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Preface to the Third Edition

After the publication of the second edition of this book in 2008, further significant
advance has been made in chaos research in semiconductor lasers. One of the topics
that is worth treating in this book is the method of ultrafast physical random number
generations using chaotic semiconductor lasers, which is suitable for random key
distributions in modern cryptographic applications. Based on the method, we can
generate true physical random numbers that are hundred times or even thousand
times faster than those in existing methods. In conjunction with the method, pho-
tonic integrated circuits for chaotic light generators have recently been developed.
Thus, chaos, especially chaos in semiconductor lasers, is now not only an interesting
issue from the viewpoint of fundamental research, but also an important tool for
engineering applications. These topics are treated as a new chapter in this book.
In parallel with these topics, great advance has been made for the study of the
dynamics in various types of semiconductor lasers with new device structures. I have
already treated the dynamics in vertical-cavity surface-emitting lasers and broad-
area semiconductor lasers in the first and second editions. Further advance has been
brought in the dynamics of these lasers and they have been added in the third edition.
Other examples of newly developed lasers are quantum-dot and quantum-cascade
semiconductor lasers and they show interesting dynamics. I also discuss these new
topics in Chap. 8. At the same time, several subjects are appropriately revised and a
number of misprints in the second edition have been corrected. For the second
edition, I have received several advices and comments for the improvements of the
book, although I would not mention each of them. I have taken some of them into
account for the new edition. I would like to thank those persons.

Junji Ohtsubo
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Preface to the Second Edition

Chaos research in laser physics, especially in semiconductor lasers, has developed
further even after completion of the first edition of this book in the late summer of
2004, and it is still growing rapidly. For example, various forms of chaotic
dynamics have been applied in newly developed semiconductor lasers, such as in
vertical-cavity surface-emitting semiconductor lasers and broad-area semicon-
ductor lasers. Chaotic dynamics plays an important role in these new lasers, even
for their solitary oscillations, and control of the dynamics is currently an important
issue for practical applications. Another significant advance has been made in the
area of chaotic optical secure communications. Chaotic secure communications
using existing public optical communications links have been tested, and
successful results have been obtained. In this second edition, I have filled in the
gaps in the explanation of chaotic laser dynamics in the previous edition, and I
have also added several important topics that have been developed recently. In
particular, a new chapter on laser stabilizations has been added, and a number of
misprints in the first edition have been corrected. I believe this book will be of
interest not only to researchers in the field of laser chaos, but also to those working
in nonlinear science and technology.

Hamamatsu, Spring 2007 Junji Ohtsubo
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Preface to the First Edition

The aim of this book is the description of the state of the art of chaos research in
semiconductor lasers and their applications, and the future perspective of this field.
However, for the beginner, including graduates who intend to participate newly in
this field, the book starts with an introduction and explanation of chaos in laser
systems and the derivation of semiconductor laser rate equations assuming two-level
systems. I discuss stabilities, instabilities, and various chaotic dynamics in semi-
conductor lasers induced by optical and optoelectronic feedback, optical injection,
and injection current modulation. As optical feedback, the effects of the conventional
reflector, the grating feedback mirror, and the phase-conjugate mirror are considered.
Recent results both for theoretical and experimental investigations are presented.
Instabilities and chaotic dynamics for novel laser structures (self-pulsating semi-
conductor lasers, vertical-cavity surface-emitting semiconductor lasers (VCSELs),
broad-area semiconductor lasers, and semiconductor laser arrays) are also discussed
not only for solitary operations but also in the presence of external perturbations.

As applications of semiconductor laser chaos, control and noise suppression of
lasers based on chaos control algorithm are presented. Externally controlled lasers
are also interesting for applications of new laser systems with high coherent light
sources or tunable light sources. The self-mixing interferometer in semiconductor
lasers is an attractive application based on dynamic properties using bistable states
in optical feedback effects. I also discuss these subjects. As another application of
chaos, several methods of data encryption into the chaotic carrier and its
decryption are introduced for secure data transmissions and communications based
on chaos synchronization in semiconductor laser systems. This book is focused on
the dynamic characteristics of semiconductor lasers and their applications.
Therefore, the detailed descriptions for materials and structures of semiconductor
lasers are beyond the scope of this book. Of course, such characteristics are closely
related to chaotic phenomena in semiconductor lasers. The interested reader is
referred to the related books. For those who are interested in optics but not familiar
with nonlinear systems and chaos, I have attached an appendix to describe
the phenomena of chaotic dynamics and to accustom the reader to the com-
mon tools for chaos analyses in nonlinear systems. Chaos research, especially in
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semiconductor laser systems, is still developing rapidly and is expected to produce
fruitful results not only for the fundamental research of chaos but also for appli-
cations as dynamic engineering.

Chapters 1, 2, 3 and 4 are devoted to the basics and the introduction of laser
chaos and chaotic dynamics in semiconductor lasers, so that readers who want to
know what laser chaos is and how it behaves in semiconductor lasers can follow
them. Chapters 5, 6, 7, 8, 9, 10, 11 and 12 discuss the topics of chaos in semi-
conductor lasers and readers may skip to each topic according to their interest.
Expected readers of this book are as follows; first, I assume those researchers who
have already been involved in this field to gain an overview of the state of the art
of their research. The next group is the graduate students and researchers who
intend to participate in this field. For them, I have derived and explained most
equations in the text from first principles as far as possible. Those readers who are
familiar with electromagnetic theory and have some fundamental knowledge of
optics and lasers will be able to follow the book. Finally, this book is devoted to all
other researchers and engineers who are interested in dynamics in nonlinear
systems and laser instabilities and applications. Since the laser is a very excellent
model of a nonlinear system that shows chaotic dynamics, I believe that this book
will provide useful information for readers not only in the field of optics but also in
other related areas. Moreover, I hope that the ideas and techniques discussed here
will give rise to a new paradigm of nonlinear systems such as chaos engineering or
dynamic engineering.

For the publication of this book, I am indebted to many people. Here, I will not
be able to express thanks to all those people, but, at first, I would like to thank
colleagues and some previous students in my laboratory, Drs. Yun Liu, Atsushi
Murakami, Keizo Nakayama, Yoshiro Takiguchi, Shuying Ye, Hong Yu, for their
many discussions and support. I also extend my thanks to many other researchers
at various institutions and universities who gave me fruitful discussions and
advice. They are Prof. Wolfgang Elsäßer, Dr. Peter Davis, Dr. Ingo Fischer, Prof.
Jia-Ming Liu, Dr. Cristina Masoller, Dr. Claudio Mirasso, Prof. Rajarshi Roy,
Prof. Kevin Alan Shore, and Dr. Atsuhi Uchida. I also owe thanks to many other
people with whom I had useful discussions. Finally, I express sincere thanks to
Prof. Toshimitsu Asakura who gave me the opportunity to write this book and also
encouraged me in various stages of the research.

Hamamatsu, April 2005 Junji Ohtsubo
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Chapter 1
Introduction

Irregularity induced by chaotic dynamics is essentially different from random
fluctuation based on a stochastic process, since the chaotic system can be described
by a set of rigorous equations, namely deterministic equations. Lasers are essentially
chaotic systems described by nonlinear differential equations with three variables
and they show a rich variety of chaotic dynamics. In this chapter, we briefly discuss
laser chaos in relation to ordinary nonlinear systems and present a historical perspec-
tive of chaos research in semiconductor lasers. Then, the outline of this book will be
presented.

1.1 Chaos and Lasers

It was in 1963 that Lorenz (1963) investigated the behaviors of convective fluids as a
model for the atmospheric flow and showed that nonlinear systems described by three
variables could exhibit chaotic dynamics. Of course, many researchers were aware
of the existence of complex dynamics in well-defined systems from the beginning of
the early 1900s. Poincaré (1913), a prominent French mathematician, at first noted
the “sensitivity to initial condition” in dynamical systems. In his book, he wrote that
“it may happen that small differences in the initial conditions produce very great ones
in the final phenomena. A small error in the former will produce an enormous error in
the latter. Prediction becomes impossible, and we have the fortuitous phenomenon.”

However, modern research of chaos started from the study of irregular and com-
plex dynamics of a nonlinear system developed by Lorenz. Chaos is not only a
description of a different viewpoint of nonlinear phenomena but also in itself a
new physics. Chaos is a phenomenon of irregular variations of systems’ outputs
derived from models that are described by a set of deterministic equations. We
must distinguish “chaos” from the observation of “random” events, such as the flip-
ping of a coin, since chaos is generated in accordance with the deterministic order,
namely, chaotic dynamics refers to deterministic development with chaotic outcome
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(Appendix A.1). The system evolves in a deterministic way and the current state of
the system depends on the previous state in a rigidly deterministic way, although
the systems’ output shows random variations. This is in contrast to a random system
where the present observation has no causal connection to the previous one. In spite
of the deterministic models, we cannot foresee the future of the output, since chaos
is very sensitive to the initial conditions, as Poincaré pointed out, and each system
behaves completely different from each other even if the difference of the initial state
is very small.

Chaos is always accompanied by nonlinearity. Nonlinearity in a system simply
means that the measured values of the properties in the system depend in a com-
plicated way on the conditions in the earlier state. Nonlinear property in a system
does not always guarantee the occurrence of chaos, but some form of nonlinear-
ity is required for the realization of chaotic dynamics. Chaos can be observed in
various fields of engineering, physics, chemistry, biology, and even in economics.
Though the fields are different, some of the chaotic systems can be characterized
by similar differential equations. They show similar chaotic dynamics and the same
mathematical tools can be applied for the analysis of their chaotic dynamics.

Nonlinear systems can be also found in optics. Many optical materials and devices
show nonlinear response to the optical field and, therefore, they are candidates for
nonlinear elements in chaotic systems. One such device is the laser. Since lasers
themselves are nonlinear systems and are typically characterized by three variables;
field, polarization of matter, and population inversion, they are also candidates for
chaotic systems. Indeed, it was proved in the mid-1970s by Haken (1975) that lasers
are nonlinear systems similar to the Lorenz model and show chaotic dynamics in
their output powers. He assumed a ring laser model and considered two-level atoms
in the laser medium. Though lasers are not always described by his model, the
approximations are reasonable for most lasers. Thereafter, the laser rate equations
that are described by the nonlinear equations with three variables, are called Lorenz–
Haken equations after their contributor (Haken 1985). However, ordinary lasers do
not exhibit chaotic behavior and only a few of the lasers with bad cavity condi-
tions show chaotic dynamics. In the meantime, chaotic behaviors were theoretically
demonstrated in a ring laser system (Ikeda 1979). Chaotic oscillations of infrared
gas lasers in experiments were reported for Xe lasers, He–Ne lasers, and NH3 lasers
(Casperson 1978; Weiss and King 1982; Weiss et al. 1985). Weiss and Brock (1986)
experimentally observed Lorenz–Haken-type chaos in infrared NH3 lasers.

Contrary to the prediction of Haken, ordinary lasers are stable systems and only
a few systems of infrared gas lasers show chaotic behaviors in their output powers.
Arecchi et al. (1984) investigated laser systems from the viewpoint of the character-
istic relaxation times of the three variables and categorized lasers into three classes.
According to their classifications, one or two of the relaxation times are in general
very fast compared with the other timescales and most lasers are described by the rate
equations with one or two variables. Therefore, they are stable systems that are cate-
gorized into class A and B lasers. Only class C lasers have the full description of the
rate equations with three variables and can show chaotic dynamics. However, class A
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and B lasers can show chaotic dynamics when one or more degrees of freedom are
introduced to the laser systems.

Class B lasers are characterized by the rate equations for field and population
inversion, and they are easily destabilized by an additional degree of freedom as an
external perturbation. For example, solid-state lasers, fiber lasers, and CO2 lasers
that are categorized as class B lasers, show unstable oscillations by external optical
injection or modulation for accessible laser parameters. Semiconductor lasers, which
are also classified into class B lasers and are the main topic of this book, are also
very sensitive to self-induced optical feedback, optical injection from different lasers,
optoelectronic feedback, and injection current modulation. A review of the earlier
study of laser instabilities and chaos has been given by Abraham et al. (1988).

1.2 Historical Perspectives of Chaos
in Semiconductor Lasers

Chaos in semiconductor lasers is of particular importance in practical applications,
since chaos induced by semiconductor lasers is very fast and the main frequency of
irregular oscillations is usually over giga hertz, which is much faster than those of
chaos such as in electronic circuits. Indeed, chaos in semiconductor lasers is usually
two digits or more faster than that attained by fast electronic circuits. Also, light is a
carrier of modern communications and such chaotic oscillations match well with fast
data transmissions in the existing optical network channels. Semiconductor lasers
(edge-emitting and narrow-stripe types), which are the main topics of this book, are
intrinsically stable lasers. However, semiconductor lasers, which are described by
the field and the carrier density (equivalently the population inversion) equations, can
be easily destabilized by the introduction of external perturbations such as external
optical feedback, optical injection, or modulation for accessible laser parameters.
Since the early 1980s, feedback-induced instablities and chaos in semiconductor
lasers have been extensively examined (Lang and Kobayashi 1980). In a semicon-
ductor laser, the laser oscillation is affected considerably when the light reflected
back from an external reflector couples with the original field in the laser cavity.
A variety of dynamics can be observed in semiconductor lasers with optical feed-
back and they have been investigated by many researchers for the past two decades.

One of the main differences between semiconductor lasers and other lasers is the
low reflectivity of the internal mirrors in the laser cavity. It ranges typically only
from 10 to 30 % of the intensity in edge-emitting semiconductor lasers. This makes
the self-feedback effects significant in semiconductor lasers. Another difference is a
large absolute value of the linewidth enhancement factor α of the laser media. The
value of the linewidth enhancement factor α = 2−7 was reported depending on the
laser materials, while this value is almost zero for other lasers. Then, the coupling
between the phase and the carrier density is encountered in the laser dynamics. These
factors lead to a variety of dynamics quite different from any other lasers. At weak
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to moderate external optical feedback reflectivity, the laser output shows interesting
dynamical behaviors such as stable state, periodic and quasi-periodic oscillations, and
chaos for the variations of the system parameters. These ranges of external reflectivity
are not only interesting from the viewpoint of fundamental physics, but also very
important in practical applications of semiconductor lasers, such as in optical data
storage systems and optical communications. Extensive lists of the recent literature
for the dynamic characteristics in semiconductor lasers with optical feedback can
be found in the following references (van Tartwijk and Agrawal 1998; Otsuka 1999;
Ohtsubo 1999, 2002a, 2005, 2008b).

Injection-locking phenomena are a universal feature in lasers. Since the internal
reflectivity of the facet in a semiconductor laser is very low compared with other
lasers, one can easily realize injection locking from a different laser. Moreover,
the effects of injection locking stand out due to the nonzero value of the linewidth
enhancement factor α and one can observe not only stable injection locking but
also various dynamics of unstable optical injection phenomena depending on the
injection parameters. Semiconductor lasers usually have different laser oscillations
characteristics for the same product number or even for the same wafer, but the oscil-
lation frequency can be tuned on the order of GHz by changing the injection current.
Therefore, a light source for injection locking to different lasers with appropriate fre-
quency detuning is easily available. Thus, injection-locking phenomena have been
extensively studied in semiconductor lasers. However, earlier work was limited to
stable injection-locking phenomena for amplification of signals and laser stabiliza-
tion. In these applications, the laser is locked to the external laser, which means that it
almost copies the spectrum of the injected light. On the other hand, unstable injection
locking, instabilities, and mixing of detuned frequencies occur outside the region of
stable injection locking in the phase space of the frequency detuning and the injec-
tion ratio. From the viewpoint of chaos, optical injection is an addition of an extra
degree of freedom to semiconductor lasers and it may induce chaotic oscillations in
the laser output. It was numerically predicted (Sacher et al. 1992; Annovazzi-Lodi
et al. 1994) and experimentally demonstrated (Simpson et al. 1994, 1995) that an
optically injected semiconductor laser follows a period-doubling route to chaos.

Direct modulation for accessible parameters is not an easy task in most lasers,
however, the output power of a semiconductor laser is easily controlled through the
injection current and, at the same time, the laser frequency can be changed by the
injection current modulation. Small amplitude injection current modulation or even
large modulation under appropriate conditions for laser oscillations may produce
faithful copies of the modulation amplitude for the output power in a semiconductor
laser. However, modulation for the injection current is a perturbation to the laser
and also the introduction of an extra degree of freedom to it. Indeed, instablities
and chaotic oscillations have been observed by the injection current modulation
in semiconductor lasers under the conditions of high frequency modulation with
a large modulation index close to the relaxation oscillation frequency of the laser
(Hori et al. 1988).
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Optoelectronic feedback systems in which the emitted light from a semiconductor
laser is once detected and fed back through the injection current are also studied to
stabilize the laser oscillations. For a certain range of optoelectronic feedback, the
laser may indeed be stabilized and the method is applied to obtain an ultra-high
coherent light source. However, optoelectronic feedback has a similar effect to the
above perturbations on the dynamics in semiconductor lasers. We can also observe
unstable pulsation oscillations in the output of a semiconductor laser for certain con-
ditions (Olesen et al. 1986). With the availability of high-speed electronic circuits,
optoelectronic feedback systems having a time response of the same order as the
relaxation oscillation frequency (on the order of GHz) have been studied and useful
applications of chaos dynamics have been proposed based on high-speed optoelec-
tronic feedback (Tang and Liu 2001a,b).

Recently, a variety of novel semiconductor laser devices with different structures
has been proposed and fabricated beside narrow-stripe edge-emitting semiconduc-
tor lasers, for example, self-pulsating semiconductor lasers, vertical-cavity surface-
emitting semiconductor lasers (VSCELs), broad-area semiconductor lasers, and
so on. These lasers themselves have extra degrees of freedom in addition to the
characteristics of ordinary narrow-stripe edge-emitting semiconductor lasers. For
example, space-dependent differential terms due to a wide stripe width are intro-
duced in the rate equations for broad-area lasers and these terms play an important
role in the laser dynamics. Therefore, these newly developed lasers themselves are
unstable and exhibit chaotic dynamics without any external perturbations (Yamada
1993; Law et al. 1997; Gehrig and Hess 2000). The studies of chaotic dynamics in
semiconductor lasers including new structure devices are excellent models for non-
linear chaotic systems and are very interesting from the viewpoint of basic chaotic
research. Instabilities and chaotic behaviors are also greatly enhanced by additional
external perturbations to these lasers in the same manner as narrow-stripe edge-
emitting semiconductor lasers.

In the case of the vertical-cavity surface-emitting lasers (VCSELs), the reflectivity
of the internal mirrors is very high at more than 99 %, however, they are also sensitive
to external optical feedback due to a small number of photons in the internal cavity.
Therefore, semiconductor lasers of all types are essentially very sensitive to external
optical feedback. In spite of the differences in device structures, the dynamics of
semiconductor lasers are the same as long as the laser rate equations are written
in the same or similar forms. The dynamics of narrow-stripe edge-emitting single-
mode semiconductor lasers have been extensively studied for a long time and a lot
of fruitful results have been obtained. However, they are still important issues for
the fundamental physics of optical chaos and also for practical applications. On the
other hand, little investigation into the dynamics of newly developed laser structures
has been carried out.

Through external perturbations, semiconductor lasers are either stabilized or
destabilized. The effects of such perturbations on laser dynamics, stability and
instability, are two sides of the same coin. Examples include optical feedback,
optical injection, and optoelectronic feedback. To stabilize laser oscillations, the
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disturbances may be weak or strong. The lasers can then be strongly stabilized
under appropriate conditions of external parameters and operating conditions of the
lasers. Stabilization of semiconductor lasers is very important with regard to their
application. For example, frequency stabilization, linewidth narrowing, power
stabilization, polarization fixing, and beam shaping are very important in optical com-
munications, optical data storage systems, and optical measurements. In particular,
ultra-stabilized semiconductor lasers are expected in broadband optical communica-
tions, high precision optical measurements, and standard light sources. Semiconduc-
tor lasers are rather unstable compared with other lasers, and their stabilization has
been an important issue from the beginning of their development. For newly devel-
oped semiconductor lasers, such as VCSELs and broad-area semiconductor lasers,
we can apply the same techniques of laser stabilization as those for narrow-stripe
edge-emitting semiconductor lasers. However, these lasers themselves demonstrate
instabilities in their solitary oscillations. In VCSELs, controls for polarization and
spatial mode instabilities are essential in applications. In broad-area semiconduc-
tor lasers, filament suppression of the oscillation pattern can greatly improve beam
quality, producing a high-density beam. Such unstable oscillations are also stabilized
using similar techniques through external controls, as discussed above. Semicon-
ductor lasers are still developing, and stabilization both by the device structure and
through external controls is currently an important research area.

In the meantime, important breakthroughs for applications of chaos were made
in the early 1990s. The ideas of chaos control and chaos synchronization were pro-
posed and developed in this decade as common interests in various fields of nonlinear
and chaos research. The ideas of chaos control (Ott et al. 1990) and chaos synchro-
nization (Pecora and Carroll 1990) were proposed and developed in this decade.
Noise suppression of feedback-induced chaotic oscillations in semiconductor lasers
has been proposed based on chaos control (Liu et al. 1995). Also, fixed point or
periodic oscillations, precursor to the onset of chaos in semiconductor lasers with
optical feedback, can be used for laser control and optical measurements (Donati
et al. 1995). The possibility of chaotic communications has been discussed based on
chaos synchronization in two chaotic solid-state laser systems (Colet and Roy 1994).
After their pioneering work, the study of secure data transmissions and communica-
tions has also been discussed based on synchronization in two chaotic semiconductor
laser systems (Chen and Wornell 2001; Feature Section IEEE J Quantum Electron
2002). Irregular chaotic oscillations in semiconductor lasers have also provided a
new method of ultrafast physical random number generations, which is the key tech-
nology in modern cryptographic applications (Uchida et al. 2008). Also for those
applications, photonic integrated circuits to generate chaotic light have been proposed
(Argyris et al. 2008). Harnessing chaotic lasers is very attractive from the viewpoint
of applications, since optics is very fast and contains parallelism as a nature of light.
Applications of chaotic lasers are still growing and developing. Thus, chaotic lasers
are not only important for basic research but also for engineering applications.
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1.3 Outline of This Book

In this book, we focus on the dynamics and applications in semiconductor lasers
subjected to external perturbations. In Chap. 2, we first introduce general forms
of laser rate equations, which are equivalent to the Lorenz equations, and the
classifications of lasers are given. The instabilities intrinsically involved in the rate
equations are studied. Next, semiconductor lasers as class B lasers are described.
The possibility of unstable oscillations in semiconductor lasers by the introduction
of external perturbations is discussed. A solitary semiconductor laser is characterized
by two equations for the field and the carrier density (population inversion). We then
derive the forms of the rate equations for edge-emitting semiconductor lasers with
a narrow stripe width in Chap. 3. Linear stability analysis used as a common tool
for investigating the stability and instability conditions of nonlinear chaotic systems
is introduced and the laser relaxation oscillation frequency, which plays an impor-
tant role in the chaotic dynamics, is derived. Several fundamental characteristics of
semiconductor lasers are also introduced.

In Chap. 4, the theory of optical feedback in semiconductor lasers is presented.
The effects of feedback in various external reflectors, including grating mirrors and
phase-conjugate mirrors, are taken into account and the formulations of their systems
are presented by introducing rate equations with optical feedback effects. In Chap. 5,
substantial feedback effects and chaotic dynamics in semiconductor lasers are dis-
cussed and both numerical and experimental results are given under variations of the
system parameters. Feedback-induced chaos depending on the external cavity length
and the feedback fraction is investigated. Chaos induced by external optical injection
with frequency detuning is also an important issue in semiconductor laser systems.
The theory of optical injection and their instabilities are discussed in Chap. 6. Unsta-
ble and chaotic oscillations are observed in the region outside the stable injection
locking in the phase space of the frequency detuning and the injection fraction. The
coexistence state of chaotic attractors, which is known as one of the characteristics
in nonlinear systems, is demonstrated in the injection-locking systems. The effects
for the modulation bandwidth in optically injection-locked semiconductor lasers are
discussed in this chapter. Also, enhancement of chaotic frequency by strong optical
injection locking is demonstrated. In Chap. 7, dynamic characteristics of optoelec-
tronic feedback and injection current modulations are presented. Unstable chaotic
pulsations induced by feedback and modulation to the injection current are investi-
gated in relation to the characteristics of optoelectronic feedback circuits.

The rate equations of semiconductor lasers with various laser structures are intro-
duced in Chap. 8. We assume a single mode oscillation for a semiconductor laser in
the preceding chapters, however, the effects of the multimode oscillations in narrow-
stripe edge-emitting semiconductor lasers are considered and dynamic properties of
multimode lasers are discussed in this chapter. Stable and unstable periodic oscil-
lations, and chaotic pulsations of self-pulsating semiconductor lasers, which are
developed as light sources for optical data storage systems, are studied. VCSELs
have quite different structure from other semiconductor lasers, since the laser has
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a circular aperture with very short cavity length compatible with the optical wave-
length. Such lasers show spatial and polarization dynamics and their control is an
important issue for applications. Broad-area lasers and laser arrays are also interest-
ing future devices in engineering applications. They show unique spatio-temporal
dynamics and the controls of instabilities are important in applications. Quantum-
dot semiconductor lasers have been developed for stable and highly coherent light
sources in optical communications. However, they still exhibit instabilities for exter-
nal perturbations. Quantum-cascade semiconductor lasers are expected as new THz
light sources. They have a mechanism of light emission different from other semi-
conductor lasers, namely, the carriers are only electrons and the laser oscillations are
based on inter-subband optical transition through multi-stage quantum-cascade band
structures. They also show interesting dynamics. These new types of semiconductor
lasers themselves contain instability arising from their structures and show chaotic
behaviors even in the absence of external perturbations.

We cannot foresee the future of chaotic oscillations for time evolution, since
chaos has a strong dependence on the initial condition of a system. However, chaos
can be controlled. In Chap. 9, methods of chaos control are introduced. Control of
chaotic oscillations in semiconductor lasers with optical feedback is discussed and
the reduction of the feedback-induced relative intensity noise (RIN) is demonstrated
based on the method of chaos control. These methods can also be applied not only
to ordinary narrow-stripe edge-emitting semiconductor lasers but also to other semi-
conductor lasers with newly developed structures. Either stabilities or instabilities
are enhanced by external perturbations in semiconductor lasers, and their dynam-
ics are discussed in Chap. 10. In this chapter, methods of stabilization and control
of semiconductor lasers are presented. Some of these are closely related to chaos
control, as discussed in Chap. 9, and others involve forced control of stable oscilla-
tions. Stabilization for laser oscillations such as linewidth, frequency, spatial modes,
polarization, and so on, are introduced in narrow-stripe edge-emitting semiconductor
lasers. Similar control techniques are also applied to newly developed semiconduc-
tor lasers. In semiconductor lasers with optical and optoelectronic feedback systems,
periodic oscillations of the outputs preceding the onset of chaos are observed for
the variations of chaotic parameters. These properties can be applied to various
measurements, such as interferometric displacement and vibration measurements.
In Chap. 11, applications of self-mixing interferometers and active interferometers
are discussed, in which bistable states of the systems before the onset of chaotic
bifurcations are used. Other interferometric and correlation techniques of chaotic
semiconductor lasers for various measurements are discussed in this chapter.

Synchronization of two chaotic nonlinear systems is interesting not only from
the viewpoint of fundamental physics but also from applications. It is not self-
evident that two chaotic nonlinear systems show synchronization and the theoretical
background for chaos synchronization has not yet been fully established. However,
synchronization of chaotic oscillations has been observed by experiments and numer-
ical simulations. Chaos synchronization can be also observed in systems of chaotic
semiconductor lasers. The systems and conditions for synchronization in chaotic
semiconductor lasers are discussed in Chap. 12. Chapter 13 follows the applications
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of chaos synchronization. Since strict conditions must be satisfied for chaos synchro-
nization in nonlinear systems, one can construct a secure communication channel
in the sense of hardware levels. The possibility of chaos communications is pre-
sented based on chaos synchronization in semiconductor laser systems. Also, chaotic
communications through the existing public communication channel is demon-
strated. Chaos communications in Chap. 13 are based on analog techniques of hiding
messages behind irregular chaotic undulations. Laser chaos, especially chaos induced
by semiconductor lasers is fast and is suitable for data transmissions in current optical
communication channels. On the other hand, digital techniques of chaotic semicon-
ductor lasers for cryptographic applications have been developed. For distributions
of random keys in cryptography, the method of ultrafast physical random number
generations over the rate of giga-bit-per-second has been proposed. In Chap. 14, the
principle and practice of fast physical random number generations using chaotic
semiconductor lasers are discussed. For the purpose of communication applications
of chaotic semiconductor lasers, compact and stable light sources as chaotic gen-
erators are expected. Monolithic and optically integrated circuits for chaotic light
generators are presented in this chapter.

The origins of chaos are unique for each nonlinear system, but there are common
tools for the analyses of chaotic dynamics. For detailed descriptions of chaos and
their analyses, the reader is referred to appropriate books. However, for readers not
familiar with chaos and its analyses, I finally attached an appendix on the origins
of chaos in nonlinear systems and some of their common tools for chaotic data
analyses. In this book, I treat the main topics of chaos dynamics and applications in
semiconductor lasers, however, they are not the entirety of the research. Other related
topics are dynamics in new types of semiconductor lasers, such as micro-cavity
semiconductor lasers (Lee et al. 2002), random lasers (Cao 2003), flared broad-area
lasers (Levy and Hardy 1997), and others. These are also important issues related
to stabilities, instabilities, and chaos in semiconductor lasers. Research into chaos
in semiconductor lasers is still ongoing, and we can expect fruitful results both for
basic physics and practical applications.
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Chapter 2
Chaos in Laser Systems

Starting from the Maxwell equation in a laser medium based on the model of two-level
atoms, we derive the time-dependent Maxwell–Bloch equations for field, polariza-
tion of matter, and population inversion. Then, we prove that the three differential
equations are the same as those of Lorenz chaos. Well above the laser threshold, the
laser reaches an unstable point at a certain pump level, which is called second laser
threshold. However, only a few real lasers show chaotic dynamics with a second
threshold and most other lasers do not have the second threshold, resulting in stable
oscillations for the increase of the pump. Stable and unstable oscillations of lasers are
related to the scales of the relaxation times for the laser variables. We discuss stability
and instability of lasers based on the rate equations and present their classifications
from the stability point of view.

2.1 Laser Model and Bloch Equations

2.1.1 Laser Model in a Ring Resonator

The theory of lasers should be treated by the interaction between matter and elec-
tromagnetic field based on quantum mechanics. However, we employ here the semi-
classical treatment followed by Haken (1985) and van Tartwijk and Agrawal (1998),
which is very easy to understand. Figure 2.1 shows a ring resonator for a laser model
with two-level atoms. The model treats only unidirectional wave propagation with-
out considering the backward propagation of light, therefore the development of the
equations for the model is very easy. Actual lasers are composed of a Fabry–Perot
resonator and have forward and backward waves of light propagations in the laser
medium. A few contain a unidirectional ring resonator. The semiconductor laser,
which is the main issue of this book, is also basically a Fabry–Perot laser (Abraham
et al. 1988). Although the model is not always applicable to real lasers, the descrip-
tion for a unidirectional traveling-wave ring resonator is very simple and the theory
can be easily extended to ordinary Fabry–Perot lasers.

J. Ohtsubo, Semiconductor Lasers, Springer Series in Optical Sciences 111, 13
DOI: 10.1007/978-3-642-30147-6_2, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 2.1 Laser model with
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The light propagation equation in the laser medium is derived first. The electric
field E (vector field) is written by a time-dependent Maxwell equation as

∇2E(z, t)− 1

c2

∂2εE(z, t)

∂t2 = μ0
∂2P(z, t)

∂t2 (2.1)

where P is the polarization vector of matter, ε is the electric permittivity tensor,
c is the speed of light in vacuum, and μ0 is the magnetic permeability in vacuum.
Assuming a uniform refractive index of the laser medium and linearly polarized
spatial modes for the x and y directions with the propagation for the z axis, the field
and the polarization of matter reduce to scalar quantities propagating only to the z
direction and (2.1) can be reduced to the following scalar equation:

∂2E(z, t)

∂z2 − η2

c2

∂2E(z, t)

∂t2 = μ0
∂2P(z, t)

∂t2 (2.2)

where η is the refractive index of the laser medium.
The field and the polarization propagate for the z direction with the wavenumber

k = ηω0/c and the angular oscillation frequency ω0, are then written as

E(z, t) = 1

2
E(z, t) exp[i(kz − ω0t)] + c.c. (2.3)

P(z, t) = 1

2
P(z, t) exp[i(kz − ω0t)] + c.c. (2.4)

Here, c.c. represents the complex conjugate of the preceding terms. E(z, t) and
P(z, t) are the amplitudes of the respective variables and are assumed to vary slowly
compared with the optical frequency (Slowly Varying Envelope Approximation:
SVEA). Neglecting the second order small infinities and substituting (2.3) and (2.4)
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into (2.2), we obtain an equation for the amplitudes

∂E(z, t)

∂z
+ η

c

∂E(z, t)

∂t
= i

k

2ε0η2 P(z, t) (2.5)

2.1.2 Light Emission and Absorption in Two-Level Atoms

Before deriving the complete form of the propagation equation, we discuss absorption
and emission of light from two-level atoms based on the semi-classical quantum
theory and, then, derive the Bloch equation. Using the Hamiltonian H0 without
perturbation for the electric field E , the Hamiltonian H of the two-level atom is
given by

H = H0 − μ · E (2.6)

where μ = er is the moment of the transition between the two levels (r and e are the
position vector and the fundamental electric charge). For the eigenstatesϕ j ( j = 1, 2)
of the two levels and the energy of each level as �ω j (� being the Planck constant),
the interaction between the two levels is written by

〈ϕ j |H0|ϕk〉 = �ω jδ jk (2.7)

where δi j represents the Kronecker delta. The angular frequency of light emitted or
absorbed in the two-level atoms is given by ωA = ω2 − ω1. In the presence of the
optical field, the quantum state |ψ〉 of the two-level atoms is written by the linear
addition of the two states as

|ψ〉 = c1(t) exp(−iω1t)|ϕ1〉 + c2(t) exp(−iω2t)|ϕ2〉 (2.8)

Substituting the above equation into the Schrödinger equation, the coefficients c1
and c2 for the two states are calculated by solving the following coupled equations:

dc1(t)

dt
= c2(t)

i�
exp(−iωAt)〈ϕ1|μ · E|ϕ2〉 (2.9)

dc2(t)

dt
= c1(t)

i�
exp(iωAt)〈ϕ2|μ · E|ϕ1〉 (2.10)

These are known as the Bloch equations (1946).
Using the number NA of atoms in the unit volume, the macroscopic polarization

of the medium is defined by
P = NA〈ψ |μ|ψ〉 (2.11)
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From (2.8), the above equation reads as

P = NA{p(t)μ12 + p∗(t)μ21} (2.12)

Then, the microscopic polarization p(t) for each atom is given by

p(t) = c∗
1(t)c2(t) exp(−iωAt) (2.13)

μi j = 〈ϕ j |μ|ϕi 〉 (2.14)

where μi j (i, j = 1, 2) is the moment of the transition from the lower to the upper
state or vice versa. Finally, substituting the above equations into (2.9) and (2.10), we
obtain the equation for the polarization of atoms

d p(t)

dt
= −iωA p(t)+ i

�
E(t)μ21w(t) (2.15)

and the distribution w(t) = |c2(t)|2 − |c1(t)|2 for the population inversion of the
two-level atoms

dw(t)

dt
= 2

i�
E(t){p∗(t)μ21 − p(t)μ12} (2.16)

2.1.3 Maxwell–Bloch Equations

Rearranging the equations obtained for the field and the polarization and considering
the time development of the population inversion in the laser medium, we derive the
complete set of laser rate equations, which are the same expressions as those of
Lorenz chaos. Differentiating (2.4) with time and using the relations of (2.12) and
(2.15), the macroscopic polarization equation is calculated as

dP(z, t)

dt
= −i(ωA −ω0)P(z, t)+ iμ2

2�
W (z, t)[E(z, t)+ E∗(z, t) exp{−2i(kz −ω0t)}]

(2.17)
where W = NAw is the macroscopic population inversion and μ = |μ12|. From
(2.16), the equation for the population inversion is given by

dW (z, t)

dt
= 1

i�
[E(z, t)P∗(z, t)− E(z, t)P(z, t) exp{2i(kz −ω0t)} − c.c.] (2.18)

Since we are concerned with slowly varying variables compared with optical fre-
quency (Rotating-Wave Approximation: RWA), we can omit the terms related to
fast oscillation terms of the angular frequency 2ω0 in (2.17) and (2.18) (Milloni and
Eberly 1988).
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We need the external pump to lase, so that we add an extra term to (2.18) for lasing
in the actual laser. Further, we add the phenomenological terms for the damping
oscillations to (2.5), (2.17), and (2.18). The resulting equations, the Maxwell–Bloch
equations, for field E , polarization P , and population inversion W are given by

∂E(z, t)

∂z
+ η

c

∂E(z, t)

∂t
= i

k

2ε0η2 P(z, t)− η

2Tphc
E(z, t) (2.19)

∂P(z, t)

∂t
= −i(ωA − ω0)P(z, t)+ iμ2

2�
E(z, t)W (z, t)− P(z, t)

T2
(2.20)

dW (z, t)

dt
= 1

i�
{E(z, t)P∗(z, t)− E∗(z, t)P(z, t)} + W0 − W (z, t)

T1
(2.21)

where W0 is the population inversion induced by the pump at the laser thresh-
old. Tph, T2, and T1 are the relaxation times of the photons (photon lifetime), the
polarization (transverse relaxation), and the population inversion (longitudinal relax-
ation), respectively. The actual laser exhibits spontaneous emission and, then, sta-
tistical Langevin noise terms are added to each equation to explain the noise effects
(Petermann 1988; Risken 1996). However, statistical noises and irregular chaotic
oscillations are of different origins and they can be discussed separately. Chaos is a
phenomenon described by deterministic equations, so that such terms are excluded
for investigating the pure laser dynamics. Noises are only introduced to account for
the effects of laser oscillations when necessary. The Langevin noises will be briefly
discussed in Chap. 3.

2.2 Lorenz–Haken Equations and Laser Thresholds

2.2.1 Lorenz–Haken Equations

We have derived the laser equations for field amplitudes and polarization, and popula-
tion inversion. In the following, we show that these equations are equivalent to Lorenz
equations, which describe a model of the convective fluid flow for the atmosphere.
Scaling the field E , the polarization P , and the population inversion W in (2.19),
(2.20), and (2.21) as E = √

ε0cη/2E, P = k/ε0η
2√ε0cη/2P , and w = σsW (with

σs = μ2ω0T2/2ε0�cη), and neglecting the term ∂E/∂z as a small mean field that
propagates in the zdirection, the Maxwell–Bloch equations are written as follows
(Haken 1975):

dE(t)

dt
= i

c

2η
P(t)− 1

2Tph
E(t) (2.22)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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T2
dP(t)

dt
= −(1 − iδ)P(t)+ i E(t)w(t) (2.23)

T1
dw(t)

dt
= w0 − w(t)+ Im[E

∗
(t)P(t)]
Isat

(2.24)

where δ = (ω0 − ωA)T2 is the scaled atomic detuning and Isat = �
2cηε0/2μ2T1T2

is the saturation intensity.
In the meantime, Lorenz proposed the differential equations for three variables X ,

Y , and Z as a model of atmospheric flow (Rayleigh–Bénard configuration) and proved
the existence of chaos in the system (Lorenz 1963). Here, variables X , Y , and Z
represent circulatory fluid flow velocity, temperature difference between rising and
falling fluid regions, and distortion of vertical temperature profile, respectively. Using
chaotic parameters 
 (Prandtl number), R (Raleigh number), and β (a parameter
related to the geometrical boundary of the flow), the Lorenz equations are written as

dX (t)

dt
= −
{X (t)− Y (t)} (2.25)

dY (t)

dt
= R X (t)− Y (t)− X (t)Z(t) (2.26)

dZ(t)

dt
= −βZ(t)+ X (t)Y (t) (2.27)

Lorenz suggested that systems described by nonlinearly coupled differential equa-
tions with three variables are candidates for chaotic systems.

For the Maxwell–Bloch equations in laser model, using normalized variables as
x = √

b/Isat E, y = i(cTph/η)
√

b/Isat P , and z = (w0 − w)cTph/η, and replacing
time by t/T2 → t , the equations in (2.22)–(2.24) are written as

dx(t)

dt
= −σ {x(t)− y(t)} (2.28)

dy(t)

dt
= −(1 − iδ)y(t)+ {r − z(t)}x(t) (2.29)

dz(t)

dt
= −bz(t)+ Re[x∗(t)y(t)] (2.30)

where σ = T2/2Tph, b = T2/T1, and r = w0cTph/η. The above three equations
are almost the same as those of the Lorenz model and lasers described by two-level
atoms are essentially the same chaotic system as convective fluid in the atmospheric
flow. Therefore, (2.28)–(2.30) are called Lorenz–Haken equations. Figure 2.2 shows
an example of chaotic oscillations calculated from (2.28)–(2.30) for a parameter set
of σ = 3, δ = 0, r = 28, and b = 1. The normalized pump parameter r is well
above the second laser threshold and these parameters correspond to a bad cavity
condition for class C laser that is discussed in Sect. 2.2.3. Figure 2.2a, b is time series
of chaotic oscillation of the laser output and its chaotic attractor in the phase space
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Fig. 2.2 Lorenz–Haken
chaos of laser oscillation.
a Time evolution of laser
intensity for σ = 3, δ =
0, r = 28, and b = 1, and
b its attractor in a phase space
of the real parts of the field
and the polarization
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of the real parts of the field and the polarization, respectively. Under the condition,
the laser becomes unstable and shows chaotic oscillations. In the figure, one can see
pulsating and irregular oscillations of chaos in the laser intensity. The double scroll
trajectory is sometimes called butterfly attractor, which is commonly observed in
Lorenz-like chaos (see Appendix A.2). Thus, laser is in general categorized into a
chaotic system like Lorenz system.

2.2.2 First Laser Threshold

A laser oscillation starts when the population inversion exceeds a certain level,
namely the pumping threshold. The laser threshold can be calculated from (2.28)–
(2.30) based on the linear stability analysis. The linear stability analysis, which
applies small perturbations on the steady states of the laser variables, is frequently
used for obtaining the stability conditions. Assuming the stable solutions in (2.28)–
(2.30) as xs, ys, and zs, and applying small perturbations on the steady-state values, we
write the time developments of the variables as x(t) = xs +δx(t), y(t) = ys +δy(t),
and z(t) = zs +δz(t), where δx(t), δy(t), δz(t) are small perturbations. Substituting
these values into (2.28)–(2.30), we obtain the following differential equations for the
perturbations:
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dδx(t)

dt
= −σ {δx(t)− δy(t)} (2.31)

dδy(t)

dt
= −(1 − iδ)δy(t)− {r − δz(t)}δx(t) (2.32)

dδz(t)

dt
= −bδz(t)+ Re[δx∗(t)δy(t)] (2.33)

We can neglect the second small infinities such as δzδx and δx∗δy, thus the equations
are linearized.

When we put the time developments of the variables as δh = δh0 exp(γ t)(h =
x, y, z), the laser is stable for solutions of negative real parts of γ . On the other hand,
it is unstable for solutions of positive real parts and the solutions diverge to infinities
for the time development. Substituting the time developments δh = δh0 exp(γ t)
into (2.31)–(2.33), we obtain the following characteristic relation for the non-trivial
solutions: ∣

∣
∣
∣
∣
∣

γ + σ −σ 0
−r γ + 1 − iδ 0
0 0 γ + b

∣
∣
∣
∣
∣
∣

= 0 (2.34)

The real parts of the solutions in the above equations represent the measure for
stability or instability of the solutions and the imaginary parts denote the oscillation
frequencies of the corresponding solutions. Since b = T2/T1 is positive, one of the
solutions γ = −b is a stable solution with uniform convergence. The other solutions
are calculated by solving the following equations:

γ 2 + (σ + 1 − iδ)γ − σ(r − 1 + iδ) = 0 (2.35)

When the pumping r reaches a certain value, the laser exceeds the threshold and
laser oscillation starts. Above the threshold, the solutions of the imaginary parts
are enough to take into account. Putting the form of the solutions as γ = i and
substituting it into (2.35), we obtain the laser threshold from the conditions having
zero values for the real and imaginary parts of (2.35) as

r (1)th = 1 + δ2

(σ + 1)2
(2.36)

For the laser oscillation, there is an accompanying frequency ν = /2π that cor-
responds to the solution of the imaginary part for the characteristic equation. Using
the threshold, the frequency is given by

νR = σ

2π

√

r (1)th − 1 (2.37)
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The frequency νR is known as the relaxation oscillation frequency. When the detuning
δ is zero, the threshold is r (1)th = 1 or w0 = η/cTph, as expected. The extra term in the
threshold in (2.36) is the increase of the threshold, which compensates the loss due
to the detuning. As we discuss in the following section, there is another threshold
that is called second laser threshold. Therefore, r (1)th is called first laser threshold.

2.2.3 Second Laser Threshold

Laser oscillation starts above the first threshold and shows a stable output power at a
certain pump. Here, we again apply linear stability analysis for the laser operation. As
we are considering the oscillation above the threshold, the field and the polarization
vary with time at the same optical frequency for the steady-state values of xs, ys,
and zs. Assuming the difference of the angular detuning frequency �ω between the
laser oscillation and the internal cavity frequencies and the phase fluctuation φs of
the complex field, we put the forms of the steady-state solutions as

xs = x0 exp{−i(�ωst + φs)} (2.38)

ys = y0 exp(−i�ωst) (2.39)

zs = z0 (2.40)

where x0 = √
bz0, y0 =

√

r (1)th bz0, z0 = r − r (1)th ,�ωs = −δσ/(σ + 1), and
tanφs = δ/(σ + 1). The laser output power is given by the square of x0 and reads

x2
0 = b(r − r (1)th ) (2.41)

This is the well-known result that the laser output power linearly increases with the
increase of the pump r well above the threshold r (1)th .

For a pump below the laser threshold, the laser does not reach laser oscillation
and it only exhibits a faint light output due to spontaneous emission, thus the laser
is also under another stable condition. For the increase of the pump r over the
threshold, whether the laser output power increases with the increase of the pump
or not? In actual fact, there are nonlinear effects, such as saturation of gains of the
laser material, to limit the optical output power. The effects also induce the change
of laser parameter values describing the laser rate equations. Of course, what we
are considering is not such effects, but the nonlinear effects intrinsically involved
in the laser rate equations in (2.28)–(2.30). Here, consider the unstable phenomena
induced by the increase of the pump r for these equations. For this purpose, we again
employ the linear stability analysis for (2.38)–(2.40) near the steady-state values
for the variables. The procedure is almost the same as the previous calculations.
For simplicity, we calculate the stability solutions for the condition δ = 0 (zero
detuning condition). After some calculations, the same as the derivation for (2.35),
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the characteristic equation reads as

γ 3 + a2γ
2 + a1γ + a0 = 0 (2.42)

where a2 = σ + b + 1, a1 = b(σ + r), and a0 = 2bσ(r − 1). The stability solutions
are calculated by solving the above equation.

At the threshold of the stable solution, the variable γ is purely imaginary, and it
is assumed as γ = i. From the comparison between the real and imaginary parts
for the solution, we obtain the threshold as

r (2)th = σ(σ + b + 3)

σ − b − 1
(2.43)

Over the pump r exceeding the threshold r (2)th , the laser gets unstable states and
exhibits irregular oscillations of chaos via Hopf bifurcations (see Appendix A.1).
In actual evolution processes for bifurcations, there are various routes to chaos, for
example, chaos follows immediately after period-1 oscillation (quasi-period doubling
bifurcation). The other example is that instability to chaos follows after intermittent
oscillations like spiky irregular oscillations. The details of routes to chaos in semi-
conductor lasers will be demonstrated in the following chapters. The threshold r (2)th is

called second threshold to distinguish it from the first laser threshold r (1)th . For exam-
ple, for the conditions of T2 � T1, b ≈ 0, and σ = 2(T2 = 4Tph), the threshold

value is equal to r (2)th = 10 and it is much higher than the first threshold r (1)th = 1
without detuning. Actual unstable lasers have the second threshold values around
tens to one hundred. We already presented such an example in Fig. 2.2.

The typical frequency of the irregular pulsing can also be calculated from the
characteristic equation for the pure imaginary part value of the variable γ , and it is
given by

νR2 = 1

2π

√

b(σ + r (2)th ) (2.44)

For the existence of the second threshold, the condition of σ > b+1 must be satisfied
from (2.43). This is known as the bad-cavity condition of a laser that gives rise to
unstable laser oscillations. The bad-cavity condition is rewritten by using the actual
time constants as follows:

1

2Tph
>

1

T2
+ 1

T1
(2.45)

Namely, the bad-cavity of a laser oscillation is a lossy and dissipative system for
photons having a low quality factor Q of the resonator. Further discussion of the
bad-cavity conditions and instabilities above the second laser threshold can be found
in van Tartwijk and Agrawal (1998). Equations (2.43) and (2.44) were derived for
the condition of zero frequency detuning δ = 0. For nonzero detuning δ = 0, the
analysis becomes much more complex, but the expression for this case has been
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given and almost the same order of the second laser threshold r (2)th has been obtained
(Mandel and Zeghlache 1983; Zeghlache and Mandel 1985; Ning and Haken 1990).

2.3 Classifications of Lasers

2.3.1 Classes of Lasers

We have taken into consideration all of the time constants for the field, the polarization
of matter, and the population inversion in the laser rate equations. The second laser
threshold has been calculated for the inclusions of these parameters. However, lasers
do not always show instabilities and chaotic behaviors with increased pumping, and
most lasers are indeed stable. Only few lasers emitting infrared lines exhibit chaotic
oscillations. For stability and instability of lasers, we have assumed the model of a
ring laser with two-level atoms. On the other hand, most lasers in practical use are
modeled by three- or four-level atoms. Therefore, lasers must be modeled by these
in a strict sense and some modifications may be required for the above derivations.
However, the results derived for the two-level atoms can here be extended to three-
or four-level atoms and still be applicable for the discussion of the stability and
instability for practical lasers.

Even for the same material, the laser may have several oscillation lines. In such a
case, the laser has a different gain for each line and has different time constants for
the relaxation oscillations depending on the oscillation frequency. Therefore, a laser
with a certain material may be stable for a certain oscillation line and have no second
threshold, while it may be unstable and have the second threshold for another line.
The stability and instability of lasers intrinsically involved in laser rate equations are
classified according to the scales of time constants for the relaxation oscillations Tph,
T2, and T1 introduced in Sect. 2.2.1. Namely, one or two of the time constants among
the three in the differential equations may be adiabatically eliminated and one or two
of the laser rate equations are enough to describe actual laser operations. Depending
on the scales of the time constants, the stabilities of lasers are classified into the
following three classes; class A, B, and C lasers (Arecchi et al. 1984; Tredicce et al.
1985).

2.3.2 Class C Lasers

When the time constants of the relaxations are of the same order, we must consider
all of the Lorenz–Haken differential equations. As already discussed, the laser oscil-
lation starts at the first threshold with stable light output for a certain pump and it
reaches the second laser threshold for the increase of the pump. Over pumping above
the second threshold in the bad-cavity condition with low Q factor, the laser shows
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Fig. 2.3 Experimentally observed chaotic time series in an infrared He–Ne laser. Stable oscillation
state a to chaotic state e. One of the mirrors in the laser cavity is tilted and the bad-cavity condition
is realized [after Weiss et al. (1983); © 1983 APS]

unstable oscillation like irregular pulsations and chaotic oscillations. According to
the classifications of laser operations by Arecchi et al. (1984), these lasers are called
class C lasers. Class C lasers are generally infrared gas lasers and far-infrared lasers
are almost classified into class C. This is originated from the fact that the three time
constants of the relaxation oscillations for the field, the polarization of matter, and
the population inversion tend to be of the same order. Examples of class C lasers are
NH3 lasers (Weiss et al. 1985; Hogenboom et al. 1985), Ne–Xe lasers (3.51 µm line)
(Casperson 1978; Abraham et al. 1985), and He–Ne lasers at 3.39 µm line (Weiss
and King 1982; Weiss et al. 1983). Though He–Ne lasers operating at infrared lines
are class C lasers, He–Ne lasers at visible oscillations are categorized into a different
class because the constants of the polarization and the population inversion have
different timescales from those of the infrared operations. In general, these class C
lasers do not have any commercial application.

Figure 2.3 is an example of experimentally observed chaotic waveforms in an
infrared He–Ne laser at 3.39 µm oscillation (Weiss et al. 1983). The bad-cavity
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Fig. 2.4 Experimentally
observed optical power spectra
in an infrared He–Ne laser for
period-doubling route to
chaos. Tilting of one of the
resonator mirrors leads to
oscillations to a period-1, b
period-2, c period-4, d period-
8, and e chaos [after Weiss
et al. (1983); © 1983 APS]
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condition was realized by tilting the angle of one of the mirrors in the laser resonator.
A stable laser state (Fig. 2.3a) evolves into unstable oscillations (Fig. 2.3b–d) to
chaotic state (Fig. 2.3e) with the increase of the mirror tilting angle. Figure 2.4 shows
the oscillation spectra of the laser corresponding to period doubling bifurcations to
chaos for the increase of the mirror tilting angle. Figure 2.5 is another experimental
example of chaos showing pulsation instability in a Xe laser at 3.51 µm oscilla-
tion (Casperson 1978). With increasing pump, period-1 pulsation at first appears in
Fig. 2.5a and the laser switches to period-2 pulsation in Fig. 2.5b. Thus, routes to
chaos are not unique and depend on systems and parameters.
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Fig. 2.5 Experimental plots of pulsation instabilities in an Xe laser at 3.51 µm oscillation for a
period-1 pulsation at a discharge current of 40 mA and b period-2 pulsations at a discharge current
of 50 mA [after Casperson (1978); © 1978 IEEE]

2.3.3 Class B Lasers

The time constant T2 of the polarization of matter (transverse relaxation) is small
enough compared with the other time constants, i.e., Tph, T1 � T2, the differen-
tial equation for the polarization is adiabatically eliminated and we obtain for the
representation of the polarization in (2.29) (Haken 1985)

y = r − z

1 − iδ
x (2.46)

Then, the laser rate equations can be described by the two differential equations for
the field x and the population inversion z. These lasers are called class B lasers and
they are stable in nature, since the lasers have the first threshold but do not have the
second threshold. The electric field is complex and the complex field equation can
be split into two differential equations, the amplitude and phase equations. However,
the phase equation has no effect on other variables, so that these systems can still be
characterized by two differential equations. Therefore, class B lasers are intrinsically
stable.

However, they are easily destabilized by the introduction of external perturba-
tions, resulting in the addition of extra degrees of freedom. If the equations for the
field amplitude and the phase couple with each other through a perturbation, the laser
must be described by the rate equations coupled with three variables. A laser coupled
with three variables becomes a chaotic system and shows instabilities. Examples of
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external perturbations are modulation for the accessible laser parameters, external
optical injection, and optical self-feedback from external optical components. Semi-
conductor laser, which is the main topic of this book, is classified into class B laser, as
discussed later. Indeed, semiconductor lasers are easily destabilized and show chaotic
behaviors by external perturbations, such as external optical feedback (van Tartwijk
and Agrawal 1998; Ohtsubo 2002). One of the typical features of class B lasers is
a relaxation oscillation of the laser output that is observed for a step-time response
when the population inversion does not follow the photon decay rate, i.e., T1 > Tph.
Many lasers are classified into class B lasers and other examples are CO2 lasers and
solid-state lasers including fiber lasers. It is noted that CO2 lasers are gas lasers and
have oscillation lines in infrared region of wavelength around 9.4–10.6µm, however
they are stable class B lasers since the oscillation mechanism is different from those
of common class C lasers. The oscillations of CO2 lasers are performed through
the excitations of molecular vibrations, which is different from the mechanism of
two-level atoms for class C lasers discussed in the previous section. Class B lasers
are important and widely used in practical applications.

2.3.4 Class A Lasers

When the lifetime of photons in a laser medium is large enough compared with the
other time constants of the relaxations, i.e., Tph � T1, T2, the differential equations
for the polarization of matter and the population inversion are adiabatically elimi-
nated. In the same manner as class B lasers, the adiabatical relation for the polarization
in (2.46) also holds and, in addition, the steady-state population inversion is given
by (Haken 1985)

z = 1

b
Re[x∗y] (2.47)

Then, the laser oscillation is only described by the differential equation for the field.
Lasers satisfying the relations are called class A lasers and they are the most stable
lasers with a high Q factor among the three classes. Even for class A lasers, they may
be destabilized and show chaotic behaviors by external perturbations with two or
more extra degrees of freedom as described in class B lasers. Visible He–Ne lasers,
Ar-ion lasers, and dye lasers are examples of class A lasers.
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Chapter 3
Semiconductor Lasers and Theory

In this chapter, we discuss the oscillation conditions for semiconductor lasers and,
then, derive the rate equations, which are the starting points of the study of chaotic
dynamics in semiconductor lasers. The semiconductor laser described here is a
Fabry-Perot type with a mono-layer of the active region, however other narrow-stripe
edge-emitting lasers such as multi-quantum well (MQW) lasers and distributed feed-
back (DFB) lasers can be theoretically treated in the same manner as Fabry-Perot
lasers. Therefore, the macroscopic features of these lasers show the same behaviors
from the viewpoint of chaotic dynamics, although the detailed characteristics strongly
depend on the laser structure and the particular values of the device parameters. The
relaxation oscillation frequency, which is calculated from the rate equations plays
an important role for the dynamics of semiconductor lasers. The Langevin terms,
which are stochastic noise effects, are introduced in the rate equations. Some other
fundamental characteristics of semiconductor lasers are also discussed.

3.1 Semiconductor Lasers

We assume that the readers of this book are familiar with semiconductor lasers
and how they operate. An extensive review for the characteristics of semiconductor
lasers and the details of their operations can be found, for example, in the books
of Agrawal and Dutta (1993), and Petermann (1988). We treat here the dynamics
of narrow-stripe edge-emitting semiconductor lasers, which have stripe widths of
less than a few microns, namely, the stripe width is the same order as that of the
laser wavelength. Indeed, almost semiconductor lasers under commercial use are
these types. For such structures, the laser can only be described by time-dependent
differential equations as a class B laser, since we can assume uniform intensity
distribution inside the laser cavity at a certain time instance and we can neglect
carrier diffusion and diffraction of light along the direction of the stripe width. As far
as the laser oscillations are described by the same forms of the rate equations, they

J. Ohtsubo, Semiconductor Lasers, Springer Series in Optical Sciences 111, 29
DOI: 10.1007/978-3-642-30147-6_3, © Springer-Verlag Berlin Heidelberg 2013
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show the same or similar dynamics independent of the laser types. In the meantime,
newly developed structures of semiconductor lasers, for example, vertical-cavity
surface-emitting semiconductor lasers (VCSELs), show unique characteristics that
are different from conventional edge-emitting semiconductor lasers. We need some
modifications of the rate equations for such newly developed lasers. These new
lasers still show the same or similar dynamics as those of narrow-stripe edge-emitting
lasers. However, they have extra device structures compared with narrow-stripe edge-
emitting semiconductor lasers. Extra structures for semiconductor lasers mean the
introductions of extra degree of freedoms in the viewpoint of nonlinear dynamics.
Therefore, they are essentially unstable lasers even in their solitary oscillations and
exhibit additional complex dynamics. We will derive the rate equations for these
lasers and discuss their dynamics in Chap. 8.

The structure of semiconductor lasers is based on the p–n junction of the semicon-
ductor materials and the laser oscillation is realized by the emission of light due to
carrier recombination between the conduction and valence bands, namely, inter-band
optical transitions. The band structure of actual lasers is not modeled by a simple
two-level system. Therefore, we cannot straightforwardly apply the results of Chap. 2
and we need some modification of the model and of the strict theoretical treatment.
However, the intra-band relaxation within the medium of the semiconductor laser is
fast enough of the order of 10−13 s compared with the carrier recombination rate of
10−9 s (Petermann 1988). This fact makes it possible to use approximately the model
of two-level atoms for the theoretical investigation of the dynamics of semiconductor
lasers (Agrawal and Dutta 1993). The rigorous treatment of semiconductor lasers can
be found in the reference (Chow et al. 1993), but here we employ the approximate
model of laser oscillations based on two-level atoms.

As discussed in the previous chapter, the relaxation time of the polarization in the
semiconductor laser material is as small as T2 < 0.1 ps, which is much smaller than
the other timescales of the relaxations, Tph ∼ several pico-seconds and T1 ∼ several
nano-seconds, and the laser is classified into class B. Therefore, the polarization term
is adiabatically eliminated and the effect is simply replaced by the linear relation
between the field and the polarization. The population inversion for semiconductor
lasers is replaced by the carrier density produced by electron-hole recombination. The
photon number (which is equivalent to the absolute square of the field amplitude)
and the carrier density are frequently used as the variables of the rate equations.
However, for the general descriptions of the dynamics in semiconductor lasers, we
must employ the complex amplitude of the field (the amplitude and the phase of
the field) instead of the photon number. In particular, coherent descriptions of rate
equations are essential when we treat the dynamics in semiconductor lasers, such
as effects of optical feedback and optical injection. There are several ways to derive
the complex field equation, however they reach the same result. Here, we follow the
derivation of the complex field equation by Petermann (1988).

http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_2
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Fig. 3.1 Model of Fabry-
Perot laser
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3.2 Oscillation Conditions of Semiconductor Lasers

3.2.1 Laser Oscillation Conditions

In this chapter, we derive the rate equations for edge-emitting semiconductor lasers
with a narrow stripe width. Even for edge-emitting lasers, there are several kinds of
device structures, for example, the Fabry-Perot, MQW, and DFB structures. Also,
there are two main structures for the guiding of light in the active layer, i.e., gain- and
index-guiding structures. Even for these different device structures, the derivation
of the rate equations for laser operations is similarly given and almost the same
equations are obtained, although the parameters appearing in the rate equations may
vary from one laser to the other. Before deriving the rate equations in semiconductor
lasers, we consider several conditions and relations for laser oscillations. At first,
we discuss the conditions for laser oscillations (Yariv and Yeh 2007). The model
of a Fabry-Perot resonator is shown in Fig. 3.1. Assuming a cavity length l, and
reflectivities of the front and back facts r1 and r2, the fields E f and Eb propagating
forward and backward directions are written by

E f (z) = E0 f exp

{

ikz + 1

2
(g − a)z

}

(3.1)

Eb(z) = E0b exp

{

ik(l − z)+ 1

2
(g − z)(l − z)

}

(3.2)

where g is the gain in the laser medium and a is the total loss due to absorption and
scattering in the medium. All the parameters are defined for the laser intensity, so
that a factor of 1/2 is introduced in the above equations.

From the boundary conditions at the facets, E f (0) = r1 Eb(0) and Eb(l) =
r2 E f (l), the steady-state condition for the laser oscillation is given by

r1r2exp{2ikl + (g − a)l} = 1 (3.3)
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From the real part of the above equation, the amplitude condition of the laser oscil-
lation for the threshold gain gth is given by

gth = a + 1

l
ln

(
1

r1r2

)

(3.4)

Since there is spontaneous emission of light within the active region in the laser, the
actual gain is slightly less than gth. Also, the phase condition is calculated from the
imaginary part and reads as

kl = mπ (3.5)

where m is an integer. Equation (3.4) is the condition for the laser threshold and
is interpreted as the balance of the gain with the losses of the internal absorption
and reflection in the laser medium. For example, when we consider a InGaAsP
semiconductor laser oscillating at a near-infrared line of 1.3–1.5 µm with cleaved
facets as a laser resonator, the threshold gain is calculated as gth ∼ 75 cm−1 for the
facet intensity reflectivities of R1 = R2 ∼ 0.32 (where R1 = r2

1 and R2 = r2
2 , and

the refractive index of the medium of 3.6) and the internal losses of a ∼ 30 cm−1

(Buss and Adams 1979). In actual fact, we roughly require double of this amount for
lasing (about g′

th ∼ 150 cm−1), since the laser light is not only confined within the
active region and the confinement factor is about 0.5 or less of the calculated gain.

3.2.2 Laser Oscillation Frequency

From (3.5), the possible frequency of laser oscillations is given by

νm = m
c

2ηl
(3.6)

where m is again an integer. The laser will be oscillated at one of these possible
frequencies or a few lines of them. νm is called the mode frequency and it corresponds
to the mth longitudinal mode of the laser oscillations. Usually, a laser oscillates at or
near the maximum gain mode, which is very close to one of the resonator frequencies.
Therefore, the actual frequency of laser oscillations deviates from the value calculated
from (3.6), though the deviation is very small.

The refractive index η in the semiconductor laser is a function of the optical
oscillation frequency ν due to the presence of the dispersion of laser materials.
Using the notation of a small quantity such as �, we have the relation

�(ην) = η�ν + ν�η (3.7)

Here, we define the effective refractive index as
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ηe = η + ν
∂η

∂ν
(3.8)

With the above relation and the equality for the successive modes m and m+1,
�(ην) = c/2l, we obtain the mode separation between the m and m+1 modes

�ν = c

2ηel
(3.9)

This corresponds to the round trip time of light within the internal cavity of lasers
and the time is given by

τin = 2ηel

c
(3.10)

As an example, we consider the same InGaAsP lasers as in the previous subsection.
We obtain a frequency separation of �ν = 150 GHz for l = 250 µm, η ∼ 3.6, and
ηe ∼ 4. The corresponding separation of the wavelengths in the laser oscillation
is �λ = λ2�ν/c = 1 nm. Also, the round trip time of light is calculated to be
τin = 6.7 ps (Petermann 1988).

3.2.3 Dependence of Oscillation Frequency
on Carrier Density

In this subsection, we derive the dependence of the oscillation frequency on the carrier
density, which plays an important role in laser operations. The refractive index of
the active layer is a function of the carrier density nth and the optical frequency νth
at the laser threshold, and is written by

η = η0 + ∂η

∂ν
(ν − νth)+ ∂η

∂n
(n − nth) (3.11)

where n is the carrier density at the laser oscillation and η0 is the refractive index
at the threshold. Then, the threshold gain gth and the oscillation frequency νth at the
laser threshold is given by

gth = g(nth) (3.12)

νth = m
c

2η0l
(3.13)

Substituting (3.6) and (3.13) into (3.11), and using the relation of (3.8), we obtain an
important relation between the laser oscillation frequency and the carrier density as

(ν − νth) = −νth

ηe

∂η

∂n
(n − nth) (3.14)
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Since the oscillation frequency has a linear relation to the carrier density as given
by (3.14), the laser power is proportional to the frequency through the linear relation
between the carrier density and the optical power.

3.3 Derivation of Rate Equations

3.3.1 Gain at Laser Oscillation

To derive the rate equations of semiconductor lasers, we at first consider the gain at
the lasing condition. The gain of light after the round trip within the cavity is given
by the same equation for the steady-state laser oscillation condition as

G = r1r2 exp{2ikl + (g − a)l} (3.15)

The wavenumber k depends on the refractive index of the laser medium and is a
function of the optical frequency ν (or the angular frequency ω = 2πν) and also the
carrier density n. The wavenumber can be expanded by the threshold values of those
parameters as

k = η
ω

c
= ωth

c

{

η0 + ∂η

∂n
(n − nth)+ ηe

ωth
(ω − ωth)

}

(3.16)

Here, we use the relations of (3.8), (3.11) and (3.14) for the derivation of the above
equation. Using (3.16), the gain G is written by the product of the frequency depen-
dent and non-dependent terms, G1 and G2, as

G = G1G2 (3.17)

G1 = r1r2 exp{(g − a)l + iφ0} (3.18)

G2 = exp

[

i
2ωthl

c

{

η0 + ηe

ωth
(ω − ωth)

}]

(3.19)

The phase φ0 of the above equation is given by

φ0 = 2ωthl

c

∂η

∂n
(n − nth) = −τin(ω − ωth) (3.20)

In (3.19), we have used the condition for the laser oscillation that the phase
2ωthη0 L/c must be equal to integer multiples of 2π . Then, replacing the quantity −iω
as the equivalent to the operator d/dt , (3.19) reads as
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G2 = exp{iτin(ω − ωth)} = exp(−iωthτin) exp

(

−τin
d

dt

)

(3.21)

Since frequency and time are a Fourier transform pair, (3.21) is derived from the
equivalence of the equation in the frequency domain with that in the time domain.

3.3.2 Rate Equation for the Field

To attain the laser oscillations, the complex field after the round trip within the laser
cavity must coincide exactly with the previous field. Assuming the gain in (3.17),
(3.18) and (3.21) as a kind of an operator, we can obtain the following relation:

E f (t) = G E f (t) (3.22)

Then, using (3.21), the field after the round trip in the cavity is written as

E f (t) = G1 exp(−iωthτin) exp

(

−τin
d

dt

)

E f (t) (3.23)

We divide the laser field E f (t) into two terms, the term changing with angular
frequency ωth and the term Ê f (t) that varies slowly compared with the angular
frequency. Then, the field is given by

E f (t) = Ê f (t) exp(−iωtht) (3.24)

With this expression and the fact that the operator exp(−τind/dt) is equivalent to the
time delay effect of τin, (3.23) yields

Ê f (t) exp(−iωtht) = G1 exp(−iωthτin)

× Ê f (t − τin) exp{−iωth(t − τin)} (3.25)

Therefore, we can write the field Ê f (t) as

Ê f (t) = G1 Ê f (t − τin) (3.26)

This equation means that the field Ê f (t) after the round trip time of τin with SVEA
approximation returns as the same form of the field with gain G1. We have discussed
the field propagation for the positive direction. Similarly, we obtain the same results
for the field propagation for the negative direction and the same relation as that of
(3.26) is derived for the field. Then, the total field E(t) can be written as the same
form as Ê f (t) in (3.26).
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For simplicity, we again use the notation for the field Ê(t) as E(t) in the following.
When the round trip time τin is small enough, we can expand the total field around
the delay time τin as

E(t − τin) = E(t)− τin
dE(t)

dt
(3.27)

Then, we obtain the differential form for the field as follows:

dE(t)

dt
= 1

τin

(

1 − 1

G1

)

E(t) (3.28)

Since the gain G1 is very close to unity for laser oscillation, we approximate the gain
from (3.18) as

1

G1
= exp{− ln(r1r2)− (g − a)l − iφ0}

≈ 1 + ln
1

r1r2
− gl + al − iφ0 (3.29)

Substituting the above equation into (3.28) and using the relation of (3.20), we finally
obtain the rate equation for the field as

dE(t)

dt
=

{

−i(ω0 − ωth)+ 1

2

(

gvg − 1

τph

)}

E(t) (3.30)

where vg = c/ηe is the group velocity of light in vacuum and the laser is assumed
to operate at the angular optical frequency of ω = ω0. Here, τph (which is the same
as Tph in the previous notation) is the photon lifetime describing the loss due to
absorption and scattering of light in the cavity and it is written by

1

τph
= vg

{

a + 1

l
ln

(
1

r1r2

)}

(3.31)

where the relation c/ηe = vg = 2l/τin holds for the group velocity of light within
the laser resonator.

3.3.3 Linewidth Enhancement Factor

For the derived rate equation of (3.30), we rewrite the field equation in a differ-
ent form, which is frequently used in the following discussion. At the same time,
we derive the equation for the carrier density. Before formulating them, we discuss
the complex susceptibility of the medium at laser oscillation and derive the impor-
tant parameter of semiconductor lasers known as the linewidth enhancement factor.
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We can define the susceptibility under laser oscillation in the same manner as that
below the laser threshold. We consider the extra complex susceptibilityχl = χ ′

l +iχ ′′
l

due to the laser oscillation and add it to that below threshold, χ0 = χ ′
0 + iχ ′′

0 . The
complex susceptibility is a function of the laser frequency, therefore we write the
total susceptibility χ(ω) as

χ(ω) = χ0(ω)+ χl(ω) = χ ′
0(ω)+ χ ′

1(ω)+ i
{

χ ′′
0 (ω)+ χ ′′

l (ω)
}

(3.32)

In the following, we will explicitly write susceptibilities as a function of the laser
frequency only when necessary. Otherwise, the equivalent quantity of the complex
electric permittivity has the following form:

ε = εb + χ ′
l + i(χ ′′

0 + χ ′′
l ) (3.33)

where
√
εb = ηb is the refractive index below the laser threshold.

Assuming the propagation of light toward z direction along the laser resonator,
the spatial field to that direction is given by

E(z) = |E(z)| exp(ikz) (3.34)

The propagation constant is written by

k = ηck0 = ηk0 + i
aabs

2
(3.35)

where k0 is the propagation constant in vacuum, ηc is the complex refractivity,
and aabs is the intensity absorption coefficient in the medium. Since the relation of
aabs � ηk0 usually holds, the refractive index η and the absorption coefficient aabs
are given by

η =
√

εb + χ ′
l ≈ ηb + χ ′

l

2ηb
(3.36)

aabs = k0

η
(χ ′′

0 + χ ′′
l ) = k0

ηb
(χ ′′

0 + χ ′′
l ) (3.37)

The increment of the refractive index η for laser oscillation is equal to n∂η/∂n, so
that χ ′

l is expressed by χ ′
l = 2ηbn∂η/∂n. Also using the gain for starting the laser

oscillation, g = aabs (actually, this is the gain of the laser oscillation at transparency),
the increment of the absorption (negative sign of g) is −n∂g/∂n. Then, χ ′′

l is repre-
sented by χ ′′

l = −(ηbn/k0)(∂g/∂n). The addition of the complex susceptibility due
to laser oscillation is given by

χl = 2ηbn

(
∂η

∂n
− i

2k0

∂g

∂n

)

(3.38)
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The macroscopic complex refractive index at laser oscillation is written by

ηe = η − iη′ (3.39)

where η′ is the imaginary part of the refractive index. The imaginary part of the
refractive index has the relation with the gain g as

η′ = − 1

2k0
g (3.40)

Then, with this relation together with (3.14), we have

(ω − ωth) = −ωth

ηe

∂η

∂n
(n − nth) = 1

2
αvg

∂g

∂n
(n − nth) (3.41)

The parameter α in (3.41) is an important parameter in semiconductor lasers,
known as linewidth enhancement factor or α parameter, and plays a crucial role
for laser oscillations. Easily understood from the above equation and the relation of
(3.38), the α parameter is defined by

α = Re[χl ]
Im[χl ] = −2

ω

c

∂η
∂n
∂g
∂n

(3.42)

where χl is the complex electric susceptibility defined in (3.32). The value of
linewidth enhancement factor for ordinary lasers, such as gas lasers, is almost equal
to zero, while it has a nonzero value for semiconductor lasers and usual semicon-
ductor lasers have positive values from 3 to 7 (Cook and Nash 1975; Osinski and
Buss 1987). This nonzero value of the α parameter gives rise to complex dynam-
ics of semiconductor lasers. The typical feature of semiconductor lasers is a broad
linewidth of laser oscillations due to a nonzero α parameter. Therefore, the parameter
is also called the linewidth enhancement factor. Indeed, the oscillation linewidth of
semiconductor lasers is 1 + α2 times larger than those of ordinary lasers (Henry
1982). We will return to this subject in Sect. 3.5.6.

3.3.4 Laser Rate Equations

Under operations close to laser threshold, the gain g is linearized for the carrier
density as

g = gth + ∂g

∂n
(n − nth) (3.43)

where gth is the gain of the medium at the threshold and it has a relation through the
carrier density n0 at the transparency as
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gth = ∂g

∂n
(nth − n0) (3.44)

Under this condition, the gain balances with the loss and g0 = a, where g0 is the
gain at transparency. The gain must exceed this value for laser oscillations. However,
the actual gain required for laser oscillations is slightly larger than this value, since
photons dissipate from the laser facets. At a laser oscillation well above the threshold,
the effect of gain saturation must be taken into account (Nakamura et al. 1978;
Lang 1979; Henry 1982). In that case, we use the coefficient of gain saturation εs

and obtain the relation
g = gth

1 + εs |E |2 (3.45)

When the saturation effect is very small (as is often the case and, indeed, the saturation
intensity is usually attained at well above the laser threshold), we can approximate
the gain as

g ≈ gth(1 − εs |E |2) (3.46)

This expression is frequently used in theoretical treatments.
In the following discussion, we use the linearized gain for the formulation of

equations assuming that the laser operation is not so far from the laser threshold. If
this is not the case, we take into account the gain saturation term of (3.45). From
(3.41) and (3.43), the field equation is a function of the time-dependent carrier density
and it is rewritten as

dE(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}E(t)+ Esp(t) (3.47)

where we define the linear gain Gn = vg∂g/∂n. We must consider the effect of
spontaneous emissions of light in laser oscillations. Esp(t) (dimension of 1/time)
is the stochastic function corresponding to the random field for spontaneous emis-
sions. The ensemble average of the product E∗Esp has the relation as 2Re[〈E∗(t) ·
Esp(t)〉] = Rsp.The term Rsp is generally used for the effect of spontaneous emission
in the photon number equation and is given by Petermann (1988)

Rsp(t) = βspξsp
n(t)

τs
(3.48)

where βsp is the coefficient of spontaneous emissions, ξsp is the internal quantum
efficiency for spontaneous emissions, and τs is the carrier lifetime in the laser cavity.
In fact, Esp contains statistical components and we must take into account the terms
in numerical calculations for optical field. The forms of the noise terms suitable
for practical numerical calculations will be discussed in Sect. 3.5.3. However, we
frequently omitted the term unless necessary since it is usually as small asβsp ∼ 10−5

(Thompson 1980). Furthermore, when we investigate the fundamental dynamics of
instability and chaos in nonlinear systems, we can treat only the deterministic terms
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without considering statistical noises. Noise is essentially considered as a separate
effect from chaotic oscillations in as far as it is small.

Using the notation of the complex field E(t) = A(t)exp{−iφ(t)}, the amplitude
A(t) and the phase φ(t) of the field equation are separately given by

dA(t)

dt
= 1

2
Gn{n(t)− nth}A(t) (3.49)

dφ(t)

dt
= 1

2
αGn{n(t)− nth} (3.50)

It should be noted that in this text, the time-dependent harmonic term of the propagat-
ing electromagnetic field is defined as exp(−iω0t). However, some papers and texts
use the notation of exp(iω0t) for the propagating term. In that case, the coefficient
of the term related to the α parameter in the right-hand side of (3.47) is written by
(1+ iα) instead of (1− iα). Although starting from the different sign of the equation
for the complex field, the amplitude and phase equations result in the same forms as
(3.49) and (3.50).

From the physical model of two-level atoms in semiconductor lasers, the differen-
tial equation for the carrier density n, which is equivalent to the population inversion
in common lasers is given by Agrawal and Dutta (1993)

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t)− n0}A2(t) (3.51)

where J is the injection current density and d is the thickness of the active layer.
The first term on the right side of the equation is the pumping by the injection
current. The second term is the carrier recombination due to spontaneous emissions.
In a strict sense, the carrier recombination includes various processes of carrier
decays, for example, radiative and non-radiative carrier recombination, and Auger
recombination (Agrawal and Dutta 1993). They may be a function of the carrier
density, however, we have treated the carrier lifetime as a constant coefficient with
a good approximation. The third term represents the carrier recombination induced
by the laser emission. The photon lifetime and the carrier densities at threshold and
transparency have the relation

vg
∂g

∂n
(nth − n0) = 1

τph
(3.52)

In general, Langevin noise should be considered for the carrier density equation,
however, it is usually less effect for the laser dynamics due to slower response of
carriers compared to that of photons. Therefore, the term is sometimes ignored. The
Langevin noise for carriers will also be discussed in Sect. 3.5.

The photon number inside the laser cavity is derived by the internal optical energy
Uand defined by the following relation:



3.3 Derivation of Rate Equations 41

S = U

�ω
= ε0η̄ηe

2�ω

∫

cavity

d3r |Ereal(r)|2 (3.53)

where η̄ is the refractive index for the mode, r is the three-dimensional coordinate,
and Ereal is the real optical field inside the cavity. In the derivations of (3.47) and
(3.51), we assume that the field is normalized by the square of the photon numbers.
Assuming that the field inside the laser cavity is constant over the coordinate at a
fixed time, the relation of the photon number S and the real optical field Ereal is
approximated by

S = |E |2 = ε0η̄ηe

2�ω
|Ereal|2V (3.54)

where V is the volume of the active layer (Agrawal and Dutta 1993). When we write
the field amplitude A, it is given by A = √

S = √
ε0η̄ηeV/2�ω |Ereal|. Using the

internal photon number, the output power outside the laser cavity reads as (Petermann
1988)

Sext = ξext

ξint

1

τph
S (3.55)

where ξext/ξint is the ratio between the external and internal differential quantum
efficiencies. Normally, a semiconductor laser is fabricated to take different facet
reflectivities to obtain a maximum laser power. Assuming the different facet intensity
reflectivities R1 and R2, the photon number emitted from the facet with the reflectivity
R1 is calculated as follows (Petermann 1988):

Sout
R1

= (1 − R1)
√

R2

(
√

R1 + √
R2)(1 − √

R1 R2)
Sext (3.56)

If the two facets have the same reflectivity, i.e., R1 = R2, the photon numbers emitted
from the facets are Sout

R1 = Sout
R2 = Sext/2.

For the sake of easiness of asymptotic studies of the dynamics, the variables and
parameters in the rate equations are normalized and the dimensionless equations
corresponding to (3.47) and (3.51) are frequently employed. Using the normalized

field and the carrier density as Ẽ =
√

1
2τs Gn E and ñ = τph

2 Gn(n − nth), with also

the normalized time of t̃ = t
τph

, the non-dimensional field equation reads as

dẼ

dt̃
= (1 − iα)ñ Ẽ (3.57)

For the carrier density equation, using a new time constant of T = τs
τph

and a pumping

parameter of P = τsτphGn
2ed (J − Jth), it is given by
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T
dñ

dt̃
= P − ñ − (2ñ + 1)|Ẽ |2 (3.58)

When the condition of nth 
 n0 holds for the carrier densities (which corre-
sponds to a case of large mirror losses), the pump parameter is approximated as
P = τphGnnth

2
J−Jth

Jth
= 1+τphGnn0

2
J−Jth

Jth
≈ J−Jth

2Jth
. The notations of the above two

equations are sometimes used for studying the dynamics and analyzing theoretically
stability and instability conditions for laser operations.

As described in Sect. 3.2.1, the gain in actual lasers must be multiplied by a factor
less than unity (confinement factor �T) and the effect must be taken into consider-
ation for numerical simulations of semiconductor lasers (Botez 1981). The detailed
discussion of the confinement factor can be found in the book by Agrawal and Dutta
(1993). When the effects of statistical noises induced by spontaneous emission of
light are important for laser oscillations, the Langevin terms are generally added not
only to (3.47) but also to (3.51). Since semiconductor laser is a class B laser, we need
not consider the differential equation for the polarization of matter. The polarization
is included through the relation P = ε0χE in (3.47). However, the laser is described
by the three equations for the field amplitude in (3.49), the phase in (3.50), and the
population inversion (the carrier density) in (3.51). A nonlinear system described by
three coupled differential equations is a candidate for a chaotic system. The semicon-
ductor laser is described by three equations, but the phase does not affect the other
rate equations. Therefore, the two equations, the field and carrier density equations,
are enough to describe the operation of narrow-stripe edge-emitting semiconductor
lasers and, thus, they are stable lasers at solitary oscillation. We did not consider the
carrier diffusion from the active layer in the carrier density equation. We need not
take into account this effect for ordinary narrow-stripe edge-emitting semiconductor
lasers, because the stripe width of the active region is small enough (∼3 µm). How-
ever, it plays an important role for the dynamics in VCSELs and broad-area lasers.
For those lasers, the terms for carrier diffusion are included in the laser rate equations
and the laser dynamics are greatly affected by the non-negligible finite stripe size.
The effects will be discussed in Chap. 8.

3.4 Linear Stability Analysis and Relaxation Oscillation

3.4.1 Linear Stability Analysis

We have already introduced linear stability analysis for a steady-state laser operation
in Sect. 2.2.2 and discussed the stability of laser for small perturbations. Here, we
apply the method to semiconductor lasers (Ikegami and Suematsu 1967; Paoli and
Ripper 1970; Arnold et al. 1982; Tucker 1985). From (3.49) to (3.51), we summarize
the rate equations for the field amplitude, the phase, and the carrier density as follows:

http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_2
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dA(t)

dt
= 1

2
Gn{n(t)− nth}A(t) (3.59)

dφ(t)

dt
= 1

2
αGn{n(t)− nth} (3.60)

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t)− n0}A2(t) (3.61)

Setting the differential terms of the above equations to zero, we obtain the steady-state
solutions for the field amplitude As , the phase φs , and the carrier density ns

A2
s = τph

(
J

ed
− nth

τs

)

(3.62)

φs = 0 (3.63)

ns = nth (3.64)

For a small perturbation δx , we write the variable as x(t) = xs + δx(t)(x =
A, φ, n), then we can calculate the differential equations for the perturbations as

dδA(t)

dt
= 1

2
Gn Asδn(t) (3.65)

dδφ(t)

dt
= 1

2
αGnδn(t) (3.66)

dδn(t)

dt
= −2As

τph
δA(t)−

(
1

τs
+ Gn A2

s

)

δn(t) (3.67)

where we neglect the second order small infinities in the same manner as in Sect. 2.2.2.
As the condition for non-trivial solutions of the above equations, the determinant of
the coefficient matrix in the differential equations must have the following equality:

∣
∣
∣
∣
∣
∣
∣

γ 0 − 1
2 Gn As

0 γ − 1
2αGn

2As
τph

0 γ + 1
τs

+ Gn A2
s

∣
∣
∣
∣
∣
∣
∣

= 0 (3.68)

γ is the solution of the following characteristic equation:

γ

{

γ 2 +
(

1

τs
+ Gn A2

s

)

γ + Gn A2
s

τph

}

= 0 (3.69)

By solving the equation, we can discuss stability and instability of semiconductor
lasers.

http://dx.doi.org/10.1007/978-3-642-30147-6_2
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3.4.2 Relaxation Oscillation

We do not consider the trivial solution γ = 0 in (3.69). The other two solutions
are easily calculated by putting the real and imaginary parts of the solutions as
γ = �R + iωR. Then, we obtain a solution which satisfies the physical condition.

�R = −1

2

(

Gn A2
s + 1

τs

)

(3.70)

ωR =
√

Gn A2
s

τph
− �2

R (3.71)

Since the value of the real part �R is negative, the laser oscillation corresponding
to this solution quickly decays out even once it is excited. Therefore, the laser does
not become unstable even in the presence of relaxation oscillation. This oscillation
is called relaxation oscillation and the frequency νR = ωR/2π is known as the
relaxation oscillation frequency. For a low laser output power, the relation �2

R �
Gn A2

s/τph holds, and then the relaxation oscillation frequency is approximated as

νR =
√

Gn A2
s/τph/2π .

Relaxation oscillation in a semiconductor laser occurs because the carrier cannot
follow the photon decay rate. A relaxation oscillation is easily excited by a step
input to the injection current, a shot noise originating from the driving circuit, or
perturbations such as small external optical feedback. These relaxation oscillations
smoothly decay out as long as the disturbances are small enough. The relaxation
oscillation frequency of ordinary semiconductor lasers is of the order of 1–10 GHz.
Only a few specific lasers have a relaxation oscillation frequency over 10 GHz. The
relaxation oscillation frequency is a measure of the maximum modulation ability in
semiconductor lasers through the injection current. Above the relaxation oscillation,
the modulation efficiency is greatly degraded and intensity modulation through the
injection current becomes difficult. Therefore, an external modulator, such as an
electro-optic (EO) modulator is usually used for a high-speed signal modulation
over 10 GHz.

When the laser oscillates not so far from the threshold, the photon number at the
steady state is calculated from (3.62) and is given by

S = τph

ed
(J − Jth) (3.72)

where Jth = ednth/τs is the threshold current. The relaxation oscillation frequency
is also written by

νR = 1

2π

√

Gn

ed
(J − Jth) (3.73)
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Fig. 3.2 Time evolution of carrier density n and photon population S under relaxation oscillations
[after Marcuse and Lee (1983); © (1983) IEEE]

The presence of the relaxation oscillation in semiconductor lasers gives rise to com-
plex dynamics when the laser is constantly perturbed by external disturbances as
discussed in the following chapters. For example, for a moderate amount of optical
feedback from an external mirror to a semiconductor laser, the relaxation oscilla-
tion does not damp out and the laser shows various dynamic behaviors, not only
simple sinusoidal oscillations but also chaotic oscillations. Figure 3.2 shows the
example of calculated relaxation oscillations for a step input for the injection current.
The actual laser oscillates at multimode lines close to the threshold but it recovers
single mode oscillation well above the threshold (Marcuse and Lee 1983). We dis-
cuss single mode semiconductor lasers in this chapter, but the model used in Fig. 3.2
is a multi-mode operation, which will be discussed in Chap. 8. The numerical sim-
ulation reflects the fact and the relaxation oscillations for the main and submodes
starts when the carrier density exceeds the threshold. However, for a big enough
pump, the relaxation oscillations rapidly decay out and the constant laser oscillation
is achieved.

In the following, we derive a useful expression to understand the origin of the
relaxation oscillation frequency. We introduce here an injection current at carrier
transparency as J0 = edn0/τs . From the relation of equation in (3.52) together with
the relation of Jth = ednth/τs , the gain coefficient can be expressed as

Gn = ed

τsτph(Jth − J0)
(3.74)

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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Substituting the above equation into (3.73), one obtains the relaxation oscillation
frequencyusing carrier and photon lifetimes as

νR = 1

2π

√

1

τsτph

J − Jth

Jth − J0
(3.75)

Namely, the relaxation oscillation frequency can be determined by only the carrier and
photon lifetimes once the bias injection current is given. The above equation shows
that the relaxation oscillation frequency νR is proportional to τ−1

ph (τs/τph)
−1/2. Thus,

a laser with a faster time constant of the carrier relaxation has a higher modulation
bandwidth, which is quite consistent with the physical meaning of the origin of
the relaxation oscillation frequency in semiconductor lasers. Similarly, substituting
(3.72) and (3.74) into (3.70), the damping factor is written by

�R = − 1

2τs

J − J0

Jth − J0
(3.76)

Namely, the damping factor is only given by the carrier lifetime for a fixed bias
injection current.

In real lasers, we could not ignore the effects of spontaneous emissions. Further,
gain saturation effects are encountered in laser oscillations. In such a case, the relax-
ation oscillation angular frequency is given by almost the same form as (3.71), but
we need some modifications for the damping factor (Yoon et al. 1989). In that case,
instead of (3.70), the damping factor is given by

�′
R = −1

2

{
1

τs
+ Gn A2

s + 1

τph

(

εs Gnτs A2
s + βsp

Gnτphn0 + 1

Gnτs A2
s

)}

(3.77)

The effect of spontaneous emissions is enhanced for a lower photon number, while the
damping oscillation is much suppressed in the presence of gain saturation. Therefore,
damping oscillation is remarkable for a lower injection current close to the laser
threshold. At a higher pump, damping oscillation once kicks out relaxation oscillation
by spontaneous emissions, but it is smeared out by the effect of gain saturation.

3.5 Langevin Noises

3.5.1 Rate Equations Including Langevin Noises

Langevin noises are defined for the photon number in laser oscillations. Since the
differential equation for the field in (3.49) is obtained from an approximation of
SVEA and the field amplitude is equivalent to the square root of the photon number
A(t) ∝ √

S(t), we can write the rate equations for the photon number S, the phase φ,
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and the carrier density n. The rate equations including the effects of spontaneous
emission and statistical Langevin noises are given by

dS(t)

dt
= [Gn{n(t)− nth}]S(t)+ Rsp(t)+ FS(t) (3.78)

dφ(t)

dt
= 1

2
α[Gn{n(t)− nth}] + Fφ(t) (3.79)

dn(t)

dt
= J (t)

ed
− n(t)

τs
− Gn{n(t)− n0}S(t)+ Fn(t) (3.80)

where Rsp is the spontaneous emission term introduced in (3.48). The injection
current may be a function of time through, e.g., a direct injection current modulation,
therefore it is explicitly written by a time-dependent function. The final term of each
equation, FS(t), Fφ(t), and Fn(t), is the effect of statistical Langevin noises (Risken
1996). As already mentioned, the terms may be omitted to calculate pure dynamics of
chaos in semiconductor lasers. Again, note that the phase equation is not coupled with
the other equations and the system still behaves stably even though it is described by
three differential equations. Namely, the time development of phase does not affect
the field amplitude and the carrier density. On the other hand, the field and the carrier
density couples with each other. The effects of Langevin noises have been discussed
in relation to AM and FM noises in laser modulations (McCmber 1966; Haug 1969;
Henry 1982, 1983; Yamamoto 1983; Vahala and Yariv 1983a; Vahala and Yariv b).

3.5.2 Langevin Noises

Real lasers include statistical Langevin noises and they are important to evaluate
the performance of practical systems using semiconductor lasers as light sources.
Langevin noises have common features observed not only in semiconductor lasers
but also in all other lasers and they are formulated as the same equations (Risken,
1996). Noises also sometimes trigger unstable oscillations in semiconductor lasers.
In this subsection, we discuss the performance of semiconductor lasers induced by
Langevin noises. The Langevin terms FS(t) and Fφ(t) are random noises induced by
the quantum effects of spontaneous emission of light and the term Fn(t) is induced
by a noise originated by random carrier generation and recombination. They all orig-
inate from random shot noise effects. Since the effect of the carrier noise, Fn(t), is
negligible compared with that of FS(t), the term is sometimes omitted even when we
consider the effects induced by Langevin noises in semiconductor lasers. Langevin
noises have been extensively studied in detail (Lax 1960; McCmber 1966; Lax and
Louisell 1969; Haug 1969; Saleh 1978; Yamamoto 1983; Henry 1986). We need
statistical methods to investigate the characteristics and effects of Langevin noises.
We consider Langevin noises obeying the Markov process and assume that the
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correlation times of the noises are much less than the photon lifetime τph and the
carrier lifetime τs . We briefly show the derivations of the statistical noises and sum-
marize them. In the rate equations from (3.78) to (3.80), denoting each Langevin
noise term by Fi (t)(i = S, φ, and n), the noise is a zero mean and the average is
written by

〈Fi (t)〉 = 0 (3.81)

We assume that the noise is like a shot noise and the correlation time is short enough,
then we obtain the correlation between the two Langevin noises

〈Fi (t)Fj (t
′)〉 = 2Di jδ(t − t ′) (3.82)

where Di j is the diffusion coefficient for the differential diffusion equation in the
presence of the Langevin force.

Since the explicit form of the diffusion coefficient Di j is not easy to derive, we
only show the procedure for the derivations. At first, we use the fact that the power
spectrum is calculated by the Fourier transform relation with the correlation function
and that it is equivalent to the correlation. For a differential equation of a variable
v(t) with a time-dependent statistical force F(t) (Langevin force)

dv(t)

dt
+ γ v(t) = F(t) (3.83)

the average of the power spectrum�(ω) is calculated from the Fourier transform of
its correlation function of F(t) as

�(ω) =
∞∫

−∞
〈F(t)F(t ′)〉 exp{−iω(t − t ′)}d(t − t ′) = 2D (3.84)

where D is the diffusion coefficient of the correlation function. To derive the power
spectra for the Langevin noises, we first calculate the Fourier transforms of the rate
Eqs. (3.78)–(3.80). Then, we take the ensemble averages for the equations to obtain
the averaged power spectra. The detailed statistical processes of the photon num-
ber and the carrier are different from each other and obey non-correlated quantum
processes like shot noises. However, we assume Poisson random processes for them
and calculate the averages, i.e., the statistical average is equal to the squared aver-
age. Calculating the correlation coefficient around the steady-state solution in each
differential equation, we obtain the following relations for the coefficients (Henry
1986):

DSS = RspS (3.85a)

Dϕϕ = Rsp

4S
(3.85b)
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Dnn = RspS + n

τs
(3.85c)

DSϕ = 0 (3.85d)

DSn = −RspS (3.85e)

Dnϕ = 0 (3.85f)

The effects of Langevin noises are mainly generated by spontaneous emission and the
effect of noise originating from carrier recombination is much smaller than that from
spontaneous emission. Therefore, the noise due to carrier recombination is sometimes
neglected in numerical simulations for the effects of noises in semiconductor lasers.

3.5.3 Implementation of Noise Terms for Numerical
Calculations

In order to numerically investigate the effects of noises on the chaotic dynamics
in semiconductor lasers, the spontaneous noise must be generated within a com-
puter. Furthermore, numerical calculation without the terms sometimes fails when
the calculation is trapped into an infinitely small value of the field amplitude. Since
the Langevin noises are defined for photon number as discussed in the preceding
subsections, we need the forms of the terms suitable for the numerical calculations
in the field equation. In the following, we derive noise terms which can be applied
to the field equation, however, it is noted that the derivation is mathematically not
precise and the obtained results are fairly rough estimates. From (3.47) and (3.78),
the spontaneous noise in the photon number equation is given by

Rsp(t)+ FS(t) = 2Re[E∗(t)Esp(t)] (3.86)

where Rsp is a DC term of spontaneous emissions given by (3.48) and FS corresponds
to a statistical AC term with zero-mean variable. Esp is considered as a white noise
process with a Gaussian probability distribution. For numerical modeling, Esp is
considered as constant for a short time slot�t = ti+1 − ti .�t corresponds to a time
step for numerical calculations for solving the differential equations on a computer.
With such a time slot, the product of E∗Esp is written as (Schunk and Petermann
1986; Petermann 1988)

E∗(t)Esp(t) = {E∗(t)− E∗(ti )}Esp(t)+ E∗(ti )Esp(t)

= �E∗(t)Esp(t)+ E∗(ti )Esp(t)

≈ 〈�E∗(t)Esp(t)〉 + E∗(ti )Esp(t) (3.87)
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Since Esp is approximated as a zero-mean variable and is independent from the
preceding time slot, the second term in (3.87) is a zero-mean value, whereas the first
term exhibits a mean value different from zero. The first DC term is small enough
compared to the second term, so that the term for �E∗Esp can be replaced by its
mean value with good approximation.

In fact, the field Esp contains a DC component, however, this term has a very small
quantity. So, for the moment, we consider the dominant AC component of the field.
Noting that the starting differential equations are all defined for the photon number
and Esp is expressed by white Gaussian random process, the stochastic field, Esp,
can be approximately defined by

Esp(t) ≈
√

A

�t
(xr + i xi ) (3.88)

where xr and xi are independent Gaussian random variables with unit variance for
any time slot of width �t and A is a certain real constant for a given time slot.
Meanwhile, the following relation is held from (3.86), and (3.87) as

Rsp(t) = 2Re[〈�E∗(t)Esp(t)〉] (3.89)

For a sufficiently short time �t, the increment or decrement of �E is almost equal
to Esp, namely d(�E)/dt ≈ Esp, then we obtain �E(t) ≈ t Esp. Using this result
and (3.89), the ensemble average of �E∗Esp is calculated to be

〈�E∗(t)Esp(t)〉 =
〈

1

�t

�t∫

0

�E∗(t)Esp(t)dt

〉

= A = Rsp

2
(3.90)

Expressing the field by the photon number S and the phase φ as E = √
S exp(−iφ),

(3.87) is finally given by

E∗(t)Esp(t) = Rsp(t)

2
+

√

S(ti )Rsp(t)

2�t
(ξE + iξφ) (3.91)

where ξE and ξφ represent Gaussian random variables defined by xr , xi , and φ, and
they are still uncorrelated zero-mean and unit-variance variables.

From the above discussion, we obtain a useful expression for the noise terms to
calculate the field equation (Kallimani and O’Mahony 1998)

Esp(t) = 1

2

E(t)

S(t)
Rsp(t)+ E(t)√

S(t)

√

Rsp(t)

2�t
(ξE + iξφ) (3.92)

In the above equation, the second term excepting for the statistical variables is very
large compared to the first term as expected. For the photon number equation, the
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statistical noise term is written by

FS(t) =
√

2S(t)Rsp(t)

�t
ξE (3.93)

Taking into account (3.85c) and the fact that spontaneous emission is induced by
carrier transition, the statistical term Fn of the carrier density equation in (3.80) is
given by

Fn(t) = −
√

2S(t)Rsp(t)

�t
ξE +

√

2n(t)

τs�t
ξn (3.94)

Again, ξn is a zero-mean, unit-variance Gaussian distribution. As already discussed,
the noises play important roles in the dynamics of semiconductor lasers. Particularly,
noises for the field or the photon number are very important, since the timescale of
the photon decay is very fast compared with that of the carrier decay and the laser is
very sensitive to photon noises.

3.5.4 Noise Spectrum

Statistical noise characteristics of semiconductor lasers are investigated from the rate
equations with Langevin noises. Here, we calculate the characteristics of intensity
and phase noises from the rate equations by applying linear stability analysis. For
the steady-state variables, we introduce small perturbations and linearize the rate
equations. Then, we obtain the differential equations for the perturbations in the
presence of Langevin noises

dδS(t)

dt
= Gn A2

s δn(t)+ FS(t) (3.95)

dδφ(t)

dt
= 1

2
αGnδn(t)+ Fφ(t) (3.96)

dδn(t)

dt
= −

(
1

τs
+ Gn A2

s

)

δn(t)− 1

τph
δS(t)+ Fn(t) (3.97)

Due to the noises, the phase is not constant for the time development, which gives rise
to unstable oscillations and sometimes induces instability and chaos in semiconduc-
tor lasers. We neglected the gain saturation and photons generated by spontaneous
emissions such as small quantities. The noise characteristics are represented by using
the Fourier components of the perturbations S, δφ, and δn, then the corresponding
Fourier components δ S̃, δφ̃, and δñ are calculated to be
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δ S̃(ω) = (1/τs + Gn A2
s + iω)F̃S(ω)+ Gn A2

s F̃n(ω)

(ωR + ω + i�R)(ωR − ω − i�R)
(3.98)

δφ̃(ω) = 1

iω

{
1

2
αGnδñ(ω)+ F̃ϕ(ω)

}

(3.99)

δñ(ω) = iωF̃n(ω)− F̃S(ω)/τph

(ωR + ω + i�R)(ωR − ω − i�R)
(3.100)

where ωR and �R are the angular frequency of the relaxation oscillation and the
damping coefficient as discussed before, respectively. From these equations, the
noises are much enhanced at the angular frequency equal to the relaxation oscillation,
ω = ωR. In real lasers, it is sometimes difficult to apply the linear stability analysis
for a direct injection current modulation when the modulation is not so small or the
effect of spontaneous emissions is not negligible. In those cases, we must numerically
solve the rate equations and such an analysis has been reported (Chinone et al. 1978).

3.5.5 Relative Intensity Noise

The light output from a semiconductor laser is detected by a high-speed photo
receiver. It is converted into an electric signal and analyzed by a spectrum ana-
lyzer. For the purpose of these analyses, we need a measure for the relative noise
level to the average DC signal power, which is called relative intensity noise (RIN).
For a certain angular frequency ω, RIN is defined by (Petermann 1988; Agrawal and
Dutta 1993)

RIN = �S(ω)

S̄2
(3.101)

where S̄ is the average power of the laser output. The spectral density �S for the
noise component δS is given by Papoulis (1984)

�S(ω) =
∞∫

−∞
〈δS(t)δS(t ′)〉 exp{−iω(t − t ′)}d(t − t ′)

= lim
T →∞

1

T
|δ S̃(ω)|2 (3.102)

From the spectral density calculated from (3.98) to (3.102) together with the relations
in (3.101), the RIN is calculated to be

RIN = 2Rsp[ω2 + (1/τs + Gn S̄)2 + G2
n S̄2(1 + n/τs Rsp S̄)− 2(1/τs + Gn S̄)Gn S̄]

S̄[(ωR + ω)2 + �2
R][(ωR − ω)2 + �2

R]
(3.103)
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We have already mentioned that the effects of the noises are much enhanced at
the relaxation oscillation frequency. We consider here the noise effects that are less
than the relaxation oscillation frequency. As has already been derived, the relaxation
oscillation frequency is proportional to the square root of the optical power from a
laser and the damping factor is much less than the relaxation oscillation frequency,
and then the denominator of (3.103) is proportional to S̄ω4

R ∝ S̄3. On the other hand,
S̄ and S̄2 terms in the numerator may be neglected for low power levels. Therefore,
RIN is proportional to S̄−3 and the noise level rapidly decreases with the increase of
the laser output power (Agrawal and Dutta 1993). Well above the laser threshold, the
RIN is usually less than about 10−14 (−140 dB) for a 1 Hz bandwidth, which is low
enough for the use of lasers as light sources to optical communications and optical
data storage systems (Petermann and Arnold 1982; Elsäßer and Göbel 1985).

3.5.6 Phase Noise and Spectral Linewidth

Phase noise is calculated from the correlation of the complex field. For example,
the power spectrum measured by a Fabry-Perot spectrometer in a real experiment is
written by the Fourier transform of the field correlation as

�E (ω) =
∞∫

−∞
〈E(t)E∗(t + τ)〉 exp(−iωτ)dτ (3.104)

Here, consider the field having a phase fluctuation of

E(t) = √
S exp[−i{ω0t + φ + δφ(t)}] (3.105)

where δφ(t) is the time-dependent random fluctuation and S and φ are set to be
constants. ω0 is the angular frequency of the laser oscillation. In actual fact, the
amplitude (equivalently the photon number) fluctuates, accompanying the phase fluc-
tuation. However, we neglect the effects as a small fluctuation. Substituting (3.105)
into (3.104), the power spectrum is given by

�E (ω) = S

∞∫

−∞
〈exp(i�φ)〉 exp{−i(ω − ω0)τ }dτ (3.106)

where�φ = δφ(t − τ)− δφ(t). Assuming Gaussian statistics for δφ, we obtain the
following relation (Papoulis 1984):

〈exp(i�φ)〉 = exp

{

−1

2
〈(�φ)2〉

}

(3.107)
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Fig. 3.3 Intensity noise spec-
trum for several power levels
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Using (3.99), �φ is written as

�φ = 1

2π

∞∫

−∞
δφ̃(ω){exp(iωτ)− 1} exp(iωt)dω (3.108)

Then, the ensemble average of the square of �φ is given by

〈(�φ)2〉 = 1

π

∞∫

−∞
〈|δφ̃(ω)|2〉(1 − cosωτ)dω (3.109)

The spectral power of the field due to the phase fluctuation is calculated by substi-
tuting (3.107) into (3.106). The calculation is not straightforward and, instead, it is
usually obtained numerically (Henry 1986). Figure 3.3 shows an example of numer-
ical calculations for the power spectrum. With the increase of the output power, the
RIN decreases as expected. The higher frequency peaks in the spectra correspond to
the relaxation oscillations. Also, the relaxation oscillation frequency increases with
the increase of the laser output power. Similar spectral characteristics have also been
observed by experiments (Vahala et al. 1983).

Semiconductor laser materials are usually homogeneous, so that the spectral shape
of the laser oscillation is a Lorentzian, which is derived from the fact of an exponential
time decay of the coherence of light. We calculate the spectral linewidth of the laser
oscillation. Since the fluctuations of the angular frequency �ω and the phase δφ
have the relation �ω = dδφ/dt, the power spectrum of the phase noise ��ω(ω) is
written by

��ω(ω) = ω2〈|δφ̃(ω)|2〉 (3.110)
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Substituting (3.99) into (3.110) and after lengthy calculations, we obtain the approx-
imate form of the spectrum as

��ω(ω) = Rsp

2S

{

1 + α2ω4
R

(ω2
R − ω2)2 + (2ω�R)2

}

(3.111)

There is the following relation between �φ and the phase noise spectrum

〈(�φ)2〉 = 1

π

∞∫

−∞
��ω(ω)

1 − cosωτ

ω2 dω (3.112)

The above integral is not easily calculated in an explicit form, but it is approximated
at an angular frequency close to ω = 0 as

〈(�φ)2〉 = τ��ω(0) (3.113)

From this result together with (3.106), the correlation function of the field in the
presence of phase noise decays exponentially with a time constant of 2/��ω(0).
Also, combining the result with (3.107), it is proved that the power spectral shape
has a Lorentzian. The half-width of full maxima (HWFM) is calculated from the
relation �ω = 2π�ν = ��ω(0) as

�ν = 1

2π
��ω(0) = Rsp

4π S
(1 + α2) (3.114)

The spectral linewidth of laser oscillations is calculated from the well-known
Schalow-Townes equation. The linewidth of gas lasers with an almost negligible
value of the α parameter is given by �ν0 = Rsp/4π S. On the other hand, semi-
conductor lasers have a non-negligible value of the α parameter and the linewidth
of semiconductor lasers is (1 + α2) times larger than that of ordinary lasers (Henry
1982, 1983, 1986; Petermann 1988; Agrawal and Dutta 1993). The spectral linewidth
of semiconductor lasers is usually 10–100 times larger than that of gas lasers and
it ranges from several MHz to a hundred MHz without the control for stabilization
(Fleming and Mooradian 1981a,b; Elsäßer and Göbel 1984). The spectral linewidth
of laser oscillations decreases with an increase in the photon rate, so that the linewidth
becomes narrow with an increase of the laser output power. Semiconductor lasers
tend to become stable operations for higher output power. Therefore, they frequently
show unstable oscillations at lower output power, although unstable behaviors are
observed not only at low output power but also at high output power by the intro-
duction of external perturbations.
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3.6 Modulation Characteristics

3.6.1 Injection Current Modulation

The unique differentiating feature of semiconductor lasers is the direct modulation
for the pump, namely the carrier that is the pump in semiconductor lasers is directly
modulated through the injection current. Besides small and compact light sources,
semiconductor lasers are suitable light sources of optical communications and infor-
mation devices because of their direct modulation property. As will be discussed later,
a modulation for the injection current itself is the introduction of an extra degree of
freedom to semiconductor laser and it induces instability and chaos in the output.
On the one hand, chaotic behaviors in semiconductor lasers can also be controlled to
stable oscillations by direct injection current modulation. The relaxation oscillation
plays a crucial role for the modulation properties in semiconductor lasers.

The efficiency of laser output by the injection current modulation is constant for
a small to moderate modulation index when the modulation frequency is less than
the relaxation oscillation frequency. On the other hand, the modulation efficiency is
greatly degraded over the frequency of the relaxation oscillation and the modulation
for the light output over that frequency is not possible (Boers and Vlaardinerbrek
1975; Furuya et al. 1979). The effort to enhance relaxation oscillation frequency of
semiconductor lasers has been made to device high efficiency lasers in practical use
(Lau and Yariv 1985; Uomi et al. 1985). The injection current modulation (amplitude
modulation) results in the phase modulation (frequency modulation), since the laser
oscillation frequency is a function of the injection current. The linear relation is
established for the injection current modulation and the increment of the frequency
is linearly proportional to the injection current without mode hop. The effect of
coupling between the amplitude and the phase comes from the fact that the real and
imaginary parts of the refractive index are not independent and they couple with
each other. This unique characteristic originated from the nonzero value of the α
parameter.

In the following, we discuss the modulation properties when a small signal is
applied directly to the injection current. We again employ the method of a small
signal modulation used in linear stability analysis. Since we are concerned with the
modulation properties, we will not consider noise effects. As an injection current
modulation, we assume a time-dependent signal as

J (t) = Jb + Jm(t) = Jb + J0msinωmt (3.115)

where Jb is the bias injection current, Jm is the small amplitude of the modulation
(J0m � Jb), ωm is the modulation angular frequency. The small injection current
modulation gives rise to a perturbation to the carrier density δn, and then fluctuations
of the photon number δS and the phase δφ are induced through the change of the
carrier density. Using the fact that the modulation is very small and from (3.78) to
(3.80), the differential equations for the perturbations δS, δφ, and δn are given by
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dδS(t)

dt
= Gn A2

s δn(t) (3.116)

dδφ(t)

dt
= 1

2
αGnδn(t) (3.117)

dδn(t)

dt
= −

(
1

τs
+ Gn A2

s

)

δn(t)− 1

τph
δS(t)+ Jm(t)

ed
(3.118)

By Fourier transforming these equations, the corresponding components for these
perturbations are written by

δ S̃(ω) = Gn A2
s J̃m(ω)/ed

(ωR + ω + i�R)(ωR − ω − i�R)
(3.119)

δφ̃(ω) = 1

2iω
αGnδñ(ω) (3.120)

δñ(ω) = iω J̃m(ω)/ed

(ωR + ω + i�R)(ωR − ω − i�R)
(3.121)

where J̃m(ω) is the Fourier transform of Jm(t). As is easily understood from the above
equations, the modulation for the injection current directly induces fluctuations to the
carrier density and, then, it is coupled with the fluctuations of the photon number and
the phase through the variation of the carrier density. Thus, instability is intrinsically
included in semiconductor lasers as a coupled nonlinear system.

3.6.2 Intensity Modulation Characteristics

From the previous discussion, we calculate the modulation efficiency for the photon
number. Using (3.115), the Fourier component of the injection current modulation
J̃m(ω) is written by

J̃m(ω) = −iπ J0m{δ(ω − ωm)+ δ(ω + ωm)} (3.122)

Substituting the above equation into (3.119), the fluctuation of the photon number is
calculated as

δS(t) = δS0sin(ωmt + θS) (3.123)

where the amplitude δS0 and the phase θS are given by
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Fig. 3.4 Small signal modu-
lation response at the damping
factor �R of 3 × 109 s−1

νR=5 GHz

0.01 0.1 1 10

20

10

0

-10

-20

νR=3 GHz

M
od

ul
at

io
n 

R
es

po
ns

e 
[d

B
]

Modulatoin Frequnecy [GHz]

δS0 = Gn A2
s J0m/ed

√

(ω2
m − ω2

R − �2
R)

2 + 4ω2
m�

2
R

(3.124)

θS = tan−1

(

−2�Rωm

ω2
m − ω2

R − �2
R

)

(3.125)

The intensity (photon number) of the output from a semiconductor laser is modulated
at the same frequency of the injection current modulation and it varies with time pro-
portional to the modulation depth J0m. However, the phase of the modulated intensity
is not the same as the injection current modulation and, for example, the signal delay
occurs for a modulation below the relaxation oscillation frequency (ωm � ωR). The
modulation efficiency is greatly enhanced near the relaxation oscillation frequency
and takes the maximum at the frequency (Ikegami and Suematsu 1968). Figure 3.4
shows examples of modulation response for different relaxation oscillation frequen-
cies at a damping factor of �R = 3 × 109 s−1. The modulation power is given
by δS0 = τph J0m/ed for ωm � ωR. The modulation efficiency at the resonance
frequency is about ωR/2�R times larger than that below the frequency. When the
modulation exceeds the relaxation oscillation frequency, the carrier cannot follow
the modulation speed of the injection current and the intensity of the modulation
rapidly decreases with the increase of the modulation frequency. Thus, the relax-
ation oscillation frequency determines the capability of the maximum modulation in
semiconductor lasers.
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3.6.3 Phase Modulation Characteristics

The injection current modulation induces a change of the phase in laser oscillations
known as frequency chirp (Dutta et al. 1984; Linke 1985; Agrawal 1985; Kazarinov
and Henry 1987). We write the fluctuation of the frequency as δν(t) = dδφ(t)/dt/2π .
The fluctuation is calculated from the Fourier transform of δφ̃(ω) with the relation
of (3.120) and is given by

δν(t) = 1

4π2

∞∫

−∞
iωδφ̃(ω) exp(iωt)dω

= αGn

8π2ed

∞∫

−∞

iω J̃m(ω)

(ωR + ω + i�R)(ωR − ω − i�R)
exp(iωt)dω (3.126)

From this result, we easily understand that the α parameter, which has a nonzero
value in semiconductor lasers plays an important role for the frequency chirp. For the
sinusoidal modulation of the injection current, the frequency of the laser oscillation
is modulated by the same frequency as

δν(t) = δν0sin(ωm + θν) (3.127)

where the amplitude δν0 and the phase θν are given by

δν0 = αGn J0m

4πed

ωm
√

(ω2
m − ω2

R − �2
R)

2 + (2ωm�R)2
(3.128)

θν = π

2
+ tan−1

(

2�Rωm

ω2
m − ω2

R − �2
R

)

(3.129)

The modulation efficiency is proportional to the amplitude of the modulation J0m and
the amplitude is approximated for the modulation below the relaxation oscillation as

δν0 = ατphωm

4πed S
J0m (3.130)

It is noted that the modulation amplitude is inversely proportional to the photon
number and the effect of the modulation on the frequency becomes small for a
higher injection current. The conversion efficiency from the injection current to
the frequency is about several GHz/mA for ordinary narrow-stripe edge-emitting
semiconductor lasers. Figure 3.5 shows the dependence of frequency chirp on the
modulation depth of the injection current observed experimentally in various laser
structures. For a modulation frequency sufficiently below the relaxation oscillation,
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Fig. 3.5 Experimentally measured chirp as a function of the peak-to-peak value of the modula-
tion current for various laser structures at a wavelength of 1.3 µm. CSBH channel-substrate buried
heterostructure semiconductor laser, DCPBH double-channel planar buried heterostructure semi-
conductor laser, RWG ridge waveguide semiconductor laser [after Dutta et al. (1984); © 1984 AIP]

the phase has a negligible small value θν ∼ 0 and the modulated intensity is in-phase
with the injection current modulation.

3.7 Waveguide Models of Semiconductor Lasers

3.7.1 Index- and Gain-Guided Structures

Edge-emitting semiconductor lasers with narrow stripe width have common dynam-
ics for external perturbations; however, the parameter range of each stable and unsta-
ble characteristic varies from one laser to the other, depending on the laser structures.
The dynamics depend on the type of guided structures of light, i.e., gain- or index-
guided structure. In addition, they are functions of types of cavity structures such as
Fabry-Perot, MQW, or DFB cavity structures. In this subsection, we discuss some
wave-guiding models and laser cavity types that affect the laser dynamics in the fol-
lowing chapters. Regarding wave-guiding structures in semiconductor lasers, there
are two types of wave-guiding models; one is the index-guided structure, in which
we can expect stable laser oscillation with a single longitudinal mode, and the other
one is the gain-guided structure, in which the laser behaves rather unstably and
it sometimes operates in multi-longitudinal modes (Petermann 1988; Agrawal and
Dutta 1993). Each device maker fabricates various types of gain- and index-guided
structure lasers for the use of commercial applications.



3.7 Waveguide Models of Semiconductor Lasers 61

Fig. 3.6 Examples of gain-
and index-guided laser struc-
tures. a Gain-guided laser
and b index-guided laser with
buried heterostructure
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Figure 3.6 shows typical examples of gain- and index-guided structures.
Figure 3.6a is the schematic illustration of the structure of a gain-guide laser at its
light exit facet. Due to the presence of insulator regions at p-type electrodes, injected
carriers pass through a certain area in the active layer, so that the center of the active
layer only has a high gain. Thus, the laser oscillates around the center of the active
region. The laser is easy to fabricate, but it has a low efficiency of light confinement
due to the decrease of the refractive index of the active layer by the carrier injec-
tion, resulting in leakage of light outside the lasing regions. For the same reason, the
emitted light from the laser is usually astigmatic and, in the worst case, the laser has
a twin-peaked far-field pattern. The laser easily shares gains for each lasing modes
and it sometimes oscillates at multi-longitudinal modes. Another disadvantage of
laser oscillations is a low noise performance induced by a high level of spontaneous
emission of light. Nevertheless, gain-guided lasers are still used for commercial uses
where there is no need to consider high laser performances.

Figure 3.6b is a schematic illustration of the structure of an index-guide laser
at its light exit facet. This example is a type of buried heterostructure, which has
a high refractive index and gain waveguide area at the center of the active layer,
resulting in high efficiency of confinement of light, similar to an optical fiber structure.
Therefore, an index-guided laser has a high quality of emitting beam better than that
of a gain-guided laser. The advantages of index-guided lasers are as follows; high
efficiency of stimulated emission with a small effect of spontaneous emission, low
threshold, oscillation of single longitudinal mode, small astigma, single peak profile
of far-filed pattern, and high modulation efficiency. Index-guided semiconductor
lasers are widely used as light sources in optical communications and optical data
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storage systems. The dynamics of semiconductor lasers are strongly affected through
the difference in gains in wave-guided structures. Though the universal dynamics
and overall chaotic roots for the parameter variations look the same, regardless of
the laser structures, each laser with specific structure has characteristic dynamics.
The difference between gain- and index-guide structures plays an important role,
especially in broad-area semiconductor lasers.

3.7.2 Waveguide Models

In this subsection, we discuss the theoretical treatments of the waveguide models
with emphasis on the difference between gain- and index-guided laser structures.
In the derivations of the rate equations, we assume that the laser propagates as a
harmonic plane wave in the waveguide. A semiconductor laser generally oscillates
at a fundamental transverse-electric (TE) mode in the laser cavity, except for the
installation of special device structures to force the oscillation to the orthogonal
mode, i.e., transverse-magnetic (TM) mode. Therefore, we can approximate plane
wave propagation even in the study of laser dynamics. However, we must consider
a finite extent of the wave amplitude with elliptic beam profile for propagation of
the actual laser. Namely, we must take into account the spatial modes for the lateral
and transverse oscillations in a strict sense. The gain for laser oscillation also has
a spatial profile along the active layer and, as a result, the spatial mode profile is
affected depending on the waveguide structures. In the following, we briefly develop
a theoretical treatment for the lateral spatial modes in narrow-stripe edge-emitting
semiconductor lasers by taking into consideration the laser waveguide structures.
A narrow-stripe semiconductor laser defined here has a stripe width of 2–3 µm and the
theoretical treatment is only valid for lasers with this range. For semiconductor lasers
over the stripe width of several micron-meters, we cannot ignore the effects of the
higher spatial mode oscillations and their competition in laser dynamics. Waveguide
structures play crucial roles for the dynamic properties of (VCSELs) and broad-area
semiconductor lasers, as will be discussed in Chap. 8. In particular, spatio-temporal
instability is much enhanced for those lasers with gain-guided structures.

For the mathematical treatment of laser dynamics, we must consider both the
temporal and spatial dependences of the Maxwell equation. But we are concerned
here with the spatial effects of laser propagation, and the temporal effects may be
ignored for a while. We also restrict the discussion of TE-mode propagation. To a
good approximation, we can apply the separation of the variables for the electric
field using the slab-waveguide model and assume scalar wave propagation (Agrawal
and Dutta 1993). Then the solution of the electric field is approximated by

E(x, y, z) = E0ψy(y)ψx (x) exp(iβzz) (3.131)

where x is the lateral coordinate in the active layer, y is the orthogonal coordinate
to x, βz is the propagation constant along the laser cavity, and E0 is the average

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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amplitude. Substituting (3.131) into the Helmholtz equation, one obtains

1

ψx (x)

∂2ψx (x)

∂x2 + 1

ψy(y)

∂2ψy(y)

∂y2 + {ε(x, y)k2
0 − β2

z } = 0 (3.132)

where ε(x, y) is the complex dielectric constant generally having the form ε(x, y) ≈
ε(x) for a slab-waveguide. In the effective index approximation, the transverse field
distribution ψy(y) is obtained first by solving

∂2ψy(y)

∂y2 + {ε(x, y)k2
0 − β2

eff(y)}ψy(y) = 0 (3.133)

where βeff(x) is the effective propagation constant at the coordinate x . Substituting
(3.133) into (3.132), the lateral field distribution is then obtained by solving

∂2ψx (x)

∂x2 + {β2
eff(x)− β2

z }ψx (x) = 0 (3.134)

From the assumption of a thin active layer, i.e., the constant carrier density for the
y direction at a fixed x coordinate, the non-time-dependent carrier density equation
along the lateral coordinate x is given by the following equation:

Dn
∂2n(x)

∂x2 + J (x)

ed
− n(x)

τs
− Gn{n(x)− n0}E2

0 |ψx (x)|2 = 0 (3.135)

where the first term of the equation is the carrier diffusion along the active layer and
Dn is the diffusion constant of the carrier density. Usually, the diffusion constant Dn

and the gain Gn are also functions of the lateral coordinate x . Non-time-dependent
spatial mode analyses can be conducted using (3.133)–(3.135).

3.7.3 Spatial Modes of Gain- and Index-Guided Lasers

The mode analysis is simplified for the assumption of the separation of the variables.
For the fundamental TE-mode, the solution for (3.134) is given by

ψx (x) = ψ0 cos(κx x) (|x | ≤ w/2)

= ψ0 cos
(κxw

2

)

exp
{

−γx

(

|x | − w

2

)}

(|x | > w/2) (3.136)

where ψ0 is the normalization constant,wis the width of the active layer, and κx and
γx are defined by

κx =
√

β2
core − β2

eff (3.137a)
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γx =
√

β2
eff − β2

clad (3.137b)

In the above equations, βcore and βclad are the propagation constants both in the active
layer and outside the active layer. The solution can be considered as a Gaussian beam
profile with a good approximation. The beam profile for the transverse direction can
also be considered as a fundamental Gaussian mode. However, assumption of the
fundamental TE-mode is only valid for a narrow-stripe edge-emitting semiconductor
laser. For broad stripe width or even for a gain-guided laser with narrow-stripe width,
we must consider higher spatial modes derived forms (3.134) due to effects such as
hole-burning of the carrier. The excitations of higher spatial modes significantly
affect laser instabilities.

For an index-guided laser, the wave fronts for the lateral and transverse directions
at the exit face are approximated as plane waves. On the other hand, the approximation
of plane wave is only valid for the transverse direction in a gain-guided laser. The
wave front for the lateral direction must be treated as a divergent spherical wave
(Agrawal and Dutta 1993). In a gain-guided laser, the effective propagation constant
becomes a function of the lateral coordinate. We assume the parabolic profile for the
propagation constant written by

βeff = β0eff − k2
0a2

c x2 (3.138)

whereβ0eff is the propagation constant at x = 0.The complex parameter ac is defined
by ac = ar − iai and has a relation with the complex refractive index in (3.39) as
follows (Cook and Nash 1975):

Re[ηc] = η − a2
r − a2

i

2η
x2 (3.139a)

Im[ηc] = −η′ + 2ar ai x2

2η
(3.139b)

Solving the differential equation for the fundamental spatial mode, one obtains

ψx0(x) = B0 exp

(
1

2
ik0ai x2

)

exp

(

−1

2
k0ar x2

)

(3.140)

where B0 is the normalization constant. The solutions for the higher spatial modes
are given by the following Gauss-Hermite function:

ψm(x) = Hm(
√

k0acx)ψ0(x) (3.141)

Here, Hm is the Hermite polynomial of order m. As already discussed, the wave
front of the transverse direction in a gain-guided laser is assumed to be plane wave,
therefore we can only consider the spatial dependence for the lateral direction. From



3.7 Waveguide Models of Semiconductor Lasers 65

(3.131), the surfaces of constant phase of the complex field in gain-guided lasers are
written as

βzz + 1

2
k0ai x2 = const. (3.142)

The surfaces are cylindrical with a radius of a certain curvature near the coordinate
at x = 0. Therefore, the phase front of the gain-guided laser at the exit face must
be approximately treated as a spherical wave along the lateral direction. Assuming
that the difference of the refractive indices between the center and edge of the active
layer is small, the curvature is approximated as

Rm = βz

k0ai
≈ η

ai
(3.143)

For an index-guided laser, ai = 0 resulting in a plane wave front for the lateral direc-
tion. A gain-guided laser has a divergent wave front and it is unstable laser compared
with an index-guided laser. The difference of the instabilities can be implemented
by the variations of the gains between the two laser models in the rate equations.

