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Chapter 7 
Masonry Piers, Walls, and Towers  
under Vertical Loads  

Abstract. This chapter is addressed to the structural analysis under vertical loads 
of walls, piers, and towers. For them, the nonlinear interaction between the desta-
bilizing effects of the axial loads and the masonry no-tension response can be very 
strong. Instability analysis of the masonry pier under an eccentric axial load is 
firstly studied in the wake of a relevant study of Yokel. The strong sensitivity of 
the pier strength to the eccentricity of the load is pointed out and comparisons are 
made with the case of reinforced concrete columns. 

Static analysis of building masonry walls is then examined. For them the  
presence of offsets of the wall thickness at the various stories play a relevant role. 
Instability of towers whose behavior can be strongly influenced by foundation  
deformability, is analyzed at the end of the section. Special attention has given to 
the stability analysis of the Pisa Tower, which recently underwent an outstanding 
restoration work. 

7.1   Introduction 

The topic of this chapter is the study of the statics of piers, walls, and towers under 
vertical dead loads. Owing to their geometry, the behavior of such structures under 
vertical loads presents specific aspects whose analysis requires assumptions and 
approaches different from those considered so far. In fact, elastic masonry defor-
mation, which is generally disregarded in arches and vaults because it yields neg-
ligible effects on their statics, in masonry piers, and walls instead has important 
consequences on behavior. 

The main aspect of the problem is the nonlinear interactions occurring between 
any changes in geometry and the no-tension response of the masonry: such  
interactions lead to high susceptibility of piers and walls to axial load eccentrici-
ties − far greater than that of reinforced concrete piers or steel columns to similar 
actions. 

Furthermore, walls under vertical loads exhibit complex behavior, which is 
moreover strongly dependent on their state of conservation. The connections  
between walls and floors may in fact degrade over time, in which case, slow  
lateral deformation of the walls can significantly increase the axial load eccentrici-
ties and, consequently, their destabilizing effects. The cracking patterns in walls 
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can furnish useful information for deciding on the most suitable repair and rein-
forcement operations to adopt. Similarly, nonlinear stability analysis is also re-
quired to study the equilibrium of a tower. Such analyzes, aimed at evaluating any 
tilting, can in many cases be performed taking into account the deformability of 
the foundation alone. The basic problem of evaluating the strength of eccentrically 
loaded piers and walls will be analyzed first in the next sections. Subsequently, 
many particular aspects of the statics of masonry piers, walls, and towers will be 
examined and exemplified through some important case studies. 

7.2   Piers 

7.2.1   Strength of Masonry Piers under Eccentric Axial Loads: 
Mechanical Aspects of the Problem 

Eccentrically loaded masonry piers behave very differently from reinforced con-
crete columns. A regular series of cracks occurs in reinforced concrete piers, and 
the concrete between adjacent cracks bears the tensile stresses: this effect, usually 
called tension stiffening, attenuates the nonlinear response of the column.  

In masonry piers, on the contrary, cracking spreads diffusely throughout  
wide areas of the structure, and the nonlinear effects are much more severe: they 
strongly reduce the pier’s strength. Even small eccentricities of the axial loads can 
produce serious reductions in strength.  

 
 
 
  
 
 
 
  
 

Fig. 7.1. Rectangular section with the positions of its core edge. The stress distribution  
corresponds to an eccentricity equal to half the core width 

In the stability analysis of masonry piers it is usually assumed that the elastic 
strains vary linearly with distance from the neutral axis across the sections of the 
piers, if eccentrically loaded. The eccentricity e of the axial load P measures the 
distance of the point load, i.e. point C of application of load P, from the center of 
the section. The distance of point load C from the compressed edge of the section 
is indicated by u. For the sake of simplicity, we shall refer to rectangular pier 
cross-sections. The section is wholly compressed (fig. 7.1) only when the point 
load is included within the core of the section, i.e. when the eccentricity e of P 
falls within the interval 
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This is the case of low eccentricities. 
In figure 7.1 the point load C is located at the edge of the core, i.e. e = t/6. In 

this case, the neutral axis skirts the lower edge of the section: the stresses exhibit 
the triangular distribution shown in the figure. For the rectangular section we 
know that the core width equals t/3. Thus, with t the height of the section, the 
above-defined distance u is equal to t/3. Elastic flexural deformations must be tak-
en into account in the analysis of an eccentrically loaded pier. Such deformations 
increase the axial load eccentricity and narrow the resistant areas of the pier  
sections (fig. 7.2).  
 
 

 
 
 
 
 
 
 
 
 

Fig. 7.2. The narrowed resistant section under a strongly eccentric axial load 

With gradually increasing axial load intensity, this effect becomes more and 
more relevant and the pier may collapse. Figure 7.3 shows the effect of the  
flexural deformation and the crack distribution in a masonry pier of height h, with 
transverse rectangular sections of dimensions b t⋅ , eccentrically loaded at its end 
sections.. 

The hatched area in figure 7.3 indicates the resisting region of the pier and 
highlights the effect of the elastic bending deformations. Note that the extension 
of the cracked region would result to be greatly reduced if these bending deforma-
tions were neglected. Such an evaluation of the strength of piers taking into  
account its flexural deformations was first performed by Yokel (1971). This  
analysis refers to the pier’s compressed edge. It is in fact simpler to refer to this 
edge, rather than to the pier central axis, which continuously changes position  
inside the resistant sections during loading. 

The end sections of the pier are assumed to be hinged. The constraining effects 
of floors present at the head and base of piers or building walls, as well as  
the presence of flying buttresses and buttresses in cathedrals piers, justify this  
assumption. 

7.2.2   Differential Equation of the Inflexion of an Eccentrically 
Loaded Cracked Pier 

In this analysis, the reference parameter is the distance u between the compressed 
edge and the axis of load P: owing to the lateral inflexion, this distance varies 
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along the height of the pier. The axial load P is applied at its end sections with ec-
centricity e falling within the interval t/2 > e ≥  t/6, where t is the section width. 

In figure 7.3 the distance of the axial load P from the generic edge of the pier 
section is indicated by u, while u1 and uo are the same distances but to the end and 
the mid-section of the pier, respectively. We thus have u1 = t/2 −  e. This strong 
eccentricity condition loading corresponds to positions of the point load of P at the 
pier end sections included between the edges of the section and its core. The axial 
load narrows all the resistant sections of the pier. (The case of low eccentricities, 
i.e. corresponding to eccentricities e included within the section core, with t/6 ≥  e 
≥ 0, will be considered later.) Returning to the strong eccentricities, we must now 
evaluate the changes in the resistant sections’ areas along the height of the pier 
due to its inflexion. 

 
 

 
Fig. 7.3. Dramatic narrowing effect of the pier resistant zone due to flexural deformations 

The straight line defining the direction of load P, represented by a dotted line in 
figure 7.3, passes at distance u from the compressed edge at any section of the 
pier. As shown in the figure, distance u gradually decreases from the end to the 
mid-section: the maximum distance u1 is reached at the end sections of the pier, 
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the minimum u0 at the mid-section. The stresses have a triangular distribution at 
each transverse section of the pier: compression vanishes at the crack tip. On the 
opposite side, the compression is  
 

                                                  
2
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bu
σ =  , (2) 

 

where σ0(u) is the local maximum stress in the section whose compressed edge is 
at distance u from the P axis.  

The maximum compression stress of all the local maximum stresses σ0(u),  
indicated by σmax, occurs at the pier mid-section, at distance h/2 from the end  
sections and equals: 
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Figure 7.4, shows the deformation of the pier’s compressed edge: the origin of the 
reference axes is at the mid-section. Axis x is parallel to the direction of P and 
tangential to the deformed compressed edge at the origin O. Now let y be the dis-
tance between the line of the pier’s compressed edges from axis x. Thus, at each 
section of the pier, we have 
 

                                                      y = u – u0 (4) 
 

and, for x = h/2 , y = u1 – uo. Figure 7.5 shows a small element of the pier between 
the external edge and the boundary of the cracked zone. The distance between the 
unloaded and the compressed edges of the element equals 3u. The length of the 
element, from the unloaded side, is dl, whereas the length of the compressed edge 
is dl – εdl, with ε the strain in the external compressed edge of the element. A 
relative rotation φ  occurs  between the side sections of this element,  as shown in 
figure 7.5. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7.4. Inflexion curve of the compressed edge with reference axes xy 
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Fig. 7.5. Curvature of the compressed edge. 

This rotation φ can be obtained as 
 

                                                        
3
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u

ε
φ

⋅
=  . (5) 

 
The strain ε in the external compressed edge, on the other hand, can be evaluated 
according to (2), as 
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where E is the elastic modulus of the masonry. Thus, taking (6) into account, the 
relative rotation φ becomes 
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The length of the compressed side of the element, equal to dl(1– ε), can be  
expressed in terms of the radius of curvature ρ of the curved compressed edge as  
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The curvature of the function 
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is, as a rule, given by 
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whence 
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Strains ε are small quantities (ε < 0.005) and dy/dx is thus negligible with respect 
to unity; so all in all we can assume  
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The second derivative d2y/dx2, which represents the curvature of the compressed 
pier edge, is 
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The factor 2P/(9Eb) is constant along x, so we can write 
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On the other hand, according to (9), we have 
 

0u u y= +  (9’) 

 
and the differential equation for the flexure of the eccentrically loaded cracked 
pier becomes  
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The following boundary conditions are associated to equation (15): 
 

– at x = h/2, i.e. at the pier head, y = u1 – uo ;   (16) 
 
– at x = 0, i.e. at the mid-section, y = 0. (16’) 

 
Integration of (15), satisfying the above boundary conditions (see Appendix), 
yields  
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where 
 

0 1/u uα =  . (18) 

 
Note that the eccentricity e is given by  
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2
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Equation (17) expresses the relation between the flexure factor α and the eccentric 
axial load P.  

