
 

 

Chapter 2 A Survey of Chaos Theory 

Abstract This chapter briefly summarizes chaos theory. The chapter begins 
with describing chaos as bounded aperiodic random-like deterministic motion, 
which is sensitive to initial states and thus unpredictable after a certain time of 
a system. The geometrical structure of chaos is analyzed via the Poincaré map. 
Three typical routes to chaos are introduced as period-doubling sequence, 
intermittency, and quasiperiodic torus breakdown. The chapter covers two 
main numerical approaches to identify chaos, Lyapunov exponents and 
power spectra. The Melnikov theory is presented to predict the transversal 
intersection of stable and unstable manifolds of a saddle point. Such an 
intersection results in complicated dynamical behaviors which are sensitive 
to initial conditions. Finally, chaos is treated in the context of Hamiltonian 
systems. KAM theorem is stated without the proof. Two mechanisms of 
Hamiltonian chaos are illustrated as KAM tori breakup and Arnol’d diffusion. 
The Melnikov theory is generalized to higher-dimensional Hamiltonian 
systems. 
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This chapter briefly summarizes chaos theory, most of which will be applied in 
the subsequent chapters. The chapter begins with describing chaos as bounded 
aperiodic random-like deterministic motion, which is sensitive to initial states 
and thus unpredictable after a certain time of a system. The geometrical structure 
of chaos is analyzed via the state space as well as the Poincaré map. Three typical 
routes to chaos are introduced as period-doubling sequence, intermittency, and 
quasiperiodic torus breakdown. The chapter covers two main numerical approaches 
to identify chaos, Lyapunov exponents and power spectra. The Melnikov theory is 
presented to predict the transversal intersection of stable and unstable manifolds of 
a saddle point. Such an intersection is explained to result in complicated dynamical 
behaviors which are sensitive to initial conditions. Finally, chaos is treated in the 
context of Hamiltonian systems. KAM theorem is stated without the proof. Two 
mechanisms of Hamiltonian chaos are illustrated as KAM tori breakup and Arnol’d 
diffusion. The Melnikov theory is generalized to higher-dimensional Hamiltonian 
systems. This chapter is only a brief survey of chaos, and references [1-6] present 
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a more comprehensive treatment of chaos with the emphasis on engineering 
applications. 

2.1 The Overview of Chaos 

2.1.1 Descriptions of Chaos 

Motions of many natural or engineering systems, including attitude motion of 
spacecraft, can be governed by a set of equations derived from the natural laws such 
as Newton’s laws or Euler’s equation. The set of equations, defined mathematically 
as a dynamical system, yields the time evolution of the state of a system from 
the knowledge of its previous history. Therefore, the state at any time can be 
determined by the governing equations and the initial states. The equations 
desceibing a dynamical system may be algebraic or differential equations.  

In modern science, chaos is a term to describe a type of motion, or time 
evolution resulting from a dynamical system, that appears, on detailed examination, 
to be completely disordered and extremely complex. The disorder and complicacy 
are due to the following reasons. 

Chaos is a recurrent aperiodic motion. Hence, chaos can be practically defined 
as a bounded steady-state response that is not an equilibrium state or a periodic 
motion, or a quasiperiodic motion. For systems with finite degrees of freedom, a 
bounded response of linear systems must be an equilibrium state, a periodic 
motion, or a quasiperiodic motion. Hence chaos is a striking feature of a nonlinear 
system. As a recurrent motion, chaos is bounded so that it will trend to the 
infinite. 

Chaotic motions are also characterized by sensitivity to initial states; that is, 
tiny differences in the initial conditions can be quickly amplified to produce huge 
differences in the response. Due to such sensitivity, the long-term prediction for 
chaos is impossible, because all initial conditions have to be prescribed in a 
certain precision, while, after enough time, the motion depends on the digits in 
the conditions beyond the precision. That is, chaos is unpredictable after enough 
time because a small difference in the initial conditions beyond their precision 
will result in rapidly (usually exponentially) growing perturbation of the motion. 
This phenomenon is vividly called butterfly effect. A disturbance caused by the 
wings of a butterfly in Shanghai can lead to a rainstorm a few days later in 
Toronto. 

Chaos, as a recurrent aperiodic motion, has no pattern or order to follow, just 
like a stochastic process. Actually, the spectrum of a chaotic motion has a continuous 
broadband, which is the same as a true random signal. In contrast, the spectra of 
periodic or quasiperiodic motions consist of a number of sharp spikes. In addition 
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to the broadband component, the spectrum of a chaotic motion often contains 
spikes, which indicate the predominant frequencies of the motion. Chaos is the 
superposition of an infinite number of unstable periodic motions. Therefore, a 
chaotic motion may settle for a short time near a periodic motion and 
then may switch to another periodic motion with a different period. However, 
chaos usually describes a special type of motion in a deterministic system that is 
without any random inputs. Hence, the random-likeness of chaotic motion is called 
intrinsic stochasticity or spontaneous stochasticity. A true stochastic process is 
unpredictable at any time, while chaos can be predicted only after a very short 
time from the beginning. 

In short, as a steady-state response of a deterministic system, chaos is sensitive 
to initial states and thus unpredictable after a certain time, and is recurrent but 
either periodic or quasiperiodic hence like a random single.  

2.1.2 Geometrical Structures of Chaos 

The recurrent aperiodicity of chaos can be intuitively illustrated in the phase plane. 
For a single degree of freedom, two independent parameters are needed to describe 
the state of motion completely (not only the position, but also the position change). 
These parameters are usually chosen as the generalized displacement and velocity 
of the system. When the parameters are used as coordinate axes, the resulting 
graphical illustration of the motion is called the phase plane representation. Thus 
each point in the phase plane represents a possible state of the system. The state 
of the system changes with the time evolution. A typical of representative point in 
the phase plane, such as the point representing the state of the system at time t =0, 
moves and traces a curve known as a trajectory or an orbit. The trajectory 
demonstrates how the motion beginning at a given initial state varies with time. 
On the phase plane, an equilibrium state is represented by a point on the 
displacement (usually horizontal) axis. The trajectory of a periodic motion is a 
closed curve, because the trajectory repeats itself after a period. A chaotic motion 
is represented by a trajectory that never closes and repeats itself because of the 
aperiodicity of the motion, and the trajectory is located in a bounded region due 
to the recurrence of the motion. Therefore, the trajectory of chaos in the phase 
plane usually occupies a part of the phase space. However, the trajectory of a 
quasiperiodic motion does not close on itself either, although it looks much more 
regular than a chaotic trajectory. In addition, it is difficult in practice to differentiate 
a trajectory of chaos from that of a periodic motion with a sufficient large period. 
Therefore, new techniques are necessary to describe the recurrent aperiodicity of 
chaos and distinguish chaos from periodic or quasiperiodic motions.  

Consider a set of ordinary differential equations in the vector form 

 ( , ) ,nt R t R= ∈ ∈x f x x�  (2.1.1) 
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where f is a vector function defined in Rn+1 with its value range in Rn, x is a n 
dimensional vector to specify the state of the system, and t is time. The vector x 
is called a state vector, and Rn in which x evolves is called a state space. A stage 
space is called a phase space when half of the state variables are displacements 
and the other half are velocities. Obviously, the phase space is the generalization 
of the phase plane. If the vector function does not depend explicitly on time t, the 
dynamical system governed by Eq. (2.2.1) is call autonomous; otherwise, it is 
called nonautonomous. 

The geometrical structure representing an asymptotically long-time behavior 
in a state space is called an attractor. Mathematically, an attractor is an inde- 
composable, closed, invariant set that attracts all trajectories starting at points in 
some neighborhood. Here, an indecomposable set is a set that cannot be separated 
into smaller pieces, and an invariant set is a set that trajectories starting in the 
set remain in it for all time.  

