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Abstract

Leuconostocaceae are lactic acid bacteria (LAB) belonging to

order Lactobacillales. The family consists of genera Leuconostoc,

Weissella, Oenococcus, and Fructobacillus. The genus Leuconostoc

was described already in 1878 by van Tieghem. The oldest

described species belonging to Oenococcus and Fructobacillus

were originally described as Leuconostoc spp. but were later

reclassified based on phenotypic and phylogenetic studies.
osenberg et al. (eds.), The Prokaryotes – Firmicutes and Tenericutes, DOI 10.1007

ringer-Verlag Berlin Heidelberg 2014
Genus Weissella contains species originally classified as

Leuconostoc or Lactobacillus spp.

Like other LAB, Leuconostocaceae are Gram positive, catalase

negative, and chemoorganotrophic. They grow in rich media

supplemented with growth factors and amino acids and generate

energy by substrate-level phosphorylation. Leuconostocaceae fer-

ment glucose heterofermentatively yielding lactic acid, CO2,

ethanol, and/or acetate.

Leuconostocaceae are found in environments with high

nutrient content, e.g., on green vegetation, roots, and food.

Within LAB, Leuconostocaceae are characterized by their

adaptable fermentation patterns that enable efficient generation

of ATP from carbohydrates and, consequently, enhanced

growth. Due to their ability to grow rapidly in rich media

under elevated CO2 concentration at moderate temperatures,

Leuconostocaceae are competitive in various food environments

and contribute to a number of fermentation processes. The

diverse fermentation substrates and products of Leuconos-

tocaceae may cause desired or undesired effects on the organo-

leptic quality of foods.

This contribution is a modified and updated version of pre-

vious descriptions of the family (Schleifer, 2009) and the included

genera (Björkroth et al., 2009; Björkroth and Holzapfel, 2006;

Dicks and Holzapfel, 2009; Holzapfel et al., 2009).
Taxonomy, Historical and Current

The family Leuconostocaceae belongs to the order Lactobacillales.

Since the late 2000s, this family has contained the genera of

Fructobacillus, Leuconostoc, Oenococcus, and Weissella. The

genus Leuconostoc has been the hub of taxonomic reclassi-

fications leading to description of the three other genera.

Historically, Leuconostoc mesenteroides was first mentioned

by Van Tieghem in 1878 (Van Tieghem 1878) in an article called

‘‘Sur la Gomme de Sucrerie (Leuconostoc mesenteroides).’’ The

description of the genus Leuconostoc is following today the lines

published by Garvie (1986). The taxonomic revisions affecting

leuconostocs have mainly been due to implementation of phy-

logenetic analyses and the studies utilizing polyphasic taxonomy

approaches. The first phylogenetic analyses of the 16S rRNA

gene sequences (Martinez-Murcia and Collins 1990; Martinez-

Murcia et al. 1993) resulted in recognition of three distinct

lineages within leuconostocs. They were referred as the genus
/978-3-642-30120-9_208,
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Leuconostoc sensu stricto, the Leuconostoc paramesenteroides

group, and Leuconostoc oenos. A new genus Weissella (Collins

et al. 1993) was described to accommodate members of the so-

called L. paramesenteroides group (including L. paramesen-

teroides and some atypical, heterofermentative lactobacilli).

In addition, L. oenos has been reclassified as Oenococcus oeni

(Dicks et al. 1995). More recently, some atypical leuconostocs of

plant origin including Leuconostoc durionis, Leuconostoc

ficulneum, Leuconostoc fructosum, and Leuconostoc

pseudoficulneum have been assigned to the new genus

Fructobacillus (Endo and Okada 2008). After these reclassi-

fications, the genus Leuconostoc includes 13 validly published

species names (> Table 18.1) with L. mesenteroides as the type

species. L. mesenteroides is the only species divided into subspe-

cies which have not been established based on phylogenetic or

genomic boarders. According to Vancanneyt et al. (2006),

Leuconostoc argentinum (Dicks et al. 1993) is a later synonym

of Leuconostoc lactis.

With the exception of Leuconostoc fallax, 16S rRNA gene

sequence similarities among the type strains of Leuconostoc

spp. are high, varying from 97.3 % to 99.5 % (Björkroth and

Holzapfel 2006). 16S rRNA gene sequence analysis further

divides leuconostocs into three evolutionary branches including

Leuconostoc citreum, Leuconostoc holzapfelii, Leuconostoc lactis,

and Leuconostoc palmae in the first branch; L. mesenteroides and

L. pseudomesenteroides in the second; and Leuconostoc carnosum,

Leuconostoc gasicomitatum, Leuconostoc gelidum, Leuconostoc

inhae, and Leuconostoc kimchii in the third branch, whereas

L. fallax is genetically more distinct from the other Leuconostoc

species (> Fig. 18.1).

In addition to the 16S rRNA gene, the loci of housekeeping

genes atpA, dnaK, pheS, recN, and rpoA in leuconostocs have

been analyzed. The phylogenetic trees constructed on analyses of

pheS, rpoA, and atpA loci offered discriminatory power for

differentiation of species within the genus Leuconostoc and

were roughly in agreement with 16S rRNA gene-based phylog-

eny (Ehrmann et al. 2009; De Bruyne et al. 2007). Comparative

sequencing of the additional phylogenetic markers dnaK and

recA confirmed the 16S rRNA gene tree topology in the study

describing L. palmae (Ehrmann et al. 2009). Arahal et al. (2008)

studied the usefulness of recN locus and concluded that also recN

can serve as a phylogenetic marker as well as a tool for species

identification. Congruence of evolutionary analyses inside the

Leuconostoc–Oenococcus–Weissella clade has been assessed by

comparative phylogenetic analyses of 16S rRNA, dnaA, gyrB,

rpoC, and dnaK housekeeping genes (Chelo et al. 2007). Phy-

logenies obtained with the different genes were in overall good

agreement, and a well-supported almost fully resolved phyloge-

netic tree was obtained when the combined sequence data were

analyzed using a Bayesian approach.

Within the genus Weissella, several new species have been

characterized during the last 5 years, and the genus currently

comprises 17 species (> Table 18.2). The description for the

genus is as published by Collins et al. (1993). The type species

is Weissella viridescens (Niven and Evans 1957) which is synon-

ymous to Lactobacillus viridescens.
The genus Weissella was proposed by Collins et al. (1993),

and the first species included in this genus comprises

species previously classified as Leuconostoc or Lactobacillus.

L. paramesenteroides (Garvie 1967a), L. viridescens (Niven and

Evans 1957; Kandler and Abo-Elnaga 1966), Lactobacillus

confusus (Holzapfel and Van Wyk 1982; Holzapfel and Kandler

1969), Lactobacillus kandleri (Holzapfel and Van Wyk 1982),

Lactobacillus minor (Kandler et al. 1983), and Lactobacillus

halotolerans (Kandler et al. 1983) kept their specific

epithets and were reclassified as Weissella paramesenteroides,

W. viridescens, Weissella confusa, W. kandleri, Weissella minor,

and Weissella halotolerans, respectively. These species were

followed by inclusion of Weissella hellenica (Collins et al.

1993), Weissella thailandensis (Tanasupawat et al. 2000),

Weissella cibaria (Björkroth et al. 2002), Weissella soli

(Magnusson et al. 2002), and Weissella koreensis (Lee et al.

2002). In addition, Weissella kimchii was proposed by Choi

et al. (2002), but it was found as a later heterotypic synonym

of Weissella cibaria (Ennahar and Cai 2004).Weissella ghanensis

(De Bruyne et al. 2008), Weissella beninensis (Padonou et al.

2010) and Weissella fabaria (De Bruyne et al. 2010), Weissella

ceti (Vela et al. 2011), Weissella fabalis (Snauwaert et al. 2013),

and Weissella oryzae (Tohno et al. 2012) are the latest species

suggested to the genus Weissella.

W. confusa, W. cibaria, W. halotolerans, W. hellenica,

W. kandleri, W. koreensis, W. minor, W. paramesenteroides,

W. soli, W. thailandensis, and W. viridescens share 93.9–99.2 %

16S rRNA encoding gene sequence similarity (Björkroth et al.

2009). Among the recently described species, sequence similarity

analyses (Snauwaert et al. 2013) indicated that W. fabalis type

strain shares the highest sequence similarities with the type

strains of W. fabaria (97.7 %), W. ghanensis (93.3 %), and

W. beninensis (93.4 %). Five main phylogenetic branches exist

based on the 16S rRNA encoding gene analyses. W. hellenica,

W. paramesenteroides, and W. thailandensis branch together, as

do W. cibaria and W. confusa. Two other branches are formed

by W. ceti, W. minor, W. halotolerans, and W. viridescens in

one branch and W. kandleri, W. koreensis, W. oryzae, and

W. soli in another. W. fabali s (Snauwaert et al. 2013),

W. fabaria (De Bruyne et al. 2010), andW. ghanensis (De Bruyne

et al. 2008) form the fifth branch distinct from the other species

within the genus.

Oenococcus oeni, type species of the genus Oenococcus, had

been formerly classified as Leuconostoc oenos (Garvie 1967b).

The genus Oenococcus currently includes two species, which

are Oenococcus kitaharae and O. oeni. O. oeni was formerly

classified as Leuconostoc oenos and reclassified as a member of

the novel genus Oenococcus (Dicks et al. 1995). A candidate of

novel Oenococcus species might have been isolated from

bioethanol fermenting tank (Lucena et al. 2010), which has not

been characterized at a time of writing (September, 2012). Orig-

inally, the species O. oeni was considered as a genetically homo-

geneous organism based on the sequencing of rRNA operon

(Jeune and Lonvaud-Funel 1997; Zavaleta et al. 1996). However,

recent study by Bridier et al. (2010) found diverse genetic groups in

the species by multilocus sequence typing (MLST) with sequences
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. Fig. 18.1

Phylogenetic reconstruction of the family Leuconostocaceae based on 16S rRNA and created using the maximum likelihood algorithm

RAxML (Stamatakis 2006).The sequence datasets and alignments were used according to the All-Species Living Tree Project (LTP)

database (Yarza et al. 2010; http://www.arb-silva.de/projects/living-tree). Representative sequences from closely related taxa were used

as outgroups. In addition, a 40 % maximum frequency filter was applied in order to remove hypervariable positions and potentially

misplaced bases from the alignment. Scale bar indicates estimated sequence divergence

218 18 The Family Leuconostocaceae
of several housekeeping genes. Reclassification of L. oenos into the

genusOenococcuswas carried out based on its unique phylogenetic

position, physiological characteristics, total soluble cell protein

analysis, and several biochemical characteristics by Dicks

et al. (1995). Already in 1993 Martinez-Murcia et al. (1993)

showed by comparison of both 16S and 23SrRNA sequences

that L. oenos does not belong to the same line of descent with

the L. sensu stricto organisms or L. paramesenteroides group

of species (the current genus Weissella). The second species,

O. kitaharae, was described from compost of distilled shochu
residue in Japan (Endo and Okada 2006). These two species

share 96.0 % similarity based on 16S rRNA gene sequence.