7.2.3   Collapse Load 

Let us now define a reference critical load  
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which is evaluated by means of the moment of inertia Ie of the resistant section  
at the pier head; this section has height 3u1. The moment of inertia Ie is thus  
given by 
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In particular, when the point load at the head section is located at the edge of the 
core section, i.e. with 3u1= t, the entire section is resistant and load Peq matches 
the Euler load PE. In fact, we obtain  
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Fig. 7.6. The derivative of the function P/Peq with respect to the variable a 
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Taking (20) and (21) into account, condition (17) becomes: 
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Equation (24) holds for t/2 > e ≥ t/6, where e is the load eccentricity at the end 
pier sections. Condition (24), first determined by Yokel, expresses the dependence 
of the applied eccentric axial load P on the pier inflexion at its mid-section. The 
derivative of the function P/Peq with respect to variable a is sketched out in  
figure 7.6. This derivative vanishes for  
 

α = α α= = 0.6116 . (25) 
 

Function P/Peq attains a maximum for α α= = 0.6116. The flexure parameter 
α  thus equals unity when the pier is not inflexed, i.e. for P = 0. With increasing  
P, the pier starts to bend and parameter uo decreases, as does factor α.  
Figure 7.7 gives a dimensionless representation of function (24) by assuming  
eccentricity e = t/6.  
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Fig. 7.7. Equilibrium states of the masonry pier loaded with eccentricity: e = t/6 

The point with coordinates (α = uo/u1=1, P/Peq = 0) represents the rectilinear 
configuration of the pier when the axial load is zero. On the contrary, the point 
with coordinates (α = uo/u1 = 0, P/Peq = 0) corresponds to a state of cracking so 
widespread as to produce an internal hinge in the pier and, consequently, vanish-
ing of the axial load intensity strength, as shown in figure 7.8. In this case, equili-
brium in the pier under zero axial load can be maintained only with uo/u1 = 0. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 7.8. The pier at the state P = 0, uo = 0 

Using (19) we can trace the entire pier equilibrium path with gradually increas-
ing P and the given eccentricity defined by parameter u1. The equilibrium path 
runs from right to left along the diagram in figure 7.7. Initially, starting at P = 0, 
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load P increases, while bending factor α = uo/u1 decreases.  The first branch of the 
equilibrium states describes this behavior for α varying from 1α =  to α = 0.6115, 
just where P attains its maximum. All the points belonging to this branch represent 
stable equilibrium states. At the point defined by α = 0.6115, the axial load equals 
P/Peq   = 0.285, which is the maximum load that the pier can sustain: any further 
increment of P will now lead to collapse of the pier by loss of equilibrium. 

In conclusion, collapse of the pier loaded axially with high eccentricity e, i.e. 
with t/2 > e ≥ t/6, will come about under the axial load 

 

0.285 e
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where, according to (21), the eccentricity e is present in the expression for Ie, the 
moment of inertia of the resistant section at the pier head. Alternatively, highlight-
ing the dependence of the critical load on the eccentricity e at the end sections of 
the pier, from (26) we have 
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In particular, from (26’), when the eccentricity e equals t/6, i.e. when the load is 
applied at the core edge of the end sections, we obtain Pcr/PE = 0.285. For larger 
eccentricities the reduction in the critical load with respect to the Euler load is 
greater. For e = t/2 the critical load vanishes altogether. 

The values of P/Peq corresponding to the descending branch of the curve in  
figure 7.7, i.e. to values of α within the interval 0.625 > α > 0, have limited physi-
cal significance: they correspond to the pier inflexion that can be maintained with 
a load below the critical one. They are all unstable equilibrium states. 

7.2.4   Pier Compression Strength with Varying Load Eccentricity 

The foregoing results have been generalized by Frisch–Fay (1975) and De  
Falco A. and Lucchesi M. (2000, 2003) to consider the entire variability range of 
eccentricity. Figure 7.9 shows the collapse load of the pier versus the ratio eL/d, in 
dimensionless form, where eL is the eccentricity and d = t the section height,  
considering both weak and strong eccentricities. When the eccentricity vanishes, 
that is, when the ratio eL/d is nearly 1/1000, the collapse load matches the Euler 
load PE given by (22). As the eccentricity increases, the pier compression strength 
decreases: for eL/d = 1/10 the pier strength is about 70% of the Euler load, while 
the pier strength equals the above-cited strength of 0.285PE when eL/d reaches the 
value 1/6. 
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Fig. 7.9. Dimensionless strength Pcr/PE of a masonry pier loaded eccentrically by varying 
the eccentricity factor eL/d (De Falco, Lucchesi, 2003) 

7.2.5   Influence of the Pier Weight  

The pier weight is represented by a series of uniformly distributed loads, w, equiv-
alent, overall, to the total weight W, assumed to be nonnegligible with respect to 
P. The combined action of load P, applied at the pier head, and distributed loads w 
is a significant and likely loading condition, frequent, for instance in the high piers 
of a cathedral. 

Figure 7.10 shows a pier of height 2L, hinged at its end sections, loaded by the 
force P at its head and by the distributed weight w. This case is also equivalent to 
that of a cantilever pier of height L under equal loads. Figure 7.11 shows the re-
sults obtained by L. La Mendola and M. Papia (1993). 

The ordinates represent the dimensionless values of the maximum head load 
that the pier can sustain with the assumed ratio W/P and eccentricity ratio e/H, 
where H indicates the pier section height. Inspection of the diagrams in figure 7.11 
reveals that the addition of weight W, if relevant with respect to P, in the presence 
of large eccentricities, increases the load P that the pier can sustain. In this case, 
we say that the weight W has a stabilizing effect. 

To the contrary, in the presence of small eccentricities, the effect of the weight 
has, as a rule, a destabilizing effect. Other load combinations have been consi-
dered, in particular, the case of a concurrent shear force together with an axial load 
applied at the pier head (Como, Ianniruberto, 1995). 
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Fig. 7.10. Pier loaded both by an eccentric force at its head and its own weight distributed 
along its length 

 

Fig. 7.11. Stabilizing or destabilizing effects of weight W on the magnitude of the head load 
P that a pier can sustain (da La Mendola, Papia 1993) 

7.2.6   The Use of Nonlinear Programs in the Stability Analysis  
of Masonry Piers 

The use of nonlinear programs, such as ATENA (Cervenka, 2002) or DIANA 
(Frits and Wijtze, 1990), able to account for both material and geometrical nonli-
nearities, can be very useful for analyzing the static behavior of masonry piers 
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with more complex geometry and load distributions. Both these programs assume 
low tensile strength, as in the σ – ε diagram shown in figure 7.12. 

 
 
 
 

 
 
 
 

Fig. 7.12. Tensile σ – ε diagram assumed in the nonlinear programs  
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Fig. 7.13. Axial load-lateral displacement diagrams for eccentricity e = L/6 = 16.7 cm 
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Fig. 7.14. Axial load − lateral displacement diagrams for e = 30 cm 

The first example presented in the following can highlight the ability of these 
programs to accurately describe the behavior of masonry piers under eccentric 
loads. The example considers a pier of constant section loaded at its head by an 
eccentric load. The numerical results can thus be compared with those from  

crtσ  

crtεα

cσ  
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equation (24). The pier has a square section with side length L = 1 m and height H 
= 10 m. The stress-strain diagram is of the type shown in figure 7.13, and dis-
cussed in Chapter I. The program considers nonzero tensile strength that can be 
suitably reduced in the calculations. 

The assumed elastic constants for the masonry are: elastic modulus,  
3.032 E + 04 MPa; Poisson coefficient, ν = 0; tensile strength, 5 E – 03 MPa; and 
compression strength, 2.5 E + 05 MPa. The example addresses two different  

eccentricities: e1 = L/6 = 16.7cm and 3 30e cm= . The value of the head axial load, 

assumed initially P =  3 ⋅ 10-1 MN, increases gradually. Collapse comes about when 
the tangent becomes horizontal on the axial load – lateral displacement diagram, 
as shown in figures 7. 13 and 7.14. The corresponding collapse loads turn out to 
be only slightly higher than the collapse loads resulting from application of  
Eq. (24). 

 

 

Fig. 7.15. Piers of a Gothic cathedral 

7.2.7   Effects of Mortar Creep on the Behavior of an Eccentrically 
Loaded Pier  

7.2.7.1   Simplified Model of a Visco-Elastic No-Tension Pier  

The creep of mortars, examined in Chapter I, can significantly, albeit slowly, in-
creases the destabilizing effects of axial load on masonry piers or walls. Thorough 
study of the problem can be performed by modifying the previously examined 
Yokel formulation in order to account for the creep deformation of mortar, ex-
amined in Section 1.13.2.1. Such an approach is, however, very complex and only 
some simplified solutions to the problem can be obtained in practice. One simpli-
fied creep model of an eccentrically loaded, elastic no-tension pier considers the 
presence of a single central viscous, no-tension voussoir, as shown in figure 7.16. 
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Fig. 7.16. Simplified creep model of an elastic no-tension pier 

A load P is applied with eccentricity e with respect to the center G of the  
section at height h from its base of width L (fig. 7.17). The pier rotates by a small 
angle θ  under the action of the eccentric axial load P.  

Owing to pier rotation θ, the eccentricity of P becomes (e + hθ ). The distance 
u of the axis of P from the external edge of the base section is thus  
 

u = (L/2 – e – hθ ) . (27) 

 

 

Fig. 7.17. Geometrical and mechanical quantities defining the central viscous no-tension 
voussoir  
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We can assume that only the central voussoir exhibits elastic no-tension  
behavior. Thus, the equilibrium equation of the inclined pier, in the case of small 
eccentricity, i.e. with (e + hθ ) < L/6, is 
 

 29
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The critical state is thus reached when  
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i.e. when the critical rotation  
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is attained. The dimensionless elastic critical load is therefore 
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Creep deformation of the central voussoir gradually increases the rotation of the 
pier. By using the memory function considered in Section 1.13.2.1, in place  
of (30), we obtain the following equation governing the evolution of the pier  
equilibrium state over time: 
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Substituting the expression for distance, u(t), into Eq. (33) gives the relation  
between the rotation θ (t) and the dimensionless eccentric load p 
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where the variable ξ is 
 

te βξ −=  , (35) 

 
and where for the sake of simplicity we have assumed to = t1 = 0. In Eq. (34), θo 
and θ(t) respectively indicate the initial and generic rotations, i.e., the rotations 
occurring at the initial time t = 0 and at time t. The asymptotic pier rotation, for t 

→ ∞ , i.e., when ξ → 0, is indicated by θ∞ , hence, from Eq. (34), with ξ = 0 we 

obtain 
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Thus, Eq. (34’) furnishes the asymptotic rotation θ∞  produced by load P. 

