations.
The frequency detuning between the TE and TM modes sometimes plays an important
role, although it is usually small. Indeed, a frequency detuning of −870 MHz is
experimentally observed and the dynamics and synchronization properties are fairly
affected by the detuning (Takeuchi et al. 2010).

In transmitter and receiver systems in semiconductor lasers with polarization-
rotated optical feedback, one can attain both regimes of chaos synchronization,
i.e., complete and generalized cases. Figure 12.14 shows numerical examples of
polarization-resolved waveforms both for complete and generalized chaos synchro-
nization in polarization-rotated optical feedback regimes. It is noted that these are
examples for zero frequency detuning between the TE and TM modes with fairly
strong optical injection from TE to TM modes. When the injection ratio from the
transmitter to the receiver lasers is equal to the optical feedback ratio in the transmit-
ter laser, namely, κ = κcp, complete chaos synchronization can be achieved under
appropriate parameter conditions, which is the same case for non-rotated optical
feedback. For complete synchronization, the TE mode waveform of the transmitter
laser completely synchronizes with the TE mode waveform of the receiver laser, and
the TM mode of the response laser also synchronizes with the TM mode of the drive
laser, as shown in Fig. 12.14a and c. Without loss of generality, the transmission time
from the transmitter to the receiver lasers is equal to the delay time in the feedback
loop in the transmitter, i.e, τ = τc. Therefore, the time lag between the synchronized
signals is zero in complete chaos synchronization. In this configuration, the receiver
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Fig. 12.14 Numerically calculated temporal waveforms of TE and TM mode intensities at syn-
chronization. a and c Complete chaos synchronization for the transmitter and the receiver lasers,
respectively, at κ = κcp. b and d Generalized chaos synchronization for the transmitter (drive) and
the receiver (response) lasers, respectively, at κ = 3κcp. [after Shibasaki et al. (2006); © 2006 IEEE]

output is a complete copy of the transmitter signal. On the other hand, for a strong
optical injection κ = 3κcp, the receiver laser is injection-locked to the transmitter
laser. Then the receiver output of TM mode is an amplified version of the transmit-
ted chaotic signal of the TE mode oscillation from the transmitter laser as shown
in Fig. 12.14b and d. The time lag between the waveforms of the TE mode in the
transmitter laser and the TM mode in the receiver laser is τc, which is the evidence of
generalized chaos synchronization. In this example, the TE mode in the receiver laser
is completely suppressed and only the TM polarization component is the oscillation
mode.

As in the case for synchronization in semiconductor lasers with normal (non-
polarization-rotated) optical feedback, the chaos in the two regimes (complete
and generalized synchronization) are distinguishable by the delay of the chaotic
waveform with respect to that of the injected signal. From the detailed study for
polarization-rotated chaos synchronization, it is proved that chaos synchronization



442 12 Chaos Synchronization in Semiconductor Lasers

can be performed even if there is a large mismatch in the optical frequencies of
the lasers (Shibasaki et al. 2006). It is worth noting that synchronization can be
maintained in the presence of the detuning by adjusting appropriately the injection
strength between the transmitter and receiver lasers. This feature is very different
from the case of semiconductor lasers with non-polarization-rotated optical feed-
back, where complete synchronization is only very weakly robust against detuning.
Good synchronization can be maintained at the condition of positive detuning and
small injection strength and at the condition of negative detuning and large injec-
tion strength. This asymmetric feature may result from the α parameter (linewidth
enhancement factor) of semiconductor lasers, in the sense that chaos synchronization
in semiconductor lasers with polarization-rotated optical feedback does not require
strict matching of optical frequency. This feature of robustness with respect to optical
frequency is particularly important for practical implementations of secure commu-
nication systems using chaos synchronization.

12.4 Chaos Synchronization in Injected Lasers

12.4.1 Theory of Chaos Synchronization in Injected Lasers

Semiconductor lasers exhibit chaotic oscillations by optical injection from a different
laser as discussed in Chap. 6. We can use an optically injected laser as a light source for
chaos synchronization as depicted in Fig. 6.1. However, an optical injection system
is not a delay differential system, so that complete chaos synchronization is not
generally realized in this system. We can also consider two types of synchronization
systems; closed- and open-loop systems (Chen and Liu 2000). Both the transmitter
and receiver lasers are optically injection-locked from external lasers in the closed-
loop system, while only the transmitter laser is injection-locked in the case of the
open-loop system. The open-loop system is also a special case of the closed-loop
system. In the following, we formulate chaos synchronization in closed-loop systems
of optically injected semiconductor lasers.