Sequence similarities with other members of family Leuconos-

tocaceae are less than 85 %. The high level of phylogenetic

divergence of the genus Oenococcus compared to that of the

other lactic acid bacteria might be explained by the absence of

the mismatch mutation repair system in oenococci, which

causes a high mutation rate, an excess of recombination, and

a rapid genetic evolution (Marcobal et al. 2008). Based on pheS

sequences, Oenococcus spp. still belong to the family

http://www.arb-silva.de/projects/living-tree
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Leuconostocaceae but share different relationships with the other

genera when compared to 16S rRNA gene sequence analyses.

Sequence similarity of partial pheS gene between the two

Oenococcus spp. is approximately 75 % and less than 70 %

between Oenococcus spp. and other members in the family

Leuconostocaceae. Related to the phylogeny, an interesting debate

over its evolution speed has occurred. Because of a long branch

in the 16S rRNA phylogenetic tree,O. oeni is regarded as ‘‘rapidly

evolving’’ species (Yang andWoese 1989). This hypothesis was at

first questioned based on data generated by rpoB gene sequences

(Morse et al. 1996), but supported by comparative genome

analyses of different species of lactic acid bacteria (LAB), includ-

ing O. oeni (Makarova et al. 2006).

In addition to the 16S rRNA gene phylogeny, analysis with

pheS (De Bruyne et al. 2010) and recN (Arahal et al. 2008) loci

has been done. Congruence of evolutionary relationships inside

the Leuconostoc–Oenococcus–Weissella clade has been assessed by

phylogenetic analyses of 16SrRNA, dnaA, gyrB, rpoC, and dnaK

(Chelo et al. 2007) housekeeping genes. Phylogenies obtained

with the different genes were in overall good agreement, and

a well-supported, almost fully resolved phylogenetic tree was

obtained when the combined data were analyzed in a Bayesian

approach.

The genus Fructobacillus currently includes five species. They

are F. durionis (Leisner et al. 2005), F. ficulneus (Antunes et al.

2002), F. fructosus (Kodama 1956), F. pseudoficulneus (Chambel

et al. 2006), and F. tropaeoli (Endo et al. 2011). With the excep-

tion of F. tropaeoli, these species were formerly classified as

Leuconostoc species (Endo and Okada 2008). Fructobacillus

fructosus, type species of the genus Fructobacillus, had been

firstly classified as Lactobacillus fructosus based on morphologi-

cal and physiological characteristics and later reclassified to

Leuconostoc fructosum based on its phylogenetic position

(Kodama 1956; Antunes et al. 2002). Leuconostoc fructosum

was re-reclassified to F. fructosus based on physiological and

morphological characteristics and its phylogenetic position

(Endo andOkada 2008). Based on the 16S rRNA gene sequences,

Fructobacillus species are phylogenetically separated into two

subclusters. The first subcluster contains F. fructosus and

F. durionis (97.9 % sequence similarity), and the second

contains Fructobacillus ficulneus, F. pseudoficulneus, and

F. tropaeoli (98.0–99.2 % sequence similarities). The sequence

similarity between the two groups ranges from 94.2 % to 99.4 %.

Fructobacillus species has been also genetically characterized

based on sequences of 16S–23S rRNA gene intergenic spacer

regions (ISR), rpoC and recA. Phylogenetic analysis based on

the ISR and rpoC gene shows similar clustering to that based on

16S rRNA gene, but phylogenetic analysis based on recA

gene shows different clustering (Endo and Okada 2008;

Endo et al. 2011).
Molecular Analyses

Classification of the members of the family Leuconostocaceae

using adequate molecular methods gives faster and more
consistent and reliable results than schemes based on phenotypic

characters. The molecular analyses have provided deeper insights

into the phylogeny of the already assigned taxons within

Leuconostocaceae and led to reclassification of species. In addition

to the taxonomy and phylogeny, themotivation ofmanymolecular

studies has beenmore practical: to distinguish and identify relevant

strains among closely related isolates. For the molecular

characterization of Leuconostocaceae, various methods with dif-

fering resolving capacity have been reported and proposed;

some have proven applicable for species identification, while

others provide high discriminatory power and detail strain

characterization. The choice of method depends on the scope

and purpose of the study as well as on the availability of

laboratory facilities. A summary of commonmolecular methods

and their relative performances in differentiation of

Leuconostocaceae is discussed below. In many studies cited,

the results of two or more molecular methods have been

combined to achieve better discrimination and more accurate

clustering of the given set of isolates. However, only few

studies report systematic comparison of different molecular

methods and discuss their limitations for characterizing

Leuconostocaceae.
DNA–DNA Hybridization Studies

DNA–DNA hybridization assays have been included in many

studies to determine interspecies relationships among

Leuconostoc and Weissella species and to reveal whether two

isolates should be classified in the same species. Since many

closely related species of Fructobacillus, Leuconostoc, orWeissella

share high 16S rRNA gene sequence similarity, DNA–DNA

hybridization experiments have been necessary to support

a proposal for a novel species status.
DNA Fingerprinting

DNA fingerprinting using pulsed field gel electrophoresis

(PFGE) and an appropriate restriction endonuclease provides

high level of discrimination, allowing differentiation of closely

related strains that are indistinguishable by other methods.

Several investigators have used PFGE typing for characterizing

Leuconostocaceae from dairy, meat, vegetable, and wine-related

sources. These studies have demonstrated the success of PFGE

typing in differentiating strains in a specific ecosystem or mon-

itoring the presence of particular strains in a mixed population.

For instance, PFGE typing has been used in several studies to

study strain heterogeneity of O. oeni population during malo-

lactic fermentation of wine (Sato et al. 2001; Vigentini et al.

2009; Zapparoli et al. 2012) as well as during an in-plant inves-

tigation of a ham spoilage problem to pinpoint potential sources

of harmful L. carnosum contamination (Björkroth et al. 1998).

Another commonly used DNA fingerprinting technique is

ribotyping or restriction fragment length polymorphism (RFLP)

analysis of 16S and 23S rRNA genes where the detection of
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ribotyping fingerprint is accomplished by hybridization with

probes. Numerical analysis of ribotyping has been included in

polyphasic taxonomy studies on Leuconostoc (Björkroth et al.

2000), Fructobacillus (Chambel et al. 2006) and Weissella

(Björkroth et al. 2002) and found to provide species level iden-

tification with some intraspecies variation. Subsequently,

ribotyping has been applied to detect and identify individual

species or strains of Leuconostocaceae from various food, animal,

and environmental sources. Although ribotyping provides dis-

criminatory capacity for species identification, PFGE appears to

be superior for strain differentiation (Björkroth et al. 1998;

Vihavainen and Björkroth 2009).
PCR-Based DNA Fingerprinting Methods

Analysis of (fluorescent) amplified fragment length polymor-

phism (FAFLP or AFLP) fingerprints is another highly discrim-

inatory characterization tool which has proven useful in the

differentiation of Leuconostoc (De Bruyne et al. 2007) and

Weissella species (De Bruyne et al. 2008, 2010). Furthermore,

AFLP has been found valuable in typing of O. oeni strains

(Cappello et al. 2008, 2010).

Amplified ribosomal DNA restriction analysis (ARDRA) is a

technical variation of ribotyping comprising of restriction enzyme

analysis of PCR amplicons from the rrn operon. Several ARDRA

procedures targeting to different regions of the rrn operon have

been reported; some give limited resolution being mainly appli-

cable for rapid first-stage screening of isolates, while others pro-

vide discriminatory power allowing reliable species identification

of Leuconostocaceae. For instance, 16S-ARDRA has been used for

identification of species of Leuconostocaceae from grape must and

wine (Rodas et al. 2003) and fermented sausages (Bonomo et al.

2008). Protocols for 16S-ARDRA employing genus-specific

primers for Weissella (Jang et al. 2002) and Leuconostoc (Jang

et al. 2003) have been developed to allow identification of

Weissella and Leuconostoc species among other phylogenetically

related lactic acid bacteria in food. Furthermore, a 16S–23S rRNA

spacer ARDRA method has been developed for identification of

lactic acid bacteria and proved useful in identifying Leuconostoc

species from meat (Chenoll et al. 2003, 2007).

Fingerprinting using randomly amplified polymorphic DNA

(RAPD) is another PCR-based tool applied for molecular typing

of Leuconostoc, Weissella, and O. oeni. Various studies have

demonstrated the success of RADP inmonitoringO. oeni strains

during winemaking (Bartowsky et al. 2003; Reguant and

Bordons 2003; Zapparoli et al. 2000). Other workers have ana-

lyzed RAPD fingerprints to differentiate species and strain of

Leuconostoc and Weissella from various sources (Aznar and

Chenoll 2006; Cibik et al. 2000; De Bruyne et al. 2008; Ehrmann

et al. 2009; Nieto-Arribas et al. 2010; Padonou et al. 2010).