An attractor may be a point, called a point attractor, which represents an 
asymptotically stable equilibrium state. An attractor may be a closed curve, called 
a periodic attractor, which represents a periodic motion. An attractor may be a 
torus, called a quasiperiodic attractor, which represents a quasiperiodic motion. 
If an attractor is not a point attractor, a periodic attractor, or a quasiperiodic 
attractor, it is call a strange attractor. A strange attractor usually represents a 
chaotic motion, and thus it is also referred as a chaotic attractor. A chaotic 
attractor has typically embedded within it an infinite number of periodic orbits 
that are unstable. Mathematically, unstable periodic orbits are dense in a chaotic 
attractor. The orbits pass through any neighborhood, no matter how small it is, of 
any point on the attractor.  

The Ponicaré map will be defined in a state space. It can discretize a trajectory 
of a dynamical system governed by a set of ordinary-differential equations into a 
set of points. The Poincaré map or the Poincaré section map, named after Henri 
Poincaré, is the intersection of a trajectory, which moves periodically, quasi- 
periodically, or chaotically, in an n-dimensional state space, with a transversal 
hypersurface whose dimension is n – 1. Here a transversal hypersurface means that, 
at the intersection point, the normal of the hypersurface is not orthogonal to the 
tangent of the trajectory. More specifically, one considers a trajectory with initial 
conditions on the hyperplane and observes the point at which this trajectory returns 
to the hyperplane. The Poincaré section refers to the hyperplane, and the Poincaré 
map refers to the map of points in the hyperplane induced by the intersections.  
If the vector function f in Eq. (2.1.1) is periodic in time with period T, then the 
Poincaré map can be constructed by monitoring stroboscopically the state variables 
at intervals of the period T. The Poincaré map can be denoted by 

 1 ( ) ,n
i i R i Z+ = ∈ ∈X P X X  (2.1.2) 
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The points on the Poincaré section obtained by iterating P  

 1 2{ , , , , } ( ( ) , 1,2, )i i iT i= =X X X X x� � �  (2.1.3) 

which is also called sometimes the Poincaré map, can be used to determine if a 
motion is periodic, quasiperiodic, or chaotic. 

For the Poincaré map obtained by sampling the state variables at intervals of T, 
a periodic motion with the period mT will collect m points on the Poincaré 
section. Therefore, the Poincaré map (2.1.3) of a periodic motion is a set of finite 
points. The Poincaré map (2.1.3) of a quasiperiodic motion does not contain finite 
points. To explore its characteristic, consider the following simple example. A motion 
given by  

 1 2( ) sin sin , ( ) cos cosx t A t B t x t C t D t= + π = + π  (2.1.4) 

is quasiperiodic because it is characterized by the two incommensurate frequencies 
1 and π, and called two-period quasiperiodic. A Poincaré map is constructed by 
sampling the trajectory at intervals 2π starting at t = 0. Then the discrete points 
are collected as 

 1 2sin , cos ( , 0)i ix B i x C D i B D2 2= π = + π ≠  (2.1.5) 

Hence all mapping points on the closed curve are defined by 

 
2 2
1 2
2 2

( )
1i ix x C

B D
−

+ =  (2.1.6) 

It can be further demonstrated that the points fill densely the closed curve. Therefore, 
the Poincaré map (2.1.3) of a quasiperiodic motion is a set of infinite points 
located densely on a loop or a torus. Since a chaotic motion is neither periodic 
nor quasiperiodic, the Poincaré map (2.1.3) of chaos is a set of infinite points that 
do not fill any loops or tori. 

2.1.3 Routes to Chaos 

In addition to its physics and geometry, chaos can also be investigated from the 
view of its emerging processes with the variation of system parameters. The 
processes are often referred as routes to chaos or transitions to chaos. In most 
systems, chaos occurs only for some range of parameter values. How a regularly 
behaving system becomes chaotic is a fundamental and significant problem. 
Theoretically, routes to chaos can reveal the nature and mechanisms of chaos. 
Practically, routes to chaos can serve as an effective approach to identify chaos, 
especially to distinguish chaos from truly random motion. Actually, for a system 
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with bounded irregular motion, if a route to chaos appear with a change of a system 
parameter, then the motion is quite surely chaotic rather than stochastic. There 
are several fairly well-understood and (relatively) easily recognizable routes to 
chaos in a particular transition process in a prescribed system. These routes include 
period-doubling sequence, intermittency, and quasiperiodic torus breakdown. 

The period-doubling cascade, also referred to as period-doubling scenario, is 
the best understood route to chaos. In the period-doubling cascade, as a system 
parameter is gradually varied, a periodic motion transitions to a chaotic motion 
via a sequence of period-doubling bifurcations. This route was discovered in the 
context of 1-dimensional maps by Feigenbaum in 1978 [7], and it is now known 
to occur in almost all kinds of systems.Consider a system with parameter μ. In 
multi-parameter systems, one can vary one of them and fix the others. Suppose 
the motion with period T for μ =μ0. With changing μ, when μ = μ1, the period of 
motion becomes 2T. Such a sudden change of the motion is called a period- 
doubling bifurcation. Generally speaking, if the motion is with period 2kT for 
μ = μk, the period-doubling bifurcation at μ =μk +1 turns the motion period into 
2k+1T. As the motion period continues to double, it becomes larger and larger, and 
finally, infinite, which actually corresponds to aperiodic motion. Observing the 
Poincaré map, one finds that one point becomes two points, two points become 
four points, and so on. At last, an infinite point set is created, and chaos appears. 
Theoretically, in the absence of noise, an infinite number of period-doubling 
bifurcations occur in the transition to chaos. Practically, as noise is always present, 
some of the higher period-doubling bifurcations may be suppressed by the noise, 
resulting in a finite sequence of bifurcations. It should be remarked that 

 1

1

lim n n

n
n n

μ μδ
μ μ

−

→∞
+

−
=

−
 (2.1.7) 

is a constant for the infinite sequence of period-doubling bifurcation values {μn}. 
In fact, in a certain class of systems, different systems have the same constant 
regardless of the details of each system. Therefore, δ is called a universal constant. 
The universality characterizes the period-doubling cascade as a route to chaos. 

Intermittency is another frequently observed route to chaos. Intermittency is a 
phenomenon characterized by random alternations between a regular motion and 
relatively short irregular bursts. The term intermittency has been used in the theory 
of turbulence to denote burst of turbulent motion on the background of laminar 
flow. During early stages of intermittency, for a certain system parameter value, the 
motion of the system is predominantly periodic with occasional bursts of chaos. 
As the parameter value is changed, the chaotic bursts become more frequent, and 
the time spent in a state of chaos increases and the time spent in periodic motion 
decreases until, finally, chaos is observed all the time. As a result, the periodic motion 
becomes chaotic motion. This route was found by Pomeou and Manneville in 
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1980 [8]. Geometrically, the intermittency route is associated with a periodic 
attractor in the state space bifurcating into a new, larger chaotic attractor, including 
previous periodic trajectories as its subset. The trajectory of a system can reside 
some time in the chaotic part of the attractor, but it is ultimately attracted back to 
the periodic part. As the system parameter is varied, the relative proportion of the 
chaotic part increases, ultimately covering the whole attractor. 