7.2.7.2   The Critical State: Comparison with the Simplified Solution 
Obtained via the Delayed Modulus Approach  

The critical state of the pier is reached when  
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Condition (36) defines the presence of simultaneous equilibrium states at the same 
time t. From (36) and by using (34), we obtain  
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The critical state is attained at t → ∞  if both the rotation θ = θcr ∞    and load 
  pcr ∞  satisfy the equation 
 

3 2 2 3
, , , ,

2
2 5 4 ( ) 0

9
cr cr cr crpθ γθ γ θ γ∞ ∞ ∞ ∞− + − + − =  (37’) 

 
as well as Eq. (34’), i.e., 
 

,2 2 3 3
, , ,

, 0

( )1 9 120 1 [ ( ) 3 / 2 ( ) 2 / 3( )] ln
2 ( )

cr
cr o cr o cr o

crp

γ θ
γ θ θ γ θ θ θ θ

α α γ θ
∞

∞ ∞ ∞
∞

−
= − − − − + − −

−
 . (34”) 
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The quantities θcr ∞  and pcr in Eq. (37’) ∞ are unknowns, while the unknowns in 
Eq. (34”) are θcr ∞ ,θo, and pcr ∞ . The last equation required for the solution is ob-
tained from Eq. (30), which gives the rotation θo at initial time t = 0 under load 
pcr ∞ , which yields 
 

2
,

2
( )

9
cr o op γ θ θ∞ = − . (30’) 

 

Substitution of (30’) into (37’) and (34”) yields  
 

2 2 2 0(1 )
(1 3 / 2 2 / 3 ) (1 3 / 2 2 / 3 ) (1 ) [ ln ]

(1 )
o o o o o

x
x x x x x x x x

x
α

−
− + − − + = − +

−
 (38) 

 
2 3 2(1 ) 2 5 4 1o ox x x x x− = − + − +  , (39) 

 

where 
 

/o ox θ γ=   , /crx θ γ∞=  . (40) 
 

Solution of Eqs. (38) and (39) for assigned values of the creep factor α furnishes 
the values θcr ∞ and θo. The asymptotic critical load pcr ∞  is thus obtained by 
substituting the expression for θo  into (30’). 

Table 7.1 reports the values of x and xo obtained by solution of Eqs. (38) and 
(39) for the assumed values of creep factor α. Table 7.2 shows the values of the 
asymptotic rotation θcr ∞  and the initial rotation  θo, together with the dimension-
less asymptotic critical load and pcr ∞  associated with the above solutions for  
x and xo. 

Table 7.1. Solutions of Eqs. (38) and (39) according to the assumed values of creep  
factor α 

α = 0 xo = 1/3 x = 1/3 
α = 1 xo = 0.102 x = 0.390 
α = 2 xo = 0.067 x = 0.415 
α = 3 xo = 0.050 x = 0.430 
α = 4 xo = 0.040 x = 0.441 

 
The asymptotic critical loads and pcr, ∞ , del have also been obtained by direct 

substitution of the delayed elastic modulus  

                                                        
1

E
E

α∞ =
+

 (41) 

into the elastic no-tension solution (30). 
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Table 7.2. Asymptotic critical loads according to the assumed values of creep factor α 

α =1 , 0.390crθ γ∞ =  0.102oθ γ= 3
, 0.370crp γ∞ = 3

, , 0.335cr delp γ∞ =  

α=2 , 0.415crθ γ∞ =  0.067oθ γ= 3
, 0.262crp γ∞ = 3

, , 0.222cr delp γ∞ =  

α=3 , 0.430crθ γ∞ =  0.050oθ γ= 3
, 0.203crp γ∞ = 3

, , 0.167cr delp γ∞ =  

α= 4 , 0.441crθ γ∞ =  0.040oθ γ= 3
, 0.166crp γ∞ =  3

, , 0.133cr delp γ∞ =  

 
The critical loads have thus been obtained as  
 

31 2

1 3
crp γ

α
=

+
 . (42) 

 
These values are also reported in the last column of Table 6.2. The elastic modulus 
(41) defines the ratio  
 

,tot

E
σ

ε∞
∞

=  (43) 

 
between the acting stress, which is constant over time, and the asymptotic total 
strain ε tot, ∞ = εel + εvisc ∞ , which is the sum of the elastic and asymptotic viscous 
strain. The delayed critical asymptotic loads pcr, ∞ del are approximate solutions to 
the problem of the critical load evaluation of the no-tension creep model of a pier. 
Although these approximate values pcr, ∞ del are consistently lower than the corres-
ponding exact values pcr, ∞ , they also approximate them quite closely, as is evi-
dent in the last two columns of Table 7.2. This outcome highlights that, despite the 
complexity of the problem, the simplified critical loads obtained using the delayed 
elastic modulus can represent the actual critical loads with sufficient approxima-
tion. The collapse of the Beauvais cathedral in 1294 will be taken up in the  
Chapter VIII as an example application of the delayed modulus approach to creep 
buckling. 

7.3   Building Walls 

7.3.1   Introduction 

Figure 7.18 shows the plan of a masonry building with different arrays of  
longitudinal and transverse walls. Figure 7.19 shows a section of another common 
historic building, from foundation to roof. The walls present offsets along the  
vertical due to the varying wall thickness along the height − an arrangement which  
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is justified by the considerably greater axial loads on the floor levels (Figs. 7.20 
and 7.21). While the offsets on the internal walls are symmetrical, those on the ex-
ternal walls were generally made only on the inner side, in order to give buildings 
smooth vertical facades. Offsets were moreover frequently used as supports for 
floors.  

 

 

Fig. 7.18. Section of an historic masonry building (Giuffrè A., 1990) 

 

Fig. 7.19. Plan of an historic masonry building 
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In modern masonry buildings, ring beams running atop the walls at each floor 
efficiently oppose the transverse flexure of the facade walls and represent stiff 
transverse constraints on the walls. Historic and older buildings, to the contrary, 
lack such ring beams. 

Only a weak connection is offered at the floor levels by the friction between the 
floor’s steel or wooden beams in contact with the walls at their supports. The con-
nections between the different walls may thus be quite precarious. Particularly at 
corners, the connections between the stones or bricks may be degraded and even 
lacking, despite interpenetration between them at the wall intersections. The walls 
of old buildings are often visibly damaged, and studying the cracking patterns can 
furnish useful information about the causes of such damage.  
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figs. 7.20 and 7.21. Sections of inner (left) and outer (right) walls with symmetrical and 
asymmetrical offsets due to varying thickness along the height 

7.3.2. Damage and Frequent Cracking Patterns in Old Buildings 
under Vertical Loads 

Vertical loads clearly represent the most significant and long-lasting actions on 
historic buildings: the weight acts constantly and is responsible for most of the 
damage occurring in such buildings.  

Due to their varying thickness along the height, the external walls are subjected 
to eccentric axial forces, and present a latent tendency to bulge outwards  
(Figs. 7.22 and 7.23). In historic buildings this tendency is opposed only by the 
connections between the different constituent walls, which may be more or less  
efficient. Moreover, these connections may be weakened by the presence of  
openings near the wall intersections or by cracking. Sometimes, chains were  
used to firmly connect the different arrays of walls. Figure 7.24 shows a typical 
cracking pattern in a transverse wall, near the joint to the facade, caused by  
rotation around the toe of the facade wall. 



7.3   Building Walls 423
 

     

Figs. 7.22 and 7.23. Facade walls. Opposing and concurring actions of floor loads, wall 
weights, and vault thrusts  

Cracks develop on the band of masonry overlying an opening and of course 
vertically upward, increasing in width as they spread. Such cracks are due to the 
horizontal tensile stresses occurring in this band due to the outward rotation of the 
wall. In some cases horizontal cracks may also appear in the floors near their  
connections to the façade wall. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figs. 7.24 and 7.25. Detachment cracks due to rotation (left) or subsidence (right) of a  
facade wall 
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Figure 7.26 shows the cracking pattern in the transverse wall from subsidence 
of the facade. Typically, such cracks are inclined by about 45° from the vertical 
and are caused by subsidence of the façade wall, which produces shear stresses on 
the masonry band overlying the opening in the transverse wall (fig. 7.26). 

 

 

Fig. 7.26. Wall cracks above an opening due to subsidence of the facade wall 

Figures 7.27 and 7.28 show analogous situations in the façades of buildings 
whose interior transverse walls have subsided. When the connection is weakened 
or lost, the external walls can undergo outward flexions and strong out-of-plumb 
rotations. The main aim of any restoration work is to reestablish firm connections 
between the disjointed walls. 

 

Figs. 7.27 and 7.28 Facade wall cracks due to subsidence of transverse walls 

7.3.3   Stresses Due to Vertical Loads 

7.3.3.1   Weak Diffusion of Point Loads in Walls 

Only two bricks of the lowermost course are engaged − numbers 8 and 9 −, as il-
lustrated in figure 7.29. Any lower course would again exhibit only two blocks 
engaged, and so on.  

A necessary preliminary operation for checking the safety of a building is to 
perform an evaluation of the compression stresses acting on the walls. The bases 
of bricks 2 and 3 (in the second course from the top) are only partially  
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compressed, but they, in turn, engage the underlying three bricks very  
differently. The two outer blocks, 4 and 6, are in fact subjected to strong eccentric 
compression. 