The optical injection-locking semiconductor laser is a coherent system. Therefore,
the model must be described by the rate equations of the field, the phase, and the
carrier density

dAT(t)

dt
= 1

2
Gn,T{nT(t) − nth,T}AT(t) + κinj,T

τin,T
Ainj,T(t) cos θT (t) (12.49)

dφT(t)

dt
= 1

2
αTGn,T{nT(t) − nth,T} − κinj,T

τin,T

Ainj,T(t)

AT(t)
sinθT(t) (12.50)

dnT(t)

dt
= JT

ed
− nT(t)

τs,T
− Gn,T{nT(t) − n0,T}A2

T(t) (12.51)

http://dx.doi.org/10.1007/978-3-642-30147-6_6
http://dx.doi.org/10.1007/978-3-642-30147-6_6
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θT(t) = −�ωTt + φT(t) − φinj,T(t) (12.52)

The parameters in the above equations are essentially the same as those of previous
equations. �ωT is the frequency detuning between the transmitter laser and the
injection laser. The receiver driven by the transmitted signal can be described by

dAR(t)

dt
= 1

2
Gn,R{nR(t) − nth,R}AR(t) + κinj,R

τin,R
Ainj,R(t) cos θR(t)

+ κcp

τin,R
AT(t − τc) cos ξc(t) (12.53)

dφR(t)

dt
= 1

2
αRGn,R{nR(t) − nth,R} − κinj,R

τin,R

Ainj,R(t)

AR(t)
sin θR(t)

− κcp

τin,R

AT(t − τc)

AR(t)
sin ξc(t) (12.54)

dnR(t)

dt
= JR

ed
− nR(t)

τs,R
− Gn,R{nR(t) − n0,R}A2

R(t) (12.55)

θR(t) = −�ωRt + φR(t) − φinj,R(t) (12.56)

ξc(t) = ω0,Tτc + φR(t) − φT(t − τc) + �ωt (12.57)

where �ωR is the detuning between the receiver and injection lasers, and �ω is
also the detuning between the transmitter and receiver lasers. As can be understood
from these equations, chaos synchronization in the systems originates from injection-
locking and amplification. Under the special conditions of

1

τph,R
= 1

τph,T
∓ 2ακcp

τin,R
√

1 + α2
(12.58)

ω0,Tτc = − cot−1 α (12.59)

�ω = 0 (12.60)

�ωR = �ωT (12.61)

we obtain complete chaos synchronizations (Liu et al. 2001a,b,c)

AR(t) = AT(t − τc) (12.62)

φR(t) = φT(t − τc) (12.63)
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In (12.58), minus sign is for sin ω0,Tτc > 0, while plus sign is for sin ω0,Tτc < 0. We
assume without loss of generality that the other parameter values of the two lasers
are the same and the phases of the injection lasers, φinj,R(t) = φinj,T(t), are constant.
The condition in (12.58) contains the internal device parameters (τph and α) and the
external coupling constant. Therefore, it is usually difficult to realize complete chaos
synchronization in this system, since the adjustment of the parameters is extremely
difficult in real experiments.

12.4.2 Examples of Chaos Synchronization in Injected Lasers

Figure 12.15 shows the experimental results of chaos synchronization using chaotic
semiconductor lasers by optical injection (Liu et al. 2001a). The system used is an
open-loop system and, therefore, optical injection is only presented in the trans-
mitter system. The frequency detuning between the transmitter and injection lasers
is changed to generate various chaotic states. Chaos synchronization is realized at
period-1, period-2, and chaotic oscillations. Figure 12.16 plots the numerical results
of synchronization errors for the parameter mismatches in the system (Chen and
Liu 2000). The figure corresponds to the synchronization errors in complete chaos
synchronization. The errors of synchronization are asymmetry for the parameter mis-
matches, which is similar to the trend for the case of the optical feedback system
in Fig. 12.8b. The tolerances for the differential carrier relaxation rate, the nonlinear
carrier relaxation rate, and the linewidth enhancement factor are much less effective,
but the mismatch of the cavity decay rate 1/τph greatly affects the performance of
chaos synchronization. In real devices, we could not easily access and vary the device
parameters, therefore we must carefully select lasers with similar characteristics even
if the lasers come from the same wafer. It is said that semiconductor laser devices
have parameter mismatches within 5–20 % in industrial standards. In real lasers, we
must also take noise effects into account. Therefore, the coupling coefficient κcp from
the transmitter to the receiver lasers must be larger than a certain value to take on a
negative value for the conditional Lyapunov exponent.