3.7.4 Effects of Spontaneous Emission in Gain-
and Index-Guided Lasers

The effects of spontaneous emission play crucial roles for laser oscillations. The
increase in spontaneous emission in the cavity is counted as a loss of the laser, and
results in the increase of the laser threshold. The effects of spontaneous emission are
quite different depending on whether the laser structure is a gain-guided type or an
index-guided one. The stationary solution for the photon number Ss is related to the
spontaneous emission, and is easily derived from (3.78) as

Ss = 1

Gn(ns − nth)
Rsp (3.144)

In actual lasers, the effect of spontaneous emission on the lasing oscillation (pho-
ton number) is enhanced due to non-negligible losses from the laser cavity. The
enhancement factor Kc is calculated from the traveling wave amplifier model and
the corrected stationary solution for the photon number is given by Petermann (1988)

S = 1

Gn(ns − nth)
Kc Rsp (3.145)
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with

Kc =
{
(r1 + r2)(1 − r1r2)

2r1r2 ln(1/r1r2)

}2

(3.146)

where r1 and r2 are the facet amplitude reflectivities of the laser cavity. For the
reflectivities r1 = r2 ≈ 1, the correction factor is Kc = 1 and no correction for
spontaneous emission is required. However, in the case of semiconductor lasers, Kc

is usually larger than unity. For example, for the cleaved facets of AlGaAs lasers of
r2

1 = r2
2 = 0.32, one obtains Kc = 1.11, which is still not significant. On the other

hand, large enhancement factors are obtained when one of the laser mirrors is coated
for antireflection, as is often the case.

For gain-guided semiconductor lasers, we must consider an additional enhance-
ment of spontaneous emission. The phase fronts in gain-guided lasers are curved, so
that energy is carried not only in the axial direction but also in the lateral direction.
As a result, the lasing mode in the gain-guided laser captures a larger fraction of
spontaneous emission than the lasing mode in the index-guided laser. This is some-
what similar to the effect of aberrations in lenses. The additional enhancement factor
Kgain for the spontaneous emission noise of a gain-guided laser is given by Petermann
(1979)

Kgain =
∣
∣
∣
∣
∣

∫ |ψx (x)|2dx
∫

ψ2
x (x)dx

∣
∣
∣
∣
∣

2

(3.147)

For index-guided lasers, one has the plane phase fronts and ψ2
x = |ψx |2 yielding

Kgain = 1. On the other hand, ψx is a complex for gain-guided lasers and the value
of Kgain is always larger than unity. For the fundamental spatial mode oscillation,
the factor Kgain is calculated as Petermann (1979)

Kgain =
√

1 +
(

ai

ar

)2

(3.148)

Here, ai/ar is defined as the strength of astigmatism. The strength of astigmatism
has the relation with the linewidth enhancement factor (Kirkby et al. 1977)

ai

ar
=

√

1 + α2 + α (3.149)

Using this relation, the additional enhancement factor for spontaneous emission is
written as

Kgain =
√

2(1 + α2)+ 2α
√

1 + α2 (3.150)

For a typical value of the linewidth enhancement factor of α = 4, the additional
enhancement factor is calculated to be Kgain = 8.2.Normally, the typical value of the
additional enhancement factor for spontaneous emission has a value of the order of 10.
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Fig. 3.7 Experimental L-I
characteristics of gain- and
index-guided semiconductor
lasers. CSP laser: channelled
substrate planar laser [after
Petermann and Arnold (1982);
© 1982 IEEE]
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On the whole, gain-guided lasers have a strong dependence on spontaneous emission
and have higher threshold for laser oscillations as shown in Fig. 3.7 (Petermann
and Arnold 1982). The gain-guided lasers are unstable lasers having unclear laser
threshold and even larger radiation less than the threshold. These characteristics
strongly affect the laser dynamics for time development through the gain factor.

3.7.5 Laser Types

Fabry-Perot lasers, MQW lasers, and DFB lasers are typical models of edge-emitting
lasers currently commercially available. These lasers are widely used for light sources
of optical communications, optical data storage systems, and optical information
systems. Although the theoretical treatments discussed here have been developed
for a type of Fabry-Perot semiconductor lasers, the laser rate equations are com-
monly applicable to other types of narrow-stripe edge-emitting semiconductor lasers
including MQW and DFB lasers. However, each type of laser has different device
characteristics and the stable and unstable features of laser oscillations for external
perturbations are strongly dependent on each device parameter. For example, a semi-
conductor laser is easily destabilized by self-optical feedback as will be discussed in
Chap. 4, but the external feedback level for unstable chaotic oscillations is different
for each laser depending on the values of the device parameters.

http://dx.doi.org/10.1007/978-3-642-30147-6_4


68 3 Semiconductor Lasers and Theory

Fig. 3.8 Schematic diagram
of AlGaAs multi-quantum
well lasers. a Band model for
multi-quantum well structure
and b energy band of a single
quantum well with confined
particle energy levels of
electrons (c), heavy holes (hh)
and light holes (lh)
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Fabry-Perot lasers are easily fabricated and were used in the early days. The
theory for the dynamics discussed in the preceding subsections is based on Fabry-
Perot structures. The gain for semiconductor laser materials is broad, up to several
tens of nanometers and the gain difference for the laser modes in Fabry-Perot lasers
is small, so that they tend to oscillate at multi-longitudinal modes. In particular, gain-
guided lasers with Fabry-Perot cavity structure show multimode oscillation without
exception. Even a single mode Fabry-Perot laser exhibits multimode oscillations
at a fast modulation for the bias injection current. From the viewpoint of chaotic
dynamics, the Fabry-Perot laser is an unstable laser, showing a wide range of unstable
oscillations for the parameter variations from external perturbations.

MQW lasers have many thin quantum-well layers parallel to the active layer. Each
quantum-well layer has a thickness ranging from ten to several tens of nanometers,
where the confined electrons play like waves within the quantum potentials. Figure 3.8
shows a schematic diagram of AlGaAs multi quantum-well lasers. Figure 3.8a shows
the band model for multi quantum-well structure and Fig. 3.8b is the schematic rep-
resentation of the confined particle energy levels of electrons (c), heavy holes (hh)
and light holes (lh) in a single quantum-well. Due to the narrow potential well of
a GaAs layer sandwiched by AlGaAs layers, the energy levels are quantized and
have discrete distributions. The use of multi quantum wells has several advantages
over Fabry-Perot lasers with a single thick (∼100 nm) active layer. The gain for
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Fig. 3.9 Modal gain as a
function of the injection
current with the number
of quantum wells N . The
quantum well thickness is
assumed to be 10 nm [after
Arakawa and Yariv (1985); ©
1985 IEEE]
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a particular oscillation wavelength can be much enhanced due to the quantum-well
structure, and the gain coefficient is usually greater than three times or more compared
with a single layer Fabry-Perot laser. The shorter oscillation wavelength is attained
compared with a bulk semiconductor laser by the quantization of the energy levels.
Figure 3.9 shows modal gain as a function of the injection current with the number
of quantum wells in the active layer. As is easily recognized, the differential gain
∂g/∂n increases with the increase in the number of quantum wells. From (3.73), the
relaxation oscillation frequency, which limits the modulation performance, is propor-
tional to the square root of the differential gain, so that we can expect enhancement of
the modulation property for multi quantum-well lasers. A multi quantum-well laser
has a small linewidth enhancement factor, and unstable parameter regions are much
reduced compared with bulk semiconductor lasers. As a result of efficient optical
confinement, we can achieve lower threshold lasers with small optical losses.
With such excellent performances and reasonable prices for fabrication cost, multi
quantum-well lasers are widely used in optical data storage systems and optical
information processing systems.

In optical communication systems, a semiconductor laser with single mode and
narrow linewidth is desired for good quality of data transmissions. For such purpose,
DFB lasers have been developed. Figure 3.10 shows a schematic diagram of the
typical π/2 shifted DFB laser structure along the laser cavity. A DFB laser has a
grating structure close to the active layer in the axial direction. Therefore, a preference
is obtained for an oscillation wavelength, which fits the grating’s period. If the grating
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Fig. 3.10 Schematic dia-
gram of the typical π/2
shifted DFB laser structure.
� = mλB/2ηeff (m is the
integer number)

Λ λB/4ηeff

p-Clad

DFB Structure

Active Layer
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has a continuous periodic structure without non-phase shift, the light corresponding
to the Bragg wavelength λB is not an oscillation mode due to the stop-band. However,
light with wavelength λB becomes the transmission mode due to the opening of the
transmission window in the presence of π/2 phase shift at the center of the grating
structure. This results in stable laser oscillations at the Bragg wavelength. As a
disadvantage of the DFB structure, the amplitude of the standing wave is fixed by
the grating, so that the effect of carrier hole-burning is much enhanced at the regions
of large field amplitudes. Then the gain at those points decreases and the effect is to
lower the laser threshold. This is not too serious, as will be discussed in the following.
As a whole, DFB semiconductor lasers are excellent light sources as a dynamic single
mode laser with low chirp suitable for optical communications.

The oscillation frequency reflects the phase condition for the modes of a DFB
structure. The required threshold gain gth for the DFB laser modes strongly depends
on the respective modes, yielding oscillation angular frequency ω0. This behavior
differs from a Fabry-Perot type laser, in which equal threshold gain is required for
all the resonant modes. The threshold gain for a DFB laser is written by

gth = a + am (3.151)

where a is the loss in the cavity due to optical scattering and is already defined in
(3.4). am is the loss due to the reflection in the DFB structure. In the case of a Fabry-
Perot laser, the reflection loss is explicitly given as am = ln(1/r1r2)/ l. The detailed
analysis for a DFB laser oscillation can be treated by using coupled-wave equations.
However, the reflection loss in the DFB laser is not given by an analytical form, and
is calculated numerically (McCall and Platzman 1985).

The threshold gain of a DFB laser depends on the coupling strength of the grating
structure, namely κDFBl(κDFB and l being the coupling coefficient and the cavity
length). The factor κDFBlis a function of the cavity loss aml. For a typical coupling
strength around κDFBl = 2, one obtains the value of the cavity loss aml = 1.4 for
a π/2 phase shifted DFB laser, which corresponds to the case of the equal facet
reflectivity of R = r2 = 0.25 in a Fabry-Perot laser. Therefore, the threshold gain
of DFB is higher than that of a Fabry-Perot laser, but is very close to the threshold
of Fabry-Perot laser (Petermann 1988). Due to strong non-uniformity of the optical
intensity for DFB lasers along the laser length, the spontaneous emission enhance-
ment factor equivalent to the coefficient Kc defined in (3.146) is usually larger than
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that for Fabry-Perot type lasers with equal cavity loss aml. If the coupling strength
is taken as κDFBl = 2 for a non-phase shifted DFB laser, the spontaneous emission
factor Kc = 1.94 is obtained (Petermann 1988). It is noted that the internal reflectiv-
ities at the laser facets have complex values in a strict sense, so that the reflectivity
from the external mirror must also be treated as a complex value.
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Chapter 4
Theory of Optical Feedback in Semiconductor
Lasers

A semiconductor laser with optical feedback is an excellent model for generating
chaos in its output power and the system has proven to be very useful in practical
applications. This chapter concerns the theoretical background for instability and
chaos induced by optical feedback in narrow-stripe edge-emitting semiconductor
lasers, such as Pabry-Perot lasers, multi-quantum well (MQW) lasers, and distrib-
uted feedback (DFB) lasers. Particular dynamics of feedback-induced instability and
chaos in semiconductor lasers are separately discussed in the following chapter. In
this chapter, we focus on the theoretical treatment of optical feedback effects in
semiconductor lasers. Lasers show the same or similar dynamics as far as rate equa-
tions are described by the same equations. We here assume single mode operations
for semiconductor lasers. The dynamics for multimode cases will be discussed in
Chap. 8.

4.1 Theory of Optical Feedback

4.1.1 Optical Feedback Effects and Classifications of Optical
Feedback Phenomena

The effects of optical feedback in semiconductor lasers have been studied from
the beginning of their development (Risch and Voumard 1977; Voumard 1977;
Gavrielides et al. 1997). In early 1980, Lang and Kobayashi published a milestone
paper on the effects of optical feedback in semiconductor lasers, which initiated an
enormous research effort devoted to the study of the dynamics induced by optical
feedback. Since then, bistability, instability, self-pulsations, and coherence collapse
states have been observed in feedback-induced irregular oscillations in semiconduc-
tor lasers (Mils et al. 1980; Glas et al. 1983; Lenstra et al. 1985; Cho and Umeda
1986). In semiconductor lasers, self-optical-feedback effects are frequently used for
the control of oscillation frequency, selection of mode, and suppression of side modes.

J. Ohtsubo, Semiconductor Lasers, Springer Series in Optical Sciences 111, 75
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Indeed, the linewidth of laser oscillations can be stabilized by a strong optical feed-
back and chirping of oscillation frequency can be compensated by optical feedback
(Goldberg et al. 1982; Tamburrini et al. 1983; Agrawal 1984; Lin et al. 1984). On the
other hand, the semiconductor laser shows unstable oscillations for a certain range
of optical feedback levels. The dynamics of semiconductor lasers induced by optical
feedback in this range are very interesting not only from the viewpoint of fundamen-
tal physics but also for practical applications, since optical feedback effects appear
everywhere in optical systems including optical communication systems, optical data
storages, and optical measurements. These irregular oscillations are induced by the
dynamics involved in laser systems known as chaos described by nonlinear delay
differential equations.

Cleaved facets were frequently used as a laser resonator in semiconductor lasers
in the early days. Therefore, the reflectivity of laser facets of semiconductor lasers
is much lower than that of other lasers such as gas lasers. Since light in a cavity
of a semiconductor laser is reflected perpendicularly to the laser facet, the internal
amplitude reflectivity r0 is given by

r0 = η − 1

η + 1
(4.1)

where η is the refractive index of the laser material. For example, the refractive index
η of the AlGaAs semiconductor laser without any optical coating is about 3.6 and the
amplitude reflectivity of the facet is calculated to be r0 = 0.565. The corresponding
intensity reflectivity is R0 = r2

0 = 0.32. Only 32 % of the light generated by the
stimulated emission is fed back into the laser cavity and the other photons dissipate
from the laser cavity (Zah et al. 1987). To make a high power laser, the laser facets
are coated appropriately by dielectric films. Then, the rear facet of the cavity usually
has a high reflectivity of more than 90 % and the front fact has a low reflectivity of
less than 10 %. This is quite different from other lasers where both facets have high
reflectivities close to 100 %.

In spite of such a dissipative laser structure, laser oscillations are still possible
in semiconductor lasers due to the high efficiency of the conversion from pump to
light. For example, the conversion efficiency of electricity to light in semiconductor
lasers is usually up to fifty percent. This makes semiconductor lasers different from
other lasers. Thus, light goes away from the cavity after a few reflections within the
resonator. In other words, semiconductor lasers are easily affected by external light
due to optical feedback or optical injection from a different laser. Indeed, the use of
optical isolators is essential in optical communication systems to prevent unstable
laser operations generated by feedback light from optical components and optical
fiber facets. Optical feedback induces various instabilities in semiconductor lasers,
for example, noises (actually they are chaotic fluctuations as discussed later) are
much enhanced by optical feedback. In optical communications, the quality of signal
transmissions has priority, so that optical isolators are used at the expensive of system
sizes and costs to reduce feedback noises. On the other hand, optical information
equipment, for example, optical data storages, in which serious problems by optical
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feedback are encountered for the performance of operations, the cost of the system
is most important. In those systems, the reduction and control of noises (actually
chaotic oscillations) are essential issues for good systems. For such purpose, the idea
of chaos control, which is discussed in Chap. 9, can be applied.

There are many parameters to characterize instabilities and chaos in semicon-
ductor lasers. Every parameter is important for describing the characteristics, how-
ever, one important and most useful parameter to figure out the characteristics is
the reflectivity of the external mirror. Tkach and Chraplyvy (1986) investigated the
instabilities of semiconductor lasers with optical feedback and categorized them into
the following five regimes, depending on the feedback fraction.

Regime I. Very small feedback (the feedback fraction of the amplitude is less than
0.01 %) and small effects. The linewidth of the laser oscillation becomes broad or
narrow, depending on the feedback fraction (Kikuchi and Okoshi 1982).
Regime II. Small, but not negligible effects (less than ∼0.1 % and the case for
C > 1, where the C parameter is a measure of instability, discussed in Sect. 4.2).
Generation of the external modes gives rise to mode hopping among internal and
external modes (Tkach and Chraplyvy 1985).
Regime III. This is a narrow region around ∼0.1 % feedback. The mode hopping
noise is suppressed and the laser may oscillate with a narrow linewidth (Tkach
and Chraplyvy 1986).
Regime IV. Moderate feedback (around 1 %). The relaxation oscillation becomes
undamped and the laser linewidth is broadened greatly. The laser shows chaotic
behavior and sometimes evolves into unstable oscillations in a coherence collapse
state. The noise level is enhanced greatly under this condition (Lenstra et al. 1985).
Regime V. Strong feedback regime (higher than 10 % feedback). The internal and
external cavities behave like a single cavity and the laser oscillates in a single
mode. The linewidth of the laser is narrowed greatly (Fleming and Mooradian
1981a,b).

In the above regimes, the quoted fraction is that of the actual optical feedback
level into the active layer and it does not mean the reflectivity of the external mirror,
since there are scattering and absorption losses of light through optical components.
Furthermore, a diffraction loss of light due to a collimator lens usually put in front
of the laser facet is not negligible, because the thickness of the active layer is as
small as 0.1μm in ordinary edge-emitting lasers. Therefore, the fraction of optical
feedback actually fed back into the active layer becomes one-tenth or less than
the intensity reflectivity of the external mirror. However, semiconductor lasers are
sensitive enough to destabilize their output power by a small amount of optical
feedback of less than 1 % of the amplitude. Therefore, an isolation of 40 dB is usually
required in optical communication systems to avoid optical feedback effects.

The investigated dynamics of the above regimes were for a DFB laser with a
wavelength of 1.55 μm, so that the feedback fraction corresponding to each dynamics
scenario described above is not always true for other lasers. However, the dynamics
for other lasers show similar trends for the variations of feedback fraction. The lasers

http://dx.doi.org/10.1007/978-3-642-30147-6_9
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show the same or similar dynamics as far as the rate equations are written in the
same forms. As has already been discussed, the rate equations for narrow-stripe
edge-emitting semiconductor lasers, such as Fabry-Perot, MQW, and DFB lasers, are
described by the same forms. Therefore, these lasers exhibit similar chaotic dynamics,
though the parameters may have different values. We are very interested in regime IV
that shows chaotic dynamics (Sacher et al. 1989; Mørk et al. 1990a, 1992), though
it is a small level of optical feedback (the intensity fraction of the feedback is only
0.01 %). In actual applications of semiconductor lasers, this regime is important
because, for example, the feedback fraction of laser amplitude in Compact Disk
systems corresponds to regime IV (Gray et al. 1994). Thus, regime IV is important
for the studies of both nonlinear dynamics and applications.

4.1.2 Theoretical Model

The static characteristics of semiconductor lasers with optical feedback can be theo-
retically investigated with the relations among the reflectivities of internal cavity and
external reflector, the gain in a medium, and other static laser parameters. However,
the dynamic characteristics must be described by time-dependent equations of the
systems. The equations for semiconductor lasers in the presence of optical feedback
are easily obtained by modifying the rate equations for the solitary laser discussed
in Chap. 3. The schematic model of a semiconductor laser with optical feedback is
shown in Fig. 4.1. For a while, we consider that the external reflector is a conventional
plain reflection mirror. The effects of other reflectors such as grating and phase con-
jugate mirrors will be discussed later. Light from a laser is reflected from an external
mirror and fed back into the laser cavity with time delay. We assume that the mirror
is positioned within the coherence length of the laser. Also, the laser is assumed to
be operated at a single mode, although this is not always true in actual situations.
The laser sometimes oscillates at multimode under certain parameter conditions of
optical feedback even when the laser oscillates at a single mode in the solitary con-
dition. The external feedback effect is added to the equation for the complex field of
(3.47) and the field equation is written in the following form (Lang and Kobayashi
1980):

dE(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}E(t)+ κ

τin
E(t − τ) exp(iω0τ) (4.2)

where κ is the feedback coefficient due to the external optical feedback, τ = 2L/c
(L being the length of the external cavity) is the round trip time of light within the
external cavity, ω0 is the angular oscillation frequency of the laser. The extra term
has a delay time τ and the complex field is described by a delay differential equation
and this is the origin of instability and chaotic dynamics in semiconductor lasers.
The equation is known as the Lang-Kobayashi equation after their derivation.

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 4.1 Model of semi-
conductor laser with optical
feedback
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The feedback coefficient κ can be calculated from considering the multiple-
reflection effects of light in the external cavity. In Fig. 4.1, we consider the fields
propagating forward and backward within the cavity and the extra term added to the
laser field from the optical feedback in front of the facet of the resonator. For the
steady-state oscillation in the presence of external feedback, the relation between
the forward and backward traveling fields at the laser facet, E f (t) exp(−iω0t) and
Eb(t) exp(−iω0t), is given by (Lang and Kobayashi 1980)

Eb(t) = r0

{

E f (t)+ 1 − r2
0

r0
r

∞
∑

m=1

(−r0r)m−1 E f (t − mτ) exp(imω0τ)

}

(4.3)

where r is the amplitude reflectivity of the external mirror. In the parenthesis of the
above equation, the first term is the ordinary field of reflection in the internal cavity
and the second is the effect of the external optical feedback. The semiconductor laser
is easily destabilized and shows chaotic dynamics even for a small level of feedback
less than a few percent of the amplitude reflectivity. We here consider a steady-state
solution as E f (t − mτ) ∼ E f (t) and only assume a single reflection for a small
external reflection r . Then, the feedback coefficient κ is written by (Tartwijk and
Lenstra 1995)

κ = (1 − r2
0 )

r

r0
(4.4)

We assume that the reflectivities for the front and back facets of the laser cavity are
the same at r0. It is not always true for actual lasers, but the feedback rate for different
reflectivities can be calculated straightforwardly. Recent semiconductor lasers have
a low intensity reflectivity of the front facet as small as 10 % or less by optical coating
and, therefore, the lasers are much affected by optical feedback.

The time-dependent phase in the presence of optical feedback plays an important
role, since the phase couples with the other variables. For the carrier density, we need
not consider the modification of the equation. Similar to the derivations for the rate
equations in (3.59)–(3.61), we obtain the rate equations in the presence of optical
feedback as follows (Ohtsubo 2002):

dA(t)

dt
= 1

2
Gn{n(t)− nth}A(t)+ κ

τin
A(t − τ) cos θ(t) (4.5)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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dφ(t)

dt
= 1

2
αGn{n(t)− nth} − κ

τin

A(t − τ)

A(t)
sinθ(t) (4.6)

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t)− n0}A2(t) (4.7)

θ(t) = ω0τ + φ(t)− φ(t − τ) (4.8)

We can investigate the dynamics of semiconductor lasers with optical feedback by
numerically solving the above equations. In the rate equations for a solitary laser
derived from (3.59)–(3.61), the phase does not affect the other variables and, there-
fore, a semiconductor laser is only described by the field amplitude and carrier density
equations. However, we must consider the phase for a time development in the pres-
ence of optical feedback, since the phase is related to the other variables through the
optical feedback term as shown in the above equations. Then, three coupled equations
are essential for semiconductor lasers with optical feedback and they show unstable
oscillations and chaotic dynamics in their output powers like three coupled equa-
tions in Lorenz systems. In the numerical simulations, the fourth-order Runge-Kutta
algorithm is frequently used for the sake of the accuracy of the calculations (Press
et al. 1986).

4.2 Linear Stability Analysis for Optical Feedback Systems

4.2.1 Linear Stability Analysis

When the fluctuation of the output power is small even in the presence of optical
feedback in a semiconductor laser, we assume a steady-state solution for the average
field. In this case, we obtain the steady-state solutions for A(t) = As, φ(t) =
(ωs −ωth)t , and n(t) = ns from (4.5)–(4.7) as follows (Tromborg et al. 1984, 1987;
Agrawal and Dutta 1993):

A2
s = J/ed − ns/τs

Gn(ns − n0)
(4.9)

ωs − ωth = − κ

τin
{α cos(ωsτ)+ sin(ωsτ)} (4.10)

ns = nth − 2κ

τinGn
cos(ωsτ) (4.11)

For zero feedback coefficient κ = 0, the above equations reduce to the solutions for
the solitary laser already given by (3.62)–(3.64). We rewrite (4.10) as

ωthτ = ωsτ + Csin(ωsτ + tan−1α) (4.12)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
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where the C parameter already introduced in the regimes of the dynamics for the
optical feedback level in Sect. 4.1.1 is defined by (Tartwijk and Lenstra 1995)

C = κτ

τin

√

1 + α2 (4.13)

From (4.12), we can calculate modes for laser oscillations in the presence of optical
feedback. The relation in (4.12) can be written by

	ωsτ = −Csin(ϕ0 +	ωsτ) (4.14)

where	ωs = ωs −ωth corresponds to the steady-state value of the phase difference
φ(t)− φ(t − τ) and ϕ0 = ωthτ + tan−1 α. When C < 1, there is only one solution
for (4.12), as already discussed, which is dynamically stable and can be identified
as a slightly changed solitary laser state. By increasing the C parameter value, the
number of the mode solutions increases but is always an odd number. The curves in
(C, ϕ0) space in Fig. 4.2 that separate the regions of equal number of solutions are
given by

ϕ0 = (2m + 1)π ± cos−1
(

1

C

)

∓ Csin

{

cos−1
(

1

C

)}

(4.15)

where C ≥ 1 and m is an integer number. This causes a pattern to arise in (C, ϕ0)

space, as shown in Fig. 4.2 where the roman numbers represent the number of solu-
tions. For C > 1, multiple steady-state solutions appear.

The solutions in (4.12) are also graphically calculated as intersections of the
curves y = ωthτ and y = ωsτ + C sin(ωsτ + tan−1 α) as shown in Fig. 4.3 (Fravre
1987; Murakami et al. 1997). When C < 1 (for a small optical feedback and a
short external cavity), (4.12) has only a single solution and the laser exhibits stable
oscillation. If C > 1,many possible modes for the laser oscillations (external modes
and anti-modes) are generated with the relation among the internal laser modes and
the excited external modes, and then the laser shows unstable operations. By adjusting
the position of the external mirror (which is equivalent to appropriate selection of the
round-trip time τ ) and setting ϕ0 = ωthτ + tan−1 α = 0 (where ωthτ = − tan−1 α

and, thus, the condition	ωsτ = −Csin(	ωsτ) is satisfied), the higher bound of the
coefficient C for a single mode oscillation of the laser is easily obtained from Fig. 4.3
as C ∼ 3 π /2 (Petermann 1988). Above this value C > 3 π /2, many modes are
excited and the laser becomes unstable. Complicated dynamics are observable in the
output power, however, the laser does not always exhibit unstable oscillations. Even
for such unstable regimes, the laser may show stable oscillations. The details of the
dynamics will be discussed in Sect. 5.2.

When the C parameter well exceeds the value of unity, many modes are excited
in the laser output and the laser becomes truly unstable. Another representation for
possible oscillation modes is frequently used in the phase space of the oscillation
frequency and the carrier density. Figure 4.4 is such a representation for the parameter
space in the	ωsτ versus	ns plane. The relation is calculated from (4.10) and (4.11)

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 4.2 Number of solutions
for (4.14) in (C, ϕ0) space.
The roman numbers represent
the number of solutions
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Fig. 4.3 Dependence of
steady-state solutions for the
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by eliminating the sine and cosine functions and is given by (Henry 1986)

(

	ωsτ − ατ

2
Gn	n

)2 +
(τ

2
Gn	n

)2 =
(
κτ

τin

)2

(4.16)

where 	ωs = ωs − ωth and 	ns = ns − nth. The broken sinusoidal curve in the
figure denotes the deviation from the steady state of the oscillation angular frequency
	ωs and the other sinusoidal curve represents that of the carrier density 	ns . The
crossing points of these two curves are the locations of possible oscillations and they
are on the ellipsoid given by (4.16) (thick solid curve in the figure).Those in the
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Fig. 4.4 Carrier density
change 	n versus frequency
change 	ω for the possible
steady states under external
feedback. The crossing points
of the solid and broken sinu-
soidal waves are the locations
of the modes. Modes are on
an ellipsoid. The solid dot at
center is the solitary oscilla-
tion mode Δn
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lower half are the solutions for stable oscillations (external modes) and those in the
upper half are unstable oscillations. Solutions for unstable oscillations are sometimes
called anti-mode. The laser oscillates at one of the external modes and the maximum
gain mode is the most probable mode for laser oscillation. However, when the laser
oscillation is unstable due to external feedback, the mode hops around among the
external modes and the anti-modes, thus the laser exhibits chaotic oscillations. One
typical instability is the phenomenon known as low-frequency fluctuations (LFFs),
in which the laser output power shows frequent irregular dropouts having frequency
from MHz to hundred MHz (Mørk et al. 1988; Fischer et al. 1996). The details
for the origin of LFFs and their dynamics are again discussed in Sect. 5.3. The
solid dot at the center of the ellipsoid in the figure is the solution for the laser
oscillation in the solitary laser (solitary mode). The laser without optical feedback,
of course, has no fluctuation in the sense of chaotic dynamics and oscillates only at this
mode.

The stability and instability of laser oscillations in the presence of optical feedback
are theoretically studied by the linear stability analysis for the steady-state solutions
of the laser variables. In the same manner as a solitary laser, using the rate equations
and taking the first order small infinities for the perturbations, the equations for the
field δE , the phase δφ, and the carrier density δn are calculated as (Tromborg et al.
1984)

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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dδA(t)

dt
= 1

2
Gn Asδn(t)− κ

τin
cos(ωsτ){δA(t)− δA(t − τ)}

− κ

τin
Assin(ωsτ){δφ(t)− δφ(t − τ)} (4.17)

dδφ(t)

dt
= α

2
Gn Asδn(t)+ κ

τin

sin(ωsτ)

As
{δA(t)− δA(t − τ)}

− κ

τin
cos(ωsτ){δφ(t)− δφ(t − τ)} (4.18)

dδn(t)

dt
= −2Gn As(ns − n0)δA(t)−

(

Gn A2
s + 1

τs

)

δn(t) (4.19)

Assuming that the perturbations take the forms of δx(t) = δx exp(γ t) (x =
A, φ, and n), the characteristic equations for the condition having non-trivial
solutions for the variables δA, δφ, and δn are calculated from the following:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ + κ

τin
K cos(ωsτ)

κ

τin
K Assin(ωsτ) − 1

2 Gn As

− κ

τin

K

As
sin(ωsτ) γ + κ

τin
K cos(ωsτ) − 1

2αGn

2As Gn(ns − n0) 0 γ + Gn A2
s + 1

τs

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 (4.20)

where K = 1−exp(−γ τ). The oscillation modes for the perturbations are calculated
by solving the characteristic equation

D(γ ) = γ 3 + 2{−R + κ

τin
K cos(ωsτ)}γ 2

+
{

ω2
R − 4κKR

τin
cos(ωsτ)+

(
κ

τin
K

)2
}

γ

− 2κK 2R

τin
+ κKω2

R

τin
{cos(ωsτ)− αsin(ωsτ)} = 0 (4.21)

In the above equation, R and ωR are the previously defined parameters of the
damping factor and angular frequency of the relaxation oscillation at the solitary
mode.

We cannot calculate explicit forms of the solutions for (4.21), since the equation
includes the exponential form for the variable γ and, then, the solutions are numer-
ically calculated. The real part of the solution is related to the stability of the mode
and the imaginary part of it represents the oscillation frequency of the mode as has
already been discussed. When the real part (damping factor) takes a negative value,
the mode is stable and the excited oscillation damps out for the time development
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with a frequency calculated from the imaginary part. On the other hand, the mode
is unstable for a positive value of the real part and the laser shows either regular or
irregular oscillations with a typical frequency corresponding to the imaginary part.
If the level of optical feedback is low or the condition κτ/τin � 1 is satisfied, we
can assume |γ τ | � 1 and obtain the analytical form of the solution for γ . Then,
the real and imaginary parts, ′

R and ω′
R , of the solution are given by (Agrawal and

Dutta 1993)
′

R = R (4.22)

ω′
R = ωR

√

1 + (κc − ακs)τ/τin

(1 + κcτ/τin)2 + (κsτ/τin)2
(4.23)

where κc = κ cos(ωsτ) and κs = κ sin(ωsτ). Of course, (4.22) and (4.23) are equal
to (3.70) and (3.71) at no optical feedback, respectively.

The relaxation frequency in the presence of optical feedback shifts from that of
the solitary oscillation. Increase or decrease of the frequency shift depends on the
signs of κc and κs , however, it is usually enhanced at moderate optical feedback and
takes a larger value than that of the solitary oscillation. For a laser oscillation, the
sign of the expression inside the square root in (4.23) must be positive and we obtain
the stability condition (Acket et al. 1984; Lenstra et al. 1984)

1 + C cos(ωsτ + tan−1α) > 0 (4.24)

Equation (4.24) denotes that the laser becomes unstable for C > 1 as expected, while
it is stable for C < 1 even if optical feedback is present in semiconductor lasers.
We calculated oscillation modes for perturbations of the steady-state values for the
variables. The solutions obtained from such characteristic equations are called linear
modes, the name comes from the linear stability analysis.

4.2.2 Linear Mode, and Stability and Instability
in Semiconductor Lasers

For certain ranges of optical feedback level, the output of a semiconductor laser
evolves from stable states to chaotic states via unstable periodic oscillations. One or
a few frequencies for the solutions derived from the characteristic equation in (4.21)
are equal to or close to the typical frequency corresponding to the response of the
system. Periodic oscillations in chaotic states are generally not harmonic oscillations,
but they include an obscure fundamental frequency and its higher harmonics. In quasi-
periodic oscillations, frequency peaks become obscured due to irregular oscillations
and no clear spectral peak is observable in complete chaotic states, like white noises.
In semiconductor lasers with optical feedback, modes generated by the internal and
external cavities are mixed and the laser oscillates at one or several modes. The other

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 4.5 Linear mode distributions at the external cavity length of L = 10 cm and the bias injection
current of J = 1.3 Jth. The highest mode corresponds to the relaxation oscillation and the second
mode to the external cavity mode. With increasing external feedback, the real part of each mode
increases and the laser becomes less stable

important frequency of laser oscillations besides these modes is the frequency of the
relaxation oscillation. Since chaos is a nonlinear phenomenon, many modes are not
only related to the internal and external modes and the relaxation oscillation modes
but also their sums and differences, and higher harmonics are excited (Cohen et al.
1988; Helms and Petermann 1990; Levine et al. 1995). For a chaotic bifurcation,
the laser first becomes unstable with a frequency close to the relaxation oscillation,
which is called period-1 oscillation. Next, the external mode is also excited. After
that, many modes are excited and the laser oscillates at quasi-periodic oscillation.
Then, the laser evolves into chaotic oscillations with complicated and broadened
frequency components.

Figure 4.5 is an example of numerically calculated linear modes from (4.21)
(Murakami and Ohtsubo 1998). In the figure, the change of modes is shown for the
increase of the amplitude reflectivity from the external mirror. The vertical axis is
the damping factor (the real part of the solution of the characteristic equation) and the
horizontal axis is the frequency of the oscillation (the imaginary part of the solution).
For a negative value of the damping factor, the mode damps out for a time evolution
even if it is once excited. The value of the real part is negative for the highest mode in
the absence of optical feedback (around the frequency of 2.5 GHz in this case) and the
laser never gets into unstable oscillations. The frequency corresponds to the relaxation
oscillation at the solitary mode. With the increase of the external feedback, the real
part of the highest mode at first exceeds zero and the laser becomes unstable with
a frequency of the relaxation oscillation (period-1 oscillation). Under the condition
in this figure, the C parameter at which the laser at first exhibits unstable oscillation
has a value of C = 2.8 (calculated from the external reflection of 0.4 %). The
value is slightly less than C = 3 π/2, which was estimated in the previous section,
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but the assumption in the previous section is proved to be reasonable. With further
increase of the external reflectivity, the damping rates for all the modes increase and
the laser becomes less stable. The second highest mode in the presence of optical
feedback corresponds to the external cavity mode and the frequency is about 1.5 GHz
(approximately equal to the frequency calculated from the external cavity length of
10 cm). With this mode, the laser shows higher periodic oscillations and it evolves
into chaotic oscillations through a bifurcation for the increase of optical feedback
(Ye and Ohtsubo 1998). As we recognize from the figure, the external frequency
does not have a fixed value, but shifts with the increase of the reflectivity, except for
the relaxation oscillation mode, which always almost has a fixed value.

4.2.3 Gain Reduction Due to Optical Feedback

Though direct analyses for the rate equations are essential for investigating the
dynamics of semiconductor lasers with optical feedback, the steady-state analysis is
still useful and important to obtain parameter conditions for stable and unstable laser
operations. Here, we calculate the gain in the presence of optical feedback under
a steady-state condition. We assume the same reflectivities calculated in (4.4) (the
internal reflectivity r0 and the external reflectivity r ), the effective reflectivity at the
front facet taking into account the external mirror at steady state is given by (Koelink
et al. 1992; Osmundsen and Gade 1983; Kakiuchida and Ohtsubo 1994; Katagiri and
Hara 1994)

reff = r0 + r exp(iω0τ)

1 + r0r exp(iω0τ)
(4.25)

We investigate the gain of laser oscillation in the presence of optical feedback under
the condition of a small external reflectivity r � 1. From the above equation, the
effective reflectivity is written by

reff = |reff | exp(iφr ) ≈ r0 + (1 − r2
0 )r exp(iω0τ) (4.26)

where φr is the phase of the effective reflectivity. Also, the effective reflectivity
κ = (1 − r2

0 )r/r0 defined in (4.4) is small enough. Then, the absolute value and
phase of the effective reflectivity are approximated as

|reff | = r0{1 + κ cos(ω0τ)} (4.27)

φr = κsin(ω0τ) (4.28)

The condition of laser oscillation under optical feedback is also given by the same
equation as (3.3) and reads as

r0reff exp{2ikl + (g − a)l} = 1 (4.29)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Therefore, the condition of the gain is

gc = a + 1

l
ln

(
1

r0|reff |
)

(4.30)

The difference between the gains with and without optical feedback for a small value
of κ is given by

gc − gth = −κ
l

cos(ω0τ) (4.31)

The gain in the presence of optical feedback depends on the round-trip time τ and
it changes periodically for the variation of the external cavity length. The mode
for the maximum gain is attained at ω0τ = 2mπ (m being an integer). As the
gain varies depending on the optical feedback level, we can control or suppress
the adjacent modes from the main oscillation mode by using the gain difference in
accordance with (4.31) when the external mirror is positioned close to the laser facet.
The difference of gains between successive modes in edge-emitting semiconductor
lasers is as small as 0.1cm−1 and the condition κ/ l < 0.1 is required for stable
laser oscillations (Petermann 1988). For example, with an internal reflectivity of the
laser facet of r0 = 0.56 and the internal cavity length of l = 300 μm, we obtain the
condition of the stable laser oscillation for the external amplitude reflectivity as about
r < 2 × 10−3. This value corresponds to that in regimes III to IV already discussed
in Sect. 4.1.1 and is equal to the boundary of the regimes between the stable and
unstable oscillations.

4.2.4 Linewidth in the Presence of Optical Feedback

The linewidth of laser oscillations in the presence of optical feedback is also cal-
culated in the same manner as in Sect. 3.5.6. We consider small perturbations for
the steady-state values of the variables in the presence of optical feedback and
derive the linewidth from the power spectrum for the time derivative equations for the
perturbations. The calculation is rather lengthy but straightforward, so that only the
result is given here (Tromborg et al. 1984). Using the linewidth 	v without optical
feedback, the linewidth 	vex in the presence of optical feedback is calculated as

	vex = 	v

F2 (4.32)

The coefficient F = dωth/dωs for the reduction (or the broadening) of the spectral
line width is calculated from (4.12) and given by

F = dωth

dωs
= 1 + C cos(ωsτ + tan−1α) (4.33)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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The minimum spectral linewidth is attained when the phase adjustment condition
ωsτ = − tan−1 α is satisfied. Then, the spectral linewidth at the minimum condition
is given by

	vex = 	v

(1 + C)2
(4.34)

On the other hand, the linewidth for the maximum gain condition at ωsτ = 2mπ is
calculated to be

	vex = 	v
(

1 + κ τ
τin

)2 (4.35)

The linewidth with optical feedback at the maximum gain condition is always less
than the value of the solitary oscillation. These results hold for stable laser operations
even when the laser is subjected to optical feedback. However, for optical feedback
above a certain level, the laser does not oscillate at one of the modes but many
modes are simultaneously excited or even drifting or wandering among the modes
(external modes and anti-modes) occur. Such oscillations give rise to much noise
(actually chaotic fluctuations) and even result in the collapse of coherence. These
are the typical features in regimes III and IV in the preceding discussion. At this
state, the linewidth of the laser is much broadened to as large as over GHz or more.
However, the coherence of the laser recovers and the linewidth becomes narrow for
a sufficiently strong optical feedback at regime V.

4.3 Feedback from a Grating Mirror

Other than conventional optical feedback reflectors, a grating mirror is frequently
used to select the oscillation line in a semiconductor laser or stabilize the oscilla-
tion frequency. Grating optical feedback is originally applied for the stabilization of
laser oscillations, however, it sometimes induces instabilities in lasers. Before dis-
cussing instabilities, we present the theoretical background of grating feedback and
stabilization of optical frequency. For a small feedback coefficient and also small
detuning between the laser and grating frequencies, the complex field equation can
be approximately written by a similar equation of conventional optical feedback as

dE(t)

dt
= 1

2
(1− iα)Gn{n(t)−nth}E(t)+ κg

τin
E(t −τ) exp(−i	ωt + iωgτ) (4.36)

where κg is the feedback coefficient from the grating mirror and 	ω is the angular
frequency detuning given by	ω = ωg −ω0 (ωg being the angular frequency of the
grating feedback). However, in general, the optical feedback from the grating mirror
is strong and the frequency detuning between the laser oscillation and the grating is
as large as up to several nanometers in wavelength. Therefore, the approximation in
(4.36) is only valid within a small range of grating feedback. To treat the dynamics
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of grating feedback in a strict sense, the relation of the phase between the complex
fields for the forward and backward propagations as a multiple-reflection model must
be taken into account (Pittoni et al. 2001). Instead, we here consider the static model
of the grating feedback and some stable and unstable features of the dynamics are
presented.

The effective reflectivity of the static model in grating feedback including the
laser facet and the grating mirror with multiple reflections is calculated in the same
manner as the conventional mirror in (4.25) and is given by (Binder et al. 1990; Genty
et al. 2000)

reff = |reff | exp(iφr ) = r0 + r(ω) exp(iωτ)

1 + r0r(ω) exp(iωτ)
(4.37)

The above equation has the same form as (4.25), but the external reflectivity by the
grating mirror is a function of the optical frequency v = ω/2π. The condition of
the laser oscillation can be written in the same form as (4.29) and the gain is also
given by (4.30). We here apply the steady-state analysis and calculate the conditions
for the phase and the gain. Putting the angular frequency of the laser oscillation as
ω = ωg , the phase condition in the presence of grating optical feedback reads as

2ηωgl/c + φr = 2mπ (4.38)

where m is an integer and 2ηωgl/c = 2m′π is the oscillation condition for a solitary
laser. From the relation	(ηωg) = ωth	η+(ωg −ωth)η, the change in the round-trip
phase 	φd compared to 2mπ due to grating tuning is written by

	φd = 2l

c
{ωth	η + (ωg − ωth)η} + φr (4.39)

where 	η is expanded by the carrier density and the angular frequency as

	η = ∂η

∂n
(n − nth)+ ∂η

∂ω
(ωg − ωth) (4.40)

Using the definition of the refractive index in (3.40), i.e., ηc = η− iη′, together with
the equalities

∂η

∂n
= α

∂η′

∂n
= − αc

2ωth

∂g

∂n
(4.41)

the relation between the carrier density and the gain is written as

∂η

∂n
(n − nth) = − αc

2ωth
(gg − gth) (4.42)

where gg is the gain in the presence of grating feedback. Substituting (4.40)–(4.42)
into (4.39) together with the relation in (3.8), the phase change reads as

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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	φd = −α(g − gth)l + 2ηel

c
(ωg − ωth)+ φr (4.43)

Putting 	φd = 0 for a possible solution for the laser oscillation and using the
internal trip time of light τin = 2ηel/c, we obtain

ωg − ωth = 1

τin
{α(gg − gth)l − φr } (4.44)

Then, the reduction of gain in the presence of grating feedback is given by

gg − gth = 1

l
ln

1

r0|reff(ωg)| (4.45)

and the linewidth reduction factor is calculated as

Fg = dωth

dωg
= 1 + 1

τin

dφr

dωg
− α

τin

d

dωg

{

ln
1

|reff(ωg)|
}

(4.46)

The linewidth of a semiconductor laser with grating optical feedback is finally
written as

	vg = 	v

F2
g

(4.47)

where 	v is again the linewidth of the solitary laser defined by (3.114). When the
laser beam has a Gaussian profile and a certain diffraction order is selected by the
grating as a feedback light, the reflectivity is explicitly given by

r(ωg) = rg exp{− (ωg − ωG)
2

	ω2
G

} (4.48)

where ωG is the selected angular frequency of the grating, rg is its reflectivity, and
	ωG is the width of the grating resolution at that angular frequency defined by
	ωG = ctanθ/w0 (θ is the incidence angle of light onto the grating and 2w0 is the
diameter of the Gaussian beam). The linewidth of a semiconductor laser is narrowed
by a grating feedback under stable oscillation. However, it is again noted that the
laser becomes unstable even by a grating feedback for a certain range of the feedback
strength, either for small or strong grating feedback.

4.4 Phase-Conjugate Feedback

A semiconductor laser is frequently used as a light source of phase-conjugate optics
(Pochi 1993). Or a phase-conjugate mirror is positively used to return light exactly
into the active region in a semiconductor laser, since the light reflected from the

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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phase-conjugate mirror is automatically fed back into the laser cavity due to the
generation of the conjugate wave without any additional optical components in the
external optical path. The phase-conjugate feedback induces instabilities in the laser
oscillation and the dynamics of the laser are not always the same as those from
the ordinary feedback reflector. The typical timescale in semiconductor lasers with
optical feedback is of the order of a nanosecond, defined by the laser relaxation oscil-
lation frequency. Therefore, typical effects of phase-conjugate feedback occur when
the phase-conjugate mirrors respond as fast as this timescale. Such phase-conjugate
mirrors are realized in quick-response Kerr media with large third-order suscepti-
bility and also quick-response photorefractive mirrors of semiconductor materials
(Agrawal and Klaus 1991; Agrawal and Gray 1992; Tartwijk et al. 1992; Langley
and Shore 1994; Gray et al. 1993, 1994; Bochove et al. 1997). On the other hand,
the dynamics for slow-response photorefractive mirrors, where the response is much
slower than the time variations of the laser dynamics, are the same as those for
ordinary plain reflection mirrors. For a slow-response photorefractive crystal, for
example a TiBaO3 crystal, the laser light automatically returns into the laser cavity,
however, the mirror produces the same dynamics of optical feedback as an ordi-
nary reflection mirror (Miltyeni et al. 1995; Liby and Statman 1996; Murakami and
Ohtsubo 1999). Only the spatial phase-conjugate characteristic is effective in such
optical feedback. In either case of fast or slow response phase-conjugate mirrors,
phase-conjugate feedback can be also applied to control the quality of oscillations
for semiconductor lasers (Gray et al. 1995; Kurz and Mukai 1996; Anderson 1999).

Figure 4.6 shows an optical setup for generating a phase-conjugate wave by
four-wave mixing from a phase-conjugate mirror. We here assume that the phase-
conjugate mirror responds much faster than the typical chaotic fluctuations of semi-
conductor lasers. The angular frequencies of the signal and pump beams at the
phase-conjugate mirror are set to be ω0 and ωp, respectively, and the generated
phase-conjugate wave has a frequency ωc = 2ωp − ω0. Therefore, we consider the
angular frequency detuning 2δ = 2(ωp − ω0) between the laser angular frequency
and that of the feedback light. Thus, the equation of the complex field E for the
semiconductor laser with phase-conjugate feedback is given by

dE(t)

dt
= 1

2
(1−iα)Gn{n(t)−nth}E(t)+ κ

τin
E∗(t−τ) exp

{

−i2δ
(

t − τ

2

)

+ iφPCM

}

(4.49)
where φPCM is the phase shift induced by the reflection at the phase-conjugate mirror.
The final term in the above equation is the effect of phase-conjugate feedback. The
rate equations for the field amplitude, the phase, and the carrier density are written as

dA(t)

dt
= 1

2
Gn{n(t)− nth}A(t)+ κ

τin
A(t − τ) cos θ(t) (4.50)

dφ(t)

dt
= 1

2
αGn{n(t)− nth} − κ

τin

A(t − τ)

A(t)
sinθ(t) (4.51)
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Fig. 4.6 Optical setup in
a semiconductor laser with
phase-conjugate optical feed-
back

Laser Diode ω0

Externally-pumped PCM

r ωp

L

ωc=2ωp-ω0 ωp

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t)− n0}A2(t) (4.52)

θ(t) = 2δ
(

t − τ

2

)

+ φ(t)+ φ(t − τ)+ φPCM (4.53)

Equations (4.50)–(4.52) are in the same form as (4.5)–(4.7), however, (4.53) is dif-
ferent from (4.8) even for zero detuning (δ = 0). This makes the laser dynamics
of phase-conjugate feedback different from those of an ordinary optical feedback
reflector.

A typical feature of the dynamics in phase-conjugate feedback is the phase lock-
ing phenomenon. The steady-state solutions for the field, the phase, and the carrier
density at zero detuning δ = 0 are given by

A2
s = J/ed − ns/τs

Gn(ns − n0)
(4.54)

φs = 1

2
tan−1(−α) (4.55)

ns = nth − 2κ cos(2φs)

Gn
(4.56)

Namely, the phase is locked to a certain value given by (4.55), while it changes
depending on the time of the feedback loop in the conventional external reflector and
it has multiple solutions for the laser oscillations (see (4.10)). The laser for ordinary
optical feedback is very sensitive to short variations of the external mirror compat-
ible with optical wavelength. However, the phase of the laser with phase-conjugate
feedback does not show any change for such a small variation of the external mirror.
Here, we discussed the case when the phase-conjugate mirror responds immediately
after the arrival of the signal beam. The laser dynamics of semiconductor lasers
with a finite response time in a phase-conjugate mirror have also been discussed
(DeTienne et al. 1997; van der Graaf et al. 1998). For a finite response of a phase-
conjugate mirror, the equation for the complex field is given by
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dE(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}E(t)

+ κ

τin
exp

{

−i2δ
(

t − τ

2

)} ∫ t

−∞
E∗(t ′ − τ) exp

{

−(1 − iδtm)
(t − t ′)

tm

}

dt ′

(4.57)

where tm is the time that it takes the light to penetrate the phase-conjugate mirror.
Above, we assumed a fast-response phase-conjugate mirror, but similar dynamics
are obtained for a finite-response phase-conjugate mirror.

4.5 Incoherent Feedback

Coherent optical feedback effects are important in applications of semiconductor
lasers. For a long external cavity when the feedback light has an incoherent coupling
with the original light in the laser cavity, the rate equations in (4.5)–(4.7) are still
applicable for investigating the laser dynamics. Even in incoherent optical feedback,
a laser becomes unstable and shows instability and chaos in its output. For example,
the dynamics of long external optical feedback from a reflector over the coherence
length of a semiconductor laser is treated as those for incoherent schemes. Indeed, the
coherence length of a semiconductor laser is usually several tens to a hundred meters,
since the linewidth of the laser oscillations is around several mega hertz without any
frequency stabilization. Also, polarization-rotated optical feedback under certain
conditions is sometimes treated as a system of incoherent optical feedback. In these
case, the returned laser field does not interfere with the inner oscillation field, but
acts as the perturbation for carriers and has the coupling with them. Namely, the
feedback term is introduced to the carrier density in the rate equations. Through this
interaction, the laser shows instabilities.

The model is described by the following rate equations (Otsuka and Chern 1991):

dS(t)

dt
= Gn{n(t)− nth}S(t) (4.58)

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t)− n0}{S(t)+ κ ′S(t − τ)} (4.59)

where κ ′ is the feedback coefficient coupled with the carrier density and τ has the
same definition as before (the round-trip time of light in the external cavity). We do
not have to consider the phase, since the phenomena come from the incoherent origin.
The rate equations are only written by two differential equations, however, they are
coupled with each other by the delay differential term. Thus, we can expect insta-
bilities and chaos in semiconductor lasers. One of the typical features in incoherent
optical feedback is sustained pulsations in the laser output. The gain saturation term
discussed in Sect. 3.3.4 must be taken into account for such pulsations. In incoherent

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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optical feedback in semiconductor lasers, we obtain not only irregular or chaotic
pulsations in the laser output but also regular pulsings (such as period-1 oscillations)
with high-speed oscillations as fast as picoseconds (Otsuka and Chern 1991). Those
regular fast pulsing oscillations are important for the application of light sources in
high-speed optical communications.

4.6 Polarization-Rotated Optical Feedback

Generally, narrow-stripe edge-emitting semiconductor laser oscillates at a transverse
electric mode (TE mode). On the other hand, the counter polarization mode, i.e.,
transverse magnetic mode (TM mode), is not a lasing mode and is scarcely excited.
The optical gain of a TM mode is slightly less than that of a TE mode and the
laser preferredly oscillates at the TE mode due to the nonlinear effect of lasing.
However, the TM mode starts to oscillate when the TE mode is coherently cou-
pled to the TM mode through the polarization-rotated optical feedback. We consider
here the case of strong optical feedback from a crossed-polarization component,
where the orthogonal-polarization component becomes the lasing mode. Figure 4.7
shows two examples of single path systems with orthogonal-polarization optical
feedback. Figure 4.7a is a ring-loop model for orthogonal-polarization optical feed-
back, by which we can avoid multiple-reflection scheme within optical feedback
loop. The main oscillated TE mode from a narrow-stripe edge-emitting laser goes
through a polarization beam splitter and is converted into a TM mode by λ/4 and λ/2
wave-plates. Figure 4.7b is another example of orthogonal-polarization feedback sys-
tems. The TE polarized beam enters a Faraday rotator (RT), whose input polarizer is
removed, and the beam’s polarization rotates 45◦. The beam reflected by the feed-
back mirror is reinjected to the rotator, and this creates an orthogonal polarized beam
to the laser oscillation mode (i.e., TM mode). In this configuration, the reflected ver-
tical beam from the laser facet is once passed through the rotator, but it is blocked
by the polarizer (PL). Thus, a single feedback loop is guaranteed in this setup. For
both systems, the effect of orthogonal-polarization feedback can be described by the
same rate equations. For a strong crossed-polarizing optical feedback (say, for exam-
ple, 10 times larger than ordinary parallel-polarization optical feedback to induce
chaotic oscillations), the TM oscillation merges in the laser output power besides
the TE oscillation mode. In this situation, we can observe quite different dynamics
compared with ordinary parallel-polarizing optical feedback and the detail of the
dynamics will be discussed in Chap. 5 (Heil et al. 2003).

For the crossed-polarization scheme with strong optical feedback, we must use a
coherent model for the laser oscillations, since both the amplitudes of TE- and TM-
modes are time-dependent functions and coherently couple with each other. Then
the rate equations of crossed-polarization feedback system are written as

dATE(t)

dt
= 1

2
Gn,TE{n(t)− nth,TE}ATE(t) (4.60)

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 4.7 Optical setups of orthogonal polarization feedback in semiconductor laser. a Ring-loop
feedback system. PBS: polarization beam splitter, RT: Faraday rotator, λ/4 : λ/4 waveplate, λ/2 :
λ/2 waveplate, ND: neutral density filter. b Single-pass feedback system. PL: polarizer

dφTE(t)

dt
= 1

2
αGn,TE{n(t)− nth,TE} (4.61)

dATM(t)

dt
= 1

2
Gn,TM{n(t)− nth,TM}ATM(t)+ κ

τin
ATE(t − τ) cos θ(t) (4.62)

dφTM(t)

dt
= 1

2
αGn,TM{n(t)− nth,TM} − κ

τin

ATE(t − τ)

ATM(t)
sinθ(t) (4.63)

dn(t)

dt
= J

ed
− n(t)

τs
− {n(t)− n0}{Gn,TE A2

TE(t)+ Gn,TM A2
TM(t)} (4.64)

θ(t) = ω0τ + φTM(t)− φTE(t − τ) (4.65)

where the subscripts TE and TM represent the variables and parameters for
TE- and TM-modes. The gain Gn and the carrier density at threshold nth has differ-
ent values for the TE- and TM-modes in a strict sense. When an optical feedback
is small, the terms for the TM-mode in (4.62) and (4.63) is eliminated and we can
put A2

TM(t) ∝ A2
TE(t − τ). Then replacing Eq. (4.60) for the photon number, the

relations of (4.58) and (4.59) hold. Crossed-polarization optical feedback plays an
important role in VCSELs as will be discussed in Chap. 8. In VCSELs, typical polar-
ization dynamics are observable even for a small amount of optical feedback with
crossed-polarization.

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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4.7 Filtered Feedback

We have discussed several optical feedback schemes and formulated the equations
for the models. We can consider systematic treatments for these models (Yousefi and
Lenstra 1999; Lenstra et al. 2005; Green and Krauskopf 2006). We here formulate
the preceding optical feedback models. Also, the formulation can be extended to
other feedback models such as optoelectronic feedback models, which will be dis-
cussed in Chap. 7. Through the introduction of systematic descriptions, we can give
rise to a good perspective for universal understanding of the dynamics in feedback
phenomena in semiconductor lasers, i.e., coherent and incoherent optical feedback,
phase-conjugate feedback, grating feedback, etc. Figure 4.8 shows the notation of
the system for filtered feedback. Assuming that the laser field E and the feedback
function given by an external device F are slowly time-dependent amplitudes, the
filtered feedback system is written as

dE(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}E(t)+ κfeedback

τin
F(t) (4.66)

We assume that the emitted laser field is E(t)e−iω0t + c.c. and the feedback field
F(t)e−iω0t + c.c.. For a linearly responding device, the function is given by

F(t) =
∫ t

−∞
r(t ′ − t)E(t ′)dt (4.67)

where r(t) represents the response function of the external devices. It is noted that,
in a case of phase-conjugate optical feedback, E in (4.67) must be replaced by E∗.
The carrier density equation remains the same and is given as

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t)− n0} |E(t)|2 (4.68)

For simplicity, the response function is assumed to be given by a simple Lorentzian
frequency filter. Indeed, the spectral form of the transfer function induced by optical
feedback from a grating or Fabry-Perot filter can be given by a Lorentzian shape as
will be discussed in Chap. 5. From the Fourier transform relation, the time-dependent
response function is given as

r(t) = � exp{−�|t | − i(ωc − ω0)t} (4.69)

where ωc is the central frequency of the Lorentz spectrum and � is the half-width
at half-maximum (HWHM) of the spectrum. Under this assumption, one obtains the
differential equation for the feedback as

dF(t)

dt
= �E(t − τ) exp(iω0τ)− {�+ i(ωc − ω0)}F(t) (4.70)
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Fig. 4.8 Notation of filtered
feedback

Laser Diode Filter
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In general, the response does not always have a Lorentzian spectral function in
coherent optical feedback. However, a general response function can be expanded
by a linear superposition of Lorentz functions and one can generally decompose the
response function as a sum of exponential functions of the same type of the equation
r(t) = � exp{−�|t | − i(ωc − ω0)t}.

From the above discussions, we can figure out general descriptions for the systems
with filtered optical feedback. In the following, we will study the explicit forms of
the feedback function for some limiting cases. In a conventional optical feedback
without frequency filter (usual plane mirror feedback), � is assumed to be infinity.
In this limit, the differential equation is simply reduced as

F(t) = E(t − τ) exp(iω0τ). (4.71)

The expression, of course, is the same as the extra term added to the field equation
of a semiconductor laser with optical feedback in (4.2). For a very narrow filter case,
i.e., � → 0, (one of such examples is optical injection from a different laser), the
feedback function is easily calculated as

F(t) = Einj(t) exp{−i(ωm − ω0)t}. (4.72)

Injection-locking instability will be discussed in Chap. 6. The third example is optical
feedback from a four-wave mixing phase-conjugate mirror with finite time response
time and where the feedback field is detuned from the solitary laser, which was
discussed in Sect. 4.4. In a four-wave mixing phase-conjugate optical feedback, the
differential equation of the response function is modified

dF(t)

dt
= �E∗(t − τ) exp

{

−2iδ(t − τ

2
)
}

− (�+ iδ)F(t), (4.73)

where δ is the detuning of the angular frequency between the four-wave mixing
pump beam ωp and the reference frequency ω0, i.e., δ = ωp − ω0. A system with
optoelectronic feedback is also written by the same feedback function as discussed
here, and the dynamics of such systems will be treated in Chap. 7.
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Chapter 5
Dynamics of Semiconductor Lasers
with Optical Feedback

Optical feedback in semiconductor lasers gives rise to rich varieties of dynamics
and the effects have been extensively studied for the past two decades. Also semi-
conductor lasers with optical feedback are used as chaotic light sources in many
applications discussed in the following chapters. The theoretical background was
discussed in the preceding chapter. In this chapter, substantial feedback effects and
chaotic dynamics in semiconductor lasers are presented and theoretical and experi-
mental results are given. As fundamental characteristics, feedback induced chaos is
investigated for variations of feedback strength and position of the external cavity.
Coherent and incoherent feedback effects are also taken into account in the dynamics.
The external feedback mirror to a semiconductor laser may not be always a simple
reflector (conventional plain mirror) but may be a grating or phase-conjugate mirror.
Instabilities are also induced by such reflectors and the dynamics induced by grating
and phase-conjugate mirrors are presented.

5.1 Optical Feedback from a Conventional Reflector

5.1.1 Optical Feedback Effects

In this section, we discuss the dynamics of chaos in semiconductor lasers with optical
feedback and show various routes to chaos for parameter variations. Figure 5.1 shows
experimental examples of chaotic oscillations in a MQW laser with optical feedback.
Figure 5.1a shows the laser output for a negligible small optical feedback. The excited
relaxation oscillation smoothly decays out after the laser is switched on and we can see
only statistical noise induced by spontaneous emissions (in actual fact, the detector
noise is included in the waveform). With the increase of optical feedback, the laser
shows periodic oscillation in Fig. 5.1b. The scheme corresponds to regimes III to
IV discussed in Sect. 4.1.1. The relaxation oscillation frequency of the laser is about
3 GHz, but higher oscillations above GHz are not observable due to the slow response
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Fig. 5.1 Experimental time series and rf spectra at an injection current of J = 1.5Jth and an
external cavity length of L = 30 cm. a Negligible small feedback, b period-1 oscillation with small
feedback, and c chaotic oscillations with strong feedback

of the oscilloscope in this experiment. Therefore, the observed periodic oscillation
of the peak frequency of 451 MHz corresponds to the excited external mode. The
reflectivity of the external mirror is 1 % in this case. With a further increase of optical
feedback, an irregular oscillation of the laser output power is shown in Fig. 5.1c.
The oscillation corresponds to regime IV and the coherence of the laser is almost
destroyed. Though the fundamental spectral peak of 480 MHz is still visible, the
spectrum spreads out, which is a typical feature of quasi-chaotic or weak chaotic
oscillations. For optical feedback above this level, we could see no clear peaks in the
spectrum and the laser exhibits fully chaotic oscillations.

5.1.2 Potential Model in Feedback-Induced Instability

In Sect. 4.2.4, we derived the linewidth of a semiconductor laser with weak optical
feedback (regimes I–II). The linewidth is reduced according to (4.32) as far as the
optical feedback is small enough. When the feedback is in-phase in regime II, the
laser is well stabilized and the linewidth is much reduced. But, for an out-of-phase
feedback, the linewidth is not reduced any more and the laser shows hopping between
the two oscillation modes arising from the external feedback, according to the rela-
tion ωs − ωth = −κ/τin{α cos(ωsτ) + sin(ωsτ)}. Figure 5.2 shows an example of

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.2 Optical spectra
of a laser with weak exter-
nal feedback in regime II.
a No feedback, b −62 dB in-
phase feedback, and c −62 dB
out-of-phase feedback [after
Tkach and Chraplyvy (1986);
© 1986 IEEE]

(a) (b) (c)

250 MHz

optical spectra in regime II (Tkach and Chraplyvy 1986). By a small in-phase optical
feedback, the linewidth of the laser is greatly reduced as seen from Fig. 5.2a,b. On
the other hand, the laser shows two oscillation modes for a small out-of-phase optical
feedback in Fig. 5.2c. The separation of the two peaks corresponds to the external
cavity frequency.

Mode hopping between two external modes can be explained by a potential model
for the optical feedback system (Lenstra 1991; Tartwijk and Lenstra 1994). In their
model, the hopping is induced by noises and the oscillation is kicked out from one of
the potential wells among the possible external modes and falls in another state. To
derive the potential model to explain the mode hopping, let us consider the difference
between the present and the delayed phases Δφ(t) = φ(t) − φ(t − τ). Assuming
that the delay is very small and expanding the delayed phase by the delay time τ , the
difference can be expressed as

Δφ(t) = φ(t)− φ(t − τ)

≈ φ(t)−
{

φ(t)− τ
dφ(t)

dt
+ 1

2
τ 2 d2φ(t)

dt2

}

≈ τ
dφ(t)

dt
− 1

2
τ

dΔφ(t)

dt
(5.1)

Here, we used the relation d2φ(t)/dt2 ≈ {dφ(t)/dt−dφ(t−τ)/dt}τ=dΔφ(t)/dt/τ .
Assuming the steady-state solutions except for the phase and taking into conside-
ration (4.6) and (5.1), one obtains the relation

dφ(t)

dt
= 1

τ
Δφ(t)+ 1

2

dΔφ(t)

dt
= − κ

τin

√

1+α2sin{θ0 +Δφ(t)} + Fφ(t) (5.2)

where Fφ is the Langevin noise function for the phase and θ0 = ωsτ + tan−1α. Then
the equation of the potential function of the phase difference can be written as

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.3 Variations of frequency calculated from the potential model under the condition of J =
1.84Jth and L = 60 cm. Left: time series of frequency, right: potential. The optical feedback is
−45.7 dB. Lower trace is for a relative phase of θ0 = 0 (in-phase), middle trace θ0 = 1.4, and upper
trace θ0 = π (out-of-phase) [after Mørk and Tromborg (1990); © 1990 IEE]

dΔφ(t)

dt
= −2

τ
Δφ(t)− 2

κ

τin

√

1+α2sin{θ0 +Δφ(t)} + 2Fφ(t)

= − 1

τ

d

dΔφ
[Δφ2(t)− 2Ccos{θ0 +Δφ(t)}] + 2Fφ(t) (5.3)

Considering the term U (Δφ(t)) = Δφ2(t) − 2Ccos{θ0 + Δφ(t)} as a potential
function and interpreting that a particle moves with the coordinateΔφ in the potential,
one obtains the equation for the time development of the phase difference in the
potential as

dΔφ(t)

dt
= − 1

τ

d

dΔφ
U (Δφ(t))+ 2Fφ(t) (5.4)

From this equation, the statistical behaviors of mode hopping can be simulated.
Figure 5.3 is an example of numerical simulations based on the potential model for
a small optical feedback of −45.7 dB (Mørk et al. 1990). The right figure shows
the plots of the potential for different phase values of θ0. For the in-phase case, the
state is trapped to a deep potential well, so that the laser stays stable and oscillates
almost at a single frequency. Thus, the laser has a narrow oscillation linewidth. On
the other hand, two states compete with each other for the out-of-phase case and the
probability for the dwelling time in each state becomes the same. Thus, the laser
frequency frequently switches between the two states due to noise. A mode hop to
a neighboring mode occurs when the noise takes the phase delay beyond one of the
potential barriers confining the mode. The barriers for the central mode in the lower
potential are higher than the barrier separating the two modes in the upper potential.
Since higher barriers are harder to pass, this explains the large difference in mode
hopping rates.



5.1 Optical Feedback from a Conventional Reflector 107

5.1.3 Optical Spectrum in Stable and Unstable Feedback Regimes

For a feedback parameter C less than unity at regime I, only one solution ωτ exists
for the phase condition, yielding a linewidth narrowing or broadening depending on
the phase ωsτ . For the condition C > 1 at regime II, multiple solutions exist for the
phase condition and it turns out that the emission frequency locks to the solution with
the lowest phase noise. At this feedback, mode hopping may occur between modes
with a similar amount of phase noise. Especially, for a phase change θ0 = π , two
solutions exist with just the same linewidth, yielding strong mode hopping between
these two modes as already discussed in the previous subsection. With increasing
feedback level at regime III, the frequency splitting of the hopping modes converges
to the frequency separation between the external cavity modes and the feedback
phase ωsτ for these modes converges the phase θ0 = 2mπ . Therefore, at this range
of feedback, the laser will lock more and more to the feedback phase adjusted for
minimum linewidth and mode hopping disappears. A certain saturation in linewidth
reduction is obtained for a larger feedback level above −50 dB.

With further increase of the feedback in regime IV, the frequency fluctuations
dramatically increase, yielding a tremendous linewidth broadening, which is charac-
teristic for the coherence collapse regime. Figure 5.4 shows experimentally obtained
optical spectra at feedback regimes III–IV (Tkach and Chraplyvy 1986). The laser
first destabilized with the relaxation oscillation for the increase in the feedback frac-
tion, as shown in Fig. 5.4a. Then the laser evolves into quasi-periodic oscillations
with several spectral peaks in Fig. 5.4b. Finally, the laser shows chaotic oscillation
and the linewidth of the spectrum is greatly broadened by the optical feedback. In
a sense of laser oscillation, the laser is coherence collapsed and the linewidth is as
much as 100 GHz in Fig. 5.4c. However, the laser may be still a single mode in a
sense of longitudinal laser oscillation observed such as an optical spectrum analyzer
with a resolution of nanometers. The range of each regime strongly depends on the
condition of the laser operations, such as laser device structure, bias injection current,
and feedback length. However, each regime is clearly identified under the different
conditions of the laser operations.

In a summary, Fig. 5.5 shows the experimental and theoretical results for spectral
narrowing and broadening in the presence of optical feedback in semiconductor lasers
(Schunk and Petermann 1988). Spectral linewidth is plotted as a function of feedback
fraction. The experiments were conducted for various phase values ofω0τ (whereω0
is the oscillation frequency of the laser and it is very close toωth). The roman numbers
denote the feedback regimes discussed in Sect. 4.1. The dashed line is the linewidth
of the solitary laser. The solid curve is the expected minimum linewidth calculated
from the theoretical equation in (4.32) under the assumption of an in-phase condition.
The theory well agrees with the experiments at regimes I and II. However, it deviates
from the experiments in regime III and complete spectral broadening is observed in
regime IV, where the theoretical Eq. (4.32) cannot be applied. For moderate optical
feedback in regimes III and IV, it is difficult to obtain analytical forms to describe
the dynamics of semiconductor lasers with optical feedback. In usual, the laser has

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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(a) (b) (c)

25 GHz

Fig. 5.4 Unstable optical spectra in regimes III–IV. a Periodic state with relaxation oscillation at
optical feedback of approximately −40 dB, b quasi-periodic oscillations at approximately −30 dB,
and chaotic state at −20 dB [after Tkach and Chraplyvy (1986); © 1986 IEEE]

a rather broad spectral linewidth of several tens of MHz at solitary oscillation. By
optical feedback, the linewidth is greatly reduced to 100 kHz at regime III (narrowing
of 1/1000 of the original spectral linewidth). This situation is easily understood from
analysis for the relative intensity noise (RIN) of the laser output. The RIN abruptly
increases at the external feedback level of 10−4. The RIN here is obtained as an
average over the frequency range of 5–500 MHz (Schunk and Petermann 1988). In
a strong optical feedback regime V, the linewidth is again strongly narrowed and the
spectral narrowing by strong optical feedback will be discussed in Chap. 10.

5.1.4 Chaos in Semiconductor Lasers with Optical Feedback

Next, we numerically investigate routes to chaos for the optical feedback level. Here,
we used parameter values of AlGaAs MQW semiconductor lasers of a Channeled
Substrate Planer (CSP) type as shown in Table 5.1 (Liu et al. 1995). The values
listed in Table 5.1 are typical for semiconductor lasers with visible line; however,
other MQW semiconductor lasers of different oscillation lines, such as near-infrared
semiconductor lasers used for optical communications, have similar parameter values
as those in Table 5.1 (Shibasaki et al. 2006). Figure 5.6 shows the result of dynamic
behaviors of the laser output power at a fixed bias injection current and an external
mirror position for the variations of the feedback level. The Langevin noises are
excluded in the calculations in order to see the pure dynamics produced by the
nonlinear equations. The left row in the figure is time series, the middle row is its
attractor, and the right row is the power spectrum. For a small optical feedback, the
laser output power is constant. For the external feedback level of 0.5 % (2.5 × 10−5

http://dx.doi.org/10.1007/978-3-642-30147-6_10
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cavity length of L = 50 cm for various ω0τ . The roman numbers denote the feedback regimes.
Dashed line: linewidth of the solitary laser, solid curve: linewidth of the external cavity laser
according to (4.32) at an in-phase optical feedback [after Schunk and Petermann (1988); © 1988
IEEE]

in intensity) shown in Fig. 5.6a, the laser becomes unstable and exhibits a period-1
oscillation. The main frequency of the oscillation is 2.53 GHz and it is very close
to the relaxation oscillation frequency of 2.50 GHz at the solitary mode. When the
feedback level is raised at 1.0 %, a period-2 oscillation appears as shown in Fig. 5.6b.
Figure 5.6c shows a chaotic oscillation at the feedback level of 2.0 %. When the laser
output power shows periodic oscillations, we can see clear spectral peaks, however,
at the chaotic state, clear spectral peaks are not observable but the optical spectrum
is broadened around the relaxation oscillation frequency.

A chaotic attractor is a trajectory in the phase space of chaotic variables and is
frequently used of the analysis of chaotic oscillations (see Appendix A.2). Since

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Table 5.1 Some parameter values for a narrow-stripe edge-emitting semiconductor laser (GaAs-
GaAlAs780 nm wavelength)

Symbol Parameter Value

Gn gain coefficient 7.00 × 10−13m3s−1

α linewidth enhancement factor 3.00
r0 facet reflectivity 0.565
nth carrier density at threshold 2.02 × 1024m−3

n0 carrier density at transparency 1.40 × 1024m−3

τs lifetime of carrier 2.04 ns
τph lifetime of photon 1.93 ps
τin round trip time in laser cavity 8.00 ps
V volume of active region 1.2 × 10−16 m3

ε gain saturation coefficient 8.4 × 103 s−1

the laser output power at a stable oscillation is constant, the attractor (not shown
here) is a fixed point in the phase space of the output power and the carrier density.
A period-1 signal, as is the case in Fig. 5.6a, is a closed loop. The attractor of a
period-2 oscillation is a double-loop as shown in Fig. 5.6b. However, the chaotic
attractor behaves in a rather different way from fixed state or periodic oscillations.
At chaotic oscillations, the state goes around points within the closed compact space
in the attractor; however, it never visits the same point in the space. The trajectory
crosses in the attractor in Fig. 5.6c, since it is a projection onto only two-dimensional
space. In actual fact, the chaotic trajectory goes around in a multi-dimensional phase
space and never crosses in such a space (Mørk and Tromborg 1990; Ye et al. 1993;
Li et al. 1993). A chaotic attractor is quite different from other periodic oscilla-
tions and looks very strange. Therefore, it is sometimes called a strange attractor
(Appendix A.2).

5.1.5 Chaotic Bifurcations

The plot of a bifurcation diagram is used to investigate chaotic evolutions for the
change of a certain parameter (see Appendix A.1). A bifurcation diagram is obtained
from a time series by sampling and plotting local peaks and valleys of the waveform
for a parameter change. Figure 5.7 shows such an instance. The vertical axis is the
local peaks and valleys of the waveform. The horizontal axis is the parameter of the
optical feedback level. In Fig. 5.7a the laser is stable for an external feedback of less
than 0.35 %. The state is called a fixed point. Above this value, a relaxation oscillation
appears in the laser output and the diagram has two points corresponding to the peaks
and valleys of the period-1 oscillation. When the feedback level exceeds the value
of 0.94 %, a period-2 oscillation starts and the output has four states of peaks and
valleys. For a further increase of the feedback, the laser evolves into quasi-periodic
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Fig. 5.7 Calculated chaotic bifurcation diagrams at a bias injection current of J = 1.3Jth. The
external cavity length of a L = 9 cm (period-doubling bifurcation) and b L = 15 cm (quasi-periodic
bifurcation)

states and finally chaotic oscillations over the feedback level of 1.36 %. The chaotic
laser oscillates at the mixed frequencies of the internal and external modes and the
relaxation oscillation mode. The evolution such as shown in Fig. 5.7a is called a
period-doubling bifurcation or a Hopf bifurcation (the Hopf bifurcation actually has
a rigid definition for chaotic evolutions and the example shown here may not be
an exact Hopf bifurcation). A test for Hopf bifurcation is frequently used to check
chaotic routes and evolutions of the output in nonlinear systems for variations of
chaotic parameters (Appendix A.1).

Hopf bifurcation is not the only chaotic evolution but various routes to chaos exist
in nonlinear systems. Figure 5.7b is another example. The external cavity length
is different from that in Fig. 5.7a, but the other parameters are the same. In this
figure, the fixed point evolves into period-1 oscillations; however, the laser becomes
quasi-periodic and chaotic states occur immediately after period-1 oscillations for the
increase of the feedback parameter. The oscillation is called a quasi-periodic bifurca-
tion to distinguish it from a Hopf bifurcation. Another route is an intermittent route
to chaos, which is known as low-frequency fluctuations (LFFs) in semiconductor
lasers (Mørk et al. 1988; Fischer et al. 1996). The occurrence and dynamics of LFFs
will be treated in Sect. 5.3. Chaotic bifurcations highly depend on chaos parameters
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in nonlinear systems (Helms and Petermann 1990; Ritter and Haug 1993a,b; Levine
et al. 1995).

We ignored Langevin noises in the numerical calculations to investigate the pure
dynamics involved in the nonlinear system. In the presence of noises, chaotic dynam-
ics are barely affected as long as the effect of spontaneous emission is small. In such
a case, the maxima and minima of the output in the fixed and periodic states in the
bifurcation have finite widths. Thus, the overall features of chaotic dynamics are
unchanged by noises. However, spontaneous emission of light plays a crucial role
for the dynamics when the photon number in the cavity is small (Yu 1999). In actual
experimental situations, it is not easy to obtain a bifurcation diagram for a waveform
with high frequency fluctuations such as in a semiconductor laser, since we require a
very high-speed digitizing oscilloscope to fully reconstruct the diagram from the time
series. One of the characteristic frequencies of chaotic oscillations in semiconductor
lasers with optical feedback is the relaxation oscillation frequency. It usually ranges
form several GHz to 10 GHz depending on the device parameters and the driving
condition. Instead, to analyze chaotic oscillations (oscillations for the relaxation and
external-cavity modes) in semiconductor lasers with optical feedback, a rf spectrum
analyzer or a Faby-Perot spectrum analyzer is frequently used in experiments.

5.1.6 Dynamics for Injection Current Variations

The laser output power of semiconductor lasers at solitary oscillations is linearly
proportional to the bias injection current. A typical feature of optical feedback in
semiconductor lasers is the threshold reduction, which is related to the gain reduction
as discussed in Sect. 4.2.3 (Hegarty et al. 1998). Figure 5.8 shows an example of light-
injection current (L–I) characteristics experimentally obtained in a semiconductor
laser with and without optical feedback. The solid curve is the L–I characteristics for
the solitary oscillation and the other curves are with optical feedback. The reductions
of the threshold current are about 30 % in this case. The angular frequency of the
laser oscillation at solitary oscillation is a function of the bias injection current and
is written as (Petermann 1988)

ω0 = ωc − ∂ω0

∂ J
J (5.5)

where ωc is the offset angular frequency and ∂ω0/∂ J is the conversion coefficient
of the injection current to the angular frequency. Due to the change of the frequency
for the increase or decrease of the injection current, the successive external modes
are sequentially selected. Then, mode hops occur at certain bias injection currents.
This induces instabilities in semiconductor lasers and chaotic oscillations in the laser
output power are observed in between the mode jumps.

Figure 5.9a shows an example of output power jumps numerically calculated
from the rate equations for the increase of the injection current. The conditions

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.8 Experimentally
obtained light-injection cur-
rent (L–I) characteristics of
semiconductor lasers with
optical feedback. Solid line:
solitary oscillation, dotted
line: external cavity length
of L = 15 cm, broken line:
external cavity length of
L = 150 cm
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of the calculations correspond to regime III discussed in Sect. 4.1.1. Figure 5.9b is
the bifurcation diagram for Fig. 5.9a. A chaotic scenario between successive jumps
is observed. At the position after a mode jump, the laser oscillates with period-1,
the laser becomes unstable with the increase of the injection current, and, finally, it
evolves into chaotic states. The frequency of the period-1 oscillation is almost equal
to the relaxation oscillation frequency. The averaged output power is proportional
to the injection current, however, periodic power jumps are observed in the output
power with a period equal to the increment of the injection current corresponding to
the frequency of the external mode (Fukuchi et al. 1999). The conversion coefficient
∂ν0/∂ J is of the order of GHz/mA in ordinary narrow-stripe edge-emitting semi-
conductor lasers (Petermann 1988). The jump of the output power originates from
the external mode alternation, namely, one external mode switches to the next at the
jump position. Therefore, for example, a mode hop occurs about every 1 mA for the
increment of the bias injection current at an external cavity length of 15 cm. With a
further increase of the external optical feedback in regime IV, the laser output power
becomes completely unstable and no jump is observable in the L–I characteristic as
shown in Fig. 5.9c. In the corresponding bifurcation diagram in Fig. 5.9d, the laser
output shows only chaotic oscillations throughout the range in the bias injection cur-
rent. In an actual situation, the laser output power has a hysteresis with increase or
decrease of the injection current. In this numerical simulation, the output power is
essentially calculated as a step response, so that the result of the laser output power
in Fig. 5.9a corresponds to that for the upward change of the injection current.

Figure 5.10 shows the example of mode jumps obtained from experiments
(Fukuchi et al. 1999). In Fig. 5.10a, clear mode jumps occur in the L–I charac-
teristic. Figure 5.10b shows optical spectra observed by a Fabry-Perot spectrometer
at the injection currents marked in Fig. 5.10a. At point ‘a’ followed by a mode jump,
the laser oscillation stays stable. With an increase of the injection current at ‘d’, the
relaxation oscillation increases. After that, the laser shows quasi-periodic oscillations
with mixed frequencies of the relaxation and external modes, and then unstable oscil-
lations before returning to a stable oscillation at ‘h.’ A similar process is repeated as
the injection current increases. The measured relaxation oscillation frequency (for

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.9 Numerically calculated laser output powers and chaotic bifurcations for injection current
at the external cavity length of L = 15 cm. a L–I characteristic at an external reflectivity of r = 0.01.
b Chaotic bifurcation diagram corresponding to a. c L–I characteristic at an external reflectivity of
r = 0.02. d Chaotic bifurcation diagram corresponding to c. c and d are coherence collapse states

example in spectrum ‘d’) is 4.5 GHz. Since the external mode frequency (5.0 GHz)
is close to the relaxation oscillation frequency in this case, it is not easy to distin-
guish the external modes with the relaxation oscillation in the spectra. However,
the difference between periodic and quasi-periodic oscillations is clear in the figure.
The result well coincides with the numerical simulations in Fig. 5.9. For a further
increase of the optical feedback, no jump is observed in the L–I characteristic. No
distinct peak is observable by a Fabry-Perot spectrometer and the coherence of the
laser is completely destroyed. As shown in Fig. 5.10a, the laser output power has a
hysteresis for increase or decrease of the injection current.

Finally, we briefly refer to the effect of coherence induced by optical feedback
in semiconductor lasers. Normally, the spectral linewidth of a semiconductor laser
without any stabilization is much broadened due to a finite value of the αparameter
compared to other lasers, such as gas lasers. The linewidth of a semiconductor
laser with solitary oscillation ranges from several MHz to several tens of MHz.
In this case, the averaged coherence length of the laser is over several meters. On the
other hand, the linewidth of a semiconductor laser in the presence optical feedback is
further broadened over several to several tens of GHz, even if the laser is assumed to
be oscillated at single longitudinal mode. When a laser is oscillated at quasi-periodic
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Fig. 5.10 Experimentally obtained L–I characteristic and optical spectra at an external cavity length
of L = 3 cm and an external reflectivity of r2 = 0.03. a Output power versus injection current.
b Optical spectra corresponding to the marked position in a

or weak chaotic states by optical feedback, the time-averaged coherence is main-
tained around several tens of centimeters. However, the time-averaged coherence is
much reduced to less than several centimeters for strong chaotic oscillations or low-
frequency fluctuation (LFF) states. The degree of the time-averaged coherence is
easily obtained from observation of the visibility for the laser output by employing a
Michelson interferometer. Figure 5.11 is an example of experimental observations of
visibility curves in Michelson interferometer (Lenstra et al. 1985). For the increase of
optical feedback, the coherence length becomes small. The spectral linewidths cal-
culated from the observation are 11 GHz (corresponding coherence length of 2.0 cm)
and 15 GHz (coherence length of 2.7 cm) for Figs. 5.11a,b, respectively. In Fig. 5.11b,
the second spectral peak (4.4 GHz) corresponds to the laser relaxation oscillation of
the laser. Thus, the large degradation of the averaged coherence due to chaotic oscil-
lations induced by optical feedback must be taken into account.
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Fig. 5.11 Experimentally
observed visibility curve for
the arm length difference
of a Michelson interferom-
eter. Feedback strengths are
a κ/τin = 5.6 [ns−1] and
b κ/τin = 2.4 [ns−1]. The
external cavity length is
L = 80 cm and the injec-
tion current is J = 1.51Jth
[after Lenstra et al. (1985); ©
1985 IEEE]
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5.2 Dependence of Chaotic Dynamics on the External
Mirror Position

5.2.1 Periodic Stability Enhancement for Variations
of the External Cavity Length

We discuss here the dependence of chaotic dynamics on the external cavity length in
semiconductor lasers. We consider the case where the change of the external cavity
length is much larger than the internal laser cavity length (∼cm) and investigate
the stability and instability for the change. Assuming a small external feedback and
satisfying the conditions ω2

R � (κ/τin)
2,−κR/τin, the characteristic Eq. (4.21) is

approximated by

D(γ ) = γ 3 + 2

{

−R + κK

τin
cos(ωsτ)

}

γ 2 + ω2
Rγ

+ κKω2
R

τin
{cos(ωsτ)− αsin(ωsτ)} (5.6)

Assuming γ = iω and substituting it into (5.6), the boundary condition for stable
and unstable oscillations is calculated. From the real part of the equation, we obtain

− αsin(ωsτ)+
{

1 − 2

(
ω

ωR

)2
}

cos(ωsτ) = −
(
ω
ωR

)2

R
κ
τin

sin2
(
ωτ
2

) (5.7)

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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From the condition for the imaginary part together with the above equation, the
boundary condition is given by (Tromborg et al. 1984)

ω2 − ω2
R = −2Rω cot(

ωτ

2
) (5.8)

To investigate the stability and instability dependence, we must numerically solve
the condition for τ from (5.8), but we can conjecture from the above equation that
the critical point changes periodically for the external cavity length. The round trip
time τ corresponding to this period is written by

τ = 2

ω

[

cot−1
{

− 1

2Rω
(ω2 − ω2

R)

}

+ mπ

]

(5.9)

From (5.8),ω = ωR is the solution for the periodic boundary and the condition is also
given by ωRτ = 2mπ (m is an integer). Namely, the boundary changes periodically
for the external cavity length satisfied as L = mc/2νR (νR is the relaxation oscillation
frequency). Again, the relaxation oscillation frequency plays an important role for
the stability and instability of the laser systems.

From the graphical relation between ω and τ in (5.9), we can numerically obtain
the solution for the resonance of the laser oscillations (Tromborg et al. 1984; Mørk
et al. 1992; Murakami et al. 1997). The intersections of the graph ω = ωR along the
round trip time τ are the points where constructive interference is achieved and the
stability of the laser for the external reflectivity is much enhanced at these points.
In the graph, the intersections crossing at ω/ωR = 1 are the values of τ where the
boundary of the stability enhancement occurs. We obtain periodic solutions for the
intersections and the separation between the successive solutions is exactly equal to
the time corresponding to the frequency of the relaxation oscillation. This period-
icity is also calculated from the direct numerical simulation for the rate equations.
A periodic enhancement of stability for the laser oscillation can be observed for
the change of the external mirror position of the order of centimeters. Figure 5.12a
shows the numerical result of the phase diagram of stable and unstable oscillations
for the external mirror position and the optical feedback level (Murakami et al. 1997;
Murakami 1999). The diagram is numerically obtained for ω0τ = 0 in the rate equa-
tions in (4.8) and it does not include the effects of a small mirror variation compatible
with the optical wavelength. In the figure, “periodic state” within chaotic oscillations
denotes the periodic windows frequently observed in chaotic bifurcations.

With the increase of optical feedback at a fixed external cavity length, the laser
also becomes unstable at a rather larger external feedback level and fixed point of the
laser oscillation evolves into the period-1 state after crossing the boundary. At the
external cavity lengths satisfying the condition L = mc/2νR, the laser constructively
couples with the external cavity and a larger fraction of feedback light is required to
destabilize it. The stable area greatly expands at this location, but the laser rapidly
turns out to be unstable after the feedback exceeds the critical point. This corresponds
to the quasi-periodic bifurcations of chaos that are shown in Fig. 5.7b. At other

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.12 a Phase diagram of chaotic oscillations for external mirror position and optical feedback
level at a bias injection current of J = 1.3Jth. Fixed: fixed state, P1: period-1 oscillation, P2:
period-2 oscillation, QP: quasi-periodic oscillation. b Excited relaxation oscillation at boundary
between fixed and period-1 states. The relaxation oscillation frequency at free running state which
is shown as a straight line is 3.25 GHz

mirror locations, the laser easily becomes unstable and rapidly evolves into chaotic
states with a small amount of external feedback. The laser evolves rather slowly
into unstable and chaotic states for the increase of the external reflectivity at these
locations. We can see clear period-doubling bifurcations of the laser oscillations in
the mirror position at the bottom of the periodic enhancement. This corresponds to the
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Hopf bifurcations shown in Fig. 5.7a. The excited relaxation oscillation at the critical
point also changes periodically for the external cavity length as shown in Fig. 5.12b.
The relaxation oscillation decreases with the increase of the external cavity length.
Then, it jumps up at the stability peak and repeats the same process for the increase
of the external cavity length.

Also, periodic stability enhancement can be observable for the change of the
bias injection current, which is dependent on the optical feedback level. From the
stability-enhancement condition of ωRτ = 2mπ derived from (5.9) together with
equation of (3.73), we obtain the condition of periodic stability enhancement for the
bias injection current as

τ

2π

√

Gn

ed
(J − Jth) = m (5.10)

Then, the periodicity can be found for the square root of the bias injection cur-
rent (

√
J/Jth − 1 ∝ m) at a fixed round trip time of τ . Figure 5.13 is the result

of numerical simulations for chaotic bifurcation boundaries in the phase space of
the bias injection current and the optical feedback level at a fixed external mir-
ror position of L = 15.0 cm. Each curve denotes the boundary of the oscillation
states. In the figure, the first, second, and third peaks of the stabilities can be read
as

√
J/Jth − 1 = 0.48,

√
J/Jth − 1 = 0.95, and

√
J/Jth − 1 = 1.40, respectively,

and, thus, the relation in (5.10) approximately holds. As discussed in this subsection,
stability and instability of chaotic oscillations in optical feedback systems in semi-
conductor lasers are strongly dependent on external cavity length, optical feedback
level, and bias injection current. Therefore, we must carefully choose these parame-
ter sets from a viewpoint of chaos generations in semiconductor lasers with optical
feedback. The periodic feature of the stability enhancement was also confirmed by
experiments (Ye and Ohtsubo 1998). The origin of the phenomena is also presented
in the next subsection.

5.2.2 Origin of Periodic Stability Enhancement

The periodic stability enhancement for the change of the external cavity length
observed in the previous subsection is explained by competitions of linear modes
derived from the linear stability analysis for the rate equations (Murakami and Oht-
subo 1998). Figure 5.14 shows mode transition around the third stability peak at the
external cavity length of L = 14.0 cm with the external reflectivity of 0.7 % corre-
sponding to Fig. 5.12a. In Fig. 5.14a at L = 13.75 cm, mode A is the highest mode
and the real part of the mode has a positive value. Then, the oscillation becomes
unstable at mode A and this mode plays role in the relaxation oscillation mode.
Figure 5.14b is the mode distribution at L = 14.0 cm where the stability of the laser
oscillation is locally much enhanced. The reflectivity of 0.7 % is selected as slightly
less than the feedback level for unstable oscillations. Two modes A and B are com-
peting and the real part of mode A becomes negative. Then, the laser output stays at

http://dx.doi.org/10.1007/978-3-642-30147-6_3


5.2 Dependence of Chaotic Dynamics on the External Mirror Position 121

Fig. 5.13 Phase diagram
of chaotic oscillations for
bias injection current and
optical feedback level at
an external cavity length
of L = 15 cm. S: stable
state, P: periodic oscillation,
Q: quasi-periodic oscillation,
C: chaotic oscillation. Each
curve represents the boundary
of oscillation
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a stable fixed state and the relaxation oscillation mode is not excited. Figure 5.14c
is the mode distribution at the position of the external mirror of L = 14.25 cm. The
highest mode switched from A to B and the laser again shows unstable oscillations
at mode B. From these results, the stability enhancement along the external cavity
length is explained by the mode competition between linear modes near the relax-
ation oscillation frequency. Once two modes have positive values of their real parts
for a larger external optical feedback, the two modes become unstable simultane-
ously. Thus, the laser is rapidly destabilized and shows chaotic oscillations above the
fraction of external feedback. On the other hand, at and around the stability bottoms
in Fig. 5.12a, there is only one mode near the relaxation oscillation frequency and
the laser shows typical period-doubling bifurcation to chaos.

For a longer external cavity length, the laser is less stabilized with a small fraction
of optical feedback as seen from Fig. 5.12a. Usually, a semiconductor laser without
any special control for stabilization has a spectral bandwidth of several to several tens
of MHz and the coherence is in the order of meters. The optical feedback phenomena
from a distant reflector longer than the laser coherence are attributed to the incoherent
effect. The rate equations for the two variables of the photon number and the carrier
density are enough to describe such phenomena. However, the effects of coherence
both for coherent and incoherent feedback are included in the rate equations in
(4.5)–(4.7), and we can still use them for numerical calculation of the dynamics in
incoherent feedback.

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.14 Competition of two modes related to resonance frequency at r = 0.05 and J = 1.5Jth
for variations of the external cavity length. a L = 13.75 cm, b L = 14.0 cm at the stability peak,
and c L = 14.25 cm

5.2.3 Effects of Linewidth Enhancement Factor

The linewidth enhancement factor α of semiconductor lasers plays an important role
in the laser dynamics and the laser instability is greatly enhanced for larger value of
the linewidth enhancement factor. In this section, we investigate the dependence of
onset of chaos on the linewidth enhancement factor in the presence of optical feedback
to semiconductor lasers. For that purpose, we first consider a transfer function from
the modulation current to the modulated optical power in a semiconductor laser.
Assuming a long external cavity limit (the length of the external mirror is much
larger than c/2νR), the small-signal transfer function like general control systems
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can be defined by

HK (iω) = {1 − K (iω)} H(iω)

1 − K (iω)H(iω)
(5.11)

where H(iω) corresponds to the normalized transfer function of the semiconductor
laser without optical feedback (K (iω) = 0) and is given by (Helms and Petermann
1990)

H(iω) = 1
(

i ω
ωR

)2 + i ω
ωd

+ 1
(5.12)

Here,ωR = 2πνR is the resonance angular frequency andωd = −ω2
R/R [R being

the damping coefficient defined in (3.70)]. The relationωd > ωR (ωR > −R) holds
and H(iω) takes its maximum at ω ≈ ωR. As a result, a resonance peak at ω = ωR
appears forωR/ωd � 1. The function HK (iω) is derived for the minimum linewidth
mode, since this is the most stable external cavity mode. Also weak feedback and a
linewidth enhancement factor α > 1 are assumed to derive this equation. Then, the
feedback term K (iω) is given by

K (iω) = i
kc

√
1 + α2

ω
{1 − exp(−iωτ)} (5.13)

with the round trip delay τ of the external cavity and the feedback rate kc = κ/τin.
At a certain feedback level, the transfer function (5.12) exhibits an unstable pole.

The existence of such a pole does not necessarily mean that a coherence collapse
occurs, since the coherence collapse is described by a very complicated dynamic
process. However, the minimum feedback level at which an unstable pole occurs,
actually corresponds to the onset of the coherence collapse. A pole in HK (iω)
occurs for

K (iω)H(iω) = 1 (5.14)

A long external cavity is assumed here, so that K (iω) gets maximum for
exp(iωτ) = 1 in (5.13), where ωτ is an odd multiple of π . Using ω ≈ ωR and
the condition in (5.14), the critical feedback coefficient kc,critical reads

kc,critical = ω2
R

2ωd

1√
1 + α2

= 1

2

R√
1 + α2

(5.15)

Noted that the kc,critical is derived from the assumption for a large number of the
linewidth enhancement factor. Therefore, (5.15) is only valid for α > 1. To deduce
the expression applicable to a small value of the linewidth enhancement factor,
we employ a following empirical approximation applicable for a large value of the
linewidth enhancement factor (α2 � 1) (Helms and Petermann 1990):

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 5.15 Critical feedback strength for linewidth enhancement factor. Solid line: numerically
determined critical feedback strength, dashed line: theoretical prediction from (5.15), dash-dotted
line: theoretical prediction from (5.17) [after Helms and Petermann (1990); © 1990 IEEE]

1√
1 + α2

≈
√

1 + α2

α2 (5.16)

Using this relation with (5.15), the critical feedback coefficient is expressed as

kc,critical = R

2

√
1 + α2

α2 (5.17)

For the feedback parameter of a Fabry-Perot laser in (4.4), the critical feedback level
where the semiconductor laser starts to show unstable oscillations is given by

rcritical = 2
Rτ

2
in

√
1 + α2

4α2 1−r2
0

r0

(5.18)

Figure 5.15 is the plot of the critical feedback strength for the linewidth enhancement
factor. The solid line shows the numerically calculated critical feedback strength.
While the dashed line is the theoretical prediction obtained from (5.15) and the dash-
dotted line is the one from (5.17). Equation (5.17) well represents the critical feedback
strength for the linewidth enhancement factor, where the unstable laser oscillation
starts. This tolerable feedback level increases with the increasing damping of the
relaxation oscillations.

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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5.2.4 Sensitivity of the Optical Phase

We showed the dependence of the dynamics in semiconductor lasers with optical
feedback on the external mirror position in the previous section. The dynamics is
strongly dependent on the position of the external mirror not only for the long range
of the mirror displacement in the order of centimeter to meter, but also for short vari-
ation of the external mirror comparable with optical wavelength. When the length of
the external mirror L is short enough and it is less than the internal cavity length ηl
(effective cavity length), the mode separation of the internal cavity becomes shorter
than that of the external cavity. Then, one of the successive internal modes is sequen-
tially selected by the continuous small change of the external mirror position. When
the mode hops, a noise known as mode-hop noise is induced and the laser perfor-
mance is much deteriorated. In this regime, the coupling between the internal and
external cavity is strong, though the laser output power shows a periodic variation
with a period of the half wavelength of λ/2. The laser under this condition is usually
stable and rarely shows chaotic oscillations. When the external mirror is located at a
length longer than the internal cavity length but it is within the length corresponding
to the frequency of the relaxation oscillation, i.e., ηl < L < c/2νR, the laser is still
stable as far as the external feedback stays small. However, for a larger feedback level,
the laser shows instabilities and it evolves into chaotic states for a further increase
of optical feedback. For L > c/2νR but within the coherence length of the laser
oscillation, the laser becomes less stable at a smaller feedback level and it is easily
destabilized by optical feedback. As will be discussed in the following, the laser
output shows chaotic dynamics for a small variation of the external mirror position
compatible with optical wavelength λ. Namely, the laser has a phase sensitivity to
the change of the external cavity length (Lang and Kobayashi 1980; Osmundsen and
Gade 1983; Arimoto and Ojima 1984; Kakiuchida and Ohtsubo 1994).

Figure 5.16 schematically shows the dependence of the optical output for the
increase of external optical feedback when the external mirror is positioned at several
centimeters to meters in ordinary semiconductor lasers. As far as the optical feedback
is very small, very smoothly varying undulation is observed as shown in Fig. 5.16a.
With the increase of optical feedback, the amplitude of the modulation grows but
shows asymmetric features in the waveform (see Fig. 5.16b). Then, a further increase
of optical feedback but still at a modest feedback level, sudden jumps of the optical
output appear for the variation of the external mirror position. Also, the waveform
shows hysteresis depending on the upward or downward variation of the mirror
position as shown in Fig. 5.16c (Lang and Kobayashi 1980). The duration of the
periodic cycle of the output power is not always equal to λ/2 but also λ/4, λ/6, and
so on (Kakiuchida and Ohtsubo 1994). When the optical feedback fraction becomes
very large, we can observe such higher order periodic undulations in the optical
output. For further increase of optical feedback, the laser oscillations of bistablity
and multi-stabilities evolve into irregular chaotic oscillations. Periodic oscillations,
which is an interference effect between the internal- and external-cavity fields before
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Fig. 5.16 Schematic plot
of the dependence of output
power for a change of external
mirror position compatible
with optical wavelength.
a Small feedback with sinu-
soidal oscillation, b moderate
feedback with asymmetric
oscillation, and c strong feed-
back with hysteresis
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the onset of chaos in semiconductor lasers with optical feedback can be applied for
interferometric measurements. We will return to the subject and demonstrate some
applications based on the phenomena in Chap. 11.

5.2.5 Chaotic Dynamics for a Small Change of the External
Cavity Length

In Sect. 5.2.1, we assumed a fixed phase of ω0τ = 0 and obtained the dependence of
the dynamics on the external mirror length for a range of the order of centimeters to
meters. We here consider the effects for a small change of the external mirror position,
i.e., ω0τ is not zero and the change of the external mirror position is compatible with
the optical wavelength. The semiconductor laser is very sensitive to a small change
of the external mirror position and the output power varies periodically with length
corresponding to half of the optical wavelength. In actual fact, not only periodic
oscillations of the laser output power but also chaotic instabilities are observed within
such a short variation. When the fraction of optical feedback is small enough, the
laser output shows smooth periodic undulations for a change of the external mirror
position as discussed in the previous subsection. Various methods for metrological
applications (for example, micro-vibration measurement of surfaces compatible with
optical wavelength) have been proposed based on the periodic change of the laser
output power (Donati et al. 1995). These techniques are only applicable for the
external feedback fraction in the regimes from II to III discussed in Sect. 4.1.1. On
the other hand, smooth undulations are no longer observed in regimes III and IV
and, instead, chaotic oscillation appears for the change of the external mirror length
(Ikuma and Ohtsubo 1998). We show various routes to chaos for such small changes
of the external mirror position in the following and also compare the theory with
experiments.

Figure 5.17 shows the dynamics of the laser output power numerically calculated
for the small change of the external mirror position (Ikuma and Ohtsubo 1998). The
wavelength of the laser used isλ = 780 nm, so that the period of undulations is half of
the wavelength, λ/2 = 390 nm. The left column is the variation of the averaged laser

http://dx.doi.org/10.1007/978-3-642-30147-6_11
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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output power. The right column is the bifurcation diagram corresponding to the left.
When the external feedback is small (Fig. 5.17a), the laser output power smoothly
changes for the increase of the external mirror length with a period of λ/2. The
laser stably oscillates at a fixed point even though it shows small periodic undulation
for the change of the external mirror position (Fig. 5.17a right). For larger optical
feedback, the laser output power periodically changes with a period of λ/2, however
it shows sudden drops and irregular fluctuations (Fig. 5.17b–d). Chaotic bifurcations
are clearly visible at larger optical feedback. For example, at the external mirror
length around 4.2000 cm in Fig. 5.17d, the laser output power is stable and it oscillates
at a single mode. As the the external cavity length increases, it suddenly becomes
unstable and shows chaotic oscillations. With further increase of the external cavity
length, it reduces from the quasi-periodic state to periodic oscillation and finally
reaches the stable state. This process repeats with the period equal to λ/2. In actual
fact, there exists a hysteresis of the laser output power for upward and downward
changes of the external mirror position. The power drops observed in Fig. 5.17d,e
originate from this instability. The waveforms are the time-averaged signals. Hence,
the time-resolved signals at a certain external mirror position show fast irregular
oscillations with a typical frequency of the relaxation oscillation as is the case for
chaos in semiconductor lasers with optical feedback, as has already been discussed.
The maximum Lyapunov exponent is frequently used to help the understanding of the
dynamic behaviors of nonlinear systems (Appendix A.2). The maximum Lyapunov
exponent has a positive value in chaotic regions, while it has zero or negative value
in periodic and stable oscillations. At the point where the Lyapunov exponent has a
value of less than zero, the laser output power becomes fixed states (single straight
line) in the bifurcation diagram. Indeed, the maximum Lyapunov exponent is positive
for the chaotic region in Fig. 5.17, while it is negative for stable states (Ikuma and
Ohtsubo 1998).

The optical spectrum at stable oscillation in Fig. 5.17a is completely a single mode,
though the optical frequency changes with the variation of the optical output power.
On the other hand, the coherence of the laser is destroyed due to chaotic oscillations
and the laser has several broadened spectral peaks mixed with the relaxation oscil-
lation and external cavity modes (coherence collapse state). We can experimentally
observe the evidence of chaotic bifurcations from the laser output power by using a
Fabry-Perot spectrometer. Figure 5.18 shows an example of optical spectra obtained
by a Fabry-Perot spectrometer for the small change of the mirror position. The exter-
nal cavity length is increased from bottom to top in this figure. The unstable state
(weak chaotic or quasi-periodic oscillation) reduces to periodic oscillation and once
stable state, then it again becomes unstable oscillations with a period equal to half
of the wavelength.

We assume a single internal mode oscillation for a semiconductor laser in the
above discussion. However, for large external feedback reflectivity, a semiconductor
laser sometimes oscillates with multimode. In such a case, we observe periodic
undulations with periods not only of λ/2 but also λ/4, λ/6, and so on, for a small
change of the external cavity length. Which period emerges in the laser output power
variations depends on the absolute external mirror position from the laser facet. For a
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Fig. 5.17 Numerical results of averaged laser output power (left) and bifurcation diagram (right)
for a small change of external mirror position at L = 4.2000 cm and the bias injection current at
J = 1.3Jth

long range variation of the external cavity length equal to the order of ∼mm or more,
there also exists a periodic change of the laser output power with a period equal to the
effective internal cavity length when the laser oscillates with multimode (Murakami
1999). At moderate optical feedback, when only a single external mode contributes
to the laser oscillation (which occurs at integer multiples of the internal cavity length
mηl with integer number m), an undulation with period λ/2 is observed. When two
external modes play an important role for the laser oscillation at the external mirror
position of (m + 1/2)ηl, an undulation with a period of λ/4 is observed. Further,
at the external mirror position of (m + 1/3)ηl and (m + 2/3)ηl, an undulation with
a period of λ/6 appears. Similarly, higher order periodic undulations are observed
depending on the external mirror position and the excited internal modes. Even in a
higher order periodic undulation, there exist chaotic bifurcations within that period.
Those effects are well demonstrated by the numerical simulation of the multimode
laser rate equations and can be compared with experimental results (Kakiuchida and
Ohtsubo 1994).
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Fig. 5.18 Experimentally
observed optical spectra
obtained by a Fabry-Perot
spectrometer for small change
of external mirror position
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5.3 Low-Frequency Fluctuations

5.3.1 Low-Frequency Fluctuation Phenomena

Periodic and quasi-periodic bifurcations are typical routes to chaos in nonlinear
systems. However, these are not only the chaotic routes. Folding and stretching
variables in the projection process in nonlinear systems, and various possibilities for
chaotic routes are generated. Other than periodic and quasi-periodic bifurcations, one
of the well-known routes is the intermittent route to chaos (Risch and Voumard 1977;
Fujiwara et al. 1981; Temkin et al. 1986; Sano 1994). Low-frequency fluctuation
(LFF) is one of chaotic oscillation known as the intermittent chaos of saddle node
instability also observed in semiconductor lasers with optical feedback. To study
LFFs is very important from the viewpoint of practical applications, since LFFs
induce much noise in the laser output power. A typical feature of LFFs is a sudden
power dropout with a following gradual power recovery. LFFs occur irregularly in
time depending on the system parameters and the frequency of LFFs is usually of the
order of MHz to a hundred MHz. Since the frequency of LFFs is much lower than
ordinary chaotic fluctuations related to the relaxation oscillations, the phenomena
are called low-frequency fluctuations. When waveforms of LFFs are observed by a
fast digital oscilloscope, they seem to be continuous signals. However, it is proved
that LFF has very fast time structures within the waveform and it consists of a
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series of fast pulses on the order of pico-second. Indeed, this fast pulsation has been
experimentally observed by using a streak camera (Fischer et al. 1996). Though LFFs
were first recognized as sudden power dropouts with low frequency in the early days
and this was the origin of the name of the phenomena, LFFs have quite different
features from the ordinary chaotic behaviors and show a rich variety of dynamics. In
the following, we show various dynamics of the phenomena and discuss the origin
of LFFs.

LFFs are first observed in the output power above but close to the laser thresh-
old. However, LFFs are phenomena induced by saddle node instability in nonlinear
systems, therefore they are also observable in laser oscillations well above the thresh-
old under appropriate conditions of the parameters when the system has saddle node
unstable periodic orbits (Pan et al. 1997). LFFs are also observed by injection current
modulation and optical injection from a different laser when the laser is subjected to
optical feedback (Takiguchi et al. 1998). Various models for the origin of LFFs have
been proposed. One of them is the model that LFF is the instability driven by noise
in the nonlinear laser system (Tromborg et al. 1997; Eguia et al. 1998; Mørk et al.
1999). Other ones are explained by competitions between modes in a multimode
model of the laser (Hegarty et al. 1998), and the crisis between two attractors (van
Tartwijk et al. 1995). However, LFFs have been experimentally observed in a single
mode laser with optical feedback and they have also been proved to appear in a
single mode model by numerical simulations without noise effects. Therefore, LFFs
are the deterministic chaos induced by saddle node instability with time-inverted
type-II intermittency in semiconductor lasers with optical feedback (Sacher et al.
1989, 1992).

Figure 5.19a is an example of typical LFF waveforms obtained by experiment
(Fischer et al. 1996). This is a low-pass filtered waveform and a higher component
over nano-second oscillations is not observable. The typical features of LFFs are fre-
quent power dropouts after stationary output and subsequent gradual power recovery
processes as shown in the figure. When the laser is operated close to the threshold,
the output power breaks down even below the threshold at the solitary operation. The
frequency strongly depends on the conditions of the laser parameters and the external
mirror. The power dropouts occur irregularly and their average frequency is about
5 MHz in this case, hence low-frequency fluctuations. Figure 5.19b shows a time-
resolved waveform of LFFs observed by a high-speed streak camera. The waveform
consists of a pulse train with an average period of 300 ps. Figure 5.20a is a one-shot
of LFFs. To show the power recovery process clearly, one-shot of LFFs is averaged
and plotted in Fig. 5.20b. Stepwise power recovery is clearly visible in the figure.
In actual fact, relaxation oscillations are included at the onset of each jump in the
power recovery, although it is averaged out in this figure. The time duration of each
step in the power recovery is equal to the round trip time of light in the external loop.
LFFs tend to appear in the laser output when the external cavity length is sufficiently
long and the external feedback is large enough (Takiguchi et al. 1999). Under such
conditions, saddle node instabilities are easily induced in the system and many exter-
nal and anti-modes are generated. As will be discussed later, LFFs are explained as
chaotic itinerary among these modes. On the other hand, LFFs are rarely observed for
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Fig. 5.19 Low-frequency
fluctuations in semiconductor
lasers with optical feedback
at J = 1.03Jth. a Detected
by a slow response detector.
b Observed by a fast streak
camera. Delay time is τ =
3.6 ns [after Fischer et al.
(1996); © 1996 APS]
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short external cavity length with small optical feedback, since the oscillation modes
are sparsely distributed in the phase space. From these results, LFF, which is first
recognized as fluctuations of the laser output with a low frequency, is composed of
three components of time scales. One is a component of a low-frequency fluctuation
with a period around MHz; the second is a component related to the external cavity
length; the third is a high frequency component with a period of pico-seconds. In the
following, several characteristics of LFFs and their origin are described.

5.3.2 Low-Frequency Fluctuation Characteristics

One typical chaotic evolution is an intermittent route to chaos and low frequency fluc-
tuations (LFFs) are frequently observed as such chaotic oscillations in semiconductor
lasers. Feedback-induced LFFs in semiconductor lasers depend on the bias injection
current, the external cavity length, and the feedback level. As a general trend, the
frequency of LFFs linearly increases with the increase of the bias injection current.
The frequency of LFFs is about several to several tens of MHz when the external
mirror is positioned around 10–100 cm. On the other hand, the frequency is less than
MHz for a longer external cavity length over 1 m (but the mirror is still positioned
within coherence length of the laser). The linear relation between the frequency and
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Fig. 5.20 a Single shot of
LFFs and b one-shot of LFFs
averaged over 3000 events.
The external cavity length and
the bias injection current are
L = 8.10 m and J = 1.07Jth.
The external reflectivity is
r2 = 0.12

the bias injection current is also held in this case. The frequency of LFFs linearly
decreases for the increase of the external reflectivity at the bias injection current well
above the threshold, however it stays almost constant for the bias injection current
close to the threshold (Takiguchi 2002).

LFFs were initially observed near the solitary laser threshold. However, it was
later proved that LFFs occur everywhere along the boundary between the optical
feedback regimes of IV and V discussed in Sect. 4.1.1. Figure 5.21a shows the dia-
gram of the possible area for the occurrence of LFFs obtained by experiment (Pan
et al. 1997). Due to the low internal reflectivity of the front facet of semiconduc-
tor lasers, LFFs are observed not only for low injection current close to the laser
threshold, but also for a higher injection current. The laser threshold is reduced by
the external feedback as discussed, but, under certain conditions of the laser para-
meters, the slope efficiency decreases and the laser power becomes lower than that
of the solitary laser at a higher injection current (see Fig. 5.8). In such cases, LFFs
occur at a high injection current and the laser power shows not dropouts but jumpups
in LFFs as shown in Fig. 5.21b. Thus, LFFs are universal phenomena observed in
semiconductor lasers with optical feedback and they are a typical feature of saddle
node instabilities involved in nonlinear systems. When LFFs occur, the laser usually
oscillates at multimode and a single mode operation of the laser is not always an
appropriate model to describe it. However, we can observe LFFs at a single mode
operation of the laser as mentioned before (Heil et al. 1998). For example, when a
semiconductor laser with optical feedback is operated by selecting a single mode
from a grating mirror feedback, we can still observe LFFs under this condition. Fur-
thermore, LFFs are reproduced by the numerical simulation in the laser output power
with a single mode model for the rate equations (Sano 1994). LFFs are also simulated
at a multimode operation of the laser. In the multimode case, switching of the output
power among the modes occurs and the total power shows LFF waveforms, which
is the same as those of ordinary chaotic oscillations.

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.21 a LFF regions between regimes IV and V at L = 60 cm. The horizontal axis is the
injection current and the vertical axis is the ratio of the feedback light. Symbols denote experimental
results and solid lines theoretical results. b Time series of LFFs for bias injection currents of
J = 1.20Jth, 1.34Jth, 1.48Jth, 1.66Jth, and 2.08Jth from bottom to top at κτ/τin = 240 [after Pan
et al. (1997); © 1997 OSA]

5.3.3 Origin of Low-Frequency Fluctuations

LFFs are explained by saddle node and intermittent instability involved in the non-
linear system of semiconductor lasers with optical feedback. LFFs occur not only
by self-optical feedback but also by optical injection from a different laser. Another
example of the occurrence of LFFs is an injection current modulation in the presence
of optical feedback and, indeed, the laser also shows LFFs by the injection current
modulation. However, we focus on the discussion for the origin of LFFs induced by
optical feedback. The same or a similar explanation is also applicable for other cases.
Phenomena of LFFs are generally explained by employing the model that the laser
output power hops around external- and anti-modes of the laser oscillations due to
unstable saddle node instability generated by the optical feedback (Sano 1994).

We start the discussion for the external- and anti-modes in the phase space of the
oscillation frequency and the carrier density. In semiconductor lasers with optical
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Fig. 5.22 a External- and
anti-modes in the phase space
of frequency and carrier
density. Only lower half of
the ellipsoid of the mode
distribution is shown in the
graph. b Corresponding LFF
waveform to a
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feedback, we obtain the steady-state solutions from (4.10) and (4.11) as

Δωτ = −κτ
τin

√

1 + α2sin(ωsτ + tan−1α) (5.19)

Δn = − 2κ

τinGn
cos(ωsτ) (5.20)

where Δω = ωs − ωth and Δn = ns − nth. Figure 5.22a shows about lower half
the distribution of the modes in the phase space ofΔω−Δn calculated from (5.19)
and (5.20). This corresponds to the case for a long external cavity length with a high
level of external feedback. Therefore, the modes are densely distributed. For the case
of short external cavity length with a low external feedback, the mode distribution
will be sparse. The laser oscillates at one of the stable modes (lower half modes on
the ellipsoid). The modes of the upper half on the ellipsoid are unstable and they are
not generally stable lasing modes. The black dot at the center of the ellipsoid is the
mode of the solitary oscillation. The laser without optical feedback oscillates at this
single mode. Among the modes in Fig. 5.22a, the most possible mode of the laser
oscillation in the presence of optical feedback is the maximum gain mode. However,
the laser does not always oscillate at this mode. Folding and stretching the variables
induced by nonlinear characteristics in the system due to small fluctuations, the laser
may be suddenly trapped to a spiky orbit with a large amplitude oscillation.

At first, we think that the laser initially oscillates around the maximum gain mode
and the state of the laser oscillation fluctuates near this mode with small amplitude.

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.23 Calculated chaotic
itinerary in the phase space
of phase and carrier density
at J = 1.01Jth, L = 30 cm,
and r = 0.1. Symbol × is the
solitary mode
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In actual fact, this is not the fixed stable mode. Once, the state reaches a point very
close to the counterpart anti-mode and, then, the laser may be trapped in the anti-
mode. The phase remains unchanged, but the carrier density abruptly jumps up to
the value of the solitary oscillation. The sudden jump of the carrier density induces
the increase of the phase and the laser shows a sudden power dropout. At this state, the
laser output power is almost equal to the free running oscillation. This corresponds
to a sudden power dropout of LFF. After that, the laser is trapped by one of the
external modes close to the solitary oscillation mode. Then, the state goes around
the successive external modes toward the maximum gain mode. This corresponds
to the power recovery process of LFF. When the laser reaches the maximum gain
mode, the above process is repeated. The occurrence of LFFs is not periodic but
irregular, since the fluctuations exist in the chaotic itinerary due to the nonlinear
effects. For example, when the chaotic oscillation has a large amplitude in the power
recovery process, the laser may be trapped in the associate anti-mode and a power
dropout may occur even before reaching the maximum gain mode. Another case
is a reversion of the power recovery and the state goes up against the direction for
the maximum gain mode. The corresponding LFF waveform to Fig. 5.22a is also
shown in Fig. 5.22b. Figure 5.23 shows a numerically calculated chaotic itinerary of
the laser output power in the phase space of Δω − Δn under a LFF regime. The
figure corresponds to almost two cycles of LFFs.

As has already been mentioned, LFFs have three time scales of fluctuations. The
first one is a fast pulse-like oscillation of the order of several tens of pico-seconds.
When the laser is oscillated close to one of the external modes, the carrier density
changes with large amplitude and it reaches the associated anti-mode, while the phase
stays almost constant. This corresponds to a series of fast pulsations. The time scale
depends on the fluctuations of the carrier number in the active layer. The second is the
transition time between the successive external modes in the stepwise time recovery
process. The time is related to the external cavity length and, for example, it is of the
order of nanoseconds for the external cavity length of several tens of centimeters.
The third time scale is the duration time of power dropout events. This time scale is
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usually of the order of microseconds, but the period is not fixed, as has already been
discussed. We have assumed the steady-state condition to calculate the external- and
anti-modes in Fig. 5.22. However, the occurrence of LFFs is of dynamic nature, so
that the discussion developed here may not be applicable for such dynamic states in
the strict sense. Nonetheless, the approach can explain the overall feature of the LFF
dynamics, because chaos itself is generated from small perturbations to the initial
state of the laser oscillations.

Finally, we will show a return map of the LFF characteristics to demonstrate
typical folding and stretching process in the nonlinear system (Mørk et al. 1999).
The relation between the present field and the previous field before time τ can
be calculated from (4.2). Reducing the delay differential equations into difference
equations, we obtain the relation by Fourier transforming the difference equation.
The relation between the Fourier components Ên(ω) and Ên−1(ω) is given by

Ên(ω) =
κ
τin

exp(−iωτ)Ên−1(ω)+ F̂E (ω)

iω − 1
2 (1 − iα)Gn(n − nth)

(5.21)

The equation includes the Langevin noise component F̂E (ω), although it is not
essential. Calculating the square modulus of (5.21) and converting to the form for
the intensity, we obtain a return map for delay time τ . The result is shown in Fig. 5.24.
Dots in the figure are the modes of laser oscillations. The modes along the line are
stable external modes and the modes below the line are anti-modes. The state of the
laser oscillations goes up from small to large intensity and the intensity breaks down
to a level close to the threshold. The chain of dots shows the nonlinear nature of
the system. The qualitative explanation can be given by this model. To reproduce
the irregular occurrence of LFFs, the Langevin term is introduced in the model.
When the noise term is not included, LFFs occur periodically with an exact period.
Therefore, it may not reflect real oscillations of LFFs, since the equation is derived
from the simplification of the discrete sampling for the rate equations. On the other
hand, periodic LFFs are experimentally observed for a strong coupling of light with
a short external cavity length (Heil et al. 2001).

5.4 Chaotic Dynamics in Short External Cavity Limit

5.4.1 Stable and Unstable Conditions in Short External Cavity

Most investigations of the dynamics of semiconductor lasers subject to delayed opti-
cal feedback have been focused on the so-called long external cavity regime, in which
the external cavity length is larger than the corresponding frequency of the relaxation
oscillation frequency νR . However, in many practical applications in engineering, for
example, optical fiber communications or optical storage systems, the typical external

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.24 Calculated return-map for LFFs at the feedback level of κ = 0.15 and injection current
of J = 1.0Jth. The arrows with numbering illustrate how the map is traversed starting from the
steady-state point. Notice that the switching at 4 can take place for any value of the photon number
in the range where three solutions exist. The inset shows a schematic of the full map, which is not
accessible in the calculations or in experiments [after Mørk et al. (1999); © 1999 Elsevier]

cavity is only a few centimeters long. In Sect. 5.2.1, we observed the periodicity of
the stability enhancement for the variations of external cavity length. The first period
of the stability is almost equal to the length calculated from the relaxation oscilla-
tion frequency. Namely, within this optical feedback length, the semiconductor laser
becomes stable and shows robustness for the feedback. In the following section, we
discuss the dynamics and stability of semiconductor lasers from short external cavity.
As a measure of stability and instability in semiconductor lasers, we have already
introduced the C parameter. The C parameter includes the round trip time τ and the
time is proportional to the external cavity length as τ = 2L/c. The laser is stable
for external optical feedback as far as C < 1, namely the short cavity limit. The
C parameter is also proportional to the feedback strength κ as (4.13), so that even
for a feedback from a short cavity, the laser is not always stable and the stability
strongly depends on the external feedback strength. To begin the discussion of the
short cavity limit, we first consider the boundary for the stability and instability in
the phase space of the feedback time τ and the feedback fraction r .

Here, the condition for the short external cavity in a semiconductor laser is
τνR < 1. Even under a small cavity condition, the laser shows unstable oscilla-
tions when the external optical feedback is strong enough. In other word, the laser
always has unstable solutions of the oscillation for τνR > 1. Schunk and Peter-
mann (1989) theoretically predicted that there is an external cavity length below
which coherence collapse should not be observed. Figure 5.25 shows the boundary
condition below which coherence collapse should not be observed. The boundary
is obtained from numerically solving the rate equations in the presence of optical
feedback in a semiconductor laser. The relaxation oscillation and α parameter of the
laser are assumed to be νR = 4.4 GHz and α = 6, respectively. The shaded part is

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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the area where unstable laser oscillations are observable. The laser does not always
show unstable oscillations in all of this area, but mixed states with stable and unstable
oscillations are observable depending on the parameter conditions. For comparison,
the boundary of the stable condition for the C parameter (C ∝ rτ ) is shown as a
broken line. A semiconductor laser should be always stable for C < 1. As is seen
from the figure, the line C = 1 is not at all suitable for the criterion of the boundary
between the stable and unstable regimes in the strict sense.

5.4.2 Regular Pulse Package Oscillations in Short
External Cavity

The stability of a semiconductor laser is greatly enhanced for a short external cavity
limit, as has been already pointed out. In this limit, the laser tends to oscillate at
a LFF regime rather than irregular fast chaotic oscillations. Furthermore, the laser
becomes very sensitive to the optical phase due to the strong coupling between the
internal and external cavities. Heil et al. (2001) experimentally and theoretically
investigated the dynamics of a semiconductor laser with short external cavity. As
a typical feature of the dynamics, the laser showed a regular pulse package with
a frequency of several hundreds of MHz like a LFF oscillation and each package
contained about 10 pulses with a period corresponding to the external cavity length.
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The frequency of regular pulse package is considerably higher than a frequency with
long external cavity (∼10MHz or less).

Figure 5.26 shows the results of the dynamic characteristics in a semiconductor
laser with optical feedback from a short external cavity. Figure 5.26a,b are the exper-
imental results of observed spectra. In Fig. 5.26a, the laser shows a regular pulse
package of an LFF frequency of 390 MHz. The pulse package is very regular and
the trajectory variations from pulse package to pulse packages are very small. Also,
the spectral peak for the external cavity of 4.5 GHz, which corresponds to the short
external cavity length of 3.3 cm, is seen. The inset is the direct waveform observed
by a digital oscilloscope, but the waveform is smeared out due to the resolution of
a digitizer (the bandwidth of 4.5 GHz). The regular pulsating oscillations with fully
modulated waveform were confirmed by the observation from a streak camera and
each pulse width was observed to be around 10 ps. In Fig. 5.26b, the LFF frequency
is 1.195 GHz, which is quite fast, compared to the case of a long external cavity
feedback. Only the LFF frequency is shown in the figure, since the external cavity
frequency is 14 GHz (corresponding to the external cavity length of 1.1 cm) and the
spectral peak is outside the scope of this plot. Under regular pulse package emis-
sion, the lasers operate on several longitudinal oscillation modes, which is similar
to ordinary LFFs with long external cavity. In all cases of external cavity length
in semiconductor lasers, the dynamics is sensitive to optical phase compatible to
the optical wavelength. However, strong phase sensitivity is observed in the case of
short external cavity optical feedback. In this experiment, the regular pulse package
occurs only over a certain phase interval for the ranges of 1.3Jth < J < 1.5Jth. For
J > 1.5Jth, the regular pulse package is present for all feedback phase.

