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Abstract

Dysentery is bloody diarrhea caused by infection with certain

bacteria or parasites. The most common bacterial causes are

members of the Genus Shigella. Shigella are Gram-negative

intracellular bacterial pathogens that cause diarrheal disease by

infecting intestinal epithelial cells. Following invasion of intes-

tinal cells, Shigella induce host cell cytoskeletal rearrangements

and interfere with host cell signal transduction cascades.

These effects are mediated by multiple different effector

proteins that are translocated from the bacterial cell into

the host cell through a type three secretion system.

Translocated Shigella effector proteins modulate the host

immune response, which contributes to inflammation during

infection and to clearance of the organism. Antibiotics

are available and effective against Shigella infection; however,

isolates resistant to routine antibiotics are increasingly frequent

in many areas of the world. Vaccine development is an ongoing

area of research.
E. Rosenberg et al. (eds.), The Prokaryotes – Human Microbiology, DOI 10.1007/978-
# Springer-Verlag Berlin Heidelberg 2013
Introduction

Dysentery is bloody diarrhea caused by infection with certain

bacteria or parasites. The most common bacterial causes are

members of the genus Shigella, the biology of which is discussed

in this chapter. The most common parasitic causes of dysentery

are the amoebae.

Shigella spp. are nonmotile Gram-negative, nonspore

forming, non-lactose fermenting, facultative anaerobic bacillus-

shaped bacterium that are very closely related to Escherichia coli.

Within the genus Shigella are four species (S. dysenteriae,

S. flexneri, S. boydii, and S. sonnei) and multiple serotypes of

each species. S. dysenteriae is the most virulent pathogen within

this genus; it was first discovered and isolated by the Japanese

microbiologist Kiyoshi Shiga in 1898. The epidemiology and

pathology of this microbe is of particular clinical significance

as Shigella is associated with severe diarrheal disease and dysen-

tery in humans. The organism is spread from person to person

through contact with contaminated food and water products.

The complete genome of Shigella includes a single circular

chromosome, one large virulence plasmid, and a variable number

of small plasmids, which collectively encode genes for a type three

secretion system and multiple virulence factors that enable this

pathogen to invade epithelial cells,manipulate the host cytoskeleton,

spread through tissue, and modulate the innate immune response.
Taxonomy

The genus Shigella is very closely related to the genus Escherichia;

both belong to the family Enterobacteriaceae. In the current

classification, within the genus Shigella are four species:

S. dysenteriae (serogroup A), S. flexneri (serogroup B), S. boydii

(serogroup C), and S. sonnei (serogroup D). The most virulent

of the Shigella species, S. dysenteriae, was discovered by the

Japanese microbiologist Kiyoshi Shiga during a severe outbreak

in 1898. Serogroups A and C (S. flexneri and S. sonnei) are most

commonly associated with clinical disease. Within each

serogroup are multiple serotypes: serogroup A (S. dysenteriae),

12 serotypes; serogroup B (S. flexneri), 6 serotypes; serogroup

C (S. boydii), 23 serotypes; and serogroup D (S. sonnei),

1 serotype (> Table 14.1). The four species share several key
3-642-30144-5_100,



. Table 14.1

Classification of Shigella serotypes

Serogroup Species

No. of

serotypes

Phylogenetic

cluster

Serotype

designation

A S.

dysenteriae

13 C1 D3, D4, D5,

D6, D9, D11,

D12, D13

C2 D2

C3 None

Outliers D1, D8, D10

B S. flexneri 6 C1 F6

C2 none

C3 F1a, F1b,

F2a, F2b, F3,

F4a, F4b, F5,

Fx, & Fy

Outliers None

C S. boydii 23 C1 B1, B2, B3,

B4, B6, B8,

B10, B14,

B18

C2 B5, B7, B9,

B11, B15,

B16, B17

C3 B12

Outliers B13

D S. sonnei 1 Outlier SS

Peng et al. (2009), Yang et al. (2007)
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features, including lack of motility, inability to form spores, and

inability to ferment lactose, and all four species are facultative

anaerobes. Shigella species are differentiated from one another

using a method of serotyping, which is based on antigen type.
Habitat

Humans are the only natural host for Shigella. Monkeys and

certain small animals can be infected in the laboratory, but

are not natural hosts. In most cases, spread of disease from

one individual to another occurs via the fecal-oral route,

typically via contamination of the hand. However, with

increasing frequency, spread involves ingestion of contami-

nated foodstuffs or contaminated water.
Epidemiology

Humans are the only natural reservoir of Shigella. Annually in

the United States, Shigella are estimated to cause approximately

450,000 cases (Mead et al. 1999), with about four cases per

100,000 population (2009). Annually worldwide, they are esti-

mated to cause 165 million infections (Kotloff et al. 1999). The

species most commonly associated with sporadic infections and
outbreaks are S. flexneri and S. sonnei. S. flexneri is overall the

most common serogroup isolated from clinical infections

worldwide. It is most prevalent in the developing world, whereas

S. sonnei is the most prevalent serogroup in Europe and the

United States. S. flexneri and S. sonnei are associated with

endemic forms of the disease, while S. dysenteriae serotype 1 is

responsible for most epidemics. S. dysenteriae infections in

North America are most commonly due to serotype 1, whereas

in other areas of the world, other serotypes of S. dysenteriae have

largely replaced serotype 1. Infections due to Shigella typically

occur in situations of overcrowding or poor hygiene and sani-

tation, such as day care centers, institutions for the mentally

disabled, and cruise ships.
Evolution and Genomics

The genome of Shigella consists of a single circular chromosome,

a virulence plasmid, and multiple smaller ‘‘cryptic’’ plasmids.