The weak load diffusion described in Chapter II within the no-tension frame-
work is thus also confirmed by regarding the wall as composed of bricks and weak 
mortar beds (fig. 7.30). 
 

 

 

Fig. 7.29. Transmission of vertical load P across various courses of a wall 

 
 
 
 

 
 
 

 
 

Fig. 7.30. Weak dispersion of a point load 

Consequently, evaluating the stresses due to vertical loading calls for working 
in terms of vertical bands  

7.3.3.2   Static Schemes of Vertical Wall Bands 

Evaluating the stress along vertical wall bands of masonry buildings is a complex 
problem with various levels of uncertainties particularly dependent on the state of 
the connections between the walls making up the overall building structure. In old 
buildings, these connections may be very weak and the walls, particularly of 
façades, behave much like vertical cantilever beams. In such cases, façade walls 
can frequently wind up out of plumb. Modern masonry buildings instead apply 
advanced systems for firmly connecting walls together. At each floor level rein-
forced concrete ring beams encircle the walls and are connected by slabs to the 
floor structure. This interconnected system of walls and slab floors produces a stiff 
3D cell structure. In some cases, historic buildings, if suitably stiffened, may also 
present such firmly connected structures. In the event, that an efficient connection 
system has been fitted to a building, the static behavior of the vertical wall bands 
can generally be represented by the scheme of a continuous vertical beam with  
horizontal constraints at the floor level, as illustrated in figure 7.31 b). The floor 
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offsets, produced by the varying wall thickness along the height, activates the 
floor couples due to the axial load misalignments, as shown in figure 7.32.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a)          b)          c) 
 
 

Fig. 7.31. Vertical wall bands with floor couples due to axis misalignments 

Bending moment diagrams for actual (a) and Building Code schemes (b), (c) 

Figure 7.31 a) shows a vertical beam, representing a wall band of the façade 
wall, connected at the floor levels to horizontal constraints, which act to oppose 
bending of the wall band. Due to the different heights of each story and the differ-
ent thicknesses of the walls between floors, the corresponding continuous beam 
will have varying spans and sections. 
 

 
 
 
 

 
 
 
 
 
 

Fig. 7.32. Misalignments between wall axes along the height 

Figure 7.31b shows a possible diagram of the bending moment along the wall. 
Note the possible sign inversion in the bending moment diagram at the floor le-
vels. Within this framework, it is useful to cite the simplified approach provided 
for by the Italian Building Code for evaluating stresses in vertical wall bands. This 
approach assumes that the wall is hinged at the wall base of each floor, as shown 

(i) 

(i–1) 

(i+1)

(i) 
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in Figure 7.31 c). Such an assumption can be justified by considering that, in 
modern masonry buildings, the presence of the ring beams at each floor interrupts 
the continuity of the wall, and thereby hinges the wall segments at their base on 
each floor.  

The horizontal forces transmitted to the floors are shown in figure 7.33. At  
level i, the axial load Ni  transmitted by the upper wall is centered.  

Evaluation of the eccentricity at the head of each wall segment, that is, between 
levels i  and i -1, will consider, together with the centered axial load Ni transmitted 
by the overlying wall, all other forces transmitted to level i by the beam floors in 
their actual positions, as shown in figure 7.34. 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 7.33. Evaluation of horizontal floor constraints 

Thus, the eccentricity e of the axial load at the head of the wall segment be-
tween levels i and i – 1 can be obtained as 
 

1 ( )
ii i vi

i i

N d V d
e

N V
− + Σ

=
+ Σ

 . (44) 

 
 
 

 
 

 
 
 

Fig. 7.34. Bending moment evaluation at the head of the wall segment between floors (i–1) 
and (i) 

(i) 

Ni Vsi Vbi 

d(i,i-1)

R

R
2

R
1
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The presence of eccentricities in the axial load on the vertical wall  
bands may induce nonnegligible destabilizing effects that must be adequately  
accounted for. A simplifying procedure for this purpose is presented in the next 
section. 

7.3.3.3   Simplified Stress Analysis of Wall Bands to Account for the 
Destabilizing Effects of Axial Loads. 

The Italian Building Code (2005) furnishes a useful simplifying approach to ac-
count for the destabilizing effects of axial loads on walls and piers. This proce-
dure, which is a modified form of the common ω approach to buckling checks of 
steel columns, adequately accounts not only for the slenderness ratio λ of the wall, 
but also for the eccentricity e of the axial load. According to this approach,  
the mean compression stress in the wall section must be lower than an admissible 

reference stress mσ , that is, 

 

m

N

A
σ σ= ≤

Φ
 , (45) 

 
where N is the working axial load acting on the considered wall section, A the 
geometrical area of the wall section and Φ  a suitable strength reduction coeffi-
cient that depends on the eccentricity ratio  
 

m = 6e/t (46) 
 
and the wall slenderness λ = ho /t, where  ho is the inflexion length of the wall, 
which is in turn given by  
 

oh hρ= , (47) 
 
with h the distance between stories, and ρ  the side constraint factor. As per Code 
provisions, this last is taken to be  
 

3 / 2 /      0,5 / 1, 0 ;h a h aρ = − ≥ ≤  2
)1 / [1 ( / ]    1 /h a h aρ = + > , (48) 

 
where a indicates the distance between the constraining transverse walls. 

Table 6.3 provides the eccentricity ratio factor Φ for various values of wall 
slenderness and load eccentricity. These values have been obtained through pre-
vious analyzes on the destabilizing effects of axial load eccentricities in masonry 
piers and walls. According to Italian Building Codes, the admissible mean  
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reference stress mσ  can be obtained via the characteristic masonry compression 
strength fk as 

 

/ 5m kfσ = . (49) 

Table 7.3. Values of eccentricity ratio Φ . They  reduce the resistant area of the of the 
compressed wall section as a function of the wall slenderness and eccentricity factor m  

ho/t  m=0 m=0.5 m=1 m=1 .5 m=2 
0 1 .00 0 .74 0 .59 0 .44 0 .33 
5 0 .97 0 .71 0 .55 0 .39 0 .27 
10 0 .86 0 .61 0 .45 0 .27 0 .15 
15 0 .69 0 .48 0 .32 0 .17  
20 0 .53 0 .36 0 .23   

 
Masonry compression strength, fk, can also be evaluated by considering the 

strengths of the individual constituent stones or brick elements and mortar, as dis-
cussed in Chapter I. 

7.3.3.4   Composite Sections 

Composite sections, in which a brick or stone facing covers an inner core of rub-
ble and mortar, are very common in piers and masonry walls. Evaluation of the 
stresses in such composites must account for the different deformation capacities 
of the facing and core. Figure 7.35 shows a rectangular composite pier section, for 
which 
 

Ep,   En (50) 
 
are the elasticity moduli of the different masonries in the pier facing and core, re-
spectively. Let N be the axial load acting on the entire section, directed along the 
pier axis. 
 
 
 
 
 
 
 
 
 

 

Fig. 7.35. Pier section composed of brick facing and inner rubble core 

a 

A B 

C 

F 

G
H
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The mean compressive stresses, σp and σn, respectively acting on the facing and 
internal core are unknown. A first relation linking σp and σn is the following equi-
librium equation 
 

p p n nN A Aσ σ= +  , (51) 

 
where Ap and An are the areas of the facing and core, respectively. The second  
relation is the compatibility equation equating the facing and core strains: 
 

p nε ε ε= = . (52) 

 
This condition depends on the bond between the bricks and the core, as well  
as on the connections potentially existing between the facing and the core. By 
substituting Eq. (52) into Eq. (53), and accounting for the elasticity relations  

 

p p pEσ ε=   n n nEσ ε=  , (53) 

 
we obtain the following expressions for the stresses in the facing and the core: 
 

,
p

p n p n

N

A n A
σ =

+
  ,

,
n n p

p n p n

N
n

A n A
σ =

+
, (54) 

 
with 
 

,
n

n p
p

E
n

E
=  . (55) 

 
Note that the destabilizing effects of axial load eccentricities, particularly when 
dealing with slender piers or walls, are adequately accounted for. 
 

An example 
Let us consider the composite section with the following characteristics: 
b = 1.50 m; d = 3.00 m; s = 0.30 m; 
Ep= 5000 MPa; En= 1500 MPa; 
N = 500 t.  
Thus, we have nn, p = 0.30 and 

 

2500
16.73 /

2.34 0.30 2.16
p kg cmσ =

+ ⋅
 25.0 /n kg cmσ = . 
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7.3.3.5   Mortar Creep Effects 

Creep deformations of mortars influence the stress distribution in the facing and 
core of a composite pier. In evaluating this influence we can assume that creep ef-
fects will be greater in the core than in the masonry facing. Thus, considering both 
creep and shrinkage of the core, recalling the formulation described in Chapter I, 
the compression stresses in the core and facing 

 

( )n tσ ,  ( )p tσ  (56) 

 
are both functions of time t. The compatibility condition is now reformulated as 
 

( ) ( ) ( ) ( )ep en vn rst t t tε ε ε ε= + + , (57) 

 

where ( )en tε , ( )vn tε e, ( )sn tε  are, respectively the elastic, viscous, and shrinkage 

strains of the core, and ( )ep tε  the elastic strain of the facing. The elasticity condi-

tions can now be expressed as 
 

( ) ( )p p ept E tσ ε=  ,  ( ) ( )n n ent E tσ ε= . (58) 

 
Considering the creep deformation of the core, Eq. (57) becomes  
 

( )( ) ( )
( ) ( )o

i

tp tn
n sn

tp n n

t t
e d t

E E E

β τσ σ αβ
σ τ τ ε− −= + + , (59) 

 
where, t is the current time and τ  any given past time. The equilibrium equation at 
any time t yields 
 

( ) ( )p p n nN t A t Aσ σ= +  . (60) 