Repetitive element palindromic PCR (REP-PCR) with the

(GTG)5 primer has been applied for high-throughput screening

of large collections of lactic acid bacteria isolates in numerous
studies. Numerical analysis of REP-PCR patterns has been

reported to be suitable for species identification and for geno-

typic characterization of Leuconostoc (Bounaix et al. 2010a;

Vancanneyt et al. 2006) and Weissella (Bounaix et al. 2010b;

Padonou et al. 2010).
DNA Sequencing-Based Analysis

Sequence analysis of 16S rRNA gene or its variable regions are

widely applied strategies for classification of lactic acid bacteria

and have been used for identification of Leuconostocaceae from

various sources. In addition to 16S rRNA gene sequence analysis,

phylogenetic analysis of partial sequences of several protein-

coding genes such as dnaA, dnaK, gyrB, pheS, recN, rpoA, or

rpoC has been reported to be highly discriminatory, allowing

differentiation of species and strains within the family Leuconos-

tocaceae (Arahal et al. 2008; Chelo et al. 2007; Ehrmann et al.

2009; De Bruyne et al. 2007, 2010). Furthermore, multilocus

sequence typing (MLST) schemes have been proposed and

applied for O. oeni (de las Rivas et al. 2004; Bilhere et al. 2009;

Bridier et al. 2010). These studies have demonstrated that MLST

is a powerful method for typing of O. oeni strains and provides

data that can be used for studying genetic diversity, population

structure, and evolutionary mechanism of this organism.
Protein Profiling

In addition to various DNA-based molecular techniques,

analysis of whole-cell protein pattern by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) has proven

useful in the differentiation of closely related Leuconostoc and

Weissella and has been widely applied for identification of

Leuconostocaceae (Dicks et al. 1990; Björkroth et al. 2002;

De Bruyne et al. 2007, 2008, 2010). In addition, matrix-assisted

laser desorption/ionization time-of-flight mass spectrometry

(MALDI-TOF MS) has been increasingly studied and applied

for the identification and typing of lactic acid bacteria. This

method is based on the analysis of the structural differences of

microbial cells; the mass spectra mainly reflect the heterogeneity

of ribosomal proteins and, thus, give a specific profile for each

organism. A MALDI-TOF MS profiling method has also been

reported for the family Leuconostocaceae (De Bruyne et al. 2011).

The results have demonstrated that MALDI-TOFMS profiling is

a rapid, cost-effective, and reliable method, allowing classifica-

tion of most species of Fructobacillus, Leuconostoc, andWeissella

(De Bruyne et al. 2011; Snauwaert et al. 2013).
Genomes

Within the family Leuconostocaceae, seven Leuconostoc genomes,

one Oenococcus genome, and one Weissella genome have been

completed (> Table 18.3). In addition, 11 Leuconostoc genomes,



. Table 18.3

Leuconostocaceae genomes

Genome

status

(September

2012) Species

Genome

size %GC Genes Proteins Chromosome INSDC Plasmid INSDC References

Complete Leuconostoc carnosum

JB16

1.77 37.09 1769 1691 CP003851 CP003854 CP003852

CP003855 CP003853

Jung et al.

(2012a)

Complete Leuconostoc citreum

KM20

1.9 38.88 1903 1820 DQ489736 DQ489738 DQ489739

DQ489740 DQ489737

Kim et al.

(2008)

Complete Leuconostoc

gasicomitatum LMG

18811

1.95 36.7 1993 1912 FN822744 None Johansson

et al. (2011)

Complete Leuconostoc gelidum JB7 1.89 36.7 1875 1796 CP003839 None Jung et al.

(2012b)

Complete Leuconostoc kimchii

IMSNU 11154

2.1 37.91 2209 2129 CP001758 CP001754 CP001757

CP001756 CP001753

CP001755

Oh et al.

(2010)

Complete Leuconostoc

mesenteroides subsp.

mesenteroides ATCC

8293

2.08 37.66 2108 2005 CP000414 CP000415 Makarova

et al. (2006)

Complete Leuconostoc

mesenteroides subsp.

mesenteroides J18

2.02 37.68 2020 1937 CP003101 CP003104 CP003102

CP003103 CP003105

CP003106

Jung et al.

(2012c)

Complete Leuconostoc sp. C2 1.88 37.9 1935 1855 CP002898 None Lee et al.

(2011c)

Complete Weissella koreensis KACC

15510

1.44 35.52 1428 1357 CP002899 CP002900 Lee et al.

(2011b)

Complete Oenococcus oeni PSU-1 1.78 37.9 1864 1691 CP000411 None Makarova

et al. (2006)

Scaffolds or

contigs

Leuconostoc argentinum

KCTC 3773

1.72 42.9 1810 1759 AEGQ00000000 ND Nam et al.

(2010b)

Scaffolds or

contigs

Leuconostoc carnosum

KCTC 3525

3.23 40.9 ND ND BACM00000000 ND Nam et al.

(2011)

Scaffolds or

contigs

Leuconostoc citreum

LBAE C10

1.93 38.7 2024 1971 CAGE00000000 ND Laguerre

et al. (2012)

Scaffolds or

contigs

Leuconostoc citreum

LBAE C11

1.97 38.6 2089 2036 CAGF00000000 ND Laguerre

et al. (2012)

Scaffolds or

contigs

Leuconostoc citreum

LBAE E16

1.8 38.9 1908 1854 CAGG00000000 ND Laguerre

et al. (2012)

Scaffolds or

contigs

Leuconostoc fallax KCTC

3537

1.64 37.5 1604 1551 AEIZ00000000 ND Nam et al.

(2010a)

Scaffolds or

contigs

Leuconostoc gelidum

KCTC 3527

1.96 36.6 1978 1928 AEMI00000000 ND Kim et al.

(2011b)

Scaffolds or

contigs

Leuconostoc lactis KCTC

3528

2.01 42.6 2776 2727 AEOR00000000 ND

Scaffolds or

contigs

Leuconostoc

mesenteroides subsp.

cremoris ATCC 19254

1.64 37.9 1903 1847 ACKV00000000 ND

Scaffolds or

contigs

Leuconostoc

pseudomesenteroides

4882

2.01 39.1 2152 2086 CAKV00000000 ND Meslier

et al. (2012)
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. Table 18.3 (continued)

Genome

status

(September

2012) Species

Genome

size %GC Genes Proteins Chromosome INSDC Plasmid INSDC References

Scaffolds or

contigs

Leuconostoc

pseudomesenteroides

KCTC 3652

3.24 38.3 3888 3832 AEOQ00000000 ND Kim et al.

(2011a)

Scaffolds or

contigs

Weissella cibaria KACC

11862

2.32 ND 2234 2154 AEKT00000000 ND Kim et al.

(2011c)

Scaffolds or

contigs

Weissella confusa LBAE

C39-2

2.28 ND 2237 2156 CAGH00000000 ND Amari et al.

(2012b)

Scaffolds or

contigs

Weissella koreensis KCTC

3621

1.73 35.5 1750 1672 AKGG00000000 ND Lee et al.

(2012a)

Scaffolds or

contigs

Weissella

paramesenteroides ATCC

33313

1.96 37.9 2020 1952 ACKU00000000 ND

Scaffolds or

contigs

Weissella thailandensis

fsh4-2

ND 40.0 1651 1437

HE575133NDHE575182 ND Benomar et al. (2011) Scaffolds or contigs

Oenococcus

kitaharae

DSM 17330

1.84 42.7 1878 1825 CM001398 CM001399 Borneman

et al.

(2012a)

Scaffolds or

contigs

Oenococcus oeni ATCC

BAA-1163

1.75 37.9 1678 1398 AAUV00000000 ND

Scaffolds or

contigs

Oenococcus oeni

AWRIB202

ND ND 1831 1732 AJTO00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Oenococcus oeni

AWRIB304

1.85 37.9 1844 1743 AJIJ00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Oenococcus oeni

AWRIB318

1.81 37.9 1798 1698 ALAD00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Oenococcus oeni

AWRIB418

1.84 37.8 1817 1739 ALAE00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Oenococcus oeni

AWRIB419

1.79 37.8 1780 1685 ALAF00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Oenococcus oeni

AWRIB422

1.81 37.9 1812 1696 ALAG00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Oenococcus oeni

AWRIB429

1.93 37.9 2161 2161 ACSE00000000 ND Borneman

et al. (2010)

Scaffolds or

contigs

Oenococcus oeni

AWRIB548

1.84 37.9 1831 1713 ALAH00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Oenococcus oeni

AWRIB553

1.76 37.7 1733 1645 ALAI00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Oenococcus oeni

AWRIB568

1.87 38.0 1879 1778 ALAJ00000000 ND Borneman

et al.

(2012b)
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. Table 18.3 (continued)

Genome

status

(September

2012) Species

Genome

size %GC Genes Proteins Chromosome INSDC Plasmid INSDC References

Scaffolds or

contigs

Oenococcus oeni

AWRIB576

1.88 38.0 1873 1774 ALAK00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Oenococcus oeni DSM

20252

ND ND 1705 1616 AJTP00000000 ND Borneman

et al.

(2012b)

Scaffolds or

contigs

Fructobacillus fructosus

KCTC 3544

1.47 44.6 1600 1550 AEOP00000000 ND

INSDC International Nucleotide Sequence Database Collaboration

ND no data
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14 Oenococcus genomes, five Weissella genomes, and one

Fructobacillus genome are available as draft genomes made up

of a few to many contigs. From genome mapping, the genome

size of Leuconostocaceae genomes has been estimated to range in

size from 1.4 to 2.2 Mb (Chelo et al. 2010), and all completely

sequenced genomes also fall within that size range. As noted

previously, most Leuconostocaceae strains do contain plasmids,

although spontaneous curing of plasmids frequently occurs

when these strains are maintained in laboratory conditions

(Brito and Paveia 1999).

The analysis of the pan genomes within the homogeneous

genera Fructobacillus, Leuconostoc,Oenococcus, andWeissella has

shown that the core genome within one species comprises

between 67 % and 80 % of a genome (Borneman et al. 2012b;

Johansson et al. 2011). This is in agreement with the core

genome proportion of 60 % in the highly divergent species

Lactobacillus casei (Broadbent et al. 2012). The size of the

supragenome for a species is directly proportional to number

of sequenced strains until a saturation level is reached. The

saturation level corresponds to the size of the complete

supragenome and can be calculated when sufficient number of

strains have been sequenced (Boissy et al. 2011). The size of the

supragenomes characterized for LAB species is two to three

times of the size of any individual genome (Boissy et al. 2011;

Borneman et al. 2012b; Broadbent et al. 2012).