The sequence of the entire Shigella genome, including the chro-

mosome, the virulence plasmid, and the cryptic plasmids, was

completed in the early 2000s by several independent groups of

researchers (Jin et al. 2002; Nie et al. 2006; Wei et al. 2003; Yang

et al. 2005, Venkatesan et al. 2001, Buchrieser et al. 2000). The

genomes of five different strains, representing all four species of

Shigella, S. dysenteriae, S. flexneri, S. boydii, and S. sonnei, are

currently available (Jin et al. 2002; Nie et al. 2006;Wei et al. 2003;

Yang et al. 2005). The circular chromosome of S. flexneri is 4.6

Mbp (4,599,354) with a G+C content of 50.9 % and 4,084

predicted genes (Wei et al. 2003). The large virulence plasmid,

which is present in all isolates of Shigella and is required for

virulence, is 0.220 Mbp (220 kbp), while the size and number of

additional plasmids vary depending on the isolate.

Several studies have shown high sequence similarity between

the genomes of Shigella spp. and Escherichia coli. Early studies

using DNA hybridization revealed that these two microbes are

taxonomically indistinguishable (Brenner et al. 1972). More

recent studies using multilocus enzyme electrophoresis, com-

parative genomic hybridization, andmultilocus sequence typing

have confirmed early predictions of the high sequence similarity

between Shigella spp. and E. coli (Lan and Reeves 2002; Pupo

et al. 1997, 2000).

Sequence analysis of eight housekeeping genes in four dif-

ferent regions of the chromosome of multiple species of Shigella,

S. boydii, S. dysenteriae, S. flexneri, and S. sonnei, revealed that

Shigella spp. evolved from E. coli at least 35,000–270,000 years

ago. Sequence variation of these eight genes and more extensive

sequence analysis of housekeeping genes suggest multiple inde-

pendent lines of evolution (Pupo et al. 2000; Yang et al. 2007).

Based on these studies, it is now well accepted that Shigella

belongs to the species E. coli, instead of belonging to its own

separate genus (Schroeder and Hilbi 2008) and that pathogenic

strains that are commonly known as Shigella spp. emerged from

E. coli at least seven times during evolution (> Fig. 14.1).

Comparative genomics studies further substantiate the

genetic and taxonomic relationship between Shigella and



. Fig. 14.1

Sequence of evolutionary events that result in the classification of Shigella as a distinct genus. Through a series of gene acquisition and

gene loss events, Shigella acquired a virulence plasmid and multiple pathogenicity islands and lost genes required for flagella and

fimbriae synthesis, genes encoding proteins whose activity inhibits virulence (e.g., CadA and OmpT), and genes for catabolic pathways

(Adapted from Peng et al. (2009), Schroeder and Hilbi (2008)).
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E. coli. The genomes of Shigella and E. coli are only 1.5 %

divergent (Fukushima et al. 2002; Lan and Reeves 2002; Pupo

et al. 1997, 2000). The chromosome of S. flexneri is slightly

smaller (4,599,354 bp) than that of enterohemorrhagic E. coli

(4,639,221 bp) (Perna et al. 2001; Wei et al. 2003). The overall

organization of the two chromosomes is similar, consisting of

large regions of backbone with islands. S. flexneri has a slighter

larger amount of backbone (82 %) than enterohemorrhagic and

uropathogenic E. coli (75 %) and 200 more pseudogenes than

these E. coli (Wei et al. 2003).

Shigella spp. are most closely related to enteroinvasive E. coli

(EIEC) as opposed to other strains of E. coli (Lan et al. 2004;

Yang et al. 2007). Shigella spp. and EIEC evolved from other

E. coli via convergent evolution (Lan et al. 2004; Pupo et al.

2000) involving multiple events of gene acquisitions, horizontal

gene transfer, and genetic loss, through gene deletion (Yang et al.

2007). Shigella spp. acquired the large virulence plasmid and five

chromosomal pathogenicity islands (SHI-1, SHI-2, SHI-3, SHI-

O, and SRL) (Ingersoll et al. 2002; Luck et al. 2001; Ochman et al.

2000; Peng et al. 2009; Purdy and Payne 2001; Rajakumar et al.

1997; Schroeder and Hilbi 2008; Vokes et al. 1999). Shigella

spp. lost genes for flagella synthesis, rendering the organism

nonmotile, and for fimbriae synthesis (Al Mamun et al. 1996;

Hacker et al. 1990; Tominaga et al. 2005). Shigella spp. also lost

the gene encoding the outer membrane protein OmpT,

a protease that can cleave the outer membrane protein

IcsA (VirG) at the bacterial surface, and acquired on the viru-

lence plasmid the gene encoding a similar yet more highly

regulated protease (IcsP, SopA). IcsA, described below, is

required for actin polymerization and intracellular spread

(Bernardini et al. 1989; Lett et al. 1989). The genes involved in

the biosynthesis of cadaverine, the small polyamine product of

lysine decarboxylation, were lost during the evolution of both

Shigella spp. and EIEC from E. coli (Casalino et al. 2003;Maurelli

et al. 1998). The presence of cadaverine during Shigella infection

leads to delayed lysis of the phagocytic vacuole by intracellular

bacteria, decreased transmigration of polymorphonuclear

leukocytes across the infected epithelium, and consequent atten-

uation of the infection (Fernandez et al. 2001; Maurelli et al.
1998; McCormick et al. 1999). Shigella spp. also lost genes for

the L-aspartate-dihydroxyacetone and lactose fermentation

pathways (Ito et al. 1991; Prunier et al. 2007a, b;

Yang et al. 2005).