 
Derivation of condition  (59) with respect to time t gives 
 

( ) ( )op p t tn sn
n p

n

d E d d
e t E

dt E dt dt

βσ σ ε
αβ σ− −= + + , (61) 

 
where, recalling Eq. (4) in Section 1.11.4, 
 

( )ot trn
R

d
e

dt

βε
ε β − −= . (62) 
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The derivative of condition (62) with respect to time t can also be written 
 

p n n

p

d A d

dt A dt

σ σ
= − . (62’) 

 
Thus, the following equation in the unknown σn(t) is obtained simply by substitut-
ing (62’) and (62) into (61): 
 

                 ( ) ( )( ) ( ) 0o op t t t tn n
n p R

p n

EA d
e t E e

A E dt

β βσ
αβ σ ε β− − − −+ + + = .           (63) 

 
With the position 

( )ot te βξ − −=  (64) 
 

and accounting for 
 

d

dt

ξ
βξ= −  , (64’) 

 
Eq. (65) becomes 
 

R( )  0n
n p

d
p E

d

σ
ασ ξ ε

ξ
− + + = , (64”) 

 
Where 
 

                                                      ( )
pn

p n

EA
p

A E
= + . (65) 

 
The solution to (66”) is the function 
 

( ) p R
n pAe E

α ξ ε
σ ξ

α
= −  . (66) 

 

At the initial time t = ti, that is, at ( )i ot t
i e

βξ ξ − −= = , we have 

 

                                            ( )
ip R

n i p noAe E

α ξ ε
σ ξ σ

α
= − =  ,  (67) 
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where σno is the purely elastic solution, given by (56). Thus, we obtain 
 

                                     
( )

( ) ( )
ipR R

n no pe E

α ξ ξε ε
σ ξ σ

α α

−
= + −  , (68) 

or more directly 
 

( ) ( )[ ]

( ) ( )
o it t t te e

pR R
n no pt E e E

α β β
ε ε

σ σ
α α

− − − −−
= + −  . (69) 

 
Similarly, Eq. (60) gives the compression stress in the facing: 
 

( ) ( ) n
p n

p p

AN
t t

A A
σ σ= −  . (70) 

 
At the limit, for t → ∞ , the stresses in the core and facing reach their asymptotic 
values: 
 

( )

( )
i ot te

pR R
n no p pE e E

α β
ε ε

σ σ
α α

− −−

∞ = + −  ,      n
p n

p p

AN

A A
σ σ∞ ∞= −  . (71) 

 
If load N is applied to the pier at the same time ti it takes the mortar to cure, we 
have ti = to and obtain 
 

( ) pR R
n no p pE e E

α
ε ε

σ σ
α α

−

∞ = + − ,    n
p n

p p

AN

A A
σ σ∞ ∞= −  . (72) 

 
We can now reevaluate the previous example considering the effects of creep and 
shrinkage of the core mortar. In this case, quantity p, defined by (18), is 
 

2,16 5
( ) 4.256

2.34 1.5
p = + =  . 

 
By assuming α = 3, we obtain a/p = 0.705. Considering now that load N = 500 t 
will act on the pier 1 year after the mortar has cured, we have e-1 = 0.368, and 
hence 
 

10,705 0,705 0,368 0,259
( )

0.771
i o

e
t t

p
e

e e e e
α β

−−
− ⋅ − ⋅ −

− −

== = = . 
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The asymptotic compression stress in the core is thus  
 

3 3( )
0.3 10 0.3 10

( ) (5.02 50000 )0.771 50000
3 3

i o
R R

n no p p

t t
p
e X X

E e E X X
βαε εσ σ

α α

− −−

∞

− −

= + − = + −   

 = 7.725 – 5 = 2.725 kg/cm2.  
 
The compression in the facing, on the contrary, is greater than the value resulting 
from ignoring creep effects: 

 

2500 2,16
 2.725 21.37 2.51 18.85 /

10 2.34 2.34
p kg cmσ ∞ = − = − =

⋅
. 

 
This result, compared with the elastic solution, reveals the appreciable effect of 
mortar creep.  

7.4   Towers 

7.4.1   Introduction  

One particular class of masonry buildings, whose height predominates over their 
widths, are towers in all their forms, including bell towers, minarets, and so forth. 
Menhir, sacred monuments built with gigantic stones, are the most ancient tower-
like structures. Of the few livable menhirs, the tower in the Wall of Jericho is the 
most ancient, having been built about 9000 years ago; it is circular in section with 
a diameter of 8.0 m. Thousands of years later the Sumerians developed construc-
tions called ziqqurats − terraced temples with square plans. Only a few traces of 
these remain today, mainly as the ruins of their foundations. In Italy the Nuraghi, 
built about 3000 years ago, are the most ancient surviving examples of tower con-
structions. 

Towers have often dotted the landscape of many towns, marking their entrance 
gates, or serving the function of watchtowers or lighthouses. They were also used 
as symbols of family power, as in San Gimignano, or as church bell towers and 
mosque minarets. Their height is clearly the characterizing feature of towers, the 
Lighthouse of Alexandria being one of the highest masonry towers ever built: it 
was reportedly 120–140 m in height. Built by Greeks in about 305 B.C.E., it col-
lapsed in 1326, though nowadays some traces remain in the Castle of Qaitbay in 
Egypt. 

7.4.2   Typical Cracking Patterns in Masonry Towers 

Tower structures have to withstand winds and earthquakes. The action of the wind 
is probably the most critical because, due to their height, towers have high periods 
of oscillation and can thereby absorb seismic actions.  
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In general, high compression stresses must be borne by tower masonry  
walls, particularly at the lower levels. Such stresses can cause the expulsion of 
stones and local failures in any irregular masonry. The presence of out-of-plumb 
walls makes matters worse, because it produces actions orthogonal to the wall 
plane. 

The vertical walls of towers vary considerably in thickness: the tower shaft 
tends to open and the walls bulge outwards. Thus, vertical cracks frequently occur 
along the perimeter walls, particularly near window openings and in the upper part 
of the tower. Figure 7.36 shows a typical cracking pattern in an old, damaged 
tower, together with a sketch showing the dislodged masonry. The bell tower of 
St. Mark’s Basilica in Venice failed in 1902, as did the Pavia Civic tower in  
1989. Both events were probably due  to the concurrent effects of all these factors 
(fig. 7.37). 

 
 

  
 

a)     b) 

Fig. 7.36. a) Typical cracking pattern in a masonry tower: the tower of San Niccolò in Flo-
rence (from Como, M.T., 2000). B); b) dislodged masonry 

Surveying cracking patterns can be a difficult task because of towers’  
heights. Nowadays, thanks to so-called dynamical structural identification tech-
niques, tower frequencies and oscillation modes can be measured and different  
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measurements compared over time, thereby enabling continuous monitoring of the 
evolution of any damage. One further hazard to towers is lightening. Humidity can 
collect in cracks, which makes the structure a good conductor of electricity. Thus, 
if the tower is struck by lightening, the instantaneous increase in temperature of 
the humid air present in the cracks gives rise to an actual explosion within the ma-
sonry. This explains why old steeples and towers are frequently heavily damaged 
by lightening bolts. A clear lesson to be learned from this is that tower masonry 
must always be maintained in good condition. 
 
 

 

Fig. 7.37. Failure of the Bell Tower of St. Mark’s in Venice in 1902, from a photo by 
L.H.N. Dufour, (De Fez, 1982) 

In bell towers, the vibrations setup by the bells themselves may be a source  
of damage, hence checks of the vibrations induced by the motion of bells is  
frequently performed on such structures. Typical restoration works include  
masonry refurbishment and ringing with steel ties at various levels to restore the 
connections between the walls. 

Serious static problems frequently depend on towers’ foundations, which  
produce stress on narrower soil areas in comparison to ordinary buildings.  
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Differential settling frequently occurs with consequent appreciable inclination and 
rotation of the tower. So-called leaning stability analysis is a problem particular to 
the statics of towers resting on deformable soils (Hambly, 1985, Como, 1993). 
The research on determining a suitable foundation model for towers is addressed 
in the following sections.  

7.4.3   Plastic Foundation Model  

There are a number of different models for foundations that seek to describe their 
static response. These include both linear and nonlinear elastic approaches (see for 
instance, Hambly, 1985), though plastic or visco-plastic models may be more  
appropriate. A tower involves the presence of high stresses in the foundation.  
Tilting of the tower,  occurred during its construction, thereby confirming the 
strong stresses at their bases, moreover suggests that the underlying soil is at the 
plastic state. 

Simple plastic and visco-plastic foundation models, following the basic  
approach of Meyerhof (1951), will thus be covered in detail in the next sections. 
Now let us consider a foundation plinth resting on the soil (fig. 7.38) under the  
action of a centered axial load N and moment M, such that their resultant remains 
applied internally to the plinth. By gradually assigning increments to N and M, at a 
given point in the loading path, the plinth undergoes significant subsidence due to 
the plastic deformations occurred in the underlying soil.  

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 7.38. Yield locus of a foundation eccentrically loaded and supported by noncohesive 
soil 

By assuming different ratios between M and N (i.e., different eccentricities of N 
with respect to the center of the base section of the plinth), we can apply different 
loading paths and trace the locus Y of the points (M, N) in the plane M, N defining 
the attainment of the plastic state, also called the limit state. A typical interaction 
locus Y between the vertical load N and moment M, is drawn in figure 7.38, which 
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outlines the various soil limit states. For the sake of simplicity, let us assume that 
the foundation is rectangular with width a and transverse length b, and, according 
to Meyerhof (1951), let us also assume that in the plastic state a constant pressure 
po pushes on the compressed soil. In particular, if the foundation is centrally 
loaded, the limit load No = poab represents the ultimate centered vertical load, that 
is to say, the ultimate bearing capacity of the foundation under a centered vertical 
load. We can moreover assume (fig. 7.39) that the supporting soil section of the 
plinth, eccentrically loaded, is subjected to a constant distribution of limit pressure 
po and engages only a band of limited width, equal to (a/2 −  x). Thus, the plinth 
equilibrium in the vertical direction yields 
 

( )
2 o

a Na
x

N
− =  . (73) 

 
 

 
 
 
   
 
 
 
 
 

 
 

Fig. 7.39. Plastic model of an eccentrically loaded foundation 

At the same time, rotational equilibrium yields  
 

(1 )
2 o

Na N
M

N
= − .  (74) 

 
Equation (74) describes the plastic state in terms of N and M and indicates the  
interaction locus in the plane M,N, as sketched out in figure 7.38. Generally, the 
interaction locus is represented by an equation of the type  
 

( , , ) 0of M N N =
 . 