12.5 Chaos Synchronization in Optoelectronic
Feedback Systems

12.5.1 Theory of Chaos Synchronization in Optoelectronic
Feedback Systems

We discussed chaotic oscillations in optoelectronic feedback in semiconductor lasers
in Chap. 7. We here assume the chaotic generators of optoelectronic feedback lasers
depicted in Fig. 7.1. In optoelectronic feedback systems, the rate equations for the

http://dx.doi.org/10.1007/978-3-642-30147-6_7
http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 12.15 Experimental chaos synchronization using chaotic semiconductor lasers by optical
injection. The system is an open-loop. The frequency detuning between the transmitter and injection
lasers is changed to generate various chaotic states at a fixed injection rate. Synchronized waveforms
at a period-1, b period-2, and c chaotic oscillations. In each figure, the upper trace is the transmitter
output and the lower trace is the receiver output. The lasers used are DFB lasers with an oscillation
wavelength of 1.3μm. The chaos synchronization is achieved under the complete condition [after
Liu et al. (2001a); © 2001 IEEE]

photon number and the carrier density are enough for describing the systems. Opto-
electronic feedback systems in semiconductor lasers have an advantage of excellent
synchronization performance over optical feedback and optical injection systems.
Since the time scale for the carrier density is three figures larger than that of the
photon lifetime, the performance, and accuracy of chaos synchronization in opto-
electronic feedback systems are different from those of optical feedback and optical
injection systems. The points will be again discussed in the next chapter from the
viewpoint of data transmission capability in chaotic communications. The rate equa-
tions for the photon number and the carrier density in a transmitter of optoelectronic
feedback are written by

dST(t)

dt
= Gn,T{nT(t) − nth,T}ST(t) + Rsp,T (12.64)
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obtained without including the intrinsic noise [after Chen and Liu (2000); © 2000 IEEE]

dnT(t)

dt
= JT

ed
{1 + ξTST(t − τT)}

− nT(t)

τs,T
− Gn,T{nT(t) − n0,T}ST(t) (12.65)

where ξT is the coefficient of the optoelectronic feedback circuit in the transmitter.
The rate equations for the receiver laser are given by

dSR(t)

dt
= Gn,R{nR(t) − nth,R}SR(t) + Rsp,R (12.66)

dnR(t)

dt
= JR

ed
{1 + ξRSR(t − τR) + ξcpST(t − τc)}

− nR(t)

τs,R
− Gn,R{nR(t) − n0,R}SR(t) (12.67)

where ξR is the coefficient of the optoelectronic feedback circuit in the receiver
and ξcp is the coupling coefficient from the transmitter to the receiver lasers. As
discussed in Chap. 7, when the electronic feedback circuit has a finite time response,
the feedback terms s(t) = ξTST(t − τT) and s(t) = ξRsR(t − τR) + ξcpST(t − τc)

are replaced by the following integral equation:

http://dx.doi.org/10.1007/978-3-642-30147-6_7
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y(t) =
t∫

−∞
f (t ′ − t)s(t ′)dt ′ (12.68)

where f (t) is the response function of the electronic circuit. The optoelectronic
feedback system is also a delay differential system like the optical feedback system.
However, the optoelectronic feedback system is quite different from optical feedback
and optical injection systems. For example, the chaotic output from optoelectronic
feedback is generally irregular pulsing states. The driving signal to the laser in the
optoelectronic feedback system is also a chaotic signal, but the signal is not linearly
proportional to the optical output power (Liu et al. 2001b). Chaos synchronization
in optoelectronic feedback is generally a complete type (Tang et al. 2001).