The chromosomal loci that have been acquired during evo-

lution are designated chromosomal pathogenicity islands SHI-1,

SHI-2, SHI-3, SHI-O, and the Shigella resistance locus (SRL)

(Ingersoll et al. 2002). Pathogenicity islands are large genomic

regions that encode virulence factors and are typically charac-

terized by a G+C content and codon usage that are distinct from

the chromosome. Acquired by horizontal gene transfer events,

pathogenicity islands are often associated with mobile genetic

elements and insertion sequences (Dobrindt et al. 2004). SHI-1

encodes the immunoglobulin A-like protease SigA (Al-Hasani

et al. 2000), the serine protease Pic (Henderson et al. 1999), and

the enterotoxin ShET1 (Fasano et al. 1995, 1997). SHI-2 encodes

ShiD and ShiA, which has been shown to interfere with the T-cell

immune response during infection (Ingersoll et al. 2003; Inger-

soll and Zychlinsky 2006). SHI-2 and SHI-3 encode factors

involved in iron acquisition, including the siderophore

aerobactin and enterochelin receptors (Luck et al. 2001; Nassif

et al. 1987; Purdy and Payne 2001; Vokes et al. 1999). SHI-O,

which is present in a subset of strains, contains genes that modify

the O-antigen of lipopolysaccharide in ways that contribute to

virulence (Huan et al. 1997; Lindberg et al. 1991; Zhong 1999).

SRL encodes genes for antibiotic resistance, including tetracy-

cline, chloramphenicol, ampicillin, and streptomycin (Luck

et al. 2001; Turner et al. 2001, 2003). Collectively, these genetic

acquisition and loss events have lead to the evolution of Shigella

spp. from E. coli as a discrete pathogen adapted to a distinct,

predominantly intracellular, lifestyle.
Pathogenesis and Virulence Factors

A key distinguishing feature of Shigella is its ability to invade

host intestinal epithelial cells. The factors required for invasion

are encoded on a large plasmid, known as the ‘‘virulence plas-

mid’’ or ‘‘invasion plasmid,’’ which is present in all virulent
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strains (Parsot 2009; Sansonetti et al. 1982). Two adjacent loci on

the virulence plasmid confer invasion capabilities: the mxi-spa

locus, which encodes the structural components of the type

three secretion system (T3SS), and the ipa (invasion-related

plasmid-encoded antigens) locus, which encodes multiple dif-

ferent factors, including those required for delivery of effector

proteins into host cells, transcriptional regulators, chaperones,

and effector proteins (Schroeder and Hilbi 2008). The T3SS is

essential for Shigella invasion, as plasmid-cured strains and

strains carrying disruptions or deletions of any of the T3SS

structural genes are unable to invade (Sansonetti et al. 1982).

Expression of the genes encoding the structural proteins and of

many of the effectors is regulated by two virulence plasmid-

encoded transcription activators, VirB and VirF (Le Gall et al.

2005; Schroeder and Hilbi 2008). VirF, a member of the AraC

family of transcription activators, activates transcription of virB

and icsA (virG) in response to increase in temperature to 37 �C
(Hale 1991; Tobe et al. 1993). VirB activates transcription of the

T3SS structural proteins and the type three secreted invasion

proteins (Porter and Dorman 1997).

The Shigella spp. T3SS is a multi-protein apparatus in the

bacterial cell envelope that allows for the transport of effector

proteins from the bacterial cell cytoplasm across both the bac-

terial cell envelope and the host epithelial cell plasma membrane

into the host epithelial cell cytoplasm (Blocker et al. 2001). The

apparatus consists of a gated channel that traverses the inner

membrane, the periplasm, and the outer membrane and extends

in the form of a long needle into the extracellular space. Activa-

tion of secretion is initiated upon contact with host epithelial

cells (Enninga et al. 2005). Upon activation, three translocators

and 25 or more effector proteins are delivered through the T3SS

apparatus into the host epithelial cells (> Table 14.2) (Enninga

et al. 2005; Parsot 2009).

Delivery of proteins through the T3SS occurs in an orderly

fashion, with the proteins involved in the formation of a pore in

the host cell membrane being delivered first, followed by the

effector proteins involved in the entry process, and lastly by the

effector proteins that modulate later stages of infection, includ-

ing those that participate in bacterial intercellular spread and

those that manipulate the innate immune response. The genes

encoding the proteins that are secreted early, including IpaB,

IpaC, and IpaD, which are involved in pore formation, IpaA and

IpgB1, which participate in entry, and IcsB, which functions in

avoidance of autophagy, along with their chaperones, are tran-

scribed independent of MxiE (see below) (Le Gall et al. 2005;

Parsot 2009). Consequently, they are preformed in the bacterial

cell and, upon contact with the host cell, are ready to be secreted.

A second group of proteins secreted by the T3SS are those

that modulate later stages of infection. As a rule, transcription of

these effectors is dependent on MxiE, an AraC family transcrip-

tion activator encoded within the T3SS locus, whose transcrip-

tion is regulated by VirB. Transcription by MxiE is intricately

co-regulated by IpgC, the chaperone for the translocases IpaB

and IpaC. Prior to host cell contact, IpgC is bound to IpaB and

IpaC, preventing their premature association (Menard et al.

