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Preface 

 
 
 
 
 
 
 
 
 
 
The development of spacecraft has drawn considerable attentions in the field of 
dynamics since the 1950s. The spacecraft can be regarded as a particle or as a 
body, depending on whether one focuses on the spacecraft’s orbital motion or on 
its rotational motion about the center of mass. Spacecraft attitude dynamics deals 
with the rotational motion of spacecraft. In the discussion of attitude dynamics, 
the rotation of spacecraft is usually assumed not to alter the orbit, while the orbit 
sometimes influences the rotational motion. Almost all spacecraft have some 
attitude requirements, either explicit pointing requirements for antennas or cameras, 
requirements for solar panel orientation, or simply a requirement for a given 
spin-axis direction. All the requirements are implemented by the design of attitude 
controls. The strategies chosen in the control process may limit the useful lifetime 
of the spacecraft, since an all-thruster control system depletes its propellant 
supply. Attitude dynamics forms a theoretical basis of the design and control of 
spacecraft. The present monograph is concerned with spacecraft attitude motion, 
although essential elements of orbital dynamics will be introduced and the effects 
of orbital motion will be included in a few cases. 

With the development of nonlinear dynamics, chaos in spacecraft attitude 
dynamics has stirred renewed interests since the 1990s. In fact, for astronautical 
investigations, the predictability of spacecraft rotations is critical, and thus chaotic 
motions must be avoided. On the other hand, there are scientific experiments that 
require the whole celestial sphere to be scanned, and in those cases the chaotic 
rotation may be desirable. Therefore chaos theory offers a new method and 
viewpoint for designing spacecraft. In addition, spacecraft attitude dynamics also 
provides new mathematical models for engineering application of chaos analysis. 
Although there are some excellent monographs and textbooks on spacecraft 
attitude dynamics, there are few treatises on chaotic attitude motion. The present 
monograph focuses on chaos in spacecraft attitude dynamics.  

The monograph begins with the necessary fundamentals. Chapter 1 provides a 
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primer on spacecraft dynamics, and Chapter 2 presents a survey of chaos theory. 
Different chaotic attitude motions are treated in Chapters 3 and 4. Chapter 3 
considers only the planar motion of spacecraft, while Chapter 4 covers the spatial 
motion. The monograph ends with Chapter 5, dealing with controlling chaotic 
attitude motion. 

The main goal of the monograph is to provide readers with the knowledge of 
theory and application of chaos and its control in spacecraft attitude dynamics, 
including the basic concepts, main approaches and the latest research progress. 
The material is appropriate for university teachers, scientists, engineers, and 
graduate students in the fields of mechanics, applied mathematics, and aerospace 
science. 

Except for some background presented in Chapters 1 and 2, as well as Sections 
4.1 and 5.1, all other materials contained in the monograph are adopted from 
research papers of the authors and their co-workers. The research work was 
financially supported by the National Natural Science Foundation of China (Project 
Nos. 19782003 and 10082003), the National Outstanding Young Scientists 
Foundation of China (Project No. 10725209), Shanghai Municipal Development 
Foundation of Science and Technology (Project Nos. 98JC14032 and 98SHB1417), 
Shanghai Municipal Education Commission Scientific Research Project (No. 
2000A12), and Shanghai Leading Academic Discipline Project (No. Y0103). The 
first author thanks his former PhD students Professor Peng Jianhua, Professor Chen 
Liqun, Dr. Cheng Gong, and his postdoctoral fellow Professor Yu Hongjie for 
their collaborations on related research. The second author thanks Professor  
Liu Yanzhu, who, serving as his PhD supervisor, introduced him to this field. He 
also thanks his hosts, Professor Jean W. Zu (University of Toronto) and Professor 
C. W. Lim (City University of Hong Kong) for their assistance during his visit to 
their institutes so that he could complete his portions of the book. 

The authors thank Tsinghua University Press and Springer for the publication 
of this book. They also thank Shanghai Jiao Tong University for partial financial 
support of the publication. 

 
 

Yanzhu Liu (Shanghai Jiao Tong University) 
Liqun Chen (Shanghai University)    
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Chapter 1 Primer on Spacecraft Dynamics 

Abstract This chapter provides a fundamental theory of spacecraft dynamics. 
After a brief survey of gravitational field, the two-body problem is summarized 
as a simplified model of orbit motion of a spacecraft around the Earth. The 
main environmental torques acting on spacecraft, the gravitational torque 
and magnetic torque are introduced. The dynamical equations of attitude 
motion of a spacecraft are established, where the Euler’s equations and 
Poisson’s equations are applied for a rigid spacecraft in gravitational field. 
The stability problems of the relative equilibrium of a rigid spacecraft in 
circular orbit under gravitational torque are analyzed by using the first 
approximation method and the Lyapunov’s direct method. The attitude motions 
of a gyrostat are analyzed as a model of spacecraft with axisymmetric rotors. 
The permanent rotations and its stability of a spinning spacecraft are discussed 
under torque-free assumption. 

Keywords orbit dynamics, two-body problem, gravitational torque, magnetic 
torque, Euler’s equations, Poisson’s equations, torque-free rigid bodies, 
gyrostats 
 
 

This chapter presents fundamental theory of spacecraft dynamics that will be 
needed in chapters 3 and 4. The chapter begins with elementary orbit dynamics, 
which provides necessary background for attitude dynamics in addition to its 
own merits. After a brief survey of gravitational field of a particle and a rigid 
body, a satellite around the Earth is modeled as the two-body problem, and the 
first integrals are derived from the dynamical equations as the energy integral, the 
momentum integral, the Laplace integral and the time integral. The Keplerian orbit 
is discussed with the emphasis on the elliptic motion. Then the chapter turns to 
attitude dynamics by introducing main environmental torques acting on spacecraft, 
the gravitational torque and the magnetic torque. Euler’s equations and Poisson’s 
equations are applied to the attitude motion of spacecraft in the gravitational field. 
As two significant special solutions to Euler’s equations and Poisson’s equations, 
planar libration and spatial relative equilibrium are analyzed. The dynamical 
equations of a gyrostat are also developed. The chapter ends with attitude motion 
of torque-free rigid bodies and gyrostats. The influence of energy dissipation to 
spinning spacecraft is investigated. The complete treatments of spacecraft dynamics 
can be found in [1–10]. 
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1.1  Orbital Motion of Spacecraft 

1.1.1  Gravitational Field of a Particle 

According to Newton’s law of universal gravitation, a particle m  is attracted by 
another particle em  by a force 

 e
2

mmG
r r

� �= − � �
� �

rF  (1.1.1) 

where r  denotes the position vector of point m  with respect to point em , m  and 
em  stand for the masses of corresponding points, and 11 3 26.67 10 m kg sG −= × ⋅  is 

the universal gravitational constant (Fig. 1.1). 
Define the potential function U  of the gravitational field produced by the 

point em  as 

 eGmU
r r

μ= =  (1.1.2) 

where eGmμ =  is a constant depending only on point em . The gravitational force 
F  acting on point m  can be written as 

 m U= ∇F  (1.1.3) 

where ( ) ( ) ( )x y z∇ = ∂ ∂ + ∂ ∂ ∂ ∂i j + k , and , ,i j k  represent basis-vectors of a 
reference coordinate frame ( - )O xyz  with point em  as the origin O. Define V  

mU= −  as the potential energy of point m  in the gravitational field of particle em . 

 
Figure 1.1 Gravitational force of a particle 

1.1.2 Gravitational Field of a Rigid Body 

To discuss the gravitational field of a rigid body, the central principal axes of a 
body are established as the reference coordinate frame e( - )O xyz , where eO  is 
the mass center of a body. The position vectors of a particle m  with respect   
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to the point eO  and an arbitrary point P  of the body are denoted as r  and ′r , 
respectively. It follows that ′ =r r − ρ , where ρ  is the position vector of point 
P  with respect to point eO  (Fig. 1.2). Let ( 1,2,3)i iα =  be the direct cosines of 
the vector r  relative to axes of e( - )O xyz , and , ,x y z  be the coordinates of 
point P  in e( - )O xyz . Then the vector ′r  can be written as 

 1 2 3( ) ( ) ( )r x r y r zα α α′ − − −r = i + j + k  (1.1.4) 

 
Figure 1.2 Gravitational force of a rigid body 

The potential function U  of a body is defined as 

 d

S

mU G
r

=
′���  (1.1.5) 

where the domain of integration S  is the whole body. When rρ � , substituting 
Eq. (1.1.4) into Eq. (1.1.5) and considering only the second terms of rρ , one 
obtains 

 e
2

e

11 ( 3 )
2

GmU A B C I
r m r

	 

= + + + −� �

 �
 (1.1.6) 

where em  is the mass, and , ,A B C  are the principal moments of inertia of a body 
in e( - )O xyz , respectively,  

 2 2 2 2 2 2( )d , ( )d , ( )d
S S S

A y z m B z x m C x y m= + = + = +��� ��� ���  (1.1.7) 

and I  is defined as 

 2 2 2
1 2 3I A B Cα α α= + +  (1.1.8) 

In the case when a body is axisymmetric with respect to z-axis, let A B=     
and introduce eGmμ =  as the gravitational parameter. Equation (1.1.6) can be 
simplified as 

 2
32

e

1 (3 1)
2
C AU

r m r
μ α

	 
−= − −� �
 �

 (1.1.9) 
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For a sphere-symmetric body, A C= . Thus 

 U
r
μ=  (1.1.10) 

which is the same as Eq. (1.1.2). It means that the gravitational field of a 
spherical body is equivalent to that of a particle, in which the whole body mass  
is located in its mass center. Equation (1.1.9) or (1.1.10) can be used to express 
the gravitational field of the Earth, which has the gravitational parameter 

3 2398 601.19 km sμ = . 

1.1.3 Dynamical Equations of Two-body System 

Assume that the Earth may be simplified as a rigid sphere. The orbital motion of 
a satellite around the Earth can be treated as the two-body problem e( , )m m  with 
particle m  as a satellite attracted by particle em  as the Earth. Let eO  denote the 
mass center of this system, r1 and r2 denote the position vectors of m  and em  with 
respect to eO . Then three points m, em  and eO  are collinear with the following 
relationship (Fig. 1.3): 

 1 e 2 0m m+ =r r  (1.1.11) 

 
Figure 1.3 Two-body system 

The dynamical equations of points m  and em  can be derived from Newton’s 
second law as 

 1 e,m m= = −r F r F�� ��  (1.1.12) 

where F  is the gravitational force acting on point m,  

 e
2

mmG
r r

� �= − � �
� �

rF  (1.1.13) 

Substitution of 1 2−r = r r  into Eq. (1.1.12) leads to 
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 e
1 2

e

1 1
mm

m m
� � � �= + = − +� � � �

� �� �
r r r  (1.1.14) 

Thus the following equation can be derived from Eq. (1.1.12) 

 3 0
r
μr + r =��  (1.1.15) 

where e( )G m mμ = + , which is approximately equal to the gravitational parameter 
of the Earth eGmμ = , and the mass center eO  coincides with em  with sufficient 
accuracy since em m� . Introduce the velocity v  of point m  and then rewrite 
the dynamical Eq. (1.1.15) as 

 3 0
r
μv + r =�  (1.1.16a) 

 r = v�  (1.1.16b) 

1.1.4 First Integrals 

(1) Energy Integral 

Dot-multiplying each term of Eq. (1.1.16a) by v = r� , and observing that 
vv⋅v v =� �, rr⋅r r =� �, one obtains 

 
2d 0

d 2
v

t r
μ� �

− =� �
� �

 (1.1.17)  

Thus the integral of energy can be derived as 

 
2

2
v E

r
μ− =  (1.1.18) 

where 2 2v  and rμ  are, respectively, the kinetic energy and the potential energy 
of a satellite with unit mass, and the constant E  is the conserved total specific 
energy. 

(2) Integral of Angular Momentum 

Cross-multiplying each term of Eq. (1.1.16a) with r  leads to 

 d ( ) 0
dt

× =r v  (1.1.19) 

from which the integral of angular momentum is derived as 

 ×r v = h  (1.1.20) 
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where h  is the conserved specific angular momentum of a satellite with respect 
to the Earth center eO . Since the constant vector h  is orthogonal to vectors r 
and v, the orbital plane composed of vectors r  and v  has a fixed orientation in 
space. In order to determine the spatial position of the orbital plane, define an 
inertial reference frame e 0 0 0( - )O X Y Z  with the mass center of the Earth eO  as 
the origin, where 0Z -axis is parallel to the polar axis of the Earth, the plane 

0 0( , )X Y  is parallel to the equatorial plane of the Earth, and 0X -axis is along the 
node of the ecliptic plane and the equatorial plane with direction to the first point 
of Aries. A celestial sphere is fixed on e 0 0 0( - )O X Y Z  with center eO  and arbitrary 
radius. Within two intersection points of the node line of plane 0 0( , )X Y  and the 
orbital plane with the celestial sphere, select point N  corresponding to the ascension 
of a satellite as the ascending point. The angle Ω  between eO N  and e 0O X  is 
defined as the right ascension of the ascending node. The incline angle i  of the 
orbital plane with respect to the plane 0 0( , )X Y  is defined as the inclination angle 
of the orbital plane. Therefore, the orientation of the orbital plane can be determined 
by two angles Ω  and i  (Fig. 1.4). Denote the angle between the velocity v  and  

 
Figure 1.4 Celestial sphere and orbital plane 

the local horizontal plane by θ . Then the area dS  swept by the position vector r 
in time interval dt  can be calculated as (Fig. 1.5) 

 ( )1 1 1d d cos d d
2 2 2

S r v t t h tθ= = × =r v  (1.1.21) 

Then the magnitude of vector h  is equal to two times the area velocity swept by 
position vector r . 

 d2
d
Sh
t

=  (1.1.22) 
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It means that the satellite moves in the orbit with a constant area velocity. 

 
Figure 1.5 Area swept by vector r 

(3) Laplace’s Integral  

Cross-multiplying each term of Eq. (1.1.16a) by h, one obtains 

 3

d 0
dr t r

μ μ� �× + × = × − =� �
� �

� rv h r h v h  (1.1.23) 

from which the Laplace’s integral is derived as follows 

 e
r
μ× − =rv h  (1.1.24) 

Since both vectors ×v h  and r lie in the orbital plane, the constant vector e should 
be also restricted to the same plane (Fig. 1.4). The magnitude of vector e can be 
determined by constants E  and h  as 

 
2 2

2
2 2

1 21 Ehe
r
μ

μ μ
� �= × − = +� �
� �

rv h  (1.1.25) 

Consequently, the Laplace’s integral provides only one scalar relationship to specify 
the location of vector e in the orbital plane. The angle ω  between e and eO N  is 
selected as an independent constant, which is called the orbit angle of perigee. 
Dot-multiplying r by e leads to 

 1 p r
rμ

� �
⋅ = ⋅ × − = −� �

� �

rr e r v h  (1.1.26) 

where p  is called the semi-parameter expressed as 

 
2hp
μ

=  (1.1.27)  

Let the angle ν  between the position vector r and vector e be the angular 



Chaos in Attitude Dynamics of Spacecraft 

8 

coordinate of point m  in the orbital plane. ν  is called the true anomaly of a 
satellite. Since cosre ν⋅ =r e , comparing it with Eq. (1.1.26) yields 

 
1 cos

pr
e ν

=
+

 (1.1.28)  

Equation (1.1.28) determining the position of point m  in the orbital plane is a conic 
section with eccentricity e. Therefore, vector e is called the eccentricity vector. 
The angle u between vector r and eO N  is used as another angular coordinate to 
specify the location of point m  in the orbital plane. 

 u ν ω= +  (1.1.29) 

(4) Time Integral 

In order to determine the relationship between the position and the time, Eq. (1.1.22) 
is rewritten as 

 2 d
d

r h
t
ν =  (1.1.30) 

Thus the angular velocity of radius-vector r in the orbital plane can be expressed as 

 2

d
d

p
t r

μν =  (1.1.31) 

Substitution of Eq. (1.1.28) into Eq. (1.1.31) leads to the time integral as 

 
( )

3

0 0

d
1+ cos

pt t
e

ν ν
μ ν

= + �  (1.1.32) 

where 0t  is the time at 0ν = , i.e. the time of passing the perigee. 
Aforementioned first integrals contain 8 integration constants: E, h, Ω, I, ω, p,  

e, and t0, in which only 6 constants are needed in order to determine the motion   
of point m. When 6 constants are chosen, the other 2 can be calculated by    
Eqs. (1.1.25) and (1.1.27). The 6 independent integration constants are called 
orbital elements. 

1.1.5 Characteristics of Keplerian Orbit 

Establish a reference frame e( - )O ξηζ  in the orbital plane with eO  as the origin, 
eO ξ  along the eccentricity vector e, and eO ζ  normal to the plane. Since ( )r ν = 

( )r ν− , the orbit curve is symmetrical with respect to eO ξ . The intersection point 
of the orbit and the vector e is called the perigee, and denoted by π , which has a 



Chapter 1 Primer on Spacecraft Dynamics 

9

minimum distance to point eO . The distance between m and eO  is equal to the 
semi-parameter p  when the orbit intersects eOη  (Fig. 1.6). 

 
Figure 1.6 Keplerian orbit 

According to the character of conic section, the orbit curve belongs to different 
types determined by the eccentricity e: ellipse ( 1)e < , parabola ( 1)e = , or hyperbola 
( 1)e > . As the hyperbolic curve is unrestricted in space, in order to ensure the 
positiveness of 2v , the constant of the energy integral (1.1.18) should be 0E > . 
On the contrary, when 0E < , the range of point m  is restricted by r Eμ  
and corresponds to an ellipse. The parabola is a critical case when 0E = . The 
velocity pv  of a parabolic orbit can be obtained from Eq. (1.1.18) as 

 p
2v
r
μ=  (1.1.33) 

which is called the parabolic velocity or the escape velocity. Thus the following 
criteria can be derived: 

0E < , pv v< :  ellipse 

0E = , pv v= :  parabola 

0E > , pv v> :  hyperbola 

Establish a cylindrical coordinates frame e( - )O XYZ  with radial axis eO X  along 
the vector r, transverse axis eO Y  towards the advanced direction of motion, and 
the normal axis eO Z  parallel to eO ζ . The true anomaly ν  is the angle between 
two coordinate planes ( , )X Y  and ( , )ξ η . e( - )O XYZ , rotating around eO  with 
angular velocity d dtν , is called the orbital reference frame. Equations (1.1.31) 
and (1.1.28) yield, respectively, the radial velocity Xv  and transverse velocity Yv  
of point m  
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 d d d sin
d d dX
r rv e
t t p

ν μ ν
ν

= = =  (1.1.34a) 

 d (1 cos )
dYv r e

t p
ν μ ν= = +  (1.1.34b) 

Transforming it to e( - )O ξηζ  leads to 

 sinv e
pξ
μ ν= − , ( cos )v e

pη
μ ν= +  (1.1.35) 

1.1.6 Elliptic Orbit 

The elliptic orbit with eO  as one of focuses is a special case of Keplerian motion 
when 1e < . Assume that the orbit intersects eO ξ  at two points: perigee π  and 
apogee α , the distances from which to point eO  are minimum and maximum, 
respectively (Fig. 1.7).  

 
Figure 1.7 Elliptic orbit 

From Eq. (1.1.28), 

 
min

max

(0)
1

( )
1

pr r r
e

pr r � r
e

π

α

= = =
+

= = =
−

 (1.1.36) 

Thus the semi-major axis a  of ellipse can be obtained 

 2

1 ( )
2 1

pa r r
eπ α= + =

−
 (1.1.37) 
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Equation (1.1.36) can be rewritten as  

 (1 ), (1 )r a e r a eπ α= − = +  (1.1.38) 

The distance of the center O  of ellipse to eO  is 

 eOO a r aeπ= − =  (1.1.39) 

The distance of the top C  of ellipse to eO  is equal to the semi-major axis a, then 
the semi-minor axis b  can be obtained with the help of the triangle eOO C  as 

 21b a e= −  (1.1.40) 

The formula of eccentricity e  is derived as 

 
2 2 r ra be
a r r

π α

π α

−−= =
+

 (1.1.41) 

Eliminating h from Eqs. (1.1.25) and (1.1.27) and using Eq. (1.1.37), one   
obtains 

 0
2

E
a
μ= − <  (1.1.42) 

Substitution of Eq. (1.1.42) into the energy integral (1.1.18) results in the velocity v 
as the function of r  

 2 1v
r a

μ � �= −� �
� �

 (1.1.43) 

Thus the velocities at π  and α  can be determined as 

 
max

min

1
1
1
1

c

c

ev v v
e
ev v v
e

π

α

+= =
−
−= =
+

 (1.1.44) 

where cv  is the velocity of a circular orbit with radius a  

 cv
a
μ=  (1.1.45) 

The circular velocity cv  is equal to the velocity at the top point C. 
In order to calculate the time integral (1.1.32), one sets Cartesian coordinates 

( - )O xy  on the ellipse with center O  as the origin and Ox  along eO ξ . Assume that 
point m′  lies on the auxiliary circles with center O  and radius b  and has the same 
abscissa as point m. Define the angle of ∠ eO Om′  as the eccentric anomaly and 
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denote it by E. The coordinates of point m in ( - )O xy  can be expressed by E as 

 cos , sinx a E y b E= =  (1.1.46) 

The projections of point m  on eO ξ  and eOη  are 

 
2

cos (cos )

sin 1 sin

r x ae a E e

r y a e E

ξ ν

η ν

= = − = −

= = = −
 (1.1.47) 

from which the orbit equation with variable E  is obtained as 

 (1 cos )r a e E= −  (1.1.48) 

Substitution of Eq. (1.1.48) into Eq. (1.1.47) gives 

 
2cos 1 sincos , sin

1 cos 1 cos
E e e E

e E e E
ν ν− −= =

− −
 (1.1.49) 

Differentiation of Eq. (1.1.49) with respect ν  and E  leads to 

 
21d d

1 cos
e E

e E
ν −=

−
 (1.1.50) 

Substituting Eqs. (1.1.49) and (1.1.50) into Eq. (1.1.32), and expressing p by a, one 
obtains 

 
3

( sin )at E e Eτ
μ

= + −  (1.1.51) 

Inserting 2�E = , one can derive the period of the elliptic motion 

 
3

2� aT
μ

=  (1.1.52) 

1.2 Environmental Torques Acting on Spacecraft 

1.2.1 Gravitational Torque 

The gravitational torque is fundamental to the attitude motion of a spacecraft. 
Consider an arbitrary rigid body attracted by the Earth, which is simplified by a 
central gravitational field with center eO  and gravitational parameter μ . Denote 
the position vectors of the mass center O  and an arbitrary point P  of the body 
with respect to the attracted center eO  by r  and ′r , respectively. Let ′ = +r r ρ , 
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where ρ  is the position vector of point P  with respect to point O  (Fig. 1.8). 

 
Figure 1.8 Gravitational torque on a rigid body 

Establish a principal coordinate frames ( - )O xyz  fixed on the body, and ( - )O XYZ  
with the axes parallel to e( - )O XYZ . The direct cosines between ( - )O xyz  and 
( - )O XYZ  are listed in Table 1.1. 

Table 1.1 Direct cosines 

 X  Y  Z  

x  1α  1β  1γ  

y  2α  2β  2γ  

z  3α  3β  3γ  

 
Let , ,i j k  be the basis-vectors of ( - )O xyz  and , ,x y z  be the coordinates of 

point P  in ( - )O xyz . Then the vectors r  and ρ  can be written as 

 1 2 3( )r α α α= + +r i j k ,  x y z= + +i j kρ  (1.2.1) 

Substitution of Eq. (1.2.1) into ′ = +r r ρ  leads to 

 1 2 3
x y zr
r r r

α α α	 
� � � � � �′ = + + +� � � � � �� �� � � � � � �
r i + j + k  (1.2.2) 
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The gravitational force dF  acting on an infinitesimal mass element dm  at point 
P is 

 2

dd m
r r
μ ′� �= − � �′ ′� �

rF  (1.2.3) 

The gravitational torque gM  acting on the whole body with respect to point O is 

 3d dg
S S

m
r

μ
′×= × = −

′��� ���
rM F ρρ  (1.2.4) 

Substituting Eqs. (1.2.1) and (1.2.2) into Eq. (1.2.4), and considering only the 
second terms of , ,x r y r z r , one obtains the components ( 1,2,3)giM i =  
of gM  in ( - )O xyz  

 

( )

( )

( )

1 2 33

2 3 13

3 1 23

3

3

3

g

g

g

M C B
r

M A C
r

M B A
r

μ α α

μ α α

μ α α

= −

= −

= −

 (1.2.5) 

The gravitational torque depends on the principal moments of inertia, the attitude 
of the body in the orbit, and the distance of the body to the Earth. 