12.5.2 Examples of Chaos Synchronization in Optoelectronic
Feedback Systems

Figure 12.17 shows the results of chaos synchronization in an open-loop optoelec-
tronic feedback system (Tang et al. 2001). As discussed in Chap. 7, the typical
feature of chaotic oscillations in optoelectronic feedback systems is periodic or
irregular pulsations of the laser output power. In the figure, chaos synchroniza-
tion is achieved for various states of chaotic oscillations by changing the feedback
time τT in the electronic feedback circuit. The synchronization scheme is complete
chaos synchronization. Figure 12.18 shows the numerical simulation for the model.
Figure 12.18a is the bifurcation diagram for the normalized delay time τ̂ = τνR in
the transmitter laser. Figure 12.18b is the maximum conditional Lyapunov exponent.
Here, the parameter cp is defined by

cp = 1 − ξR

ξT + ξcp
(12.69)

When the system is a closed-loop, cp = 0, while cp = 1 for an open-loop. From
this figure, the maximum conditional Lyapunov exponent in the open-loop system
is smaller than that of the closed-loop system. Therefore, the open-loop system can
achieve stable chaos synchronization compared with the closed-loop system. The
effects of parameter mismatches for chaos synchronization have also been studied in
optoelectronic feedback systems and similar results as for optical feedback systems
are obtained (Abarbanel et al. 2001).

http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 12.17 Time series and correlation plots of synchronization at three different pulsing states
under cp = 1. a Regular pulsing at τ = 7.47 ns, b two-frequency quasi-periodic pulsing at τ =
7.09 ns, c chaotic pulsing at τ = 6.92 ns. In a–c the upper trace is for the transmitter and the lower
trace is for the receiver. The left row is the time series and the right row is the correlation plots. The
laser is a DFB laser with the oscillation wavelength at 1.30μm. The relaxation oscillation frequency
of the laser is 2.5 GHz at the operating condition [after Tang et al. (2001); © 2001 OSA]

12.6 Chaos Synchronization in Injection Current
Modulated Systems

Semiconductor lasers are sensitive to injection current modulation and sometimes
show chaotic oscillations for certain conditions both of the device parameters and the
modulation frequency and index as discussed in Chaps. 6 and 7. However, chaotic
oscillations by the frequency modulation occur only under limited conditions in
ordinary narrow-stripe edge-emitting semiconductor lasers. Therefore, we briefly
introduce a chaos synchronization system using a frequency modulated self-pulsating
semiconductor laser as a chaotic light source. The output from a self-pulsating semi-
conductor laser shows regular pulsating oscillations for the ideal case. The laser is

http://dx.doi.org/10.1007/978-3-642-30147-6_6
http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 12.18 Conditions for
stable route-tracking synchro-
nization. a Bifurcation dia-
gram. A: regular pulsing, B:
two-frequency quasi-periodic
pulsing, C: three-frequency
quasi-periodic pulsing, D:
chaotic pulsing. b Largest
average conditional Lya-
punov exponent (transverse
Lyapunov exponent) of cou-
pled system for the same
dynamic states as in a under
different coupling strengths,
cp = 0.1, 0.6, and 1 [after
Tang et al. (2001); © 2001
OSA]
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used as a light source of a digital versatile disk system. However, the laser easily
exhibits chaotic oscillations (irregular pulsing states) under an appropriate com-
bination of the modulation frequency and index for the bias injection current as
discussed in Sect. 8.2. In the chaotic oscillations, pulse heights of the pulsating out-
put irregularly fluctuate and this fluctuation is proved to be chaotic. Jones et al.
(2001) demonstrated numerically chaos synchronization in symmetrical modulation
systems. They used a very high frequency modulation of 3.4 GHz with a large modu-
lation index of 0.3. Their model was a coherent coupling between the transmitter and
receiver lasers. However, incoherent coupling must be taken into account through
a long transmission line between the transmitter and receiver systems, since a self-
pulsating semiconductor laser has once brought almost below the laser threshold
after a pulsation. Only a few studies have been published on chaos synchronization
in modulated semiconductor lasers to date.