It has been shown that there is a good correlation between

experimentally determined DNA–DNA hybridization (DDH)

and digital DDH, calculated from sequence alignment of the

genome sequences (Konstantinidis and Tiedje 2005; Auch et al.

2010). This is also the case for the genomes of Leuconostocaceae,

although the genomes and experimental DDH are not obtained

from the same strains in all cases.

All fully sequenced Leuconostocaceae genomes contain

complete or partial prophages. The prophages of Oenococcus

have been well characterized (São-José et al. 2004), and they

all use tRNA genes as attachment sites in the genome (Borneman

et al. 2012b). Genomes from Fructobacillus and Leuconostoc
all have four rrn operons, while genomes from Oenococcus

have two rrn operons. Weissella have previously been shown to

have between six and eight rrn operons (Chelo et al. 2010),

but the only completed Weissella genome, W. koreensis, actually

have five rrn operons. The rrn operons are usually distributed

around the chromosome, except for L. gasicomitatum and

L. gelidum, where all four rrn operons are concentrated on the

last quarter of the chromosome.
Phenotypic Analyses

Leuconostocaceae are Gram positive, asporogenous, nonmotile

(with the exception of Weissella beninensis), chemoorga-

notrophic, facultative anaerobic, and catalase negative. They

are unable to reduce nitrate and grow in rich media

supplemented with growth factors and amino acids. Leuconos-

tocaceae generate energy by substrate-level phosphorylation. Glu-

cose is fermented heterofermentatively via 6-phosphogluconate/

phosphoketolase pathway yielding lactic acid, CO2, ethanol, and/

or acetate. Glucose-6-phosphate dehydrogenase and xylulose-5-

phosphoketolase are the key enzymes of the pathway (Garvie

1986). Earlier it was thought that Leuconostocaceae do not have

enzyme fructose 1,6-biphosphate aldolase required for

homolactic fermentation, but the genomic analyses have

shown that the genes encoding this enzyme are relatively com-

monwithin the family. The main morphological, metabolic, and

chemotaxonomic characters of the genera of Leuconostocaceae

are shown in >Table 18.4.
LeuconostocAL van Tieghem (1878), 198AL emend.
mut. char. Hucker and Pederson (1930), 66AL

Leuconostoc cells are spherical to ellipsoidal but may also

resemble short rods, especially when grown in glucose medium

or on solid medium. Cells are often seen in pairs or short chains.



. Table 18.4

Morphological, metabolic, and chemotaxonomic characters of genera of Leuconostocaceae

Leuconostoc Weissella Oenococcus Fructobacillus

Morphology Spherical to ellipsoidal Ellipsoidal to short rods Spherical to ellipsoidal Rods

Lactic acid

enantiomer from

glucose

D(�) D(�) or DL D(�) D(�)

Hydrolysis of

arginine

� +/� � �

Dextran from

sucrose

�/+ �/+ � �

Growth in 10 %

ethanol

� � +/� �

Peptidoglycan L-Lys-L-Ser-L-Ala2 or L-

Lys- L-Ala2

L-Lys-L-Ala2 or L-Lys-L-Ala or L-Lys-L-

Ala-Gly-L-Ala2 or L-Lys-L-Ala-L-Ser

L-Lys-L-Ala-L-Ser or L-Lys-L-Ser2 L-Lys-L-Ala

Major fatty acids C14:0, C16:0, C16:1(9),

C18:1(9), C19cycl(9)

C14:0, C16:0, C16:1(9), C17:0, C18:0,

C18:1(9), C19cycl(9), C19cycl(11)

C16:0, C16:1(9), C18:1(9),

C18:1(11), C19cycl(9), C19cycl

(11)

C16:0, C16:1(9),

C18:1(9), C18:1(11)

G+C content of

DNA (Mol%)

36–45 37–47 37–43 42–45

Abbreviations: Lys lysine, Ala alanine, Ser serine, Gly glycine, ND no data

Symbols: + positive reaction, � negative reaction, +/� mostly positive, only some strains negative, and �/+ mostly negative, only some strains positive
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True cellular capsules are not formed. Some strains produce

extracellular dextran, which forms an electron-dense coat on the

cell surface.

Leuconostocs develop visible colonies usually only after

three to five days of incubation at 25–30 �C. Colonies on com-

monly used LAB media are smooth, round, grayish white, and

less than 1 mm in diameter. Unlike other leuconostocs, most of

the Leuconostoc citreum strains are able to form yellow-

pigmented colonies (Farrow et al. 1989).

The optimal growth temperature is between 20 �C and

30 �C, although most species are able grow at 37 �C. Growth
at 4 �C or below has been reported for L. gelidum, L. carnosum,

and L. gasicomitatum (Holzapfel et al. 2009). Some

psychrotrophic strains grow poorly at 30 �C (Björkroth et al.

2000). Leuconostocs are non-acidophilic and prefer an initial

medium pH of 6.5. Most of the species are unable to grow

at pH 4.8. Growth is uniform, except when cells in long

chains sediment. In stab cultures, growth is concentrated

in the lower two thirds. Growth on surface plates is poor

under aerobic conditions, but is stimulated when incubated

anaerobically.

All leuconostocs produce predominantly D(�) enantiomer

lactic acid from glucose and are unable to hydrolyze arginine.

Leuconostoc species are difficult, sometimes impossible, to

distinguish by phenotypic routine testing. Many reactions

are strain dependent or are, on the other hand, shared between

the different species (> Table 18.1). Only L. mesenteroides subsp.

cremoris can be easily distinguished from the other leuconostocs

owing to its poor carbohydrate fermentation capability. Sugars

most helpful for the differentiation of Leuconostoc species are

L-arabinose, melibiose, and D-xylose.
Leuconostoc spp. metabolize glucose heterofermentatively

via 6-phosphogluconate/phosphoketolase pathway, yielding

lactic acid, CO2, ethanol, and/or acetate. Characteristics to the

pathway are that hexoses are initially oxidized to pentoses

resulting in generation of NAD(P)H. Under anaerobic condi-

tions, NAD+ is regenerated by reduction of acetyl-CoA to eth-

anol in a process that does not produce ATP. However, if other

means to oxidize NAD(P)H are available, acetyl-CoA can be

converted to acetate which doubles the amount ATP produced

per unit of hexose consumed. In the presence of oxygen, strains

of L. mesenteroides use NADH oxidases and NADH peroxidases

as alternative mechanisms to regenerate NAD+ (Condon 1987).

Leuconostocs are also able to re-oxidize NAD(P)H by using

pyruvate, fructose, or citrate as electron acceptors. The

cofermentation of several metabolites increases the

production of ATP and, subsequently, the growth rate

(Zaunmüller et al. 2006). Citrate metabolism was also reported

to form proton motive force across the cell membrane in

L. mesenteroides (Marty-Teysset et al. 1996) which may contrib-

ute to the enhanced growth.

Most Leuconostoc species have genes encoding bd-type cyto-

chrome oxidase, and they do respire in the presence of heme and

oxygen (Brooijmans et al. 2009; Johansson et al. 2011; Sijpesteijn

1970). Respiration enables higher biomass production than

fermentation (Brooijmans et al. 2009).

Under reducing conditions, leuconostocs may ferment cit-

rate and hexose to diacetyl and acetoin which are important

flavor compounds in dairy products. The amount of diacetyl

produced is strain dependent (Walker and Gilliland 1987). In

a study by Schmitt et al. (1997), Leuconostoc mesenteroides subsp.

mesenteroides produced diacetyl as a result of cofermentation of
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xylose and citrate but not from glucose and citrate. Xylose reduced

the activity of lactate dehydrogenase in comparison to glucose,

meaning that less pyruvate was converted to lactate in the presence

of xylose. Instead, pyruvate was converted to diacetyl/acetoin. In

comparison to glucose, xylose may reduce lactate dehydrogenase

activity because generation of pyruvate from xylose generates less

NAD(P)H, meaning that less reducing power is available for the

formation of lactate from pyruvate, a reaction catalyzed by lactate

dehydrogenase. Instead of diacetyl/acetoin, surplus pyruvate

formed from citrate could be also converted to acetic acid with

a coupled generation of ATP, but this pathway seems not to be

beneficial under acidic conditions (Schmitt et al. 1997).

Fermentation of pentoses via phosphogluconate/

phosphoketolase pathway generates less NAD(P)H than fermenta-

tion of hexoses. Thus, acetyl-CoA produced from pentoses can be

converted to acetate without a need of an external electron acceptor

for the regeneration of NAD+. Despite the supposed benefits of

pentose fermentation,many Leuconostoc species seem to be unable

to ferment the common pentoses L-arabinose, ribose, or D-xylose,

when provided as the sole carbon source (> Table 18.1).

The reason for this is not known. Some leuconostocs are able

to co-metabolize pentoses together with other carbon sources,

e.g., xylose together with citrate (Schmitt et al. 1997).

Fructose is fermented by all Leuconostoc spp., except by some

strains of L. mesenteroides subsp. cremoris. If fructose is used as

an electron acceptor, mannitol is formed. The regeneration of

NAD(P)H by fructose enables the production of acetate instead

of ethanol which results in gain of ATP and enhanced growth.

Interestingly, this process has been investigated as a means to

produce D-mannitol from fructose by leuconostocs at industrial

scale (Kiviharju and Nyyssölä 2008; von Weymarn et al. 2003).

Citrate and malate are the organic acids most frequently

fermented by Leuconostoc spp. Acetate and tartrate are not uti-

lized. Malate is converted into L(+)-lactate and CO2 by

L. mesenteroides subsp. mesenteroides. Leuconostocs do not

metabolize sugar alcohols other than mannitol. Glycogen and

starch are generally not degraded with the exception of

L. miyukkimchii that is able tometabolize starch (Lee et al. 2012b).

Many leuconostocs are able to form dextran from sucrose,

and this property has been used as one criterion differentiating

the species. However, dextran production among L. gelidum and

L. carnosum is strains dependent. The ability to form dextran is

often lost when serial transfers are made in media of increasing

salt concentrations (Pederson and Albury 1955). Dextran pro-

duction from sucrose is dependent on the growth medium

(Pederson and Albury 1955).