(75) 

 
Thus, for a rectangular foundation, taking (74) into account, we have 

s ( , ) (1 ) 0
2 o

Na N
f M N M

N
= − − =  . (76) 
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The stress vector representing the loads acting on the foundation can be expressed 
by a two-component vector  

 

M

N
σ =  

  
,

 

(77) 

 
disregarding the negligible shear. We can now evaluate the response of the foun-
dation to an increase in stress. The corresponding plastic deformation increment is 
given by the two-component vector 

 

d
d

dv

θ
ε =  

  
,

 

(78)

 
 

where dθ  is the plastic rotation and dv the increase in the plastic settlement. When 
the loading path reaches a point P on locus Y, a plastic strain increment dε of the 
plinth occurs and has both components dθ and dv. These plastic strain increments 
develop both when the loading point P remains fixed on the locus as well as when 
P moves along it. To define the strain increment, we can thus move the loading 
point P along Y by applying a small increment dσ  tangent to Y. The plastic strain 
increment dε  will occur without any work by dσ , in compliance with the basic 
principles of the Theory of Plasticity (fig. 7.40). 
 

 
 
 

 
 
 
 
 
 
 
 
 

Fig. 7.40. Normality rule for a plastic strain increment 

 
If we move along the yield locus, the plastic deformation occurs without energy 

expense, hence  
 

0d dσ ε⋅ =  . (79) 
 

Condition (79) indicates the orthogonality of dε to the boundary of locus Y  
(fig. 7.40). The plastic strain increment dε is thus given by 
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    >0   se d 0,     = 0   se    d 0
f

d f fε λ λ λ
σ

∂
= > ≤

∂  , 
(80) 

 

where f (σ) is given by Eq. (80) and df is its differential.  
At the centered axial loading point (N = No, M = 0) the interaction locus 

presents a vertex, and the corresponding strain rate dε is a vector having any direc-
tion within the angle α and will include both plastic settlement and rotation, as 
shown in figure 7.53. This result explains the possible occurrence of a sudden tilt-
ing of the tower during its construction, when its weight, centrally applied on the 
foundation, reaches the limit value No. In particular, from (80), for a rectangular 
foundation we have 
 

1
=1              ( ) 

2o

f f N
a

M N N

∂ ∂
= −

∂ ∂  
(81) 

 
and 
 

              ( )   =    d dv x x dθ λ λ θ= = − − .
 

(82) 

 
According to (82), the plastic strain increment is thus produced by a rotation dθ  
of the foundation base section around the neutral axis corresponding to the current 
loading condition. This property holds for any type of foundation (fig. 7.41). 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7.41. Kinematic consequence of the plastic behavior of an eccentrically loaded  
foundation 

7.4.3.1   Subsequent Yield Loci of Plastic Hardening Soils 

Loose or weakly consolidated soils actually become stronger as loading 
progresses. The behavior of the foundation soil of tilting towers can often be  
explained by the presence of such soils. Soil strain hardening occurs as the soil  
deformations increase and a sequence of subsequent yield loci develops, as shown 
in figure 7.55. The first plastic state is represented by the first locus Yoo, while the 
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final collapse state of the soil corresponds to the final locus YR. The plastic strain 
rate can thus be expressed via the following associated flow rule; 
 

                        
1

df   if 0 and    d 0   if      d 0 
f

d df fε ε
χ σ

∂
= > = ≤

∂ ,
 (83) 

 
where χ(σ) indicates the strain hardening function of the soil. This function will 
be determined for a tower foundation in the next section.  
 

 
 

 
 
 
 
 
 

Fig. 7.42. Subsequent yield loci for a strain hardening foundation 

7.4.3.2   The Moment–Plastic Rotation Equation for a Tower Foundation 

With reference to the case of a tower foundation, it should be noted that increasing 
the tower’s tilt (fig. 7.43) causes an increase in moment M, while the axial load N 
remains practically constant. A shear force acting on the foundation also occurs, 
though it is so small as to be negligible.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 7.43. A tilting tower 
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The strain hardening function χ(σ) can be considered to depend solely on the  
moment M via the function 
 

χ(Μ )   (84) 
 
This function represents softening behavior, that is, a gradual reduction in its tan-
gent modulus as the rotation increases. It will also be able to describe failure of 
the foundation under the ultimate value of moment MR, that is, the occurrence of 
unbounded values of plastic rotations under the failure moment MR. To construct 
this function, note that with N = cost, we have 
 

 df dM= , (85) 

 
and the corresponding rotation increment, with the assumption of a rectangular 
base foundation, is 

In particular, for a rectangular plinth 
 

  

1

( )
d dM

M
θ

χ
= ,

 
(86) 

 
and the strain hardening function is given by 
 

 

( )
dM

M
d

χ
θ

=  .
 

(87) 

 
 

 
 
 
 
 

Fig. 7.44. Moment–rotation diagram 

 
This strain hardening function, χ(M), defines the rotational tangent modulus and 
can be expressed as 
 

( ) R
o

R

M M
M K

M
θχ

−
= ,

 
(88) 

 
where Kθo is the initial tangent modulus, that is, the derivative dM/dθ at M = 0. 
With this position we thus get 

O 

M

θ
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 oR
R

dM
d

M M
θ γ=

−
 ,

 
(89) 

 
where 
 

R
oR

o

M

Kθ

γ =  .

 
(90) 

 

The quantity γoR can be defined as the foundation deformability factor. From (89) 
it can be seen that when the acting moment approaches the failure moment MR, the 
rotation increment rises without limit. Integration of Eq. (89) gives (Como, 1993) 
 

 
( ) (1 ) oR

RM M e

θ
γθ

−
= −  .

 (91) 
 
Equation (91) describes the moment – rotation law of a rigid foundation resting  
on strain hardening soil. Upon unloading, permanent rotations occur, as shown in 
figure 7.44. 

7.4.4   Stability of Leaning Towers 

We assume that sudden, nonuniform soil settlement has taken place, with a  
consequent initial rotation θoi  of the tower.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.45. Equilibrium of a leaning tower consequent to an initial rotation θoi of the  
foundation 
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The tower will consequently undergo an additional instantaneous rotation θ  
due to the supervening eccentric position of weight G. The foundation base is thus 
loaded by the stress components (fig. 7.45): 
 

cos(  + )       sin(  + )        sin(  + )  oi G oi oiN G M GH T Gθ θ θ θ θ θ= = =  
. 

(92) 

 
We also assume that in the past the tower has never undergone tilting rotations 
larger than the current one. During the loading history, the actual yield locus Y 
will thus never be contained within larger loci. The loading point P(M, N), with 
components N and M given by (94), is thus located over the yield function Y  
(fig. 7.46). Rotational equilibrium of the tower gives 
 

 
( )sin(  + ) ( )(1 )  = 0 oR G

G oi RGH M G e

θ
γθ θ

−
− −  .

  (93) 
 
Equation (93) equalizes the overturning moment given by the second of (92) to the 
resisting moment (91). Equation (93) can be symbolically expressed as 
 

[ ( ), ] 0 g G θ θ =  (94) 

 
and shows the dependence of weight G on the rotation θ.   

 
 
 
 
 
 
 

 
 
 

 

Fig. 7.46. Loading state of a tilted tower foundation 

By differentiating this condition, we get 
 

0 
g dG g

G dθ θ
∂ ∂

+ =
∂ ∂  (95)

 
 
and then obtain 
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The denominator term in (98) does not vanish. The equilibrium of the tower be-
comes critical if   
 

/ 0dG dθ =
 . 

(97) 
 

In the critical state, increments in the tower’s rotation occur, in fact, without any 
further increments in the weight G. Specifically, Eq. (97) gives 
 

/
 cos( ) 0oR

G oi o

dG g
GH K e

d

θ γ
θθ θ

θ θ
−∂

= = + − =
∂

.
 (98) 

 
The rotational equilibrium is preserved in the critical state as well. Condition (98) 
will thus be associated with rotational equilibrium condition (93). From these equ-
ations, the two unknowns − the critical weight G*cr and the critical rotation θ* of 
the tower − can be determined. Eqs. (93) and (98) yield the following condition  
 

*/
*(  + ) = ( 1)oR

oi oRtg e
θ γθ θ γ − , (99) 

 
which, for small values of (θoi + θ*), gives  
 

* 2  oR oiθ γ θ≈  . (100) 
 

The critical weight of the tower * ( )cr oiG θ can be obtained from Eqs. (100) and 

(98). We thus have 
 

*/*

*cos( )

oR
cr G

o oi

eG H

K

θ γ

θ θ θ

−

=
+

  . (101) 

 
As θoi becomes smaller and smaller, θ* also vanishes and the critical weight be-
comes  

 
*

0
lim  

oi

cr croG G
θ →

=
,
 

(102) 

 
where 
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The critical weight croG  represents the critical weight of the initially vertical 

tower. Substitution of (103) into (101) gives the explicit expression for the critical 
weight of a leaning tower (Como M., 1993): 
 

*/*

*cos( )

oR
cr

cro oi

G

G

e θ γ

θ θ

−

=
+

  . (104) 

 
The critical tower weight has also been evaluated by Nova and Montrasio (1995). 