Figure 5.26c is the simulation results for regular pulse package oscillations based
on the laser rate equations. The threshold reduction due to the optical feedback is
11 %. It is noted that the laser intensity is plotted against time normalized to the
photon life time τph. Figure 5.26d shows the trajectory of chaotic oscillations. In the
phase space, the location of external modes is indicated by circles and the anti-modes
by crosses. The temporal evolution occurs clockwise and the numbers in the figure
provide a one-to-one correspondence of time series and phase space portrait. The
LFF itinerary for one cycle is similar to that of a long external cavity. One of the
remarkable characteristics is that the trajectory always visits the same external cavity
modes and the laser shows regular pulses.

Increasing the length of the external cavity, the transition from regular pulse
package dynamics to LFF dynamics occurs roughly at νR ≥ νex (νex being external
cavity frequency); the short time scale dynamics become irregular and are dominated
by relaxation oscillations. We find remarkable common features in the dynamics
of regular pulse package and LFF. In both cases, low-frequency phenomena are
present, which correspond to a directed global trajectory along several attractor ruins,
resulting in fast intensity pulsations underlying the low-frequency envelope. In the
LFF, the trajectory usually backtracks irregularly, and visits different attractor ruins,
whereas the trajectory in regular pulse package evolves in a regular way within a well-
defined looped channel always along the same series of attractor ruins. Considering
the complicated phase space structure of a delay system, this is remarkable and
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Fig. 5.26 Experimentally observed rf spectra and intensity time series for a L = 3.3 cm and
J = 1.08Jth corresponding to νR = 1.1 GHz, and b L = 1.1 cm and J = 1.80Jth correspond-
ing to νR = 3.8 GHz. c Numerical calculation of regular pulse package state and d trajectory
plotted on the normalized inversion n and phase difference φ(t − τ) − φ(t) plane. The parame-
ters used in the simulations are J = 1.15Jth (corresponding relaxation oscillation frequency of
νR = 3.42 GHz), L = 1.79 cm, 1/τph = 5.86 × 1011 s−1, κ/τin = 7.91 × 1010 s−1, τ/τph = 70,
and τs/τph ∼ 1710 [after Heil et al. (2001); © 2001 APS]

Table 5.2 Classification of semiconductor laser with moderate optical feedback: short cavity
regime versus long cavity regime

Short cavity Long cavity

Waveform Regular pulse package Low-frequency fluctuation
Frequency relation νex > νR νex < νR

Number of modes in phase space Small (∼10) Large (∼100)
Phase sensitivity Qualitative changes Little qualitative changes
Dynamics on short time scales Regular fast pulses (ν = νex) Irregular fast pulses (νave ≈ νR)

indicates a global orbit underlying to the regular pulse package dynamics. For certain
parameter sets, regular states have also been observed in the long cavity regime.
However, in the long cavity regime, the fast time scales are dominated by relaxation
oscillations, whereas the fast time scales in the short cavity regime are dominated
by the external cavity roundtrip frequency. The merging of attractor ruins to a global
orbit appears to be a basic phenomenon series expansion of the delay terms in the
optical feedback model.

The LFF envelope frequency in the short cavity limit has the dependence of the
bias injection current (Heil et al. 2003a). The LFF frequency has a linear relation
to the bias injection current and the frequency increases with the increase of the
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bias injection current. In addition, the linear dependence is independent of the cavity
length. The trends are similar to the case of LFFs in long external cavity regimes.
The linear relation is remarkable, in spite of the fact that the solitary relaxation
oscillation frequency shows a square root scaling with νR ∝ √

J − Jth. The relation
is also well reproduced by numerical simulations using the rate equations with short
cavity external optical feedback. Thus, the regular pulse package envelope frequency
cannot be simply associated with the relaxation oscillation frequency. In addition, the
frequency is significantly smaller than the relaxation oscillation frequency. The linear
scaling and the slow time scales of the regular pulse package envelope frequency
already indicate that not the solitary laser characteristics, but rather the structure of
the phase space and the corresponding unstable manifolds govern the dynamics of
the pulse package. The main differences between long and short cavity limits are
summarized in Table 5.2.

5.4.3 Bifurcations of Regular Pulse Package

Regular pulse package in a short cavity is induced by the wandering among the
external modes and anti-modes, which is quite similar to the occurrence of LFFs
in a long external cavity. In both cases, low frequency phenomena are present con-
nected with a global trajectory along several attractor ruins, and producing pulses
when visiting each of them. The transition from regular pulse package to LFF occurs
when the delay becomes larger than the relaxation oscillation period. What makes reg-
ular pulse package distinct from LFF is the sensitivity to phase of the back-reflected
light. Tabaka et al. (2004) investigated the dynamics and bifurcation scenarios of reg-
ular pulse packages in the short external regimes. With increased feedback strength in
the short optical feedback regime, regular pulse package may undergo a period- doub-
ling bifurcation cascade. On the bifurcation cascade, they found chaotic coexistent
states with a time-periodic solution that originates from a newly born external cavity
mode. The external cavity modes exhibit supercritical Hopf bifurcations. From these
supercritical Hopf bifurcations emerge branches of time-periodic solutions. They
found that the largest region of regular pulse package occurs for delays around half
of the relaxation oscillation period of the solitary laser.

Figure 5.27 shows the plot of the point representing the detected regular pulse
package dynamics, including regular pulse package of higher order periods (up to
period of 10), to obtain representative picture of the regions of the regular pulse
package dynamics (Tabaka et al. 2004). The map reveals that regular pulse package
dynamics appears for intermediate levels of feedback strength and at delays smaller
than the relaxation oscillation period τR/τph = 170 (where τR is the laser relaxation-
oscillation time). This is in agreement with previous observations by Heil et al.
(2001), in which they suggest that regular pulse package disappears when the delay
approaches the relaxation oscillation period and then the transition to LFF takes place.
Moreover, in Fig. 5.27, one finds that the largest region of regular pulse package
is for delays around half of the relaxation oscillation period. For smaller delays,
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small windows of regular pulse package are very well identified in Fig. 5.27. For
changing phase of the back-reflected light, the structure of this part of the map may
be significantly altered. When the phase changes by ±π the windows of regular pulse
package shift in such a way that they fit the space in the map, where regular pulse
package was not previously present. This phase sensitivity is illustrated in the inset
of Fig. 5.27, where the regions of regular pulse package are plotted for two different
phase conditions that differ by π . We observe that changing the phase shifts the
regions of regular pulse package up and down such that regular pulse package may
be found in that interval in the space of the feedback rate and the delay, only if the
proper phase condition is chosen. However, from the map we see that it is only true
for small delays. For delay times larger than half the relaxation oscillation period the
occurrence of regular pulse package dynamics becomes phase insensitive.

5.5 Dynamics in Semiconductor Lasers with Grating
Mirror Feedback

The theoretical background of grating feedback in semiconductor lasers has already
been discussed in Sect. 4.3. Grating feedback is frequently used to select a cer-
tain mode among the possible oscillation lines and to stabilize the oscillation of a
semiconductor laser. However, even in a semiconductor laser with grating feedback,
instabilities are also observed for a certain range of the feedback level and experi-
mental configurations, since the feedback is the introduction of an additional degree
of freedom. The general purpose of grating mirror feedback is the stabilization of
semiconductor lasers and a few studies have reported on instability and chaos in
semiconductor lasers with grating feedback (Zorabedian et al. 1987; Binder et al.
1990; Detoma et al. 2005). These are the results for conventional feedback from

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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plain grating mirrors. While the effects of grating optical feedback from fiber Bragg
grating and volume holographic grating were reported (Naumenko et al. 2003; Ewald
et al. 2005), in which similar dynamic behaviors as those of plain grating mirror were
observed. Here, we focus only on the origin of instability in semiconductor lasers
induced by grating optical feedback. In ordinary grating feedback to stabilize laser
oscillation, the feedback fraction is not so small and (4.36) may not be appropriate to
describe such a system, since we must take into account multiple reflections between
the external grating mirror and the front laser facet. For such a model, the complex
fields for the forward and backward propagations as a multiple reflection must be
used and the matrix transformation technique taking into account the grating mirror
reflection is applied (Pittoni et al. 2001). The method is also effective for the treat-
ment of optical feedback from distributed fiber grating into a semiconductor laser.
However, we currently have few tools for analyzing exactly the dynamic properties
of grating feedback and we require further formulation for grating feedback in semi-
conductor lasers. Here, we discuss instabilities in semiconductor lasers with grating
feedback by introducing a steady-state analysis.

The relation of the output power versus the detuning between laser and grat-
ing mirror frequencies is numerically calculated from (4.36) together with (4.37).
Figure 5.28 shows the results (Binder et al. 1990). When the reflectivity of a grat-
ing mirror is small, the laser output power shows a continuous variation with small
amplitude, since the gain for the laser oscillation smoothly changes. In the figure of
the curve PL, ωG is the angular frequency of the maximum reflection of the grating
mirror given by (4.48). The period of oscillatory power change along the detuning
is related to the wavelength of the laser, the maximum grating frequency, and the
external cavity length. In the calculation, the feedback to the active layer is very
small, since the internal reflectivity of the laser facet is set to be 2 % and the fraction
of grating feedback is as small as 3 %. However, the laser output power shows hys-
teresis, as shown in the curve PH when the grating feedback increases (the internal
reflectivity of the laser facet and the reflectivity of the grating mirror are assumed to
be 0.05 and 13 %, respectively, in this calculation). The bistability of the laser output
power may predict instability of the laser oscillations in grating optical feedback for
the change of the parameters.

The lasing condition for the compound cavity of a semiconductor laser with a
grating mirror is also obtained from (4.37). From the phase condition in (4.43) and
the amplitude condition in (4.45), the gain and the phase of the laser oscillations in
the presence of grating optical feedback are plotted as a function of the frequency
detuning. The results are shown in Fig. 5.29 (Genty et al. 2000). The detuning of
the grating center frequency is νG = ωG/2π and the solitary laser frequency ν0 =
ω0/2π is set to be νG −ν0 = 20 GHz. Due to the presence of grating optical feedback,
the gain (solid line) and the phase (dotted line) show undulations and the cross points
between them are the conditions for possible laser oscillations. The oscillation modes
are discretely distributed and each mode has a different gain. The symbol of an open
triangle shows the grating mode, but the maximum gain mode, which is denoted
by an open rectangle, is different from this mode. Such periodic and skewed gain

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.29 Gain and phase curves as a function of frequency detuning for νG − ν0 = 20 GHz. The
external cavity length is L = 12 cm. The reflectivities of the grating mirror and the internal cavity
are r = 0.25 and r0 = 0.05, respectively. Solid line: gain, dotted line: phase. The symbols are the
possible oscillation modes [after Genty et al. (2000); © 2000 IEEE]

modes will become the origin of instability in semiconductor lasers with grating
optical feedback.

The linewidth of the laser oscillation in the presence of grating feedback is also
calculated from (4.46). Figure 5.30 shows the linewidth for the frequency detuning at
a steady-state oscillation under the same condition as in Fig. 5.29 (Genty et al. 2000).
The original linewidth of the laser oscillation at the solitary mode is 20 MHz. There-
fore, the linewidth of the laser oscillation is much narrowed and the laser is stabilized
for negative detuning with a larger absolute value. Possible stable oscillation modes

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.30 Calculated
linewidth (crossed marks)
as a function of frequency
detuning for variations of
grating orientation. Open cir-
cles are the measured data.
The condition is the same as
in Fig. 5.29 [after Genty et al.
(2000); © 2000 IEEE]
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are discretely distributed along the detuning. Also, oscillation modes denoted by the
vertical lines (crossed marks) are not continuous lines but discretely distributed. Fur-
ther, the crossed marks are not on the vertical lines, but have even a negative slope.
The theoretical calculation is well coincident with the measured data (open circles).
The continuous tuning range for each group is about 20 MHz for the external cavity
length of L = 12 cm. If the external cavity length is reduced to 1 cm, we can expand
the fine tuning range and it becomes 2.5 GHz. When the feedback fraction increases,
the effective detuning increases so as to compensate the increase of the photon num-
ber due to the optical feedback. As a result, the linewidth of the laser oscillation
becomes narrow. For a wide tuning range of the spectral response, we were able to
attain a wide tuning range by the feedback for the wide spectral response of the grat-
ing, although the laser hops around among these oscillation modes and instability is
enhanced by such hoppings. As a result, chaotic oscillation may be encountered in
the dynamics.

5.6 Dynamics in Semiconductor Lasers with Phase-Conjugate
Mirror Feedback

5.6.1 Linear Stability Analysis

A linear stability analysis is applied for semiconductor lasers with optical feedback
from a phase-conjugate mirror. The procedure is the same as that in Sect. 4.2.1. For
simplicity, we first assume a case of zero detuning δ = 0. For small perturbations
of δA, δφ, and δn in (4.50)–(4.52), we obtain differential equations for the pertur-
bations. Assuming the form of the solutions as δx(t) = δx0 exp(γ t) (x = A, φ, n),
the condition for non-trivial solutions of the equations is given by (Murakami et al.
1997)

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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where K1 = 1 − exp(−γ τ), K2 = 1 + exp(−γ τ), 1/τR = −2R, and φs is the
phase defined by (4.55). The other parameters are the same as those in (4.21). Setting
γ = iω the stability condition for phase-conjugate feedback is calculated from the
above equation and given by
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(5.23)

Here, we assume that the feedback is small and the relations ofω2
R � (κ/τin)

2, κ/τinτR

hold.
For conventional optical feedback, ω2 − ω2

R is proportional to cot(ωτ/2) (see
(5.8)), while it is proportional to tan(ωτ/2) in phase-conjugate feedback. Periodic
stability conditions with period τ = 2π/ωR are obtained both for conventional and
phase-conjugate feedback. However, the positions of the external mirror at which
the stability condition is satisfied are located alternately along the time axis of τ .
Figure 5.31a is the calculated result from the rate equations for the boundary between
stable fixed state and period-1 oscillation. The solid line shows the result for the
phase-conjugate feedback, while the broken line is for the conventional feedback
as already shown in Fig. 5.12a. Periodic stability enhancement is observed with a
period equal to the length corresponding to the relaxation oscillation frequency of
the solitary laser, but stability peaks between the cases for phase-conjugate and
conventional mirrors are located alternately with each other. Figure 5.31b shows the
accompanying frequency at which the laser is destabilized, i.e., the frequency excited
at the stability boundary. Closed circles are for phase-conjugate feedback and the
open circles are for conventional optical feedback. The positions of jumps are periodic
and the frequency jumps at the stability peaks. Also, the jump positions between the
cases for phase-conjugate and conventional mirrors are located alternately with each
other.

5.6.2 Dynamics Induced by Phase-Conjugate Feedback

In this section, we briefly remark on the dynamics induced by phase-conjugate feed-
back in the special case of zero detuning δ = 0. Bifurcation diagrams were obtained
for optical feedback from a phase-conjugate mirror (Murakami et al. 1997). When
the reflectivity is small, the laser stays stable and it evolves into periodic oscillations
for the increase of the reflectivity. However, clear period-doubling bifurcation is not

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4


5.6 Dynamics in Semiconductor Lasers with Phase-Conjugate Mirror Feedback 147

r 
[%

]

0 10 20
0

1

2

3

L [cm]

Fr
eq

ue
nc

y 
[G

H
z]

4.0

3.0

0 10 20

(a)

(b)

L [cm]

Fig. 5.31 a Boundary of fixed stable state at the bias injection current of J = 1.3Jth. The solid line
corresponds to the case of phase-conjugate feedback, while the dotted line to optical feedback with
a conventional plain mirror (corresponding to the stable fixed boundary in Fig. 5.12a). b Variations
of excited resonance mode frequency. Black circles are for phase-conjugate feedback and white
ones for conventional mirror feedback

visible and the laser soon evolves into quasi-periodic and chaotic oscillations after
stable fixed state. Furthermore, the laser shows less stable oscillations in the phase-
conjugate feedback compared with conventional optical feedback. Namely, the laser
is easily destabilized by phase-conjugate feedback.

The phase diagram of the chaotic evolutions was calculated and a similar diagram
to Fig. 5.12a was obtained, though the positions of periodic stability peaks were
different from those of conventional optical feedback. The differences of dynamics
between the systems of conventional and phase-conjugate feedback are recognized
from their mode distributions. As discussed in Fig. 4.5, the laser was first destabilized
by the excitation of the relaxation oscillation modes for the increase of the external
reflectivity. The remarkable difference is the distribution of the second modes, which
are excited after the relaxation oscillation mode. For conventional optical feedback,
the laser evolves into unstable oscillations by the excitation of this mode after period-1

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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oscillation. The mode corresponds to the fundamental oscillation of the external
cavity mode and the frequency is approximately calculated as ν = c/2L (L being
the external cavity length). The frequency of the second mode in the case of phase-
conjugate feedback clearly differs from that of conventional optical feedback and
the value of the real part of the solution is much higher than that of conventional
optical feedback. Therefore, the laser is quickly destabilized by the increase of the
phase-conjugate reflectivity (Murakami and Ohtsubo 1998).

The excited second mode frequency in conventional optical feedback is linearly
proportional to the external mode frequency with a slope of unity. However, in the
phase-conjugate case, the excited mode frequency is less than that for the conven-
tional feedback and it shows a periodic undulation for the change of the external
cavity length. The period is also equal to the relaxation oscillation frequency of
the solitary laser (Murakami et al. 1997). Chaotic bifurcations also existed for the
change of the bias injection current in the presence of phase-conjugate feedback
(like in Figs. 5.9 and 5.10). The laser frequency is a function of the bias injection
current and modes generated by phase-conjugate feedback are successively selected
for the increase of the bias injection current. Then, the output power jumps at the
positions of the mode jumps. Also, the positions of jumps in the L–I characteristic in
phase-conjugate feedback occur alternately to those of conventional mirror feedback.

5.6.3 Dynamics in the Presence of Frequency Detuning

In the preceding section, we ignored the frequency detuning between the pump fre-
quency of the four-wave mixing and the laser oscillation to calculate the dynamics of
phase-conjugate feedback. For four-wave mixing phase-conjugate feedback having
frequency detuning, different dynamics from a phase-conjugate mirror with degener-
ate four-wave mixing are observed. In the case of phase-conjugate optical feedback
with zero detuning, the laser evolves from stable state to chaotic oscillations through
a period-doubling like bifurcation. However, different behaviors are observed for the
dynamics of non-degenerate four-wave mixing (Murakami et al. 1997). Though it is
not clear, we can observe period-1 oscillations with very small amplitude in a region
of small phase-conjugate reflectivity. The frequency of the oscillations depends on
the external reflectivity, but it is close to the frequency detuning of 2δ. In the presence
of feedback from a non-degenerate four-wave mixing mirror, the laser first oscillates
at the frequency of the four-wave mixing of ω0 + 2δ. For the increase of the feed-
back reflectivity, the laser oscillation is locked to the pump frequency of ω0 + δ and,
then, the laser evolves into chaotic oscillations with the same frequency as the pump.
Figure 5.32 shows the phase diagram of the oscillation states in the phase space of the
frequency detuning and the phase-conjugate reflectivity. The gray area in the figure
corresponds to stable oscillations with locking state to the laser frequency. Above
the area, the region of chaotic bifurcations locked to the pump frequency exists. We
did not consider the gain saturation effects in the calculations. When we take into
consideration the gain saturation in the rate equations, the detailed dynamics are
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Fig. 5.32 Phase diagram
for frequency locking with
variation of detuning in
the phase-conjugate mirror.
The injection current and the
external cavity length are
J = 1.4Jth and L = 5 cm. P2:
period-2 oscillation, FWM:
four wave mixing
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slightly different from those without the effects, but the fundamental dynamics are
almost the same.

5.6.4 Finite and Slow Response Phase-Conjugate Feedback

Here, we consider a finite or slow response phase-conjugate feedback in semicon-
ductor lasers. For a finite response of a phase-conjugate mirror, the equation for the
complex field has already been given by (4.57). The important parameter of finite
response phase-conjugate feedback is the penetration time tm of light into the phase-
conjugate medium. Depending on this parameter, we observe remarkable shifts of
peaks in the stability enhancement curve such as shown in Fig. 5.31. Figure 5.33
shows the stability diagram for the feedback rate γ = κ/τin and the delay time
τ (unit of 2π/ωR) at three different penetration times (van der Graaf et al. 2001). The
parameter � in the figure is the same definition as the spectral linewidth defined in
the filtered optical feedback in (4.69). For the instantaneous response (tm = 0), the
stability peak enhancements are compatible with those of Fig. 5.31, while the peaks
shift for the increase of the penetration time. Comparing PCF from an instantaneous
response mirror with that from a slow-response mirror, we see that the stability
enhances slightly with increasing tm . This is caused by the mirror induced spec-
tral filtering of the reflected field, suppressing frequencies larger than 1/tm . Similar
behavior was found in the case of conventional optical feedback (Yousefi and Lenstra
1999). More striking is the shifted location of the stability peaks, which, in view of the
time delay in the mirror, resembles a situation of an external round-trip length larger
than in an instantaneous-response mirror. The effective round-trip length enhance-
ment is not sharply defined, which reduces the quality of the resonance for large tm .

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.33 Feedback rate at which the laser changes stability as a function of the cavity round-
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Since the relative importance of this increases when τ gets smaller, this may explain
why the peak at ωRτ/2π = 1/2 is lower for 400 ps than for shorter response times.

When the response time of a phase-conjugate mirror is very large compared with
chaotic variations of semiconductor lasers, the laser behaves completely different
from a laser with fast-response phase-conjugate optical feedback. For slower time
response of phase-conjugate mirrors, the time dependent features in the dynamics
like phase locking phenomenon are lost. For example, the time response of a pho-
torefractive phase conjugate medium, such as a photorefractive crystal of BaTiO3
and LiNbO3, and other photorefractive polymer materials, is very slow compared
with time fluctuations of chaotic semiconductor lasers. Therefore, the grating formed
in a photorefractive crystal can be considered as a static grating. Once the grating
is formed in a photorefractive mirror, the dynamics are only governed by the total
feedback loop of the pump beam. This loop plays the role of an external cavity length.
As a result, the dynamics are completely the same as those for a conventional mirror
feedback except for the generation of a spatial phase-conjugate wave. The dynamics
in such photorefractive phase-conjugate feedback are quite different from those for
a fast-response phase-conjugate mirror. Indeed, the same results as those for con-
ventional optical feedback have been experimentally obtained for a slow-response
phase-conjugate mirror using a BaTiO3 crystal (Murakami and Ohtsubo 1999). How-
ever, a photorefractive mirror with slow time response may be a good medium as a
feedback reflector for positive use of optical feedback effects, since it functions as
an automatical feedback reflector without any adjustment for optical components in
the systems. The reflection fraction of the feedback beam can be easily controlled
by changing the pump ratio for phase-conjugation.
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5.7 Dynamics of Incoherent Optical Feedback

For incoherent optical feedback in semiconductor lasers, the dynamics can be
described by only two rate equations for the photon number and the carrier den-
sity. The feedback effect is included in the field equation for coherent feedback,
while it appears as a modulation to carrier density for the case of incoherent optical
feedback. The nonlinearity of the system is much enhanced by the delay differential
term in the carrier density equation induced by incoherent optical feedback. Thus,
instability and chaos can be observed in such a system. The dynamics of semiconduc-
tor lasers with incoherent optical feedback is investigated by using the rate equations
in (4.58) and (4.59). Instabilities of semiconductor lasers with incoherent feedback
have been studied by Otsuka and Chern (1991) and Ishiyama (1999). They carried
out numerical simulations for incoherent optical feedback in semiconductor lasers
and found sustained pulsations in the laser output. Even without optical feedback
in a semiconductor laser, damping oscillation due to relaxation oscillation arises in
the laser output. When there is incoherent feedback in a semiconductor laser, the
damping oscillation is memorized and then fed back to the laser. The carrier density
is intensely modulated by the feedback light, since the feedback is to the carrier den-
sity and the laser produces modulated output. The returned light further modulates
the carrier density. When the growth rate of pulsations by the positive feedback bal-
ances with the damping forces induced by the relaxation oscillation, the laser shows
sustained pulsating oscillations.

Figure 5.34 is a numerical example of pulsating oscillations of the output power
in a semiconductor laser with incoherent optical feedback (Otsuka and Chern 1991).
Changing the bias injection current, the relaxation oscillation frequency increases
and, as a result, both the pulsating frequency and the amplitude of pulses increase.
In this simulation, the feedback strength and the feedback time are assumed to be
κ ′ = 0.4 and τ = 0.1τs , respectively. Regular pulsing is not always observed for
all the parameter ranges of the bias injection current and the coupling strength. The
region of unstable and pulsating oscillations is calculated in the phase space of the
bias injection current and the feedback strength. The phase diagram in Fig. 5.34b is
obtained from the linear stability analysis for the rate equations. At a certain feedback
strength, the laser shows stable oscillation close to the laser threshold. It evolves into
period-1 oscillation (regular pulsing) at the threshold wth,2. With the increase of
the bias injection current, the pulsing frequency increases and the pulse amplitude
grows. However, with further increase of the bias injection current, the damping rate
of the relaxation oscillation decreases and the decay rate of the carrier density also
decreases. This suppresses the sustained pulsation in the laser output. Above a certain
bias injection current (wth,3), the feedback-induced modulation is damped out within
the delay time and finally the instability vanishes. Since the occurrence of sustained
pulsating oscillations is related to the relaxation oscillation, the bias injection current
for the threshold wth,3 at which the regular pulsing diminishes decreases with the
increase of the delay time and the nonlinear gain.

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Sustained pulsating oscillations in semiconductor lasers induced by incoherent
optical feedback are used to generate a series of fast pulsing in optical communica-
tions. We can easily generate fast pulses shorter than nanosecond (as fast as pico-
second) under the conditions for small nonlinear gain and also small confinement
factor. In incoherent optical feedback, we have an advantage of designing the pulse
sequence with an arbitrary pulsing frequency. Also, the pulse width can be designed
by appropriately setting the parameter values. Chern et al. (1993) investigated the
dynamics of class B lasers with incoherent optical feedback including semiconduc-
tor lasers. They showed the coexistence of two attractors under the same parameter
conditions for pulsating oscillations induced by the Q switching effect and sustained
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relaxation oscillations. They demonstrated that either oscillation occurs depending
on the initial condition of the laser oscillation.

Some research have been conducted into the experimental studies of incoher-
ent optical feedback in semiconductor lasers (Cohen et al. 1990; Yen et al. 1998;
Cheng et al. 2003). Figure 5.35a shows examples of experimentally obtained pul-
sating oscillations at the bias injection current of J = 1.3Jth (Cheng et al. 2003).
With the increase of the external cavity length, the frequency of pulses decreases.
However, the feedback strength is weak and the pulsing frequency is only about
250 MHz. To obtain pulses with a much higher repetition rate as fast as nanosecond,
a stronger feedback ratio is required. The laser used is the single mode near-infrared
semiconductor laser of the Fary-Perot type. The laser oscillates at a single mode as
shown in the inset of the figure even when it shows pulsing oscillations. Figure 5.35b
also presents experimentally obtained relations between the pulse width and the pulse
intensity for the optical feedback ratio. As a general trend, for the increase of the
feedback level, the pulse width decreases and the pulse height increases.

5.8 Dynamics of Polarization-Rotated Optical Feedback

5.8.1 TE–TM Mode Dynamics in Polarization-Rotated Optical
Feedback

In Sect. 4.6, we formulated the scheme for polarization-rotated optical feedback.
Here, we discuss some dynamic properties of polarization-rotated optical feedback
in semiconductor lasers. The dynamics of polarization-rotated optical feedback are
quite different from those of ordinary optical feedback discussed in the previous
sections. Figure 5.36 shows an example of L–I characteristics calculated from the
rate equations of polarization-rotated feedback in (4.60)–(4.65) (Heil et al. 2003b).
The intensities with optical feedback contain instabilities for the time development,
but the plotted L–I characteristics are averaged intensities. As was already discussed,
one of the typical features of parallel-polarization optical feedback is the threshold
reduction of the injection current for the laser oscillation. However, there is no thresh-
old reduction in the case of polarization-rotated feedback, and the laser oscillation
starts at the same bias injection current as the solitary laser. Furthermore, the slope
efficiency remains the same as that of the solitary laser. The level of polarization-
rotated feedback required to induce instability in the laser output is much higher
than that for the case of ordinary optical feedback, as shown in the following discus-
sion, and the level is usually 10 times higher than that in ordinary optical feedback
(in amplitude). Another typical feature in ordinary optical feedback is the increase
of the laser output power due to the coherent optical injection. On the other hand,
the laser output power of polarization-rotated feedback shows little change com-
pared with the solitary case in spite of such large optical feedback. Namely, the laser
oscillation is divided into the TE- and TM-modes, while the total power remains

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.35 a Experimentally obtained sustained pulsating oscillations in semiconductor lasers with
incoherent feedback for different external cavity lengths. The external cavity lengths are L = 133.3,
100 and 60 cm from top to bottom. The optical feedback ratio is −19.2 dB. Inset is the optical
spectrum obtained by a Fabry-Perot spectrometer. b Dependence of pulse width and pulse intensity
on optical feedback ratio at the bias injection current of J = 1.25Jth and the external cavity length
of L = 75 cm [after Cheng et al. (2003); © 2003 Elsevier]

unchanged. It is noted that the temporal waveform of the TM-mode is delayed with
respect to that of the TE-mode by the propagation time τ of the external feedback
loop, showing that the TM-mode is following the delayed feedback signal. Namely,
the TM-mode is just a copy of the TE-mode with the delay time τ . These results
mean that the interaction between the TE- and TM-mode intensities through the car-
rier density generates chaotic intensities and the dynamics of both the amplitude and
phase are governed by the dynamics of the carrier density.

To induce instability in polarization-rotated optical feedback, one requires a strong
optical feedback; however, the fully developed chaotic state, as is observed in ordi-
nary optical feedback, is scarcely seen. In most cases, the instability observed in
polarization-rotated feedback is quasi-periodic oscillation or week chaotic state.
Figure 5.37 shows bifurcation diagrams of chaotic evolutions for the parameters
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(Heil et al. 2003b). Figure 5.37a is the bifurcation diagram of the TE laser output for
the bias injection current at a fixed feedback ratio of κ/τin = 7 × 1010s−1. From the
figure, when the injection current is increased, one recognizes that the value of the
steady-state solution of the carrier density is increased and the laser tends to be less
sensitive to the feedback light. Finally, the laser reached stable oscillation state even
in the presence of orthogonal-polarization feedback. In ordinary optical feedback,
the laser tends to less unstable for the increase of the bias injection current, but insta-
bilities of the laser persist and never disappear. This is the big difference between
polarization-parallel and polarization-rotated optical feedback. Another difference
of polarization-rotated feedback is that the positions of the spectral peaks associated
the round-trip frequency do not shift with the increase of the bias injection current.
This is in contrast to the dynamics of coherent parallel-polarization feedback, where
a significant shift and broadening of these peaks occurs for increasing bias injection
current. Figure 5.37b shows the bifurcation diagram of TE laser output for the feed-
back ratio (κ/τin) at a fixed bias injection current of J = 1.4Jth. The feedback ratio
at which onset of chaos starts is much higher than one order or more for the case of
parallel-polarization feedback. The theoretical results discussed here are supported
by the experimental results (Heil et al. 2003b).

Above discussions are limiting cases for strong polarization-rotated optical feed-
back and also with negligible frequency detuning between the two polarization
modes. In these cases, the TM mode shows in-phase synchronous oscillations with
TE mode having a propagation delay in the optical feedback loop. Therefore, the
synchronization in this scheme is originated from optical injection form TE mode
to TM mode. However, in general, there exists a frequency difference between TE
and TM modes, although it is not large. The existence of the frequency detuning
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plays an important role in the dynamics of TE–TM mode coupled semiconductor
lasers. Indeed, Takeuchi et al. (2008, 2010) experimentally studied TE–TM dynamics
for semiconductor lasers with polarization-rotated optical feedback, in which there
was a non-zero frequency detuning between the two polarization modes of −870
MHz. They used a moderate optical feedback of 1.6 × 1010s−1 and observed dif-
ferent dynamics from those in strong polarization-rotated optical feedback. In their
results, anti-phase synchronous oscillations between the TE and TM modes were
observed and the time delay of the synchronization between the two modes was
always zero for the lower rf frequency component than the relaxation oscillation,
which corresponds to the central chaotic oscillation frequency. For the moderate
polarization-rotated optical feedback, the phenomenon may be considered not as the
injection-locking effect from the TE to TM mode, but as the effect of competition
between the oscillations of the TE and TM modes, which differs from previous results
for in-phase oscillations. This anti-phase dynamics is a typical feature for non-zero
frequency detuning. On the other hand, the in-phase dynamics with a loop delay
in the polarization-rotated optical feedback system have been explained by optical
injection locking.

By the numerical simulations based on the rate equations, it is shown that anti-
phase oscillations with zero time lag switch to in-phase oscillations with time lag of
the optical feedback loop for the increase of the feedback strength even in the exis-
tence of the frequency detuning. The dynamics of TE–TM dynamics in polarization-
rotated optical feedback strongly depend on the gain difference between the TE and
TM modes. The optical gain is determined by the laser materials, structures, and
operating conditions. The gain of the TM mode is usually less than that of TE mode
and the dynamics discussed here can be observed for lasers within the gain difference
of 10–30 %. In actual, a gain of TM mode of about 20 % less than that of TE mode
was used in the numerical simulations for the dynamics of semiconductor lasers
with polarization-rotated optical feedback (Shibasaki et al. 2006; Takeuchi et al.
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2010). Smaller the gain difference, stronger the coupling between two polarization
mode, and we observe rich TE–TM dynamics. On the other hand, the excitation of
TM mode by TE-mode optical injection becomes small and the effects look like as
those for incoherent optical feedback. TE–TM mode dynamics are also applied to
chaos synchronization and chaotic communications. We again return to this subject
in Chap. 12.

5.8.2 Square-Wave Generation in Polarization-Rotated Optical
Feedback

Periodic pulsating oscillations are observed in semiconductor lasers with incoher-
ent optical feedback as discussed in Sect. 5.7. Also, periodic square-wave oscil-
lations are observable in semiconductor lasers with polarization-rotated coherent
optical feedback (Gavrielides et al. 2006, 2010). In this subsection, we treat a case
of narrow-stripe edge-emitting semiconductor lasers; however, similar square-wave
oscillations are also generated in VCSELs with polarization-rotated optical feedback
as discussed in Sect. 8.3.7. In VCSELs, the gain difference between the two orthogo-
nal polarization modes is very small, while the gain difference of orthogonal modes in
edge-emitting semiconductor lasers is fairly larger than that of VCSELs. In addition
to the gain difference, the active region of edge-emitting semiconductor laser has a
thin guided structure, so that TE mode is a common lasing mode and the orthogonal
TM mode is not usually an oscillation mode. However, TM mode is excited and
it shows periodic or chaotic oscillations when a strong optical injection induced by
polarization-rotated optical feedback exists in edge-emitting semiconductor laser. At
the same time, the TE mode also shows periodic or chaotic oscillations in accordance
with the TM mode. In usual, the two orthogonal modes synchronously oscillate with
each other and they show anti-phase oscillations.

Figure 5.38 is an experimental example of square waves in narrow-stripe edge-
emitting semiconductor lasers with polarization-rotated optical feedback at a strong
feedback ratio of 37.6 % in intensity. It is noted that we can ignore multiple reflec-
tion from an external mirror due to an optical configuration employed in Sect. 4.6,
although the feedback is strong. Among narrow-stripe edge-emitting semiconductor
lasers, square-wave oscillations induced by polarization-rotated optical feedback are
typically generated when the gain difference between TE and TM modes is small
and the loss difference between the two polarization modes is small enough. In this
figure, the frequency of square waves is 5.85 ns, which is slightly larger than twice
of the round-trip time of light of τ = 2.60 ns in the external loop. It is also noted
that the two waveforms show anti-phase oscillations. Similar results of 2τ periodic
and anti-phase square-wave oscillations are found for the case of polarization-rotated
optical feedback in VCSELs.

In VCSELs, square-wave oscillations due to orthogonal polarization optical feed-
back are easily observed since the gain difference between the two modes is small

http://dx.doi.org/10.1007/978-3-642-30147-6_12
http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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as is already discussed. On the other hand, ordinary narrow-stripe edge-emitting
semiconductor laser has a larger gain difference and the orthogonal polarization
mode only becomes a lasing mode for fairly strong polarization-rotated optical feed-
back. Gavrielides et al. (2006, 2010) theoretically and experimentally studied chaotic
routes and examined the condition for square-wave oscillations. According to their
analysis, TM mode is chaotically excited at a feedback level about ten times larger
than that for the case of parallel optical feedback. After the excitation of ordinary
fast chaotic irregular oscillations, square-wave oscillations are generated for a fairly
strong optical feedback. They examined the condition of square-wave generation for
a steady-state analysis for the plateaus of periodic square pulses. The condition of
the loss difference ad between the TE and TM modes for square-wave generation is
given by

ad ≤ 2κ

τin
√

1 + α2
(5.24)

Namely, square-wave oscillations tend to occur at large enough optical feedback coef-
ficient κ and small loss difference ad . Indeed, the observed square-wave in Fig. 5.38
satisfied this condition. In their numerical simulations of square-wave generations,
the conditions of the gain ratio of Gn,TM/Gn,TE ∼ 0.3, the external optical feedback
of r = 0.2 ∼ 0.3, and the gain loss of ad ∼ 1/(20τph) are used and square-wave
oscillations are successfully reproduced. The chaotic routes to square-wave oscil-
lations are not unique and show complex routes. Multiple coexistent states exist
even under the same operation condition in the laser oscillations, including complex
waveforms with 2τ periodicity.
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5.9 Dynamics of Filtered Optical Feedback

5.9.1 Filtered Optical Feedback

In this section, as an example of filtered optical feedback, we describe the dynamics of
coherent optical feedback from a Fabry-Perot resonator. Filtered optical feedback has
become a topic of interest, since it offers the potential to control the laser dynamics
through the spectral width of the filter and the detuning from the original laser
oscillation frequency. The dynamics of filtered optical feedback from a Fabry-Perot
resonator have been extensively investigated in relation to the filter width compared
with the relaxation oscillation frequency and external cavity frequency (Fischer et al.
2000, 2004a; Yousefi and Lenstra 2003; Erzgrber et al. 2006). The treatments of the
filtered feedback from a Fabry-Perot resonator can be applied to other case of coherent
optical feedback filter, such as grating optical feedback (Yousefi and Lenstra 1999).
For example, using feedback from a diffraction grating is a common method for
obtaining single-mode operation of a semiconductor laser. In such cases, a specific
spectral component of the diffracted light is fed back to the laser, and this forms a
good example of filtered optical feedback. The use of a Michelson interferometer
is another example of a filtered optical feedback to control the behaviors of low
frequency fluctuations (LFFs) in a semiconductor laser subject to optical feedback
(Rogister et al. 1999). In other applications, an alkali vapor or a filter is placed within
the external cavity laser system to frequency stabilize the laser. In such configurations,
the laser frequency is locked to one of the transition lines of for example, rubidium
or barium, or to a resonance of a Fabry-Perot interferometer (Anderson et al. 1999).
All of these systems are equivalent to a semiconductor laser with an external cavity
containing a frequency-selective filter.

The typical feature of filtered coherent optical feedback is frequency oscillations
in which the laser intensity is almost constant in spite of the periodic laser frequency
oscillations. The complex dynamics behavior in the lasers is rooted in the undamp-
ing of the intrinsic relaxations, the relatively large self-phase modulation property of
semiconductor lasers, and the feedback delay. The self-modulation property mani-
fests itself as a coupling between amplitude and phase of the laser field and originates
from the existence of the non-zero α parameter. The filter can be viewed as a mech-
anism for restricting the phase space. By the introduction of the filter, the number
of external cavity modes decreases and also the modes are also moved around in
the phase space. Here, we focus on the effects of coherent optical feedback from
frequency filter, and those for filtered optoelectronic feedback will be presented in
Chap. 7. Figure 5.39 shows a schematic setup of filtered optical feedback in semicon-
ductor lasers. In wide variety of applications for laser control, an optical feedback
from a Fabry-Perot resonator to a semiconductor laser is used instead of a conven-
tional reflector. Usually, we must consider multiple reflections from the filter and
Eq. (4.69) is replaced by the reflectance for multiple loops for the filter feedback
(Yousefi and Lenstra 1999). In the figure, we consider only a system of a single
unidirectional ring loop for simplicity and the optical feedback through a single-path

http://dx.doi.org/10.1007/978-3-642-30147-6_7
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.39 Schematic diagram
of unidirectional ring con-
figuration for filtered optical
feedback setup. HM: half mir-
ror, IS: isolator, M: mirror
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Fabry-Perot resonator. With a good approximation, the optical feedback from the
Fabry-Perot filter is given by the following Lorentzian shape:

R(ω) = �

�+ i(ω − ωc)
(5.25)

where � is the full-width at half-maximum (FWHM) of the spectral transmission
through the Pabry-Perot filter and ωc is its center frequency relative to the solitary
laser frequency. Consequently, we can assume the relation of (4.69) as the time
response function. In the following, we present several dynamics for filtered optical
feedback from Fabry-Perot resonator in semiconductor lasers.

5.9.2 External Cavity Modes

In this section, we find the relation of the actual laser oscillations with the solitary
oscillation frequency. The first step is to investigate the steady-state regime of the
filter external optical feedback system by means of the fixed point analysis for the rate
equations including the filtered optical feedback effect described by (4.66), (4.68),
and (4.70), i.e., the linear stability analysis, which is the same procedure in Sect. 4.2.
We assume the following forms for the steady-state solutions for the optical field,
the filter, and the carrier density:

E(t) = √

Ps exp(−iΔωs t) (5.26)

F(t) = √

PFs exp{−i(Δωs t + θs)} (5.27)

n(t) = ns (5.28)

whereΔωs = ωs −ω0 (ωs andω0 being the steady-state and solitary laser oscillation
frequency, respectively) and Ps , PFs , and ns are the steady-state values for the optical
power, the filter transmission optical power, and the carrier density, respectively.

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Substituting (5.26)–(5.28) into the rate equations, the transcendental equation in
Δωs can be derived as

Δωsτ = −h(Δωs)Csin(Δωsτ + ω0τ + tan−1α − tan−1Δωs − ωc

�
) (5.29)

with

h(Δωs) = �
√

�2 + (Δωs − ωc)2
(5.30)

where ωc is the relative detuning between the center frequency of the filter and the
solitary laser frequency. The C parameter in (5.29) is the measure of the fraction
of feedback and has already been defined by (4.13). The constant phase θs is also
obtained from the linear stability analysis and given by

θs = −ω0τ − tan−1Δωs − ωc

�
(5.31)

For the infinite filter bandwith (� → ∞), Eq. (5.29) reduces to (4.14) of the case
of conventional optical feedback. Since h(Δωs) in (5.29) is smaller than unity, the
relation h(Δωs)C < C = κτ/τin

√
1 + α2 always holds. Therefore, a comparison

with conventional optical feedback shows that the number of fixed points for filtered
optical feedback is always smaller than for conventional optical feedback.

Figure 5.40 is an example of the fixed point frequencies calculated from (5.29)
(Yousefi and Lenstra 1999). In the case of frequency optical feedback, the snake-like
contour in Fig. 5.40 is modulated by the filter profile. This is due to the envelope
h(Δωs) in (5.29) modulating the sine function. This means that, for a given ω0,
the number of external cavity modes is strongly dependent on the detuning of ω0
with respect to ωc. For the frequency ω0 far away from the central frequency ωc of
the filter, h(Δωs) will be almost zero, and there will only be a few solutions, while
several modes are available for ω0 ≈ ωc. Another difference from conventional
optical feedback is the phase shift introduced by C = κτ/τin

√
1 + α2. This term

does not exist in the case of conventional optical feedback and it is a consequence of
the causality principle (Kramers–Kronig relations) applied to the Lorentzian filter.
Figure 5.40 is the case of moderate feedback of intermediate filter where the relation
νex < Δν f < νR holds (νex, Δν f , and νR being the frequencies of the external
cavity, the filter bandwidth, and the relaxation oscillation).

5.9.3 Frequency Oscillations and Chaotic Dynamics

A typical feature of optical feedback from a Fabry-Perot filter is frequency oscilla-
tions for which the laser intensity is almost constant, and only the laser frequency
oscillates. The origin of this phenomenon has been unclear at present and the further

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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� = 2 GHz. The insets show the fixed points in the (φ(t)− φ(t − τ), P) plane for the two cases
a and b as indicated in the main frame. In a, the detuning is large enough to split the fixed-point body
into two separate islands, creating a potentially globally bistable situation. In b, the filter profile is
seen to be superimposed on the standard fixed-point ellipse of conventional optical feedback. The
diamond in b is the solitary mode [after Yousefi and Lenstra (2003); © 2003 AIP]

study for understanding the mechanism is still on going. Figure 5.41 shows an experi-
mental example of frequency oscillations in filtered optical feedback in semiconduc-
tor lasers (Fischer et al. 2004a). The example corresponds to an intermediate filter
case of the frequencies of νex = 50 MHz, Δν f = 700 MHz, and νR = 4–5 GHz.
The solitary laser frequency is chosen to be about 200 MHz higher than the cen-
ter frequency of the Fabry-Perot filter. The observed periodic frequency oscillation
is 19.6 ns, which quite agrees with the round trip time of the external delay. From
the detailed analysis, the frequency is not simply equal to the round trip time but the
round trip time plus the time corresponding to the frequency shift of the filter, ∼1/�.
Even in the frequency oscillation state, the measured laser power shows no evidence
of oscillatory behaviors, thus the phenomenon is called “frequency oscillation”.

The dynamics of filtered optical feedback in semiconductor lasers are strongly
affected both by the frequency relations among the bandwidth of the filter, the external
cavity, and the relaxation oscillation of the laser, and the feedback strength from the
filter. Erzgrber et al. (2006) investigated the dynamics of filtered optical feedback in
semiconductor lasers based on the numerical simulations from the rate equations of
(4.66), (4.68), and (4.70). Figure 5.42 shows their results for an intermediate filter
case of the frequencies of νex = 200 MHz, Δν f = 700 MHz, and νR = 4.2 GHz.
For a weak but not such small optical feedback case in Fig. 5.42a, the laser shows
relaxation oscillations at a frequency of 4.2 GHz. Since the HWHM of the filter
is narrow enough compared to the relaxation oscillation frequency, the intensity
IF transmitted through the filter (and also fed back in the laser cavity) is almost
constant. Figure 5.42b is an example of frequency oscillations for the dynamics of

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 5.41 Experimentally
observed time series showing
oscillations in the frequency
of the laser when subject
to filtered optical feedback.
The period of the oscillations
corresponds to an external
delay of 6 m (∼ 20 ns). The
HWHM bandwidth of the filter
is 700 MHz [after Fischer et al.
(2004a); © 2004 AIP]
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filtered optical feedback. In contrast to the relaxation oscillations in Fig. 5.42a, the
laser intensity is almost constant, while its frequency φ̇E oscillated at the typical time
period of the addition of the round trip time and the time shift in the frequency filter.
Note that the laser frequency φ̇E and the feedback intensity IF are approximately
in anti-phase for this frequency oscillation. Fischer et al. (2004a) postulated that
the frequency oscillations are interpreted as an interplay between the filter and the
laser that compensates for the effects of the amplitude-phase coupling, leading to an
effectively zero α parameter. Also, Rogister et al. (1999) argued that filtered optical
feedback, in this case from a double mirror, effectively reduces the value ofα. Finally,
Fig. 5.42c shows that frequency oscillations can undergo further bifurcations, i.e., a
torus bifurcation. This dynamical regime differs from the quasi-periodic dynamics
associated with relaxation oscillations, in that there is again only very small intensity
dynamics. Notice that the frequency oscillations exhibit a slow modulation with a
period about 6 times larger than the basic oscillation. This ratio may crucially depend
on other parameters.

In the following, we summarize the dynamics of filtered optical feedback in semi-
conductor lasers. Fischer et al. (2000) systematically investigated the dynamics for
the strength of filtered optical feedback. Similar trends to conventional optical feed-
back have been observed for the increase in feedback strength, although the dynamics
are more or less affected by the filter profile and several frequencies related to the
filter, the laser device, and the feedback length. Namely, for the increase of the feed-
back strength (the increase of the C parameter), we can observe discrete external
mode selections and hopping, hysteresis for increase or decrease of the bias injec-
tion current versus the laser power, and coherence collapse states. Also, following
Fischer et al. (2004a), the dynamics of filtered optical feedback in semiconductor
lasers are summarized for the frequency relations among the bandwidth of the fil-
ter, the external cavity, and the relaxation oscillation of the laser, and the feedback
strength from the filter.

1. Wide filter case: Δν f > νR
Since the filter bandwidth is larger than the relaxation oscillation frequency, the
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Fig. 5.42 Time series of P (optical power), PF (feedback power), φ̇E (optical frequency), and
φ̇F (feedback frequency) of a relaxation oscillations, b frequency oscillations, and c quasi-periodic
frequency oscillations. From a to c, (τphκ/τin, ω0τ) takes the values (0.02, 4π/3), (0.007,−2π),
and (0.014,−2π), respectively [after Erzgrber et al. (2006); © 2006 AIP]

relaxation-oscillation-side-peak falls within the filter profile when the filter is
centered at the solitary laser frequency. This case is very close to conventional
optical feedback, wherein, one can have several hundred external cavity modes
under the filter profile, and so the dynamics can be quite complicated.

2. Intermediate filter case: νex < Δν f < νR
One can have a few tens of external cavity modes under the filter profile, such
that the dynamics are more complicated than the narrow filter case, but in this
regime one has the possibility to control dynamics.

3. Narrow filter case: Δν f � νR and Δν f < νex
In this case, the filter is so narrow that at most one external cavity mode lies
under the filter profile and so the laser prefers to operate on that single external
cavity mode. Yet even in this case, dynamics are still possible. One mechanism
for dynamics is the destabilization of the external cavity mode through a Hopf
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bifurcation, leading to undamped relaxation oscillations. Another mechanism is
to detune the solitary laser by one relaxation oscillation frequency with respect
to the filter center. The feedback channel via the relaxation oscillation side peak
will likely give rise to undamped relaxation oscillations. In fact, these two mech-
anisms are also active in the intermediate case.
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Chapter 6
Dynamics in Semiconductor Lasers
with Optical Injection

Since the semiconductor laser has unique features of high gain, low facet reflectiv-
ity, and amplitude-phase coupling through the α parameter, it is also sensitive to
optical injection from a different laser. Locking and unlocking phenomena in opti-
cally injected semiconductor lasers have been extensively studied. Especially optical
injection locking has been appreciated as a useful tool for controlling and stabiliz-
ing laser oscillations. The general application of optical injection is to control the
laser and the locking condition is extensively investigated to distinguish the unlock-
ing phenomena. However, little attention has been paid to the unlocking dynamics.
Recent studies proved that rich varieties of dynamics, such as the four-wave mixing,
period-doubling route to chaos, and non-locking beating, are involved in the unlock-
ing region. In this chapter, we focus on the dynamic characteristics of locking and
unlocking regimes in optically injected semiconductor lasers.

6.1 Optical Injection

6.1.1 Optical Injection Locking

Optical injection technique can be used in various applications, for example it is
used to reduce intensity, frequency, and partition noises in semiconductor lasers
(Furusawa 1996; Schunk and Petermann 1986; Genest et al. 1997), generating
microwave signals (Chan and Liu 2004), or producing chaotic signals for secure
communications (Liu et al. 2001). The technique is originally developed to lock
the frequency and stabilize the oscillation of an optically injected laser. The injec-
tion locking system is very simple, as shown in Fig. 6.1. Injection locking is useful
for stabilizing the injected laser; however, the lasers sometimes show instability
and exhibit a rich variety of dynamics. For optical injection locking, we prepare
two lasers with almost the same oscillation frequencies and the frequency detuning
between them must usually be within several GHz. A light from a laser under a single
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Fig. 6.1 Optical injection
system in semiconductor
lasers

Master Laser Slave Laser

Isolator

mode oscillation (master laser) is fed into the active layer of the other laser (slave
laser). Then, the two lasers synchronize with each other in the same optical frequency
under the appropriate conditions of the frequency detuning and the injection strength.
The remarkable characteristics of optical injection locking in semiconductor lasers
originated from the fact that the α parameter (linewidth enhancement factor) has a
nonzero definite value, which makes semiconductor lasers very different from other
lasers. As a viewpoint of laser dynamics, an optical injection from a different laser
means the introduction of an extra degree of freedom to the semiconductor laser.
Therefore, various dynamics are observed by optical injection, including stable and
unstable injection locking, instabilities and chaos, and four-wave mixing depending
on the locking conditions (Mogensen et al. 1985; Sacher et al. 1992; Lee et al. 1993;
Annovazzi-Lodi et al. 1994; Liu and Simpson 1994; Simpson et al. 1995, 1997;
Kovanis et al. 1995; Erneux et al. 1996; De Jagher et al. 1996; Gavrielides et al.
1997; Eriksson and Lindberg 2001).

Optical injection technique is originally developed for the stabilization of the
injected slave laser, so that, at first glance, it may be surprising that the laser is desta-
bilized by the optical injection. However, as already mentioned, the perturbed laser
is a candidate of a chaotic system. Figure 6.2a shows an example of bifurcation dia-
gram of the slave laser for the change of the frequency detuning between the master
and slave lasers at a fixed optical injection rate. We can see stable and unlocking
oscillations, and various unstable oscillation states for the change of the frequency
detuning. Figure 6.2b and c shows the time series and rf spectrum at the frequency
detuning of �ν = 1.0 GHz. Similarly to chaotic oscillations for the case of optical
feedback in the previous chapter, we can observe chaotic oscillations in optical injec-
tion systems. As we will see in the following, periodic and unstable oscillations are
observed in adjacent to the stable injection locking state. Also, unlocking oscillations
are distributed for large values of the frequency detuning. We will later present the
instabilities and chaotic dynamics by optical injection and, here, we investigate the
principle of optical injection locking in semiconductor lasers.

Again the tool for investigating the characteristics of optical injection locking is
the linear stability analysis. We assume that the frequency detuning �ν = �ω/2π
between the master and slave lasers is small and the fraction of the photon number
Sm (optical injection power Sm = |Em |2 = A2

m) from a master laser is also small
compared with the photon number Ss of a slave laser. As usual, the injection strength
to the slave laser may or may not be small, but for the moment, we consider the
case of a rather small optical injection. Here, we discuss the effects to understand
the principle of optical injection locking. It is also noted that a laser may show insta-
bility and chaotic oscillations for a small injection fraction under certain injection
conditions, as we will see in the following sections. We use a steady-state complex
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Fig. 6.2 a Bifurcation dia-
gram for the frequency detun-
ing at a fixed optical injec-
tion ration of rinj = 0.03
(amplitude) and a bias injec-
tion current of J = 1.3Jth.
b Example of the time series of
chaotic states at the frequency
detuning of �ν = +1.0 GHz.
c The rf spectrum correspond-
ing to b. Some examples of
oscillation states in a are
S stable injection locking
state, U unlocking state, P1
period-1 oscillation, P2
period-2 oscillation, Q quasi-
periodic oscillation, and C
chaotic oscillation
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field Em(t) = √
Sm exp{−iφm(t)} for a master laser and assume the complex field

Es(t) = √
Ss exp{−iφs(t)} for a slave laser. The phases φm and φs are generally

time-dependent functions, but the master laser is under steady-state operation and
its phase is assumed to be constant as φm = 0. Though the phase of the slave laser
generally fluctuates with time, it is approximated as a small fluctuation and assumed
to be a constant value in the following. Taking these assumptions into consideration,
the rate equation for the slave field is written by

dEs(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}Es(t)+ κinj

τin
Em(t) exp(−i�ωt) (6.1)

where�ω = 2π�ν = ωm −ωs is the detuning between the angular frequencies,ωm

and ωs , for the master and slave lasers, respectively, κinj is the injection coefficient,
and τin is the round trip time of light in the laser cavity as introduced before. κinj is
related to the actual fraction of the external injection ratio rinj (which is normalized
to the average of the absolute value of the field |Es | as

κinj = rinj

r0

√

1 − r2
0

η
(6.2)
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where r0 is the front facet reflectivity of the laser cavity and η is the refractive index
of the laser medium, which are the same definitions as before. Even in the presence
of optical injection, the carrier density equation accompanying to the field equation
remains the same as (3.51).

Sometimes a different equation from (6.1) is used for investigating theoretically
the dynamics of injection locking. In spite of the different expression, the same
results as those derived from the rate equation in (6.1) are of course obtained. In this
expression, using the angular frequency detuning parameter�ω, a new optical field
Ẽs(t) is defined as Es(t) = Ẽs(t) exp(−i�ωt). Substituting the variable into (6.1)
and eliminating the term exp(−i�ωt), we obtain the following new expression for
the optical field:

dẼs(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}Ẽs(t)+ κinj

τin
Em(t)+ i�ωẼs(t) (6.3)

In the meanwhile, the carrier equation only includes the term for the absolute value
of the field and has no modification. The field has an extra term of phase so that the
dynamics are different from those of the original field itself. However, the resulting
dynamics of the laser power and the carrier density remain the same as those derived
from (6.1) and can be compared with experiments.

6.1.2 Injection Locking Condition

Optical injection locking is a coherent phenomenon, so that the discussion must be
based on the complex field instead of the photon number. As the carrier density of
the slave laser is affected by optical injection, we put the fluctuation of it as δn. We
introduce a phase ψ(t) = φs(t) − φm(t) − �ω and a small deviation between the
photon numbers with and without the optical injection as Ss − S0s (S0s is the photon
number of the slave laser in the absence of the optical injection). By the use of the
representation of ψ(t) instead of φs(t)− φm(t), we can define the rate equations as
autonomous equations. Then, we obtain the solutions Ss − S0s, ψs , and δn for the
steady-state values (van Tartwijk and Agrawal 1998)

1

2
Gnδn + 1

τin

√

Sinj

Ss
cosψs = 0 (6.4)

�ω = 1

2
αGnδn − 1

τin

√

Sinj

Ss
sinψs (6.5)

δn = −
(

1

τs
+ Gn Ss

)

δn −
(

1

τph
+ Gnδn

)

(Ss − S0s) (6.6)

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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where Sinj = κ2
injSm . In the above equation, replacing the fluctuation of the carrier

density with x = Gnδn and eliminating the variables φs and Ss , we obtain the
characteristic equation as follows:

− 1

4τs
(1 + α2)x3 +

{
1

4
(1 + α2)ω2

R + 1

τs

)

x2

−
(

α�ωω2
R + �ω2

τs
+ 1

τ 2
in

Gn Sinj

)

x + ω2
R

(

�ω2 − 1

τ 2
in

Sinj

S0s

)

= 0
(6.7)

From the above equation, we obtain the solutions for the fluctuation of the carrier
density. Eliminating δn in (6.4) and (6.5), we also obtain the relation between the
phase ψs and the laser powers as

ψs = sin−1

(

− τin�ω√
1 + α2

√

Ss

Sinj

)

− tan−1 α (6.8)

From this relation, we obtain the condition for the phase ψs as

− π

2
− tan−1 α ≤ ψs ≤ π

2
− tan−1 α (6.9)

On the other hand, from the steady-state condition for the carrier density ns under
the existence of optical injection, one reads

�ns = ns − nth = − 2

τinGn

√

Sinj

Ss
cosψs (6.10)

�ns should be positive, so that the phase has the condition asψs ≥ −π/2. Therefore,
the range of the phase for stable locking is totally given by Mogensen et al. (1985)

− π

2
≤ ψs ≤ cot−1 α (6.11)

Finally, the range of the angular frequency for the stable injection locking condition
is obtained as

−
√

1 + α2

τin

√

Sinj

Ss
= �ωL ≤ �ω ≤ 1

τin

√

Sinj

Ss
(6.12)

Successful optical injection locking occurs at a frequency satisfying the above equa-
tion for the injection fraction Sinj/Ss . The α parameter encountered in the above
equation plays an important role in optical injection locking.
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Fig. 6.3 Locking and unlock-
ing regions in phase space
of frequency detuning and
injection field
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Using the relation of (6.12), the fluctuation of the carrier density δn is given by

δn =
2α�ω ± 2

√

�ω2
L −�ω2

Gn(1 + α2)
(6.13)

In the above equation, the plus and minus signs denote that the corresponding solution
for (6.8) has a phase value of zero or π radian. There exist two solutions for the same
photon number Ss . One is a stable solution and the other is unstable. In general,
optical injection locking occurs at or close to the stable solution. Figure 6.3 shows
the areas of optical injection locking in the phase space for the frequency detuning
between the master and slave lasers and the injection ratio. The solid curves show
the boundaries between optical injection locking and non-locking regions. In the
non-locking region, we can expect various dynamics such as chaotic oscillations and
four-wave mixing when the detuning is not so far from zero. Indeed, we can observe
various dynamics when the frequency detuning and the injection ratio are small in
these regions. Within the region of the optical injection locking, there are stable and
unstable locking areas. The boundary of the unstable and stable injection locking
areas is denoted by a dotted curve. In the unstable injection locking area, we can also
observe chaotic bifurcations for certain parameter ranges. The asymmetric feature
of stable injection locking again originated from the fact that the α parameter has a
nonzero value in semiconductor lasers.
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6.2 Stability and Instability in Optical Injection Systems

6.2.1 Rate Equations

Side modes are sometimes excited in the oscillation of a semiconductor laser sub-
jected to optical injection even if it operates at a single mode under a solitary con-
dition. Therefore, we must take into account the effect of side modes into the rate
equations. The assumption of a single mode operation can be well applied to a DFB
semiconductor laser. However, a single mode Fabry–Perot semiconductor laser, it
is easily destabilized and oscillated at a multimode by the introduction of optical
injection. Here, we first rewrite the rate equations of an optically injected semicon-
ductor laser for a single-mode operation and, after that, we introduce the side mode
effect. To investigate the dynamics of optically injected semiconductor lasers, we
again introduce the equations of the field amplitudes for the master and slave lasers,
Am(t) and As(t), the phase ψ(t), and the carrier density n(t) as

dAs(t)

dt
= 1

2
Gn{n(t)− nth}As(t)+ κinj

τin
Am(t) cosψ(t) (6.14)

dψ(t)

dt
= 1

2
αGn{n(t)− nth} − κinj

τin

Am(t)

As(t)
sinψ(t)−�ω (6.15)

dn(t)

dt
= J

ed
− n(t)

τs
− Gn{n(t)− n0}A2

s (t) (6.16)

ψ(t) = φ(t)−�ωt (6.17)

In the above equations, we do not consider the gain saturation terms, however, the gain
saturation also plays an important role in multimode oscillations in semiconductor
lasers with optical injection. For such a case, we can use the relation of (3.45) or
(3.46) for the gain saturation effect.

When the side mode effects are important, the complex field for the main mode
is rewritten as Ryan et al. (1994).

dEs(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}Es(t)

− 1

2

{

ε′|Es(t)|2 + θc|Es′(t)|2
}

Es(t)+ κinj

τin
Em(t) exp(−i�ωt) (6.18)

where Es′ is the complex field of the side mode and θc is the cross-saturation coef-
ficient for the gain. Here, we consider the excitation of one side mode and also take
into account the self-saturation effect ε′ = εs(1 − iα)Gn . The rate equation for the
complex field of the side mode is given by

http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
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dEs′(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}Es′(t)

− 1

2

{

ε′|Es′(t)|2 + θ |Es(t)|2
}

Es′(t)− µd Es′(t) (6.19)

where the final term is the gain defect of the secondary mode and µd is the coupling
coefficient called gain defect.

Due to this gain defect, mode switching will be suppressed in this model and the
laser is assumed to be always oscillated at the main mode as far as the coefficient has
a significant value. Using these two modes, the carrier density equation is written by

dn(t)

dt
= J

ed
− n(t)

τs
− Gn {n(t)− n0}

{

|Es(t)|2 + |Es′(t)|2
}

(6.20)

In actual fact, many side modes may be excited in the laser oscillations due to optical
injection. However, it is proved that the model introduced here well explains mode
excitations for real oscillations in a Fabry–Perot semiconductor laser subjected to
optical injection.

The laser gain is usually linearized for the carrier density. However, in a strict
sense, it is also a function of the photon number and the gain term g′ = (1 − iα)
Gn{n(t)− nth} is replaced by

g′ = (1 − iα)Gn{n(t)− nth} + (1 − iα′)G P

{

|E(t)|2 − |E0|2
}

(6.21)

where G P is the expansion coefficient for the photon number S = |E |2, α′ is
the coefficient for the saturation of the output power, and E0 is the steady-state field
amplitude. For the model of a two-level atom in laser oscillations, we can approximate
the coefficient α′ equal to α, while it reduces to zero under the resonance condition
(Simpson et al. 2001). Stability and instability of semiconductor lasers for optical
injection are strongly dependent on the linewidth enhancement factor α and also on
the coefficient α′ of the saturation. It is proved in the following that this nonlinear
coefficient α′ is related to the suppression of the laser instabilities. Namely, the laser
is stabilized for a larger value of this factor, while it shows instabilities for a small
value of it. The damping term µd introduced in the side mode equation in (6.19) also
plays an important role in the dynamics as discussed in the following.

In semiconductor laser systems of optical injection, optical feedback, and opto-
electronic feedback, we can observe multi-stability and coexistence states of chaotic
oscillations in the dynamics. At coexistence states, the respective chaotic attractor
is completely different from others even for a particular set of the parameter values.
Which state we can observe is strongly dependent on the initial conditions of the
systems. Coexistence states of attractors are not only simulated by numerical calcu-
lations, but also experimentally observed. Some such examples in optical injection
systems will be discussed in Sect. 6.2.4.
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6.2.2 Chaotic Bifurcations by Optical Injection

The important parameters in the dynamics of optically injected semiconductor lasers
are the frequency detuning between the master and slave lasers and the injection
strength from the master to the slave. Figure 6.4 shows the experimental results of
the dynamic characteristics in a semiconductor laser subjected to optical injection
(Simpson 2003). The figure shows the plots of optical frequencies observed by a
Fabry–Perot spectrometer (left column) and rf power spectra obtained by a spectrum
analyzer (right column). Chaotic bifurcations are well demonstrated by the plots. We
can assume a single mode operation for the semiconductor laser even in the presence
of optical injection, since the laser used is a DFB laser. As is easily recognized from
the stability map in Fig. 6.3, the slave laser operates outside of the stable locking
region for a small optical injection. When the injection fraction exceeds a certain
threshold, the laser is injection-locked by the master laser and operates stably. It is
noted that the injection strength defined in the figure is counted outside of the laser
and not exactly equal to the intensity injected into the active layer.

In Fig. 6.4a, for a small level of the injection rate of 0.14, the slave laser shows
four-wave and multi-wave mixing associated with the unlocked slave laser frequency
and has a side peak in the spectrum due to regenerative amplification. The effect of
multi-wave mixing becomes distinct in the laser output power at the injection rate
of 0.23 in Fig. 6.4b. At the same time, the component corresponding to the relax-
ation oscillation becomes non-vanishing and the oscillation close to the relaxation
oscillation frequency of 4.7 GHz is excited. Also, the spectrum is much broadened.
The multi-wave mixing effect is recognized as the phase-modulation like Adler-type
frequency pulling toward locking (Simpson 2003). However, the frequency pulling
here is somewhat different from the ordinary effect and it is an unstable phenom-
enon accompanying the relaxation resonance. Frequency-pulled multi-wave mixing
components disappear at the injection rate of 0.41 and the multi-wave mixing fea-
tures are pulled to the injection frequency as shown in Fig. 6.4c. As a result, a sharp
and enhanced component of the relaxation oscillation is observed. Therefore, the
laser shows a stable oscillation under the condition. Incommensurate frequency is
encountered in the dynamics at the injection rate of 0.52 in Fig. 6.4d and the floor
of the spectrum becomes broadened. This is a typical feature of the onset of quasi-
periodic bifurcation and chaos. The floor of the spectrum further becomes broadened
at the injection rate of 0.77 in Fig. 6.4e and several spectral peaks appear except for
the relaxation oscillation component. Within the main peak, we can see two visible
peaks. This indicates that the laser corresponds to period-3 oscillation. The oscilla-
tion mode within the relaxation oscillation frequency reduces as a single peak at the
injection rate of 1.02 and the laser shows period-2 oscillation as shown in Fig. 6.4f.
When the injection fraction is large enough at the injection rate of 1.30 in Fig. 6.4g,
the laser oscillates at period-1 oscillation with the main frequency corresponding to
the relaxation oscillation. The higher harmonics of the period-1 oscillation is also
visible. Finally in Fig. 6.4h, at a strong injection rate of 3.01, the laser is completely
locked to a certain frequency and shows period-1 oscillation. The locked frequency
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Fig. 6.4 Experimentally observed optical frequencies and rf power spectra corresponding to chaotic
bifurcation in semiconductor lasers under optical injection. On the left are optical spectra and the
right are rf spectra. The laser is a single mode DFB laser at a wavelength of 1.557 µm and a bias
injection current of J = 2.0Jth
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Fig. 6.4 (continued) The relaxation oscillation frequency at solitary oscillation is 4.7 GHz. The
injection rate (intensity) is changed as a 0.14, b 0.23, c 0.41, d 0.52, e 0.77, f 1.02, g 1.30, and h 3.01,
respectively, at the fixed frequency detuning of +2 GHz [after Simpson (2003); © 2003 Elsevier]
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is different from the relaxation oscillation frequency at the solitary oscillation. This
phenomenon is related to the enhancement of the cutoff frequency for the modula-
tion bandwidth of the laser as discussed in the following. In this example, the chaotic
evolution is observed for a fixed frequency detuning (+2 GHz). The dynamics are
not always the same as those for other conditions of the detuning, but they exhibit
typical chaotic routes when the absolute value of the frequency detuning is within
several GHz.

In accordance with stable and unstable oscillations in optically injected semicon-
ductor lasers, chaotic bifurcations are numerically calculated taking into considera-
tion the effects of side mode excitation. Figure 6.5 shows chaotic bifurcations for a
change of the injection ratio at a fixed frequency detuning of +2 GHz (Simpson 2003).
In Fig. 6.5a, the laser is assumed to be oscillated at a single mode, since it includes
the effect of a larger defect with µd = 0.1. The laser once evolves from periodic to
chaotic oscillations and, then, takes an inverse route of chaotic bifurcations for the
increase of the injection ratio. Finally, it reduces to the period-1 state. The behaviors
are quite similar to the chaotic route for a single mode laser discussed in Fig. 6.4 On
the other hand, the instability of the laser is suppressed because of the leakage of
the power from the main mode to the side mode when the effect of the defect is as
small as µd = 0.001 in Fig. 6.5b. Under this condition, the laser shows no typical
chaotic bifurcations. Figure 6.5c shows the plot of the relative circulating power level
in the main mode for single and multimode operations. The power of the main mode
is transferred to the side mode and the instability of the laser oscillation is greatly
suppressed, when there is a side mode and the injection strength is small. However,
the side mode is never excited for a larger value of the defect and the assumption of
a single mode oscillation is well established.

6.2.3 Chaos Map in the Phase Space of Frequency
Detuning and Injection

We discuss chaos maps in the phase diagram of the frequency detuning and the
injection ratio. Stable injection locking is achieved in a region for a certain combina-
tion of the frequency detuning and the injection ratio; however, various unstable and
chaotic dynamics are observed in unstable locking and unlocking regions. Figure 6.6
shows the chaotic map obtained experimentally from the behaviors of the optical
spectra in Fig. 6.5 (Simpson 2003). The laser is operated at a single mode even in
the presence of optical injection and the side mode is suppressed in this laser. It is
noted that the vertical axis and the horizontal axis are replaced compared with the
plot in Fig. 6.3. The diamond-filled symbol shows in the negative frequency detuning
is the boundary between unstable and stable operations. This corresponds to the sad-
dle node boundary between stable locked and unlocked operations. Open diamonds
show the unlocking-locking transition in a region of bistability and torus bifurcation.
The square mark close to zero detuning is the Hopf bifurcation boundary between
stable locked and limit cycle dynamics. The triangle is the boundaries for regions of
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Fig. 6.5 Bifurcation diagram
as a function of the injection
ratio at a frequency detuning
of +2 GHz. a Bifurcation
diagram for large gain defect
of µd = 0.1. The laser
oscillates at a single mode.
b Bifurcation diagram for a
small gain defect of µd =
0.001. Significant power leaks
into the side mode. c Relative
circulating power. The symbol
of diamonds is for the single
mode oscillation, while open
squares denote the case of
multimode oscillations [after
Simpson (2003); © 2003
Elsevier]
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Fig. 6.6 Experimentally
obtained chaotic map from
measured optical spectra of a
single mode DFB laser under
optical injection. The meaning
of each symbol is referred to
the text [after Simpson (2003);
© 2003 Elsevier]
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Fig. 6.7 Experimentally
obtained chaotic map from
measured optical spectra in a
Fabry–Perot laser operating
at 827.6 nm. A side mode is
excited by optical injection.
The bias injection current is
J = 1.67Jth. The detail of the
map is discussed in the text
[after Hwang and Liu (2000);
© 2000 Elsevier]
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period-2 dynamics. These period-2 regions include complex dynamics and they are
shown by the shaded lines and crosses in the figure. Bounded by the circles is a region
of period-4 operation. At injection levels below the saddle node bifurcation line and
at low offset frequencies, multi-wave mixing and Adler-type frequency pulling to
locking are observed in the lightly shaded regions.

Figure 6.7 shows the experimental result for the map in a semiconductor laser
with side mode excitation by optical injection (Hwang and Liu 2000). The laser used
is a conventional Fabry–Perot type edge-emitting laser with a quantum well struc-
ture. The back facet of the laser is coated for high reflection and the front output
facet is coated for a reflection of a few percent. At the free running state of the laser
oscillation, the side mode is suppressed as low as less than 0.5 %. The symbols in
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the figure are 4: a perturbation spectrum with weak regenerative amplification and
four-wave mixing sidebands, S: stable injection locking, P1: limit cycle oscillation,
P2: period doubling, P4: period quadrupling, chaos: deterministic chaos, M: multi-
wave mixing with most output on another longitudinal mode, SR: sub-harmonic res-
onance, hatched regions: principal output on another longitudinal mode, thin curves:
smooth transition between dynamic regions, thick dotted curves: abrupt mode hop
transitions with minor hysteresis, thick broken curves with an arrow: one-way mode
hops out of mode, and thick full curves: abrupt transition to/from a region of chaos
or multi-wave mixing where there is significant power in another longitudinal mode,
from/to a region with power primarily in the principal mode.

For a small injection, the optical injection acts as a perturbation generating weak
sidebands at the offset frequency, regenerative amplification, and equally and oppo-
sitely shifted four-wave mixing. With increasing both of the frequency detuning and
the injection ratio, various instabilities appear in the laser output power. The ten-
dency of periodic bifurcations and chaotic islands in the unstable region is the same
as that for a DFB laser. However, distinct chaotic bifurcation is not observable for
a Fabry–Perot laser in the region of negative frequency detuning along the stable
boundary, while it was observed for a DFB laser (see Fig. 6.6). There is an abrupt
mode hop near the locking–unlocking boundary at negative detuning which has a
small hysteresis. Analytical studies of the locking–unlocking boundary at negative
detuning have shown that there is a region of bistability associated with the locking–
unlocking transition (Li, 1994a,b). The bistability results from competing attractors
representing locked and unlocked solutions for the coupled equations (Lenstra et al.
1993). The carrier density is larger than that for the steady-state ns under the unlocked
solution, while it stays a smaller value for the locked solution. The gain of the side
mode increases with the increase of the carrier density and the refractive index of
the active layer accordingly changes. The change induces the transfer of the opti-
cal energy from the main mode to side modes. Then, the gain of the main mode
is reduced and this sometimes results in frequent mode hop. However, the chaotic
dynamics disappears in the output power. On the contrary, instabilities still remain
in the dynamics of a single mode laser without the excitation of the side mode as
shown in Fig. 6.6.

Considering the gain defect and using the Eqs. (6.18)–(6.20), stable and unstable
maps in the phase space of the frequency detuning and the injection ratio like in
Figs. 6.6 and 6.7 can be calculated (Simpson 2003). The results are quite consistent
with the experimental results. Namely, the suppression of chaotic dynamics for the
excitation of the side mode is well reproduced. Hwang and Liu (2000) numerically
calculated maps of stable and unstable regions in the phase space of the frequency
detuning and the injection ratio by changing the parameters in the rate equations.
They studied the dependence of the parameters for the cavity decay rate γc = 1/τph,
the carrier relaxation rate γs = 1/τs , the differential relaxation rate γn , and the non-
linear carrier relaxation rate γπ . For the change of those parameters, they obtained
the following results. (1) The carrier decay rate γs affects little change, since the
carrier relaxation is usually induced by spontaneous emission of light and it is a
small perturbation for the field strength. (2) The laser is stabilized for a small value
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of the differential relaxation rate γn , since the fast carrier diffusion reduces unstable
regions. (3) When the nonlinear carrier relaxation rate γπ increases, the unstable
region shrinks and the laser is stabilized. The increase of the nonlinear carrier relax-
ation rate γπ results in the change of the carrier density in the active layer and the
fluctuation of the optical phase is suppressed. This results in the suppression of fre-
quency fluctuations. Therefore, the laser is stabilized. (4) For a larger value of the
α parameter, instability of laser oscillation is enhanced. (5) Stability and instabil-
ity of semiconductor lasers subjected to optical injection are also dependent on the
bias injection current. With increasing the bias injection current, the stable region
in the map expands. When a laser is operated at a higher injection current level, the
coherent optical power stored in the cavity is higher, thus allowing the laser to be
more resistant to the perturbation of the externally injected optical field. This is why
stronger externally optical perturbation is required to observe instabilities and chaos
in the system at a higher injection current level.

6.2.4 Coexistence of Chaotic Attractors in Optically Injected
Semiconductor Lasers

A nonlinear system has the nature of multi-stability under a certain condition of
the parameters. Namely, the system may have coexistent states of different chaotic
attractors for the same parameter set. Which attractor the system converges to strongly
depends on the initial conditions. Indeed, coexistence of chaotic orbits has been
observed in various systems of semiconductor lasers (Masoller and Abraham 1998;
Heil et al.1998, 1999; Sukow et al. 1999; Viktorov and Mandel 2000). In optically
injected semiconductor lasers, multi-stability and coexistence of chaotic attractors
have also been studied (Wieczorek et al. 2000, 2001a, 2001b, 2001c, 2002). Here,
we present such examples. Under a certain experimental configuration, we always
observe a particular chaotic attractor, since the process of obtaining chaotic oscillation
is generally the same. Therefore, we usually observe a chaotic oscillation for one
of the chaotic attractors in a fixed experimental condition even if multi-stabilities
are involved in the system. However, if the separation between the two coexisting
attractors in the high-dimensional phase space is not so far away, switching from
one attractor to the other may occur due to, for example, noises involved in the
system. Indeed, transition of the state from one chaotic oscillation to another has
been experimentally observed (Heil et al. 1998, 1999).

Using the bifurcation theory, it is easy to know whether a nonlinear system has
coexisting attractors under the operating condition when the system exhibits bistabil-
ity or multi-stability. However, the characteristics of the coexisting attractors cannot
be obtained using the bifurcation analysis. With the simulation method, the existence
of the bistability or multi-stability is found by numerically simulating the system with
different initial conditions under the same operating conditions. Figure 6.8 shows the
numerical result for the map of coexistence states in semiconductor lasers subjected
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Fig. 6.8 Bifurcation diagram
showing coexistence states in
a phase space of normalized
frequency detuning and injec-
tion ratio. The vertical axis
is the normalized frequency
of ωnor = �ω/ωR , and the
horizontal axis of the injec-
tion ratio is also normalized
as κnor = κinj Am/ωRτin A0s .
P1 period-doubling bifurca-
tions, SL saddle-nodes of limit
cycles, T torus, H Hopf bifur-
cation, and SN saddle-node
bifurcation [after Wieczorek
et al. (2000); © 2000 Elsevier]
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to optical injection (Wieczorek et al. 2000). The plot is a similar one in the phase
space as shown in Figs. 6.6 and 6.7, but normalized axes are used. Each point in
this plane corresponds to a particular phase portrait, which contains more than one
attractor. Black parts of bifurcation curves correspond to supercritical bifurcations
in which attractors bifurcate and gray parts correspond to subcritical bifurcations of
repelling objects. Subcritical bifurcations are less important from an experimental
point of view, but we trace them out as they may produce stable objects for instance
in a subcritical torus bifurcation or change to supercritical.

In Fig. 6.8, the region inside the straight line from zero detuning to negative
detuning is the stable injection locking area. A detailed explanation of the map is
found in the reference (Wieczorek et al. 2000). We here focus on the points that weigh
with actual observations. In the stable region, there exist areas for the saddle-node
bifurcation (SN) and the Hopf bifurcation (H). When the black part of SN is crossed,
one of the bifurcating stationary points is an attractor. It physically corresponds
to the laser operating at constant power and at the frequency of the injected light,
meaning that the laser locks to the input signal. On the other hand, along the gray
part of the curve SN, a repellor and a saddle point bifurcate. Along the black part
of H, an attracting periodic orbit is born from the attracting stationary point and this
corresponds physically to the undamping of the relaxation oscillation. Physically, the
appearance of a new orbit means that some resonance in the laser gets excited, often
because the operational parameters κnor = κinj Am/ωRτin A0s and ωnor = �ω/ωR

drive the laser close to the relaxation frequency or its multiples. In Fig. 6.8, the two
saddle nodes of the limit cycle bifurcation curves starting with a cusp at ωnor ≈ ±1
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Fig. 6.9 Coexistence state of attractors at κnor = 0.29 and ωnor = −1.37. a Simultaneous plot of
three attractors, b running phase solution, c large periodic orbit, and d quasi-periodic motion on a
torus [after Wieczorek et al. (2000); © 2000 Elsevier]

represent a resonance between the relaxation oscillation frequency of the laser and
the detuning of the injected light from the free running laser frequency.

Starting from different initial conditions, the nonlinear system may have different
attractors in the phase space, even if the parameters have the same values as shown
in the previous figure. Figure 6.9 shows examples of attractors in multistability states
in the phase space of the imaginary part of the field, Ey (where the complex field E
is given by E = Ex + i Ey), and the carrier density n (Wieczorek et al. 2000). The
plots are the same conditions as those in Fig. 6.8. Figure 6.9a shows the plot of three
attractors. Figure 6.9b and c is periodic states of period-1 with small amplitude and
large periodic orbit, respectively. Figure 6.9d corresponds to a quasi-periodic oscil-
lation on a torus. As has already been discussed, which of the attractors the system
settles down to depends on the initial conditions. Furthermore, when a parameter
is swept gradually through a region of multi-stability, then one will find hysteresis
loops with sudden jumps from one attractor to another at different values of the
parameter, depending on the direction of the sweep.
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6.3 Enhancement of Modulation Bandwidth and Generation
of High Frequency Chaotic Oscillation by Strong
Optical Injection

6.3.1 Enhancement of Modulation Bandwidth by Strong
Optical Injection

The modulation bandwidth of a semiconductor laser at free running state is limited
by the relaxation oscillation frequency. However, when a semiconductor laser is
strongly injected under stable conditions, the modulation bandwidth of the slave laser
is greatly enhanced. At the same time, the suppression of laser noises is achieved,
but the strong modulation gives rise to frequency chirping in the laser oscillation.
The effects of noises and frequency chirping under optical injection are critical
for the laser operation (Piazzolia et al. 1986; Yabre 1996). In a locking–unlocking
bistable state, a large modulation current can unlock the laser. In a state near or
beyond the Hopf bifurcation boundary, the dynamic instability of the laser can lead
to high broadband noise and large frequency chirping. Also, the enhancement of
the modulation bandwidth of semiconductor lasers subjected to strong injection has
been demonstrated (Simpson et al. 1995, 1996; Simpson and Liu 1997; Chen et al.
2000; Wang et al. 1996, 2008). For weak optical injection and optical feedback, the
modulation bandwidth is increased due to the increase of the photon number within
the internal cavity, since the relaxation oscillation frequency is proportional to the
square root of the photon number (see (3.71)). The amount of the shift of the cutoff
frequency is up to ten percent at most. However, the cutoff frequency of the laser
under strong optical injection is greatly enhanced up to several times the relaxation
oscillation frequency of the free running laser. Therefore, a different explanation for
the origin of the enhanced modulation bandwidth may be required to understand
the phenomenon. The bandwidth-enhanced semiconductor laser is very useful as a
broadband light source for optical communications.

Figure 6.10 is an example of experimental results of the enhancement of the mod-
ulation bandwidth. For a modulation of a small sinusoidal wave of 12 GHz to the
bias injection current, the modulated laser output attenuated and is only −27.49
dBm without optical injection as shown in Fig. 6.10a, since the modulation is far
away from the relaxation oscillation frequency (about 3 GHz). On the other hand, the
modulation efficiency is increased up to 10 dBm by a strong optical injection (Fig.
6.10b). As will be discussed in Chap. 13, chaotic carrier frequency is the measure
of the maximum data transmission rate in secure optical communications based on
chaos synchronization in semiconductor laser systems. The chaotic carrier frequency
is also increased by a strong optical injection and a large capacity of the channels for
the communication is expected.

The enhancement of the modulation bandwidth in a semiconductor laser under
strong optical injection is numerically studied based on the rate equations. Wang
et al. (1996) investigated the modulation response for a small signal to the bias injec-

http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_13
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-27.49 dBm

12 GHz
-19.05 dBm
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Fig. 6.10 Experimental result of the modulation bandwidth of a strongly optical injection-locked
semiconductor laser. The laser is modulated by a small sinusoidal signal at 12 GHz. The modulation
efficiency without optical injection is −27.49 dBm. The efficiency with optical injection is −19.05
dBm. The relaxation oscillation frequency of the DFB laser used is 3 GHz at free running state

M(ω)/M(0) [dB]

Modulation Frequency [GHz]

Fig. 6.11 Normalized modulation response of a semiconductor laser at J = 2.4Jth. a free running
laser, b Sinj/Ss = 0.011, c Sinj/Ss = 0.092, d Sinj/Ss = 0.44. Sinj and Ss are the photon numbers
injected from the master laser and the steady-state value of the free running slave laser [after Wang
et al. (1996); © 1996 IEEE]

tion current using a linear stability analysis. Figure 6.11 is the result. The frequency
detuning between the master and slave lasers is assumed to be zero in this case. The
cutoff frequency read from the resonance frequency is 12.6 GHz for the injection
ratio of Sinj/Ss = 0.44 (curve d), while the relaxation oscillation frequency is 3.4
GHz at the free running state (curve a). In addition, the response is almost flat well
below the cutoff frequency and the modulation bandwidth is enhanced up to four
times compared with that of the free running state. As has already been discussed,
the relaxation oscillation frequency is proportional to the square root of the photon
number and the photon number is a function of the bias injection current. To obtain
the equivalent modulation bandwidth of 12 GHz for the free running laser, we would
require the bias injection current to be seven times larger than that of the free running
state, which corresponds to almost 13 times the threshold injection current and might
damage the laser. Thus, the method of strong optical injection is effective for greatly
enhancing the modulation bandwidth in semiconductor lasers. Wang et al. (1996)
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conducted a linear stability analysis for the cutoff frequency under strong optical
injection and obtained the approximate solution as

νenhanced = 1

2
√

3π

[

Ke −
(

Ka

Ss

)2

+
{(

Ka

Ss

)2

− 4Ke

(
Ka

Ss

)2

+ K 2
e − 6Ka KbαG2

n(ns − n0)

}1/2]1/2

(6.22)

where the parameters in the above equation are given by

Ke = 1

τ 2
in

Sinj

Ss
(6.23)

Ka = 2

τin

√

SinjSs cos(φs − φm) = −
{

Gn(ns − n0)(1 − εs Ss)− 1

τph

}

Ss − Rsp

(6.24)

Kb = 1

τin

√

Sinj

Ss
sin(φs − φm) = 1

2
αGn(ns − n0)−�ω (6.25)

As will be shown later, the cutoff frequency is linearly proportional to the injection
power. Therefore, the origin of the enhancement of the modulation bandwidth does
not simply come from the increase of the photon number in the active layer. It is
explained by the interference between the optical frequency of the original laser
oscillation and the shifted frequency due to the strong optical injection.

The enhancement of the modulation bandwidth is also strongly dependent on fre-
quency detuning between the master and slave lasers. Figure 6.12 shows the depen-
dence of the modulation response in the presence of frequency detuning between
the master and slave lasers (Chen et al. 2000). The conditions of the numerical sim-
ulations are as follows; the laser is assumed to be an index-guided GaAs/AlGaAs
quantum-well laser and is biased at Ĵ = 0.67 (corresponding to J = 1.67Jth), where
Ĵ is the scaled injection current defined by Ĵ = (J/ed − ns/τs)/(ns/τs). The injec-
tion parameter defined by κ ′

nor = (κinjτph Am)/(τin As) is fixed at a moderate level
of κ ′

nor = 0.2, while different values of frequency detuning representing different
locking conditions are chosen. At κ ′

nor = 0.2, the stable locking region is bounded
by �ν = 1 GHz and �ν = −13 GHz, where �ν = 1 GHz is the Hopf bifurcation
boundary. Between �ν = −13 GHz and �ν = −22 GHz is a region of locking–
unlocking bistability, where the laser can be either locked or unlocked depending
on the initial condition. Under that condition, the laser cannot be locked when the
frequency detuning is more negative than −22 GHz. Relative to the free running
laser, a broadband noise reduction occurs in the locked region when the injection
field is negatively detuned beyond �ν = −3 GHz. The three representative values
of frequency detuning chosen in this case are �ν = 1 GHz on the Hopf bifurcation
boundary (dash-dotted curves in the figures), �ν = −10 GHz in the stable lock-
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Fig. 6.12 Normalized current modulation response in the presence of frequency detuning �ν
between master and slave lasers. Dash–dotted curve injection locking at�ν = 1 GHz. Solid curve
injection locking at �ν = −10 GHz. Dashed curve: injection locking at �ν = −18 GHz. Dotted
curve free running. The curves in the upper plot are the response for m=1 %, and those in the lower
plot are the responses for m=100 %. The 0 dB in the lower plot corresponds to the 0 dB in the upper
plot in order to make all the response curves comparable [after Chen et al. (2000); © 2000 Elsevier]

ing region (solid curves), and �ν = −18 GHz in the locking-unlocking bistability
region (dashed curves).

In the figure, the upper plot shows the response for a small modulation index of
m = 1 % and the graphs are normalized to the low frequency response of the laser in
its free running condition, under the four different operating conditions. The lower
plot in Fig. 6.12 shows the distorted current modulation response when the modula-
tion index reaches m = 100 %. At a given modulation strength, negatively shifting
the frequency detuning of the injected optical field generally reduces the distortion
in the current modulation response if the laser remains stably locked. However, when
the laser is injection-locked in the bistability region, a high modulation index can
cause instability by unlocking the laser. As a result, the modulation response in
such an operating condition becomes very irregular, as can be seen from the dashed
curve (−18 GHz) in the lower plot of Fig. 6.12. For weak current modulation with
small values of the modulation index, the modulation response will be obscured by
the intrinsic laser noise. For the change of the modulation index, the laser noise
induces insignificant differences between the overall response due to the combined
modulation current and intrinsic noise and the modulation response alone when the
modulation index m is larger than 1 %. Below m = 1 %, the relative importance
of the laser noise gradually increases and the laser noise induces fluctuations in the
response that obscure the modulation response.

Nevertheless optical feedback is strong, the optical injection power in the previous
examples is still smaller than the solitary slave laser emission power. For stronger
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Fig. 6.13 Enhanced reso-
nance frequency as a function
of detuning frequency and
injection ratio. Each value
denotes the enhanced bound-
ary resonance frequency [after
Lau et al. (2008); © 2008
OSA]
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optical injection above the slave optical power, we can expect much broader band-
width enhancement. Figure 6.13 shows such an example. Lau et al. (2008) experi-
mentally investigated modulation bandwidth for the condition of ultra strong optical
injection more than +10 dB and large frequency detuning of about ±100 GHz. The
figure shows the boundaries of enhanced resonance frequencies in the phase space
of the optical injection ratio and the frequency detuning within the stable region of a
used laser. The laser used is an InGaAsP DFB laser of the cavity length of 500 µm
operating at a wavelength of 1.55 µm. The bias injection current is 1.3Jth and the
corresponding relaxation oscillation frequency at solitary mode is νR = 3 GHz. For
an optical injection of 18 dB (the actual optical injection is estimated as about 14
dB due to losses in the optical system) and the frequency detuning from the soli-
tary laser of +67 GHz, the modulation bandwidth is enhanced up to 107 GHz. By
strong optical injection ratio with large frequency detuning, the stable area is largely
expanded, especially in the region of strong optical injection. The attained value of
the resonance frequency of 107 GHz is not the limitation of the device characteristic
itself, but the result is limited only by the response of the equipment. Lau et al. also
studied an enhancement of a modulation bandwidth for a VCSEL of a wavelength
of 1.55 µm. The laser is biased at 3Jth with the corresponding relaxation frequency
of 5 GHz. The resonance frequency enhancement of 104 GHz is obtained for the
optical injection of 13.6 dB and the frequency detuning of +102 GHz.

One of merits of optical injection locking in semiconductor lasers is the increase
of rf gain. However, there exists a tradeoff between the enhancement of modulation
bandwidth and the increase of rf gain. For a fixed optical injection ratio, the rf gain
of a small amplitude modulation for the bias injection current varies with detuning.
For a large positive frequency detuning, one can obtain a sharp and high peak of the
resonance frequency; however, the gain for the lower frequency component tends to
be lower than that for a case of smaller frequency detuning. On the other hand, a
high rf gain but a small peak of the resonance frequency is attained for an optical
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Fig. 6.14 Tradeoff between resonance frequency and rf gain. a Resonance frequency of four
VCSELs versus wavelength detuning. b rf gain measured at 1 GHz for four VCSELs versus wave-
length detuning [after Chrostowski et al. (2006); © 2006 IEEE]

injection with a small frequency detuning. Figure 6.14 shows a summary for such
examples obtained by experiments (Chrostowski et al. 2006). Figure 6.14a is a plot
for enhanced modulation frequencies for four VCSELs with almost the same optical
injection ratios versus wavelength detuning. For the increase of the detuning, the
modulation bandwidth is increased (it is noted that the graph is plotted not for the
frequency but for the optical wavelength). While, Fig. 6.14b is a plot for enhanced
resonance frequency at the injection–current modulation of 1 GHz versus wavelength
detuning. With the increase of the frequency detuning, the rf gain decreases. The
tradeoff is not a particular feature for VCSELs but other types of semiconductor
lasers, and the similar trend can be expected for edge-emitting semiconductor lasers.

6.3.2 Origin of Modulation Bandwidth Enhancement

The origin of the enhancement of modulation bandwidth by strong optical injection
is explained by Murakami et al. (2003). They consider the frequency shift of the
slave laser induced by strong optical injection. The expansion of the modulation
bandwidth is realized by the interference between the original optical frequency at
the free running state and the shifted frequency after the injection. According to their
explanation, the difference between the two frequencies corresponds to the expanded
modulation bandwidth. Figure 6.15 schematically shows the model of the frequency
shift. Let the angular frequency of the slave laser at the free running state be given
by ω0 and that of the master laser be ωinj. In the figure, the frequency detuning is
assumed to be positive, but the other case will be reduced to the same result. By a
strong optical injection, the carrier density in the slave laser increases. This induces
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Fig. 6.15 Resonant condition
of a semiconductor laser in the
presence of optical injection.
a Spectrum before optical
injection. ω0 is the angular
frequency of the solitary laser,
ωinj is the frequency of the
injected light, and�ωinj is the
frequency detuning between
them. b Cavity resonant
condition under injection
locking. ωshift is the cavity
resonance frequency shifted
from ω0 by �ωshift due to
optical injection

(a)

(b)
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the change of the optical frequency of the laser oscillation and results in red-shift
of the oscillation frequency. Using the change of the carrier density δn, the laser
once oscillates at an optical angular frequency ωshift and the shift of the laser angular
frequency after the injection is given by

�ωshift = 1

2
αGnδn (6.26)

The change of the carrier density δn is proportional to the strength of optical injection.
The frequency shift given by (6.26) has the same form as the first term in (6.5). In
actual fact, the frequency of the slave laser is locked to the frequency of the injection
laser (angular frequency ofωinj). Accordingly, the injection-locked laser may operate
at a frequency different from its cavity resonance condition, namely operating at
ωinj, not at ωshift. Such frequency detuning between ωinj and ωshift influences the
modulation bandwidth, as predicted by Simpson et al. (1996).

Here, we consider the transient situation. The field corresponding to the shifted
cavity resonance ωshift is once excited and interference between the two components
of the angular frequencies ωshift and ωinj occurs. Then, the beat between the two
frequencies is induced in the output of the slave laser. However, sufficient gain
is not allocated to this mode and the oscillation of the mode rapidly decays out,
since this is a transient field. The oscillation angular frequency of the slave laser
is restored to ωinj. The laser output may exhibit a damping oscillation at the beat
frequency due to such transient interference. Note that this damped oscillation differs
from the relaxation oscillation in the physical mechanism, because the relaxation
oscillation results from an interaction or coupling between photon and carrier through
the stimulated emission. Therefore, from (6.5), the resonance angular frequency
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produced by the interference ωres = ωinj − ωshift is given by

ωres = �ωinj −�ωshift = − 1

τin

√

Sinj

Ss
sinψs (6.27)

Following the above explanation, the dependence of the resonance frequency in the
presence of strong optical injection is calculated (Murakami et al. 2003). Figure 6.16
shows the plots of dependence of the injection ratio (amplitude) and the frequency
detuning on the cutoff frequency. Figure 6.16a is the dependence of the cutoff fre-
quency on the injection ratio at the frequency detuning of +0.5 GHz. Under a strong
optical injection condition, the cutoff frequency is linearly proportional to the injec-
tion ratio in accordance with the prediction in (6.27). In the figure, three data are
plotted; the solid line is the prediction calculated from (6.27), circles are the direct
numerical calculation from the rate equations, and triangles are obtained from the
linear stability analysis. In strong optical injection of over 30 %, the three plots coin-
cide well with each other. Figure 6.16b is the plot of the cutoff frequency for the
frequency detuning at a high optical injection ratio of 40 %. The cutoff frequency
tends to increase with increased detuning from negative to positive values. Thus,
the enhancement of the cutoff frequency under strong optical injection is explained
by the interference between the injection laser frequency and the implicit frequency
shift of the slave laser induced by the strong optical injection.

The definition of the injection and average intensities, Sinj and Ss , in (6.27) are
the measures in the internal laser cavity. For the external injection intensity Sinj,ext,
it has the relation with the internal intensity as Lau et al. (2007)

Sinj = (1 − r2
0 )

2

r2
0

Ss

Ss,out
Sinj,ext (6.28)

where r0 is the laser facet reflectivity defined in (4.1) and Ss,out is the average intensity
of the slave laser outside of the cavity. For edge-emitting semiconductor lasers, the
orders of the magnitudes of internal and external injections are almost the same. In
the case of VCSELs, the amount of the internally injected intensity is very small
compared with that of the external intensity, since the facet reflectivity of VCSELs is
usually higher than 99 %. On the other hand, the injection efficiency is proportional
to 1/τin, so that the effect of optical injection to VCSELs is relatively strong due to
their short cavity lengths. From (6.27), the attainable maximum enhanced modulation
frequency is given by

ωres,max = 1

τin

√

Sinj

Ss
(6.29)

The above relation is well coincident with experimental results. From the detailed
study, an approximate relation including a small resonance frequency, ωres, due to
weak optical injection is obtained as Lau et al. (2007, 2008, 2009)

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 6.16 Dependence of
resonance frequency on a
injection rate and b frequency
detuning. Circles represent the
numerical results, triangles
are the results obtained from
the stability analysis, and the
solid line is the theoretical
curve of (6.27)
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ω2
enhanced ≈ ω2

R + ω2
res (6.30)

whereωR is the relaxation oscillation angular frequency of a solitary laser. For a large
resonance frequency of ωres � ωR (namely, strong optical injection), the relation
ωenhanced = ωres holds. In accordance with the enhancement of the modulation
bandwidth, the damping factor is also enhanced. The damping factor except for near
the resonance peak frequency under strong optical injection is approximated as

�enhanced ≈ �R − Gn(nth − n0) (6.31)

where �R is the damping factor of the solitary laser defined in (3.70). Note that �R

is taken as a negative value. Also the damping factor is enhanced by the reduction of
gain below threshold. The result is interpreted as follows; the injection-locked laser
resonance is primarily due to energy oscillating between the slave field and phase
interfering with the injected light from the master laser. The reduced gain allows a

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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portion of this oscillation energy to be lost to the carrier. We can observe the similarity
of the damping enhancement in an RLC oscillator in electric circuits. On the other
hand, the damping factor closed to the resonance frequency is given by

�enhanced,res ≈ α

τphωres
Gn Ss − Gn(nth − n0) (6.32)

Lau et al. (2009) also demonstrated theoretically and experimentally that the mod-
ulation bandwidth was further enhanced by amplitude and/or phase modulations of
the master laser under strong optical injection.

6.3.3 Modulation Response by Strong Optical Injection

The effects of the injection current modulation on the response distortion and the
noise compression can be evaluated by eye patterns with digital signals. The capabil-
ity of data transmission in optical communications is calculated in Fig. 6.17 (Chen
et al. 2000). The eye patterns are numerically calculated from the rate equations with
strong optical injection. In the numerical simulations, eye patterns are generated
by modulating the injection current of the semiconductor laser under the various
operating conditions with a train of random raised-cosine functions:

Jm =
n

∑

K=0

CK h(t − K T ) (6.33)

h(t) =
sin

(
π t
T

)

cos
(
πβt t

T

)

π t
T

[

1 −
(

2πβt t
T

)2
] (6.34)

where CK is a series of random numbers with the value 0 or 1, which represents
digitized information, and T = 1/ fm , where the modulation frequency fm represents
the bit rate. The value of the parameter βt is chosen to be 0.3 in this simulation.

Figure 6.17 shows the eye patterns for different modulation indexes at the modula-
tion frequency of fm = 2.9 GHz. The modulation frequency is equal to the relaxation
oscillation frequency of the laser at the free running state. Three different modulation
indexes m = 10, 50, and 100 % are chosen to present the advantages of the injection-
locked laser in the stable locking region. The eye patterns obtained in the condition
when the laser is injection-locked at �ν = −10 GHz have clearer eye opening
with less distortion or less noise than those obtained in other operating conditions.
The relative eye opening shows the same tendency as the noise compression. For a
small modulation index of m = 10 %, the modulation efficiency is much improved
compared with that at the free running state. However, when the modulation index
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Fig. 6.17 Eye pattern for square wave modulations. The bit rate is chosen as the corresponding
resonance frequency for each operating condition: the bit rate fm = 2.9 GHz is chosen for the
free running operation, fm = 4.7 GHz for �ν = −18 GHz, and fm = 6.8 GHz for �ν = −10
GHz. The optical injection rate ξ is defined as ξ = τphκinj/τin. The eye opening obtained from the
operating condition �ν = 1 GHz is zero for the range of the bit rate we are concerned with, so
the eye patterns are not shown. The intensity of the eye patterns is the differential intensity above
or below the corresponding field intensity of the injection-locked laser without current modulation
for each operating condition [after Chen et al. (2000); © 2000 Elsevier]

increases, the modulation signal with a modulation index of m = 50 % unlocks the
laser for a large negative frequency detuning (�ν = −18 GHz), resulting in zero
eye opening. When the frequency detuning is positively shifted beyond the noise
compression region, the eye opening also rapidly decreases to zero. Therefore, the
eye opening obtained in the operating condition with �ν = 1 GHz is zero for a
modulation index of any value.

6.3.4 Suppression of Frequency Chirping by Strong
Optical Injection

It has already been noted that the chirping of frequency due to injection current
modulation in a semiconductor laser is much suppressed by a strong optical injection.
We here demonstrate an example. Usually, a change in the carrier density causes a
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change in the refractive index of the laser medium. This change in the index generates
frequency chirping, which can place a considerable limitation on the modulation bit
rate. The frequency chirping is measured by the normalized chirp to the power ratio
CPR, which is defined as follows (Piazzolia et al. 1986):

CPR = 1

2πRP

∣
∣
∣
∣

dφ

dt

∣
∣
∣
∣

(6.35)

where RP is the modulation response. The frequency chirp originates from the
linewidth enhancement factor α, which has a nonzero value in a semiconductor
laser. Neglecting noise effects in a semiconductor laser and applying a small sig-
nal analysis, the relation between the linewidth enhancement factor α and CPR can
be obtained by linearizing the rate equations around the locking operating point
(Simpson et al. 1996). This relationship between α and the CPR can be expressed as
follows:
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where u and v are given by
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Here φL is the phase of the intracavity laser field relative to the injection field. An
effective linewidth enhancement factorαeff, which is the modified chirping parameter
under injection locking, can be defined as follows:

αeff ≈ α

√

f 2
m + (u − v/α)2

f 2
m + (u + v/α)2

(6.39)

Of course, the effective chirping parameter αeff is equal to α when the laser is at the
free running state (u = v = 0). The dependence of the effective chirping parameter
on the modulation frequency fm is shown in Fig. 6.18 (Chen et al. 2000). The injec-
tion locking of the laser at�ν = −10 GHz reduces the effective chirping parameter
more than injection locking the laser at�ν = −18 GHz does. Positive shifting of the
frequency detuning reduces the effective chirping parameter further until the bound-
ary of the Hopf bifurcation is reached. For a large modulation index, the effective
chirping parameter finally reaches that of the free running state. Therefore, the effect
of the suppression for the chirping is remarkable for lower modulation frequency.
When the effect of the intrinsic noise or that of the nonlinearity of the laser on the
frequency chirping are significant, the simple relationship in (6.39) between the CPR
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Fig. 6.18 Effective chirping parameter. Each curve corresponds directly to the curves in Fig. 6.12
that have the same style [after Chen et al. (2000); © 2000 Elsevier]

and α is no longer valid. In this situation, it is not possible to simply represent the
frequency chirping with an effective chirping parameter. Then, the measurement of
the frequency chirping including the effects of the intrinsic noise and the nonlinearity
of the laser dynamics under a large modulation current is better quantified directly
with the CPR.

From the detailed analysis for CPR, if the laser noise were not present, a signifi-
cant reduction of the frequency chirping could be achieved by optical injection, and
positively shifting the frequency detuning could further reduce the frequency chirp-
ing. In reality, however, when the modulation index is small, the chirp is dominated
by the laser noise. As a result, the chirp follows the same tendency as the power
noise. Therefore, reduction of the frequency chirping in a semiconductor laser is not
always guaranteed by injection locking (Chen et al. 2000). A semiconductor laser
injection-locked in a locking–unlocking bistable state cannot fully take such benefits
because a large modulation current can unlock the laser. Further, one cannot operate
in a state near or beyond the Hopf bifurcation boundary because of the high broad-
band noise and the large frequency chirping associated with the instability of the
laser. A semiconductor laser operated in a stable state generally has better current
modulation characteristics than in its free running state.

6.3.5 Generation of High-Frequency Chaotic Oscillation
by Strong Optical Injection

Main chaotic carrier frequency in a semiconductor laser system has almost the same
or nearly the relaxation oscillation frequency of the solitary laser. For example, the
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Fig. 6.19 Experimentally
obtained chaotic power spec-
trum with enhanced cutoff
frequency in a DFB semicon-
ductor laser subjected to both
optical feedback and strong
optical injection. The fre-
quency detuning between
the two lasers is −3.44
GHz and the injection ratio
is −5.61 dBm. The left and
right arrows indicate the
peaks for the chaotic carrier
frequencies without and with
optical injection, respectively

↑ ↑
Original relaxation
oscillation frequency

3 GHz

Enhanced cutoff
frequency

14 GHz

oscillation very close to the relaxation oscillation frequency is at first excited in a
semiconductor laser with optical feedback for the increase of the feedback strength.
For a further increase of the feedback, the laser typically shows chaotic oscillations
via period-doubling or quasi-period-doubling routes. Therefore, the relaxation oscil-
lation frequency of the laser is the measure of chaotic oscillations and it plays a
crucial role in the chaotic dynamics. Especially, the bandwidth of the chaotic signal
is important in the chaotic secure communications discussed in Chap. 13. In such
chaotic communications, the generation of a fast chaotic carrier signal is essential
for a message transmission with higher bit rate. We here consider the generation
of fast chaotic signals in semiconductor lasers both subjected to optical feedback
and optical injection. There are two ways for enhancing chaotic carrier frequency
by optical injection; one is a simple method in which a chaotic semiconductor laser
such as induced by optical feedback is strongly optical-injected by a stable mas-
ter laser (Wang et al. 2008). The other one is that a chaotic master laser light is
strongly injected to a slave laser (Someya et al. 2009). The slave laser may behave
stably at solitary mode. For either case, chaotic carrier frequency of an original relax-
ation oscillation of about 3 GHz is experimentally expanded up to 15–20 GHz under
appropriate optical injection conditions. In the preceding sections, we only treated the
enhancement of the modulation bandwidth due to optical injection in stable region.
However, outside of stable area in the phase space of the frequency detuning and
the optical injection ratio, there exist regions of chaotic oscillations as is discussed
in Fig. 6.6. Therefore, the discussion for chaotic carrier enhancement under optical
injection is not straightforward. In the following, we treat the case of the bandwidth
enhancement in chaotic semiconductor laser with optical feedback by strong optical
injection from a stable laser. Therefore, we here restrict the discussion of chaotic
carrier enhancement for stable region.

Figure 6.19 is a typical power spectrum of chaotic oscillations obtained from a
semiconductor laser which has both external optical feedback and strong optical
injection. Without a strong optical injection, the laser shows chaotic oscillation due

http://dx.doi.org/10.1007/978-3-642-30147-6_13
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Fig. 6.20 Numerically cal-
culated time series and power
spectra of chaotic oscillations
in a semiconductor laser with
strong optical injection. Time
series a with and b without
optical injection. Power spec-
tra c with and d without optical
injection corresponding to
Fig. 6.20a and b, respectively.
The parameter conditions are
Js,m = 1.3Jth, τ = 6 ns,
κ/τin = 2.33 × 1010s−1,

κinj/τin = 1.79 × 1010s−1,

and �ν = −4 GHz
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to the external optical feedback and the spectral peak (though it has a broad peak)
is about 3 GHz, which is comparable with the relaxation oscillation of the solitary
laser. The original relaxation oscillation frequency is shown by the arrow (left arrow).
On the other hand, the frequency of the maximum chaotic oscillation is increased
to 14 GHz (right arrow) by a strong optical injection, that is an increase by a factor
of 4.6. In this experimental example, the frequency detuning between the master
and slave lasers is −3.44 GHz and the optical injection ratio is −5.61 dBm. This
condition corresponds to the ordinary stable operation in the absence of external
optical feedback.

The enhancement of the chaotic carrier frequency is also numerically calcu-
lated based on the rate equations. Figure 6.20 is the result (Takiguchi et al. 2003).
Figure 6.20a and b is the time series of chaotic oscillations with and without opti-
cal injection, respectively. The relaxation oscillation frequency of the solitary laser
is about 2.7 GHz. Figure 6.20c and d is the corresponding rf spectra to Fig. 6.20a
and b, respectively. The feedback fraction to the slave laser is taken to be a large
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value of κ/τin = 2.33×1010s−1 to destabilize the strongly injection-locked laser. In
Fig. 6.20d, the chaotic oscillation rapidly decays out over the relaxation oscillation
frequency without optical injection. On the other hand, the spectrum in Fig. 6.20c
shows a bandwidth-enhanced chaotic oscillation in the presence of a strong opti-
cal injection. As can easily be seen both from the time series and the spectrum, the
chaotic carrier frequency is greatly expanded up to about 8 GHz by the strong optical
injection, which is as much as three times that without optical injection in Fig. 6.20d.
As shown in the figure, the chaotic carrier frequency is also greatly enhanced by
a strong optical injection. However, it is difficult to calculate analytically the exact
enhanced bandwidth of the chaotic carrier frequency.
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Chapter 7
Dynamics of Semiconductor Lasers
with Optoelectronic Feedback
and Modulation

One of the characteristics of semiconductor lasers that is different from other lasers is
the direct pump modulation. The disturbance to the injection current is an additional
degree of freedom. Therefore, the disturbance to the injection current induces insta-
bilities to semiconductor lasers, and instabilities and chaotic behaviors are indeed
observed by the injection current modulation. Another example of disturbances to
the injection current is optoelectronic feedback, in which the output from the laser is
once detected by a photodetector and, then, the detected photocurrent is fed back into
the injection current. A typical feature of instabilities induced by disturbances to the
injection current are the regular and irregular pulsations in the laser output. In this
chapter, we discuss instabilities and chaotic dynamics of optoelectronic feedback
and injection current modulation in semiconductor lasers.

7.1 Theory of Optoelectronic Feedback

7.1.1 Optoelectronic Feedback Systems

Optoelectronic feedback is one of the perturbations to the injection current in semi-
conductor lasers that induces instabilities. In optical feedback to semiconductor
lasers, the phase sensitivity plays a crucial role in the laser dynamics. However,
different from optical feedback, we do not need to consider the phase effect in opto-
electronic feedback systems, since the phase information is once eliminated by a pho-
todetection in the feedback process. Stable or unstable operations of semiconductor
lasers are flexibly and reliably controlled through the injection current (Giacomelli
et al. 1989; Loiko and Samson 1992). The dynamics of semiconductor lasers with
optoelectronic feedback can be described only by the two equations of the photon
number and the carrier density. Therefore, optoelectronic feedback shows differ-
ent dynamics from those of optical feedback and optical injection in semiconductor
lasers.

J. Ohtsubo, Semiconductor Lasers, Springer Series in Optical Sciences 111, 205
DOI: 10.1007/978-3-642-30147-6_7, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 7.1 Schematic diagram
of an optoelectronic feedback
system
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For optoelectronic feedback through the injection current, there are two cate-
gories; one is positive feedback and the other negative feedback. They have different
mechanisms for driving the dynamics of the laser. In negative feedback, the feed-
back current is deducted from the bias injection current and it induces the sharpening
of the relaxation oscillation (Lee and Shin 1993). On the other hand, the feedback
current is added to the bias injection current in positive feedback and, as a result,
the gain switching tends to drive the laser into pulsing states in the output power
(Damen and Duguay 1980). Therefore, regular pulsing states induced by positive
optoelectronic feedback are used as a light source for periodic pulse trains with short
pico-second duration (Paulus et al. 1987). Compared with short-pulse generations by
passive mode locking with a saturable absorber (typically 1 ps pulse), Q switching,
gain switching (typically 10 ps pulse), or active mode locking with external modu-
lation (typically 10 ps pulse), stable and fast pulses with variable pulse-width can be
easily obtained by setting appropriately the external parameters in the optoelectronic
feedback system (Inaba 1982; van der Ziel 1985). The repetition rate of the pulses is
found to be an integral multiple of the inverse of the feedback-loop delay time that
is closest to the relaxation resonance frequency of the laser. Otherwise, when the
time for the feedback loop is not coincident with the period of the laser relaxation
oscillation or its integral multiples, the competition of the incommensurate periods
results in chaotic oscillations in the laser that strongly depend on the feedback time.
The chaotic pulses in this system have both chaotic peak intensities and chaotic pulse
intervals.

The model of optoelectronic feedback in semiconductor lasers is the same as that
treated as the injection current modulation discussed in Sect. 3.6 (Lin and Liu 2003a).
Figure 7.1 shows a schematic diagram of optoelectronic feedback in a semiconductor
laser. The light emitted from a semiconductor laser is detected by a photodetector
and the detected photocurrent is fed back through a bias Tee circuit. The feedback
may be positive or negative depending on the polarity of the output of the amplifier
in the circuit. In optoelectronic feedback, the modulation is not for the complex field
but for the carrier density through the disturbance to the injection current. Therefore,
we use the rate equation of the photon number instead of the complex amplitude.
Using (3.78) and (3.80), the rate equations for the optoelectronic feedback system

http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
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are written by
dS(t)

dt
= Gn{n(t)− nth}S(t) (7.1)

dn(t)

dt
= J

ed

{

1 + ξ
S(t − τ)− Soffset

Ss

}

− n(t)

τs
− Gn{n(t)− n0}S(t) (7.2)

where ξ is the feedback strength. The system is positive feedback for a positive value
of ξ , while it is negative feedback for a negative value. Ss is the steady-state value
for the photon number and Soffset is the constant offset in the feedback loop. The
value of the offset may be zero. τ is the feedback time including time responses of
the detector and the electronic circuits.

A feedback circuit with time response of 100 ps is easily available at present
and the response is sufficient to follow chaotic variations in semiconductor lasers.
However, when the time response of the electronic feedback circuit has the same
order as the relaxation oscillation of the laser, the effect of the finite response must
be taken into account and another differential equation for the feedback current must
be introduced besides the photon number and carrier density equations (Lee et al.
1988). We will discuss this point later. Contrary to the case of optical feedback in
semiconductor lasers, photon noises induced in the optoelectronic feedback system
have less effect, since the feedback is to the carrier density. This is due to the difference
of the time scales of the lifetimes of carrier density and photon; the photon lifetime is
typically of the order of picoseconds, while the carrier lifetime is much longer than
that and it is around nanoseconds. As noted, we do not consider the phase equation
and the phase sensitivity is eliminated in the optoelectronic feedback system.

7.1.2 Pulsation Oscillations in Optoelectronic
Feedback Systems

The typical feature of optoelectronic feedback in semiconductor lasers is pulsation
oscillations. Depending on the feedback conditions, the laser shows various dynamic
states of periodic and chaotic oscillations. However, the dynamics strongly depend
on whether the system has a positive or negative feedback loop. The details of the
dynamics will be given later. Instead, we first present experimental results of pulsa-
tion oscillations in optoelectronic feedback systems. Figure 7.2 shows such examples
(Tang and Liu 2001b). The laser outputs (left) and its rf spectra (right) are obtained
for certain conditions of the feedback delay (the delay time including the flight of
light in the loop of the laser, the detector, and the electric circuit). From Fig. 7.2a–c,
the laser evolves a regular pulsing state of a constant peak intensity into a quasi-
periodic pulsing state. Only one fundamental frequency at 650 MHz is excited in
the spectrum in Fig. 7.2a, which has the pulsing frequency of the regular pulses
seen in the corresponding time series. However, ripples with small amplitude are
included in the spectrum. The laser is not completely stabilized to a periodic state,
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although the level of the ripples is below 40 dB. The frequency of 140 MHz corre-
sponding to the delay time of the loop is excited as the second oscillation frequency
in Fig. 7.2b. The two frequencies are incommensurate. Therefore, the laser oscillates
at the two fundamental frequencies and the oscillation is in a two-frequency quasi-
periodic pulsing state. In Fig. 7.2c, the broadband background is much higher than in
Fig. 7.2b, indicated by the dashed reference lines at −70 dBm. All over the spectrum
is much broadened and the peak heights of the pulsation oscillation vary irregularly,
corresponding to chaotic oscillation. Such chaotic evolution is well reproduced by
numerical simulations based on the rate equations.

The feedback delay time and the feedback ratio play crucial roles in the dynamics
of optoelectronic feedback systems, as is the case for optical feedback. A map of
the dynamics in the phase space of the delay time and the feedback strength is
calculated from the numerical simulation for the rate equations. Figure 7.3 shows
the map of chaotic routes in the space for the normalized delay of τ̂ = τνR (νR
is the relaxation oscillation frequency) and the feedback strength ξat a fixed bias
injection current (Lin and Liu 2003a). The positive value of ξ is the case for positive
feedback and the negative value of ξ for negative feedback as already defined. We
find that these systems share the same route to chaos and most of the dynamic states,
but the frequency-locked pulsing states are clearly observed only in the negative
feedback system. On the other hand, the region of the locking range of the frequency-
locked states is too narrow to be observable in the positive feedback. Therefore, small
fluctuations in the laser parameters would drive the system into the neighboring quasi-
periodic or chaotic states (CO). Although frequency-locked states should generally
exist in a two-frequency system, it is very difficult to observe experimentally the
locking range of the frequency-locked states in positive optoelectronic feedback
systems and they are rarely observable in real experiments.

With the increases of the normalized delay time τ̂ or the feedback strength ξ , the
laser output shows very complicated dynamics. The laser evolves into CO through
a quasi-periodic route following regular pulsing (RP), two-frequency quasi-periodic
pulsing (Q2), three-frequency quasi-periodic pulsing (Q3), and finally chaotic puls-
ing states (C). Quasi-periodic states are typically observed for strong feedback
strength in the positive feedback system. On the other hand, such states are lim-
ited within small feedback strength in the negative feedback system. In the map-
pings, RP, Q2, and Q3 states spread over large areas in the positive feedback system,
while CO have large areas in the negative feedback system. Therefore, we could
easily obtain CO in the negative feedback system, when we adjust the controllable
parameters. Especially, we could observe remarkable chaotic pulsing states at large
feedback strengths and long delay times. Another important difference between these
two systems is the regions of the frequency-locked (FL) pulsing state. In the pos-
itive optoelectronic feedback system, the states that separate the chaos islands are
the RP states. However, in the negative optoelectronic feedback system, the states
that separate the chaos islands are the FL pulsing states instead. Thus, the dynam-
ics of optoelectronic feedback systems strongly depends on the positive or negative
feedback even for the same delay time and the same strength.
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Fig. 7.2 Experimental results of time series and power spectra of various pulsing states for different
delay times. a Regular pulsing at τ = 7.47 ns. b Two-frequency quasi-periodic pulsing at τ =
7.09 ns. c Chaotic pulsing at τ = 6.92 ns. The laser used is a single mode DFB laser with a
wavelength of 1.33µm and the bias injection current is J = 1.34Jth [after Tang and Liu (2001b);
c©2001 IEEE]

7.2 Linear Stability Analysis for Optoelectronic
Feedback Systems

7.2.1 Linear Stability Analysis

The solutions of stability and instability for the parameters in optoelectronic feedback
systems are calculated by the linear stability analysis (Pieroux et al. 1994; Grigorieva
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Fig. 7.3 Mappings of
dynamic states of a posi-
tive optoelectronic feedback
and b negative optoelec-
tronic feedback systems at
J = 1.33Jth. S steady states,
RP regular pulsing, Q2 two-
frequency quasi-periodic
pulsing, Q3 three-frequency
quasi-periodic pulsing, PL
frequency-locked pulsing, C
chaotic pulsing [after Lin and
Liu (2003a); c© 2003 IEEE]

et al. 1999). Grigorieva et al. investigated the local dynamics for semiconductor
lasers with optoelectronic feedback. Applying the linear stability analysis for (7.1)
and (7.2), they obtained the characteristic equation for the system as

γ 2 + ετ (c
2
q + 1)γ + c2

q

{

1 + γ0 exp

(

−λτ
ετ

)}

= 0 (7.3)

where the normalized parameters are defined by ετ = √

τph/τs, γ0 = −τphξ J/Ssed,
and cq = √

(q − 1)/(1 + γ0) (q = τsτphGn(J/ed−n0/τs)). From the characteristic
equation, we can calculate the boundary for stable and unstable oscillations of the
laser. Figure 7.4 is the result. The stable region is located around the zero feedback
coefficient (γ0 = 0) and the left and right curves are the stability boundaries. The left
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Fig. 7.4 Boundary of stabil-
ity and instability in phase
space of feedback coef-
ficient and delay time at
ε2
τ = 10−3 and q = 1.5 [after

Grigorieva et al. (1999); c©
1999 Elsevier]
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curve is the stable boundary for the negative feedback, while the right curve is for
the positive feedback. These curves correspond to the stable and unstable boundaries
in Fig. 7.3, which is obtained from the numerical calculation for the rate equations.

The minimal values of the feedback coefficients for the stable boundaries are the
same both for negative and positive feedback and the approximate form is given by

γ0min = ετ
q

cq0
(7.4)

where cq0 = √
q − 1 is the value of cq at γ0 = 0. Namely, we require the above

minimal value of the injection current to destabilize the laser output in optoelectronic
feedback systems, whether it is a positive or negative feedback. The minimal points
at γ0min locate periodically for the increase or decrease of the delay time. For a
positive feedback, the locations of the minimal points at the delay time are shifted by
one-quarter from the multiple period of the relaxation oscillation at a free running
laser and the delay is given by

τm = ετ
2π

cq0

(

m + 1

4

)

m = 1, 2, 3 . . . (7.5)

On the other hand, the delay for a negative feedback is given by

τm = ετ
2π

cq0

(

m + 3

4

)

m = 1, 2, 3 . . . (7.6)

For a positive feedback, the relaxation oscillation frequency decreases due to the
increase of the carrier density and it is calculated as

ν′
R = cq0

2πετ

(

1 − γ0min

2

)

(7.7)
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The second term in the parenthesis on the right-hand side of the equation is the
effect of the feedback. In the case of a negative feedback, the relaxation oscillation
frequency has the same form as (7.7), but the sign of the minimal value is negative
and the relaxation oscillation frequency increases due to the reduction of the carrier
density.

In the above discussion, we ignore the response time of the electronic circuits
in the feedback system. However, we must take the transient effect into consider-
ation, when we cannot neglect the finite response time of the photodetector. Lee
et al. (1988) investigated the dynamics of semiconductor lasers with optoelectronic
feedback when the photodetector has a finite response and derived the conditions for
pulsation oscillations in the laser output power. They introduced the response for the
feedback current as a differential equation (Kressel and Butler 1977):

di

dt
= 1

τi
(c1Ss − i) (7.8)

where i = τsτpGn J/ed is the normalized feedback current, τi is the 3 dB bandwidth
of the feedback circuits, c1 is the conversion efficiency of the photon density to
the normalized current through the photodetector including the coupling efficiency.
Taking into account the saturation effect of the current, the actual feedback current
if through an amplifier is modeled by the following equation:

if = is

1 + exp
{

− 4(i−ia)GA
is

} (7.9)

where is, ia, and GA are the saturation current, the detected photocurrent, and the
gain in the circuit, respectively.

Combining (7.1) and (7.2) with (7.8), a linear stability analysis is also applied to
a negative optoelectronic feedback system. The loop gain for pulsation oscillations
is calculated from the real part of the characteristic equation in the linear stability
analysis. The resonance angular frequency taking into consideration of the finite
response of the feedback circuit is given by

ω2
R,feedback = ω2

R + 1

τi

{
1

τs
+ Gn Ss + 1

τph

(

ε′Ss + βsp
Gnτphn0 + 1

Gnτs Ss

)}

(7.10)

where ωR is the angular frequency of the relaxation oscillation for the infinite time
response of the feedback circuit and ε′ is the effect of the nonlinear gain ε′ = εsGnτs .
The second term on the right-hand side of the equation is the correction of the
resonance angular frequency for the finite time response. The equation includes the
effects of the nonlinear gain saturation εs and the spontaneous emission of light
(coefficient βsp). When the value of τi is approximated as infinity, namely, the time
response is assumed to be instant, the second term in (7.10) is neglected and, then, the
resonance frequency becomes exactly equal to the relaxation oscillation frequency
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at the infinite time response. For a finite time response of the circuit, the resonance
frequency increases due to negative optoelectronic feedback. It is noted that the
spontaneous emission of light induces the increase of the frequency of the relaxation
oscillation as can be easily understood from (7.10). Also, the nonlinear gain shows
the same tendency as the effect of spontaneous emission.