Quasiperiodic torus breakdown is the third typical way that a system may evolve 
as its parameter is changed. Quasiperiodic torus breakdown route signifies the 
destruction of the torus and the emergence of a chaotic attractor. The system, if it 
is not externally driven by a periodic action, may be at equilibrium. As the system 
parameter is varied, the equilibrium may lose its stability, leading to the emergence 
of a stable periodic motion. Such a change resulting in a new motion frequency is 
called the Hopf bifurcation. In the state space, a point attractor becomes a periodic 
attractor. With a further change in the parameter, the periodic attractor undergoes 
a secondary Hopf bifurcation, resulting in a 2-period quasiperiodic attractor. The 
trajectories in the state space reside on the surface of a torus. If the two frequencies 
are incommensurable, the trajectory eventually covers the surface of the torus. 
For some systems, further changes in the parameter result in the introduction of a 
third frequency. In the state space, the trajectories live on a 3-dimensional torus. 
With further parameter changes, the motion of a system becomes chaotic. Some 
systems may apparently switch directly from two-periodic quasiperiodic motion 
to chaos. The discovery of the route to chaos started with Ruelle and Takens, who 
in 1971 proposed an alternative to the Landau-Hopf picture of infinitely increasing 
number of incommensurable frequencies for the onset mechanism of turbulence 
[9]. As Ruelle and Takens demonstrated, quasiperiodic motion on a torus with 4 
incommensurable frequencies is generally unstable and can be perturbed into a 
strange attractor corresponding to turbulent motion. In 1978, Hewhouse, Ruelle 
and Takens proved that a torus with 3 incommensurable frequencies is generally 
unstable and can be perturbed into chaos [10]. In the same year, Swinney and 
Gollub experimentally showed that a quasiperiodic motion with 2 incommensurable 
frequencies directly leads to chaos [11]. In 1982, Feigenbaum, Kadanoff and 
Shenker revealed the universality in the quasiperiodic route to chaos [12]. In 
1983, Grebogi, Ott, and Yorke confirmed that the quasiperiodic torus with 3 
incommensurable frequencies is usually stable and thus a periodic motion becomes 
chaotic after only two bifurcations [13]. That is, the 2-period quasiperiodic motion 
may lead to chaos directly. 

Chaos may suddenly occur in a system. One mechanism to account for a sudden 
appearance of chaos is crisis, the term introduced by Grebogi, Ott, and Yorke in 
1983 [14]. A crisis is a sudden qualitative change in which a chaotic attractor 
disappears or suddenly expands in size as a system parameter is varied. Therefore, 
if a typical route to chaos is observed, one may conclude that chaos is taking place 
in a system. On the other hand, even if no typical route to chaos is observed, one 
cannot exclude the possibility of the appearance of chaos. 
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2.2 Numerical Identification of Chaos 

2.2.1 Introduction 

The numerical identification of chaos is an important aspect of nonlinear 
dynamics. The identification of chaos is some diagnostic tests to determine if 
chaotic behavior occurs in a specific system. Some numerical characteristics 
associated with the motion of a system can be used to identify chaos. These 
characteristics include Lyapunov exponents, fractal dimensions, power spectra, 
and entropies. If one or more of these characteristics satisfy certain conditions, 
the motion may be chaotic. 

As explained in the previous section, chaos can be described in different aspects. 
Quantifying these descriptions leads to corresponding numerical characteristics. 
To specify the sensitivity of chaos to initial states, Lyapunov exponents are 
introduced. To highlight the recurrent aperiodicity of chaos, various dimensions 
can be defined. To detect the stochasticity of chaos, power spectra may be used. 
To reveal the unpredictability of chaos, entropies can be employed. However, 
only Lyapunov exponents and power spectra will be presented in this section. 
They will be applied in the following chapters. 

2.2.2 Lyapunov Exponents 

The extreme sensitivity to initial states makes neighboring trajectories diverge 
rapidly as the time elapses. Therefore, a numerical approach to identify chaos  
can be developed based on the quantitative characterization of the divergence 
among the neighboring trajectories. Lyapunov exponents are a set of numerical 
characteristics to quantify the divergence of trajectories. In an n–dimensional 
state space, the displacement between two points on two nearby trajectories has n 
components in n different directions. Trajectories may diverge in some directions, 
but they must converge in other directions. Otherwise, the motion will become 
unbounded. Hence the change rates of the distance along the n directions are 
different, and each change rate is a Lyapunov exponent. This intuitionistic idea 
can be presented in a more rigorous way as follows.  

Consider a dynamical system governed by 

 ( ) nR= ∈x f x x�  (2.2.1) 

Choose two trajectories L0 and L1 starting at two close initial conditions x0 and 
x0 + Δx0, respectively. Define L0 starting at x0 as the unperturbed trajectory, and 
L1 starting at x0+Δx0 as a perturbed trajectory. Denote x(x0 + Δx0,t) and x(x0,t) as 
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the points at time t on the perturbed and unperturbed trajectories respectively. 
Denote the difference as w(x0, t) = x(x0 + Δx0, t) + x(x0, t). Then for sufficient 
small w, w satisfies the linearized equation of Eq. (2.2.1) at x0, namely, 

 = ⋅Dw f w�  (2.2.2) 

where Df is the n×n Jacobi matrix calculated at x0. Now the averaged rate of 
exponential expansion or contraction in the direction of w on the trajectory 
starting at x0 is given by 

 
0

0
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1( , ) lim ln
t t

λ
→∞
→

=
w

w
x w

w
 (2.2.3) 

where the symbol ⏐⏐ ⏐⏐  denotes a vector norm and w0 = w(x0,0). In the 
n-dimensional state space, all w form n-dimensional state space moving along the 
trajectory L0. Take a set of base vector {ei,i = 1,2, ,n}. For every ei, Eq. (2.2.3) 
yields λ(x0,ei) (i = 1, 2 , , n). Those numbers are ordered such that 

 1 2 nλ λ λ�  (2.2.4) 

The number λi is called the Lyapunov exponent, and the set of n number λi is 
called the Lyapunov spectrum. 

Roughly speaking, the Lyapunov exponents of a trajectory characterize the 
mean exponential rates of divergence (in different directions) of other trajectories 
surrounding it. A Lyapunov exponent may be positive or negative. A positive 
Lyapunov exponent implies the divergence in the corresponding direction. That is, 
all trajectories near the trajectory under consideration diverge locally from it along 
the direction. A negative exponent implies the constriction in the corresponding 
direction. All trajectories close to the trajectory under consideration locally converge 
toward it in the direction. Therefore, if all Lyapunov exponents are negative, the 
motion is in a stable equilibrium. 

For a limit cycle of an autonomous system, there is always a zero Lyapunov 
exponent corresponding to an initial deviation along a tangent to the closed orbit. 
In addition, for a stable periodic motion, all other Lyapunov exponents are 
negative. Those negative exponents essentially correspond to perturbations along 
directions normal to the closed orbit. For an m-torus, m Lyapunov exponents are 
zero because there are m tangential directions to the torus along which there is 
neither growth nor decay.  

If there are one or more positive Lyapunov exponents, these exponents correspond 
to the directions along which the initial disturbances become larger and larger. Thus 
a bounded trajectory with one or more positive Lyapunov exponents represents 
chaotic motion. 

Based on the above-mentioned analysis, the types of attractors and motions 
can be summarized in Table 2.1 for low dimensional systems. 
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Table 2.1 Classification of Attractors in Low Dimensional State Spaces 

Dimension Sign of Lyapunov  
Exponents Types of Attractors Types of Motion 

3 −    −    − 
0    −    − 
0    0    − 
+    0    − 

stable fixed point 
limit cycle 
2-torus  
strange attractor 

equilibrium 
periodic motion  
quasiperiodic motion 
chaotic motion  

4 −    −    −    − 
0    −    −    − 
0    0    −    − 
0    0    0    − 
+    0    −    − 
+    0    0    − 
+    +    0    − 

stable fixed point 
limit cycle 
2-torus 
3-torus 
strange attractor 
strange attractor on a 3-torus
strange attractor 

equilibrium  
periodic motion  
quasiperiodic motion 
quasiperiodic motion 
chaotic motion 
chaotic motion 
chaotic motion 

5 −    −    −    −    − 
0    −    −    −    − 
0    0    −    −    − 
0    0    0    −    − 
0    0    0    0    − 
+    0    −    −    − 
+    0    0    −    − 
+    0    0    0    − 
+    +    0    −    − 
+    +    0    0    − 
+    +    +    0    − 

stable fixed point 
limit cycle 
2-torus 
3-torus 
4-torus 
strange attractor 
strange attractor on a 3-torus
strange attractor on a 4-torus
strange attractor on a 3-torus
strange attractor on a 4-torus
strange attractor 

equilibrium  
periodic motion  
quasiperiodic motion 
quasiperiodic motion 
quasiperiodic motion 
chaotic motion 
chaotic motion 
chaotic motion 
chaotic motion  
chaotic motion  
chaotic motion  

2.2.3 Power Spectra 

The power spectra are a basic tool to analyze random vibrations. In a power 
spectrum, the square of the Fourier amplitude per unit time is displayed at each 
frequency. The power spectra also help in distinguishing among periodic, 
quasiperiodic, and chaotic motions. 

