
Chapter 11
Metrology Based on Chaotic Semiconductor
Lasers

On the way to chaotic evolution, periodicity, bistability, and multistability are
observed, such as in the outputs of semiconductor lasers with optical feedback. The
system of optical feedback in a semiconductor laser is sometimes called self-mixing
semiconductor laser. In a periodic state, the laser output shows not simply periodic
oscillation but also hysteresis. Novel applications have been proposed based on these
phenomena, for example, a displacement measurement is performed by counting the
fringes obtained from bistable self-mixing interference between the internal field
and the optical feedback light in the laser cavity. The direction of the displacement
is simultaneously determined from asymmetric waveforms showing hysteresis. Also
correlation of signals between scattering and reference chaotic lights can be applied
for remote sensing from distant reflecting targets. We discuss various methods for
optical metrology based on self-mixing interference effects and correlation tech-
niques in semiconductor lasers. This chapter does not deal with the detailed descrip-
tions of the methods and their accuracies but with the introduction of the principles
of the methods.

11.1 Optical Feedback Interferometers

11.1.1 Bistability and Multistability in Feedback Interferometers

Laser interferometry is a well-established technique for the measurement of vibra-
tions and displacement of objects. In the interferometry, for example, the displace-
ment of the order of optical wavelength is measured from the fringe analysis of
sinusoidal variations of signals from the interferometer output. We have investigated
the self-mixing effects in semiconductor lasers with optical feedback in Chap. 4. We
have also shown that the laser output exhibited periodic undulations with half of the
optical wavelength for the change of the external cavity length under an appropri-
ate condition of the external reflectivity. In self-mixing semiconductor lasers, the
returned light from an external reflector interferes with the internal laser oscillation
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and the original field in the laser cavity plays a role for the reference wave. There-
fore, we can conduct interferometic measurements using semiconductor lasers with
optical feedback based on the same principle as the ordinary laser interferometers
and we can obtain the absolute position, displacement, and vibration of the external
reflector.

In this interferometric measurement, we use periodic oscillations, especially
period-1 states, prior to chaotic oscillations on the way to period doubling bifur-
cations. Since self-mixing in semiconductor lasers is a nonlinear effect, not only the
absolute value of the displacement but also the additional information of the direc-
tion of motion (whether the object is approaching or is going away from the laser)
can be easily determined from the analysis for the fringe pattern. A semiconductor
laser itself plays a role not only as a light source but also as a self-mixing detector
in the measurement. In commercially available semiconductor lasers, a photo-diode
is usually installed within the laser package as a monitor of the laser output power
and we can use it as a detector for the fringe analysis. Therefore, we can construct a
very compact sensor for the interferometic measurements. Also, we do not require
complex processing for the post-detection signal. However, it is noted that the tech-
nique is limited to a certain range of the reflectivity of the external reflector. For
large reflectivity of the external reflector, the detected signal may not be a periodic
oscillation but a chaotic irregular oscillation. We cannot apply the method for such
a case of a large reflectivity of the external reflector.

In the following, we investigate the interferometric measurements using bistable
states (period-1 states) of light outputs in self-mixing semiconductor lasers discussed
in Chap. 4. The optical configuration is the same as that in Fig. 4.1 and the rate
equations of the model are given by (4.5)–(4.7). In the presence of optical feedback in
a semiconductor laser, the oscillation angular frequency changes from ω0 (the solitary
oscillation) to ωs . The relation between the two angular frequencies is given by

ω0τ = ωsτ + C sin(ωsτ + tan−1 α) (11.1)

where C = κτ
√

1 + α2/τin. The dynamics in semiconductor lasers subjected to
optical feedback strongly depend on the C parameter. We are interested in the para-
meter region of C ∼ 1 in this chapter, where the laser shows periodic states prior
to the onset of chaotic oscillations. Using (4.9)–(4.11), the steady-state value of the
laser output is given by

Ss = A2
s =

τs J
ed − ns + 2κ

Gnτin
cos ωsτ

1 − 2κτph
τin

cos ωsτ

τph

τs
(11.2)

Since we are considering a rather small coefficient κ of optical feedback, the differ-
ence between the laser output powers with and without optical feedback is small.
Then, the difference can be approximated as follows:

�S = Ss − Ss |κ=0 ≈ �S0 cos ωsτ (11.3)
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where �S0 = 2κτ 2
ph(J/ed − ns/τs)/τin. In actual fact, �S is a time dependent

function because the carrier density also varies with time by the optical feedback.
We introduce a normalized function F(t) as F(t) = �S(t)/�S0. Substituting (11.3)
into (11.1) and using the relation ω0τ = 2kL , the external cavity length as a function
of time t is given by

L(t) = 1

2k

[
cos−1 F(t) + C√

1 + α2

{
αF(t) +

√
1 − F2(t)

}
+ 2mπ

]

dF

dt
· dL

dt
< 0

L(t) = 1

2k

[
− cos−1 F(t) + C√

1 + α2

{
αF(t) −

√
1 − F2(t)

}
+ 2(m + 1)π

]

dF

dt
· dL

dt
> 0 (11.4)

where m is a non-negative integer number (m = 0, 1, 2, . . .). The laser output varies
for the change of the external cavity length, but the waveform has asymmetric features
depending whether the external reflector moves toward or away from the laser. Then,
we can determine the displacement of the external reflector and also the direction of
movement in accordance with the relation in (11.4).

Next, we investigate the effect of optical feedback at bistable states of the laser
output power. For a small optical feedback of C = 0.6, for example, the laser output
power is a periodic oscillation as shown in Fig. 11.1a and the period is just half
of the optical wavelength (Donati et al. 1995). The variation of the waveform is
smooth, but it is not a symmetrical shape as expected from the above discussion.
In this numerical simulation, it is assumed that the external mirror is moving away
from the laser, i.e., the phase ω0τ is increasing. If the phase ω0τ is decreasing, the
laser output shows the reversed waveform to Fig. 11.1a. Therefore, we can determine
the direction of the movement from the shape of the waveform. For a large value
of a C parameter of C = 3, the laser output power still varies with the period of
λ/2, but shows hysteresis as shown in Fig. 11.1b. At this parameter value, the laser
output power takes bistable states for a certain range of the phase. Therefore, we can
expect a significant difference between the shapes of the waveforms for the increase
or decrease of the external mirror position. With further increase of the C parameter
value, skew of the waveform is enhanced and the laser output takes multi-stable
states. These multi-stable states are rarely observed in actual situations and the laser
behaves as the chaotic oscillations under these conditions, since multi-stable states
are usually “unstable” in real systems.