Little is known about the production of biogenic amines by

leuconostocs. No tyramine formation was detected in strains of

Leuconostoc isolated from fresh- and vacuum-packaged meat

(Edwards et al. 1987). Some strains of L. mesenteroides subsp.

mesenteroides, subsp. cremoris, and Leuconostoc paramesen-

teroides are known to produce tyramine and tryptamine

(Bover-Cid and Holzapfel 1999; de Llano et al. 1998; Moreno-

Arribas et al. 2003).

The major fatty acids recorded for Leuconostoc spp. are

myristic (C14:0), palmitic (C16:0), palmitoleic [C16:1(9)],
oleic [C18:1(9)], and dihydrosterculic acid [C19-cyc(9)]

(Schmitt et al. 1989; Shaw and Harding 1989; Tracey and Britz

1989). Leuconostoc spp. differ from Oenococcus spp. and

Fructobacillus spp. in containing oleic acid, and not vaccenic

[C18-1(11)] acid, as the dominant C18:1 fatty acid (Tracey and

Britz 1989). L. carnosum and L. gelidum are clearly differentiated

based on their fatty acid profiles (Shaw and Harding 1989).

The interpeptide bridge of the peptidoglycan in

leuconostocs consists either Lys-Ser-Ala2 or Lys-Ala2.
WeissellaVP Collins et al. (1993, 595);
emend. Padonou et al. (2010)

The genus Weissella harbors two different morphological types:

the short rods and the ovoid-shaped cocci. Some strains, e.g., in

W. minor, are pleomorphic. Weissella colonies are 1–2 mm in

diameter, white to creamish white, smooth, circular, and convex

after 3–4 days of anaerobic growth. Weissellas are nonmotile

with the exception of W. beninensis, the only motile species

belonging to Leuconostocaceae. W. beninensis has peritrichous

flagella (Padonou et al. 2010).

Weissellas are heterofermentative lactic acid bacteria and

share most of the metabolic properties with leuconostocs.

Unlike leuconostocs, some Weissella species produce DL lactic

acid from glucose (> Table 18.2). Most weissellas are able to

hydrolyze arginine. Growth occurs at 15 �C, with some species

growing at 42–45 �C. All species are able to grow at 37 �C and

most species are able to grow at pH 4.8.

Phenotypic tests have been traditionally used to identify

Weissella species. Cell morphology has some diagnostic value.

Hydrolysis of arginine is a simple biochemical test for differen-

tiation. A battery of ten sugars was recommended by Collins

et al. (1993) to be used in combination with other phenotypic

tests for identification. Among some weissellas, and particularly

W. confusa, dextran production appears to be a common and

a widespread feature.

Similar to leuconostocs, some weissellas have genes

encoding bd-type cytochrome oxidase required for heme-

dependent respiration (Kim et al. 2011c), but functional respi-

ration chain is yet to be reported for weissellas.

Literature describing the production of biogenic amines by

Weissella spp. is scarce. Weissella halotolerans W22 combines an

arginine deaminase pathway and an ornithine decarboxylation

pathway, which results in generation of biogenic amine putres-

cine and proton motive force (Pereira et al. 2009).

The cell wall peptidoglycan in weissellas is based on lysine as

dipeptide, and, with the exception of W. kandleri, all contain

alanine or alanine and serine in the interpeptide bridge. In

addition, the interpeptide bridge of W. kandleri (Lys-L-Ala-

Gly-L-Ala2) contains glycine (Holzapfel and Van Wyk 1982).

Fatty acid profiles can be used to differentiate weissellas. Apply-

ing a rapid gas chromatographic method, Samelis et al. (1998)

could differentiate betweenW. viridescens,W. paramesenteroides,

W. hellenica, and some typical arginine-negative Weissella iso-

lates from meats on the basis of their cellular fatty acid



. Table 18.5

Phenotypic characteristics of Fructobacillus spp. and Oenococcus spp.

Characteristics F. fructosus F. durionis F. ficulneus F. pseudoficulneus F. tropaeoli O. oeni O. kitaharae

Acid from

Galactose � � � � � d +

Maltose � (+) w � � � +

Mannose � � � � � d +

Mannitol (+) (+) (+) (+) (+) � �
Melibiose � � � � � d +

Sucrose � + w � � � �
Trehalose � (+) (+) � � + +

Turanose � + w � � ND ND

Ammonia from

arginine

� � � � ND d ND

Hydrolysis of

aesculin

� � � � � + ND

Peptidoglycan

type

Lys-Ala ND Lys-Ala ND ND Lys-Ala-Ser or

Lys-Ser2

ND

Cell morphology Rods Rods Rods Rods Rods Coccoid to

elongated cocci

Small ellipsoidal

cocci

References Endo et al.

(2011)

Endo et al.

(2011)

Endo et al.

(2011)

Endo et al. (2011) Endo et al.

(2011)

Dicks et al. (1995) Endo and Okada,

(2006)

+, 90 % or more of strains positive; �, 90 % or more of strains negative; d, 11–98 % of strains positive; (), delayed reaction; w, weakly positive

ND no data
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composition. W. viridescens synthesized eicosenoic (C20:1)

acid, while the other two species did not. Unlike W. paramesen-

teroides, W. hellenica and W. viridescens contained zero to

low amounts of cyclopropane fatty acids with 19 carbon

atoms, i.e., dihydrosterculic [C19cycl(9)], or lactobacillic acid

[C19cycl(11)].
OenococcusVP Dicks et al. (1995) emend.
Endo and Okada (2006)

Oenococcus species are Gram positive and nonmotile, ellipsoidal

to spherical in shape. Growth in broth is slow and usually

uniform. Colonies usually develop only after 5 d and are less

than 1 mm in diameter.

The optimal growth temperature is between 20 �C and

30 �C. Oenococci prefer anaerobic conditions for growth. They
produce D-(�)-lactate, CO2, and ethanol or acetate from glucose

(> Table 18.5) via a pathway not yet fully elucidated. In most

species, both NAD and NADP may serve as coenzymes of the

glucose-6-phosphate dehydrogenase, but in O. oeni, only NADP

is required (Garvie 1975). Fermentation profiles of the different

O. oeni strains vary greatly despite the genetically homogeneous

nature of this species.

O. oeni is an important organism for malolactic fermentation

(MLF) inwine and has several specific characteristics to inhabit in
wine, e.g., acidophile and the ability to grow in medium

containing 10 % of ethanol. These characteristics differentiate

O. oeni from other Leuconostocaceae, including O. kitaharae.

O. kitaharae is not acidophilic, cannot tolerate 10 % ethanol,

and does not perform MLF (Endo and Okada 2006).

The citrate metabolism in O. oeni is conducted only when

fermentable carbohydrates (e.g., glucose) are available. The

cofermentation of citrate and glucose in O. oeni is physiologically

important for the organism, as co-metabolism of citrate–glucose

enhances the ATP synthesis and, consequently, increases the growth

rate and biomass yield (Ramos and Santos 1996; Liu 2002).

O. kitaharae does not perform MLF. A stop codon has been

found in the gene encoding malolactic enzyme in O. kitaharae

(Borneman et al. 2012a; Endo and Okada 2006).

Some O. oeni strains may produce biogenic amines in wine

(Bonnin-Jusserand et al. 2011; Izquierdo Cañas et al. 2009;

Lucas et al. 2008). Gardini et al. (2005) reported tyramine

formation by a strain of O. oeni isolated from Italian red wine.

The formation of putrescine from arginine by some strains could

be demonstrated (Guerini et al. 2002). However, e.g., Moreno-

Arribas et al. (2003) could not detect any potential among

O. oeni strains to form biogenic amines. Production of hista-

mine by O. oeni has been extensively analyzed with contradic-

tory results (Garcia-Moruno and Muñoz 2012).

Eighteen fatty acids are associated with O. oeni (Tracey and

Britz 1987, 1989). The numerical analysis of the fatty acids
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showed four clusters defined at r ¼ 0.920, with five strains

unassigned. On the basis of the amounts of oleic acid [C18-

1(9)] and C19-cyclopropane fatty acids, the strains of O. oeni

could also be distinguished from each other. For the majority of

O. oeni strains, the result obtained with the cellular fatty acid

analysis confirmed the phenotypic relationships.
FructobacillusVP Endo and Okada (2008)

Fructobacilli are Gram-positive and nonmotile rods. They pro-

duce lactate, acetate, CO2, and trace amounts of ethanol from

glucose (> Table 18.5). Produced lactate is mainly D-isomer.

Fructobacillus species prefer fructose over glucose as a carbon

source. Aerobic culturing or the presence of pyruvate enhances

their growth on glucose (Endo and Okada 2008). Because of

the characteristics, they are classified as fructophilic LAB

(Endo et al. 2009, 2011). They are usually osmotolerant and

grow with 30 % (w/v) fructose, except F. tropaeoli. Fructobacillus

spp. are usually poor sugar fermenters, and some of them

metabolize only fructose, glucose, and mannitol. On the agar

medium, they do not grow on glucose under anaerobic condi-

tions if external electron acceptors are not supplied.

The cell wall peptidoglycan type of F. ficulneus is A3a. The
predominant fatty acids in F. ficulneus and F. fructosus are

C16:1(9), C16:0, C18:1(9), and C18:1(11) (Antunes et al. 2002).
Isolation, Enrichment, and Maintenance
Procedures

Leuconostoc and Weissella

Leuconostoc and Weissella are isolated using rich media such

those routinely used for culturing lactic acid bacteria, including

All-Purpose Tween (Evans and Niven 1951), MRS (DeMan et al.

1960), and Rogosa SL (Rogosa et al. 1951). A review by

Schillinger and Holzapfel (2011) discusses in detail the selective

and semi-selective media available and applied for isolation of

lactic acid bacteria from different habitat such as meat or dairy

products. If psychrotrophic species, such as L. carnosum,

L. gasicomitatum, L. gelidum, and L. inhae, are expected to

occur in the sample, an incubation temperature of 25 �C is

recommended. For cultures on solid medium, an anaerobic

atmosphere is recommended, while liquid cultures can be

maintained in aerobic conditions.