7.2.2 Characteristics of Semiconductor Lasers
with Optoelectronic Feedback

Taking an example for negative optoelectronic feedback, we here present some
results of the characteristics in the systems derived from the linear stability analysis.
Figure 7.5a shows light-injection-current (L-I) characteristics for a negative opto-
electronic feedback (Lee et al. 1988). Since the carrier number in the active layer in
negative optoelectronic feedback is reduced from that at the free running state, the
laser threshold increases. As a result, we require a larger bias injection current for
the same laser output power as that at the solitary oscillation. At the same time, the
slope efficiency is reduced. In this model, the saturation effect for the current in the
feedback loop is taken into account and, therefore, the slope of the L-I characteristic
at a higher injection current is the same as that of the solitary oscillation, although
the L-I curve is shifted toward the higher injection current.

Pulsation oscillations in optoelectronic feedback in semiconductor lasers strongly
depend on the feedback gain GA and the response time of the feedback circuit τi. The
map of pulsing states in the phase space of the feedback gain and the response time
is calculated from the linear stability analysis and is plotted in Fig. 7.5b. In Fig. 7.5b,
the normalized coordinates of c1GA and τs/τi are used instead of the feedback gain
and the response time. In Fig. 7.5b, the unstable region of pulsations is inside the
curves. When the feedback gain is as small as c1GA � 1, the laser oscillates stably.
For larger feedback gain, unstable pulsing starts to appear. However, the unstable
region shrinks and finally disappears at a certain level of the feedback gain. The laser
is stabilized for a higher bias injection current and the increase of the photon number
(normalized photon number ss = Gnτs Ss) results in the shrinkage of the unstable
region. As can be easily understood from the figure, the required closed-loop gain
becomes minimum when 1/τi is equal to the relaxation oscillation frequency. In
this simulation, only the unstable pulsing oscillation boundary is investigated from
the linear stability analysis. However, it is noted that various unstable dynamics and
routes to chaos, not only the pulsing states but also unstable oscillations and chaotic
oscillations, are observable depending on the device and system parameters.

Figure 7.6 shows the waveforms of pulsing states for the feedback current i(i =
Gnτsτph J/ed), the carrier density n′ (n′ = Gnτphn), and the photon number s(s =
GnτphS) at certain parameter conditions (Lee et al. 1988). The excitation of pulsation
oscillations in negative optoelectronic feedback is explained as follows; the detected
photocurrent from the laser is fed back into the bias injection current with a transient
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Fig. 7.5 Effects of negative
optoelectronic feedback. a L-I
characteristics. b Dependence
of pulsing area on photon
number or equivalently bias
injection current, T2 = τs/τi
and ss = Gnτs Ss. The para-
meters are T1 = τs/τph =
2000, is = 2.5, βsp = 10−5,
and ε′ = 10−3 [after Lee et al.
(1988); c© 1988 OSA]
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response of the photodetector after the laser oscillation starts at a certain time. The
feedback current induces the reduction of the injection current. The injection current
may become below the threshold and the laser oscillation stops for a large feedback
current. Therefore, the laser oscillates at only the beginning of the rise time of the
electronic feedback circuit and emits a very short pulse. When the laser oscillation
stops, the feedback current decreases and the injection current to the laser increases.
The injection current well exceeds the threshold, and then the next pulse is generated.
These processes may be regarded as sharpening the extraction of the first spike of the
relaxation oscillation. The feedback sharpens the falling edge of the first spike and
suppresses the subsequent spikes. Thus, strong pulsation oscillation is generated at
a high frequency of the order of the relaxation oscillation frequency (the frequency
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is shifted to a higher side due to the feedback). The pulse width is easily adjusted
by appropriately choosing the feedback gain. Also, the pulse repetition rate can be
controlled by the bandwidth 1/τi of the amplifier.

7.3 Dynamics and Chaos in Semiconductor Lasers
with Optoelectronic Feedback

7.3.1 Chaotic Dynamics in Negative Optoelectronic Feedback

In the previous section, we demonstrated regular pulsing states in semiconductor
lasers induced by optoelectronic feedback. In this section, we show in detail unsta-
ble and chaotic pulsation oscillations in such systems. As has already been discussed,
there are two types of optoelectronic feedback; one is positive and the other is neg-
ative. For both cases, we can expect regular pulsing, quasi-periodic pulsing, and
chaotic pulsing states in the laser output power. However, the region of the frequency-
locked state in the parameter space is very narrow for positive optoelectronic feedback
and it is only observable for negative optoelectronic feedback in actual experimen-
tal systems (Giacomelli et al. 1989). Similar locking states have been observed in
a modulated external cavity injection laser (Lee and Shin 1993) and a modulated
self-pulsing semiconductor laser (Lee et al. 1988). These frequency-locked pulsing
states are experimentally observed to exhibit a harmonic FL phenomenon, where the
pulsing frequency is locked to a harmonic of the delay loop frequency instead of the
delay loop frequency itself.

Numerical simulations for stable and unstable pulsation oscillations for negative
optoelectronic feedback were conducted and various pulsing states were observed.
Here, we show the experimental results (Lin and Liu 2003a). In Fig. 7.7, sequential
pulsing states including RP, two-frequency quasi-periodic (Q2), quasi-periodic FL
(Q-FL), FL, and chaotic (C) states are observed by changing the frequency of the
feedback loop from floop = 49 to 68 MHz. On the way to chaotic evolutions, gen-
erations of various frequency components are observed, such as excitations of the
relaxation oscillation, the second fundamental frequency (the loop frequency), their
harmonics, and their beats. It is also demonstrated that the rotation numbers of these
frequency-locked pulsing states show a Devil’s staircase structure. Three-frequency
quasi-periodic pulsing (Q3) states in which an extra frequency component is added
to the two-frequency quasi-periodic state (the relaxation oscillation and the loop fre-
quencies) are observed in the numerical simulations. However, Q3 states are rarely
observed in experiments. In this experiment, Q3 states are not observed, since the
areas of Q3 states are so small that they are easily shifted to different neighbor states
due to disturbances such as noises in the electronic circuit. The other oscillation
states were well reproduced in the numerical simulations.

Figure 7.7a is a regular pulsing state for the loop frequency of floop = 68 MHz.
The pulsing frequency is 750 MHz. It is noted that the pulsing frequency of the laser is
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Fig. 7.7 Experimentally measured power spectra, phase portraits, and time series of different puls-
ing states in negative optoelectronic feedback systems. a RP regular pulsing, b Q2 two-frequency
quasi-periodic pulsing, c Q-FL quasi-periodic frequency-locking, d FL frequency-locking, and
e C chaotic states, where the loop frequencies are 68, 64, 51, 50, and 49 MHz, respectively. The
laser used is a DFB laser of the wavelength of 1.299µm. The bias injection current is J = 1.17Jth
and the relaxation oscillation frequency at that current is 1.5 GHz [after Lin and Liu (2003a); c©
2003 IEEE]

about one-half of the resonance frequency fp ∼ νR/2.Such sub-harmonic oscillation
has also been found in a driven van der Pol oscillator (Gilbert and Gammon 2000).
When the loop frequency floop becomes as small as 64 MHz, Q2 states appear. In this
state, the pulsation frequency fp at 760 MHz beats with a frequency at 320 MHz. The
latter frequency is about five times that of floop. The frequency fp is beating with
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the fifth harmonic of floop. Although the noise and the digitization error make the
ring expected for a Q2 state diffused in the phase portrait, a ring-like distribution can
still be seen (Fig. 7.7b). A Q-FL state between quasi-periodic pulsing and frequency-
locked pulsing is observed at the increased loop frequency of 51 MHz as shown in
Fig. 7.7c, where three smeared dots can be seen in the phase portrait. We can see the
three frequency components of fp, floop, and the fifth harmonic of floop. Figure 7.7d
is an example of a frequency locking state. At the lower frequency of floop equal
to 50 MHz, floop and fp at 750 MHz become exactly commensurate, and frequency
locking occurs. The state is a 5:15 (1:3) frequency locking, where flock is the fifth
harmonic of floop, flock = 5 floop, and the pulsing frequency is fp = 15 floop. The
laser evolves into a chaotic state for the decrease of floop to 49 MHz as shown in
Fig. 7.7e. The chaotic state (C) is identified by the spread dots in the phase portrait and
the random intensity pulses seen in the time series. Hence, the experimental results
bear out the simulation study, where the same sequence of states including the RP,
Q2, Q-FL, FL, and C states are found and a quasi-periodic route to chaos is verified.
Lin and Liu (2003a) further investigated the phenomenon of frequency locking states
with various rotation numbers and they obtained a Devil’s staircase (which is a typical
structure reconstructed from excited frequencies of chaotic oscillation in nonlinear
systems) for the relation between the rotation number and the locking frequency.

7.3.2 Chaotic Dynamics in Positive Optoelectronic Feedback

Self-sustained pulsations are observed both for negative and positive optoelectronic
feedback in semiconductor lasers. However, their dynamics are not always the same.
For example, FL states are the typical feature in negative optoelectronic feedback,
while they are rarely observed in positive optoelectronic feedback. The extent of
chaotic regions in the parameter space varies. Here, we discuss chaotic evolutions of
pulsing states in positive optoelectronic feedback systems and demonstrate that not
only the pulse height but also the jitter of pulse sequences shows chaotic behaviors.
Figure 7.8 is a numerical result of pulsing states for the variations of the delay time
in an optoelectronic feedback system (Tang and Liu 2001b). The normalized delay
time is used in the figure and it is defined by τ̂ = νRτ . With τ̂ = 7.47 in A of Fig. 7.8,
the time series shows a sequence of regular pulses with a constant pulsing intensity
and interval. The corresponding power spectrum has only one fundamental pulsing
frequency at f1∼2.3 GHz, which is close to the resonance frequency of the laser.
When the delay time is decreased to τ̂ = 7.25 in B, the laser enters a two-frequency
quasi-periodic pulsing state with the intensity modulated at a certain frequency f2.
The pulses are clearly modulated and the new modulation frequency is read to be
f2 ∼320 MHz. This f2 is close to, but slightly less than, the inverse of the delay time
of the feedback loop. The appearance of two incommensurate frequencies, f1 and
f2, is the indication of quasi-periodicity. When the delay time is further decreased
to τ̂ = 7.00 in C, the laser enters a three-frequency quasi-periodic pulsing state as
a third frequency at f3 ∼23 MHz shows up. The component of this frequency f3 is
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very small and the frequency is incommensurate with f1 and f2. In other delayed
feedback systems, such as semiconductor lasers with weak optical feedback (Ritter
and Haug 1993a,b) and semiconductor lasers with negative optoelectronic feedback
controlling the pump current (Grigorieva et al. 1999), a similar third frequency has
also been found. Tang and Liu (2001b) indicated that f3 is the result of nonlinear
interaction between the laser relaxation oscillation and the delayed feedback. Finally,
when τ̂ = 6.48, the laser enters a chaotic pulsing state, as shown in D. In the CO,
not only the pulse height but also the separation becomes chaotic (jitter) and the
corresponding spectrum is much broadened.

Phase portraits and spectra of the peak series in the Poincaré sections constructed
from the corresponding time series of Fig. 7.8 are calculated and plotted in Fig. 7.9.
In the phase portraits, S(N ) are the successive peak intensity values of the laser
pulses in a given time series, while T (N ) are the corresponding time intervals of
the pulses. The range of the rf spectra is expanded and the plots show only lower
frequency components. In a regular pulsing state in A, the peak series consists of a
single constant value, therefore the phase portrait is a single fixed point. In a two-
frequency quasi-periodic pulsing state in B, the phase portrait shows a clear circle,
since the pulsing frequency f1 in the power spectrum of the original time series
has been eliminated from the data set of the peak series under the Poincaré section
and the successive peaks corresponding to f2 are sampled. In the three-frequency
quasi-periodic pulsing state in C, the two incommensurate frequencies f2 and f3
are both clearly shown in the spectrum of the peak series and the phase portrait is
characterized by a torus. Finally, when the laser enters a chaotic pulsing state as in D,
the phase portrait spreads out over a wide range. The phase portraits of T (N + 1)
versus T (N ) have the same characteristics as those of S(N + 1) versus S(N ) at
different delay times as shown in A–D of Fig. 7.9. From Figs. 7.8 and 7.9, a positive
optoelectronic feedback system fits in a Rulle–Takens–Newhouse three-frequency
quasi-periodic scenario to chaos (Tang and Liu 2001b).

To visualize the chaotic route in positive optoelectronic feedback in a semiconduc-
tor laser, the bifurcation diagrams are numerically calculated. Bifurcation diagrams
of the extrema of the peak series versus delay time corresponding to the previous
figures (Figs. 7.8 and 7.9) are plotted in Fig. 7.10. Figure 7.10a is the bifurcation dia-
gram with the normalized delay time τ̂ varying from 0 to 10. For a small delay time,
the effect of the feedback on the dynamics is not distinct and the feedback increases
the laser output slightly over that in the free-running condition. With the increase
of the delay time, the laser output shows regular pulsing with constant pulse peak
intensity and interval. For a larger delay, the laser follows a quasi-periodic route into
chaotic pulsing states. Figure 7.10b is the enlarged bifurcation diagram of a part in
Fig. 7.10a denoted by the broken rectangle. A–D in the figure can be compared to
the pulsing states in Fig. 7.8. The different pulsing states are indicated by the cor-
responding arrows, where A is regular pulsing, B is two-frequency quasi-periodic
pulsing, C is three-frequency quasi-periodic pulsing, and D is chaotic pulsing.
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Fig. 7.8 Time series and power spectra of different pulsing states. a Regular pulsing at τ̂ = 7.47.
b Two-frequency quasi-periodic pulsing at τ̂ = 7.25. c Three-frequency quasi-periodic pulsing
at τ̂ = 7.00. d Chaotic pulsing at τ̂ = 6.48. The pulse peak intensities are marked by the filled
circles in the time series. The calculated spectra have relative magnitudes with decibel increment.
In the numerical simulations, the relaxation oscillation frequency is assumed to be νR = 2.5 GHz
at J = 1.33Jth [after Tang and Liu (2001b); c© 2001 IEEE]
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Fig. 7.9 Phase portraits and spectra for peak series extracted from the waveforms in Fig. 7.8. Left
phase portraits of peak intensities S(N +1) versus S(N ). Middle spectra of peak series. Right phase
portraits of time intervals of the pulses T (N + 1) versus T (N ). A–D indicate the corresponding
pulsing states in Fig. 7.8. In A, the single dot in the phase portrait is enlarged for visibility [after
Tang and Liu (2001b); c© 2001 IEEE]

7.4 Optoelectronic Feedback with Wavelength Filter

7.4.1 System of Optoelectronic Feedback
with Wavelength Filter

The frequency of a semiconductor laser changes as the increase or decrease of
the pump for the laser, i.e., the change of the bias injection current in accordance
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Fig. 7.10 a Bifurcation dia-
gram of extrema of peak
series with normalized delay
time τ̂ varying from 0 to 10.
b Enlargement of a small
region indicated by dashed
rectangle in (a) with iden-
tification of various pulsing
states. A–D indicate the cor-
responding pulsing states, as
in Fig. 7.8 [after Tang and Liu
(2001b); c© 2001 IEEE]
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with (5.5). The order of the frequency change is ∼GHz/mA in common narrow-
stripe edge-emitting semiconductor lasers. Therefore, we can observe the dynamics
induced by the nonlinearity in a semiconductor laser with optoelectronic feedback
through a wavelength filter (frequency filter) having a bandwidth of ∼GHz. In such
systems, the nonlinearity is greatly enhanced by the introduction of a compulsive
time delay longer than the response time of the circuit inserted in the electronic
feedback loop. The systems show a rich variety of dynamics, including stable and
unstable oscillations and chaos, depending on the delay and other control parameters.
Several chaotic systems of optoelectronic feedback with wavelength filter have been
proposed in semiconductor lasers. One of them is an optoelectronic system where the
emitted light passes through a Fabry–Perot (FP) resonator and the output from the
FP is electronically detected and fed back to the laser injection current (Ohtsu 1996).
The second example is the use of a birefringent plate in the optical path with the com-
bination of optoelectronic feedback circuits to a semiconductor laser (Goedgebuer
et al. 1998a; Larger et al. 1998a). Another system of optoelectronic filtered feedback
in a semiconductor laser is an electro-optic (EO) modulation system, in which the
emitted light from a semiconductor laser is detected by a photodetector and the sig-
nal drives an EO modulator. The light from a different laser goes through the EO
module. The light is then detected by a second photodetector and the electric signal
with time delay is added to the bias injection current, thus closing the loop (Goedge-
buer et al. 2002). This is also an example of filtered optoelectronic systems. These
examples are categorized into filtered feedback systems discussed in Sect. 4.7. These
systems are used for light sources of chaotic generators in optical secure communi-
cations, which will be discussed in Chap. 13. Chaotic communications of encoding

http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_13
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Fig. 7.11 Generator of chaos
in wavelength using a wave-
length tunable semiconductor
laser with a nonlinear feed-
back loop. PL polarizer, PD
photo-detector, Amp ampli-
fier. Solid lines are the optical
paths and dotted lines are the
electronic connections
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and decoding rather lower frequency signals ranging from several kHz to 100 MHz
have been demonstrated using chaotic transmitter and receiver systems with opto-
electronic filtered feedback (Goedgebuer et al. 1998b, 2002; Larger et al. 1998b). In
this section, we describe a system and dynamics of filtered optoelectronic feedback
based on a birefringent plate.

Figure 7.11 shows an example of generator of chaos in wavelength using a wave-
length tunable semiconductor laser with a nonlinear feedback loop (Larger et al.
1998a). The nonlinearity is induced by the birefringent plate between two crossed
polarizers. In a two-electrode semiconductor laser, the wavelength is fixed at a given
value λ0 by adjusting a couple of bias currents (I0, I1) on each of the electrodes
and can be tuned electronically around λ0 by varying current I0 by i , while keeping
I1 constant. The feedback loop consists of a birefringent plate whose fast and slow
axes are at 45◦ to two crossed polarizers PL1 and PL2, a photodetector (PD) having
a time response τwith gain, and a delay line with a retardation time T . The signal
is converted to the tuning current i , which is superimposed to the bias current I0.
Hence, the emitted wavelength of the laser is given by λ(t) = λ0 + �λ(t), where
the additional change of the wavelength is proportional to the injection current iand
is given by �λ(t) = (dλ/di)i(t). The power spectrum density of light at the output
of PL2 is a channeled spectrum, which is expressed as

N L(λ) = sin2
(
πD

λ

)

≈ sin

(

πD

λ2
0

λ− φ0

)

(7.11)

where D is the optical-path difference through the birefringent plate and φ0 =
πD/λ0. Here, we assume that the additional change of the wavelength �λ is much
smaller than the wavelength λ0. Then, the output wavelength of the system is ruled
by the following delay differential equation:

λ(t)+ τ
dλ(t)

dt
= βλsin2

{

πD

λ2
0

λ(t − T )− φ0

}

(7.12)
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where βλ = P K dλ/di , P and K being the detected optical power by the photode-
tector and the gain of the amplifier. Since we consider a long delay compared with
the laser response (of the order of nanoseconds) and the delay time T is around
milliseconds, we need not take into account the dynamics related to the relaxation
oscillation. Therefore, Eq. (7.12) is enough to describe the dynamics of wavelength
in the tunable semiconductor laser.

7.4.2 Dynamics of Optoelectronic Feedback
with Wavelength Filter

In this subsection, we present experimental results of optoelectronic feedback with
the wavelength filter that is described in the previous subsection. The laser is a tun-
able double-electrode distributed Bragg reflector (DBR) semiconductor laser whose
wavelength can be tuned continuously without mode hopping. The center wavelength
of the laser is λ0 = 1.550 µm and the total tuning range is 1.5 nm (corresponding
frequency range is 200 GHz). The wavelength is tuned by a DBR-section injection
current I0 and the wavelength tunability is dλ/di = 0.2 nm/mA. The birefringent
plate was a calcite slab of thickness db = 6 cm, yielding an optical path difference
D = |ne − no|db = 11 mm between its fast and slow axes, where ne = 1.477
and no = 1.634 are the extraordinary and ordinary refractive indices, respectively.
Then its spectral transmission curve, which is also the function expressed by (7.11),
exhibits seven sinusoidal peaks centered at 1.550 µm inside the 1.5 nm tuning range
of the semiconductor laser. The linewidth of the laser is 10 MHz. The response time
of the electronic circuit is τ = 8.6 µs, while the delay time is much slower than the
response time and is set to be T = 0.51 ms.

In the wavelength filtered optical feedback, period-doubling cascade route to
chaos is obtained as the increase of the bifurcation parameter β (β = βλπD/λ2

0).
Figure 7.12 shows experimental dynamics for different values of the bifurcation para-
meter β and the corresponding power spectrum. The bifurcation parameter β is tuned
by changing electronically the photodetector gain K in the feedback loop. Period-2 in
Fig. 7.12a is a typical square waveform. The wavelength emitted by the semiconduc-
tor laser oscillates periodically between two states spaced by 41 pm (6.3 GHz). The
spectrum in Fig. 7.12b shows odd harmonics whose amplitude decreases with increas-
ing the odd number. The fundamental frequency is {2(T + τ)}−1 = 970 Hz. Four
wavelength states (located at λ1 = 59 pm, λ2 = 66 pm, λ3 = 110 pm, λ4 = 114 pm)
are obtained in the period-4 regime, as shown in Fig. 7.12c. The spectrum of period-4
in Fig. 7.12d exhibits sub-harmonic peaks at frequencies {(2m − 1)/4(T + τ)} with
a positive integer m. The DC background in the spectrum is slightly increased com-
pared with that of the period-2 regime. As β exceeds 2.11 in Fig. 7.12e, f, the peak-to-
peak amplitude of these small oscillations increases, yielding a high noise-like level
in the spectrum. These oscillations may be regarded as a starting chaotic regime at
each of the levels of the period-4 cycle. The time evolution of Fig. 7.12e is termed
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Fig. 7.12 Experimentally obtained time evolution of the wavelength (left column) and its FFT
spectrum (right column) at φ0 = 0.3 for different values of the bifurcation parameter β.
a, b β = 1.93, period-2, c, d β = 2.04, period-4, e, f β = 2.12, period-4 chaos, g, h β = 2.18,
period-2 chaos, i, j β = 2.26, higher harmonic synchronization, and k, l β = 2.52, fully developed
chaos [after Larger et al. (1998a); c© 1998 IEEE]
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Fig. 7.13 Experimental bifur-
cation diagram forφ0 = 3 [after
Larger et al. (1998a); c© 1998
IEEE]
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period-4 chaos. When slightly increasing β from 2.12 to 2.18, the laser enters a
period-2 chaos, as shown in Fig. 7.12g, h. The background level in the spectrum
is relatively high, but still features harmonic peaks. The two successive regimes
period-4 chaos and period-2 chaos illustrate the inverse cascade in the bifurcation
diagram. These non-periodic but chaotic regimes with a growing complexity are
also in very good agreement with the behaviors observed in earlier experimental
investigations (Gibbs 1985). Another example of periodic regime is illustrated in
Fig. 7.12i, j, a complicated high-frequency periodic oscillation is observed, which is
named as higher harmonic synchronization. For values of β over 2.5 in Fig. 7.12k, l,
fully developed chaos is clearly obtained, without any remaining influence of the
higher harmonic synchronization. The spectrum is similar to that of a white noise in
the bandwidth of the dynamical system.

Figure 7.13 shows the experimental plot of the bifurcation diagram obtained as
φ0 = 0.3 corresponding to Fig. 7.12. The vertical axis in the figure is the wavelength
and the horizontal axis is the bifurcation parameter. The experimental bifurcation
diagram quite agrees with the calculated diagram by the delay differential equation
in (7.12). The period-doubling cascade (period-2 T2 and period-4 T4) route to chaos
is obtained as the bifurcation parameter is increased from 0.7 to 2.1. To observe
further higher periodic oscillations such as T8 and T16 states, we require a fine tuning
of the bifurcation parameter β, but it is very difficult to observe due to existing
noises and the limitation for the resolutions of the experimental equipment and also
the narrow ranges and the low stabilities of T8 and higher periods. In usual fact,
observations of higher periodic oscillations over period-4 states are rare and difficult
in real experiments. When considering the general shape of the doubling cascade, it
is also in good agreement with other experimental results (Gibbs 1985).
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7.5 Chaotic Dynamics of Semiconductor Lasers Induced
by Injection Current Modulation

7.5.1 Instabilities of a Modulated Semiconductor Laser

The output from a semiconductor laser faithfully follows an injection current mod-
ulation as far as the modulation is small. On the other hand, for strong injection
current modulation, the laser output power clearly exhibits a number of nonlinear
characteristics, i.e., harmonic distortion, pulsation different from the modulation fre-
quency, bistability, and period-doubling and quasi-period-doubling routes to chaos.
The routes to chaos in semiconductor lasers have also been intensively studied not
only for theoretical interest, but also for practical purposes, especially in the area
of analog modulation in optical fiber communications. Chaos in pump-modulated
lasers is not the only unique feature in semiconductor lasers. It has also been observed
experimentally in solid-state lasers (Klische et al. 1984) and Nd-doped fiber lasers
(Phillips et al. 1987). Chaotic phenomena in class B lasers including semiconductor
lasers critically depend both on the spontaneous emission (Lee et al. 1985) and the
gain saturation (Chen et al. 1985). The spontaneous emission factor and the gain
saturation coefficient, which act as damping factors in the small signal analysis,
suppress instabilitities of semiconductor lasers. Spiky behavior of the photon den-
sity by the injection current modulation in semiconductor lasers is used for a light
source of pico-second optical pulse generation in various applications (Ito et al. 1981;
O’Gorman et al. 1989). When a laser is modulated at a frequency above the intrinsic
resonance frequency, the resonance peak shifts towards lower frequency as the mod-
ulation current is increased. When the frequency of the noise peak is moved to about
a half of the drive frequency, the noise peak begins to be sharpened. That is, the first
sub-harmonic is about to be generated. When the modulation current is increased fur-
ther, the oscillation gradually becomes period-1. Observation of period-4 oscillations
in a weakly pulsating laser was reported (Chen et al. 1985), where self-pulsation was
induced by optical damage. The observation of a period doubling route to chaos in
a Nd-doped fiber laser is also attributed to a very small spontaneous emission factor
and gain saturation coefficient (Phillips et al. 1987).

Figure 7.14 is an example of pulsation oscillations by strong modulations for the
injection current in a semiconductor laser (Hemery et al. 1990). In the figure, the
modulation frequency and index, and the bias injection current are changed. The left
plot shows the experimental results and the right shows the theoretical ones. A finite
response photodetector is used in the experiment, so that the detector response is also
displayed in the middle. In the numerical simulations, the filter effect of the photode-
tector is taken into account therefore, the theoretical waveforms are compatible with
those of the experiment. The laser is a single mode Fabry-Perot of an InGaAsP-InP
buried heterostructure oscillating at a wavelength of 1.30µm. The relaxation oscil-
lation frequency depends on the bias injection current and it is less than 3 GHz under
the operating conditions. For a high modulation frequency at fm = 3.00 GHz but
a moderate modulation index of m = 0.21, a waveform similar to the modulation
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Fig. 7.14 Laser outputs by strong injection current modulation. Experimental (left) and theoretical
(right). Middle curves account for the photodetector response in the experiment. The modulation
conditions are a fm = 3.00 GHz,m = 0.21, J = 2.14Jth, b fm = 1.00 GHz,m = 1.40, J =
2.14Jth, c fm = 3.4 GHz, m = 2.30, J = 1.40Jth, and d fm = 3.33 GHz, m = 3.60, J = 1.40Jth.
In each case, the horizontal bar indicates the period of current modulation [after Hemery et al.
(1990); c© 1990 IEEE]

is faithfully reproduced (Fig. 7.14a). For a low modulation frequency and a large
modulation index, the laser response still has the same periodicity as the modulation,
but several spikes are seen in a single period as shown in Fig. 7.14b. When both the
modulation frequency and index are large, period-2 oscillations merge into the laser
output power as shown in Fig. 7.14c. However, further large modulation index in
Fig. 7.14d, sub-peaks as observed in Fig. 7.14c vanish. Similar results of such period
doubling routes have also been reported in semiconductor lasers (Chen et al. 1985;
Gallagher et al. 1987; Hori et al. 1988). These behaviors are explained as follows;
the laser exhibits intense pulses and the carrier number is abruptly decreased after
the oscillations of intense pulses when the injection current is strongly modulated.
If the modulation frequency exceeds the relaxation oscillation frequency, a longer
recovery time than the modulation period is required to restore the carrier number
enough for the laser oscillation. Then, the laser may oscillate at a frequency beyond
the period of the modulation and result in period-2 oscillations.
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Fig. 7.15 Domain for first
sub-harmonic bifurcation
at τsR = 0.937. The
other used parameters are
Gnτsτph J/ed = Gnτs Ss =
2.8 and τs/τph = 3, 000
(Ss is the steady-state pho-
ton number). Dots and crosses
represent the numerical results
and the solid lines represent
analytical results [after Yoon
et al. (1989); c© 1989 IEEE]
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7.5.2 Linear Stability Analysis

In optoelectronic feedback systems, the feedback term is applied to the injection
current as an additional perturbation as shown in (7.2). In the injection current mod-
ulation, the feedback term is replaced by the modulation as discussed in Sect. 3.6. As
usual, the modulation may be a sinusoidal one with a modulation frequency fm and
a modulation index m. Again, the rate equation for the carrier density in the presence
of sinusoidal injection current modulation is given by

dn(t)

dt
= J (t)

ed
{1 + msin(2π fmt)} − n(t)

τs
− Gn{n(t)− n0}S(t) (7.13)

The rate equation for the photon density remains the same as that in (7.1). Several
studies have been conducted for the linear stability analysis for the rate equations in
the presence of injection current modulation by paying the attention to the nonlinear
gain saturation coefficient εs and the spontaneous emission factor βsp and discussed
stability and instability for the injection current modulation (Yoon et al. 1989; Lee and
Shin 1989). They showed resonance frequency shift, bistability, and period-doubling
bifurcation in directly modulated semiconductor lasers in the laser output power. The
dynamics is strongly dependent on spontaneous emission and gain saturation. As a
result, it is shown that the resonance peak in the frequency response shifts toward
lower frequencies as the modulation current is increased, and that it may accompany
a hysteresis phenomenon. Similar results have been reported by Harth (1973). His
result was obtained by neglecting both the spontaneous emission factor and the
gain saturation coefficient. Since the calculation for the steady-state analysis is too
complex, we here show only one of the results for the linear stability analyses.

It is known that generation of a period-2 solution or the first period-doubling
bifurcation in a directly modulated semiconductor laser is possible by sub-harmonic
resonance occurring when the frequency of the driving current is close to twice the
small signal resonance frequency (Yoon et al. 1989). Figure 7.15 is an example of
domains for the periodic oscillations. At the frequency slightly less than 2ωR , there
are hystereses for the increase or decrease of the frequency. It is not explicitly shown

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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in the graph, but coexistence states of two chaotic attractors exist in the region
of periodic states (period-1 and period-2) at certain modulation indexes. With an
increase of the modulation index from zero, there is no sub-harmonic resonance
until m = m1. At that point, the sub-harmonic amplitude suddenly takes a finite
value jumping to the upper branch of the amplitude. With decreasing the modulation
index on the upper branch, the amplitude of the sub-harmonics decreases and it falls
abruptly to zero at m = m2. The existence of a sub-harmonic solution depends
on history. Thus, within the region of m2 < m < m1, two attractors coexist; one
is the period-1 and the other is the period-2 (Arecchi et al. 1982). m1 and m2 are
proportional to the damping constant τsR that increases with the increase of both
βsp and εs , and is inversely proportional to the normalized carrier decay time τs/τph.
Experimental observations of the period-2 solution in pump-modulated lasers have
been made (Siemsen 1978; Paoli 1981). In those papers, the authors showed that
period-doubling bifurcations via period-4 and period-8 oscillations are excited by
the increase of the modulation as parametric resonance in the laser.

7.5.3 Chaotic Dynamics in Modulated Semiconductor Lasers

Kao et al. (1992, 1993) investigated the stability and instability for the injection
current modulation in the space of the modulation frequency and index based on the
numerical study for the rate equations. They calculated the maps for the models of FP
and DFB lasers. Figure 7.16 is the plot of the map for a small damping factor of
R/ωR = 0.0469 with zero nonlinear gain εs = 0. Curve HSm is the boundary of
the hysteresis jump of the mth spiking state; the section with broken line denotes the
downward jump. Curves PDm and PFm are the boundaries of period-2 and period-4
of the mth spiking state. The laser oscillation becomes spiky when the modulation
current is increased to reach the minimum of the current swing approach to the
threshold current level around m = 0.5. The laser output shows multiple spikes for
ν < νR and sub-multiple spikes for ν > νR . A minimum modulation current is
required for the threshold PD1 of period-2 state with frequency variation from νR to
2νR . The threshold HS1/2 of hysteresis, meanwhile, overlaps with the PD1 and two
types of period-doubling can be observed. Both of them contain half sub-harmonic
components in the frequency spectrum and cannot be solely differentiated from the
spectra. One is the normal type of period-doubling and is unrelated to the hysteresis.
As discussed in Sect. 7.2, the parameters of the nonlinear gain εs and the spontaneous
emission coefficient βsp play a crucial role for the dynamics.

Not all lasers always show unstable pulsation oscillations for the injection current
modulation. In the actual case, some lasers show instabilities for strong injection
current modulation, but others not. For example, the dynamics strongly depends
on device structures such as the FP laser or the distributed feedback (DFB) laser,
or the device constants of lasers even for the same laser structures. Bennett et al.
(1997) observed period-2 states in a FP laser, while they identified both period-2
and period-3 states in the DFB laser. Figure 7.17 is an example. The FP laser used
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in the experiments has a wavelength of 1.56 µm biased at J = 5.88Jth with a
relaxation oscillation frequency of 13.3 GHz. The DFB laser used in the experiments
has a wavelength of 1.53µm biased at J = 5.26Jth with the relaxation oscillation
frequency of 11.3 GHz. The important parameters for the nonlinear dynamics are
the nonlinear gain saturation factor εs and the spontaneous emission coefficient βsp.
The nonlinear gain saturation factor εs is almost the same for those two lasers and
the factor of DFB lasers is generally 1.5 times larger than that of FP lasers. On
the other hand, the difference of the spontaneous emission coefficient βsp is very
large. In general, the coefficient βsp of FP lasers is 50 times larger than that of
DFB lasers. Therefore, a FP laser is greatly affected by spontaneous emission of
light. This results in less effect for unstable oscillations for the injection current
modulation. Figure 7.17a, b are the plots of the map for the regions where unstable
behaviors are observed in the experiments. Figure 7.17c, d are the corresponding
maps for Fig. 7.17a, b, respectively, obtained by the numerical calculations from the
rate equations. PD denotes the regions where period-2 states are recorded and T is
the region where a period-3 state is observed. In the FP laser, there is a range of
power levels and modulation frequencies over which the period-2 state is observed.
In the DFB laser, there are both regions of period-2 and period-3 states. In the region
where period-3 oscillation occurs, as the modulation power is increased, the route
to period-3 is always via period-doubling. Thus, the dynamics of unstable pulsation
oscillations depend on the device parameters, especially on the spontaneous emission
coefficient. The theoretical analysis of bifurcation in semiconductor lasers by Yoon
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Fig. 7.17 Regions where unstable behaviors are observed. Experimental results for a FP laser and
b DFB laser. c and d are the corresponding numerical simulations for (a) and (b), respectively. PD
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et al. (1989) found that lasers with low relaxation damping were more susceptible to
bifurcation. This was also observed in the experiments. Liu and Ngai (1993) suggest
that the promotion of period-3 in their bulk DFB laser was due to the unusually low
value of βsp measured in their laser. The observed period-3 in a DFB laser can be
attributed to the low value of βsp measured in that laser.

7.6 Nonlinear Dynamics of Various Combinations
of External Perturbations

7.6.1 Optically Injected Semiconductor Laser Subject
to Optoelectronic Feedback

Though a semiconductor laser itself is a stable laser categorized as a class B, the
laser is easily destabilized by a single external disturbance, such as optical feed-
back, optical injection, optoelectronic feedback, or injection current modulation as
has already been studied. Other possible perturbations exist. Semiconductor lasers
are also destabilized by mixed perturbations with two or more of the above external
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disturbances and show more complex dynamics. Indeed, such dynamics have been
studied because of their importance in practical applications. For laser control to
reduce chaotic noises and chaotic communications in semiconductor laser systems,
composite external perturbations play essential roles in the systems. In the follow-
ing, as examples, we discuss the dynamics of semiconductor lasers subjected both
to optical injection and optoelectronic feedback, and both to optical feedback and
injection current modulation.

At first, we consider the dynamics of semiconductor lasers subjected to optical
injection and optoelectronic feedback. In the dynamics in optoelectronic feedback
alone, we can observe quasi-periodic routes of chaotic pulsing (Tang and Liu 2001b)
and chaotic pulsing states are generated depending on the delay time. On the other
hand, a period-doubling route to chaos is identified (Simpson et al. 1994) and the fre-
quency of chaotic oscillations is much enhanced by large optical injection compared
with the free running state (Simpson et al. 1995). However, the chaotic oscillations
can only be observed for a rather small optical injection strength with and without
frequency detuning, where careful adjustment of both the injection strength and the
frequency detuning is needed to operate the laser in such states (Liu et al. 1997;
Simpson et al. 1997).

In the mixed perturbations both of optical injection and optoelectronic feedback,
the dynamic states including stable locking, periodic oscillation, chaotic oscillation,
regular pulsing, quasi-periodic pulsing, and chaotic pulsing seen in semiconductor
lasers subject to either optical injection or delayed optoelectronic feedback alone, can
all be found. By controlling the optoelectronic feedback parameters, the bifurcation
can be suppressed or inverted in such a manner that high-order periodic or chaotic
dynamics are reduced to low-order periodic motions. In a semiconductor laser subject
both to optical injection and optoelectronic feedback, coherence collapse is found
to be suppressed and the bandwidth broadening effect is observed (Lawrence and
Kane 1999). In this system, chaotic evolution can be observed for the change of the
optical injection strength. However, there are two ways of chaotic routes, either a
period-doubling route to chaotic oscillation states or a quasi-periodic route to chaotic
pulsing states, even transient states in-between are identified. A notable expansion
and shifting of the chaos region in the parameter space is observed in the system due
to a strong optoelectronic feedback effect. The bandwidth of the chaotic state can
also be greatly broadened by the introduction of optical injection. This phenomenon
of chaos-region broadening and shifting together with the bandwidth enhancement
is very important for increasing the bit rate of chaotic communications, which is
currently limited by the bandwidth of chaos and the relaxation oscillation frequency
of the laser (Tang and Liu 2001a,b; Kusumoto and Ohtsubo 2002).

The mappings of dynamic states of a semiconductor laser subject to optical
injection and optoelectronic feedback are numerically calculated and displayed in
Fig. 7.18 (Lin and Liu 2003b). The mappings show stable and unstable regions as a
function of the normalized optical injection strength ofκ ′

nor = κinj(Am/τin)/(A0s/τph)

and the frequency detuning between the master and the slave lasers. The mappings
a–d are the plots calculated for different optoelectronic feedback strengths of κ ′

nor.
In the figure, each symbol means S: steady states, P1: period-1, P2: period-2, CO:
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Fig. 7.18 Mappings of
dynamic states of the hybrid
system where the normalized
feedback delay is τνR = 6.8
and the optoelectronic feed-
back ratio ξ of a 0 (without
feedback), b 0.16, c 0.20,
and d 0.22, respectively. S
steady states, P1 period-1, P2
period-2, CO chaotic oscilla-
tion, P pulsing states, which
include regular pulsing, quasi-
periodic pulsing, and chaotic
pulsing. The relaxation oscil-
lation frequency is set to
2.86 GHz [after Lin and Liu
(2003b); c© 2003 Elsevier]
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chaotic oscillation, and P: pulsing states, which include regular pulsing, quasi-
periodic pulsing, and chaotic pulsing. With the increase of optoelectronic feedback
strength κ ′

nor, regions of chaotic oscillations greatly expand in the map. When a laser
is subjected to optical injection alone, the chaotic region is only restricted for small
frequency detuning. On the other hand, when optoelectronic feedback is added to
the system, the laser still behaves like a system of optical injection alone at a high
injection rate, but pulsing states like optoelectronic feedback alone prevail at a lower
injection rate as shown in Fig. 7.18b. In between these two states of pulsations and
chaotic oscillations, chaotic pulsing states are observed. As the feedback strength is
further increased, this expanding and shifting effect is further enhanced as can be
seen in Fig. 7.18c, d. Because of the broadening and the shifting caused by the opto-
electronic feedback, this hybrid system is able to operate at CO in the strong injection
region, where bandwidth enhancement of the CO is expected (Liu et al. 1997). The
CO of this system in the strong injection region have bandwidths much broader
than the one that can be obtained in a laser subject to optical injection alone. This
hybrid system can be used for high-speed chaotic communications, spread-spectrum
spectroscopy, or other applications demanding broadband chaos.

7.6.2 Semiconductor Lasers with Optical Feedback
and Modulation

As shown in the previous section, when one of the mixed perturbations is small, the
behavior of the laser is dominated by the other perturbations. As another example,
we here discuss the dynamics of semiconductor lasers subjected to optical feedback
and modulation. Lawrence and Kane (2002) experimentally examined the chaotic
dynamics for such systems, however they considered two modulation methods for the
laser power; one is the direct injection current modulation through a bias Tee and the
other is the use of an EO modulator put into the path of the optical feedback loop. For
the EO modulation, light emitted from the laser is modulated by a lithium niobate EO
modulator. Figure 7.19 presents the experimental results for the map of the dynamic
states in the phase space of the modulation frequency and index at a fixed external
optical feedback. In the experiment, the laser used is a single mode quantum-well
index-guided laser with a wavelength of 850 nm and a maximum emission power of
50 mW. The laser is biased at J = 1.4Jth (the threshold current is 25 mA). Under
the operation condition, the relaxation oscillation frequency of the solitary laser is
about 2 GHz. The external feedback mirror is positioned at 317 mm (external cavity
resonant frequency of 473 MHz) from the front facet of the laser. The external inten-
sity feedback ratio is 0.22, which corresponds to strong optical external feedback.
For such strong optical feedback, the laser is generally stabilized and the linewidth
of the laser is much narrowed by the feedback. However, the laser is no more stable
with the additional strong modulation. Figure 7.19 shows the output states exam-
ined for a wide range of modulation frequencies (from 50 MHz to 1 GHz) relative to
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Fig. 7.19 Mappings of dynamic states in parameter space of modulation power and modulation
frequency from 50 MHz to 1 GHz (0.1−2.0 floop) for a direct injection current modulation and b
electro-optic modulation. Enlarged mappings for c direct injection current modulation and d electro-
optic modulation corresponding to the dynamic states in (a) and (b) close to the external cavity
resonance frequency (473 MHz), respectively. IN temporal instability, MM multimode instability,
FM frequency modulation, LFF low-frequency fluctuation, ML: mode-locking, SM single-mode
small-signal modulation, PO periodic orbit [after Lawrence and Kane (2002); c© 2002 IEEE]

the external cavity resonant frequency. In the direct injection current modulation in
Fig. 7.19a, a rich variety of dynamics can be observed compared with the case for the
EO modulation in Fig. 7.19b. When the modulation is small, the laser output powers
for both cases show stable oscillations except for regions corresponding to the exter-
nal cavity frequency and the relaxation oscillation frequency. Large regions of FM
and multimode output are observed at modulation frequencies close to multiples of
the external cavity resonant frequency. The dominant state for the injection current is
a temporal instability. At the temporal instability states, we can see distinct regions
of periodic oscillation. In the EO modulation in Fig. 7.19b, the laser shows much dif-
ferent features from the case of the direct injection current modulation. FM lasing,
mode-locking, and low-frequency fluctuations (LFFs) are observed for small regions
centered at sub-harmonics and multiples of the external cavity resonant frequency.

Figure 7.19c, d show the enlarged plots of the dynamics concerning the modulation
frequency corresponding to those of Fig. 7.19a, b, respectively. The center frequency
of the plots is the external feedback frequency. For the direct modulation with low
modulation powers (0 dBm) in Fig. 7.19c, the output is typical of an FM laser. As
the modulation frequency is tuned close to the external cavity resonant frequency,
the power modulation depth remains constant but the frequency modulation index
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increases. This enhancement occurs at a resonant frequency near the external cavity
resonant frequency, dependent on the feedback level and the external cavity length
(Lucero et al. 1988). For increased modulation power, there is a region of multimode
output (labeled MM in the figure) centered at a detuning of 2 MHz from the external
cavity resonant frequency. This region is characterized by an oscillation on multiple
external cavity modes (Schremer et al. 1988). Such an optical state is similar to the
coherence-collapsed state observed in semiconductor lasers operated with optical
feedback in regime IV.

When EO modulation is applied, the system behaves somewhat differently as
shown in Fig. 7.19d. At modulation frequencies near the external cavity resonance,
four distinct states are observed. For low modulation powers, or large detuning, the
output is a single frequency. This represents very small signal modulation (labeled
SM). As the modulation power is increased or the detuning from the external cav-
ity resonant frequency is decreased, an FM lasing region is observed. This results
in lower asymmetry in the FM sideband pairs. A further increase in the modula-
tion power or decrease in the frequency detuning results in a multimode instability.
However, this instability is an intermittent state similar to the LFF state observed
in semiconductor lasers with optical feedback at low injection currents. For the EO
case, the instability close to the external cavity resonant frequency is predicted to
occur theoretically using an iterative model based on a perturbation approach. It is
attributed to mode competitions between external cavity modes and coupled cav-
ity modes. The theory predicts a dynamic state consisting of large quasi-periodic
amplitude modulation with irregular intermittent behavior over longer time scales,
similar to the coherence-collapse state in semiconductor lasers with optical feedback
but with greater periodic structure than is generally observed for the case of optical
feedback alone (Spencer et al. 1999).
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Chapter 8
Instability and Chaos in Various
Laser Structures

Narrow-stripe edge-emitting structure is not the only one for semiconductor lasers.
Other than these, various kinds of laser structures of semiconductor lasers have been
proposed and some of them are now in practical use. For example, self-pulsating
semiconductor lasers are used for light sources of optical mass data storage systems,
vertical cavity surface-emitting semiconductor lasers (VCSELs) are expected as the
next generation laser light sources for optical communications and optical memory
systems, and broad-area semiconductor lasers are promising light sources for high
power laser applications. Quantum-dot semiconductor laser is a new laser structure
expected as a light source for highly coherent beam emission. The region of light
emission from the laser is well confined in a certain spatial point in the active area,
namely a quantum dot, and the energy levels related to light emission are perfectly
quantized by a quantum-dot structure. Another example of recent semiconductor
laser is quantum-cascade laser, which is a THz light source. Though a quantum-
cascade laser is one of the semiconductor lasers, the laser structure and light emission
process are completely different from other semiconductor lasers based on interband
optical transitions. Such a laser also shows different dynamics from conventional
semiconductor lasers. They have their own unique characteristic properties. Here,
we do not discuss the details of each device structure and its characteristics, but we
introduce the rate equations for such lasers and present their dynamic properties.
These new laser structures have extra degrees of freedom and show instabilities and
chaotic dynamics without any introduction of external perturbations. In this chapter,
we discuss the dynamics of these new lasers both for solitary oscillations and external
perturbations.

J. Ohtsubo, Semiconductor Lasers, Springer Series in Optical Sciences 111, 239
DOI: 10.1007/978-3-642-30147-6_8, © Springer-Verlag Berlin Heidelberg 2013
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8.1 Multimode Lasers

8.1.1 Multimode Operation of Semiconductor Lasers

Before discussing the dynamics of semiconductor lasers with various structures
different from narrow-stripe edge-emitting lasers, we show the rate equations for
multimode operating narrow-stripe edge-emitting lasers. In the preceding chapters,
semiconductor lasers were assumed to be operating at a single longitudinal mode,
however, the laser sometimes oscillates at multimode due to noises when it is biased
at a low injection current close to the threshold, otherwise it oscillates at multimode
originating from their device structures even for a higher bias injection current.
It intrinsically oscillates at multimode by the introduction of external perturbations
such as optical external feedback. Figure 8.1 shows a multimode spectrum of a Fabry-
Perot semiconductor laser operating close to the threshold. Even for a laser operating
at a single mode with suppressed side mode, the side mode does not damp out by
optical feedback or optical injection, and the laser dynamics are much affected by
the mode behaviors as shown in Chap. 6. Semiconductor lasers at solitary condition
may be operated with multimode as a nature of the device structure, since the laser
has a broad gain bandwidth. The separation of the longitudinal modes of an ordinary
semiconductor laser is more than 100 GHz (the corresponding wavelength separation
is ∼1 nm) due to a short internal cavity length. However, the gain profile is as large
as 20 nm or more and it has the possibility of multimodal oscillations with several
oscillation lines. In semiconductor lasers of various device structures different from
narrow-stripe edge-emitting lasers, they usually operate at multimode without any
external perturbations, since they originally include extra variables (extra degrees of
freedom) besides those for narrow-stripe edge-emitting lasers. We will discuss these
dynamics later. Here, we first discuss the dynamics of narrow-stripe edge-emitting
semiconductor lasers operating at multimode.

Semiconductor lasers have broad gain bandwidth, which is a unique feature differ-
ent from other lasers. Therefore, there exist many possible oscillation lines within the
bandwidth. The gain curve is sometimes assumed as a parabolic function, although,
in actual fact, the gain profile has asymmetry. The gain for shorter wavelength
(higher energy of carrier or higher frequency oscillation) tends to be large by the
band-filling effects under the condition of constant temperature and carrier injection.
Also, semiconductor lasers with multimode operation are much affected by this effect
(Petermann 1988). The optical powers are equally distributed to respective modes
below the laser threshold. However, the transfer of the power to the side modes is
much restrained well above the threshold and the power of the main mode increases
resulting in a single mode oscillation. This phenomenon is well reproduced from
the calculations of the rate equations for taking into consideration the multimode
effects and the theory and experiments show good coincidence. The effect of side
mode suppression is strongly dependent on spontaneous emission of light and the
large spontaneous emission coefficient βsp forces the excitation of side modes.

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 8.1 Optical spectrum
of a multimode Fabry-Perot
semiconductor laser
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8.1.2 Theoretical Model of Multimode Lasers

The rate equations for the photon number and the carrier density for multimode
semiconductor lasers are given by the following equations (Petermann 1988):

dS j (t)

dt
= [Gn, j {n(t)− nth, j }]S j (t)+ Rsp(ω j ) (8.1)

dn(t)

dt
= J (t)

ed
− n(t)

τs
−

M
∑

j=−M

Gn, j {n(t)− n0}S j (t) (8.2)

where subscript j is for the j th mode and 2M + 1 is the total mode number. j = 0 is
the main mode. The final term in (8.1) is the effect of spontaneous emission of light.
It is noted that it is not only a function of time but also a function of optical frequency.
For incoherent rate equations, we do not need to consider the phase equation, since
it does not couple with the other equations. The above two equations are enough to
describe the primary characteristics induced by multimode oscillations in a solitary
laser. On the other hand, in an actual situation, we must consider the nonlinear
saturation effect for the gain and the cross-saturation effect in the photon number
rate equation. Further, we must use the complex field equation instead of the photon
number rate equation, when we consider coherent effects such as optical feedback.
For coherent phenomena, the phase equation plays a crucial role for the dynamics as
has already been discussed. Such an instance will be treated later in this subsection.

At first, we study the side mode suppression ratio (MSR) in a multimode semicon-
ductor laser. Assuming 2M + 1 oscillation lines within the gain profile and approx-
imating the gain as a parabolic curve, the gain is written as

Gn, j = Gn

{

1 −
(

j

M

)2
}

(8.3)

where M = �νg/�νl ,�νg is the frequency width of the gain profile and �νl

the frequency of the longitudinal mode spacing. The laser output power of the j th
mode for the steady-state solution is calculated from the rate Eqs. (8.1) and (8.2) as
(Petermann 1988; Agrawal and Dutta 1993)
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S j ≈ Rsp(ω j )

1
τph

− Gn, j (ns − n0)
≈ τph Rsp(ω j )

δ +
(

j
M

)2 (8.4)

where ns and n0 is the steady-state value of carrier density and carrier number at
transparency, and δ = 1 − Gnτph(ns − n0) = τph Rsp/S0. Note that the relation
Gnτph(ns − n0) ≈ 1 is used for the final form of (8.4). From this relation, we obtain
the side mode suppression ratio as

MSR = S0

S1
= 1 + 1

δM2 = 1 + S0

τph Rsp
(
�νl

�νg
)2 (8.5)

For a semiconductor laser which is assumed to be a single mode operation, the value
of MSR is larger than 20.

A single mode operation at a high bias injection current is expected for index-
guided semiconductor lasers, since the spontaneous emission coefficient is as small
as less thanβsp ∼ 10−4.However, the side mode suppression is weak for gain-guided
semiconductor lasers with a larger spontaneous emission coefficient of βsp ∼ 10−3

and the laser tends to be oscillated with multimode. As a primary effect, a side
mode is suppressed for the increase in the injection current above the threshold
and the optical power is concentrated to the main mode. In actual laser oscillation,
there are effects of spatial hole-burning due to standing-wave nature along the laser
propagation and spectral hole-burning due to the broadening of the gain profile for
the increase in the optical power. As results, the side mode is suppressed and the
optical power is transferred to the main mode (Agrawal and Dutta 1993). These
effects cause instabilities for the main mode and play an important role for chaotic
dynamics in semiconductor lasers. Similar effects are observed for optical injection
to semiconductor lasers as shown in Fig. 6.5. Other effects to destabilize the main
mode and enhance the side modes are the beating between the main and side modes
and the four-wave mixing in the oscillation modes. The effects are strongly dependent
on laser types, materials, and confinement of light in the active layer.

We have derived the multimode rate equations for semiconductor lasers in the
incoherent case. However, we must take into account the effects of the nonlinear gain
saturation and cross-gain saturation. Also, we must use the coherent rate equations
for a semiconductor laser when the laser is subjected to external optical feedback or
optical injection. When a semiconductor laser oscillates at a multimode with 2M +1
oscillation lines, the rate equations for the complex field and the carrier density are
written as (Ryan et al. 1994)

dE j (t)

dt
= 1

2
(1 − iα)Gn, j {n(t)− nth, j }E j (t)

− 1

2

(

εs j |E j (t)|2 +
M

∑

m=−M

θmj |Em(t)|2
)

E j (t) (8.6)

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Table 8.1 Characteristic device parameters for a multimode semiconductor laser at an oscillation
wavelength of 780 nm (GaAs-GaAlAs laser)

Symbol Parameter Value

Gn gain coefficient 2.05×10−13 m3 s−1

α linewidth enhancement factor 4.00
r0 facet reflectivity 0.556
nth carrier density at threshold 4.00×1024 m−3

n0 carrier density at transparency 1.40 × 1024 m−3

τs lifetime of carrier 2.00 ns
τph lifetime of photon 1.88 ps
τin round trip time in laser cavity 6.00 ps
V volume of active region 1.25×10−16 m3

εs j nonlinear self-saturation coefficient 1.70×104s−1

θmj nonlinear cross-saturation coefficient 1.60 × 103s−1

dn(t)

dt
= J

ed
− n(t)

τs
−

M
∑

m=−M

[Km Gn,m{n(t)− n0}]|Em(t)|2 (8.7)

where E j (t) is the field of the j th mode, εs j and θmj (m = j) are the nonlinear self-
and cross-saturation coefficients, respectively, and Km is the mode gain coefficient.
We omitted the Langevin noise terms in (8.6), however, it may be added where
necessary.

The nonlinear saturation coefficient α′ = −(∂Re[χ ]/∂S)/(∂Im[χ ]/∂S) for the
photon number discussed in Sect. 6.2 is ignored in the above equation. The satura-
tion coefficients εs j and θmj do not have large values and they are in the order of
104 s−1. In the carrier density equation, we also ignore the mode interferences for the
carrier recombination because it has small effects. A semiconductor laser operating
at multimode is an unstable laser and it is easily affected by external perturbations.
A multimode semiconductor laser shows mode competitions and mode switching
induced by the nonlinear interactions among the modes. Mode partition noise is
one of the dominant effects in multimode oscillating lasers and it is a non-negligible
effect (Ahamed and Yamada 2002). Each oscillation mode includes a very large rela-
tive intensity noise (RIN) and it sometimes causes problems in actual use. However,
as a total intensity, a multimode semiconductor laser with partition noise has the
same order of RIN as a single mode laser, since the partition noises are averaged out
(Petermann 1988). Using (8.6), the rate equation for the complex field in a multimode
semiconductor laser with optical feedback is given by

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 8.2 Bifurcation dia-
grams of carrier density for
optical feedback rate. a Single
mode laser. b Multimode laser
with five oscillation lines.
The external cavity length
is L = 10 cm, which cor-
responds to a frequency of
1.5 GHz. The relaxation oscil-
lation frequency of the laser
is assumed as 0.7 GHz. The
same device parameters are
assumed for both cases [after
Ryan et al. (1994); © 1994
IEEE]
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dE j (t)

dt
= 1

2
(1 − iα)Gn, j {n(t)− nth, j }E j (t)

− 1

2

(

ε j |E j (t)|2 +
M

∑

m=−M

θmj |Em(t)|2
)

E j (t)

+ κ j

τin
E j (t − τ) exp(iω jτ) (8.8)

In the following, the dynamics of multimode semiconductor lasers subjected to exter-
nal optical feedback are numerically investigated. Table 8.1 shows typical values of
device parameters for a multimode semiconductor laser frequently used in numerical
simulations (Ryan et al. 1994).
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8.1.3 Dynamics of Multimode Semiconductor Lasers
with Optical Feedback

When the frequency corresponding to the round-trip time of light in the external
cavity is small enough compared with the relaxation oscillation frequency, the dif-
ference in the dynamics between single mode and multimode semiconductor lasers
is not distinct. However, if the external cavity length becomes short and the corre-
sponding frequency exceeds the relaxation oscillation frequency, they show different
dynamics. Figure 8.2 shows an example of the difference. Bifurcation diagrams in
the phase space of the carrier density and the external feedback rate are calculated
both for single mode and multimode semiconductor lasers (Ryan et al. 1994). For
the multimode laser, five modes are assumed. In Figs. 8.2a, b, the multimode laser is
stable compared with the single mode laser and a feedback level of ten times larger
than the solitary case is required to destabilize the laser. Namely, the multimode
semiconductor laser is less sensitive to optical feedback than the single mode semi-
conductor laser as far as the conditions of the device parameters are the same. This
result can be understood qualitatively by noting that all modes contribute to the damp-
ing of relaxation oscillations. Even though an individual mode may be unstable in
solitary oscillation, simultaneous lasing of all modes preserves the steady state over
a large range of the external feedback. The situation is quite similar to the effect of
averaged RIN in multimode semiconductor lasers (Petermann 1988). Also, chaotic
regions are much thinner compared to the single mode case.

At chaotic oscillations of a multimode semiconductor laser, the bifurcation dia-
grams cannot tell us whether all of the modes simultaneously oscillate, or whether
one of the modes, or a small number of them are the dominant oscillation modes.
Figure 8.3 shows the simulation result for waveforms of each oscillation mode in
a multimode semiconductor laser (Ryan et al. 1994). Figure 8.3 is the calculations
of waveforms without and with optical feedback. Each waveform is averaged for a
10 ns time window to clearly show the difference. Switching among the modes is not
distinct for the solitary oscillation, although the change of the main mode for the time
evolution is visible as shown in Fig. 8.3a. The solitary laser exhibits mode partition
fluctuations, but it remains multi-moded most of the time. The total optical power at
the solitary oscillation is almost constant for time. However, in Fig. 8.3b, only one of
the modes is dominant for a certain time duration and the other mode is suppressed,
when the laser shows chaotic dynamics induced by the optical feedback. The main
mode changes to the other mode after a certain time duration in a random manner.
At the moment of mode hopping, the total output power sustains irregular spikes.
Switching among modes is a typical feature of multimode semiconductor lasers sub-
jected to optical feedback. From the detailed study of the dynamics, it is understood
that only one or few of the possible oscillation modes become the dominant mode
for a certain time duration and the modes alternately switch in a random manner.
When the mode number is small, only one mode tends to oscillate in chaotic manner
and oscillations of the other modes are suppressed. Especially, a mode of shorter
wavelength tends to show chaotic oscillations for small optical feedback due to the
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Fig. 8.3 Waveform of each
mode in a multimode semicon-
ductor laser corresponding to
Fig. 8.2. Three modes are dis-
played. a Almost steady-state
oscillation without optical
feedback and b chaotic oscil-
lation with optical feedback.
The intensity feedback ratio
is 5 × 10−4 [after Ryan et al.
(1994); © 1994 IEEE]
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asymmetry of the gain profile. Indeed, this mode switching has been experimentally
observed (Ikuma and Ohtsubo 1998).

8.2 Self-Pulsating Lasers

8.2.1 Theory of Self-Pulsating Lasers

Self-pulsating semiconductor lasers are used as light sources for digital versatile
disks (DVD) in optical data storage systems, since noises (actually chaotic irregular
oscillations) induced by optical feedback from a disk surface are greatly suppressed
by self-pulsations. Also, a technique of high frequency injection current modulation
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Fig. 8.4 Model of self-
pulsating semiconductor
lasers. a Cross-section
of the front facet of the
laser, b carrier distribution,
and c optical profile. The
center is the active region
and both sides of the active
layer are the carrier absorbing
regions
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in CW operating semiconductor lasers is used to reduce optical feedback noises in
optical disk systems. Self-pulsating semiconductor lasers are fabricated to reduce
feedback noises using pulsation oscillations originating from their device structures
without external control circuits. The pulsation frequency depends on each device
and the bias injection current, and ranges typically from several hundreds of MHz
to the order of GHz. The self-pulsation semiconductor laser itself is unstable and
sometimes shows instability for a certain region of the bias injection current even
without external perturbations. The structure of self-pulsation lasers is almost the
same as edge-emitting lasers except for saturable absorbing regions adjacent to the
active layer as shown in Fig. 8.4. The width of the active region is usually the same
size as that of edge-emitting semiconductor lasers. However, this is not the only
structure of self-pulsating semiconductor lasers. The other example is a type of weak
index guide (WIG) and the saturable absorbing layer is installed above the active
region. The type of adjacent saturable absorbing layers (SALs) shown in Fig. 8.4
is assumed in the following discussion. However, the results are straightforwardly
applicable to the WIG model.

In Fig. 8.4a the cross-section of the front facet of a self-pulsating semiconductor
lasers is represented. The saturable absorbing regions are installed at both sides of
the active layer. Figure 8.4b is the carrier distribution along the active layer. The
size of the active region has almost the same dimension as that of common narrow-
stripe edge-emitting semiconductor lasers. Carriers injected into the active region
rapidly decay out to the regions of the saturable absorbers. Figure 8.4c is the profile
of the output power at lasing oscillation. The whole distributions of the carriers
and the optical power from the active layer to the saturable absorbing regions are
determined by the boundary conditions in the same manner as the treatment of the
light transmission in an optical wave guide (Yamada 1993). The time constant τ12
of the carrier diffusion from the active layer to the absorbers is given as
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τ12 = w2

2D
(8.9)

where w is the width of the active layer and D is the diffusion constant. At the
same time, the carrier diffusion also occurs from the saturable absorbing regions
to the active layer. Since the total number of the electrons V1n1 + V2n2 should be
unchanged, the time constant τ21 of the carrier diffusion from the absorbers to the
active layer is given as

τ21 = V2

V1
τ12 (8.10)

where V1 and V2 are the volumes of the active and absorbing regions, and n1 and
n2 are the carrier densities at the active and absorbing regions, respectively. The
linearized gains for the active and absorbing regions have different values, therefore
we must use appropriate gains for them in the numerical simulations. Also, the carrier
densities above which the lasing gain becomes positive, i.e., transparent, differ from
each other.

Before introducing the rate equations for self-pulsating semiconductor lasers,
the mechanism of self-sustained pulsating oscillations in a SAL type laser is briefly
explained. At the carrier number less than the laser threshold, carriers are accumulated
in the active region by the carrier injection. When the carrier number exceeds the
laser threshold, the laser oscillation starts. The carriers are rapidly absorbed by the
diffusion to the saturable absorbing regions. The carrier diffusion is reduced due to
the increase of the carrier number in the saturable absorbing regions, and this results
in the increase of the photon number. However, the increase of the photon number
causes the depletion of carriers in the active region and the decrease of the carrier
number is accelerated by the diffusion of the carriers to the saturable absorbing
regions. Then, the carrier number falls below the laser threshold and, finally, the
laser oscillation stops. After the halt of the laser oscillation, the carrier number again
increases and the next pulsating oscillation starts. This process repeats again and
again and the laser shows self-sustained pulsation oscillations. The accumulation
time of carriers to show lasing oscillation is typically about 1 ns (corresponding to a
pulsating oscillation frequency of 1 GHz) and the width of the pulses is ∼100 ps.

In the following, we assume a single mode oscillation for a self-pulsating semi-
conductor laser, however, actual lasers are more or less multimode oscillations.
Therefore, the dynamics derived from the theory do not always coincide well with
the experimental results unlike in the cases of narrow-stripe edge-emitting lasers.
However, we can discuss approximate characteristics of self-pulsating semiconduc-
tor lasers, such as pulsating oscillations, pulsing frequency, and L-I characteristics.
Several theoretical models have been proposed and some of them are listed in the
reference (Carr and Erneux 2001), although the fundamental idea of the models is
the same. Here, we assume a single mode model for a self-pulsating semiconductor
laser and we introduce an additional carrier density equation for the saturable absorb-
ing regions of the rate equations in a narrow-stripe edge-emitting semiconductor
laser (Yamada 1993, 1996). Due to the presence of the saturable absorbing regions,
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Fig. 8.5 L-I characteristic of a
self-pulsating semiconductor
laser. The laser is an AlGaInP
multi-quantum well laser
operating at a wavelength
of 650 nm and a maximum
output power of 5 mW
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carriers in the active region rapidly decay toward the absorbing regions and pulsa-
tions occur in the laser output. In such a structure, we must take into account the
carrier density equations in the absorbing regions.

The rate equations for the complex amplitude E and the carrier densities n1 and n2
for the active and absorbing regions describing self-pulsation semiconductor lasers
are written as

dE(t)

dt
= 1

2
(1 − iα)[Gn1{n1(t)− nth1} + Gn2{n2(t)− nth2}]E(t) (8.11)

dn1(t)

dt
= J

ed
− n1(t)

τs1
− n1(t)− n2(t)

τ12
− Gn1{n1(t)− n01}|E(t)|2 (8.12)

dn2(t)

dt
= −n2(t)

τs2
− n2(t)− n1(t)

τ21
− Gn2{n2(t)− n02}|E(t)|2 (8.13)

Here, subscripts 1 and 2 denote the quantities for the active and absorbing regions,
respectively, and τ12 and τ21 are the carrier diffusions from regions 1–2 and vice versa,
respectively, as has already been defined. In the field equation, we ignored the non-
linear gain saturation effect. However, it may play an important role in self-pulsating
semiconductor lasers, since the photon density becomes large due to pulsating oscil-
lations even for a short time duration. We take into account the nonlinear gain in such
a case as discussed in Sect. 3.3.4. However, we can simulate approximate character-
istics of self-pulsating semiconductor lasers without considering the gain saturation
effect and the term is sometimes omitted. Self-pulsation semiconductor lasers were
originally aimed to reduce the effect of optical feedback noises, however, the RIN is
sometimes enhanced under certain conditions of the feedback. Furthermore, they are
essentially unstable lasers and they sometimes show unstable or chaotic oscillations
under certain ranges of the bias injection current even at solitary oscillations.

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 8.6 Waveforms and rf spectra in Fig. 8.5. a Unstable region at a bias injection current of 74 mA
and b stable regular pulsating oscillation at 80 mA

8.2.2 Instabilities at Solitary Oscillations

The self-pulsating semiconductor laser itself is an unstable laser and regular pul-
sating oscillation is considered as a kind of period-1 state on the way to chaotic
evolution. Typical features of chaotic states in a self-pulsating semiconductor laser
are pulsing oscillations with irregular pulse amplitude and jitters. The characteristics
of self-pulsating semiconductor lasers are strongly dependent on the device structure
and parameters. Figure 8.5 shows an example of an experimental L-I characteristic
of a self-pulsating semiconductor laser at solitary oscillation. The laser is a SAL type
and has a maximum output power of 5 mW with an oscillation wavelength of 650 nm.
The oscillation above the threshold is divided into unstable and stable regions for the
bias injection current. The threshold current is about 70 mA, which is much higher
than that of ordinary narrow-stripe edge-emitting semiconductor lasers, because the
strong carrier dissipation exists due to the presence of the saturable absorbing regions.
Another difference is the vague threshold. The laser power does not linearly increase
for the bias injection current close to the threshold, but it has a hysteresis. As demon-
strated later, bistability is reproduced by the numerical simulations from the rate
equations.

In the L-I characteristic, the laser output shows the bistable state above the thresh-
old. In this region, the laser exhibits pulsating oscillation, but it is unstable. A
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Table 8.2 Characteristic device parameters for a self-pulsating semiconductor laser at an oscillation
wavelength of 650 nm (AlGaInP laser)

Symbol Parameter Value

Gn1 gain coefficient in active region 3.08 × 10−12 m3s−1

Gn2 gain coefficient in satruable 1.24 × 10−13m3s−1

absorbing region
α linewidth enhancement factor 4.00
n01 carrier density at transparency 1.40 × 1024 m−3

in active region
n02 carrier density at transparency 1.60 × 1024 m−3

in satuarble absorbing region
τs1 lifetime of carrier in active region 2.49 ns
τs2 lifetime of carrier in saturable 1.25 ns

absorbing region
τ12 diffusion time 2.65 ns
τph lifetime of photon 2.72 ps
V1 volume of active region 0.72 × 10−16 m3

V2 volume of saturable absorbing region 0.46 × 10−16 m3

waveform and its rf spectrum in this region are plotted in Fig. 8.6a. The pulse peak
changes irregularly and the waveform shows a broad chaotic spectrum. Well above
the laser threshold, the laser shows regular pulsing states with constant peak and sep-
aration as shown in Fig. 8.6b. However, even for such stabilized operations at solitary
mode, the laser may be destabilized by optical feedback. Stability or instability of
the laser operations for optical feedback is discussed in the next subsection. It is
noted that every self-pulsating semiconductor laser does not always show the same
L-I characteristics as in Fig. 8.5. A laser with regular pulsing states is suitable for a
read-light source in DVD systems to avoid optical feedback from a disk surface.

The L-I characteristic is numerically calculated from the rate Eqs. (8.11)–(8.13).
Typical parameter values of red light self-pulsating semiconductor lasers are listed in
Table 8.2. Because of the pulsation characteristics of laser oscillations, the values of
the gain coefficients are larger than those of narrow-stripe edge-emitting semiconduc-
tor lasers. Figure 8.7 is an example of the calculated L-I characteristic (van Tartwijk
and San Miguel 1996). After the lasing oscillations, the laser shows bistability for the
bias injection current between 48 and 58 mA and chaotic pulsating oscillations are
observable in this region. For the bias injection current from 58 to 125 mA, the laser
oscillates at stable regular pulsing states. Over the bias injection current of 125 mA,
the laser shows stable CW oscillations. In the numerical simulations, noises induced
by spontaneous emission strongly affect the pulsing frequency. At regular pulsing
states without considering noises, the pulsing frequency smoothly increases with the
increase of the bias injection current. In the presence of noises, a kink is observed in
the characteristic curve of the pulsing frequency and the bias injection current (van
Tartwijk and San Miguel 1996; Mirasso et al. 1999).
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Fig. 8.7 Theoretically calcu-
lated L-I characteristic of a
self-pulsating semiconductor
laser [after van Tartwijk and
San Miguel (1996); © 1996
IEEE]
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The theoretical calculation in Fig. 8.7 well reproduces the behaviors of unstable
and stable pulsating oscillations. However, the CW operation of self-pulsating lasers
is not observable in experiments. The CW operation in Fig. 8.7 is achieved at a high
bias injection current and such a high bias injection current may damage the laser.
Another example of discrepancy between the theory and the experiment is the pulse
width of the waveform. The theoretically calculated pulse width is much smaller
than the actual width. For example, the calculated pulse width is typically 10 ps,
but the observed pulse usually has a width of around 100 ps. As has already been
mentioned, the improvement of the theoretical model of the rate equations is still
required to explain well the experimental data (Yamada 1998b). The other reason for
the discrepancy is the assumption of a single mode operation for self-pulsating lasers.
It is well known that self-pulsating semiconductor lasers oscillate at multimode with
many oscillation lines.

Characteristics of InGaN self-pulsating semiconductor lasers with an operating
wavelength of 395 nm have been investigated (Tronciu et al. 2003). Since the dif-
ference between the carrier lifetimes of the active and saturable absorbing layers
is much greater than that of red light self-pulsating semiconductor lasers, the lasers
show quite different dynamics from red self-pulsating lasers. For example, the carrier
lifetime of the active layer is 2.0 ns, while that of the saturable absorbing layer is
only 0.1 ns. The rate equations are fundamentally the same as those in (8.11)–(8.13),
but Tronciu et al. took into account the effects of the outer regions besides the active
and absorbing layers in the numerical simulations. Figure 8.8 shows some numeri-
cal and experimental results. They used the model of a WIG-type laser. Close to the
threshold, the laser oscillates at the CW operation without hysteresis like in Fig. 8.8a,
which is quite different from the operation of red self-pulsating lasers. At a certain
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Fig. 8.8 Characteristics of an
InGaN self-pulsating semi-
conductor laser with an oscil-
lation wavelength of 395 nm.
a Calculated bifurcation dia-
gram for a laser cavity length
of 500 µm. The self-pulsation
region is observable from 125
to 200 mA. The other range
of the injection current is a
stable CW operation. b Self-
pulsation range in the plane
of laser cavity length versus
injection current. Experi-
mentally obtained ranges of
the self-pulsation are indi-
cated with dotted lines [after
Tronciu et al. (2003); © 2003
IEEE]
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bias injection current, the laser at first shows self-pulsating oscillation. However, the
laser recovers stable states for a bias injection current above 200 mA. The dynamics
is strongly dependent on the laser cavity length. The self-pulsation range (SP) for
the laser cavity length is investigated in Fig. 8.8b. We can see the agreement between
the theoretical and experimental results.

8.2.3 Instability and Chaos by Optical Feedback

The self-pulsating semiconductor laser is fabricated as a low noise light source in
optical data storage systems. However, the reduction of feedback noise is not always
achieved for every feedback condition. The self-pulsating semiconductor laser has
a periodic pulsation with a frequency ranging from several hundreds MHz to GHz
depending on the bias injection current. There is a congenial range of optical feedback
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lengths to suppress feedback noise. The self-pulsating semiconductor laser sustains
a forced oscillation due to the device structure and the feedback noise is reduced for
a wide range of the feedback conditions. On the other hand, outside this region, the
laser undergoes more noises than that of edge-emitting semiconductor lasers. Also,
the laser shows chaotic behaviors for the modulation under certain bias injection
current ranges. At first, we consider feedback induced noises in a self-pulsating
semiconductor laser. There are two schemes of optical feedback in self-pulsating
semiconductor lasers; coherent and incoherent feedback depending on the relation
between the pulse separation and the feedback length. When the feedback length
is small enough compared with the pulsing separation and close or less than the
pulse width, the effect is coherent. For the condition Tp > τ(Tp being the pulse
separation), the rate equation for the complex field is given by

dE(t)

dt
= 1

2
(1 − iα)[Gn1{n1(t)− nth1} + Gn2{n2(t)− nth2}]E(t)

+ κ

τin
E(t − τ) exp(iω0τ) (8.14)

The equation is the same as that for the coherent case of narrow-stripe edge-emitting
semiconductor lasers except for the effects of the gain term in the saturable absorbing
regions. The rate equations for the carrier densities under coherent feedback remain
unchanged as in (8.12) and (8.13).

On the other hand, the rate equation of the complex field is written the same as
(8.11) for incoherent optical feedback, however, the carrier density equation for the
active layer in (8.12) must be changed and the incoherent feedback term is added to
this equation, when Tp < τ . The rate equation for the carrier density is given as

dn1(t)

dt
= J

ed
− n1(t)

τs1
− n1(t)− n2(t)

τ12
− Gn1{n1(t)− n01}

× {|E(t)|2 + κi (1 − R2
0)R|E(t − τ)|2} (8.15)

where R0 and R are the intensity reflectivities of the front facet of the laser and
the external reflector, respectively, and κi is the intensity coupling coefficient to the
active layer.

We show some numerical results for the dynamics of self-pulsating semiconductor
lasers subjected to coherent optical feedback. Figure 8.9 is an example (Yamada
1998a,b). Figure 8.9a shows the time series of the laser oscillation without optical
feedback. In the figure, n1 and n2 are the carrier densities of the active and saturable
absorbing regions, respectively, and S is the photon number. n4 is the carrier density
at the current blocking region installed above the saturable absorbing layer. The
laser oscillates at the regular pulsing state and the pulsing frequency is 1.29 GHz.
The calculated RIN at the solitary oscillation is less than −130 dB/Hz for the lower
frequency component. Figure 8.9b shows the waveforms for the same variables under
optical feedback. The feedback ratio is set to be 3.3 % in the average field amplitude.
In the presence of optical feedback, the laser still shows a pulsating oscillation.
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Fig. 8.9 Times series of the variables in a self-pulsating semiconductor laser at J = 1.69Jth.
a Without optical feedback and b with optical feedback of 3.3 % of the average field amplitude.
The external cavity length is L = 4 cm. n1: carrier density in active region, n2: carrier density in
saturable absorbing region, n4: carrier density in current blocking region, and S: photon number
[after Yamada (1998a); © 1998 IEICE]

However, the laser output power is disturbed by the feedback and the laser shows a
chaotic oscillation. The pulse period is larger than that of the solitary oscillation and
its average frequency is 1.07 GHz. It is noted that the pulse height also fluctuates and
the RIN is greatly enhanced up to −90 dB/Hz for the lower frequency component.

van Tartwijk and San Miguel (1996) numerically studied the effects of optical
feedback in self-pulsating semiconductor lasers and calculated pulse periods and
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jitters (the standard deviation from the average period) without and with optical
feedback. As results, the pulse period decreases with the increase of the bias injection
current and, at the same time, the jitter becomes small. Increasing the feedback
time, the pulse period increases and, then, a sudden jump-down is observed at a
certain feedback distance. The jump in the pulse period must be attributed to a
switch of the locked-pulse frequency to a neighboring compound cavity mode, i.e.,
the resulting resonance frequency of the laser mode with relaxation oscillations and
one of the external cavity resonance frequencies. A similar trend can be observed
for the pulse jitter. There is also phase sensitivity of coherent optical feedback in a
self-pulsating semiconductor laser as expected from (8.14). When the feedback is
small, the pulse period keeps almost the same value as that of the solitary oscillation.
However, the jitter has the minimum value at a certain small feedback ratio. The
increase in jitter after the optimum value manifests itself by a multi-peaked, very
broad pulse period distribution. The effects agree well with the period-doubling
route to chaos (Kuznetsov et al. 1986). The dynamics of coherent optical feedback is
extensively studied in self-pulsating semiconductor lasers, because the lasers are used
as light sources for DVD systems in which the optical feedback length is typically
within several centimeters. On the other hand, the typical feedback length is several
tens of centimeters to meters when the lasers are used as light sources for optical
measurements. The effects for this range are incoherent.

8.2.4 Instability and Chaos by Injection Current Modulation

A few studies have been reported for the modulation properties of self-pulsating
semiconductor lasers. The lasers show unstable oscillations by the modulation to the
bias injection current, and also exhibit chaotic behaviors at large modulation index.
For the variations of irregular pulse peaks, we can see similar chaotic bifurcations to
those in ordinary narrow-stripe edge-emitting semiconductor lasers such as discussed
in Chap. 7 (Winful et al. 1986; Juang et al. 1999, 2000; Jones et al. 2001). It is shown
that the occurrence of chaotic oscillations is critically dependent on the modulation
frequency. Periodic bands of chaotic dynamics are found to exist at multiples of
the relaxation oscillation frequency. Not only stable pulsations resonance to the
modulation frequency (locking oscillation), but also unstable pulsations and unique
frequency-locked pulsations in which multiple spikes appear within some modulation
period are found.

Fukushima et al. (2002) investigated experimentally and theoretically the dynam-
ics of self-pulsating semiconductor lasers with injection current modulated and
observed chaotic bifurcations for the pulsation frequency and the pulse height.
Figure 8.10 shows some typical output waveforms observed by the experiments.
The scales in the figure denote the period of modulation. The modulation index for
the bias injection current is set to be m = 1.06. Each periodic state is defined as
Pl

k , where k stands for the ratio of the fundamental period of the pulse train to the
modulation period and l stands for the number of spikes in the fundamental period

http://dx.doi.org/10.1007/978-3-642-30147-6_7


8.2 Self-Pulsating Lasers 257

Fig. 8.10 Experimentally
observed temporal wave-
forms of the output optical
pulses at a bias injection
current of 59.5 mA and
a modulation index of
m = 1.06. a Without rf
modulation, b P2

1 pulsation at
fm = 300.0 MHz, c P3

2 pulsa-
tion at fm = 327.0 MHz, d P1

1
pulsation at fm = 360.0 MHz,
e unstable pulsation at
fm = 562.0 MHz, f P3

4 pulsa-
tion at fm = 584.0 MHz, g P2

3
pulsation at fm = 592.0 MHz,
h P1

2 pulsation at fm =
650.0 MHz, and i P1

3 pulsation
at fm = 1000.0 MHz. The bar
in each plot is the fundamental
period of the modulation [after
Fukushima et al. (2002); ©
2002 JSAP]
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Fig. 8.11 a Characteristics of pulsation frequency versus modulation frequency under rf modula-
tion. b Dependence of the pulse height on the modulation frequency under the frequency-locked
pulsations of P1

1, P1
2, and P1

3 [after Fukushima et al. (2002); © 2002 JSAP]

of the pulse train. Without rf modulation, the laser shows stable pulsation at a self-
pulsation frequency of 245.7 MHz, as shown in Fig. 8.10a. Under rf modulation, as
the modulation frequency fm increases, the output optical pulse train is locked to
the modulation frequency (P1

1 pulsation) or its subharmonics (P1
2 and P1

3 pulsations)
as shown in Fig. 8.10d, h, and i. In the boundary regions of these frequency-locked
pulsations, unstable pulsation occurs as shown in Fig. 8.10e. It is speculated that the
unstable region contains both quasi-periodic pulsation and chaotic pulsation. In the
boundary regions, unique frequency-locked pulsations are also observed. One is P2

1
pulsation in which two spikes appear within one modulation period, as shown in
Fig. 8.10b. Another is P3

2 pulsation in which two spikes and a single spike appear
alternately. The others are P3

4 and P2
3 pulsations in which three or two spikes appear

within four or three modulation periods as shown in Fig. 8.10f, g, respectively.
The experimental results are summarized in Fig. 8.11. Figure 8.11a shows the

characteristics of pulsation frequency versus modulation frequency. The figure shows
the regions of frequency-locked states for the modulation frequency. In between
the frequency-locked states for the modulation frequency, we can observe unstable
and chaotic oscillations as shown in Fig. 8.11e. Figure 8.11b shows the dependence
of the pulse height on the modulation frequency under P1

1,P1
2, and P1

3 pulsations.
Under P1

1 pulsation, the pulse height decreases gradually as the modulation frequency
increases and eventually the pulsation becomes unstable at the modulation frequency
of 560 MHz. Then P1

2 pulsation occurs at 647 MHz. Here, the pulse height again
returns to a high level. The same phenomenon is observed under P1

2 and P1
3 pulsations.

The modulation index used in this experiment is rather high. However, similar trends
in those results were obtained for lower modulation index, although each region
of frequency-locked state shifts for lower modulation frequency. Fukushima et al.
(2002) also compared the theoretical results with those experiments and demonstrated
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that the theory based on the rate equations of (8.11)–(8.13) with injection current
modulation well explains their experiments.

8.3 Vertical-Cavity Surface-Emitting Lasers

8.3.1 Vertical-Cavity Surface-Emitting Lasers

Vertical-cavity surface-emitting lasers (VCSELs) are promising devices of light
sources for optical information processing and communications. Currently, VCSELs
from visible wavelengths to near infrared (1.5 µm) are fabricated and their output
powers reach as high as several tens of milliwatts. Also, a device that has a high mod-
ulation bandwidth of over 10 GHz with a low RIN of less than −140 dB is fabricated.
A VCSEL has a disk structure with light coming out from the top or bottom of the
substrate surface. Various types of device structures have been proposed. Index- and
gain-guiding structures are used for the confinements of carrier and light in VCSELs
such as those for edge-emitting semiconductor lasers. Each guiding structure has
merits and demerits in the laser oscillations, but the differences of the stable and
unstable effects between those device structures are usually small compared with
those in edge-emitting semiconductor lasers, since the length of the laser cavity is
much smaller than that of edge-emitting semiconductor lasers. The details of VCSEL
structures can be found in the book by Li and Iga (2002). Here, we do not discuss
the details of device structures and device characteristics, but discuss the dynamics.
As an example, the distributed Bragg reflector (DBR) VCSEL is shown in Fig. 8.12.
The thickness of the active layer is approximately equal to the wavelength of light λ.
The top view of the laser looks like a disk and its diameter is several to tens of μm.
For special use, a disk diameter over 100 µm has been fabricated. In these devices,
the reflectivity of the bottom surface is almost 100 % and the top reflectivity of the
DBR structure is more than 99 %. The laser light comes out from the top. Though the
internal reflectivity is very high compared with edge-emitting semiconductor lasers,
VCSELs are also sensitive to optical feedback and optical injection. The photon
number in the active volume is much less than that of edge-emitting lasers, and a few
external photons would cause instabilities in the laser oscillations. VCSELs even for
different device structures are described by the same or similar rate equations for the
field and the carrier density.

There are many advantages of VCSELs for practical purposes. Since the VCSEL
has a symmetric space structure, we can expect a circular beam as its output, while
the beam profile of the edge-emitting laser has astigmatism. Due to a short cavity
length compatible with the wavelength of light and very high reflectivity of light in
the internal cavity, the laser is a very low threshold device, as low as ∼μA. From
this same reason, we can produce a stabilized oscillation with a single mode that
has a large mode separation (∼40 THz). Another merit of VCSELs is the easiness of
devising laser arrays because of the surface-emitting structure. However, VCSELs
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have unstable features for their operations even without any external perturbations. In
addition to the time-dependent phenomena, the space structures and the polarization
modes give rise to instability and chaotic dynamics in VCSELs. Spatial hole-burning
and multi-transverse mode oscillations are often observed in the laser output to cause
instabilities such as spatial-mode and polarization switching. Therefore, the VCSEL
itself is an unstable laser. To describe the dynamics of VCSELs, several models have
been proposed. Each model has the advantages for explaining respective particular
dynamics of real VCSELs. In the following, some of them are introduced.

8.3.2 Spatial-Mode Expansion Model

The rate equations for VCSELs are similar to those for the narrow-stripe edge-
emitting laser except for the spatial terms. For a certain polarization mode, the field
equation is given as (Valle et al. 1995a,b; Law and Agrawal 1997a,b)

dE j (t)

dt
= 1

2
(1 − iα)Gnj {n(r, φ, t)− nth, j }E j (t) (8.16)

where n(r, φ, t) is the space-dependent carrier density for the radial coordinates
(r, φ, z) and nth, j is the threshold carrier density for the j th spatial mode. E j is the
field amplitude for the laser oscillation of the j th spatial component, and the total
complex amplitude from a VCSEL is written as

Etotal(r, φ, z, t) = 1

2

M
∑

j=1

ê j E j (t)ψ j (r, φ)A0sin(βz z) exp(−iωth, j t)+c.c. (8.17)

where M is the total number of the spatial modes, ê j is the polarization vector for the
j th mode, ψ j is the eigen-function for the j th mode, βz is the propagation constant
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for the z direction, and A0 is the normalization coefficient. Since the carrier diffusion
in the radial direction must be taken into account for the VCSEL oscillation, the rate
equation for the carrier density is written as

d

dt
n(r, φ, t) = D∇2

T n(r, φ, t)+ J (r, φ)

ed
− n(r, φ, t)

τs

− �d

d

M
∑

j=1

Gnj {n(r, φ, t)− n0}|E j (t)ψ j (r, φ)|2 (8.18)

where D is the coefficient for the carrier diffusion, the subscript T denotes the
operation for the transverse coordinates, and �d is the confinement factor for the
longitudinal direction in the active layer given as

�d =
d∫

0

|A0sin(βz)|2dz (8.19)

Here, the thickness of the active layer d is smaller than the total length of the laser
cavity L , thus�d < 1. In the derivation of the carrier density Eq. (8.18), we must con-
sider the depletion of carriers for laser emission and take into account the interference
terms for the external product of the vector polarizations. However, the frequency
difference of the modes is usually of the order of several tens of GHz to one hundred
GHz. As a result, the beating of these i and j terms, exp{−i(ωl − ω j )t}, has a high
frequency and the carrier cannot follow the oscillation. Therefore, we can neglect
this effect and Eq. (8.18) becomes a good approximation for the dynamics of the
carrier density.

The eigenfunction for the j th mode ψ j is a function of the polar coordinate
calculated for a particular structure of the VCSEL. For example, for a weak index-
guide cylindrical structure with two polarization states corresponding to the spatial
LP01mode, it is written by the Bessel function of the first kind J0(z) and the modified
Bessel function of the second kind K0(z) and has the following form:

ψ j (r, φ) =
⎧

⎨

⎩

J0(u1 j r/Ra)

J0(u1 j )
for r ≤ Ra

K0(w1 j r/Ra)

K0(w1 j )
for r > Ra

(8.20)

where Ra is the radius of the active area and u1 j and w1 j are the first roots of the
eigenvalue equation for the j th polarization mode

u j J1(u j )

J0(u j )
= w j K1(w j )

K0(w j )
(8.21)

They have a relation of u2
1 j + w2

1 j = V 2
j .Vj is the normalized frequency defined as
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Vj =
2πRa

√

η2
1 j − η2

j

λ
(8.22)

where λ is the wavelength of light in vacuum and η1 j and η j are the refractive indices
for the j th mode in the active area and the clad region.

8.3.3 Spin-Flip Model

The spatial mode model well represents the spatial behaviors of VCSELs, however,
it takes a long time to perform numerical calculations. Alternative models to show
the dynamics of VCSELs have been proposed. The spin-flip model is an excellent
one for analyzing the behaviors of polarization switching and polarization-mode
oscillation in the lowest spatial mode. In the derivation of the rate equations in
the previous subsection, we consider the polarization effects in VCSELs in (8.17).
However, in the physical terms, we must take into account the effects of electron
spin states associated with light emission in the polarization dynamics of VCSELs.
Specifically, left and right circularly polarizations of laser light emission are related
to spin states of electrons in the conduction and valence bands. This is the origin
of the polarization oscillations in VCSELs, and results in a rich variety of polariza-
tion dynamics including polarization switching frequently observed in VCSELs. San
Miguel et al. proposed a spin-flip model for the rate equations of VCSELs by taking
into account spin dynamics (San Miguel et al. 1995; Martín-Regalado et al. 1997;
Sciamanna et al. 2002a,b). The model couples the polarization state of the electric
field to the semiconductor medium by including the magnetic sublevels of the con-
duction and valence bands (the angular momentum numbers of electron ) in quantum
well devices. It is shown that laser dynamics depend significantly on the value of
the relaxation rate. The polarization switching is included by the assumption of the
population difference between the carrier densities with positive- and negative-spin
values. From these equations, the dynamics of the laser oscillations for the lower
order spatial mode can be easily explained, and the results are entirely coincident
with the model discussed in the previous subsection. Although the dynamics of polar-
ization dynamics in VCSELs can be well-defined by the model, these rate equations
are usually applicable to the lowest spatial mode oscillation. In the following, we
derive the expressions for the rate equations based on the spin dynamics.

In VCSELs, the thickness of the laser cavity is thin and less than the optical
wavelength and light comes out vertically from the substrate surface (along the
z-direction), so that the degeneration of spin states of electrons in heavy-hole and
light-hole bands is resolved along the z-direction and we must take into account the
difference between down- and up-spin states. In the case of edge-emitting semicon-
ductor laser, the thickness of the active layer is also very thin, however, light comes
out perpendicular to the z-direction and we need not consider the spin states. Only the
total carrier number is important for the dynamics in edge-emitting semiconductor
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Fig. 8.13 Four-level spin-flip model for polarization dynamics in quantum-well VCSEL

laser, while the sum and difference of carrier number play the important role in the
VCSEL dynamics. Figure 8.13 shows the four-level model for polarization dynamics
in quantum-well VCSELs (San Miguel et al. 1995; Martín-Regalado et al. 1997).
In Fig. 8.13, γ−1

J is the spin relaxation time. In the spin dynamics model of laser
transitions, the magnetic quantum numbers in the lower edge of the conduction band
have Jz = ±1/2 in accordance with down- and up-spin states. On the other hand,
the magnetic quantum numbers for heavy holes in the upper valence band have val-
ues of Jz = ±3/2, since we can neglect the effect of light holes in quantum-well
VCSELs. In the quantum state numbers, the same sign corresponds to the same spin
state. Photon emitted from + spin state corresponds to left circular polarization,
while photon from − spin state to right circular polarization. In the model, the decay
rate γJ accounts for the mixing of the populations with opposite value of Jz . This
parameter is introduced to model spin-flip relaxation processes.

We next consider the effects of cavity anisotropies, which can be modeled in
the two equations for the time evolution of the field amplitudes with two circular
polarizations by replacing the linear loss rate with a matrix whose Hermitian part
is associated with amplitude losses and whose anti-Hermitian part gives linear and
circular phase anisotropies (also known as birefringence and circular dichroism,
respectively). For VCSELs, it is known that there are two preferred modes of linear
polarization that coincide with the crystal axes. These two modes have a frequency
splitting associated with the birefringence of the medium. This can be modeled
by a linear phase anisotropy given by a parameter γp, which represents the effect
of different indexes of refraction for the orthogonal linearly polarized modes. In
addition, the two modes may have a slightly different gain-to-loss ratio that can be
related to the anisotropic gain properties of the crystal; the slightly different position
of the frequencies of the modes with respect to the gain versus frequency curve,
and different cavity geometries for the differently polarized modes. These effects
can be modeled by an amplitude anisotropy with parameter γa . We assume here for
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simplicity that the directions of linear phase and amplitude anisotropy coincide, so
that both are diagonalized by the same basis states.

We now derive the rate equations for double crossed linearly polarized light.
Electron spin is associated with photon spin. We start the description of circularly
polarized light for the fields of photons in such a case. The laser light field is coupled
to two population inversion variables; n is the sum of the upper state and lower state
populations and n J is the number of the difference between the population inver-
sions (upper and lower state population difference) on the two distinct channels with
positive or negative value of Jz (quantum spin number). Namely, in semiconductor
lasers, n represents the total carrier number in excess of its value at transparency.
Then the rate equations for the fields with right (+) and left (−) circularly polarized
states are given as (San Miguel et al. 1995)

dE±(t)
dt

= 1

2
(1 − iα)Gn

{

n±(t)− 1

Gnτph

}

E±(t)− (γa − iγp)E∓(t) (8.23)

where n±(t) = n(t) ± n J (t) − n0(n0 is the total carrier density at transparency),
and γa and γp are the linear anisotropies representing dichroism and birefringence
discussed above. Note that signs between the spin states and the subscripts of the
fields are opposite. The rate equations for the carrier density with spin-down and
spin-up, n±, are written as

dn±(t)
dt

= J

ed
− 1

2τs
{n+(t)+ n−(t)} ∓ 1

2τJ
{n+(t)− n−(t)} − 2Gnn±(t)|E±(t)|2

(8.24)
where 1/τJ is the spin-flip rate.

Using the conversion relations between linearly polarized lights and circularly
polarized lights, Ex = (E+ + E−)/

√
2 and Ey = i(E+ − E−)/

√
2, and also the

relations of the sum of the carrier number of down- and up-spin states n and the
spin-state difference n J , n+ = n + n J − n0 and n− = n − n J − n0, the equations
for the linearly polarized fields are given as

dEx (t)

dt
= 1

2
(1−iα)Gn[{n(t)−nth}Ex (t)−in J (t)Ey(t)]−(γa −iγp)Ex (t) (8.25)

dEy(t)

dt
= 1

2
(1−iα)Gn[{n(t)−nth}Ey(t)+in J (t)Ex (t)]+(γa −iγp)Ey(t) (8.26)

The rate γp reads to a frequency difference of 2γp between the x- and y-polarized
solutions (the x-polarized solution having the lower frequency when γp is positive).
The decay rate γa reads to threshold difference for these two linearly polarized solu-
tions, with the y-polarized solution having the lower threshold when γa is positive.
In actual fact, the frequency difference between the two linear modes depends on
both the parameters γp and γa . Similarly, the equations for the total carrier density
and the difference of the spin states are calculated as
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Fig. 8.14 L-I characteristics of VCSELs. a Experimental L-I characteristic and b L-I characteristic
calculated by the spin-flip model

dn(t)

dt
= J

ed
− n(t)− n0

τs
− Gn{n(t)− n0}{|Ex (t)|2 + ∣

∣Ey(t)
∣
∣2}

+ iGnn J (t){(Ey(t)E
∗
x (t)− Ex (t)E

∗
y(t)} (8.27)

dn J (t)

dt
= −n(t)

τJ
− Gnn J (t){|Ex (t)|2 + ∣

∣Ey(t)
∣
∣2}

+ iGn{n(t)− n0}{(Ey(t)E
∗
x (t)− Ex (t)E

∗
y(t)} (8.28)

The total carrier number n has a decay rate 1/τs associated with spontaneous decay,
while the carrier differnce n J has a decay rate 1/τJ = 1/τs + 2γJ . The rate γJ

accounts for the mixing of the populations with opposite value of Jz , which was
introduced to model spin-flip relaxation processed and assumed to have the same
value for the conduction and valence bands.

One of the typical features of VCSELs is a sharp polarization switching for the
increase or decrease of the bias injection current. Figure 8.14 shows an example of
polarization switching in VCSELs. Figure 8.14a, b are an experimentally observed LI
characteristic and a simulation result calculated from (8.25)–(8.28) using the parame-
ter values of γp = 1.0 ns−1 and γa = 45 ns−1. In this case, the y-polarization mode
is the starting main mode above the threshold and it switches to the x-polarization
mode for the increase of the bias injection current. Though the switching point does
not correspond with each other, a sharp polarization switching is well reproduced
by the numerical simulation. It is noted that the frequency difference of the laser
oscillations between y- and x-polarization modes is about +6 GHz at a bias injec-
tion current of 4 mA, although the lasing power of the x-polarization mode is very
small at this bias injection current.

Normalized versions of the above rate equations are widely used for numerical
investigations of VCSEL dynamics (Martín-Regalado et al. 1997). Using the nor-
malizations of the variables as E±′ = √

τs Gn E± and n±′ = n′ ± n J
′ = Gnτphn±

(n′ = Gnτph(n − n0) and n J
′ = Gnτphn J ), the field and carrier density equations
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for circularly polarized states read as

dE±′(t)
dt

= 1

2τph
(1 − iα){n±(t)− 1}E±′(t)− (γa − iγp)E∓′(t) (8.29)

dn±′(t)
dt

= 1

τs
μ− 1

2τs
{n+′(t)+n−′(t)}∓ 1

2τJ
{n+′(t)−n−′(t)}− 2

τs
n±′(t)|E±′(t)|2

(8.30)
where μ is the current density normalized to the threshold, μ = J/Jth. On the
other hand, for linearly polarized case, the field equations of the two components are
written as

dEx
′(t)

dt
= 1

2τph
(1 − iα)[{n′(t)− 1}Ex

′(t)− in′
J (t)Ey

′(t)] − (γa − iγp)Ex
′(t)

(8.31)
dEy

′(t)
dt

= 1

2τph
(1 − iα)[{n′(t)− 1}Ey

′(t)+ in J
′(t)Ex

′(t)] + (γa − iγp)Ey
′(t)

(8.32)
The equations for the total carrier density and the carrier difference are given as

dn′(t)
dt

= − 1

τs
[n′(t){1 + (

∣
∣Ex

′(t)
∣
∣2 +

∣
∣
∣E ′

y(t)
∣
∣
∣

2
)} − μ

− in J
′(t){Ey

′(t)Ex
′∗(t)− Ex

′(t)Ey
′∗(t)}] (8.33)

dn J
′(t)

dt
= − 1

τJ
n′

J (t)− 1

τs
[n J

′(t){∣∣Ex
′(t)

∣
∣
2 + ∣

∣Ey
′(t)

∣
∣
2}

− in′(t){Ey
′(t)Ex

′∗(t)− Ex
′(t)Ey

′∗(t)}] (8.34)

Several spin relaxation processes for electrons and holes have been identified in
semiconductors, such as scattering by defects, exchange interactions between elec-
trons and holes, and exciton–exciton exchange interactions (Martín-Regalado et al.
1997). From experimental measurements of spin relaxation times in quantum wells,
the relaxation time is of the order of tens of picoseconds. Since typically τs ∼ 1 ns,
and τph ∼ 1 ps, the spin mixing τJ occurs on an intermediate timescale between that
of the field decay and that of the total carrier population difference decay. Hence,
the dynamics of the difference in spin states n J cannot be adiabatically eliminated
for the timescales of interest. The rate equations including the magnetic sublevels
of the conduction and valence bands are applied to analyses for the dynamics of
VCSEL polarizations such as polarization switching and polarization instabilities
(Sciamanna et al. 2003b,c; Sciamanna and Panajotov 2005, 2006; Masoller et al.
2006). In particular, fruitful results are obtained for explanations of the dynamics
for orthogonal optical injection and stabilization in VCSELs. For the treatments of
dynamics related to higher spatial modes, we need the rate equations discussed in
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the previous subsection. The spin-flip model is essentially developed for explaining
the polarization dynamics in VCSELs in the fundamental spatial mode. However,
it can be extended to the model including higher spatial modes (Valle et al. 2007).
In this book, we use mainly the theoretical treatments in the previous subsection,
which includes the spatial effects. However, the model of the magnetic sublevels is
also used for VCSEL dynamics when necessary.

8.3.4 Two-Gain Model

The rate equations for narrow-stripe edge-emitting semiconductor lasers have been
modified and used to study the dynamics of VCSELs, since they are very simple and
easier to perform steady-state analyses and numerical simulations (Danckaerta et al.
2002; Hong et al. 2005). In the rate equations, the complex fields Ex and Ey for the
two polarization directions in the orthogonal x and y coordinates at a single spatial
mode oscillation are given as

dEx (t)

dt
= 1

2
(1 − iα)Gn,x {n(t)− nth,x }Ex (t) (8.35)

dEy(t)

dt
= 1

2
(1 − iα)Gn,y{n(t)− nth,y}Ey(t) (8.36)

where Gn,x and Gn,y are the gain coefficients for the polarization modes, and nth,x
and nth,y are the carrier densities at threshold. We here introduced the different gain
coefficients for the orthogonal polarization modes. The carrier density equation is
given as

dn(t)

dt
= J

ed
− n(t)

τs
−Gn,x {n(t)−n0,x }|Ex (t)|2−Gn,y{n(t)−n0,y}|Ey(t)|2 (8.37)

where n0,x and n0,y are the carrier densities at transparency for the respective modes.
For the main lasing mode above the threshold, the gain is saturated, however,

the gain of the counterpart polarization mode is a function of the bias injection cur-
rent. At a certain bias injection current, the oscillation mode is switched from the
main polarization mode to the sub-polarization mode. Then, the gain of the sub-
mode saturates and the gain of the original main mode decreases for the further
increase of the bias injection current. Figure 8.15 is an example of two orthogonal
gain coefficients calculated from the spatial model, which is discussed in Sect. 8.3.2.
In this case, the y-polarization mode is the main oscillation mode above the thresh-
old. At a bias injection current μ = 2.04, the laser oscillation is switched to the
x-polarization mode. During the oscillation mode, the corresponding gain is clamped
to a constant value, while the counterpart mode linearly increases or decreases for the
change of the bias injection current. Therefore, from the gain coefficients in Fig. 8.15,
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Fig. 8.15 Example of gain
coefficients for two orthog-
onal polarization modes for
increase of bias injection
current calculated from the
spatial mode model discussed
in Sect. 8.3.2. μ is the normal-
ized bias injection current to
the threshold as μ = J/Jth.
The polarization switching
point is set to μ = 2.04
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we introduce the difference of the gain coefficients Gn,x and Gn,y as

Gn,y − Gn,x = G0

(

1 − J

Jsw

)

(8.38)

where G0 is a certain constant and Jsw is the switching current at which the polariza-
tion alteration occurs. We here assume that the y-polarization mode is the original
laser oscillation mode above the threshold and x-polarization mode is the sub-mode.
Also, the gains below or above the polarization switching current are defined as

Gn,y = G0y = constant for J ≤ Jsw (8.39a)

Gn,x = G0x = constant for J > Jsw (8.39b)

For the example of the spatial mode model in Fig. 8.15, we obtain the gain con-
stants as G0 = 2.00×10−15 m3 s−1 and G0y = G0x = 1.39×10−13 m3 s−1. Using
the two-gain model, we can describe a sharp polarization switching such as observed
in Fig. 8.14. In the spatial mode model in Sect. 8.3.2, the difference between the gain
coefficients of the two polarization modes is implicitly included through the refrac-
tive indices in the orthogonal gains defined in (8.18), so that we do not explicitly
introduce the terms for the gain difference in the rate equations. While the difference
is explicitly included as the parameters of birefringence and dichroism, γp and γa ,
in the spin-flip model in Sect. 8.3.3.
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Fig. 8.16 Spatial mode dis-
tributions for LP01, LP11, and
LP21 modes in VCSELs. The
radius of the disk is assumed
as 4 µm
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8.3.5 Characteristics of VCSELs in Solitary Oscillations

Even in the absence of external perturbations, VCSELs sometimes show unsta-
ble behaviors depending on the bias injection current. Spatial and polarization
modes play important roles in the dynamic behavior of VCSELs. Higher spatial
modes are easily excited for a higher bias injection current. Figure 8.16 shows the
beam profiles for the lowest three spatial modes along the radial direction of a
VCSEL (Linearly Polarized modes; LP01,LP11, and LP21 modes). These modes are
calculated from (8.20)–(8.22). Due to the spatial hole-burning effects, the carrier
distribution has a dip at the center of the disk in a VCSEL and the higher spatial
modes tend to oscillate for a large bias injection current (Law and Agrawal 1997b).
Figure 8.17 shows the experimentally obtained near-field images of the oscillation
modes (Degen et al. 1999). The disk diameter of the VCSEL is 6 µm. The pat-
terns are obtained by changing the bias injection current. Higher spatial modes are
excited for the increase of the bias injection current. The excitation of higher modes
strongly depends on the disk diameter. For ordinary applications of VCSELs, a cir-
cular Gaussian beam of the lowest mode is desirable. To obtain such a clean beam,
the diameter of a VCSEL must be small, but it is difficult to attain a high power
operation at the same time.

In semiconductor materials, there exists the difference of the refractive indices
between the components for the principal axis and the orthogonal axis to it because of
the distortion and birefringence of the materials. The difference between the indices
is very small and it is 10−3–10−4. For ordinary edge-emitting semiconductor lasers,
the difference can be ignored due to a large asymmetric configuration for the TE
and TM modes in the active layer and the laser usually operates at only TE mode.
However, the difference plays a crucial role for the operations of VCSEL, since it
has a circular disk structure of the light-emitting facet. Then, there is an ambiguity
for the polarization direction of the laser oscillation. A VCSEL usually oscillates at
a polarization mode along the optic axis of the material (y-polarization mode) when
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Fig. 8.17 Experimentally obtained near-field images of VCSEL with 6 µm diameter at an injection
current of a 3.0, b 6.2, c 14.7, and d 18 mA [after Degen et al. (1999); © 1999 OSA]

the laser is biased at a low injection current. However, the polarization mode may
switch from this mode to the orthogonal one (x-polarization mode) for the increase
of the bias injection current. This switching is mainly induced by the distortion or
the birefringence of the laser material as discussed above. Taking into consideration
the birefringence of laser materials, the polarization switching is well reproduced
by the numerical simulations from (8.16)–(8.18) (Giudici et al. 1999; Danckaerta
et al. 2002). At a low bias injection current, the carrier density has a maximum
value at the center of the disk in the active area and the carrier density smoothly
decreases toward the edge of the disk. However, for a large bias injection current,
hole-burning of carriers occurs at the center of the disk. Then, the carrier density
takes the maximum value a little away from the center of the disk. This induces
the excitation of the orthogonal mode and the suppression of the original mode,
since, for example, the hole-burning due to the birefringence causes the transfer of
the optical energy from the y-mode to the x-mode. Then, the laser oscillation is
switched from the y-mode to the x-mode. The effects are distinct for VCSELs with
large birefringence and small disk size.

The L-I characteristic of a VCSEL experimentally obtained for a disk diameter of
3 µm is already shown in Fig. 8.14. The laser is a typical single spatial mode VCSEL
of a wavelength of 780 nm and a maximum power of 2.0 mW, since the diameter is
rather small compared with spatially multimode VCSELs such as shown in Fig. 8.17.
In Fig. 8.14a, the laser at first oscillated at the main polarization mode (y-polarization
mode) above the threshold current of 3.1 mA, but it switched to the orthogonal polar-
ization mode (x-polarization mode) at the bias injection current of 5.2 mA. After the
switching, the laser stably oscillated at the orthogonal polarization mode. Usually,
the polarization switching has a hysteresis for the increase or the decrease in the bias
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injection current. Whether we can observe clear switching of the polarization modes
or not, strongly depends on the characteristics of the laser materials and the device
structures. Some VSCELs do not show clear polarization switching for the change
of the bias injection current. Different from edge-emitting semiconductor lasers, two
orthogonal polarization modes are easily excited simultaneously owing to a small
gain difference between the two modes. The laser is longitudinally a single mode,
since the total cavity length in VCSELs is as small as around 1 µm and the free spec-
tral range of the cavity is very large. For the same reason, the conversion efficiency
from the current to the frequency is very large compared with that of edge-emitting
semiconductor lasers (see Sect. 5.1.6). Indeed, the laser in Fig. 8.14a has a conversion
efficiency of 128 GHz/mA. Due to a short cavity length compared with edge-emitting
semiconductor lasers (usually, the cavity length is several hundred times less than
that of an edge-emitting semiconductor laser), the change of the refractive index for
the increase or decrease of the bias injection current causes a very large frequency
change in the laser oscillation through the relation of �ν ≈ c(1 − �η/η)/2ηl,
where �ν and �η are the frequency change and the change of the refractive index,
respectively.

Even in solitary oscillations, VCSELs show dynamic characteristics. One such
type of dynamics is the anti-phase irregular oscillation of the optical power between
the two polarization modes (Fujiwara and Ohtsubo 2004). Figure 8.18 shows an
experimental example of anti-phase oscillations of the y- and x-polarization modes in
a VCSEL. Unstable pulsations and bistability are sometimes observed at the switch-
ing point of the two polarization modes (Tang et al. 1997). However, not only at
the switching point of the two polarization modes but also at certain bias injec-
tion currents different from the switching point, does the laser show fast unstable
oscillations and the two polarization modes oscillate at anti-phase manner in time.
When the output power of the y-polarization mode goes down, the output power
of the x-polarization mode grows up, and vice versa. This anti-phase oscillation is
frequently observed in chaotic VCSELs subjected to optical feedback and injection
current modulation (Besnard et al. 1997, 1999).

8.3.6 Spatio-Temporal Dynamics in VCSELs

Lasers with spatial structures such as VCSELs and broad-area lasers have spatio-
temporal dynamics induced by diffraction of light and hole-burning of carriers in
the laser cavity. In the case of VCSELs, the cavity length is short, so that the
effect of the diffraction of light inside the cavity can be neglected. However, the
effect of carrier hole-burning plays a crucial role for transverse-mode oscillations.
The polarization dynamics of VCSEL are strongly related to carrier hole-burning,
and the laser shows picosecond instabilities even at solitary oscillations. Time aver-
aged polarization dynamics in VCSELs, such as dynamics of near-field patterns for
the bias injection current, were extensively studied, while a few studies of spatio-
temporal dynamics were reported (Mulet and Balle 2002; Barchanski et al. 2003;

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 8.18 Example of anti-
phase oscillations of y- and
x-polarization modes in
VCSEL at solitary oscillation
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Valle et al. 2007). In this subsection, we present some experimental results for the
spatio-temporally resolved polarization dynamics and discuss the underlining mech-
anism. Figure 8.19 shows the experimental results of spatiotemporal dynamics of a
VCSEL obtained by a temporally resolved imaging by differential analysis, which
allows us to extract the full two-dimensional evolution of the near-field intensity on
timescales of 10 ps (Barchanski et al. 2003). The laser used is an oxidized VCSEL
with an oscillation wavelength of 852 nm and a maximum output power of 3.8 mW.
The VCSEL has a disc diameter of 14 µm.

Figure 8.19a shows the laser outputs of the two polarization modes for the time
evolution after a step impulse, in which each polarization mode shows relaxation
oscillation after the switch-on. A period of 10 µs of the pulse prevents the occurrence
of thermal effects in the experiments. The laser is biased at 2.3Jth. At this bias
injection current, the frequency of the relaxation oscillation is about 3 GHz. In this
figure, the 90◦ polarization mode is the main oscillation mode. After about 3 ns
from switch-on, the laser settles down to steady-state oscillation. Figure 8.19b shows
snapshots for the evolution of the near-field intensity in the VCSEL after the second
relaxation oscillation peak. In order to allow measurements, a displacement prism was
used in the detection path to separate the laser beam into two orthogonal polarization
patterns. The near-field polarized patterns of the laser was detected as an integrated
image of 36,000 events by a CCD camera with a fast shutter time ∼200 ps using
gating triggers synchronized with the driving pulses for the bias injection current.
The images in Fig. 8.19b give evidence for a rich dynamical behavior in the emission
profile in both polarization directions. In the 0◦ polarization mode, the intensity
change of the center of the disc aperture is clearly seen, namely, the center is filled
with a bright spot at 1,720 ps, however, the center of the aperture remains mostly dark
at 10 ps later. The intensity at 1,740 ps is nearly uniform over the whole aperture,
and then the center is again dark at 1,750 ps. In the near-field patterns of the 90◦
polarization mode, we can see clear rotational flicker of the bright spots of the laser
oscillations. For example, bright spots of the intensity rotate by 5◦ counterclockwise
from 1,720 to 1,730 ps, while they rotate by 5◦ clockwise from 1,740 to 1,750 ps. This
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Fig. 8.19 a Evolution of
the relaxation oscillations
extracted from the differen-
tial images of the near-field
polarization-resolved patterns.
Gray curve 90 ◦ polarization
mode (dominant oscillation
mode), and black curve 0 ◦
polarization mode. b Snap-
shots for the evolution of
near-field intensity of the
VCSEL after the second
relaxation oscillation peak. In
each snapshot, the left shows
the 0 ◦ polarization mode and
the right 90 ◦ polarization
mode. The crossing point
of the overlaid crosshair is
the center of the laser [after
Barchanski et al. (2003) ©
2003 IEEE]

In
te

ns
ity

 [
a.

u.
]

Time [ps]

0° 90°

1720 ps 1740 ps

1730 ps 1750 ps

0.0

0.2

0.4

0.6

0.8

1.0

1000 1500 2000 2500 3000

0° polarization

90° polarization

0° 90°

kind of rotational flicker is attributed to the spatial hole burning of the carrier density
in the laser cavity. Spatial hole-burning has been identified as a very important effect
contributing to the observed dynamics on the examined timescales, especially for
lasers having a spatial structure. Similar nonlinear dynamical behaviors have already
been found and well investigated in the field of broad-area semiconductor lasers as
known filamentation effects, which will be discussed in the following section.

Every transverse mode in a VCSEL corresponds to a different wavelength. There-
fore, by spectrally resolving the near-field emission intensity, it is possible to inves-
tigate the dynamics of each mode separately. Figure 8.20 shows spectrally resolved
near-field patterns of the VCSELs. In the observations, a spectrometer was used in
the detection path to obtain spectrally resolved near-field patterns of the laser oscil-
lations. The horizontal axis represents the spatial coordinate, the vertical axis is a
combination of both spatial and spectral coordinates, with the wavelength increasing
from the bottom to top of each snapshot. The large birefringence splitting, which is
the spectral spacing among the fundamental Gaussian modes in orthogonal polar-
ization directions, is quite noticeable. The estimation of the birefringence splitting,



274 8 Instability and Chaos in Various Laser Structures

Fig. 8.20 Spectrally resolved
near-field patterns for time
evolution. In each snapshot,
the left shows the 0 ◦ polar-
ization mode and the right
90 ◦ polarization mode. The
wavelength increases from
bottom to top of each snap-
shot. The snapshots show the
intensity change during 100 ps
[after Barchanski et al. (2003);
© 2003 IEEE]
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performed with an optical spectrum analyzer having a maximal resolution of 0.05 nm,
provides a value of approximately 0.11 nm, or 50 GHz, respectively. The first image
at 1,430 ps, within the second relaxation oscillation peak, shows two more mode
orders than during the first relaxation oscillation peak, though the near-field pattern
at the first relaxation oscillation peak is not shown here. At 1,930 ps, about ten modes
occur in the near-field intensity within the observed area. While the relative intensity
among the 90◦ polarization modes mostly remains uniform, there is a drastic change
in the modal behavior in the 0◦ polarization mode. Throughout the evolution, the
four-lobed mode, which is the second oscillation mode, remains as an oscillation
mode and all other modes of the 0◦ polarization direction show a relative smaller
intensity. The fundamental Gaussian mode in the 90◦ polarization mode is spectrally
aligned at the same position as the bright four-lobed mode in the 0◦ polarization mode.
This spectral alignment implies the importance of spectral interactions related to the
spatial carrier hole-burning effects. Namely, the fundamental mode, observed in the
90◦ polarization direction, has its intensity concentrated in the center of the aperture.
In contrast, the intensity of the four-lobed mode is concentrated in the periphery of
the aperture, resulting in a minimal spatial overlap of both modes. The complemen-
tary oscillation between the two polarization modes originates from a competition of
both polarization directions for the available gain in the active medium. The dynam-
ics of VCSELs even at solitary oscillation still remains an interesting research field,
providing further insight into the fundamental physics of semiconductor lasers and
promising device optimization.
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Table 8.3 Characteristic device parameters for a VCSEL at an oscillation wavelength of 850 nm

Symbol Parameter Value

Gn gain coefficient 2.90 × 10−12 m3s−1

�d confinement factor 0.1
α linewidth enhancement factor 3.80
r1 output facet reflectivity 0.9975
r2 bottom reflectivity 0.9995
nth carrier density at threshold 3.80 × 1024 m−3

n0 carrier density at transparency 1.75 × 1024 m−3

τs lifetime of carrier 1.00 ns
τph lifetime of photon 3.30 ps
γ−1

J lifetime of spin 30 ps
τin round trip time in laser cavity 22.6 fs
D diffusion constant 30 cm2 s−1

l cavity length 1.00 µm
d active layer thickness 0.20 µm
Ra radius of active layer 4.00 µm

8.3.7 Optical Feedback Effects in VCSELs

VCSELs have a high reflective mirror of the Bragg reflector within the cavity as
much as the internal reflectivity of higher than 99 % to realize a low laser threshold.
However, the total photon number within the cavity is much smaller than that of the
edge-emitting semiconductor laser and the laser is also affected by a small number
of photons from an external reflector. For a small optical feedback, (8.16) is modified
and the rate equations for the complex field are written as

dE j (t)

dt
= 1

2
(1−iα)Gnj {n(r, φ, t)−nth, j }E j (t)+ κ

τin
E j (t−τ) exp(iω0τ) (8.40)

The other equations for the total complex field amplitude and the carrier density
remain unchanged. Equation (8.40) looks like the same form as that for narrow-
stripe edge-emitting semiconductor lasers. However, the rate equations of the total
field and the carrier density are the functions not only of time but also space and, as
a result, the laser shows complicated behaviors compared with narrow-stripe edge-
emitting semiconductor lasers. Mutual interactions between the two polarization
modes also affect the dynamics. Spatial mode competitions may also play an impor-
tant role for the dynamics under a large bias injection current. Therefore, we must
take into account the essential terms of the spatial polarization modes for numerical
calculations of the dynamics.

Since the laser cavity length of a VCSEL is less than the optical wavelength and
much smaller than those of other semiconductor lasers, the separations both for the
longitudinal and transverse modes are much larger than for other lasers. Therefore,
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we can well apply the approximation for a single longitudinal mode operation as far
as the laser has a small disk size or is biased at a modest injection current. However,
the competition among spatial and polarization modes arises at a higher bias injection
current. In the following, we show some characteristics of optical feedback effects
in VCSELs. Unstable oscillations of VCSELs induced by optical feedback have
been numerically calculated (Law and Agrawal 1998). Table 8.3 is a typical set
of parameters used in the numerical simulations. Figure 8.21 shows a numerically
calculated time series of the laser output for the change of the external feedback ratio.
The diameter of the laser disk is 4 µm and the laser is oscillated with the lowest single
mode or the lowest two spatial modes (LP01 and LP11 modes). However, a single
polarization mode is assumed at solitary oscillation. From Fig. 8.21a–d, the two
modes show period-doubling like evolutions to chaotic states. However, once they
become a fixed oscillation in Fig. 8.21e and again evolve into fully chaotic oscillations
in Fig. 8.21f. Spontaneous emission of light is ignored in these calculations, however,
it strongly affects the dynamics when the laser oscillates at chaotic states. Some
such effects are the increase of noise floor and the broadening of the chaotic carrier
frequency.

As dynamics of narrow-stripe edge-emitting semiconductor lasers, low-frequency
fluctuations (LFFs) have been observed. LFFs are not only the typical features of
narrow-stripe edge-emitting semiconductor lasers, but also they are observed in
various types of semiconductor lasers. Fujiwara et al. (2003) have experimentally
observed LFFs in VCSELs with optical feedback from a distant reflector. Similar LFF
characteristics to those of narrow-stripe edge-emitting semiconductor lasers, sud-
den power dropout and gradual power recovery, are observed for the y-polarization
mode with the lowest spatial mode of LP01 at a low bias injection current. Under
an LFF oscillation for the y-polarization mode, the output power of the orthogo-
nal x-polarization mode also shows synchronous waveforms of LFFs with the y-
polarization mode, but it is an anti-phase oscillation. Similar to the dynamics of
narrow-stripe edge-emitting semiconductor lasers, coexistent states of LFFs and sta-
ble oscillations are sometimes observed close to the threshold current. The polar-
ization switching is suppressed or even eliminated by parallel optical injection at
higher optical feedback ratio, while the laser shows chaotic oscillations at a single
polarization mode when the feedback is not so strong (Hong et al. 2004; Aoyama
2011). Also, the coherence of the laser is fairly collapsed at LFF states. However,
the laser still holds a single longitudinal-mode operation, because of the large sep-
aration of the cavity modes (Von Lehmen et al. 1991). The dynamic properties of
LFFs in VCSELs have been demonstrated by numerical simulations using the model
of the population difference between the carrier densities with positive and negative
spin values, i.e., spin-flip model (Masoller and Abraham 1999a; Sciamanna et al.
2003a,b,c).

Figure 8.22 shows time-averaged effects of polarization-selected optical feedback
in a VCSEL. A VCSEL used in the experiments has the disc diameter of 16 µm and
the oscillation wavelength of 780 nm with a maximum optical power of 10 mW. The
external mirror is located at 90 cm away from the front facet of the laser. For a
reference, the L-I characteristics of solitary mode together with near-field oscillation
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Fig. 8.21 Temporal evolutions of output power under two-mode operation with 4 µm disc contact
(weak coupling) VCSEL for several feedback levels. Solid and dashed curves represent the LP01 and
LP11 modes, respectively. External feedback rate κ of a 0, b 1.6 × 10−4, c 5 × 10−4, d 8.9 × 10−4,
e 1.6 × 10−3, and f 2.8 × 10−3 [after Law and Agrawal (1998); © 1998 OSA]

patterns at 7.0, 12.0, 18.0, and 24.0 mA are displayed in Fig. 8.22a. For steady-
state oscillations, the complementary features of the oscillation patterns between
the two polarization modes are clear, especially at higher bias injection current,
which is the typical nature of VCSELs either for fast or slow dynamics. This laser
has no clear polarization switching between the crossed polarization modes. As
noted, L-I characteristics of VCSELs strongly depend on device structures and used
materials. Though the total L-I characteristic shows an almost linear relation for
the increase of the bias injection current, each polarization component has quite
different features depending on the respective VCSEL structures. For example, the
L-I characteristics of y- and x-polarization modes are quite different from those for
one in Fig. 8.14 that shows a clear polarization switching. As a result, the near-field
pattern for each VCSEL is also dependent on the device structures. For the case of
total optical feedback in Fig. 8.22b, the threshold of the y-polarization mode slightly
reduces from 6.4 to 6.2 mA, while the threshold of the x-polarization mode increases
from 6.4 to 6.8 mA. The slope efficiency increases due to the optical feedback, but
only slight changes of the L-I curves are visible. However, the spatial modes are
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Fig. 8.22 Effects of optical feedback in VCSELs. Experimentally obtained L-I characteristics
and near-field patterns for a solitary oscillations, b total optical feedback (intensity feedback of
9.8 %), c y-polarization feedback (feedback of 6.1 %), and d x-polarization feedback (feedback of
6.0 %). The upper mode patterns in the insets are for y-polarization mode, while the lower ones for
x-polarization mode

affected by the optical feedback, especially in higher bias injection current. In the
case of y-polarization optical feedback, the trends of the threshold reduction are
almost the same as for the case of the total optical feedback. However, the crossed
polarization component (x-polarization mode) is greatly suppressed. On the other
hand, two modes compete with each other in the case of y-polarization feedback. As
a result, the laser becomes less stable at this amount of the optical feedback and it is
oscillated with lower spatial orders. Polarization selective optical feedback provides
quite interesting dynamics of VCSELs, and it is very important from the viewpoint
of laser control.