Figure 11.2 presents the experimental results of self-mixing signals for different
optical feedback strengths (Giuliani et al. 2001). The external reflector is put on a
loudspeaker and the loudspeaker is driven by a sinusoidal signal in Fig. 11.2a. When
the feedback is small in Fig. 11.2b (the feedback strength in intensity is roughly esti-
mated as 10−7), the laser output power shows a periodic undulation whose period is
equal to half of the optical wavelength. In Fig. 11.2c (the feedback strength of 10−5),
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Fig. 11.1 Numerical calcu-
lation of laser output power
�S for phase ω0τ . a C = 0.6
and b C = 3 with hysteresis.
The linewidth enhancement
factor is chosen as α = 6
[after Donati et al. (1995);
© 1995 IEEE]
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the laser output power is quite different from the periodic state in Fig. 11.2b. The
waveform is still periodic, but the waveform for the increase of the phase is completely
different from that for the decrease. Then, the absolute value of the displacement of
the external reflector is obtained by counting the peaks of the undulations in the
waveform and the direction of the movement is clearly discriminated by examining
the waveform. The feedback intensity of 10−5 corresponds to the periodic state just
before the onset of chaotic evolution in a semiconductor laser with optical feedback.
For the large feedback strength of 10−4 in Fig. 11.2d (corresponding to a moderate
to strong feedback in regime IV), the coherence of the laser is completely destroyed
and periodicity is not visible in the waveform. As a result, the laser output power
exhibits a similar waveform to the driving signal. However, the signal is broadened
due to the modulation of fast chaotic oscillations. It is also noted that the offset phase
of the signal is generally not always equal to that of the driving signal.
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Fig. 11.2 Experimentally
observed self-mixing sig-
nals for a change of external
reflector. a Driving sinusoidal
signal of external reflector.
Laser output signals for exter-
nal reflectivities of b 10−7

with periodic state, c 10−5

with hysteresis, d 10−4 with
coherence collapse state. The
driving signal corresponds
to the change of the external
reflector for 1.3µm/div. The
oscillation wavelength of the
laser used is 800 nm. The
time scale is 1 ms/div [after
Giuliani et al. (2001); © 2001
SPIE]
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11.1.2 Interferometric Measurement in Self-Mixing
Semiconductor Lasers

We can measure the change of the external cavity length on the order of half of
the optical wavelength by using the self-mixing effect in semiconductor lasers and
also determine the direction of the change. Based on these principles, we here dis-
cuss the concrete methods for the measurement of displacement, vibration, and
absolute position of the external reflector. Each measurement includes a particu-
lar processing algorithm for the detected signals, however, the fundamental methods
of signal processing for those measurements still contain the common technique
(Donati et al. 1995). Before discussing each technique, we take the measurement
for the displacement of an external reflector as an example and show the detection
and analysis for periodic signals in the self-mixing laser output. Figure 11.3 is an
example of the signal processing systems. The light reflected from a target mirror is
mixed with the original laser field in the laser cavity and the mixed signal is detected
by a photodiode installed in the laser package. The detected signal passes through
an amplifier and a high-pass filter. Then, the up- and down-edges of the periodic
signal for every λ/2 period are counted by a counter. As a result, the displacement
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Fig. 11.3 Basic circuits of signal processing for interferometric measurements in self-mixing semi-
conductor lasers

Fig. 11.4 Upper trace:
experimental self-mixing
signal obtained for a sinu-
soidal target displacement of
3.3µm peak-to-peak ampli-
tude and 1 kHz frequency,
lower trace: analogue deriv-
ative of self-mixing signal,
showing up/down-pulses.
The timescale is 100µs per
division [after Giuliani et al.
(2002); © 2002 IOP]

of the target reflector including the direction of the movement during the counting
is calculated. The basic resolution of the measurement is λ/2 in this technique. It is
noted that the SNR of the self-mixing interferometer using semiconductor lasers is
limited by the efficiency of the coupling photodiode, and it is about 20 dB poorer
than of conventional interferometry with the 50/50 half mirror (Giuliani et al. 2002).
However, we can construct a very simple measurement system with high flexibility
by the self-mixing interferometer using semiconductor lasers. In the following dis-
cussions, we assume that the laser output due to the mixing is a periodic signal with
period λ/2 without notice.

In the following, we show typical signals observed in the self-mixing semicon-
ductor lasers. We take an example of the displacement measurement of an external
target under an appropriate condition of the external optical feedback for bistabil-
ity operation of C > 1. Figure 11.4 is an experimental self-mixing signal for a
sinusoidal displacement of the object. In the figure, the upper trace is the experimen-
tal self-mixing signal for a sinusoidal target displacement of 3.3µm peak-to-peak
amplitude and 1 kHz frequency. The lower trace is an analogue derivative of a self-
mixing signal, showing up- and down-pulses, where the states of up- and down-pulses
correspond whether the target is coming toward or going away from the laser. By
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this approach, displacement of retro-reflective target has been successfully mea-
sured over 1 m distance with an allowed maximum speed of 0.4 m/s, solely limited
by electronic bandwidth. The maximum target distance is limited by the coherence
length of semiconductor lasers, being usually several meters to 10 meters. For an
appropriate target reflectivity satisfying the condition C > 1, the self-mixing signal
becomes a sawtooth-like waveform and, then, an accuracy better than λ/2 can be
achieved by linearization of the interferometric fringe, i.e., the function defined in
(11.4) is approximated by ideal sawtooth. A resolution of 65 nm has been achieved
using a semiconductor laser with a wavelength of 780 nm, in which the resolution
is improved by a factor of 6 with respect to conventional fringe counting technique
(Servagent et al. 1998). Residual inaccuracy is caused by the nonlinearity of the
actual self-mixing waveform. In the following section, we discuss several particular
examples of the self-mixing measurements in semiconductor lasers.

11.2 Applications in Feedback Interferometer

11.2.1 Displacement and Vibration Measurement

In the signal processing system in Fig. 11.3, we obtain the number Nof counted pulses
as the output and the number is assumed to be large enough. Then, the displacement
�L(L = L0 + �L , L0 being the offset length) of the external reflector is given by
the following relation (Donati et al. 1996; Merlo and Donati 1997):

�L = N
λ

2
+ O(λ) ≈ N

λ

2
(11.5)

where O(λ) is the residual of the counts. The direction of the displacement is deter-
mined from the total counted number of the up- and down-edges. Therefore, N has a
plus or minus sign. Vibration measurement of an external reflector is also conducted
by the same principle. For vibration measurement, the follow-up for time varying
signals is important. When the time response of the signal processing circuits is fast
enough, the measurement is limited by the response of the laser, i.e., the relaxation
oscillation. Since the response of the laser is over nano-second, the total response of
the measurement system with fast electronic circuits is up to nano-second. However,
it is much faster than time variations of the ordinary mechanical vibrations we are
considering.