Overall, neither selective agents nor growth conditions have

been identified that allow growth and selective isolation of

Leuconostoc or Weissella while inhibiting other lactic acid

bacteria. Although selective and differential media for detection

and enumeration of Leuconostoc have been proposed, they may

give unreliable results in cases of samples with large numbers of

Pediococcus and Lactobacillus which share many physiological

and metabolic properties with Leuconostoc spp. Inclusion of

vancomycin (30 mg/mL) in a growth medium may assist
the selective isolation of Leuconostoc and Weissella from mixed

bacterial populations. However, as some Pediococcus

and Lactobacillus spp. are also resistant to vancomycin,

this strategy is not entirely selective, and the identities of the

isolates recovered need to be confirmed.
Oenococcus

O. oeni is well known to need a specific growth factor. Tomato

juice or grape juice is usually added to the medium to supply the

growth factor. The pH of the medium is set at 4.8, as the species

has a unique acidophilic characteristic. The species hardly grow

under aerobic conditions and prefer anaerobic conditions.

Several media have been developed to isolate because of the

importance of the species in industry, and acidic tomato broth

(ATB) might be one of the most well-used medium for isolation

and culture ofO. oeni (Garvie 1967b; Garvie and Mabbitt 1967).

Björkroth and Holzapfel (2006) have summarized the several

media for isolation of O. oeni from wine.

O. kitaharae has growth characteristics different from those

ofO. oeni. Tomato juice or grape juice does not favor the growth

of O. kitaharae, and low pH prevents its growth. The organism

needs a medium rich in nutrients and anaerobic conditions for

maximum growth (Endo and Okada 2006). It was originally

isolated using MRS agar containing inhibitors of aerobic fungi

(sodium azide and cycloheximide). The growth was very slow

and weak in MRS broth and MRS agar. Additional nutrients,

e.g., half-strength brain heart infusion (BHI) broth, and anaer-

obic conditions are required to enhance the growth rate and

biomass yield of this bacterium.
Fructobacillus

As Fructobacillus species possess very unique physiological

characteristics, selective enrichment isolation can be conducted

(Endo et al. 2009). Fructobacillus species prefer fructose over

glucose and grow very slowly on glucose under static

conditions. They cannot metabolize glucose under anaerobic

conditions. However, the presence of external electron

acceptors, e.g., pyruvate or oxygen, enhances the growth of

Fructobacillus species. Thus, enrichment culturing on fructose,

e.g., FYP broth (Endo et al. 2009), under aerobic conditions

favors their growth, as other LAB usually prefer anaerobic

conditions. To inhibit the growth of aerobic bacteria and

fungi in enrichment broth, sodium azide and cycloheximide

are very useful. The enrichment can be streaked onto

the FYP agar and incubated under aerobic conditions

for further selection. Certain oxygen-tolerant LAB, e.g.,

Lactobacillus plantarum, L. brevis, and Leuconostoc spp., may

grow as well, but they can be easily differentiated from

Fructobacillus species based on the poor glucose utilization

of Fructobacillus species. Because of their unique characteristics,

Fructobacillus species are regarded as fructophilic LAB.
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Differentiation of Fructobacillus species from Lactobacillus

kunkeei, which is also a fructophilic species, requires

carbohydrate fermentation patterns or molecular approaches.
Maintenance Procedures

Most cultures on liquid or solid media remain viable for at least

two to three weeks at 4–6 �C. Longer maintenance is in glycerol

(10–20 % v/v) or dimethyl sulfoxide (10 % v/v) suspension

at �20� (for months) or preferably at �70 �C or lower (for

several years). Cultures are also well preserved in liquid nitrogen

or by lyophilization (freeze-drying).
Ecology

Leuconostocs are associated with plants and decaying plant

material. They have been detected in green vegetation and

roots (Hemme and Foucaud-Scheunemann 2004; Mundt

1967) and in various fermented vegetable products, such as

cucumber, kimchi, cabbage, and olives (Kim and Chun 2005;

Mäki 2004). In addition to plant-originated material,

leuconostocs are frequent in foods of animal origin, including

raw milk and dairy products, meat, poultry, and fish (Kim and

Chun 2005; Björkroth and Holzapfel 2006). However, healthy

warm-blooded animals, including humans, are rarely reported

to carry Leuconostoc in the microbiota of their gut or mucous

membranes, whereas leuconostocs have been recovered from the

intestines of fish (Williams and Collins 1990).

L. carnosum, L. gasicomitatum, and L. gelidum have often

been associated with food spoilage (Schillinger et al. 2006).

Some modified atmosphere packaged meat- and vegetable-based

foods have been prone to leuconostoc spoilage manifesting

as bulging of the packages, off-odors and smells, and color

changes. In addition to the publications cited in this paragraph,

leuconostocs have been frequently reported to belong tomicrobiota

of various fermented foods (see section >Application).

O. oeni usually predominates at the end and after alcoholic

fermentation in fermenting wine and plays a key role in theMLF.

This is because of high resistance to SO2 and ethanol in the

organism as compared to other bacteria. SO2 is added to wine as

an antioxidant and to prevent the growth of undesirable micro-

organisms (Amerine et al. 1980). In the work by Carreté et al.

(2002), the presence of 2 mM of SO2 had no impact on MLF by

O. oeni, but 5mMof SO2 caused considerable delay onMLF. Cell

growth is not necessary to conduct MLF (Carreté et al. 2002).

O. oeni is also a responsible organism forMLF in ciders (Sánchez

et al. 2012). The cider isolates were separated from wine isolates

based on the results of MANOVA analysis of PFGE (Bridier et al.

2010). This is generally supported byMLST (Bridier et al. 2010),

suggesting that O. oeni strains have had habitat-specific evolu-

tion. Quite recently, an interesting study which found DNA of

O. oeni in cocoa bean fermentation by metagenomic approach

was reported (Illeghems et al. 2012).

O. kitaharae was originally isolated from a compost of dis-

tilled shochu residue in Japan (Endo and Okada 2006).
The species was also isolated from thewastewater of a starch factory

in Japan (Dr. Tomohiro Irisawa, personal communication). The

preferred habitat of O. kitaharae is still uncertain, but compost,

wastewater, sludge, and sewage are possible niches.

The habitats ofWeissella species are variable and the sources

of isolation suggest environmental (soil, vegetation) origin.

W. viridescens, W. halotolerans, and W. hellenica have been asso-

ciated with meat and meat products. W. viridescens may cause

spoilage of cured meat due to green discoloration (Niven and

Evans 1957), and it also is a prevailing spoilage LAB in Spanish

blood sausage called Morcilla de Burgos (Koort et al. 2006; Diez

et al. 2009; Santos et al. 2005). W. viridescens is considered

somewhat heat resistant (Niven et al. 1954) which is not

a common property for a LAB.

W. cibaria,W. confusa,W. koreensis, andW. oryzae have been

detected in fermented foods of vegetable origin (Björkroth et al.

2002; Lee et al. 2002), whereas W. confusa has been associated

with Greek salami (Samelis et al. 1994), Mexican pozol (Ampe

et al. 1999), andMalaysian chili bo (Leisner et al. 1999).Weissella

cibaria and W. confusa have also been associated with various

types of sour doughs (Galle et al. 2010; Katina et al. 2009;

Scheirlinck et al. 2007; De Vuyst et al. 2002).W. soli (Magnusson

et al. 2002) is the only species known to originate in soil, but

W. paramesenteroides has also been detected in soil (Chen et al.

2005). In addition, weissellas have been isolated from sediments

of a coastal marsh (Zamudio-Maya et al. 2008) and lake water

(Yanagida et al. 2007).

W. ghanensis, W. fabaria, and W. fabalis were detected in

traditional heap fermentations of Ghanaian cocoa bean (De

Bruyne et al. 2008, 2010; Snauwaert et al. 2013). W. beninensis

(Padonou et al. 2010) originates from submerged fermenting

cassava.Weissellas in food fermentations are further discussed in

section ‘‘>Application’’ of this chapter.

W. ceti was isolated from beaked whales (Mesoplodon

bidens); nine isolates were obtained from different organs of

four animals (Vela et al. 2011).

Fructobacillus species can be found in several fructose-rich

niches, e.g., fresh flowers and fruits. F. fructosus and F. tropaeoli

were originally isolated from fresh flowers (Kodama 1956;

Endo et al. 2011), and F. ficulneus and F. pseudoficulneus

were originally found in ripe figs (Antunes et al. 2002; Chambel

et al. 2006). Endo et al. (2009) also isolated a F. fructosus strain

from a flower and F. pseudoficulneus strains from a banana peel

and a fig. Moreover, Fructobacillus species have been found in

several fermented foods produced from fruits. F. durionis was

originally isolated from tempoyak, a Malaysian acid-fermented

condiment made from the pulp of the durian fruit (Leisner et al.

2005). Several Fructobacillus species have been found in cocoa

bean fermentation (Nielsen et al. 2007; Papalexandratou et al.

2011a, b) and wine (Mesas et al. 2011).Moreover, F. fructosus has

been found from guts of several fructose-related insects, i.e.,

bumblebees, fruit flies, and giant ants (He et al. 2011; Koch

and Schmid-Hempel 2011; Thaochan et al. 2010). This is highly

interesting as Fructobacillus species do not grow on glucose

under anaerobic conditions. They can grow well on fructose

under anaerobic conditions.
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Pathogenicity and Clinical Significance

Some Leuconostoc species have caused infections, butmost of the

patients had received vancomycin, had an underlying disease, or

were premature babies. These bacteria are not a risk for healthy

individuals, and leuconostocs are considered as GRAS organ-

isms (Schillinger et al. 2006). All leuconostocs are intrinsically

resistant to vancomycin and other glycopeptide antibiotics; the

first clinical reports were published in 1984–1985 (Buu-Hoi

et al. 1985; Huygens 1993; Orberg and Sandine 1984: Elisha

and Courvalin 1995).

W. confusa has been detected in the normal human intestinal

microbiota (Stiles and Holzapfel 1997; Walter et al. 2001;

Tannock et al. 1999). W. cibaria and W. confusa have been

detected in clinical samples of humans and animals (Björkroth

et al. 2002). W. confusa has been associated with bacteremia

(Olano et al. 2001; Harlan et al. 2011; Salimnia et al. 2011; Lee

et al. 2011a) and endocarditis (Flaherty et al. 2003) in humans.