Equation (104) shows that even a small initial rotation θoi of the tower can  

produce a large reduction in the critical weight *
crG  with respect to the value Gcro 

of the critical weight of a vertical  tower (fig. 7.47). Such a critical condition is 
unstable. 

 

 
  
 
 
 
 
 
 
 
 

Fig. 7.47. Variation of the tower critical weight 
*
crG  with initial rotation θoi   

We can define a factor, s, that expresses the safety of a tower in its rotated  
configuration. This safety factor is given by 
 

*
crG

s
G

=   , (105) 

 

where *
crG  is the critical weight of the tower that has undergone an initial subsi-

dence rotation θoi. As long as coefficient s is not too small, the leaning tower will 
remain in its tilted position in a stable state, as has occurred, for instance, for the 
Garisenda tower in Bologna. To the contrary, if s is near unity, the tower  
equilibrium is quite uncertain. In such cases, small changes in the loads or in  
environmental conditions can lead to failure of the tower. Furthermore, creep  
deformations of the soil may lead to slowly increasing tilting of the tower.  

Various systems can be used to improve the safety of towers. Some aim to  
reduce their inclination. The following sections will address these issues, with a 
particular focus on stability analysis of the renowned Leaning Tower of Pisa and 
the work carried out to stabilize it. 
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7.4.5   Counter Weights to Stabilize Leaning  

Given the attempts made to stabilize a number of leaning towers in this fashion, it 
is interesting to evaluate the response of such structures to the application of  
counter weights. To this end, let us consider the scheme in figure 7.48, where an 
additional weight ΔP has been placed on the base of a leaning tower on the side 
opposite its inclination. 

The plastic response of the foundation is different from the elastic case. Ac-
cording to the elastic foundation model, application of load ΔP on the side oppo-
site the tilt would certainly reduce the tower’s inclination. The stress acting on the 
foundation, before application of the additional load ΔP, is localized at point A of 
the interaction domain Y, corresponding to an assigned level of hardening No. The 
coordinates of this point, A, in the plane M, N are  
 

       sin(  + )G oiN G M GH θ θ≈ =  (106) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 7.48. Application of a counter weight on a leaning tower  

According to the elastic model, the foundation response is represented by an  
increase in subsidence, together with a negative increment, dθ , that is, counter  
rotation of the tower. According to the plastic model, instead, the foundation strain  
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rate will, be the normality rule, directed along the external normal at A to the inte-
raction locus Y. Consequently, if df > 0, the rotation rate dθ  will be positive and a 
further increase in the tower’s inclination will occur (fig. 7.49). The differential df 
of the yielding function f at A is, on the other hand, given by 

 

( )  + ( )A A

f f
df dM dN

M N

∂ ∂
=

∂ ∂
,
 

(107) 

 
which, in the simple case of rectangular foundations, by accounting for (81), 
yields 
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(108) 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 7.49. Response dε of a plastic foundation to stress increment dσ 

Let 
 

eL (109) 
 

be the limit eccentricity value, which corresponds to a zero increment in plastic  
rotation of the foundation, that is, when df = 0. Hence, we get 
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Moreover, accounting for (110) and that 
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the limit eccentricity becomes 
 

 

21
[ ( )]
2

G
L oi

H
e a

a
θ θ= − +

 
. (110’)

 
 

Consequently, we can write 
 

 
( )Ldf e e N= − Δ ,

 
(110”) 

 

and we can thus conclude that only when 
 

e > eL (112) 
 

will df < 0 (fig. 7.49). For instance, in the case of a rectangular foundation of 
width a, with 2Hg/a = 2.5, (θoi + θ) = 5°, it can be seen that an eccentricity value e 
= a/4 is insufficient to ensure e > eL- 

7.4.6   An Attempt to Analyze the Evolution in Time of Tower 
Tiling  

7.4.6.1   Soil Creep Effects on Leaning Tower Equilibrium 

Leaning towers frequently attain a tilting configuration that remains unchanging 
over time. In such cases, the foregoing analysis can be deemed suitable for  
checking their stability. In other cases, however, such as for instance, the leaning 
Tower of Pisa, a structure may undergo slow but progressive increases in tilting. 
The equilibrium state of the tower evolves over time and can either stabilize 
asymptotically or deteriorate until it reaches failure. 

The evolution of a tower’s rotation depends on the behavior of the foundation 
soil, whose response changes over time. There are various reasons for this beha-
vior: periodic variations in the height of the water table linked to particular soil 
features, as creep of the solid particles of the soil itself, amongst others. Moreover, 
the interactions occurring between the time-dependent foundation soil response 
and the tower’s tilting are extremely important. A small, uneven settling of the 
foundation causes an increase in rotation that, in turn, leads to greater axial load 
eccentricity on the foundation and consequently slow further tilting of the struc-
ture, and so on. A simple visco-plastic foundation model can describe this beha-
vior. To this end, accurate geotechnical techniques are available to define the vis-
co-plastic soil parameters involved in the various cases. 

7.4.6.2   Visco-Plastic Model of Foundations 

A visco-plastic model of the foundation can explain variations in a tower’s  
inclination over time. A simple visco-plastic model considers the strain rate ε

 expressed as the sum of the plastic and viscous shares 
 

p vε ε ε= +   , (113) 
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where the plastic strain rate pε is given by (80) and the viscous rate vε , according 
to a common rheological equation, is given by 
 

 v
vKσ ε=    (114) 

 
The stress vector, σ , of components M and N is given by (77), where Kv is the 
foundation viscous stiffness matrix: 
 

( ) 01

0
ot t

v
vv

k
K e

k
β θθ

α
−=  

   .

 (115) 

 
In expression (115), to indicates the initial time, corresponding to completion of 
the tower, when it is assumed that the load began to act. The constant α is a factor 
expressing the intensity of the viscous deformation of the foundation, β a scale 
factor assumed equal to 1 century.-1, and kθθ, kvv are positive quantities defining the 
viscous behavior of the foundation. The assumed viscous constitutive equation 
conforms to the formulation of creep deformation discussed in Chapter I. Equation 
(114) can be written in the more explicit form: 
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 (115’) 

 
Hence, we get 
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or 
 

( ) ( )ot tv e M t
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β

θθ

α
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(116’) 

 
For a better understanding of the mechanical significance of the various  
parameters involved according to the proposed visco-plastic model, as a first step 
let us analyze the slow subsidence of a foundation under constant loads, G or M, 
resting on a purely viscous soil, whose behavior is defined by Eq. (115’). Thus, 
from Eq. (115’), we get 
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Integration of (116”) gives (fig. 7.50) 
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(117) 

 
The asymptotic values of the foundation rotation and settlement are thus 
 

v M
kθθ
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θ
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(118) 

 
The quantities 
 

 

kθθβ
α  

vvkβ
α  

 (119) 

 
represent the rotational and vertical asymptotic viscous stiffness of the  
foundation. 
 
 

  

Fig. 7.50. Evolution laws of the subsidence and rotation of a purely viscous foundation  
under constant centered vertical load and constant couple 

7.4.6.3   Slow Tilting of Towers Resting on Visco-Plastic Foundation 

Let us now consider a tower on visco-plastic soil, defined by the model discussed 
above. The tower undergoes an initial tilt θoi due to differential subsidence of the 
foundation at the onset of its construction. The initial equilibrium configuration of 
the tower is thus rotated: this initial inclination causes load G to become eccentric 
and slowly, over time, produces visco-plastic strains and further tilting. The slow 
displacement of the tower will be characterized by a predominating rotational 
component θ (t) , which occurs under nearly constant axial load. Here, θ (t) now 
represents the entire rotation of the tower at time t, including the initial tilt as well 
as the visco-plastic share. 

( )vv t
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t  
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In light of previous results, we can disregard the contribution to the  
displacement of the small changes in the axial load during progressive tilting. 

The rotation rate at time t is due to the strong interactions between the two  
plastic and viscous portions: 
 

   

( ) ( ) ( )p vt t tθ θ θ= +    . (120) 

 
Creep rotation in fact produces rotation increments and, consequently, increases  
in the moment M(t) acting on the foundation. This monotonically increasing  
moment, in turn, produces further increments in the plastic rotation and so on. The 
hardening of the soil, which slowly reduces the magnitude of the viscous rotation 
rates, conflicts with the increasing moment M(t), whence new, additional rotation 
arises. Once this process has been initiated, either the tower’s movement will 
slowly stabilize or it will progress fatally toward failure. In this context, from 
Eq.(120), and by accounting for (89) and the first Eq. (117) , we get 
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The moment M(t) acting on the foundation is given by 
 

  

( ) sin ( )GM t GH tθ=
 

. (122) 

 
Thus, taking into account that 

 

( ) cos ( )GM t GH tθ θ=  , (123) 

 
from Eq. (121), we have 
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where 
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With the position 
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and taking into account that 
 

 

cos ( )tφ θ θ= − 

 

,

 

(126’) 

  
Eq. (124) gives 
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The factor (128) where 
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represents the dimensionless rotational viscous stiffness of the foundation. With 
the change in variable 
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and accounting for 
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we get 
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Thus, by taking position (126) into account, after some manipulations we obtain  
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Separation of variables gives 
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and by integrating we get 
 

                  

sin
1 [ln( ) ln( ]

2 sin )
  

v
oR

R R

tg k
γθθβχ θ θ

ξ
α μ μ θ

= + − +
−

.

 

(134) 

 
Let us assume, for the sake of simplicity, that 
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(135) 

 
Then ξ(to = 0) = 1, and the initial conditions are 
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Thus, we obtain the explicit formulation of function ξ = ξ(θ): 
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that describes the evolution of the leaning of the tower over time. 

7.4.6.4   Critical State. Critical Time 

Different, but simultaneous, equilibrium configurations occur at the critical state.  