The detection of a target displacement is the basic for interferometric measure-
ment. We have shown an example of displacement measurement using self-mixing
semiconductor lasers in the previous section. Here, we discuss vibration measurement
in a self-mixing interferometer, which is the same principle as displacement measure-
ment. When the amplitude of a target reflector under vibration is large enough (larger
than the optical wavelength), we can obtain the frequency of the vibration from a
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Fig. 11.5 a Principle of linear measurement of small target vibrations by locking the interferometer
phase to half a fringe in the moderate feedback regime. The vertical axis represents the power emitted
by the semiconductor laser, where S0 is the power emitted by the unperturbed semiconductor
laser. The horizontal axes represent interferometric phase and target displacement respectively.
b Block diagram for the self-mixing vibrometer accomplishing the phase-locking and phase-nulling
techniques. The details of input and output variables and each block are explained in the text [after
Giuliani et al. (2003); © 2003 IOP]

Fourier transform analysis for the detected signal in the interferometer. Regardless of
the optical feedback strength, the maximum frequency contained in the self-mixing
signal for the case of a target vibrating at a frequency f0 with amplitude �L is propor-
tional to the product f0�L . Indeed, a sinusoidal object vibration of 140 Hz frequency
and 7.86µm peak-to-peak amplitude is successfully measured by the method (Scalise
2002). However, only the product can be measured by the method, and we cannot
obtain details of the vibration, such as the profile of the vibration amplitude.

To reconstruct a waveform of an object vibration, a closed loop technique is pro-
posed. The principle of the measurement and the processing electronic circuits after
the detection of a self-mixing signal are shown in Fig. 11.5 (Giuliani et al. 2003).
At a moderate optical feedback of C > 1, we obtain a sawtooth-like interferomet-
ric signal as an output form the self-mixing in a semiconductor laser has already
been discussed. Figure 11.5a shows the principle of linear measurement of small
target vibrations by locking the interferometer phase to half a fringe in the moderate
feedback regime, where the interferometric signal can be approximated as having a
triangular shape. For a moment, we consider a small amplitude object vibration. At
an operating offset intensity at S0, the self-mixing output S is linearly proportional
to the vibration amplitude and the waveform of the vibration is directly observed
by an oscilloscope as far as the peak-to-peak amplitude of the object vibration is
within λ/2.

By employing an additive active phase-tracking method, the maximum measur-
able vibration amplitude can be extended up to several hundred micron meters. The
active phase-tracking system is designed so that a constant number of wavelengths are
contained in the path from the semiconductor laser to the target. Figure 11.5b shows
the block diagrams of the signal processing system. The blocks contained in the solid
box constitute the servo-feedback loop and the blocks contained in the dashed box
make up the compensation path. The main block is the self-mixing interferometer
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Fig. 11.6 Examples of vibra-
tion measurement. The target
is a loudspeaker with a black
paper surface driven by a
10 Hz square wave. Upper
traces, loudspeaker drive sig-
nal, lower traces, vibrometer
output signal [after Giuliani
et al. (2003); © 2003 IOP]

operating in the moderate feedback regime, whose phase must be kept at a constant
value, corresponding to half an interferometric fringe. The target displacement �L
acts as a perturbation to the system, and it generates a variation �φ of the interfer-
ometric phase. The phase variation �φ causes a proportional variation �S in the
power emitted by the laser through the self-mixing effect given by �S = βtr�φ(βtr
being the slope coefficient of the triangular transfer characteristics of the interfer-
ometer). The power variation is detected by the monitor photodiode and converted
into the voltage signal �VPD by the transimpedance amplifier, which is given by the
relation as �VPD = σ Z�S (σ is the net efficiency of the photodiode and Z is the
trans-resistance). This signal is then amplified by a factor A, low-pass filtered, and
fed to the input of the voltage-controlled laser current source with admittance Y , thus
generating a variation I of the injection current as �I = AY�VPD. This, in turn,
gives rise to a variation �λ of the laser wavelength such that �λ = �I · dλ/dI. The
feedback loop ensures that the phase variation generated by the laser wavelength
variation is exactly opposite (at least at first order) to that caused by target displace-
ment. The amplified error signal VOUT fed to the current source is a perfect replica
of the target displacement, and it constitutes the instrument output.

Figure 11.6 is an example of vibration measurements using the self-mixing
vibrometer (Giuliani et al. 2003). The object is a loudspeaker driven by a square
wave of 10 Hz. The semiconductor laser used is a commercial single-mode Fabry–
Perot type with maximum power of 40 mW at the oscillation wavelength of 800 nm.
The distance from the laser to the target is 80 cm. The amplitude of the vibration is
much lager than λ/2, but we can obtain the full waveform of the oscillations as shown
in the figure. As we can see, the damped resonance oscillations of the loudspeaker
are clearly visible.

11.2.2 Absolute Position Measurement

When the injection current of a semiconductor laser is modulated, not only the laser
output power, but also the oscillation frequency of the laser, change in accordance
with the relation in (5.5). The same periodic undulation signal like in Fig. 11.2b or c

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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SdS/dt

Fig. 11.7 Self-mixing signal for absolute distance measurement, obtained for a 0.8 mA current
modulation in a Fabry–Perot semiconductor laser. The pulses are the analogue derivative of the
laser output power, which corresponds the fringes to be counted for the distance measurement
[after Giuliani et al. (2002); © 2002 IOP]

is observed for the laser output under the condition of the C parameter of C ∼ 1
when a ramp signal is applied to the bias injection current of a semiconductor laser
at a fixed external mirror position. The period of the undulations is equal to c/2L .
For the measurement of the absolute position of a target (distance), a ramp signal,
which has a linear increase or decrease for the time development, is usually used.
By the ramp modulation, the oscillation frequency is also linearly changed. For a
change of the injection current, the wavelength of the laser oscillation varies as �λ,
then the change of the wavenumber �k is written by

�k = −2π
�λ

λ2 = 2π
�ν

c
(11.6)

where �ν is the frequency change due to the injection current variation. For the
reflecting mirror positioned at L from the laser facet, the change of the optical
phase in the self-mixing interferometer due to the modulation is �φ = �k · 2L .
The quantity of �φ/2π is the number of interferometric fringes occurring from the
wavelength variation �λ observed in the self-mixing interferometer, which is given
by the following relation:

�k · 2L

2π
= N + O(N ) (11.7)

Here, O(N ) represents the residual of fringe number, which corresponds to the
maximum error in the distance measurement. By counting the number of fringes,
one obtains the distance of the reflector from the laser facet, and the distance L is
given by

L = λ2

2�λ
N = c

2�ν
N (11.8)

Figure 11.7 shows the detected output power S of the laser swept by a ramp
signal (Giuliani et al. 2002). Looking more closely, the signal resembles stepwise
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variations of the output power, although the macroscopic change of the detected
signal shows a linear increase or decrease for the time development. This step-wise
change is induced by the selections of successive resonance external modes by the
variation of the bias injection current for the laser; thus the output power shows
not a smooth change but a step-wise change. The analogue derivative of the laser
output power dS/dt becomes a train of pulse-like signals, and this corresponds to the
fringe signals discussed before. Counting the number of fringes for the duration of
the ramp signal, we obtain the absolute distance with the relation in (11.8). The error
in this measurement is the quantization error of fringes and the error corresponds to
the maximum residual of the fringe counting in (11.7). Thus the maximum error is
given by c/2�ν. Mourat et al. (2000) conducted the distance measurement using the
self-mixing interferometer of a tunable multi-electrode DBR semiconductor laser
having continuous tunable range up to 375 GHz and attained the accuracy of the
measurement less than 0.5 mm for the distance of the order of meters. The accuracy
is quite coincident with the theoretical resolution of c/2�ν = 0.4 mm.