As in the case of Leuconostoc infection, the infection is mainly due

to the natural resistance of these species to vancomycin and an

underlying disease or immunosuppression of the host. In addition

to human cases, W. confusa has been documented as a cause for

a systemic infection in a non-immunocompromised primate

(Cercopitheus mona) (Vela et al. 2003), and unknown Weissella

strains were isolated from a diseased rainbow trout in China (Liu

et al. 2009).

Oenococcus and Fructobacillus species have not been

associated with disease in humans or animals.
Application

Meat

As commercial starter organisms for meat fermentations,

leuconostocs are not as important as some Lactobacillus and

Pediococcus spp. (Holzapfel 1998). However, leuconostocs and

weissellas are repeatedly found in fermented meat products

(Albano et al. 2009; Aymerich et al. 2006; Babic et al. 2011;

Ben Belgacem et al. 2009; Benito et al. 2007; Danilovic et al.

2011; Kesmen et al. 2012; Papamanoli et al. 2003; Parente et al.

2001; Samelis et al. 1994; Tu et al. 2010), although at lower levels

than lactobacilli. L. mesenteroides and W. viridescens are the

species most often encountered in fermented meats, but

L. carnosum, L. gelidum, L. pseudomesenteroides, W. confusa,

and W. paramesenteroides are also reported. Weissellas and

leuconostocs are associated with the production of bacteriocins

(Hastings et al. 1994) which could be of importance in the

fermentation process and may contribute to the microbiological

safety of the final product.
Dairy

In contrast to the lactococci, leuconostocs are not competitive

growers or important producers of lactic acid in milk.
The ability of certain strains to produce the flavor compound

diacetyl, however, has led to their frequent incorporation into

mixed strain starter cultures in products like buttermilk, butter,

and quarg (cream cheese). Leuconostocs form functional asso-

ciations with lactococci that ferment lactose efficiently to lactate.

The subsequent acidification creates favorable conditions for the

production of diacetyl from citrate by citrate-lyase-positive

Leuconostoc strains (Vedamuthu 1994). Strain 91404 of

L. mesenteroides subsp. cremoris was selected by Levata-

Jovanovic and Sandine (1997) as an aroma producer in the

preparation of experimental cultured buttermilk on the basis

of its low diacetyl reductase activity, citrate utilization, and high

diacetyl production under acidic conditions, and also because of

its growth characteristics and its compatibility with Lactococcus

strains. Fortification of ripened buttermilk with sodium citrate

resulted in a significant increase of diacetyl and acetoin produc-

tion during buttermilk storage at 5 �C for 2 weeks. Surplus of

citrate, low pH of 4.5–4.7, a sufficient number of active, non-

growing aroma producers, air incorporation during curd break-

ing, and low storage temperatures stimulated citrate metabolism

and enhanced flavor during the 2 weeks of storage. Optimal

development of L. mesenteroides subsp. cremoris appears to be

dependent on the manganese content of the milk, and with

values<15 mg/L, it may be outcompeted in amixed strain starter

culture. The ratio of L. mesenteroides subsp. cremoris to

Lactococcus lactis in mixed culture is also dependent on the

incubation temperature: warmer than 25 �C favors L. lactis

(Hemme and Foucaud-Scheunemann 2004).

L. mesenteroides subsp. cremoris plays an important role in

the desired CO2 formation in the cheeses such as Gouda and

Edam where it comprises ca. 5 % of a typical starter culture, as

compared to 2–3 % for Tilsiter (Zickrick 1996). Cogan et al.

(1997) studied 4,379 isolates from 35 artisanal dairy products,

including 24 artisanal cheeses, and identified 10 % of the LAB

strains as Leuconostoc spp. The reported proportions of

Leuconostoc spp. in LAB communities found in artisanal cheeses

typically vary between 1 % and 10 % (Campos et al. 2011;

Fontana et al. 2010; Menendez et al. 2001; Samelis et al. 2010).

Nieto-Arribas et al. (2010) characterized technical properties of

27 Leuconostoc isolates from Manchego cheese in order to test

their potential as dairy starter cultures. Majority of the isolates

belonged to L. mesenteroides, althoughW. paramesenteroides and

Leuconostoc lactis were also found. All isolates grew at high

concentrations of NaCl (4.0–4.5 %). They had poor acidifying

capacity, no lipolytic activity, and poor capacity to produce

diacetyl from citrate. Several isolates showed proteolytic activity.

Most of the isolates were considered unsuitable as starter cul-

tures because they grew poorly at pH 4.3.

Weissellas are rarely isolated from cheeses. W. thailandensis

was a minor part of the halotolerant lactic acid bacteria com-

munity in two types of Mexican cheeses that contained 5–6 %

of NaCl (Morales et al. 2011).W. paramesenteroideswas found to

be the dominant species of LAB in ‘‘dadih,’’ a traditional

fermented milk in Indonesia (Hosono et al. 1989).

Zakaria et al. (1998) reported W. paramesenteroides as one

of three predominating LAB species in dadih with different
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strains of W. paramesenteroides having different influences

on its viscosity and curd syneresis.

Kefir is milk drink fermented with kefir grains that consist of

bacteria and yeasts. L. mesenteroides has been reported to be part

of the predominating microbiota in kefir strains together with

lactobacilli and yeasts (Hsieh et al. 2012; Kowalczyk et al. 2011;

Lin et al. 1999). The use of L. mesenteroides in formulated starter

cultures for kefir production has also been reported

(Duitschaever et al. 1987; Marshall and Cole 1985).

It is known that leuconostocs play a minor role in most

traditional milk fermentations. Beukes et al. (2001) collected

15 samples of conventionally fermented milk from households

in South Africa and Namibia and found that genera Leuconostoc,

Lactococcus, and Lactobacillus predominated the microbial com-

munities. Of the leuconostoc isolates, 83 % were identified as

L. mesenteroides subsp. dextranicum. L. citreum was a minor

group. In traditional Chinese yak milk products investigated

by Bao et al. (2012), L. mesenteroides subsp. mesenteroides

predominated. Yu et al. (2011) identified LAB isolated from

several traditional fermented dairy products in Mongolia. Of

the 668 isolates, 43 (6.4 %) were identified as Leuconostoc lactis

or L. mesenteroides.
Foods and Beverages of Plant Origin

L. mesenteroides subsp. mesenteroides plays an important role in

the fermentation of vegetables such as sauerkraut and cucum-

bers. Although not the dominant species on cabbage at the time

of shredding, L. mesenteroides subsp. mesenteroides initiates the

fermentation of sauerkraut and is then succeeded by the more

acid-tolerant lactobacilli (Pederson 1930; Stamer 1975). The

same microbial succession was observed during fermentation

of cucumbers or other pickles as well as olives (Vaughn 1985).

Kimchi, a traditional Korean food, is produced by the lactic

fermentation of vegetables such as Chinese cabbage, radishes,

and cucumbers. Like in sauerkraut fermentation, Leuconostocs

such as L. citreum, L. gelidum, L. kimchii, and L. mesenteroides

dominate the early stages of fermentation, followed by

lactobacilli (Choi et al. 2003; Kim et al. 2000a, b; Lee et al.

1997), while some Weissella-like strains were reported for the

midstage of fermentation (Choi et al. 2003).

The sequence of LAB in vegetable fermentations is mainly

dependent upon the initial load, growth rates, and salt and acid

tolerances (Daeschel et al. 1987). Leuconostocs are apparently

better adapted to plant materials and initiate growth more

rapidly than most of the other LAB. Some leuconostocs, e.g.,

L. mesenteroides subsp.mesenteroides, L. citreum, L. gelidum, and

L. kimchii, may be favored by their ability to utilize a wide

selection of plant carbohydrates, such as L-arabinose, D-xylose,

and sucrose (> Table 18.1). Furthermore, vegetables contain

citrate and fructose, which can be utilized by leuconostocs as

electron acceptors for faster growth (Zaunmüller et al. 2006).

Carbon dioxide produced by leuconostocs replaces the air and

creates an anaerobic atmosphere that inhibits aerobic bacteria

(Steinkraus 1983).
The concentration of NaCl added to vegetables in the fer-

mentation process affects the composition of bacterial commu-

nity. L. mesenteroides subsp. mesenteroides is less salt tolerant

than the other LAB involved in vegetable fermentation (Vaughn

1985). In salt stock pickles, the initial salt concentration is two-

to threefold higher than that employed in sauerkraut, and

L. mesenteroides subsp.mesenteroides therefore plays a less-active

role in pickle fermentations (Stamer 1988).

Another important factor determining the composition of

the bacterial community is the fermentation temperature. Kim-

chi is often fermented at chilled temperatures (�1 �C to 10 �C)
which favors psychrotrophic bacteria (Eom et al. 2007), like

L. gasicomitatum and L. gelidum. W. koreensis was identified as

the species best adapted at kimchi fermentation at �1 �C
(Cho et al. 2006).

Although most of the vegetable fermentations are ‘‘sponta-

neous,’’ the inclusion of Leuconostoc strains into starter cultures

appears beneficial for the fermentation process and for the

development of desirable sensory traits. Using a vegetable juice

medium (VJM), Gardner et al. (2001) selected LAB strains for

mixed starter cultures to be used in lactic acid fermentation of

carrot, beet, and cabbage. Compared to spontaneous fermenta-

tion, the inoculation of the vegetables with selected mixed starter

cultures accelerated acidification and produced a more stable

product. Starter cultures consisting of psychrotrophic

L. mesenteroides have been successfully applied to accelerate the

fermentation of kimchi at +4 �C (Jung et al. 2012d). According to

Eom et al. (2007), L. mesenteroides and L. citreum starter cultures

can be used to enhance the production of prebiotic oligosaccha-

rides in kimchi-like foods fermented at low temperatures.

L. mesenteroides and L. citreum may be part of

predominating LAB community in artisanal wheat sourdough

(Corsetti et al. 2001; Robert et al. 2009) and distinctively influ-

ences the bread taste (Lönner and Prove-Akesson, 1989).

W. cibaria and W. confusa are also found, although at lesser

proportions (Minervini et al. 2012; Robert et al. 2009). Several

leuconostocs and weissellas have been introduced to wheat

sourdough for the production of exopolysaccharides from

sucrose. This is considered as a means to improve the shelf life,

volume, and nutritional value of bread without additives.