For a sample function of a signal x(t), the power spectrum can be defined in 
two ways. The power spectrum Φx(ω) is the time average of the square of its 
Fourier amplitude, namely, 

 
2

i

0

1( ) lim ( )e dωΦ ω −

→∞
= �

T t
x T

x t t
T

 (2.2.5) 

On the other hand, the power spectrum Φx(ω) is also the Fourier transform of the 
autocorrelation function, namely, 

 i( ) ( )e dωτΦ ω τ τ
∞ −

−∞
= �x xR  (2.2.6) 
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where the autocorrelation function Rx(τ ) is defined as 

 
2

2

1( ) lim ( ) ( )dτ τ
−→∞

= +�
T

x TT
R x t x t t

T
 (2.2.7) 

Based on the Wiener-Khinchin relations of stochastic processes, the above two 
definitions are equivalent to the condition that Rx(τ ) decays rapidly with time.  

In experimental measurements or numerical simulations, researchers often obtain 
a time series with the same delay interval,  

 1 2, , , Nx x x�  (2.2.8) 

Adding a periodic condition xN+i = xi (i = 1,2,� ), the autocorrelation can be 
calculated as the discrete convolution  
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Its discrete Fourier transform 
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is the discrete power spectrum of the time series (2.2.8). 
In practical calculations of discrete power spectra, a more effective approach is 

to evaluate directly the coefficients of the discrete Fourier transform 
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 (2.2.11) 

and then compute 

 2 2
j j jp a b= +  (2.2.12) 

Usually, for many sets of {xi} evaluate the corresponding { }jp . The average of 
many resulting { }jp  will approximate the discrete power spectrum defined by Eq. 
(2.2.10). In this way, it is unnecessary to calculate the discrete autocorrelation 
(2.2.9). That is the basic idea of the fast Fourier transform attributed to Cooley and 
Tukey [15]. Nowadays, there are many commercial software packages available for 
determining the fast Fourier transform of a given signal.  

The spectrum of a periodic motion with period T consists of discrete spikes at 
the frequency 1/T and possibly a certain number of other spikes at m/T for an 
integer m. The spectrum of a k-period quasiperiodic motion is made up of spikes at 
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integer multiples of all its frequencies. Theoretically, the spectrum of a quasiperiodic 
motion can be distinguished from that of a periodic motion, because the peaks of 
the quasiperiodic spectrum are not spaced at integer multiples of a particular 
frequency. Practically, due to the impossibility of determining whether a measured 
value is rational of irrational, a spectrum seeming to be quasi-periodic may actually 
be periodic with an extremely large period.  

Chaos is a random-like motion. The power spectrum of chaos has a continuous, 
broad-band nature, which is a characteristic exhibited by all chaotic motion. In 
addition to the broad-band component, it is rather common for a chaotic spectrum 
to contain spikes indicating the predominant frequencies of the system. In practical 
simulations, chaotic spectra are much more complicated than regular ones. 
Typically, they consist of some dominant peaks surrounded by a lot of grass-like 
components. Although it is uncertain if the grassy portion of the spectrum is truly 
continuous, the difference in a spectrum between regular and chaotic motion is 
usually quite striking to provide a feasible means to identify chaos numerically. 
However, a power spectrum does not distinguish chaos from a truly random motion, 
which is a limitation of application of power spectra to identification of chaos. 

2.3 Melnikov Theory 

2.3.1 Introduction 

In 1963, Melnikov developed an analytical technique to detect a geometrical 
structure with the hallmark of chaos [16]. The key issues are the consequence 
and the prediction of transversal intersection of stable and unstable manifolds. 
Therefore, the concepts of stable and unstable manifolds will be introduced at the 
beginning. Then it will be explained that such an intersection implies the resulting 
sensitive dependence on initial conditions. The Melnikov function will be derived 
to predict the transversal intersection in a planar integrable system with small 
periodic perturbations. This analytical prediction approach will be generalized to 
higher-dimensional systems in the next section. Finally, the relation between the 
Melnikov analysis and the occurrence of chaos is clarified. 

2.3.2 Transversal Homoclinic/Heteroclinic Point 

Consider a dynamical system governed by Eq. (2.2.1). The stable manifold of a 
fixed point x0, denoted by W s(x0), is the set of all initial conditions such that the 
trajectories initiated at these points asymptotically approaches the fixed point x0 
as t→+∞, whereas the unstable manifold of a fixed point x0, denoted by Wu(x0), is 
the set of all initial conditions such that the trajectories initiated at these points 
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asymptotically approach the fixed point x0 as t→−∞. That is,  
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 (2.3.1) 

where X is a point in the state space, and x(X,t) is a trajectory stating at X. The 
stable manifold and the unstable manifold share a common feature that a trajectory 
with a starting point in it remains in the manifold forever. Therefore, both the 
stable manifold and the unstable manifold are called the invariant manifold.  

The concept of the invariant manifold of a fixed point can be generalized to 
that of a periodic orbit. The stable or unstable manifolds of a periodic orbit is the 
set of all initial conditions which approach the periodic orbit as t→+∞ or t→−∞. 
The invariant manifold of a periodic orbit corresponds to the invariant manifold of 
a fixed point on the Poincaré map. Consider a fixed point x  on the Poincaré map P 

 1( ) R n−= ∈x P x x  (2.3.2) 

Denote the Jacobian matrix of map P as DP. If n – 1 eigenvalues of DP are such 
that their magnitudes are either larger than 1 or smaller than 1, the fixed point is 
called a hyperbolic fixed point, and the corresponding periodic orbit is called  
a hyperbolic periodic orbit. A hyperbolic fixed point is called a saddle point 
(hyperbolic saddle point sometimes) if the magnitudes of some eigenvalues are 
larger than 1 and those of the rest are smaller than 1. For a saddle point ps, its stable 
manifold W s(ps) and its unstable manifold Wu(ps) are respectively defined as  
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 (2.3.3) 

where z is a point on the Poincaré section hyperplane.  
If the stable manifold W s(ps) of a saddle point ps coincides with the unstable 

manifold Wu(ps), namely W s(ps) = Wu(ps), the manifold is called a homoclinic 
orbit. The homoclinic orbit is a closed orbit on which all points tend to the same 
saddle points ps as t→±∞. For two different saddle points ps1 and ps2, if the stable 
manifold W s(ps1) of ps1 coincides with the unstable manifold Wu(ps2) of ps2, the 
manifold is called a heteroclinic orbit on which all points tend to ps1 and ps2 as 
t→+∞ and t→−∞, respectively. If meanwhile the unstable manifold Wu(ps1) of ps1 
coincides with the stable manifold W s(ps2) of ps2 so that there is another heteroclinic 
orbit, the two heteroclinic orbits form a heteroclinic cycle. A heteroclinic cycle 
may consist of more than two heteroclinic orbits connecting a few saddle points. 
Fig. 2.1 shows examples of homoclinic orbits, heteroclinic orbits, and heteroclinic 
cycles on a plane. 
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Figure 2.1 Homoclinic orbits, heteroclinic orbits, and heteroclinic cycles (a) a 
homoclinic orbit (b) two homoclinic orbits (c) heteroclinic cycle consisting of two 
heteroclinic orbits (d) heteroclinic cycle consisting of three heteroclinic orbits 

If the stable manifold and the unstable manifold do not coincide with each other, 
they may intersect each other. If the stable manifold and the unstable manifold 
intersect transversally at a point, the point of intersection is called a transversal 
homoclinic point. Here the transversality of an intersection of manifolds means 
that the union of the tangent spaces of the intersecting manifolds spans the whole 
space. Intuitively, a transversal intersection means that two intersecting manifolds 
are not tangent to each other at the point of intersection. If the stable manifold of 
a saddle point intersects transversally the unstable manifold of another saddle 
point, the point of intersection is called a transversal heteroclinic point.  