11.2.3 Angle Measurement

Self-mixing interferometry is also applied for small angle measurement. In the angle
measurement, coherence collapse states like in Fig. 11.2d is used (Giuliani et al.
2001). Figure 11.8 shows the experimental setup for small angle measurement in a
self-mixing semiconductor laser. An external mirror under to test is tilted with a small
angle θ0 for the optical axis. In the optical setup, the direction of the illuminating
light beam is changed by a reference mirror and the beam is directed to the reflector
under the test. The feedback level is in regime IV and the laser output power shows
coherence collapse states as shown in Fig. 11.2d when θ0 = 0. For a nonzero tilt
angle, the feedback strength from the reflected light decreases with the increase of
the tilt angle, but the reflected light is still fed back into the laser cavity and the tilt
is such a small angle. In the measurement, the reference mirror put into the optical
path is dithered with small amplitude of the tilt angle �θ . At the reference mirror
angle for compensating the reflector tilt θ0, the amount of the feedback light takes
the maximum value. When the tilt of the reference mirror is a periodic function with
time, the laser shows synchronous output with the modulation. However, the phase
of the detected periodic function differs from that of the modulation due to the initial
offset angle θ0. Figure 11.9 shows the experimental results of the laser outputs in the
angle measurement. In this figure, signal B corresponds to zero tilt of the external
mirror and the output power includes the second harmonic component due to rather
strong optical feedback. However, the initial phases of signals A and C are shifted
from that of the driving signal and the small angles are calculated from the phase
shifts. The tilt angle of the external mirror has a linear relation with the detected
phase shifts for a certain range of the tilt. In this technique, we need some calibration
for a particular setup of the experiment. We can perform a small tilt angle detection
on the order of 10−6–10−4 rad based on this technique.
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Fig. 11.8 Experimental setup
for angle measurement in a
self-mixing semiconductor
laser. The external mirror
under test is tilted with a
small angle θ0. The reference
mirror is dithered with a small
amplitude

Laser Diode

Δθ

θ0

Target Reflector

Reference
   Mirror

Lens

Fig. 11.9 Waveforms of
self-mixing laser outputs.
Upper trace: drive signal of a
reference mirror. Laser output
powers A: with negative tilt,
B: zero tilt, and C: positive tilt.
The frequency of the driving
signal is 180 Hz [after Giuliani
et al. (2001); © 2001 SPIE]

11.2.4 Measurement of the Linewidth Enhancement Factor

The linewidth enhancement factor α of a semiconductor laser is an important para-
meter for deciding its dynamical characteristics. As discussed in Chap. 3, the real
and imaginary parts of the complex susceptibility in semiconductor lasers are not
determined independently, but they have a certain relation. This fact gives rise to
the nonzero finite value of the linewidth enhancement factor. For most lasers such
as gas lasers, the value of the linewidth enhancement factor α is zero, while it has
a value around α = 3 − 7 in semiconductor lasers (see Sect. 3.3.3). As a result, the
linewidth of the laser oscillation is broadened by as much as several tens of MHz
to 100 MHz. On the other hand, for lasers with a linewidth enhancement factor of
α = 0, the linewidth is usually less than MHz as discussed in Chap. 3. There are
several methods to measure the factor (Okoshi et al. 1980). It is also measured by
analyzing the laser output power for a sinusoidal modulation of the external mir-
ror position in a self-mixing interferometer. For a certain range of optical feedback
strength of an external reflector, a periodic sawtooth-like wave is observed for the
change of the external cavity length in the laser output power. We can measure the
linewidth enhancement factor from jitters of the sawtooth-like waves.

We assume that the oscillation frequency of a semiconductor laser is ν = ν0 +δν,
where δν is the fluctuation of the laser oscillation. In the measurement of the linewidth

http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
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enhancement factor, the position of the external mirror is modulated by a sinusoidal
signal and the external mirror is vibrated with a small amplitude compatible with
the order of the optical wavelength. Using the modulation for the external mirror
position lm(t) with zero mean and putting the external cavity length L = L0 + lm(t),
the back-reflected field phase is given by

φ = 4π

c
νL = 4π

c
ν0 L + 4π

c
ν0lm(t) + 4π

c
δνL (11.9)

The phase φ is a periodic function with period λ/2, but it is a statistical function due
to random fluctuation of δν.

On averaging the phase and its square and calculating the covariance, the statistical
root-mean-square (rms) phase related to the linewidth enhancement factor is given
by (Giuliani and Norgia 2000)

√
〈(�φ)2〉 =

√
〈φ2〉 − 〈φ〉2 = 4π

c
L0δν (11.10)

where δν is the average of the frequency fluctuations. The average δν is equal to the
laser linewidth �ν in (3.114), which gives the relation between the phase fluctuation
and the linewidth enhancement factor α. Figure 11.10 shows the experimental result
of jitter in the measurement of linewidth enhancement factor. Figure 11.10a shows
the driving signal for the position of the external mirror and the periodic output
power. Figure 11.10b shows the zoomed frame with the superposition of subsequent
single-sweep acquisitions of the self-mixing signal. The periodic signal contains
detailed structures and there is jitter in up- or down-edges of the sawtooth-like wave
in the laser output power. From the statistical average of the jitters, the relation
between the rms phase and the linewidth enhancement factor is calculated according
to (11.10). In the real experiment, the measurement is repeatedly conducted for
different absolute positions of the external mirror and the value of 4πδν0/c is obtained
as the proportional coefficient. The amount of feedback required to achieve the self-
mixing regime is moderate (i.e., around 10−6 in power), so that the optical feedback
little affects the linewidth of the laser oscillations and the linewidth measured under
the small perturbations remains almost the same value as the solitary oscillations.