The potential energy V  of the body can be calculated as  

 d

S

mV
r

μ= −
′���  (1.2.6) 

Substitution of Eq. (1.2.2) into Eq. (1.2.6) yields 

 2

1 ( 3 )
2

V m A B C I
r r
μ 	 
= − + + + −� � �

 (1.2.7) 

where I  is defined by Eq. (1.1.8). The components ( 1,2,3)giM i =  of the 
gravitational torque can be expressed by the derivatives of potential energy V as 

 

1 2 3
3 2

2 3 1
1 3

3 1 2
2 1

g

g

g

V VM

V VM

V VM

α α
α α

α α
α α

α α
α α

∂ ∂= −
∂ ∂
∂ ∂= −
∂ ∂
∂ ∂= −
∂ ∂

 (1.2.8) 
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1.2.2 Magnetic Torque 

In addition to the gravitational torque, the magnetic torque has a significant influence 
on a magnetized vehicle moving in the geomagnetic field. The polar axis of the 
geomagnetic field is inclined by about 11.5  against the geographic dipole e eO Z . 
When the difference between geomagnetic dipole and the geographic dipole is 
neglected, the vector mH  of the magnetic flux density of the Earth can be described 
by a simple model as 

 0 0 0 0
m m0 0 03( )H 	 
− ⋅ �H = Z Z X X  (1.2.9) 

where Hm0 = μm/r3, 17
m 1 10 wb mμ = × ⋅  is the Earth magnetic dipole strength, and 

0
0Z  and 0X  are basis-vectors of geographic axis e 0O Z  and the Earth-pointing 

axis eO X  at the location of spacecraft, respectively (Fig. 1.9). Define the inertial 
reference frame e 0 0 0( - )O X Y Z  with geographic axis e 0O Z  and e 0O X  along the 
ascending node eO Y  of the orbital plane (Fig. 1.10). The direct cosines between  

 
Figure 1.9 The geomagnetic field 

 
Figure 1.10 The relationship between the orbital frame and inertial frame 
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e( - )O XYZ  and e 0 0 0( - )O X Y Z  are listed in Table 1.2, where i  is the inclination 
angle of the orbital plane and the orbital angle u ν ω= +  is defined by Eq. 
(1.1.29). 

Table 1.2 Direct cosines 

 X  Y  Z  

0X  cosu  sinu−  0  

0Y  cos sini u  cos cosi u  sin i−  

0Z  sin sini u  sin cosi u  cos i  
 
Projecting the vector mH  into the orbital frame e( - )O XYZ , we obtain 

 0 0 0
m m m mX Y ZH H H= + +H X Y Z  (1.2.10) 

where 

 
m m0

m m0

m m0

2 sin sin
sin cos
cos

X

Y

Z

H H i u
H H i u
H H i

= −
=
=

 (1.2.11) 

Assume that the spacecraft is magnetized with a magnetic moment mI , the direct 
cosines of which with respect to e( - )O XYZ  are denoted by , ,α β γ . It follows that 

 0 0 0
m m ( )I α β γ+ +I = X Y Z  (1.2.12) 

The magnetic torque mM  induced by the geomagnetic field is 

 m m m= ×M I H  (1.2.13) 

Substitution of Eqs. (1.2.11) and (1.2.12) into Eq. (1.2.13) leads to 

 
m m m m

m m m m

m m m m

( )
( )
( )

X Z Y

Y X Z

Z Y X

M I H H
M I H H
M I H H

β γ
γ α
α β

= −
= −
= −

 (1.2.14) 

The magnetic torque (1.2.14) can be expressed by the derivatives of the magnetic 
potential energy mV  as 

 

m m
m

m m
m

m m
m

X

Y

Z

V VM

V VM

V VM

γ β
β γ

α γ
γ α

β α
α β

∂ ∂
= −

∂ ∂
∂ ∂

= −
∂ ∂
∂ ∂

= −
∂ ∂

 (1.2.15) 
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where the potential energy of magnetic field mV  is defined as 

 m m m m m( )X Y ZV I H H Hα β γ= − + +  (1.2.16) 

Besides the aforementioned gravitational and magnetic torques, there exist other 
environmental torques, for example, the aerodynamic torque and electromagnetic 
radiation torque [9,10]. 

1.3 Attitude Motion of Spacecraft in the Gravitational Field 

1.3.1 Euler’s Equations and Poisson’s Equations 

The theorem of angular momentum requires that the absolute time derivative of 
the angular momentum G  of a rigid body respect to its mass center O  equals to 
the resultant external torque M on the body with respect to the same point, namely 

 =G M�  (1.3.1) 

When the differentiation of G  is performed in the body-fixed reference frame, it 
yields 

 ° + × =G G Mω  (1.3.2) 

where the hollow point symbol denotes the local derivation in the body-fixed 
frame, and ω  is the angular velocity of the body. Let J be the inertia tensor of 
the body. The angular momentum G  is expressed as 

 = ⋅G J ω  (1.3.3) 

Then Eq. (1.3.2) becomes 

 ( )⋅ + × ⋅ =J J M�ω ω ω  (1.3.4) 

Let , ,A B C  be the central principal inertia moments of the body relative to 
( - )O xyz , iω  and ( 1,2,3)iG i = be components of ω  and G  in ( - )O xyz , then Eq. 
(1.3.3) gives 

 1 1 2 2 3 3, ,G A G B G Cω ω ω= = =  (1.3.5) 

Projecting Eq. (1.3.2) into ( - )O xyz , one obtains the Euler’s equations as follows 

 ( )1 2 3 1A C B Mω ω ω+ − =�  (1.3.6a) 
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 ( )2 3 1 2B A C Mω ω ω+ − =�  (1.3.6b) 

 ( )3 1 2 3C B A Mω ω ω+ − =�  (1.3.6c) 

The Euler’s equations can also be expressed by the components of G  as 

 1 2 3 1
C BG G G M

BC
−� �+ =� �

� �
�  (1.3.7a) 

 2 3 1 2
A CG G G M
CA
−� �+ =� �

� �
�  (1.3.7b) 

 3 1 2 3
B AG G G M

AB
−� �+ =� �

� �
�  (1.3.7c) 

If the spacecraft is only subjected to the gravitational torque, let i giM M=  
( 1,2,3)i = , then the substitution of Eq. (1.2.5) into Eq. (1.3.6) yields 

 1 2 3 2 33

3( ) ( )A C B C B
r
μω ω ω α α+ − = −�  (1.3.8a) 

 2 3 1 3 13

3( ) ( )B A C A C
r
μω ω ω α α+ − = −�  (1.3.8b) 

 3 1 2 1 23

3( ) ( )C B A B A
r
μω ω ω α α+ − = −�  (1.3.8c) 

Moving in the orbit, the orbital reference frame ( - )O XYZ  rotates around the 
point eO  with the angular velocity d dtνω ν=  determined by Eq. (1.1.31). Then 
the following equations can be derived from derivatives of the basis vectors 

0 0 0, ,X Y Z  of ( - )O XYZ  with respect to time t  

 0 0 0 0°
νω+ × = ×X X Z Xω  (1.3.9a) 

 0 0 0 0°
νω+ × = ×Y Y Z Yω  (1.3.9b) 

 0 0° + × = 0Z Zω  (1.3.9c) 

Projection of Eqs. (1.3.9) into ( - )O xyz  leads to the Poisson’s equations as 

 1 3 2 2 3 1να ω α ω α ω β= − +�  (1.3.10a) 

 2 1 3 3 1 2να ω α ω α ω β= − +�  (1.3.10b) 

 3 2 1 1 2 3να ω α ωα ω β= − +�  (1.3.10c) 

 1 3 2 2 3 1νβ ω β ω β ω α= − −�  (1.3.10d) 
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 2 1 3 3 1 2νβ ω β ω β ω α= − −�  (1.3.10e) 

 3 2 1 1 2 3νβ ω β ω β ω α= − −�  (1.3.10f) 

 1 3 2 2 3γ ω γ ω γ= −�  (1.3.10g) 

 2 1 3 3 1γ ω γ ω γ= −�  (1.3.10h) 

 3 2 1 1 2γ ω γ ω γ= −�  (1.3.10i) 

If the influence of attitude variation on the orbit motion can be neglected, the 
variables r  and νω  are known in the analysis of the Keplerian orbit. Then the 
attitude motion of the body is determined by a set of closed Eqs. (1.3.8) and 
(1.3.10).  

1.3.2 Planar Libration 

Euler’s and Poisson’s Eqs. (1.3.8) and (1.3.10) admit the following special 
solution 

 

1 1 1

2 2 2

3 3 3

1 2 3

cos , sin , 0
sin , cos , 0

0, 0, 1
0, 0, ν

α ϕ β ϕ γ
α ϕ β ϕ γ
α β γ
ω ω ω ϕ ω

= = =
= − = =
= = =
= = = +�

 (1.3.11) 

As a special type of attitude motion, the solution (1.3.11) corresponds to an 
oscillation in the orbital plane, so-called the planar libration (Fig. 1.11). The 
gravitational torque gM  of planar libration is along the normal axis of the orbital 
plane and depends on the swing angle ϕ  only. From Eq. (1.2.5) one obtains 

 3 3

3 ( )sin2
2gM B A

r
μ ϕ= − −  (1.3.12) 

 
Figure 1.11 Planar libration 
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The Euler’s Eq. (1.3.8c) becomes 

 3

3 ( )sin 2
2

C B A
r ν
μϕ ϕ ω+ − = −�� �  (1.3.13) 

In the case of circular orbit, the parameters r  and νω  are constants 

 3, cr a
aν
μω ω= = =  (1.3.14) 

Thus Eq. (1.3.13) becomes 

 23 ( ) sin 2 0
2 cC B Aϕ ω ϕ+ − =��  (1.3.15)  

Equation (1.3.15) has an energy integral as 

 2 2 23( ) sin 2cC B A Eϕ ω ϕ+ − =�  (1.3.16) 

where the constant E  is the total energy of the system. Eq. (1.3.16) describes 
phase trajectories in phase plane ( , )ϕ ϕ�  as shown in Fig. 1.12. The phase trajectories 
have singularities at � 2 ( 0,1,2, )n nϕ = = � . The types of the singularities depend 
on the sign of B A− . In the case of B A> , the singularity is a center when n  is 
even, or a saddle when n  is odd. The result is opposite when B A< . Thus the 
stability condition for the relative equilibrium 0ϕ =  is 

 
: stable
: unstable

B A
B A
>
<

 (1.3.17) 

The condition (1.3.17) requires that the principal axis directed to the Earth should 
correspond to the minimal inertia moment of the satellite. 

 
Figure 1.12 Phase trajectories in phase plane ( , )ϕ ϕ�  

When the stability condition (1.3.17) is satisfied, for given initial conditions 

 0(0) 0, (0)ϕ ϕ ϕ= =� �  (1.3.18) 

an analytical solution of Eq. (1.3.16) can be expressed in the form of elliptic 
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function 

 arcsin[ sn( , )]k nt kϕ =  (1.3.19) 

where 

 3( )
c

B An
C

ω −= ,  0k
n
ϕ

=
�

 (1.3.20) 

The amplitude of libration mϕ  can be obtained from the parameter k  as 

 0arcsin
3( )m

c

C
B A

ϕ
ϕ

ω
	 


= � �− �

�
 (1.3.21) 

The period of libration T  is  

 
2 ( )

� 3( )
cT K k CT

B A
=

−
 (1.3.22) 

where 32�cT a μ=  is the period of circular orbit and ( )K k  is the first complete 
elliptic integral. If the amplitude of libration is small enough, 1k � , � 2K ≈ , the 
period is simplified as 

 
3( )c

CT T
B A

=
−

 (1.3.23) 

In more general case of an elliptic orbit, the parameters r  and νω  in Eq. (1.3.13) 
are functions of the true anomaly ν  as shown in Eqs. (1.1.28) and (1.1.31) 

 
1 cos

pr
e ν

=
+

, 2
2 3 (1 cos )
p

e
r pν
μ μω ν= = +  (1.3.24) 

To replace the argument t  by ν  in Eq. (1.3.13), let 

 
2 2

2 2 4 2

d d d d 2 sin d,
d d d d 1 cos d

p p e
t r t r e

μ μ ν
ν ν ν ν

� �
= = −� �+� �

 (1.3.25) 

Substitution of Eqs. (1.3.24) and (1.3.25) into Eqs. (1.3.13) leads to 

 
2

2

d 2 sin d 2 sinsin 2
d 1 cos d 2(1 cos ) 1 cos

e e
e e e

ϕ ν ϕ κ νϕ
ν ν ν ν ν

− + =
+ + +

 (1.3.26) 

where 3( )B A Cκ = − . 
Zlatoustov et al. (1964) analyzed the oscillation determined by nonlinear 

Eq. (1.3.26) with periodic coefficients and provided a stability diagram in the 
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parameter plane ( , )e κ  (Fig. 1.13) [12]. It was shown that when 0e =  the entire 
domain of 0κ >  is stable, and afterwards the stable area is reduced with increasing 
eccentricity. When 0.682e >  the stable area appears in another half-plane 0κ < . 
It means that an unstable satellite in a circular orbit can be stable in an elliptic 
orbit with large eccentricity. 

 
Figure 1.13 Stability diagram (e,κ) of planar libration in an elliptic orbit 

1.3.3 Stability of Relative Equilibrium 

A satellite in relative equilibrium state is a special case of solution (1.3.11) when 
0ϕ ≡ . Then the body-fixed frame ( - )O xyz  coincides with the orbital frame 

( - )O XYZ . Normally the relative equilibrium is a working state of satellites, and 
the Ox-axis of which points to the center of the Earth. 

To analyze the stability of relative equilibrium, let us introduce angular coordinates 
as follows: a rotation θ  of ( - )O XYZ  about OX  as 0 0 0( - )O x y z , a rotation ψ  
of 0 0 0( - )O x y z  about 0Oy  as 1 1 1( - )O x y z , and a rotation ϕ  of 1 1 1( - )O x y z  
about 1Oz -axis as a body-fixed frame ( - )O xyz . Then , ,θ ψ ϕ  are small angles of 
a satellite deviating from the orbital frame ( - )O XYZ  after disturbances (Fig. 1.14). 
Assume that the orbit is circular and the terms of , ,θ ψ ϕ  higher than the second 
order are negligible. Then 

 

1 1 1

2 2 2

3 3 3

1 2 3

1, ,
, 1,

, , 1

, ,c c c

α β ϕ γ ψ
α ϕ β γ θ
α ψ β θ γ
ω θ ω ψ ω ψ ω θ ω ϕ ω

= = = −
= − = =
= = − =

= − = + = +� � �

 (1.3.27) 



Chapter 1 Primer on Spacecraft Dynamics 

23

 
Figure 1.14 Attitude expression of spacecraft in the orbital frame 

Substitution of Eq. (1.3.27) into Eq. (1.3.8c) leads to 

 ( ) ( ) 2 0c cA A B C C Bθ ω ψ ω θ− + − + − =�� �  (1.3.28a) 

 ( ) ( ) 24 0c cB A B C C Aψ ω θ ω ψ+ + − + − =���  (1.3.28b) 

 ( ) 23 0cC B Aϕ ω ϕ+ − =��  (1.3.28c) 

Equation (1.3.28c) is the linearized equation of Eq. (1.3.15), and the stability 
condition is obviously B A> . In order to analyze stability of θ  and ψ , insert the 
special solutions 0exp( )stθ θ=  and 0exp( )stψ ψ=  into Eqs. (1.3.28a) and 
(1.3.28b). Hence, the characteristic equation is derived as 

 
4 2

0
c c

s sa b
ω ω

� � � �
+ + =� � � �

� � � �
 (1.3.29) 

where 

 1 1 2 1 21 3 , 4a k k k b k k= + + =  (1.3.30) 

and 

 1 2,C A C Bk k
B A
− −= =  (1.3.31) 

Due to the inequalities 

 , ,A B C B C A C A B+ > + > + >  (1.3.32) 

the inertia ratios k1 and k2 are restricted by 

 1 21, 1k k< <  (1.3.33) 
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Therefore the diagram of parameter plane 1 2( , )k k  is restricted in a square region 
with edges equal to 2 (Fig. 1.15). The stability of θ  and ψ  depends on the  
conditions of pure imaginary eigenvalues of Eq. (1.3.29) 

 20, 0, 4 0a b a b> > − >  (1.3.34) 

The conditions B A>  and 0b >  require that the stable regions should be in the 
first and third quadrants and under the straight line 1 2k k= . The stable regions 
satisfying all conditions (1.3.34) consist of a triangle in the first quadrant and a 
small region in the third quadrant. According to Lyapunov’s theory the stability 
of the first approximation is the necessary condition of stability for the complete 
equations. 

 
Figure 1.15 Stability diagram (k1, k2) of spatial libration 

In order to obtain the sufficient conditions of stability, the kinetic energy T  
of the body is needed as 

 1 d
2 S

T m′ ′= ⋅��� r r� �  (1.3.35) 

where ′ = +r r ρ . Assume that the orbit is circular, and c′ =ω ω − ω  is the angular 
velocity of the body relative the orbital reference frame. Then 

 1 1 2 2 3 3( ) ( ) ( )c c cω ω γ ω ω γ ω ω γ′ = − − −i + j + kω  (1.3.36) 

Thus the derivative of ′r  with respect to t  can be written as 

 c c′ ′ ′= + = × × = × ×r r r + r +� � �ρ ω ω ρ ω ω ρ  (1.3.37) 

Substituting Eqs. (1.3.37) and (1.3.36) into Eq. (1.3.35) to calculate the kinetic 
energy and omitting the constant term 2 2cmv  corresponding to the orbital motion, 
one obtains  
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 0 2T T T= +  (1.3.38) 

where ( 0,2)iT i =  are the zero-th and the second degree homogeneous terms of 
( 1,2,3)i iω′ =  in the kinetic energy expression 

 

2 2 2 2
0 1 2 3

2 2 2
2 1 2 3

1 ( )
2
1 ( )
2

cT A B C

T A B C

ω γ γ γ

ω ω ω

= + +

′ ′ ′= + +
 (1.3.39) 

The gravitational energy V  of the body is defined by Eq. (1.2.7). Omitting the 
constant terms in it leads to 

 2 2 2 2
1 2 3

3 ( )
2 cV A B Cω α α α= + +  (1.3.40) 

The kinetic energy and the potential energy of the body are explicitly independent 
of time t. Therefore, Eqs. (1.3.8) and (1.3.10) permit Jacobi’s integral as 

 2 0 constT T V= − + =�  (1.3.41) 

where �  is the conservative Hamiltonian of the system: 

 

2 2 2 2 2 2 2
1 2 3 1 2 3

2 2 2 2
1 2 3

1 1( ) ( )
2 2
3 ( )
2

c

c

A B C A B C

A B C

ω ω ω ω γ γ γ

ω α α α

′ ′ ′= + + − + +

+ + +

�
 (1.3.42) 

Eliminating 1α  and 3γ  in Eq. (1.3.42) by use of the geometric integrals of 
Eq. (1.3.5) 

 
3 3 3

2 2 2

1 1 1

1, 1, 1i i i
i i i
α β γ

= = =

= = =� � �  (1.3.43) 

one obtains 
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ω α α

′ ′ ′ 	 
= + + + − + − �

	 
+ − + − �

�
 (1.3.44) 

The function �  is positive-definite if C B A> > . Applying the Lyapunov’s direct 
method with the Hamiltonian �  as Lyapunov’s function, one obtains the sufficient 
stability condition of relative equilibrium: 

 C B A> >  (1.3.45) 
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The condition (1.3.45) is represented in the parameter plane 1 2( , )k k  by a 
triangle region, which is called the Lagrange region. As a sufficient and necessary 
condition for the stability of relative equilibrium, it requires that the inertia 
moments of spacecraft have a minimum about the radial axis and a maximum 
about the normal axis of the orbital plane. The small region in the third quadrant of 
the plane 1 2( , )k k  is called DeBra-Delp region [11], in which only the necessary 
stability conditions are satisfied and a slight damping can lead to instability in 
this region (Fig. 1.15). 

1.3.4 Attitude Motion of a Gyrostat 

A gyrostat (S) is a system composed of a rigid platform PS  and three axisymmetric 
rotors R ( 1,2,3)iS i =  rotating about central principal axes ( - )O xyz  of ( )S  with 
angular velocity R ( 1,2,3)i iΩ =  relative to PS  (Fig. 1.16). The mass geometry of 
system ( )S  is constant and is not influenced by the rotation of rotors. Assume 
that ω  is the angular velocity of PS , J  is the tensor of central moment of inertia 
of ( )S . Then the angular momentum G  of gyrostat ( )S  with respect to its mass 
center O  is 

 R= ⋅ +G J gω  (1.3.46) 

where Rg  is the increment of angular momentum caused by the relative rotation 
of three rotors. Denote the principal inertia moments of the system ( )S  by 

, ,A B C  and the axial inertia moment of R ( 1,2,3)iS i =  by R ( 1,2,3)iJ i = . Then 

 1 1 R1 2 2 R2 3 3 R3, ,G A g G B g G C gω ω ω= + = + = +  (1.3.47) 

and 

 R R R ( 1,2,3)i i ig J iΩ= =  (1.3.48) 

Substitution of Eqs. (1.2.5) and (1.3.47) into the Euler’s Eqs. (1.3.4) yields  

 ( ) ( )1 2 3 R1 2 R3 3 R 2 2 33

3A C B g g g C B
r
μω ω ω ω ω α α+ − + + − = −� �  (1.3.49a) 

 ( ) ( )2 3 1 R 2 3 R1 1 R3 3 13

3B A C g g g A C
r
μω ω ω ω ω α α+ − + + − = −� �  (1.3.49b) 

 ( ) ( )3 1 2 R3 1 R 2 2 R1 1 23

3C B A g g g B A
r
μω ω ω ω ω α α+ − + + − = −� �  (1.3.49c) 

For a predetermined attitude motion of the platform 0S , the variables R ( )ig t  
( 1,2,3)i =  can be solved from Eq. (1.3.49) and Poisson’s Eqs. (1.3.10) when 
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functions ( ) ( 1,2,3)i t iω =  are known. Therefore the relative rotation of rotors can 
be used to control the spacecraft to realize any predetermined attitude motion. 

 
Figure 1.16 A gyrostat 

In the case when the orbit is circular and each rotor rotates uniformly, let Rig  
( 1,2,3)i =  be constant, and c′ = −ω ω ω  be the relative angular velocity of PS , 
then Eqs. (1.3.49) and (1.3.10) permit Jacobi’s integral as 

2 2 2 2 2 2 2
2 0 1 2 3 1 2 3
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1 2 3 R1 1 R 2 2 R3 3
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1 ( ) ( ) const
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c

c c
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A B C g g g

ω ω ω ω α α α

ω γ γ γ ω γ γ γ

′ ′ ′= − + = + + + + +

− + + − + + =

�
 (1.3.50) 

1.4 Attitude Motion of Torque-free Spacecraft 

1.4.1 Torque-free Rigid Body 

In the analysis of the motion of spinning satellite, if the spin speed is so large that 
the kinetic energy of rotation is much larger than the work done by the gravitational 
force, then the body can be approximated as torque-free. When the right hands of 
Euler’s Eqs. (1.3.8) vanish, one obtains  

 1 2 3( ) 0A C Bω ω ω+ − =�   (1.4.1a) 

 2 3 1( ) 0B A Cω ω ω+ − =�  (1.4.1b) 

 3 1 2( ) 0C B Aω ω ω+ − =�  (1.4.1c) 



Chaos in Attitude Dynamics of Spacecraft 

28 

Multiplying each Eq. of (1.4.1) successively by ω1, ω2 and ω3, and by Aω1, Bω2 
and Cω3, respectively, summing the resulting equations, and integrating them 
gives the integrals of energy and angular momentum as follows  

 2 2 2
1 2 3 2A B C Eω ω ω+ + =     (1.4.2) 

 2 2 2 2 2 2 2
1 2 3A B C Gω ω ω+ + =  (1.4.3) 

where the constants E  and G  are the conserved total energy and the conserved 
total angular momentum of the torque-free body. Both integrals (1.4.2) and (1.4.3) 
can be expressed by the components of angular momentum using Eq. (1.3.5). 

 
22 2
31 2 2

GG G E
A B C
+ + =  (1.4.4) 

 2 2 2 2
1 2 3G G G G+ + =  (1.4.5) 

The integrals (1.4.2) and (1.4.3) define two ellipsoids in three-dimensional space 
1 2 3( , , )ω ω ω . The ellipsoid defined by Eq. (1.4.2) is called the energy ellipsoid. The 

top of the vector ω  is along the intersect curve of both ellipsoids. The trace of 
the top of ω  on the energy ellipsoid is called polhode, which is composed of four 
sets of ellipses around two principal axes of the body (Fig. 1.17(a)). Similarly, the 
integrals (1.4.4) and (1.4.5) define analogous traces in space 1 2 3( , , )G G G . 

Equation (1.4.1) admits three sets of special solutions 

 1 2 3 00,ω ω ω ω= = =  (1.4.6a) 

 2 3 1 00,ω ω ω ω= = =  (1.4.6b) 

 3 1 2 00,ω ω ω ω= = =  (1.4.6c) 

Each of them represents a rotation around principal axis. The rotation with 
constant angular velocity around an invariable axis in space is called a permanent 
rotation. The permanent rotation can be described by a special polhode, which is 
reduced to a single point on principal axis. 