1994). Upon contact, IpaB and IpaC are dissociated from IpgC
in the bacterial cytoplasm and are secreted, whereupon they

interact with each other to form a pore in the host plasma

membrane (Menard et al. 1994). Concurrently, IpgC becomes

available to serve as co-activator of MxiE-mediated transcrip-

tion (Mavris et al. 2002a, b). Prior toMxiE-IpgC assembly, MxiE

is in complex with OspD1 and the chaperone Spa15, which

effectively inhibit the activity of MxiE (Page et al. 2002; Parsot

et al. 2005). Four effectors secreted by the T3SS, VirA, OspB,

OspC1, and OspF, are partially regulated by MxiE-mediated

transcriptional activation (Parsot 2009).

In addition to the transcriptional regulation described

above, Spa32 negatively regulates the length of the T3SS appa-

ratus needle that extends from the bacterial surface and controls

the selection of substrates for secretion, whereas Spa33 regulates

Ipa protein secretion (Magdalena et al. 2002; Schuch and

Maurelli 2001). Under anaerobic conditions, such as those pre-

sent in the lumen of the human intestine, transcription of spa32

and spa33 are repressed by FNR, a conserved regulator of anaer-

obic metabolism, and the needles become long (Marteyn et al.

2010). Close to the epithelial surface, however, oxygen tension

increases sufficiently to de-repress transcription of spa32 and

spa33, triggering molecular events necessary for cellular entry

(Marteyn et al. 2010).

The best-described functions of IpaB, IpaC, and IpaD are as

translocators that form a pore in the host plasma membrane

(Menard et al. 1994). In addition, they are thought to possibly

gate the pore and anchor the T3SS needle to the plasma mem-

brane. IpaB and IpaC are positioned at the tip of the T3SS

apparatus from where they integrate into cholesterol-rich

domains of the plasma membrane (De Geyter et al. 1997;

Harrington et al. 2006; Lafont et al. 2002), creating a pore and

a conduit between the bacterial and host cells that allows for the

subsequent delivery of effector proteins (Blocker et al. 1999;

Espina et al. 2006; Menard et al. 1993, 1994; Veenendaal et al.

2007). IpgD is also positioned at the tip of the T3SS apparatus,

where in addition to providing scaffolding, it also regulates

secretion (Picking et al. 2005; Schroeder and Hilbi 2008). IpaD

is anchored directly to MxiH, the protein that forms the needle

of the T3SS apparatus (Zhang et al. 2007). The precise signals

responsible for activating secretion and the molecular mecha-

nisms by which these signals trigger the assembly of the T3SS

apparatus tip upon epithelial cell contact are unknown and yet

are active areas of research. In addition to their roles as

translocators, IpaB and IpaC have also been shown to have

effector-like activities.

The early effector IpaA causes localized actin depolymeriza-

tion at the sites of bacterial invasion, leading to enhanced bac-

terial uptake (Bourdet-Sicard et al. 1999). The effects of IpaA

activity are mediated by its direct interaction with the host actin

cytoskeletal protein vinculin. The C-terminal domain of IpaA

binds to the amino-terminal head domain of vinculin (Bourdet-

Sicard et al. 1999; Demali et al. 2006; Ramarao et al. 2007; Tran

Van Nhieu et al. 1997). Independent of its interaction with

vinculin, IpaA induces weakening of cellular adhesion to the

extracellular matrix (Demali et al. 2006). Spa15 serves as

a chaperone for IpaA (Page et al. 2002).



. Table 14.2

Known functions of Shigella virulence proteins

Effector Expression Function

IpaB Early effector; not

regulated by MxiE

Translocator; essential for pore formation and delivery of effectors; integrates into cholesterol-

rich domains of the plasma membrane

IpaC Early effector; not

regulated by MxiE

Translocator; essential for pore formation and delivery of effectors; integrates into cholesterol-

rich domains of the plasma membrane

IpaD Early effector; not

regulated by MxiE

Translocator; essential for pore formation and delivery of effectors; provides scaffolding and

regulates secretion; anchored to MxiH

IpaA Early effector; not

regulated by MxiE

Involved in entry into host epithelial cells; causes localized actin depolymerization; interacts with

vinculin; weakens integrin interactions with extracellular matrix

IpgB1 Early effector; not

regulated by MxiE

Involved in entry into host epithelial cells; causes membrane ruffling; serves as a GTP exchange

factor (GEF) for the Rho GTPase RhoG; interacts with ELMO-Dock180, which results in activation of

Rac1 and Cdc42

IpgB2 Not regulated by MxiE Homologue of IpgB1; serves as a GEF for the Rho GTPase RhoA

IcsA Activated by VirF Required for actin tail polymerization via N-WASP-Toca-1-Arp2/3; activates autophagy through

Atg5

IcsB Early effector; not

regulated by MxiE

Evasion of autophagy through Atg5

MxiE AraC family transcriptional activator; regulated by VirB and IpgC

IpgC Transcriptional co-activator of MxiE; chaperone for IpaB and IpaC

Spa15 Chaperone for multiple effectors

OspD1 Not regulated by MxiE MxiE anti-activator; function in host cell unknown

VirA Partially regulated by

MxiE

Function in host cell unknown

OspB Partially regulated by

MxiE

Function in host cell unknown

OspC1 Partially regulated by

MxiE

Function in host cell unknown

Spa32 Negatively regulates the length of the T3SS apparatus needle Spa33

Spa33 Regulates Ipa protein secretion

MxiH Constitutes the needle of the T3SS apparatus

IpgD Early effector; not

regulated by MxiE

An inositol phosphatase; mediates the dephosphorylation of PI-(4,5)P2 into PI-(5)P, which leads to