If there is a transversal homoclinic point q∈W s(ps)∩Wu(ps). Then q∈W s(ps) 
and q∈Wu(ps). Because both W s(ps) and Wu(ps) are invariant manifolds, Pm(q)∈ 
W s(ps) and Pm(q)∈Wu(ps) for all integer m. Thus, Pm(q)∈Ws(ps)∩Wu(ps). Similar 
argument is applicable in the case of a transversal heteroclinic point. That is, if the 
stable manifold and the unstable manifold intersect once, then they will intersect 
an infinite number of times, as shown in Fig. 2.2. 

 
Figure 2.2 Intersections of the stable and unstable manifolds: (a) homoclinic point 
(b) heteroclinic point 
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Consider a rectangular area near a homoclinic point in a Poincaré section. 
Points in the area represent the intersections of trajectories starting at different 
initial conditions. In the process of mapping, the rectangle moves to the next 
homoclinic point. Meanwhile, the rectangle contracts in the direction of the stable 
manifold, stretches in the direction of the unstable manifold, and distorts as it 
moves. At a later time, the rectangle is transformed into a shape of horseshoe. 
The horseshoe overlaps the original rectangle to form two new smaller rectangular 
areas, which are still near the homoclinic point. Therefore, the whole transformation 
process can be repeated. It can be inferred from Fig. 2.3, two close points in the 
original rectangle may end up far away from each other and thus the initial difference 
is amplified. Therefore, such a geometrical structure is highly sensitive to initial 
conditions, which is a hallmark of chaos. In 1963, Smale proposed the map that 
contracts, stretches, and folds a rectangle and intersects the image with itself [17]. 
The map is called the Smale horseshoe. 

2.3.3 Analytical Prediction 

The above-mentioned analysis shows that the occurrence of a transversal homoclinic 
or heteroclinic point is a possible mechanism resulting in chaos. Melnikov 
developed an approximate analytical expression of the distance between the stable 
and unstable manifolds in a planar integrable system with small periodic disturbances. 
Therefore, a transversal homoclinic or heteroclinic point can be predicted.  

 
Figure 2.3 Illustration of the Smale horseshoe 

Consider a planar nonautonomous system 

 2( ) ( , ) Rtε= + ∈x f x g x x�  (2.3.4) 
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where ε is a small parameter and the disturbance g is a periodic function with 
respect to t. Suppose that when ε = 0, the unperturbed system 

 2( ) R= ∈x f x x�  (2.3.5) 

has a saddle point ps with a homoclinic orbit xh(t − t0) such that 

 h
0 slim ( )

t
t t

→±∞
− =x p  (2.3.6) 

in which t0 is the beginning time that can be an arbitrary real number. 
If ε ≠ 0 but still sufficiently small, Eq. (2.3.4) exists a unique periodic orbit 

xsε(t) = p0 +O(ε). Thus its Poincaré map has a unique saddle point psε = p0 +O(ε). 
Although the stable and unstable manifolds of psε no longer coincide, both of them 
are still sufficiently close to the homoclinic orbit xh(t − t0) for ε = 0. Therefore, 
the equations of the stable and unstable manifolds can be assumed as 

 s h s 2
0 0 1 0( , ) ( ) ( , ) O( )t t t t t tε ε= − + +x x x  (2.3.7) 

 u h u 2
0 0 1 0( , ) ( ) ( , ) O( )t t t t t tε ε= − + +x x x  (2.3.8) 

Equations (2.3.7) and (2.3.8) can also be regarded as the expansions in terms of ε. 
At time t, the displacement of a point on the stable manifold relative to the point 
on the unstable manifold is  

 
s u
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s u 2
1 0 1 0

( , ) ( , ) ( , )

( ( , ) ( , )) O( )

t t t t t t

t t t tε ε
= −

= − +

d x x
x x

 (2.3.9) 

Project d(t, t0) to the normal N to the a homoclinic orbit of the undisturbed 
system (2.3.5). Notice that the normal, as shown in Fig. 2.4, is defined by 

 h h
0 2 0 1 0( , ) ( ( ( )), ( ( )))t t f t t f t t= − − −N x x  (2.3.10) 

where (f1, f2) = f. One gets 

 s u 2( , ) ( ) O( )N N Nd t d dτ ε ε= ⋅ = ∧ = − +N d f d  (2.3.11) 

where 
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 (2.3.12) 

and the wedge product is defined by  

 1 2 2 1a b a b∧ = −a b  (2.3.13) 

for the vectors a = (a1,a2) and b = (b1,b2). Actually, the wedge product is a vector 
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cross product in which only the magnitude is taken into consideration. 

 
Figure 2.4 Illustration of the derivation of Melnikov’s function 

Differentiating s
Nd  with respect to t yields 

 s s s h s s
1 1 1 1Nd = ∧ + ∧ = ⋅ ∧ + ∧Df x f x f y x f x� � � � �  (2.3.14) 

where the Jacobian Df is calculated at xh. Substituting Eq. (2.3.7) into Eq. (2.3.4) 
and neglecting ε2 and higher order terms in the resulting equation lead to 

 s s h
1 1 0( ( ), )t t t= ⋅ + −Dx f x g x�  (2.3.15) 

Substituting Eqs. (2.3.7) and (2.3.15) into Eq. (2.14) and omitting ε2 and higher 
order terms in the resulting equation give 

 s s s
1 1Nd = ⋅ ∧ + ∧ ⋅ + ∧D Df f x f f x f g�  (2.3.16) 

Direct computation of the first two terms on the right hand of Eq. (2.3.16) yields 

 ( )s s
1trNd = ∧ + ∧Df f x f g�  (2.3.17) 

Equations (2.3.12) and (2.3.17) mean that 

 ( )s strN Nd d= + ∧Df f g�  (2.3.18) 

Equation (2.3.18) is a first order linear ordinary differential equation of s
Nd , and 

it can be integrated from τ  to +∞ as 
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 (2.3.19) 

Using Eqs. (2.3.12) and (2.3.6) and noticing that ps is the saddle point, one has 

 s h s s
0 0 1 s 1( , ) ( ( )) ( ) 0Nd t t+∞ = +∞ − ∧ = ∧ =f x x f p x  (2.3.20) 
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Hence 
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A similar procedure yields 
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Based on Eqs. (2.3.11), (2.3.21), and (2.3.22), if one defines the Melnikov 
function �(τ) as  
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then 

 2
0 0 0( , ) ( ) O( )Nd t t tε ε= − +�  (2.3.24) 

The existence of simple zeros of the Melnikov function 0( )t�  indicates that the 
displacement d (t0, t0) vanishes. At a simple zero tz, �(tz) 0 0( , )Nd t t = 0, but d 
�(tz)/dt0 ≠ 0. In this case, the stable and unstable manifolds are to intersect 
transversely to form a transversal homoclinic point.  