VCSELs have been newly developed and they themselves show various dynamics
under solitary oscillations and external perturbations. Therefore, the dynamics have
not been well understood yet and studies are still undergoing. As another example of
dynamics in VCSELs, we here show self-oscillation properties when a portion of the
laser output power is injected back into the laser after having rotated its polarization
by 90◦ with respect to the initial laser polarization state (Jiang et al. 1993). When
the two polarization components of the lights are orthogonally returned to the laser
from a reflector with short distance, the y-polarization component coherently couples
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with the x-polarization component and the x-polarization component also coherently
couples with the y-polarization component in as far as the corresponding oscillation
wavelengths are assumed to be almost the same. Figure 8.23 shows the experimental
waveforms of self-modulations in VCSELs. In this experiment, a laser that shows a
clear polarization switching is used. Self-modulations are observed both for the bias
injection currents above and below the polarization switching point. As square wave
is observed for a long external feedback, while sinusoidal waveforms are observed
for a short external feedback. As can easily be recognized, the waveforms of the
y-and x-polarization components show anti-phase oscillations. The frequency of the
oscillation is half of the frequency for the external cavity length. The polarization
rotation feedback induces polarization injection locking in the VCSEL and leads to
a switching of the polarization state, then self-modulation occurs in its output. The
phenomenon is quite similar to injection locking in a regenerative amplifier, where
very weakly injected light is sufficient to lock the laser to the incident frequency.
Under the same configuration, a self-modulation with a frequency of 6 GHz is
obtained for a short cavity length of 1 cm. These self-modulation oscillations can
be used as light sources for high-speed pulse sequences. Masoller and Abraham
(1999a,b) presented the numerical simulations for the model considering the popu-
lation difference between the carrier densities with positive- and negative-spin val-
ues in VCSELs and obtained the generations of self-modulation square waves. It
is noted that similar square-wave generation is also observed in narrow-stripe edge-
emitting semiconductor lasers with polarization-rotated optical feedback as discussed
in Sect. 5.8.2. In that case, the frequency of pulses is also twice of the round-trip time
of light in the external feedback loop. Therefore, square wave generation is a universal
feature in any semiconductor lasers with polarization-rotated optical feedback.

8.3.8 Short Optical Feedback in VCSELs

In Sect. 5.4.2, we discussed typical regular pulse package dynamics with LFFs
induced in short cavity optical feedback in narrow-stripe edge-emitting semicon-
ductor lasers. Regular pulse package dynamics are also observed in VCSELs with
short cavity optical feedback. However, VCSEL has complex dynamics of orthogo-
nal polarization modes and the characteristics of the pulse package are substantially
affected by the polarization dynamics. Thus, we cannot observe exact regular pulse
oscillations as in the case of narrow-stripe edge-emitting semiconductor lasers, due
to the competitions of the crossed-polarization modes. Though the device structure of
VCSELs is fairly different from that of common semiconductor lasers, the relaxation
oscillation frequency is mainly determined by the gain coefficient and the photon
lifetime (see (3.71)). Thus, the relaxation oscillation frequency is almost the same
order as that of narrow-stripe edge-emitting semiconductor lasers as far as the emit-
ting light powers are the same. The definition of short cavity is that the cavity length
is within the length corresponding to the relaxation oscillation frequency, which is
usually less than centimeters. For example, in a VCSEL with a very short external

http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 8.23 Waveforms of
polarization self-modulation
signals corresponding to
extended cavity lengths of
a 16.5 cm and b 5.3 cm at
a bias injection current of
J = 1.51Jth. The bias injec-
tion current is above the point
of the polarization switching.
Upper trace y-polarization,
lower trace x-polarization
[after Jiang et al. (1993); ©
1993 AIP]
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cavity condition (∼10 µm), the laser and the external cavity conform a composite
cavity and one polarization mode shows a periodic undulation of the output power for
a period of λ/2 with the change of the external cavity length. In this state, the other
mode is also excited alternately to the orthogonal mode, thus showing anti-phase
oscillation for the external cavity length (Arteaga et al. 2006).

Tabaka et al. (2006) investigated the pulse package dynamics with LFFs including
polarization modes in a short external cavity VCSEL. As a result, for the increase
of the injection current, switching from one polarization mode to the other with
orthogonal polarization direction is observed. The existence of the two polarization
modes in VCSELs can give rise to an additional polarization mode competition
dynamics in the presence of feedback. Figure 8.24 shows the experimental results of
the polarization resolved dynamics. The VCSEL with an oscillation wavelength of
986 nm has the solitary threshold of Ith = 3.7 mA and shows polarization switching
at the bias injection current of I = 4.2 mA. The external cavity length is 6.5 cm and
the mirror reflectivity is 0.3, which results in a threshold reduction of 22 % from
the solitary laser oscillation. The relaxation oscillation frequency at I = 5.2 mA
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corresponds to the external cavity length of 6.5 cm. Therefore, the observed dynamics
in Fig. 8.24 satisfy the short cavity condition. In Fig. 8.24a the amplitude of the peaks
is still small and the shape of the single pulse package envelope is not very regular.
However, the envelope of the packages can be clearly identified, which indicates
that the pulse packages in the two polarization modes are almost periodic with a
characteristic frequency. The pulse package dynamics in the two polarization modes
can be much better recognized at I = 3.4 mA, in Fig. 8.24c. In actual fact, the
total intensity shows a quite regular pulse package oscillation, but the polarization
resolved pulse package dynamics is not as regular as for the total intensity. The
reason for this is that we observe polarization mode competition, underlying the
pulse package dynamics, reducing the regularity of the pulse package dynamics in
each polarization mode. This mechanism becomes more relevant at a higher injection
current, approaching the polarization switching point. A gradual loss of the regularity
in the pulse package dynamics as the bias injection current is increased from 3.2 to
3.8 mA. In the time series in Fig. 8.24, the pulse package dynamics temporarily take
place in one of the polarization modes only in some cases and the second mode is
almost turned off. In other cases the pulse package dynamics take place in the two
polarization modes simultaneously. The first case of dynamics, in which the pulses
are emitted in one polarization mode only, is referred to as type I pulse packages. The
second case of dynamics, in which the pulse package dynamics take place in the two
polarization modes simultaneously, is called type II pulse packages. Similar interplay
of the feedback induced complex dynamics and polarization mode competition has
been found numerically in the long external cavity regime (Sciamanna et al. 2003a)
and experimentally confirmed (Naumenko et al. 2003; Sondermann et al. 2003).

The cross-correlation functions corresponding to the left column are shown in
the right column of the figure. By increasing the injection current, we observe a
continuous decrease of the modulation amplitude at the timescale of the multi-
ples of the pulse package envelope until the peaks completely vanish, which we
demonstrate in Fig. 8.24h. At higher levels of the bias injection current, the laser
first emits pulses with high amplitudes while the amplitude of the following pulses
progressively decreases. Moreover, in the regime of high injection currents, well
above the polarization switching point, the cross-correlation function becomes neg-
ative for all time lags. This substantial change in the shape of the cross-correlation
function can be associated with a remarkable change of the pulse package dynamics,
reflecting a gradual transition from type II pulse package to type I one.

8.3.9 Optical Injection Dynamics in VCSEL

We have discussed optical injection phenomena in narrow-stripe edge-emitting semi-
conductor lasers in Chap. 6. The technique is developed for frequency-locking and
stabilizing injected lasers, but the lasers are sometimes destabilized by optical injec-
tion and show a rich variety of chaotic dynamics for certain ranges of the injection
parameters as has already been discussed. In the case of narrow-stripe edge-emitting

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 8.24 Polarization resolved dynamics of a VCSEL in the pulse package regime for the injection
current. Left column is time series and right column the corresponding cross-collation function.
a I = 3.2 mA, c I = 3.4 mA, e I = 3.8 mA, and g I = 5.0 mA. Gray plot corresponds y-
polarization and black plot x-polarization [after Tabaka et al. (2006); © 2006 AIP]

semiconductor laser, the laser usually emits a light with a linear polarization (TE
mode) and the same polarization is used as an injection light. Once in a while,
polarization-rotated optical injection (TM mode injection) is applied to obtain a
chaotic light source in narrow-stripe edge-emitting semiconductor lasers. Normally,
the excitation of the orthogonal mode is very small in ordinary edge-emitting semi-
conductor lasers. However, the situation completely changes in VCSELs, since the
lasers have the ambiguity of oscillations for polarization directions. In VCSELs, opti-
cal injection including the polarization direction plays a crucial role in the dynamics
of the laser oscillations even if the laser is oscillated at a certain fixed polarization
with a solitary mode. Depending on the injection conditions, the laser shows a rich
variety of dynamics; stable and unstable injection locking, and even chaotic oscilla-
tions by the optical injection. The typical feature of the dynamics is the polarization
switching between the two orthogonal polarization modes. Further, the polarization
is greatly affected by small changes of the bias injection current or the device tem-
perature may result in a polarization switching between the two linearly polarized
modes. Control of the VCSEL polarization is a major issue in telecommunication
applications. For well polarization controlled VCSELs, polarization switching may
be interesting for the development of all optical switches.
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The typical feature of VCSEL oscillations is the polarization switching for the
increase or decrease of the bias injection current. By optical injection, the laser shows
different dynamics depending on the injection direction for the polarization mode
and also the frequency detuning. As a general trend, the polarization switching cur-
rent is almost fixed to that of the solitary oscillation for a small optical injection. For
the increase of optical injection level, the switching current increases. Finally, the
polarization switching is eliminated for a strong optical injection like the effect of
optical feedback and the laser oscillates at only a single polarization mode (injected
polarization direction), although the particular mode may show chaotic oscillations.
In optical injection to a VCSEL, we can obtain a similar injection map of Fig. 6.6
in Sect. 6.2.3 as far as the injection polarization direction is the same as the oscilla-
tion mode of the VCSEL (Li et al. 1996; Ryvkinn et al. 2004; Hurtado et al. 2010).
However, polarization switching dynamics encounter for an orthogonal polarization
injection and the laser shows a rich variety of dynamics in its output power and
polarizations. Figure 8.25 shows examples of dynamic-state maps in the phase space
of the optical injection and the frequency detuning calculated from the spin-flip
model discussed in Sect. 8.3.3. Here, we show different conditions of the polar-
ization directions of optical injection and the bias injection points. The important
parameters related to the polarization switching current and the laser oscillation
frequency are set to γp = 30 rad·ns−1 and γa = 1 ns−1. Under this condition, the
normalized polarization switching current isμsw = 1.3 and the frequency difference
between the y- and x-polarization oscillations is about 9 GHz. Figure 8.25a, b are
the results for parallel optical injections, while Fig. 8.25c, d are those for orthogonal
optical injection. Figure 8.25a is the map for the optical injection to y-polarization
when the laser oscillates at y-polarization mode (μ = 1.2). On the other hand,
Fig. 8.25b is that for the optical injection to x-polarization under the laser oscillation at
x-polarization mode (μ = 1.4). The general trends of the dynamics are quite simi-
lar to the case of narrow-stripe edge-emitting semiconductor lasers. As is expected,
for higher bias injection, the stable oscillation region shrinks and chaotic oscil-
lation areas are expanded. Figure 8.25c is the map for the optical injection to x-
polarization when the laser oscillates at the y-polarization mode (μ = 1.2). While,
Fig. 8.25d is that for the optical injection to y-polarization under the laser oscillation at
x-polarization mode (μ = 1.4). In the maps of the orthogonal optical injections,
the offset frequency detunings of ±9 GHz correspond to the frequency differences
between the two polarization components of the laser oscillations. Except for the
offset of the frequency detuning, one obtains similar dynamics for parallel optical
injection to VCSELs. However, it is noted that unlocking regions are widely observed
at lower injection ratio in these cases.

In order to represent the richness of the polarization dynamics in VCSELs with
orthogonal optical injection including wide range of frequency detuning and also
large dynamic range of optical injection power, the map of the boundaries of different
dynamics is experimentally drawn as usual in the phase space of the frequency
detuning and the injection power in Fig. 8.26 (Altés et al. 2006; Gatare et al. 2006).
The laser is under the x-polarization oscillation with a single spatial mode (the
fundamental transverse mode) above the polarization switching point, hence the

http://dx.doi.org/10.1007/978-3-642-30147-6_6
http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 8.25 Maps of dynamic states of an optically injected VCSEL in the phase space of optical
injection rate and the frequency detuning between the injection laser and the VCSEL. The maps
are calculated from the spin-flip model. The polarization switching current is μ = 1.3. Parallel
optical injection maps for the oscillation modes at a μ = 1.2 (y-polarization mode is injected)
and b μ = 1.4 (x-polarization mode is injected). Orthogonal optical injection maps for the non-
oscillation modes at c μ = 1.2 (x-polarization mode is injected) and d μ = 1.4 (y-polarization
mode is injected)

main y-polarization mode is suppressed. The injection power in the horizontal axis
in Fig. 8.26 is normalized to the solitary oscillation power at this bias point. The
VCSEL is externally injected by the linear polarization light with y-polarization
mode and the x-polarization mode dynamics of the laser is investigated. The thin
solid and gray lines are the polarization switching boundaries (switch-on points) for
the increase of the bias injection current. While the dashed and the thick solid lines
are polarization switching boundaries (switch-off points) for the decrease of the bias
injection current. In the regions S1 and S2, the frequency of VCSEL emission is
locked to the master laser. However, in the case of S2, it is the first order transverse
mode and not the fundamental transverse mode that locks to the master laser, the
fundamental transverse mode then being suppressed. The unlocking of the first order
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transverse mode happens at smaller values of the injection power, describing bistable
region B2 between the fundamental and the first order transverse mode both with the
same polarization.

In Fig. 8.26, two polarization bistable regions are observed in a regime of fun-
damental mode emission, which correspond to two different ways of polarization
switching. The first one is with frequency locking in region B1 and is confined
between the gray and the thick solid lines. The second polarization bistable region
of B3 is confined between the dash and the thin solid lines where the polarization
switching happens without frequency locking. The two bistable regions are connected
at a detuning of 2 GHz, which coincides with the birefringence frequency splitting
between the two linear polarization modes. This means that when the master laser is
biased at the frequency of the y mode (the suppressed mode under the bias injection
current) a dramatic change of dynamics occurs from polarization switching with
injection locking to polarization switching without locking. For larger positive or
negative detunings, the switching power is larger, and moreover the switching power
is larger for a negative than for a positive detuning value. This experimental feature
agrees with theoretical results on a VCSEL rate equation model (Sciamanna and
Panajotov 2005). It is noted that the widths of the injection-locking regions S1 and
S2 and of the bistability region B1 increase with the detuning. On the other hand, the
width of the bistability region B3 remains approximately constant when changing the
frequency detuning. This bistable region B3 is also strongly influenced by the locking
of the first order linear polarization mode (S2). For small positive detunings rang-
ing from about 0–10 GHz, complicated dynamics like wave mixing, subharmonic
resonance, sustained limit cycle oscillation, period doubling, and chaotic regimes
(C) are observed as shown in the inset in Fig. 8.26. The example shown here is the
polarization dynamics of orthogonally injected VCSELs at the bias injection current
above the polarization switching point. Similar but somewhat different dynamics
can be found for the bias injection current below the polarization switching point
(y-polarization mode oscillations) and x-polarized optical injection (Sciamanna and
Panajotov 2005, 2006).

8.4 Broad-Area Semiconductor Lasers

8.4.1 Theoretical Model of Broad-Area Semiconductor Lasers

The high power semiconductor laser is a promising laser device for various industrial
applications of high-energy optical sources, since the power conversion efficiency
from electricity to light in those semiconductor lasers is much higher than in other
lasers (the efficiency is more than 50 %). Such high power and high efficiency lasers
can be used for light sources of laser welding, pumps for solid-state lasers, and
laser fusion. Also high power semiconductor lasers are used as light sources for
laser printing and laser display. Currently, a high power semiconductor laser over
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1 kW of output is deviced by stacking lasers as arrays. One of the technologies
for high power semiconductor lasers is a broad-area laser that has a broad stripe
width (∼100 µm which is about twenty times or more larger than that for ordinary
narrow-stripe edge-emitting semiconductor lasers). The broad-area semiconductor
laser has a broad stripe width of the active region as its name suggests. Therefore,
the effects of the carrier diffusion and the diffraction of light in the active region
are essential for such a structure (Diehl 2000; Gehrig and Hess 2003). Other than
that, the broad-area semiconductor laser has the same structure as ordinary narrow-
stripe edge-emitting semiconductor lasers. Figure 8.27 is an example of the device
structures. The thickness of the active layer is larger than that of ordinary narrow-
stripe edge-emitting semiconductor lasers, but the oscillation of the TE mode is
usually expected. However, under special installation of the device structures such
as stress-induced anisotropy for the device, a broad-area semiconductor laser may
oscillate at the TM mode. The internal cavity length is of the same order as for
narrow-stripe edge-emitting semiconductor laser or several times larger than that.
The longitudinal dimension is typically 1 mm. Except for wide stripe, the laser usually
has a high reflectivity of light at the back facet and a low reflectivity at the front facet
to avoid catastrophic optical damage (COD), which is discussed in Sect. 8.4. The
output power of a broad-area laser is more than 100 mW and even 10 W oscillation
is realized as a single emission light source.

Except for the advantage of high power operation, the qualities of the laser beam
show rather poor performances. For example, broad-area semiconductor lasers usu-
ally operate at multimode both for the longitudinal and transverse modes. Depending
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Fig. 8.27 Device structure of
a broad-area semiconductor
laser. The stripe width w of
the active layer is as broad as
∼100 µm
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on the bias injection current, spatial mode excitation or suppression occurs in the
laser beam. As an ordinary tendency, the laser transversely oscillates with a few lower
spatial modes at low bias injection current, while higher spatial modes are further
excited with the increase of the bias injection current. This effect originates from the
increased importance of carrier dynamics; with increasing current the nonlinear spa-
tial and spectral dynamics lead to an increased rise in the gain for the higher spatial
modes. Moreover, the carrier-induced refractive index induces dynamic filamenta-
tions in the gain medium, which is a principal cause of multimode dynamics. The
far-field pattern of a broad-area laser typically has a twin-peak at low bias injection
current. There exists a carrier hole-burning effect in the active region along the stripe
width at high bias injection current. The positions of the hole-burning change and
fluctuate with time and this gives rise to pulsating oscillations with picosecond and
fast spatio-temporal filamentations (Hess et al. 1995; Marciante and Agrawal 1998;
Scholz et al. 2008). Filamentation of broad-area semiconductor lasers, which shows
zigzag motions of high intensity peaks along the internal cavity (typically the time
size is several tens of picoseconds and the spatial size of several micron-meters), is
one of the typical features of broad-area semiconductor lasers and it much deterio-
rates the laser performance. The broad-area semiconductor laser is also sensitive to
external perturbations. In the following, we discuss the dynamics both without and
with external perturbations.

The broad-area semiconductor laser itself is also an unstable device due to the
spatial dependence in the laser oscillations (i.e., the spatial variation is an additional
degree of freedom). Broad-area semiconductor lasers usually oscillate with multi-
mode, however, we assume a single longitudinal mode operation for simplicity. Even
for the assumption, it is proved that we can well reproduce fundamental dynamics
of broad-area semiconductor lasers. Starting from the Helmholtz equation for the
complex laser field E(x, t)(x is the coordinate perpendicular to the laser thickness
in the active layer, i.e., the direction along the laser stripe width), the rate equation
is given as (Rahman and Winful 1994; Merbach et al. 1995; Levy and Hardy 1997)
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Table 8.4 Characteristic device parameters for broad-area semiconductor lasers at an oscillation
wavelength of 780 nm

Symbol Parameter Value

Gn gain coefficient 2.00 × 10−13 m3 s−1

α linewidth enhancement factor 3.00
r1 front facet reflectivity 0.05
r2 back facet reflectivity 0.95
nth carrier density at threshold 5.11 × 1024 m−3

n0 carrier density at transparency 1.30 × 1024 m−3

τs lifetime of carrier 3.00 ns
τph lifetime of photon 1.88 ps
τin round trip time in laser cavity 6.00 ps
De diffraction coefficient 1.44 m2 s−1

Dn carrier diffusion coefficient 30 cm2 s−1

l cavity length 500 µm
w stripe width 50 µm
d thickness of active layer 0.05 µm

∂E(x, t)

∂t
= i De

∂2 E(x, t)

∂x2 + 1

2
(1 − iα)Gn{n(x, t)− nth}E(x, t) (8.41)

where De = c/2k0η
2 is the diffraction coefficient of light (k0 being the wavenumber

in vacuum). The first term on the right-hand side of the equation is the diffraction
effect due to the broad active area. The diffusion effect must also be included in the
rate equation for the carrier density n(x, t) and it is written as

∂n(x, t)

∂t
= Dn

∂2n(x, t)

∂x2 + J

ed
− n(x, t)

τs
− Gn{n(x, t)− n0}|E(x, t)|2 (8.42)

where Dn is the diffusion coefficient of the carrier and it is defined as Dn = l2
d/

τs(ld is the diffusion length). In reality, the injection current is a function not only of
time but also of the x coordinate. The dynamics of broad-area semiconductor lasers
at solitary oscillations are numerically simulated from (8.41) and (8.42). Table 8.4 is
an example of characteristic parameters of broad-area semiconductor lasers.

To explain the dynamics not only for the externally emitting light field but also
within the laser cavity, a different model for broad-area semiconductor lasers is
sometimes employed. In this model, the field amplitude and carrier density in the
active region of a broad-area semiconductor laser fluctuate in time and space both for
the transverse and longitudinal directions, i.e., x and z directions (z is the direction of
light propagation). To analyze the internal local field and carrier density, we must take
into account the internal field for the propagating and counter propagating waves and
the polarization of the matter. Then, the electromagnetic field equation is numerically
solved by using a finite difference time domain (FDTD) method (Acachihara et al.
1993; Hess and Kuhn 1996a,b; Simmendinger et al. 1999). Therefore, such a model



8.4 Broad-Area Semiconductor Lasers 289

is sometimes used. In the model, the field equation for the forward and backward
propagations E+ (x, z, t) and E− (x, z, t) along the zdirection in the internal active
region is given as

± ∂E±(x, z, t)

∂z
+ η

c

∂E±(x, z, t)

∂t

= i

2k

∂2 E±(x, z, t)

∂x2 − (
αs

2
+ iγw)E

±(x, z, t)+ i

2

�(x)

η2ε0l
P±

N (x, z, t) (8.43)

and the carrier density n(x, z, t) reads as

∂n(x, z, t)

∂t
= Dn

{
∂2n(x, z, t)

∂x2 + ∂2n(x, z, t)

∂z2

}

+ J (x, z)

ed

− n(x, z, t)

τs
− G E,P (x, z, t) (8.44)

where l is the internal cavity length of the laser, αs is the linear absorption term, γw
is the parameter related to transverse and vertical variations of the refractive index
due to the waveguide structure, and � (x) is the confinement factor. P±

N (x, z, t) is
the nonlinear polarization of the matter accompanying the laser oscillation and is
written as

P±
N = 2

V

∑

k

dcv(k)p
±
r (k) (8.45)

where dcv(k) is the optical dipole matrix element and p±
r (k) is the microscopic

polarization function. The macroscopic generation rate G E,P in (8.44) is given as

G E,P (x, z, t) = −χ ′′ ε0

2�
(|E+(x, z, t)|2 + |E−(x, z, t)|2)

+ [−i

2�
{E+(x, z, t)P+∗

(x, z, t)

− E−(x, z, t)P−∗
(x, z, t)} + c.c.] (8.46)

where χ ′′ is the imaginary part of the susceptibility. When the variables for the z
direction in (8.43) and (8.44) change slowly in time, the equations reduce to the rate
equations at the exit face of the laser given by (8.41) and (8.42).

8.4.2 Dynamics of Broad-Area Semiconductor Lasers
at Solitary Oscillations

In this subsection, the dynamics of broad-area semiconductor lasers at solitary
oscillations are described. The L-I characteristic is the same as that for narrow-stripe
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edge-emitting semiconductor lasers, but the threshold current is much higher because
of the broad stripe width and the need of the high carrier injection rate. The
laser threshold current is usually larger than 100 mA. In the previous theoreti-
cal model, we assume a single mode oscillation for a broad-area semiconductor
laser, however, most of the actual broad-area semiconductor laser oscillates with
multi-longitudinal mode. Therefore, we must use multimode equations for the real
laser model to compare with experiments. However, the single mode model can
reproduce well the fundamental characteristics of broad-area semiconductor lasers.
The following examples of the numerical simulations are the results for a single
longitudinal mode assumption.

As discussed, the rate equations depend on the x coordinate and the spatial modes
play a crucial role for the dynamics. Then, we cannot ignore the spatial dependence
and must take into account the higher transverse modes. Further, the laser undergoes
spatial and temporal complex dynamics due to the self-focusing effects induced
by the hole-burning of carriers and the diffraction of light. We will describe the
fast dynamics later and, instead, we here discuss the time-averaged far-field profile
of a laser oscillation. The output profile of broad-area semiconductor lasers has
a significant wavefront distortion and the effect is remarkable for the laser of the
gain-guided structure which is easy to fabricate. The far-field pattern of a broad-
area semiconductor laser typically has a twin-peak profile. For multi-transverse-
mode lasers, the beam quality factor is introduced to evaluate the beam quality.
The beam quality factor M2 of a far-field pattern for a laser is defined as (Hodgson
and Weber 1997)

M2 = Dmθm

d0θ0
≈

(
Dm

d0

)2

(8.47)

where d0 and Dm are the diameters of the ideal Gaussian beam and the observed
beam, and θ0 and θm are the divergence angles for the ideal and observed beams,
respectively. The value of the beam quality factor M2 is unity for the ideal beam, but
the value for broad-area semiconductor lasers usually ranges from 10−50 depending
on the bias injection current and the stripe width.

Figure 8.28 shows a plot of experimental far-field patterns of a broad-area semi-
conductor laser for a change of the bias injection current. The profile is spatially
averaged. At a lower bias injection current, the laser profile has a single lobe, while
the laser shows a typical twin-peak pattern for a higher injection current. The extent
of the divergence of the beam in the far field is roughly determined by the average par-
ticle size of the filamentation. From this relation, the spatial size of the filamentation
at the exit facet of the laser is given as (Hülsewede et al. 2001)

σ = 4λ

πθ
(8.48)

where θ is the diffraction angle at the far-field plane. In Fig. 8.28, the divergence
angle is θ = 0.17 radians and the corresponding spatial size of the filamentation at
I = 230 mA is estimated as 6 µm.
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Fig. 8.28 Experimental far-field beam profile of a broad-area semiconductor laser. The laser oscil-
lates at 780 nm and has a stripe width of 50 µm. The threshold current is 140 mA

A laser with a non-negligible spatial structure shows instabilities without any
external perturbations. Another example is VCSELs, as we have already discussed.
Next, we show a typical example of spatio-temporal dynamics in broad-area semicon-
ductor lasers. Figure 8.29 is numerically calculated near-field and far-field patterns
of a broad-area semiconductor laser for a stripe width of 50 µm at a bias injec-
tion current of J = 1.5Jth. Figure 8.29a, b are the time-resolved near-field and
far-field patterns with a time window of 1 ns. The horizontal axis is the position
of the exit face of the broad-area semiconductor laser and the vertical axis is the
time development of the output power. In the near-field pattern (NFP), we can see
that bright spot particles moves back and forth in a zigzag manner along the stripe
width. This coil-like pattern is called a filament and it is a typical structure of the
light output in broad-area semiconductor lasers. Figure 8.29b shows the correspond-
ing time-resolved far-field pattern (FFP). Figure 8.29c, d are the time-averaged NFP
and FFP. In the time-averaged NFP, the light outputs of the both edges in the active
region are enhanced. The corresponding time-averaged FFP shows a twin-peaked
pattern, which is typically observed in experiments. The calculated M2 factor in the
FFP is about M2=10. The filament structures are indeed observed in experiments.
Figure 8.30 is a filamentation oscillation experimentally observed by a streak cam-
era in a near-field output of a broad-area semiconductor laser (Fischer et al. 1996;
Burkhard et al. 1999). The width of migrating filaments is typically around 10 µm
and it takes them about several picoseconds to migrate from one edge of the active
region to the other. Figure 8.30a is the numerical simulation for the experiment for
Fig. 8.30b. Though the model is a single mode, the calculated filamentation is quite
similar to the experimental one. Filamentation is universally observed not only for
wide stripe lasers but also for semiconductor laser arrays.

The origin of dynamic filamentation in broad-area semiconductor lasers is not
fully understood yet. However, the phenomena can be related to the effects of self-
focusing, diffraction, and spatial hole-burning, which depends on spatial carrier
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Fig. 8.29 Time-resolved a near-field pattern (NFP) and b far-field pattern (FFP) of index-guided
structure broad-area semiconductor laser at bias injection current of J = 1.5Jth. The stripe width
is 50 µm. Time-averaged c NFP and d FFP

diffusion as the relevant physical mechanisms (Hess et al. 1995; Hess and Kuhn
1996b). The self-focusing tends to guide high intensity regions resulting in a decrease
of the optical gain. Thus, in the neighboring regions, the gain is higher. In addition,
diffraction couples light into this neighboring region so that the spot of high inten-
sity starts to migrate. At the edges of the active area, coupling via diffraction occurs
only to one side, leading to a change of direction of migration. Figure 8.31 shows the
intensity distribution of the internal cavity calculated from Maxwell-Bloch equations
discussed in the previous subsection that include both the space dependence and the
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Fig. 8.30 Near-field pattern of filamentation in a broad-area laser. a Numerical simulation of
filamentation. b Experimentally observed filamentation by streak camera. The bias injection current
is J = 2.0Jth. The laser has a stripe width of 100 µm and the oscillation wavelength is 814 nm. The
parameters of the theoretical result are compatible with those of the experiment. The horizontal
axis corresponds to the exit face of the active region and the vertical axis is the time evolution [after
Fischer et al. (1996); © 1996 EDP Sciences]

momentum dependence of the charge carriers and the polarization of matter (Hess
and Kuhn 1996b). The bottom of each plot is the front facet with a lower internal
intensity reflectivity of 0.33 and the top is the back facet with a higher reflectivity
of 0.99. Bright spots of filamentation move with the time evolutions. Other than
broad-area semiconductor lasers with constant stripe width, various types of broad-
area lasers have been proposed (Levy and Hardy 1997; Fukushima 2000). To control
and reduce the effect of filamentation, a flared laser having a tapered cavity has
been used. In such lasers, the filamentation has been reduced but different complex
spatio-temporal dynamics have been encountered.

We discussed the dependences of the laser dynamics on index- and gain-guide
structures in ordinary narrow-stripe edge-emitting semiconductor lasers and the dif-
ferences between them in Sect. 3.7.1. In the case of narrow-stripe edge-emitting
semiconductor lasers, the dynamics strongly depend on the structures not only for
solitary oscillations but also for oscillations under external perturbations. However,
the differences are reflected only to the parameter values in the rate equations and par-
ticular time-dependent dynamics only change for the ranges of the parameter values,
whether the laser is an index- or gain-guide structure. Nevertheless, lasers with gain-
guide structure show unstable oscillations from the dynamics point of view. On the
other hand, a broad-area semiconductor laser has a spatial structure along the stripe
width (index- and gain-guided structures) and the differences between the structures
give rise to large differences to the spatio-temporal dynamics. The dynamics of fila-
mentations, which are the typical fast dynamics in broad-area semiconductor lasers,
are strongly affected by the waveguiding structures.

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 8.31 Propagation of filamentary structures in a broad-area semiconductor laser. The individual
plots display snapshots showing the equi-intensity regions of the intracavity intensity. a At time
t = t0, b t0 + 1, c t0 + 2, d t0 + 2.8, e t0 + 3.5, and f t0 + 4.5 ps. Dark shading corresponds to
low intensity and bright colors to areas of high intensity. The out-coupling facet (mirror reflectivity
of 0.33) is located at the lower edge of each square. The highly reflecting back-coupling mirror
(mirror reflectivity of 0.99) is at the upper edge. The longitudinal extension corresponds to 250 µm;
the total transverse width (w = 50 µm) is 70 µm [after Hess and Kuhn (1996b); © 1996 APS]

Figure 8.32 shows the results of numerical simulations for filamentations in index-
and gain-guide structures in broad-area semiconductor lasers, which have the same
stripe width of 100 µm and the same bias injection current of 1.5Jth. In the numerical
simulations, the same form of the rate Eqs. (8.41) and (8.42) is assumed, but, in the
gain-guide laser, it is assumed that the gain, the refractive index, and the injection
current distribution have appropriate parabolic spatial distributions along the stripe
width. Figure 8.32a, b show the near-field patterns at the exit faces of the lasers and
their space–time correlation functions. The time and spatial sizes of the filaments in
the index-guide laser calculated from the correlation function are 4.1 µm and 27 ps,
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Fig. 8.32 Numerical simulations for near-field patterns in broad-area semiconductor lasers (left
column) and their spatio-temporal correlations (right column) at J = 1.5Jth. a and b Index-
guide semiconductor laser, and c and d gain-guide semiconductor laser. Both lasers have the same
stripe widths of 100 µm. Parabolic profiles for the gain, the refractive index, the injection current
distribution along the stripe width are assumed in the gain-guide semiconductor laser

respectively, while those for the gain-guide laser are 2.9 µm and 12 ps, respectively.
Namely, the gain-guide laser is less stable laser than the index-guide laser and the
filaments strongly migrate back and forth along the active layer in the gain-guide
laser as far as the values of the device parameters for both the structures are the same.
For the increase in the bias injection current, the spatio-temporal size of filaments
shrinks and filaments shows strong zig-zag motions along the active layer, as a result,
both the lasers similarly become less stable.
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Fig. 8.33 Averaged near-field patterns for index- and gain-guide semiconductor lasers for the
increase of the bias injection current. a Near-field pattern for an AlGaAs index-guide laser having
a stripe width of 100 µm and oscillating at the wavelength of 808 nm. The threshold current is
Ith=160 mA. b Near-field pattern for an AlGaInP gain-guide laser having a stripe width of 60 µm
and oscillating at the wavelength of 642 nm. The threshold current is Ith=191 mA. Courtesy of
SONY Cooperation

This fluctuation of microscopic filaments reflects the performances of macro-
scopic laser oscillations. Figure 8.33 shows experimental results of the time-averaged
intensity distributions at the exit faces of index- and gain-guide broad-area semicon-
ductor lasers for the bias injection current. The horizontal axis points to the exit face
of the laser and the intensity distribution at each bias injection current is normalized.
Each streak along the bias injection current corresponds to averaged filamentations.
We can see different dynamics for several levels of the bias injection current. As
already seen in Fig. 8.29, the enhancement of the powers at both edges of the active
layer is observable irrespective of the guided structures. Although the two lasers have
different stripe widths, values of device parameters, and oscillation frequencies, we
can recognize that the gain-guide laser is less stable laser (Asatuma et al. 2006).

8.4.3 Optical Feedback Effects in Broad-Area Semiconductor
Lasers

Instabilities in broad-area semiconductor lasers are enhanced by external pertur-
bations. In this subsection, we present some instabilities and chaotic dynamics in
broad-area semiconductor lasers subjected to optical feedback. The field equation in
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the presence of optical feedback is given as

∂E(x, t)

∂t
= i De

∂2 E(x, t)

∂x2 + 1

2
(1 − iα)Gn{n(x, t)− nth}E(x, t)

+ κ

τin
E(x, t − τ) exp(iω0τ) (8.49)

In the above equation, the feedback light is always returned to the original position
in the active area, however, the assumption may not always be true in experimental
situations. The light is intentionally fed back to a different position to control the
oscillation and beam profile. In that case, we must introduce the term for the space-
dependent optical feedback. The spatial coupling plays an important role in the laser
dynamics and a locking of the laser oscillations can be expected. The beam quality
inevitably deteriorates due to the broad stripe width, however, fabrication of high
power laser is at present the primary interest for the development for broad-area
lasers and few studies have been reported for the enhancement of beam qualities.
However, now the beam quality becomes the important issue for the applications of
broad-area semiconductor lasers, for example, a light source for the second harmonic
generation of solid-state lasers, laser welding and cutting, optical data storage, and
display. Thus, a beam with good quality is expected. One of the beam controls is
optical feedback. Figure 8.34 shows a numerical example of the effects of short
optical feedback in a broad-area semiconductor laser at the bias injection current of
J = 1.5Jth, the external amplitude reflectivity of r = 0.06, and the external mirror
length of L = 0.75 cm. In the optical feedback, a partial reflection mirror of the
width of 15 µm corresponding to the near field is used, so that the lower spatial
modes are enhanced in the resulting oscillation. Figure 8.34a is the time-resolved
NFP. Except for optical feedback, the condition is the same as that in Fig. 8.29. The
filaments shows a rather regular pattern compared with the irregular oscillation of
spatio-temporal pattern in Fig. 8.29a. At the same time, the side-peak intensities in
Fig. 8.29c in the time-averaged NFP are suppressed and the twin-peak pattern of FFP
in Fig. 8.29d becomes a single lobe pattern.

Dynamics similar to those of narrow-stripe edge-emitting semiconductor laser
have been experimentally observed by optical feedback to broad-area semiconductor
lasers. We show here one of the chaotic evolutions; the evolution of intermittent oscil-
lations to regular chaotic states for the increase of the injection current. Figure 8.35 is
an example of chaotic evolutions for the bias injection current at the external cavity
length of L = 30 cm. The threshold of the used laser is about 140 mA. Figure 8.35a
is the laser output power at the free running state just above the threshold. With the
optical feedback, the reduction of the threshold is also observed in the broad-area
semiconductor laser and the reduction rate is 13.9 % for the external feedback rate
of 6 % (in intensity). When the laser is biased at a low injection current, LFFs are
observed. In the power recovery process after the power dropout, the timescale of
each step is also the same as the time calculated from the external cavity length.
With the increase of the bias injection current, the frequency of LFFs changes and
the inverse LFFs in which power jump-ups instead of power dropouts appear are
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Fig. 8.34 Effect of short optical feedback with a partial reflection mirror of the width of 15 µm
corresponding to the near field. a Time-resolved NFP at the bias injection current of J = 1.5 Jth,
the external amplitude reflectivity of r = 0.06, and the external mirror length of L = 0.75 cm.
Time-averaged b NFP and c FFP

observed at the bias injection current of 170 mA. Around this bias injection cur-
rent, there is a kink of the L-I characteristic and the phase of the laser oscillation
changes to a different state. At a further increase of the bias injection current, the
laser behaves with normal chaotic oscillations, although the waveform still shows
LFF-like oscillation (not fully chaotic oscillation in ordinary sense).

In a short optical feedback regime, one can observe similar dynamics of pulse
packages as those in narrow-stripe semiconductor lasers. However, there are two
schemes of pulse packages; one is a periodic envelope of an LFF frequency with
a modulation of the fast oscillation corresponding to the external optical feedback
loop, which is a familiar pulse package observed in a narrow-stripe edge-emitting
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Fig. 8.35 Experimentally
observed chaotic evolution
for bias injection current in
broad-area semiconductor
laser. a Solitary oscillation at
140 mA. Optical feedback at
bias injection currents b 150,
c 162, d 170, and e 190 mA.
The external cavity length is
L = 30 cm and the external
feedback strength is 6 % in
intensity. The laser used is the
same as in Fig. 8.28 O
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semiconductor laser. The other one is a pulse package of an envelope of the external
optical feedback loop with the fast regular oscillation of filament pulses, which
is a unique feature in broad-area semiconductor lasers (Tachikawa et al. 2010).
Edge-emitting semiconductor lasers are also very sensitive to the phase. Phase sen-
sitivity also exists in broad-area semiconductor lasers subjected to optical feedback
and the dynamics are much affected by the absolute phase of the external cavity
(Martín-Regalado et al. 1996a,b). The other effects of frequency-filtered optical
feedback, spatial-filtered optical feedback, and grating feedback have been studied
(Gaciu et al. 2007). We return the subject of optical feedback in broad-area semicon-
ductor lasers from the viewpoint of laser control in Chap. 10.

One of the important issues for the practical applications of broad-area semicon-
ductor lasers, such as laser cutting, is catastrophic optical damage (COD) induced
by optical feedback from a target. In ordinary narrow-stripe edge-emitting semi-
conductor lasers, catastrophic optical damage is also a serious problem when the
laser is biased at a high injection current. The performance of the laser oscillations
is significantly degraded by catastrophic optical damage and, worst case, the laser
oscillation stops by the damage. The catastrophic optical damage is a critical prob-
lem in laser cutting using high power broad-area semiconductor lasers. Takiguchi
(2006) investigated the conditions for the occurrence of catastrophic optical damage
in broad-area semiconductor lasers from the viewpoint of laser dynamics. Figure 8.36
shows an example of catastrophic optical damage observed in an AlGaAs index-guide
broad-area semiconductor laser having a stripe width of 50 µm. Under filamentation
oscillations in broad-area semiconductor laser, a large power is concentrated to a
filament within a short time, and this effect together with a large optical feedback

http://dx.doi.org/10.1007/978-3-642-30147-6_10
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Fig. 8.36 Catastrophic optical damage (COD) induced by optical feedback in an index-guided
broad-area semiconductor laser with a 50 µm stripe width and an oscillation wavelength of 808 nm.
Left top view of the front facet. COD can be seen in the lower part of the laser. Right intensity profile
of the cathode luminescence image at the front facet. Dips of light emissions corresponding to the
front facet can be seen. Courtesy of SONY Cooperation

intensity may damage the laser. Thus, microscopic filamentations greatly affect the
catastrophic optical damage, but the detailed study for catastrophic optical damage
with the relation of laser dynamics has not been fully understood yet. The study is
very important to prevent fatal catastrophic optical damage in broad-area semicon-
ductor lasers as a practical issue.

8.4.4 Effects of Optical Injection in Broad-Area Semiconductor
Lasers

Similar to the optical feedback effects in broad-area semiconductor lasers, the injec-
tion of an external coherent resonant light can lead to the excitation and selection of
specific transverse modes depending on the power and spatial profile of the injected
light field (Gaciu et al. 2007; Takimoto et al. 2009). Except for the spatial dependence
of the injected field, the field in the presence of optical injection can be described by
the same equation as (6.1) and is given as

∂E(x, t)

∂t
= i De

∂2 E(x, t)

∂x2 + 1

2
(1 − iα)Gn{n(x, t)− nth}E(x, t)

+ κinj

τin
Em(x, t) exp(−i�ωt) (8.50)

Again, Em is the field of the injection laser, kinj is the injection fraction, and �ω is
the frequency detuning between the injection laser and the broad-area laser.

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Figure 8.37 shows numerical results of optical injection to a broad-area semicon-
ductor laser (Takimoto et al. 2009). The stripe width of the active layer is 50 µm and
the continuous-wave injection beam has a rectangular shape with a width of 40 µm.
The beam is symmetrically injected related to the center of the active layer. The
frequency detuning is assumed to be �ω = 0 GHz at the bias injection current of
1.5Jth. The upper plots are the time-resolved filament patterns and the lower traces
are the time-averaged intensity profiles of the near-field patterns. The external injec-
tion ratio rinj defined by (6.2) is used as a measure of optical injection. At rinj = 0.4
in Fig. 8.37a, the laser still exhibits irregular oscillations, but the filament behavior
differs from that of a solitary oscillation (compare with the solitary oscillation in
Fig. 8.29) and the temporal duration of the filament is reduced. In the presence of
optical injection, the side peak intensities, which exist at solitary oscillation, are sup-
pressed and the laser beam has a flat top-hat profile, as shown in the time-averaged
profile. Such a flat top-hat beam shape is very important for practical applications.
At rinj = 1.2 in Fig. 8.37b, the laser still undergoes irregular oscillations, but some
regular structure can be seen in the pattern and the filament durations are shorter.
However, the flat-topped beam profile collapses and spatial periodicity is enhanced
with a further increase in the optical injection, thus resulting in the excitation of
higher spatial modes as shown in the time-averaged near-field pattern. At rinj = 1.6
in Fig. 8.37c, the near-field pattern shows a remarkable periodic structure and higher
spatial modes are strongly excited. Spatio-temproal and spatio-spectral dynamics
induced by optical injection are also studied by Gaciu et al. (2007).

8.5 Laser Arrays

Semiconductor laser arrays are also important devices for light sources with high
power radiation. The laser may be composed of arrays of broad-area lasers to make
an extremely high power laser device. However, here we assume that the arrays
consist of ordinary narrow-stripe edge-emitting lasers and consider the interaction
among the laser elements. When the separation between the laser arrays is very
small, each laser interferes and instability sometimes occurs in the total laser output.
In a strict sense, we must consider all the effects of the diffraction and the carrier
diffusion as already discussed in Sect. 8.4 (Münkel et al. 1996). However, we consider
the situation that the coupling of lights among arrays is a dominant effect and that
it is more important than those of the diffraction and the carrier diffusion. We also
assume that the coupling only between the neighborhood lasers is strong, as is often
the case. Thus, the rate equations for the field amplitude and the carrier density of
the j th element are given as (Winful and Rahman 1990; Winful 1992)

dE j (t)

dt
= 1

2
(1 − iα)Gn{n j (t)− nth}E j (t)− i

κa

τin
{E j+1(t)+ E j−1(t)} (8.51)

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 8.37 Numerical results of optical injection at the external injection ratios of a rinj = 0.4, b
1.2, and c 1.6 at the frequency detuning of �ω = 0 GHz and the bias injection current of 1.5Jth.
The internal reflectivity of the active layer and the refractive index of the laser medium are assumed
as r0 = 0.1, and η = 3.59, respectively. Upper plots time-resolved filament patterns and lower
graphs time-averaged near-field patterns

dn j (t)

dt
= J

ed
− n j (t)

τs
− Gn{n j (t)− n0}|E j (t)|2 (8.52)

where κa is the coupling ratio between the neighborhood laser elements. The spon-
taneous emission term is neglected in the above equations. For the numerical calcu-
lation of the rate equations, the number of laser arrays is N + 1 and the boundary
condition is E0 = EN = 0. The rate equation for the field amplitude has the same
form as the well-known equation of the coupled map lattice (CML). The CML shows
typical spatio-temporal instabilities and chaos. Therefore, semiconductor laser arrays
are essentially chaotic systems. Winful (1992) investigated chaotic dynamics and
synchronization of laser arrays based on this model.

As a different approach for the analysis of semiconductor laser arrays, the model
of periodic carrier confinement and injection is proposed by extending the theory
of broad-area semiconductor lasers (Merbach et al. 1995; Martín-Regalado et al.
1996a,b). In multi-stripe laser arrays, the rate equations remain the same as (8.41)
and (8.42). However, the laser is assumed to have a discrete multi-stripe structure
along the x-direction as shown in Fig. 8.38. The confinement of the gain arises peri-
odically in the active region. Then, we introduce a periodic confinement factor �(x)
in the wave-guide. Also, the bias injection current J (x) is assumed as a periodic
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Fig. 8.38 Model of a multi-
stripe semiconductor laser
array. Only three stripes are
displayed
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function with the same period. Using these assumptions, the dynamics of the multi-
stripe laser are numerically investigated. For the laser arrays, filamentations are also
observed. Figure 8.39 shows an example of numerically calculated filamentations
(Merbach et al. 1995). The laser has a ten-stripe. We can see filamentations among
laser arrays and the dynamics strongly depends on the bias injection current. In
Chap. 10, we also return to the control of unstable operation of laser arrays subjected
to optical feedback from the viewpoint of laser control.

8.6 Quantum-Dot Semiconductor Lasers

8.6.1 Quantum-Dot Semiconductor Lasers

Quantum-dot semiconductor laser is an important light source for high-speed data
communication applications, since it is insensitive to temperature variations and opti-
cal feedback, and provides features of high modulation bandwidth and low chirp. The
device structure of a quantum-dot laser is almost the same as common narrow-stripe
edge-emitting semiconductor lasers. However, in the active layer, small quantum dots
as small as nanometer size are fabricated, usually by a self-assembled method of the
crystal. A common quantum-dot semiconductor laser is not a single layer device,
but several thin quantum-well layers with quantum dots are piled up in the active
region. An electron and a hole are captured in a single dot and behave like zero-
dimensionally confined particles with a fixed energy state. Thus the light emitted
from a quantum-dot semiconductor laser shows a high coherence state. The crystal
growth, the device characteristics, and their theoretical treatments have been given in
a book of Sugawara (1999). Figure 8.40 is an example of a self-formed quantum-dot
structure of InAs in an active region of GaAs (Shoji et al. 1997). Figure 8.40a show
a plan view of quantum dots. It is desirable that quantum dots stand in a line on the
wetting quantum-well layer and the size of each quantum dot should be the same.
However, the control of the crystal growth is very difficult. In spite of irregularities of

http://dx.doi.org/10.1007/978-3-642-30147-6_10
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Fig. 8.39 Numerical plots of spatio-temporal output power of a ten-stripe laser array for two
different injection currents. a I = 34 mA: periodic state and b I = 44 mA: chaotic state. The
threshold current for each stripe is Ith = 36 mA. The stripe width is w = 5.0 µm and the stripe
separation is s = 5.8 µm [after Merbach et al. (1995); © 1995 APS]

Fig. 8.40 Example of self-
assembled quantum-dot struc-
ture. a plan view and b cross-
section view [after Shoji et al.
(1997)© 1997 IEEE]
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the size and the position, the laser can emit a high quality beam. The grown quantum
dots in Fig. 8.40b are 20 nm in diameter and 5 nm in height. The areal coverage is
about 10 %.

The behaviors of quantum-dot semiconductor lasers are interesting from the
viewpoint of nonlinear dynamics. We must consider electron and hole scatter-
ing rates to and from dots in the active layer. Therefore, we must introduce the
extra differential equations to describe the dynamics. In usual, an addition of
extra degree of freedom induces less stable operations for the system. Never-
theless, quantum-dot semiconductor laser is a stable light source even compared
with common narrow-stripe edge-emitting semiconductor lasers. Physically, this
stability is explained by the limitation of the light emitting region to a confined dot
structure. To describe the dynamics, we need to introduce a microscopic model of
the quantum-dot structure (Erneux et al. 2007; Lüdge et al. 2008, 2010; Lüdge and
Schöll 2009; Grillot et al. 2009; Lüdge 2011). Figure 8.41 is the model of the energy
band-structure of a quantum-dot semiconductor laser. Beside the two-level energy
states (conduction and valence bands) in common semiconductor lasers, the energy
band for a quantum dot is introduced. In this model, we here only consider the ground
state (GS) of the energy level for a quantum dot. As far as the bias injection current
is not large, the model can well describe the dynamics. For higher bias injection
current, the exited states of the energy level should be taken into account (Grillot
et al. 2009). In the microscopic model, the dynamics of electron and hole should be
treated separately, since the effective masses for electron and hole are different and
the carrier scattering rates form the wetting layer to a dot Sin and from a dot to the
wetting layer Sout are also different. In the figure, the subscripts of e and h stand for
electron and hole. In the microscopic model, the carrier scatterings into and from
quantum dots (Auger process and carrier-phonon interaction) play important roles
in the dynamics.

Using the band model in Fig. 8.41, the rate equation for the optical field is given
by (Lüdge and Schöll 2009)

dE(t)

dt
= 1

2
(1 − iα)

[

�W A{ne(t)+ nh(t)− N QD} − 1

τph

]

E(t) (8.53)

where � is the optical confinement factor, W is the Einstein coefficient, and A is the
area of the active region. N QD denotes twice the density of the active quantum dots,
taking into account spin degeneracy. ne and nh are the two-dimensional electron and
hole densities in the dots, i.e., the densities are defined as a unit of a single layer. The
rate equations for the densities of electrons we and holes wh in the quantum-well
wetting layer (WL) is given as

dwe(t)

dt
= J

e
− Sin

e
N sum

N QD {N QD − ne(t)} + Sout
e

N sum

N QD ne(t) (8.54)

dwh(t)

dt
= J

e
− Sin

h
N sum

N QD {N QD − nh(t)} + Sout
h

N sum

N QD nh(t) (8.55)
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Fig. 8.41 Energy band struc-
ture of quantum-dot semicon-
ductor lasers. WL quantum-
well wetting layer, QD quan-
tum dot, GS ground state level
of a quantum dot, E energy
level for corresponding state,
�E energy difference, Sin

capture rate, Sout escape rate
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where J is the injection current density. N sum is twice the total quantum-dot density
as given by experimental surface imaging, which accounts for reduced gain because
due to the size distribution of the quantum dots, namely the active quantum dots
N QD, match the mode energy for lasing. A crucial contribution to the dynamics of
quantum-dot semiconductor lasers is given by non-radiative carrier–carrier scattering
rates. Sin

e and Sin
h are the electron and hole capture rates into the quantum-dot levels

in this process, while Sout
e and Sout

h are the electron and hole escape rates from
the quantum-dot levels. The scattering times for electrons and holes are given by
τe = 1/(Sin

e + Sout
e ) and τh = 1/(Sout

h + Sout
h ), respectively. As specific equations for

quantum-dot semiconductor lasers, we need the following carrier density equations
of quantum dots:

dne(t)

dt
= Sin

e {N QD−ne(t)}−Sout
e ne(t)−W A{ne(t)+nh(t)−N QD}|E(t)|2 (8.56)

dnh(t)

dt
= Sin

h {N QD−nh(t)}−Sout
h nh(t)−W A{ne(t)+nh(t)−N QD}|E(t)|2 (8.57)

As an example, the values of device parameters for quantum-dot semiconductor
lasers are listed in Table 8.5.

Strictly speaking, we must use the above five-variable model to explain the dynam-
ics of quantum-dot semiconductor lasers, however, for the easiness of analytical cal-
culations, such as an analysis for steady-state characteristics, a reduced model is
sometimes used (O’Brien et al. 2004; Erneux et al. 2007). In this model, the carrier
densities of electrons and holes in the wetting layer are assumed to be the same and
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Table 8.5 Characteristic device parameters for quantum-dot semiconductor lasers with five-
variable model at an oscillation wavelength of 1.30 µm

Symbol Parameter Value

W Einstein coefficient 0.7 ns−1

� confinement factor 2.25×10−3

A WL normalization area 4×10−9 m2

N QD twice total QD density of lasing group 0.6 × 1014 m−2

N sum twice total QD density 20 × 1014 m−2

α linewidth enhancement factor 0.9
τph lifetime of photon 10 ps
τin round-trip time in laser cavity 24 ps
�Ee ground state energy difference for electron 190 meV
�Eh ground state energy difference for hole 69 meV
me effective mass of electron 0.043 m0

mh effective mass of hole 0.45 m0

m0 mass of electron 9.11 × 10−31 kg
r0 facet reflectivity 0.565

the carrier densities in quantum dots also obey the same dynamics. Therefore, the
carrier density equations in the wetting layer reduce to a single carrier density equa-
tion. Also the carrier density equations in a quantum dot are replaced as a probability
density equation of a single carrier occupation. Then, this model contains three vari-
ables of the field E , the occupation probability density ρ of electron and hole pair in
a quantum dot, and the carrier density n in the wetting layer as follows:

dE(t)

dt
= 1

2
(1 − iα)[g0ϑ{2ρ(t)− 1} − 1

τph
]E(t) (8.58)

dρ(t)

dt
= −ρ(t)

τd
− g0{2ρ(t)− 1}|E(t)|2 + [{1 − ρ(t)}Rcap − ρ(t)Resc] (8.59)

dn(t)

dt
= J

e
− n(t)

τs
− 2Nd [{1 − ρ(t)}Rcap − ρ(t)Resc] (8.60)

where g0 is the gain coefficient, ϑ is the conversion coefficient from the total gain to
the two-dimensional surface given by ϑ = 2Nd�/dd , Nd is the total carrier density,
and dd is the thickness of quantum dots. Rcap and Resc are the carrier capture and
escape rates in and from a dot, respectively. The carrier capture rate is given by
Rcap = Cn2 + Bn, where C is the carrier–carrier scattering coefficient (Auger
capture coefficient) and B is the carrier–phonon scattering coefficient. These rates
correspond to the carrier–carrier scattering rates defined in (8.53)–(8.57), however
the rates for electrons and holes are assumed to be the same in (8.59). In the five-
variable model, these parameters are the functions of the carrier densities in the
wetting layer. In spite of a rough picture of the model, the fundamental dynamics
and the trends of the laser oscillations can be explained to some extent. The model is
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Table 8.6 Characteristic device parameters for quantum-dot semiconductor lasers with three-
variable model at an oscillation wavelength of 1.30 µm

Symbol Parameter Value

g0 gain coefficient 1.8 × 10−11 m3s−1

ϑ conversion coefficient 2.4 × 1022 m−3

Nd total carrier density 2×1015 m−2

dd thickness of dot 10 nm
α linewidth enhancement factor 1.2
r0 facet reflectivity 0.565
τph photon lifetime 3 ps
τd carrier lifetime in dot 1 ns
τs carrier lifetime in well 1 ns
τin round-trip time in laser cavity 8 ps
� confinement factor 0.06
Rcap carrier capture rate 1011 s−1

Resc carrier escape rate 1.25 × 1010 s−1

particularly useful for the primary study of the steady-state behaviors in quantum-dot
semiconductor lasers. The values of the parameters used in this model are listed in
Table 8.6.

8.6.2 Quantum-Dot Semiconductor Lasers in Solitary Oscillations

We here discuss some characteristics of quantum-dot semiconductor lasers at solitary
oscillation based on the five-variable model. The scattering rates are not constant but
they depend on the carrier densities in the quantum-well wetting layer. They are
calculated from microscopic Auger in- and out-scatterings. The calculation is not
straightforward and they are not given by analytical forms. Therefore, we here only
show examples of numerical results for the scattering rates. Figure 8.42 shows the
scattering rates of electrons and holes for the carrier densities in the wetting layer at
the ground state energy difference for electron of �Ee = 190 meV and the ground
state energy difference for hole �Eh = 69 meV. We can see the strong dependence
of the scattering rates on the carrier densities in the wetting layer. Figure 8.43a shows
the steady-state occupation probabilities of carriers in a dot as a function of the bias
injection current under the same condition of Fig. 8.42. For a low bias injection
current in Fig. 8.43a, the difference of occupations of electron and hole is large, but it
becomes small for the increase of the bias injection current and stays constant values.
On the other hand, the difference of the carrier densities in the wetting layer is rather
small for the all range of the bias injection current as shown in Fig. 8.43b. Thus, the
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difference of the occupation probabilities between electrons and holes in quantum
dots plays a crucial role in the dynamics of quantum-dot semiconductor lasers.

The damping rate for a step response of the laser output for the bias injec-
tion current in quantum-dot semiconductor lasers is very high compared with that
of quantum-well lasers. The fact is confirmed experimentally and theoretically.
Figure 8.44 shows a comparison of experimental and simulation results for some fun-
damental characteristics in a quantum-dot semiconductor laser (Lüdge and Schöll
2009). Figure 8.44a is a turn-on transients at the bias injection currents of 2.2Jth
and 2.7Jth. The symbol of stars corresponds to the experimental and the simu-
lation results are obtained from the five-variable model in (8.53)–(8.57). We can
see fast decays of the relaxation oscillations. Figure 8.44b–d are the frequency
of the relaxation oscillation νR , the width of the first relaxation oscillation peak
�tFWHM, and the turn-on delay τdelay for the variation of the bias injection current.
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The microscopic five-variable model well reproduces the experimental results.
Except for the fast damping rate in Fig. 8.44a, the other characteristics are com-
patible with those for quantum-well semiconductor lasers.

8.6.3 Optical Feedback Effects in Quantum-Dot
Semiconductor Lasers

Since quantum-dot semiconductor laser has a fast damping rate as discussed in the
previous subsection, it is robust for external perturbations such as optical feedback
and optical injection. The optical feedback effects in quantum-dot semiconductor
lasers have been studied theoretically and experimentally (O’Brien et al. 2004; Huyet
et al. 2004; Viktorov et al. 2006; Otto et al. 2010). For example, the field equation
with optical feedback in the microscopic model is written as
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Fig. 8.45 Chaotic bifurcation
diagrams induced by optical
feedback. Bifurcation dia-
grams for a quantum-well and
b quantum-dot semiconductor
lasers. The length of the exter-
nal reflector is L = 30 cm and
the bias injection current is set
to J = 1.5Jth
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dE(t)

dt
= 1

2
(1 − iα)

[

�W A{ne(t)+ nh(t)− N QD} − 1

τph

]

E(t)

+ κ

τin
E(t − τ) exp(iω0τ) (8.61)

and the other four equations of the carrier densities in quantum-well and quantum-dot
layers remain the same as (8.53)–(8.57). Similar to the dynamics of quantum-well
semiconductor lasers, LFFs and fast chaotic oscillations are observed depending on
the length of an external reflector, the external reflectivity, and the bias injection
current. However, we need a larger external feedback power to destabilize the laser
compared with quantum-well semiconductor lasers. Figure 8.45 shows examples of
chaotic bifurcation diagrams induced by optical feedback for quantum-well and
quantum-dot semiconductor lasers. Since the device structure and the parameters are
different for the two lasers, it is difficult to perform completely direct comparisons of
the dynamics. However, the device parameters are carefully chosen to compare the
characteristics. The bifurcation diagram for the quantum-dot semiconductor laser is
calculated from the microscopic five-variable model. From the figures, we can con-
clude that the quantum-dot semiconductor laser is less sensitive to optical feedback
and we need much higher feedback power to destabilize the laser.
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8.6.4 Optical Injection Effects in Quantum-Dot
Semiconductor Lasers

Quantum-dot semiconductor laser has a high damping rate and a small α parameter.
This high damping and small α parameter have been cited as the principal reason
for the increased stability of such devices when subject to optical feedback, optical
injection, and mutual coupling configurations. Therefore, it behaves like a class A
laser rather than a class B laser for an optical injection (Goulding et al. 2007; Erneux
et al. 2010). A typical feature of optical injection to a class B laser with nonzero
α parameter is an asymmetric shape of the stable injection-locking region in the
phase-space map of the optical injection and the frequency detuning as shown in
Fig. 6.6. While, a class A laser such as He-Ne laser with visible oscillation shows
a symmetric shape of the stable injection-locking region. Quantum-dot semicon-
ductor laser with optical injection shows similar dynamics to a class A laser as for
optical injection, however, various dynamics can be found at the boundaries of the
stable optical injection-locking region. One of typical characteristics of quantum-
dot semiconductor lasers is a pulsation oscillation like the axon of the giant Atlantic
squid when perturbed above certain threshold level. The pulses are evidence of a large
excursion in the phase space of the system. Indeed, for optical injection, quantum-dot
semiconductor laser shows single pulses and double excitable pulses at one boundary
of the stable injection-locking region at high injection strength with finite frequency
detuning. Theoretical considerations show that these pulses are related to a saddle-
node bifurcation on a limit cycle as in the Adler equation.

Figure 8.46 shows the boundaries of the stable optical injection-locking region
in quantum-dot semiconductor laser (Erneux et al. 2010). Figure 8.46a is an exper-
imental result of the phase diagram for a DFB quantum dot semiconductor laser of
an oscillation wavelength of 1.30 µm. The bias injection current is set to 1.5Jth. The
solid lines in Fig. 8.46 are the boundary of saddle-node (SN) bifurcations, and the
dashed lines are that of Hopf (H) bifurcations. The inside of the lines are the stable
injection-locking region. Various dynamics are observed, but the one of different fea-
tures of injection locking from those of conventional quantum-well semiconductor
lasers is rather a symmetrical shape of the injection-locking region and the domain of
bistable operation, in which coexistence of two stable locking states exists. The Hopf
bifurcation line differs from that which occurs for an injected quantum-well semi-
conductor lasers and, in particular, it does not cross the zero detuning line as shown
in the inset in Fig. 8.46a. The phase diagram is not similar to that of ordinary class B
laser, but similar to that of class A laser. More precisely, quantum-dot semiconductor
lasers exhibit both Class A and Class B dynamics, depending on the carrier capture
parameters by analyzing a following three-variable rate-equation model.

To investigate optical-injection dynamics, the following field equation of the three-
variable model is employed:

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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dE(t)

dt
= 1

2
(1 − iα)

[

g0ϑ{2ρ(t)− 1} − 1

τph

]

E(t)+ κinj

τin
Em(t) exp(−i�ωt)

(8.62)
The other two equations are the same as (8.59) and (8.60). Figure 8.46b shows the
phase diagram theoretically calculated from the three-variable model. The dots are
fold-Hopf points where Hopf and SN bifurcation lines merge. The shaded region
denotes the domain of steady-state bistability, which is compatible with the experi-
ment. At higher injection levels and for positive detuning, the locking is via a Hopf
bifurcation (H2), and there is no SN bifurcation. For negative detunings, there is a
domain of bistability between two locked states, because of a Hopf bifurcation that
stabilizes the lower intensity branch (H1). The dynamics is fairly similar to those
of an injected class A laser, which is shown in the inset in Fig. 8.46b. The general
trends of optical-injection dynamics in Fig. 8.46b are well coincident with those of
the experiment in Fig. 8.46a.
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8.7 Quantum-Cascade Semiconductor Lasers

8.7.1 Quantum-Cascade Semiconductor Lasers

Different from conventional quantum-well semiconductor laser, which uses optical
transitions between conduction and valence bands (inter-band), semiconductor laser
that is based on inter-subbanad optical transitions within conduction band has been
developed (Faist et al. 1994; Gmachl et al. 2001; Wójcik et al. 2011a,b; Scalari et al.
2009). The laser has several stages of cascades consisting of superlattice structures
and is called quantum-cascade semiconductor laser (QCL). The light emission of this
laser is based on inter-subband optical transitions, therefore the carrier related to laser
radiation is only electron. Quantum-cascade lasers emit THz light from mid-infrared
(wavelength of several μm) to far-infrared (several hundreds μm) oscillations either
at pulse or CW operations. However, it is difficult to obtain a laser from an oscillation
wavelength between 30 ∼ 60 µm, since the energy in this region corresponds to that
of longitudinal optical phonon (LO phonon). In a long optical wavelength, cooling for
the device is essential, however, a laser (GaInAs/AlInAs/InP quantum-cascade laser)
operating at room temperature is reported. Quantum-cascade semiconductor laser
can emit high power as much as 1 W and has a narrow oscillation linewidth as small
as 150 kHz, while conventional quantum-well semiconductor laser has a linewidth
around 10 MHz. Quantum-cascade lasers are of great interest, since they can be used
for detection of toxic chemicals and gases by mid-infrared spectroscopy. Their nar-
row linewidths make them attractive in coherent applications, such as free-space
short-range communications due to the Wi-Fi capabilities of terahertz waves and
large supposed bandwidth modulation. Also their large direct intensity modulation
bandwidth is attractive for optical communication systems. Some of different charac-
teristics of quantum-cascade semiconductor lasers from conventional quantum-well
semiconductor lasers are listed in Table 8.7. The main difference concerning the laser
dynamics is a short relaxation time of carriers due to the use of inter-subband optical
transitions.

Figure 8.47 shows a schematic model of the band structure in a quantum-cascade
semiconductor laser. The laser consists of a multi-stage quantum cascade. In the
figure, a single period is drawn. A single photon is emitted by the transition in the
subbands when an electron passes through each quantum cascade. Each stage consists
of the active region and the injection region. The electron that is once emitted photon
is reused in the next stage, therefore, the external quantum efficiency is very high
and the laser power is proportional to the number of the stages. In actual, each region
consists of several layers of quantum-well structures. For optical transitions, the laser
is described by a two-level model, however four energy levels are related to the light
emission as shown in the figure. A carrier is injected from the injection region and
goes through a tunnel barrier 4. The injected carrier at the level 3 emits a photon and
transitions to the level 2. The carrier is pulled out form the level 2 to the ground state 1
by the fast sub picosecond time relaxation process. This carrier is again injected to the
next stage. Several stages, usually several to more that ten stages, are piled up along
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Fig. 8.47 Schematic model
of a quantum-cascade laser
using an inter-subband four-
level active medium. Each
stage consists of active and
injection regions. 4 Injector,
3 upper level of laser emission,
2 lower level of laser emission,
and 1 ground state
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Table 8.7 Difference of characteristics between conventional quantum-well semiconductor lasers
(QWLs) and quantum-cascade semiconductor lasers (QCLs)

QWLs QCLs

Optical transitions interband inter-subband
Carriers electrons and holes electrons
α parameter large small
Oscillation linewidth broad (∼10 MHz) narrow (∼100 kHz)
Polarization mode TE TM
Output power proportional to proportional to injection current

injection current and number of cascades
Stripe width* few µm larger than 10 µm
Thickness of active region* less than 1 µm larger than 10 µm
Relaxation time of carrier ∼1 ns ∼1 ps
∗ Note that the size of QCL is strongly dependent on the emission wavelength

the direction perpendicular to the substrate and, thus, forming quantum cascades. The
emission wavelength is easily controlled by designing the thicknesses of the active
and injection regions and also the inside quantum-well layers, even for the same
material, which is quite different from conventional quantum-well semiconductor
lasers. Indeed, the design of the subband ranging from several tens to 100 meV is
possible for the same materials and we can obtain a quantum-cascade semiconductor
laser with a desired optical wavelength.
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8.7.2 Linewidth Enhancement Factor of Quantum-Cascade
Semiconductor Lasers

In conventional diode lasers, the linewidth enhancement factor (α factor) is typically
3∼7, and arises because the conduction and valence bands involved in the laser
transition have opposite curvature in k-space, resulting in a spectrally asymmetric
differential gain. In contrast, both laser subbands of a quantum-cascade semicon-
ductor laser are within the conduction band, and exhibit the same reciprocal space
curvature. It has thus been predicted that the lasers should display a symmetric dif-
ferential gain and a zero α factor. However, it is not true for real quantum-cascade
semiconductor lasers for several reasons and the lasers usually have small but nonzero
value of the linewidth enhancement factor. Therefore, the lasers behave like not class
B lasers as dynamic characteristics but rather class A lasers. There are several meth-
ods to measure a linewidth enhancement factor in a semiconductor laser and the
same techniques can be also applied to measure the parameter in a quantum-cascade
semiconductor laser. Among them, the measurement using self-mixing effect in semi-
conductor laser is a promising one due to the lack of compact and sensitive detectors
in the THz band (Staden et al. 2006; Green et al. 2008; Lim et al. 2011). The method
of self-mixing in semiconductor lasers is well studied in quantum-well semicon-
ductor lasers and applications including the measurement of linewidth enhancement
factor are discussed in Chap. 11.

Figure 8.48 shows an example of the measurements of linewidth enhancement fac-
tor using self-mixing effects in quantum-cascade semiconductor lasers
(Staden et al. 2006). The laser is a DFB quantum-cascade laser of an internal cavity
length of L= 1 mm, a width of the active region of w = 10 µm, and an oscilla-
tion wavelength of λ = 5.45 µm. The laser is cooled and its threshold current is
115 mA at 82 K. The linewidth enhancement factor has a value close to zero near
the threshold, however, it varies largely depending on the bias injection current and
has a large value at higher injection current. This is a remarkable difference with
respect to near-infrared interband semiconductor lasers, for which α is expected to
be approximately constant. One of possible reasons for this increase could be the
detuning effect of the resonator mode with respect to the gain curve. It is known that
for interband semiconductor lasers a relative red-shift of the resonator mode with
respect to the gain peak results in an increase of the linweidth enhancement factor
(α factor). For quantum-cascade semiconductor lasers, an increase of temperature
as well as an increase of injection current results in a red-shift of the gain spectrum.
Further, a steady-state analysis based on the rate equations discussed in the next sub-
section, the carrier densities of the upper and lower laser levels both increase above
threshold with increasing injection current, even though the difference of both densi-
ties above threshold remains constant, accounting for gain clamping. This behavior
follows from the rate equations for quantum-cascade semiconductor lasers and is
depicted in the inset of the figure. It is in contrast to inter-band semiconductor lasers,
where the carrier density is pinned above threshold. The monotonic increase of the
carrier density certainly influences the material susceptibility, and thus it alters the

http://dx.doi.org/10.1007/978-3-642-30147-6_11
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Fig. 8.48 α parameter as
a function of the injection
current. The inset shows the
dependence of the carrier
population of the upper and
lower levels on the pump
parameter Rp = J/Jth
[after Staden et al. (2006);
© 2006 OSA]
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linewidth enhancement factor. As another example, (Green et al. 2008) measured
the linewidth enhancement factor for a quantum-cascade semiconductor laser of an
optical wavelength of λ = 116 µm. They obtained the linewidth enhancement factor
from 0.2 to 0.5 depending on the bias current ranging form J to 2Jth. The variation
is small but it still depends on the bias injection current.

8.7.3 Rate Equations of Quantum Cascade Semiconductor Lasers

A quantum-cascade laser consists of a large number of layers constituting active
and injector regions. An accurate design requires a large number of rate equa-
tions (Donovan et al. 2001). However, it is not convenient to treat them for the
visualization of interplay between various parameters. Therefore, to obtain a reduced
set of equations, we here consider a two-level lasing quantum well together with a
lifetime describing carrier removal. As a result, the model of a quantum-cascade
laser of Np periods, are written by the following simple rate equations (Haldar 2005;
Petitjean et al. 2011; Meng and Wang 2012):

dS(t)

dt
= NpG{n3(t)− n2(t)}S(t)− S(t)

τph
+ β

n3(t)

τsp
(8.63)

dn3(t)

dt
= J

ed
− n3(t)

τ3
− G{n3(t)− n2(t)}S(t) (8.64)

dn2(t)

dt
= n3(t)

τ32
− n2(t)

τ2
+ G{n3(t)− n2(t)}S(t) (8.65)
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S is the photon number, n3 is the carrier density at energy level 3, and n2 is the carrier
density at energy level 2. Here, G is the gain coefficient, τph is the photon lifetime,
τsp is the spontaneous relaxation time, τ3 is the electron lifetime at level 3, τ32 the
phonon scattering time from level 3 to 2, τ2 is the electron lifetime at level 2, β is the
spontaneous emission factor. It is easily derived from the steady-state analysis that
the laser oscillation is attained when the condition of τ32 > τ2 is satisfied. Table 8.8
lists some parameter values used for numerical calculations in the above equations
(Petitjean et al. 2011).

One of the characteristics related to the dynamics in quantum-cascade semicon-
ductor laser is a very short carrier lifetime, by which the laser shows significant
differences in comparison with conventional semiconductor lasers based on inter-
band optical transitions. Due to fast carrier decay rate, the laser has a small damping
characteristic for a step response and behaves like class A lasers. Figure 8.49 shows
a small signal response of a quantum-cascade laser calculated from the above three
equations (Meng and Wang 2012). In an interband semiconductor laser, the mod-
ulation bandwidth is simply determined by the relaxation oscillation time and the
oscillation frequency is increased as the square root of the optical power. Thus, in
common semiconductor lasers, the relaxation oscillation frequency is usually several
to ten GHz within the operation injection current range. However, a high modula-
tion characteristic is obtained in a quantum-cascade semiconductor laser as shown
in Fig. 8.49. For the bias injection current of J = 4Jth, the 3-dB cutoff frequency
of 21 GHz is obtained. Further, resonance peak, which is usually observed close
to the cutoff frequency in conventional semiconductor lasers, is not visible in the
responses. The 3-dB optical bandwidth increases with optical power, but unlike that
for interband lasers, it initially increases approximately linearly with optical power,
not as the square root of the optical power. To explain the detailed dynamics of
quantum-cascade semiconductor lasers, the extraction time of the electrons to pass
through the different periods should be taken into account (Rana and Ram 2002;
Gensty and Elsäßer 2005; Petitjean et al. 2011). To account the extraction time of
the electrons to pass from the fundamental level of a certain period to the excited
one of the next period, one more equation has to be reintegrated. The rate equations
are consequently based on a three-level scheme with four equations (one for each of
the three levels of the electrons and one for the photons).

8.7.4 Nonlinear Interactions in Quantum-Cascade
Semiconductor Lasers

Nonlinear phase coupling of laser modes in quantum-cascade semiconductor lasers
leads to a variety of ultrafast and coherent phenomena; synchronization of transverse
modes, beam steering, multimode instability, and generation of mode-locked ultra-
short pulses. The inhomogeneous saturation leads to spectral and spatial hole burning,
which, in turn, gives rise to multimode operation and nonlinear coupling between



8.7 Quantum-Cascade Semiconductor Lasers 319

J=1.5Jth

J= 2 Jth

J= 3 Jth

J= 4 JthN
or

m
al

iz
ed

 M
od

ul
at

io
n 

R
es

po
ns

e 
[d

B
]

Modulation Frequency [Hz]
109 1010 1011

0

-2

-4

-6

-8

-10

-12

-14

-16

Fig. 8.49 Numerical example of small signal response in a quantum-cascade laser at λ =
9µm, Np = 40, τph = 9.91 ps and τ3 = 0.66 ps [after Meng and Wang (2012);
© 2012 OSA]

laser modes. This nonlinear coupling is phase sensitive and under certain conditions
may lead to frequency and phase locking of laser modes. To discuss coherent inter-
plays in quantum-cascade semiconductor lasers, the equation for the field is necessary
instead of the photon number equation in the preceding subsection. For the purpose
of explaining nonlinear phase coupling in multimode quantum-cascade semiconduc-
tor lasers, the coherent rate-equation model based on the two-level Maxwell-Bloch
equations are derived (Wójcik et al. 2010, 2011a,b). The derivation is almost equal
to that derived in Chap. 2.

The electron flow through the typical active region of a quantum-cascade semi-
conductor laser can be roughly approximated by a four-level laser scheme. The
four-level scheme can be further reduced to the effective two-level scheme if we take
into account that the scattering time from lower laser level 3 to level 2 in Fig. 8.47 is
very short (∼0.2 ps) due to resonant LO-phonon emission. Therefore, level 3 stays
almost empty and we can neglect its population. Then one can write the equation for
the population inversion W = n3 − n2 between laser levels 3 and 2. The total field
is expanded by the eigenfunction of the x and y coordinates ψ(r⊥)(r⊥ = (x, y)) as

Etotal(r, t) =
∑

i

Ei (z, t)ψi (r⊥) (8.66)

where ψi is the eigenfunction for the i th mode. Then, the rate equations for the field
component Ei , the polarization P and the population inversion W are given by

http://dx.doi.org/10.1007/978-3-642-30147-6_2
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Table 8.8 Characteristic device parameters for quantum-cascade semiconductor lasers at an oscil-
lation wavelength of 103 µm

Symbol Parameter Value

ν frequency 2.9 THz
Np number of period 30
� confinement factor 0.27
w cavity width 80 µm
L cavity length 3.0 mm
r2 facet reflectivity 0.29
ηg mode-group index 3.3
αi cavity loss 2.4 × 10−3 m−1

G gain coefficient 6.75 × 10−9 m3s−1

Ith threshold current 200 mA
β spontaneous emission factor 1 × 10−5

τ2 electron lifetime at level 2 0.3 ps
τ3 electron lifetime at level 3 1.1 ps
τ31 phonon scattering time 3→1 2.4 ps
τ32 phonon scattering time 3→2 2.0 ps
τph photon lifetime 3.7 ps
τsp spontaneous relaxation time 7.0 ns

∂Ei (z, t)

∂t
+ c

ηi

∂Ei (z, t)

∂z
+ (αi + iδi )Ei (z, t) = i

4πω0

ηiσ

∫

ar

P(z, t)ψi (r⊥)dV

(8.67)

∂P(z, t)

∂t
+ γ⊥ P(z, t) = i NAμ

2

2�
W (z, t)

∑

i

Ei (z, t)ψi (r⊥) (8.68)

∂W (z, t)

∂t
+ γ||{W (z, t)− Wp} = i

�NA

∑

i

{E∗
i (z, t)P(z, t)− Ei (z, t)P∗(z, t)}

(8.69)
where γ⊥ is the longitudinal relaxation coefficient, γ|| is the transverse relaxation
coefficient, NA is the density of atoms in the unit volume, μ is the dipole moment of
the laser transition, Wp is the pump, ηi is the modal refractive index, αi is the modal
loss, δi = ωi − ω0 is the detuning of the i th mode (ωi ) from the central frequency
(ω0), and σ is the cross section of the waveguide. The integration in (8.67) is taken
over the active region.

The fast relaxation times for population inversion, γ−1
|| ∼ 1 ps, and polariza-

tion, γ−1
⊥ ∼ 0.1 ps, characteristic of quantum-cascade semiconductor lasers allow

us to adiabatically eliminate both variables. This remarkable stability of the trans-
verse mode locking is the consequence of another peculiar feature of the lasers;
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Fig. 8.50 Stable steady-state solutions for three TM modes (TM00, TM01, and TM02) as the function
of the linear gain normalized to the threshold gain for the TM02 mode. a Modal amplitudes and
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ultrafast gain recovery time of the order of 1 ps. This timescale is much shorter than
the cavity roundtrip time and the photon lifetime, which makes the laser a class A
laser. Ultrafast gain recovery time leads to overdamped relaxation oscillations as
discussed in the previous subsection, which stabilizes phase locking, as compared to
class B lasers where phase locking of transverse modes is more difficult to achieve
because of prominent relaxation oscillation resonance. In common semiconductor
lasers, phase locking is primarily due to density modulation of free carriers, which
is proportional to the linewidth enhancement factor α. In quantum-cascade lasers,
the total electron density is not affected by the laser field and the linweidth enhance-
ment factor is much smaller. In this case, the mode coupling is due to gain saturation
across an inter-subband atomic-like laser transition and the concomitant strong spa-
tial hole-burning, which favors multimode operation. Figure 8.50 shows an example
of nonlinear phase couplings in quantum-cascade semiconductor lasers. The laser
is operated with three TM modes (TM00,TM01, and TM02), which are assumed in
coincident with a real experiment. Figure 8.50a, b are the amplitude and frequencies
of all stable steady-state solutions, respectively (only the field equation is taken into
account). The frequency of each mode in Fig. 8.50 is defined as a derivative of the
total phase; it is constant when the steady state is reached. The simulations reveal the
existence of a certain critical current above which there is only one stable steady-state
solution. A remarkable feature of this solution is that frequencies of all modes are
locked to the same frequency. Below this critical current, there are multiple steady-
state solutions with different uncorrelated frequencies and phases. The model can
well explain coherent interplays in real quantum-cascade semiconductor lasers with
multimode oscillations.
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8.7.5 Effects of Optical Feedback in Quantum-Cascade
Semiconductor Lasers

For coherent effects of optical feedback and optical injection in quantum-cascade
semiconductor lasers, a similar equation for the complex field E as those discussed
in the pervious sections can be employed instead of the photon number equation in
(8.63).

dE(t)

dt
= 1

2
(1 − iα)

[

NpG{n3(t)− n2(t)} − 1

τph

]

E(t) (8.70)

Quantum-cascade semiconductor lasers still have non-zero value of the α parame-
ter. Optical feedback or optical injection term is added to the right hind side of the
equation in (8.70) when necessary. The carrier density equations remain the same as
(8.64) and (8.65). Room temperature quantum-cascade semiconductor lasers are an
attractive solution for trace gas sensing applications that require fast, portable, high
sensitivity measurements such as environmental monitoring and medical diagnostics.
Therefore, the study of optical feedback effects in quantum-cascade semiconductor
lasers is important, since the coherence of the lasers is high (the oscillation linewidth
is as small as ∼100 kHz) and an isolator in this wavelength region is not available.
Nevertheless, a little study for the dynamics of quantum-cascade semiconductor
lasers with optical feedback has been conducted (Hugi et al. 2010). One of the rea-
sons for lacking the study is that the lasers behave like class A lasers and we need
much larger optical feedback to induce instabilities such as chaos in comparison with
conventional semiconductor lasers. Therefore, we here only remark some aspects of
the current study of the optical feedback effects. As the study for the optical feedback
from plain mirror and grating mirror, the effects for the linewidth narrowing, spec-
troscopic characteristics of laser oscillations, and RIN enhancement and reduction
have been reported (Luo et al. 2001; Totschnig et al. 2002; Petitjean et al. 2011).
The dynamic phenomena correspond to those of small optical feedback effects in
interband quantum-well semiconductor lasers. Also, the effect of optical injection
in quantum-cascade semiconductor lasers is an interesting issue left for the future
study.
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displacement sensor based on terahertz quantum cascade lasers. Appl Phys Lett 99:081108-1–3

Lüdge K (2011) Modeling quantum dot based laser devices. In: Lüdge K (ed) Nonlinear laser
dynamics, Chap. 1. Wiley-VCH, Weinheim

Lüdge K, Schöll E (2009) Quantum-dot lasers-desynchronized nonlinear dynamics of electrons and
holes. IEEE J Quantum Electron 45:1396–1401
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Chapter 9
Chaos Control and Applications

We cannot foresee the future of chaotic evolutions, since a small deviation of the initial
condition in a nonlinear system results in a completely different solution of the system
output. However, chaos can be controllable. Of course, a nonlinear system does not
always show unstable oscillations. Or the system can be controlled and stabilized
to a steady state by appropriately shifting the parameters even when the system
originally outputs irregular chaotic oscillations. In such control, the perturbations
for the system may be large and the system is switched to another state from the
original oscillation by the parameter shifts. However, the idea of chaos control is
completely different from ordinary control methods. The perturbation for a nonlinear
system is very small and affects the state of the system very less. In chaos control,
the system is controlled to a nearby unstable periodic or fixed orbit (saddle node
point of the system). In this chapter, we discuss the method of chaos control and give
some applications in semiconductor laser systems. We also demonstrate suppression
of unstable oscillations in semiconductor lasers.

9.1 General Methods of Chaos Control

9.1.1 OGY Method

The physical models we encounter in real situations have more-or- less nonlinear
characteristics, nevertheless the techniques of linearization for the systems are fre-
quently applied and only their linear parts are used for convenience, especially in
engineering. Therefore, chaos induced by nonlinear effects is usually an unfavor-
able phenomenon and we keep away from such irregular oscillations in practical
applications (Schöll and Schuster 2008; Ohtsubo 2008). However, chaos is con-
trollable and the first paper on chaos control was published by Ott et al. 1990. A
nonlinear system includes various parameters and irregular oscillations of the out-
put are generated under certain conditions in multidimensional parameter space.

J. Ohtsubo, Semiconductor Lasers, Springer Series in Optical Sciences 111, 329
DOI: 10.1007/978-3-642-30147-6_9, © Springer-Verlag Berlin Heidelberg 2013
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However, the operating point is not always embedded into the chaotic sea on every
side. As usual, under a parameter condition, there is a possibility of the existence of
unstable periodic orbits (UPO) close to the operating point of the system. Or luckily
enough, a fixed point may exist near the point. Ott, Grebogi, and Yorke proposed an
algorithm (OGY method) that applies appropriately estimated minute perturbations
to an accessible system parameter to select and stabilize a certain nearby periodic
orbit (unstable periodic orbit). Whether the method works well or fails depends on the
availability of the possible nearby unstable saddle node points and the extent of the
basin of unstable orbits. This idea indicates that a chaotic system can be turned into
a system with multipurpose flexibility, meaning that one can obtain various desired
orbits in a simple system without dramatically modifying the configuration of the
system. This method is called chaos control. The details of chaos control proposed
by Ott, Grebagi, and Yorke can be found in Appendix A.3. Here, we briefly describe
the idea of chaos control based on their proposal.

The application of the OGY method requires the full mathematical description of
a nonlinear model. We need the attractors or the Poincaré map in advance to analyze
and control the system. Based on this information, the parameter is perturbed by the
mathematical method and the system is forced to fall down onto an unstable periodic
orbit. Therefore, the OGY algorithm is difficult to apply to real experimental systems.
The method comes from a rather mathematical basis and can only be applicable for
experimental situations where one knows explicitly the exact parameter values in the
dynamical system, since the parameter values are important for the calculations of
unstable periodic orbits. Although the method is difficult to apply in actual situations
of chaos control, it is modified and new techniques applicable to actual experimental
systems are proposed by taking over the essence of the OGY method. It is noted
that the idea of chaos control is a small perturbation to a nonlinear system and the
original chaotic attractor is affected little by the perturbation. If the chaotic attractor
is disturbed by the perturbation and the state is switched to another one, the method
is not called chaos control in a strict sense. It may be a control of chaos, but not
‘chaos control’.

9.1.2 Continuous Control Method

A fundamental problem existing in the OGY algorithm is the applicability for the
control of high-dimensional chaotic systems. Although some attempts were made to
adapt this technique to the experimental control of high-dimensional dynamics, the
requirements for the knowledge about the attractors and their calculations obstruct
the application of the algorithm to the real time control of high-dimensional chaos.
As alternative methods of chaos control for the applications to real systems, several
chaos control techniques have been proposed. One of them is a continuous control
proposed by Pyragas (1992). Figure 9.1 shows the schematic diagram for the control
method. In the Pyragas method, which is called the continuous control method, a part
of the output in a nonlinear system is detected with a delay τe that has an intrinsic
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Fig. 9.1 Model of the con-
tinuous chaos control method.
y(t): output, τe: feedback
delay, ξK : feedback gain,
u(t): feedback signal
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−
+

τe

Chaotic System
u(t)

y(t)

y(t)

y(t-τ)

time of the period of the chaotic attractor. The difference between the present y(t)
and delayed outputs y(t −τe) is fed back into the original system. This characteristic
time τe can be calculated either from the theoretical model or from the experimental
estimation. The feedback signal is given by (Pyragas 1992, 1993, 2001; Kittel et al.
1994; Naumenko et al. 1998)

u(t) = ξK {y(t − τe)− y(t)} (9.1)

where ξK is an appropriate feedback gain. An example of the continuous control is
given in Appendix A.3. As mentioned above, τe is the delay time and is chosen to
be near or equal to the response time of the system. When the system is controlled,
the amount of the feedback reduces to zero and the output is stabilized to a periodic
or fixed state that corresponds to one of the unstable periodic orbits involved in
the nonlinear system. The necessary condition in the continuous control method is
only the delay time τe and the appropriate set of the feedback parameter enables
the system to fall down to a periodic or a fixed state even when it originally outputs
chaotic oscillations. It is easy to implement the method by using electronic circuits
when the system response is not so fast. The method is also applicable to chaotic
semiconductor laser systems.

9.1.3 Occasional Proportional Method

The other powerful method for the application in experimental systems is the occa-
sional proportional feedback (OPF) method (Hunt 1991; Roy et al. 1992; Liu and
Ohtsubo 1994). The OPF method modifies the OGY algorithm. The OPF method
also perturbs one of the system control parameters by carefully feeding back a part
of the output signal. It creates only small alterations of the attractor and pushes the
system so as to stabilize it to the periodic orbit. Digital and analog electronic circuits,
such as comparator and sample/hold circuits, are required for the implementation of
the method and periodic components of the attractor are extracted from the chaotic
output of the system. Then, the system is stabilized to a periodic orbit by appro-
priately setting a synchronous signal. The seeding synchronous signal is estimated
from the system parameters. Therefore, we require the information only for the
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characteristic time of the system, such as the delay time, in advance. However, we do
not need the exact characteristic time but only a rough estimate of it. When the para-
meters are set within certain ranges of the appropriate values, a signal for the chaos
control is autonomous output. The control signal is a pulse-like one much smaller
than the chaotic oscillations and the level is also small enough for the assumption of
minute perturbation for the system in chaos control. It is noted that the control signal
is continuously generated in the OPF method even after the control has succeeded.
This is different from the continuous control in which the control signal is eliminated
after the success of the control.

Since the OPF technique is implemented using analog and digital electronic cir-
cuits, the control can be performed very fast and is applicable to a variety of nonlinear
systems. However, different from the continuous control method, the electronic cir-
cuits used in the OPF method are not simple and the implementation may not be
easy for a nonlinear system with fast response over nanosecond oscillations. It is
also pointed out that the OPF method is essentially a limited case of the OGY algo-
rithm, when the contracting direction of the chaos attractor is infinite in strength. In
laser systems, the controls of chaotic oscillations have been successfully performed
based on the OPF method. The OPF method has been applied for stabilization and
control for class B lasers with slow relaxation oscillations, such as solid-state lasers,
fiber lasers, and CO2 lasers (Roy et al. 1992; Ciofini et al. 1999). In semiconductor
lasers, the method is also applied to the control in optoelectronic hybrid systems.
Such an example is demonstrated in Chap. 11.

9.1.4 Sinusoidal Modulation Method

Chaotic oscillations in semiconductor lasers related to the relaxation oscillations
are usually on the order of nanosecond and close attention must be paid to making
the control circuits even when the control is possible. Here, we discuss a different
method of chaos control that is very simple and suitable for practical use in systems
with fast chaotic oscillations. As discussed in Chap. 4, there exist unstable periodic
orbits (modes), for example, in a semiconductor laser with optical feedback. The
accompanying frequencies for the modes are numerically calculated from the linear
stability analysis for the system. Some of them have periodic solutions with a negative
damping coefficient and they are the candidates for unstable periodic orbits (periodic
solutions) close to the operating point of the system. Therefore, we think of the control
of the system applying a sinusoidal modulation to one of the accessible parameters.
Thus, one may expect to stabilize a chaotic oscillation to a periodic state by applying
a small perturbation for a chaos parameter and a new category of chaos control is
established as far as the perturbation is small enough and the original state is not so
far from the periodic state (Liu et al. 1995; Kikuchi et al. 1997).

In the nonlinear system to be controlled, we apply this method of sinusoidal mod-
ulation to one of the accessible chaos parameters. Choosing an appropriate frequency
f0 from the mode analysis, the modulation with a small modulation index m for the

http://dx.doi.org/10.1007/978-3-642-30147-6_11
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parameter is given by
u(t) = uo{1 + msin(2π f0t)} (9.2)

However, modulation frequencies derived from the linear stability analysis do not
always work for the stabilization. Whether or not the control goes well depends on
the extent of the basin of the attractor for the control frequency and the modulation
depth. The method is an alternative one for the OPF control, since the periodic
synchronous perturbation generated from the control circuits of the OPF method is
replaced by a simple sinusoidal periodic signal. The sinusoidal modulation control
is very easy to apply and the fast modulation is easily attained through the injection
current modulation. Therefore, the method is frequently used in semiconductor laser
systems.

9.2 Chaos Control in Semiconductor Lasers

9.2.1 Continuous Control

The continuous control method is suited for a system with fast chaotic oscillations
in semiconductor lasers. In this section, we show an example of stabilization for
chaotic oscillations induced by optical feedback in semiconductor lasers based on
the continuous control method. The chaotic output from a semiconductor laser is once
detected by a photodetector and electronically fed back into the bias injection current
of the laser. The control signal is the difference between the detected intensities from
the laser at present and before the time τe. Using the feedback gain ξK , the term for
the injection current in the carrier density equation in (4.7) is replaced by

J = Jb[1 + ξK {S(t − τe)− S(t)}] (9.3)

where Jb is the bias injection current without control. The second term in the paren-
thesis in the right-hand side equation is the control signal corresponding to u(t) in
(9.1). The delay time τe for the control is usually chosen to be the same as the optical
feedback time. However, there is an optimum time delay for the control depending on
the parameter conditions and it is not always the same value as the optical feedback
time τ, but it is usually very close to it. The feedback in (9.3) looks like similar to the
optoelectronic feedback discussed in Chap. 7, however, it is not the same. After the
continuous control has succeeded and the output of the laser is forced to a periodic or
fixed oscillation, the control signal is eliminated (S(t − τe) = S(t)) and the original
state is little affected by the control.

Little work has been reported on the implementation of continuous chaos control
in semiconductor laser systems. Instead of showing continuous chaos control, we
here show a numerical example of dynamics states in chaotic semiconductor lasers
subjected to optical feedback based on (9.3). Figure 9.2 shows the numerical example

http://dx.doi.org/10.1007/978-3-642-30147-6
http://dx.doi.org/10.1007/978-3-642-30147-6_7
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of bifurcation diagrams for a change of the control parameters (Turovets et al. 1997).
Chaotic oscillations under this condition are not LFFs but irregular fast oscillations.
Figure 9.2a shows the bifurcation diagram without feedback signal. We can see
period-doubling chaotic bifurcation for the increase of the external reflectivity r2.
Figure 9.2b shows a bifurcation diagram for the change of the feedback coefficient
x = ξK S0 at r2 = 0.000256. For the increase of the feedback coefficient, we can see
an inverse period-doubling bifurcation. The chaotic states are stabilized at periodic
states or even at fixed states for the increase of the control parameter. The delay
time of the optoelectronic feedback circuit is set to τe = 0.36 ns and the delay is
almost equal to the delay time in the optical feedback loop. The bifurcations are
much dependent on the delay time τe. For the original chaotic state with x = 0, the
laser output is stabilized to, for example, a periodic state by the change of the control
parameter. However, the change may not be small and there exists a residual of the
control signal in this case after the state is shifted to a stable oscillation. Figure 9.2c
shows the bifurcation diagram for the change of the delay time τe at a fixed control
parameter where the original state of the laser output is a period-2 oscillation.

In actual fact, the delay τe is electronically generated by an analog circuit and
the control signal is fed back into the bias injection current of the laser. Therefore,
we must design a fast response circuit for fast chaotic oscillations. As discussed in
Chap. 7, the finite response of the electronic circuits, including photodetector and
amplifier, is always encountered besides of the setting of the delay τe. For real
systems, we must take into account these effects. It is again noted that a perturbation
for the chaos control must be very small and the system is scarcely affected by the
control (Naumenko et al. 1998). Therefore, it is not easy to realize laser stabilization
in the strict sense of chaos control. Nevertheless, the analysis of finding stable points
in the bifurcation diagram gives rise to a good indication for the control of irregular
oscillations of the system even if the control signal does not have small value and
the residual of the control is not small.

9.2.2 Occasional Proportional Feedback Control

The OPF technique is effective for the control of rather slow response laser systems
such as solid-state lasers, but it is not easy to apply the method for fast oscillating
lasers. Therefore, the OPF control in chaotic semiconductor lasers has not been
reported to date. Here, we show an example of the system construction of OPF
control in a chaotic semiconductor laser subjected to optical feedback. Figure 9.3
shows a schematic diagram of the control. A chaotic output from the laser is detected
by a photodetector (PD) and is converted into a time dependent electric signal x(t).
A variable offset is added to x(t) to bring it within a window of adjustable width.
When the waveform transits within the window, the window comparator outputs a
pulse, with the pulse width coincident with the length of transition. Meanwhile, a
synchronous signal is generated by a pulse generating circuit. The frequency of the
synchronous signal is related to the delay and relaxation times of the system. When

http://dx.doi.org/10.1007/978-3-642-30147-6_7


9.2 Chaos Control in Semiconductor Lasers 335

Fig. 9.2 Numerical con-
tinuous chaos control at
ξK = 0.05/S0 (S0 is the
average photon number) and
Jb = 2.0Jth. The relaxation
oscillation frequency at the
bias injection current is about
3 GHz. a Bifurcation diagram
for a change of external reflec-
tivity r2 without control at
τ = 0.23 ns. b Bifurcation dia-
gram with chaos control for a
change of feedback coefficient
x = ξK S0 at r2 = 0.000256
and τe = 0.36 ns. c Bifur-
cation diagram with control
for a change of delay time
τe at x = ξK S0 = 0.05 and
r2 = 0.000256 [after Turovets
et al. (1997); © 1997 OSA]
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Fig. 9.3 Schematic diagram of occasional proportional feedback (OPF) control in a semiconductor
laser with optical feedback

the synchronous signal is coincident with the pulse from the window comparator,
the sample/hold circuit is activated and acquires the waveform voltage. A gate with
adjustable time width is employed to select only a part of the sampled signal. An
amplifier with variable gain, offset, and polarity delivers the control signal g(t) to
the drive current of the semiconductor laser diode and perturbs the injection current.

The control signal g(t) must be less than several percent of the bias injection
current and it is a pulse like signal with a pulse width that is much shorter than the
delay time of the optical feedback. By the control, the chaotic state is always pushed to
a periodic or fixed orbit close to the initial point, but the control signal is continuously
generated and never dies out. This is different from the result of the continuous control
method. Various periodic states can be designed not only for chaotic oscillations but
also for stable oscillation states by a small control signal generated by the OPF system
adjusting the offset for the amplifier and the window comparator, or appropriately
setting the synchronous signal of the AND gate. For design of the OPF control, we
require the information about the delay in the nonlinear system in advance. Then,
the synchronous signal is appropriately set in the control circuit.

9.2.3 Sinusoidal Modulation Control

The chaos control methods discussed above more or less require the detection of
the chaotic signal, the processing of the post-detection signal, and feedback of it to
the laser. Therefore, it is sometimes difficult to implement the methods for fast
response nonlinear laser systems in practical applications. There is a simple way to
realize chaos control suitable for systems with fast chaotic oscillations. We performed
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the linear stability analysis for the steady states in chaotic semiconductor laser sys-
tems in Sect. 4.2.2. The real parts of the solutions for the characteristic equation
derived from the linear stability analysis represent the damping rate of the oscilla-
tions and the imaginary parts denote the accompanying frequencies. The frequencies
obtained are the candidates for periodic oscillations of unstable saddle node points
which are embedded into the system close to the initial operating point. In accor-
dance with this fact, the chaotic system can be controlled to a periodic or fixed state
by modulating the accessible parameter with one of the frequencies obtained by
the linear stability analysis. The control method works indeed as long as unstable
periodic orbits are not far away from the operating point. In a semiconductor laser
with optical feedback, a sinusoidal injection current modulation is the easiest way to
perform the control. The modulation is applied to the bias injection current in (4.7)
as

J = Jb{1 + msin(2π f0t)} (9.4)

where f0 is the modulation frequency calculated from the linear stability analysis and
m is the modulation index with a small amplitude. There is an allowable range for the
parameter values of f0 and m for successful control. The robustness for the control
depends on the extent of the attractor and the basin of each possible linear mode.

In the following, the sinusoidal modulation control to the injection current in
semiconductor lasers with optical feedback is described. Figure 9.4 shows the plot
of the mode distribution calculated from the linear stability analysis for the system
(Liu et al. 1995; Kikuchi et al. 1997). Under the operating condition, the laser shows
chaotic oscillations. All the calculated modes within this region have negative real
values, therefore the calculated modes are candidates for unstable periodic solutions.
However, the stability of the modes and the robustness for the control are different
from one mode to another and must be investigated by using bifurcation diagrams
for the control parameters. We focus on the mode indicated by the arrow in the figure
and use this mode as the sinusoidal modulation control.

Figure 9.5 shows an example of chaos control using a sinusoidal modulation to
the injection current in a semiconductor laser with optical feedback. The sinusoidal
modulation control is performed by modulating the injection current with the mod-
ulation frequency of f0 = 1.251 GHz and the modulation index of m = 2.1 % of the
bias injection current. The modulation index is sufficiently small for satisfying the
assumption of little effect for the original chaotic state to the system. The chaotic
waveform in Fig. 9.5a is controlled to a period-1 oscillation by the modulation of one
of the mode frequencies as shown in Fig. 9.5b. Figures 9.5c, d are the attractors for
Figs. 9.5a, b, respectively, in the phase space of the laser output power and the carrier
density. The chaotic attractor in Fig. 9.5c is controlled to the periodic state in Fig.
9.5d. The robustness of the method for parameter variations is an important issue. In
this method, there is a finite modulation range of the parameters for effective control,
for example, successful control is achieved within the range of several tens to a hun-
dred MHz centered at the exact mode frequency. However, the extent of the attractor
after the control is slightly deformed by the modulation. One of the important issues
of chaos control is the response time after the control signal is switched on. The

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 9.4 Linear mode dis-
tribution for chaotic output
in a semiconductor laser
with optical feedback at
J = 1.1Jth, r = 0.015, and
L = 25.5 cm. Under the
operation condition, the laser
originally shows chaotic oscil-
lation
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time required for successful control using sinusoidal modulation has been studied
by Uchida et al. (1999). According to their results, the time required for reaching the
stabilization has statistical distributions for each trial, but the characteristic time is
roughly ten times the laser relaxation oscillation (equivalently ten times the typical
time scale of chaotic oscillations).

9.2.4 Optical Control

Injection current modulation is not the only technique to modulate accessible parame-
ters for the implementation of chaos control in semiconductor lasers. As an alternative
modulation method for chaos control, we here show an example of the introduction of
an extra mirror in the feedback loop to control chaotic oscillations in a semiconductor
laser (Liu et al. 1996; Liu and Ohtsubo 1997; Ruiz-Oliveras and Pisarchik 2006).
Figure 9.6 shows the optical chaos control system using double external mirrors.
One of the mirrors is the external mirror that gives rise to chaotic oscillations in the
semiconductor laser and the second mirror is used for the control. In this system, a
beat signal induced by the mixing of lights from the two mirrors plays the same role
for a sinusoidal modulation as the bias injection current modulation in the previous
section. We have already performed the linear stability analysis for a single external
mirror in Sect. 4.2. In the same manner as in the single mirror case, the linear stabil-
ity analysis is applied to the rate equations with double external mirrors. Depending
on the feedback times from the two mirrors, the solutions for the optical oscillation
frequency are determined from the following equation:

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 9.5 Sinusoidal modulation control using the parameters in Fig. 9.4. a Original chaotic oscil-
lation of laser output without control. b Controlled period-1 oscillation using the mode frequency
indicated by arrow in Fig. 9.4. The modulation depth is 2.1% of the bias injection current. c and d
are attractors corresponding to a and b, respectively

ωs −ωth = − κ1

τin
{α cos(ωsτ1)+ sin(ωsτ1)} − κ2

τin
{α cos(ωsτ2)+ sin(ωsτ2)} (9.5)

where ωs is the angular frequency for the steady-state oscillation, and subscripts
1 and 2 are for the first (external) and second (control) mirrors, respectively. The
solution of the above equation is added to the steady-state phase and this additional
term has the effect of a sinusoidal modulation for the control of the system.
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Fig. 9.6 Schematic diagram of optical sinusoidal modulation control

In the strict sense of chaos control, the additional optical feedback term in (9.5)
must be small not to disturb the original feedback system. However, the system is
usually affected strongly by the second feedback mirror and the system might not
fall into a nearby unstable periodic orbit by the control, but it is pulled apart from
an accompanying anti-mode by the interference and is forced to another periodic
or fixed state far from the original state. The system after the control may have a
different attractor from the original one and, therefore, such a control is not cat-
egorized into chaos control with small perturbation in the sense of OGY control.
However, the technique is sometimes effective for stabilizing chaotic irregular oscil-
lations. In the following, we demonstrate the control method for stabilizing LFF
oscillations in semiconductor lasers with optical feedback as an example of optical
control. When LFFs occur, the oscillation mode always accompanies an unstable
anti-mode as explained in Sect. 5.3. The oscillation mode is a stable mode close to
or at the maximum gain mode of the laser oscillation. During chaotic itinerary due
to the perturbation, the state is once trapped into the anti-mode and this induces
low-frequency fluctuations. If the system is separated apart from the anti-mode by
the control, the laser is forced to a stable oscillation. The steady-state solutions for
the photon number and the carrier density in the double-cavity system are written by

A2
s = J/ed − ns/τs

Gn(ns − n0)
(9.6)

ns = nth − 2κ1

τinGn
cos(ωsτ1)− 2κ2

τinGn
cos(ωsτ2) (9.7)

To realize the control, we make the condition where the accompanying anti-mode of
only the first mirror is separated from the maximum gain mode by the introduction
of the second mirror according to the steady-state solutions in (9.6) and (9.7).

Figure 9.7 shows the phase diagram for the carrier density n(t) and the phase
ψ(t) = φ(t) − φ(t − τ) + ω0τ(ω0 = ωth) in the presence of the control

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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(Rogister et al. 1999). Without the second mirror in Fig. 9.7a, the laser is trapped in
one of the anti-modes (denoted by asterisks) close to the maximum gain mode (black
dot) and shows chaotic oscillation (chaotic trajectory of LFFs in the figure). By the
introduction of the second mirror in Fig. 9.7b, anti-modes are separated far away
from the oscillation modes (open circles) and the laser does not show catastrophic
oscillations like LFFs. In Fig. 9.7b, the attractor still looks chaotic but with a com-
pact attractor and the laser oscillates at a quasi-periodic state near one of the external
modes. With the increase of the feedback level from the second mirror, the laser is
stabilized at a periodic state with an attractor of a close loop in Fig. 9.7c and finally
forced to a fixed state at the maximum gain mode (black dot) in Fig. 9.7d. Figure 9.8
is an experimental result for the control of LFFs (Rogister et al. 2000). The figure
shows optical spectra observed by a Fabry–Perot spectrometer for the change of the
external feedback level. The feedback strength of the second mirror is estimated from
the threshold reduction rate by the feedback and it is written on the right-hand side
of the figure. Without the control by the second mirror, the coherence of the laser
oscillation collapses due to LFF oscillations as shown in Fig. 9.8a. In Figs. 9.8b
and f, the laser output power shows fixed constant states and the laser oscillates at
single mode. The laser shows a period-1 state with the frequency of the relaxation
oscillation in Fig. 9.8d. Thus, the laser is controlled to a periodic or fixed state by
appropriately choosing the feedback strength of the second mirror. The noise for the
lower frequency component is also much suppressed by the control (Rogister et al.
1999).

9.3 Controlling Chaos and Noise Suppression

9.3.1 Noise Suppression by Sinusoidal Modulation

The main noise source in free running semiconductor lasers is the spontaneous emis-
sion of photons in laser media. Noises in semiconductor lasers are greatly enhanced
by optical feedback. The detailed definition and descriptions for the noise character-
istics in semiconductor lasers can be found in the book by Petermann (1988). The
general description of noise effects and relative intensity noise (RIN) in semiconduc-
tor lasers are also given in Sect. 3.5 in this book. We again define the RIN in relation
to the noise of the optical power δSto the mean power 〈S〉 according to (see (3.101))

RIN = 〈δS2〉
〈S〉2 (9.8)

where the optical output power from the laser is defined by S(t) = 〈S〉 + δS(t).
In actuality, the feedback induced irregular intensity fluctuation is not a noise but
a chaotic fluctuation. However, the effects of the phenomena are similar to noises

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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for κ1τph/τin = 4.0×10−3.The laser locks into a stable external cavity mode. The feedback ratio of
the first mirror is κ1τph/τin = 4.6×10−3 in all cases. The delay times are τ1 = 1 ns and τ2 = 0.2 ns
[after Rogister et al. (1999); © 1999 OSA]

in free running semiconductor lasers. Therefore, we use the same notation for the
feedback induced irregular fluctuations.

Figure 9.9 shows an experimentally obtained RIN in the presence of optical
feedback in a Fabry–Perot semiconductor laser. The RIN is plotted for the external
feedback strength (intensity), however the actual feedback to the active layer is much
less than the externally calculated reflectivity due to the losses and absorption of light
through the optical components and the diffraction loss of the focusing lens. At an
external reflectivity around 0.1 % (compatible with 0.001 % in theoretical calcula-
tion), the RIN has almost the same level as the solitary oscillation. Above this level,
the RIN abruptly increases and reaches the maximum value at the external reflec-
tivity of 1 % (the corresponding theoretical feedback strength is about 0.1–0.01 %).
Without optical feedback, RIN for ordinary narrow-stripe edge-emitting semicon-
ductor lasers under solitary oscillations is less than −140 dB/Hz. However, in the
presence of optical feedback, the RIN increases to much higher than −125 dB/Hz
in the feedback regions of III∼V (chaotic and coherence collapse regimes) as dis-
cussed in Sect. 4.1. In these regions, we can observe the broadening of the oscillation

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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second feedback. The increase of the feedback strength of the second mirror leads to stabilization
(b and f) interspersed with unstable regions (c–e and g). The optical spectra have been normalized
with respect to the maximum of trace b. Single mode oscillation of the laser is guaranteed by a
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strength of the first mirror is fixed at 7.1 % counted by the threshold reduction in all cases. The bias
injection current is just above the threshold and the lengths of the external mirrors are L1 = 21 cm
and L2 = 19 cm [after Rogister et al. (2000); © 2000 OSA]

linewidth, chaotic behaviors of the laser output, and the coherence collapse state of
the laser. A laser with a RIN above −125 dB/Hz cannot be used as a light source for
optical data storage systems because of the increase of bit-rate errors. Although the
feedback level in this regime is very small, it affects the performance of the laser
operation. To know the dynamics in this feedback regions are also very important
from the viewpoint of practical applications, such as the use for optical data storage
systems, since the returned light from the disk surface in those systems is almost of
the same order. On the other hand, the RIN decreases with further increase of the
feedback level. The noise characteristics are dependent not only on the reflectivity
of the external mirror, but also on other system parameters such as the bias injection
current and the external mirror position.

Unstable oscillation of semiconductor lasers subjected to optical feedback was
stabilized by the introduction of a sinusoidal modulation to the injection current
as shown in the previous section. Figure 9.10 shows the numerical result of the
noise suppression by the sinusoidal modulation method (Kikuchi et al. 1997). The
RIN of the solitary laser is about −140 dB/Hz in the lower frequency region (solid
line). A frequency peak at about 3 GHz is the relaxation oscillation component. In
the presence of optical feedback, the noise is extremely enhanced and it is about
−120 dB/Hz in the lower frequency region as is shown as the broken line in the
figure. The noise level exceeds the allowed criterion for a light source of the optical
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The bias injection current is J = 1.5Jth and the external cavity length is L = 20 cm

data storage system. The dotted line shows the result of the control. One of the mode
frequencies (in this case, it is 2.38 GHz) is chosen as a control frequency and the
laser is modulated by this frequency through the injection current modulation. By
the modulation, the laser shows synchronous oscillation (period-1) and the RIN in
the lower frequency region is reduced to −130 dB/Hz. The modulation amplitude
is small and m = 0.15. The noise level attained by the control is enough for the
requirement of a light source for the optical data storage system.

The modulation index of m = 0.15 used in Fig. 9.10 may be still larger from the
viewpoint of chaos control. The modulation more or less affects the laser oscillation
and a closer investigation shows deviations of the chaos attractor from the original
one. The modulation index must be less than about 0.01 for the ideal chaos control.
Nevertheless, the laser is stabilized by a rather small signal compared with ordinary
forced sinusoidal control without optimized frequency. In optical data storage sys-
tems, the suppression of optical feedback noise is an important issue. The light is
reflected from a disk surface and is returned into the laser active layer. The feedback
light induces much noise in the laser and causes serious problems for the perfor-
mance of the data read-out. In actual optical data storage systems, a high frequency
injection current modulation on the order of several hundreds MHz to one GHz has
been employed to suppress feedback-induced noises (Arimoto et al. 1986; Gray et al.
1993). In such optical data storage systems, the modulation index over m = 1.0 was
frequently used. The modulation depth is much larger than that of the chaos control
and a laser is sometimes brought below the threshold by the modulation.

It is known from the empirical basis that there is a best modulation frequency
for each optical data storage system. From the viewpoint of chaos control in semi-
conductor laser systems, the high frequency modulation technique is closely related
to the sinusoidal modulation control in chaos control, in which the chaotic orbit is
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stabilized to a periodic oscillation, though the modulation depth is much larger than
the expected chaos control. The strong modulation technique used for optical compact
disk and DVD systems is considered as a forced oscillation to the light source. How-
ever, the method does not always work for every selected modulation frequency. As
we have discussed in Chap. 7, strong modulation to a semiconductor laser sometimes
gives rise to unstable chaotic oscillations. Therefore, the optimized modulation fre-
quency has some relation to the sinusoidal modulation control of chaos, even though
the modulation frequency is selected on the empirical basis. A self-pulsation laser is
also used for light sources of DVD in optical data storage systems. The chaos control
algorithm introduced here may give us important information for the design of such
devices and systems. The essence of chaos control is that the control does not change
the original dynamics of the nonlinear system. However, the original dynamics may
be changed due to a very small but non-negligible modulation amplitude. In that
case, the idea of chaos control is still effective for the control of an existing unstable
periodic orbit as far as the modulation is small.

To decide the optimum frequency in the sinusoidal modulation control, we must
establish the model for a real system and estimate the frequency. However, it is not
easy to obtain all the parameter values of the system in advance. Nevertheless, we can
guess the frequencies. The relaxation oscillation frequency of the laser is one of the
candidates for the optimum frequency. Another one is the external cavity frequency
and its higher harmonics. From the linear stability analysis, the mode frequencies
of the optical feedback system are not always equal to the exact external cavity
frequencies, but there exist mode frequencies close to the external cavity frequency.

http://dx.doi.org/10.1007/978-3-642-30147-6_7
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As has already been discussed, there is a certain extent for the tolerance of the
modulation frequency for a successful chaos control. In reality, which frequency is
the best for the control and suppression of noises must be examined and tested by
using each possible frequency. Noise induced by optical feedback is much suppressed
by the best selection of the modulation frequency and, thus, the laser is stabilized
with a smaller modulation power.

9.3.2 Stability and Instability of LFFs by Injection Current
Modulation

Low-frequency fluctuation (LFF) is one of the typical instabilities of semiconductor
lasers with optical feedback. Even when the laser seems to be oscillated at a stable
state under optical feedback, the laser becomes unstable by the injection current mod-
ulation and shows LFF oscillations for certain ranges of the modulation frequency.
However, the laser shows stable oscillations for other frequency ranges. On the con-
trary, the laser oscillating at the LFF state due to optical feedback can be stabilized
by the injection current modulation with appropriate frequencies. There exist typi-
cal time scales of the laser oscillation in optical feedback systems and the external
mode is usually very close to one of the linear modes derived from the linear stability
analysis. Here, we show the control of LFFs by the injection current modulation with
a frequency close to the external cavity mode. For a detuned modulation from the
external mode frequency, the laser shows LFFs under certain parameter conditions.
However, the laser output with LFFs is experimentally stabilized to a synchronous
oscillation by a modulation frequency close to the external mode (Takiguchi et al.
1998, 1999b). The modulation frequencies are not exactly equal to the external mode
frequency calculated from the external cavity length. In the experimental study by
(Takiguchi et al. 1998, 1999a,b,c), LFF oscillations from a semiconductor laser sub-
jected to optical feedback were suppressed by the injection current modulation with
the resonance frequency with small modulation index (about –10 dB). By the mod-
ulation, the laser oscillation is locked to the control frequency, but the locking range
is very narrow. For example, the modulation frequency for the stable oscillation is
several hundreds of MHz at the external cavity length of the order of 10 cm, but the
range of the modulation frequency for stable oscillations is at most several MHz.
Stabilization of LFFs has also been reproduced by numerical simulations. The sta-
bilization of LFFs by the injection current modulation is considered to be the same
technique as the sinusoidal modulation control discussed above.

Figure 9.11 shows the stabilization of LFFs by the injection current modulation
(Takiguchi et al. 2002). Figure 9.11a is an example of LFFs by the injection current
modulation with the frequency far away from the external cavity frequency. The laser
is originally a single mode laser, but it oscillates at multimode and the coherence
of the laser is completely destroyed, as is observed from the spectrum in a Fabry–
Perot spectrometer. On the other hand, the laser is stabilized and oscillates at a single
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mode for the frequency close to the external cavity mode (note that it is not exactly
equal to the external cavity frequency). The laser oscillates at single mode and also
recovers its coherence as can be seen from the optical spectra both of the spectrum
analyzer and the Fabry–Perot spectrometer. The small spectral subpeaks appeared
at the main mode in the Fabry–Perot spectrometer correspond to the components of
the modulation. The laser is also stabilized by the injection current modulation with
frequencies of the higher harmonics of the fundamental frequency of the external
cavity mode.

9.3.3 Chaos Targeting

We have discussed the optical control method in Sect. 9.2.4 in which the laser
oscillation was fixed to the maximum gain mode by the introduction of the second
mirror. A similar technique can be applied to stabilize feedback induced chaotic
oscillations so as to lower the state onto the maximum gain mode by adjusting
the optical phase. The control method is called dynamic targeting (Wieland et al.
1997; Hohl and Gavrielides 1998). The dynamic targeting is generally realized by
compensating the parameter values to shift and stabilize the laser oscillation when
the system becomes an unstable state. From (4.10), the condition of the stability, i.e.,
the maximum gain mode condition is given by

ωthτ = κ1

τin
τα mod 2π (9.9)

When the system does not satisfy this condition, the laser becomes unstable and
shows LFFs and chaotic oscillations. Therefore, we could adjust the parameters to
stabilize the laser when the system deviates from this condition. The laser is forced
to a fixed state by controlling the bias injection current to satisfy the condition of
(9.9), since the optical frequency ν0 can be changed by the bias injection current
according to the relation of (5.5).

Figure 9.12 is an example of the results for dynamic targeting control (Hohl and
Gavrielides 1998). The bifurcation diagram in Fig. 9.12a is a calculated bifurcation
cascade of a semiconductor laser subjected to optical feedback at the pump of S =
2τph
Gnτs

(
J

ed − nth
τs

)

= 0.001 for the change of the feedback fraction κτph/τin, where κ

is the feedback parameter defined previously. For the change of the optical feedback
level, the laser shows a bifurcation cascade from stable state, period-doubling, to
chaotic oscillations. The dashed curve denotes the stabilized laser intensity when
the feedback phase is adjusted by means of the optical frequency ν0 as the feedback
strength is increased. For the adjustment of the phase x, the rate equation of the field
is written by

dE(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}E(t)+ κ

τin
E(t − τ) exp{i(ω0 − x)τ } (9.10)
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Fig. 9.11 Experimental results of modulation induced LFFs and stabilization in a semiconductor
laser with optical feedback. The external cavity length is L = 27 cm. Top to bottom: waveform
of LFFs, optical spectrum observed by a spectrum analyzer, and optical spectrum observed by a
Fabry–Perot spectrometer. a LFFs for a modulation frequency of 390 MHz and a modulation depth
of −4 dBm. b Stabilized oscillation for a modulation frequency of 548 MHz and a modulation depth
of −4 dBm. The external cavity frequency is 556 MHz

By the extra phase xτ in (9.10), the laser oscillation is fixed to the maximum gain
mode. In actuality, the laser output decreases due to the decrease of the bias injection
current by the adjustment. The laser output decreases for the increase of the feedback
strength but stabilizes to a fixed state as shown in Fig. 9.12b. Thus, the system under
irregular oscillations can always be pulled back by dynamic targeting control. It is
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Fig. 9.12 Computed bifurcation cascade for a semiconductor laser with optical feedback. The
dashed curve shows the stabilized laser intensity as the feedback phase is adjusted by means of
ω0 as the feedback strength is increased. b Stabilization of laser intensity by varying the injection
current by�S = 0.17�ω0 (corresponding to 1.1 GHz/mA). The intensity is stabilized and falls off
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and α = 4. The feedback ratio here is defined by Kt/tin. The conversion relation from the injection
current to the optical frequency�J = 0.085(τs/τph)Gned�ω0 is used [after Hohl and Gavrielides
(1998); © 1998 OSA]

again noted that the dynamic targeting is not categorized as chaos control in the sense
of the OGY method, since the system is always changed to a different chaotic state
by dynamic targeting.
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Chapter 10
Stabilization of Semiconductor Lasers

Chaos and instabilities are not only the effects in semiconductor lasers with external
perturbations. Semiconductor lasers are also strongly stabilized by external pertur-
bations under appropriate parameter conditions. Optical injection from a different
laser is a typical example of laser stabilizations. Other examples are weak or strong
optical feedback, phase-conjugate optical feedback, grating optical feedback, and
optoelectronic feedback. The longitudinal and transverse modes, frequency, power,
and polarizations of semiconductor lasers are stabilized by external perturbations.
Stabilizations are especially important in newly developed semiconductor lasers
(VCSELs, broad-area semiconductor lasers, laser arrays, and so on), since these
lasers involve instabilities even in their solitary oscillations. In this chapter, stabi-
lization and control of semiconductor lasers are discussed based on rather simple
configurations of external perturbations. Other than these examples, we present laser
stabilizations using photonic structures and quantum-dot structures for newly devel-
oped lasers. The control methods introduced here may not be chaos control discussed
in the previous chapter, but they are closely related to the ideas of dynamic and chaos
controls in semiconductor lasers.

10.1 Linewidth Narrowing by Optical Feedback

10.1.1 Linewidth Narrowing by Strong Optical Feedback

The spectral line of edge-emitting semiconductor laser usually has a width of several
to several tens of MHz even its solitary oscillation, which is 100 times larger than
ordinary lasers. Such broad spectral linewidth mainly originates from the existence
of a non-zero linewidth enhancement factor known as the α parameter, which is
discussed in Sect. 3.5.6. For applications for coherent optical communications and
coherent optical measurements, it is essential to use frequency-stabilized and narrow-
linewidth light sources. The linewidth of a solitary narrow-stripe edge-emitting
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http://dx.doi.org/10.1007/978-3-642-30147-6_3


354 10 Stabilization of Semiconductor Lasers

semiconductor laser is determined by the device parameters and given by (3.114) as
�v = Rsp(1 + α2)/(4π S). Therefore, we can reduce the linewidth by appropriate
designs for a semiconductor laser; the use of semiconductor materials with small α
parameter, lower spontaneous emission rate Rsp, and higher bias injection current
(higher photon rate). As a different technique, the linewidth of semiconductor lasers
can be reduced by weak optical feedback as discussed in Sect. 5.1.3. The linewidth
narrowing induced by optical feedback is realized within the ranges of feedback
regimes II–III and the linewidth is reduced by a factor of two or three from that of
the solitary laser. However, with the increase of optical feedback level, the semi-
conductor laser is destabilized by the feedback and shows instabilities in feedback
regime IV. As a result, the linewidth is much broadened of the order of GHz and the
laser finally reaches coherence collapse state. On the contrary, further increase of the
optical feedback level over several percents in amplitude, the laser is again stabilized
by strong optical feedback and the linewidth is greatly reduced compared with the
solitary oscillation linewidth. This effect can be used for laser stabilization. Many
studies for linewidth narrowing induced by strong optical feedback in semiconductor
lasers have been reported previously (Fleming and Mooradian 1981; Patzak et al.
1983; Wyatt and Devlin 1983; Chraplyvy et al. 1986; Kazarinov and Henry 1987;
Tromborg et al. 1987). By using a complex feedback system and careful tuning of
the system, Stoehr et al. (2006) achieved ultra-narrow linewidth control as small as
1 Hz. They used a complex system consisting of a semiconductor laser locked in a
single stage to a stable high-finesse reference cavity. The phase locking technique
with the combination of optical feedback and injection were frequently used for real-
izing ultra-narrow linewidth and the method is promising for applications in optical
communications. However, we discuss here rather simple optical feedback systems
for linewidth narrowing in semiconductor lasers.

First, we discuss the linewidth in semiconductor lasers with strong optical
feedback (regime V) from a plain reflector. For narrowing the linewidth of a semi-
conductor laser, the combination of a low front facet reflectivity and a high back
facet reflectivity, which are achieved by antireflection (AR) coating techniques, is
frequently used to perform the effective reduction of the linewidth. Strong optical
feedback is applied to such an AR-coated semiconductor laser. Therefore, we assume
different internal reflectivities for the front and back facets as r1 and r2, respectively.
Then, the composite reflectivity at the front facet together with the external reflector,
which was already discussed in (4.25), can be written by

reff = r1 + r exp(iω0τ)

1 + r1r exp(iω0τ)
(10.1)

For a small external reflectivity r , (10.1) reduces to (4.26) corresponding to a weak
optical feedback case. According to (4.32), the linewidth in the presence of optical
feedback is given by

�vex = �v

F2 = Rsp(1 + α2)

4π Ss F2 (10.2)
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where Ss represents the steady-state solution for the laser intensity in the presence
of optical feedback. The linewidth F is calculated from (Tromborg et al. 1987)

F = 1 + α

τin
Re

[
d ln reff

dω0

]

− 1

τin
Im

[
d ln reff

dω0

]

(10.3)

The above equations can be applied to general cases of optical feedback level and the
factor F reduces (4.33) for a weak optical feedback in regimes II and III. However,
for strong optical feedback, we must use the reflectivity reff in (10.1). It is noted
that the above relations are only valid for stable oscillations of semiconductor lasers
and they are not applicable to chaotic oscillations in feedback regimes III to IV. As
discussed above, a low front facet reflectivity is sometimes used for the linewidth
reduction. In the limit of r1 = 0, the composite reflectivity reads reff = rexp(iω0τ)

and the resulting linewidth is given by

�vex,min = �v
(

1 + τ
τin

)2 (10.4)

For τ/τin � 1, the above equation is approximated as

�vex,min = �v
(
τ
τin

)2 (10.5)

For example, the linewidth of a solitary semiconductor laser can be reduced to 1/1,000
by appropriately choosing the optical feedback level, the external cavity length, and
the front facet reflectivity.