In order to analyze the stability of the permanent rotation about Oz-axis, let 
each hand of Eq. (1.4.1a) be divided by that of Eq. (1.4.1b) to yield 

 1 2

2 1

d
d

aω ω
ω ω

=  (1.4.7) 

where 

 ( )
( )

B C Ba
A A C

−=
−

 (1.4.8)  



Chapter 1 Primer on Spacecraft Dynamics 

29

The special solution (1.4.6a) is a singularity of Eq. (1.4.7). The type of the 
singularity can be determined by the sign of parameter a  as 

 
0 : Singularity is a center
0 : Singularity is a saddle

a
a
<
>

 (1.4.9) 

Thus the following conditions of stability can be derived 

 
, or , : stable

or :   unstable
C A C B C A C B

A C B A C B
> > < <
> > < <

 (1.4.10) 

It concludes that the permanent rotation about the axis with the maximal or the 
minimal moment of inertia is stable, and the permanent rotation about the axis 
with the middle moment of inertia is unstable. 

If the body is axisymmetrical about the Oz-axis, then A B= . Equation (1.4.1c) 
requires that the angular velocity 3ω  about the axis of symmetry be constant. The 
polhode becomes a set of circles about the Oz-axis (Fig. 1.17(b)), and the permanent 
rotation about Oz  is always stable regardless of whether orC A C A> < . This 
phenomenon can be used to stabilize the satellite if its spinning axis is perpendicular 
to the orbital plane and coincides with the axis of symmetry. 

 
Figure 1.17 Polhode on energy ellipsoid 

1.4.2 Torque-free Gyrostat 

Consider a simple gyrostat ( )S  composed of an asymmetric platform PS  and a 
single rotor RS  as a model of a dual-spin satellite. Assume that RS  rotates about 
the Oz-axis with constant angular velocity RΩ  relative to PS , and R R Rg J Ω=  
(Fig. 1.18). Under the torque-free condition, the dynamical Eqs. (1.3.49) of a 
simple gyrostat can be simplified as 

 1 2 3 2 R( ) 0A C B gω ω ω ω+ − + =�  (1.4.11a) 
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 2 3 1 1 R( ) 0B A C gω ω ω ω+ − − =�  (1.4.11b) 

 3 1 2( ) 0C B Aω ω ω+ − =�  (1.4.11c) 

 
Figure 1.18 Gyrostat with a single rotor 

The first integrals of kinetic energy and angular momentum of Eq. (1.4.11) are 

 2 2 2
1 2 3 2A B C Eω ω ω+ + =  (1.4.12) 

 2 2 2 2 2 2
1 2 3 R( )A B C g Gω ω ω+ + + =  (1.4.13) 

Take the permanent rotation (1.4.6a) of the platform as the unperturbed motion, 
and introduce the perturbations as 

 1 1 2 2 3 3 0, ,ξ ω ξ ω ξ ω ω= = = −  (1.4.14) 

Substituting Eq. (1.4.14) into Eqs. (1.4.12) and (1.4.13), and retaining only the 
second terms of ( 1,2,3)i iξ = , one obtains 

 2 2 2
1 1 2 3 0 3( 2 ) constV A B Cξ ξ ξ ω ξ= + + + =  (1.4.15) 

 2 2 2 2 2 2
2 1 2 3 0 3 R 3( 2 ) 2 constV A B C Cgξ ξ ξ ω ξ ξ= + + + + =  (1.4.16) 

Define the Lyapunov function as 

 2R
2 1 12

0 04
gV V C V Vλ
ω ω

� �
= − + +� �

� �
 (1.4.17) 

where λ  is an arbitrary parameter. Substitution of Eqs. (1.4.15) and (1.4.16) into 
Eq. (1.4.17) leads to 

 2 2 2R
1 1 1 2 3

0

( ) ( ) gV A A C B B C C Cξ ξ λ ξ
ω

� �
= − + − + − +� �

� �
�  (1.4.18) 
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where 

 R
1

0

gC C
ω

= +  (1.4.19) 

The parameter C1 can be regarded as an enlarged moment of inertia of the body 
about the axis of symmetry. The function V is positive-definite if C1<A and C1<B, 
or negative-definite if C1>A and C1>B for the suitably chosen parameter. Therefore, 
it is proved by the Lyapunov’s direct method that the stability condition of a 
torque-free gyrostat is the same as (1.4.10) when the moment of inertia C  is 
changed by the enlarged C1. 

1.4.3 Influence of Energy Dissipation on Spinning Spacecraft 

If a spacecraft contains flexible appendages, the internal damping appears as a 
result of the elastic deformation of appendages. Consequently, the total energy E 
is dissipated while the angular momentum G remains constant. A rigid body with 
small elastic elements can be regarded as a near-rigid body. The kinetic energy 
and the angular momentum can be approximated by Eqs. (1.4.2) and (1.4.3). In 
the case that the body rotates about Oz-axis with a constant angular velocity, 
elimination of ω3 from Eqs. (1.4.2) and (1.4.3) yields  

 2 2 2
1 2( ) ( ) 2A C A B C B CE Gω ω− + − = −  (1.4.20) 

Differentiating each term in Eq. (1.4.20) with respect to time and considering 
0, 0E G< =�� , one obtains 

 2 2
1 2

d d( ) ( ) ( ) ( ) 0
d d

A C A B C B
t t
ω ω− + − <  (1.4.21) 

The inequality (1.4.21) yields 

 
2 2
1 2
2 2
1 2

, :

, :

and decrease
and increase

C A C B
C A C B

ω ω
ω ω

> >

< <
 (1.4.22) 

Then the stability condition (1.4.10) should be corrected as 

 
, : asymptotic stable
, : unstable

C A C B
C A C B
> >
< <

 (1.4.23) 

It means that the permanent rotation of a torque-free body is asymptotically 
stable only when the rotation axis is the axis of symmetry with maximal moment 
of inertia.  

A similar conclusion as (1.4.23) can be drawn for a torque-free gyrostat when 
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the moment of inertia C about Oz is changed by the enlarged moment of inertia C1:  

 1 1

1 1

, : asymptotic stable
, : unstable

C A C B
C A C B
> >
< <

 (1.4.24) 

The stability condition in (1.4.24) requires 

 ( )R 0 0max ( ) , ( )J A C B CΩ ω ω> − −  (1.4.25) 

In the case of an earth-pointing satellite, let 0 cω ω= , R Rcω ω Ω= +  be the absolute 
angular velocity of the rotor, and PC C J= −  be the moment of inertia of the 
platform. Then the stability criterion (1.4.25) becomes 

 ( )R P Pmax ( ) , ( )c cJ A C B Cω ω ω> − −  (1.4.26) 

It means that a stable permanent rotation can be realized by increasing the rotor 
speed RΩ , even if the gyrostat is in a slender form. A gyrostat-satellite stabilized 
by the gyroscopic effect of the rotor is called a dual-spin satellite. 
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Chapter 2 A Survey of Chaos Theory 

Abstract This chapter briefly summarizes chaos theory. The chapter begins 
with describing chaos as bounded aperiodic random-like deterministic motion, 
which is sensitive to initial states and thus unpredictable after a certain time of 
a system. The geometrical structure of chaos is analyzed via the Poincaré map. 
Three typical routes to chaos are introduced as period-doubling sequence, 
intermittency, and quasiperiodic torus breakdown. The chapter covers two 
main numerical approaches to identify chaos, Lyapunov exponents and 
power spectra. The Melnikov theory is presented to predict the transversal 
intersection of stable and unstable manifolds of a saddle point. Such an 
intersection results in complicated dynamical behaviors which are sensitive 
to initial conditions. Finally, chaos is treated in the context of Hamiltonian 
systems. KAM theorem is stated without the proof. Two mechanisms of 
Hamiltonian chaos are illustrated as KAM tori breakup and Arnol’d diffusion. 
The Melnikov theory is generalized to higher-dimensional Hamiltonian 
systems. 

Keywords chaos, Poincaré map, period-doubling sequence, intermittency, 
quasiperiodic torus breakdown, Lyapunov exponents, power spectra, Melnikov 
theory, KAM theorem, KAM tori breakup, Arnol’d diffusion 
 
 

This chapter briefly summarizes chaos theory, most of which will be applied in 
the subsequent chapters. The chapter begins with describing chaos as bounded 
aperiodic random-like deterministic motion, which is sensitive to initial states 
and thus unpredictable after a certain time of a system. The geometrical structure 
of chaos is analyzed via the state space as well as the Poincaré map. Three typical 
routes to chaos are introduced as period-doubling sequence, intermittency, and 
quasiperiodic torus breakdown. The chapter covers two main numerical approaches 
to identify chaos, Lyapunov exponents and power spectra. The Melnikov theory is 
presented to predict the transversal intersection of stable and unstable manifolds of 
a saddle point. Such an intersection is explained to result in complicated dynamical 
behaviors which are sensitive to initial conditions. Finally, chaos is treated in the 
context of Hamiltonian systems. KAM theorem is stated without the proof. Two 
mechanisms of Hamiltonian chaos are illustrated as KAM tori breakup and Arnol’d 
diffusion. The Melnikov theory is generalized to higher-dimensional Hamiltonian 
systems. This chapter is only a brief survey of chaos, and references [1-6] present 
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a more comprehensive treatment of chaos with the emphasis on engineering 
applications. 

2.1 The Overview of Chaos 

2.1.1 Descriptions of Chaos 

Motions of many natural or engineering systems, including attitude motion of 
spacecraft, can be governed by a set of equations derived from the natural laws such 
as Newton’s laws or Euler’s equation. The set of equations, defined mathematically 
as a dynamical system, yields the time evolution of the state of a system from 
the knowledge of its previous history. Therefore, the state at any time can be 
determined by the governing equations and the initial states. The equations 
desceibing a dynamical system may be algebraic or differential equations.  

In modern science, chaos is a term to describe a type of motion, or time 
evolution resulting from a dynamical system, that appears, on detailed examination, 
to be completely disordered and extremely complex. The disorder and complicacy 
are due to the following reasons. 

Chaos is a recurrent aperiodic motion. Hence, chaos can be practically defined 
as a bounded steady-state response that is not an equilibrium state or a periodic 
motion, or a quasiperiodic motion. For systems with finite degrees of freedom, a 
bounded response of linear systems must be an equilibrium state, a periodic 
motion, or a quasiperiodic motion. Hence chaos is a striking feature of a nonlinear 
system. As a recurrent motion, chaos is bounded so that it will trend to the 
infinite. 

Chaotic motions are also characterized by sensitivity to initial states; that is, 
tiny differences in the initial conditions can be quickly amplified to produce huge 
differences in the response. Due to such sensitivity, the long-term prediction for 
chaos is impossible, because all initial conditions have to be prescribed in a 
certain precision, while, after enough time, the motion depends on the digits in 
the conditions beyond the precision. That is, chaos is unpredictable after enough 
time because a small difference in the initial conditions beyond their precision 
will result in rapidly (usually exponentially) growing perturbation of the motion. 
This phenomenon is vividly called butterfly effect. A disturbance caused by the 
wings of a butterfly in Shanghai can lead to a rainstorm a few days later in 
Toronto. 

Chaos, as a recurrent aperiodic motion, has no pattern or order to follow, just 
like a stochastic process. Actually, the spectrum of a chaotic motion has a continuous 
broadband, which is the same as a true random signal. In contrast, the spectra of 
periodic or quasiperiodic motions consist of a number of sharp spikes. In addition 
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to the broadband component, the spectrum of a chaotic motion often contains 
spikes, which indicate the predominant frequencies of the motion. Chaos is the 
superposition of an infinite number of unstable periodic motions. Therefore, a 
chaotic motion may settle for a short time near a periodic motion and 
then may switch to another periodic motion with a different period. However, 
chaos usually describes a special type of motion in a deterministic system that is 
without any random inputs. Hence, the random-likeness of chaotic motion is called 
intrinsic stochasticity or spontaneous stochasticity. A true stochastic process is 
unpredictable at any time, while chaos can be predicted only after a very short 
time from the beginning. 

In short, as a steady-state response of a deterministic system, chaos is sensitive 
to initial states and thus unpredictable after a certain time, and is recurrent but 
either periodic or quasiperiodic hence like a random single.  

2.1.2 Geometrical Structures of Chaos 

The recurrent aperiodicity of chaos can be intuitively illustrated in the phase plane. 
For a single degree of freedom, two independent parameters are needed to describe 
the state of motion completely (not only the position, but also the position change). 
These parameters are usually chosen as the generalized displacement and velocity 
of the system. When the parameters are used as coordinate axes, the resulting 
graphical illustration of the motion is called the phase plane representation. Thus 
each point in the phase plane represents a possible state of the system. The state 
of the system changes with the time evolution. A typical of representative point in 
the phase plane, such as the point representing the state of the system at time t =0, 
moves and traces a curve known as a trajectory or an orbit. The trajectory 
demonstrates how the motion beginning at a given initial state varies with time. 
On the phase plane, an equilibrium state is represented by a point on the 
displacement (usually horizontal) axis. The trajectory of a periodic motion is a 
closed curve, because the trajectory repeats itself after a period. A chaotic motion 
is represented by a trajectory that never closes and repeats itself because of the 
aperiodicity of the motion, and the trajectory is located in a bounded region due 
to the recurrence of the motion. Therefore, the trajectory of chaos in the phase 
plane usually occupies a part of the phase space. However, the trajectory of a 
quasiperiodic motion does not close on itself either, although it looks much more 
regular than a chaotic trajectory. In addition, it is difficult in practice to differentiate 
a trajectory of chaos from that of a periodic motion with a sufficient large period. 
Therefore, new techniques are necessary to describe the recurrent aperiodicity of 
chaos and distinguish chaos from periodic or quasiperiodic motions.  

Consider a set of ordinary differential equations in the vector form 

 ( , ) ,nt R t R= ∈ ∈x f x x�  (2.1.1) 



Chaos in Attitude Dynamics of Spacecraft 

36 

where f is a vector function defined in Rn+1 with its value range in Rn, x is a n 
dimensional vector to specify the state of the system, and t is time. The vector x 
is called a state vector, and Rn in which x evolves is called a state space. A stage 
space is called a phase space when half of the state variables are displacements 
and the other half are velocities. Obviously, the phase space is the generalization 
of the phase plane. If the vector function does not depend explicitly on time t, the 
dynamical system governed by Eq. (2.2.1) is call autonomous; otherwise, it is 
called nonautonomous. 

The geometrical structure representing an asymptotically long-time behavior 
in a state space is called an attractor. Mathematically, an attractor is an inde- 
composable, closed, invariant set that attracts all trajectories starting at points in 
some neighborhood. Here, an indecomposable set is a set that cannot be separated 
into smaller pieces, and an invariant set is a set that trajectories starting in the 
set remain in it for all time.  

An attractor may be a point, called a point attractor, which represents an 
asymptotically stable equilibrium state. An attractor may be a closed curve, called 
a periodic attractor, which represents a periodic motion. An attractor may be a 
torus, called a quasiperiodic attractor, which represents a quasiperiodic motion. 
If an attractor is not a point attractor, a periodic attractor, or a quasiperiodic 
attractor, it is call a strange attractor. A strange attractor usually represents a 
chaotic motion, and thus it is also referred as a chaotic attractor. A chaotic 
attractor has typically embedded within it an infinite number of periodic orbits 
that are unstable. Mathematically, unstable periodic orbits are dense in a chaotic 
attractor. The orbits pass through any neighborhood, no matter how small it is, of 
any point on the attractor.  

The Ponicaré map will be defined in a state space. It can discretize a trajectory 
of a dynamical system governed by a set of ordinary-differential equations into a 
set of points. The Poincaré map or the Poincaré section map, named after Henri 
Poincaré, is the intersection of a trajectory, which moves periodically, quasi- 
periodically, or chaotically, in an n-dimensional state space, with a transversal 
hypersurface whose dimension is n – 1. Here a transversal hypersurface means that, 
at the intersection point, the normal of the hypersurface is not orthogonal to the 
tangent of the trajectory. More specifically, one considers a trajectory with initial 
conditions on the hyperplane and observes the point at which this trajectory returns 
to the hyperplane. The Poincaré section refers to the hyperplane, and the Poincaré 
map refers to the map of points in the hyperplane induced by the intersections.  
If the vector function f in Eq. (2.1.1) is periodic in time with period T, then the 
Poincaré map can be constructed by monitoring stroboscopically the state variables 
at intervals of the period T. The Poincaré map can be denoted by 

 1 ( ) ,n
i i R i Z+ = ∈ ∈X P X X  (2.1.2) 
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The points on the Poincaré section obtained by iterating P  

 1 2{ , , , , } ( ( ) , 1,2, )i i iT i= =X X X X x� � �  (2.1.3) 

which is also called sometimes the Poincaré map, can be used to determine if a 
motion is periodic, quasiperiodic, or chaotic. 

For the Poincaré map obtained by sampling the state variables at intervals of T, 
a periodic motion with the period mT will collect m points on the Poincaré 
section. Therefore, the Poincaré map (2.1.3) of a periodic motion is a set of finite 
points. The Poincaré map (2.1.3) of a quasiperiodic motion does not contain finite 
points. To explore its characteristic, consider the following simple example. A motion 
given by  

 1 2( ) sin sin , ( ) cos cosx t A t B t x t C t D t= + π = + π  (2.1.4) 

is quasiperiodic because it is characterized by the two incommensurate frequencies 
1 and π, and called two-period quasiperiodic. A Poincaré map is constructed by 
sampling the trajectory at intervals 2π starting at t = 0. Then the discrete points 
are collected as 

 1 2sin , cos ( , 0)i ix B i x C D i B D2 2= π = + π ≠  (2.1.5) 

Hence all mapping points on the closed curve are defined by 
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It can be further demonstrated that the points fill densely the closed curve. Therefore, 
the Poincaré map (2.1.3) of a quasiperiodic motion is a set of infinite points 
located densely on a loop or a torus. Since a chaotic motion is neither periodic 
nor quasiperiodic, the Poincaré map (2.1.3) of chaos is a set of infinite points that 
do not fill any loops or tori. 

2.1.3 Routes to Chaos 

In addition to its physics and geometry, chaos can also be investigated from the 
view of its emerging processes with the variation of system parameters. The 
processes are often referred as routes to chaos or transitions to chaos. In most 
systems, chaos occurs only for some range of parameter values. How a regularly 
behaving system becomes chaotic is a fundamental and significant problem. 
Theoretically, routes to chaos can reveal the nature and mechanisms of chaos. 
Practically, routes to chaos can serve as an effective approach to identify chaos, 
especially to distinguish chaos from truly random motion. Actually, for a system 
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with bounded irregular motion, if a route to chaos appear with a change of a system 
parameter, then the motion is quite surely chaotic rather than stochastic. There 
are several fairly well-understood and (relatively) easily recognizable routes to 
chaos in a particular transition process in a prescribed system. These routes include 
period-doubling sequence, intermittency, and quasiperiodic torus breakdown. 

The period-doubling cascade, also referred to as period-doubling scenario, is 
the best understood route to chaos. In the period-doubling cascade, as a system 
parameter is gradually varied, a periodic motion transitions to a chaotic motion 
via a sequence of period-doubling bifurcations. This route was discovered in the 
context of 1-dimensional maps by Feigenbaum in 1978 [7], and it is now known 
to occur in almost all kinds of systems.Consider a system with parameter μ. In 
multi-parameter systems, one can vary one of them and fix the others. Suppose 
the motion with period T for μ =μ0. With changing μ, when μ = μ1, the period of 
motion becomes 2T. Such a sudden change of the motion is called a period- 
doubling bifurcation. Generally speaking, if the motion is with period 2kT for 
μ = μk, the period-doubling bifurcation at μ =μk +1 turns the motion period into 
2k+1T. As the motion period continues to double, it becomes larger and larger, and 
finally, infinite, which actually corresponds to aperiodic motion. Observing the 
Poincaré map, one finds that one point becomes two points, two points become 
four points, and so on. At last, an infinite point set is created, and chaos appears. 
Theoretically, in the absence of noise, an infinite number of period-doubling 
bifurcations occur in the transition to chaos. Practically, as noise is always present, 
some of the higher period-doubling bifurcations may be suppressed by the noise, 
resulting in a finite sequence of bifurcations. It should be remarked that 
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μ μδ
μ μ
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is a constant for the infinite sequence of period-doubling bifurcation values {μn}. 
In fact, in a certain class of systems, different systems have the same constant 
regardless of the details of each system. Therefore, δ is called a universal constant. 
The universality characterizes the period-doubling cascade as a route to chaos. 

Intermittency is another frequently observed route to chaos. Intermittency is a 
phenomenon characterized by random alternations between a regular motion and 
relatively short irregular bursts. The term intermittency has been used in the theory 
of turbulence to denote burst of turbulent motion on the background of laminar 
flow. During early stages of intermittency, for a certain system parameter value, the 
motion of the system is predominantly periodic with occasional bursts of chaos. 
As the parameter value is changed, the chaotic bursts become more frequent, and 
the time spent in a state of chaos increases and the time spent in periodic motion 
decreases until, finally, chaos is observed all the time. As a result, the periodic motion 
becomes chaotic motion. This route was found by Pomeou and Manneville in 
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1980 [8]. Geometrically, the intermittency route is associated with a periodic 
attractor in the state space bifurcating into a new, larger chaotic attractor, including 
previous periodic trajectories as its subset. The trajectory of a system can reside 
some time in the chaotic part of the attractor, but it is ultimately attracted back to 
the periodic part. As the system parameter is varied, the relative proportion of the 
chaotic part increases, ultimately covering the whole attractor. 

Quasiperiodic torus breakdown is the third typical way that a system may evolve 
as its parameter is changed. Quasiperiodic torus breakdown route signifies the 
destruction of the torus and the emergence of a chaotic attractor. The system, if it 
is not externally driven by a periodic action, may be at equilibrium. As the system 
parameter is varied, the equilibrium may lose its stability, leading to the emergence 
of a stable periodic motion. Such a change resulting in a new motion frequency is 
called the Hopf bifurcation. In the state space, a point attractor becomes a periodic 
attractor. With a further change in the parameter, the periodic attractor undergoes 
a secondary Hopf bifurcation, resulting in a 2-period quasiperiodic attractor. The 
trajectories in the state space reside on the surface of a torus. If the two frequencies 
are incommensurable, the trajectory eventually covers the surface of the torus. 
For some systems, further changes in the parameter result in the introduction of a 
third frequency. In the state space, the trajectories live on a 3-dimensional torus. 
With further parameter changes, the motion of a system becomes chaotic. Some 
systems may apparently switch directly from two-periodic quasiperiodic motion 
to chaos. The discovery of the route to chaos started with Ruelle and Takens, who 
in 1971 proposed an alternative to the Landau-Hopf picture of infinitely increasing 
number of incommensurable frequencies for the onset mechanism of turbulence 
[9]. As Ruelle and Takens demonstrated, quasiperiodic motion on a torus with 4 
incommensurable frequencies is generally unstable and can be perturbed into a 
strange attractor corresponding to turbulent motion. In 1978, Hewhouse, Ruelle 
and Takens proved that a torus with 3 incommensurable frequencies is generally 
unstable and can be perturbed into chaos [10]. In the same year, Swinney and 
Gollub experimentally showed that a quasiperiodic motion with 2 incommensurable 
frequencies directly leads to chaos [11]. In 1982, Feigenbaum, Kadanoff and 
Shenker revealed the universality in the quasiperiodic route to chaos [12]. In 
1983, Grebogi, Ott, and Yorke confirmed that the quasiperiodic torus with 3 
incommensurable frequencies is usually stable and thus a periodic motion becomes 
chaotic after only two bifurcations [13]. That is, the 2-period quasiperiodic motion 
may lead to chaos directly. 

Chaos may suddenly occur in a system. One mechanism to account for a sudden 
appearance of chaos is crisis, the term introduced by Grebogi, Ott, and Yorke in 
1983 [14]. A crisis is a sudden qualitative change in which a chaotic attractor 
disappears or suddenly expands in size as a system parameter is varied. Therefore, 
if a typical route to chaos is observed, one may conclude that chaos is taking place 
in a system. On the other hand, even if no typical route to chaos is observed, one 
cannot exclude the possibility of the appearance of chaos. 
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2.2 Numerical Identification of Chaos 

2.2.1 Introduction 

The numerical identification of chaos is an important aspect of nonlinear 
dynamics. The identification of chaos is some diagnostic tests to determine if 
chaotic behavior occurs in a specific system. Some numerical characteristics 
associated with the motion of a system can be used to identify chaos. These 
characteristics include Lyapunov exponents, fractal dimensions, power spectra, 
and entropies. If one or more of these characteristics satisfy certain conditions, 
the motion may be chaotic. 

As explained in the previous section, chaos can be described in different aspects. 
Quantifying these descriptions leads to corresponding numerical characteristics. 
To specify the sensitivity of chaos to initial states, Lyapunov exponents are 
introduced. To highlight the recurrent aperiodicity of chaos, various dimensions 
can be defined. To detect the stochasticity of chaos, power spectra may be used. 
To reveal the unpredictability of chaos, entropies can be employed. However, 
only Lyapunov exponents and power spectra will be presented in this section. 
They will be applied in the following chapters. 