The linewidth enhancement factor can also be obtained by the above same optical
system by calculating two-phase separations; one is the separation between a zero-
crossing phase of the approaching signal and the phase at the adjacent down-edge,
and the other is the separation between a zero-crossing phase of the leaving signal
and the phase at the adjacent up-edge. Form the comparison between the two-phase
values, the linewidth enhancement factor can be calculated either graphically or
numerically (Yu et al. 2004). The values of the linewidth enhancement factor from
2.2 to 4.9 are experimentally obtained for various different lasers with different
oscillation wavelength. The values of the linewidth enhancement factor measured
using the proposed technique are in good agreement with those obtained by using
the self-heterodyne method (Okoshi et al. 1980). It is finally noted that, as pointed

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 11.10 Measurement
of linewidth enhancement
factor. a Driving signal of
the external mirror position
(upper trace, 1 V/div cor-
responding to 1.43µm/div
target displacement) and
corresponding laser output
(lower trace, 1 ms/div time
scale) in self-mixing interfer-
ometer. b Zoomed frame of
superposition of subsequent
single-sweep acquisitions
of signal. The time scale of
20µs/div corresponds to the
phase variation of 0.5 rad/div
[after Giuliani and Norgia
(2000); © 2000 IEEE]

out in Sect. 8.7.2, self-mixing effects are suited for the measurement of the linewidth
enhancement factor in quantum-cascade semiconductor lasers for the lack of compact
and sensitive detectors in the THz band.

11.3 Self-Mixing Doppler Velocimetry

11.3.1 Velocity Measurement

For a continuous movement of an external reflector, the output power from the laser
by self-mixing exhibits a Doppler beat signal. The field rate equation for such a
continuous movement as a function of time t needs to be modified for practical
numerical simulations. Velocity measurement is considered as a continuous change
of the external mirror position, however, as discussed in the previous section, it
can be easily analyzed by the extension of the displacement measurement as the
first approximation. When the external mirror moves, the detected signal changes as
�S = �S0 cos ωsτ in accordance with (11.3). The external cavity roundtrip time
τ is a time dependent function and is proportional to the external cavity length L .
Considering the angle θ of the motion for the optical axis, the round trip time τ is
written by (Bosch et al. 2001)

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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(a) (b)

2.44 MHz1.22 MHz

Fig. 11.11 Example of velocity measurements using self-mixing semiconductor laser. a Time-
domain self-mixing signal for velocity measurement on a rotating diffusing target. b FFT spectrum
of the signal. The Doppler beat frequency 1.46 MHz corresponds to a speed of 0.56 m/s [after
Giuliani et al. (2002); © 2002 IOP]

τ(t) = 2

c
(L0 ± vt cos θ) (11.11)

where v is the speed of the external mirror and L0 is the offset distance of the
reflector from the laser facet at t = 0. The signs of the velocity term account for the
direction of the motion; the plus sign is for the object moving away from the laser
and the minus sign is for moving toward the laser. The self-mixing in semiconductor
lasers is of the heterodyne detection and the term related to the velocity in (11.11)
corresponds to a Doppler shift component in the self-mixing (Groot and Gaillatin
1989; Shinohara et al. 1989; Aoshima and Ohtsubo 1992). As has already been
discussed in the displacement measurement, we can discriminate the direction of the
movement from the shape of waveforms of the self-mixing signal. Two-dimensional
velocity measurement is easily implemented by extending the 1D measurement.

Figure 11.11 shows an experimental self-mixing signal in time-domain from a
rough rotating disc with a small feedback fraction C < 1 (Giuliani et al. 2002). In
Fig. 11.11a, the self-mixing amplitude is strongly deformed by speckle modulation
compared with a flat reflecting surface. Therefore, it may be difficult to extract the
velocity information from the time signal by the fringe counting technique, as done in
the displacement measurement. However, the harmonic component corresponding to
the disc velocity is easily obtained from the Fourier spectrum as shown in Fig. 11.11b,
although the spectrum has a broadened peak due to the speckle effect. Using the
technique of the self-mixing in semiconductor lasers, velocity measurements ranging
from a rigid surface of ∼100 m/s to a slow blood flow of ∼mm/s have been performed
(Özdemir et al. 2000; Giuliani et al. 2002).
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11.3.2 Rigorous Rate Equations of Self-Mixing Doppler Effects

As mentioned in the previous subsection, the field equation in the presence of time-
dependent continuous change of the external mirror must be modified from (4.2) in a
static optical feedback case. As a first step to derive the rigorous equation of optical
feedback for a continuously moving reflector, we derive the form of the feedback
field in the presence of the Doppler effect. At the exit facet of the laser, the complex
field of the feedback light including optical frequency oscillations, Êfeedback(t), from
a moving reflector with a constant vector velocity v is given by the following equation
(Durst et al. 1976):

Êfeedback(t) = E(t − τ) exp[i(ki · ri + ks · rs) − iω0t] (11.12)

where ki and ks are the vector wavenumbers to and from the reflector at time t , ri , and
rs are the accompanying position vector coordinates, and ω0 is the angular frequency
of the internal laser oscillation. The equation is for a single optical feedback and is
valid for a weak optical reflection. We apply the relations ri = r′

i + vt , rs = r′
s − vt ,

ki ≈ k′
i , ks ≈ k′

s , ks = −ki , rs = −ri , r′
s = −r′

i , and |ki | = |ks | = k = ω0/c,
where r′ and k′ correspond to respective variables at time t = 0. Then the complex
field is written as

Êfeedback(t) = E(t − τ) exp[iω0τ0 − i(ω0 − ωd)t] (11.13)

where τ0 is the offset round trip time of light τ0 = 2L0/c and ωd is the Doppler
shifted angular frequency ωd = 2πνd = 2ω0v/c. τ is the round trip time of light
scattered from the moving object and is written as

τ = ri − rs

c
= 2

c
(L0 + vt) (11.14)

Here, the expression is the same as (11.11), however, we assume that θ = 0 and the
plus or minus sign is included in the parameter v depending on whether the reflector
is approaching to or leaving from the front facet of the laser. Since the round trip
time τ is a function of time t , it is difficult to directly perform numerical calculations
simply applying the feedback field of (11.13) into (4.2).

Substituting (11.14) into (11.13), the delay field is explicitly written by

E(t − τ) = E

(
t − τ0 − 2v

c
t

)
= E[a(t − τ ′

0)] (11.15)

where a = 1 − 2v/c and τ ′
0 = τ0/a. Since the velocity of interest is much smaller

than the speed of light v � c and, thus, a is very close to unity, τ ′
0 is approximated

as

τ ′
0 ≈ τ0

(
1 + 2v

c

)
(11.16)

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Therefore, the feedback field has a time scale, at, different from the original field
E(t). To adjust different time scales within the same differential equation, the method
of Mellin transform is effective. A function of t, E[(1 − ε)t] with a small value of
ε can be expanded as a non-scaled function E(t) by virtue of the Mellin transform
(Gradshteyn and Ryzhik 1980). Then the function E[(1 − ε)t] is approximated as

E[(1 − ε)t] ≈ E(x) − εt
dE(t)

dt
(11.17)

Note that the above equation looks like a simple approximation as a Taylor series
expansion. However, the result is not self-evident, since E[(1 − ε)t] is a function of
a scaled variable. Putting a = 1 − ε and replacing t as t − τ ′

0, the delay differential
field equation for Doppler self-mixing is finally given by (Ohtsubo et al. 2009):

dE(t)

dt
= 1

2
[(1 − iα)Gn[n(t) − nth]E(t)

+ κ

τin

[
E(t − τ ′

0) − 2v

c
(t − τ ′

0)
dE(t − τ ′

0)

dt

]
exp[i(ω0τ0 + ωd t)]

(11.18)

Using (11.18), we can perform numerical calculations not only for periodic beating
signal but also for chaotic oscillations in the presence of continuous time-dependent
external mirror movement. For the carrier density n, which is the counterpart variable
for calculating the dynamics in self-mixing semiconductor lasers, the same equation
as that for optical feedback from a fixed reflector can be used.