Figure 10.1 shows the instance of linewidth narrowing by strong external optical
feedback (Patzak et al. 1983). The solid lines represent the numerical results for the
linewidth as a function of R1 for different external reflectivities of R = r2 normalized
at that for R1 = r2

1 = 0. The laser assumed is an InGaAsP laser with an oscillation
wavelength of 1.5 µm and the internal cavity length of 190 µm. The external cavity
length is set to be 20 cm. The minimum linewidth of�vex,min is 2 kHz. The solid circle
in the figure is the experimental result for a strong optical feedback in the reference
(Wyatt and Devlin 1983). The experimental conditions of the used laser system are
R1 = 0.04 and R = 0.04. The reduced linewidth of 10 kHz in the experiment is
well coincident with the theoretical expectation. The linewidth of the solitary laser
is ∼10 MHz and the linewidth is reduced at a factor of three by the strong optical
feedback. As another example, Chraplyvy et al. (1986) also conducted an experiment
for linewidth reduction by strong optical feedback for an InGaAsP DFB laser with
an oscillation wavelength of 1.5 µm and internal cavity length of 250 µm. Under the
conditions of the internal reflectivity of 0.04, the external cavity length of 18 cm, and

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 10.1 Numerical simula-
tions for normalized linewidth
of a semiconductor laser as a
function of the facet reflectiv-
ity R1 = r2

1 .�vex,min = 2 kHz
is the minimum linewidth for
R1 = r2

1 = 0.04, R2 = r2
2 =

0.31, and R = r2 = 0.04.
Solid circle is the experimen-
tal result [after Patzak et al.
(1983); © 1983 IEE]
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the external reflectivity of 0.16, they obtained a linewidth of 40 kHz for the original
oscillation linewidth of ∼10 MHz. The reduction of the linewidth by a factor of three
is typical in this method.

10.1.2 Linewidth Narrowing by Grating Feedback

Grating optical feedback is used for the purpose of the selection of longitudinal
modes and the stabilization for the selected mode in semiconductor lasers. We have
already introduced the dynamic properties induced by grating optical feedback in
semiconductor lasers in Sect. 5.5. In the previous discussion, we presented the theo-
retical background of the dynamics of grating feedback and showed some numerical
results. Here, we show some experimental results for grating feedback in semi-
conductor lasers from a viewpoint of linewidth narrowing. The essential effects in
grating feedback are the same as those of optical feedback from a plain mirror.
However, grating feedback enables desirable frequency selection for the laser oscil-
lations, side-mode suppressions, and lowering the frequency jitter. Figure 10.2 shows
the example of linewidth narrowing by grating feedback in a semiconductor laser for
different three external cavity lengths of L = 25, 50, and 100 cm (Olesen et al. 1983).
The used laser is a single-mode InGaAsP semiconductor laser of cleaved facets with
the oscillation wavelength of 1.55 µm and the internal cavity length of 310 µm.
The laser stably oscillates in a single mode less than the bias injection current of
1.8Jth, but it oscillates at a multi-mode over that injection current. The linewidth
of the free-running laser is rather large and it is 45 MHz. The grating mirror is a
diffraction grating of 600 grooves/mm and the blaze wavelength of 1.25 µm, arranged

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 10.2 Linewidth reduc-
tion for bias injection current
in a semiconductor laser with
grating optical feedback for
the external cavity lengths
of 25, 50, and 100 cm [after
Olesen et al. (1983); © 1983
JSAP]
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in a Littrow configuration. The external cavity length (external phase) is finely tuned
over a few micron-meter using a piezo-electric element in the optical feedback loop.
The estimated optical feedback fraction is around 10−4, so that the feedback corre-
sponds to weak to moderate optical feedback. In Fig. 10.2, the linewidth inversely
proportional to the bias injection current, which is consistent with the relation in
(10.2). The linewidth is also reduced by the increase in the external cavity length in
accordance with the increase of the C parameter. Over the bias injection current of
1.8Jth, the linewidth of the laser rapidly increases due to multi-mode oscillations. In
this example, the minimum linewidth of 40 kHz is achieved by the grating optical
feedback under the conditions of the external cavity length of L = 100 cm and the
bias injection current at 1.79Jth. Except for the conventional plain grating mirror,
fiber Bragg grating, and volume holographic grating are used as alternative feedback
mirrors (Naumenko et al. 2003; Ewald et al. 2005). Ewald et al. (2005) demonstrated
linewidth reduction up to 7 kHz using optical feedback from a volume holographic
grating for a no special AR-coated semiconductor laser operating at the oscillation
wavelength of 852 nm.
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Fig. 10.3 Experimental setup for stabilizing semiconductor laser with phase-conjugate optical
feedback from a four-wave mixing broad-area semiconductor laser (BAL)

10.1.3 Linewidth Narrowing by Phase-Conjugate
Optical Feedback

Phase-conjugate optical feedback discussed in Chaps. 4 and 5 can also be used as
the linewidth control of semiconductor lasers. For phase-conjugate mirrors, they are
categorized into fast or slow response natures with respect to the response time
of semiconductor lasers (mainly carrier response time of semiconductor lasers).
The dynamics of respective phase-conjugate effects are different with each other.
However, in either case, a spatial phase-conjugate wave is generated from a phase-
conjugate mirror, so that the method has the advantages of self-alignment and aber-
ration correction through the optical components. It is expected that these properties
will result in good coupling back into the laser and give rise to the active use for
the laser stabilization. In the strict sense, instantaneous phase-conjugate mirror is
not available and we must more or less consider the effects of finite response of
phase-conjugate mirror. Therefore, slow response phase-conjugate mirror, such as
BaTiO3 photorefractive crystal, is used for the purpose of alignment free optical
feedback due to the generation of only a spatial phase-conjugate wave. Many studies
for the stabilization of semiconductor lasers with phase-conjugate optical feedback
were reported (Vahala et al. 1986; Kürz and Mukai 1996; Kürz et al. 1996; Liby and
Statman 1996; Vainio 2006).

First, we discuss the linewidth narrowing induced by fast response phase-
conjugate mirror in semiconductor lasers. Kürz and Mukai (1996) and Kürz et al.
(1996) employed a broad-area semiconductor laser as a fast phase-conjugate device.

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 10.4 Power spectrum
of a stabilized semiconductor
laser measured with a delayed
self-heterodyne technique
[after Kürz and Mukai (1996);
© 1996 OSA]
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Figure 10.3 shows the experimental setup of the system. An AlGaAs broad-area
semiconductor laser, which is biased at less than but very close to the threshold, is
pumped by a frequency-stabilized tunable semiconductor laser and a probe beam
from a semiconductor laser to be stabilized is injected to the broad-area laser. The
phase-conjugated wave is generated from the broad-area laser and it is fed back into
the probe laser. The frequency from the pump laser is appropriately chosen and it
is stabilized less than the oscillation linewidth of 20 kHz. The front and back facet
reflectivities of the broad-area laser are 0.05 and 0.95, respectively, to generate easily
a phase-conjugate wave. Since the stripe width of the broad-area laser is wide and is
50 µm, the probe beam can be injected at a non-zero angle with respect to the pump
beam, which causes the emission of amplified pump, probe, and phase-conjugate sig-
nals in distinct spatial direction. The pump beam, back reflected beam from the back
facet, and probe beam conform to a four-wave mixing configuration and the phase-
conjugate wave is generated back to the laser to be controlled. Using the broad-area
semiconductor laser as a phase-conjugate material, the external incidence angle of
5.2◦ is possible in this configuration, which corresponds to the internal angle of 1.4◦
between the pump and probe beams. The response time is dependent on the carrier
lifetime and the diffusion constant of the carrier density grating inside the broad-area
laser. The response time of the phase-conjugate mirror is estimated around 1 ns. The
probe laser, which is the stabilized laser, is an uncoated single-stripe semiconduc-
tor laser with the oscillation wavelength of 830.6 nm. The free-running laser has a
linewidth of 5 MHz at the bias injection current with the mode suppression ratio of
30 dB.

Figure 10.4 shows the experimental result of the linewidth narrowing (Kürz and
Mukai 1996). The broad-area semiconductor laser is biased at 98 % of the threshold
and as small as less than 1 % of the probe laser power is injected to the broad-area laser,
giving a phase-conjugate reflectivity of 6 %. The observed phase-conjugate feedback
to the probe laser is about 1 µW (6 × 10−5 of its output power). Figure 10.4 is the
power spectrum measured by a delayed self-heterodyne technique. The observed
spectral linewidth is 25 kHz, which is close to the instrument resolution of 14 kHz
in this measurement. The strong side-mode suppression of 50 dB is also visible
in the figure, thus not only the linewidth narrowing but also the reduction of the
side mode suppression ratio is attained by the phase-conjugate optical feedback. The
dependence of the side-mode frequency separation c/4L(L = 2.29 m corresponding
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to the side-mode frequency separation of 32.7 MHz) confirmed that the origin of the
spectral narrowing comes not from conventional optical feedback effect (for the
conventional case, this would be c/2L) but phase-conjugate optical feedback effect.
In spite of such long external cavity length, the laser is stabilized more than for hours
due to the phase-conjugate optical feedback.

Contrary to the case of fast phase-conjugate optical feedback, the effects of spatial
phase-conjugation are only dominant for the dynamics of semiconductor lasers with
a slow response phase-conjugate reflector. Therefore, the linewidth of semiconductor
laser with slow response phase-conjugate optical feedback is written by the similar
form as the case of conventional optical feedback as

�vpc = �v

{1 + C cos(φpc + tan−1α)}2
(10.6)

where �v is again the oscillation linewidth for a solitary semiconductor laser. We
assume a weak phase-conjugate optical feedback in the above equation. In conven-
tional optical feedback from a plain reflector, the phase φpc in (10.6) is replaced
by ωsτ , where ωs is the steady-state value of the oscillation frequency and τ is the
round-trip time of light in the feedback loop. Therefore, the linewidth from a con-
ventional optical feedback shows a periodic change for the increase or decrease of
the external mirror position. However, the phase-conjugate feedback is phase insen-
sitive as has already been discussed in Chaps. 4 and 5, even for a slow response
phase-conjugate mirror. The phase is determined by the boundary conditions of the
laser and the device characteristics of the phase-conjugate mirror. We can assume
the constant phase as integer multiple of 2π , i.e., φpc = 2mπ . Then the linewidth
monotonically decreases for the increase of the length of the phase-conjugate mirror,
since the Cparameter is simply proportional to the delay time τ . For φpc = 2mπ ,
the reduced linewidth is given by

�vpc = �v
(

1 + κ τ
τin

)2 (10.7)

In actual fact, the reflected light at the phase-conjugate mirror has a constant phase
shift, so that we must take into account this effect. When the phase shift satisfies
the condition as φpc + tan−1 α = 2mπ , one obtains the minimum spectral linewidth
given by

�vpc = �v

(1 + C)2
(10.8)

Several experimental studies for linewidth narrowing in semiconductor lasers with
slow response phase-conjugate optical feedback have been reported (Vahala et al.
1986; Liby and Statman 1996; Vainio 2006). For example, using an uncoated single-
mode semiconductor laser with optical feedback from a photorefractive BaTiO3
mirror, the linewidth is reduced one-tenth of that of the free-running laser (Liby and

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Fig. 10.5 Schematic of optical feedback locking system from a Fabry-Perot resonator. To obtain
a transmission type (II) beam for the optical feedback, the resonator axis is slightly tilted, thus
avoiding a reflection type (I) beam into the laser cavity

Statman 1996). In this example, the system has a four-wave mixing configuration
and the power reflectivity of 0.2 % is used. The linewidth reduction is not only the
effect of phase-conjugate optical feedback. Another important aspect is the elimina-
tion of frequency jitter of the laser oscillations. The fact comes from the slow response
of the photorefractive mirror. Any jitter from the central lasing frequency does not
have enough time to write a new holographic grating. Only that central frequency is
coupled back into the laser. Due to static gratings compared to the dynamics of the
laser fluctuation, long-term frequency stability is achieved. Vainio (2006) attained
the linewidth reduction as small as 25 kHz in an anti-reflection-coated semiconductor
laser with strong phase-conjugate optical feedback from a Ce-doped BaTiO3 pho-
torefractive mirror. Since the front facet of the internal reflectivity is as very small as
10−4 in this case, strong feedback is realized with relatively small phase-conjugate
signal from a self-pumped phase-conjugate configuration. In this experiment, a long
life frequency stability of 1.5 × 10−8 during 100 s is observed. Thus, not only the
linewidth reduction, but also stable center oscillation frequency, is attained even by
slow response phase-conjugate optical feedback.

10.1.4 Linewidth Narrowing by Resonant Optical Feedback

Resonant optical feedback is one of the methods for stabilization and linewidth in
semiconductor lasers (Laurent et al. 1989; Iannelli et al. 1993). For example, the
linewidth of an AlGaAs semiconductor laser oscillating at 780 nm is stabilized to
20 Hz by a resonant optical feedback using a spectral line from a rubidium atomic
vapor (Hashimoto and Ohtsu 1987). Another example, which is frequently used, is
optical feedback from a Fabry-Perot resonator. Here, we introduce the stabilization of
the spectral line in semiconductor lasers with resonant optical feedback from a Fabry-
Perot interferometer. Figure 10.5 shows the geometry of the optical feedback locking
system from a Fabry-Perot resonator. The beam from a semiconductor laser is sent
through a tilted confocal Fabry-Perot interferometer to avoid the optical feedback
effect of the direct reflected beam. Only the transmission-like beam (type II beam
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shown in the figure) is coupled with the light of the internal laser cavity. For a single
mode semiconductor laser under weak optical feedback from a Fabry-Perot resonator,
the rate equations for the complex field is written by (Laurent et al. 1989)

dE(t)

dt
= 1

2
(1 − iα)Gn{n(t)− nth}E(t)

+
∞
∑

m=0

κm

τin
E(t − τm) exp{iω0τm − iφ(t − τm)} (10.9)

where the extra feedback term is the effect of multiple interferences of the beam in
the Fabry-Perot resonator. Here, the mth feedback coefficient is given by

κm = √

ξcp
1 − r2

0

r0
r(1 − r2)r4m (10.10)

where ξcp denotes the power mode coupling factor, τm = τ + (2m + 1)τFP is
the roundtrip delay time between the laser and the Fabry-Perot resonator for each
reflection from the cavity (τFP being the roundtrip time in the Fabry-Perot cavity),
r0 is the facet reflectivity of the semiconductor laser, and r is the mirror reflectivity
of the Fabry-Perot resonator.

From a steady-state analysis similar to that in Sect. 4.2, we obtain the solution for
the laser oscillation frequency as

ωthτ = ωsτ + CFP
sin{ωs(τ + τFP)+ tan−1α} − r4sin{ωs(τ − τFP)+ tan−1α}

1 + K 2sin2(ωτFP)
(10.11)

where the modified C parameter for resonant optical feedback from a Fabry-Perot
resonator is given by

CFP =
√

1 + α2

τin
τ
√

ξFP
1 − r2

0

r0

r(1 − r2)

(1 − r4)2
(10.12)

and the factor K is defined by

K = 2r2

1 − r4 (10.13)

For a high-finesse Fabry-Perot r ≈ 1, the modified CFP parameter is given by

CFP ≈
√

1 + α2

τin
τ
√

ξFP
1

2

FFP

F0
(10.14)

where FFP ≈ πr2(1 − r4)−1 and F0 = πr0(1 − r2
0 )

−1 are the finesses of the Fabry-
Perot and laser cavities, respectively. Employing a similar derivation of the linewidth
for a solitary laser discussed in Sect. 3.5.6, the linewidth of the laser oscillation under

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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optical feedback from a Fabry-Perot resonator is calculated as

�vFP = �v
(

1 + 2CFP
τFP
τ

)2 (10.15)

where �v is the linewidth of the free-running laser given by (3.114). For a large
optical feedback CFPτFP/τ � 1, the linewidth can be simply written by

�vFP = �v0

ξFP

(
τFP
τ

FFP
F0

)2 (10.16)

where �v0 = Rsp/(4π S) is the Schawlow-Townes linewidth. The form of the
linewidth is quite similar to (10.5), but it is important to note that this expression no
longer contains the linewidth enhancement factor α. This means that the confocal
Fabry-Perot cavity imposes the laser frequency and thereby can be interpreted as a
decoupling of the phase noise to the amplitude noise.

Employing a resonant optical feedback from a Fabry-Perot interferometer,
Laurent et al. (1989) demonstrated the reduction of the linewidth from 20 MHz of
a free-running semiconductor laser to 4 kHz in a single mode GaAlAs semiconduc-
tor laser. They used a GaAlAs Fabry-Perot semiconductor laser with the oscillation
wavelength of 850 nm. The conditions for the linewidth narrowing are as follows:
the free-spectral-range (FSR) of 375 MHz, the finesse of the Fabry-Perot of ∼100,
the cavity length of the Fabry-Perot resonator of 200 mm, and τ ≈ 2τFP. Several
studies for linewidth narrowing of the order of kHz have been reported in semicon-
ductor lasers with Fabry-Perot optical feedback (Dahmani et al. 1987). The method
of the resonant Fabry-Perot optical feedback provides not only narrowing the laser’s
linewidth but also the stabilization of the center-oscillation-frequency of the laser.

10.2 Linewidth Narrowing by Optoelectronic Feedback

In the applications of linewidth in semiconductor lasers, the method of optoelec-
tronic feedback has the advantages of high stability, reproducibility, flexibility, and
controllability over the optical feedback methods, since the feedback is negative and
the noise and fluctuation induced by photons from the laser are averaged out due to
the slower response of carriers than the photon lifetime. Also, the feedback loop can
be designed accurately through a computer simulation, as is the case when designing
conventional analog feedback electronic circuits. Here, we discuss linewidth nar-
rowing in semiconductor lasers with negative optoelectronic feedback. Figure 10.6
shows the schematic diagram of the feedback system. The light from the laser passes
through a frequency-selected Fabry-Perot resonator and detected by a photodetec-
tor. The current signal is amplified and is negatively fed back into the bias injection
current of the laser. The stability of this feedback system strongly depends on the

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 10.6 Schematic diagram
of optoelectronic feedback
system for stabilization of
semiconductor laser. The
solid line corresponds to
optical path and the broken
line to electronic connection
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noise performance of the detector. Further, the detected signal by the photodetector
fluctuates due to the fluctuation of the laser frequency, δv(t), induced by the spon-
taneous emission in the cavity. The fluctuation is proportional to the laser output
power P and the fluctuation of the transmittance of the Fabry-Perot interferometer
δTFP(v), namely, δP = PδTFP(v). The stability of feedback is also affected by the
noise performance of the photodetector and the linewidth is determined by taking
into account these factors.

The variation of the minimum detectable power δPmin of the photodetector is
defined from the noise theory for optical detectors (Ohtsu and Kotajima 1985). The
detectors concerned here are solid-state detectors. From the theory, we can derive
the relation of the signal-to-noise ratio (SNR) for a FM noise detection, S/N =
dP/dPmin. For the SNR of S/N = 1, we define the minimum detectable frequency
fluctuation for δv(t) as δvmin, and consider that the square of δvmin corresponds to
the magnitude of the Allan variance for the minimum detectable FM noise. Then,
we obtain the following relation between the Allan variance RE and the minimum
fluctuation δvmin:

RE (τ ) =
〈

E(t)E∗(t + τ)

|E(t)|2
〉

= exp{i2πv0τ − 2(πτ)2 · σ 2
F (τ )} (10.17)

where σ 2
F = (δvmin)

2 is the variance of the power spectrum of the FM feedback
noise and it is usually assumed to have a Gaussian variation. The Fourier trans-
formed spectrum has a Lorentzian shape. Using these relations, the half-width of
half-maximum (HWHM) of the spectral line can be calculated and finally given by
(Ohtsu and Kotajima 1985)

�vFBm = 8

9π

(
c

ηFP LFP

)2
(1 − RFP)

2

RFP

FkBTT + hv0
ξ

M

P
(10.18)

where the subscript FP denotes for Fabry-Perot resonator, ηFP is the refractive index
of the resonator, LFP is the internal cavity length, RFP is the internal reflectivity of
resonator mirrors, F is the noise figure of the detector, kB is the Boltzmann constant,
T is the temperature, M is the excess noise factor, ξ is the quantum efficiency of the
laser, and P is the incident light power into the Fabry-Perot resonator.
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Fig. 10.7 Attainable
linewidth reduction for
the reflectance of the
Fabry-Perot interferometer.
a Ge-APD detector, and
b Ge-PIN detector. The
parameters are T = 293 K,
v0 = 2 × 1014 Hz, P=3 mW,
nFP = 1.4, LFP = 10 mm,
F = 25, η = 0.73 [after
Ohtsu and Kotajima (1985);
© 1985 IEEE]
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Figure 10.7 shows the numerical result of the attainable minimum linewidth
�vFBm of the feedback system for the reflectance of the Fabry-Perot resonator cal-
culated from (10.18) (Ohtsu and Kotajima 1985). Typical values of the excess noise
factors for an avalanche photodiode (APD) M = 9 and a PIN photodiode M = 1
are used in the numerical calculations. The minimum linewidth is reduced by the
increase of the reflectance and strongly depends on the excess noise factor. From
Fig. 10.7, the linewidth can be ultimately reduced to a value less than 1 kHz when
LFP = 10 mm and RFP > 0.9. This makes the electrical feedback a quite promising
technique to realize an ultra-narrow linewidth. Figure 10.8 shows the experimental
results of oscillation linewidths for the variation of the normalized injection cur-
rent for different reflectances of the Fabry-Perot interferometer (Ohtsu and Kotajima
1985). The laser used is a single mode DFB semiconductor laser with the oscillation
wavelength of 1.50 µm. Two types of Fabry-Perot filters consisted of rod of fuzed
silica with the cavity lengths of 10 mm are used and the reflectance of the interfer-
ometers are RFP = 0.90 and 0.95. The gain and bandwidth of the amplifier in the
electronic feedback circuit are 30 dB and 100 MHz, respectively, and the feedback
delay of the circuit is 13 ns. Depending on the reflectivity of the Pabry-Perot mirrors,
a power law is established for the normalized injection current (namely the laser
output power). A linewidth narrower than 1 MHz is obtained by feedback and the
minimum linewidth in this graph is 330 kHz. Modifying the experimental system,
Ohtsu et al. (1990) demonstrated a linewidth reduction of 560 Hz for an AlGaAs
laser of 830 nm wavelength by optoelectronic feedback and for the cavity length of
the Fabry-Perot resonator of 30 mm. The original linewidth of the free-running laser
is 3.45 MHz, so that the reduction of factor of four is achieved in this experiment.
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Fig. 10.8 Linewidth for the
inverse of the normalized
injection current for different
reflectances of the Fabry-Perot
interferometer. A Solitary
sate, B RFP = 0.9, and
C RFP = 0.95 [after Ohtsu
and Kotajima (1985); © 1985
IEEE]
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Fig. 10.9 RIN of a self-
pulsating semiconductor laser
in the presence of optical
feedback at J = 1.69Jth.
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10.3 Stabilization in Lasers with Various Structures

10.3.1 Noise Suppression in Self-Pulsation
Semiconductor Laser

Noise suppression in semiconductor lasers caused by external perturbations is an
important issue not only for narrow-stripe edge-emitting lasers but also for other
newly developed semiconductor lasers. We showed some numerical results for the
dynamics of self-pulsating semiconductor laser subjected to coherent optical feed-
back in Sect. 8.2. The noise performance of self-pulsating semiconductor lasers with
optical feedback is strongly dependent on the external cavity conditions. Figure 10.9

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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shows the calculated relative intensity noises (RINs) under different feedback condi-
tion (Yamada 1998). The RIN at solitary oscillation is well below the required noise
level for the use of optical data storage systems and the noise is only enhanced close
to the relaxation oscillation frequency. However, for the optical feedback at 3.3 % in
amplitude and the external reflector length of L = 4 cm (τ = 0.27 ns), the noise level
of the lower frequency component increases up to −90 dB/Hz. The laser at this noise
level cannot be used for a light source in optical data storage systems (the tolerance
for external feedback noise is less than −125 dB/Hz). On the contrary, the feedback
noise is greatly suppressed by as much as less than −130 dB/Hz at the external cavity
length of L = 2 cm (v = 0.13 ns), which is below the noise level required in optical
data storage systems. The essence of chaos control is that a chaotic state is shifted
to a periodic or a fixed state (saddle node points) embedded in the chaotic sea in
the parameter space by a small perturbation to the parameters. The operation point
may not be always situated close to such unstable saddle node points. When the
state is close enough to the unstable saddle node points, the control is successful.
However, it would fail when the state is far from such points. The origin of instability
induced by optical feedback in self-pulsating semiconductor laser is explained by
the inappropriate combination of the operating condition of the system including the
laser device parameters. Therefore, it is not easy to suppress optical feedback noise
only from the design of the parameters and structure of semiconductor devices. We
must consider the whole system for the optimizing operation condition for the use
of self-pulsating semiconductor lasers in optical data storage systems.

10.3.2 Stabilization of VCSELs

Semiconductor laser is essentially a stable class B laser; however, it is only true for
narrow-stripe edge-emitting lasers in the absence of external perturbations, which
are described by simple rate equations with time development. Newly developed
semiconductor lasers have additional degrees of freedom compared with ordinary
narrow-stripe edge-emitting semiconductor lasers and they are not stable lasers any
more. They show unstable chaotic oscillations without any external perturbations as
discussed in Chap. 8. Therefore, the stabilization in those lasers even in their solitary
oscillations is an important issue in practical applications. Those lasers are either
stabilized by external control or by installation of some control structures inside the
device. To reduce unstable oscillations, the idea of chaos control is still effective for
stabilizing those lasers. In VCSELs, the linewidth narrowing and the stabilization
of the spatial modes are important and the lasers are controlled by optical feedback
and optical injection in the same manner as those for narrow-stripe edge-emitting
semiconductor lasers. A VCSEL usually oscillates at the lowest fundamental spatial
mode, when it is biased close to the threshold. However, depending on the device
parameters, the laser may show a polarization switching between two polarization
modes even for a single spatial mode oscillation. With the increase of the bias injec-
tion current, higher spatial modes are ready to oscillate and the instability of the

http://dx.doi.org/10.1007/978-3-642-30147-6_8


368 10 Stabilization of Semiconductor Lasers

laser increases. Therefore, the control and stabilization to the fundamental Gaussian
mode with fixed polarization are essential in the applications of VCSELs at any bias
injection current.

Optical feedback and optical injection are effective for the control and the stabi-
lization of the polarization mode (Marino et al. 2003; Romanelli et al. 2005). In a
short cavity optical feedback regime, the laser is periodically stabilized with synchro-
nizing periodic stability enhancement for the change of the external cavity length
as described in Sects. 5.4 and 8.3 (Arteaga et al. 2007). Another important issue is
the stabilization of VCSELs for the injection current modulation in the presence of
optical feedback, which is a possible situation for optical data storage systems. The
VCSEL sometimes shows unstable oscillations due to the existence of the two per-
turbations. Yu (1999) conducted numerical simulations for such a model in VCSELs
and discussed the stability and instability of the laser oscillations from a viewpoint
of the device designs. To obtain high single-mode output power (of the order of a few
milliwatts and over) within a large range of injection currents could be interesting
for communication systems and optical data storage systems. For these applications,
it is important to avoid multimode oscillation in large aperture devices and to con-
trol the polarization of the emitted light. This requires us to develop methods for
achieving the control of the transverse and polarization modes emitted by VCSELs.
Several approaches have been undertaken to increase the single-mode output power
of VCSELs; increasing the cavity length, hybrid implant oxide VCSELs, surface
etching, or implementing a passive anti-guide region (Marino et al. 2003). In this
subsection, we present the control and stabilization both of the spatial and polariza-
tion modes to a single mode in a VCSEL using a frequency selective optical feedback
from a grating mirror, even when the laser is biased at a higher injection current.

Figure 10.10 shows an experimental example of the controls by frequency selec-
tive optical feedback in a VCSEL (Marino et al. 2003). The VCSEL used has a
disc diameter of 16 µm and oscillates at the wavelength of 840 nm. The laser has the
threshold current of 1.6 mA. At the threshold, the VCSEL emits only in its fundamen-
tal transverse mode, but the two orthogonal polarizations are active. Figure 10.10a
shows the free-running polarization-resolved optical spectra at the bias injection cur-
rent of 1.7 mA. In Fig. 10.10, the third-order transverse mode is close to the threshold
and only one of the polarization modes is visible. The separation between the two
polarization modes within the same spatial component is about 10 GHz, while the
successive spatial mode separation is about 40 GHz. For the control, the emitted
light from the VCSEL is optically fed back into the laser cavity using the first-order
reflection of a diffraction grating in the grazing incidence configuration (Littman
external cavity), thus frequency selective optical feedback is achieved. The external
cavity length is 15 cm, corresponding to a free spectral range of 1 GHz. Using the
frequency selective control, Marino et al. (2003) selected any of the two polarization
components of a particular spatial mode among the spatial modes. For this purpose,
the grating lines rotated at 45◦ with respect to the orthogonal polarization modes to
obtain the grating efficiency for the both polarization components be the same.

From the point of view of the applications, it could be very important to opti-
mize the single fundamental-mode output power and the pump current range of

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 10.10 Single-mode oper-
ation of a VCSEL induced by
frequency selective optical
feedback. a Optical spec-
tra and frequency-resolved
transverse profiles of multi
spatial-mode and polarization
oscillations at free-running
state. b Result of control [after
Marino et al. (2003); © 2003
IEEE]
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stable single-mode operation. Figure 10.10b shows the result of control of one of
the polarization modes (main mode) with the fundamental transverse component.
In this occasion, the polarization direction is taken to be perpendicular to the grating
lines in order to have the strongest feedback as possible. The threshold reduction
induced by the optical feedback is ∼10 %. During the measure, the tuning mirror
angle is readjusted because of the modal frequency shift due to the current change.
In Fig. 10.10b, we observe the fundamental single-mode emission until I ∼4 mA
(2.5Ith) the corresponding output power is 2.7 mW. At this current, the output power
of the solitary laser is 1.9 mW and four transverse modes are emitting. Within this
range of currents, the emission is stable and the polarization is perpendicular to the
grating rulings. For higher injection currents, the output starts to loose stability and
higher order transverse modes appear.

Other than the control of VCSELs by external optical feedback, optically pumped
vertical-external-cavity surface-emitting lasers known as VECSELs are emerging as
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an important category of semiconductor lasers (Holm et al. 1999; Fan et al. 2006).
Optical pumping of these devices allows high power (0.1–1.0 W), circularly sym-
metric TEM00 mode laser operation to be achieved without the need for post-growth
processing and at modest cost. Another example is the use of the effect of exter-
nal optical feedback on the transient response of anti-resonant reflecting optical
waveguide (ARROW) VCSELs (Chen and Yu 2004). The proper design of ARROW
can suppress the excitation of high-order transverse leaky modes, as well as increase
the critical feedback strength so that stable high power single-mode operation of
VCSELs can be obtained even under the influence of strong external optical feedback.
The control of spatial modes using the installation of photonic structures in VCSELs,
which is discussed in the following section, is categorized into this technique. The
control and stabilization of spatial and polarization modes are still important issues
for the applications of VCSELs.

10.3.3 Stabilization of Broad-Area Semiconductor Lasers

Control of the emission properties of broad-area semiconductor lasers is also
an important issue, such as for pump source for solid-state lasers, spectroscopy,
and material processing. Shaping beam profile and recovering laser coherence in
broad-area semiconductor lasers are expected for the practical applications
(Champagne et al. 1995; Simmendinger et al. 1999a,b; Wolff and Fouckhardt 2000;
Raab and Menzel 2002; Lawrence and Kane 2002; van Voorst et al. 2006). Several
schemes to control and stabilize for the emission properties of broad-area semicon-
ductor lasers have been proposed. Some of them are based on the improvements of
device structures and the others are based on external control. Examples of the latter
case include injection locking in a master-slave configuration, frequency selective
optical feedback, and spatial filtering optical feedback. In broad-area semiconductor
lasers, we can expect the similar techniques of laser control and stabilization as those
for narrow-stripe edge-emitting semiconductor lasers. However, we must take into
account unique characteristics of the dynamic properties of broad-area semiconduc-
tor lasers originated from the large stripe width. One of the instabilities that strongly
affect the oscillation properties and the beam qualities is the filamentation effect
discussed in Sect. 8.4. Though the filamentation is an irregular and fast phenomenon
in time, it is controllable by ordinary external perturbations to broad-area semicon-
ductor lasers. Indeed, several studies were reported for the selection and control of
spatial oscillation modes using the method of optical feedback (Martín-Regalado
et al. 1996; Mandre et al. 2003, 2005; Wolff et al. 2003; Chi et al. 2005). Even by
such simple control, the filamentation of a broad-area semiconductor laser is greatly
suppressed and the time-averaged beam profile, the oscillation linewidth, the beam
profile, and the power stability, are much improved.

First, we discuss the stabilizations of unstable oscillations induced by filamen-
tation in broad-area semiconductor lasers based on spatially filtered optical feed-
back. Figure 10.11 is an experimental example of chaos control of a broad-area

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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Fig. 10.11 Experimentally
controlled filamentations in
a broad-area semiconductor
laser by spatially filtered
optical feedback. Near-field
patterns observed by a streak
camera at the bias injection
currents of a J = 1.75Jth and
b J = 3.0Jth [after Mandre
et al. (2003); © 2003 OSA]

semiconductor laser by optical feedback (Mandre et al. 2003, 2005). The laser is a
broad-area semiconductor laser with the stripe width of 100 µm and the output power
of 1 W operating in pulse mode to minimize thermal effects. The output power is fed
back into the active region by an external mirror with a spatial filter. The spatial filter-
ing is very simple, and is accomplished by the intrinsic beam divergence. Depending
on the shape of the spatial filter (the shape of the reflecting mirror curvature), the fil-
amentation can be controlled and even completely eliminated for a certain condition
of the filter configuration. The external mirror is positioned at 10 mm from the laser
facet and the reflectivity of the mirror is about 50 % in intensity. The free-running
laser shows unstable oscillations with filamentations like that shown in Fig. 8.30.
Figure 10.11 shows a plot of near-field patterns at the laser exit face observed by a
streak camera (Mandre et al. 2003). The horizontal axis is the position of the laser exit
face and the vertical axis is the time development for the laser oscillation. The optical
feedback is switched on at time t = 0 ns. Figure 10.11a shows a plot of filamentation
for a lower bias injection current at J = 1.75Jth, while Fig. 10.11b is for a higher
injection at J = 3.0Jth. For the lower bias injection current, filamentation is greatly
suppressed by the feedback after a certain time lapse from the switch-on (around
8 ns) and the averaged spatial beam profile becomes almost single. For the higher

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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bias injection current, the filamentation is not completely eliminated, however it is
enough suppressed compared with filamentations under no control compared with
Fig. 8.30. In usual fact, thermal lensing due to the high carrier density concentration
in the active layer may increasingly affect the beam characteristics at high pump
current, thus leading the degradation of the beam quality. Nevertheless, stabilization
of the emission dynamics is still achieved by the scheme even at high operation
currents.

Next, we show coexistence states of chaotic attractors in broad-area semiconduc-
tor lasers subjected to optical feedback. This indicates the possibility of the control
for broad-area semiconductor lasers by the method of optical feedback (Fujita and
Ohtsubo 2005). The coexistence states of chaotic attractors were already described
in Sect. 6.2.4. Similar effects are also observed in broad-area semiconductor lasers.
Figure 10.12 shows an experimental example of coexistence states of chaotic oscil-
lations in a broad-area semiconductor lasers. The initial condition determined the
convergence to one of the coexistent chaotic attractors. Once the system falls on
a certain chaotic orbit, the system always goes around the same chaotic attractor.
However, if the perturbation to the system is strong enough, there is a possibility
of the system to switch from one chaotic orbit to another. Figure 10.12a shows a
time trace in such a case. The laser is suddenly trapped to a steady-state oscillation
with constant output from LFF oscillation. In this experiment, the laser alternately
switches from stable to unstable oscillations for the period of several to several tens
of milliseconds. When the laser shows a LFF oscillation, it oscillates at multimode
as easily understood from the optical spectrum in Fig. 10.12b (upper plot). However,
the optical spectrum in Fig. 10.12b (lower plot) is almost single for the constant part
of the output power in Fig. 10.12a. One of typical features of broad-area semicon-
ductor lasers is a twin-peak intensity profile of the far-field pattern as observed in
Fig. 8.29. Figure 10.12c shows the twin-peak far-field pattern at the LFF oscillation in
Fig. 10.12a. On the other hand, the pattern is a single lobe when the stable oscillation
is achieved (Fig. 10.12d). The spatial mode of the laser oscillation is also stabilized
to the lowest spatial mode. The beam profile and the coherence are easily controlled
and stabilized not only by grating mirror feedback but also by conventional optical
feedback and phase-conjugate feedback (Lawrence and Kane 2002; van Voorst et al.
2006; Gaciu et al. 2007). As already discussed in Sect. 8.4.3, the control of delayed
optical feedback by spatial-mode selection and mode reduction is also effective for
shaping the beam profile of broad-area semiconductor lasers (see Fig. 8.34). The
control of the beam qualities of broad-area semiconductor lasers is important for
practical applications and is still an ongoing issue.

The method of optical injection is also effective for suppression of filamenta-
tions and shaping of the beam profile in broad-area semiconductor lasers (Kaiser
et al. 2004; Takimoto et al. 2009). As discussed in Sect. 8.4.4, the higher spatial
modes are much suppressed by optical injection and the typical side-peak enhanced
near-field pattern in Fig. 8.29 can be reduced to a flat top-hat pattern in Fig. 8.37.
Thus, we can expect a narrow beam at the far field, which is convenient for applica-
tions. The important parameters for these purposes are again the injection ratio and
the frequency detuning between the slave broad-area semiconductor laser and the

http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_6
http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_8


10.3 Stabilization in Lasers with Various Structures 373

Fig. 10.12 Experimental
example of coexistence states
of a chaotic attractors in a
broad-area semiconductor
laser at J = 1.0Jth. a Coex-
istence state of LFFs and
stable oscillation. b Optical
spectra at LFF state (upper
plot) and stable oscillation
(lower plot). Near-field spatial
patterns at c LFF state and
d stable oscillation. The stripe
width of the laser is 50 µm.
The external cavity length is
L=30 cm and the feedback
strength is 5 % of the average
intensity
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injection laser. The resulting beam pattern also depends on the injection width at
the front face of the active region. Figure 10.13 shows a numerical example of beam
shaping in optically injected broad-area semiconductor lasers. For a strong optical
injection ratio of 1.2 (amplitude) and a zero frequency detuning, filamentations are
forced to a plain pattern as shown in Fig. 10.13a, although a periodic structure with a
small undulation can be seen. The corresponding time-averaged near-field pattern in
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Fig. 10.13 Numerical beam shaping by optical injection. a Time-resolved near-field pattern and b
time-resolved far-field pattern. c Time-averaged beam profile at near-field and d time-averaged beam
profile at far-field. The injection amplitude ratio is 1.2 (intensity ratio of 1.44) and the frequency
detuning of 0 GHz. The bias injection current is set to 1.5Jth

Fig. 10.13c shows almost the diffraction-limited profile coincident with the aperture
width. The time-resolved far-field pattern in Fig. 10.13b also shows little fluctuation
for the time development. The time-averaged far-field pattern in Fig. 10.13d almost
looks like a diffraction pattern from the rectangular aperture, which is the same
as the stripe width, hence the beam quality factor of M2 ≈ 1 is obtained. Here,
we showed a numerical case of a clean beam profile for rather strong optical injec-
tion; however, it is desirable from an application viewpoint that the power from the
injection laser is less than the injected broad-area semiconductor laser. In the numer-
ical examples, periodic filamentations appear above the injection ration of 0.3 and
the regularity increases for the increase of the injection ratio. However, the quality of
beam profile deteriorates for a higher injection ratio above 1.2. Thus, the optimum
optical injection ratio exists to obtain a good beam quality. In the current example,
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a strong optical injection is employed at the bias injection current of 1.5Jth. So that the
strong injection fraction in this case does not destroy the laser as is easily recognized
from the actual laser operations as shown in Fig. 8.33.

10.3.4 Stabilization of Laser Arrays

The control of laser arrays is important for the implementation of high power semi-
conductor lasers. The technique of optical feedback is also used for the control of
laser arrays (Münkel et al. 1996, 1997; Martín-Regalado et al. 1996; Chi et al. 2003).
Narrowing the spectral linewidth of a multi-array stack of semiconductor lasers is
very important, especially for high power applications of semiconductor lasers, such
as in material processing and laser welding. Stacked arrays of semiconductor lasers
are also controlled by external optical feedback. Zhu et al. (2005) conducted the
linewidth narrowing of stacked semiconductor laser arrays by grating optical feed-
back. In their experiment, the spectral power of the narrowed laser is increased up
to approximately 3.5 times that of the free-running case. The method of optical
feedback is also effective for the control and stabilization of the oscillation line,
beam profile, and power stability in laser arrays. As discussed in Sect. 8.5, the same
technique for calculating rate equations in broad-area semiconductor laser is used
for the numerical simulations for laser arrays. Figure 10.14 shows the control of a
semiconductor laser array with five elements (Münkel et al. 1997). The laser shows
unstable chaotic oscillations at the free running state. When the optical feedback is
applied to the array at a time of t = 30 ns, each laser oscillation is stabilized within
1–2 ns after the switching. The lasers at the free running state behave like pulsation
oscillations, but each laser oscillates at almost spatially single mode after the control.
The phase sensitivity also plays an important role for laser oscillations and the effects
must be taken into account for the control. A few theoretical studies on the control
of laser arrays have been reported, but little has been investigated on the control of
actual laser arrays. The model described here is considered as rather strong coupling
between the adjacent laser elements. The control of laser arrays with loose coupling
is also an important issue as a real model, but the study is left for the future.

10.4 Controls in Nobel Structure Lasers

10.4.1 Photonic VCSELs

To control and stabilize newly developed semiconductor lasers, external control tech-
niques have been developed. We discussed some instances in the previous section.
In this section, we present topics of controls of newly developed semiconductor
lasers based on installations of device structures. The first example is a photonic

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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Fig. 10.14 Numerical result
of spatio-temporal dynamics
of a five-stripe laser at J =
4.0Jth, κ = 3 × 10−2, and
τ = 0.0877 ns, where the
feedback is switched on at
t=30 ns. The stripe width of
each array is 5 µm and the
separation of the lasers is
6 µm [after Münkel et al.
(1997); © 1997 APS]
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structure installed in adjacent to a laser exit face in VCSELs. Single mode operation
of lasers is important for the diffraction limit of the output beam in various applica-
tions. VCSEL is expected to operate by stable oscillations at the fundamental single
spatial mode with a fixed polarization direction. The stable single mode laser with
small beam divergence angle is advantageous for reliable high-speed data transmis-
sion. Even for short-distance links, multi-mode VCSELs undergo various problems
at high modulation frequencies. In addition to the single mode operation, the control
and stabilization of the output polarization are essential for most applications. In spite
of strong demand for single mode operations, stable single spatial mode of VCSEL
is difficult to obtain with a high output power, as discussed in the preceding sections.
In general, a large device size enhances the maximum output power while degrading
the single-mode stability due to the thermal lens effect and carrier nonuniformity.
To attain single-mode VCSELs with high output power, the improvement of device
structures such as anti-guide optical confinement was proposed. However, we here
discuss a different method by installing a photonic structure on the top of the device
as a post-processed technique, although it has some tradeoffs, for example for the
cavity loss or current confinement. Periodic structure with some small defects or
holey structure is a common technique for photonic VCSELs (Furukawa et al. 2004;
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Fig. 10.15 Example of scan-
ning electron microscope
images of a triangular holey
structure with twelve holes.
a Full top view. b Magnified
top view of triangular hole. c
Cross-sectional side view of
the hole formed on upper mul-
tilayer DBR [after Furukawa
et al. (2004); © 2004 AIP]

Triangular Hole
Ring Contact
Top Metal
Upper DBR

(a) (b)

(c)

Lee et al. 2004; Liu et al. 2004; Terhalle et al. 2008). The excitation of higher spatial
modes is suppressed and the laser is forced to stay to a single mode by a photonic
structure installed on the top of the exit surface of the laser cavity.

Furukawa et al. (2004) employed triangular-shaped holes as a photonic structure
for the purpose of increasing the field penetration of higher order spatial modes to
the hole side. Figure 10.15 shows an example of the holey structures, which has 12
triangular holes. The holey structure is installed on the top of the DBR reflector of
an oxide-confined VCSEL. The holes are aligned so that they surrounded the center
modal area and the tip penetrates the oxide aperture. Figure 10.16 shows the result
of the stabilizations for another holey structure with nine triangular holes. The figure
shows the near- and far-field patterns at the maximum output power. The dashed line
in Fig. 10.16a denotes the boundary of the oxide aperture of a diameter of 15 µm.
The holes are aligned sufficiently close together with a relatively large penetration
of 4 µm to the oxide aperture. The half-maximum diameter of the near-field pattern
is 3.1 µm and the half-maximum divergence angle is 6.4◦, which agrees closely
with the diffraction limit of the near-field pattern. The side mode suppression ratio is
greatly enhanced and the ratio of 45–50 dB is attained. There are several variations for
photonic structures to control emissions in semiconductor lasers. A monolithically
integrated surface grating on top of VCSELs is another example of the structures
(Debernardi et al. 2005), by which the oscillation wavelength is selected to coincide
with the grating frequency and the polarization of the laser oscillations is controlled
to the direction perpendicular to the grating lines.

10.4.2 Control of Mode Distribution Through Etched
Microstructure in Broad-Area Semiconductor Lasers

In the previous subsection, a photonic structure is installed onto the exit face of a
VCSEL to control spatial modes. The control and selection of spatial modes are also
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(a) (b)

Fig. 10.16 Emission pattern from a photonic VCSEL with nine triangular holes. a Near-field
pattern at the maximum laser output power of 2 mW. The solid line shows positions of triangular
holes and the dashed line represents the oxide aperture. b Far-field pattern of the VCSEL [after
Furukawa et al. (2004); © 2004 AIP]

an important issue to obtain a good quality beam in broad-area semiconductor lasers.
In broad-area semiconductor lasers, an etched microstructure is fabricated along a
p-contact layer of the laser waveguide as a one of methods to control spatial modes
(Crump et al. 2008; Chen et al. 2009). Figure 10.17 shows such an example for an
etched microstructure broad-area semiconductor laser with operating at a wavelength
of 808 nm. Figure 10.17a is the top view of a scanning electron microscope (SEM)
image along the laser stripe with the etched mode-stabilizing holes. Three aligned
rows of holes are employed along the cavity length of 1 mm, but the induced index
perturbation is located within the laser cavity, away from either laser facet, to avoid
possible mirror damage. The size of the holes is 5 µm wide and the separation between
the rectangular holes is 20 µm, thus the holes are uniformly distributed across the
100 µm wide laser stripe. These holes are milled to a sufficient depth to allow some
interaction with the optical mode, but not so deep as to introduce significant losses or
penetrate the active region. These air holes overlap weakly with the optical field in
the device, just touching the waveguide region. The air holes act as scattering centers,
adjusting optical intensity from low spatial order to high order lateral modes or vice
versa. Figure 10.17b shows L-I characteristics (straight lines above the threshold) for
the patterned and unpatterned lasers. The laser with etched holes shows improvement
in slope efficiency due to the increased overlap of the optical mode with the lateral
gain profile. The curves in the figure are the conversion efficiencies from current
to light. The efficiency is also much improved by the etched microstructure on the
laser stripe. The method is proved to be effective for beam shaping in broad-area
semiconductor lasers.



10.4 Controls in Nobel Structure Lasers 379

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

O
ut

pu
t p

ow
er

 [
W

]

0

10

20

30

40

50

60

E
ff

ic
ie

nc
y 

[%
]

Patterned
Reference

Current [A]

(a) (b)

Fig. 10.17 a SEM image of the focused ion beam etched hole pattern in the laser stripe. b L-I
characteristics and conversion efficiencies from current to light of the etched and unetched broad-
area semiconductor lasers [after Chen et al. (2009); © 2009 AIP]

10.4.3 Quantum-Dot Broad-Area Semiconductor Lasers

The importance of beam shaping for broad-area semiconductor lasers was discussed
in Sect. 10.3.3. The beam quality of broad-area semiconductor lasers is strongly
affected by filamentations, so that the suppression of the effects is essential in appli-
cations. It is well known that beam filamentation in semiconductor laser strongly
depends on the linewidth enhancement factor a (Marciante and Agrawal 1998).
Quantum-dot devices exhibit less filamentation than quantum-well devices, since
the quantum-dot structure can reduce the linewidth enhancement factor, resulting
in suppression of filamentations compared to quantum-well lasers. In the quantum-
dot laser, the strong localization of carrier inversion and the small amplitude-phase
coupling enable a significant improvement of beam quality compared to quantum-
well lasers of identical geometry and material parameters (Gehrig and Hess 2002;
Smowton et al. 2002; Ribbat et al. 2003; Gehrig et al. 2004). For the description
of a quantum-dot structure, some modifications for the rate equations of ordinary
broad-area semiconductor lasers are necessary to account for the characteristics of a
quantum-dot laser ensemble as discussed in Sect. 8.6.

Figure 10.18 shows the comparisons of the beam qualities between quantum-dot
and quantum-well lasers obtained by numerical simulations and experiments. For the
numerical simulations, we here employ the microscopic model of the carrier dynam-
ics (Gehrig and Hess 2002; Gehrig et al. 2004), which is quite similar to that discussed
in Sect. 8.6.1. Quantum dots at an appropriate density are embedded into the active
region of the laser cavity. In the presence of quantum dots, the dynamic motions of
filaments are greatly suppressed and the laser can emit fairly stable beam compared
with quantum-well semiconductor lasers. The laser is an InGaAs quantum-dot laser
(dot density 1011 cm−2) of the strip-width of 6 µm at the wavelength of 1.1 µm. The
laser has a rather small stripe width, but it is enough to show the dynamic properties
of filamentations typically observed in broad-area semiconductor lasers. Depending
on the dot density and each size of quantum dot, the laser shows inhomogeneous

http://dx.doi.org/10.1007/978-3-642-30147-6_10
http://dx.doi.org/10.1007/978-3-642-30147-6_8
http://dx.doi.org/10.1007/978-3-642-30147-6_8
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Quantum Well Laser Quantum Dot Laser(a)

(b)

(c)

Fig. 10.18 Filamentation control by quantum-dot structure in a broad-area semiconductor laser.
Left quantum-well laser. Right quantum-dot laser. a Time resolved dynamic behaviors after laser
switch-on (numerical simulation). Averaged near-field patterns for b theory and c experiments [after
Gehrig et al. (2004); © 2004 AIP]

broadening, which results in the change of the linewidth enhancement factor. The
α parameter can be even negative under a certain operating condition of the laser
and the filamentation behavior of a quantum-dot laser should be drastically differ-
ent from a quantum-well laser. As easily seen from Fig. 10.18a, the quantum-well
laser has strong filamentations, while the quantum-dot laser is well stabilized enough
after the switch-on relaxation oscillation. The averaged beam profiles both for the
simulations and the experiments are shown in Fig. 10.18b and c. The averaged beam
profiles for quantum-well laser contain irregular peaks in their envelopes, which
is the effect of filamentations of the order of pico-second. On the other hand, the
good quality beam profiles are obtained for the quantum-dot laser. The beam quality
factor M2(M2 = (Dm/d0)

2: Dm and d0 being the diameters for the observed and
ideal Gaussian beams defined in (8.47)) is much reduced in comparison with that
of quantum-well lasers. For fiber coupling purposes, the beam quality of M2 < 2
is desirable. The obtained beam quality of the quantum-dot laser well satisfies the
demand for such application. Quantum-dot lasers have a much better beam qual-

http://dx.doi.org/10.1007/978-3-642-30147-6_8


10.4 Controls in Nobel Structure Lasers 381

ity compared to quantum-well lasers of the same geometry and the same material
parameters. The strong localization of the carriers in the dots in combination with
the reduced amplitude phase coupling thus guarantees a good spatial quality. In
VCSELs, quantum-dot structure is sometimes used to control unstable oscillations
such as polarization-mode switching, higher spatial mode excitations, and mode com-
petitions. The instabilities have been reduced by introducing physical distortions to
the laser materials. The polarization mode of VCSEL is also stabilized to a single
mode by embedding quantum dots into the active layer (Huffaker et al. 1998; Yu
et al. 2006). Quantum-dot structures are promising to stabilize laser oscillations not
only in ordinary narrow-stripe edge-emitting semiconductor lasers but also in newly
developed semiconductor lasers.
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Chapter 11
Metrology Based on Chaotic Semiconductor
Lasers

On the way to chaotic evolution, periodicity, bistability, and multistability are
observed, such as in the outputs of semiconductor lasers with optical feedback. The
system of optical feedback in a semiconductor laser is sometimes called self-mixing
semiconductor laser. In a periodic state, the laser output shows not simply periodic
oscillation but also hysteresis. Novel applications have been proposed based on these
phenomena, for example, a displacement measurement is performed by counting the
fringes obtained from bistable self-mixing interference between the internal field
and the optical feedback light in the laser cavity. The direction of the displacement
is simultaneously determined from asymmetric waveforms showing hysteresis. Also
correlation of signals between scattering and reference chaotic lights can be applied
for remote sensing from distant reflecting targets. We discuss various methods for
optical metrology based on self-mixing interference effects and correlation tech-
niques in semiconductor lasers. This chapter does not deal with the detailed descrip-
tions of the methods and their accuracies but with the introduction of the principles
of the methods.

11.1 Optical Feedback Interferometers

11.1.1 Bistability and Multistability in Feedback Interferometers

Laser interferometry is a well-established technique for the measurement of vibra-
tions and displacement of objects. In the interferometry, for example, the displace-
ment of the order of optical wavelength is measured from the fringe analysis of
sinusoidal variations of signals from the interferometer output. We have investigated
the self-mixing effects in semiconductor lasers with optical feedback in Chap. 4. We
have also shown that the laser output exhibited periodic undulations with half of the
optical wavelength for the change of the external cavity length under an appropri-
ate condition of the external reflectivity. In self-mixing semiconductor lasers, the
returned light from an external reflector interferes with the internal laser oscillation
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and the original field in the laser cavity plays a role for the reference wave. There-
fore, we can conduct interferometic measurements using semiconductor lasers with
optical feedback based on the same principle as the ordinary laser interferometers
and we can obtain the absolute position, displacement, and vibration of the external
reflector.

In this interferometric measurement, we use periodic oscillations, especially
period-1 states, prior to chaotic oscillations on the way to period doubling bifur-
cations. Since self-mixing in semiconductor lasers is a nonlinear effect, not only the
absolute value of the displacement but also the additional information of the direc-
tion of motion (whether the object is approaching or is going away from the laser)
can be easily determined from the analysis for the fringe pattern. A semiconductor
laser itself plays a role not only as a light source but also as a self-mixing detector
in the measurement. In commercially available semiconductor lasers, a photo-diode
is usually installed within the laser package as a monitor of the laser output power
and we can use it as a detector for the fringe analysis. Therefore, we can construct a
very compact sensor for the interferometic measurements. Also, we do not require
complex processing for the post-detection signal. However, it is noted that the tech-
nique is limited to a certain range of the reflectivity of the external reflector. For
large reflectivity of the external reflector, the detected signal may not be a periodic
oscillation but a chaotic irregular oscillation. We cannot apply the method for such
a case of a large reflectivity of the external reflector.

In the following, we investigate the interferometric measurements using bistable
states (period-1 states) of light outputs in self-mixing semiconductor lasers discussed
in Chap. 4. The optical configuration is the same as that in Fig. 4.1 and the rate
equations of the model are given by (4.5)–(4.7). In the presence of optical feedback in
a semiconductor laser, the oscillation angular frequency changes fromω0 (the solitary
oscillation) to ωs . The relation between the two angular frequencies is given by

ω0τ = ωsτ + C sin(ωsτ + tan−1 α) (11.1)

where C = κτ
√

1 + α2/τin. The dynamics in semiconductor lasers subjected to
optical feedback strongly depend on the C parameter. We are interested in the para-
meter region of C ∼ 1 in this chapter, where the laser shows periodic states prior
to the onset of chaotic oscillations. Using (4.9)–(4.11), the steady-state value of the
laser output is given by

Ss = A2
s =

τs J
ed − ns + 2κ

Gnτin
cosωsτ

1 − 2κτph
τin

cosωsτ

τph

τs
(11.2)

Since we are considering a rather small coefficient κ of optical feedback, the differ-
ence between the laser output powers with and without optical feedback is small.
Then, the difference can be approximated as follows:

�S = Ss − Ss |κ=0 ≈ �S0 cosωsτ (11.3)

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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where �S0 = 2κτ 2
ph(J/ed − ns/τs)/τin. In actual fact, �S is a time dependent

function because the carrier density also varies with time by the optical feedback.
We introduce a normalized function F(t) as F(t) = �S(t)/�S0. Substituting (11.3)
into (11.1) and using the relationω0τ = 2kL , the external cavity length as a function
of time t is given by

L(t) = 1

2k

[

cos−1 F(t)+ C√
1 + α2

{

αF(t)+
√

1 − F2(t)
}

+ 2mπ

]

dF

dt
· dL

dt
< 0

L(t) = 1

2k

[

− cos−1 F(t)+ C√
1 + α2

{

αF(t)−
√

1 − F2(t)
}

+ 2(m + 1)π

]

dF

dt
· dL

dt
> 0 (11.4)

where m is a non-negative integer number (m = 0, 1, 2, . . .). The laser output varies
for the change of the external cavity length, but the waveform has asymmetric features
depending whether the external reflector moves toward or away from the laser. Then,
we can determine the displacement of the external reflector and also the direction of
movement in accordance with the relation in (11.4).

Next, we investigate the effect of optical feedback at bistable states of the laser
output power. For a small optical feedback of C = 0.6, for example, the laser output
power is a periodic oscillation as shown in Fig. 11.1a and the period is just half
of the optical wavelength (Donati et al. 1995). The variation of the waveform is
smooth, but it is not a symmetrical shape as expected from the above discussion.
In this numerical simulation, it is assumed that the external mirror is moving away
from the laser, i.e., the phase ω0τ is increasing. If the phase ω0τ is decreasing, the
laser output shows the reversed waveform to Fig. 11.1a. Therefore, we can determine
the direction of the movement from the shape of the waveform. For a large value
of a C parameter of C = 3, the laser output power still varies with the period of
λ/2, but shows hysteresis as shown in Fig. 11.1b. At this parameter value, the laser
output power takes bistable states for a certain range of the phase. Therefore, we can
expect a significant difference between the shapes of the waveforms for the increase
or decrease of the external mirror position. With further increase of the C parameter
value, skew of the waveform is enhanced and the laser output takes multi-stable
states. These multi-stable states are rarely observed in actual situations and the laser
behaves as the chaotic oscillations under these conditions, since multi-stable states
are usually “unstable” in real systems.

Figure 11.2 presents the experimental results of self-mixing signals for different
optical feedback strengths (Giuliani et al. 2001). The external reflector is put on a
loudspeaker and the loudspeaker is driven by a sinusoidal signal in Fig. 11.2a. When
the feedback is small in Fig. 11.2b (the feedback strength in intensity is roughly esti-
mated as 10−7), the laser output power shows a periodic undulation whose period is
equal to half of the optical wavelength. In Fig. 11.2c (the feedback strength of 10−5),



388 11 Metrology Based on Chaotic Semiconductor Lasers

Fig. 11.1 Numerical calcu-
lation of laser output power
�S for phase ω0τ . a C = 0.6
and b C = 3 with hysteresis.
The linewidth enhancement
factor is chosen as α = 6
[after Donati et al. (1995);
© 1995 IEEE]
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the laser output power is quite different from the periodic state in Fig. 11.2b. The
waveform is still periodic, but the waveform for the increase of the phase is completely
different from that for the decrease. Then, the absolute value of the displacement of
the external reflector is obtained by counting the peaks of the undulations in the
waveform and the direction of the movement is clearly discriminated by examining
the waveform. The feedback intensity of 10−5 corresponds to the periodic state just
before the onset of chaotic evolution in a semiconductor laser with optical feedback.
For the large feedback strength of 10−4 in Fig. 11.2d (corresponding to a moderate
to strong feedback in regime IV), the coherence of the laser is completely destroyed
and periodicity is not visible in the waveform. As a result, the laser output power
exhibits a similar waveform to the driving signal. However, the signal is broadened
due to the modulation of fast chaotic oscillations. It is also noted that the offset phase
of the signal is generally not always equal to that of the driving signal.
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Fig. 11.2 Experimentally
observed self-mixing sig-
nals for a change of external
reflector. a Driving sinusoidal
signal of external reflector.
Laser output signals for exter-
nal reflectivities of b 10−7

with periodic state, c 10−5

with hysteresis, d 10−4 with
coherence collapse state. The
driving signal corresponds
to the change of the external
reflector for 1.3µm/div. The
oscillation wavelength of the
laser used is 800 nm. The
time scale is 1 ms/div [after
Giuliani et al. (2001); © 2001
SPIE]

(a)

(b)

(c)

(d)

11.1.2 Interferometric Measurement in Self-Mixing
Semiconductor Lasers

We can measure the change of the external cavity length on the order of half of
the optical wavelength by using the self-mixing effect in semiconductor lasers and
also determine the direction of the change. Based on these principles, we here dis-
cuss the concrete methods for the measurement of displacement, vibration, and
absolute position of the external reflector. Each measurement includes a particu-
lar processing algorithm for the detected signals, however, the fundamental methods
of signal processing for those measurements still contain the common technique
(Donati et al. 1995). Before discussing each technique, we take the measurement
for the displacement of an external reflector as an example and show the detection
and analysis for periodic signals in the self-mixing laser output. Figure 11.3 is an
example of the signal processing systems. The light reflected from a target mirror is
mixed with the original laser field in the laser cavity and the mixed signal is detected
by a photodiode installed in the laser package. The detected signal passes through
an amplifier and a high-pass filter. Then, the up- and down-edges of the periodic
signal for every λ/2 period are counted by a counter. As a result, the displacement
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Fig. 11.3 Basic circuits of signal processing for interferometric measurements in self-mixing semi-
conductor lasers

Fig. 11.4 Upper trace:
experimental self-mixing
signal obtained for a sinu-
soidal target displacement of
3.3µm peak-to-peak ampli-
tude and 1 kHz frequency,
lower trace: analogue deriv-
ative of self-mixing signal,
showing up/down-pulses.
The timescale is 100µs per
division [after Giuliani et al.
(2002); © 2002 IOP]

of the target reflector including the direction of the movement during the counting
is calculated. The basic resolution of the measurement is λ/2 in this technique. It is
noted that the SNR of the self-mixing interferometer using semiconductor lasers is
limited by the efficiency of the coupling photodiode, and it is about 20 dB poorer
than of conventional interferometry with the 50/50 half mirror (Giuliani et al. 2002).
However, we can construct a very simple measurement system with high flexibility
by the self-mixing interferometer using semiconductor lasers. In the following dis-
cussions, we assume that the laser output due to the mixing is a periodic signal with
period λ/2 without notice.

In the following, we show typical signals observed in the self-mixing semicon-
ductor lasers. We take an example of the displacement measurement of an external
target under an appropriate condition of the external optical feedback for bistabil-
ity operation of C > 1. Figure 11.4 is an experimental self-mixing signal for a
sinusoidal displacement of the object. In the figure, the upper trace is the experimen-
tal self-mixing signal for a sinusoidal target displacement of 3.3µm peak-to-peak
amplitude and 1 kHz frequency. The lower trace is an analogue derivative of a self-
mixing signal, showing up- and down-pulses, where the states of up- and down-pulses
correspond whether the target is coming toward or going away from the laser. By
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this approach, displacement of retro-reflective target has been successfully mea-
sured over 1 m distance with an allowed maximum speed of 0.4 m/s, solely limited
by electronic bandwidth. The maximum target distance is limited by the coherence
length of semiconductor lasers, being usually several meters to 10 meters. For an
appropriate target reflectivity satisfying the condition C > 1, the self-mixing signal
becomes a sawtooth-like waveform and, then, an accuracy better than λ/2 can be
achieved by linearization of the interferometric fringe, i.e., the function defined in
(11.4) is approximated by ideal sawtooth. A resolution of 65 nm has been achieved
using a semiconductor laser with a wavelength of 780 nm, in which the resolution
is improved by a factor of 6 with respect to conventional fringe counting technique
(Servagent et al. 1998). Residual inaccuracy is caused by the nonlinearity of the
actual self-mixing waveform. In the following section, we discuss several particular
examples of the self-mixing measurements in semiconductor lasers.

11.2 Applications in Feedback Interferometer

11.2.1 Displacement and Vibration Measurement

In the signal processing system in Fig. 11.3, we obtain the number Nof counted pulses
as the output and the number is assumed to be large enough. Then, the displacement
�L(L = L0 +�L , L0 being the offset length) of the external reflector is given by
the following relation (Donati et al. 1996; Merlo and Donati 1997):

�L = N
λ

2
+ O(λ) ≈ N

λ

2
(11.5)

where O(λ) is the residual of the counts. The direction of the displacement is deter-
mined from the total counted number of the up- and down-edges. Therefore, N has a
plus or minus sign. Vibration measurement of an external reflector is also conducted
by the same principle. For vibration measurement, the follow-up for time varying
signals is important. When the time response of the signal processing circuits is fast
enough, the measurement is limited by the response of the laser, i.e., the relaxation
oscillation. Since the response of the laser is over nano-second, the total response of
the measurement system with fast electronic circuits is up to nano-second. However,
it is much faster than time variations of the ordinary mechanical vibrations we are
considering.

The detection of a target displacement is the basic for interferometric measure-
ment. We have shown an example of displacement measurement using self-mixing
semiconductor lasers in the previous section. Here, we discuss vibration measurement
in a self-mixing interferometer, which is the same principle as displacement measure-
ment. When the amplitude of a target reflector under vibration is large enough (larger
than the optical wavelength), we can obtain the frequency of the vibration from a
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Fig. 11.5 a Principle of linear measurement of small target vibrations by locking the interferometer
phase to half a fringe in the moderate feedback regime. The vertical axis represents the power emitted
by the semiconductor laser, where S0 is the power emitted by the unperturbed semiconductor
laser. The horizontal axes represent interferometric phase and target displacement respectively.
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Giuliani et al. (2003); © 2003 IOP]

Fourier transform analysis for the detected signal in the interferometer. Regardless of
the optical feedback strength, the maximum frequency contained in the self-mixing
signal for the case of a target vibrating at a frequency f0 with amplitude�L is propor-
tional to the product f0�L . Indeed, a sinusoidal object vibration of 140 Hz frequency
and 7.86µm peak-to-peak amplitude is successfully measured by the method (Scalise
2002). However, only the product can be measured by the method, and we cannot
obtain details of the vibration, such as the profile of the vibration amplitude.

To reconstruct a waveform of an object vibration, a closed loop technique is pro-
posed. The principle of the measurement and the processing electronic circuits after
the detection of a self-mixing signal are shown in Fig. 11.5 (Giuliani et al. 2003).
At a moderate optical feedback of C > 1, we obtain a sawtooth-like interferomet-
ric signal as an output form the self-mixing in a semiconductor laser has already
been discussed. Figure 11.5a shows the principle of linear measurement of small
target vibrations by locking the interferometer phase to half a fringe in the moderate
feedback regime, where the interferometric signal can be approximated as having a
triangular shape. For a moment, we consider a small amplitude object vibration. At
an operating offset intensity at S0, the self-mixing output S is linearly proportional
to the vibration amplitude and the waveform of the vibration is directly observed
by an oscilloscope as far as the peak-to-peak amplitude of the object vibration is
within λ/2.

By employing an additive active phase-tracking method, the maximum measur-
able vibration amplitude can be extended up to several hundred micron meters. The
active phase-tracking system is designed so that a constant number of wavelengths are
contained in the path from the semiconductor laser to the target. Figure 11.5b shows
the block diagrams of the signal processing system. The blocks contained in the solid
box constitute the servo-feedback loop and the blocks contained in the dashed box
make up the compensation path. The main block is the self-mixing interferometer
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Fig. 11.6 Examples of vibra-
tion measurement. The target
is a loudspeaker with a black
paper surface driven by a
10 Hz square wave. Upper
traces, loudspeaker drive sig-
nal, lower traces, vibrometer
output signal [after Giuliani
et al. (2003); © 2003 IOP]

operating in the moderate feedback regime, whose phase must be kept at a constant
value, corresponding to half an interferometric fringe. The target displacement �L
acts as a perturbation to the system, and it generates a variation �φ of the interfer-
ometric phase. The phase variation �φ causes a proportional variation �S in the
power emitted by the laser through the self-mixing effect given by�S = βtr�φ(βtr
being the slope coefficient of the triangular transfer characteristics of the interfer-
ometer). The power variation is detected by the monitor photodiode and converted
into the voltage signal�VPD by the transimpedance amplifier, which is given by the
relation as �VPD = σ Z�S (σ is the net efficiency of the photodiode and Z is the
trans-resistance). This signal is then amplified by a factor A, low-pass filtered, and
fed to the input of the voltage-controlled laser current source with admittance Y , thus
generating a variation I of the injection current as �I = AY�VPD. This, in turn,
gives rise to a variation�λ of the laser wavelength such that�λ = �I · dλ/dI. The
feedback loop ensures that the phase variation generated by the laser wavelength
variation is exactly opposite (at least at first order) to that caused by target displace-
ment. The amplified error signal VOUT fed to the current source is a perfect replica
of the target displacement, and it constitutes the instrument output.

Figure 11.6 is an example of vibration measurements using the self-mixing
vibrometer (Giuliani et al. 2003). The object is a loudspeaker driven by a square
wave of 10 Hz. The semiconductor laser used is a commercial single-mode Fabry–
Perot type with maximum power of 40 mW at the oscillation wavelength of 800 nm.
The distance from the laser to the target is 80 cm. The amplitude of the vibration is
much lager than λ/2, but we can obtain the full waveform of the oscillations as shown
in the figure. As we can see, the damped resonance oscillations of the loudspeaker
are clearly visible.

11.2.2 Absolute Position Measurement

When the injection current of a semiconductor laser is modulated, not only the laser
output power, but also the oscillation frequency of the laser, change in accordance
with the relation in (5.5). The same periodic undulation signal like in Fig. 11.2b or c

http://dx.doi.org/10.1007/978-3-642-30147-6_5


394 11 Metrology Based on Chaotic Semiconductor Lasers

SdS/dt

Fig. 11.7 Self-mixing signal for absolute distance measurement, obtained for a 0.8 mA current
modulation in a Fabry–Perot semiconductor laser. The pulses are the analogue derivative of the
laser output power, which corresponds the fringes to be counted for the distance measurement
[after Giuliani et al. (2002); © 2002 IOP]

is observed for the laser output under the condition of the C parameter of C ∼ 1
when a ramp signal is applied to the bias injection current of a semiconductor laser
at a fixed external mirror position. The period of the undulations is equal to c/2L .
For the measurement of the absolute position of a target (distance), a ramp signal,
which has a linear increase or decrease for the time development, is usually used.
By the ramp modulation, the oscillation frequency is also linearly changed. For a
change of the injection current, the wavelength of the laser oscillation varies as �λ,
then the change of the wavenumber �k is written by

�k = −2π
�λ

λ2 = 2π
�ν

c
(11.6)

where �ν is the frequency change due to the injection current variation. For the
reflecting mirror positioned at L from the laser facet, the change of the optical
phase in the self-mixing interferometer due to the modulation is �φ = �k · 2L .
The quantity of �φ/2π is the number of interferometric fringes occurring from the
wavelength variation �λ observed in the self-mixing interferometer, which is given
by the following relation:

�k · 2L

2π
= N + O(N ) (11.7)

Here, O(N ) represents the residual of fringe number, which corresponds to the
maximum error in the distance measurement. By counting the number of fringes,
one obtains the distance of the reflector from the laser facet, and the distance L is
given by

L = λ2

2�λ
N = c

2�ν
N (11.8)

Figure 11.7 shows the detected output power S of the laser swept by a ramp
signal (Giuliani et al. 2002). Looking more closely, the signal resembles stepwise
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variations of the output power, although the macroscopic change of the detected
signal shows a linear increase or decrease for the time development. This step-wise
change is induced by the selections of successive resonance external modes by the
variation of the bias injection current for the laser; thus the output power shows
not a smooth change but a step-wise change. The analogue derivative of the laser
output power dS/dt becomes a train of pulse-like signals, and this corresponds to the
fringe signals discussed before. Counting the number of fringes for the duration of
the ramp signal, we obtain the absolute distance with the relation in (11.8). The error
in this measurement is the quantization error of fringes and the error corresponds to
the maximum residual of the fringe counting in (11.7). Thus the maximum error is
given by c/2�ν. Mourat et al. (2000) conducted the distance measurement using the
self-mixing interferometer of a tunable multi-electrode DBR semiconductor laser
having continuous tunable range up to 375 GHz and attained the accuracy of the
measurement less than 0.5 mm for the distance of the order of meters. The accuracy
is quite coincident with the theoretical resolution of c/2�ν = 0.4 mm.

11.2.3 Angle Measurement

Self-mixing interferometry is also applied for small angle measurement. In the angle
measurement, coherence collapse states like in Fig. 11.2d is used (Giuliani et al.
2001). Figure 11.8 shows the experimental setup for small angle measurement in a
self-mixing semiconductor laser. An external mirror under to test is tilted with a small
angle θ0 for the optical axis. In the optical setup, the direction of the illuminating
light beam is changed by a reference mirror and the beam is directed to the reflector
under the test. The feedback level is in regime IV and the laser output power shows
coherence collapse states as shown in Fig. 11.2d when θ0 = 0. For a nonzero tilt
angle, the feedback strength from the reflected light decreases with the increase of
the tilt angle, but the reflected light is still fed back into the laser cavity and the tilt
is such a small angle. In the measurement, the reference mirror put into the optical
path is dithered with small amplitude of the tilt angle �θ . At the reference mirror
angle for compensating the reflector tilt θ0, the amount of the feedback light takes
the maximum value. When the tilt of the reference mirror is a periodic function with
time, the laser shows synchronous output with the modulation. However, the phase
of the detected periodic function differs from that of the modulation due to the initial
offset angle θ0. Figure 11.9 shows the experimental results of the laser outputs in the
angle measurement. In this figure, signal B corresponds to zero tilt of the external
mirror and the output power includes the second harmonic component due to rather
strong optical feedback. However, the initial phases of signals A and C are shifted
from that of the driving signal and the small angles are calculated from the phase
shifts. The tilt angle of the external mirror has a linear relation with the detected
phase shifts for a certain range of the tilt. In this technique, we need some calibration
for a particular setup of the experiment. We can perform a small tilt angle detection
on the order of 10−6–10−4 rad based on this technique.
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Fig. 11.8 Experimental setup
for angle measurement in a
self-mixing semiconductor
laser. The external mirror
under test is tilted with a
small angle θ0. The reference
mirror is dithered with a small
amplitude
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Fig. 11.9 Waveforms of
self-mixing laser outputs.
Upper trace: drive signal of a
reference mirror. Laser output
powers A: with negative tilt,
B: zero tilt, and C: positive tilt.
The frequency of the driving
signal is 180 Hz [after Giuliani
et al. (2001); © 2001 SPIE]

11.2.4 Measurement of the Linewidth Enhancement Factor

The linewidth enhancement factor α of a semiconductor laser is an important para-
meter for deciding its dynamical characteristics. As discussed in Chap. 3, the real
and imaginary parts of the complex susceptibility in semiconductor lasers are not
determined independently, but they have a certain relation. This fact gives rise to
the nonzero finite value of the linewidth enhancement factor. For most lasers such
as gas lasers, the value of the linewidth enhancement factor α is zero, while it has
a value around α = 3 − 7 in semiconductor lasers (see Sect. 3.3.3). As a result, the
linewidth of the laser oscillation is broadened by as much as several tens of MHz
to 100 MHz. On the other hand, for lasers with a linewidth enhancement factor of
α = 0, the linewidth is usually less than MHz as discussed in Chap. 3. There are
several methods to measure the factor (Okoshi et al. 1980). It is also measured by
analyzing the laser output power for a sinusoidal modulation of the external mir-
ror position in a self-mixing interferometer. For a certain range of optical feedback
strength of an external reflector, a periodic sawtooth-like wave is observed for the
change of the external cavity length in the laser output power. We can measure the
linewidth enhancement factor from jitters of the sawtooth-like waves.

We assume that the oscillation frequency of a semiconductor laser is ν = ν0 +δν,
where δν is the fluctuation of the laser oscillation. In the measurement of the linewidth

http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
http://dx.doi.org/10.1007/978-3-642-30147-6_3
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enhancement factor, the position of the external mirror is modulated by a sinusoidal
signal and the external mirror is vibrated with a small amplitude compatible with
the order of the optical wavelength. Using the modulation for the external mirror
position lm(t)with zero mean and putting the external cavity length L = L0 + lm(t),
the back-reflected field phase is given by

φ = 4π

c
νL = 4π

c
ν0 L + 4π

c
ν0lm(t)+ 4π

c
δνL (11.9)

The phase φ is a periodic function with period λ/2, but it is a statistical function due
to random fluctuation of δν.

On averaging the phase and its square and calculating the covariance, the statistical
root-mean-square (rms) phase related to the linewidth enhancement factor is given
by (Giuliani and Norgia 2000)

√

〈(�φ)2〉 =
√

〈φ2〉 − 〈φ〉2 = 4π

c
L0δν (11.10)

where δν is the average of the frequency fluctuations. The average δν is equal to the
laser linewidth�ν in (3.114), which gives the relation between the phase fluctuation
and the linewidth enhancement factor α. Figure 11.10 shows the experimental result
of jitter in the measurement of linewidth enhancement factor. Figure 11.10a shows
the driving signal for the position of the external mirror and the periodic output
power. Figure 11.10b shows the zoomed frame with the superposition of subsequent
single-sweep acquisitions of the self-mixing signal. The periodic signal contains
detailed structures and there is jitter in up- or down-edges of the sawtooth-like wave
in the laser output power. From the statistical average of the jitters, the relation
between the rms phase and the linewidth enhancement factor is calculated according
to (11.10). In the real experiment, the measurement is repeatedly conducted for
different absolute positions of the external mirror and the value of 4πδν0/c is obtained
as the proportional coefficient. The amount of feedback required to achieve the self-
mixing regime is moderate (i.e., around 10−6 in power), so that the optical feedback
little affects the linewidth of the laser oscillations and the linewidth measured under
the small perturbations remains almost the same value as the solitary oscillations.

The linewidth enhancement factor can also be obtained by the above same optical
system by calculating two-phase separations; one is the separation between a zero-
crossing phase of the approaching signal and the phase at the adjacent down-edge,
and the other is the separation between a zero-crossing phase of the leaving signal
and the phase at the adjacent up-edge. Form the comparison between the two-phase
values, the linewidth enhancement factor can be calculated either graphically or
numerically (Yu et al. 2004). The values of the linewidth enhancement factor from
2.2 to 4.9 are experimentally obtained for various different lasers with different
oscillation wavelength. The values of the linewidth enhancement factor measured
using the proposed technique are in good agreement with those obtained by using
the self-heterodyne method (Okoshi et al. 1980). It is finally noted that, as pointed

http://dx.doi.org/10.1007/978-3-642-30147-6_3
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Fig. 11.10 Measurement
of linewidth enhancement
factor. a Driving signal of
the external mirror position
(upper trace, 1 V/div cor-
responding to 1.43µm/div
target displacement) and
corresponding laser output
(lower trace, 1 ms/div time
scale) in self-mixing interfer-
ometer. b Zoomed frame of
superposition of subsequent
single-sweep acquisitions
of signal. The time scale of
20µs/div corresponds to the
phase variation of 0.5 rad/div
[after Giuliani and Norgia
(2000); © 2000 IEEE]

out in Sect. 8.7.2, self-mixing effects are suited for the measurement of the linewidth
enhancement factor in quantum-cascade semiconductor lasers for the lack of compact
and sensitive detectors in the THz band.

11.3 Self-Mixing Doppler Velocimetry

11.3.1 Velocity Measurement

For a continuous movement of an external reflector, the output power from the laser
by self-mixing exhibits a Doppler beat signal. The field rate equation for such a
continuous movement as a function of time t needs to be modified for practical
numerical simulations. Velocity measurement is considered as a continuous change
of the external mirror position, however, as discussed in the previous section, it
can be easily analyzed by the extension of the displacement measurement as the
first approximation. When the external mirror moves, the detected signal changes as
�S = �S0 cosωsτ in accordance with (11.3). The external cavity roundtrip time
τ is a time dependent function and is proportional to the external cavity length L .
Considering the angle θ of the motion for the optical axis, the round trip time τ is
written by (Bosch et al. 2001)

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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Fig. 11.11 Example of velocity measurements using self-mixing semiconductor laser. a Time-
domain self-mixing signal for velocity measurement on a rotating diffusing target. b FFT spectrum
of the signal. The Doppler beat frequency 1.46 MHz corresponds to a speed of 0.56 m/s [after
Giuliani et al. (2002); © 2002 IOP]

τ(t) = 2

c
(L0 ± vt cos θ) (11.11)

where v is the speed of the external mirror and L0 is the offset distance of the
reflector from the laser facet at t = 0. The signs of the velocity term account for the
direction of the motion; the plus sign is for the object moving away from the laser
and the minus sign is for moving toward the laser. The self-mixing in semiconductor
lasers is of the heterodyne detection and the term related to the velocity in (11.11)
corresponds to a Doppler shift component in the self-mixing (Groot and Gaillatin
1989; Shinohara et al. 1989; Aoshima and Ohtsubo 1992). As has already been
discussed in the displacement measurement, we can discriminate the direction of the
movement from the shape of waveforms of the self-mixing signal. Two-dimensional
velocity measurement is easily implemented by extending the 1D measurement.

Figure 11.11 shows an experimental self-mixing signal in time-domain from a
rough rotating disc with a small feedback fraction C < 1 (Giuliani et al. 2002). In
Fig. 11.11a, the self-mixing amplitude is strongly deformed by speckle modulation
compared with a flat reflecting surface. Therefore, it may be difficult to extract the
velocity information from the time signal by the fringe counting technique, as done in
the displacement measurement. However, the harmonic component corresponding to
the disc velocity is easily obtained from the Fourier spectrum as shown in Fig. 11.11b,
although the spectrum has a broadened peak due to the speckle effect. Using the
technique of the self-mixing in semiconductor lasers, velocity measurements ranging
from a rigid surface of ∼100 m/s to a slow blood flow of ∼mm/s have been performed
(Özdemir et al. 2000; Giuliani et al. 2002).
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11.3.2 Rigorous Rate Equations of Self-Mixing Doppler Effects

As mentioned in the previous subsection, the field equation in the presence of time-
dependent continuous change of the external mirror must be modified from (4.2) in a
static optical feedback case. As a first step to derive the rigorous equation of optical
feedback for a continuously moving reflector, we derive the form of the feedback
field in the presence of the Doppler effect. At the exit facet of the laser, the complex
field of the feedback light including optical frequency oscillations, Êfeedback(t), from
a moving reflector with a constant vector velocity v is given by the following equation
(Durst et al. 1976):

Êfeedback(t) = E(t − τ) exp[i(ki · ri + ks · rs)− iω0t] (11.12)

where ki and ks are the vector wavenumbers to and from the reflector at time t , ri , and
rs are the accompanying position vector coordinates, andω0 is the angular frequency
of the internal laser oscillation. The equation is for a single optical feedback and is
valid for a weak optical reflection. We apply the relations ri = r′

i + vt , rs = r′
s − vt ,

ki ≈ k′
i , ks ≈ k′

s , ks = −ki , rs = −ri , r′
s = −r′

i , and |ki | = |ks | = k = ω0/c,
where r′ and k′ correspond to respective variables at time t = 0. Then the complex
field is written as

Êfeedback(t) = E(t − τ) exp[iω0τ0 − i(ω0 − ωd)t] (11.13)

where τ0 is the offset round trip time of light τ0 = 2L0/c and ωd is the Doppler
shifted angular frequency ωd = 2πνd = 2ω0v/c. τ is the round trip time of light
scattered from the moving object and is written as

τ = ri − rs

c
= 2

c
(L0 + vt) (11.14)

Here, the expression is the same as (11.11), however, we assume that θ = 0 and the
plus or minus sign is included in the parameter v depending on whether the reflector
is approaching to or leaving from the front facet of the laser. Since the round trip
time τ is a function of time t , it is difficult to directly perform numerical calculations
simply applying the feedback field of (11.13) into (4.2).

Substituting (11.14) into (11.13), the delay field is explicitly written by

E(t − τ) = E

(

t − τ0 − 2v

c
t

)

= E[a(t − τ ′
0)] (11.15)

where a = 1 − 2v/c and τ ′
0 = τ0/a. Since the velocity of interest is much smaller

than the speed of light v � c and, thus, a is very close to unity, τ ′
0 is approximated

as

τ ′
0 ≈ τ0

(

1 + 2v

c

)

(11.16)

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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Therefore, the feedback field has a time scale, at, different from the original field
E(t). To adjust different time scales within the same differential equation, the method
of Mellin transform is effective. A function of t, E[(1 − ε)t] with a small value of
ε can be expanded as a non-scaled function E(t) by virtue of the Mellin transform
(Gradshteyn and Ryzhik 1980). Then the function E[(1 − ε)t] is approximated as

E[(1 − ε)t] ≈ E(x)− εt
dE(t)

dt
(11.17)

Note that the above equation looks like a simple approximation as a Taylor series
expansion. However, the result is not self-evident, since E[(1 − ε)t] is a function of
a scaled variable. Putting a = 1 − ε and replacing t as t − τ ′

0, the delay differential
field equation for Doppler self-mixing is finally given by (Ohtsubo et al. 2009):

dE(t)

dt
= 1

2
[(1 − iα)Gn[n(t)− nth]E(t)

+ κ

τin

[

E(t − τ ′
0)− 2v

c
(t − τ ′

0)
dE(t − τ ′

0)

dt

]

exp[i(ω0τ0 + ωd t)]
(11.18)

Using (11.18), we can perform numerical calculations not only for periodic beating
signal but also for chaotic oscillations in the presence of continuous time-dependent
external mirror movement. For the carrier density n, which is the counterpart variable
for calculating the dynamics in self-mixing semiconductor lasers, the same equation
as that for optical feedback from a fixed reflector can be used.

Figure 11.12 shows numerical examples of time series of Doppler shifted wave-
form. The offset position of the external reflector is L0 = 9 cm and the laser is
biased at J = 1.3Jth. The other parameter values used are almost the same as those
in Table 5.1. Therefore, the chaotic bifurcation diagram is the same as that in Fig. 5.7a
and the laser evolves into chaotic oscillations through like a Hopf bifurcation. As the
external reflectivity increases, the output power of the self-mixing semiconductor
laser shows sinusoidal oscillations in Fig. 11.12a and sawtooth-like periodic oscilla-
tions in Fig. 11.12b. The Doppler frequency is vd = 2.55 MHz (equivalent to a time
period of 391.5 ns). Over a certain breaking point, the laser becomes unstable and
oscillates with a burst-like waveform as shown in Fig. 11.12c. While Fig. 11.12c does
not show it clearly, the frequency of the periodic burst corresponds to the relaxation
oscillation. Even for such unstable oscillations, the Doppler frequency is still visible
in the waveform. In Fig. 11.12d, the main Doppler frequency is still preserved, but
the laser becomes less stable. If we replace the time scale with an external cavity
length, very similar waveforms as those shown in Fig. 11.12a, b are observed for sta-
tic optical feedback for a discrete change in the mirror position. However, different
dynamics are observed for a range of intermediate optical feedback ratios, which are
not observed for a static displacement. For moderate optical feedback, the periodicity
of the Doppler effect is barely detectable, as shown in Fig. 11.12e. However, with

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 11.12 Time series of Doppler-shifted waveform (photon number density) for variations of
external mirror reflectivities. a r = 0.000402, b r = 0.00161, c r = 0.00241, d r = 0.0109,
e r = 0.0153, f r = 0.0233. The offset position of the external reflector is L0 = 9 cm and the laser
is biased at J = 1.3Jth. The parameter values almost similar to those listed in Table 5.1 are used
for the numerical simulations

a further increase in the external reflectivity in Fig. 11.12f, the laser output shows
completely chaotic oscillation and no Doppler frequency component is observed in
the waveform.

11.4 Chaotic Lidar

For an optical remote sensing technology, LIDAR (Light Detection And Ranging, or
it is sometimes called Laser Rader), that can measure the distance or the properties
of a target, has been developed since 1970. In this technique, either short-pulses or
random pulse sequences modulated by microwave range is used as a source for illu-
minating a target. In the common short-pulse technique, the time of flight is measured
directly and the range resolution, which is determined by the pulse width, is typically
in the range of meters. As an alternative technique, pseudorandom code-modulated
CW lidar has been developed. In this technique, target detection and localization are
accomplished either by correlating the signal waveform reflected or backscattered
from the target with the time-delayed reference waveform or by interfering them opti-
cally with a Michelson interferometer, where the range resolution is determined by

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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Fig. 11.13 Schematic setup of chaotic lider. OI: optical isolator, HWP: half-wave plate, PBS:
polarization beam splitter, PD: photodetector

the bandwidth of the modulated waveform. Based on this technique, higher resolution
that measured by short-pulse light sources is attained up to 5 cm. Instead of random
modulation, chaotic lidar has been proposed (Lin and Liu 2004a,b). As discussed in
this book, chaos in semiconductor lasers exhibits very high-speed oscillations and
has very broad bandwidth with flat spectral profile in microwave region. Therefore, it
is very suited for a light source of lidar. Further, compared with conventional radars,
chaotic lidar has the advantages of very high-range resolution, unambiguous corre-
lation profile, possibility of secure detection, low probability of intercept, and high
electromagnetic compatibility. The needs of high-speed random-code generation and
modulation electronics no longer exist and the ambiguity caused by the limited length
of pseudorandom codes or a repeated waveform is also eliminated because a chaotic
waveform never repeats itself. One of promising applications similar to chaotic lidar
is a chaotic correlation optical time-domain reflectometer (CC-OTDR). Wang et al.
(2008) successfully demonstrated an OTDR for measuring the distribution of the
reflectivity along an optical fiber transmission line based on the chaotic correlation
technique by experiment. In the following, we will discuss the principle of chaotic
lidar and its performance.

Figure 11.13 shows a schematic setup of a chaotic lidar. The light source is a
high-speed chaotic semiconductor laser. Chaotic oscillations in semiconductor lasers
are generated by for examples, optical injection, optical feedback, or optoelectronic
feedback. An optical isolator is placed right after the chaotic laser to prevent unwanted
optical feedback. The chaotic output is split by a polarizing beam splitter into two
beams, one serving as the probe beam and the other as the reference. By rotating the
angle of the half-wave plate relative to the polarizing beam splitter, the power ratio
between these two beams can be adjusted. The probe beam is directed to the target,
and the signal light that is backscattered or reflected from the target. In a practical field
application, high power semiconductor laser is used as a light source and telescope
transmitter and receiver are used to transmit and detect chaotic signals. The signal
is collected and detected by a combination of lens and detector. The detection and
ranging are realized by correlating the signal waveform reflected back from the
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Fig. 11.14 a Numerical
example of autocorrelation for
a chaotic oscillation generated
by optical injection. b Peak
side-lobe level versus corre-
lation length. The solid line
is the regression. To generate
chaos in the semiconductor
laser, optical injection is used.
The injection strength is 0.046
(amplitude) and the frequency
detuning between the injected
and slave lasers is 0 GHz [after
Lin and Liu (2004a); © 2004
IEEE]
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target with a delayed reference waveform. The performance of the lidar is mainly
determined by the generated chaotic state. To have a δ-function-like correlation
trace that has a highest possible resolution and lowest possible detection ambiguity,
chaotic lidar should be operated in a state that its chaotic waveform has similar
properties to those of white noise, such as a flat, smooth, and broad spectrum more
than 10 GHz, and a noise-like time series. Chaotic lidar has a much higher range
resolution benefiting from the broad bandwidth of the optical chaos. Indeed, due to
the very broad bandwidth of the chaotic waveform that can be easily generated by a
semiconductor laser, a centimeter-range resolution is readily achieved.

Figure 11.14a shows a numerical example of autocorrelation traces of the time
series of generated chaotic light with a correlation length of 200 ns (Lin and Liu
2004a). The chaotic oscillations generated by optical injection to a semiconductor
laser with the injection strength of 0.046 in amplitude and the frequency detuning
of 0 GHz between the master and slave lasers at the bias injection current of 2Jth.
The laser has a free-running relaxation frequency of 12 GHz at this bias injection
current. A narrow correlation spike without any apparent side-lobe is visible and its
full-width at half-maximum (FWHM) of the spike, namely, the range resolution, is
0.9 cm, which is much higher than the resolution of a conventional radar. To quantify
the performance in a radar system, the peak side-lobe level (PSL) is frequently used.
Peak side-lobe level is defined as the ratio of the maximum side-lobe to the peak;
it is associated with the probability of a false signal in a particular range bin due to
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Fig. 11.15 Cross-correlation
traces of a target moving about
50 cm in the line of sight [after
Lin and Liu (2004b); © 2004
IEEE]
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the presence of a target in a neighboring range bin. The peak side-lobe level for the
chaotic signal is shown for the correlation length in Fig. 11.14b. The peak side-lobe
level for the chaotic signal shows a better correlation performance than those of any
other lidar systems. Thus, the chaotic waveform generated by an optically injected
semiconductor has superior characteristics for radar applications without the need
of any sophisticated microwave circuit.

To demonstrate the feasibility of chaotic lidar, a laboratory experiments were
carried out (Lin and Liu 2004b). Figure 11.15 shows the result of cross-correlation
obtained by a target moving about 50 cm in the line of sight. The laser used is a single-
mode distributed feedback InGaAsP/InP semiconductor laser with a wavelength of
1.3µm. Chaotic oscillations are generated by optical injection under appropriate
conditions of the optical injection and the frequency detuning, and the bandwidth of
the chaotic signal is measured to be more than 15 GHz. The target mirror is arranged
at about 2 m away from the chaotic lidar system on a translation stage. A set of signal
and reference waveforms are first obtained and the cross-correlation trace of them
is plotted in Fig. 11.15 (the curve corresponds to a correlation peak at 2.1 ns). By
translating the mirror about 50 cm away in the line of sight, a second set of signal
and reference waveforms are obtained, and their cross-correlation trace is plotted
(the curve corresponds to a correlation peak at 5.4 ns). In both cases, the correlation
lengths are 2µs. From the separation between the correlation peaks, the relative range
difference is measured to be 49.5 cm showing a sub-centimeter accuracy in ranging.
A 3-cm range resolution is achieved with a 0.2-ns FWHM of the cross-correlation
peak. However, the resolution is not the limitation for the essential system but the
limitation for the equipment used in the experiment. The peak side-lobe level is
calculated to be 27 dB and the signal-to-noise ratio of 27.5 dB is obtained in this
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Fig. 11.16 Model of
Twyman-Green active feed-
back interferometer. The
fringe of the interferome-
ter output is detected by a
photodetector (PD) through a
pinhole smaller than the fringe
spacing
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experiment. The chaotic lidar system has an excellent performance in correlation
such that target detection can be done unambiguously with a very high resolution.

11.5 Active Feedback Interferometer and Applications

11.5.1 Stability and Bistability in Active
Feedback Interferometer

Another type of feedback interferometer is a system of a two-arm interferometer with
optoelectronic feedback. Here, we discuss the feedback of the interference light to
the bias injection current of a semiconductor laser. Such a system is considered as a
kind of filtered feedback systems discussed in Sect. 4.7. For example, in a Twyman-
Green interferometer, the optoelectronic feedback technique is applied to stabilize the
fringe of the interferometer output from disturbances such as mechanical vibrations.
Such a system opens wide applications for the fringe analysis and measurements of
laser interferometer under various circumstances of the atmosphere (Yoshino et al.
1987). Figure 11.16 is an example of laser interferometers with optoelectronic feed-
back. The interferometer output is detected by a photodetector through a small pin-
hole. The diameter of the pinhole is assumed to be much smaller than the fringe
spacing. The detected photocurrent is fed back to the bias injection current of the
light source of the semiconductor laser. The principle of the stabilization of the
interferometer is as follows; the detected optical power deviates when the fringe is
disturbed by the external perturbation. Then, the detected photocurrent changes and
the injection current to the laser is modulated. The change of the laser output power
induces the optical frequency change so as to compensate and cancel the fluctuations
of the fringe intensity at the detection point. The variation of the optical frequency is
at most several GHz in ordinary feedback interferometers. We can ignore the effect
of disturbance by the optical frequency change on the accuracy of the interferometric
measurement, since the ratio of the change to the center optical frequency is only
less than 10−5. However, care must be taken with respect to the feedback strength.

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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In this active interferometer, stability, multistability, and chaos appear in the laser
output depending on the feedback strength and the response time of the feedback
loop. In the following, we discuss the principle and behaviors of the active feedback
interferometer, and applications for chaos control and signal generations.

We have investigated the effects of optoelectronic feedback in semiconductor
lasers in Chap. 7. A similar treatment can be applied to the active interferometer, but
the feedback signal is an interference fringe. The rate equations we use are

dS(t)

dt
= Gn{n(t)− nth}S(t)+ Rsp (11.19)

dn(t)

dt
= 1

ed
{J − ξ x(t)} − n(t)

τs
− Gn{n(t)− n0}S(t) (11.20)

where x(t) is the term of optoelectronic feedback. As discussed in Chap. 7, the
electronic feedback circuit usually has a finite time response and the variable x(t)
follows a differential equation similar to (7.8). Here, we write the response of the
feedback term as follows:

τi
dx(t)

dt
= −x(t)+ J f (t)

ξ
(11.21)

where τi is again the response time of the electric circuit and J f is the feedback
current to the bias injection current. x(t) is the variable of the feedback and it corre-
sponds to the photon number as a physical quantity. Therefore, ξ is the conversion
efficiency from the current density to the photon number. The feedback current of the
active interferometer is easily calculated as (Ohtsubo and Liu 1990; Liu and Ohtsubo
1992a,b)

J f (t) = ξ xb − G Aξ x(t)[1 + b cos{κi x(t)− φ0}] (11.22)

where xb is the reference signal in the feedback circuit and G A is the gain of
the circuit. The cosine term on the right-hand side of (11.22) denotes the fringe
in the interferometer output and b is the visibility of the fringe. φ0 is an offset phase
in the interferometer. The laser frequency is changed by the feedback current. The
cosine term in (11.22) is the effect of the frequency change. Using the optical fre-
quency ν0 without feedback, the frequency ν(t) in the presence of feedback is written
by ν(t) = ν0 − β f x(t). Then, the argument of the cosine function reads

− κi x(t)+ φ0 = −4πDiν(t)

c
= −4πDiβ f

c
x(t)+ 4πDiν0

c
(11.23)

where Di is the difference of the interferometer arms and β f is the conversion
efficiency from the photon number to the oscillation frequency in the semiconductor
laser.

http://dx.doi.org/10.1007/978-3-642-30147-6_7
http://dx.doi.org/10.1007/978-3-642-30147-6_7
http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 11.17 Bifurcation diagram of laser output in active delay feedback interferometer for change
of bias injection current. The parameters are G A = 0.05, κi = 32π , and φ0 = 0

If the responses of the electronic circuits and the laser are much faster than the
time-varying external disturbances for the interferometer, only (11.22) is sufficient to
describe the system characteristics of the active interferometer. We here discuss the
stability and instability of the system when the response time of the feedback circuit
is fast enough, τi ∼ 0. Indeed, possible mechanical vibrations for the interferometer
are less than 1 kHz. Therefore, solutions of stability, bistability, and multistability of
the laser output are investigated from the crossing points for the graph of y = x(t)
and y = J f (t) in (11.22). When the disturbance for the interferometer is small
enough, we can obtain a stable solution of the interferometer. In this active inter-
ferometer, the configuration of the imbalance interferometer is essential, since the
feedback signal depends on the difference according to (11.23). The interferometer
is always stabilized at a certain fringe pattern as far as the deviation or distortion of
the fringe pattern by the disturbance is smaller than the fringe separation. Thus, we
can attain robust interferometric measurement under unfavorable conditions of dis-
turbances and the fringe analysis is performed under such severe conditions. When
the disturbance is large enough with exceeding the fringe spacing, multi-stable states
appear in the laser output and hops of the optical frequency through the feedback are
induced. This gives rise to chaotic behaviors in the laser output (Ohtsubo and Liu
1990; Liu 1994). The technique of the active interferometer cannot be applied for
the phase scanning interferometer, since the phase shift of the fringe is an essential
technique in the phase scanning interferometry.

The active interferometer shows rich varieties of dynamics when the feedback
circuit has a time delay. By the introduction of the delay, the system exhibits stability,
instability, and chaotic states depending on the feedback delay and ratio. We here
consider the following modified equation for (11.23) for the delayed system (Liu and
Ohtsubo 1992a,b):
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Fig. 11.19 OPF control for chaotic oscillations in an active delay feedback interferometer

J f (t) = ξ xb − G Aξ x(t − τe)[1 + b cos{κi x(t − τe)− φ0}] (11.24)

where τe is the delay time in the feedback circuit. Figure 11.17 shows the calculated
bifurcation diagram of the laser output for the change of the reference signal (the bias
injection current). The bifurcation diagram is obtained by assuming the difference
equation described by (11.24) instead of solving the continuous rate equations. The
laser output clearly shows typical chaotic evolution via period doubling bifurcation.
Figure 11.18 shows experimentally obtained waveforms in the active interferometer
for the change of reference signal level. With increasing the reference signal level,
the laser output evolves from a periodic oscillation into chaotic states. The period 2T
of the period-1 oscillation in Fig. 11.17a is about 2T = 0.22 ms and it is almost equal
twice the delay time of the circuit of τe = 0.10 ms. The difference of time T − τe =
0.01 ms is equal to the intrinsic delay τi of the whole circuit except for the extra delay
circuit. In this chaotic system, we can easily design periodic orbits by appropriately
choosing the system parameters and generate arbitrary waveform sequences in the
laser output prior to chaotic states. These higher harmonic oscillations are used for the
applications of chaotic associative memory (Liu and Ohtsubo 1992b, 1993, 1994b).
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Fig. 11.20 Experimental
results of chaos control in
an active delay feedback
interferometer. a Chaotic
oscillation without control.
b 11th harmonics of fun-
damental period-1 orbit
with control (synchronous
frequency is 2.64 kHz). c
7th harmonic oscillation of
fundamental period-1 orbit
with control (synchronous
frequency is 5.04 kHz).
The delay time of the
circuit is τe = 2.0 ms.
Upper trace of each figure
is the control signal g(t) (arbi-
trary amplitude) and lower
trace is the controlled wave-
form x(t)
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11.5.2 Chaos Control in Active Feedback Interferometers

Chaotic oscillations in active delayed feedback interferometers can be also controlled
to periodic or fixed states based on the chaos control method. In this subsection, we
describe chaos control in the active interferometer by the occasional proportional
feedback (OPF) method. The active feedback interferometer was originally designed
for the isolation of rather slow response mechanical vibrations. Therefore, the system
is very suited of the OPF technique (Liu and Ohtsubo 1994a,b). We employ the OPF
control system discussed in Fig. 9.3. Figure 11.19 shows the schematic diagram for

http://dx.doi.org/10.1007/978-3-642-30147-6_9
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the OPF control in the active interferometer. From the detected output power from
PD1, an appropriate sampling control signal is generated in the OPF control circuit
with a synchronous signal (Sync Signal) and the control signal with a small amplitude
is overlapped into photodetector PD2 for the fringe detection as a small perturbation.
After successful control, the chaotic output of a laser oscillation is fixed to a periodic
state.

Figure 11.20 is the experimental result of the OPF control. The delay time of the
circuit is τe = 2.0 ms. Under the experimental condition, the laser exhibits chaotic
oscillation as shown in Fig. 11.20a. The typical frequency of the chaotic signal is
0.24 kHz and it is almost equal to the sum of the times τi and τe. For the frequency
of the synchronous signal in the control circuit of 2.64 kHz, the system is controlled
to a periodic state. In Fig. 11.20b, the controlled waveform is the 11th harmonics
of the fundamental period-1 orbit. On the other hand, the laser is controlled to the
7th harmonics of the fundamental period-1 orbit for the synchronous frequency of
5.04 kHz in Fig. 11.20c. The corresponding sampling frequency used as a control
signal g(t) is 21 multiples of the fundamental frequency. In delay differential systems,
we can design and generate arbitrary multi-valued waveforms (isomer signals) of
higher periodic orders for the fundamental periodic oscillation by adding extra control
circuits to the systems (Liu and Ohtsubo 1991; Liu et al. 1994). In this example, the
control signal is a very small perturbation to the chaotic oscillation and its amplitude
is less than 3 % of the bias injection current. Therefore, the OPF control applied
here is approximately considered as a category of chaos control in the meaning of
the OGY algorithm. In the OGY method, the control signal is eliminated after the
success of the control, but the control signal is continuously lasting with the same
level. In the OPF method, the system must be always pushed by the control signal to
fix a certain attractor of unstable periodic orbit.
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Chapter 12
Chaos Synchronization in Semiconductor Lasers

Another important application of chaotic semiconductor lasers is chaotic secure
communications. The key to chaotic communications is chaos synchronization
between two nonlinear systems. If two nonlinear chaotic systems operate indepen-
dently, the two systems never show the same output because of the sensitivity of
chaos for the initial conditions. However, when a small portion of a chaotic output
from one nonlinear system is sent to the other, the two systems synchronize with each
other and show the same output under certain conditions of the system parameters.
This scheme is called chaos synchronization. It is very surprising that two chaotic
systems share the same waveform, since chaos is sensitive to the initial conditions
and its future is unpredictable. In this chapter, we overview chaos synchronization in
chaotic semiconductor laser systems for the introduction of the secure chaos com-
munications discussed in Chap. 13.

12.1 Concept of Chaos Synchronization

12.1.1 Chaos Synchronization

We cannot expect the same chaotic oscillation for two nonlinear systems even when
they are the same configuration having the same parameter values, because chaos
has strict sensitivity to the initial conditions of the parameters. For example, two
chaotic systems with the same parameters may at first output similar signals when
the difference between the initial conditions is small enough in the ordinary sense.
Then, the two signals show a small difference with lapse of time and, then, the
difference rapidly increases for further time development. Finally, the two systems
behave in a completely different manner in as far as the difference between the initial
conditions is not zero. However, there is a possibility of showing the same output
in two nonlinear systems if the two systems possess a common subsystem with the
same parameter values, otherwise if a small amount of the signal from one of the
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Fig. 12.1 General idea of
chaos synchronization of
a one-to-one transmitter–
receiver system
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two systems is transmitted to the other. Under this condition, the systems output
completely the same chaotic signal. The scheme is called “chaos synchronization.”

The idea of chaos synchronization between two nonlinear systems was proposed
by Pecora and Carroll in 1990 (Pecora and Carroll 1990, 1991). They used a Lorenz
system with three variables for the demonstration. In their system, an output from
one of the variables as a subsystem in a transmitter was sent to a receiver. Then,
they showed chaotic synchronization between the transmitter and receiver systems.
After their proposal, synchronization phenomena in various chaotic systems includ-
ing lasers have been reported. The idea and principle of chaos synchronization are
described in Appendix A.4. Chaos synchronization between two nonlinear systems
is not self-evident and this is a real surprise, since we cannot expect the same output
even for the same two chaotic systems as far as the two systems are isolated from each
other. The origin of chaos synchronization has not been fully understood yet and the
theoretical background has not been established. However, chaos synchronization has
been observed by numerical simulations and experiments in various nonlinear sys-
tems. In laser systems, synchronization of chaos was experimentally demonstrated in
CO2 lasers (Sugawara et al. 1994) and solid-state lasers (Roy and Thornburg 1994).
After that, many theoretical and experimental researches for chaos synchronization
in various laser systems including semiconductor lasers were published.

Here, we show the general idea of chaos synchronization. Figure 12.1 is a one-
to-one system of chaos synchronization. The receiver of chaotic system 2 consists of
the same configuration as chaotic transmitter system 1 and also has the same device
characteristics as those of system 1. A small portion of the transmitter output is sent
to the receiver. In Fig. 12.1a, the transmitter signal is unidirectionally coupled to the
receiver and the chaotic output from the receiver synchronizes with the transmitter
under an appropriate condition. In laser systems, an optical isolator is usually used to
realize unidirectional coupling and the laser output from the transmitter is optically
injected to the receiver laser. As a matter of fact, transmitter and receiver lasers
may not be the same types as chaotic light sources, or even the transmitter may
not be the same kind of laser as the receiver laser. As far as the transmitter can
simulate and transmit a possible chaotic waveform of the receiver laser with the same
optical frequency, successful chaos synchronization can be achieved. Indeed, a virtual
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Fig. 12.2 Multiple transmitter–receiver systems of chaos synchronization

chaotic waveform numerically simulated by a computer is also used as a transmitter
signal to a real receiver laser for chaos synchronization. Chaos synchronization is
realized for a negative value of the maximum conditional Lyapunov exponent for
the difference between the transmitter and receiver signals. Figure 12.1b is a chaos
synchronization system of the mutual coupling of signals. Unidirectional systems
are mainly used for secure chaotic data communications, however, we can perform
simultaneous data transmissions using mutual coupling systems and the properties
of those systems have been studied as a chaos synchronization scheme.

Chaos synchronization is attained not only in one-to-one transmitter–receiver sys-
tems but also in the multiple transmitter–receiver systems shown in Fig. 12.2. In this
system, all the transmitters and receivers may be the same system, but each transmit-
ter laser exhibits different chaotic output from the others. In this case, the parameter
values for each pair of the transmitter and receiver systems must be the same and
they become the key for chaos synchronization. Otherwise, a transmitter is a different
system from each other and one of the receivers may play a counterpart to the trans-
mitter. Chaotic signals from the transmitters are sent through a single transmission
line and broadcasted to each receiver. In the receiver systems, each chaotic sig-
nal from the transmitters only synchronizes with the corresponding receiver having
the same system and device characteristics. Indeed, chaos synchronization has been
demonstrated in a few of multiple transmitter–receiver systems (Liu and Davis 2000).
Other examples are one-to-many and many-to-one optical chaos synchronization and
communication systems (Zhang et al. 2008). They numerically demonstrated chaos
synchronization in such systems and successfully recovered original messages both
for one-to-many and many-to-one systems.

In the proposal of chaos synchronization by Pecora and Carroll, the system is
divided into two subsystems. In their model, the transmitter has two subsystems,
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while the receiver has only one of the two subsystems (for details, the reader is
referred to Appendix A.4). The chaotic signal from one of the subsystems is trans-
mitted to the receiver. Then, the receiver conforms the complete chaotic system
by the signal transmission and the receiver synchronizes with the transmitter under
an appropriate condition of the parameters. The idea of chaos synchronization was
immediately applied in real electronic circuit systems after the proposal by Pecora and
Carroll (Cuomo et al. 1993). However, the method is not straightforwardly applicable
to laser systems, since we cannot divide the dynamics of laser variables into subsys-
tems.

Chaos synchronization strategies developed for most nonlinear systems, such as
nonlinear circuits, cannot be directly implemented on semiconductor lasers because
of a number of significant differences between semiconductor lasers and other non-
linear dynamical systems. The differences are as follows:

1. A semiconductor laser is an integrated entity that cannot be easily decomposed
into subsystems.

2. For a given laser, it is not possible to arbitrarily adjust its intrinsic dynamical
parameters and they can be only varied through their linear dependence on the
laser power by varying the bias point of the laser.

3. One of its dynamical variables, the carrier density, is not directly accessible exter-
nally and, therefore, cannot be used to couple the transmitter and receiver lasers
for synchronization.

4. When the output laser field of the transmitter laser is transmitted and coupled to
the receiver laser, both its magnitude and phase are transmitted and coupled. It is
not possible to only transmit and couple the magnitude but not the phase, or only
the phase but not the magnitude.

By using a driving signal to link two chaotic systems, synchronization can be
achieved if the difference between the outputs of the two systems possesses a stable
fixed point with zero value. As an alternative technique in laser systems, the differ-
ence between certain variables in transmitter and receiver lasers can be used as con-
trol parameters for synchronization (Annovazzi-Lodi et al. 1996). In semiconductor
lasers, master–slave configurations are frequently used as chaos synchronization sys-
tems suitable for chaotic secure communications. The schemes of optical feedback,
optical injection, and optoelectronic feedback are used as typical chaotic generators
in semiconductor lasers. Chaos synchronization in particular systems is discussed
in the subsequent sections in this chapter. They are mostly numerical demonstra-
tions of chaos synchronization, however, several experimental results have been
reported.

12.1.2 Generalized and Complete Chaos Synchronization

There are two different origins of chaos synchronization in nonlinear delay dif-
ferential systems, such as in semiconductor laser systems of optical feedback
and optoelectronic feedback. One is synchronization of chaotic signals based on
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optical injection phenomena. The other is complete chaos synchronization in which
the two systems can be written by a set of the identical rate equations in a mathemat-
ical sense. We will discuss the two synchronization schemes in this section. In the
ordinary sense, chaos synchronization occurs immediately after a receiver receives
a chaotic signal from a transmitter when the transmitter and receiver are divided into
several subsystems (see Appendix A.4). In this case, the time lag of the signal in the
receiver system is defined by time τc, which is the transmission time of signal from
the transmitter to the receiver. Namely, using the chaotic signals y(t) and y′(t) from
the transmitter and receiver systems, respectively, the relation

y′(t) = K py(t − τc) (12.1)

is obtained (Ohtsubo 2002a). In (12.1), K p is the proportional coefficient, and y and
y′ are essentially vector variables. In laser systems, this type of chaos synchroniza-
tion is achieved by optical injection locking and amplification of signals from the
transmitter to the receiver. This is the well-known phenomenon of injection locking
in laser systems. The receiver output is usually an amplified signal of the transmitted
signal (the gain is not necessary larger than unity). Therefore, an excellent synchro-
nized waveform is obtained in the receiver system when the amplification is faithfully
achieved. However, distortions are usually introduced to the injection-locked wave-
forms and the correlation between the transmitter and receiver outputs is less than
unity. This scheme is called generalized synchronization.

On the other hand, there exists a different scheme of chaos synchronization from
the generalized one in delay differential systems. We assume a system like a delay
differential system such as optical feedback or optoelectronic feedback in a semi-
conductor laser. The differential equation in the transmitter output y(t) is described
by

dy(t)
dt

= f (y(t),µp)+ κp0y(t − τ) (12.2)

where µp is the vector of chaos parameters, κp0 is the feedback coefficient in the
system, τ is the delay time, and f is the nonlinear function describing the delay
differential system. Assuming that a small portion of the transmitter signal is sent to
the receiver, the receiver equation is written by

dy′(t)
dt

= f (y′(t),µp)+ κp1y′(t − τ)+ κp2y(t − τc) (12.3)

where κp1 is the feedback coefficient in the receiver system, κp2 is the coupling
coefficient between the transmitter and the receiver, τc is again the transmission time
of the signal from the transmitter to the receiver. From a comparison between (12.2)
and (12.3), we obtain the condition for the equivalent forms of the two differential
equations as

y′(t) = y(t −�τ) (12.4)



420 12 Chaos Synchronization in Semiconductor Lasers

Fig. 12.3 Time lag between
transmitter and receiver
waveforms in chaos syn-
chronization. Time lags a in
generalized chaos synchro-
nization and b in complete
chaos synchronization. τc is
the transmission time of the
signal from the transmitter
to the receiver and τ is the
optical feedback time in the
transmitter and receiver sys-
tems
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�t = τc − τ (12.5)

κp0 = κp1 + κp2 (12.6)

Under the above conditions, the receiver system is mathematically described by the
equivalent equation such as that of the transmitter system and the receiver generates
completely the same output as the transmitter (not an amplified signal but a complete
copy of the transmitter signal), since the two systems posses the same seeding signal
through the coupling. Therefore, the synchronization scheme is called complete chaos
synchronization and it is distinguished from generalized synchronization of chaotic
oscillations. The above examples are of chaos synchronization for unidirectionally
coupled nonlinear systems. However, we can consider mutually coupled systems for
chaos synchronization. In that case, there are also two types of chaos synchronization,
i.e., generalized and complete schemes. We will discuss chaos synchronization in
mutually coupled laser systems later in this chapter.
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The difference between the complete and generalized synchronization is clear
from (12.1) and (12.4) and the scheme of chaos synchronization in a particular sys-
tem is easily distinguished by investigating the time lag between the transmitter and
receiver outputs. Figure 12.3 shows the relations of time lags in the two schemes. The
receiver outputs a synchronized waveform immediately after it receives the transmit-
ter signal in generalized chaos synchronization in Fig. 12.3a. Therefore, the time lag
between the two outputs is τc. On the other hand, a synchronous chaotic signal in the
receiver is generated in advance to receiving the transmitter signal for complete chaos
synchronization as shown in Fig. 12.3b. The time lag�τ in the complete chaos syn-
chronization is less than the signal transmission between the transmitter and receiver
systems. Complete chaos synchronization is sometimes called anticipating chaos
synchronization due to its origin (Masoller 2001). However, it has been proved that
anticipating chaos synchronization is not a unique phenomenon in delay differen-
tial systems, but also it is universally observed in differential systems. Indeed, Voss
(2000) demonstrated anticipating chaos synchronization in a Rössler system that is
described by a set of simple differential equations. Further, it is proved that antici-
pating chaos synchronization is not equivalent to complete chaos synchronization.
Kusumoto and Ohtsubo (2003) observed anticipating chaos synchronization based
on the injection-locking phenomenon in semiconductor lasers with optical feedback.
The investigation of chaos synchronization for the mathematical and physical back-
grounds is still undergoing and many subjects are left for future study.

12.2 Theory of Chaos Synchronization in Semiconductor
Lasers with Optical Feedback

12.2.1 Model of Synchronization Systems

There are two schemes of chaos synchronization in delay differential systems. A
semiconductor laser subjected to optical feedback is a delay differential system and
different dynamics like the Lorenz system are observed (see Appendix A.4). The
systems of semiconductor lasers with optical feedback have been frequently used
for chaotic generators in chaos synchronization and numerous reports have been
published (Ohtsubo 2002b; Uchida et al. 2005 and the references therein). In the
following, detailed explanations of synchronization in chaotic semiconductor lasers
subjected to optical feedback are given. Examples for some other systems will be
presented later.

In laser systems, a small portion of the output from one of variables (usually
the laser output power or the complex field) is sent to the receiver laser instead
of sharing common variables. Chaos synchronization is very sensitive to parameter
mismatches between the transmitter and receiver systems. For example, even for
semiconductor lasers coming from the same wafer, we cannot expect exactly the
same oscillation frequencies for the transmitter and receiver lasers under the same
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Fig. 12.4 Schematic diagram
of chaos synchronization sys-
tems in semiconductor lasers
with optical feedback. a Sym-
metric unidirectional coupling
system, b asymmetric uni-
directional coupling system,
and c mutual coupling system.
LD T: transmitter laser, LD R:
receiver laser
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bias injection current. That is in itself a reason why chaos synchronization is difficult
to achieve in laser systems. However, laser frequency is easily tuned by changing the
bias injection current and a slave laser frequency can be locked to a master laser by
optical injection within a certain range of the frequency detuning. Therefore, we can
achieve robust chaos synchronization using the frequency-pulling effect by carefully
choosing the parameter conditions.

Chaos synchronization is achieved not only in a master–slave configuration of
transmitter and receiver systems but also in a mutual coupling system (Fujino and
Ohtsubo 2001; Heil et al. 2001). We can see complicated dynamics in mutual cou-
pling systems compared with those in unidirectionally coupled systems. A few stud-
ies have been reported for chaos synchronization in mutual coupling systems and
the study is still undergoing. We can still apply mutual coupling systems to chaotic
secure communications, but some modifications of data transfers between transmit-
ter and receiver lasers from that of unidirectional systems are necessary. The topic is
treated in Chap. 13. As other applications of mutually coupled systems, they are used
for phase locking and control of laser arrays (Winful and Rahman 1990; Sauer and
Kaiser 1998; Garcia-Ojalvo et al. 1999). Chaos synchronization has been extensively
studied in class B lasers and many experimental results have been reported. The semi-
conductor laser with optical feedback is the excellent model of chaos synchronization
both for the theoretical and experimental studies.

http://dx.doi.org/10.1007/978-3-642-30147-6_13
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We here discuss systems for chaos synchronization in semiconductor lasers with
optical feedback (Ohtsubo 2002a). Figure 12.4 schematically shows the chaos syn-
chronization systems. Figure 12.4a shows a unidirectional coupling system in which
the receiver laser is isolated from the transmitter laser by an optical isolator. Both the
transmitter and receiver systems have optical feedback loops and this configuration
is called a closed-loop system. In Fig. 12.4b, the system is also a unidirectional cou-
pling, but the receiver system does not have a feedback loop. This asymmetric system
is called an open-loop system. The robustness and accuracy of chaos synchronization
in the open-loop system are quite different from those in the closed-loop system. In
chaos synchronization, the transmitter must output a chaotic signal. However, the
receiver systems may or may not be chaotic without receiving the transmitter signal.
Chaos synchronization is achieved by an injection of a chaotic signal. As a matter of
fact, Fig. 12.4b shows a special case of Fig. 12.4a. Indeed, the system in Fig. 12.4a
reduces to the system in Fig. 12.4b, when we put the reflectivity of the external
reflector equal to zero. We mostly discuss chaos synchronization for the closed-loop
configuration of Fig. 12.4a, but the open-loop system is implicitly included in the
discussion. Figure 12.4c is a mutual coupling system. Here, the isolator in Fig. 12.4a
is removed. Then, each laser behaves as a transmitter and a receiver. In this system,
each laser outputs different chaotic signals or steady-state signals before coupling.
After the coupling, the two lasers output the same chaotic signal. In mutual coupling
systems, chaotic oscillations, and chaos synchronization are also possible without
the use of external mirrors. Namely, chaotic oscillations both for transmitter and
receiver lasers can be attained when the two lasers directly couple with each other
and one of the lasers plays a kind of a role for external mirror to the counterpart
laser. Also an open-loop system is another option for mutual coupling configuration.
There are also two synchronization schemes (complete and generalized schemes) in
the mutual coupling case.

12.2.2 Rate Equations in Unidirectional Coupling Systems

In this section, we investigate the theoretical treatment for chaos synchronization in
the unidirectional coupling closed-loop system shown in Fig. 12.4a. The rate equa-
tions for the transmitter and receiver lasers are written by the same equations as
those for the model discussed in Chap. 4 except for the light transmission term in the
receiver rate equations (Ahlers et al. 1998). The rate equations for the transmitter
laser are written by

dAT(t)

dt
= 1

2
Gn,T{nT(t)− nth,T}AT(t)+ κT

τin,T
AT(t − τT) cos θT(t) (12.7)

dφT(t)

dt
= 1

2
αTGn,T{nm(t)− nth,T} − κT

τin,T

AT(t − τT)

AT(t)
sin θPT(t) (12.8)

http://dx.doi.org/10.1007/978-3-642-30147-6_4
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dnT(t)

dt
= JT

ed
− nT(t)

τs,T
− Gn,T{nT(t)− n0,T}A2

T(t) (12.9)

θT(t) = ω0,Tτ + φT(t)− φT(t − τT) (12.10)

where subscript T represents the transmitter laser. The rate equations for the receiver
laser read

dAR(t)

dt
= 1

2
Gn,R{nR(t)− nth,R}AR(t)

+ κR

τin,R
AR(t − τR) cos θR(t)+ κcp

τin,R
AT(t − τc) cos ξc(t) (12.11)

dφR(t)

dt
= 1

2
αRGn,R{nR(t)− nth,R} − κR

τin,R

AR(t − τR)

AR(t)
sin θR(t)

− κcp

τin,R

AT (t − τc)

AR(t)
sin ξc(t) (12.12)

dnR(t)

dt
= JR

ed
− nR(t)

τs,R
− Gn,R{nR(t)− n0,R}E2

R(t) (12.13)

θR(t) = ω0,Rτ + φR(t)− φR(t − τR) (12.14)

ξc(t) = ω0,Tτc + φR(t)− φT(t − τc)+�ωt (12.15)

where subscript R denotes the receiver lasers, κcp is the injection rate from the
transmitter to the receiver laser, and �ω is the angular frequency detuning. The last
terms in (12.11) and (12.12) are the effect of the chaotic signal from the transmitter.
When the external feedback is zero in the receiver system, i.e., κR = 0, the model
reduces to the open-loop system in Fig. 12.4b.

12.2.3 Generalized Chaos Synchronization

One of the origins of chaos synchronization in a semiconductor laser with optical
feedback is the injection-locking and amplification phenomenon in a system modeled
by delay differential equations. The condition for complete chaos synchronization,
which is discussed in the next subsection, is very strict and most cases of chaos
synchronization observed in lasers are based on the injection-locking and amplifica-
tion phenomenon. Therefore, experimental results of chaos synchronization in laser
systems were mostly for generalized chaos synchronization. We here consider the
condition for the generalized chaos synchronization in a system of a semiconduc-
tor laser with optical feedback. For generalized chaos synchronization, the average
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optical power injected to the receiver laser is large, as much as several tens of percent
in amplitude (several percent in intensity), while it is much less than several percents
for the case of complete chaos synchronization. In generalized chaos synchroniza-
tion, the relation between the field amplitudes for the transmitter and receiver lasers
is given by

AR(t) ∝ AT(t − τc) (12.16)

Namely, the synchronized chaotic output in the receiver is generated upon receiving
the transmitter signal. Therefore, the time lag between the outputs of the transmitter
and receiver lasers is equal to the transmission time τc.

12.2.4 Complete Chaos Synchronization

Next, we consider the conditions where the two systems of the transmitter and receiver
lasers are written by the identical set of equations, namely, the conditions for com-
plete chaos synchronization. The model of chaotic generators for the transmitter and
the receiver is also a semiconductor laser with optical feedback. We assume that
the device parameters in the two lasers are the same and the two lasers oscillate
at the same frequency, i.e., zero frequency detuning �ω = ω0,m − ω0,s = 0. Fur-
ther, the lasers are biased at the same injection current and the external feedback
conditions are also the same for the transmitter and receiver lasers, except for dif-
ferent values of the feedback coefficients, κT and κR. Under these assumptions, the
conditions for complete chaos synchronization read (Ohtsubo 2002b)

AR(t) = AT(t −�t) (12.17)

φR(t) = φT(t −�t)− ω0�t (mod 2π) (12.18)

nR(t) = nT(t −�t) (12.19)

κR = κT + ηc (12.20)

�t = τc − τ (12.21)

The delay differential Eqs. (12.11)–(12.13) in the receiver laser have completely
identical forms to those in (12.7)–(12.9) of the transmitter laser. The scheme is called
compete chaos synchronization. The receiver laser outputs the synchronous chaotic
signal before receiving the transmitted signal by anticipating it in advance to the time
τ = τT = τR. The parameters in the two laser systems must be identical to satisfy
the conditions for complete chaos synchronization, however, there are certain ranges
of tolerances for the parameter mismatches when we allow a little deterioration
of the correlation between the transmitter and receiver outputs. Usually, it is not
easy to achieve complete chaos synchronization in real laser systems, especially in
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delay optical feedback systems, and a few experimental studies for complete chaos
synchronization have been reported (Liu et al. 2002).