2.2.2 Lyapunov Exponents 

The extreme sensitivity to initial states makes neighboring trajectories diverge 
rapidly as the time elapses. Therefore, a numerical approach to identify chaos  
can be developed based on the quantitative characterization of the divergence 
among the neighboring trajectories. Lyapunov exponents are a set of numerical 
characteristics to quantify the divergence of trajectories. In an n–dimensional 
state space, the displacement between two points on two nearby trajectories has n 
components in n different directions. Trajectories may diverge in some directions, 
but they must converge in other directions. Otherwise, the motion will become 
unbounded. Hence the change rates of the distance along the n directions are 
different, and each change rate is a Lyapunov exponent. This intuitionistic idea 
can be presented in a more rigorous way as follows.  

Consider a dynamical system governed by 

 ( ) nR= ∈x f x x�  (2.2.1) 

Choose two trajectories L0 and L1 starting at two close initial conditions x0 and 
x0 + Δx0, respectively. Define L0 starting at x0 as the unperturbed trajectory, and 
L1 starting at x0+Δx0 as a perturbed trajectory. Denote x(x0 + Δx0,t) and x(x0,t) as 
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the points at time t on the perturbed and unperturbed trajectories respectively. 
Denote the difference as w(x0, t) = x(x0 + Δx0, t) + x(x0, t). Then for sufficient 
small w, w satisfies the linearized equation of Eq. (2.2.1) at x0, namely, 

 = ⋅Dw f w�  (2.2.2) 

where Df is the n×n Jacobi matrix calculated at x0. Now the averaged rate of 
exponential expansion or contraction in the direction of w on the trajectory 
starting at x0 is given by 
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where the symbol ⏐⏐ ⏐⏐  denotes a vector norm and w0 = w(x0,0). In the 
n-dimensional state space, all w form n-dimensional state space moving along the 
trajectory L0. Take a set of base vector {ei,i = 1,2, ,n}. For every ei, Eq. (2.2.3) 
yields λ(x0,ei) (i = 1, 2 , , n). Those numbers are ordered such that 

 1 2 nλ λ λ�  (2.2.4) 

The number λi is called the Lyapunov exponent, and the set of n number λi is 
called the Lyapunov spectrum. 

Roughly speaking, the Lyapunov exponents of a trajectory characterize the 
mean exponential rates of divergence (in different directions) of other trajectories 
surrounding it. A Lyapunov exponent may be positive or negative. A positive 
Lyapunov exponent implies the divergence in the corresponding direction. That is, 
all trajectories near the trajectory under consideration diverge locally from it along 
the direction. A negative exponent implies the constriction in the corresponding 
direction. All trajectories close to the trajectory under consideration locally converge 
toward it in the direction. Therefore, if all Lyapunov exponents are negative, the 
motion is in a stable equilibrium. 

For a limit cycle of an autonomous system, there is always a zero Lyapunov 
exponent corresponding to an initial deviation along a tangent to the closed orbit. 
In addition, for a stable periodic motion, all other Lyapunov exponents are 
negative. Those negative exponents essentially correspond to perturbations along 
directions normal to the closed orbit. For an m-torus, m Lyapunov exponents are 
zero because there are m tangential directions to the torus along which there is 
neither growth nor decay.  

If there are one or more positive Lyapunov exponents, these exponents correspond 
to the directions along which the initial disturbances become larger and larger. Thus 
a bounded trajectory with one or more positive Lyapunov exponents represents 
chaotic motion. 

Based on the above-mentioned analysis, the types of attractors and motions 
can be summarized in Table 2.1 for low dimensional systems. 
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Table 2.1 Classification of Attractors in Low Dimensional State Spaces 

Dimension Sign of Lyapunov  
Exponents Types of Attractors Types of Motion 

3 −    −    − 
0    −    − 
0    0    − 
+    0    − 

stable fixed point 
limit cycle 
2-torus  
strange attractor 

equilibrium 
periodic motion  
quasiperiodic motion 
chaotic motion  

4 −    −    −    − 
0    −    −    − 
0    0    −    − 
0    0    0    − 
+    0    −    − 
+    0    0    − 
+    +    0    − 

stable fixed point 
limit cycle 
2-torus 
3-torus 
strange attractor 
strange attractor on a 3-torus
strange attractor 

equilibrium  
periodic motion  
quasiperiodic motion 
quasiperiodic motion 
chaotic motion 
chaotic motion 
chaotic motion 

5 −    −    −    −    − 
0    −    −    −    − 
0    0    −    −    − 
0    0    0    −    − 
0    0    0    0    − 
+    0    −    −    − 
+    0    0    −    − 
+    0    0    0    − 
+    +    0    −    − 
+    +    0    0    − 
+    +    +    0    − 

stable fixed point 
limit cycle 
2-torus 
3-torus 
4-torus 
strange attractor 
strange attractor on a 3-torus
strange attractor on a 4-torus
strange attractor on a 3-torus
strange attractor on a 4-torus
strange attractor 

equilibrium  
periodic motion  
quasiperiodic motion 
quasiperiodic motion 
quasiperiodic motion 
chaotic motion 
chaotic motion 
chaotic motion 
chaotic motion  
chaotic motion  
chaotic motion  

2.2.3 Power Spectra 

The power spectra are a basic tool to analyze random vibrations. In a power 
spectrum, the square of the Fourier amplitude per unit time is displayed at each 
frequency. The power spectra also help in distinguishing among periodic, 
quasiperiodic, and chaotic motions. 

For a sample function of a signal x(t), the power spectrum can be defined in 
two ways. The power spectrum Φx(ω) is the time average of the square of its 
Fourier amplitude, namely, 
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 (2.2.5) 

On the other hand, the power spectrum Φx(ω) is also the Fourier transform of the 
autocorrelation function, namely, 

 i( ) ( )e dωτΦ ω τ τ
∞ −

−∞
= �x xR  (2.2.6) 
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where the autocorrelation function Rx(τ ) is defined as 
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Based on the Wiener-Khinchin relations of stochastic processes, the above two 
definitions are equivalent to the condition that Rx(τ ) decays rapidly with time.  

In experimental measurements or numerical simulations, researchers often obtain 
a time series with the same delay interval,  

 1 2, , , Nx x x�  (2.2.8) 

Adding a periodic condition xN+i = xi (i = 1,2,� ), the autocorrelation can be 
calculated as the discrete convolution  
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Its discrete Fourier transform 
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is the discrete power spectrum of the time series (2.2.8). 
In practical calculations of discrete power spectra, a more effective approach is 

to evaluate directly the coefficients of the discrete Fourier transform 
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and then compute 

 2 2
j j jp a b= +  (2.2.12) 

Usually, for many sets of {xi} evaluate the corresponding { }jp . The average of 
many resulting { }jp  will approximate the discrete power spectrum defined by Eq. 
(2.2.10). In this way, it is unnecessary to calculate the discrete autocorrelation 
(2.2.9). That is the basic idea of the fast Fourier transform attributed to Cooley and 
Tukey [15]. Nowadays, there are many commercial software packages available for 
determining the fast Fourier transform of a given signal.  

The spectrum of a periodic motion with period T consists of discrete spikes at 
the frequency 1/T and possibly a certain number of other spikes at m/T for an 
integer m. The spectrum of a k-period quasiperiodic motion is made up of spikes at 
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integer multiples of all its frequencies. Theoretically, the spectrum of a quasiperiodic 
motion can be distinguished from that of a periodic motion, because the peaks of 
the quasiperiodic spectrum are not spaced at integer multiples of a particular 
frequency. Practically, due to the impossibility of determining whether a measured 
value is rational of irrational, a spectrum seeming to be quasi-periodic may actually 
be periodic with an extremely large period.  

Chaos is a random-like motion. The power spectrum of chaos has a continuous, 
broad-band nature, which is a characteristic exhibited by all chaotic motion. In 
addition to the broad-band component, it is rather common for a chaotic spectrum 
to contain spikes indicating the predominant frequencies of the system. In practical 
simulations, chaotic spectra are much more complicated than regular ones. 
Typically, they consist of some dominant peaks surrounded by a lot of grass-like 
components. Although it is uncertain if the grassy portion of the spectrum is truly 
continuous, the difference in a spectrum between regular and chaotic motion is 
usually quite striking to provide a feasible means to identify chaos numerically. 
However, a power spectrum does not distinguish chaos from a truly random motion, 
which is a limitation of application of power spectra to identification of chaos. 

2.3 Melnikov Theory 

2.3.1 Introduction 

In 1963, Melnikov developed an analytical technique to detect a geometrical 
structure with the hallmark of chaos [16]. The key issues are the consequence 
and the prediction of transversal intersection of stable and unstable manifolds. 
Therefore, the concepts of stable and unstable manifolds will be introduced at the 
beginning. Then it will be explained that such an intersection implies the resulting 
sensitive dependence on initial conditions. The Melnikov function will be derived 
to predict the transversal intersection in a planar integrable system with small 
periodic perturbations. This analytical prediction approach will be generalized to 
higher-dimensional systems in the next section. Finally, the relation between the 
Melnikov analysis and the occurrence of chaos is clarified. 

2.3.2 Transversal Homoclinic/Heteroclinic Point 

Consider a dynamical system governed by Eq. (2.2.1). The stable manifold of a 
fixed point x0, denoted by W s(x0), is the set of all initial conditions such that the 
trajectories initiated at these points asymptotically approaches the fixed point x0 
as t→+∞, whereas the unstable manifold of a fixed point x0, denoted by Wu(x0), is 
the set of all initial conditions such that the trajectories initiated at these points 
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asymptotically approach the fixed point x0 as t→−∞. That is,  
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where X is a point in the state space, and x(X,t) is a trajectory stating at X. The 
stable manifold and the unstable manifold share a common feature that a trajectory 
with a starting point in it remains in the manifold forever. Therefore, both the 
stable manifold and the unstable manifold are called the invariant manifold.  

The concept of the invariant manifold of a fixed point can be generalized to 
that of a periodic orbit. The stable or unstable manifolds of a periodic orbit is the 
set of all initial conditions which approach the periodic orbit as t→+∞ or t→−∞. 
The invariant manifold of a periodic orbit corresponds to the invariant manifold of 
a fixed point on the Poincaré map. Consider a fixed point x  on the Poincaré map P 

 1( ) R n−= ∈x P x x  (2.3.2) 

Denote the Jacobian matrix of map P as DP. If n – 1 eigenvalues of DP are such 
that their magnitudes are either larger than 1 or smaller than 1, the fixed point is 
called a hyperbolic fixed point, and the corresponding periodic orbit is called  
a hyperbolic periodic orbit. A hyperbolic fixed point is called a saddle point 
(hyperbolic saddle point sometimes) if the magnitudes of some eigenvalues are 
larger than 1 and those of the rest are smaller than 1. For a saddle point ps, its stable 
manifold W s(ps) and its unstable manifold Wu(ps) are respectively defined as  
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where z is a point on the Poincaré section hyperplane.  
If the stable manifold W s(ps) of a saddle point ps coincides with the unstable 

manifold Wu(ps), namely W s(ps) = Wu(ps), the manifold is called a homoclinic 
orbit. The homoclinic orbit is a closed orbit on which all points tend to the same 
saddle points ps as t→±∞. For two different saddle points ps1 and ps2, if the stable 
manifold W s(ps1) of ps1 coincides with the unstable manifold Wu(ps2) of ps2, the 
manifold is called a heteroclinic orbit on which all points tend to ps1 and ps2 as 
t→+∞ and t→−∞, respectively. If meanwhile the unstable manifold Wu(ps1) of ps1 
coincides with the stable manifold W s(ps2) of ps2 so that there is another heteroclinic 
orbit, the two heteroclinic orbits form a heteroclinic cycle. A heteroclinic cycle 
may consist of more than two heteroclinic orbits connecting a few saddle points. 
Fig. 2.1 shows examples of homoclinic orbits, heteroclinic orbits, and heteroclinic 
cycles on a plane. 
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Figure 2.1 Homoclinic orbits, heteroclinic orbits, and heteroclinic cycles (a) a 
homoclinic orbit (b) two homoclinic orbits (c) heteroclinic cycle consisting of two 
heteroclinic orbits (d) heteroclinic cycle consisting of three heteroclinic orbits 

If the stable manifold and the unstable manifold do not coincide with each other, 
they may intersect each other. If the stable manifold and the unstable manifold 
intersect transversally at a point, the point of intersection is called a transversal 
homoclinic point. Here the transversality of an intersection of manifolds means 
that the union of the tangent spaces of the intersecting manifolds spans the whole 
space. Intuitively, a transversal intersection means that two intersecting manifolds 
are not tangent to each other at the point of intersection. If the stable manifold of 
a saddle point intersects transversally the unstable manifold of another saddle 
point, the point of intersection is called a transversal heteroclinic point.  

If there is a transversal homoclinic point q∈W s(ps)∩Wu(ps). Then q∈W s(ps) 
and q∈Wu(ps). Because both W s(ps) and Wu(ps) are invariant manifolds, Pm(q)∈ 
W s(ps) and Pm(q)∈Wu(ps) for all integer m. Thus, Pm(q)∈Ws(ps)∩Wu(ps). Similar 
argument is applicable in the case of a transversal heteroclinic point. That is, if the 
stable manifold and the unstable manifold intersect once, then they will intersect 
an infinite number of times, as shown in Fig. 2.2. 

 
Figure 2.2 Intersections of the stable and unstable manifolds: (a) homoclinic point 
(b) heteroclinic point 
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Consider a rectangular area near a homoclinic point in a Poincaré section. 
Points in the area represent the intersections of trajectories starting at different 
initial conditions. In the process of mapping, the rectangle moves to the next 
homoclinic point. Meanwhile, the rectangle contracts in the direction of the stable 
manifold, stretches in the direction of the unstable manifold, and distorts as it 
moves. At a later time, the rectangle is transformed into a shape of horseshoe. 
The horseshoe overlaps the original rectangle to form two new smaller rectangular 
areas, which are still near the homoclinic point. Therefore, the whole transformation 
process can be repeated. It can be inferred from Fig. 2.3, two close points in the 
original rectangle may end up far away from each other and thus the initial difference 
is amplified. Therefore, such a geometrical structure is highly sensitive to initial 
conditions, which is a hallmark of chaos. In 1963, Smale proposed the map that 
contracts, stretches, and folds a rectangle and intersects the image with itself [17]. 
The map is called the Smale horseshoe. 

2.3.3 Analytical Prediction 

The above-mentioned analysis shows that the occurrence of a transversal homoclinic 
or heteroclinic point is a possible mechanism resulting in chaos. Melnikov 
developed an approximate analytical expression of the distance between the stable 
and unstable manifolds in a planar integrable system with small periodic disturbances. 
Therefore, a transversal homoclinic or heteroclinic point can be predicted.  

 
Figure 2.3 Illustration of the Smale horseshoe 

Consider a planar nonautonomous system 

 2( ) ( , ) Rtε= + ∈x f x g x x�  (2.3.4) 
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where ε is a small parameter and the disturbance g is a periodic function with 
respect to t. Suppose that when ε = 0, the unperturbed system 

 2( ) R= ∈x f x x�  (2.3.5) 

has a saddle point ps with a homoclinic orbit xh(t − t0) such that 

 h
0 slim ( )

t
t t

→±∞
− =x p  (2.3.6) 

in which t0 is the beginning time that can be an arbitrary real number. 
If ε ≠ 0 but still sufficiently small, Eq. (2.3.4) exists a unique periodic orbit 

xsε(t) = p0 +O(ε). Thus its Poincaré map has a unique saddle point psε = p0 +O(ε). 
Although the stable and unstable manifolds of psε no longer coincide, both of them 
are still sufficiently close to the homoclinic orbit xh(t − t0) for ε = 0. Therefore, 
the equations of the stable and unstable manifolds can be assumed as 

 s h s 2
0 0 1 0( , ) ( ) ( , ) O( )t t t t t tε ε= − + +x x x  (2.3.7) 

 u h u 2
0 0 1 0( , ) ( ) ( , ) O( )t t t t t tε ε= − + +x x x  (2.3.8) 

Equations (2.3.7) and (2.3.8) can also be regarded as the expansions in terms of ε. 
At time t, the displacement of a point on the stable manifold relative to the point 
on the unstable manifold is  
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Project d(t, t0) to the normal N to the a homoclinic orbit of the undisturbed 
system (2.3.5). Notice that the normal, as shown in Fig. 2.4, is defined by 

 h h
0 2 0 1 0( , ) ( ( ( )), ( ( )))t t f t t f t t= − − −N x x  (2.3.10) 

where (f1, f2) = f. One gets 

 s u 2( , ) ( ) O( )N N Nd t d dτ ε ε= ⋅ = ∧ = − +N d f d  (2.3.11) 

where 
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and the wedge product is defined by  

 1 2 2 1a b a b∧ = −a b  (2.3.13) 

for the vectors a = (a1,a2) and b = (b1,b2). Actually, the wedge product is a vector 
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cross product in which only the magnitude is taken into consideration. 

 
Figure 2.4 Illustration of the derivation of Melnikov’s function 

Differentiating s
Nd  with respect to t yields 

 s s s h s s
1 1 1 1Nd = ∧ + ∧ = ⋅ ∧ + ∧Df x f x f y x f x� � � � �  (2.3.14) 

where the Jacobian Df is calculated at xh. Substituting Eq. (2.3.7) into Eq. (2.3.4) 
and neglecting ε2 and higher order terms in the resulting equation lead to 

 s s h
1 1 0( ( ), )t t t= ⋅ + −Dx f x g x�  (2.3.15) 

Substituting Eqs. (2.3.7) and (2.3.15) into Eq. (2.14) and omitting ε2 and higher 
order terms in the resulting equation give 

 s s s
1 1Nd = ⋅ ∧ + ∧ ⋅ + ∧D Df f x f f x f g�  (2.3.16) 

Direct computation of the first two terms on the right hand of Eq. (2.3.16) yields 

 ( )s s
1trNd = ∧ + ∧Df f x f g�  (2.3.17) 

Equations (2.3.12) and (2.3.17) mean that 

 ( )s strN Nd d= + ∧Df f g�  (2.3.18) 

Equation (2.3.18) is a first order linear ordinary differential equation of s
Nd , and 

it can be integrated from τ  to +∞ as 

 
0 h

0
tr( ( ( )))ds s

0 0 0( , ) ( , ) e d
τ

−
+∞ −→�+∞ − = ∧�

f x
f g

t t
z z

N Nd t d t t t
D

 (2.3.19) 

Using Eqs. (2.3.12) and (2.3.6) and noticing that ps is the saddle point, one has 

 s h s s
0 0 1 s 1( , ) ( ( )) ( ) 0Nd t t+∞ = +∞ − ∧ = ∧ =f x x f p x  (2.3.20) 
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Hence 

 
0 h

0
tr( ( ( )))ds

0 0( , ) e d
τ

−
+∞ −�= − ∧�

f x
f g

t t
z z

Nd t t t
D

 (2.3.21) 

A similar procedure yields 

 
0 h

0
tr( ( ( )))du

0 0( , ) e d
τ

−
−

−∞

�= ∧�
f y

f g
t t

z z

Nd t t t
D

 (2.3.22) 

Based on Eqs. (2.3.11), (2.3.21), and (2.3.22), if one defines the Melnikov 
function �(τ) as  

 
0 h

0
tr( ( ( )))dh h

0 0 0( ) ( ( )) ( ( ), ) e d
−

+∞ −

−∞

�= − ∧ −�
f x

f x g x
t t

z z
t t t t t t t

D
�  (2.3.23) 

then 

 2
0 0 0( , ) ( ) O( )Nd t t tε ε= − +�  (2.3.24) 

The existence of simple zeros of the Melnikov function 0( )t�  indicates that the 
displacement d (t0, t0) vanishes. At a simple zero tz, �(tz) 0 0( , )Nd t t = 0, but d 
�(tz)/dt0 ≠ 0. In this case, the stable and unstable manifolds are to intersect 
transversely to form a transversal homoclinic point.  

Equation (2.3.24) can be equivalently written as 

 
h

0
tr( ( ( )))dh h

0 0( ) ( ( )) ( ( ), )e d
+∞ −

−∞

�= ∧ +�
f x

f x g x
t

z z
t t t t t t

D
�  (2.3.25) 

If the unperturbed system is Hamiltonian, then tr(Df) = 0. Equation (2.3.25) 
becomes 

 h h
0 0( ) ( ( )) ( ( ), )d

+∞

−∞
= ∧ +� f x g xt t t t t t�  (2.3.26) 

2.3.4 Interruptions 

The Melnikov theory is of considerable significance because it can be applied to 
check in specific systems whether the stable and unstable manifolds intersect 
transversely or not, by a direct calculation of the approximate distance between 
these manifolds. The Melnikov function is an explicitly computable function  
that can be evaluated analytically or numerically. The Melnikov theory has been 
extended to multi-degree-of-freedom systems [18] and infinite-degree-of-freedom 
systems [19, 20]. A generalized version for Hamiltonian systems with finite 
degrees-of-freedom will be presented in the next section, and it will be applied in 
the subsequent chapters. 
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It should be kept in mind that the Melnikov theory only predicts transverse 
intersections of stable and unstable manifolds, or the existence of a homoclinic 
point. Usually, such an intersection yields an invariant set with sensitivity to initial 
conditions. Not all invariant sets are an attractor, because they may be without 
attractability. In dissipative systems, all observable chaos, in laboratory experiments 
or numerical simulations, should be attractor, with significantly large basin of 
attraction. The collection of initial conditions under which the motion tends toward 
a given attractor is called a basin of attraction. In a more general sense, the 
range of values of certain system parameters for which the motion tends toward  
a prescribed attractor is called a basin of attraction in the parameter space. 
Therefore, in a practical system, the existence of such an invariant set does not 
imply that chaotic motion is observed. 

In addition, not all attractors sensitive to initial conditions represent chaotic 
motion, because a periodic motion or even an equilibrium position may depend 
sensitively on initial conditions when there are two or more attractors in a 
nonlinear system. In this case, the basin boundary is nonsmooth, intertwined and 
complicated, actually fractal. The transition from one basin of attraction to another 
is called a basin boundary. 

In spite of the limitations, the occurrence of transverse intersections of stable 
and unstable manifolds is a significant hint to the appearance of chaos. The basin 
boundary is identical to the stable manifold. A homoclinic point means that the 
stable and unstable manifolds touch an infinite number of times, which leads to 
an infinite folding of the stable manifold and hence an infinite folding of the basin 
boundary and the resulting sensitivity to initial conditions.  

2.4 Chaos in Hamiltonian Systems 

2.4.1 Hamiltonian Systems, Integrability and KAM Theorem  

The Hamiltionian formulation is an effective and powerful approach to model and 
analyze dynamical problems. For a system with n degrees-of-freedom, its motion 
can be specified by n generalized coordinates qi(i = 1,2, ,n) and n generalized 
momenta pi. All (qi, pi) pairs form a 2n-dimensional phase space (q, p). If all actions 
on the system are derived from a potential function, W. R. Hamilton (in 1834) 
proposed the following differential equation of motion 

 
i

i

i
i

q
p

p
q

∂=
∂

∂= −
∂

�

�

�

�
 (2.4.1) 
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which is called Hamilton’s canonical equations. In Eq. (2.4.1), 

 ( , , )t= q p� �  (2.4.2) 

is called the Hamiltonian. For a mechanical system, � is the mechanical energy 
of the system. If a dynamical system is governed by the canonical equations, it is 
called a Hamiltonian system. Using Eq. (2.4.2), one has 
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� �� � � �

� � � � � �
 (2.4.3) 

Therefore, if the time variable t does not appear in =� � (q, p) explicitly, then 
� is a conserved quantity, a constant during the motion. Such a system is called a 
conservative system. If � depends on t explicitly, the original 2n-dimensional 
phase space can be enlarged into 2(n+1)-dimensional phase space ( , )q p  by 
introducing the n+1 generalized coordinate 1nq t+ =  and generalized momentum 

1np + = −� . Then the Hamiltonian of the enlarged system is 

 1 1( , ) ( , , )n nq p+ += +q p q p� �  (2.4.4) 

and the corresponding canonical equations are 

 ( 1,2, , 1)
i

i

i
i

q
p

i n
p

q

∂=
∂

= +
∂= −
∂

�

�
�

�

�
 (2.4.5) 

The construction of the enlarged system means the equivalence of Eqs. (2.4.1) and 
(2.4.5), while the enlarged system is conservative as its Hamiltonian is explicitly 
independent of t. Thus all Hamiltonian systems can be equivalently transformed 
into a conservative one. In the following, only conservative systems will be 
considered.  