12.7 Chaos Synchronization in Mutually Coupled Lasers

12.7.1 Mutually Coupled Edge-Emitting Semiconductor Lasers

Mutually coupled oscillators are of great interest because of the important insight they
provide into coupled physical, chemical, and biological systems. Mutually coupled

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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Fig. 12.19 Numerical sim-
ulation describing the tran-
sition phenomenon from the
isochronal to achronal solu-
tion due to perturbations
of Langevin noises applied
at t = 200 ns. a Inten-
sity time traces and b the
dynamics of the injection
phases. The parameters are
τc = 5ns, κcp/τin = 20ns−1,
and J/Jth = 1 [after Mulet
et al. (2004);© 2004 IOP]
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semiconductor lasers can be used for a system of chaos synchronization. However,
the dynamics have not been fully studied in semiconductor lasers, since the straight-
forward applications of the systems such as for secure communications are not easy.
Example of chaotic secure communications based on mutual coupling systems is
treated in Chap. 13. In this subsection, we concern chaos synchronization in mutu-
ally coupled narrow-stripe edge-emitting semiconductor lasers (Hohl et al. 1997,
1999; Heil et al. 2001; Mirasso et al. 2002; Mulet et al. 2002, 2004; Klein et al.
2006). In an unbalanced mutual coupling system, (for example, frequency detuned
system or parameter mismatched system), one of the lasers become the leader and
the other is the lagger as concerning to their time series as discussed in Sect. 12.2.5.
In accordance with the discussion in Sect. 12.2.5, chaos synchronization originated
by injection-locking phenomena can be studied and the detail of the conditions for
chaos synchronization in leader-lagger configurations of chaotic waveforms is found
in literature (Heil et al. 2001). Here, we focus on the transition phenomenon of
chaos synchronization in an intrinsically complete configuration. As mentioned in
Sect. 12.2.5, an isochronal solution in the mutual coupling semiconductor lasers is
easily transitioned to an achronal state due to the presence of noises in spite of highly
symmetrical conditions.

Figure 12.19 shows a numerical example of transitions from complete to gener-
alized chaos synchronization in a symmetrical system of mutual coupling semicon-
ductor lasers (Mulet et al. 2004). In the numerical simulation, the coupled two lasers
without optical feedback have the same device parameters and driving conditions. In

http://dx.doi.org/10.1007/978-3-642-30147-6_13


12.7 Chaos Synchronization in Mutually Coupled Lasers 451

Fig. 12.19a, the time traces of the two lasers at first output completely the same wave-
forms, since the rate equations do not include the noise terms. However, the output
powers deviate with each other and the synchronization is transitioned to achronal
state from complete isochronal one after the noises are switched on at t = 200 ns.
Since the lasers are biased at low current J/Jth = 1, the output powers show LFFs.
Figure 12.19b shows the dynamics of the phases (θ1 and θ2 in (12.25) and (12.29))
and their difference. Before the perturbation is applied, the two phases completely
show identical traces. However, after one transient LFF following the perturbation,
the two phase traces deviate with each other. In the situation of a highly symmetrical
mutual coupling system, which laser becomes the leader or lagger is determined by
statistically. Further, the leader is once switched to the lagger and at the other occa-
sion it returns to the leader. The process is described by the statistical potential model,
which has already discussed in Sect. 5.1.2, and the transition is kicked by the Langevin
noises. To show the physical effects clearly, the case for a low bias injection current
is shown in Fig. 12.19. However, similar phenomena are also observed at higher bias
injection current with fast chaotic oscillations whose main frequency component
corresponds to the laser relaxation oscillation. We cannot avoid statistical noises in
real semiconductor lasers, so that we only observe leader and lagger chaotic signals
in experimental mutual coupling systems with symmetrical configuration, even if
the two coupling lasers are carefully prepared to take the same characteristics. It is
noted that such instability of the switching between leader and lagger configurations
occurs only for symmetrical systems. When an asymmetry is introduced for a syn-
chronization system of mutual coupling semiconductor lasers with optical feedback,
we obtain a fixed relation of the time lag between the laser outputs even for complete
chaos synchronization scheme as will be discussed in Sect. 13.5. Synchronization is
also attained in polarization-rotated mutual coupling systems and synchronous oscil-
lations of square-wave forms between two lasers have been demonstrated (Sukow
et al. 2010). Oscillations of square-wave forms and anti-phase synchronization are
typical features in semiconductor lasers with polarization-rotated optical feedback
as discussed in Sect. 5.8.2. The tolerances for the parameter mismatches in mutually
coupled narrow-stripe edge-emitting semiconductor lasers have also been discussed
(Avila and Leite 2009; Hicke et al. 2011).