12.2.5 Mutual Coupling Systems

We discuss chaos synchronization in mutually coupled semiconductor lasers mod-
eled in Fig. 12.4c. For simplicity, we put the reflectivities of external mirrors in the
transmitter and receiver systems equal to zero without loss of generality, i.e., we
remove the external mirrors. In the mutual coupling system, each laser plays a role
for the virtual external mirror to the counterpart laser. Therefore, even without the
optical feedback loop, the lasers can show chaotic oscillations due to mutual optical
injections, as discussed in Chap. 6. Mutual coupling lasers with optical feedback is a
straightforward extension of the discussion here. We can also observe both complete
and generalized chaos synchronization in mutually coupled semiconductor lasers
(Hohl et al. 1997, 1999). The rate equations for one of the lasers are written by

dA1(t)

dt
= 1

2
Gn,1{n1(t)− nth,1}A1(t)+ κinj,2

τin,1
A2(t − τc) cos θ1(t) (12.22)

dφ1(t)

dt
= 1

2
α1Gn,1{n1(t)− nth,1} − κinj,2

τin,1

A2(t − τc)

A1(t)
sin θ1(t) (12.23)

dn1(t)

dt
= J1

ed
− n1(t)

τs,1
− Gn,1{n1(t)− n0,1}A2

1(t) (12.24)

θ1(t) = ω0,1τ + φ1(t)− φ2(t − τc)+�ωt (12.25)

The rate equations for the other laser are also given by symmetrical forms as

dA2(t)

dt
= 1

2
Gn,2{n2(t)− nth,2}A2(t)+ κinj,1

τin,2
A1(t − τc) cos θ2(t) (12.26)

dφ2(t)

dt
= 1

2
α2Gn,2{n2(t)− nth,2} − κinj.1

τin,2

A1(t − τc)

A2(t)
sinθ2(t) (12.27)

dn2(t)

dt
= J2

ed
− n2(t)

τs,2
− Gn,2{n2(t)− n0,2}E2

2(t) (12.28)

θ2(t) = ω0,2τ + φ2(t)− φ1(t − τc)−�ωt (12.29)

where subscripts 1 and 2 are for the respective lasers and �ω = ω1 − ω2 is the
angular frequency detuning between the two lasers.

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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In the mutual coupling systems, there are also two solutions of chaos synchroniza-
tion; one is based on injection-locking and amplification phenomena and the other
is complete chaos synchronization. For the case of synchronization due to injection-
locking, one of the two lasers plays the role of a master laser and the other is a slave.
Then, the relation between the two amplitudes is written by

A2(t) ∝ A1(t − τc) (12.30)

or
A2(t − τc) ∝ A1(t) (12.31)

These are no exact solutions for (12.22)–(12.29) in a mathematical sense. However,
these relations are confirmed by numerical simulations and experiments. Most cases
of chaos synchronization observed in real experiments in mutually coupled semi-
conductor lasers are based on generalized chaos synchronization. In these cases,
the optical transmission power is as large as several tens of percent of the average
amplitude of the chaotic variation. The percentage is almost the same as that in a uni-
directional coupling system of a generalized chaos synchronization scheme. Which
laser becomes master or slave (leader or lagger laser) is determined by the differences
of the operating conditions of the lasers and the parameter mismatches.

On the other hand, there is an identical solution for complete chaos synchroniza-
tion in mutually coupled semiconductor lasers, since the transmitter and receiver
systems have mathematically symmetrical forms as far as the device parameters and
driving conditions are identical. The conditions follow

�ω = 0 (12.32)

A2(t) = A1(t) (12.33)

A2(t) = A1(t) (12.34)

n2(t) = n1(t) (12.35)

Namely, the two lasers simultaneously output the same chaotic signals even for a
finite transmission time τc of light. The scheme is also considered as anticipating
chaos synchronization. However, the complete chaos synchronization under the cur-
rent configuration is only limited to the case without Langevin noises. In actual
systems, there exist Langevin noises and the synchronization is fairly affected by the
noises. An isochronal solution of complete chaos synchronization is easily reduced
to an achronal state due to the presence of the noises in spite of highly symmet-
rical conditions of two mutually coupling lasers. The detail is again discussed in
Sect. 12.7.1
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12.3 Chaos Synchronization in Semiconductor Lasers
with an Optical Feedback System

12.3.1 Chaos Synchronization—Numerical Examples

We here show some numerical simulations of chaos synchronization in the closed-
loop systems shown in Fig. 12.4b. Figure 12.5 shows examples of generalized and
complete chaos synchronization (Murakami and Ohtsubo 2002). Figure 12.5a shows
a chaotic signal to be transmitted. Figure 12.5b shows the receiver output under the
condition of generalized chaos synchronization and Fig. 12.5c shows the correlation
plot between the waveforms of Fig. 12.5a, b. Figure 12.5d shows the receiver output
under the condition of complete chaos synchronization and Fig. 12.5e is the correla-
tion plot between the waveforms of Fig. 12.5a and d. The optical transmission power
is 22 % (κcp/τin,R = 74.9 ns−1) in the generalized chaos synchronization. On the
other hand, it is as small as 1.5 × 10−4 % (κcp/τin,R = 1.96 ns−1) in the complete
case. The time for the light transmission between the transmitter and receiver lasers
is set to zero for simplicity in this figure. Therefore, the time lag between the two
lasers is zero for generalized synchronization, while it is −1 ns for complete chaos
synchronization. An excellent correlation between the transmitter and receiver out-
puts is obtained for the complete chaos synchronization. The difference of the time is
exactly equal to the theoretically expected time lag�τ . Thus, we can distinguish the
type of chaos synchronization by investigating the time lag between the transmission
signal and the receiver output.

The attractors in the transmitter and receiver lasers show the same orbit under com-
plete chaos synchronization, since the two systems follow completely the identical
equations. Then, the receiver output traces the same orbit as that of the transmitter due
to injection of a small seed from the transmitter. On the other hand, the receiver output
is an amplified copy of the transmitter signal in generalized chaos synchronization.
Therefore, the synchronized signal almost looks the same as the waveform of the
transmitter, however, the chaotic attractor in the receiver laser has some deviations
from that of the transmitter. Figure 12.6 shows chaotic attractors of the receiver laser
in the phase space of the laser output power and the carrier density. Figure 12.6a is
the chaotic attractor of the transmitter signal in Fig. 12.5a. Figure 12.6b is the chaotic
attractor of the receiver output corresponding to Fig. 12.5b. The general view of the
orbit is quite similar to Fig. 12.6a, but they are different. The extent of the orbit in
Fig. 12.6b is slightly larger than that of Fig. 12.6a and the receiver signal is ampli-
fied. Also, the carrier density in Fig. 12.6b is lowered to less than the threshold by
the strong optical injection from the transmitter laser and this results in the reduction
of the gain. For the case of complete chaos synchronization in Fig. 12.5d, the chaotic
orbit of the receiver laser is the same as in Fig. 12.6a. From these facts, general-
ized chaos synchronization is clearly a different phenomenon from complete chaos
synchronization.

Optical injection is widely used for signal transmission from transmitter to receiver
lasers in chaotic communications. When we consider optical injection, the stable
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Fig. 12.5 Chaos synchronization in a closed-loop system. a Chaotic transmission signal, b receiver
output of generalized chaos synchronization at κcp/τin,R = 74.9ns−1, c correlation plot for a and
b, d receiver output of complete chaos synchronization at κcp/τin,R = 1.96ns−1, and e correlation
plot for a and d. The conditions are J = 1.3Jth, τ = 1ns, κT/τin,T = 1.96ns−1, and �ω = 0

and unstable map, which is discussed in Chap. 6, is very useful to know the
injection properties. Here, we show the conditions and distributions of successful
chaos synchronization using the map. Figure 12.7 presents the map of stable and
unstable injection-locking areas. The boundaries of stable and unstable injection-
locking, and unlocking for the solitary laser are shown as solid curves in the figure.
The vertical axis is the optical injection (in intensity) from the transmitter to the
receiver laser and the horizontal axis is the frequency detuning between the trans-
mitter and receiver lasers. Excellent chaos synchronization is attained at the dark

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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areas in the map. The error of chaos synchronization in the figure is defined by the
following equation:

σerror = 〈|ST − SR|〉
〈SR〉 (12.36)

where ST and SR are the intensities of the transmitter and receiver lasers, and 〈·〉
denotes the ensemble average. Generalized chaos synchronization occurs in a wide
range of the frequency detuning and the optical injection in the stable injection-
locking area, while complete chaos synchronization takes place at the unstable
injection-locking area. From the comparison of this map with Fig. 6.6, complete

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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chaos synchronization is attained at chaotic states within the unstable injection-
locking area in a simple optical injection-locked laser. The area of complete chaos
synchronization is very narrow with zero detuning and small optical injection due to
the requirement of strict parameter coincidence.

The effects of parameter mismatches between the transmitter and receiver sys-
tems are very important for applications of chaos synchronization to secure opti-
cal communications. Figure 12.8 shows the plots of synchronization errors for the
mismatches of various laser device parameters. Figure 12.8a shows the errors of
generalized chaos synchronization. The permissible errors for the parameter mis-
matches are large in generalized chaos synchronization and we can expect robust
chaos synchronization. However, the synchronization errors are always larger than
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1% of the average laser intensity variations, since the origin of the synchronization
comes from optical injection-locking and amplification phenomena, and distortions
of the synchronous waveform from the transmitter signal are always presented. From
the investigation of the transmitter and receiver waveforms, they are still quite similar
with each other when the errors for the parameter mismatches are less than a few per-
cent. It is noted that the best synchronization is not always attained at zero parameter
mismatches. Figure 12.8b is the effects of parameter mismatches in complete chaos
synchronization. As expected, chaos synchronization is achieved with high accuracy
at almost zero parameter mismatches and the synchronization errors rapidly increase
with the increase of the parameter mismatches. Thus, strict conditions are required
for successful chaos synchronization in the complete case.

12.3.2 Chaos Synchronization—Experimental Examples

Investigations on chaos semiconductor lasers with optical feedback have been
reported in real experimental systems (Takiguchi et al. 1999a,b,c; Fujino and Oht-
subo 2000; Fischer et al. 2000a,b; Sivaprakasam et al. 2000). In this section, we show
some examples of experimental results for chaos synchronization. Figure 12.9 shows
the experimental results of chaos synchronization in a closed-loop system discussed
in Fig. 12.4a. Figure 12.9a is the output waveforms of the transmitter and receiver
lasers without signal transmission. As far as the two lasers are isolated, the output
powers have no correlation as shown in Fig. 12.9b. When a fraction of the transmitter
output is sent to the receiver, the synchronous waveform in Fig. 12.9c is obtained.
The transmitted optical power from the transmitter to the receiver is rather strong,
as much as 4.6 % of the average power of the receiver laser. Therefore, the synchro-
nization is a generalized case. In Fig. 12.9a, the two lasers show chaotic outputs.
However, it is not always necessary for the receiver laser to be oscillated at a chaotic
state and the receiver laser may be a steady-state oscillation even in the presence of
optical feedback. The feedback level in the receiver laser is usually less than that in
the transmitter laser and the receiver laser may show a synchronous chaotic oscilla-
tion after the optical injection from the transmitter. Chaos synchronization has been
also demonstrated in an open-loop system. Of course, the receiver laser oscillates at
a steady-state without coupling of the transmitter signal in that case. The robustness
of chaos synchronization is much dependent on whether the system is an open- or
closed-system. We will again discuss the differences in Chap. 13.

Only a few experimental studies have been reported for complete chaos synchro-
nization, since the conditions of complete chaos synchronization are too severe to
be achieved in real experiments (Sivaprakasam et al. 2001; Liu et al. 2002). At com-
plete chaos synchronization, the time lag of the waveforms between the transmitter
and receiver lasers is given by �τ = τc − τ . Liu et al. (2002) conducted complete
chaos synchronization in an open-loop system of semiconductor lasers with opti-
cal feedback. They changed the external cavity length and examined the time lag
between the transmitter and receiver signals. They observed the change of the time

http://dx.doi.org/10.1007/978-3-642-30147-6_13
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Fig. 12.9 Experimental chaos synchronization in a closed-loop system. a Waveforms of transmitter
and receiver lasers without coupling. b Correlation plot for a. c Waveforms of transmitter and
receiver lasers with coupling. The transmitted optical power is 4.6 % of the average optical power
of the receiver laser. d Correlation plot for c

lag proportional to the external cavity length (the proportional coefficient is nega-
tive) and showed that their schemes were for complete chaos synchronization. In
their experiment, the parameters of the transmitter and receiver lasers were carefully
chosen to have almost the same characteristics and the initial frequency detuning
between the transmitter and receiver lasers was set to be less than several tens of
MHz.

12.3.3 Anticipating Chaos Synchronization

Anticipating chaos synchronization was at first introduced as a synchronization phe-
nomenon peculiar to nonlinear delay differential systems. Later, it was proved that
anticipating chaos synchronization is also observed in low dimensional dissipa-
tive systems described by simple differential equations (Ahlers et al. 1998; Voss
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2000; Ohtsubo 2002b). Voss demonstrated that anticipating chaos synchronization is
realized in a Rössler system (continuous system) that is described by three differ-
ential equations. Therefore, anticipating chaos synchronization is not only a unique
feature in delay differential systems, but also it is a universal phenomenon in chaotic
nonlinear systems. In chaos synchronization systems of semiconductor lasers with
optical feedback, anticipating chaos synchronization was also observed outside of
the parameter regions for ordinary complete chaos synchronization in the stable and
unstable injection-locking map. In that case, the chaos synchronization originated
from optical injection-locking and amplification effects, but the time lag of the wave-
forms between the transmitter and receiver lasers was equal to that of anticipating
synchronization.

Kusumoto and Ohtsubo (2003) conducted a detailed study of chaos synchroniza-
tion in the stable injection-locking area in Fig. 12.7. Figure 12.10 shows their results.
Figure 12.10a plots the anticipating chaos synchronization in the stable injection-
locking area. The time lag corresponds to that of anticipating synchronization, but
the synchronization originates from the ordinary injection-locking effect. Within the
white ellipsoid in the figure, the value of the correlation coefficient between wave-
forms of the transmitter and receiver lasers exceeds 0.94. In this open-loop system,
the optical feedback ratio in the transmitter system is as high as 0.3. Complete chaos
synchronization is achieved around the optical injection rate of 0.3 at zero frequency
detuning (marked A). Of course, the synchronization is an anticipating one under this
condition. However, the area of anticipating chaos synchronization expands over a
wide region in the stable injection-locking map. For example, the synchronization at
point B is still an anticipating one as a time lag of the waveforms, but the synchroniza-
tion originates from the injection-locking effect. Figure 12.10b plots the trajectories
of the transmitter and receiver outputs corresponding to point B in Fig. 12.10a. The
plot is in the phase space of the phase difference and the normalized carrier density.
Black trace denotes the trajectory for the transmitter laser and gray trace is for the
receiver laser. If the chaos synchronization is complete, the trajectory of the trans-
mitter laser perfectly overlaps with that of the receiver in the map. However, the
two trajectories are separated from each other in the phase space. This phase shift
between the two trajectories is equal to the frequency detuning between the two
lasers. Also the carrier density of the receiver laser is lowered by the optical injec-
tion. This fact proves that the phenomenon originates from optical injection-locking
and amplification. According to the detailed study by Peters-Flynn et al. (2006),
the laser output that is categorized as anticipating chaos synchronization in the sta-
ble injection-locking area in Fig. 12.10 sometimes shows a mixed state of wave-
forms corresponding to anticipating and injection amplification signals. The two
states irregularly switch in time in their numerical simulations. The details of the
phenomena and the origin of the switching are not fully understood yet. Anticipating
chaos synchronization is not a unique phenomenon accompanying complete chaos
synchronization, but it is a universal nature in nonlinear chaotic systems.
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Fig. 12.10 a Anticipating chaos synchronization region in the phase space of frequency detuning
�ν and optical injection rate in the open-loop system. The feedback rate in the transmitter system
is 0.3. b Chaotic trajectories for transmitter and receiver lasers at point B in a. The trajectories are
plotted in the phase space of the phase difference �φ = φ j (t) − φ j (t − τt ) and the normalized
carrier density n j/nth,j ( j = T or R). The black trace is for the transmitter laser and the gray trace
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12.3.4 Bandwidth Enhanced Chaos Synchronization

We discussed the enhancement of the cutoff frequency in a chaotic semiconductor
laser by a strong optical injection in Sect. 6.3. Such semiconductor lasers are used as
light sources of chaotic generators for chaos synchronization and communications
(Takiguchi et al. 2003; Someya et al. 2009). The cutoff frequency can be varied
by adjusting the fraction of the optical injection. For example, a modulation band-

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 12.11 Schematic diagram of bandwidth-enhanced chaos synchronization system. I-LD T and
I-LD R are the injection lasers to the transmitter and receiver lasers. LD T and LD R are the
transmitter and receiver lasers

width of ∼20 GHz for the original relaxation oscillation frequency of 3–4 GHz was
attained by strong optical injection. In chaotic communications, the maximum data
transmission rate is determined by the cutoff frequency of chaotic carrier signals and
the cutoff frequency is roughly equal to the maximum modulation bandwidth of the
laser. Higher modulation bandwidth is also demanded in various applications such as
direct modulations in semiconductor lasers. Figure 12.11 shows the schematic dia-
gram of open-loop chaos synchronization systems with enhanced chaotic frequency
(Takiguchi et al. 2003). Both the transmitter and receiver semiconductor lasers, LD
T and LD R, are strongly injected from external semiconductor lasers, LD1 and
LD2, with the same characteristics of the device parameters. Both the transmitter
and receiver lasers oscillate at the stable injection-locked state in the absence of opti-
cal feedback. Figure 12.12 demonstrates an example of bandwidth-enhanced chaos
synchronization. The conditions are the same as those in Fig. 6.20. Therefore, the
main chaotic frequencies of the two lasers at solitary oscillations are 2.7 GHz and
the main chaotic frequency is expanded to 8 GHz. The upper trace in Fig. 12.12a is
a time series of the transmitter output and the lower one is that of the receiver. The
frequency detuning between the transmitter and receiver lasers is set to be zero and
the observed time lag is equal to �t = τc − τ = −6 ns (τc = 0 and τ = 6 ns).
Therefore, the synchronization scheme is for the complete case or so-called antici-
pating chaos synchronization. Figure 12.12b is the correlation plot. The correlation
coefficient is calculated to be 0.954 and the two lasers show good synchronization.
However, we obtain a better figure of the correlation coefficient for complete chaos
synchronization in the absence of strong optical injection. The range for small syn-
chronization error is very narrow for the parameter mismatches in the complete case.
Even if the two lasers have the same device parameters and operate under the same
conditions, chaos synchronization is realized under the limited parameter values and
their ranges are usually very narrow.

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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12.3.5 Incoherent Synchronization Systems

The frequency detuning of the transmitter and receiver lasers plays a crucial role
for the performance of chaos synchronization when the two lasers coherently cou-
ple. The difference of the frequencies must be at least within a few GHz. As discussed
in Sect. 5.7, we can observe chaotic oscillations in systems of semiconductor lasers
with incoherent optical feedback. Chaos synchronization is also realized in incoher-
ent systems. We do not pay particular attention to the frequency detuning in this
system. In an incoherent optical setup, the feedback light in the transmitter system is
incoherently coupled with the internal laser field. We assume that the transmission
light is also incoherently coupled to the receiver laser. In incoherent chaos synchro-
nization, we do not need to consider the rate equation for the optical phase. Therefore,
the model is described by the equations for the photon number and the carrier density.
For the transmitter laser, we obtain (Rogister et al. 2001)

dST(t)

dt
= Gn,T{nT(t)− nth,T}ST(t)+ Rsp,T (12.37)

http://dx.doi.org/10.1007/978-3-642-30147-6_6
http://dx.doi.org/10.1007/978-3-642-30147-6_5
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dnT(t)

dt
= JT

ed
− nT(t)

τs,T
− Gn,T{nT(t)− n0,T}

×
{

ST(t)+ κT′
τin,s

ST(t − τT)

}

(12.38)

For the receiver

dSR(t)

dt
= Gn,R{nR(t)− nth,R}SR(t)+ Rsp,R (12.39)

dnR(t)

dt
= JR

ed
− nR(t)

τs,R
− Gn,R{nR(t)− n0,R}

×
{

SR(t)+ κR′
τin,R

SR(t − τR)+ κcpST(t − τc)

}

(12.40)

Also, the subscripts T and R are for the transmitter and receiver lasers. The feedback
light is coupled to the carrier density as a delayed signal. The final term in (12.40) is
the coupling of incoherent light from the transmitter. Since the coupling between the
transmitter and receiver lasers is incoherent, the receiver laser is not injection-locked.
However, complete chaos synchronization is also achieved under the appropriate
conditions. Assuming all the device parameters of the two lasers to be the same, the
conditions read

SR(t) = ST(t −�t) (12.41)

nR(t) = nT(t −�t) (12.42)

where �t = τc − τ . Under these conditions, complete anticipating chaos synchro-
nization is realized. Indeed, the condition for the frequencies of the lasers is not
included in the coupling equations.

12.3.6 Polarization Rotated Chaos Synchronization

Chaotic oscillations of semiconductor lasers are observed not only by parallel-
polarization optical feedback, but also by polarization-rotated optical feedback. The
system of polarization-rotated optical was described in Sect. 4.6 and Sect. 5.8.1. The
dynamics of polarization-rotated chaos synchronization were studied theoretically
and experimentally (Sukow et al. 2004, 2005, 2006, Shibasaki et al. 2006; Takeuchi
et al. 2010). A semiconductor laser with polarization-rotated optical feedback can be
used as a light source for a system of chaotic synchronization and communications.
Here, we discuss chaos synchronization in a system of semiconductor lasers with
polarization-rotated optical feedback. As an example, take a chaotic generator shown
in Fig. 4.7b. The system we consider is shown in Fig. 12.13, in which the laser light

http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_4
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with TE mode emitted from a transmitter laser (LD T) passes through a Faraday
rotator and is reflected by a mirror. The feedback light again passes through the Fara-
day rotator and fed back into the laser cavity as a TM mode light (cross-polarized
component to the TE mode). A part of the TE mode light is divided by a beam splitter
and is fed to the receiver laser through a set of an isolator and a Faraday rotator as the
TM mode light. Then the crossed-polarization light is injected to the receiver laser.
Thus, the polarization-rotated chaos synchronization is realized under appropriate
conditions for the transmitter and receiver lasers.

In the open-loop chaos synchronization system in Fig. 12.13, the rate equations
for the transmitter read (Shibasaki et al. 2006)

dET,TE(t)

dt
= 1

2
(1 − iαT)Gn,T,TE{n(t)− nth,T,TE}ET,TE(t) (12.43)

dET,TM(t)

dt
= 1

2
(1 − iαT)Gn,T,TM{n(t)− nth,T,TM}ET,TM(t)

+ κ

τin
ET,TE(t − τ) exp(−i�ωTE,TMt + iω0Tτ + iφT,TM(t)− iφT,TE(t − τ))

(12.44)

dn(t)

dt
= JT

ed
− n(t)

τs,T
− {n(t)− n0,T}

×
{

Gn,T,TE|ET,TE(t)|2 + Gn,T,TM|ET,TM(t)|2
}

(12.45)
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For the receiver systems, the rate equations are written by

dER,TE(t)

dt
= 1

2
(1 − iαR)Gn,R,TE{n(t)− nth,R,TE}ER,TE(t) (12.46)

dER,TM(t)

dt
= 1

2
(1 − iαR)Gn,R,TM{n(t)− nth,R,TM}ER,TM(t)

+ κcp

τin,R
ET,TE(t − τc) exp(−i�ωt + iω0Tτ + iφR,TM(t)− iφT,TE(t − τc))

(12.47)

dn(t)

dt
= JR

ed
− n(t)

τs.R
− {n(t)− n0.R}

× {Gn,R,TE|ER,TE(t)|2 + Gn,R,TM|ER,TM(t)|2} (12.48)

where subscripts TE and TM stand for two crossed polarization modes, subscript
T and R correspond to for the transmitter and receiver lasers, �ωTE,TM represents
the frequency detuning between TE and TM modes in the transmitter laser, �ω
is the frequency detuning between the transmitted light and the TM light in the
receiver laser. The other parameters are the same meaning defined in Sect. 12.2.2.
The dynamic properties of the transmitter and receiver lasers in polarization-rotated
chaos synchronization are numerically studied by using these coupling equations.
The frequency detuning between the TE and TM modes sometimes plays an important
role, although it is usually small. Indeed, a frequency detuning of −870 MHz is
experimentally observed and the dynamics and synchronization properties are fairly
affected by the detuning (Takeuchi et al. 2010).

In transmitter and receiver systems in semiconductor lasers with polarization-
rotated optical feedback, one can attain both regimes of chaos synchronization,
i.e., complete and generalized cases. Figure 12.14 shows numerical examples of
polarization-resolved waveforms both for complete and generalized chaos synchro-
nization in polarization-rotated optical feedback regimes. It is noted that these are
examples for zero frequency detuning between the TE and TM modes with fairly
strong optical injection from TE to TM modes. When the injection ratio from the
transmitter to the receiver lasers is equal to the optical feedback ratio in the transmit-
ter laser, namely, κ = κcp, complete chaos synchronization can be achieved under
appropriate parameter conditions, which is the same case for non-rotated optical
feedback. For complete synchronization, the TE mode waveform of the transmitter
laser completely synchronizes with the TE mode waveform of the receiver laser, and
the TM mode of the response laser also synchronizes with the TM mode of the drive
laser, as shown in Fig. 12.14a and c. Without loss of generality, the transmission time
from the transmitter to the receiver lasers is equal to the delay time in the feedback
loop in the transmitter, i.e, τ = τc. Therefore, the time lag between the synchronized
signals is zero in complete chaos synchronization. In this configuration, the receiver
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Fig. 12.14 Numerically calculated temporal waveforms of TE and TM mode intensities at syn-
chronization. a and c Complete chaos synchronization for the transmitter and the receiver lasers,
respectively, at κ = κcp. b and d Generalized chaos synchronization for the transmitter (drive) and
the receiver (response) lasers, respectively, at κ = 3κcp. [after Shibasaki et al. (2006); © 2006 IEEE]

output is a complete copy of the transmitter signal. On the other hand, for a strong
optical injection κ = 3κcp, the receiver laser is injection-locked to the transmitter
laser. Then the receiver output of TM mode is an amplified version of the transmit-
ted chaotic signal of the TE mode oscillation from the transmitter laser as shown
in Fig. 12.14b and d. The time lag between the waveforms of the TE mode in the
transmitter laser and the TM mode in the receiver laser is τc, which is the evidence of
generalized chaos synchronization. In this example, the TE mode in the receiver laser
is completely suppressed and only the TM polarization component is the oscillation
mode.

As in the case for synchronization in semiconductor lasers with normal (non-
polarization-rotated) optical feedback, the chaos in the two regimes (complete
and generalized synchronization) are distinguishable by the delay of the chaotic
waveform with respect to that of the injected signal. From the detailed study for
polarization-rotated chaos synchronization, it is proved that chaos synchronization
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can be performed even if there is a large mismatch in the optical frequencies of
the lasers (Shibasaki et al. 2006). It is worth noting that synchronization can be
maintained in the presence of the detuning by adjusting appropriately the injection
strength between the transmitter and receiver lasers. This feature is very different
from the case of semiconductor lasers with non-polarization-rotated optical feed-
back, where complete synchronization is only very weakly robust against detuning.
Good synchronization can be maintained at the condition of positive detuning and
small injection strength and at the condition of negative detuning and large injec-
tion strength. This asymmetric feature may result from the α parameter (linewidth
enhancement factor) of semiconductor lasers, in the sense that chaos synchronization
in semiconductor lasers with polarization-rotated optical feedback does not require
strict matching of optical frequency. This feature of robustness with respect to optical
frequency is particularly important for practical implementations of secure commu-
nication systems using chaos synchronization.

12.4 Chaos Synchronization in Injected Lasers

12.4.1 Theory of Chaos Synchronization in Injected Lasers

Semiconductor lasers exhibit chaotic oscillations by optical injection from a different
laser as discussed in Chap. 6. We can use an optically injected laser as a light source for
chaos synchronization as depicted in Fig. 6.1. However, an optical injection system
is not a delay differential system, so that complete chaos synchronization is not
generally realized in this system. We can also consider two types of synchronization
systems; closed- and open-loop systems (Chen and Liu 2000). Both the transmitter
and receiver lasers are optically injection-locked from external lasers in the closed-
loop system, while only the transmitter laser is injection-locked in the case of the
open-loop system. The open-loop system is also a special case of the closed-loop
system. In the following, we formulate chaos synchronization in closed-loop systems
of optically injected semiconductor lasers.

The optical injection-locking semiconductor laser is a coherent system. Therefore,
the model must be described by the rate equations of the field, the phase, and the
carrier density

dAT(t)

dt
= 1

2
Gn,T{nT(t)− nth,T}AT(t)+ κinj,T

τin,T
Ainj,T(t) cos θT (t) (12.49)

dφT(t)

dt
= 1

2
αTGn,T{nT(t)− nth,T} − κinj,T

τin,T

Ainj,T(t)

AT(t)
sinθT(t) (12.50)

dnT(t)

dt
= JT

ed
− nT(t)

τs,T
− Gn,T{nT(t)− n0,T}A2

T(t) (12.51)

http://dx.doi.org/10.1007/978-3-642-30147-6_6
http://dx.doi.org/10.1007/978-3-642-30147-6_6
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θT(t) = −�ωTt + φT(t)− φinj,T(t) (12.52)

The parameters in the above equations are essentially the same as those of previous
equations. �ωT is the frequency detuning between the transmitter laser and the
injection laser. The receiver driven by the transmitted signal can be described by

dAR(t)

dt
= 1

2
Gn,R{nR(t)− nth,R}AR(t)+ κinj,R

τin,R
Ainj,R(t) cos θR(t)

+ κcp

τin,R
AT(t − τc) cos ξc(t) (12.53)

dφR(t)

dt
= 1

2
αRGn,R{nR(t)− nth,R} − κinj,R

τin,R

Ainj,R(t)

AR(t)
sin θR(t)

− κcp

τin,R

AT(t − τc)

AR(t)
sin ξc(t) (12.54)

dnR(t)

dt
= JR

ed
− nR(t)

τs,R
− Gn,R{nR(t)− n0,R}A2

R(t) (12.55)

θR(t) = −�ωRt + φR(t)− φinj,R(t) (12.56)

ξc(t) = ω0,Tτc + φR(t)− φT(t − τc)+�ωt (12.57)

where �ωR is the detuning between the receiver and injection lasers, and �ω is
also the detuning between the transmitter and receiver lasers. As can be understood
from these equations, chaos synchronization in the systems originates from injection-
locking and amplification. Under the special conditions of

1

τph,R
= 1

τph,T
∓ 2ακcp

τin,R
√

1 + α2
(12.58)

ω0,Tτc = − cot−1 α (12.59)

�ω = 0 (12.60)

�ωR = �ωT (12.61)

we obtain complete chaos synchronizations (Liu et al. 2001a,b,c)

AR(t) = AT(t − τc) (12.62)

φR(t) = φT(t − τc) (12.63)
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In (12.58), minus sign is for sinω0,Tτc > 0, while plus sign is for sinω0,Tτc < 0. We
assume without loss of generality that the other parameter values of the two lasers
are the same and the phases of the injection lasers, φinj,R(t) = φinj,T(t), are constant.
The condition in (12.58) contains the internal device parameters (τph and α) and the
external coupling constant. Therefore, it is usually difficult to realize complete chaos
synchronization in this system, since the adjustment of the parameters is extremely
difficult in real experiments.

12.4.2 Examples of Chaos Synchronization in Injected Lasers

Figure 12.15 shows the experimental results of chaos synchronization using chaotic
semiconductor lasers by optical injection (Liu et al. 2001a). The system used is an
open-loop system and, therefore, optical injection is only presented in the trans-
mitter system. The frequency detuning between the transmitter and injection lasers
is changed to generate various chaotic states. Chaos synchronization is realized at
period-1, period-2, and chaotic oscillations. Figure 12.16 plots the numerical results
of synchronization errors for the parameter mismatches in the system (Chen and
Liu 2000). The figure corresponds to the synchronization errors in complete chaos
synchronization. The errors of synchronization are asymmetry for the parameter mis-
matches, which is similar to the trend for the case of the optical feedback system
in Fig. 12.8b. The tolerances for the differential carrier relaxation rate, the nonlinear
carrier relaxation rate, and the linewidth enhancement factor are much less effective,
but the mismatch of the cavity decay rate 1/τph greatly affects the performance of
chaos synchronization. In real devices, we could not easily access and vary the device
parameters, therefore we must carefully select lasers with similar characteristics even
if the lasers come from the same wafer. It is said that semiconductor laser devices
have parameter mismatches within 5–20 % in industrial standards. In real lasers, we
must also take noise effects into account. Therefore, the coupling coefficient κcp from
the transmitter to the receiver lasers must be larger than a certain value to take on a
negative value for the conditional Lyapunov exponent.

12.5 Chaos Synchronization in Optoelectronic
Feedback Systems

12.5.1 Theory of Chaos Synchronization in Optoelectronic
Feedback Systems

We discussed chaotic oscillations in optoelectronic feedback in semiconductor lasers
in Chap. 7. We here assume the chaotic generators of optoelectronic feedback lasers
depicted in Fig. 7.1. In optoelectronic feedback systems, the rate equations for the

http://dx.doi.org/10.1007/978-3-642-30147-6_7
http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 12.15 Experimental chaos synchronization using chaotic semiconductor lasers by optical
injection. The system is an open-loop. The frequency detuning between the transmitter and injection
lasers is changed to generate various chaotic states at a fixed injection rate. Synchronized waveforms
at a period-1, b period-2, and c chaotic oscillations. In each figure, the upper trace is the transmitter
output and the lower trace is the receiver output. The lasers used are DFB lasers with an oscillation
wavelength of 1.3μm. The chaos synchronization is achieved under the complete condition [after
Liu et al. (2001a); © 2001 IEEE]

photon number and the carrier density are enough for describing the systems. Opto-
electronic feedback systems in semiconductor lasers have an advantage of excellent
synchronization performance over optical feedback and optical injection systems.
Since the time scale for the carrier density is three figures larger than that of the
photon lifetime, the performance, and accuracy of chaos synchronization in opto-
electronic feedback systems are different from those of optical feedback and optical
injection systems. The points will be again discussed in the next chapter from the
viewpoint of data transmission capability in chaotic communications. The rate equa-
tions for the photon number and the carrier density in a transmitter of optoelectronic
feedback are written by

dST(t)

dt
= Gn,T{nT(t)− nth,T}ST(t)+ Rsp,T (12.64)
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Fig. 12.16 Synchronization error (%) versus parameter mismatch (%). Solid curves a, b, c, d, and
e correspond to parameters of cavity decay rate, spontaneous carrier decay rate, differential carrier
relaxation rate, nonlinear carrier relaxation rate, and linewidth enhancement factor, respectively.
The intrinsic Langevin noise is considered in the simulation. Each corresponding dotted curve is
obtained without including the intrinsic noise [after Chen and Liu (2000); © 2000 IEEE]

dnT(t)

dt
= JT

ed
{1 + ξTST(t − τT)}

− nT(t)

τs,T
− Gn,T{nT(t)− n0,T}ST(t) (12.65)

where ξT is the coefficient of the optoelectronic feedback circuit in the transmitter.
The rate equations for the receiver laser are given by

dSR(t)

dt
= Gn,R{nR(t)− nth,R}SR(t)+ Rsp,R (12.66)

dnR(t)

dt
= JR

ed
{1 + ξRSR(t − τR)+ ξcpST(t − τc)}

− nR(t)

τs,R
− Gn,R{nR(t)− n0,R}SR(t) (12.67)

where ξR is the coefficient of the optoelectronic feedback circuit in the receiver
and ξcp is the coupling coefficient from the transmitter to the receiver lasers. As
discussed in Chap. 7, when the electronic feedback circuit has a finite time response,
the feedback terms s(t) = ξTST(t − τT) and s(t) = ξRsR(t − τR) + ξcpST(t − τc)

are replaced by the following integral equation:

http://dx.doi.org/10.1007/978-3-642-30147-6_7
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y(t) =
t∫

−∞
f (t ′ − t)s(t ′)dt ′ (12.68)

where f (t) is the response function of the electronic circuit. The optoelectronic
feedback system is also a delay differential system like the optical feedback system.
However, the optoelectronic feedback system is quite different from optical feedback
and optical injection systems. For example, the chaotic output from optoelectronic
feedback is generally irregular pulsing states. The driving signal to the laser in the
optoelectronic feedback system is also a chaotic signal, but the signal is not linearly
proportional to the optical output power (Liu et al. 2001b). Chaos synchronization
in optoelectronic feedback is generally a complete type (Tang et al. 2001).

12.5.2 Examples of Chaos Synchronization in Optoelectronic
Feedback Systems

Figure 12.17 shows the results of chaos synchronization in an open-loop optoelec-
tronic feedback system (Tang et al. 2001). As discussed in Chap. 7, the typical
feature of chaotic oscillations in optoelectronic feedback systems is periodic or
irregular pulsations of the laser output power. In the figure, chaos synchroniza-
tion is achieved for various states of chaotic oscillations by changing the feedback
time τT in the electronic feedback circuit. The synchronization scheme is complete
chaos synchronization. Figure 12.18 shows the numerical simulation for the model.
Figure 12.18a is the bifurcation diagram for the normalized delay time τ̂ = τνR in
the transmitter laser. Figure 12.18b is the maximum conditional Lyapunov exponent.
Here, the parameter cp is defined by

cp = 1 − ξR

ξT + ξcp
(12.69)

When the system is a closed-loop, cp = 0, while cp = 1 for an open-loop. From
this figure, the maximum conditional Lyapunov exponent in the open-loop system
is smaller than that of the closed-loop system. Therefore, the open-loop system can
achieve stable chaos synchronization compared with the closed-loop system. The
effects of parameter mismatches for chaos synchronization have also been studied in
optoelectronic feedback systems and similar results as for optical feedback systems
are obtained (Abarbanel et al. 2001).

http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 12.17 Time series and correlation plots of synchronization at three different pulsing states
under cp = 1. a Regular pulsing at τ = 7.47 ns, b two-frequency quasi-periodic pulsing at τ =
7.09 ns, c chaotic pulsing at τ = 6.92 ns. In a–c the upper trace is for the transmitter and the lower
trace is for the receiver. The left row is the time series and the right row is the correlation plots. The
laser is a DFB laser with the oscillation wavelength at 1.30μm. The relaxation oscillation frequency
of the laser is 2.5 GHz at the operating condition [after Tang et al. (2001); © 2001 OSA]

12.6 Chaos Synchronization in Injection Current
Modulated Systems

Semiconductor lasers are sensitive to injection current modulation and sometimes
show chaotic oscillations for certain conditions both of the device parameters and the
modulation frequency and index as discussed in Chaps. 6 and 7. However, chaotic
oscillations by the frequency modulation occur only under limited conditions in
ordinary narrow-stripe edge-emitting semiconductor lasers. Therefore, we briefly
introduce a chaos synchronization system using a frequency modulated self-pulsating
semiconductor laser as a chaotic light source. The output from a self-pulsating semi-
conductor laser shows regular pulsating oscillations for the ideal case. The laser is

http://dx.doi.org/10.1007/978-3-642-30147-6_6
http://dx.doi.org/10.1007/978-3-642-30147-6_7
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Fig. 12.18 Conditions for
stable route-tracking synchro-
nization. a Bifurcation dia-
gram. A: regular pulsing, B:
two-frequency quasi-periodic
pulsing, C: three-frequency
quasi-periodic pulsing, D:
chaotic pulsing. b Largest
average conditional Lya-
punov exponent (transverse
Lyapunov exponent) of cou-
pled system for the same
dynamic states as in a under
different coupling strengths,
cp = 0.1, 0.6, and 1 [after
Tang et al. (2001); © 2001
OSA]
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used as a light source of a digital versatile disk system. However, the laser easily
exhibits chaotic oscillations (irregular pulsing states) under an appropriate com-
bination of the modulation frequency and index for the bias injection current as
discussed in Sect. 8.2. In the chaotic oscillations, pulse heights of the pulsating out-
put irregularly fluctuate and this fluctuation is proved to be chaotic. Jones et al.
(2001) demonstrated numerically chaos synchronization in symmetrical modulation
systems. They used a very high frequency modulation of 3.4 GHz with a large modu-
lation index of 0.3. Their model was a coherent coupling between the transmitter and
receiver lasers. However, incoherent coupling must be taken into account through
a long transmission line between the transmitter and receiver systems, since a self-
pulsating semiconductor laser has once brought almost below the laser threshold
after a pulsation. Only a few studies have been published on chaos synchronization
in modulated semiconductor lasers to date.

12.7 Chaos Synchronization in Mutually Coupled Lasers

12.7.1 Mutually Coupled Edge-Emitting Semiconductor Lasers

Mutually coupled oscillators are of great interest because of the important insight they
provide into coupled physical, chemical, and biological systems. Mutually coupled

http://dx.doi.org/10.1007/978-3-642-30147-6_8
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Fig. 12.19 Numerical sim-
ulation describing the tran-
sition phenomenon from the
isochronal to achronal solu-
tion due to perturbations
of Langevin noises applied
at t = 200 ns. a Inten-
sity time traces and b the
dynamics of the injection
phases. The parameters are
τc = 5ns, κcp/τin = 20ns−1,
and J/Jth = 1 [after Mulet
et al. (2004);© 2004 IOP]
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semiconductor lasers can be used for a system of chaos synchronization. However,
the dynamics have not been fully studied in semiconductor lasers, since the straight-
forward applications of the systems such as for secure communications are not easy.
Example of chaotic secure communications based on mutual coupling systems is
treated in Chap. 13. In this subsection, we concern chaos synchronization in mutu-
ally coupled narrow-stripe edge-emitting semiconductor lasers (Hohl et al. 1997,
1999; Heil et al. 2001; Mirasso et al. 2002; Mulet et al. 2002, 2004; Klein et al.
2006). In an unbalanced mutual coupling system, (for example, frequency detuned
system or parameter mismatched system), one of the lasers become the leader and
the other is the lagger as concerning to their time series as discussed in Sect. 12.2.5.
In accordance with the discussion in Sect. 12.2.5, chaos synchronization originated
by injection-locking phenomena can be studied and the detail of the conditions for
chaos synchronization in leader-lagger configurations of chaotic waveforms is found
in literature (Heil et al. 2001). Here, we focus on the transition phenomenon of
chaos synchronization in an intrinsically complete configuration. As mentioned in
Sect. 12.2.5, an isochronal solution in the mutual coupling semiconductor lasers is
easily transitioned to an achronal state due to the presence of noises in spite of highly
symmetrical conditions.

Figure 12.19 shows a numerical example of transitions from complete to gener-
alized chaos synchronization in a symmetrical system of mutual coupling semicon-
ductor lasers (Mulet et al. 2004). In the numerical simulation, the coupled two lasers
without optical feedback have the same device parameters and driving conditions. In

http://dx.doi.org/10.1007/978-3-642-30147-6_13


12.7 Chaos Synchronization in Mutually Coupled Lasers 451

Fig. 12.19a, the time traces of the two lasers at first output completely the same wave-
forms, since the rate equations do not include the noise terms. However, the output
powers deviate with each other and the synchronization is transitioned to achronal
state from complete isochronal one after the noises are switched on at t = 200 ns.
Since the lasers are biased at low current J/Jth = 1, the output powers show LFFs.
Figure 12.19b shows the dynamics of the phases (θ1 and θ2 in (12.25) and (12.29))
and their difference. Before the perturbation is applied, the two phases completely
show identical traces. However, after one transient LFF following the perturbation,
the two phase traces deviate with each other. In the situation of a highly symmetrical
mutual coupling system, which laser becomes the leader or lagger is determined by
statistically. Further, the leader is once switched to the lagger and at the other occa-
sion it returns to the leader. The process is described by the statistical potential model,
which has already discussed in Sect. 5.1.2, and the transition is kicked by the Langevin
noises. To show the physical effects clearly, the case for a low bias injection current
is shown in Fig. 12.19. However, similar phenomena are also observed at higher bias
injection current with fast chaotic oscillations whose main frequency component
corresponds to the laser relaxation oscillation. We cannot avoid statistical noises in
real semiconductor lasers, so that we only observe leader and lagger chaotic signals
in experimental mutual coupling systems with symmetrical configuration, even if
the two coupling lasers are carefully prepared to take the same characteristics. It is
noted that such instability of the switching between leader and lagger configurations
occurs only for symmetrical systems. When an asymmetry is introduced for a syn-
chronization system of mutual coupling semiconductor lasers with optical feedback,
we obtain a fixed relation of the time lag between the laser outputs even for complete
chaos synchronization scheme as will be discussed in Sect. 13.5. Synchronization is
also attained in polarization-rotated mutual coupling systems and synchronous oscil-
lations of square-wave forms between two lasers have been demonstrated (Sukow
et al. 2010). Oscillations of square-wave forms and anti-phase synchronization are
typical features in semiconductor lasers with polarization-rotated optical feedback
as discussed in Sect. 5.8.2. The tolerances for the parameter mismatches in mutually
coupled narrow-stripe edge-emitting semiconductor lasers have also been discussed
(Avila and Leite 2009; Hicke et al. 2011).

12.7.2 Mutually Coupled VCSELs

Several reports have also been published for chaos synchronization with mutually
coupled VCSELs (Spencer et al. 1998; Spencer and Mirassso 1999; Fujino and Oht-
subo 2001). In mutually coupled VCSELs, two orthogonal polarization modes are
simultaneously excited and the polarization dynamics must be taken into account.
We here show chaos synchronization in mutually coupled VCSELs in LFF regimes
(Fujiwara et al. 2003). In the experiments, mutually coupled VCSELs without exter-
nal mirrors are used. Even when the lasers are stable at the free running state, they
exhibit chaotic oscillations under mutual coupling. Figure 12.20 shows the results of

http://dx.doi.org/10.1007/978-3-642-30147-6_5
http://dx.doi.org/10.1007/978-3-642-30147-6_13
http://dx.doi.org/10.1007/978-3-642-30147-6_5
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chaos synchronization. Figure 12.20a plots time series and their optical spectra of
the x-polarization components of the two lasers at LFF oscillations. Figure 12.20b
shows the results for the y-polarization components. The lasers are biased at low
injection currents and their spatial modes are the lowest ones, i.e., LP01 mode. In
the experiment, the two polarization modes are mutually coupled with each other. In
this example, chaos synchronization occurs by the coupling with the x-polarization
components and one of the outputs of the orthogonal y-polarization components syn-
chronizes to the other under the anti-correlation effect. This fact is easily understood
from the observation of optical spectra in the figure. Anti-phase correlation of the
two orthogonal polarization components is a typical feature in VCSELs. At the soli-
tary oscillations, the y-polarization modes are dominant lasing modes and the laser
powers are almost concentrated to the y-polarization modes. On the other hand, the
x-polarization modes increase and become the dominant modes after the mutual cou-
pling. The laser oscillation of VCSEL2 lags with respect to VCSEL1 with 4 ns (the
transmission time of light from one laser to the other), therefore the synchronization
is a generalized case. Fujiwara and Ohtsubo (2004) also showed chaos synchroniza-
tion for a selective polarization mode in mutually coupled VCSELs. Though the other
mode is not coupled, the remaining modes synchronize with the anti-phase corre-
lation effect. Chaos synchronization in VCSELs occurs even for the two different
spatial modes as far as detuning of the oscillation frequencies is negligibly small.

12.7.3 Optoelectronic Mutually Coupled Semiconductor Lasers

The dynamics and chaos synchronization for mutually coupled systems in semi-
conductor lasers with optoelectronic feedback was studied by Tang et al. (2004). In
the system, mutual coupling can act as a negative feedback to stabilize the coupled
oscillators or it can increase the complexity of the system inducing a highly com-
plex chaos depending on the operating conditions. A quasi-periodicity and period-
doubling bifurcation, or a mixture of the two, is found in such a system. Also, the
system exhibits a unique state of stabilizing and quenching the oscillation amplitude
of two pulsating oscillators, a phenomenon known as “death by delay”. Although
the chaotic waveforms are very complex with broad spectra, a high quality of
synchronization between the chaotic waveforms is observed. Such synchronization is
achieved because of the effect of mutual coupling and the symmetric design between
the two lasers. Figure 12.21 shows a schematic diagram for semiconductor lasers
with mutual optoelectronic coupling. The fundamental chaotic oscillator is the same
as the system of optoelectronic feedback as discussed in Sect. 12.5.1. A part of an
emitted light from semiconductor laser LD 1 is once detected by photodetector PD 1
and electronically fed back into the bias injection current of the laser with delay τ1.
On the other hand, the other light is detected by photodetector PD 2 and fed into
the bias injection current of semiconductor laser LD 2 with transmission time T1.
Similarly, semiconductor laser LD 2 also has an optoelectronic feedback loop with
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Fig. 12.20 Chaos synchronization in mutually coupled VCSELs in an LFF regime. a x-polarization
mode and b y-polarization mode. The left is the time series and the right is the corresponding optical
spectra. Solid curves: VCSEL 1, dotted curves: VCSEL2. The coupling time of light between the
two lasers is 4 ns
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Fig. 12.21 Schematic diagram of mutually coupled semiconductor lasers with optoelectronic feed-
back. LD: laser diode, PD: photodiode, A: amplifier, I: bias injection current

time delay τ2. A part of an emitted light from the laser LD 2 is also fed into the first
laser with transmission time T2, thus mutual coupling of the system is attained.

The system of the mutual coupling lasers can be easily described by extending
the discussion in Sect. 12.5. For semiconductor laser LD 1, one reads

dS1(t)

dt
= [Gn1{n1(t)− nth1}]S1(t) (12.70)



454 12 Chaos Synchronization in Semiconductor Lasers

dn1(t)

dt
= J1(t)

ed
{1 + ξ f 1S1(t − τ1)+ ξcp1S2(t − T2)}

− n1(t)

τs1
− Gn1{n1(t)− n01}S1(t) (12.71)

Here, we assume an instantaneous response of the electronic feedback circuit, how-
ever, we can apply (12.68) for a finite response of the circuit. For the second laser,
the coupling equations can be written as symmetric forms as above equations by

dS2(t)

dt
= [Gn2{n2(t)− nth2}]S2(t) (12.72)

dn2(t)

dt
= J2(t)

ed
{1 + ξ f 2S2(t − τ2)+ ξcp2S1(t − T1)}

− n2(t)

τs2
− Gn2{n2(t)− n02}S2(t) (12.73)

In mutually coupled semiconductor lasers, not only that the output of one laser is
coupled into the dynamics of the other laser, but also that the time delay introduced
by the mutual coupling further increases the dimension of the degree of freedom in
the coupled lasers. Consequently, a lot of interesting dynamics have been observed in
such mutually coupled semiconductor lasers. For example, optoelectronic feedback
can drive semiconductor lasers into nonlinear oscillations, such as regular pulsing,
quasi-periodic pulsing, or chaotic pulsing under certain conditions of the device and
feedback parameters. One of typical features in this system is a death by delay, in
which two limit-cycle oscillators suddenly stop oscillating due to a time-delayed
coupling between these oscillators by tuning the feedback parameters (Tang et al.
2004). The phenomenon of death by delay has been observed in many other mutually
coupled limit-cycle oscillators, which do not necessarily have a delayed feedback. In
the mutually coupled optoelectronic feedback systems described by (12.70)–(12.73),
we can observe periodic death islands of the laser oscillations at a certain coupling
strength for the increase of the coupling delay time T1+T2. In reality, there is always a
bandwidth limitation from the components such as the amplifiers, the photodetectors,
and even the lasers. Consequently, the mutually coupled semiconductor laser system
is not only highly nonlinear but also highly dispersive. The system can have a quasi-
periodic pulsing route, a period-doubling pulsing route, or a mixture of these two
bifurcations to chaos. The system has very interesting properties as a viewpoint of
nonlinear dynamics. However, we here focus on the synchronization properties of
the system.

Experimental and theoretical studies for synchronization of mutually coupled
semiconductor lasers with optoelectronic feedback were reported by Tang et al.
(2004) and Chiang et al. (2005). The two semiconductor lasers are operated in states
of regular oscillations or quasi-periodic oscillations under the effect of optoelectronic
feedback before the mutual coupling is applied. Once the mutual coupling is applied,
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Fig. 12.22 Experimental chaos synchronization in semiconductor lasers with mutual optoelectronic
coupling. T1 = T2 = 15.4 ns and τ1 = τ2 = 5.4 ns. a Time series of regular pulsing states in the
two lasers before mutual coupling. b Chaotic time series after mutual coupling. c and d Correlation
plot of the photodiode outputs after mutual coupling [after Tang et al. (2004); © 2004 IEEE]

dramatic effects can be observed on the original nonlinear oscillations. Figure 12.22
shows an experimental example of chaos synchronization in this system. Without
mutual coupling, the waveforms from the two lasers may exhibit either typical puls-
ing states or chaotic pulsing states at certain oscillation conditions. In this case, the
waveform from PD 1 is a regular pulsing state with one fundamental frequency, while
that from PD 2 is a quasi-periodic pulsing state as shown in Fig. 12.22a. With mutual
coupling, highly complex chaotic outputs form the two lasers are observed under the
conditions of T1 = T2 = τ1 = τ2 = 15.4 ns as shown in Fig. 12.22b. It is noted
that the two waveforms have a zero time lag and the type of synchronization is com-
plete. Figure 12.22c and d show the correlation plot between the outputs form PD 1
and PD 2, and the time shifted correlation, respectively. The detailed properties of
chaos synchronization in mutually coupled semiconductor lasers with optoelectronic
feedback were reported in the references (Chiang et al. 2005, 2006).
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Drive Response 1
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Isolator

Half Mirror

Mirror

Fig. 12.23 Drive and response configuration in chaos synchronization system. Two response laser
are injected by chaotic light from the drive laser

12.8 Common-Chaotic-Signal Induced Synchronization
in Semiconductor Lasers

In the preceding sections, we discussed chaos synchronization with two coupled
lasers, either in unidirectionally or mutually coupled configuration. However, we
can introduce a third chaotic laser in the systems of chaos synchronization. In this
configuration, transmitter and receiver lasers are simultaneously injected by the same
chaotic signal from the third drive laser and, thus, the accuracy of chaos synchroniza-
tion between the transmitter and receiver lasers is greatly enhanced. For example, we
prepare three chaotic systems consisting of semiconductor lasers with optical feed-
back; one is assigned to the driving system and the others are used for the response
systems. Then, the output from the drive unidirectionally injects the response lasers
(Yamamoto et al. 2007; Oowada et al. 2009). The other instance is a mutual coupling
system with a third driving laser. In this system, in-between transmitter and receiver
lasers, the third laser is introduced as a buffer of the chaotic signal transmissions
(Fischer et al. 2006; Vicente et al. 2008). In both cases, we can obtain higher corre-
lations between the transmitter and receiver chaotic signals compared with common
two-laser synchronization systems. Figure 12.23 shows a system for the first case.
Any chaotic systems may be used as a drive and responses, however, we here assume
optical feedback systems of semiconductor lasers for all three systems. The response
systems may not be the same characteristics to the drive system; however, the two
response systems are required to have closely similar characteristics with each other
not only for the device characteristics but also for the operation conditions. The out-
put powers from response 1 and response 2 show similar chaotic oscillations by the
injection of a chaotic signal from the drive system. The driving chaotic signal and the
synchronous response signals may not have good correlations, since the adjustment
of the parameters between the drive and the responses are rather loose. However, we
can obtain a good correlation between the two response systems. The phenomena
are confirmed not only by experiments but also by numerical simulations.
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Fig. 12.24 Experimental result of temporal waveforms and corresponding correlation plots for
a, b Drive and Response 1, c, d Drive and Response 2, and e, f Response 1 and Response 2. The
coupling delay time (4.0 ns) between the two temporal waveforms is compensated in a–d. The cross
correlation values are b 0.711, d 0.659, and f 0.947 [after Yamamoto et al. (2007); © 2007 OSA]

Figure 12.24 shows an experimental example of chaos synchronization in drive-
response systems. In this case, the driving system is a semiconductor laser with optical
feedback (feedback delay time of 4 ns), however, the response systems are solitary
semiconductor lasers without optical feedback. The three lasers are all the same DFB
lasers with oscillation wavelength of 1.55μm, which come from the same wafer. At
the operation conditions, the response lasers have the same optical wavelength of
1547.356 nm, while the drive laser is biased at lower current and its oscillation wave-
length is 1547.376 nm (the corresponding frequency detuning between the drive and
response lasers is −2.5 GHz). Since the frequency detuning is not large, the response
lasers are injection-locked to the drive laser and they oscillate similar chaotic signal
to the drive laser. Figure 12.24a–d are the results of chaos synchronization. The cou-
pling delay time between the two temporal waveforms is compensated in the time
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traces in Fig. 12.24a and c. As is seen from these figures, the response lasers shows
similar chaotic waveforms to the response laser, however, the correlation is not so
high as around 0.7. On the other hand, the correlation between the response lasers has
a high correlation as much as 0.947. In ordinary chaos synchronization systems with
two unidirectionally coupled semiconductor lasers, the good correlation values from
0.8 to 0.9 are usually obtained by experiments as far as the synchronization is origi-
nated from the effects of optical injection-locking and amplification. Taking the facts
into consideration, we can much enhance the correlation of chaos synchronization
by the introduction of the third chaotic laser. Although the effects are demonstrated
by experiments and corresponding numerical simulations, the mechanism of the
enhancement is not fully understood yet.
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Chapter 13
Chaotic Communications in Semiconductor
Lasers

Chaotic data encoding or scrambling is a technology for overcoming the difficulties
of the digital methods in secure communications. Using chaotic lasers as light
sources, high-speed and broadband secure communications can be established. In
this chapter, we discuss cryptographic applications of chaos in semiconductor lasers.
The technique we treat in this chapter is an analog chaotic encryption and decryption.
Messages to be sent are encoded into chaotic time series generated from a chaotic
semiconductor laser and decoded by a chaotic laser with the same characteristics.
The key for chaos communications is chaos synchronization, which we discussed in
the previous chapter. In chaotic communications, a small message is embedded into
a chaotic laser carrier and the total signal is sent to the receiver. Only the chaotic
oscillation is reproduced based on chaos synchronization and a chaos-pass filtering
effect in the receiver laser. By subtracting the receiver output from the transmission
signal, the message is successfully decoded.

13.1 Message Encryption in a Chaotic Carrier
and Its Decryption

13.1.1 Chaotic Communications

The development of efficient technologies for high-speed and massive data transmis-
sions is an urgent subject in the rapidly growing information-oriented society. One
of the important issues of information and communication networks is the security
problem. In secure data transmissions, a message to be sent is usually encoded by
computer software and the security of encoding is guaranteed by the complexity of
the calculations necessary to decode the original message. However, the development
of digital computer technology is so fast that the standard code for scrambling data in
secure communication systems can be soon decoded by a fast computer. On the other
hand, the enhancement of the complexity of calculations for encoding and decod-
ing messages may lose real-time processing of data transmissions. In the meantime,
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the method of quantum computing has been developed as one of the candidates to
decipher quickly encoded data in standard secure communication systems. As an
alternative method, chaotic communications have been proposed for high-speed and
broadband capabilities with hardware based secure communications (Kennedy et al.
2000; Dachselt and Schwarz 2001).

There are two techniques for chaos-based secure communications; one is digital
encoding and the other is analog encryption. As examples of digital techniques, the
method of code scrambling based on chaotic signal generations such as discrete-
sequence (DS) optical code division multiple access (CDMA) is used for chaos
communications. The method of chaos CDMA uses long life chaotic non-correlated
data sequences embedded into the chaotic orbits as CDMA codes. It is verified that the
generated codes have an advantage over the existing Gold series for the irregularity
and non-correlation properties (Chen et al. 2001). Chaos induced by semiconduc-
tor lasers is also effective to generate a series of ultrafast physical random numbers
suitable for broadband optical communications (Uchida et al. 2008). The related
topic will be treated in the next chapter. Another example is the technique of secure
chaos key generation instead of random numbers in ordinary secure communication
systems (Uchida et al. 2003a). Another one is an analog technique. In this chapter,
we are concerned with the analog method, since chaos in laser systems is best suited
for analog data encryption and decryption by nature. In the analog technique, when
a fraction of a chaotic signal from a transmitter is sent to a receiver, the two systems
synchronize with each other under certain conditions, as discussed in the previous
chapter. Not only the two system configurations but also the chaos parameters of
the two systems must be the same for perfect chaos synchronization. The merits of
the use of semiconductor lasers in chaotic communications are clear, since light is the
carrier of modern basic communication channels and the generation of high-speed
and broadband signals is easily attained compared with, e.g., nonlinear electronic cir-
cuits. Chaotic communications require special hardware to generate a chaotic signal
and to realize synchronization. Even if one tries to decode messages by computing
or guessing chaotic states from the signals obtained, it is very difficult to decode
messages by available techniques without knowledge of the chaos keys because they
are embedded into high-dimensional chaotic spaces (Ohtsubo 2002b).

First, we show the basic idea of analog chaos communications. Figure 13.1 shows
the model for analog chaos communication systems. The basics of the technique is
chaos synchronization between two nonlinear systems, transmitter and receiver, as
already noted. A message with small amplitude (compared with the chaotic variations
of the transmitter output) is embedded into a chaotic carrier in the transmitter. The
chaotic carrier with the message is sent to the receiver through the communication
channel. In the receiver, the system only synchronizes to the chaotic signal from
the transmitter. Then, the message is decoded by subtracting the receiver output
from the transmitted signal. If the amplitude of the message is small enough, we can
achieve successful chaos synchronization even if the transmission signal includes the
perturbation (message) to the chaotic signal. However, small signal approximation
is not always necessary. For example, a message may be comparable with chaotic
variations in the chaos modulation (CMO) technique as discussed later.
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Fig. 13.1 General concept of chaos synchronization with analog data encryption

Chaotic data communications using laser systems are categorized into three
classes depending on the techniques of message encoding and decoding (Ohtsubo
2002a,b; Liu et al. 2002b; Ohtsubo and Davis 2005). They are chaos masking (CMA),
CMO, and chaos shift keying (CSK). Each method can be mathematically formulated
by laser rate equations in transmitter and receiver lasers and the dynamic behaviors
of the systems can be described by these rate equations. Even for optical communi-
cations, we can also generate chaotic oscillations from nonlinear electronic circuits
and transmit a chaotic signal converted by optoelectronic devices through optical
channels. However, the carrier of communications is light and laser chaos is best
suited for such purposes. Therefore, many systems using chaos of various laser sys-
tems have been proposed for chaos synchronization and communications. In spite of
existing work, we still need extensive studies about many subjects to put the systems
into practical use, for example, the degree of security, the accuracy of synchroniza-
tion for parameter mismatches between transmitter and receiver systems, robustness
of communications, and other things.

13.1.2 Chaos Masking

Following the proposal of chaos synchronization in nonlinear systems, (Pecora and
Carroll 1991; Carroll and Pecora 1991) pointed out the possibility of secure com-
munications based on chaos synchronization. They used electronic circuits to realize
Lorenz chaos (see Appendix A.4). In their method, a chaotic signal (variable x) in a
transmitter system is sent to a receiver system as a synchronous signal. At the same
time, a chaotic variable z in the transmitter with a small message m was sent to
the receiver and chaos synchronization between the transmitter and receiver systems
could be achieved. The receiver system consisted of a subsystem of the variables y
and z. After subtracting the synchronized signal z′ in the receiver from the transmit-
ted signal z +m, the message was successfully decoded. The technique is essentially
categorized into the method of CMA. However, two different channels were required
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Fig. 13.2 General schemes of optical communications in analog chaotic systems. Models of a
chaos masking (CMA), b chaos modulation (CMO), and c chaos shift keying (CSK)

for the data transmission in their method. Cuomo et al. (1993) proposed a method
of chaotic communication using a single transmission channel for the same Lorenz
system as that of Pecora and Carroll.

In a laser system, we cannot divide the system into subsystems as shown in
Appendix A.4. Therefore, a fraction of a chaotic laser output power from a transmitter
is sent to a receiver laser through a single communication channel. Figure 13.2 shows
the general three schemes of optical communications in analog chaotic systems.
Figure 13.2a shows the system of CMA, where a small message m(t) is embedded
into a chaotic carrier x(t) in a transmitter and, then, the signal of x(t)+ m(t) is sent
to a receiver. The receiver system is the same as that of the transmitter and the two
systems are operating at the same parameter values. Only the chaotic signal of x(t)
is reproduced in the receiver system if the amplitude of the message is small enough.
Then, the message m(t) is decoded by subtracting the receiver output x(t) from the
transmission signal x(t) + m(t). To hide a message into chaotic carriers securely
(namely, mask the message) and to reproduce good quality of a decoded message,
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the amplitude of the message must be sufficiently small compared with the averaged
chaotic carrier signal. Usually, the fraction is less than 1 % of the average chaotic
power.

13.1.3 Chaos Modulation

In the method of CMO shown in Fig. 13.2b, both a chaotic carrier and a message con-
form a new chaotic oscillation in the nonlinear system (Liu et al. 2001a, 2002b; Oht-
subo and Davis 2005). Therefore, a message embedded into the chaotic carrier may
not be small. The transmitter and receiver systems can be described by the equivalent
mathematical differential equations. Therefore, complete chaos synchronization is
achieved in the system and an excellent synchronous signal can be obtained in the
receiver output. The method resembles CMA, however CMO is essentially a differ-
ent technique from CMA. As shown in Fig. 13.2b, a message is mixed with a chaotic
carrier in the nonlinear oscillator and the two signals conform a new chaotic state
different from the original one. In CMO, a delayed feedback system is usually used
as a chaotic generator. The new chaotic signal is given by x(t +τ) = f (x(t)+m(t))
after the delay time τ , where f is the nonlinear function of the system. This new
signal together with the message x(t +τ)+m(t +τ) is sent to the receiver. Since the
transmitter and the receiver are the same nonlinear systems, the chaotic oscillation
x(t + τ) = f (x(t) + m(t)) is exactly reproduced in the receiver system as chaos
synchronization. By subtracting the synchronized chaotic signal x(t + τ) from the
transmitted signal x(t + τ)+ m(t + τ), we can decode the message. Sometimes, the
message is decoded by dividing the transmitted signal by the synchronized chaotic
signal in the receiver. From the point-of-view of encoding and decoding message,
the method of CMO has no restriction on the magnitude of the message as a secure
communication, since both the chaotic carrier and the message conform new chaotic
states in the nonlinear systems. However, in the optics case, the message is usually
decoded as an intensity S(t) = |E(t)|2. Therefore, the amplitude of the message
must be small enough when we use the ordinary message decoding technique. Fur-
thermore, the degree of security for data transmissions becomes worse when the
signal level of a message is large. Therefore, the amplitude of a message in CMO
should also be small.

13.1.4 Chaos Shift Keying

The signal shift keying technique, which is frequently used in ordinary communi-
cation systems, is also applicable to chaotic data transmissions. Figure 13.2c is an
example of such system diagrams. In CSK, two chaotic states x1(t) and x2(t) are
generated in a transmitter system. The switching itself to send either chaotic state is
a message m(t). In the receiver system, each state x1(t) or x2(t) is detected by the
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technique of chaos synchronization. Therefore, two sets of chaotic generators are
usually prepared both for the transmitter and the receiver. However, the difference
between two chaotic states in the CSK system must be very small, since the message
can be easily estimated from the attractors when the difference of chaotic oscillations
between the two states is too large. In chaos synchronization in nonlinear systems,
the time required for the synchronization between receiver and transmitter is finite
for the switching of chaotic states. Therefore, we must take into account the transient
and finite response of signals for practical use of the systems.

13.1.5 Chaotic Data Communications in Laser Systems

Shortly after the proposal of chaos synchronization by Pecora and Carroll, Colet
and Roy (1994) demonstrated chaos synchronization in laser systems using loss
modulated solid-state lasers by numerical simulations and predicted the possibility
of chaotic communications based on such nonlinear systems. They showed chaotic
data transmission of a binary bit-sequence with a rate of 100 kbps in the system.
VanWiggeren and Roy (1998a,b) demonstrated data transmission for secure com-
munications based on CMO using laser systems. They proposed a ring fiber laser
system with an optical feedback loop (delay loop) as a chaotic generator. A message
to be transmitted was put into the feedback loop as a modulation, then a new chaotic
oscillation was produced in the feedback system. They successfully demonstrated
data transmission higher than a bit rate of 100 Mbps. Goedgebuer et al. (1998) and
Larger et al. (1998) also reported chaotic data transmission based on optoelectronic
feedback using wavelength-to-current conversion systems in semiconductor lasers.
Their method was also categorized into CMO. Other CMO systems were also pro-
posed by using laser systems (Luo et al. 2000; Abarbanel et al. 2001; Liu et al.
2001c; Tang et al. 2001). Tang and Liu (2001) experimentally demonstrated data
transmission of a pseudo-random binary bit-sequence with a 2.5 Gbps non-return-
to-zero (NRZ) signal corresponding to the OC-48 standard bit rate in optoelectronic
feedback semiconductor laser systems.

After the demonstration of chaotic communications based on CMO, the method
of CMA was widely studied theoretically and experimentally because of the ease
of implementation in semiconductor laser systems (Mirasso et al. 1996; Sánchez-
Díaz et al. 1999; Sivaprakasam and Shore 1999, 2000a,b; White and Moloney 1999;
Jones et al. 2000; Rogister et al. 2001). Annovazzi-Lodi et al. (1996, 1997) proposed
a method of CSK using semiconductor lasers with optical feedback. Also studies on
chaotic communications based on CSK in various laser systems have been reported
(Liu and Davis 2001; Davis et al. 2001; Mirasso et al. 2002). Almost all these systems
used chaotic oscillations in class B lasers, such as solid-state lasers, fiber lasers,
and semiconductor lasers. In chaotic laser communications, the effects of optical
feedback, optical injection from a different laser, and optoelectronic feedback have
been frequently used to generate chaotic signals.
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Liu et al. (2002b) investigated three configurations of systems using semi-
conductor lasers (optical injection-locking, optical feedback, and optoelectronic
feedback systems) and compared the performances of data transmissions for three
different techniques (CMA, CMO, and CSK). As a result, the optoelectronic feed-
back system with CMO showed excellent performance for data transmissions. As
discussed later, chaotic carrier frequency, which is closely related to the relaxation
oscillation of the solitary laser, is an important measure of the capability of data
transmissions and semiconductor lasers with high frequency response are indispens-
able as high-speed chaotic generators for that purpose. Distributed feedback (DFB)
lasers of near infrared wavelength oscillations are frequently used for chaotic laser
communications, since they are suitable for chaotic light sources of ordinary opti-
cal communication systems with high frequency response. Vertical-cavity surface-
emitting lasers (VCSELs) are also promising devices for future semiconductor lasers
and also chaotic lasers. Other lasers such as MQW lasers with visible oscillations
may be used for chaotic light sources for short-range communications. However, we
assume edge-emitting lasers as chaotic generators in the following. Even if device
structures are different from each other, the system that is described by the same laser
rate equations shows the same dynamics of chaotic oscillations as discussed earlier.

As stated in Chap. 12, there are two types of mechanisms of chaos synchronization;
one is complete chaos synchronization and the other is synchronization of chaotic
oscillation by optical injection locking and amplification. In a delay differential
system, there is a solution for complete chaos synchronization where transmitter and
receiver lasers can be described by mathematically identical forms of the equations.
On the other hand, we can expect synchronization of chaotic oscillations based on
the injection-locking phenomenon in nonlinear amplifying systems in the chaotic
transmitter and receiver lasers. We can use both systems for secure communications
based on chaos synchronization, although the degree of security is different in the
two schemes.

13.2 Cryptographic Applications in Optical Feedback Systems

13.2.1 Chaotic Communications in Optical Feedback Systems

In this section, we focus on chaotic secure communications using systems of semi-
conductor lasers with optical feedback. Sánchez-Díaz et al. (1999) numerically
studied chaotic communications based on CMA in the systems and demonstrated
data transmissions of a bit rate of 4 Gbps. In their method, a direct modulation to
the injection current in a transmitter semiconductor laser was used as the message
encoding, therefore the technique was in principle CMO rather than CMA. How-
ever, it is assumed to be CMA as long as the modulation amplitude of a message is

http://dx.doi.org/10.1007/978-3-642-30147-6_12


470 13 Chaotic Communications in Semiconductor Lasers

CMOCSK CMA

TLD RLD

Message encoding

Decoded
message

m(t) m(t) m(t)

m(t)

Fig. 13.3 Schematic diagram of chaotic communications in semiconductor lasers with optical
feedback. m(t) is a message signal to be embedded. The position for each message encoding
scheme is shown in the figure. The solid lines are optical connections and the broken lines are
electronic connections

very small. Annovazzi-Lodi et al. (1996) proposed a CSK system in semiconductor
lasers with optical feedback using systems consisting of a single chaotic transmit-
ter and two chaotic receivers. Mirasso et al. (2002) also proposed a CSK system
using a single chaotic generator of a semiconductor laser with optical feedback both
for a transmitter and a receiver. They numerically demonstrated data transmissions
of a bit rate of 2 Gbps. The technique is called ON/OFF CSK. A lot of theoretical
and numerical studies on chaotic data transmissions and communications have been
reported in semiconductor lasers with optical feedback. However, only a few stud-
ies have been published for experimental data transmission of binary messages in
optical feedback systems with bit rate over gigabit-per-second (Argyris et al. 2005).
Also few theoretical and experimental studies have been reported for CMO in sys-
tems of semiconductor lasers with optical feedback (Liu et al. 2001c). A system of
a semiconductor laser with optical feedback has a merit for its simplicity, especially
in CMA and CSK. However, we need extra devices for the message modulation in
CMO, such as electro-optic (EO) modulators.

Using a chaotic generator of a semiconductor laser with optical feedback, we
formulate the rate equations for transmitter and receiver lasers. Figure 13.3 shows the
schematic diagram of chaotic communications in semiconductor lasers with optical
feedback. Embedding a message into the transmitter system, the transmitter can be
modeled by the following coupled equations for the complex field E and the carrier
density n, according to the configurations of unidirectionally coupled semiconductor
lasers with optical feedback (Ohtsubo 2002a; Liu et al. 2002b):

dET(t)

dt
= 1

2
(1 − iαT)Gn,T{nT(t)− nth,T}ET(t)

+ κT

τin,T
ET(t − τT) exp(iω0,TτT)+ ηCMOmCMO(t) (13.1)
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dnT(t)

dt
= JT

ed
{1 + ηCSKmCSK(t)}

− nT(t)

τs,T
− Gn,T{nT(t)− n0,T}|ET(t)|2 (13.2)

whereas the receiver driven by the transmitted signal can be described by

dER(t)

dt
= 1

2
Gn,R(1 − iαR){nR(t)− nth,R}ER(t)

+ κR

τin,R
ER(t − τR) exp(iω0,RτR)

+ κcp

τin,R
ET(t − τc) exp(iω0,Tτc − i�ωt)

+ ηCMAmCMA(t − τc)+ ηCMOmCMO(t − τc) (13.3)

dnR(t)

dt
= JR

ed
− nR(t)

τs,R
− Gn,R{nR(t)− n0,R}|ER(t)|2 (13.4)

where �ω = ω0,T − ω0,R, κcp is the coupling coefficient of light from the trans-
mitter to the receiver, mCMA(t), mCMO(t), and mCSK(t) are the message sequences
corresponding to CMA, CMO, and CSK systems, respectively, and ηCMA, ηCMO,
and ηCSK are the actual modulation coefficients for each system. For example, when
we consider a chaotic communication system with CMA, we put ηCMA �= 0, and
ηCMO = ηCSK = 0. The modulation depth of the message in chaotic secure commu-
nications is generally very small so as not to disturb the chaotic attractors. In actual
systems, the perturbation due to the message encoding is not for amplitude but for
optical intensity, except for the case of injection current modulation. However, we
can approximately assume amplitude perturbation as far as it is very small compared
with the average chaotic amplitudes. Otherwise, we could formulate rate equations
for intensity perturbations for the numerical simulations.

As can be easily recognized from (13.1)–(13.4), there is a condition where the
rate equations in the transmitter are mathematically identical to those in the receiver
in a CMO system. Thus, complete chaos synchronization is performed in this sys-
tem. On the other hand, for the other cases (CMA and CSK systems), a message
always behaves as a small perturbation to each chaotic system. Therefore, the mod-
ulation coefficients ηCMA and ηCSK must be small enough to achieve good chaos
synchronization. They should be usually less than 1 % of the average of the chaotic
fluctuations.

13.2.2 Chaos Masking in Optical Feedback Systems

In the following, we describe the particular technique for each modulation scheme in
optical feedback systems. In CMA, a small message to be sent is added to a chaotic
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carrier from the transmitter laser. The system under consideration is the same as in
Fig. 13.2a. In CMA, we set ηCMA �= 0 and ηCMO = ηCSK = 0 in (13.1)–(13.4). Since
there is a message term on the right hand side of the receiver Eq. (13.3), complete
chaos synchronization is not realized in this system in a strict sense. However, we can
approximately observe complete chaos synchronization as long as the modulation
depth of the message is small enough. The accuracy of chaos synchronization depends
on the parameter mismatches for the chaos keys. For example, chaos synchronization
with high accuracy is achieved when the total light input to the receiver laser both
from the external reflector and the transmitter laser is almost equal to the amount of
external feedback in the transmitter.

In spite of the presence of the perturbation for a message in a transmitted signal,
only the chaotic carrier is reproduced in the receiver output in CMA. This phe-
nomenon is known as chaos-pass-filtering. This fact is verified by numerical and
experimental studies (Ohtsubo 2002b). The phenomenon of chaos-pass-filtering in
nonlinear systems is not obvious and needs some explanation. The origin of chaos-
pass filtering will be discussed in the following subsection. A small message is also
considered as a perturbation for a chaotic system like noises in the system. It seems
that noises are discriminated from intrinsic chaotic dynamics induced in the nonlin-
ear system. As far as perturbation in a system is small, original chaotic dynamics is
preserved in the transmitted signal. As is easily understood, the message in CMA is
decoded by subtracting the receiver output from the transmitted signal of the chaotic
carrier together with the message. The accuracy of the decoding becomes worse
when the modulation depth of the message increases, though it depends on the syn-
chronization schemes (complete or optical injection-locking regime). Further, the
security of data transmissions is degraded with the increase of the modulation depth,
since the message may be directly visible in the transmitted signal.

In CMA, a message is added to a chaotic carrier generated from a transmitter.
For example, a chaotic carrier is modulated through an EO modulator, which is
an intensity modulation to the chaotic carrier. However, an alternative method is
frequently used for encoding a message. A message is simply added to the bias
injection current and it is an easier way to modulate intensities in semiconductor
lasers. Strictly speaking, it is a technique of CMO rather than CMA. However, it
reduces to the method of CMA when the level of a message is small enough. Indeed,
a lot of theoretical and experimental work has been published based on the same
techniques of injection current modulation as message encoding in the system.

Before showing the results for data transmissions and decoding of messages in
CMA, the unique phenomenon of chaos-pass-filtering is discussed. Figure 13.4 shows
an experimental example for chaos synchronization when a message is embedded
into the transmitter signal (Kusumoto and Ohtsubo 2002). The message is added to
a chaotic carrier as an injection current modulation in the transmitter laser and it is a
sinusoidal wave with a frequency of 1.5 GHz. The relaxation oscillation frequency of
the solitary laser is about 4 GHz. The two chaotic waveforms look the same as shown
in Fig. 13.4a and they are synchronized with each other in spite of the presence of
the message. The synchronization is also confirmed by the correlation plot. Even
in the presence of the message in the transmitter laser, the correlation coefficient
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Fig. 13.4 Chaos-pass-
filtering effect. a Waveforms
of transmitted signal and
receiver output in a closed-
loop system of semiconductor
lasers with optical feedback.
A message of a sinusoidal
wave of a frequency of
1.5 GHz with a modulation
depth of −14 dB is included
in the transmitter signal.
b Corresponding rf spectra
to a. The synchronization is
based on an optical injection-
locking scheme
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between the two laser outputs is 0.86, which is high enough for message decoding
in chaotic communications based on chaos synchronization. Figure 13.4b shows the
rf spectra corresponding to the waveforms in Fig. 13.4a. Besides the broad spectral
peaks of the external cavity mode and its higher harmonics, a sharp spectral peak
for the message of 1.5 GHz is clearly visible in the transmitter spectrum. On the
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Fig. 13.5 Message decoding
for signals in Fig. 13.4a with
a narrow band-pass filter of
±100 MHz centered at a mes-
sage frequency of 1.5 GHz.
Decoded message (upper
trace) and transmitter (middle
trace) and receiver (bottom
trace) outputs

other hand, the spectrum bears resemblance to that of the transmitter but no distinct
spectral component for the message is present in the receiver spectrum due to a chaos-
pass-filtering effect. As a result, we can extract the message simply by subtracting
the reproduced chaotic signal in the receiver laser from the transmitted signal, thus
chaotic communication is realized. The receiver laser generates only the intrinsic
chaotic oscillations the same as that from the transmitter if the message embedded
into the chaotic carrier is small enough. The effect of the insensitivity for small
external perturbations to chaos can be considered as a different phenomenon such
as the sensitivity of chaos for initial conditions. Chaos seems to distinguish external
perturbations and the system nonlinearity.

Looking at the spectrum of the transmitted signal in Fig. 13.4, the question may
arise that the message may be extracted by filtering the waveform with a narrow
band-pass filter at the message frequency. Figure 13.5 shows the filtered waveforms
for the decoded message as well as the transmitted signal and the receiver output.
The waveforms are the results for a narrow band-pass filter of ±100 MHz centered
at the message frequency of 1.5 GHz. The decoded message is a simple subtraction of
the receiver output from that to the transmitter. The decoded message is reproduced
as a good sinusoidal oscillation, which is almost the same signal as the original
message. However, the filtered waveforms for the transmitted signal and the receiver
output are not good harmonic signals and they are even not in-phase with the message
signal. The degree of the security of communications must be evaluated for actual
data of binary bit-sequences. However, the results obtained in Fig. 13.5 show some
of evidence for the security in the present systems.

As an example of a signal transmission of binary data in CMA, numerical results
by Sánchez-Díaz et al. (1999) are shown. They conducted data transmissions of
pseudo-random bit-sequences of a 4 Gbps NRZ signal in a closed-loop system. The
message is a small perturbation of 0.5 % of an averaged chaotic oscillation in the
transmitter and it is fed to the injection current to the laser as a direct modula-
tion. Since the perturbation is sufficiently small, the method is considered as CMA.
They also assumed the nonlinear effect of signal transmissions through optical fibers
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between the transmitter and receiver systems. Figure 13.6 shows their results. In their
method, the decoded signal is obtained by the comparison of the transmitted signal
Etrans(t) (∝ ET(t)) with the decoded one ER(t) as

m′(t) =
√

|Etrans(t)|2
|ER|2 − 1 (13.5)

The fidelity of the chaotic signal after the transmission through the optical fiber may
be degraded due to a nonlinear dispersion effect in the fiber. The data transmission in
optical fiber is described by the following nonlinear Schrödinger equation (Sánchez-
Díaz et al. 1999):

i
∂E(z,T)

∂z
= − i

2
α f E(z, T )+ 1

2
β2
∂2 E(z, T )

∂T 2

− γnon|E(z, T )|2 E(z, T ) (13.6)

where E(z, T ) is the slowly varying complex field, z is the propagation distance,
and T is the time measured in the reference frame moving at the group velocity.
γnon is the nonlinear parameter that takes into account the optical Kerr effect, α f is
the fiber loss, and β2 is the second-order dispersion parameter of optical fiber. They
also used a low-pass Fabry–Perot filter with a bandwidth of 5 GHz to obtain the final
decoded message of Fig. 13.6f, though a higher order Butterworth electronic filter is
usually used. Excellent chaos synchronization was attained in spite of the effect of
nonlinear optical fiber transmission through 50 km and the message was successfully
reconstructed.

The quality of the reproduced chaotic signal and, accordingly, the decoded mes-
sage in the receiver are degraded by the transmission through the nonlinear optical
fiber. The system performance at the modulation of 2 Gbps is displayed in Fig. 13.7
for different propagation length in optical fiber (Sánchez-Díaz et al. 1999). Whether
the message is included in the chaotic carrier or not, the synchronization becomes
worse for a long fiber transmission and the quality of the decoding becomes worse
accordingly. The degradation comes from both the dispersion and nonlinearities of
optical fiber. In actual optical fiber transmission, there is a loss of light through the
optical fiber. Therefore, an in-line amplifier is placed at a certain distance in practi-
cal optical fiber communications. This may cause further degradation of chaotic
signals due to the enhancement of the nonlinear effects after the amplification.
In-line amplifiers would aggravate the negative effect of the fiber nonlinearities on
the synchronization.

13.2.3 Chaos Modulation in Optical Feedback Systems

In CMO, we put ηCMO �= 0 and ηCMA = ηCSK = 0 in (13.1)–(13.4). A message is
added within the transmitter, for example in the feedback loop in Fig. 12.4a, and the

http://dx.doi.org/10.1007/978-3-642-30147-6_12
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Fig. 13.6 Chaotic communications based on CMA in semiconductor lasers with optical feedback.
a Chaotic oscillation from transmitter, b binary bit-sequence for data transmission, c chaotic wave-
form together with message, d synchronized chaotic oscillation in receiver after data transmission
through a nonlinear optical fiber of 50 km, e decoded signal, and f low-pass filtered waveform for
decoded signal [after Sánchez-Díaz et al. (1999); © 1999 IEEE]
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Fig. 13.7 Signal recovery for fiber transmissions of 50, 100, 150, and 200 km from a to d, respec-
tively. The left column shows the correlation plots between the chaotic carrier in the transmitter
without a message and the receiver output at synchronization. The middle shows the corresponding
eye patterns. The right shows the decoded messages after filtering [after Sánchez-Díaz et al. (1999);
© 1999 IEEE]

transmission signal of E(t + τ) = f (E(t)+ mCMO(t)) is generated and transmitted
to the receiver. The original chaotic signal together with the message conforms a new
chaotic signal and, therefore, the message may essentially have a large amplitude.
However, care must be taken when embedding a large message signal into chaotic
oscillations, since the message itself may explicitly appear in the transmission signal
for the worst case. For this reason, a message with small amplitude is usually used
in CMO. The method of CMO is approximately equal to CMA when an encoding
message is small enough.

We present a numerical example of the CMO method. This scheme requires
the achievement of complete chaos synchronization and hence is usually difficult
to realize by experiment (Liu et al. 2002a). The possibility of transmission of a
NRZ pseudo-random binary sequence at 2.5 Gbps using CMO was demonstrated
by numerical simulation. Figure 13.8 shows the results (Liu et al. 2001c). In this
example, it is assumed that an EO modulator is inserted into the optical feedback
loop, and is used to modulate the feedback signal as mCMO(t) = 1 + bm for “1” and
mCMO(t) = 1 − bm or “0”, where bm (bm < 1) is the modulation depth. Figure 13.8a
shows the dependence of the synchronization error on the amplitude of the embedded
signal bm , and Fig. 13.8b is the dependence of the bit error rate on the frequency of
the detuning between the transmitter and receiver lasers, both with noise added
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Fig. 13.8 Calculated synchronization error and bit error rate (BER) for normalized dimensionless
bias injection currents of 0.67, normalized feedback and injection ratios of 0.01. a Synchronization
error versus modulation amplitude bm . b BER versus frequency detuning at a modulation factor of
bm = 0.15. Black dots no noise, triangles noise at SNR = 40 dB

(triangles) and without noise (circles). The results show good synchronization for
a wide range of relative modulation amplitudes and sensitive dependence of the
BER on the detuning, which are strong features of the CMO method using complete
synchronization.

13.2.4 Chaos Shift Keying in Optical Feedback Systems

A set of chaotic generators is usually required both for transmitter and receiver
systems in CSK. Indeed, chaotic signals from two transmitters are switched accord-
ing to the binary value of 0 or 1 of a message sequence and they are sent to the
two receivers. The receivers synchronize to the corresponding transmitters and the
decoding is done by the synchronization. Annovazzi-Lodi et al. (1997) used a single
transmitter consisting of a semiconductor laser with optical feedback in CSK instead
of two transmitters. A NRZ binary message is put into the injection current of the laser
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Fig. 13.9 Square message
to be transmitted in a CSK
system and error signal from
one of the receiver outputs.
The system has a single
transmitter of a semiconductor
laser with optical feedback
and the receiver consists of
two optical feedback systems
[after Annovazzi-Lodi et al.
(1997); © 1997 IEEE]
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at a certain bias point. According to the message, two chaotic states are generated
and they are sent to the receiver. The difference between the two chaotic attractors
must be sufficiently small not to be distinguished easily for secure communications.
The receiver is a set of chaotic generators and they have the same characteristics
except for the injection currents. The injection currents are set at either the high or
low value of the binary message. Then, each receiver synchronizes with the corre-
sponding chaotic state and synchronous and asynchronous (chaotic bursts) signals
are obtained for the time sequence from comparison between the transmitted signal
and the receiver output. Figure 13.9 shows one of the receiver outputs in the CSK
system. The square waveform is a message to be transmitted and the error signal is
the receiver output. The other receiver laser outputs the compensating signal to the
waveform in Fig. 13.9. Then, the message is decoded from these two signals.

When two nonlinear chaotic systems synchronize with each other, the receiver
does not respond immediately after it receives a chaotic signal from the transmitter.
Usually, the receiver outputs the synchronous signal after a certain transient time. In a
CSK system, the chaotic oscillation switches from one state to the other according to
the ON/OFF signals. Therefore, we must consider the synchronization recovery time
after the switching of signals. This limits the efficiency of the possible bit rate of the
data transmission. This synchronization recovery time depends on each system con-
figuration (open- or close-loop system) and the device and system parameters. The
typical frequency of a chaotic carrier in semiconductor lasers with optical feedback
is of the order of the relaxation oscillation frequency at the solitary oscillation and
a message frequency must be less than this. The time required for the synchroniza-
tion in CSK is from nano-second to several nano-seconds depending on the system
parameters (Vicente et al. 2002). On the other hand, it is possible for CMA and
CMO methods to achieve higher data transmissions than the relaxation oscillation
frequency, since chaotic oscillations in the systems have broadband characteristics
over the relaxation oscillations. In the CSK discussed here, the transmitter laser is
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directly modulated by a message through the injection current, so that it looks like a
method of CMO. However, the original chaotic attractor is not affected by the modu-
lation. It is distinguished from CMO as long as the amplitude of the message is small
(less than 1 % of the averaged chaotic oscillation). The synchronization recovery
time will be discussed in Sect. 13.9.

13.2.5 Chaotic Communications in Incoherent Optical
Feedback Systems

Incoherent optical feedback systems are also used for chaotic communications based
on chaos synchronization as discussed in the previous chapter. In the systems, the
laser output power from the transmitter is coupled with the carrier density of the
receiver laser. Therefore, we do not need to consider the optical phase and tune
the optical frequencies between the transmitter and receiver lasers. As a result, we
can easily achieve chaos synchronization. However, the grade of the security in the
communications is deteriorated, since one of the keys for secure chaotic communi-
cations is eliminated. Nevertheless, the output generated by a semiconductor laser
with incoherent optical feedback is a higher dimensional chaos and the system has
enough complexity for secure communications. It is still not easy to reproduce the
transmitter chaos in the receiver without knowing the chaos parameters in the sys-
tem. Rogister et al. (2001) conducted chaotic data transmission based on CSK using
incoherent optical feedback systems by numerical simulations. The synchronization
system is the same as in Sect. 12.3.5. They succeeded in the data transmission of
250 Mbps pseudo-random-bit sequences with excellent quality using ON/OFF CSK.
The level of the message was only 0.3 % of the bias injection level and the secure
communication was achieved by hiding the data behind the chaotic signal.

13.2.6 Chaos Pass Filtering Effects

The effect of chaos-pass filtering is essential to attain successful secure communica-
tions by hiding messages behind chaotic signals in chaos synchronization systems.
In accordance with the effect, the chaotic signal, which is transmitted from the trans-
mitter laser, is only reproduced by the receiver laser even if the transmitted signal
includes a message. Thus, the message is correctly decoded by subtracting the chaos
signal of the receiver laser from the transmitted signal under appropriate conditions
for the synchronization system. However, the above expression of ‘chaotic signal
is only reproduced’ may not be correct. As will be discussed later, the effect of
the chaos-pass filtering is that the main component of the chaotic signal from the
transmitter laser is closely copied in the receiver laser and the chaos transmittance is
usually equal to or larger than unity, while the transmittance of the message, whose

http://dx.doi.org/10.1007/978-3-642-30147-6_12
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Fig. 13.10 Transfer functions in a chaos synchronization system. The injection ratio from the
transmitter to the receiver laser is 50 %. The transmitting signal from the transmitter is a chaotic
signal together with three sinusoidal messages with modulation frequencies of 0.2, 1.0, and 5.0 GHz.
The modulation indices are 0.05, 0.05, and 0.10, respectively. a Power spectra for transmitter signal
and receiver output. Solid line transmitter, and gray line receiver. The receiver spectrum is vertically
shifted by −15 dB. b Transfer function from the transmitter to the receiver. Solid line transfer gain,
and gray line transfer function for sinusoidal modulation only (modulation index is 0.05). c Phase
shift between the transmitter signal and the receiver output. Solid line phase shift between the
transmitter signal and the receiver output, and gray line phase shift for sinusoidal modulation only
(modulation index is 0.05) [after Murakami and Shore (2005); © 2005 APS]

frequency component is less than the relaxation oscillation, is much less than unity.
Several studies for the effects of chaos-pass filtering have been reported both theo-
retically and experimentally (Uchida et al. 2003b; Paul et al. 2004; Murakami and
Shore 2005, 2006). Especially, chaos-pass filtering plays a crucial role in chaotic
masking systems. In the following, we discuss the effect of chaos-pass filtering in
semiconductor lasers with optical feedback.

Consider a CMA system in semiconductor laser with optical feedback described
by (13.1)–(13.4) and assume three different sinusoidal modulations for the injection
current JT in the transmitter laser as messages. Figure 13.10 shows the calculated
transfer function between the transmitted signal and the receiver output. The chaos
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synchronization system assumed here is a type of open-loop and the synchronization
is generalized one. To show the effect of chaos-pass filtering explicitly, the ratio of
the optical injection from the transmitter to the receiver laser is as large as 50 %. A
transmission rate of several percents from the transmitter to the receiver is sufficient
to attain chaos synchronization in the laser system and, indeed, such a small rate
is usually used in a synchronization system using chaotic semiconductor lasers.
The parameters of the solitary laser without optical feedback are J = 1.3Jth and
νR = 2.43 GHz. The optical delay in the transmitter laser is set to be τ = 1 ns
and the frequency detuning between the transmitter and receiver lasers is assumed
to be −0.1 GHz. Figure 13.10a shows the power spectra for the transmitter signal
including the messages and the synchronized receiver output. The power spectrum
of the receiver laser is vertically shifted by −15 dB to show clearly the difference. The
frequency component of the chaotic signal is concentrated from 1 to 10 GHz. In the
both spectra, embedded spectral peaks of sinusoidal signals are clearly seen. From
the closer look at the two spectra, the spectra in the lower frequency components
in the receiver are largely suppressed. On the other hand, the signal higher than the
relaxation oscillation frequency is much enhanced in the receiver side.

Figure 13.10b shows the response ratio between the transmitter signal and receiver
output. Since the injection rate from the transmitter to the receiver is strong as much as
50 % in this case, the gain of the chaotic signal component in the receiver laser is much
lager than 0 dB. As for the message components, it is seen from the figure that the
transmission rates for the lower frequency components below the solitary relaxation
oscillation frequency are greatly decreased compared with the transmission gain of
the chaotic signal, while the transmission rate for the higher frequency component
is larger than unity. The gray line in the figure shows the transfer function from the
transmitter to the receiver laser for only sinusoidal modulation with a modulation
index of 5 % to the solitary transmitter laser. The crossover point of the chaotic gain
and the sinusoidal modulation response is exactly equal to the relaxation oscillation
frequency of the semiconductor laser at solitary oscillation. Figure 13.10c shows
the phase shift between the transmitter signal and the receiver laser. The solid line
represents the phase shift, which is calculated from the Fourier components of the
transmitter signal and the receiver output. There is no phase shift for the chaotic
transmittance, while the sinusoidal signals with lower frequency components have
a positive phase shift and the higher frequency component has a negative shift. The
gray line shows the phase shift for only sinusoidal modulation with a modulation
index of 5 % to the solitary transmitter laser, which corresponds to the gray line in
Fig. 13.10b. Again, the crossover point of the chaotic phase shift and the phase shift
for the sinusoidal modulation is exactly equal to the relaxation oscillation frequency.
It is noted that the phase shift becomes −π at the resonant frequency by the strong
optical injection from the transmitter to the receiver laser, when only a sinusoidal
modulation is transmitted (though the resonant frequency is 12.7 GHz in this case
and the frequency is out-of-scope in this graph).

As discussed above, the frequency components of chaotic signals concentrate at
and around the relaxation oscillation frequency and they typically range from 1 to
10 GHz in chaotic semiconductor lasers. Another interesting point is that the transfer
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function of a chaotic signal from the transmitter to the receiver is almost constant
for all the frequency range. On the other hand, the transfer function of a sinusoidal
signal has a frequency dependence. Namely, a sinusoidal signal has a small response
gain for lower frequency less than the relaxation oscillation, while a sinusoidal sig-
nal with higher frequency has a larger response gain than 0 dB. Thus, the difference
for the response gains between chaotic and sinusoidal signals is the origin of the
chaos-pass filtering effects. As another issue, the direct injection current modulation
for the transmitter laser as a message encryption deteriorates the performance of
chaos synchronization. Therefore, an external modulation for chaotic signals using
an EO modulator is frequently used. Uchida et al. (2003b) studied the effects of
chaos-pass filtering in a CMA system using semiconductor lasers with optical feed-
back, and obtained similar results for the response between the transmitter and the
receiver as discussed here. It is derived from the above discussion that chaotic carrier
frequency, which is limited by the resonant oscillation frequency of semiconductor
laser, must be much greater than a main message frequency to attain higher data-bit
transmission in chaotic semiconductor laser systems. Thus, the use of semiconduc-
tor lasers, which have high modulation bandwidth, is essential for massive chaotic
secure communications.

13.3 Cryptographic Applications in Optical Injection Systems

We can apply the systems of semiconductor lasers subjected to optical injection
discussed in Sect. 12.4 to chaotic communications. Figure 13.11 shows the schematic
diagram of the chaotic communications. Message encoding and decoding schemes
are the same as the systems of optical feedback in Fig. 13.3. For CMA, CMO, and
CSK, the equations for the transmitter laser are written by

dET(t)

dt
= 1

2
(1 − iαT)Gn,T{nT(t)− nth,T}ET(t)

+ κinj,T

τin.T
{1 + ηCMOmCMO(t)}ET(t) exp(−i�ωTt) (13.7)

dnT(t)

dt
= JT

ed
{1 + ηCSKmCSK(t)} − nR(t)

τs,R

− Gn,T{nT(t)− n0,T}|ET(t)|2 (13.8)

where�ω = ωinj,T −ω0,T is the frequency detuning between the injection laser and
the transmitter laser. Whereas the receiver driven by the transmitted signal can be
described by

http://dx.doi.org/10.1007/978-3-642-30147-6_12
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Fig. 13.11 Schematic diagram of chaotic communications in semiconductor lasers with optical
injections. m(t) is a message signal to be embedded. The position for each message encoding
scheme is shown in the figure. The solid lines are optical connections and the broken lines are
electronic connections

dER(t)

dt
= 1

2
(1 − iαR)Gn,R{nR(t)− nth,R}ER(t)

+ κinj,R

τin.R
ER(t) exp(−i�ωRt)

+ κcp

τin.R
{1 + ηCMOmCMO(t − τc)}ET(t − τc) exp(−i�ωT,Rt + iω0,Tτc)

+ ηCMAmCMA(t − τc) (13.9)

dnR(t)

dt
= JR

ed
− nR(t)

τs,R
− Gn,R{nR(t)− n0,R}|ER(t)|2 (13.10)

where �ωT,R = ω0,T − ω0,R is the angular frequency detuning between the trans-
mitter and receiver lasers. Optical modulations of messages (CMA and CMO) are
assumed to be applied to the complex fields, however EO modulators are usually
used as intensity modulations. We need some modifications of the above rate equa-
tions for the intensity modulations. Nevertheless, (13.7)–(13.10) are again a good
approximation for the optical injection systems as far as the modulation amplitude
is small enough.

Figure 13.12 presents a numerical example of chaotic communications in a system
of semiconductor lasers subjected to optical injection (Liu et al. 2001a). The figure
is a message transmission of a 2.5 Gbps signal based on CMO. In the transmitter
laser, a chaotic carrier is generated at the appropriate injection ratio and frequency
detuning in the optical injection configuration. A binary message is encoded into the
chaotic carrier. There are two schemes of chaotic modulations to the optical field in
CMO; additive modulation and multiplicative modulation. This case is for additive
modulation. After subtracting the receiver output from the transmitted signal and
low-pass filtering it (bottom of the figure), they obtained a decoded message with
good quality. The system of optical injection is also phase sensitive like the system
of coherent optical feedback (Heil et al. 2003a). We must pay attention to the optical
phase to achieve good quality of communications.
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Fig. 13.12 Numerical example of message transmission in semiconductor lasers with optical injec-
tion in CMO. The system is an open-loop and the message is a 2.5 Gbps signal. From top to bottom
transmitted signal including message, receiver output, decoded signal by subtraction of receiver
output from transmitted signal, and low-pass filtered signal for decoded message [after Liu et al.
(2001a); © 2001 IEEE]

13.4 Cryptographic Applications in Optoelectronic Systems

We here describe chaotic communications in semiconductor lasers with optoelec-
tronic feedback systems. The system is incoherent coupling and the light from the
laser is once detected by a photodetector. Then, the photocurrent is fed back into
the bias injection current of the laser. Therefore, noises originating from photons
are averaged out due to slow response of the carrier lifetime and high performance
for synchronization between the transmitter and receiver lasers can be expected.
A message is embedded into fast chaotic pulsation oscillations from sub-nanosecond
to -picosecond and high-speed chaotic data transmissions are also expected due to the
availability of high-speed electronic circuits. Figure 13.13 shows a model of chaotic
communication systems in semiconductor lasers with optoelectronic feedback. The
system can be described by only the photon number and the carrier density. A mes-
sage is directly added to the laser intensity or the bias injection current, which is
not the case for the systems of optical feedback and optical injection. The following
formulation can be widely used in real optoelectronic systems without modification.
For the transmitter, the rate equations read

dST(t)

dt
= Gn,T{nT(t)− nth,T}ST(t)+ Rsp,T (13.11)

dnT(t)

dt
= JT

ed
{1 + ηCSKmCSK(t)}{1 + sT(t)}

− nT(t)

τs,T
− Gn,T{nT(t)− n0,T}ST(t) (13.12)
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sT(t) = ξTST(t − τT)+ ηCMOmCMO(t − τT) (13.13)

When the system response is continuous, sT(t) is replaced by a continuous response
function in the same manner as in (12.68) as

yT(t) =
t∫

−∞
f (t ′ − t)sT(t

′)dt ′ (13.14)

whereas the receiver driven by the transmitted signal can be described by

dSR(t)

dt
= Gn,R{nR(t)− nth,R}SR(t)+ Rsp,R (13.15)

dnR(t)

dt
= JR

ed
{1 + sR(t)} − nR(t)

τs,R
− Gn,R{nR(t)− n0,R}SR(t) (13.16)

sR(t) = ξRSR(t − τR)+ ξcpST(t − τc)+ ηCMOmCMO(t − τc) (13.17)

Similarly, sR(t) is replaced by a continuous response function for a finite response
of the electronic feedback circuits.

Figure 13.14 shows the experimental results of chaotic communications in semi-
conductor lasers with optoelectronic feedback in CMO. The system is open-loop.
A message is a pseudo-random signal of an NRZ pulse sequence. The message is
embedded into the bias injection current with additive modulation. As discussed in
Sect. 12.5, open-loop configuration shows better quality of chaos synchronization
and modulation (Tang and Liu 2001; Liu et al. 2002b). Figure 13.14a shows the plot
of signals for data transmission and decoding. The decoded signal (the third signal
from the top) well reproduces the original message above the threshold level (dot-
ted line). From the time lag, it is recognized that the synchronization is a complete
type, although the time lag is compensated to compare the waveforms. Since chaotic
signals generated in semiconductor lasers with an optoelectronic feedback system
are pulse-like irregular oscillations, additive modulation is suited for CMO rather
than multiplicative modulation. Figure 13.14b shows the eye pattern for the decoded
message. A good quality of opened eyes is obtained.

13.5 Chaotic Communications in Mutually Coupled
Semiconductor Lasers

Mutually coupled two chaotic systems can be used for secure communications (Klein
et al. 2006; Vicente et al. 2007). Although it is not easy to perform directly secure data
transmissions and communications, this scheme, for example, allows one to negotiate
a key through a public channel as is discussed in the followings. We here consider

http://dx.doi.org/10.1007/978-3-642-30147-6_12
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a mutual coupling system described in Fig. 12.4c. The two lasers simultaneously
transmit respective data through a single transmission channel. Vicente et al. (2007)
proposed an asymmetry configuration of the mutual coupling system. In their system,
the two lasers have different optical feedback lengths of external reflectors. The two
lasers even synchronize developing a leader-laggard-type dynamics with one laser
following the other by the coupling delay. This symmetry breaking complicates
the simultaneous transmission of information in both directions. The type of chaos
synchronization in this system is complete in spite of the asymmetric configuration
and, moreover, the two lasers show a leader-laggard dynamics. Messages of “0”
and “1” are embedded to the lasers through the injection currents and the messages
are simultaneously transmitted to one laser to the other and vice versa. Based on
chaos synchronization in the system, they numerically obtained the difference of
the two messages. The proposed scheme is the system of simultaneously exchange
information between the two lasers by using a single communication channel.

Figure 13.15 shows a result of data transmissions through mutual chaotic commu-
nications (Vicente et al. 2007). Figure 13.15a is a pseudo-random digital message of
1 Gbps embedded into the injection current in one of the lasers, m1(t). The amplitude
of the message is 0.12Jth. Figure 13.15b is the message in the counterpart laser, m2(t).
Figure 13.15c is the expected subtraction of messages�m(t) = m1(t)−m2(t −�τ )
with a given time lag (�τ = 1 ns in this case). Figure 13.15d is the calculated inten-
sity difference �S after filtering with a fifth-order Butterworth filter with a cutoff
frequency of 0.8 GHz. Thus, one can successfully obtained the difference of the
embedded messages based on the mutual coupling system under appropriate syn-
chronization conditions. In this system, the maximum encoding rate depends on
the inverse of the resynchronization time after a bit arrives at one of the lasers. In
the numerical conditions, it is ∼0.3 ns. Consequently, a maximum bit rate of about
3 Gbps could be achieved.

http://dx.doi.org/10.1007/978-3-642-30147-6_12
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Fig. 13.14 Experimental
example of message transmis-
sion in semiconductor lasers
with optoelectronic feedback
in CMO. The system is an
open-loop using DFB lasers
at the wavelength of 1.30 µm
and the message is a 2.5 Gbps
signal. a From top to bottom
transmitted signal including
message, receiver output,
decoded filtered signal, and
original message [after Tang
and Liu (2001); © 2001 OSA].
b Eye pattern of the decoded
signal [after Liu et al. (2002b);
© 2002 IEEE]
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Next, we must discuss the security aspects of data transmissions in the mutual
coupling system, since both output powers from the two lasers can be accessible
from the same communication channel. Therefore, an eavesdropper could easily
monitor the difference of the messages. For the detected difference, a level of 1 in
the message difference would clearly indicate that at the proper time the bit asso-
ciated with one laser was a “1,” while the one sent by the other laser was a “0.”
A similar argument holds when the message difference is −1. Only when the mes-
sage difference is zero, which is the case for the coding of the same bit in both lasers,
the eavesdropper has no clue as to which are the bits that are being sent. Thus, the
mutual coupling configuration could be used to simultaneously negotiate a key for
secret data transmissions (Mislovaty et al. 2003). The sender and the receiver can
agree to discard those bits that are different from each other while accepting that the
key that is formed by the first N bits that coincide with each other. Thus, a key is
encrypted with the same level of security as in a unidirectional chaos communication
scheme.
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Fig. 13.15 Messages and decryption in mutual coupling semiconductor lasers. Messages from a
laser 1 (m1) and b laser 2 (m2). c Expected subtraction of messages with time compensation. d
Decrypted signal (�S) through a fifth-order Butterworth filter with a cutoff frequency of 0.8 GHz
[after Vicente et al. (2007); © 2007 OSA]

13.6 Chaotic Communications in Drive-Response Systems

In Sect. 12.8, we discussed the enhancement of the correlation in chaos synchroniza-
tion introducing a third laser as a common drive chaotic system to twin chaotic lasers
(transmitter and receiver lasers). We can expect high performance of chaotic com-
munications based on this method. In the following, we present numerical examples
of chaos synchronization in common chaos drive system to transmitter and receiver
systems. Annovazzi-Lodi et al. (2008, 2010a,b) proposed systems of optical injec-
tion discussed in Sect. 12.8 and optoelectronic driving. Here, we show an example
of optoelectronic driving system, in which the drive chaotic signal is once detected
by photodetectors and the photocurrents are fed to transmitter and receiver lasers as
a common chaotic driving signals (Annovazzi-Lodi et al. 2008). We assume chaotic
systems of semiconductor lasers with optical feedback both for the driving chaotic

http://dx.doi.org/10.1007/978-3-642-30147-6_12
http://dx.doi.org/10.1007/978-3-642-30147-6_12
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Fig. 13.16 Simulated message transmission in a Drive-Response systems. a Original message, b
transmitter light output without chaos and off drive signal, c transmission signal of chaotic oscillation
plus hidden message, and d decrypted message with drive signal. The signal, which is transmitted
on a 4.65 GHz carrier, is 100 Mbps. The Langevin noise terms of the lasers and shot noises terms
of photodetectors are taken into account [after Annovazzi-Lodi et al. (2008); © 2008 IEEE]

system and the twin response systems. The device parameters and the operating con-
ditions may be different between the driving system and the response systems. On
the other hand, in the response systems, the transmitter and the receiver should have
almost the same device parameters and operating conditions to obtain good chaos syn-
chronization between them. As a result, the quality of chaos synchronization between
the drive and response systems may not be high, while a good correlation between the
transmitter and receiver outputs can be attained due to the common chaotic driving.
A message embedding into the transmitter chaos is sent to the receiver. Thus, the
injection current to the laser is given by JT(t) = JT0 + JD(t)+ JM (t), where JT0 is
the constant bias injection current, JD(t) is the chaotic current from the driver, and
JM (t) is the current corresponding to the message. The transmitted signal is once
detected by a photodetector. The injection current to the receiver laser is given by
JR(t) = JR0 + JD(t), where JR0 is the constant bias injection current. Then, the
output from the receiver laser is subtracted from the transmitted signal and, finally,
the decrypted message can be obtained.

Figure 13.16 is a result of numerical simulation (Annovazzi-Lodi et al. 2008). The
delay times of optical feedback both in the drive and response systems are set to be
the same, however the characteristics of the drive laser are fairly different from those
of the response lasers. To represent the actual conditions of experiments, Langevin
noises of the lasers, shot noise of the detectors, and Johnson noise of the 50�
termination resistance are taken into account in the numerical simulations. Under the
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conditions, they obtained the correlation coefficient of 0.68 between the drive and
response outputs, while it is as high as 0.98 between the transmitter and receiver lasers
under the common chaos driving. The message shown in Fig. 13.16a is a pseudo-
random NRZ digital signal at 100 Mbps modulated by the carrier in amplitude with
100 % modulation depth. The level of the embedded message is 2.86 % of the bias
injection current of the transmitter laser. Figure 13.16b is the output power from
the transmitter laser without optical feedback and in the absence of chaotic driving
signal from the third laser. Since various noise sources are taken into account, the
observed output power from the laser would not be like the trace in Fig. 13.16a
but in Fig. 13.16b in real experiment. Figure 13.16c shows the transmission signal
including the transmitter chaos and the message and Fig. 13.16d is the decrypted
message through a band-pass filter with a 400 MHz bandwidth around the carrier
frequency. The decrypted message is almost equal to the time trace in Fig. 13.16b,
thus a high quality data reconstruction with secure chaotic encryption is attained
by the method of drive and response configurations. The system requires an extra
communication channels from the driver to the response systems. Annovazzi-Lodi
et al. proposed an application of the system for free-space broadcasting of the driving
chaotic signal and communications using a diffuser. Therefore, the method may be
useful as local signal scrambler in a small room communications. They also discussed
the effects of parameter mismatches for chaos synchronization and the quality of
message reconstructions in the systems.

13.7 Performance of Chaotic Communications

We have discussed chaotic communications for three message encryption schemes
(CMA, CMO, and CSK) in three different systems of semiconductor lasers (optical
feedback, optical injection, and optoelectronic feedback systems). Each scheme in
each system has merit and demerit for chaotic data transmissions. Liu et al. (2002b)
numerically compared the performances of chaos communications for these methods.
Figure 13.17 shows the results of the comparison of the performance for the three
systems of (a) optical feedback, (b) optical injection, and (c) optoelectronic feedback.
A message is a 10 Gbps pseudo-random pulse sequence. The relaxation oscillation
frequency of the laser assumed is set to be 12 GHz at the operating bias injection
current. Open-loop configurations are assumed for all the systems. For CMA and
CMO in optical feedback and optical injection systems, the ratio of the amplitude
for the encoding message to that of the chaotic amplitude is set at 0.05. For the
CSK system, the injection current is modulated as an ON/OFF modulation and the
corresponding modulation index to the optical field is taken to be the same as those
in CMA and CMO. At the modulation index of 0.05, signal-to-noise ratio (SNR)
of 30 dB has the channel noise at a level of an equivalent laser linewidth of �ν =
0.66 MHz. On the other hand, the modulation index is assumed to be 0.2 in the
optoelectronic feedback system.
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Fig. 13.17 Comparison of performance for chaotic communications in semiconductor laser systems
at a data transmission rate of 10 Gbps. a Optical feedback system, b optical injection system, and c
optoelectronic feedback system. All the systems are open-loop. From top to bottom in each figure:
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[after Liu et al. (2002b); © 2002 IEEE]

A finite response time is required for chaos synchronization in a receiver system
when each message is transmitted. In CSK, the chaotic state is always switched in
accordance with the binary message and the receiver cannot follow the ON/OFF
switching of the chaotic states. Thus, the performance of synchronization becomes
worse and one cannot recover the message for the worst case. The basis of chaotic
communications is that a message signal attached to the chaotic carrier, which is
very small in comparison with the size of the trajectory as a chaotic attractor, will be
averaged out and has almost no effect on the duplication of the chaotic trajectory. The
whole chaotic carrier waveform can then be reproduced very precisely through all
the local predictor functions. However, as already discussed, a message is essentially
a perturbation for the chaotic attractor of a transmitter output in CMA and CSK
even when it is small, thus the synchronization deviation increases for large message
amplitude. On the other hand, for CMO, the symmetry of the transmitter and receiver
systems is preserved even if a message is embedded into the transmitter. Therefore,
the system of CMO is robust for synchronization deviation compared with CMA
and CSK. As a result, we can successfully recover the message with good quality
for CMO in the system of optoelectronic feedback as shown in Fig. 13.17c. The
synchronization is interrupted by synchronization deviation and bursts at the high
data-transmission rate of 10 Gbps even for CMO in the systems of optical feedback
and optical injection, and one cannot obtain the original messages. In all systems,
the messages are not recovered in the CSK and CMA schemes in Fig. 13.17. For a
higher data-transmission rate, a system of optoelectronic feedback with CMO is best
suited for chaotic communications.

The reason why the system of optoelectronic feedback is better than those of
optical feedback and optical injection for chaos synchronization has been discussed
in Sect. 12.5.1. The carrier lifetime plays an important role in the system of opto-
electronic feedback, while the photon lifetime is crucial for the other systems. The
photon noises are averaged out in the system due to a slow response of the carrier
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and, as a result, the system is robust for photon noises. As far as the response of
the electronic circuits can follow the chaotic signal, we can expect good chaos syn-
chronization and faithful message decoding. The measure of the performance for a
communication system is the BER for the decoded message as a function of the SNR
in the transmission channel. The SNR is defined as (Liu et al. 2002b)

SNR = 10 log
Sm

σ 2
n

(13.18)

where Sm is the power of the transmitted message, and σ 2
n = N0/2Tb is the variance

of the channel noise with N0/2 being the power spectral density of the channel noise
and Tb being the bit duration. The channel SNR is a function of the channel noise,
which is taken to additive white Gaussian noise, and the bit energy of the transmitted
message, which depends on the modulation index of the message. BER arises from
synchronization errors and bursts induced by channel errors and spontaneous emis-
sion noises in the lasers. The synchronization error σerror has already been defined
in (12.36).

Simply good quality of synchronization does not guarantee good retrieval of a
message signal due to the sensitivity of the synchronized trace to any perturba-
tion, including the perturbation caused by the intrinsic noise of the transmitter and
that of the receiver. If some perturbation temporarily desynchronizes the synchro-
nized transmitter and receiver for a period-of-time, the message signal within this
period cannot be recovered. Therefore, the robustness of synchronization has to be
considered in chaotic communications. Desynchronization could happen if the syn-
chronized trace has any positive conditional Lyapunov exponent for a period-of-time
while any perturbation is acting on this synchronized trace. It depends on the value
of the positive conditional Lyapunov exponent and the strength of the perturbation
during that period of time.

The synchronization error are categorized into two origins of synchronization
deviation, which is associated with the accuracy of synchronization and desynchro-
nization bursts, which is related to the robustness of synchronization in the system.
The correlation coefficient of chaos synchronization between the transmitter and
receiver lasers is usually not close to unity, although the two chaotic signals are simi-
lar. The deterioration of the correlation coefficient corresponds to the synchronization
error. On the other hand, the chaotic output in the receiver completely differs from
the transmitter signal at the occurrence of desynchronization bursts and the transmit-
ter and receiver outputs have no correlation. Desynchronization burst is observed at
the marginal region of the allowed parameter mismatches for the synchronization.
The occurrence of desynchronization burst depends on the combination of chaotic
parameters in the systems. It is an essential phenomenon in chaos synchronization
systems with parameter mismatches. Even when the parameters of the transmit-
ter and receiver systems are equal, desynchronization burst may suddenly occur by
noises in the electronic circuits. The bits error caused by synchronization deviation
is measured by the concept of synchronized bit error rate (SBER)
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Fig. 13.18 Performance of
BER. a BERs for optical
injection system (marked
as circles), optical feedback
system (marked as squares),
and optoelectronic feedback
system (marked as triangles)
of three different encryption
schemes. The solid symbols
mark the BER after the fil-
tering, and the open symbols
mark the BER before the
filtering. b BER versus bit
rate for three systems under
CMO. The meanings of the
symbols are the same as those
in a. The relaxation oscilla-
tion frequency of the lasers is
assumed to be 12 GHz [after
Liu et al. (2002b); © 2002
IEEE]
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SBER = error bits caused by desynchronization bursts

total number of bits tested
(13.19)

The desynchronized bit error rate (DBER) induced by desynchronization bursts is
defined by

DBER = error bits caused by synchronization deviation

total number of bits tested
(13.20)

Then the total BER is simply defined by the sum of the SBER and the DBER as

BER = DBER + SBER (13.21)

Figure 13.18 is the result of BERs calculated by numerical simulations under the
assumption of SNR= 30 dB (Liu et al. 2002b). BER can be improved by applying a
filter to the decoded messages. In this example, the testing filter used for examining
the characteristics of error reduction is a digital Chbyshev Type I filter with the cutoff
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frequency equal to the bit rate, the sampling frequency equal to 20 times the cutoff
frequency, 0.5 dB ripple on the pass-band and −30 dB attenuation on the stop-band.
The best performance of BER is obtained for the optoelectronic feedback system
with CMO, which is a good coincidence with the result in Fig. 13.17. Figure 13.18b
is the performance of BER obtained by changing the bit rate of the data transmission
in CMO schemes. The BERs in optical feedback and optical injection systems stay
constant for the change of the bit rate. However, we can expect a great improve-
ment of BER in optoelectronic feedback systems for a lower data-transmission
rate.

13.8 Security of Chaotic Communications

The successful demonstrations of chaotic data transmissions in laser systems includ-
ing semiconductor lasers, and solid-state lasers, and fiber lasers have proved that
these schemes are robust to some degree. However, there is still much to be done in
terms of evaluating the robustness and practical tradeoffs with the security based on
parameter sensitivity. The security in chaotic communications is guaranteed by the
coincidence of the system parameters between the transmitter and receiver includ-
ing the device parameters and the operation conditions of the lasers. Namely, one
cannot achieve chaos synchronization in the system without knowing parameters as
a key for communications even if one can know the system configurations. Chaotic
communications are essentially hardware-based techniques. However, we can make
a virtual system of the chaotic communication on computer software when we know
completely the system configurations and their mathematical descriptions. Even for
such a case, it is still difficult to imitate the synchronous chaotic signal without
knowing each system parameter value. Therefore, the tolerance for the parameter
mismatch is quite important for the realization of secure chaotic communications
and we require systems that have strict conditions for the parameter mismatches for
communications. However, as noted, there is a tradeoff of the difficulty for the range
of synchronization in real systems.

One of the aspects of the security of messages hidden in chaotic waveforms is the
difficulty of separating the message from the chaotic carrier by analyzing recorded
waveforms. It has been demonstrated that systems with low-dimensional chaos are
not secure for data transmissions, in the sense that a low- dimensional attractor is eas-
ily reconstructed from time series data, and system parameters are easily estimated
from this attractor (Short 1994, 1996). Decoding without knowing key parameters
becomes more difficult with the increase of the dimension of the chaotic dynamics
(Dachselt and Schwarz 2001). The chaotic signal from a semiconductor laser with
optical feedback, as described by the theoretical model, is embedded in an infinite
dimensional system due to the delay. However, the actual dimension of the dynamics
is typically much lower, being restricted by the intrinsic response times in the laser.
Quantitative analysis of the dimension of the synchronized chaos and the degree of
security remains an important challenge for future study. Here, we limit our dis-



496 13 Chaotic Communications in Semiconductor Lasers

cussion to the issue of the matching of the receiver laser for message recovery by
synchronization.

Another important issue is the noise problem. Not only optical and electronic cir-
cuits to generate chaotic signals but also optical channels include noises; however,
there is little study on the effects of noises on the performance of chaotic commu-
nications. The result of Fig. 13.18 is such an instance. It is a well-known result that
chaos is sensitive to the initial conditions of the system. When the systems include
noises, it may be considered that they disturb the systems and the receiver is not able
to output synchronous oscillations even if the two nonlinear systems consist of the
same components and have the same parameters. Contrary to the expectations, two
nonlinear systems can synchronize with each other even they include noises. This
fact is verified by numerical simulations and experiments, although the basis for
the phenomenon has not been theoretically proved yet. Chaos induced by the non-
linearity of a system and statistical noises are completely separated and the system
seems to discriminate them. Although noises are additive to chaotic signals, a chaotic
evolution of a system is essentially determined by the pure initial conditions of the
system without noises. For example, a chaotic attractor has slight deviations from
the original one in the presence of noises, but the chaotic route and chaotic dynamics
do not change, while, for example, the maxima and minima of the output in fixed
and periodic states in the bifurcation are not points but have finite widths due to the
external noises.

There are two types of chaos synchronization; one is complete chaos synchro-
nization and the other is generalized chaos synchronization. In the following, we
discuss the differences of the security in chaotic communications between the two
types of synchronization. Take as an example optical feedback systems. As shown in
Fig. 12.7, complete chaos synchronization is only realized at zero frequency detun-
ing and a lower optical injection in the map of the unstable injection-locking region.
On the other hand, generalized chaos synchronization is attained in a wide range of
frequency detuning and optical injection in the stable injection-locking region. From
the standpoint of security, the conditions for generalized chaos synchronization are
loose compared with those for the complete case. We have investigated the effects
of mismatches of the laser device parameters for chaos synchronization in Fig. 12.8.
In that case, good synchronization is attained for a very small range of the parameter
mismatches in complete chaos synchronization and the accuracy of synchroniza-
tion rapidly becomes worse for the increase of the parameter mismatches. On the
other hand, the tolerance for the parameter mismatches is rather large for the case of
the generalized chaos synchronization. Strict conditions are imposed for the case
of complete chaos synchronization and, as a result, the security is better than that
of generalized chaos synchronization. As a whole, the scheme of complete chaos
synchronization is suited for chaotic communications with respect to a high degree
of security.

Another interest concerning the security of chaotic communications is the depen-
dence of the system structures, namely the system is either open-loop or closed-loop.
Each system has advantages and disadvantages as discussed in the preceding sec-
tions. Since the receiver is not subject to feedback in the open-loop system, this
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configuration is mechanically more stable and easier to implement compared with
the closed-loop system. The open-loop system is also very robust against frequency
detuning and small parameter mismatch, and has a shorter resynchronization time.
On the contrary, the closed-loop is less stable in spite of high degree of synchroniza-
tion. Therefore, not only the device parameters but also the external conditions have
to be matched within high precision, otherwise the synchronization quality is greatly
deteriorated. In general, the closed-loop system is less robust than the open-loop sys-
tem and has a longer resynchronization time. However, the degree of synchronization
in the open-loop system is worse than that in the closed-loop, especially when the
open-loop is working in the strong injection regime. The use of large amplitude
modulations makes the message less encrypted. Soriano et al. (2009) investigated
the degree of security in a system of semiconductor lasers with optical feedback.
They used the average mutual information as a measure for correlations between
two signals and tested for a CMO system both for the open and closed configura-
tions. As results, they numerically found that higher privacy and security can be
achieved when the closed-loop scheme is used in the receiver architecture, instead
of the open-loop scheme.

The methods of analog chaotic communications are based on the technique of
embedding or hiding a message into a chaotic carrier as a secure code. The study of
the security issue is still under way. Finally, we here briefly address other alternative
techniques proposed at present. Among them, the method of code scrambling based
on chaotic signal generations as discrete-sequence optical CDMA is used for chaos
communications as digital techniques as discussed before (Kennedy et al. 2000). In
the meanwhile, the study has been carried out on developing chaotic algorithms,
algorithms using the iteration of nonlinear functions, to efficiently generate random
sequences with improved randomness and correlation properties for use in spread-
spectrum, code-division multiplexing and error correction (Chen and Wornell 1998;
Chen et al. 2001; Uchida et al. 2003a). Since a chaotic time series is truly an irregular
oscillation, which is not predictable for the future. Using this property, one can
generate fast physical random numbers from such as chaos from semiconductor
lasers. Such example is treated in the next Chapter. In any event, it is noted that the
methods of analog message encoding and decoding discussed here may not be the
best ones for secure optical communications for chaotic data transmissions or for
ultimate secure communication systems.

13.9 Chaotic Carrier and Bandwidth of Communications

The relaxation oscillation frequency is an important indicator of the maximum possi-
ble rate of data transmissions in chaotic systems of semiconductor lasers. The relax-
ation oscillation frequency νR of the solitary laser is given by νR = √

gS/τph/2π .
The relaxation oscillation frequency of currently available semiconductor lasers is of
the order of several GHz to 10 GHz. Chaotic variations in semiconductor lasers has
a broad spectrum and the attainable maximum frequency is usually larger than the
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relaxation oscillation frequency of the solitary lasers. Therefore, we can transmit a
signal which contains higher frequency components than the relaxation oscillation.
For example, a message that contains more than the frequency components over
10 GHz was successfully transmitted in a chaotic communication system (Liu et al.
2001b). Also, over 100 Mbps messages were transmitted through a communication
channel composed of systems of solid-state lasers that had a relaxation oscillation
frequency of less than several MHz (VanWiggeren and Roy 1998a,b).