A Hamiltonian system can be substantively simplified via an appropriate 
transform from one set of variables (q, p) to some new set (Q, P),  

 
( , )
( , )

=
=

Q Q q p
P P q p

 (2.4.6) 

Equation (2.4.1) is accordingly changed into the form 
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( , )
( , )

=
=

Q Q Q P
P P Q P

� �
� �  (2.4.7) 

If the structure of Eq. (2.4.1) is still preserved, that is, Eq. (2.4.7) takes the form 
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h
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 (2.4.8) 

where h = h(Q, P), then the transformation is called a canonical transformation. 
A canonical transformation changes a set of canonical equations into another set of 
canonical equations. It can be proved that the inverse of a canonical transformation 
and the composition of canonical transformations are still canonical transformations. 

Suppose there are a series of canonical transformations to change variables 
(q, p) into variables (I,θ ), such that the Hamiltonian in the new variables depends 
only on I, and that 

 ( )H= I�  (2.4.9) 

is independent of θ. Then the Hamiltonian equations are 

 

1 2

0
( 1,2, , )
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 (2.4.10) 

Integration of Eq. (2.4.10) yields 

 
1 2

( ) (0)
( ) ( (0), (0), , (0)) (0)

i i

i i n i

I t I
t I I I tθ Ω θ

=
= +�

 (2.4.11) 

where 2n constants I(0) and θ (0) can be determined by initial condition (q(0), p(0)). 
Variables (I,θ) are called action-angle variables. According to Eq. (2.4.11), the 
motion of Eq. (2.4.10) can be uniquely specified by n angle variables θi. 
Mathematically, an n-dimensional manifold where the point is specified by n 
angles is called an n-torus, denoted as Tn. An 1-torus T1 is a circle, and 2-torus 
T2 is a usual tori, while there is no plot of n-torus Tn for n 3 in 3-dimensional 
physical space. Actually, Ii is the n radii of the n-torus. As explained in 2.1.2,   
if Ω i are incommensurable, that is, there do not exist not all zero integer ki such 

that 
1

0
n

i i
i

k Ω
=

=	 , then it can be proved that the trajectory winds up on the torus  

endlessly without closing, and is dense there. The corresponding motion is 
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quasiperiodic. If Ω i is commensurable, then the trajectory closes on the torus, 
and the motion is periodic.  

Hamiltonian systems expressed in action-angle variables are integrable. Generally, 
a Hamiltonian with n degree-of-freedom is an integrable system, if there exist n 
independent isolating integrals of motion 

 ( , ) ( 1,2, , )i iI C i n= =q p �  (2.4.12) 

where Ci are constants. Functions Ii are independent if the differentials dIi are 
linearly independent. Since n isolating integrals of motion exist, the 2n dimensional 
phase space is confined in an n-dimensional manifold that is homeomorphic to 
n-tori. The manifold is an invariant torus, because all trajectories starting on it 
remain there all the time. Hence integrable systems can never be chaotic, and 
their motion is periodic or quasiperiodic.  

In 1892, Poincaré proved that many dynamical systems, including the three-body 
problem, are not integrable. A system that has fewer constants of motion than 
degrees-of-freedom is called a nonintegrable system. Integrability is an exceptional 
property for Hamiltonian systems with degrees-of-freedom larger than 2. In fact, 
integrable systems are so rare that in general it is impossible to approximate a 
nonintegrable Hamiltonian system by a series of integrable ones. However, there 
is no direct criterion to determine the integrability. An integrable system is made 
slightly nonintegrable by adding a small disturbance. Such a system is called near 
integrable system. In terms of action-angle variables, the Hamiltonian of a near 
integrable system can be written as 

 0( , ) ( ) ( , )� V �= +I I I� �  (2.4.13) 

where 0�  is integrable and V is sufficiently small. If no disturbance is present, then 
V = 0 and the system is integrable. If V ≠ 0, the integrability is usually violated. 

In 1954, Kolmogorov described the qualitative picture of near integrable 
systems [21]. Arnol’d and Moser completely proved the conclusion that is known 
as famous Kolmogorov-Arnol’d-Moser theorem. In the following, KAM theorem 
is presented without proof, which is outside the scope of this monograph. 

KAM theorem: Suppose that Hamiltonian (2.4.13) satisfies the following 
conditions: 

(i) � (I,θ ) is a real analytic function on a region Σ0:⏐Imθ⏐ t, ⏐I−I0⏐ s; 

(ii) 0 ( 1,2, , )j
j

j n
I

Ω ∂
= =

∂
��

 calculated at I0 such that 0j

kI
Ω∂

≠
∂

 (nonde- 

generacy conditions); 
(iii) For arbitrary integer vector k = (k1, k2, ,kn) there exist C(Ω )>0 and μ >n−1 

such that the nonresonance condition holds as follows 
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	 	  (2.4.14) 

Then for any ε>0, there is a δ = δ (ε, C, μ, s, t) such that, if |V |<δ in Σ0, the 
solution to equation 
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lies on an n-dimensional invariant torus  

 0 ( )
( )

Γ Θ
θ Θ Φ Θ

= +
= +

I I
 (2.4.16) 

where Γ and Φ are real analytic functions with period 2π defined on |ImΘ | t/2. 
The trajectory on the torus is governed by  
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�  (2.4.17) 

The torus is sufficiently close to the torus of the undisturbed system, that is, 

 | | | |Γ Θ ε+ <  (2.4.18) 

The conditions in the KAM theorem require the disturbance leading to the 
nonintegrability to be sufficiently small, the Hamiltonian to be analytic function, 
the system to be nondegenerate, and the undisturbed frequencies to be nonresonant, 
in which the analytical condition and the nondegenerate condition can be technically 
weakened. Under these conditions, most nonresonant tori survive but may be slightly 
deformed. Hence the tori exist in the phase space of the disturbed system, and the 
trajectories wind densely on them. The number of independent frequencies is equal 
to the number of degrees-of-freedom of the system. Those tori are called KAM tori, 
KAM surfaces or KAM curves. 

2.4.2 Stochastic Layers and Global Chaos 

Now consider the resonance of a near integrable Hamiltonian system. In this case, 
Ω i is commensurable. The trajectories of Eq. (2.4.1) are periodic orbits on the 
n-dimensional invariant torus Tn. Since a conservative Hamiltonian always has 
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its energy as its constant of motion, its motion in 2n-dimensional phase space is 
confined to a (2n−1)-dimensional energy surface after given an initial energy. 
The intersection of the energy surface and the n-dimensional invariant tori yields 
a (2n−2)-dimensional surface Σ that can serve as a cross section to define a 
Poincaré map P0. The surface Σ cuts the torus Tn on a level curve Γ. Due to the 
periodicity of the motion, every point of curve Γ is a k-periodic point of P0 for 
some integer k. A k-periodic point of a map f is defined as the fixed point of f  k 
but not the fixed point of f  m for any m<k. For the disturbed system (2.4.13), the 
same surface Σ still defines a Poincaré map P, and the change of the level curve 
Γ reflects deformation of the invariant torus Tn. 

Before the discussion of Poincaré map P, some basic concepts of Hamiltonian 
maps need to be presented. A Hamiltonian map is a map that conserves volume 
in the phase space. Hence the determinant of its Jacobian is equal to 1. The Poincaré 
map of a Hamiltonian system is a Hamiltonian map. Consider a 2-dimensional 
Hamiltonian map M, which can serve as a Poincaré map of a Hamiltonian system 
with 2 degree-of-freedom. The Hamiltonian system has a 4-dimensional phase 
space, a 3-demensional energy surface, a 2-dimensional Poincaré section Σ, a 
2-dimensional invariant torus T2, and a 1-dimensional level curve Γ. Suppose z0 
to be a k-periodic point M. Then the Jacobian of Mk calculated at z0 with two 
eigenvalues λ1 and λ2 satisfying λ1λ2 = 1 because detDMk = 1. Therefore, λ1 and 
λ2 are two real numbers with 0<λ1<1<λ2 or a pair of complex conjugates with the 
unit modulus. The periodic point is defined as a hyperbolic point in the first case 
and an elliptic point in the second case. This conclusion is true for general cases. 
A periodic point of a Hamiltonian map must be either a hyperbolic point or an 
elliptic point. 

In 1935, based on Poincaré’s previous work in 1899, Birkhoff proved the 
following conclusion: For a sufficiently small disturbance, the level curve Γ breaks 
up into 2mk k-periodic points of Poincaré’s map P for some integer m; these 
periodic points lie near Γ ; mk points are hyperbolic and mk points are elliptic. 
This conclusion is referred as the Poincare-Birkhoff theorem. However, the 
theorem does not specify the value of the integer m. 

In the situation described by the Poincaré-Birkhoff theorem, Γ is called a 
resonant level curve, and a certain region around Γ containing the hyperbolic 
and elliptic points is called a resonance zone. Around each elliptic point there is 
a series of periodic orbits. Any two adjacent hyperbolic points are connected by 
heteroclinic orbits. If the heteroclinic orbits intersect transversely in a homoclinic 
point, then, according to the analysis presented in 2.3.2, the transverse heteroclinic 
point results in an infinitely complicated set of intersections, which are a cause of 
chaotic behavior. Such a complicated geometrical structure in a Hamiltonian system 
is called a stochastic layer. The regions around the elliptic points bounded by 
the heteroclinic orbits are called islands. Those islands compose an island chain 
if there are several elliptic points. For the situation mk = 3, Fig. 2.5 shows the 
breakup of a resonant level curve, and Fig. 2.6 illustrates a stochastic layer. 
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Figure 2.5 A resonant level curve breakup into hyperbolic points (·) and  

elliptic points (X ) 

 
Figure 2.6 A stochastic layer in a Hamiltonian system 

The newly formed elliptic points due to the breakup of a resonant level curve 
are surrounded by smaller level curves. In the resonance, according to the Poincaré- 
Birkhoff theorem, those curves become a chain of elliptic and hyperbolic points 
around the earlier elliptic points. This self-similar pattern can repeated infinitely, 
as depicted in Fig. 2.7, while most of these points on such a small scale that it is 
difficult to locate them in numerical simulations. Meanwhile, there are nonresonant  

 
Figure 2.7 Self-similarity near an elliptic point 
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level curves corresponding to KAM tori, which are preserved, near each elliptic 
point. Regular behaviors represented by nonresonant level curves coexist with 
chaos represented by stochastic layers in resonance zones. Thus, in Hamiltonian 
systems, initial conditions are so crucial that some sets of initial conditions lead to 
regular motion while others lead to chaos for the same set of system parameters. 
Therefore there is a complex nested structure of KAM tori surrounded by chains 
of elliptic and hyperbolic points. 

Stochastic layers exist in all nonintegrable Hamiltonian systems. However, for 
an integrable Hamiltonian system with very small disturbance, the stochastic layers 
may be so slight that they cannot be found in numerical calculations. Hence only 
regular motion occurs in the system. With the increase of the disturbance, the system 
exhibits chaotic behavior manifested in the emergence of observable stochastic 
layers. According to the KAM theorem, there still exist nonresonant KAM tori 
that divide the stochastic layers. Irregular motion due to the stochastic layers 
separated by the KAM tori is called local chaos. With further increase of the 
disturbance, the KAM tori separating the adjacent stochastic layers successively 
break up and the stochastic layers merge into larger stochastic layers. Thus the 
thickness of stochastic layers expands with the disturbance. For a sufficiently 
large disturbance, the resonance zones may overlap so that there is a transverse 
intersection of stable and unstable manifolds for two hyperbolic points from two 
different resonance zones. In this case, stochastic layers are no longer confined 
by KAM tori, and the corresponding behavior is called global chaos. In global 
chaos, there may still exist KAM tori not destroyed by the disturbance. Those tori 
resemble islands in a chaotic ocean, while there are smaller stochastic layers and 
KAM tori on the islands. Hence global chaos is a very complicated self-similar 
structure in the phase space. 

2.4.3  Arnol’d Diffusion 

The motions of integrable Hamiltonian (2.4.9) are confined in an n-dimensional 
torus (2.4.11) in a 2n-dimensional phase space. For a nonintegrable Hamiltonian 
system, stochastic layers appear near the intersection of (2n−1)-dimensional energy 
surface and (2n−1)-dimensional resonance surface defined by 

 0
1

( ) 0
n

i i
i

k Ω
=

=	 J  (2.4.19) 

where ki are integers not all equal to zero. The energy surface and the resonance 
surface intersect on a surface with the dimension (2n−1)−1 = 2n−2. The stochastic 
layers around the surface in a space with dimension (2n−2)+1 = 2n−1. Diverse 
curves form when the resonance surface cuts the energy surface, and these curves 
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interconnect each other to constitute a complex network spreading all over the 
energy surface. Such a network is called an Arnol’d web. 

In an m-dimensional space, an (m−1)-dimensional closed surface, such as Tm −1, 
can divide the space into two distinct parts, while the closed surface of less than 
m−1 dimension cannot do so. In a Hamiltonian system with n degrees-of-freedom, 
KAM tori is n-dimensional. Only if (2n−1)−1 = n i.e. n = 2, a KAM torus divides 
the (2n−1)-dimensional energy surface into two disconnected parts, and thus it 
can isolate stochastic layers. For n 3, trajectories in gaps between the tori can 
escape to other regions of the energy surface. Therefore, all stochastic layers on 
the energy surface are connected into a single complex network, which is the 
above-mentioned Arnol’d web. The web permeates the entire energy surface, 
intersecting or lying infinitesimally close to every point. For an initial condition 
within the web, the subsequent trajectory will eventually intersect every finite region 
of the energy surface. Such an irregular motion in a higher degree-of-freedom 
Hamiltonian system is called the Arnol’d diffusion. In 1964, Arnol’d proved 
that stochastic layers merge into a single web in a specific nonlinear Hamiltonian 
system [22]. 

The structures of Arnol’d web depends on the energy surface and the resonance 
surface, which are both dependent on the integrable Hamiltonian and independent 
of the disturbance. Thus there are global Arnol’d diffusions for arbitrary small 
disturbances. In the case when the disturbances are large enough to yield observable 
stochastic layers, the Arnol’d diffusion links together the chaotic regions on all scales. 
However, the Arnol’d diffusion is usually very slow. In 1977, N. N. Nehoroshev 
proved a rigorous but overestimated upper bound on the diffusion rate. For an 
integrable Hamiltonian system with a disturbance of the order ε, the change of 
system momentum satisfies 

 1( ) (0) 0, e
bat t εε

ε
−
 �− < ∈ � � �

p p  (2.4.20) 

where a and b are positive constants determined by the undisturbed integrable 
Hamiltonian system [23]. 

2.4.4 Higher-Dimensional Version of Melnikov Theory 

The idea of the Melnikov theory can be generalized to higher-dimensional system 
to develop quantitative methods for handling the Poincare-Birkhoff breakup of 
resonance zones. In the following, a version [24] proposed by Holmes and Marsden 
in 1983 is presented without proof. This version will be applied to treat a gyrostat 
with a rotor in the following chapter. 

Consider an n+1 degrees-of-freedom integrable Hamiltonian system with small 
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disturbance  
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where μ are a set of m Lie-Poisson variables, (θ1,� ,θn, I1,� , In) are action-angle 
coordinates (n 2), ε is a small parameter, and 1�  is 2π-periodic in θ1,� ,θn. 

For integrable Hamiltonian system with ε = 0, μ is decoupled from action 
coordinates (I1,� , In). Suppose that F contains a homoclinic (or heteroclinic) 
orbit μh with energy h0. The coadjoint orbit containing μh is assumed to be two- 
dimensional. The saddle points for μh are denoted μ±, which may be coincident. 
Suppose for j = 1,� , n, Ωj(Ij) = Gj′(Ij)>0. For a given energy 

 1 1( , , , , , , ; )n nI I hθ θ ε =� �� μ  (2.4.22) 

System (2.4.21) has a reduced integrable part with the Hamiltonian 
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The Hamiltonian system L0 has two (n–1)-parameter family of invariant 
(n–1)-dimensional tori T±(h1,� , hn-1) defined by 

 1, ( ) , ( ( )) (0) (mod 2 �) ( 1, , 1)j j j j j j n jG I h G h j nθ Ω θ θ−
±= = = + = −�μ μ  

   (2.4.24) 

where hj is a constant. Correspondingly, the system for H0 has two n-parameter 
family of invariant tori T± (h1,� ,hn). Henceforth the phase constants of integration 
θj(0) is written as θ0j for j = 1,� ,n. The tori T±(h1,� , hn – 1) are connected by the 
n-dimensional homoclinic manifold defined by 

h 1
0 0( ), ( ) , ( ( )) (mod 2 �) ( 1, , 1)n n j j j j j j n jG I h G h j nθ θ θ Ω θ θ−= + = = + = −�μ μ

(2.4.25) 

where the phase constant θ0n associated with the reduced degrees-of-freedom 
appears explicitly. This manifold consists of the coincident stable and unstable 
manifolds of the tori T±(h1,�,hn – 1); i.e. W s(T±(h1,�,hn-1)) = Wu(T±(h1,�,hn – 1)) 
given by Eq. (2.4.25). 

For ε ≠ 0, a system defined by Hamiltonian (2.4.21) possesses a Poincaré map 
Pε from a piece of (μ,θ1,�θn – 1, I1,�, In – 1) space to itself where θn goes through 
an increment of 2π, starting at some fixed value θn0. Assume that the constants 
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Gi′(Ii) = hi(i = 1,�,n) are chosen so that the disturbed frequencies Ωi(Ii) satisfy 
the nondegeneracy conditions Ωi′(Ii) ≠ 0 and the nonresonance condition (2.4.14) of 
the KAM theorem. These conditions ensures that the tori T±(h1,�,hn – 1) perturb to 
invariant tori Tε±(h1,�,hn–1) for Pε with sufficiently small ε. Let h = h0+h1+�+hn 
where hi>0 (i = 1,�,n) and the undisturbed homoclinic manifold be filled with an 
n-parameter family of orbits given by 

 h
1 1 1 1 01 0 1( , , , , , , ) ( ( ), ( ) , , ( ) , , , )n n n n n nI I t I t I t I Iθ θ Ω θ Ω θ= + +� � � �μ μ   

   (2.4.26) 

Pick one such orbit and let {{F, �1}} denote the Lie-Poisson bracket of F(μ) and 
�1(μ,θ1,�θn, I1,�, In) evaluated on this orbit. Similarly, let {Ij, H1} = –∂H1/∂θj 
( j = 1,�,n–1) be evaluated on this orbit. Define the Melnikov vector 

 0 1 10 0 1 1 1 10 0 1 1

10 0 1 1

( ) ( ( , , , , , , ), , ( , , , , , , ),
( , , , , , , ))

n n n n n

n n n

h h h h h h
h h h

θ θ θ θ θ
θ θ

− − −

−

= � � � � �
� �

� �
�

�
 

    (2.4.27) 

by 

 
10 0 1 1 1

10 0 1 1 1

( , , , , , , ) { , }d ( 1, , 1)

1( , , , , , , ) { , }d

θ θ

θ θ
Ω

+∞

− −∞

+∞

− −∞

= = −

=

�

�

� � �

� �

j n n j

n n n
n

h h h I t j n

h h h F t

� �

� �
 (2.4.28) 

Assume that the multiply 2π-periodic Melnikov vector � has at least one 
simple zero; i.e. there is a point θ0 = (θ10,�θn0) for which 

 0 0( ) 0, det( ( )) 0= ≠D� �θ θ  (2.4.29) 

where D�  is the n× n matrix of partial derivatives of �1,�,��n with respect 
to θ10,�θn0, the initial phases of the orbit. Under these assumptions, Holmes and 
Marsden demonstrated that, for sufficiently small ε, the disturbed stable and unstable 
manifolds W s(Tε ±) and Wu(Tε ±) of the disturbed tori Tε ± intersect transversely. 
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Chapter 3 Chaos in Planar Attitude Motion of  
Spacecraft 

Abstract The chaos of spacecraft in planar attitude motion is discussed  
in this chapter. A rigid-body spacecraft in elliptic orbit considering the 
gravitational and damping torque is discussed, and the Melnikov’s theory is 
applied to predict the transverse heteroclinic point. The numerical simulations 
and Poincaré maps are performed to confirm the existence of chaos. The 
same methods are used to analyze the motion of a tethered satellite in circular 
orbit considering the gravitational torque and the elastic deformation of the 
tether, as well as a magnetic rigid spacecraft in elliptic orbits under the action 
of gravitational and magnetic field of the Earth. The numerical results not 
only confirm the existence of chaotic motion, but also serve as examples of 
geometrical structure of chaos, routes to chaos, and numerical identification 
of chaos. 

Keywords planar attitude motion, rigid-body spacecraft, tethered satellites, 
Melnikov theory, routes to chaos, Poincaré map, Lyapunov exponents, power 
spectra 
 
 

This chapter deals with chaos in planar attitude motion of spacecraft. The models 
of spacecraft treated here are rigid-body spacecraft in elliptic orbits and tethered 
satellites in circular orbits in the gravitational field of the Earth, as well as 
magnetic rigid spacecraft in circular and elliptic orbits in the gravitational and 
magnetic field of the Earth. For each model, previous related research results are 
summarized to present the necessary background, the governing equations are 
derived from spacecraft dynamics surveyed in chapter 1, the Melnikov theory 
introduced in Section 2.3 is applied to predict transverse heteroclinic points, and 
numerical simulations are performed employing methods described in Sections 2.1 
and 2.2. The computations not only confirm the existence of chaotic motion, but 
also demonstrate the transition from periodic motion to chaos. Actually, these 
numerical results can also serve as examples of geometrical structure of chaos, 
routes to chaos, and numerical identification of chaos.  
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3.1 Rigid Spacecraft in an Elliptic Orbit 

3.1.1 Introduction 

Since 1989 [1-3], much work has been done on the simplest spacecraft model 
with chaotic behaviors, the planar libration of a rigid body spacecraft in an elliptic 
orbit in the gravitational field of the Earth. If no disturbances are taken into 
consideration, the motion is governed by Eq. (1.3.26). If the disturbances are 
modeled, there will be additional small terms in the governing equation. Those 
disturbances include atmosphere resistance [2, 4], internal damping [4], tidal 
moments [5-7], Earth oblateness [3], the Earth magnetic field, third body gravitation 
[5, 6, 8-12], the solar-radiation pressure [12], and the control inputs [13-15]. The 
interaction of the magnetic field will be treated in Section 3.4. 

For the cases without any disturbances, Gouliaev, Zubritska and Koshkin 
constructed the universal sequences of the period-doubling bifurcations for the 
periodic attitude motion generated from the stable state [1]. They also studied the 
case generated from the unstable state [16]. Gouliaev and Zavrazhina further 
built the scaling function to describe the spacecraft phase trajectory evolution at 
transition to chaos [17]. Tong and Rimrott used the Melnikov method to show 
that chaos occurs for all values of the system parameters and then numerically 
studied the dynamics for a range of orbital eccentricities and inertia ratios [18]. 
Karasopoulos and Richardson showed bifurcation diagrams to reveal the dependence 
on eccentricity, especially the transition to chaos with increasing eccentricity [19]. 
Teofilatto and Graziani used the Melnikov method to explain the transition from 
regular to chaos and numerically documented the overlapping of resonances arising 
both for nearly circular and highly eccentric orbits [20]. Kirchgraber, Manz, Stoffer 
employed “shadowing”, a mathematical technique, to prove rigorously the existence 
of chaos in amplitude motion of a dumbbell spacecraft [21]. 

There are also some investigations on the planar libration of a rigid body 
spacecraft in an elliptic orbit under certain disturbances. Considering atmosphere 
resistance, Seisl and Steindl applied the Melnikov method to present the condition 
of appearing chaos confirmed via numerical simulations [2]. Koch and Bruhn 
studied a nonspherical spacecraft whose center of mass moves in an elliptic orbit 
around an oblate axially symmetric central body, and used the Melnikov method 
to reveal that the attitude motion is chaotic for all values of the orbital eccentricity 
and the oblateness of the central body [3]. Chen and Liu considered both 
atmosphere resistance and internal damping and derived the analytical condition 
of occurring chaos from the Melnikov method [4]. Beletsky, Pivovarov and 
Starostin treated tidal moments as a dissipative factor and performed numerical 
simulations to explain the capture of natural celestial bodies in resonance rotation 
modes [6]. Khan, Sharma and Saha considered the effects of tidal moments via 
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the Melnikov method, and established the condition of occurring chaos [7]. 
Beletsky, Pivoarov and Starostin also investigated numerically chaotic attitude 
motion of a celestial body in gravitational field of two centers, assuming that the 
body moves in a circular orbit [6]. Ashenberg extended the investigation to the 
global dynamics in the elliptic orbit [9]. Bhardwaj and Bhatnagar applied the 
Melnikov method to a satellite in an elliptical orbit under the influence of third 
body torque and used the Chrikov criterion [22] to estimate the half-width of the 
chaotic separatrix [10]. Bhardwaj and Tuli presented graphically Melnikov’s function 
in the Earth-Moon-Artificial Satellite (1958 B2 Vanguard 1) System [11]. Mehra 
and Bhatnagar considered both solar radiation pressure and 3rd body torque via 
the Melnikov analysis [12]. Gray and Stabb introduced damping and other effects 
to Eq. (1.3.26) through the addition of proportional-integral-derivative control, and 
employed a generalization of the Melnikov method to systems with slowly- 
varying parameters [45] to obtain the surface defining the boundary between chaotic 
and regular motion in physical and control parameters [13, 14]. The outcomes were 
compared with numerical results [15]. 