12.7.2 Mutually Coupled VCSELs

Several reports have also been published for chaos synchronization with mutually
coupled VCSELs (Spencer et al. 1998; Spencer and Mirassso 1999; Fujino and Oht-
subo 2001). In mutually coupled VCSELs, two orthogonal polarization modes are
simultaneously excited and the polarization dynamics must be taken into account.
We here show chaos synchronization in mutually coupled VCSELs in LFF regimes
(Fujiwara et al. 2003). In the experiments, mutually coupled VCSELs without exter-
nal mirrors are used. Even when the lasers are stable at the free running state, they
exhibit chaotic oscillations under mutual coupling. Figure 12.20 shows the results of

http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_13
http://dx.doi.org/10.1007/978-3-642-30147-6_5
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chaos synchronization. Figure 12.20a plots time series and their optical spectra of
the x-polarization components of the two lasers at LFF oscillations. Figure 12.20b
shows the results for the y-polarization components. The lasers are biased at low
injection currents and their spatial modes are the lowest ones, i.e., LP01 mode. In
the experiment, the two polarization modes are mutually coupled with each other. In
this example, chaos synchronization occurs by the coupling with the x-polarization
components and one of the outputs of the orthogonal y-polarization components syn-
chronizes to the other under the anti-correlation effect. This fact is easily understood
from the observation of optical spectra in the figure. Anti-phase correlation of the
two orthogonal polarization components is a typical feature in VCSELs. At the soli-
tary oscillations, the y-polarization modes are dominant lasing modes and the laser
powers are almost concentrated to the y-polarization modes. On the other hand, the
x-polarization modes increase and become the dominant modes after the mutual cou-
pling. The laser oscillation of VCSEL2 lags with respect to VCSEL1 with 4 ns (the
transmission time of light from one laser to the other), therefore the synchronization
is a generalized case. Fujiwara and Ohtsubo (2004) also showed chaos synchroniza-
tion for a selective polarization mode in mutually coupled VCSELs. Though the other
mode is not coupled, the remaining modes synchronize with the anti-phase corre-
lation effect. Chaos synchronization in VCSELs occurs even for the two different
spatial modes as far as detuning of the oscillation frequencies is negligibly small.

12.7.3 Optoelectronic Mutually Coupled Semiconductor Lasers

The dynamics and chaos synchronization for mutually coupled systems in semi-
conductor lasers with optoelectronic feedback was studied by Tang et al. (2004). In
the system, mutual coupling can act as a negative feedback to stabilize the coupled
oscillators or it can increase the complexity of the system inducing a highly com-
plex chaos depending on the operating conditions. A quasi-periodicity and period-
doubling bifurcation, or a mixture of the two, is found in such a system. Also, the
system exhibits a unique state of stabilizing and quenching the oscillation amplitude
of two pulsating oscillators, a phenomenon known as “death by delay”. Although
the chaotic waveforms are very complex with broad spectra, a high quality of
synchronization between the chaotic waveforms is observed. Such synchronization is
achieved because of the effect of mutual coupling and the symmetric design between
the two lasers. Figure 12.21 shows a schematic diagram for semiconductor lasers
with mutual optoelectronic coupling. The fundamental chaotic oscillator is the same
as the system of optoelectronic feedback as discussed in Sect. 12.5.1. A part of an
emitted light from semiconductor laser LD 1 is once detected by photodetector PD 1
and electronically fed back into the bias injection current of the laser with delay τ1.
On the other hand, the other light is detected by photodetector PD 2 and fed into
the bias injection current of semiconductor laser LD 2 with transmission time T1.
Similarly, semiconductor laser LD 2 also has an optoelectronic feedback loop with
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Fig. 12.20 Chaos synchronization in mutually coupled VCSELs in an LFF regime. a x-polarization
mode and b y-polarization mode. The left is the time series and the right is the corresponding optical
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Fig. 12.21 Schematic diagram of mutually coupled semiconductor lasers with optoelectronic feed-
back. LD: laser diode, PD: photodiode, A: amplifier, I: bias injection current

time delay τ2. A part of an emitted light from the laser LD 2 is also fed into the first
laser with transmission time T2, thus mutual coupling of the system is attained.