PI3-kinase activation of Akt that results in decreased lysosomal degradation and increased host

cell survival

OspC2 OspC3

OspC4

Function in host cell unknown

OspE1 Interact with integrin-linked kinases (ILKs) to stabilize cell adhesion to the substratum

OpsE2

OspD2 OspD2 is not regulated

by MxiE

Function in host cell unknown

OspD3

IpaH family E3 ligases

OspF Partially regulated by

MxiE

Phosphothreonine lyase activity; dephosphorylates and inhibits MAPK signaling

OpsZ Inhibits NF-kB activity

OspG Protein kinase whose function leads to inhibition of NF-kB activation
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The early effector protein IpgB1 activates a cellular pathway

that induces formation of membrane ruffles, likely by serving as

a GTP exchange factor (GEF) for the Rho GTPase RhoG. Like

RhoG, IpgB1 interacts with the cellular protein complex ELMO-
Dock180, which results in activation of the actin nucleation-

promoting factors Rac1 and Cdc42 and actin-mediated

formation of membrane ruffles (Handa et al. 2007; Ohya et al.

2005). IpgB2, a homologue of IpgB1, serves as a GEF for the Rho



. Fig. 14.2

Actin tail assembly by Shigella during infection. (a) Polymerized actin; (b) bacterial and cellular DNA; (c) overlay of polymerized actin (red)

and DNA staining (blue). Arrows, bacteria at the tip of actin tails
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GTPase RhoA (Klink et al. 2010) and activates the immune

modulator NF-kB (Fukazawa et al. 2008), but its molecular

function in Shigella pathogenesis remains uncertain. OspB also

activates NF-kB by a mechanism that is unclear (Fukazawa et al.

2008).

IpgD, an early type three secreted effector, is an inositol

phosphatase that promotes membrane ruffling during bacterial

entry and alters cellular survival and lysosomal degradation

pathways (Niebuhr et al. 2000; Pendaries et al. 2006; Ramel

et al. 2011). IpgD specifically mediates the dephosphorylation

of phosphatidylinositol 4,5-bisphosphate (PI-(4,5)P2) to yield

phosphatidylinositol 5-monophosphate (PI-(5)P) (Niebuhr

et al. 2002). IpgD-induced formation of PI-(5)P results in acti-

vation of the PI3-kinase signaling pathway that leads to Akt

phosphorylation in a manner that depends on the epidermal

growth factor receptor (EGFR), which modulates endosomal

trafficking (Pendaries et al. 2006; Ramel et al. 2011). Increased

levels of PI-(5)P lead to decreased lysosomal degradation and

increased host cell survival (Pendaries et al. 2006; Ramel et al.

2011).

Following Shigella uptake into host epithelial cells, a second

wave of effectors is secreted via the T3SS into the Shigella-

containing vacuole and, after vacuolar lysis, into the cell cyto-

plasm. Some of these effectors are important for pathogen

survival, others are essential for Shigella dissemination through

the epithelial cell layer, and others modulate the host immune

response. Finally, the functions of other effectors are less well

defined.

Shigella effectors that mediate lysis of the Shigella-containing

vacuole are unknown. Early work suggested that IpaB is involved

in this process (High et al. 1992), but given what has been

learned since about the role of IpaB in secretion of other effec-

tors, the mechanism of its involvement in vacuolar lysis is

unclear. Lysis of the vacuole releases the bacterium into the cell

cytoplasm, where it utilizes the cellular actin polymerization

machinery to move. The bacterium polymerizes actin into

a tail at one end of the bacterial body (> Fig. 14.2). Recruitment

of the actin polymerizationmachinery to the bacterium depends
on the Shigella outer membrane protein IcsA (VirG) (Bernardini

et al. 1989; Lett et al. 1989), which is a member of the

autotransporter family of proteins and is not secreted by the

T3SS. IcsA binds the cellular actin nucleation-promoting factor

N-WASP, andN-WASP is activated by the cellular protein Toca-1,

whereupon it recruits and activates the actin polymerizing com-

plex Arp2/3 (Leung et al. 2008; Lommel et al. 2001; Snapper et al.

2001; Suzuki et al. 1998). Polymerization of the tail propels the

bacterium to the cell periphery, whereupon through processes

that are incompletely understood, it utilizes diaphanous formins

to generate protrusions of the plasma membrane that enclose

the bacterium (Heindl et al. 2010). Bacterium-containing pro-

trusions are engulfed by adjacent cells, leading to spread of the

bacterium into these cells.

In addition to recruiting actin polymerization machinery,

IcsA can be recognized by the cellular autophagy protein Atg5.

Atg5 recognition activates the autophagosome formation path-

way. Autophagy is a cellular pathway that engulfs foreign objects

present in the cytoplasm, such as intracellular bacteria, and kills

and degrades them. The type three secreted effector IcsB shares

the same binding region and has higher affinity than Atg5 for

IcsA, such that IcsB binding to IcsA masks Atg5 recognition and

allows the bacterium to escape detection and destruction via

autophagy (Ogawa and Sasakawa 2006; Ogawa et al. 2005).