Figure 11.12 shows numerical examples of time series of Doppler shifted wave-
form. The offset position of the external reflector is L0 = 9 cm and the laser is
biased at J = 1.3Jth. The other parameter values used are almost the same as those
in Table 5.1. Therefore, the chaotic bifurcation diagram is the same as that in Fig. 5.7a
and the laser evolves into chaotic oscillations through like a Hopf bifurcation. As the
external reflectivity increases, the output power of the self-mixing semiconductor
laser shows sinusoidal oscillations in Fig. 11.12a and sawtooth-like periodic oscilla-
tions in Fig. 11.12b. The Doppler frequency is vd = 2.55 MHz (equivalent to a time
period of 391.5 ns). Over a certain breaking point, the laser becomes unstable and
oscillates with a burst-like waveform as shown in Fig. 11.12c. While Fig. 11.12c does
not show it clearly, the frequency of the periodic burst corresponds to the relaxation
oscillation. Even for such unstable oscillations, the Doppler frequency is still visible
in the waveform. In Fig. 11.12d, the main Doppler frequency is still preserved, but
the laser becomes less stable. If we replace the time scale with an external cavity
length, very similar waveforms as those shown in Fig. 11.12a, b are observed for sta-
tic optical feedback for a discrete change in the mirror position. However, different
dynamics are observed for a range of intermediate optical feedback ratios, which are
not observed for a static displacement. For moderate optical feedback, the periodicity
of the Doppler effect is barely detectable, as shown in Fig. 11.12e. However, with

http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 11.12 Time series of Doppler-shifted waveform (photon number density) for variations of
external mirror reflectivities. a r = 0.000402, b r = 0.00161, c r = 0.00241, d r = 0.0109,
e r = 0.0153, f r = 0.0233. The offset position of the external reflector is L0 = 9 cm and the laser
is biased at J = 1.3Jth. The parameter values almost similar to those listed in Table 5.1 are used
for the numerical simulations

a further increase in the external reflectivity in Fig. 11.12f, the laser output shows
completely chaotic oscillation and no Doppler frequency component is observed in
the waveform.

11.4 Chaotic Lidar

For an optical remote sensing technology, LIDAR (Light Detection And Ranging, or
it is sometimes called Laser Rader), that can measure the distance or the properties
of a target, has been developed since 1970. In this technique, either short-pulses or
random pulse sequences modulated by microwave range is used as a source for illu-
minating a target. In the common short-pulse technique, the time of flight is measured
directly and the range resolution, which is determined by the pulse width, is typically
in the range of meters. As an alternative technique, pseudorandom code-modulated
CW lidar has been developed. In this technique, target detection and localization are
accomplished either by correlating the signal waveform reflected or backscattered
from the target with the time-delayed reference waveform or by interfering them opti-
cally with a Michelson interferometer, where the range resolution is determined by

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Chaotic
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HWP PBS

PD

PD

Correlator

Target

Fig. 11.13 Schematic setup of chaotic lider. OI: optical isolator, HWP: half-wave plate, PBS:
polarization beam splitter, PD: photodetector

the bandwidth of the modulated waveform. Based on this technique, higher resolution
that measured by short-pulse light sources is attained up to 5 cm. Instead of random
modulation, chaotic lidar has been proposed (Lin and Liu 2004a,b). As discussed in
this book, chaos in semiconductor lasers exhibits very high-speed oscillations and
has very broad bandwidth with flat spectral profile in microwave region. Therefore, it
is very suited for a light source of lidar. Further, compared with conventional radars,
chaotic lidar has the advantages of very high-range resolution, unambiguous corre-
lation profile, possibility of secure detection, low probability of intercept, and high
electromagnetic compatibility. The needs of high-speed random-code generation and
modulation electronics no longer exist and the ambiguity caused by the limited length
of pseudorandom codes or a repeated waveform is also eliminated because a chaotic
waveform never repeats itself. One of promising applications similar to chaotic lidar
is a chaotic correlation optical time-domain reflectometer (CC-OTDR). Wang et al.
(2008) successfully demonstrated an OTDR for measuring the distribution of the
reflectivity along an optical fiber transmission line based on the chaotic correlation
technique by experiment. In the following, we will discuss the principle of chaotic
lidar and its performance.

Figure 11.13 shows a schematic setup of a chaotic lidar. The light source is a
high-speed chaotic semiconductor laser. Chaotic oscillations in semiconductor lasers
are generated by for examples, optical injection, optical feedback, or optoelectronic
feedback. An optical isolator is placed right after the chaotic laser to prevent unwanted
optical feedback. The chaotic output is split by a polarizing beam splitter into two
beams, one serving as the probe beam and the other as the reference. By rotating the
angle of the half-wave plate relative to the polarizing beam splitter, the power ratio
between these two beams can be adjusted. The probe beam is directed to the target,
and the signal light that is backscattered or reflected from the target. In a practical field
application, high power semiconductor laser is used as a light source and telescope
transmitter and receiver are used to transmit and detect chaotic signals. The signal
is collected and detected by a combination of lens and detector. The detection and
ranging are realized by correlating the signal waveform reflected back from the
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Fig. 11.14 a Numerical
example of autocorrelation for
a chaotic oscillation generated
by optical injection. b Peak
side-lobe level versus corre-
lation length. The solid line
is the regression. To generate
chaos in the semiconductor
laser, optical injection is used.
The injection strength is 0.046
(amplitude) and the frequency
detuning between the injected
and slave lasers is 0 GHz [after
Lin and Liu (2004a); © 2004
IEEE]
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target with a delayed reference waveform. The performance of the lidar is mainly
determined by the generated chaotic state. To have a δ-function-like correlation
trace that has a highest possible resolution and lowest possible detection ambiguity,
chaotic lidar should be operated in a state that its chaotic waveform has similar
properties to those of white noise, such as a flat, smooth, and broad spectrum more
than 10 GHz, and a noise-like time series. Chaotic lidar has a much higher range
resolution benefiting from the broad bandwidth of the optical chaos. Indeed, due to
the very broad bandwidth of the chaotic waveform that can be easily generated by a
semiconductor laser, a centimeter-range resolution is readily achieved.