W. cibaria and W. confusa strains are potential starter cultures

for wheat and sorghum sourdoughs due to their high capacity

for the production and exopolysaccharides without strong acid-

ification (Galle et al. 2010; Katina et al. 2009).

L. mesenteroides subsp. mesenteroides is also predominant

and responsible for initiating the fermentation of many tradi-

tional lactic acid-fermented foods in the tropics. High numbers

of L. mesenteroides subsp. mesenteroides were isolated from

starchy products like cassava (Okafor 1977) or kocho, an African

acidic fermented product from false banana (Ensete ventricosum;

Gashe 1987). Strains of L. mesenteroides subsp. mesenteroides

have been found to produce a highly active linamarase, which

hydrolyzes the cyanogenic glucoside linamarin present in cas-

sava (Okafor and Ejiofor 1985). Gueguen et al. (1997) purified

and characterized an intracellular b-glucosidase from a strain of

L. mesenteroides isolated from cassava. When grown on an
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arbutin-containing medium, it was found to produce an intra-

cellular b-glucosidase. Its cyanogenic activity was suggested to

be of potential interest in cassava detoxification, by hydrolyzing

the cyanogenic glucosides present in cassava pulp. W. confusa

was identified as one of the LAB predominating in highly com-

plex microbial communities in Lafun, an African traditional

cassava food (Padonou et al. 2009).

Hancioglu and Karapinar (1997) studied the microflora of

Boza, a traditional fermented Turkish beverage, prepared by

yeast and lactic acid fermentation of cooked maize, wheat, and

rice flours. Among the 77 LAB strains isolated during the fer-

mentation, W. paramesenteroides (25.6 %), L. mesenteroides

subsp. mesenteroides (18.6 %), W. confusa (7.8 %),

L. mesenteroides subsp. dextranicum (7.3 %), and O. oeni

(3.7 %) were found. L. mesenteroides and Fructobacillus durionis

were part of a complex microbial community in palm wine

made of Borassus akeassii (Ouoba et al. 2012). Palm wine was

fermented at 21–30 �C and had pH of 3.5–4.1 and ethanol

content of 0.3–2.7 %. L. palmae was originally isolated from

palm wine by Ehrmann et al. (2009).

L. mesenteroides subsp. mesenteroides is also involved in the

fermentation of seeds of the African oil bean tree (Antai and

Ibrahim 1986) and of cocoa (Ostovar and Keeney 1973; Passos

et al. 1984). Lefeber et al. (2011) tested metabolic activities of

various cocoa-specific Lactobacillus, Leuconostoc, Weissella, and

Fructobacillus strains in cocoa pulp simulation medium and

concluded that citric acid converting, mannitol-producing,

heterofermentative, and/or fructose-loving LAB strains are par-

ticularly adapted to cocoa pulp matrix. Of the investigated

strains, those belonging to Lactobacillus fermentumwere consid-

ered to be the most suitable for the process. Illeghems et al

(2012) considered Leuconostoc mesenteroides to be only an

opportunistic member of the fermentation process wherein

a succession of microbial activities of yeasts, LAB, and acetic

acid bacteria takes place. Several Fructobacillus species have been

commonly seen in spontaneous cocoa bean fermentation carried

out in different countries (Ecuador, Brazil and Ghana) (Camu

et al. 2007; Papalexandratou et al. 2011a, b), suggesting that they

play certain key roles for the fermentation. Possible roles might

be fructose fermentation and oxygen consumption

(Papalexandratou et al. 2011a, b).

L. mesenteroides subsp. mesenteroides is also involved in the

submerged fermentation of coffee berries, practiced in some

highland regions, and by which the oligosaccharide concentra-

tion decreases and monosaccharides increase, with

a concomitant improvement in coffee quality (Frank and Dela

Cruz 1964; Jones and Jones 1984; Müller 1996). Avallone et al.

(2001) found that LAB, predominated by L. mesenteroides, and

yeasts were the microbes mainly responsible for the coffee fer-

mentation. Leuconostoc holzapfelii was originally isolated from

Ethiopian coffee fermentation (De Bruyne et al. 2007).

Some leuconostocs, lactobacilli, and pediococci are associ-

ated with the early stages of fermenting grape must (juice).

Oenococcus oeni, however, has been reported as the most impor-

tant and desirable species among the LAB involved in

winemaking thanks to its key role in the secondary fermentation
of wine, also referred to as the ‘‘malolactic fermentation’’ (MLF).

By their high resistance to SO2 and ethanol, O. oeni may be

present in relatively high numbers at the end of the alcoholic

fermentation. At this stage, they play the major role in the

production of microbiologically stable wines by converting

L-malic acid to L(+)-lactic acid and CO2, decreasing wine acidity

by 0.1–0.3 units (Davis et al. 1985; Wibowo et al. 1985).

This deacidification is particularly desirable for high-acid wine

produced in cool-climate regions (Liu 2002). Lactobacillus

spp. and Pediococcus spp. found in wine can also conduct MLF,

but, however, these organisms sometimes cause spoilage

problems by production of several undesirable volatile

compounds (Bartowsky 2009). Some strains of O. oeni are also

unsuitable for the MLF. Edwards et al. (1998) identified two

O. oeni strains that were associated with sluggish and/or

stuck fermentations and that were found to slow down some

alcoholic fermentations. Better control over the MLF can be

achieved by inoculating wines with a selected O. oeni strain

(Nielsen et al. 1996; Rodrı́guez-Nogales et al. 2012)

commercially available in the major wine-growing areas of

industrialized countries.

Besides the MLF, citrate metabolism by O. oeni is also

regarded as important for quality of wine because of the large

quantity of citrate in grape juice. Citrate is generally transformed

to lactate, acetate, diacetyl, acetoin, and 2,3-butanediol. These

chemicals have an impact on quality of wine both positively and

negatively (Bartowsky and Borneman 2011).

In addition to wine, MLF byO. oeni is important in fermen-

tation of apple cider. Herrero et al. (2001) used O. oeni

immobilized in alginate beads for controlled malolactic fermen-

tation of cider. The rates of malic acid consumptionwere similar

to conventional fermentation, but a lower acetic acid content

and higher concentration of alcohols were detected with

immobilized cells. These features were considered to have ben-

eficial effects on the sensory properties of cider (Herrero et al.

2001). Nedovic et al. (2000) succeeded in improving cider qual-

ity and to accelerate the process by continuous fermentation

with coimmobilized yeast and O. oeni cells.
Dextran Production

Dextran is a glucose polymer that has many applications

in medicine, separation technology, and biotechnology.

The ability of L. mesenteroides subsp. mesenteroides to produce

dextrans from sucrose has been exploited for the production of

commercially valuable dextran on an industrial scale. In addi-

tion to dextran, leuconostocs are able to produce different types

of glucose polymers (glucans) such as alternans and levans from

sucrose (Cote and Ahlgren 1995). Glucans are synthesized from

sucrose by large extracellular glucosyltransferase enzymes, com-

monly named glucansucrases. Glucosidic bond synthesis occurs

without the mediation of nucleotide-activated sugars and cofac-

tors are not necessary (Monchois et al. 1999). Glucansucrases

differ in their ability to synthesize glucans with different types of

glucosidic linkages (Kralj et al. 2004).
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Dextransucrase is economically the most important

glucansucrase. It is mainly produced by L. mesenteroides subsp.

mesenteroides. To develop strategies for improved

dextransucrase production, Dols et al. (1997) studied dextran

production in relation to the growth and energetics of

L. mesenteroides NRRL B-1299 during metabolism of various

sugars. For sucrose-grown cultures, they found that a large frac-

tion of sucrose is converted outside the cell by dextransucrase

into dextran and fructose without supporting growth. The frac-

tion entering the cell is phosphorylated by an inducible sucrose

phosphorylase and converted to glucose-6-phosphate (G-6-P)

by a constitutive phosphoglucomutase and to heterofer-

mentative metabolites (lactate, acetate, and ethanol). Sucrose

was found to support a higher growth rate than the

monosaccharides.

In the presence of efficient monomer acceptors, like maltose

or isomaltose, dextransucrase catalyzes the synthesis of low

molecular weight oligosaccharides instead of high molecular

weight dextran (Monchois et al. 1999). Some gluco-

oligosaccharides have prebiotic properties, meaning that their

industrial production is of interest. The structure and chain

length of oligosaccharides can be tailored by changing the con-

centrations of sucrose and acceptor carbohydrate in the medium

(Lee et al. 2008).

Maina et al. (2008) studied the production of

gluco-oligosaccharides and linear dextran by W. confusa E392

and L. citreum E497. The gluco-oligosaccharides were

characterized by a-(1!2) linked branches that are associated

with probiotic properties. In addition, W. confusa E392 was

found to be a good alternative to widely used L. mesenteroides

B-512F in the production of linear dextran. Interestingly,

dextransucrases of Weissella form a distinct phylogenetic

group within glucansucrases of other lactic acid bacteria

(Amari et al. 2012a).
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of a new bacterial mannitol production process. Biotechnol Prog 19:815–821

Walker DK, Gilliland SE (1987) Buttermilk manufacture using a combination of

direct acidification and citrate fermentation by Leuconostoc cremoris. J Dairy

Sci 70:2055–2062

Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detec-

tion of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in

human feces by using group-specific PCR primers and denaturing gradient

gel electrophoresis. Appl Environ Microbiol 67:2578–2585

Wibowo D, Eschenbruch R, Davis CR, Fleet GH, Lee TH (1985) Occurrence and

growth of lactic-acid bacteria in wine: a review. Am J Enol Viticult 36:302–313

Williams AM, Collins MD (1990) Molecular taxonomic studies on Streptococcus

uberis types I and II. Description of Streptococcus parauberis sp. nov. J Appl

Bacteriol 68:485–490

Yanagida F, Yi-Sheng C, Masatoshi Y (2007) Isolation and characterization of

lactic acid bacteria from lakes. J Basic Microbiol 47:184–190

Yang D, Woese CR (1989) Phylogenetic structure of the “Leuconostocs”:

an interesting case of a rapidly evolving organism. Syst Appl Microbiol

12(2):145–149
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