Shigella spp. encode two copies of the type three secreted

effectors OspE, OspE1, and OspE2, which have nearly identical

protein sequences. OspE proteins interact with integrin-linked

kinase (ILK) within sites of cellular attachment to the extracel-

lular matrix, causing stabilization of these attachment sites and

preventing cell release from the substratum during infection

(Kim et al. 2009).

The type three secreted effector VirA is homologous and

structurally similar and can partially functionally complement

EspG, a type three secreted effector of enterohemorrhagic

Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC)

(Davis et al. 2008; Elliott et al. 2001; Germane and Spiller 2011;

Selyunin et al. 2011). EspG regulates endomembrane trafficking

through interactions with ADP-ribosylation factor GTPases and
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p21-activated kinases (Germane and Spiller 2011; Selyunin et al.

2011). However, the specific function of VirA remains uncertain,

as a possible role in endomembrane trafficking has not been

examined and data indicating a role in microtubule destabiliza-

tion and protease activity are conflicting (Germane et al. 2008;

Yoshida et al. 2006).

Among the type three secreted effectors of Shigella spp. is

a family of 5–7 effector proteins designated IpaH, including

some encoded on the Shigella chromosome (Ashida et al.

2007). IpaH proteins contain a conserved C-terminal domain

and a variable N-terminal domain. The C-terminal domains

function as E3 ligases (Rhode et al. 2007; Singer et al. 2008;

Zhu et al. 2008), proteins that target specific substrates for

degradation via the cellular ubiquitination pathway. The

N-terminal domain is the site of a leucine-rich repeat domain,

which is a classical pathogen-associated molecular pattern rec-

ognition site involved in the host epithelial cell immune

response during pathogen infection (Bell et al. 2003; Hartman

et al. 1990; Okuda et al. 2005; Parsot 2009; Venkatesan et al.

1991). The substrate specificity of the IpaH proteins is deter-

mined by the N-terminal domain and has been identified for

only one, IpaH9.8, which targets NEMO/IKKg, a host inflam-

matory response modulator, for degradation, thereby dampen-

ing the NF-kB regulated inflammatory response (Ashida et al.

2010). In the same pathway, OspG, a type three effector protein

that is not a member of the IpaH family, binds ubiquitinated

ubiquitin-conjugating enzymes, thereby preventing the degra-

dation of the NF-kB inhibitor IkBa (Kim et al. 2005).

Two other type three secreted effector proteins involved in

modulation of the host inflammatory response are OspF and

OspZ. OspF possesses phosphothreonine lyase activity, an

unusual enzymatic activity. It irreversibly dephosphorylates

components of the mitogen-activated protein kinase (MAPK)

signaling pathway, leading to inhibition of this pathway (Arbibe

et al. 2007; Kramer et al. 2007). OspZ inhibits the nuclear

translocation of NF-kB (Newton et al. 2010). As for the activity

of IpaH9.8 and OspG, the activities of OspF and OspZ attenuate

the host inflammatory response. The functions of several type

three effectors, including OspC1, OspC2, OspC3, OspD2, and

OspD3, are currently unknown (> Table 14.2).
Shigella and the Immune Response

Shigella infection is generally restricted to the mucosal layer of

the large intestine. The organism is able to survive the environ-

ment of the stomach due to acid resistance mechanisms (Gorden

and Small 1993). Once at the epithelial lining of the large

intestine, Shigella may be taken up by M-cells, which are spe-

cialized in gut-lumen sampling; uptake by M-cells leads to

transcytosis of the bacteria across the epithelial layer (Sansonetti

et al. 1996; Wassef et al. 1989). Transcytosis enables Shigella to

enter the epithelial cell lining at the basolateral surface, instead

of at the apical surface, and it also enables bacterial interactions

with macrophages and dendritic cells within the mucosa

(Mounier et al. 1992; Sansonetti et al. 1999). Shigella may also
enter cells by disrupting epithelial intercellular junctions

(Perdomo et al. 1994a; Sakaguchi et al. 2002). Whether organ-

isms also enter cells from the apical side of the epithelium in vivo

is uncertain.

When phagocytosed by macrophages, Shigella evades killing

by triggering apoptosis, which is accompanied by the release of

massive amounts of the pro-inflammatory cytokines interleukin

(IL)-1b and IL-18 (Islam et al. 1997; Sansonetti et al. 2000;

Zychlinsky et al. 1992; Zychlinsky et al. 1996). Release of IL-1b
triggers intestinal inflammation (Sansonetti et al. 1995). Release

of IL-18 is associated with an antimicrobial response that

involves NK (natural killer) cell activation and the production

of interferon (IFN)-g, which is critical for mounting an innate

immune response against microbial infection (Hilbi et al. 1997;

Le-Barillec et al. 2005; Sansonetti et al. 2000; Way et al. 1998).

Shigella enters the intestinal epithelium by the basolateral

surface of cells (Sansonetti et al. 1986). Following entry, inter-

nalized bacteria escape the uptake vacuole, replicate within the

cytoplasm, and utilize the host cytoskeleton to move to the cell

periphery and into adjacent cells. All eukaryotic cells possess

mechanisms for eliminating intracellular foreign bodies, includ-

ing autophagy and activation of the innate immune response.

Shigella has evolved mechanisms to evade each of these host

responses.