The system of the mutual coupling lasers can be easily described by extending
the discussion in Sect. 12.5. For semiconductor laser LD 1, one reads

dS1(t)

dt
= [Gn1{n1(t) − nth1}]S1(t) (12.70)
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dn1(t)

dt
= J1(t)

ed
{1 + ξ f 1S1(t − τ1) + ξcp1S2(t − T2)}

− n1(t)

τs1
− Gn1{n1(t) − n01}S1(t) (12.71)

Here, we assume an instantaneous response of the electronic feedback circuit, how-
ever, we can apply (12.68) for a finite response of the circuit. For the second laser,
the coupling equations can be written as symmetric forms as above equations by

dS2(t)

dt
= [Gn2{n2(t) − nth2}]S2(t) (12.72)

dn2(t)

dt
= J2(t)

ed
{1 + ξ f 2S2(t − τ2) + ξcp2S1(t − T1)}

− n2(t)

τs2
− Gn2{n2(t) − n02}S2(t) (12.73)

In mutually coupled semiconductor lasers, not only that the output of one laser is
coupled into the dynamics of the other laser, but also that the time delay introduced
by the mutual coupling further increases the dimension of the degree of freedom in
the coupled lasers. Consequently, a lot of interesting dynamics have been observed in
such mutually coupled semiconductor lasers. For example, optoelectronic feedback
can drive semiconductor lasers into nonlinear oscillations, such as regular pulsing,
quasi-periodic pulsing, or chaotic pulsing under certain conditions of the device and
feedback parameters. One of typical features in this system is a death by delay, in
which two limit-cycle oscillators suddenly stop oscillating due to a time-delayed
coupling between these oscillators by tuning the feedback parameters (Tang et al.
2004). The phenomenon of death by delay has been observed in many other mutually
coupled limit-cycle oscillators, which do not necessarily have a delayed feedback. In
the mutually coupled optoelectronic feedback systems described by (12.70)–(12.73),
we can observe periodic death islands of the laser oscillations at a certain coupling
strength for the increase of the coupling delay time T1+T2. In reality, there is always a
bandwidth limitation from the components such as the amplifiers, the photodetectors,
and even the lasers. Consequently, the mutually coupled semiconductor laser system
is not only highly nonlinear but also highly dispersive. The system can have a quasi-
periodic pulsing route, a period-doubling pulsing route, or a mixture of these two
bifurcations to chaos. The system has very interesting properties as a viewpoint of
nonlinear dynamics. However, we here focus on the synchronization properties of
the system.

Experimental and theoretical studies for synchronization of mutually coupled
semiconductor lasers with optoelectronic feedback were reported by Tang et al.
(2004) and Chiang et al. (2005). The two semiconductor lasers are operated in states
of regular oscillations or quasi-periodic oscillations under the effect of optoelectronic
feedback before the mutual coupling is applied. Once the mutual coupling is applied,



12.7 Chaos Synchronization in Mutually Coupled Lasers 455

In
te

ns
ity

 [
50

 m
V

/d
iv

]

In
te

ns
ity

 [
50

 m
V

/d
iv

]

0

0

0

0

Time [ns]
0 10 20 30

PD 1 Intensity [mV]

PD
 2

 I
nt

en
si

ty
 [

m
V

]

200

100

0

-100
-100 0 100 200

-0.5

0

0.5

1

-20 -10 10 20
Time Shift [ns]

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

Time [ns]
0 10 20 30

0

(a) (b)

(d)(c)

Fig. 12.22 Experimental chaos synchronization in semiconductor lasers with mutual optoelectronic
coupling. T1 = T2 = 15.4 ns and τ1 = τ2 = 5.4 ns. a Time series of regular pulsing states in the
two lasers before mutual coupling. b Chaotic time series after mutual coupling. c and d Correlation
plot of the photodiode outputs after mutual coupling [after Tang et al. (2004); © 2004 IEEE]

dramatic effects can be observed on the original nonlinear oscillations. Figure 12.22
shows an experimental example of chaos synchronization in this system. Without
mutual coupling, the waveforms from the two lasers may exhibit either typical puls-
ing states or chaotic pulsing states at certain oscillation conditions. In this case, the
waveform from PD 1 is a regular pulsing state with one fundamental frequency, while
that from PD 2 is a quasi-periodic pulsing state as shown in Fig. 12.22a. With mutual
coupling, highly complex chaotic outputs form the two lasers are observed under the
conditions of T1 = T2 = τ1 = τ2 = 15.4 ns as shown in Fig. 12.22b. It is noted
that the two waveforms have a zero time lag and the type of synchronization is com-
plete. Figure 12.22c and d show the correlation plot between the outputs form PD 1
and PD 2, and the time shifted correlation, respectively. The detailed properties of
chaos synchronization in mutually coupled semiconductor lasers with optoelectronic
feedback were reported in the references (Chiang et al. 2005, 2006).
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Drive Response 1