In this section, planar libration of a rigid-body spacecraft in an elliptic orbit 
with air drag and internal damping will be considered. The disturbing terms are 
added into the governing equation. The Melnikov analysis is performed to derive 
the condition of transverse heteroclinic points. Some mathematical details are 
included to demonstrate the application of the Melnikov theory. Numerical examples 
with periodic motion and chaotic motions are presented. 

3.1.2 Dynamical Model 

As shown in Fig. 3.1, an arbitrarily shaped rigid body spacecraft, whose principal 
inertia moments are A, B and C, moves in an elliptic orbit with one principal axis 
z normal to the orbital plane XY. Without loss of generality, suppose that B>A. 
Denote that ϕ is the libration angle in the orbital plane as measured from the local 
vertical, ν is the position angle of the spacecraft in its orbit as measured from 
perigee, r is the distance between the spacecraft mass center and the Earth mass 
center, μ is the gravitational attraction constant of the Earth. Assume that the internal  

 
Figure 3.1 Planar motion of spacecraft in an elliptic orbit 
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damping and the atmosphere resistance are proportional to angular velocity and to 
the quadratic of angular velocity respectively, whose coefficients are γ and c. 

Projection of the Euler equation in the z-direction leads to 

 3

d d d 3 d d d( )cos ( sin )
d d d d d d

B A c
t t t Cr t t t

ν ϕ μ ϕ ϕ ϕϕ ϕ γ� �+ = − − − −� �
� �

 (3.1.1) 

The orbital motion and the attitude motion are assumed to be decoupled. Thus 
the spacecraft moves in the Keplerian orbit defined by Eq. (1.3.24). Substitution 
of Eqs. (1.3.24) and (1.3.25) into Eq. (3.1.1) yields 

 2

2 sin (1 ) sin 2 0
1 cos 1 cos (1 cos )
e c

e e e
ν ϕ κ ϕ γϕϕ ϕ ϕ

ν ν ν
+− + + + =

+ + +
� ��� � �  (3.1.2) 

where e is the orbit eccentricity, κ = 3(B–A)/(2C), and the over-dot denotes the 
derivative with respect to the position angle ν. 

3.1.3 Melnikov Analysis 

Since e, c, and γ are all small, introduce a dimensionless small parameter ε (0<ε�1) 
such that e = εe1, c = εc1, γ = εγ1. When the terms higher than second order of ε 
are omitted the Eq. (3.1.2) becomes an integrable Hamiltonian system under 
small perturbations 

 1 1 1 1sin 2 2 sin (1 ) cos sin 2e e cϕ κ ϕ ε ν ϕ κ ν ϕ ϕ ϕ γ ϕ+ = 
 + + − − �� ��� � � � �  (3.1.3) 

If ε = 0, Eq. (3.1.3) reduces to the unperturbed planar Hamiltonian system, 
which is essentially the same as Eq. (1.3.15), 

 sin 2 0ϕ κ ϕ+ =��  (3.1.4) 

with first integral of motion given by Eq. (1.3.16) 

 2 2
0

1 sin
2

Cϕ κ ϕ+ =�  (3.1.5) 

where C0 is a constant. When C0 = κ, Eq. (3.1.5) has two hyperbolic saddle points 
(±π /2, 0), whose unstable manifolds and stable manifolds constitute a 
heteroclinic cycle defined by 

 
2

21 d sin
2 d

ϕ κ ϕ κ
ν

� � + =� �
� �

 (3.1.6) 

Suppose that ϕ(0) = 0. Then ( )0 2ϕ κ= ±� . Integration of Eq. (3.1.6) leads to 
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0 2

d
sin

ϕ ϕ ν
κ κ ϕ

=
± −�  (3.1.7) 

Evaluation of the finite integral in Eq. (3.1.7) and rearrangement of terms in the 
resulting equation yields 

 ( ) arcsin(th( 2 ))ϕ ν κν± = ±  (3.1.8) 

Therefore the heteroclinic orbits Γ  ± started at (0, 2 )κ±  are 

 ( ( ), ( )) ( arcsin(th( 2 )), 2 sech( 2 ))ϕ ν ϕ ν κν κ κν± ± = ± ±�  (3.1.9) 

For ε ≠ 0, Eq. (3.1.3) can be cast into the form of Eq. (2.3.4) with  
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 (3.1.10) 

The unperturbed system (3.1.4) is Hamiltonian, and thus tr(Df) = 0. Application 
of Eq. (2.3.26) yields 

[0 1 0 1 0

1 1

( ) 2 sin( )(1 ( )) cos( )sin 2 ( )

( ) ( ) ( ) ( )d

ν ν ν ϕ ν κ ν ν ϕ ν
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+∞
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± ± ± ±

= + + + +

− − ��

� �

� � � �

e e

c

�
 (3.1.11) 

Notice that the integral of an odd function over a symmetrical interval is zero. 
Equation (3.1.11) can be simplified to 

 0 1 1 0 1 2 0 1 3 0 1 4 1 5( ) 2 sin 2 sin sine I e I e I c I Iν ν ν κ ν γ± = + + − −�  (3.1.12) 

where 

 1 cos ( )dνϕ ν ν
+∞

±−∞
= � �I  (3.1.13) 

 2
2 cos ( )dνϕ ν ν

+∞

±−∞
= � �I  (3.1.14) 

 3 sin sin 2 ( ) ( )dν ϕ ν ϕ ν ν
+∞

± ±−∞
= � �I  (3.1.15) 

 2
4 ( ) ( ) dϕ ν ϕ ν ν

+∞

± ±−∞
= � � �I  (3.1.16) 

 2
5 ( )dϕ ν ν

+∞

±−∞
= � �I  (3.1.17) 
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Substitution of Eq. (3.1.9) into Eqs. (3.1.13)-(3.1.15) and application of the 
theorem of residues to suitably constructed contours for I1, I2, and I3 yield 

 1
��sech

2 2
I

K
= ±  (3.1.18) 

 2
�� csch

2 2
I

K
=  (3.1.19) 

 3
1 �� csch
4 2 2

I
K

= −  (3.1.20) 

Application of Eq. (3.1.6) and the change of variable in I4 and I5 give 
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 (3.1.21) 
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   (3.1.22) 

Therefore, Eq. (3.1.11) becomes 

 0 1 0 1 1
� � �( ) 4sech 3csch sin � 2 2 �
2 2 2 2 2

e cν ν κ κ γ
κ κ±

� �= + − −� �
� �
��  

  (3.1.23) 

If both �+(ν0) and �–(ν0) have simple zeros, then there exists a transverse 
heteroclinic point in the Poincaré map of Eq. (3.1.2). Notice |sinν0| 1, if and 
only if 

 2 4 2
� �3csch 4sech

2 2 2 2

ce κ κγ

κ κ

+>
−

 (3.1.24) 

Thus the transverse heteroclinic point exists. 

3.1.4 Numerical Simulations 

Fix κ = 0.75, γ = 0.05, and c = 0.04 in Eq. (3.1.2). Varying e may result in 
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periodic or chaotic motion. For example, If e is very small, the attitude motion is 
periodic The case with e = 0.080 is shown in Fig. 3.2. The attitude motion chaotic 
motion appears if e = 0.085, and the time history and the phase trajectory are 
separately shown in Fig. 3.3. 

 
Figure 3.2 Periodic attitude motion of a rigid spacecraft in an elliptic orbit 

 
Figure 3.3 Chaotic attitude motion of a rigid spacecraft in an elliptic orbit 

3.2 Tethered Satellite Systems  

3.2.1 Introduction 

A system of two or more subsatellites connected by a long cable is called a 
tethered satellite system. Tethered satellite systems have many applications in space 
exploration and development because tethers can be used to construct large-scale 
space structures. The study of the motion of tethered satellite systems is a challenging 
new field in spacecraft dynamics [23].  
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In 1993, Nixon and Misra first considered the possibility of chaotic motion in 
a two-body tethered satellite system with a rigid tether [24]. For a two-body tethered 
satellite system moving in a circular orbit, Peng and Liu applied the Melnikov 
method to predict chaos and performed numerical simulations to demonstrate 
periodic and chaotic motions in the case of decoupled longitudinal tether vibration, 
and also studied numerically the coupled case [25]. On the assumption that the 
center moves in an elliptic orbit and the tether is an ideally flexible mass-less 
inextensible thread, Béda numerically studied a two-body tethered satellite system 
subjected to the aerodynamical forces, and found chaotic regions in the parameter 
space [26]. For a linear spring connected two-body satellite system moving in an 
elliptical orbit, Fujji and Ichiki used Poincaré maps, bifurcation diagrams, and 
maximum Lyapunov exponents to demonstrate that chaos occurs for low tether 
elasticity and large orbit eccentricity [27]. For viscoelastically tethered satellite 
systems with two stable radial and two unstable tangent-to-orbit equilibria, Steiner 
employed the finite-element method to show numerically that asymptotic behavior 
of the transient chaotic motion strongly depended on the choice of initial conditions 
and that final equilibria on which it settled down are unpredictable for initial 
conditions near an unstable equilibrium [28, 29]. Beletsky and Pivovarov 
investigated numerically a tethered satellite system acted upon by gravitational 
and aerodynamic forces, and found that the aero-gradient effect may result in strong 
spinup of the system and the orbit eccentricity may lead to chaotic motion [30]. 
Based on the equations governing the three-dimensional motion of a two-body 
satellite system, Misra, Nixon and Modi observed numerically the existence of 
both regular and chaotic regions in the planar system for only elliptic orbits, but 
in the case of 3-dimensional motion for both circular and elliptic orbits they 
found that the size of the chaotic region grows with eccentricity, and in the 
3-dimensional motion circular orbit case, it grows with increasing values of the 
Hamiltonian [31]. Takeichi, Natori and Okuizumi numerically simulated dynamic 
behavior of a tethered system with multiple subsatellites subjected to both 
atmospheric drag and changes of gravity gradient in elliptic orbits [32].  

This section is devoted to chaotic attitude motion of a tethered satellite system. 
A dynamical model is developed on the assumption that the longitudinal vibration 
of tether is small and uncoupled from the attitude motion. The coupled model is 
also derived from the Hamiltonian equation. The Melnikov theory is applied to 
the uncoupled case. Numerical simulations are performed for both models. 

3.2.2 Dynamical Models 

Assume that each segment of a tethered satellite system is simplified as a mass 
point moving synchronously in a circular orbit, and the tether is stretched as a 
straight line as shown in Fig. 3.4. 
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Figure 3.4 Tethered satellite 

Let mi(i = 1,2) be the masses of segments and l be the length of the tether. Then 
the distance li of each segment mi(i = 1,2) to mass center O can be derived as 

 2 1
1 2

1 2 1 2

,m ml l l l
m m m m

� � � �
= =� � � �+ +� � � �

 (3.2.1) 

Define the body-fixed frame O-xyz with Ox along the tether from m2 to m1, and Oz 
coincident with the normal axis of the orbital plane. Then the principal moments 
of inertia of the satellite with the mass-less tether about point O  are  

 20,A B C m l∗= = =  (3.2.2) 

where m∗ = m2m1/(m2 + m1). The dynamical equation of planar libration with swing 
angle ϕ can be derived from the theorem of angular momentum (1.3.2). 

The elastic deformation of the tether is specified by its length l(t), which is a 
function of time. The gravitational torque on the tethered satellite is given by Eq. 
(1.3.13). Then one obtains 

 ( )
232 sin 2 0

2
c

c
l

l
ωϕ ϕ ω ϕ

� � � �
+ + + =� � � �

� �� �

�
�� �  (3.2.3) 

If the variation of the tether length is small, the coupling between the attitude 
motion and the longitudinal vibration of tether can be neglected. Thus it can be 
assumed that the longitudinal vibration of tether is described by 

 0 0cosl l l tω= + Δ  (3.2.4) 

where l0 is the original length of the tether, Δ l and ω0 are the amplitude and the 
frequency of its vibration, respectively. Introduce the dimensionless time τ, and 
dimensionless parameters δ and ε as 
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 0
0 0

, ,c lt
l

ωτ ω δ ε
ω

Δ= = =  (3.2.5) 

Equation (3.2.3) can be cast into the dimensionless form as 

 232 ( )sin sin 2 0
2

ϕ ε ϕ δ τ δ ϕ− + + =�� �  (3.2.6) 

where the derivative is with respect to the dimensionless time. 
When the longitudinal displacement of the tether is quite large, the swing and 

the longitudinal vibration are strongly coupled, and the system should be regarded 
as possessing two degrees of freedom. The kinetic energy of the system is 

 ( ) ( )2 2 2 2
1 2

1
2 cT m l l m m vϕ∗
 �= + + +� �

� �  (3.2.7) 

The potential energy of gravitational field is derived from Eq. (1.3.40) in which 

 1 2 3cos , sin , 0α ϕ α ϕ α= = =  (3.2.8) 

as 

 2 2 2
1

3 sin
2 cV m lω ϕ∗=  (3.2.9) 

Denote the coefficient of tether stiffness by K, then the potential energy of the 
elastic tether deformation is 

 2
2 0

1 ( )
2

V K l l= −  (3.2.10) 

According to Eq. (1.3.41), omitting the constant terms and dividing it by m∗ω0
2l0, 

one obtains the normalized Hamiltonian of the system as 
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 �� � � �+ + + +� � � � �
� � � �� � �

H =  (3.2.11) 

where k is the dimensionless stiffness coefficient and ξ is a new variable defined as 

 2
0 0

Kk
m lω∗= , 0

0

l l
l

ξ −
=  (3.2.12) 

The dynamical equations of the system can be written in canonical form, where 
the generalized momenta are defined as 

 d d(1 ) ,
d d

p pϕ ξ
ϕ ξξ
τ τ

= + =  (3.2.13) 
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Thus the Hamiltonian equations yield 
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 (3.2.14) 

3.2.3 Melnikov Analysis of the Uncoupled Case 

Equation (3.2.6) is established on the supposition that Δl is small. Thus ε, defined 
by Eq. (3.2.5), can be regarded as a small parameter. Consequently, Eq. (3.2.6) is 
an integrable Hamiltonian system experiencing small perturbations 

 23 sin 2 2 ( )sin
2

ϕ δ ϕ ε ϕ δ τ+ = +�� �  (3.2.15) 

If ε = 0, Eq. (3.2.15) becomes Eq. (3.1.4), in which κ = 3δ 2/2. The 
unperturbed system has two hyperbolic saddle points (±π /2, 0) connected by the 
heteroclinic orbits Γ  ± obtained from Eq. (3.1.9). 

 ( ( ), ( )) ( arcsin(th( 3 )), 3 sech( 3 ))ϕ τ ϕ τ δτ δ δτ± ± = ± ±�  (3.2.16) 

For ε ≠ 0, Eq. (3.2.15) can be written in the form of Eq. (2.3.4) with  

 ( ) ( )
0

, ( ) , ,
2 sinsin 2

ϕ ϕ
τ

ϕ δ τϕ κ ϕ
� �� � � �

= = = � �� � � � +� � � � � �
x f x g x

�
��

 (3.2.17) 

Equation (2.3.26) yields 

 [ ]0 0( ) 2( ( ) )sin( ) ( )dτ ϕ τ δ τ τ ϕ τ τ
+∞

± ± ±−∞
= + +� � ��  (3.2.18) 

Substitution of Eq. (3.2.16) into Eq. (3.2.18) and evaluation of the resulting 
integrals in a similar way in 3.1.3 leads to the Melnikov function 

 0 0 0( ) sinτ τ=� �  (3.2.19) 
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where �0 is a constant 

 0
� �2� csch sech

2 3 2 3
δ

δ δ
� �= − +� �
� �

�  (3.2.20) 

Hence the function �(τ0) always possesses simple zeros. 

3.2.4 Numerical Simulations 

Equation (3.2.6) is integrated by use of the numerically integration algorithm so 
that the Poincaré map defined as ( (2 �), (2 �)) ( 1,2, )k k kϕ ϕ =� �  can be computed. 
To obtain a global view of the system dynamics, the Poincaré maps from different 
initial conditions are put together to form a global Poincaré map. Figure 3.5 shows 
a global Poincaré map for Eq. (3.2.6) starting at 30 different initial conditions  
for different parameters. The two different types of motion, regular and chaotic,  

 
Figure 3.5 The global Poincaré map of a tethered satellite: uncoupled case 
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are readily distinguished on the Poincaré maps. For the regular motion, successive 
points describe smooth curves or separate points, and for the chaotic motion, the 
points fill an area in apparently random manner. In Fig. 3.5(a) for a rather small ε, 
the Poincaré map is fairly well covered by invariant tori. It indicates that most of 
the motions are periodic or quasi-periodic. With increasing ε some tori break into 
chaotic trajectories in the sense that successive points on Poincaré map do not lie 
on a curve anymore, but densely fill an area. One can also see a hyperbolic point 
and homoclinic orbits connected to it, and the small region close to the separatrix 
is covered by chaotic trajectories as shown in Fig. 3.5 (b), (c), and (d). 

For the case of coupled motion, Eq. (3.2.14) is numerically integrated for 4 
different initial conditions. The resulting Poincaré maps in the (ϕ, pϕ) plane are 
shown in Fig. 3.3. In Fig. 3.3(a), for a low energy level, most of the Poincaré maps 
are fairly well covered by invariant tori indicating that most of the periodic and 
quasi-periodic motions are preserved. With increasing �  some tori break into 
chaotic trajectories (see Fig. 3.3(b)~(d)), and for further increasing � , regular 
motion gradually disappears finally ending in a chaotic ocean as shown in Fig. 3.3(e) 
and 3.3(f). 

3.3 Magnetic Rigid Spacecraft in a Circular Orbit  

3.3.1 Introduction 

In addition to the gravitational torque, the magnetic torque plays a significant role 
in attitude motion of a magnetized spacecraft. In fact, gravitational and magnetic 
forces are dominant environmental effects for spacecraft moving at an altitude 
higher than 500 km [33]. This section begins to discuss chaotic attitude motion in 
the gravitational and magnetic fields, while the discussions here are limited to the 
case of spacecraft moving in a circular orbit. 

Beletsky et al. investigated numerically chaotic attitude motion of a magnetic 
satellite in a circular orbit in the absence of a gravitational moment, and found 
that chaotization increases with the growth of the magnetic parameter [5, 6]. 
Bhardwaj and Bhatnagar applied the Melnikov method to rotational motion of a 
satellite in a circular orbit under the influence of magnetic torque [34]. They also 
used the Chrikov criterion [22] to estimate the chaotic separatrix and employed 
Poincaré map to highlight the important role of the magnetic torque and the mass 
distribution in changing the regular motion into chaos [35]. Beletsky, Lopes and 
Pivovarov studied the global phase portrait of a permanent magnetic satellite 
moving in a circular orbit without the gravitational moment and compared the 
chaotic region with its theoretical boundary obtained by the adiabatic approximation 
[36]. For the planar motion of a magnetic rigid spacecraft moving in a circular  
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Figure 3.6 The global Poincaré map in plane (ϕ, pϕ) of a tethered satellite: 
coupled case 
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orbit near the equatorial plane of the Earth under the action of the gravitational 
and magnetic torques, Cheng and Liu found the existence of Smale’s horseshoe 
via the Melnikov method and numerically demonstrated the intensification of 
chaos due to periodic disturbance of the magnetic field [37]. These investigations 
[5, 6, 34-37] used the Poincaré maps based on the numerical solutions to identify 
chaos. Chen and Liu employed the Poincaré map, the power spectrum and the 
Lyapunov exponents to demonstrate that the onset of chaos in a model developed 
in [37] is characterized by a breakup of torus as the torque of the magnetic forces 
is increased [38]. Considering the internal damping, which is an addition to the 
Melnikov analysis, Chen and Liu numerically investigated a magnetic rigid 
spacecraft in a circular orbit via the Poincaré map, the power spectrum and the 
Lyapunov exponents, and demonstrated the transition from periodic motion to 
chaos via intermittency as the increase of the torque of the magnetic field and the 
decrease of the damping [39]. Based on the Differential Galois Theory [40], 
Maciejewski and Przybylska proved the non-integrability of the dynamical 
system governing the attitude motion of a symmetric rigid satellite under the 
influence of gravitational and magnetic fields, with the only exception that the 
value of the induced magnetic moment along the symmetry axis is related to the 
principal moments of inertia in a special way [41]. 

This section treats a rigid-body spacecraft moving in a circular orbit. The 
dynamical model is derived from the theorem of angular momentum. The 
Melnikov theory is applied to predict the appearance of transverse heteroclinic 
points. In both undamped and damped cases, the routes to chaos are numerically 
examined via the Poincaré map, the power spectrum and the Lyapunov exponents. 
Numerical results demonstrate that the onset of chaos is characterized by the 
breakup of torus as the magnetic torque is increased in the undamped case and by 
the intermittency in the damped case as the magnetic torque is increased and the 
damping is decreased.  

3.3.2 Dynamical Model 

Consider a magnetic rigid spacecraft moving in a circular orbit with the orbital 
angular velocity ωc in the gravitational and magnetic field of the Earth. Consider 
a magnetic rigid spacecraft moving in an elliptic orbit in the gravitational and 
magnetic field of the Earth. Assume that the inertial reference frame (Oe-X0Y0Z0) 
has the origin Oe at the mass center of the Earth, with the polar axis of the Earth 
as Z0-axis and the line from Oe to the ascending node as X0-axis. The principal 
coordinate frame (O-xyz) has the mass center O as the origin. Principal moments 
of inertia of the arbitrarily shaped spacecraft are A, B and C. Suppose that B>A. 
The orbital coordinate frame (O-XYZ) is established with the radial vector from Oe 
to O as X-axis, the normal vector to orbital plane XY as Z-axis. The base vectors 
of (O-XYZ) are i, j, k. Denote ϕ as the libration angle in the orbital plane with 
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respect to X- or Y-axis, and i as the angle of inclination of the orbital plane, all 
shown in Fig. 3.7. Assume that the internal damping torque Md is proportional to 
angular velocity whose coefficients is c. Then 

 d cϕ= −M k�  (3.3.1) 

 
Figure 3.7 The reference frames 

Application of the theorem of angular momentum to the spacecraft leads to 

 g m d= + +G M M M�  (3.3.2) 

where G is the angular momentum, and Mg and Mm are the torques resulted form 
the gravitational and magnetic field respectively. When the orbit is circular, the 
gravitational torque Mg is along the normal axis, and its magnitude is given by 
Eq. (1.3.12). Substitution of Eq. (1.3.14) into Eq. (1.3.12) yields 

 2
g c

3 ( )sin 2
2zM B Aω ϕ= −  (3.3.3) 

The magnetic field is assumed to be that of a dipole with the magnetic moment 
whose axis coincides the Earth’s axis. For the orbital plane with the inclination 
angle i, the components of the magnetic flux density Hm of the Earth in (O-XYZ) 
are given by Eq. (1.2.11). Assume that the magnetic moment Im of the spacecraft 
is along Ox -axis and the direction of the vector Im in the orbital plane is 
specified by the angle ϕ as shown in Fig. 1.11. Thus the direct cosines of Im with 
respect to (O-XYZ) are (cosϕ, sinϕ, 0). When the orbit is circular, the orbital 
angle u in Eq. (1.2.11) can be written as  

 cu tω=  (3.3.4) 

Substitution of Eqs. (3.3.4), (1.2.11) and the direct cosines into Eq. (1.2.14) 
yields the projection of the magnetic torque Hm on Oz-axis as 
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 m m m0 c csin (2sin sin cos cos )zM I H i t tϕ ω ϕ ω= +  (3.3.5) 

Projecting Eq. (3.3.2) on the Oz-axis and substituting Eqs. (3.3.1), (3.3.3) and (3.3.5) 
into the resulting equation, one obtains the dynamical equation in the 
dimensionless form 

 sin 2 (2sin sin cos cos ) 0ϕ γ ϕ κ ϕ α ϕ τ ϕ τ+ + − + =�� �  (3.3.6) 

where τ = ωct is defined as the dimensionless time and 

 m0
2

c c

sin3( ), ,
2 C

IH ic B A
C C

γ κ α
ω ω

−= = =  (3.3.7) 

The derivatives in Eq. (3.3.6) are with respect to the dimensionless time τ. 