Figure 11.14a shows a numerical example of autocorrelation traces of the time
series of generated chaotic light with a correlation length of 200 ns (Lin and Liu
2004a). The chaotic oscillations generated by optical injection to a semiconductor
laser with the injection strength of 0.046 in amplitude and the frequency detuning
of 0 GHz between the master and slave lasers at the bias injection current of 2Jth.
The laser has a free-running relaxation frequency of 12 GHz at this bias injection
current. A narrow correlation spike without any apparent side-lobe is visible and its
full-width at half-maximum (FWHM) of the spike, namely, the range resolution, is
0.9 cm, which is much higher than the resolution of a conventional radar. To quantify
the performance in a radar system, the peak side-lobe level (PSL) is frequently used.
Peak side-lobe level is defined as the ratio of the maximum side-lobe to the peak;
it is associated with the probability of a false signal in a particular range bin due to
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Fig. 11.15 Cross-correlation
traces of a target moving about
50 cm in the line of sight [after
Lin and Liu (2004b); © 2004
IEEE]
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the presence of a target in a neighboring range bin. The peak side-lobe level for the
chaotic signal is shown for the correlation length in Fig. 11.14b. The peak side-lobe
level for the chaotic signal shows a better correlation performance than those of any
other lidar systems. Thus, the chaotic waveform generated by an optically injected
semiconductor has superior characteristics for radar applications without the need
of any sophisticated microwave circuit.

To demonstrate the feasibility of chaotic lidar, a laboratory experiments were
carried out (Lin and Liu 2004b). Figure 11.15 shows the result of cross-correlation
obtained by a target moving about 50 cm in the line of sight. The laser used is a single-
mode distributed feedback InGaAsP/InP semiconductor laser with a wavelength of
1.3µm. Chaotic oscillations are generated by optical injection under appropriate
conditions of the optical injection and the frequency detuning, and the bandwidth of
the chaotic signal is measured to be more than 15 GHz. The target mirror is arranged
at about 2 m away from the chaotic lidar system on a translation stage. A set of signal
and reference waveforms are first obtained and the cross-correlation trace of them
is plotted in Fig. 11.15 (the curve corresponds to a correlation peak at 2.1 ns). By
translating the mirror about 50 cm away in the line of sight, a second set of signal
and reference waveforms are obtained, and their cross-correlation trace is plotted
(the curve corresponds to a correlation peak at 5.4 ns). In both cases, the correlation
lengths are 2µs. From the separation between the correlation peaks, the relative range
difference is measured to be 49.5 cm showing a sub-centimeter accuracy in ranging.
A 3-cm range resolution is achieved with a 0.2-ns FWHM of the cross-correlation
peak. However, the resolution is not the limitation for the essential system but the
limitation for the equipment used in the experiment. The peak side-lobe level is
calculated to be 27 dB and the signal-to-noise ratio of 27.5 dB is obtained in this
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Fig. 11.16 Model of
Twyman-Green active feed-
back interferometer. The
fringe of the interferome-
ter output is detected by a
photodetector (PD) through a
pinhole smaller than the fringe
spacing
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experiment. The chaotic lidar system has an excellent performance in correlation
such that target detection can be done unambiguously with a very high resolution.

11.5 Active Feedback Interferometer and Applications

11.5.1 Stability and Bistability in Active
Feedback Interferometer

Another type of feedback interferometer is a system of a two-arm interferometer with
optoelectronic feedback. Here, we discuss the feedback of the interference light to
the bias injection current of a semiconductor laser. Such a system is considered as a
kind of filtered feedback systems discussed in Sect. 4.7. For example, in a Twyman-
Green interferometer, the optoelectronic feedback technique is applied to stabilize the
fringe of the interferometer output from disturbances such as mechanical vibrations.
Such a system opens wide applications for the fringe analysis and measurements of
laser interferometer under various circumstances of the atmosphere (Yoshino et al.
1987). Figure 11.16 is an example of laser interferometers with optoelectronic feed-
back. The interferometer output is detected by a photodetector through a small pin-
hole. The diameter of the pinhole is assumed to be much smaller than the fringe
spacing. The detected photocurrent is fed back to the bias injection current of the
light source of the semiconductor laser. The principle of the stabilization of the
interferometer is as follows; the detected optical power deviates when the fringe is
disturbed by the external perturbation. Then, the detected photocurrent changes and
the injection current to the laser is modulated. The change of the laser output power
induces the optical frequency change so as to compensate and cancel the fluctuations
of the fringe intensity at the detection point. The variation of the optical frequency is
at most several GHz in ordinary feedback interferometers. We can ignore the effect
of disturbance by the optical frequency change on the accuracy of the interferometric
measurement, since the ratio of the change to the center optical frequency is only
less than 10−5. However, care must be taken with respect to the feedback strength.

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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In this active interferometer, stability, multistability, and chaos appear in the laser
output depending on the feedback strength and the response time of the feedback
loop. In the following, we discuss the principle and behaviors of the active feedback
interferometer, and applications for chaos control and signal generations.

We have investigated the effects of optoelectronic feedback in semiconductor
lasers in Chap. 7. A similar treatment can be applied to the active interferometer, but
the feedback signal is an interference fringe. The rate equations we use are

dS(t)

dt
= Gn{n(t) − nth}S(t) + Rsp (11.19)

dn(t)

dt
= 1

ed
{J − ξ x(t)} − n(t)

τs
− Gn{n(t) − n0}S(t) (11.20)

where x(t) is the term of optoelectronic feedback. As discussed in Chap. 7, the
electronic feedback circuit usually has a finite time response and the variable x(t)
follows a differential equation similar to (7.8). Here, we write the response of the
feedback term as follows:

τi
dx(t)

dt
= −x(t) + J f (t)

ξ
(11.21)

where τi is again the response time of the electric circuit and J f is the feedback
current to the bias injection current. x(t) is the variable of the feedback and it corre-
sponds to the photon number as a physical quantity. Therefore, ξ is the conversion
efficiency from the current density to the photon number. The feedback current of the
active interferometer is easily calculated as (Ohtsubo and Liu 1990; Liu and Ohtsubo
1992a,b)

J f (t) = ξ xb − G Aξ x(t)[1 + b cos{κi x(t) − φ0}] (11.22)

where xb is the reference signal in the feedback circuit and G A is the gain of
the circuit. The cosine term on the right-hand side of (11.22) denotes the fringe
in the interferometer output and b is the visibility of the fringe. φ0 is an offset phase
in the interferometer. The laser frequency is changed by the feedback current. The
cosine term in (11.22) is the effect of the frequency change. Using the optical fre-
quency ν0 without feedback, the frequency ν(t) in the presence of feedback is written
by ν(t) = ν0 − β f x(t). Then, the argument of the cosine function reads