Equation (2.3.24) can be equivalently written as 
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If the unperturbed system is Hamiltonian, then tr(Df) = 0. Equation (2.3.25) 
becomes 

 h h
0 0( ) ( ( )) ( ( ), )d

+∞

−∞
= ∧ +� f x g xt t t t t t�  (2.3.26) 

2.3.4 Interruptions 

The Melnikov theory is of considerable significance because it can be applied to 
check in specific systems whether the stable and unstable manifolds intersect 
transversely or not, by a direct calculation of the approximate distance between 
these manifolds. The Melnikov function is an explicitly computable function  
that can be evaluated analytically or numerically. The Melnikov theory has been 
extended to multi-degree-of-freedom systems [18] and infinite-degree-of-freedom 
systems [19, 20]. A generalized version for Hamiltonian systems with finite 
degrees-of-freedom will be presented in the next section, and it will be applied in 
the subsequent chapters. 
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It should be kept in mind that the Melnikov theory only predicts transverse 
intersections of stable and unstable manifolds, or the existence of a homoclinic 
point. Usually, such an intersection yields an invariant set with sensitivity to initial 
conditions. Not all invariant sets are an attractor, because they may be without 
attractability. In dissipative systems, all observable chaos, in laboratory experiments 
or numerical simulations, should be attractor, with significantly large basin of 
attraction. The collection of initial conditions under which the motion tends toward 
a given attractor is called a basin of attraction. In a more general sense, the 
range of values of certain system parameters for which the motion tends toward  
a prescribed attractor is called a basin of attraction in the parameter space. 
Therefore, in a practical system, the existence of such an invariant set does not 
imply that chaotic motion is observed. 

In addition, not all attractors sensitive to initial conditions represent chaotic 
motion, because a periodic motion or even an equilibrium position may depend 
sensitively on initial conditions when there are two or more attractors in a 
nonlinear system. In this case, the basin boundary is nonsmooth, intertwined and 
complicated, actually fractal. The transition from one basin of attraction to another 
is called a basin boundary. 

In spite of the limitations, the occurrence of transverse intersections of stable 
and unstable manifolds is a significant hint to the appearance of chaos. The basin 
boundary is identical to the stable manifold. A homoclinic point means that the 
stable and unstable manifolds touch an infinite number of times, which leads to 
an infinite folding of the stable manifold and hence an infinite folding of the basin 
boundary and the resulting sensitivity to initial conditions.  

2.4 Chaos in Hamiltonian Systems 

2.4.1 Hamiltonian Systems, Integrability and KAM Theorem  

The Hamiltionian formulation is an effective and powerful approach to model and 
analyze dynamical problems. For a system with n degrees-of-freedom, its motion 
can be specified by n generalized coordinates qi(i = 1,2, ,n) and n generalized 
momenta pi. All (qi, pi) pairs form a 2n-dimensional phase space (q, p). If all actions 
on the system are derived from a potential function, W. R. Hamilton (in 1834) 
proposed the following differential equation of motion 

 
i

i

i
i

q
p

p
q

∂=
∂

∂= −
∂

�

�

�

�
 (2.4.1) 



Chaos in Attitude Dynamics of Spacecraft 

52 

which is called Hamilton’s canonical equations. In Eq. (2.4.1), 

 ( , , )t= q p� �  (2.4.2) 

is called the Hamiltonian. For a mechanical system, � is the mechanical energy 
of the system. If a dynamical system is governed by the canonical equations, it is 
called a Hamiltonian system. Using Eq. (2.4.2), one has 
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 (2.4.3) 

Therefore, if the time variable t does not appear in =� � (q, p) explicitly, then 
� is a conserved quantity, a constant during the motion. Such a system is called a 
conservative system. If � depends on t explicitly, the original 2n-dimensional 
phase space can be enlarged into 2(n+1)-dimensional phase space ( , )q p  by 
introducing the n+1 generalized coordinate 1nq t+ =  and generalized momentum 

1np + = −� . Then the Hamiltonian of the enlarged system is 

 1 1( , ) ( , , )n nq p+ += +q p q p� �  (2.4.4) 

and the corresponding canonical equations are 
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 (2.4.5) 

The construction of the enlarged system means the equivalence of Eqs. (2.4.1) and 
(2.4.5), while the enlarged system is conservative as its Hamiltonian is explicitly 
independent of t. Thus all Hamiltonian systems can be equivalently transformed 
into a conservative one. In the following, only conservative systems will be 
considered.  

A Hamiltonian system can be substantively simplified via an appropriate 
transform from one set of variables (q, p) to some new set (Q, P),  
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=
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Q Q q p
P P q p

 (2.4.6) 

Equation (2.4.1) is accordingly changed into the form 
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If the structure of Eq. (2.4.1) is still preserved, that is, Eq. (2.4.7) takes the form 
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where h = h(Q, P), then the transformation is called a canonical transformation. 
A canonical transformation changes a set of canonical equations into another set of 
canonical equations. It can be proved that the inverse of a canonical transformation 
and the composition of canonical transformations are still canonical transformations. 

Suppose there are a series of canonical transformations to change variables 
(q, p) into variables (I,θ ), such that the Hamiltonian in the new variables depends 
only on I, and that 

 ( )H= I�  (2.4.9) 

is independent of θ. Then the Hamiltonian equations are 
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 (2.4.10) 

Integration of Eq. (2.4.10) yields 
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 (2.4.11) 

where 2n constants I(0) and θ (0) can be determined by initial condition (q(0), p(0)). 
Variables (I,θ) are called action-angle variables. According to Eq. (2.4.11), the 
motion of Eq. (2.4.10) can be uniquely specified by n angle variables θi. 
Mathematically, an n-dimensional manifold where the point is specified by n 
angles is called an n-torus, denoted as Tn. An 1-torus T1 is a circle, and 2-torus 
T2 is a usual tori, while there is no plot of n-torus Tn for n 3 in 3-dimensional 
physical space. Actually, Ii is the n radii of the n-torus. As explained in 2.1.2,   
if Ω i are incommensurable, that is, there do not exist not all zero integer ki such 

that 
1

0
n

i i
i

k Ω
=

=	 , then it can be proved that the trajectory winds up on the torus  

endlessly without closing, and is dense there. The corresponding motion is 
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quasiperiodic. If Ω i is commensurable, then the trajectory closes on the torus, 
and the motion is periodic.  

Hamiltonian systems expressed in action-angle variables are integrable. Generally, 
a Hamiltonian with n degree-of-freedom is an integrable system, if there exist n 
independent isolating integrals of motion 

 ( , ) ( 1,2, , )i iI C i n= =q p �  (2.4.12) 

where Ci are constants. Functions Ii are independent if the differentials dIi are 
linearly independent. Since n isolating integrals of motion exist, the 2n dimensional 
phase space is confined in an n-dimensional manifold that is homeomorphic to 
n-tori. The manifold is an invariant torus, because all trajectories starting on it 
remain there all the time. Hence integrable systems can never be chaotic, and 
their motion is periodic or quasiperiodic.  

In 1892, Poincaré proved that many dynamical systems, including the three-body 
problem, are not integrable. A system that has fewer constants of motion than 
degrees-of-freedom is called a nonintegrable system. Integrability is an exceptional 
property for Hamiltonian systems with degrees-of-freedom larger than 2. In fact, 
integrable systems are so rare that in general it is impossible to approximate a 
nonintegrable Hamiltonian system by a series of integrable ones. However, there 
is no direct criterion to determine the integrability. An integrable system is made 
slightly nonintegrable by adding a small disturbance. Such a system is called near 
integrable system. In terms of action-angle variables, the Hamiltonian of a near 
integrable system can be written as 

 0( , ) ( ) ( , )� V �= +I I I� �  (2.4.13) 

where 0�  is integrable and V is sufficiently small. If no disturbance is present, then 
V = 0 and the system is integrable. If V ≠ 0, the integrability is usually violated. 