Eukaryotic cells possess a lysosomal degradation pathway

called autophagy that serves both to recover nutrients during

periods of starvation and to rid the cell of undesirable particles,

including invading pathogens. Upon entry into cells, Shigella is

surrounded by a vacuolar membrane, which it rapidly lyses. The

remnants of the vacuolar membrane are degraded by the

autophagy pathway (Dupont et al. 2009). Then, a tug-of-war is

staged between the intracytoplasmic bacteria and the innate

immune response, in which some of the intracytoplasmic bac-

teria succumb to autophagy and some escape. Those that are

destined to succumb are ubiquitinated and may be surrounded

by a scaffold of the cytoskeletal protein septin, before being

engulfed in cellular membranes and degraded (Mostowy et al.

2010; Ogawa et al. 2005). Escape from autophagy is mediated at

least in part by the type three secreted effector protein IcsB,

which blocks binding of the autophagy protein Atg5 to the

surface of Shigella (Ogawa et al. 2005).

Peptidoglycan fragments from intracellular bacteria are

sensed by the pattern recognition receptor Nod1, the activation

of which results in NF-kB activation and subsequent release of

the pro-inflammatory cytokine IL-8 (Girardin et al. 2003;

Pedron et al. 2003; Philpott et al. 2000; Sansonetti et al. 1999).

IL-8 is responsible for the recruitment of polymorphonuclear

leukocytes (PMNs) to the sites of Shigella infection (Sansonetti

et al. 2000; Singer and Sansonetti 2004). Infiltrating PMNs

entrap and kill invading bacteria but also contribute to the

destruction of the epithelial cell lining, which further enables

the entry and invasion of more Shigella into intestinal epithelial

cells (Perdomo et al. 1994a; Perdomo et al. 1994b). The ability of

PMNs to destroy invading bacteria contributes to the resolution

of infection (Brinkmann et al. 2004; Mandic-Mulec et al. 1997;

Zhang et al. 2001).



316 14 Dysentery
The adaptive immune response to Shigella provides partial

protection against subsequent infection (Taylor et al. 1989).

Particularly surprising is the observation that although Shigella

are intracellular pathogens, individuals who have been infected

are protected in a serotype-specific manner (Ferreccio et al.

1991; Lerman et al. 1994; Mel et al. 1965, 1968, 1971), suggesting

that protection is mediated by the humoral immune response

and not the cellular immune response. In animal models, sero-

type-specific IgA can provide protection (Phalipon et al. 1995),

yet is not required for protective immunity (Way et al. 1999),

suggesting that IgG is the protective isotype.Whereas it is known

that Shigella blocks aspects of the adaptive cellular immune

response (Jehl et al. 2011), how it does so is unclear.
Clinical Disease Due to Shigella spp

Shigella causes diarrhea and dysentery, a diarrheal syndrome

characterized by blood and white blood cells in the stool.

Shigella is a human pathogen, with no reservoir in other animals.

In the majority of cases, the organism is acquired from an

infected individual by direct human-to-human spread. In

other cases, the organism is acquired from food or water that

has been contaminated by an infected individual. The incuba-

tion period averages 3 days, with a range of 1–7 days.

The infectious inoculum is as few as 10–100 bacteria

(Dupont et al. 1989), in large part because the organism is

relatively resistant to stomach acid, such that even when only

a small number of organisms are ingested, a sufficient number

gain access to the intestine, where they replicate and cause

disease. As a consequence, outbreaks are common in day care

centers, mental institutions, and other settings where housing is

crowded or hygiene suboptimal, and secondary infection rates

among family members are reported as high as 20 %.

Shigella infect intestinal epithelial cells of the sigmoid colon

and rectum, the distal most segments of the colon. The organism

is thought to enter the epithelium largely by transcytosis of

microfold (M) cells, whose normal function is to sample anti-

gens from the intestinal lumen. Following transcytosis to the

subepithelium, Shigella enter into the epithelial cells using a type

three secretion system apparatus (T3SS). Once within the cells,

the organism spreads into adjacent cells. The release of pro-

inflammatory cytokines leads to an acute inflammatory cell infil-

trate. The combination of bacterial spread through the epithelium

and the inflammatory response leads to local destruction of the

epithelium with ulceration and abscess formation and, in

many cases, blood and white blood cells in the stool. Symptoms

characteristically include severe abdominal cramping, rectal

urgency (tenesmus), frequent small loose stools, general malaise,

and fever. In the absence of antibiotic therapy, the diarrhea is

typically self-limited and resolves in 7 or fewer days.

Significant complications are uncommon. Approximately

4 % of infected individuals will have transient seeding of the

bloodstream (bacteremia), 2.5 % will experience obstruction of

the intestine, and a small percentage of children will develop

rectal prolapse or seizures. In infection due to S. dysenteriae 1,
3 % of individuals will develop a severe dilatation of the colon,

called toxic megacolon, which is treated with surgery.

Two uncommon, yet important, complications of Shigella

infection are post-infectious arthritis (formerly Reiter syn-

drome) and hemolytic-uremic syndrome. Occurring in a small

percentage of cases, post-infectious arthritis develops 1–2 weeks

after the diarrhea andmay be accompanied by conjunctivitis and

painful urination (urethritis). Seventy percent of patients who

develop this syndrome have the haplotype HLA-B27. Post-

infectious arthritis can occur following infection with any of

several enteric and urethral bacterial pathogens, including Cam-

pylobacter, Salmonella, and Yersinia spp.

Hemolytic-uremic syndrome is a potentially life-threatening

complication that is characterized by the combination of anemia

due to hemolysis of red blood cells, decreased platelets, and kidney

failure due to injury of the renal glomeruli. Most commonly

affected are children under the age of 5, with 5–25 % suffering

from some degree of permanent kidney dysfunction. The damage

is mediated by Stx toxin (formerly Shiga toxin), which among

Shigella spp. is encoded only by S. dysenteriae 1.