Response 2

Isolator

Half Mirror

Mirror

Fig. 12.23 Drive and response configuration in chaos synchronization system. Two response laser
are injected by chaotic light from the drive laser

12.8 Common-Chaotic-Signal Induced Synchronization
in Semiconductor Lasers

In the preceding sections, we discussed chaos synchronization with two coupled
lasers, either in unidirectionally or mutually coupled configuration. However, we
can introduce a third chaotic laser in the systems of chaos synchronization. In this
configuration, transmitter and receiver lasers are simultaneously injected by the same
chaotic signal from the third drive laser and, thus, the accuracy of chaos synchroniza-
tion between the transmitter and receiver lasers is greatly enhanced. For example, we
prepare three chaotic systems consisting of semiconductor lasers with optical feed-
back; one is assigned to the driving system and the others are used for the response
systems. Then, the output from the drive unidirectionally injects the response lasers
(Yamamoto et al. 2007; Oowada et al. 2009). The other instance is a mutual coupling
system with a third driving laser. In this system, in-between transmitter and receiver
lasers, the third laser is introduced as a buffer of the chaotic signal transmissions
(Fischer et al. 2006; Vicente et al. 2008). In both cases, we can obtain higher corre-
lations between the transmitter and receiver chaotic signals compared with common
two-laser synchronization systems. Figure 12.23 shows a system for the first case.
Any chaotic systems may be used as a drive and responses, however, we here assume
optical feedback systems of semiconductor lasers for all three systems. The response
systems may not be the same characteristics to the drive system; however, the two
response systems are required to have closely similar characteristics with each other
not only for the device characteristics but also for the operation conditions. The out-
put powers from response 1 and response 2 show similar chaotic oscillations by the
injection of a chaotic signal from the drive system. The driving chaotic signal and the
synchronous response signals may not have good correlations, since the adjustment
of the parameters between the drive and the responses are rather loose. However, we
can obtain a good correlation between the two response systems. The phenomena
are confirmed not only by experiments but also by numerical simulations.
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Fig. 12.24 Experimental result of temporal waveforms and corresponding correlation plots for
a, b Drive and Response 1, c, d Drive and Response 2, and e, f Response 1 and Response 2. The
coupling delay time (4.0 ns) between the two temporal waveforms is compensated in a–d. The cross
correlation values are b 0.711, d 0.659, and f 0.947 [after Yamamoto et al. (2007); © 2007 OSA]

Figure 12.24 shows an experimental example of chaos synchronization in drive-
response systems. In this case, the driving system is a semiconductor laser with optical
feedback (feedback delay time of 4 ns), however, the response systems are solitary
semiconductor lasers without optical feedback. The three lasers are all the same DFB
lasers with oscillation wavelength of 1.55μm, which come from the same wafer. At
the operation conditions, the response lasers have the same optical wavelength of
1547.356 nm, while the drive laser is biased at lower current and its oscillation wave-
length is 1547.376 nm (the corresponding frequency detuning between the drive and
response lasers is −2.5 GHz). Since the frequency detuning is not large, the response
lasers are injection-locked to the drive laser and they oscillate similar chaotic signal
to the drive laser. Figure 12.24a–d are the results of chaos synchronization. The cou-
pling delay time between the two temporal waveforms is compensated in the time
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traces in Fig. 12.24a and c. As is seen from these figures, the response lasers shows
similar chaotic waveforms to the response laser, however, the correlation is not so
high as around 0.7. On the other hand, the correlation between the response lasers has
a high correlation as much as 0.947. In ordinary chaos synchronization systems with
two unidirectionally coupled semiconductor lasers, the good correlation values from
0.8 to 0.9 are usually obtained by experiments as far as the synchronization is origi-
nated from the effects of optical injection-locking and amplification. Taking the facts
into consideration, we can much enhance the correlation of chaos synchronization
by the introduction of the third chaotic laser. Although the effects are demonstrated
by experiments and corresponding numerical simulations, the mechanism of the
enhancement is not fully understood yet.
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