In 1954, Kolmogorov described the qualitative picture of near integrable 
systems [21]. Arnol’d and Moser completely proved the conclusion that is known 
as famous Kolmogorov-Arnol’d-Moser theorem. In the following, KAM theorem 
is presented without proof, which is outside the scope of this monograph. 

KAM theorem: Suppose that Hamiltonian (2.4.13) satisfies the following 
conditions: 

(i) � (I,θ ) is a real analytic function on a region Σ0:⏐Imθ⏐ t, ⏐I−I0⏐ s; 

(ii) 0 ( 1,2, , )j
j

j n
I

Ω ∂
= =

∂
��

 calculated at I0 such that 0j

kI
Ω∂

≠
∂

 (nonde- 

generacy conditions); 
(iii) For arbitrary integer vector k = (k1, k2, ,kn) there exist C(Ω )>0 and μ >n−1 

such that the nonresonance condition holds as follows 



Chapter 2 A Survey of Chaos Theory 

55

 
1 1

n n

j j j
j j

k C k
μ

Ω
−

= =

� �
� �
� �
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Then for any ε>0, there is a δ = δ (ε, C, μ, s, t) such that, if |V |<δ in Σ0, the 
solution to equation 
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lies on an n-dimensional invariant torus  

 0 ( )
( )

Γ Θ
θ Θ Φ Θ

= +
= +

I I
 (2.4.16) 

where Γ and Φ are real analytic functions with period 2π defined on |ImΘ | t/2. 
The trajectory on the torus is governed by  
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The torus is sufficiently close to the torus of the undisturbed system, that is, 

 | | | |Γ Θ ε+ <  (2.4.18) 

The conditions in the KAM theorem require the disturbance leading to the 
nonintegrability to be sufficiently small, the Hamiltonian to be analytic function, 
the system to be nondegenerate, and the undisturbed frequencies to be nonresonant, 
in which the analytical condition and the nondegenerate condition can be technically 
weakened. Under these conditions, most nonresonant tori survive but may be slightly 
deformed. Hence the tori exist in the phase space of the disturbed system, and the 
trajectories wind densely on them. The number of independent frequencies is equal 
to the number of degrees-of-freedom of the system. Those tori are called KAM tori, 
KAM surfaces or KAM curves. 

2.4.2 Stochastic Layers and Global Chaos 

Now consider the resonance of a near integrable Hamiltonian system. In this case, 
Ω i is commensurable. The trajectories of Eq. (2.4.1) are periodic orbits on the 
n-dimensional invariant torus Tn. Since a conservative Hamiltonian always has 
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its energy as its constant of motion, its motion in 2n-dimensional phase space is 
confined to a (2n−1)-dimensional energy surface after given an initial energy. 
The intersection of the energy surface and the n-dimensional invariant tori yields 
a (2n−2)-dimensional surface Σ that can serve as a cross section to define a 
Poincaré map P0. The surface Σ cuts the torus Tn on a level curve Γ. Due to the 
periodicity of the motion, every point of curve Γ is a k-periodic point of P0 for 
some integer k. A k-periodic point of a map f is defined as the fixed point of f  k 
but not the fixed point of f  m for any m<k. For the disturbed system (2.4.13), the 
same surface Σ still defines a Poincaré map P, and the change of the level curve 
Γ reflects deformation of the invariant torus Tn. 

Before the discussion of Poincaré map P, some basic concepts of Hamiltonian 
maps need to be presented. A Hamiltonian map is a map that conserves volume 
in the phase space. Hence the determinant of its Jacobian is equal to 1. The Poincaré 
map of a Hamiltonian system is a Hamiltonian map. Consider a 2-dimensional 
Hamiltonian map M, which can serve as a Poincaré map of a Hamiltonian system 
with 2 degree-of-freedom. The Hamiltonian system has a 4-dimensional phase 
space, a 3-demensional energy surface, a 2-dimensional Poincaré section Σ, a 
2-dimensional invariant torus T2, and a 1-dimensional level curve Γ. Suppose z0 
to be a k-periodic point M. Then the Jacobian of Mk calculated at z0 with two 
eigenvalues λ1 and λ2 satisfying λ1λ2 = 1 because detDMk = 1. Therefore, λ1 and 
λ2 are two real numbers with 0<λ1<1<λ2 or a pair of complex conjugates with the 
unit modulus. The periodic point is defined as a hyperbolic point in the first case 
and an elliptic point in the second case. This conclusion is true for general cases. 
A periodic point of a Hamiltonian map must be either a hyperbolic point or an 
elliptic point. 

In 1935, based on Poincaré’s previous work in 1899, Birkhoff proved the 
following conclusion: For a sufficiently small disturbance, the level curve Γ breaks 
up into 2mk k-periodic points of Poincaré’s map P for some integer m; these 
periodic points lie near Γ ; mk points are hyperbolic and mk points are elliptic. 
This conclusion is referred as the Poincare-Birkhoff theorem. However, the 
theorem does not specify the value of the integer m. 

In the situation described by the Poincaré-Birkhoff theorem, Γ is called a 
resonant level curve, and a certain region around Γ containing the hyperbolic 
and elliptic points is called a resonance zone. Around each elliptic point there is 
a series of periodic orbits. Any two adjacent hyperbolic points are connected by 
heteroclinic orbits. If the heteroclinic orbits intersect transversely in a homoclinic 
point, then, according to the analysis presented in 2.3.2, the transverse heteroclinic 
point results in an infinitely complicated set of intersections, which are a cause of 
chaotic behavior. Such a complicated geometrical structure in a Hamiltonian system 
is called a stochastic layer. The regions around the elliptic points bounded by 
the heteroclinic orbits are called islands. Those islands compose an island chain 
if there are several elliptic points. For the situation mk = 3, Fig. 2.5 shows the 
breakup of a resonant level curve, and Fig. 2.6 illustrates a stochastic layer. 
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Figure 2.5 A resonant level curve breakup into hyperbolic points (·) and  

elliptic points (X ) 

 
Figure 2.6 A stochastic layer in a Hamiltonian system 

The newly formed elliptic points due to the breakup of a resonant level curve 
are surrounded by smaller level curves. In the resonance, according to the Poincaré- 
Birkhoff theorem, those curves become a chain of elliptic and hyperbolic points 
around the earlier elliptic points. This self-similar pattern can repeated infinitely, 
as depicted in Fig. 2.7, while most of these points on such a small scale that it is 
difficult to locate them in numerical simulations. Meanwhile, there are nonresonant  

 
Figure 2.7 Self-similarity near an elliptic point 
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level curves corresponding to KAM tori, which are preserved, near each elliptic 
point. Regular behaviors represented by nonresonant level curves coexist with 
chaos represented by stochastic layers in resonance zones. Thus, in Hamiltonian 
systems, initial conditions are so crucial that some sets of initial conditions lead to 
regular motion while others lead to chaos for the same set of system parameters. 
Therefore there is a complex nested structure of KAM tori surrounded by chains 
of elliptic and hyperbolic points. 

Stochastic layers exist in all nonintegrable Hamiltonian systems. However, for 
an integrable Hamiltonian system with very small disturbance, the stochastic layers 
may be so slight that they cannot be found in numerical calculations. Hence only 
regular motion occurs in the system. With the increase of the disturbance, the system 
exhibits chaotic behavior manifested in the emergence of observable stochastic 
layers. According to the KAM theorem, there still exist nonresonant KAM tori 
that divide the stochastic layers. Irregular motion due to the stochastic layers 
separated by the KAM tori is called local chaos. With further increase of the 
disturbance, the KAM tori separating the adjacent stochastic layers successively 
break up and the stochastic layers merge into larger stochastic layers. Thus the 
thickness of stochastic layers expands with the disturbance. For a sufficiently 
large disturbance, the resonance zones may overlap so that there is a transverse 
intersection of stable and unstable manifolds for two hyperbolic points from two 
different resonance zones. In this case, stochastic layers are no longer confined 
by KAM tori, and the corresponding behavior is called global chaos. In global 
chaos, there may still exist KAM tori not destroyed by the disturbance. Those tori 
resemble islands in a chaotic ocean, while there are smaller stochastic layers and 
KAM tori on the islands. Hence global chaos is a very complicated self-similar 
structure in the phase space. 