− κi x(t) + φ0 = −4π Diν(t)

c
= −4π Diβ f

c
x(t) + 4π Diν0

c
(11.23)

where Di is the difference of the interferometer arms and β f is the conversion
efficiency from the photon number to the oscillation frequency in the semiconductor
laser.

http://dx.doi.org/10.1007/978-3-642-30147-6_7
http://dx.doi.org/10.1007/978-3-642-30147-6_7
http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 11.17 Bifurcation diagram of laser output in active delay feedback interferometer for change
of bias injection current. The parameters are G A = 0.05, κi = 32π , and φ0 = 0

If the responses of the electronic circuits and the laser are much faster than the
time-varying external disturbances for the interferometer, only (11.22) is sufficient to
describe the system characteristics of the active interferometer. We here discuss the
stability and instability of the system when the response time of the feedback circuit
is fast enough, τi ∼ 0. Indeed, possible mechanical vibrations for the interferometer
are less than 1 kHz. Therefore, solutions of stability, bistability, and multistability of
the laser output are investigated from the crossing points for the graph of y = x(t)
and y = J f (t) in (11.22). When the disturbance for the interferometer is small
enough, we can obtain a stable solution of the interferometer. In this active inter-
ferometer, the configuration of the imbalance interferometer is essential, since the
feedback signal depends on the difference according to (11.23). The interferometer
is always stabilized at a certain fringe pattern as far as the deviation or distortion of
the fringe pattern by the disturbance is smaller than the fringe separation. Thus, we
can attain robust interferometric measurement under unfavorable conditions of dis-
turbances and the fringe analysis is performed under such severe conditions. When
the disturbance is large enough with exceeding the fringe spacing, multi-stable states
appear in the laser output and hops of the optical frequency through the feedback are
induced. This gives rise to chaotic behaviors in the laser output (Ohtsubo and Liu
1990; Liu 1994). The technique of the active interferometer cannot be applied for
the phase scanning interferometer, since the phase shift of the fringe is an essential
technique in the phase scanning interferometry.

The active interferometer shows rich varieties of dynamics when the feedback
circuit has a time delay. By the introduction of the delay, the system exhibits stability,
instability, and chaotic states depending on the feedback delay and ratio. We here
consider the following modified equation for (11.23) for the delayed system (Liu and
Ohtsubo 1992a,b):
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Fig. 11.18 Chaotic oscillations in an active delayed feedback interferometer at G A = 0.05, κi =
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Fig. 11.19 OPF control for chaotic oscillations in an active delay feedback interferometer

J f (t) = ξ xb − G Aξ x(t − τe)[1 + b cos{κi x(t − τe) − φ0}] (11.24)

where τe is the delay time in the feedback circuit. Figure 11.17 shows the calculated
bifurcation diagram of the laser output for the change of the reference signal (the bias
injection current). The bifurcation diagram is obtained by assuming the difference
equation described by (11.24) instead of solving the continuous rate equations. The
laser output clearly shows typical chaotic evolution via period doubling bifurcation.
Figure 11.18 shows experimentally obtained waveforms in the active interferometer
for the change of reference signal level. With increasing the reference signal level,
the laser output evolves from a periodic oscillation into chaotic states. The period 2T
of the period-1 oscillation in Fig. 11.17a is about 2T = 0.22 ms and it is almost equal
twice the delay time of the circuit of τe = 0.10 ms. The difference of time T − τe =
0.01 ms is equal to the intrinsic delay τi of the whole circuit except for the extra delay
circuit. In this chaotic system, we can easily design periodic orbits by appropriately
choosing the system parameters and generate arbitrary waveform sequences in the
laser output prior to chaotic states. These higher harmonic oscillations are used for the
applications of chaotic associative memory (Liu and Ohtsubo 1992b, 1993, 1994b).
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Fig. 11.20 Experimental
results of chaos control in
an active delay feedback
interferometer. a Chaotic
oscillation without control.
b 11th harmonics of fun-
damental period-1 orbit
with control (synchronous
frequency is 2.64 kHz). c
7th harmonic oscillation of
fundamental period-1 orbit
with control (synchronous
frequency is 5.04 kHz).
The delay time of the
circuit is τe = 2.0 ms.
Upper trace of each figure
is the control signal g(t) (arbi-
trary amplitude) and lower
trace is the controlled wave-
form x(t)
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11.5.2 Chaos Control in Active Feedback Interferometers

Chaotic oscillations in active delayed feedback interferometers can be also controlled
to periodic or fixed states based on the chaos control method. In this subsection, we
describe chaos control in the active interferometer by the occasional proportional
feedback (OPF) method. The active feedback interferometer was originally designed
for the isolation of rather slow response mechanical vibrations. Therefore, the system
is very suited of the OPF technique (Liu and Ohtsubo 1994a,b). We employ the OPF
control system discussed in Fig. 9.3. Figure 11.19 shows the schematic diagram for

http://dx.doi.org/10.1007/978-3-642-30147-6_9
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the OPF control in the active interferometer. From the detected output power from
PD1, an appropriate sampling control signal is generated in the OPF control circuit
with a synchronous signal (Sync Signal) and the control signal with a small amplitude
is overlapped into photodetector PD2 for the fringe detection as a small perturbation.
After successful control, the chaotic output of a laser oscillation is fixed to a periodic
state.

Figure 11.20 is the experimental result of the OPF control. The delay time of the
circuit is τe = 2.0 ms. Under the experimental condition, the laser exhibits chaotic
oscillation as shown in Fig. 11.20a. The typical frequency of the chaotic signal is
0.24 kHz and it is almost equal to the sum of the times τi and τe. For the frequency
of the synchronous signal in the control circuit of 2.64 kHz, the system is controlled
to a periodic state. In Fig. 11.20b, the controlled waveform is the 11th harmonics
of the fundamental period-1 orbit. On the other hand, the laser is controlled to the
7th harmonics of the fundamental period-1 orbit for the synchronous frequency of
5.04 kHz in Fig. 11.20c. The corresponding sampling frequency used as a control
signal g(t) is 21 multiples of the fundamental frequency. In delay differential systems,
we can design and generate arbitrary multi-valued waveforms (isomer signals) of
higher periodic orders for the fundamental periodic oscillation by adding extra control
circuits to the systems (Liu and Ohtsubo 1991; Liu et al. 1994). In this example, the
control signal is a very small perturbation to the chaotic oscillation and its amplitude
is less than 3 % of the bias injection current. Therefore, the OPF control applied
here is approximately considered as a category of chaos control in the meaning of
the OGY algorithm. In the OGY method, the control signal is eliminated after the
success of the control, but the control signal is continuously lasting with the same
level. In the OPF method, the system must be always pushed by the control signal to
fix a certain attractor of unstable periodic orbit.
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