3.3.3 Melnikov Analysis 

Assume that both the damping coefficient γ and the magnetic parameter α are 
small and let γ = εγ1 and α = εα1 (0<ε � 1). Then Eq. (3.3.6) is an integrable 
Hamiltonian system under small perturbations 

 1 1sin 2 (2sin sin cos cos )ϕ σ ϕ εα ϕ τ ϕ τ εγ ϕ+ = + −�� �  (3.3.8) 

If ε = 0, Eq. (3.3.8) becomes Eq. (3.1.4) with two hyperbolic saddle points 
(±π /2, 0) connected by the heteroclinic orbits Γ ± defined by Eq. (3.1.9). For 
ε ≠ 0, Eq. (3.3.8) can be cast into the form of Eq. (2.3.4) with  
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Equation (2.3.26) yields 
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 (3.3.10) 

Substitution of Eq. (3.1.9) into Eq. (3.3.10) and calculation of the resulting 
integrals in a similar fashion in 3.1.1 leads to the explicit expression of the 
Melnikov function 

 1
0 0 1

� �( ) (1 2 )csch sin 2 2
2 2 2

ατ κ τ γ κ
κ κ±

� �= + −� �
� �

�  (3.3.11) 
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For the undamped case, let γ1 = 0, thus function �±(τ0) always has simple zeros. 
For the damped case, both �+(τ0) and �–(τ0) have simple zeros on the condition 
that 
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1

4 2 �sh
�(1 2 ) 2 2K

αα κ
γ γ κ

� �= > � �+ � �
 (3.3.12) 

3.3.4 Numerical Investigations: Undamped Case 

The effect of the magnetic parameter α upon the spacecraft attitude motion is 
now investigated numerically by integrating Eq. (3.3.6) in which γ = 0. The 
global view of the Poincaré map is presented by the calculation based on a set of 
initial conditions. Then the routes to chaos are numerically investigated for a given 
initial condition. 

Equation (3.3.6) is numerically integrated for 7 different initial conditions. The 
Poincaré maps defined as ( (2 �), (2 �)) ( 1,2, )ϕ ϕ =� �k k k  are shown in Fig. 3.8 for  

 
Figure 3.8 The global Poincaré maps of a magnetic spacecraft (a) α = 0.01; 
(b) α = 0.02; (c) α = 0.05 
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α = 0.01, 0.02 and 0.05. It can be seen that under the action of the periodic distur- 
bance of magnetic torque, the motion of spacecraft rapidly becomes irregular and 
turns into chaotic motion. As the disturbance increases, the chaotic region is enlarged. 

The characteristic dynamical behavior is investigated by varying the magnetic 
parameter α, while the gravitational parameter κ is kept constant at κ = 0.75. The 
numerical integration begins from the initial condition (0,0).  

When α is small enough, the system experiences quasi-periodic motion. For 
α = 0.01, the time history, the Poincaré map, power spectrum and the largest 
Lyapunov exponent are depicted in Fig. 3.9. The Lyapunov exponents are all very 
close to zero. 

For relatively large α, the quasi-periodic torus begin to break up. For α = 0.12 
and α = 0.1275, the time history, the Poincaré map, power spectrum and the largest 
Lyapunov exponent are shown in Fig. 3.10 and Fig. 3.11, respectively. Even if those 
Poincaré maps were almost the same as those in Fig. 3.9, the power spectra show 
differences. The Lyapunov exponents are 0.00, 0.00 and 0.01, –0.01. 

For sufficiently large α, the quasi-periodic torus breaks up completely and 
chaotic motion occurs in the system. For α = 0.1276, the time history, the Poincare 
map, power spectrum and the largest Lyapunov exponent are shown in Fig. 3.12. 
The Lypunov exponents are 0.12, –0.12. 

 
Figure 3.9 Quasi-periodic motion (α = 0.01): (a) the time history; (b) power 
spectrum; (c) the Poincaré map; and (d) the largest Lyapunov exponent 
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Figire 3.10 Breakup of the torus (α = 0.12): (a) the time history; (b) power 
spectrum; (c) the Poincaré map; and (d) the largest Lyapunov exponent 

 
Figure 3.11 Breakup of the torus (α = 0.12175): (a) the time history; (b) power 
spectrum; (c) the Poincaré map; and (d) the largest Lyapunov exponent 
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Figure 3.12 Chaotic motion (α = 0.12176): (a) the time history; (b) power 
spectrum; (c) the Poincaré map; and (d) the largest Lyapunov exponent 

3.3.5 Numerical Investigations: Damped Case 

The effects of the magnetic parameter α and the damping coefficient γ upon the 
uncontrolled spacecraft attitude motion are respectively investigated numerically 
by integrating Eq. (3.3.6). Equation (3.3.6) can be cast into the following form 
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 (3.3.13) 

The linearized system of Eqs. (3.3.13) is characterized by the Jacobian matrix 

1 1 3 1 3 1 3 1 3

0 1 0
2 cos2 (2cos sin sin cos ) (2sin cos cos sin )

0 0 0
K x x x x x x x x xα γ α

� �
� �− + − −� �
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� �

 

  (3.3.14) 

which is needed in order to calculate the Lyapunov exponents. The characteristic 
dynamical behavior is investigated by varying the magnetic parameter α and the 
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damping coefficient γ, respectively, while the gravitational parameter κ is kept 
constant at κ = 1.1. In this case, the condition of the Melnikov theory given by 
Eq. (3.3.12) is α /γ >1.5738. The numerical integration begins from the initial 
conditions described by (x1, x2, x3)T = (0,0,0). 

For a given γ, the intermittency transition accrues as the magnetic parameter  
α is increased. Let γ = 0.2, then the Melnikov theory requires α >0.4452. The 
dynamical behaviors of the system at α = 0.6984, 0.6985, 0.69855,0.6986 are 
shown in Figs. 3.13, 3.14, 3.15, and 3.16. The corresponding Lyapunov exponents 
are shown in Table 3.1. As α is increased, the periodic behavior becomes the 
regular motion intermittently interrupted by a finite duration burst of irregular 
motion. For the further increase of α, the bursts become so frequent that the regular 
behavior can no longer be distinguished, and the chaotic motion is developed. 
Due to the transient behavior, the largest Lyapunov exponent is positive at the 
beginning of the periodic motion in Fig. 3.13. During the intermittency transition 
shown in Figs. 3.14 and 3.15, the motions depend sensitively on initial conditions 
so that the largest Lyapunov exponents are still positive in durations of the periodic 
motions between irregular bursts. 

 
Figire 3.13 Periodic motion (α = 0.6984, γ = 0.2): (a) the time history; (b) phase 
trajectory; (c) the Poincaré map; and (d) the largest Lyapunov exponent 
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Figure 3.14 Intermittency (α = 0.6985, γ = 0.2): (a) the time history; (b) the 
Poincaré map; (c) power spectrum; and (d) the largest Lyapunov exponent 

 
Figure 3.15 Intermittency (α = 0.69855 γ = 0.2): (a) the time history; (b) the 
Poincaré map; (c) power spectrum; and (d) the largest Lyapunov exponent 



Chaos in Attitude Dynamics of Spacecraft 

86 

 
Figure 3.16 Chaotic motion (α = 0.6986, γ = 0.2): (a) the time history; (b) the 
Poincaré map; (c) power spectrum; and (d) the largest Lyapunov exponent 

 
Table 3.1 Lyapunov exponents (γ = 0.2) 

α λ1 λ2 λ3 

0.6984 0.00 –0.01 –0.19 

0.6985 0.12 0.00 –0.32 

0.69855 0.13 0.00 –0.33 

0.6986 0.17 0.00 –0.37 

 
For a given α, the intermittency transition accrues as the damping coefficient 

α is decreased. Let α be fixed as α = 0.7, then the Melnikov theory requires 
γ <0.317. The case that γ = 0.295, 0.290, 0.285,0.280 are shown in Figs. 3.17, 3.18, 
3.19, and 3.20. The corresponding Lyapunov exponents are listed in Table 3.2. 
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Figure 3.17 Periodic motion (α = 0.7, γ = 0.295): (a) the time history; (b) phase 
trajectory; (c) the Poincaré map; and (d) the largest Lyapunov exponent 

 
Figure 3.18 Intermittency (α = 0.7, γ = 0.290): (a) the time history; (b) the 
Poincaré map; (c) power spectrum; and (d) the largest Lyapunov exponent 
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Figure 3.19 Intermittency (α = 0.7, γ = 0.285): (a) the time history; (b) the 
Poincaré map; (c) power spectrum; and (d) the largest Lyapunov exponent 

 
Figure 3.20 Chaotic motion (α = 0.7, γ = 0.280): (a) the time history; (b) the 
Poincaré map; (c) power spectrum; and (d) the largest Lyapunov exponent 
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Table 3.2 Lyapunov exponents (α=0.7) 

γ λ1 λ2 λ3 
0.295 0.00 0.00 –0.30 
0.290 0.05 0.00 –0.34 
0.285 0.10 0.00 –0.38 
0.280 0.12 0.00 –0.40 

3.4 Magnetic Rigid Spacecraft in an Elliptic Orbit  

3.4.1 Introduction 

This section continues to discuss chaotic attitude motion in the gravitational and 
magnetic fields. The spacecraft considered here moves in an elliptic orbit instead 
of a circular orbit. 

Although the dynamical equation for a magnetic rigid spacecraft in an elliptic 
orbit was established by 1985 [33], investigations of chaotic attitude motion were 
rather limited. Koch and Bruhn applied the Melnikov method to a polar satellite, 
a satellite whose orbital plane contains the symmetry axis of the central body, in 
an elliptic orbit under the action of the gravitational torque and the magnetic 
torque [3]. Liu and Chen investigated chaotic attitude motion of a magnetic rigid 
spacecraft with internal damping in an elliptic orbit. They used the Melnikov 
method to predict transverse heteroclinic cycles in the Poincaré map of the system, 
and employed the time history, the Poincaré map, the Lyapunov exponents and the 
power spectrum to identify chaos [42]. Bhardwaj and Kaur developed the Melnikov 
function for magnetic rigid spacecraft in an elliptic orbit and numerically showed 
the simple zeros of the function [43]. They also applied Chrikov’s criterion [22] 
to estimate the half width of the chaotic separatrix and highlighted numerically the 
effects of the magnetic torque parameter, the orbital eccentricity, and the mass 
distribution parameter [44]. 

This section begins with modeling a magnetic rigid body spacecraft in an elliptic 
orbit. The Melnikov theory is applied to predict the appearance of transverse 
heteroclinic points. Chaotic attitude motion is numerically demonstrated via the 
Poincaré map, the power spectrum and the Lyapunov exponents. 

3.4.2 Dynamical Model 

Consider a magnetic rigid spacecraft moving in an elliptic orbit in the gravitational 
and magnetic field of the Earth. Assume that the inertial reference frame 
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(Oe-X0Y0Z0) has the origin Oe at the mass center of the Earth, with the polar axis 
of the Earth as Z0-axis and the line from Oe to the ascending node as X0-axis. The 
principal coordinate frame (O-xyz) has the mass center O as the origin. Principal 
moments of inertia of the arbitrarily shaped spacecraft are A, B and C. Suppose 
that B>A. The orbital coordinate frame (O-XYZ) is established with the radial 
vector from Oe to O as X-axis, the normal vector to orbital plane XY as Z-axis. 
The base vectors of (O-XYZ) are i, j, k. Denote ϕ as the libration angle in the 
orbital plane with respect to X- or Y-axes, ν as the true anomaly of the spacecraft 
as the position angle measured from perigee, and i as the angle of inclination of 
the orbital plane, and ω is the argument of perigee, all shown in Fig. 3.7. 

The theorem of angular momentum about the center of mass is still expressed 
by Eq. (3.3.2), in which G is the angular momentum, Mg and Mm are the 
gravitational and magnetic torques, respectively, and Md is the internal damping 
torque proportional to the angular velocity with coefficient c. 

For planar libration, all vectors in Eq. (3.3.2) are along the normal axis of the 
orbital plane. The magnitudes of torques Mg and Md are given by Eqs. (1.3.12) 
and (3.3.1), respectively. The components of the magnetic flux density Hm of the 
Earth in (O-XYZ) are given by Eq. (1.2.11). For the elliptic orbit, the orbital angle 
u in Eq. (1.2.11) can be expressed by Eq. (1.1.29). Assume that the magnetic 
moment Im of the spacecraft is along Ox-axis and the direction of the vector Im in 
the orbital plane is specified by the angle ϕ as shown in Fig. 1.11. Thus the direct 
cosines of Im with respect to (O-XYZ) are (cosϕ, sinϕ, 0). Substitution of Eqs. 
(1.2.9) and (1.2.11) with Hm0 = μm/r3 and the direct cosines into Eq. (1.2.14) 
yields the projection of the magnetic torque Hm on Oz-axis as 

 m m
mZ 3 sin (3cos( ) cos( ))

2
IM i

r
μ ϕ ν ω ϕ ν ω= − − − + +  (3.4.1) 

where r is distance between O and Oe, and μm is the Earth magnetic dipole strength. 
Projection of Eq. (3.3.2) on the Oz-axis and substitution of Eqs. (3.3.1), (1.3.12) 
and (3.4.1) into the resulting equation leads to  
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 (3.4.2) 

where μ is the gravitational attraction constant of the Earth. 
The orbital motion and the attitude motion are assumed to be decoupled. The 

effect of the magnetic field on the orbital motion is neglected. The spacecraft 
undergoes the Kepler motion expressed by Eqs. (1.3.24). Substitution of Eqs. 
(1.3.24) and (1.3.25) into Eq. (3.1.1) yields dynamical model of a magnetic rigid 
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spacecraft in an elliptic orbit 
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p is the semi-parameter of the orbit, e is the orbit eccentricity, and the over dot 
denotes the derivative with respect to the position angle ν. 

3.4.3 Melnikov Analysis 

Since e, α, and γ are all small, introduce a small dimensionless parameter 
ε (0<ε � 1) such that e = εe1, α = εα1, γ = εγ1. Retaining the first order terms 
of ε and omitting the higher order terms in Eq. (3.4.3) lead to an integrable 
Hamiltonian system under small perturbations 

 1 1

1 1

sin 2 [2 sin (1 ) cos sin 2
(cos( ) 3cos( )) ]
e eϕ κ ϕ ε ν ϕ κ ν ϕ

α ϕ ν ω ϕ ν ω γ ϕ
+ = + +

+ + + − − − −
�� �

�
  (3.4.5) 

If ε = 0, Eq. (3.4.5) becomes Eq. (3.1.4) with two hyperbolic saddle points 
(±π/2, 0) connected by the heteroclinic orbits Γ ± defined by Eq. (3.1.9). For ε ≠ 0, 
Eq. (3.4.5) can be cast into the form of Eq. (2.3.4) with 

1 1 1 1

, ( )
sin2

0
( , )

2 sin (1 ) cos sin2 (cos( ) 3cos( ))e e

ϕ ϕ
ϕ κ ϕ

ν
ν ϕ κ ν ϕ α ϕ ν ω ϕ ν ω γ ϕ

� � � �
= =� � � �
� � � �

� �
= � �+ + + + + − − − −� �

x f x

g x

�
�

� �
(3.4.6) 

Equation (2.3.26) yields 

 
[

]
0 1 0 1 0 1

1 0 0

( ) 2 sin( )(1 ( )) cos( )sin 2 ( ) ( )

(cos( ( ) ) 3cos( ( ) )) ( )d

ν ν ν ϕ ν κ ν ν ϕ ν γ ϕ ν

α ϕ ν ν ν ω ϕ ν ν ν ω ϕ ν ν

+∞

± ± ± ±−∞

± ± ±

= + + + + −

+ + + + − − − −
� � �

�

e e�
 

   (3.4.7) 

Substitution of Eq. (3.1.9) into Eq. (3.4.7) and calculation of the resulting integrals 
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yield the Melnikov function 

 
0 1 0

1 0 1

� � �( ) 4sech 3csch sin
2 2 2 2 2

1 2 �� csch sin( ) 2 2
2 2 2

eτ ν
κ κ

κα ν ω γ κ
κ κ

±
� �= +� �
� �
� �+ � �+ + −� � � �� � � �� �

��

 (3.4.8) 

Hence �±(ν0) has simple zeros on the condition that 

 2 22 �
8

A Bγ
κ

< +  (3.4.9) 

where 

� � 1 2 �4sech 3csch csch cos
2 2 2 2 2 2

1 2 �csch sin
2 2

A e

B

κα ω
κκ κ κ

κα ω
κ κ

� �+� � � �= − + + � �� � � �� �� � � �� �
� �+ � �= � � � �� � � �� �

 (3.4.10) 

3.4.4 Numerical Simulations 

Chaotic attitude motion of the spacecraft can be numerically demonstrated by 
integrating Eq. (3.4.3) which is rewritten as 

 

1
2

32 1
2 22

3 3 3

1 3 1 3

3

3

d
d

2 sind sin 2(1 )
d 1 cos 1 cos (1 cos )

3cos( ) cos( )
1 cos

d
1

d

x x

e xx xx x
e x e x e x

x x x x
e x

x

ν
κ γ

ν
ω ωα

ν

=

= + − −
+ + +

− − − + +
−

+

=

  (3.4.11) 

where 

 1 2 3
d, ,
d

x x xϕϕ ν
ν

= = =  (3.4.12) 

Various tools including the time history, Poincaré map, Lyapunov exponents and 
power spectrum are used to identify the dynamical behavior. The linearized 
system of Eq. (3.4.11) is characterized by the Jacobian matrix 
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 21 22 23

0 1 0

0 0 0
a a a

� �
� �= � �
� �
� �

A  (3.4.13) 

where 

1 3 1 31
21

3 3

3
22 2

3 3

3 1 3 3
23 2 22 2 3

3 3 3

1 3 1 3

3sin( ) sin( )2 cos 2
1 cos 1 cos
2 sin

1 cos (1 cos )
2 ( cos ) sin 2 sin 2 sin(1 )
(1 cos ) (1 cos ) (1 cos )

3sin( ) sin( )
1 c

x x x xxa
e x e x

e xa
e x e x

e e x e x x e xa x x
e x e x e x

x x x x
e

ω ωκ α

γ

κ γ

ω ωα

− − − + +
= − +

+ +

= −
+ +

+
= + − −

+ + +
− − + + +

−
+

[ ]
3

3 1 3 1 3
2

3

os
sin 3cos( ) cos( )

(1 cos )

x
e x x x x x

e x
ω ω

α
− − − + +

−
+

 (3.4.14) 

The numerical integration begins from the initial conditions (x1, x2, x3)T = (0, 0, 0)T 
at ν = 0. 

Let successively 

 0.8, 1.1, 0.1, 0.9, 1.2e K γ α ω= = = = =  (3.4.15) 

 0.4, 1.0, 0.2, 0.7, 0.1e K γ α ω= = = = =  (3.4.16) 

Chaos occurs in both cases. Their time histories, Poincaré maps, the largest Lyapu- 
nov exponents and power spectrums are shown in Figs. 3.21 and 3.22. Lyapunov 
exponents of chaos (3.4.15) are 0.55, 0.00 and –1.01. Lyapunov exponents of 
chaos (3.4.16) are 0.39, 0.00 and –0.65. 

If e is small, chaos still appears due to the magnetic torque. For example, let 

 0.04, 1.0, 0.2, 0.7, 0.1e K γ α ω= = = = =  (3.4.17) 

The time histories, Poincaré map, the largest Lyapunov exponent and power 
spectrums are shown in Fig. 3.23. Lyapunov exponents in this case are 0.33, 0.00 
and –0.52. 

However, if both e and α are small, periodic motion appears. For example, let 

 0.08, 1.1, 0.1, 0.09, 1.2e K γ α ω= = = = =  (3.4.18) 

The phase trajectory and the largest Lyapunov exponent are shown in Fig. 3.24. 
The Lyapunov exponents in this case are 0.00, –0.05 and –0.05. 
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Figire 3.21 Chaos (3.4.16): (a) the time history; (b) the Poincaré map; (c) power 
spectrum; and (d) the largest Lyapunov exponent 

 
Figure 3.22 Chaos (3.4.17): (a) the time history; (b) the Poincaré map; (c) power 
spectrum; and (d) the largest Lyapunov exponent 
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Figure 3.23 Chaos (3.4.17): (a) the time history; (b) the Poincaré map; (c) power 
spectrum; and (d) the largest Lyapunov exponent 

 
Figure 3.24 Periodic motion: (a) the time history; and (b) the largest Lyapunov 
exponent 
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Chapter 4 Chaos in Spatial Attitude Motion of  
Spacecraft 

Abstract This chapter treats chaos in spatial attitude motion of spacecraft. 
The motion of torque-free rigid bodies and gyrostats are discussed in terms 
of Serret-Andoyer variables, which are introduced to simplify the dynamical 
models. The influences of the gravitational and magnetic fields on the attitude 
motion are revisited using the new variables. A rigid body in elliptic orbit 
and gravitational field, a torque-free rigid body with eccentrically rotating 
mass, and a magnetic gyrostat in circular orbit acted by gravitational and 
magnetic torques are discussed with application of Serret-Andoyer variables. 
The dynamical equations for each model are transformed to an integrable 
Hamiltonian system with small disturbance. The generalized Melnikov 
theory is applied to predict transverse heteroclinic points. Poincaré maps are 
numerically calculated to demonstrate the process from regular to chaotic 
motions. 

Keywords spatial attitude motion, Serret-Andoyer variables, rigid body 
spacecraft, generalized Melnikov theory, Hamiltonian system, Poincaré map 
 
 

This chapter treats chaos in spatial attitude motion of spacecraft. To simplify the 
dynamical models, the Serret-Andoyer variables are introduced in 4.1. Torque 
free rigid bodies and gyrostats are discussed in terms of Serret-Andoyer variables, 
and the influences of the gravitational and magnetic fields are also revisited using 
the variables. The models of spacecraft covered here are rigid body spacecraft in 
an elliptic orbit in the gravitational field, rigid spacecraft with an eccentrically 
rotating mass in the absence of any external torques, and a magnetic gyrostat 
spacecraft in a circular orbit in the gravitational and magnetic fields. The Serret- 
Andoyer variables are used in the first and the last models. For each model, the 
previous related research results are summarized in the introduction to the 
corresponding section. The governing equation for each model is cast into an 
integrable Hamiltonian system with a small Hamiltonian disturbance. The 
generalized Melnikov theory presented in section 2.4 is applied to predict 
transverse heteroclinic points. Poincaré maps are numerically calculated to 
demonstrate regular and chaotic motions. 
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4.1 Attitude Motion Described by Serret-Andoyer Variables 

4.1.1 Serret-Andoyer Variables 

A canonical transformation proposed independently by Serret in 1866 [1] and 
Andoyer in 1923 [2] was used in the representation of the attitude motion of a 
rigid body. The Serret-Andoyer transformation can reduce the free rigid body or 
gyrostat to a 2-dimensional Hamiltonian system, and thus it is suitable to relevant 
discussions of the attitude dynamics of spacecraft under weak external torque. 
Due to Deprit’s work [3], some researchers call Serret-Andoyer variables as 
Deprit’s variables. 

Consider a rigid body rotating about a fixed point O. Establish an inertial 
reference frame 0 0 0( - )O X Y Z  and a frame of angular momentum 0 0 0( - )O x y z

 with O  as the origin, where 0Oz  is along the angular momentum G  of the body 
about O  and 0Ox  is along the node line of the coordinate plane 0 0( , )X Y  and the 
plane perpendicular to the vector G  (Fig. 4.1). Define the spherical coordinates 
h and δ  to determine the orientation of G  in 0 0 0( - )O X Y Z , and Euler’s angles 
g, l ,σ  to describe the attitude of the body-fixed principal coordinates frame 
( - )O xyz  in 0 0 0( - )O x y z  (Fig. 4.2). Then the attitude of the body in 0 0 0( - )O X Y Z  
can be determined by 5 variables h ,δ , g , l , and σ . The direct cosines between 
( - )O xyz  and 0 0 0( - )O X Y Z  are shown in Table 4.1. 