2.4.3  Arnol’d Diffusion 

The motions of integrable Hamiltonian (2.4.9) are confined in an n-dimensional 
torus (2.4.11) in a 2n-dimensional phase space. For a nonintegrable Hamiltonian 
system, stochastic layers appear near the intersection of (2n−1)-dimensional energy 
surface and (2n−1)-dimensional resonance surface defined by 

 0
1

( ) 0
n

i i
i

k Ω
=

=	 J  (2.4.19) 

where ki are integers not all equal to zero. The energy surface and the resonance 
surface intersect on a surface with the dimension (2n−1)−1 = 2n−2. The stochastic 
layers around the surface in a space with dimension (2n−2)+1 = 2n−1. Diverse 
curves form when the resonance surface cuts the energy surface, and these curves 
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interconnect each other to constitute a complex network spreading all over the 
energy surface. Such a network is called an Arnol’d web. 

In an m-dimensional space, an (m−1)-dimensional closed surface, such as Tm −1, 
can divide the space into two distinct parts, while the closed surface of less than 
m−1 dimension cannot do so. In a Hamiltonian system with n degrees-of-freedom, 
KAM tori is n-dimensional. Only if (2n−1)−1 = n i.e. n = 2, a KAM torus divides 
the (2n−1)-dimensional energy surface into two disconnected parts, and thus it 
can isolate stochastic layers. For n 3, trajectories in gaps between the tori can 
escape to other regions of the energy surface. Therefore, all stochastic layers on 
the energy surface are connected into a single complex network, which is the 
above-mentioned Arnol’d web. The web permeates the entire energy surface, 
intersecting or lying infinitesimally close to every point. For an initial condition 
within the web, the subsequent trajectory will eventually intersect every finite region 
of the energy surface. Such an irregular motion in a higher degree-of-freedom 
Hamiltonian system is called the Arnol’d diffusion. In 1964, Arnol’d proved 
that stochastic layers merge into a single web in a specific nonlinear Hamiltonian 
system [22]. 

The structures of Arnol’d web depends on the energy surface and the resonance 
surface, which are both dependent on the integrable Hamiltonian and independent 
of the disturbance. Thus there are global Arnol’d diffusions for arbitrary small 
disturbances. In the case when the disturbances are large enough to yield observable 
stochastic layers, the Arnol’d diffusion links together the chaotic regions on all scales. 
However, the Arnol’d diffusion is usually very slow. In 1977, N. N. Nehoroshev 
proved a rigorous but overestimated upper bound on the diffusion rate. For an 
integrable Hamiltonian system with a disturbance of the order ε, the change of 
system momentum satisfies 

 1( ) (0) 0, e
bat t εε

ε
−
 �− < ∈ � � �

p p  (2.4.20) 

where a and b are positive constants determined by the undisturbed integrable 
Hamiltonian system [23]. 

2.4.4 Higher-Dimensional Version of Melnikov Theory 

The idea of the Melnikov theory can be generalized to higher-dimensional system 
to develop quantitative methods for handling the Poincare-Birkhoff breakup of 
resonance zones. In the following, a version [24] proposed by Holmes and Marsden 
in 1983 is presented without proof. This version will be applied to treat a gyrostat 
with a rotor in the following chapter. 

Consider an n+1 degrees-of-freedom integrable Hamiltonian system with small 
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disturbance  

1 1 1 1 1
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(2.4.21) 

where μ are a set of m Lie-Poisson variables, (θ1,� ,θn, I1,� , In) are action-angle 
coordinates (n 2), ε is a small parameter, and 1�  is 2π-periodic in θ1,� ,θn. 

For integrable Hamiltonian system with ε = 0, μ is decoupled from action 
coordinates (I1,� , In). Suppose that F contains a homoclinic (or heteroclinic) 
orbit μh with energy h0. The coadjoint orbit containing μh is assumed to be two- 
dimensional. The saddle points for μh are denoted μ±, which may be coincident. 
Suppose for j = 1,� , n, Ωj(Ij) = Gj′(Ij)>0. For a given energy 

 1 1( , , , , , , ; )n nI I hθ θ ε =� �� μ  (2.4.22) 

System (2.4.21) has a reduced integrable part with the Hamiltonian 
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The Hamiltonian system L0 has two (n–1)-parameter family of invariant 
(n–1)-dimensional tori T±(h1,� , hn-1) defined by 

 1, ( ) , ( ( )) (0) (mod 2 �) ( 1, , 1)j j j j j j n jG I h G h j nθ Ω θ θ−
±= = = + = −�μ μ  

   (2.4.24) 

where hj is a constant. Correspondingly, the system for H0 has two n-parameter 
family of invariant tori T± (h1,� ,hn). Henceforth the phase constants of integration 
θj(0) is written as θ0j for j = 1,� ,n. The tori T±(h1,� , hn – 1) are connected by the 
n-dimensional homoclinic manifold defined by 

h 1
0 0( ), ( ) , ( ( )) (mod 2 �) ( 1, , 1)n n j j j j j j n jG I h G h j nθ θ θ Ω θ θ−= + = = + = −�μ μ

(2.4.25) 

where the phase constant θ0n associated with the reduced degrees-of-freedom 
appears explicitly. This manifold consists of the coincident stable and unstable 
manifolds of the tori T±(h1,�,hn – 1); i.e. W s(T±(h1,�,hn-1)) = Wu(T±(h1,�,hn – 1)) 
given by Eq. (2.4.25). 

For ε ≠ 0, a system defined by Hamiltonian (2.4.21) possesses a Poincaré map 
Pε from a piece of (μ,θ1,�θn – 1, I1,�, In – 1) space to itself where θn goes through 
an increment of 2π, starting at some fixed value θn0. Assume that the constants 
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Gi′(Ii) = hi(i = 1,�,n) are chosen so that the disturbed frequencies Ωi(Ii) satisfy 
the nondegeneracy conditions Ωi′(Ii) ≠ 0 and the nonresonance condition (2.4.14) of 
the KAM theorem. These conditions ensures that the tori T±(h1,�,hn – 1) perturb to 
invariant tori Tε±(h1,�,hn–1) for Pε with sufficiently small ε. Let h = h0+h1+�+hn 
where hi>0 (i = 1,�,n) and the undisturbed homoclinic manifold be filled with an 
n-parameter family of orbits given by 

 h
1 1 1 1 01 0 1( , , , , , , ) ( ( ), ( ) , , ( ) , , , )n n n n n nI I t I t I t I Iθ θ Ω θ Ω θ= + +� � � �μ μ   

   (2.4.26) 

Pick one such orbit and let {{F, �1}} denote the Lie-Poisson bracket of F(μ) and 
�1(μ,θ1,�θn, I1,�, In) evaluated on this orbit. Similarly, let {Ij, H1} = –∂H1/∂θj 
( j = 1,�,n–1) be evaluated on this orbit. Define the Melnikov vector 
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Assume that the multiply 2π-periodic Melnikov vector � has at least one 
simple zero; i.e. there is a point θ0 = (θ10,�θn0) for which 

 0 0( ) 0, det( ( )) 0= ≠D� �θ θ  (2.4.29) 

where D�  is the n× n matrix of partial derivatives of �1,�,��n with respect 
to θ10,�θn0, the initial phases of the orbit. Under these assumptions, Holmes and 
Marsden demonstrated that, for sufficiently small ε, the disturbed stable and unstable 
manifolds W s(Tε ±) and Wu(Tε ±) of the disturbed tori Tε ± intersect transversely. 
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