 

 

Fig. 7.51.  The critical state 

Thus, in the critical state 
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or, taking (129) into account, 
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However, from (138) and (137), the critical condition becomes 
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 ,                         (139) 

 

which gives the equation for the critical rotation  
 

 oR cr Rcos  sin =  crγ θ θ μ+  ,                         (140) 
 

which, in turn, furnishes θcr with the assigned values of μR and γoR. Substituting 
this value of θcr into Eq. (137) yields the critical time. The condition, 
 

  [0,1]    ctξ ∈  ,                                  (141) 
 
indicates whether or not the critical state can be actually be attained. Figure 7.51 
shows the plot θ(t) of the tower rotation versus time. At the critical state, defined 
by the coordinates, critical time tcrit, and critical rotation θcrit, the tangent to the 
curve θ(t), according to (138), becomes vertical. The impending critical state is 
signaled by the change in sign of the derivative /d dtθ , from negative to positive 
values, implying acceleration of the motion. 
 
 

 

Fig. 7.52. Plot of the rotation versus time (in centuries) of a leaning tower with an  
initial tilt, resting on a visco-plastic foundation for different values of the dimensionless 
asymptotic viscous stiffness 

We have applied the proposed visco-plastic model to analyzing the slow rota-
tion of a leaning tower by assuming the values of MR and of Kθo  considered in the 
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next section. Figure 7.52 shows the plot of the tower inclination versus time, ex-
pressed in centuries, for various values of the dimensionless foundation asymptot-
ic viscosity stiffness. All possible behaviors of such a tower can be described by 
varying the different quantities involved. Small values of the dimensionless  
foundation viscous stiffness, which also signify high, heavy towers, led to leaning 
failure.  

7.4.7   The Leaning Tower of Pisa 

The Tower of Pisa (fig. 7.53) was designed as a cylindrical belfry that would  
stand about 56 m high. The width of its walls varies from 4.09 m at its base to 
2.48 m at the top. The Tower is a hollow cylindrical shaft with eight stories,  
including the bell chamber. The external and internal diameters at the base are 
about 15.5 and 7.4 m, respectively. The bottom story is made up of 15 marble  
arcades, while each of the next six stories contains 30 arcades surrounding the  
inner cylinder of the tower. The top story is the bell chamber itself, with 16  
arcades. The inner and outer surfaces are faced with marble and the annulus  
between these facings is filled with rubble and mortar within which extensive  
voids have been found. 

Construction of the Tower, the Cathedral’s bell tower, had a troubled history. 
Construction was begun in 1173, probably under the supervision of Bonanno  
Pisano. However, the Tower already began to sink after construction had  
progressed to the second floor in 1178. This was due to a mere 3 m-deep  
foundation, set in weak, deformable subsoil. The work was suspended after this 
first foundation subsidence. During this period, the Republic of Pisa was almost 
continually engaged in battles with Genoa, Lucca, and Florence, which allowed 
time for the underlying soil to settle. 

About a century later, in 1272, construction was resumed under Giovanni di 
Simone and got as far as the sixth story. In an effort to compensate for the incline, 
the added floors were built out-plumb, by building one side higher than the other. 
However, construction was halted once again in 1284, when the Pisans were  
defeated by the Genoans in the battle of Meloria. The 7th floor with the upper  
bell chamber was finally completed in 1319 by Tommaso, son of Andrea  
Pisano.  

The ground underlying the Tower consists of three distinct layers. The first 
layer, called horizon A, is about 10 m thick and consists primarily of soft estuarine 
deposits of sandy and clayey silts laid down under tidal conditions. The second 
layer, called horizon B, consists of soft, normally consolidated marine clay, 
known as Pancone clay, which extends to a depth of about 40 m. This material is 
very sensitive and loses much of its strength if disturbed. The surface of the  
Pancone clay is dished beneath the Tower, revealing that the average subsidence 
is between 2.5 m and 3.0 m. The third layer, called horizon B, is dense sand which 
extends to considerable depth. 
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Fig. 7.53. The Leaning Tower of Pisa (From Wikipedia, Creative Commons, 2009) 

The water table lies between 1 m and 2 m below the ground surface in horizon 
A. The continuous long-term tilting of the Tower could be explained by  
continuous variation of the water-table level that produced, by racketing,  
incremental plastic deformation of the solid structure of the soil. The soil subsided  
considerably and the high deformability of the Tower foundation may, on the  
contrary, be mainly due to the high compressibility of the Pancone Clay (Burland, 
1998,1999).  

By 1992 the tower was leaning by an angle of about 5.5 degrees toward the 
south. Precise measurements (begun in 1911) showed that during the 20th century 
the inclination of the Tower was increasing inexorably each year and the rate of 
tilting had doubled since the mid-1930s. In 1990 the tilting rate was about  
6 arc-seconds per year, equivalent to a horizontal movement of about 1.5 mm per 
year at the top. 

The diagram in figure 7.54 shows the history of the tower’s rotation according 
to Burland (1998). The acceleration in the tilting from the year 1272–1360 has 
been attributed to soil consolidation during the first suspension of its construction.  
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Another considerable increase in rotation occurred in 1838, when A. Della  
Gherardesca excavated a walkway around the foundations, the so-called “catino”, 
to facilitate access to the tower. This work resulted in an inrush of water on the 
south side, since the excavation here reached below the water table, and eventually 
in a increase in the tower’s inclination of more than half a degree. 
 
 

 

Fig. 7.54. Tower rotation in time (from Burland, 1998) 

Crucial operations to stabilize the tower through sub-excavations were  
performed in the years 2000 – 2001, as shown in figure 7.54 (Jamalkowski,  
Burland, Viggiani 2003). 
 

 

Fig. 7.55. Inclined drill for soil extraction ( Burland, 1998 ) 

The sub-excavation technique involved gradual removal of small quantities of 
soil from the side opposite the incline. This technique, engineered by Terracina 
(1962), had first been applied successfully to stabilize the cathedral of  Mexico 
City (Tamez, Ovando, Santoyo, 1997). A large number of corkscrew drills were 
inserted at a shallow angle into the earth beneath the tower to remove soil from 
beneath the raised side of the tower. The progressive rotation was arrested, and the 
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tower was straightened by 45 cm to about four meters off-center - returnng it to its 
position in 1838.  

Experimental research carried out at the Imperial College of London (Edmunds, 
1993) has shown that the sub-excavation technique is strongly influenced by the 
extension and localization of the region of sub-excavated soil. It is interesting to 
point out that this study envisaged the existence of a critical depth for the region 
sub-excavated on the side opposite the inclination. The incline of the tower would 
actually worsen if the soil extraction were to continue beyond this depth,  
though the reasons for this seem to be not yet clear (Como, Ianniruberto and  
Imbimbo, 2001). 
 
Some Technical Data on the Tower of Pisa 

Weight (Lancellotta, 1993, Desideri, Russo and Viggiani, 1997): G = 14450 t.  
Tilt of the tower prior to the stabilization operations, θ =5°, 40’. 
Height of the tower center of mass with reference to the foundation:  

HG = 22,515 m. 
Initial tower inclination upon its completion: θ0i = 0° 40’ =0°.667 = 0.0116 rad. 

This value has been determined by evaluating the axis corrections attempted  
during the last stage of its construction. The tower, in fact, has a slightly curved 
‘banana’ shape due to the addition of the last stories out-plumb, but at an angle  
to the lower stories, in an attempt to correct the tilting caused by settling of the 
foundation soil. 

The ultimate resistant moment of the foundation and the initial rotational stiff-
ness, according to Lancellotta, (1993): MR = 60,000 tm; Kθ0 = 550,000 tm/rad. 
 
Critical Weight Evaluation According to (104). 

We shall now apply the foregoing formulations of the foundation resistant  
moment and the initial rotational stiffness, as drawn from Lancellotta (1993), to 
evaluate the critical weight of the tower.  

Using the given values of Kθ0 and MR, we calculate the factor γoR., which from 
(90), gives us: γoR = 0.109. The critical weight of the tower, corresponding to the 
its initial vertical position, from (105), is: Gcr.o = 24,428 t. 

We shall consider an initial inclination due to subsidence (according to  
Lancellotta) of θoi = 0°40’ = 0.0116 rad, and from Eq. (100), the subsequent  
inclination due to foundation deformation is about θ* = 0.050 rad = 2°,882’.  

Thus, from Eq. (104), the critical weight of the tower turns out to be G*cr = 
15472 t. The corresponding critical rotation of the tower would be θoi + θ* = 0°40’ 
+ 2°,882’ = 3°,55’, less than 5.5° measured before the recent stabilization work.   

Let us now assume the following values for the ultimate moment and the  
initial foundation stiffness: MR = 90,000 tm; Kθ0 = 500,000 tm/rad, together  
with a somewhat larger value of the initial inclination: θoi = 0°50’ = 0°,83’ =  
0.015 rad. 

From (90), we get γoR = 0.180 and from (103), Gcr.o = 22,207 t. By applying  
Eq. (100), the tilting of the tower after the initial settlement  turns out to be  
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θ* = 0.073 rad = 4°,21’. The corresponding critical weight is lower, that is, G*cr = 
14,863 t, only slightly larger than the tower’s actual weight. The total inclination 
of the tower becomes 4°,21’+0°,83’ = 5°,04’, not too different from the rotation 
detected before its stabilization. Finally, the safety factor, evaluated in terms of the 
ratio between the critical and the actual weight of the tower, is very low, only 
about 14863/14450 = 1.03.  Further studies could take into account the creep de-
formations of the soil. These evaluations, albeit approximate, reveal the preca-
riousness of the tower’s state back in 1990 and moreover  highlight the relevance 
of the stabilization works carried out . 

Appendix 

A.6.1   Yokel Integration of the Differential Equation for the 
Flexure of a Eccentrically Loaded Cracked Pier  

By means of Eq. (15), we obtain  
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equation (A1) becomes: 
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By applying boundary condition (15) (i.e., by accounting for the fact that at x = 0, 
y = 0), we get: 
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Substituting (A3) into (A2) of k2 furnishes: 
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By considering that for x = h/2, y = u1 – u0, the solution is expressed in terms  
of u1:  
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we finally arrive at 
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