Treatment with antibiotics is recommended for all individ-

uals infected with Shigella. Prognosis is excellent, with nearly all

individuals recovering fully. No Shigella vaccines are currently

approved for use, although both live attenuated vaccines and

subunit vaccines that combine purified protein and lipopolysac-

charide (LPS) are under development. Prevention of spread of

Shigella depends on meticulous hand hygiene.
Laboratory Identification, Isolation, and
Clinical Diagnosis of Shigella Infection

The diagnosis of Shigella infection is made by culture of the

organism from stool samples. Shigella can be isolated from stool

of infected individuals. In approximately 4 % of infections,

Shigella can also be isolated from the bloodstream. Organisms

cannot be isolated from other body sites. Stool is plated both on

nonselective indicator media and on selective media. The

nonselective media is typically MacConkey agar, on which Shi-

gella spp. grow as white colonies and E. coli grow as red colonies

(> Fig. 14.3a). Selective media include Salmonella Shigella agar,

which, as the name suggests, is selective for growth of Salmonella

and Shigella spp., and Hektoen enteric agar, which is both

selective for growth of Salmonella and Shigella spp. and differ-

entiates between the two on the basis of the appearance of the

colonies. On Hektoen, Salmonella spp. grow as black colonies

because they produce hydrogen sulfite, whereas Shigella

spp. grow as green colonies because they do not (> Fig. 14.3b).

To maximize the likelihood of recovering the organism from

stool, it is generally advised to initially plate it on MacConkey

agar (nonselective media) and then re-streak lactose negative

colonies onto selective media. Colonies are convex, with smooth

edges, and translucent, with a typical diameter of 0.5–2.0 mm,

and on MacConkey are white in color.

Confirmation of the genus as Shigella is performed using

biochemical tests. The organism is oxidase negative, catalase



. Fig. 14.3

Growth of enteric pathogens on selective agar. (a) Enteric pathogens were grown on MacConkey agar. Lactose non-fermentors,

including Shigella, form white colonies, and lactose fermentors, such as E. coli, form pink colonies. EHEC, enterohemorrhagic E. coli.

(b) On Hektoen enteric agar, Salmonella form black colonies due to production of hydrogen sulfite (H2S), Shigella form green colonies,

and lactose-fermenting bacteria, such as EHEC, form orange colonies
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positive, Voges-Proskauer and Simmons citrate negative,

lysine decarboxylase negative, arginine dihydrolase negative,

and variable for indole production and ornithine reaction. It

does not produce hydrogen sulfite, does not hydrolyze urea,

does not utilize malonate, and does not grow on potassium

cyanide (KCN) agar. Shigella spp. ferment glucose, but do not

ferment lactose. S. dysenteriae can be discriminated from

the other species of Shigella by its inability to ferment mannitol,

and S. sonnei can be discriminated from the others by its

ability to produce ornithine decarboxylase. Most clinical

microbiology laboratories determine the species of a Shigella

isolate by O-antigen typing (serotyping) using O-antigen

specific antisera.
Treatment and Vaccine Development

All individuals infected with Shigella should receive a course of

antibiotics. Agents that are recommended include the

fluoroquinolones (e.g., ciprofloxacin), azithromycin, or tri-

methoprim-sulfamethoxazole. Resistance to ciprofloxacin,

ampicillin, and trimethoprim-sulfamethoxazole is increasing

worldwide, so whenever possible, the selection of an antibiotic

should be based on laboratory susceptibility data. If left

untreated, Shigella infection will resolve over 5–7 days. Antibi-

otic treatment has been shown to shorten the duration of illness

by a couple of days (Christopher et al. 2010).

At present, no vaccine for Shigella is approved for use in the

United States. Several distinct types of vaccines are being devel-

oped, including subunit vaccines, live attenuated vaccines, and

outer membrane vesicle vaccines. The subunit vaccines under

development consist of various combinations of purified IpaB

and IpaC, translocases of the type three secretion system, purified

IpaD, the type three secretion system needle tip, and purified
lipopolysaccharide (LPS) (Martinez-Becerra et al. 2011; Riddle

et al. 2011). The live attenuated vaccines under development

carry deletions in genes involved in intercellular motility (icsA),

the toxins ShET2-1 and ShET2-2 (senA, senB), acetylation of LPS

(msbB1, msbB2), and guanine biosynthesis (guaBA) (Barnoy

et al. 2010, 2011; Ranallo et al. 2010; Wu et al. 2011). Outer

membrane vesicle vaccines consist of outer membrane vesicles

purified from virulence strains (Camacho et al. 2011).
Conclusion

Shigella is a Gram-negative intracellular bacterial pathogen that

causes diarrheal disease by infecting intestinal epithelial cells.

Following invasion of intestinal cells, Shigella induces host cell

cytoskeletal rearrangements and interferes with host cell signal

transduction cascades. These effects are mediated by multiple

different effector proteins that are translocated from the bacte-

rial cell into the host cell through a type three secretion system.

Translocated Shigella effector proteins modulate the host

immune response, which contributes to inflammation during

infection and to clearance of the organism. Antibiotics are

available and effective against Shigella infection; however, iso-

lates resistant to routine antibiotics are increasingly frequent in

many areas of the world. Vaccine development is an ongoing

area of research.
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