The semiconductor laser with a high frequency of chaotic carrier is desirable as
a light source of chaotic communications to perform high data-rate transmission.
Semiconductor laser with fast response is also essential for other applications such
as common optical communications and mass-data storage systems. By carefully
choosing parameters of semiconductor materials and device structures, the effort for
fabricating faster response semiconductor lasers is still ongoing. However, the attain-
able frequency for the relaxation oscillation is limited only by improving the materials
and the device structures. On the other hand, the relaxation oscillation frequency can
be greatly enhanced by strong optical injection from different lasers as discussed
in Sect. 6.3.2. Wang et al. (1996) theoretically investigated the enhancement of the
relaxation oscillation frequency of a semiconductor laser by using a small signal
stability analysis of the laser rate equations at the stable injection-locking steady-
state and gave an example where the relaxation oscillation frequency of the injected
laser at the solitary oscillation of 3 GHz was increased up to 12 GHz by strong opti-
cal injection. Thus, a semiconductor laser with enhanced modulation bandwidth by
strong optical injection is effective as a light source for chaotic communications with
the capability of faster data transmissions.

The receiver laser does not respond immediately after the transmitter signal is
injected to the receiver laser and a finite transition time is required for synchroniza-
tion. The transition time depends on the device parameters and the system configu-
rations. We again consider a particular example. The model is an optical feedback
system and the scheme of CSK. The synchronization recovery time affects the quality
of synchronization especially in ON/OFF CSK systems. The transition time is directly
governed by the synchronization recovery time. So far, there have been few system-
atic studies of the recovery time for chaos synchronization. Vicente et al. (2002)
investigated the synchronization recovery time for open- and closed-loop systems of
semiconductor lasers with optical feedback. Figure 13.19 shows the numerical results
of the synchronization time as a function of the external cavity round trip time τ of
the transmitter system. In Fig. 13.19a, the recovery time is independent of the delay
time in the open-loop system and the average time required for the synchronization
is very small, about 0.2 ns. The reason for the constant delay time for the variation of
the external cavity length is that the receiver laser does not need to adjust the time of
synchronization for the parameters of the external cavity length, since the external
cavity does not exist in the receiver of the open-loop system. On the other hand, the
recovery time of the closed-loop system increases for the increase of the external
cavity length (delay time). The time required in this case is much longer than that
of the open-loop system. It is of the order of several tens of nanoseconds. In actual
fact, there exist sudden bursts of synchronization even after chaos synchronization
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Fig. 13.19 Synchronization recovery time as a function of external-cavity roundtrip time in semi-
conductor lasers with optical feedback. The message encoding scheme is CSK. a Open-loop and
b closed-loop systems [after Vicente et al. (2002); © 2002 IEEE]

is achieved. This burst behavior also degrades the quality of chaos communications
and the property of synchronization bursts remains an important problem.

13.10 Chaos Communications in the Real World

13.10.1 Chaos Masking Video Signal Transmissions

Many theoretical studies have been reported for secure communications using chaotic
semiconductor lasers. Also, at the laboratory level, experimental chaotic communica-
tions have been demonstrated for data transmissions of sinusoidal signals and pseudo-
random bit-sequence signals based on various data encryption methods. However,
only a few studies have been reported on chaotic data transmission for real data.
Larger et al. (2001) demonstrated data transmission of voice signals using chaotic
semiconductor lasers with EO feedback through wavelength filters, which is the same
system as discussed in Sect. 7.4. In that system with a CMO scheme, an AM voice
signal encrypted into transmitter chaos is transmitted on a radio frequency and the
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Fig. 13.20 Video signal
encoding and decoding system
using chaos masking method
with 1.2 km fiber transmis-
sion [after Annovazzi-Lodi
et al. (2005); © 2005 IEEE]
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signal is successfully decrypted in the receiver system. In the following, we show
another example of real world data transmissions of video signals at 2.4 GHz side-
band frequency embedded into chaotic carrier in semiconductor lasers with optical
feedback.

Figure 13.20 shows a CMA system for video data transmission using a chaotic
generator of semiconductor laser with optical feedback (Annovazzi-Lodi et al. 2005).
The light source is a DFB semiconductor laser of an oscillation wavelength at
1.55 µm. To make the laser chaotic oscillations, the emitted light is fed back from
a tip of a transmission fiber, which is located at 3 cm from the laser facet. The DFB
lasers used were selected between first neighbors on the same wafer. As a chaos
synchronization system, the system is an open-loop configuration and there is no
optical feedback in the receiver system. The injection current is biased at 1.5Ith
and the value of each parameter for the transmitter and receiver lasers, such as bias
injection currents and temperatures, is finely tuned to coincide with each other. The
levels both for the optical feedback in the transmitter and the transmission signal
from the transmitter to receiver laser is set to be around 1 % in the experiment.
A message is obtained as a modulation of another DFB laser and is added to chaotic
transmission signal (signal from Master laser) though 50/50 fiber coupler. The fiber
length of the data transmission between transmitter and receiver is of about 1.2 km.
After transmission, the signal is amplified through a semiconductor optical amplifier
to increase the maximum injection level from the transmitter into the receiver. Then
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Fig. 13.21 TV frames of a
still image transmitted by the
setup of Fig. 13.20. a Original
image to be send, b encoded
pattern with chaotic signal,
and c decoded pattern [after
Annovazzi-Lodi et al. (2005);
© 2005 IEEE]

the signal passed through a birefringence controller to trim and adjust the injection
level to the receiver laser. Subtracting from the reproduced chaotic signal from the
transmitted one, the decoded message is recovered. The type of chaos synchroniza-
tion in this system is one for generalized synchronization (injection and amplification
synchronization).

Figure 13.21 shows the results of data transmissions for a still TV pattern. In the
system, a composite video signal with amplitude-modulated frequency at 2.4 GHz
is used as a message. The quality of the received signal has been evaluated after
synchronous detection and baseband filtering at the receiver output node. The sig-
nal amplitude has been adjusted as a compromise among efficient masking, low
signal distortion, and good quality of the recovered message. In Fig. 13.21, three
photographs of the monitor screen are shown. Figure 13.21a is an original pattern to
be transmitted without added chaos. Figure 13.21b shows the picture hidden within
chaos and represents the message as it would be recovered by an eavesdropper.
Figure 13.21c shows the extracted message after synchronization. The signal level
has been adjusted as a tradeoff between sufficient image masking by chaos and
acceptable image quality after chaos cancelation. Figure 13.21c is obtained by set-
ting the AM sideband level at about 4 dB over chaos. In these conditions, the SNR
of S/N = 16 ∼ 18 dB is obtained for the decoded message.

13.10.2 Chaotic Signal Transmissions Through Public Data Link

Argyris et al. (2005) tested the effectiveness of chaotic data transmission in the exist-
ing public optical communication links. They employed two chaotic communication
systems using semiconductor lasers as light sources; one is an EO open-loop sys-
tem and the other is all optical open-loop system both based on CMA technique.
Figure 13.22 shows the schematics of the systems. Figure 13.22a shows a chaotic EO
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(a)

(b)

Fig. 13.22 Setups for two optical chaos communication systems. a Electro-optic open-loop system.
b All optical open-loop system. LD: laser diode, MZ: electro-optic Mach–Zehnder interferometer,
PD: photodiode, AMP: electronic amplifier, OI: optical isolator, DL: delay line, EDFA: erbium-
doped fiber amplifier, OC: optical fiber coupler, IPD: sign-inverting amplified photodiode, R: digital
variable reflector, PC: polarization controller, MOD: modulator [after Argyris et al. (2005); © 2005
Nature Pub.]

synchronization system. In this system, chaos is not generated from the nonlinearity
of the semiconductor laser itself but from the nonlinear delayed response of light
due to delayed optoelectronic hybrid feedback through EO modulator (an integrated
EO Mach–Zehnder interferometer: MZ). The system has very high response over
10 GHz and is frequently used as a chaos generator (Gibbs 1985; Davis 1990).
The lasers used are DFB semiconductor lasers with an oscillation wavelength of
1.55 µm. A message to be sent, generated from another DFB laser, is simply added
to chaotic signals through a 50/50 fiber coupler, which is an additive CMA scheme.
The bandwidth of the system estimated is about 7 GHz.

Figure 13.22b shows the second case of all optical system. The transmitter is a
DFB semiconductor laser subjected to optical feedback from a digital variable reflec-
tor (R) located 6 m from the laser. The system is almost the same as one for the video
signal transmission system in the previous subsection. A polarization controller (PC)
is used within the cavity to adjust the polarization state of the light reflected back
from the variable reflector. The message is added via a LiNbO3 Mach–Zehnder mod-
ulator (MOD) at the transmitter’s output. The scheme is multiplicative CMA. The
bandwidth of the all optical system is less than that of the EO system and it is about
5 GHz. In both schemes, an erbium-doped fiber amplifier (EDFA) is used to com-
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Fig. 13.23 Laboratory test of
eye diagrams in the electro-
optic system through 50 km
fiber transmission. Top trace
test message, middle trace
encoded signal, bottom
trace decoded message [after
Argyris et al. (2005); © 2005
Nature Pub.]
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pensate for the power lost upon transmission. Decoding is performed via subtraction
of the transmitted signal from the signal filtered by the receiver. Operationally, the
subtraction is performed by adding the photocurrents coming from an ordinary and
a sign-inverting amplified photodiode (PD and IPD, respectively). Also the type of
chaos synchronization in this system is one for generalized synchronization as is
usually the case for real chaos communication systems.

Figure 13.23 shows the results for laboratory experiments of eye diagrams in the
EO setup after transmission of a binary message through single mode optical fiber of
50 km and dispersion compensation fiber of 6 km. The message is a pseudo-random
bit sequence of 27 − 1 bits and the transmission rate is 3 Gbps. The observed bit
error rates (BERs) are of the order of 10−7. As already discussed, the performance
of data transmission for all optical scheme is usually poor compared with that for
EO system. The transmission rate to attain the similar performance of BER as that
in the EO system is about 1 Gbps.

To test performance under ‘real-world’ conditions of chaotic communications,
the chaos-based all optical transmission system were implemented using an installed
optical network infrastructure of single-mode fiber belonging to the metropolitan area
network of Athens, Greece. The network has a total length of 120 km. The topology
consists of three fiber rings, linked together at specific cross-connect points as shown
in Fig. 13.24a. Through three cross-connect points, the transmission path follows the
Ring-1 route, then the Ring-2 route, and finally the Ring-3 route. To cancel the
chromatic dispersion that would be induced by the single-mode fiber transmission,
a dispersion compensation fiber module is used in the link. Also, to compensate
the optical losses and filtering of amplified spontaneous emission noise, EDFA and
optical filters are used along the optical link. The pair of lasers of the transmitter and
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(a) (b)

(c)

Fig. 13.24 Field experiment of fiber transmission. a Chaos-encoded data transmissions in the
optical communication network of Athens, Greece. b Time trances of 1 Gbps message. Trace A
applied message of BER< 10−12, trace B carrier with the encoded message of BER≈ 6 × 10−2,
trace C recovered message after 120 km transmission of BER ≈ 10−7. c The bit error rate (BER)
performance. Squares encoded signal, circles back-to-back decoded message, triangles decoded
message after transmission for two different code lengths [after Argyris et al. (2005); © 2005
Nature Pub.]

receiver is selected to exhibit parameter mismatches that are constrained below 3 %.
The mean optical power injected into the receiver has been limited to 0.8 mW, to
avoid possible damage of the anti-reflective coating of the slave laser. Test messages
are NRZ pseudo-random bit sequences applied by externally modulating the chaotic
carrier by means of a modulator. The message amplitude is attenuated by 14 dB
with respect to the carrier to maintain the message security in the communications.
As a result, the BER of the transmitted signal after filtering is always larger than
6 × 10−2, which is the instrumentation limit. A good synchronization performance
of the transmitter–receiver setup leads to an efficient cancellation of the chaotic
carrier and, thus, satisfactory decoded messages are obtained as shown in Fig. 13.24b.
Figure 13.24c shows the performance of the chaotic transmission system for different
message bit rates up to 2.4 Gbps for two different code lengths of 27 −1 and 223 −1.
All BER values have been measured after filtering the subtracted electric signal, by
using low-pass filters with bandwidth adjusted each time to the message bit rate. For
transmission rates in the gigabit per second range the recovered message exhibits
BER values lower than 10−7. For higher transmission rates, the corresponding BERs
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increase due to the fact of imperfect synchronization, as shown in Fig. 13.24c. For the
implementation of chaos systems in real optical communication networks, system
integrations as compact chips for chaotic light generators are indispensable. We will
present the development of photonic integrated circuits for chaotic light generators
in next chapter.
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Chapter 14
Physical Random Number Generations
and Photonic Integrated Circuits
for Chaotic Generators

The strong demands for increased security in data exchange and communications
in optical networks have directed a considerable part of research to physical layer
data encryption techniques and, for such purpose, higher bit rates of random number
generations have been expected. One of the methods based on the dynamics in semi-
conductor lasers is the use of chaotic times series to generate ultrafast random bit
streams as a physical layer. Optical techniques are not only suitable for high-speed
random number generations but also for having the good conformity for data trans-
mission in existing optical channels. In this chapter, the principle and practice of
physical random number generations based on chaotic dynamics in semiconductor
lasers are discussed. The subjects related to the generations of high quality random
bit sequences are also presented. For the implementation of the techniques in real
systems, the miniaturization and integration of light sources as chaotic generators
are essential to perform stable generations of random number bit sequences. Such
systems are also expected as light sources in chaotic secure communications dis-
cussed in the preceding chapter. For this aim, deigns, and applications of all optical
photonic integrated circuits for chaotic generators are presented. Finally, an applica-
tion of the systems to random key distributions in quantum cryptographic systems is
demonstrated.

14.1 Introduction to Physical Random Number Generations

Random number generations play fundamental role in most algorithms and sys-
tems in cryptographic applications (Stinson 1995). Generators of random numbers
are divided into two categories; one is pseudo-random number generators and the
other is physical random number generators. In modern digital electronic infor-
mation systems, pseudo-random numbers are widely used for cryptographic data
communications (Knuth 1996). Finite sequences of numbers generated by pseudo-
random generators are at present considerably random to pass statistical tests of
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randomness in practical applications. However, sequences of pseudo-random num-
bers generated deterministically from the same seed will be identical, and this can
cause serious problems for applications in security or parallel computation systems.
Truly random numbers should be un-reproducible as well as statistically unbiased.
For this reason, physically random processes are often used as entropy sources in ran-
dom number generators. As physical entropy sources for nondeterministic random
number generations, random phenomena, for examples, thermal noise in resistors
and frequency jitter of electronic oscillators have been used in combination with
deterministic pseudo-random number generators. However, rates of nondeterminis-
tic random number generators are usually very slow compared to than pseudo-random
generators due to limitations of the rate and power of the mechanisms for extract-
ing bits from physical noises. Therefore, it is very difficult to obtain fast random bit
streams only from “noises” induced by the electronic circuits and the typical rates are
limited to around 10 Mbps (Bucci et al. 2003). Therefore, much faster physical ran-
dom number generations based on different mechanisms are expected in conjunction
with the conformity of communications in optical channels.

To overcome the difficulty of the low speed of random number generators, optical
techniques have been introduced. Nondeterministic random number generations rely
on stochastic physical processes, the most appealing examples of which are based on
fundamental quantum principles such as uncertainty. Spontaneous quantum noises
and thermal laser noises have frequently been used as the main techniques for the
generations of physical random numbers. These quantum random number generators
include two-path splitting of single photons, photon number path entanglement,
time of generation or counting of photons, fluctuations of the vacuum state using
homodyne detection techniques as well as interferometric schemes. For example,
Qi et al. (2010) proposed the method of quantum random number generations by
measuring phase noise of a single-mode DFB laser and attained the generation speed
at 500 Mbps. Williams et al. (2010) used amplified spontaneous emission generated
in an Er/Yb-doped fiber and demonstrated the sampling rate of random bit sequences
of 12.5 Gbps. Symul et al. (2011) generated random number bit sequences at 2 Gbps
based on fluctuations of the vacuum state using homodyne detection techniques.
Li et al. (2011) examined an optoelectronic system for simultaneously generating
parallel, independent streams of random bits using spectrally separated noise signals
obtained from a single optical source. They used a pair of non-overlapping spectral
filters and a fiber-coupled superluminescent LED and produced two independent
10 Gbps random bit streams, for a cumulative generation rate of 20 Gbps.

On the other hand, deterministic chaos can be applied for the generations of ran-
dom number sequences, whose principle is quite different from those of quantum
nature of light. Indeed, chaos induced by semiconductor lasers with optical feedback
has been used as a noisy light sources to make random number sequences and proved
that such systems could be generated random number bits much faster than the exist-
ing optical methods (Uchida et al. 2008; Uchida 2012). The advantages of the use of
chaos for random number generations are the robustness and stability of the method,
and also the easiness for integration of the system as a compact photonic circuit. At
present, the speed of random number generations of several giga sampling per second
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has been demonstrated in real time, while the post-processing techniques enabled
the speed over several hundreds of giga sampling per second. The technique is very
promising for ultrafast random number generators, however, the essential limitation
of the speed for chaotic random number generators and the detailed performance of
the systems are not clear. The study is still ongoing and these subjects are left for the
future issues.

14.2 Signatures in Optical Feedback Induced Chaos

Since systems of semiconductor lasers with optical feedback are widely used to gen-
erate chaotic time series and they are employed for cryptographic applications as we
discussed in the previous chapter, we here present the characteristics of chaotic sig-
nals induced by optical feedback systems in semiconductor lasers and their applica-
tions to physical random number generations. In delayed hyper-chaotic systems, the
security of chaotic communications is guaranteed by the computational complexity
to reconstruct a high-dimensional attractor from the time series. For such purpose,
a noise-like appearance of a chaotic carrier is expected to conceal messages into
chaotic waveforms. A chaotic signal inevitably contains the time signatures of the
optical feedback loop and the relaxation oscillation of the semiconductor laser,
which can be easily inferred from the analysis of the time correlation for the sig-
nal. Otherwise, the knowledge of the time delay allows for the projection of the
high-dimensional attractor onto a reduced-dimensional phase space, which makes
the system vulnerable to low-computational-complexity identification techniques
(Rontani et al. 2007, 2009; Wu et al. 2010). Therefore, it is essential to hide the
signatures of these time constants in the waveform of chaotic carrier, since these
time constants are important keys in chaos-based secure communications. In those
applications, the existence of some periodicities in the chaotic waveforms might be
allowed as far as they are not related to the time constants. On the other hand, peri-
odicities in chaotic waveforms should be eliminated for the applications of physical
random number generations. If the periodic structures in the chaotic waveforms were
significant, some periodic recurrences might not be avoided in the extracted random
number-bit sequences. So periodic components in time series should be as small as
possible for the applications of random number generations based on chaotic semi-
conductor lasers as well as secure communications discussed in Chap. 13. The point
for applications will be again discussed in Sect. 14.4

The system of semiconductor laser subjected to optical feedback considered here
is the same as discussed in Chap. 4 and we use the same equations as (4.5)–(4.7)
to theoretically describe the system. To investigate time-delay signatures in chaotic
waveforms, the autocorrelation function is commonly employed. As another measure
to estimate periodicity exiting in a time series, the mutual information is frequently
used. For the photon number S = |A|2, the autocorrelation function C for the time
delay �t is written by

http://dx.doi.org/10.1007/978-3-642-30147-6_13
http://dx.doi.org/10.1007/978-3-642-30147-6_4
http://dx.doi.org/10.1007/978-3-642-30147-6_13_4
http://dx.doi.org/10.1007/978-3-642-30147-6_13_4
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C(�t) = 〈{S(t −�t)− S̄}{S(t)− S̄}〉
√

〈S(t −�t)− S̄〉2〈S(t)− S̄〉2
(14.1)

where S̄ is the mean value of photon number. Meanwhile, the mutual information I
is defined by

I(�t) =
∑

S(t−Δt),S(t)

p(S(t −Δt), S(t)) log
p(S(t −Δt), S(t))

p(S(t −Δt))p(S(t))
(14.2)

where p(S(t −Δt), S(t)) is the joint probability, and p(S(t)) and p(S(t −Δt)) are
the marginal probability densities. The mutual information (sometimes known by the
archaic term trans-information) of two random variables is a quantity that measures
the mutual dependence of the two random variables and the mutual information
is especially used for determining the embedding delay parameters. Using these
measures, time signatures in chaotic waveforms in semiconductor lasers with optical
feedback are examined in the following.

Figure 14.1 shows some experimental results for chaotic time series and their
time-delay signatures (the autocorrelation function and the mutual information) for
the variations of the optical intensity feedback strength (Wu et al. 2010). The laser
used is a single mode DFB laser operating with a wavelength at 1.55 µm. The laser
is biased at 1.09Ith (Ith: threshold current) and the corresponding relaxation oscil-
lation time (the inverse of the relaxation oscillation frequency) is τR = 0.55 ns.
The optical delay in the external feedback in the semiconductor laser is set to
τ = 2 ns. In Fig. 14.1, the time-delay signature around �t = �tp = 2 ns is
significant for higher optical feedback ratio (Fig. 14.1a), while the peak intensity
decreases with the decrease of the optical feedback ratio. However, it again increases
at the optical feedback ratio at γ = 0.0003 in Fig. 14.1e (γ is the intensity ratio
of optical feedback normalized to the solitary laser power in this case). Thus,
there exist an optimum strength of optical feedback to reduce the correlation peak.
In this example, the correlation peak is much suppressed at the optical feedback
strength of γ = 0.0013 (Fig. 14.1d) and the time-delay signature is almost shielded
into the background fluctuations. For the small feedback strength at Fig. 14.1e, the
time-delay signature corresponding to the external feedback time τ is not remarkable,
while the time component τR for the relaxation oscillation is enhanced and could be
estimated as about 0.55 ns from the figure.

Figure 14.2 shows the evolution of the time-delay signature for the external feed-
back strength. Figure 14.2a gives the variations of the first maximum amplitude ap

for the external feedback strength, while Fig. 14.2b plots the variations of the peak
delay time Δtp. From these two curves, the evolution of the time-delay signature
could be roughly divided into three regions. For γ > 0.019 (region I), the time-delay
signature is obvious and the identified delay well conforms to the expected time of
Δtp ≈ 2 ns. For 0.0013 < γ < 0.019 (region II), the amplitude ap of time-delay
signature attenuates significantly with the decrease of the feedback strength, and the
weakest time-delay signature is obtained at γ ≈ 0.003. Meantime, the identified
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Fig. 14.1 Experimentally obtained chaotic time series for different optical feedback strengths at
the optical feedback time of τ = 2 ns, the laser relaxation time of τR = 0.55 ns and the bias injection
current of 1.09Ith (left column). Calculated autocorrelation functions (middle column) and mutual
information (right column). Feedback intensity strengths of a 0.038, b 0.019, c 0.0064, d 0.0013,
and e 0.0003 [after Wu et al. (2010); © 2010 OSA]

delay begins to deviate from the expected time of Δtp ≈ 2 ns. For γ < 0.0013
(region III), the amplitude of time-delay signature again increases. However, the
deviation between the identified Δtp and the exact feedback delay τ is expanded.
The experimental results are qualitatively confirmed by the theory (Rontani et al.
2007, 2009). As for hiding the relaxation oscillation time, we can use the relation
in Fig. 5.12b. Namely, the relaxation oscillation frequency in the presence of optical
feedback varies for the change of the optical delay. Therefore, the exact relaxation
oscillation frequency of the solitary laser cannot be obtained when the optical delay
is set to slip from the exact time of the relaxation oscillation frequency.

As discussed above, in a system of semiconductor laser with optical feedback,
high-dimensional chaos is typically found where the optical feedback strength is
large, but the time-delay value is easily retrieved from the analysis of the chaotic

http://dx.doi.org/10.1007/978-3-642-30147-6_5
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injection strength. The experimental conditions are the same as those in Fig. 14.1 [after Wu et al.
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output using straightforward techniques. For hiding time-delay signatures in semi-
conductor lasers with optical feedback, we here summarize some useful results for
security application in chaotic communications according to the detailed study by
Rontani et al. (2009). By their analysis, a careful tuning of the external cavity
roundtrip time with respect to the intrinsic laser relaxation oscillation frequency
leads to situations where the time-delay signature is lost in the chaotic laser output.
Also the bias injection current plays an important role for the existence of time-delay
signatures. When the optical feedback rate is moderate and the injection current is set
at rather lower bias (weak chaotic state) such that the relaxation–oscillation period of
the laser is close to the optical delay (τ ≈ τR), the time-delay identification becomes
extremely difficult, thus improving the security of chaos-based communications
using external cavity semiconductor lasers. Rontani et al. also proved that a time-
delay signature is hardly retrievable from either the autocorrelation function or the
mutual information for sufficiently close values of τ and τR when an eavesdropper
does not know any information about the system and system parameters.

14.3 Probability Distributions of Chaotic Signals

Any chaotic time series exhibits irregular oscillations like noises, however, their spec-
tra are not exactly white and their amplitudes are not Gaussian-like distributions. For
example, time series of real experimental data, which are usually low-frequency-cut
signals, have skewed waveforms for above or below the zero bias as shown in
Fig. 14.1. Furthermore, they even contain periodic structures. For the purpose of
physical random number generations, noise-like signals should have symmetrical
distributions as thoroughly as possible, otherwise a true random number sequence
could not be generated and the generated 0 and 1 distribution may have a bias. To
eliminate the bias, the system for random number generators discussed in the next
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section uses two chaotic systems to equalize the ratio 0 and 1 of random number
sequences, and compensates the effect of skewed amplitude distributions of chaotic
outputs from optical feedback induced semiconductor lasers. Another example to
eliminate the skew is the method of differentiation for the skewed time series. Indeed,
a symmetrical distribution function close to a Gaussian shape is obtained by time-
differentiating a chaotic signal from a semiconductor laser with optical feedback at
least for amplitude distributions, which is suitable for the use of physical random
number generations.

Figure 14.3 shows an experimental example of amplitude distributions for time-
differentiated chaotic signals induced by optical feedback in a semiconductor laser
(Reidler et al. 2009). To obtain time-differentiated chaotic signals, a semiconductor
laser operating at 656 nm is biased at 1.55Jth and the external optical feedback time
is set to 12.22 ns. The chaotic time series is detected by a photodetector with a 3-dB
low frequency cutoff of 10 kHz and it is digitized by an 8-bit analogue-to-digital
converter (ADC) triggered by a 2.5 GHz clock (the digital oscilloscope used has
an analogue bandwidth of 12 GHz). The original sampling rate of the digitizer is
40 GSample/s. A 2.5 GHz digitized data set is used to eliminate the signature of the
relaxation oscillation time, which is incommensurate with the sampling rate and
the external optical feedback time. Figure 14.3a plots the histogram of the directly
sampled chaotic laser intensity. The histogram of the sampled amplitudes is obtained
from a 100 µs long data stream. The distribution is asymmetric, therefore an attempt
for a random number sequence generated from such time series would result in some
bias for a 0 and 1 distribution. Then the raw data of the 2.5 GHz sampling is converted
into a time series consisting of the derivative of the ADC signal amplitudes, Vt , as
Δt = Vt −Vt−1. The result is shown in Fig. 14.3b. The histogram exhibits a very high
degree of symmetry and it is suitable for bins of random number generations. Since
adjacentΔt values may be still temporally correlated even if the original amplitudes
are random, one might expect that such a series is not a good candidate for a random
sequence. This difficulty is further solved, however, by taking into account only the
m least-significant-bits (LSBs) of each Δt and relying on the chaotic nature of the
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time varying laser intensity. We will return the subject in Sect. 14.4.2. It is noted that
a care must be taken to use such time-differentiated signals in real systems. Namely,
noises (statistical noises) encountered from a photodetector and/or the laser itself
might cause unwanted troubles to generate a random number sequence, since chaos
is completely different from statistical noises.

14.4 Chaotic Physical Random Number Generations

14.4.1 Principles of Chaotic Physical Random
Number Generations

The first physical random number generators using chaotic semiconductor lasers
were proposed by Uchida et al. (2008). They demonstrated a fast physical random
number generations as fast as 1.7 Gbps. However, the generation speed was not for
the intrinsic limitation of the method but for the limitation of their available devices
and electronic instrument. The potential of the proposed method is much faster than
the obtained one and, indeed, faster random number generations based on the same
principle will be introduced in the following subsections. After the demonstration, a
lot of related works and the modification and improvement of the method for faster
random number generations have been proposed. We here discuss random number
generation based on the proposed method, since the system contained a lot of insights
and the essence for physical random number generations using chaotic semiconductor
lasers. Figure 14.4 shows the scheme for generation of random bits using two chaotic
lasers. In each chaotic laser, a chaotic signal is induced by optical feedback in a
semiconductor laser. The outputs from the chaotic lasers are respectively detected
by fast photodetectors and converted to binary bit sequences by 1-bit sampling at
a fixed sampling rate according to a common clock pulse. The two independent
binary digital signals obtained from the two chaotic lasers are then combined by
an exclusive-OR (XOR) operation. The output signal from the XOR operation is a
stream of random bits with a non-return-to-zero (NRZ) format that is suitable for
high-speed data communications. The reason for the use of two chaotic lasers is the
elimination of the effect of skewed amplitude distributions of chaotic outputs from
optical feedback induced semiconductor lasers as discussed in Sect. 14.3. Also the
effects of time-delay signatures on the resulted random number streams discussed in
Sect. 14.2 can be greatly reduced by the use of two chaotic lasers. The combination
of sequences from two independent sources using XOR operation is a common
simple method for improving randomness. It is proved that combining two chaotic
lasers is enough to generate good random number sequences in the gigahertz regime.
However, certain tuning measures based on characteristics of the chaotic dynamics
(for example, such as tuning of the threshold voltages to eliminate the bias at the
1-bit ADCs) are also required to achieve good randomness.
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Fig. 14.4 Schematic diagram of random bit generator with two independent chaotic lasers based
on 1-bit ADC with Exclusive-OR (XOR) operation

Figure 14.5 shows the results of random number generations using chaotic semi-
conductor lasers (Uchida 2011). In Fig. 14.5a, the first two time series are the raw
chaotic laser outputs. Each chaotic signal is generated by a single mode DFB semi-
conductor lasers with optical feedback through an optical fiber. Different optical
feedback delays are introduced for the two lasers to avoid similar time signatures
of the chaotic waveforms. Then the delay time of optical feedback for laser 1 is
τ1 = 54.26 ns and that for laser 2 is τ2 = 75.52 ns. Also the lasers are set to
have different characteristic times of the relaxation oscillations at the solitary modes
by controlling the bias injection currents. The time for the relaxation oscillation is
τR1 = 0.326 ns (relaxation oscillation frequency of νR1 = 3.1 GHz) for laser 1 and
τR2 = 0.350 ns (νR2 = 2.9 GHz) for laser 2. The third time series in Fig. 14.5a is a
clock with a frequency of 1.7 GHz (τsa = 0.588 ns) to sample the chaotic amplitudes.
Solid dots marks in the chaotic signals in Fig. 14.5a are points sampled at the rising
edge of the clock and these values are used for XOR operations to generate a random
number sequence. The threshold values for the ADCs are shown as solid lines. The
scales for all time constants τ1, τ2, τR1, τR2, and τsa are incommensurate and these
help to reduce the correlation between the chaotic pulse sequence segments. Thus,
better quality of random number sequences is expected under these configurations.
The binary signals obtained from each laser are combined by a logical XOR opera-
tion to generate a single random bit and the final result of the bit sequence is shown
in the bottom in Fig. 14.5a. Figure 14.5b shows an example of maps for a long bit
sequence generated by the system. The bit sequence is plotted in a 2D plane. Bits
“1” and “0” are converted into white and black dots, respectively, and placed from
left to right (and from top to bottom). 500 by 500 bits are shown. It can be seen that
there are neither obvious patterns nor structures and that the ratio of 1 and 0 is almost
equal, as we expect from a random generation process.

The generated random bit sequences must be tested whether they are truly ran-
dom sequences. For the test for a random number sequence, several test schemes
have been proposed (Marsaglia 1995,1990; Rukhin et al. 2001). Among them, the
most representative statistical tests are the National Institute of Standard Technology
(NIST) test suite (NIST Special Publication 800-22; Rukhin et al. 2001) and they
are mostly used as a statistical test suite for random-bit number sequences. The tests
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Fig. 14.5 Output signals from an experimental system of a random number generator. a Temporal
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respectively. b Random bit patterns in a two-dimensional plane. Bits 1 and 0 are converted into
black and white dots, respectively, and placed from left to right (and from top to bottom); 500×500
bits are shown [after Uchida (2011); © 2011 LSJ]

for the generated random-bit sequences are performed for n = 1, 000 samples of
1 Mbit sequences for all the NIST tests (the total amount of test data is 1 Gbit data)
(Uchida et al. 2008; Uchida 2011). The pass criteria for the tests are chosen based on
the length of the sequence and a specified significance level. The significance level
of α = 0.01 (Note that parameter α here is not the linewidth enhancement factor
in the previous notation. The notation is used here, since α is commonly used for
such statistical tests) is used for the p-values of each sequence test, and the P-value
(uniformity of p-values) obtained for each test should be larger than 0.0001. The sta-
tistical significance α is defined as a measure whether it is unlikely to have occurred
by chance. For “Success” using 1,000 samples of sequences and significance level
of α = 0.01, the proportion of sequences satisfying p-value> α should be in the
range of (1 − α)± √

(1 − α)α/n = 0.99 ± 0.0094392. For the tests which produce
multiple p-values and proportions, the worst case of the calculated results is shown
in Table 14.1. Bit sequences obtained from the experiment passed all the NIST test.



14.4 Chaotic Physical Random Number Generations 519

Table 14.1 Results of NIST special publication 800-22 statistical tests for randomness.

Statistical test P-value Proportion Result

Frequency 0.366918 0.9920 Success
Block-frequency 0.639202 0.9900 Success
Cumulative-sums 0.101311 0.9920 Success
Runs 0.223648 0.9920 Success
Longest-run 0.603841 0.9890 Success
Rank 0.031012 0.9900 Success
Fft 0.274341 0.9910 Success
Nonperiodic-templates 0.013760 0.9810 Success
Overlapping-templates 0.893482 0.9910 Success
Universal 0.903338 0.9920 Success
Approximate-entropy 0.880145 0.9920 Success
Random-excursions 0.142248 0.9836 Success
Random-excursions-variant 0.068964 0.9869 Success
Serial 0.440975 0.9860 Success
Linear-complexity 0.291091 0.9970 Success

Total 15

For “Success” using 1,000 samples of 1 Mbit data. For the tests which produce multiple P-values
and proportions, the worst case is shown

Another example of statistical test suite is called Diehard test suite and it is also
frequently used to check the randomness for random number sequences (Marsaglia
1995). The generated random number sequences also passed the test. The stability
of statistics and the success for the statistical tests strongly depend on the effective
generations of even probability for 0 and 1 random-bit numbers and these can be
performed by adaptive control of the detection threshold for chaotic signals in the
proposed method.

In Sect. 14.2, we discussed the existence of chaotic signatures induced by optical
feedback in semiconductor lasers. For the purpose of random number generations,
the amplitudes of chaotic signatures should be as small as possible to minimize
the periodicities appeared in chaotic signals. Furthermore, the locations of charac-
teristic times for chaotic signatures induced by the optical feedback loops and the
relaxation oscillations of the solitary lasers should be incommensurate. In the fol-
lowing, we investigate the correlations of the chaotic laser outputs used for random
number generations and corresponding random-bit sequences. Figure 14.6 shows
experimental examples of the autocorrelation functions of each of the two chaotic
laser outputs and the corresponding random-bit sequences as a function of delay time
(Hirano et al. 2009). The left column in Fig. 14.6 is the results for a set of different
external cavity lengths of L1 = 2.0 m (the corresponding delay time is τ1 = 13.35 ns
for laser 1) and L2 = 1.4 m (the corresponding delay time is τ2 = 9.30 ns for laser 2),
while the right column is those for a set of the identical external cavity lengths of
L1 = L2 = 0.6 m. The times for relaxation oscillation frequencies of the soli-
tary DFB lasers used in this experiment are τR1 = 0.38 ns (νR1 = 2.62 GHz) and
τR2 = 0.29 ns (νR2 = 3.42 GHz), respectively.
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Fig. 14.6 Examples of autocorrelation functions of two chaotic laser outputs and the corresponding
random bit sequences as a function of delay time. Left column: L1 = 2.0 m and L2 = 1.4 m, Right
column: L1 = 0.6 m and L2 = 0.6 m. a and b Outputs from Laser 1, c and d outputs from Laser
2, and e and f random bits [after Hirano et al. (2009); © 2009 IEEE]

The autocorrelation function of each chaotic laser output has chaotic signatures
of two dominant peaks that correspond to the inverse of the relaxation oscillation
frequency and the external cavity frequency. When the external cavity lengths are dif-
ferent in Fig. 14.6a and c, the time constants τ1 and τ2 are incommensurate with each
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other. Figure 14.6e shows the autocorrelation function of the random-bit sequences
obtained from the two chaotic waveforms of Figs. 14.6a and c at the clock frequency
of τsa = 1.0 GHz (the sampling time is 1.0 ns). The autocorrelation function has
no significant peak except at zero delay and, then, the bit streams passed all the
NIST tests. For the same external cavity length of the two lasers, L1 = L2 = 0.6 m,
the autocorrelation functions are plotted as shown in Figs. 14.6b and d. Both of the
autocorrelation functions for the two lasers have the same peak value around 4.0 ns,
corresponding to the delay times for the external optical feedback loops. The auto-
correlation function of the random-bit sequence is similarly calculated from these
two chaotic waveforms at the clock frequency of 1.0 GHz and is plotted in Fig. 14.6f.
In Fig. 14.6f, a small peak is observed at 4 bit, corresponding to the external cavity
round-trip delay time divided by the sampling time. Since the external cavity lengths
of the two lasers are set to the same value and the sampling time is low-order com-
mensurate to the external cavity delay time (1.0 and 4.0 ns, respectively), the peak of
autocorrelation remains at 4 bit in the generated random bits. Thus, the bit streams
failed the NIST tests. In general, correlation peaks appear when the external cavity
lengths of the two lasers are set to a low-order commensurate ratio. This demonstrates
that the two external cavity frequencies and the clock frequency need to have an
incommensurate ratio (or at least a high-order commensurate ratio) to avoid periodic
recurrences in the extracted bit sequences. As discussed here, eliminations of chaotic
signatures in delay differential systems are essential for the applications to physical
random number generations. For the suppression and elimination of time signatures
in chaotic semiconductor lasers, several methods have been proposed. For exam-
ples, double optical feedback in semiconductor lasers and the generation of chaos by
mutually coupled semiconductor lasers were proposed and chaotic signatures were
greatly suppressed or even completely eliminated (Wu et al. 2009, 2011).

14.4.2 Fast Chaotic Random Number Generators

For the expanding demand for higher speed of data transmissions in the traffics in opti-
cal communications, faster random number generations are further expected. Sev-
eral methods to realize high-speed random number generations have been proposed
(Reidler et al. 2009; Argyris et al. 2010b; Hirano et al. 2010 and Kanter et al. 2010).
Since typical chaotic oscillations in semiconductor laser is related to the relaxation
oscillation frequency, the use of a laser which has a fast relaxation oscillation fre-
quency is essential. However, the typical relaxation oscillation frequency of com-
mon semiconductor lasers is limited to about 10 GHz at the solitary oscillation. To
enhance the bandwidth of chaotic oscillations in semiconductor lasers, the tech-
nique of strong optical injection from a different laser can be used as discussed in
Sect. 6.3.5. As another different category of techniques to realize high-speed random
number generators, multi-bit samplings (multi-bit ADC) can be used for chaotic
time series instead of 1-bit ADC. In this technique, m sampled bits out of n multi-bit
data (namely, n-bit ADC sampling with m < n) at each sampling point are used to

http://dx.doi.org/10.1007/978-3-642-30147-6_6
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Fig. 14.7 Schematic diagram for a random bit generator with bandwidth-enhanced chaotic semi-
conductor laser using multi-bit operation. Delay: optical delay line, ADC: analogue-to-digital con-
verter, LSB: Least Significant Bit, XOR: exclusive-OR operation

calculate for random bit sequences. By this method, we can attain random number
generations m times faster than that for 1-bit ADC at the same sampling frequency. It
is noted that the use of the full bits for the random number generations would cause
some correlations in the calculated bit sequences, since the probability distribution
for the full-bit ADC raw data has a skew as discussed in Sect. 14.3. The use of less
bits extracted from the full ADC bits is somewhat equivalent to the differentiation
for chaotic time series and, as a result, we obtain even distributions of 0 and 1 bits
in the calculated random number sequences.

Figure 14.7 shows an example of a schematic diagram for fast random bit gener-
ations. In this configuration, a chaotic output from a semiconductor laser subjected
to optical feedback is injected to another semiconductor laser, which has no exter-
nal feedback in itself. The chaos injected laser is forced to chaotic oscillations by
a strong optical injection. By the strong optical injection, the chaotic bandwidth is
greatly enhanced under appropriate conditions of optical injection. Indeed, Hirano
et al. (2010) obtained a chaotic bandwidth of 16.1 GHz for the original bandwidth
of 6.6 GHz in the experiment of fast random number generations. In this system,
the bandwidth-enhanced chaotic laser is used as a light source for random number
generations. In the previous section, two chaotic lasers are employed for random
number generations, however, the single chaotic output from the laser is used here.
The chaotic laser output is then divided into two signals. One of the two is guided to
an 8-bit ADC through optical fiber, while the other passes through an optical delay
line and is fed to another 8-bit ADC. By appropriately choosing the optical delay
time, we can set an incommensurate time offset to the time signatures of two chaotic
signals at the ADCs, then the two signals equivalently behave like chaotic outputs
from two different semiconductor lasers as discussed in the previous subsection.

From each 8-bit digitized output, a subset of lower m (m < 8) LSB are extracted
and interleaved to generate a random bit sequence by bitwise XOR operation. Note
that lower bits less than 8-bit are used to avoid unwanted correlations of the resulted
bit streams as mentioned before. The method of multi-bit random number genera-
tions is shown in Fig. 14.8. The laser output at a sampling time is digitized as 8-bit
data by ADC and the delayed laser output at the same time is also digitized as 8-bit
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data. Then each corresponding bit is compared and takes an XOR operation. The
lower m bits (in this case, m = 6 bits) are extracted from the resulted XOR data and
we finally obtain random bit sequences in the bottom of Fig. 14.8. Hirano et al. (2010)
used experimental chaotic data of 8-bit and 12.5 GHz sampling and conducted fast
random number generations as a post-detection simulation. As a result, they success-
fully performed equivalent random number generations at 75 Gbps (12.5 GHz×6-bit)
using 6-bit LSBs for the XOR operation. The generated random number sequences
less than 6-bit LSBs all passed the NIST tests, however, the tests almost failed for
the sets of data for 7- and 8-bit LSBs. By the detailed study of Hirano et al., they
proved that even and uniform distributions of 0 and 1 bits were obtained when the
data sets of equal to or less than 6-bit out of 8-bit signals were used for the random
number generations in real experimental chaotic waveforms.

Using experimentally obtained chaotic outputs of m LSBs (m is less than the full
digitized bits), several studies for fast random number generations have been reported
in off-line processing. Reidler et al. (2009) have shown that sequences passing sta-
tistical tests of randomness can be achieved at higher bit rates from a single chaotic
semiconductor laser by extracting more than 1-bit per sample in off-line processing
of experimental chaotic laser time series. For data produced by differentiation of raw
chaotic outputs as discussed in Sect. 14.3, a rate equivalent to 12.5 Gbps was achieved
by extracting 5 bits from the difference in 8-bit samples acquired at 2.5 GHz sam-
pling rate. Ordinary digital oscilloscope over the digitizing speed of giga hertz has
an 8-bit A/D converter. However, the oscilloscope’s 8-bit A/D converter, along with
the internal 16-bit ADC and the rest processing units, can provide a “word-type”,
noise-enhanced, 16-bit output binary sequence for each sample. Using 16-bit ADC
for chaotic outputs generated from an integrated photonic circuit of a semiconductor
laser with optical feedback (the detail of the device structure as a chaotic generator
will be presented in Sect. 14.5), Argyris et al. (2010b) demonstrated generations of
random bit sequences as high as 140 Gbps. In their method, 14-bit LSBs are extracted
form 16-bit raw data at a rate of 10 GHz sampling to eliminate the skew and ununifor-
mity of signals in post-processing from A/D sampled data by an digital oscilloscope

http://dx.doi.org/10.1007/978-3-642-30147-6_14
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and truly random bit streams with 140 Gbps are generated. Kanter et al. (2010) used
higher order derivatives for raw chaotic output signals to calculate random number
generations and attained at high bit-rate generation up to 300 Gbps using a single
chaotic semiconductor laser by retaining 15-bit LSBs of the value from the 16th
derivative of the digitized chaotic laser intensity at 20 GHz sampling per second.

For the use of differentiated signals in random number generations, the effects
of physical noises in semiconductor laser itself, photodetector, and A/D converter,
which are potential additional sources of randomness, should be separated from the
laser chaos. Also the original bandwidth of chaos from the laser outputs should be
taken into account. Namely, in parallel with noise problems, we must consider the
true capacity of information when we process a raw chaotic data for the application
of it to fast random number generations. The processing might not always mean
the enhancement of the capacity of information originally contained in the raw data,
even if the method of fast random number generations would pass the statistical tests.
Whether each method is truly sound or not for the application must be checked based
on the rigid information theory. Such discussion is left for the future study. In these
works for ultrahigh bit-rate generations of true random number sequences, advanced
electrical post-processing off-line methods have been employed based on either the
difference between delayed 8-bit or 16-bit samples or high-order derivatives using
off-line memory buffers for intermediate sequences storage. Or they employed optical
decorrelation techniques using a relatively complex configuration with coupled lasers
for chaotic signal bandwidth enhancement and suppression of time signatures. A
strong motivation for using direct sampling of optical chaos for random number
generations is to reduce the dependence on digital electronic operations. The digital
electronic techniques only may not be easier to implement at high frequencies and,
in principle, it is very difficult to increase the rate for generation of nondeterministic
bits. From these points of view, it is very important to increases the bandwidth of the
laser chaos used for random number generators.

14.4.3 All Optical Chaotic Random Number Generators

To avoid the limitation by the bottleneck of electronic signal processing and
conformity to optical channels in data transmissions, all optical random number
generator has been proposed. The proposed system performs all signal processing
only in the optical domain, with no digital electronic circuit control. The system
consists of a wide bandwidth chaotic laser, an all optical sampler, and an all optical
comparator. Figure 14.9 shows an example of all optical systems (Wang et al. 2010).
The system consists of two parts. One is for generations of random bit sequences
(Fig. 14.9a) and the other is post-processing of all optical XOR gate to eliminate
unwanted bias for the first state of the random number bit sequences (Fig. 14.9b). In
Fig. 14.9a, the chaotic output induced by such as a semiconductor laser with optical
feedback in once detected by a photodetector (PD). The detected signal is fed to
the applied voltage to an electro-optic light modulator (EO). Optical clock pulses
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optical XOR gate to eliminate the bias of “0” and “1” distributions from RNGs. RNG: random
number generator, HNLF: highly nonlinear fiber

generated by a mode-locked laser pass through the EO modulator and the amplitudes
of pulses are sampled and modulated by the chaotic signal. Then, the modulated
pulse train is split into two identical trains by a coupler. One of the two pulse trains
is injected into the right-hand side of a DFB laser through an optical fiber delay
line, while the other pulse trains is injected into the left-hand side combined with a
continuous wave (CW) of bias laser light, which has a slightly different oscillation
wavelength from the DFB laser. The different path lengths for the two pulse trains are
used to eliminate correlations of chaotic signals at the DFB laser. Here, the DFB laser
acts as an all optical filp-flop (O-FF), which plays the role of quantizing the chaotic
signal (Huybrechts et al. 2008). The DFB laser exhibits bistable characteristics due to
the dual inputs with the constant light offset. Only when the pulse power injected into
the DFB laser from the left or right facet is above the threshold, the DFB laser will
be correspondingly switched off or on. Thus, the quantizing to the chaotic laser can
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be achieved. The output from the O-FF DFB laser passes through a band-pass-filter
(BPF) and the resulting random number sequence is obtained.

Figure 14.10 shows numerical examples of the time series marked at a–e in
Fig. 14.9a (Wang et al. 2010). The detected signal in Fig. 14.10a by the photode-
tector (PD) is a chaotic irregular oscillation. Figure 14.10b is the optical clock pulses
from the mode-locked laser with Gaussian shape of the pulse width of 7 ps and the
repetition frequency of 5 GHz. Figure 14.10c shows the modulated pulse train after
the coupler, which is injected into the DFB laser from its left facet. Figure 14.10d
is the identical pulse train delayed by 100 ps on the right side of the DFB laser.
Figure 14.10e is an output waveform of the O-FF DFB laser through the band-pass-
filter transmitting only the light of the DFB laser. As a final result, one can obtain
bit sequences of “0” or “1” with an extinction ratio of 30 dB with a duration time of
200 ps (5 Gbps).

The obtained random number sequences from the random number generator
(RNG) in Fig. 14.9a may contain an unwanted bias and show a nonuniform ratio
of 0 and 1 random bit distribution. To eliminate the effects, the random number
sequence need to be exclusive-or processed by an all optical XOR gate as shown in
Fig. 14.9b. In this optical circuit, all optical XOR gate is based on a Mach–Zehnder
interferometer with an identical highly nonlinear fiber (HNLF) transmission in each
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arm (Li et al. 2010). A CW beam from a probe laser is split by a coupler into two arms
as an interferometer input light, and the output of two independent random number
generators (RNGs) are respectively launched into arm 1 and arm 2 as control light
through couplers. The control light induces the phase shift of the probe light due to
the cross phase modulation in HNLF. After that, the probe light is finally exported
through another coupler of the interferometer output. A band-pass-filter (BPF) at the
wavelength of the probe beam is utilized to remove the control light. The interaction
between the random number sequence and the CW light in HNLF is theoretically
given by the following nonlinear optical transmission equation:

i
∂E j (z, T )

∂z
= − i

2
α f E j (z, T )+ 1

2
β2
∂2 E j (z, T )

∂T 2

−γnon{|E j (z, T )|2 + 2
∑

l �= j

|El(z, T )|2}E j (z, T ) (14.3)

The above equation is almost same as the nonlinear Schrödinger equation in (13.6)
except for the cross correlation term (final term). In (14.3), j , l is chosen to be 1 or
2, and E1 and E2 represent the complex field amplitudes of the probe laser light and
the control light, respectively. The output power of probe light can be expressed by

Pout = 1

2
Pin{1 − cos(φCW − φCCW)} (14.4)

where Pin is the power of the CW probe light. φCW and φCCW are the phase shifts
induced by the control lights, respectively, which are proportional to the power of the
input random number signals (control lights). When the signal is “1” level, the phase
of the probe light has a π radian phase-shift, while the phase of the probe light keeps
invariable when the signal is “0” level. Finally, by passing through a band-pass filter
with the wavelength of the probe beam, the all optical XOR function can be obtained
and accordingly the single random bit sequence with better randomness can be gen-
erated. In real experiments of all optical circuit, Erbium doped optical fiber ampli-
fiers (EDFA), optical attenuators, polarization controllers, and optical isolators are
inserted in the optical circuits, where and when necessary. By numerical simula-
tions, Li et al. (2010) demonstrated all optical random number generations at a rate
of 10 Gbps, which passed all standard statistical tests.

14.5 Photonic Integrated Circuit for Chaotic Generators

For practical applications of chaos to secure optical communications based on chaos
synchronization discussed in Chap. 13 and to random number generations in the
present chapter, integrated photonic circuits are expected for robust and stable chaotic
light sources. For example, configurations of free-space external cavities or fiber-
coupled optical feedback loops have been employed to generate chaotic oscillations

http://dx.doi.org/10.1007/978-3-642-30147-6_13
http://dx.doi.org/10.1007/978-3-642-30147-6_13_13
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in semiconductor lasers in those laboratory experiments. However, such external
cavities are not sufficiently stable. Therefore, the miniaturization of the configura-
tions through photonic integrations has been proposed. The devices are monolith-
ically installed on a planner integrated circuit. Key elements of such devices are a
semiconductor laser, an amplifier, a passive waveguide, and a phase control section.
In the early days, similar devices have been developed for light sources of active
mode-locking and self pulsating oscillations, which are known as multi-section lasers
(Kawaguchi 1994; Bauer et al. 2004; Yousefi et al. 2007). Those integrated photonic
circuits usually have short active feedback cavity. Although, they were not suitable for
generations of chaotic waveforms appropriate for the use of chaotic communications
and chaotic random number generations, they still exhibited bistabilities, multista-
bilities, and even chaotic dynamics in their outputs. Indeed, a semiconductor laser,
followed by a phase section and an active feedback element, forms a very short com-
plex photonic circuit that provides several types of dynamics and bifurcations under
optical feedback strength and phase control. After the demonstrations of chaotic
secure communications and chaotic random number generations, photonic integrated
circuits as chaos generators have been proposed (Argyris et al. 2008; Tronociu et al.
2010; Harayama et al. 2011). These integrated circuits usually have a long passive
waveguide to generate higher dimensional chaos as their light outputs and come up
with various ideas to control chaotic behaviors appropriate for those applications. In
the following, we show an example of such devices.

Figure 14.11 shows photographs of a photonic monolithic integrated chaos gen-
erator (Argyris et al. 2008, 2010a). In Fig. 14.11a, the device consist of an InGaAsP
distributed feedback (DFB) semiconductor laser with the cavity length of 300 µm
at the oscillation wavelength of 1.561 µm (most left of the photograph) and external
cavity with the rear facet of the photonic integrated circuit that is highly reflec-
tive coated (HR) mirror (most right of the photograph). The chaotic light output is
obtained through the anti-reflection (AR) coated interface. The cavity includes vari-
ous active and passive sections of a variable gain or absorption section (SOA/VOA),
a phase section (PM) and a 1 cm long passive waveguide. The passive waveguide is
grown by a selective area epitaxial growth. The overall resonator length is defined by
the internal laser facet and the chip facet of the waveguide which is highly reflective
coated (intensity reflectivity of 95 %). Short external cavities (lengths up to a few
centimeters in the air) would require a relatively strong optical feedback in order
to generate high-dimensional dynamics. The selected length of 1 cm provides an
increased effective feedback round-trip time (the total optical feedback time is 280 ps
and the corresponding round-trip feedback loop is 8.4 cm in free space connection),
therefore enhancing the probability to encounter fully chaotic behavior.

The integration of the gain-absorption section emerges from the requirement to
control the optical feedback strength. To produce chaotic attractors highly complex,
the short external cavity length is selected. Depending on the biasing current of the
DFB laser and the feedback strength, the bandwidth of the chaotic carrier may be
increased from several GHz up to 20 GHz. The gain-absorption section offers the
control on the optical feedback strength. At no bias, this section leads to a specific
optical power feedback ratio equal to 1.6 %, which is predetermined by the inherent
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Fig. 14.11 Monolithically integrated photonic circuit for a chaos generator. a The device. DFB:
DFB laser, HR: highly reflective coated mirror, SOA/VOA: variable gain/absorption section, PM;
phase modulation section. The length of the waveguide is 1cm-long. The output optical signal
is emitted from the front anti-reflective (AR) facet of the DFB laser. b Internal structure of the
packaging module. c Packaged module. [after Argyris et al. (2010a); © 2010 OSA]

losses of the external cavity. For positive biasing to this section, it plays as a semi-
conductor optical amplifier (SOA) and the feedback ratio can be increased up to
5 %, while, for negative biasing, it acts as a variable optical attenuator (VOA). In
this device, highly chaotic oscillations are generated for SOA operation, while only
periodic or stable oscillations are obtained for VOA operation. Consequently, a very
wide range of optical feedback values can be set and thus various types of dynamics
can be generated. The phase section (PM) accurately tunes the round-trip time of
the cavity with sub-wavelength resolution; this operation is extremely crucial for
synchronization with other matched devices that might exhibit a small mismatch in
the cavity length. The phase section allows for fine-tuning that can almost contin-
uously go over beyond 2π , even several multiples of it. The internal structure of
the packaging module is shown in Fig. 14.11b. Micro-strip lines connect the differ-
ent active sections of the photonic integrated circuit with SMA connectors, while
thermo-electric cooling of the device provides extremely stable temperature control.
Fiber-chip coupling is performed by a tapered-end fiber with antireflective coating.
Figure 14.11c is the packaged module.

Using the developed photonic integrated circuit, the dynamic properties are exper-
imentally and numerically investigated. The bias injection current to the laser is not
crucial for achieving enhanced nonlinear dynamics when it is kept well above thresh-
old. For a negative biasing to the gain-absorption section (VOA operation), only limit
cycle dynamics or stable solutions are observed excluding any chaos dynamics. On
the other hand, various dynamics are obtained at zero biasing to the gain-absorption
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section depending on the bias current to the phase section. By increasing the bias
phase current, the observed dynamics states are periodically repeated over 2π phase
change, and limit cycles, quasi-chaotic states, and fully chaotic states can be observed
in the laser outputs. For fully coherence-collapsed chaotic states, the radio-frequency
(rf) spectrum of the output signal becomes broadband and extends up to the cutoff
frequency of 8 GHz. When the gain-absorption section is slightly positively biased,
the gain in the cavity compensates the internal losses and results in the increase
of the optical power feedback ratio. As a result, broad-spectrum chaotic dynamics
appear in the laser outputs and the phase dependence on the dynamics is deteriorated.
For moderate bias of the gain-absorption at the bias current of +10 mA, the optical
feedback ratio rises to 3.3 % and the output shows fully chaotic states independent
of any phase condition.

Figure 14.12 corresponds to such case (Argyris et al. 2008). Figure 14.12a shows
the phase plot in the space of present and delayed intensities. We can see smoothed
broad spectrum in Fig. 14.12b which is suitable for chaotic generators in practical
applications. For the experimental data, the chaotic dimension is calculated and, as
a result, the correlation dimension is 4.8 ± 0.3. It is noted that the bandwidth of the
photodetector used in this experiment is 8 GHz, so that the optical power in the rf
spectrum is rapidly decreases above the cutoff frequency. Any further increase in
the gain-absorption current does not provide any alteration in the characteristics of
the chaotic spectrum in this device. As for the long-run stability of the device, the
precise thermo-electric cooling of the devices, by using the appropriate packaging
for the photonic integrated circuit, provides controllability and operating stability,
not only in terms of wavelength and optical power, but also in terms of the spectral
distribution of the chaotic carrier and the phase matching conditions. The stability
analysis was performed in the developed system and showed that the incorporated
chaotic photonic integrated circuits proved to be a reliable solution for applications
of chaotic secure communications and chaotic random number generations, after
operating continuously for hundreds of hours.

Photonic integrated circuits as chaotic light generators have actually been tested
for several systems of chaotic secure communications and random number gener-
ations. Argyris et al. (2010a) used two integrated closed loop systems of semicon-
ductor lasers with optical feedback (which is the same photonic integrated circuit in
Fig. 14.11) and performed chaotic secure data communications through 100 km opti-
cal fiber transmission based on a chaos masking method as discussed in Chap. 13.
The identical chaos generating photonic integrated circuits were able to synchro-
nize and reproduce the same carriers and realized data exchanges up to 2.5 Gbps
with bit error rates below 10−12 through forward error correction techniques.
Tronociu et al. (2010) developed a similar photonic integrated circuit for chaotic
secure communications. Their integrated device consisted of a DFB laser, two pas-
sive sections, two phase sections, and a narrow air gap. The air gap plays the role
for multi-path external optical feedback to control chaotic behaviors and elimi-
nate chaotic signatures appropriate for chaos based communications as discussed
in Chap. 13. One of the two phase sections could be used to insert messages through
phase modulation for the purpose of chaotic secure communications. They tested the

http://dx.doi.org/10.1007/978-3-642-30147-6_13
http://dx.doi.org/10.1007/978-3-642-30147-6_13
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Fig. 14.12 Experimental results of chaos generations from photonic integrated circuit at the bias
injection current of 3Ith (Ith = 10.6 mA), the gain-absorption current of +10 mA (SOA operation),
and the phase bias current of 2.9 mA. a Phase plot and b corresponding rf spectrum [after Argyris
et al. (2008); © 2008 APS]

device to chaos masking data transmission at 1 Gbps and obtained a raw bit error rate
of 10−4 in the decoded message that yields error-free transmission through suitable
forward error correction methods.

On the other hand, integrated chaos generators were applied to random number
generations. As already discussed in Sect. 14.4.2, Argyris et al. (2010b) conducted
random bit generations using the single photonic integrated circuit. They successfully
demonstrated 140 Gbps random number generations by the multi-bit post-processing
technique at 10 GHz sampling. Harayama et al. (2011) performed 2.08 Gbps phys-
ical random bit generations in real time based on their original photonic integrated
circuits with the same configuration of two chaotic generators as that in Sect. 14.4.1.
Beside the applications of chaotic secure communications and random number gen-
erations, several integrated circuits for chaotic systems have been proposed. For
example, Wünsche et al. (2005) reported a photonic integrated circuit for the study
of the dynamics of mutual-coupled semiconductor lasers. These systems also pro-
vide compact and stable chaotic oscillators and the study would have significances
not only for the investigation of detailed fundamental chaotic dynamics but also for
future possible applications.

14.6 Application for Random Number Key Distribution
with Chaotic Semiconductor Lasers

Quantum key distribution (QKD) has been widely investigated to realize uncondi-
tional secure communication (Gisin et al. 2002). In order to properly implement
such a high-speed QKD system, a high-speed physical random bit generator is
indispensible. However, traditional physical random number generators were too
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C-RNG

LD IM PM ATT

Optical Fiber Link
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Fig. 14.13 Schematic diagram of differential phase shift quantum key distribution (QKD). LD: laser
diode, IM: intensity modulator, PM: 0 and π phase modulator, ATT: attenuator, C-RNG: chaotic
random number generator, MZI: Mach–Zehnder interferometer, HM: half mirror, M: mirror, PD:
photodetector

slow to satisfy the requirement of high-speed QKD systems as discussed in Sect. 14.1.
Then, the fast random number generators introduced in Sect. 14.4 can be applied to
realize high-speed QKD in quantum secure communications. In the following, the
system and the performance of differential phase-shift quantum key distribution
(DPS-QKD) using chaotic random number generators are described (Honjo et al.
2009). In the DPS-QKD, the key generation rate strongly depends on the modulation
speed of the phase of a pulse train. Furthermore, fast random number generations are
expected for the longer transmission distance and the higher key generation rate in
QKD systems. Figure 14.13 shows a schematic diagram of DSP-QKD systems. In the
transmitter (Alice), a laser light (LD) is modulated by an intensity modulator (IM) at
a certain clock and a pulse train is generated. The phase of the pulse train is randomly
modulated by 0 orπ for each pulse through a phase modulator (PM) synchronized
to the clock. The chaotic random number generator (C-RNG) discussed in Sect. 14.4
can be used as a random modulator. The obtained optical pulse is attenuated at an
attenuator (ATT) and is sent to the receiver (Bob) with an average photon number
of less than one per pulse. In the receiver side, the phase difference between two
sequential pulses is measured by a 1-bit delay Mach–Zehnder interferometer (MZI).
Then, the photon arrival time and which detector clicked are examined. Thus, the
random bit sequences sent by Alice are reconstructed. Separately, the protocol to
retrieve the phase modulation information is prepared between Alice and Bob through
an open communication channel.

Figure 14.14 shows the experimental result of DPS-QKD (Honjo et al. 2009).
They used a synchronized 1 GHz clock to the intensity modulation of a DFB laser
(LD in Fig. 14.13) and also to the phase modulation through a chaotic random num-
ber generator. The optical pulse train is randomly phase shifted by 0 or π through
the phase modulator driven by random bit sequences from the chaotic random num-
ber generator, which consists of almost the same configuration as introduced in
Fig. 14.4. Then, the optical pulse is attenuated to 0.2 photons per pulse and then
transmitted to the receiver over 25 km dispersion shifted fiber. In the receiver side, the
phase difference between the two sequential pulses is detected through a 1-bit delay
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Fig. 14.14 Experimental results of quantum key distribution. a Quantum bit error rate (QBER)
and shifted key generation rate. b Occurrence of “1” bits for the fast physical random bit generator
used in the experiment [after Honjo et al. (2009); © 2009 OSA]

Mach–Zehnder interferometer that is stably adjusted by controlling the temperature
of the waveguide chip. Figure 14.4a shows the sifted key generation rate and quantum
bit error rate as a function of time. The figure indicates the continuous operation over
an hour and generated sifted keys at a rate of 9.0 kbps with an average quantum-bit
error rate of 3.2 %. Figure 14.14b shows the ratio of 1 or 0 bit generated from the
used random number generator as a function of time. This confirmed the stability
of the operation of the physical random bit generator for the quantum key distri-
bution experiment. The physical random bit generator with chaotic semiconductor
lasers provides stable random bit signal continuously throughput a 1-hour duration in
the experiment. Thus, a physical random bit generator with chaotic semiconductor
lasers is a promising candidate for the true random bit generator in a high-speed
QKD system.
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Appendix
Chaos

About Chaos in Nonlinear Systems

Chaos is a phenomenon observed in a nonlinear system described by a certain set of
differential equations and shows irregular oscillations for time or spatial evolutions
(Lorenz 1963). We must distinguish chaos from the observations of random events,
such as flipping of a coin. Namely, chaos is a disorder in a system written by
deterministic equations. Chaos is observed in a wide variety of nonlinear systems,
not only in physical and engineering systems, but also in biological systems and,
even, in sociology and economy. Nonlinearity of a system is one of the important
factors to observe chaos. Whether the system is continuous or discrete, it is a good
candidate for a chaotic system, but the nonlinearity itself does not always guarantee
chaotic oscillations in the system. Chaos occurs in a nonlinear system under
appropriate parameter conditions and also certain parameter ranges. Chaos has a
rigid definition for the irregular oscillations of the output from the system. Whether
the output from a system is chaos or not is determined by the rigorous procedures
using mathematical tools, such as attractors, the Lypunov exponent, and the
Poincaré map of the output (Abarbanel 1996). In the following, we discuss what
chaos is, what it looks like, and how chaotic data are analyzed. Also, as unique
features of chaos, we show some examples of useful techniques for practical
applications: control of chaos and chaos synchronization. The Appendix does not
aim at the rigid mathematical descriptions of chaos, but it intends to show the
general aspects of chaos and gives some useful tools for the analyses of chaos for
reading this book.

The following is a list of some additional reading for the general concept and
mathematical treatments of chaos. The readers interested in physical and
mathematical backgrounds of chaos and also the treatment of chaotic data may
consult the following books.

Abarbanel HDI (1996) Analysis of observed chaotic data. Springer-Verlag, New
York

J. Ohtsubo, Semiconductor Lasers, Springer Series in Optical Sciences 111,
DOI: 10.1007/978-3-642-30147-6, � Springer-Verlag Berlin Heidelberg 2013
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methods for engineers and scientists. John Wiley & Sons, New York

Tuckerman L (1986) Order within chaos. John Wiley & Sons, New York

A.1 Nonlinear Chaotic Systems

A.1.1 Discrete Systems

We consider the occurrence of an event that becomes the new input of the system
and causes the next events. Namely, the system is described by discrete difference
equations. We assume a nonlinear response of a discrete system and write its
output as xðnÞ

xðnþ 1Þ ¼ f ðxðnÞ; lÞ ðA:1Þ

where n denotes the step of the occurrence, f ðxÞ is the nonlinear function, and l is
the system parameter. In general, xðnÞ is a vector and the parameter l is also a
vector. Logistic mapping is the well-known mathematical relation for a discrete
chaotic system. We consider the logistic map with a variable x and a parameter l
given by

xnþ1 ¼ lxnðxn � 1Þ ðA:2Þ

This is a simple mapping using a quadratic function. It is stable and its solution
converges to a fixed point for any initial value of x as far as the parameter l is
roughly less than 3. The output x shows an oscillation for the evolution of n when
the parameter l has a value larger than 3. With a further increase in the parameter
value, the system shows period-doubling oscillatory solutions and, finally, reaches
irregular chaotic oscillations. Figure A.1a shows such an example for the
parameter value of l ¼ 3:8: This irregularity is completely different from the
random fluctuations observed in stochastic processes. The irregularity is simply
derived from the deterministic difference equation in (A.2) and the irregularity is
called ‘‘chaos.’’ One of the unique features of chaos is the sensitivity for the initial

538 Appendix: Chaos



condition. In the numerical calculation in (A.2), we can never obtain the same
waveform for different initial values even if the difference is extremely small.
Figure A.1b is the demonstration of the sensitivity for the initial condition. In the
figure, we choose two initial conditions with a slight difference of x0 ¼ 0:12000
and x0 ¼ 0:12001: At first, x shows a quite similar orbit, however the difference
between the two orbits deviate from each other and, finally, show completely
different oscillations for the evolution of the event. This is a typical nature of the
sensitivity for the initial conditions in a chaotic system.

From the plot of the maxima and minima of the variable x for the evolution of
step n, we obtain a map for the parameter l as shown in Fig. A.2. The map is
called a bifurcation diagram or a chaotic bifurcation diagram. From this plot, we
can see that a fixed point of the output x evolves to periodic oscillations and
period-doubling oscillations occur for the increase of the parameter l. Finally, the
output x behaves with completely irregular oscillations at high values of the
parameter l, namely, chaotic oscillations. The type of bifurcation is called a
period-doubling bifurcation. Period-doubling bifurcation is not the only chaotic
route, but other routes for chaotic evolutions exist depending on the configuration
of systems and chaos parameters, for example, quasi-period-doubling bifurcations
and intermittent chaotic bifurcations. A bifurcation diagram is important to know
how the dynamics of a system change for the parameters. We can make similar
plots of bifurcation diagrams for the change in the parameters for any chaotic
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systems and know the chaotic evolution route of the system output. The fact that
such complex dynamics are induced from a simple relation in (A.2) is surprising.
Indeed, we can observe complex dynamics in optical systems with discrete
nonlinear properties.

A.1.2 Continuous Systems

Continuous systems have more or less nonlinear aspects. For engineering
applications, linear response is usually assumed even when a system has
nonlinearity, or the linearization is frequently applied for the nonlinear system
within suitable ranges of parameters, because nonlinear systems are too complex
to be modeled and analyzed. They show unwanted irregular oscillations for a wide
range of the change in variables. Therefore, only linear parts of the systems are a
good model for engineering applications. Until recently, analysis for nonlinear
systems was only of fundamental interest as concerns the dynamic behaviors of the
systems. However, many phenomena of nonlinear behaviors have been observed in
engineering models. For example, strange relaxation oscillations were observed in
a triode used for electric circuits, which is a chaotic oscillation and is now known
as a van der Pol oscillator (van der Pol 1926). Chaos, which is irregular oscillations
induced in deterministic nonlinear systems, became common understanding after
the work done by Lorenz (1963), who investigated the behaviors of convective
flow for the atmospheric model. He obtained three differential equations for the
model by appropriately scaling the three variables. In spite of the simple forms of
the three differential equations, one cannot obtain analytical solutions and needs
numerical calculations. Later, it was proved that lasers were described by the same
Lorenz equations with three variables (Haken 1975).

Here, we show an example of chaotic oscillations in a continuous nonlinear
system. We consider a system of damping oscillation driven by an external force
known as the Duffing spring model. The Duffing model is described by

d2x

dt2
þ k

dx

dt
þ x3 ¼ B cos xt ðA:3Þ
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Fig. A.2 Bifurcation dia-
gram for logistic mapping
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where x is the variable for the displacement of the spring, x is the angular
frequency of the external driving force, B is the amplitude of the external force,
and k is the coefficient of the friction. Using the notation y ¼ dx=dt; the Duffing
equation is written by the following two differential equations:

dx

dt
¼ y ðA:4Þ

dy

dt
¼ �ky� x3 þ B cos xt ðA:5Þ

Namely, a nonlinear chaotic system is generally described by a vector variable
u and a nonlinear function f as

du

dt
¼ f ðu; lÞ ðA:6Þ

This equation is quite similar to the discrete nonlinear system described in (A.1).
l is the vector parameter of the system. The Duffing model is essentially a
damping oscillation system, but it shows various stable and unstable oscillations
depending on the parameter.

Figure A.3a plots the trajectory of the variables x and y for the parameter values of
k ¼ 0:225; B ¼ 0:3; and x ¼ 1: The output of the system converges to a periodic
orbit (periodic attractor) for the time evolution. The diagram in Fig. A.3a is called a
‘‘phase space’’ and the attraction in the phase space is called ‘‘attractor.’’ When
k ¼ 0:5; B ¼ 0:3 x ¼ 1; the orbit shows a complicated trajectory within a limited
compact space as shown in Fig. A.3b. The attractor is so strange that it is called a
‘‘strange attractor.’’ A strange attractor is a typical feature of chaotic dynamics.
Complex dynamics appear to be such a simple differential equation. Chaos generated
from various differential systems for physical and engineering models has been
extensively studied after the discovery of chaos by Lorenz. The energy from a
physical or engineering system is generally dispersed for the time evolution and such
a system is called a dissipative system. In a dissipative system, the volume of the
trajectory generally shrinks in the phase space in accordance with the dispersion of
energy. However, for dissipative chaotic systems, the trajectory stays within a finite
volume in the phase space for the time evolution like in Fig. A.3b due to the presence
of an external drive force and it shows a strange attractor. On the other hand, for a
system that holds the conservation of energy, the attractor is always fixed within a
finite area in the phase space.

A.1.3 Delay Differential Systems

The system described by delay differential equations is a nonlinear system as it is.
For the control of a system, a fraction of the output is usually fed back into the
system with a finite delay time. When the delay cannot be ignored in order to
consider the system response, the system must be described by delay differential
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equations. In this book, we treat various delayed feedback systems in
semiconductor lasers. The general form of a delay differential system is given
by the following equation:

duðtÞ
dt
¼ f ðuðt� sÞ; lÞ ðA:7Þ
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Fig. A.3 Attractors of the
Duffing system. a Periodic
attractor for k ¼ 0:225;
B ¼ 0:3; and x ¼ 1:b
Chaotic attractor for
k ¼ 0:5; B ¼ 0:3 and x ¼ 1
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where s is the delay time in the system. As demonstrated in this book, we can
observe a rich variety of chaotic dynamics in delay differential systems. The
complexity of a system described by delay differential equations is much stronger
than that of simple differential systems, since the mapping of a delayed system is
of continuous nature. The chaotic dimension (discussed in Sect. A.2.3) of
differential systems is low, while it is high for delay differential systems.
Therefore, a delay differential system is sometimes referred to as a high-
dimensional chaotic system.

A.2 Analysis and Characteristic Descriptions for Chaotic Data

A.2.1 Phase Space, Attractor, and Poincaré Map

We have already shown some tools for the analysis of chaotic oscillations in
nonlinear systems. We discussed the phase space for chaotic systems in
Sect. A.1.2. We here first go into details of the explanation for the phase space.
The phase space of a dynamical system is a mathematical space with orthogonal
coordinate directions representing each of the variables needed to specify the
instantaneous state of the system. A phase map may be constructed in several
ways. For the Lorenz system, for example, the state of the system can be described
by three variables x; y; and z and parameters r; r; and b as

dx

dt
¼ �rðx� yÞ ðA:8Þ

dy

dt
¼ �xzþ rx� y ðA:9Þ

dz

dt
¼ xy� bz ðA:10Þ

Figure A.4 shows the time evolution of Lorenz equations with a diagram in a
three-dimensional phase space. The diagram is called the phase portrait and the
orbit is called the trajectory in the phase space. The Lorenz system gives an
excellent instance of what we called a strange attractor. We see a beautiful
butterfly-shaped attractor on which a trajectory starting from any initial point will
come back to the near neighborhood of the initial point but never precisely repeat
it. An important feature of the phase portrait is that two trajectories will never
cross each other. This non-crossing property derives from the fact that both past
and future states of a deterministic system are uniquely determined by the system
state at a given time. A crossing of trajectories inevitably introduces ambiguity
into past and future states and contradicts the assumed uniqueness of the trajectory.
However, a projection of a higher dimensional space onto a plane might show
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apparent crossings which do not represent actual interactions. The phase portraits
for the periodic, quasi-periodic, and chaotic time variations in general appear to be
a limit cycle, a torus, and a strange attractor, respectively, as shown in Sect. A.2.2.

Poincaré Map

The Poincaré map introduced by H. Poincaré is a classical technique for analyzing
a dynamical system. It is obtained by viewing the trajectory stroboscopically. It is
also a useful tool for understanding the characteristics of nonlinear systems. For an
n-dimensional trajectory C as shown in Fig. A.5, take an ðn� 1Þ-dimensional
hyper planeR transverse to the trajectory at X0. The trajectory emanating from X0

will hit R at X1; X2; . . . at the following transversings. The Poincaré map P is
defined as

Xkþ1 ¼ PðXkÞ ¼ Pð PðXk�1ÞÞ ¼ P2ðXk�1Þ ¼ � � � ðA:11Þ

where k is an integer. The Poincaré map replaces the continuous dynamical system
into a discrete map, which is much easier to deal with mathematically. With the
Poincaré map, one can dramatically reduce the data number that is especially
necessary in the experiments. As demonstrated in Sect. A.2.2, one can easily
distinguish among the periodic, quasi-periodic, and chaotic variations from the
appropriate Poincaré maps. In particular, the Poincaré map for chaotic systems
exhibits remarkable features. The map does not result in a simple geometrical
structure and, when it is magnified, the fine structure resembles the gross one.
Namely, the system trajectory has a fractal structure.

x

y
z

Fig. A.4 Lorenz attractor for
parameter values of
r ¼ 10; r ¼ 28; and b ¼ 8=3
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A.2.2 Steady-State Behaviors

We can classify dynamical systems in terms of their steady-state solutions and
describe some typical examples for particular cases. The steady state refers to the
asymptotic behavior of the system as time t approaches infinity. Typically four
different types of steady-state behaviors can be identified to chaotic system. Each
steady state will be described from the following different points of view: in the
time domain, in the frequency domain, in the phase space, and in the Poincaré
map. We here mainly focus on the Poincaré maps for chaotic systems.

Equilibrium Points

An equilibrium point x0 of an autonomous system is a constant solution in (A.6).
In most cases, this means f ðx0; lÞ ¼ 0 or x0 ¼ f ðx0; lÞ: The phase portrait for an
equilibrium point is the point itself.

Periodic Solutions

A time-dependent variable xðtÞ is periodic if xðt þ TÞ ¼ xðtÞ for all t and some
minimal period T . For a model of Duffing’s equations in (A.4) and (A.5), a
periodic solution was plotted in Fig. A.3a. Such a closed curve is called a limit-
cycle as it can be regarded as a diffeomorphic copy of a cycle. The corresponding
Poincaré map is displayed in Fig. A.6a by sampling the trajectory with the driving
period. The Poincaré map for a periodic solution in general consists of finite points
and the number of points depends on the sampling period.
Quasi-Periodic Solutions

A quasi-periodic solution is the sum of periodic solutions each of whose frequency
is a linear coupling of a finite set of base frequencies. The simplest case is the one
with two frequencies. We here consider the van der Pol equations to

Γ

Σ

X1

X0

X2

Fig. A.5 Poincaré map of an
nth order autonomous system.
C: n-dimensional trajectory,
R: ðn� 1Þ-dimensional hyper
plane
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demonstrate how quasi-periodic solutions arise in dynamical systems. The van der
Pol equations read as

dx

dt
¼ y ðA:12Þ

dy

dt
¼ lð1� x2Þy� xþ c cos xt ðA:13Þ
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Fig. A.6 Poincaré map for
Duffing oscillation. a Map for
periodic oscillation for
Fig. A.3a. b Map for chaotic
oscillation for Fig. A.3b
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In the van der Pol equations, there exist two periodic components; one is the
driving signal with the period T1 ¼ 2p=x and the other is the intrinsic oscillation
whose period T2 depends on the system parameters. When T2 is synchronized with
T1, there appears a periodic oscillation. However, if T1 and T2 are incommensurate
and neither of them can dominate the output, the system has a quasi-periodic
behavior. An example of the quasi-periodic solutions in the van der Pol model is
shown in Fig. A.7. Figure A.7a shows a time series for the quasi-periodic solution.
The spectrum (Fig. A.7b) consists of main spectral peaks corresponding to the
intrinsic oscillation frequencies of the system and the tightly spaced side bands due
to the driving signal. The difference between the intrinsic frequency and the
driving frequency can be measured from the spacing of the harmonics within the
sideband. The corresponding attractor is plotted in Fig. A.7c. In the phase space,
the trajectory lies on a diffeomorphic copy of the two-torus as shown in Fig. A.8.
Since the trajectory is a curve and two-torus is a surface, not every point on the
torus lies on the trajectory, however, it can be shown that the trajectory repeatedly
passes closely every point on the torus in an arbitrary manner. Depending on the
sampling period, the Poincaré map for the quasi-periodic solutions appears as
various limit cycles. In the van der Pol model, we obtain a Poincaré map by
sampling the trajectory with the driving period as in Fig. A.7d.

Chaos

Chaos is different from any one of the above three solutions. Once more we recall
Duffing’s equations to generate the chaotic attractor in Fig. A.3b. It behaves with
more irregular oscillations than those of periodic and quasi-periodic states. In
general, the spectrum becomes broadened, and no distinct spectral peak is
visible, but has a continuous broadband spectral structure. The Poincaré map
corresponding to Fig. A.3b shows a very interesting structure and is displayed in
Fig. A.6b.

A.2.3 Fractal Dimension and Correlation Dimension

We here discuss some statistical measures of chaotic attractors by introducing the
concept of the fractal dimension. A chaotic trajectory has generally a fractal
structure as discussed in Sect. A.2.1. We first start from the capacity dimension.
For simplicity, a geometric structure, i.e., a limit cycle, a torus, or a chaotic
attractor, is regarded as a set. Consider a set located in an m-dimensional phase
space. Imagine we cover the attractor by N(e)m�dimensional boxes of e on each
side. The capacity dimension dc is defined as

dc ¼ lim
e!0

log NðeÞ
logð1=eÞ ðA:14Þ
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Fig. A.8 Torus with two periodic components denoted as S1 and S2
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For a dissipative dynamical system such as a delay differential model, the attractor
is located in an m-dimensional phase space (embedding space), but the fractal
dimension is in general less than the embedding dimension m. Furthermore,
chaotic attractors generally have non-integer dimension.

There are several kinds of definitions about the fractal dimension. For an
experimental data or a model of a high-dimensional dynamical system, another type
of dimension is more efficient in data calculation than the capacity dimension. The
method is the correlation dimension dg. Suppose that many points are scattered over
a set and consider the correlation between any two points. The typical number of
neighbors of a given point will vary more rapidly with the distance from that point if
the set has higher dimension than otherwise. The correlation dimension may be
computed from the correlation function CðqÞ defined by

CðqÞ ¼ lim
N!1

1
N2

XN

i;j¼1

hðq� jxi � xjjÞ ðA:15Þ

where xi and xj are the points on the attractor, hðyÞ is the Heaviside function
(hðyÞ ¼ 1 for y [ 0 and hðyÞ ¼ 0 for y\0Þ; and N is the number of the points
randomly chosen from the entire data set. The Heaviside function simply counts
the number of the points within a radius q of the point xi, and CðqÞ gives the
average function of the points within q. The correlation dimension is defined by
the variation of CðqÞ with q approaching zero as

CðqÞ � qdg ðq! 0Þ ðA:16Þ

Therefore, the correlation dimension is obtained from the slope of the graph of
log CðqÞ versus log q.

A.2.4 Lyapunov Exponent

The fractal dimension provides a qualitative measure of the singularity of the
chaotic attractor. However, it is a static measure and, from the fractal dimension,
we know nothing about how the trajectory varies in the phase space as the time
evolution. Moreover, this kind of measure has no explicit relation with the most
important characteristics of chaos, i.e., the sensitivity to the initial condition.
Therefore, we have to resort to some dynamical measure—the method is known as
the Lyapunov exponent.

The basic idea of the Lyapunov exponent is to measure the average rate of the
divergence for the neighboring trajectories on the attractor. The direction of the
maximum divergence or convergence locally changes on the attractor. The motion
must be monitored at each point along the trajectory. Therefore, a small sphere is
defined, whose center is a given point on the attractor and whose surface consists
of phase points from nearby trajectories. As the center of the sphere and its surface
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points evolve in time, the sphere becomes an ellipsoid with the principal axes in
the directions of the contraction and the expansion. The average rates of the
expansion or the contraction along the principal axes are the Lyapunov exponents.
For the ith principal axis, the corresponding exponent is defined by

ki ¼ lim
t!1

1
t

LiðtÞ
Lið0Þ

� �
ðA:17Þ

where LiðtÞ is the radius of the ellipsoid along the ith principal axis at time t. In this
expression, the growth rate is always measured along the ith principal axis, but the
absolute orientation in the phase space of that axis is not fixed. It is impractical to
perform the actual computation in the way suggested in the definition, because the
initially close phase points would soon diverge from each other by distances
approaching the size of the attractor, and the computation would then fail to
capture the local rates of the divergence and the contraction. Therefore, vectors
connecting the surface of the ellipsoid to the center must be shrunk periodically or
renormalized to ensure that the size of the ellipsoid remains small and that its
surface points correspond to trajectories near that of the center point. The
calculation algorithm for the Lyapunov exponent from time series can be found in
the reference (Abarbanel 1996).

There are some important points related to the Lyapunov exponents as
discussed in the following:

(1) For a chaotic system, at least one of the Lyapunov exponents must be
positive to allow the sensitive dependence on the initial conditions.

(2) According to the definition of the Lyapunov exponents, a small volume V in
the phase space will change in time as

VðtÞ ¼ V0 exp
Xn

i¼1

kit

 !
ðA:18Þ

and hence the rate of the change of the volume VðtÞ is simply

dVðtÞ
dt
¼
Xn

i¼1

kiVðtÞ ðA:19Þ

Therefore, for a dissipative chaotic system, the sum of all the Lyapunov exponents
must be negative, i.e.,

P
i ki\0.

(3) If we order ki ði ¼ 1; 2; . . .; nÞ as k1 [ k2 [ � � � [ kn, then the Lypapunov
dimension, dl, is defined as

dl ¼ jþ k1 þ k2 þ � � � þ kj

jkjþ1j
ðA:20Þ

where j is the number of the Lyapunov exponents, which gives a positive sum, but

adding kj þ 1 would make the sum negative, i.e.,
Pj

i¼1 ki [ 0 but
Pjþ1

i¼1 ki\0. The
relationship among the capacity dimension dc, the correlation dimension dg, and the
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Lyapunov dimension dl is dc� dg� dl. The equality holds only for the case that the
points on the fractal are approximately uniformly distributed (Aberbanel 1996).

A.3 Chaos Control

A.3.1 Controlling Chaos

Real physical and engineering systems are more or less chaotic systems. Stable
control for nonlinear systems is essential for practical applications. However, a
system sometimes seems to be out of control for any parameters when it operates
under chaotic oscillations. The state of the system is surrounded by chaotic sea and
the system could not be stabilized by any parameter changes as far as the change is
small. However, there always exist stable islands scatteredly located not far from
the operating point of the system (they are usually not exact stable points but
unstable periodic orbits). By appropriately choosing a perturbation to the system
and attracting the state to such a stable orbit, one might successfully stabilize the
system even when the original state is a chaotic oscillation. This kind of
stabilization is called ‘‘chaos control.’’ Chaos control is different from the ordinary
technique of forced control in respect to a small perturbation for the system. In
ordinary forced control, the power imposed to the system is so large that the
original state of the system is completely changed after the control. On the other
hand, the applied signal in chaos control is small enough not to change the original
state and the system with chaotic oscillation is attracted to a periodic or even a
fixed state by the small perturbation. The dynamics of the original state is not
changed after the control is achieved. This is the idea of chaos control. Of course, a
chaotic state may also be stabilized to a stable oscillation by a large control signal.
This is different from chaos control, but it is categorized into ordinary forced
control. The principle of chaos control was first proposed by Ott et al. (1990). They
gave the mathematical proof of chaos control for chaotic systems and the method
is now called OGY method or OGY algorithm after their names. In the following,
we present a brief proof of the OGY algorithm. However, the application of the
OGY method requires the full mathematical description of a nonlinear model. We
need the attractors or the Poincaré map in advance to analyze and control the
system. It is sometimes difficult to apply the OGY method for the control of
practical systems. As an alternative method (but it still has an essence of the OGY
algorithm), we also introduce the continuous chaos control methods, which are
applicable to real experimental systems.

OGY Algorithm

Take as an example a single-input two-dimensional discrete nonlinear system and
consider chaos control in the system. The system is written as
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xnþ1 ¼ fðxn;lÞ ðA:21Þ

where f is again the nonlinear function and l is the control parameter. We assume
that the system has a fixed point at l ¼ l0; namely

xf ¼ fðxf ; l0Þ ðA:22Þ

The operating point for the system parameter l is assumed to be close to the
parameter l0 with the accompanying output xf . We define the difference of the
outputs xn and xf as

nn ¼ xn � xf ðA:23Þ

Since the difference n is small, we linearize the difference and set the control
signal ln so as to force the original state xn to the stable state xf . The relation is
given as

nnþ1 ¼Mxn þ aln ðA:24Þ

where M and a are Jacobian matrices for the variable x and the parameter l at the
fixed points, respectively. The point we consider is a type of saddle node unstable
point. Then, one of the eigenvalues of M must be jkuj\1 and the other one is
jksj\1: We write the eigenvectors for respective eigenstates as eu and es, and
define the accompanying contravariant basis vectorsvu and vs. Using the vector
relations of vu � eu ¼ vs � es ¼ 1 and vs � eu ¼ vu � es ¼ 0; the matrix M is written
as

M ¼ eu es½ �
ku 0

0 ks

� �
vu

vs

� �
¼ kueu � vu þ kses � vs ðA:25Þ

When a small control signal is applied to put the difference nnþ1 on the stable orbit
in accordance with (A.24), the difference nnþ1 is parallel to the vector es. Then, we
obtain the condition

vu � nnþ1 ¼ 0 ðA:26Þ

Taking into account the relations in (A.24) and the condition of vn � a 6¼ 0 from
(A.24), we obtain the following signal suitable for the control:

ln ¼ �
kuvn � nn

vn � a
ðA:27Þ

When the state of the system is close enough to the point xf and the signal given by
(A.27) is applied to the system, the state falls down to the fixed point xf .
Figure A.9 schematically shows the OGY control algorithm. In Fig. A.9a, the
initial state xn is close enough to the fixed point xf . A small perturbation is applied
to the control parameter according to (A.27) as shown in Fig. A.9b. Then, the next
state is shifted onto the stable orbit in Fig. A.9c and, finally, the state is attracted to
the fixed point. The model here is for a low-dimensional system, but the procedure
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is also applied to high-dimensional chaotic systems. For a continuous system, it
must be approximated to a discrete form in order to apply the OGY algorithm.
Further, we must in advance know all the parameter values of the system to
perform the control. Therefore, the method has a limitation for application to real
nonlinear systems. For this reason, various control algorithms have been proposed
without losing the essence of the OGY algorithm.

xf xn

xn+1

vn

es

xf (μ0+δμ)

xn

xf
xn

(a)

(b)

(c)

Fig. A.9 OGY control algo-
rithm. a Initial state; b appli-
cation of small perturbation
to the parameter, and c con-
trolled state
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Continuous Control

We here describe the continuous chaos control proposed by Pyragas (1993) as an
alternative method of chaos control for practical use. The system configuration is
shown in Fig. 9.1. The control signal is the difference between the present and
time delayed outputs. The delay time introduced is almost equal to the response
time of the system (but may not be exactly equal to the response time). Namely,
the delay s corresponds to the typical frequency of the chaotic oscillation. When
we can obtain exactly the mathematical description of the system, we can calculate
the delay time from the equations. Otherwise, the typical frequency of chaotic
oscillations in the experiment would give a good estimate for the delay time. In the
continuous control, the system under a certain chaotic oscillation is synchronized
to a periodic state by feeding back the difference signal.

Using one of the variables, yðtÞ, in a chaotic system and writing the other
variables as a vector representation, xðtÞ; the equations for the system are given by

dy

dt
¼ f ðy; xÞ ðA:28Þ

dx

dt
¼ gðy; xÞ ðA:29Þ

where f and g are the nonlinear functions. The feedback signal in the continuous
control is proportional to the difference of the present output yðtÞ and the delayed
output yðt � sÞ defined by

uðtÞ ¼ Kfyðt � sÞ � yðtÞg ðA:30Þ

For the control, the Eq. (A.28) is modified as

dy

dt
¼ f ðy; xÞ þ uðtÞ ðA:31Þ

where K is the strength of the feedback and the effective control is performed by
changing this value.

The control signal in (A.30) becomes zero after the success of the control, i.e.,
uðt � sÞ ¼ uðtÞ and the output shows periodic oscillation with a fundamental
period of s. The target of the periodic orbit to be controlled must be close to the
initial state of the chaotic system and the delay time must be accurately estimated
to some degree in advance either theoretically or experimentally. One cannot tell
to which state the system is attracted among the possible orbits, when the system
includes several unstable periodic orbits close to the initial state. The continuous
control does not require the calculation of the Poincaré map such as in the OGY
method and it is robust for noises. The continuous control is an extension of the
OGY method for continuous differential systems. The control is easily realized for
practical engineering systems, when the response time is not so fast to implement
by using electronic circuits.
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We show an example of the continuous control for the Rössler system shown in
Fig. A.10. The equations of the system are given as

dx

dt
¼ �y� z ðA:32Þ

dy

dt
¼ xþ ayþ uðtÞ ðA:33Þ

dz

dt
¼ bx� czþ xz ðA:34Þ

uðtÞ in (A.30) is the control term. In the figure, the quasi-periodic or weak chaotic
state is controlled to period-3 oscillation (Pyragas 1992). As can be easily seen
from the figure, the control signal diminishes after the success of the control.

Another example of the method of chaos control is the occasional proportional
feedback (OPF). The OPF control is discussed in Sect. 9.2.2. The control in the
OPF method is also a periodic perturbation to the system and the system with
chaotic state is attracted to an unstable periodic orbit near the initial state. A small
periodic control signal is produced by processing from the system’s output in a
digital electronic circuit with an appropriate synchronous reference. Different from
the continuous control, the feedback control circuit in the OPF system continually
outputs the control signal even after the success of the control. However, the
control signal is usually small enough not to disturb the original chaotic attractor
and does not change the dynamics of the system.
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Fig. A.10 Continuous chaos control for the Rössler system. The chaotic oscillation is controlled
to a period-3 state at the parameter values of a ¼ 0:2; b ¼ 0:2; c ¼ 5:7; s ¼ 17:5; and
K ¼ 0:2:Upper trace: curve F corresponds to the moment of switching on the perturbation and
the inset is the x� y phase portrait after the control. Lower trace: output y [after Pyragas (1992);
� 1992 Elsevier]
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A.4 Chaos Synchronization

Synchronization between two nonlinear chaotic systems is not self-evident and
was first demonstrated by Pecora and Carroll (1990). After the proposal of the
method of chaos synchronization, it has been demonstrated in various nonlinear
systems including lasers. We prepare almost the same two nonlinear systems with
the same parameter values. A fraction of the output from one of the chaotic
systems (chaotic transmitter) is sent to the other system (chaotic receiver). Then,
the receiver output synchronizes with the transmitter signal under appropriate
parameter conditions. The mathematical basis for chaos synchronization is given
for discrete and differential systems; however, the mathematical explanation for
chaos synchronization in delay differential systems is not easy and the proof has
not been given yet. However, numerical and experimental demonstrations of chaos
synchronization in discrete, differential, and delay differential systems have been
reported.

We explain the general idea of chaos synchronization using a simple differential
model. Consider a chaotic system with a set of vector variables u and v. We divide
the transmitter system into two subsystems and describe the nonlinearities for the
respective subsystems as f (u,v) and g(u,v). Then, the transmitter system is
characterized as

du

dt
¼ f ðu; vÞ ðA:35Þ

dv

dt
¼ gðu; vÞ ðA:36Þ

The subsystems are mutually coupled and the outputs of u and v are assumed to be
chaotic. We prepare the receiver system for chaos synchronization. The receiver
system consists of only one of the subsystems and it has the same form as (A.35).
Namely, the receiver is written as

dw

dt
¼ f ðw; vÞ ðA:37Þ

Without signal transmission from the transmitter, variable v is treated as a certain
constant vector. The subsystem is described by the nonlinear function, however the
output w may be either a chaotic or a stable oscillation when the receiver receives
no transmitted signal. Even if the output is chaotic, the output w would never show
the same chaotic oscillations as the output u in the transmitter since chaos has strict
sensitivity for initial conditions. However, the output w shows completely the same
chaotic oscillation as the transmitter output u when a fraction of the transmitter
output is sent to the receiver under appropriate conditions. In a mathematical sense,
there is a condition for having a negative value of the maximum conditional
Lyapunov exponent for the difference in the outputs u and w.
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Take an example of a Lorenz system for the demonstration of chaos
synchronization. The differential equations with the variables x, y, and z, and
the transmitter system is divided into two subsystems as
subsystem 1

dy

dt
¼ �xzþ rx� y

dz

dt
¼ xy� bz

9
>=

>;
ðA:38Þ

subsystem 2

dx

dt
¼ �rðx� yÞ ðA:39Þ

The receiver system is assumed as a copy of subsystem 1 of the transmitter and it
is given as

dy0

dt
¼ �xz0 þ rx� y0

dz0

dt
¼ xy0 � bz0

9
>>=

>>;
ðA:40Þ

As already noted, the variable x in the receiver is treated as a constant without the
transmission of a signal from the transmitter. The outputs x, y, and z of the
transmitter are chaotic at the parameter values of r ¼ 16; b ¼ 4; and r ¼ 45:92:
On the other hand, it is proved that the maximum Lypunov exponents of the
outputs y0 and z0 of the receiver are negative. Therefore, the receiver exhibits stable
outputs without receiving any chaotic signal from the transmitter.

Figure A.11 shows the transients for the chaos synchronization in a Lorenz
system. The output z0 from the receiver is pulled into the transmitter output z due to
the presence of the transmission signal and shows a chaotic oscillation. For a
sufficiently elapsed time, the two outputs show the same chaotic oscillation as
shown in Fig. A.11a. Figure A.11b and c shows the plots of the trajectories for the
y–z and y0�z0 planes, respectively. The starting points are the time when the
transmitted signal is received at the receiver. For the elapse of time, the distance
between the two trajectories is reduced and the trajectories finally overlap each
other. Thus, chaos synchronization is achieved. Chaos synchronization is only
attained under certain conditions. We must take care when choosing a set
of subsystems and parameter conditions for successful chaos synchronization.
To make suitable subsystems for chaos synchronization, the receiver system must
be coincident with the transmitter system when one or more of the transmitter
outputs are sent to the receiver. In this instance of the Lorenz system, the receiver
conforms the transmitter system with transmission of signal x.

In laser systems, however, the method is not straightforwardly applicable, since
we cannot divide the dynamics of laser variables into subsystems. As an alter-
native technique, two same sets of laser systems are prepared as a transmitter and a
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receiver and a small portion of the laser output in the transmitter laser is sent to the
receiver. Successful chaos synchronization in semiconductor laser systems is
achieved under appropriate conditions of the system parameters and the signal
transmission as discussed in Chap. 12.

Lorenz (yz) Drive [Master]

Lorenz (y’z’ ) Response [Slave]

Time

z(
t)
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y
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y

20

40

60

0 1 2 3

20
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40
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-20 0 20 40

-20 0 20 40

(a)

(b)

(c)

Fig. A.11 Transients of chaos synchronization in the Lorenz system. The values of the
parameters are r ¼ 16; b ¼ 4; and r ¼ 45:92:a Time series of outputs z (solid curve) and z0

(broken gray line); b trajectory at y� z plane, and c trajectory at y0 � z0 plane. The start point is
the time at which the receiver receives the transmitted signal
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Index

3-dB bandwidth, 212
3-dB optical bandwidth, 318

A
Absolute position measurement, 393
Accuracy

of chaos synchronization, 472
of synchronization, 465, 493, 496
of synchronization and

desynchronization bursts, 493
Achronal state, 427, 450
Active

feedback interferometer, 406
interferometers, 8
region, 32

Additive active phase-tracking
method, 392

Additive modulation, 484, 486
Adler equation, 312
Adler-type frequency pulling, 177, 182
AlGaAs lasers, 66, 365
Allan variance, 364
AM sideband, 501
Amplitude anisotropy, 263
Amplitude reflectivity, 76, 79, 86, 88
Analoge encryption, 464
Angle measurement, 395
Angular momentum numbers

of electron, 262
Angular oscillation frequency, 14
Anticipating chaos synchronization, 421, 433
Anti-mode, 81, 83, 135, 340
Anti-phase

correlation, 452
dynamics, 156

oscillation, 157, 271, 276
synchronization, 451
synchronous oscillations, 156

AR coated semiconductor laser, 354
Ar-ion lasers, 27
Astigma, 61
Atomic detuning, 18
Attractor, 108, 330, 341, 428
Attractor ruins, 139
Auger process, 305
Autocorrelation, 404
Average mutual information, 497

B
Bad-cavity condition, 22–24
Band-filling effects, 240
Bandwidth, 502
Bandwidth enhancement, 232
Bandwidth-enhanced chaos

synchronization, 436
Beam quality factor, 290, 374, 380
Beam shaping, 373
Beat frequency, 193
BER, 504
Bias injection current, 206
Bifurcation, 87

cascade, 347
diagram, 111, 127, 146, 155, 170, 218,

225, 245, 311, 334, 410, 447
scenarios, 141

Birefringence, 263
frequency splitting, 284
splitting, 273

Birefringent plate, 221
Bistablity, 125, 143
Bistable states, 386
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B (cont.)
Bit error rate (BER), 477, 493, 530
Bit rate, 468, 487, 504
Bloch equations, 13
Bragg reflector, 274
Bragg wavelength, 70
Broad stripe width, 286
Broad-area semiconductor laser, 6, 286, 353,

358, 359, 370, 378, 379
Buried hetero structure, 61
Bursts, 492, 493, 499
Butterfly attractor, 19

C
C parameter, 77, 81, 161, 386
Carrier

density, 33
diffusion, 247, 286
hole-burning, 70, 271
lifetime, 39, 40, 485, 492
recombination, 40
relaxation rate, 183
scattering rates, 305

Carrier–phonon interaction, 305
Catastrophic optical damage

(COD), 286, 299
Cavity decay rate, 183
Cavity loss, 70
CC-OTDR, 403
Channel noise, 493
Channel SNR, 493
Channeled spectrum, 222
Chaos, 17, 18, 20, 22

communications, 9
control, 6, 8, 329, 407, 411
in semiconductor lasers, 108
keys, 464, 472
maps, 180
synchronization, 6, 8, 416–432, 443, 464,

467–469, 471, 472, 480–483, 486, 487,
489, 491–493, 495, 496, 498, 500, 503

targeting, 347
Chaos masking (CMA), 465, 500, 501
Chaos modulation (CMO), 464, 467
Chaos shift keying (CSK), 465, 467
Chaos-based secure communications, 464
Chaos-pass filtering, 472, 480, 482, 483
Chaotic

associative memory, 410
attractor, 109, 479, 496
bifurcation, 86, 111, 127, 148, 180
bursts, 479

carrier, 466, 498, 500, 504
carrier enhancement, 200
carrier frequency, 199, 201, 483
communications, 6
itinerary, 135
lidar, 403
oscillations, 86, 87, 95
pulses, 206
pulsing states, 232
scenario, 114
state, 109
transmittance, 482

Characteristic equation, 43, 84, 117,
173, 210

Chirp to the power ratio CPR, 198
Chromatic dispersion, 503
Circular dichroism, 263
Circularly polarized light, 263
Class A laser, 27, 312, 316
Class B laser, 3, 26, 29
Class C laser, 18, 24, 27
Closed-loop system, 422, 447, 497-499
CMA, 471, 491, 492
CMO, 475, 484, 486, 491, 492, 494, 495, 497
CO2 lasers, 3, 27
Coefficient for the carrier diffusion, 261
Coefficient of spontaneous emissions, 39
Coexistence of chaotic attractors, 184
Coexistence states, 184, 185, 229, 372, 395
Coherence

collapse, 77, 107, 123, 127, 137, 232, 343
collapse states, 395
length, 78, 94, 115, 391

Coherent rate-equation model, 319
Common chaotic driving, 490
Competitions of linear modes, 120
Complete chaos synchronization, 424, 427,

440, 447, 467, 496
Complex

electric permittivity, 37
refractivity, 37
susceptibility, 36

Composite reflectivity, 354
Composite video signal, 501
Conditional Lyapunov exponent, 417, 444,

447, 493
Confinement factor, 42, 261, 289, 305
Confocal Fabry–Perot interferometer, 361
Constructive interference, 118
Continuous control method, 330, 331, 333
Continuous response function, 486
Control of LFFs, 346
Control of semiconductor lasers, 8
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Conversion coefficient, 113
Conversion efficiency, 59, 76, 212, 271, 378,

407
Correlation, 458

coefficient, 436, 472, 493
length, 404
plot, 428, 436

Coupled map lattice (CML), 302
Coupled–wave equations, 70
Coupling ratio, 302
Coupling strength, 70
Critical feedback coefficient, 123
Cross-correlation, 405
Cross-saturation coefficient, 175
CSK, 478, 491, 498, 499
Cutoff frequency, 188, 194, 200, 318, 435

D
Damping

factor, 46, 195
oscillations, 17
rate, 308

Data-transmission rate, 492
DBR semiconductor laser, 223
DBR structure, 259
Death by delay, 452
Degeneration of spin states, 262
Degree of security, 467, 469, 474
Degree of the security, 474
Delay differential equation, 78
Delay differential system, 421, 447
Delayed optoelectronic hybrid feedback, 502
Depletion of carriers, 261
Desynchronization, 493
Desynchronization bursts, 493, 494
Desynchronized bit error rate (DBER), 494
Deterministic chaos, 130
Deterministic equations, 17
Devil’s staircase, 215
DFB laser, 69
Difference of the spin states, 264
Differential

gain, 69
relaxation rate, 183
systems, 421

Diffraction
coefficient, 287
grating, 357, 368
loss, 77
of light, 271, 286

Diffraction-limited profile, 374
Diffusion

coefficient, 48, 288

constant, 63, 248
length, 288

Digital
Chbyshev Type I filter, 494
encoding, 464
versatile disks, 246

Discrete-sequence optical CDMA, 497
Displacement measurement, 391
Divergence angle, 376, 377
Divergent spherical wave, 64
Doppler

beat, 398
frequency, 401
shift, 399, 400

Double external mirrors, 338
Drive-response systems, 457, 489
Driving system, 456
Dye lasers, 27
Dynamic targeting, 347

E
Eavesdropper, 488, 501
Effective

chirping parameter, 198
masses, 305
propagation constant, 63
reflectivity, 87, 90

Eigen-function, 260, 319
Eigen-value equation, 261
Einstein coefficient, 305
Electric permittivity, 14
Electron and hole capture rates, 306
Electron spin states, 262
Electron–hole recombination, 30
Electro–optic modulator, 472, 477
Energy band, 305
Enhancement

factor, 65
factor traveling wave amplifier

model, 65
of modulation bandwidth, 187

EO modulator, 221
Equation for the carrier density, 40
Eerbium-doped fiber amplifier (EDFA), 503
Error of chaos synchronization, 430
Etched microstructure, 378
External

cavity frequency, 105, 139, 159
cavity length, 385, 387
cavity mode, 160, 346
injection ratio, 171
modes, 81, 83, 135, 141
quantum efficiency, 314
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E (cont.)
Extra degree of freedom, 4
Eye patterns, 196, 197

F
Fabry–Perot

filter, 97
lasers, 68
resonator, 13, 31, 159, 221, 361, 363

False signal, 404
Faraday rotator, 95, 96
Far-field pattern (FFP), 287, 291, 372, 377
Far-infrared lasers, 24
Feedback coefficient, 89, 94
Feedback gain, 215, 331
Feedback-induced noises, 344
Fiber Bragg grating, 143, 357
Fiber lasers, 3, 27
Field, 14–24, 26, 27
Field equation, 78, 89, 98
Fifth-order Butterworth filter, 487, 489
Filamentation, 273, 287, 303, 370, 379
Filtered feedback, 97
Filtered optical feedback, 159
Finesses of the Fabry–Perot, 362
Finite response time, 492
Finite difference time domain

(FDTD) method, 288
Finite response phase-conjugate

feedback, 149
First laser threshold, 19
Five-variable model, 306
Fixed state, 111
Flared broad-area lasers, 9
FM feedback noise, 364
Four-level laser scheme, 319
Four-level model, 262
Fourth-order Runge–Kutta algorithm, 80
Four-wave mixing, 92, 98
Four-wave mixing configuration, 359
Free-space broadcasting, 491
Frequency

chirp, 59
detuning, 89, 148, 156, 169, 189–196,

198–201, 434, 440
difference, 264
filter, 97, 98
jitter, 356, 361
oscillation, 162
selective filter, 159
selective optical feedback, 368
shift, 192–194

Frequency-locked pulsations, 256

Frequency-locked pulsing states, 208
Frequency-pulling effect, 422
Frequency-selective filter, 159
Fringe counting, 391, 395, 399
Fringe pattern, 386

G
Gain, 31, 34, 38, 88, 90, 94-96

at transparency, 39
bandwidth, 240
clamping, 316
coefficient, 45
coefficients for the polarization

modes, 267
defect, 176, 181, 183
difference, 88, 156, 157
profile, 240, 241
recovery time, 321
reduction, 87
saturation, 39
switching, 206

Gain-guided structure, 60, 290
Gain-to-loss ratio, 263
Gauss–Hermite function, 64
Gaussian

mode, 64
noise, 493
random process, 50

Generalized chaos
synchronization, 424, 441, 496

Generalized synchronization, 419, 503
Grating mirror feedback, 142
Grating optical feedback, 89, 353, 356, 375
Group velocity of light, 36

H
Hamiltonian, 15
Hardware based secure

communications, 464
Helmholtz equation, 63
He–Ne lasers, 2, 24, 27
Heterodyne detection, 399
High frequency injection current

modulation, 246
High frequency modulation, 344
High-dimensional chaos, 330
High-dimensional chaotic spaces, 464
Higher harmonic oscillations, 410
Higher harmonic synchronization, 225
Higher harmonics, 86
Holographic grating, 357, 361
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Hopf bifurcation, 22, 112, 185, 187, 189, 198,
199, 312

Hybrid system, 234
Hysteresis, 114, 125, 143, 228, 270, 387

I
Imbalance interferometer, 408
In broad-area semiconductor lasers, 300
In VCSELs, 281
Incoherent

chaos synchronization, 437
coupling, 485
feedback, 94
optical feedback, 151, 157, 480
rate equations, 241

Index-guided structure, 60
Infinite dimensional system, 495
InGaN self-pulsating semiconductor

lasers, 252
Inhomogeneous broadening, 380
Injection

coefficient, 171
current density, 40
current modulation, 4, 7, 56, 226, 256,

346, 448
locking condition, 173
map, 282

Injection-locking, 4, 156
Injection-locking effect, 434
In-phase optical feedback, 105, 109
Intensity

absorption coefficient, 37
coupling coefficient, 254
modulation, 57
reflectivity, 76, 77, 79

Inter-band optical transitions, 30
Inter-subband optical transitions, 313
Interference, 192–194
Interferometic measurements, 386
Intermediate filter, 164
Intermittent

instability, 133
oscillations, 22, 297

route to chaos, 129
state, 236

Internal quantum efficiency, 39
Inter-subbanad optical transitions, 314
Intrinsic chaotic dynamics, 472
Inverse

LFFs, 297
period-doubling bifurcation, 334
route of chaotic bifurcations, 180

Isochronal solution, 427, 450

Isomer signals, 412

J
Jitters, 396
Johnson noise, 490

K
Kerr media, 92
Key for secret data transmissions, 488
Kink, 251, 298
Kramers–Kronig relations, 161
Kronecker delta, 15
k-space, 316

L
Langevin force, 48
Langevin noise, 17, 47, 105, 108, 113, 136,

450, 490
Lang–Kobayashi equation, 78
Laser

arrays, 353, 375
interferometers, 386
model, 13
oscillation conditions, 31
oscillation frequency, 32, 263
rate equations, 7, 16, 21, 23, 26
threshold, 17–23

Lasers, 1–9
Leader–laggard-type dynamics, 487
Leader-lagger configurations, 450
Left circular polarization, 263
LFF, 372, 297, 341, 451, 452
L–I characteristic, 113, 153, 213, 250, 265,

270, 277, 378, 379
LIDAR, 402
Limit cycle bifurcation, 185
Limit-cycle oscillators, 454
Linear

gain, 39
mode, 85, 86, 337
phase anisotropy, 263
stability analysis, 7, 19, 21, 42, 51, 80, 145,

210, 228
Linearly polarized modes, 263
Linewidth, 38, 55, 77, 88, 91, 107, 144, 145,

149, 321, 354, 365
broadening, 107
enhancement factor, 3, 36, 122, 316,

353, 396
narrowing, 354, 356, 358–361, 375
narrowing factor, 355
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L (cont.)
reduction, 107
reduction factor, 91

Littman external cavity, 368
Local signal scrambler, 491
Long external cavity length, 134
Long external optical feedback, 94
Longitudinal mode, 32
Longitudinal optical phonon, 314
Loop gain, 212
Lorentz spectrum, 97
Lorentzian, 55, 160, 364
Lorentzian frequency filter, 97
Lorenz equations, 18
Lorenz systems, 80
Lorenz–Haken equations, 2, 17, 18
Loss difference, 157
Low dimensional

attractor, 495
chaos, 495
dissipative systems, 433

Low-frequency fluctuations (LFFs), 83, 112,
129, 276

Low-pass Fabry-Perot filter, 129, 475
LP01 mode, 261

M
Mach–Zehnder interferometer, 502
Macroscopic generation rate, 289
Magnetic permeability, 14
Magnetic quantum numbers, 263
Map of chaotic routes, 208
Markov process, 47
Master laser, 170, 177, 188, 192, 195,

196, 200
Master-slave configurations, 418
Maximum

chaotic oscillation7, 201
enhanced modulation frequency, 194
gain mode, 32, 83, 134
gain mode condition, 347
Lyapunov exponent, 127

Maxwell equation, 14
Maxwell–Bloch equations, 16–18, 319
Mellin transform, 401
Michelson interferometer, 402
Micro-cavity semiconductor lasers, 9
Microscopic model, 305
Microscopic polarization function, 289
Modal gain, 69
Mode

analysis, 63
frequency, 32

hopping, 105
Hops, 83, 113
partition noise, 243
switching, 176, 246
transition, 120

Modes for laser oscillations, 81
Modified C parameter, 362
Modulation

amplitude, 59
bandwidth, 187–189, 191–193, 195,

196, 200
coefficients, 471
efficiency, 56
response, 58, 189, 196, 198

Moment of the transition, 15, 16
MQW lasers, 68
Multi-longitudinal modes, 68
Multimode instability, 236
Multimode lasers, 7, 240
Multiple external cavity modes, 236
Multiple transmitter-receiver systems, 417
Multiple-reflection effects, 79
Multiplicative modulation, 484
Multi-stability, 125, 184, 186
Multi-stable states, 387, 408
Multi-stripe laser arrays, 303
Multi-wave mixing, 177, 182, 183
Mutual

chaotic communications, 487
coupling system, 422, 426, 487
coupling, 417, 422, 426, 427, 453
optical injections, 426
optoelectronic coupling, 452

Mutually coupled semiconductor lasers, 452
Mutually coupled VCSELs, 452

N
Narrow filter, 164
Narrow-stripe edge-emitting

semiconductor lasers, 29
Near-field images, 269
Near-field pattern (NFP), 269, 272, 277, 291,

300, 371, 380
Negative feedback, 206, 452
Negative optoelectronic feedback, 215, 363
Ne–Xe lasers, 24
NH3 lasers, 2, 24
Noise, 341, 496

compression, 196
spectrum, 51
suppression, 366

Non-degenerate four-wave mixing, 148
Nonlinear
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carrier relaxation rate, 183
dispersion effect, 475
phase coupling, 318
polarization of the matter, 289
Schrödinger equation, 475

Non-locking region, 174
Non-radiative carrier–carrier scattering

rates, 306
NRZ signal, 474

O
Occasional proportional feedback (OPF)

method, 331
Occupation probability density, 307
Offset frequency detunings, 283
OGY method, 330
ON/OFF CSK, 480
ON/OFF modulation, 491
One-to-one system, 416
Onset of chaos, 122
Open-loop system, 422, 447, 497, 498,

501, 502
OPF control, 334, 411
Optic axis, 269
Optical

chaos control, 338
dipole matrix element, 289
feedback, 3, 7, 75, 103, 104, 106, 108, 111,

113, 114, 116, 118, 120, 122, 124, 126,
128, 130, 132, 134, 136, 139, 140, 139,
143, 144, 150–154, 156–160, 162, 164,
240, 296, 310, 322, 341, 469, 491, 498

feedback noises, 247
frequency, 33
injection, 7, 240, 282, 300, 311, 367, 368,

374, 375, 428, 442, 483, 485, 491
injection locking, 169
phase, 125, 484
remote sensing, 402
spectrum, 107

Optical-path difference, 222
Optoelectronic feedback, 5, 7, 205, 407, 444,

485, 491
Oscillation frequency of the mode, 84
Out-of-phase optical feedback, 105
Overdamped relaxation oscillations, 321

P
Parabolic profile, 64
Parameter, 38
Parameter mismatches, 421, 425, 431, 444,

447, 493, 496, 504

Peak side-lobe level (PSL), 404
Period doubling bifurcation cascade, 141
Period doubling bifurcations, 121, 386
Period-1 oscillation, 86, 109
Period-1 states, 386
Period-2 oscillation, 109
Period-3 oscillation, 177
Period-doubling

bifurcation, 112, 386
cascade route to chaos, 223
route to chaos, 232, 256

Periodic
death islands, 454
oscillation, 85, 103, 104, 107–109,

111, 114, 115, 119, 121, 126, 127,
146, 155

stability conditions, 146
stability enhancement, 117
windows, 118

Phase
condition, 32, 90
diagram, 148, 180, 312, 340
for stable locking, 173
locking, 93, 150
modulation, 59
noise, 53
noise spectrum, 55
portrait, 185, 217, 218
sensitivity, 125, 139, 299
shift, 92, 482
space, 81, 109, 135, 139, 174,

183–186, 191, 200, 283
Phase-conjugate

feedback, 91
mirror, 92–94, 98
mirror feedback, 145, 358
optical feedback, 358

Phonon scattering time, 318
Photon lifetime, 36, 492
Photon number equation, 39
Photonic structure, 353, 370, 375
Photonic VCSELs, 376
Photorefractive mirrors, 92
Photorefractive phase–conjugate

feedback, 150
Physical random numbers, 464, 497
Planck constant, 15
p–n junction, 30
Poincaré map, 330
Poincaré sections, 218
Poisson random processes, 48
Polarization

equation, 16
mode competition, 280
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P (cont.)
of matter, 14, 42
selective optical feedback, 278
switching, 262, 265

Polarization-rotated mutual coupling
systems, 451

Polarization-rotated optical feedback, 95,
153, 438

Population inversion, 16, 17, 19, 23, 24,
26, 27

Positive feedback, 206
Positive optoelectronic feedback, 217
Potential model, 104
Power

conversion efficiency, 285
dropout, 129
drops, 127
mode coupling factor, 362
recovery, 129
spectrum, 48, 53

Propagation constant, 37, 64
Pseudo-random bit-sequences, 474
Pseudorandom code-modulated

CW lidar, 402
Public optical communication links, 501
Pulsating oscillations, 151, 311, 207, 226
Pulsation oscillations, 207
Pulse

jitter, 256
package dynamics, 280
packages, 298
period, 256
repetition rate, 215
width, 215

Pulsing oscillations, 95, 250
Pulsing states, 206

Q
Quality factor, 22
Quantum

cascade, 314
computing, 464
dots, 305, 478
state, 15

Quantum-cascade semiconductor
laser (QCL), 8, 314

Quantum-dot semiconductor laser, 8, 303
Quantum-dot structure, 353, 379, 381
Quantum-well semiconductor lasers, 379
Quantum-well structure, 69
Quasi-period doubling bifurcation, 22
Quasi-periodic bifurcation, 112
Quasi-periodic oscillations, 85, 107

R
Random lasers, 9
Random number generations, 6, 9
Range resolution, 404
Rate equation, 34, 75, 78–80, 83, 87, 92, 94,

95, 171, 172, 175, 183, 187, 194, 196,
198, 201, 206, 228, 242, 249, 254, 260,
264, 267, 275, 287, 302, 305, 317, 319,
362, 407, 423, 426, 439, 442, 445, 465,
470, 484, 485

Rate equation for the field, 36
Red-shift, 193, 316
Reduced model, 306
Reduction of gain, 91
Refractive index, 14, 32, 76, 90
Refractive index at the threshold, 33
Regenerative amplification, 177, 183
Regular pulse package oscillations, 138
Relative intensity noise (RIN), 52, 108, 243,

341, 367
Relaxation

oscillation, 44, 46, 280, 472, 479,
482, 491, 494, 497, 498

oscillation frequency, 21, 44, 46,
280, 497

time, 17, 30
Resonance angular frequency, 212
Resonant optical feedback, 361
Resonator frequencies, 32
Response

function, 97, 98
gain, 483
systems, 456
time, 212, 337

Resynchronization time, 487, 497
Retardation time, 222
Return map, 136
Right circular polarization, 263
Ring laser, 2
Ring resonator, 13
Root-mean-square (rms) phase, 397
Rotating-wave approximation, 16
Round trip time, 118
Round trip time of light, 33, 78, 94
Routes to chaos, 22, 126, 129
Rulle–Takens–Newhouse

three-frequency, 218

S
Saddle node instability, 129
Saddle-node bifurcation, 185, 313
Saturable absorbers, 247
Saturable absorbing layers (SALs), 247
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Saturation intensity, 18
Sawtooth-like wave, 396, 397
Sawtooth-like waveform, 391
Scalar wave propagation, 62
Schalow–townes equation, 55
Schawlow–townes linewidth, 363
Schrödinger equation, 15
Second laser threshold, 21
Second order dispersion parameter, 475
Secure chaos key generation, 464
Secure data transmissions, 463, 486, 495
Security, 463, 472, 474, 480, 488, 496, 504
Self-assembled method, 303
Self-focusing effects, 290
Self-mixing

doppler velocimetry, 398
effects, 316, 385
interferometers, 8
vibrometer, 393

Self-modulations, 279
Self-pulsating semiconductor laser, 7, 246,

366, 448
Self-saturation effect, 175
Semi-classical quantum theory, 15
Semiconductor laser arrays, 302
Semiconductor lasers, 3, 29
Separation of the longitudinal modes, 240
Shifted cavity resonance, 193
Short

external cavity, 81, 136
external cavity length, 134
optical feedback, 279, 297

Shot noise, 48, 490
Side mode suppression, 240
Side mode suppression ratio

(MSR), 241, 359, 377
Side modes, 175
Side-mode frequency separation, 359
Single mode, 78, 81
Signal-to-noise ratio (SNR), 364, 390, 493,

501
Sinusoidal

modulation, 59
modulation control, 336
modulation method, 332, 343

Slab-waveguide model, 62
Slave laser, 170–172, 174, 175, 177,

187–190, 192–194, 200, 201
Slope efficiency, 132, 277

Slow response phase-conjugate
feedback, 149

Slowly varying envelope approximation, 14
Small-signal transfer function, 122
Solid-state lasers, 27
solid-state lasers, 3
Solitary condition, 78
Solitary mode, 83, 84, 86
Space–time correlation functions, 294
Spatial hole–burning, 242
Spatial hole–burning effects, 269
Spatial mode competitions, 275
Spatially filtered optical feedback, 370
Spatial-mode expansion model, 260
Spatio-temporal dynamics, 271, 290
Spatio-temporal size of filaments, 295
Speckle modulation, 399
Spectral

density, 52
hole–burning, 242
linewidth, 53

Spin relaxation time, 263
Spin-flip model, 262
Spin-flip relaxation processes, 263
Spontaneous emission, 39, 48, 65
Square–wave generation, 157, 279
Square-wave oscillations, 157
Stability

condition, 19, 85, 146
map, 177
of the mode, 84

Stable, 187, 191, 199, 200, 201
Stable and unstable map, 428–429
Stable injection locking, 170, 171, 173, 185
Statistical potential model, 451
Steady-state

condition, 31, 136, 173
solution, 43, 79, 80, 83, 93, 105,

134, 160, 340
Strange attractor, 111
Strength of astigmatism, 66
Strong optical feedback, 89, 95, 354
Subbands, 314
Subcritical bifurcations, 185
Subsystem, 416, 465
Supercritical bifurcations, 185
Supercritical Hopf bifurcations, 141
Super-lattice structures, 314
Suppression of frequency chirping, 197
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S (cont.)
Suppression of laser noises, 187
Switching current, 268
Symmetrical systems, 451
Synchronization

bursts, 499
error, 431, 444, 477, 478, 493
recovery time, 479, 498

Synchronized bit error rate (SBER), 493

T
Tapered cavity, 293
TE-mode, 154
Temporal instability, 235
Thermal lensing, 372
Thickness of the active layer, 40
Three coupled equations, 80
Threshold difference, 264
Threshold gain, 32, 70
Threshold reduction, 113
THz light, 314
TiBaO3 crystal, 92
Time lag, 421
Time of flight, 402
TM-mode, 154
Torus bifurcation, 163
Total carrier density, 264
Total loss, 31
Trajectories, 434
Transcendental equation, 161
Transfer function, 123, 481–483
Transient time, 479
Transition time, 498
Transmission gain, 482
Transmission rates, 482, 504
Transparency, 37
Transverse-electric (TE) mode, 62
Transverse-magnetic (TE) mode, 62
Traveling wave amplifier model, 65
Tunable semiconductor laser, 222
Two-frequency quasi-periodic pulsing state,

208
Two-gain model, 267
Two-level atoms, 40
Two-level model, 314

Type I pulse packages, 281
Type II pulse packages, 281
Type-II intermittency, 130

U
Unidirectional coupling, 416, 422, 423, 427
Unlocking oscillations, 170
Unlocking regions, 283
Unstable

locking areas, 174
periodic orbit (UPO), 130, 330, 412
periodic solutions, 337
pole, 123
saddle node points, 330

V
van der Pol oscillator, 216
VCSEL, 367–369, 376–378, 381
Velocity measurement, 398
Vertical-cavity surface-emitting lasers

(VCSELs), 5, 7, 259
Vibration measurement, 391
Volume holographic grating, 143, 357

W
Wave front, 64
Wavefront distortion, 290
Waveguide models, 60
Wavelength filter (frequency filter), 221
Wavelength separation, 240
Wavelength-to-current conversion

systems, 468
Wavenumber, 14, 34
Weak index guide (WIG), 247
Wetting layer, 305
Wide filter, 163

X
Xe laser, 25, 26
Xe lasers, 2
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