Table 4.1 Direct cosines 

 0X  0Y  0Z  
x  1α  1β  1γ  
y  2α  2β  2γ  
z  3α  3β  3γ  

 
The direct cosines in Table 4.1 are defined as 

( ) ( )1 c c c s c s s s s s c s c c c sh g l g l h l g l g lα σ δ σ δ σ= − + − +
 �� �  

2 c (c s s c c ) s [s s c c (s s c c c )]h g l g l h l g l g lα σ δ σ δ σ= − + + + −  (4.1.1a) 

3 c s s s (s c c c s )h g h gα σ δ σ δ σ= + +  

1 s (c c s c s ) c [s s s c (s c c c s )]h g l g l h l g l g lβ σ δ σ δ σ= − − − +  

2 s (c s s c c ) c [s s c c (s s c c c )]h g l g l h l g l g lβ σ δ σ δ σ= − + − + −  (4.1.1b) 

3 s s s c (s c c c s )h g h gβ σ δ σ δ σ= − +  
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1 s (s c c c s ) c s sg l g l lγ δ σ δ σ= + +   

2 s (c c c s s ) c s cg l g l lγ δ σ δ σ= − +   (4.1.1c) 

3 c c s c sgγ δ σ δ σ= −  

where s and c are abbreviations of sin and cos.. 
The components ( 1,2,3)i iω =  of absolute angular velocity ω  of the body in 

( - )O xyz  can be calculated as 

1 1 (c c s c s ) s s ch g l g l g l lω γ δ σ σ σ= + − + +� � � �  

2 2 (c s s c c ) s c sh g l g l g l lω γ δ σ σ σ= − + + −� � � �  (4.1.2) 

3 3 s s ch g g lω γ δ σ σ= + + +� �� �  

 
Figure 4.1 Reference frame of angular momentum and inertial frame 

 
Figure 4.2 Body-fixed principal frame and frame of angular momentum 
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Let , ,A B C  be the principal moments of inertia of a body. The components 
( 1,2,3)iG i =  of the angular momentum G  in ( - )O xyz  are written as 

 
1 1

2 2

3 3

sin sin

sin cos

cos

G A G l

G B G l

G C G

ω σ

ω σ

ω σ

= =

= =

= =

 (4.1.3) 

Then the angular velocities ( 1,2,3)i iω =  can be expressed by ( 1,2,3)iG i =  as 

 1 2 3sin sin , sin cos , cosG G Gl l
A B C

ω σ ω σ ω σ= = =  (4.1.4) 

Equating each equation in Eqs. (4.1.2) and (4.1.4) leads to 2 nonholonomic 
restraint conditions. Therefore, among h,δ , g, l, and σ  there are only 3 independent 
variables, which can be selected as l, g, and h. Utilizing Eq. (4.1.2), one can 
conclude that the kinetic energy T  is a homogeneous function of generalized 
velocities. Denote ( 0,1,2)iT i =  as the i-th degree homogeneous terms of 
generalized velocities. It follows that 

 2 2 2
2 1 2 3 0 1

1 ( ), 0
2

T T A B C T Tω ω ω= + + = ==  (4.1.5) 

Introduce the Lagrangian function 

 T V−=�  (4.1.6) 

where V  is the potential energy. The generalized momenta ,l gp p  and hp  corres- 
ponding to l, g, and h  can be calculated as 

 

3

1

3

1

3

1

cos

cos

i
l

i i

i
g

i i

i
h

i i

p G L
l l

p G
g g

p G H
h h

ω σ
ω

ω
ω

ω δ
ω

=

=

=

∂∂ ∂= = = =
∂∂ ∂

∂∂ ∂= = =
∂ ∂ ∂

∂∂ ∂= = = =
∂∂ ∂

	

	

	

� �

� �

� �

� �

� �

� �

 (4.1.7) 

where ,l gp p  and hp  are respectively equal to the modulus G, projection L  on 
the Oz-axis, and projection H  on the 0OZ -axis of the angular momentum G. 
Then the following relations can be obtained 

 arccos( ), arccos( )H G L Gδ σ= =  (4.1.8) 

The six canonical variables l, g, h, L, G, H  are defined as Serret-Andoyer variables, 
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and the attitude motion of a rigid body can be described in a 6-dimensional phase 
space ( , , , , , )l g h L G H .  

4.1.2 Torque-free Rigid Body 

The Serret-Andoyer variables ( , , , , , )l g h L G H  are suitable for the analysis of the 
spatial attitude motion of spacecraft. Introduce the Hamiltonian function =H  

2 0T T V− + . Substituting Eq. (4.1.4) into the Hamiltonian function and using Eq. 
(4.1.7), one obtains the function �  expressed by the Serret-Andoyer variables 

 
2 2 2

2 21 sin cos ( )
2 2

l l LG L V
A B C

� �
+ − + +� �

� �
=�  (4.1.9) 

In the torque-free case, since 0V =  and H does not depends on g  and h  explicitly, 
the corresponding generalized momenta G and H are constants. Then Eq. (4.1.9) 
is simplified into the Hamiltonian of a 2-dimensional system with a single 
independent coordinate l. 

 
2 2 2

2 21 sin cos ( )
2 2

l l LG L
A B C

� �
+ − +� �

� �
=�  (4.1.10) 

The canonical equations with variables ,l L  can be derived as 

 
2 21 sin cosl ll L

L C A B
� �∂ = − −� �∂ � �

�= �  (4.1.11a) 

 2 21 1 1( ) sin 2
2

L G L l
l B A

∂ � �− = − −� �∂ � �
� = �  (4.1.11b) 

where l�  is the spin velocity of a body about Oz. Dividing each side of Eq. 
(4.1.11a) by that of Eq. (4.1.11b) to eliminate time variable t , one obtains a 
first-order autonomous system as  

 
2 2

2 2

d ( )( )sin 2
d [ ( cos sin )]
L C A B G L l
l L AB C A l B l

− −=
− +

 (4.1.12) 

Equation (4.1.12) determines a set of trajectories in the phase plane ( , )l L  as shown 
in Fig. 4.3. There exist two types of singularities ( 1,2)iS i =  as  

 1

2

: 0 or �, 0
: � 2 or 3� 2, 0

S l L
S l L

= =
= =

 (4.1.13) 
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Since 0L =  leads to � 2σ = , therefore the singularities 1S  and 2S  correspond to 
the permanent rotations of the body about axes Oy  and Ox, respectively. Without 
loss of generality, it is assumed that A B C> >  or A B C< < . Then 1S  is a saddle 
and 2S  is a center. Thus the same conclusion as in 1.4.1 is obtained: the permanent 
rotation about the axis with maximal or minimal moment of inertia is stable, and 
the permanent rotation about the axis with middle moment of inertia is unstable. 
For an axisymmetrical body with A B= , the Hamiltonian (4.1.10) is simplified as 

 
2

2 21 ( )
2 2

LG L
A C

− +=�  (4.1.14) 

Since the function �  does not contain l, the corresponding cyclic integral requires 
that L  as well as σ  are constant. The body performs a free regular precession 
about 0Oz  with a constant nutation angle σ . 

 
Figure 4.3 Trajectories in phase plane ( ),l L  

4.1.3 Torque-free Gyrostat 

Consider the simple gyrostat discussed in 1.4.2. The components ( 1,2,3)iG i =  
of angular momentum G  of the gyrostat in ( - )O xyz  can be written by the 
Serret-Andoyer variables as 

 

1 1

2 2

3 3 R

sin sin

sin cos

cos

G A G l

G B G l

G C g G

ω σ

ω σ

ω σ

= =

= =

= + =

 (4.1.15) 

where R R Rg J Ω= . Then the angular velocities ( 1,2,3)i iω =  can be expressed as 

1 2 3 R
1sin sin , sin cos , ( cos )G Gl l G g

A B C
ω σ ω σ ω σ= = = −  (4.1.16) 

The kinetic energy of the gyrostat is 
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 2 2 2 2
1 2 P 3 R 3 R

1 [ ( ) ]
2

T A B C Jω ω ω ω Ω= + + + +  (4.1.17) 

where PC  is the inertia moment of the platform. For a torque-free gyrostat, there 
exists Jacobi’s integral 

 2 0T T= −�  (4.1.18) 

where T0 and T2 are, respectively, the zero-th and second degree homogeneous 
terms of generalized velocities in the expression of T. Substituting Eq. (4.1.16) into 
Eqs. (4.1.17) and (4.1.18), one expresses the Hamiltonian � by the 
Serret-Andoyer variables as 

 
2 22 2

2 2 R R

R

( )1 sin cos ( )
2 2 2

L g gl l G L
A B C J

� � −+ − + −� �
� �

=�  (4.1.19) 

Then the canonical equations of a 2-dimensional system are obtained as 

 
2 2

R1 sin cos gl ll L
L C A B C

� �∂ = − − −� �∂ � �
�= �  (4.1.20a) 

 2 21 1 1( ) sin 2
2

L G L l
l B A

∂ � �− = − −� �∂ � �
� = �  (4.1.20b) 

Dividing each side of Eq. (4.1.20a) by that of Eq. (4.1.20b) to eliminate time t, one 
obtains an autonomous system as  

 
2 2

2 2
R

d ( )( )sin 2
d ( ) ( cos sin )
L C A B G L l
l AB L g LC A l B l

− −=
− − +

 (4.1.21) 

Equation (4.1.21) possesses the following singularities ( 1,2)iS i =  corresponding 
to possible equilibrium states in the orbital frame ( - )O XYZ  

 
1 R

2 R

: 0 or �,

: � 2 or 3� 2,

BS l L g
B C

AS l L g
A C

� �= = � �−� �
� �= = � �−� �

 (4.1.22) 

Since L G, the following condition should be satisfied to ensure the existence 
of singularities 

 R 1 Cg G
B

� �−� �
� �

 (4.1.23) 
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Similar to the case of a rigid body, 1S  is a saddle and 2S  is a center. The phase 
trajectories when A B=  are shown in Fig. 4.4. 

 
Figure 4.4 Trajectories in phase plane (l, L) 

4.1.4 Gyrostat in the Gravitational Field 

When the gravitational torque is considered for a gyrostat moving in a circular 
orbit, the inertial reference frame 0 0 0( - )O X Y Z  should be replaced by the orbital 
reference frame ( - )O XYZ  in the definition of Serret-Andoyer variables. Then 
the rotation of the orbital frame must be taken into account, and the absolute 
angular velocity of a gyrostat should be c′= +ω ω ω , where ′ω  is the relative 
angular velocity of the gyrostat in ( - )O XYZ . Projection of the angular momentum 
G onto ( - )O xyz  leads to 

 
1 1 1

2 2 2

3 3 3 R

( ) sin sin

( ) sin cos

( ) cos

c

c

c

G A G l

G B G l

G C g G

ω ω γ σ

ω ω γ σ

ω ω γ σ

′= + =

′= + =

′= + + =

 (4.1.24) 

where ( 1,2,3)i iγ =  are direct cosines of axis OZ  relative to ( - )O xyz  as defined 
by Eq. (4.1.1c). Then the components of relative angular velocity ( 1,2,3)i iω′ =  can 
be expressed by the Serret-Andoyer variables as 

 

1 1

2 2

3 R 3

sin sin

sin cos

1 ( cos )

c

c

c

G l
A
G l
B

G g
C

ω σ ω γ

ω σ ω γ

ω σ ω γ

′ = −

′ = −

′ = − −

 (4.1.25) 

The Hamiltonian 2 0T T V= − +�  of a simple gyrostat in the gravitational field 
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can be derived from Eq. (1.3.42) as 

 

2 2 2 2 2 2 2
1 2 3 1 2 3

2 2 2 2
1 2 3

1 1( ) ( )
2 2
3 ( )
2

c

c

A B C A B C

A B C

ω ω ω ω γ γ γ

ω α α α

′ ′ ′= + + − + +

+ + +

�
 (4.1.26) 

where ( 1,2,3)i iα =  are direct cosines of axis OX  relative to ( - )O xyz  defined 
by Eq. (4.1.1a). Substituting Eq. (4.1.25) into Eq. (4.1.26) and using the 
following relation 

 1 2 3sin sin sin cos cos cosl lγ σ γ σ γ σ δ+ + =  (4.1.27) 

one obtains 

 0 c 1ω+=� � �  (4.1.28) 

where 

 
22 2

2 2 R
0

( )1 sin cos ( )
2 2

L gl l G L
A B C

� � −+ − +� �
� �

=�  (4.1.29) 

 2 2 2
1 1 2 3

3 ( )
2 c A B C Hω α α α= + + −�  (4.1.30) 

in which cosH G δ=  is the projection of vector G  onto axis OZ. The Hamiltonian 
� consists of two parts: the Hamiltonian of a torque-free body 0�  and the 
increment c 1ω �  reflecting the influence of the gravitational field. 

4.1.5 Influence of the Geomagnetic Field 

If the geomagnetic field contributes to the external torque, the potential energy of 
the magnetic field mV  should be added to the Hamiltonian �. Consider a special 
case when a spacecraft is moving in an equatorial circular orbit with radius a, and 
the geomagnetic dipole e mO Z  is approximately assumed to be coincident with 
geographic dipole e eO Z , i.e., the normal axis OZ  of the orbital plane. Then 

m m 0X YH H= = , and the potential energy of magnetic field mV  expressed by Eq. 
(1.2.16) is simplified into 

 m m m 3V I H γ= −  (4.1.31) 

where 3
m mH aμ=  is the magnitude of magnetic flux density of the Earth, and 

3γ  is the direct cosine of the magnetic moment mI  along the Oz-axis with respect 
to OZ . The Hamiltonian �� has the same form as Eq. (4.1.28), but 1�  is 
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redefined as 

 2 2 2
1 1 2 3 m 3

3 ( )
2 c A B C H Iω α α α σ γ= + + − −�  (4.1.32) 

where the parameter σ is given by 

 m
3a

μσ
μ

=  (4.1.33) 

4.2 Rigid-body Spacecraft in an Elliptic Orbit 

4.2.1 Introduction 

Investigations on spatial chaotic attitude motion of rigid body spacecraft began in 
1991. In order to demonstrate chaotic attitude motion of a spinning axisymmetric 
rigid body in a circular orbit Guran, Tong, and Rimrott calculated the Poincaré 
maps based on the numerical solutions to its Hamiltonian canonical equations [4]. 
Considering a spinning symmetric rigid body spacecraft in an elliptic orbit, Cole 
and Calico numerically solved its governing equation, derived by Kane and 
Barba [5], to examine the nonlinear behavior of both the controlled and 
uncontrolled cases via the Poincaré maps [6]. Beletsky and Starostin treated 
numerically attitude motion of symmetrical rigid spacecraft in sunlight flux, and 
Poincaré maps indicated the existence of regular (resonant and quasi-periodic), 
semi-regular (intermittent) and chaotic behaviors [7]. Balan analytically proved 
the existence of horseshoes and the nonintegrability of the equations governing a 
spinless axially asymmetric rigid body in an elliptic orbit [8]. Cheng and Liu 
applied the generalized version of Melnikov method and computed numerically 
the Poincaré maps to study the attitude motion of an asymmetric magnetic rigid 
body spacecraft on a circular orbit in the equator plane subjected to the geomagnetic 
torque [9]. Peng and Liu used the Serret-Andoyer variables to formulate attitude 
motion of a rigid body spacecraft in an elliptic orbit, applied the Melnikov method 
to detect transverse homoclinic points, and expressed chaotic behaviors in angular 
momentum space via the Poincaré maps [10].  

This section treats a rigid-body spacecraft in an elliptic orbit. The Serret- 
Andoyer variables are employed to simplify the Hamiltonian description. By a 
contact transformation, the system is reduced to a torque-free rigid body with 
time-dependent moments of inertia. The system can be regarded as described by 
the completely integrable Euler equation under small periodic excitation. The 
generalized Melnikov theory is applied to the system. The Poincaré maps based 
on the numerical solutions are calculated to demonstrate chaotic motion. 
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4.2.2 Dynamical Model 

Focus on attitude motion of a rigid body spacecraft in a Keplerian elliptic orbit. 
Both the gravitational torque and the coupling between orbital and attitude 
motions are taken into consideration. Then the Hamiltonian can be decomposed 
into the following form [11] 

 0 1ε+=� � �  (4.2.1) 

where 0�  is the Hamiltonian of a torque-free rigid body, 1�  accounts for the 
disturbing and coupling terms, and a small parameter ε  is the quotient of mean 
values of two different angular velocities, the orbital rate around the Earth and 
the angular velocities of attitude motion. 

The Serret-Andoyer variables are used to formulate the Hamiltonian. Assume 
that ( , , , , , )l g h L G H  are defined for the rigid body in torque-free case. Then the 
Hamiltonian 0�  is expressed by Eq. (4.1.10) as 

 ( )
2 2 2

2 2
0

1 sin cos
2 2

l l LG L
A B C

� �
+ − +� �

� �
H =  (4.2.2) 

For the case of a rigid body in the gravitational field, according to [48], an infini- 
tesimal contact transformation for the Serret-Andoyer variables was conducted  
as [12] 

 ( , , , , , ) ( , , , , , )l g h L G H l g h L G H′ ′ ′ ′ ′ ′→  (4.2.3) 

The Hamiltonian �  expressed by ( , , , , , )l g h L G H′ ′ ′ ′ ′ ′  has exactly the same form 
as the Hamiltonian 0�  for a torque-free rigid body 

 
2 2 2

2 21 sin cos ( )
2 2

l l LG L
A B C∗ ∗ ∗

′ ′ ′� � ′ ′+ − +� �
� �

=�  (4.2.4) 

The parameters ,A B∗ ∗  and C∗  can be regarded as pseudo-moments of inertia 
with following definitions 

 

2
2 3

2
2 3

1 1 3 (1 3cos )( )
4

1 1

1 1 3 (1 3cos )( )
4

A B
A A G r

B B

C B
C C G r

ε δ

ε δ

∗

∗

∗

′= + − −
′

=

′= + − −
′

 (4.2.5) 
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where 

 arccos( )H Gδ ′ ′ ′=  (4.2.6) 

Due to Eq. (4.2.4), �  does not depend on the variables g ′  and h′  explicitly. It 
follows that its corresponding momenta G′  and H ′  as well as the parameter 
δ ′  defined by Eq. (4.2.6) are constant. When the orbit is circular, the pseudo- 
moments of inertia ,A B∗ ∗  and C∗  are constants. In this case, the influence of the 
perturbation increases or decreases slightly the moments of inertia A  and C, 
whereas B is not affected. Therefore the dynamical phase flows in plane ( , )l L′ ′  
have the same qualitative behavior as the torque-free case (Fig. 4.1). 

In the case of an elliptic orbit, the distance r  of the spacecraft from the Earth 
center varies with time. Therefore, from Eq. (4.2.5), the pseudo-moments  of 
inertia ,A B∗ ∗  and C∗  are time dependent. Actually, substitution of Eq. (1.1.28) 
into Eq. (4.2.5) yields 

 

3
2

2 3

3
2

2 3

1 1 3 (1 cos ) (1 3cos )( )
4

1 1

1 1 3 (1 cos ) (1 3cos )( )
4

e A B
A A G p

B B
e C B

C C G p

ε ν δ

ε ν δ

∗

∗

∗

+ ′= + − −
′

=

+ ′= + − −
′

 (4.2.7) 

The attitude motion problem of a rigid body under the gravitational torque is 
transformed to an equivalent torque-free rigid body with time-varied moments of 
inertia. 

The Hamiltonian �  of the rigid body under the gravitational torque can be 
formally expressed in Eq. (1.4.4), but the moments of inertia should be replaced 
by the pseudo-moments of inertia 

 
22 2
31 21

2
GG G

A B C∗ ∗ ∗

� �
= + +� �

� �
�  (4.2.8) 

Substituting Eq. (4.2.7) into Eq. (4.2.8), and writing the resulting equation in the 
form of Eq. (4.2.1), one obtains 

 
22 2
31 2

0
1
2

GG G
A B C

� �
= + +� �

� �
�  (4.2.9) 

 2 2
1 1 3 3 1( )(1 3 cos )c G c G e ν= − +�  (4.2.10) 

where 
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 1 2 3( ), ( ), ( )c C B c C A c B Aλ λ λ= − = − = −  (4.2.11) 

and 

 
2

2 3

3(1 3cos )
8G p

δλ
′−=

′
 (4.2.12) 

In above derivation, only the terms of the first order e are retained, because the 
eccentricity e of the orbit is assumed to be very small. 

4.2.3 Melnikov Analysis 

Euler’s equations for the transformed torque-free system with pseudo-moments 
of inertia can be written as 

 1 2 3 0C BG G G
B C

∗ ∗

∗ ∗

� �−+ =� �
� �

�  (4.2.13a) 

 2 3 1 0C AG G G
C A

∗ ∗

∗ ∗

� �−− =� �
� �

�  (4.2.13b) 

 3 1 2 0B AG G G
A B

∗ ∗

∗ ∗

� �−+ =� �
� �

�  (4.2.13c) 

Substituting Eqs. (4.2.7) into Eq. (4.2.13), omitting nonlinear terms of e, and 
using Eq. (1.3.25) in the resulting equation to replace time t by true anomaly ν , 
one transforms Euler’s Eqs. (4.2.13) into the following form 

 [ ]{ }1
1 1 0 1 2 3

d 1 2 cos( ) 0
d
G c e c G Gα ε ν ν
ν

+ + − − =  (4.2.14a) 

 [ ]{ }2
2 1 0 2 3 1

d
1 2 cos( ) 0

d
G c e c G Gα ε ν ν
ν

− + − − =  (4.2.14b) 

 [ ]{ }3
3 1 0 3 1 2

d
1 2 cos( ) 0

d
G

c e c G Gα ε ν ν
ν

+ + − − =  (4.2.14c) 

where ( 1,2,3)i iα =  are defined by  

 1 2 3, ,C B C A B A
BC CA AB

α α α− − −= = =  (4.2.15) 

( 1,2,3)ic i =  are defined by Eq. (4.2.11), and c and 1e  are defined as 
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3

1,p ec e
μ ε

= =  (4.2.16) 

In the unperturbed case with 0ε = , Euler’s Eqs. (4.2.14) become 

 1
1 2 3

d 0
d
G c G Gα
ν

+ =   (4.2.17a) 

 2
2 3 1

d 0
d
G c G Gα
ν

− =  (4.2.17b) 

 3
3 1 2

d
0

d
G

c G Gα
ν

+ =  (4.2.17c) 

Equation (4.2.11) permits the first integral of angular momentum (1.4.5), which 
corresponds to the sphere of the angular momentum. On the sphere, there are two 
saddle points 0(0, ,0)G±  of the dynamical phase flows and four heteroclinic 
orbits connecting them. Denote the heteroclinic orbits by 0 ( )νG , which can be 
solved from Eq. (4.2.17) as 

 

0 1
1 1 3

2

0
2 1 3

0 3
3 1 3

2

( ) sech( )

( ) tanh( )

( ) sech( )

G G c G

G G c G

G G c G

αν α α ν
α

ν α α ν

αν α α ν
α

= ± −

= −

= ± −

�  (4.2.17) 

Higher-dimensional version of the Melnikov Theory presented in 1.4.4 will be 
applied. In this case, Ωn = 1 and Lie-Poisson bracket {F,H1} in Eq. (2.4.27) is 
given by [13] 

 0 0
0

1 0 1{ , } ( ) ( )F H ν ⋅ ∇ × ∇
G G

= G � �  (4.2.18) 

Due to Eqs. (4.2.9) and (4.2.10) 

[ ] [ ]( )

0

0

00 0
31 2

0

0 0
1 3 1 0 1 3 0

, ,

2 1 3 cos( ) , 0, 2 1 3 cos( )

GG G
A B C

c G e c G eν ν ν ν

� �
∇ = � �

� �

∇ = − + − + −

G

G

�

�
 (4.2.19) 

Hence 

 
[ ]

0 0
0

0 1

0 0 0
1 3 3 1 1 2 3 0

( ) ( )

2( ) ( ) ( ) ( ) 1 3 cos( )c c G G G e

ν

α α ν ν ν ν ν

⋅ ∇ × ∇

= + + −
G G

G H H
 (4.2.20) 
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Substitution of Eqs. (4.2.18) and (4.2.20) into Eq. (2.4.27) yields the generalized 
Melnikov function along the heteroclinic orbits as 

[ ]0 0 0
0 1 3 3 1 1 2 3 0( ) 2( ) ( ) ( ) ( ) 1 3 cos( ) dν α α ν ν ν ν ν ν

+∞

−∞
= + + −� c c G G G e�  (4.2.21) 

Evaluation of the integral leads to 

 0 0 0( ) sinν ν=� �  (4.2.22) 

where 

 1 3 3 1
0 3

1 3 1 3

3� ( ) �csch
( ) 2
e c c
c G c G

α α
α α α α

� �+
= − −� �� �

� �
�  (4.2.23) 

There always exist simple zero points of the function 0( )ν� . 

4.2.4 Numerical Simulations 

Equation (4.2.14) is numerically integrated for thirty different initial points with 
fixed parameters, A = 1, B = 1.5, C = 2, and c1 = c3 = 1. The Poincaré maps in the 
planes (G1, G3) and (G1, G2) are obtained by plotting points with orbital period 2�. 
The two different types of motion, regular and chaotic, are readily distinguished 
as shown in Fig. 4.5. One can see from Fig. 4.5(a) and (b) that for fairly small 
eccentricity e, most of the Poincaré maps are fairly well covered by invariant tori. 
It means that most of the periodic and quasiperiodic motion are preserved. In 
Fig.4.5(c) and (d), as e and ε  increase, some tori break into chaotic trajectories,  
in the sense that the successive points do not lie on a curve anymore but fill an area 
densely, and others break into island chains along which there is a succession of 
elliptic and hyperbolic orbits. As e and ε  are further increased, more and more 
of the regular motion disappears, and finally the points are mixed chaotically as 
shown in Fig.4.5(e) and (f). 

4.3 Rigid-body Spacecraft with an Eccentrically  
Rotating Mass 

4.3.1 Introduction 

In certain cases, single rigid body is too oversimplified to model spacecraft. 
Therefore, a rigid body with some moving parts is introduced as a possible model  
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Figure 4.5 Poincaré maps of a rigid spacecraft in an elliptic orbit 

of spacecraft. This section will deal with an example of such models, rigid body 
spacecraft with an eccentrically rotating mass. Chaotic attitude motion of a rigid 
body with moving parts will be surveyed in the following, while gyrostat spacecraft 
will be treated in the next section.  

Gray, Kammer and Dobson employed the Melnikov method to predict chaos in 
a spacecraft model with small damping simulating the energy sink and two small 
masses oscillating symmetrically so that the system’s mass center does not move 
relative to the carrier body [14, 15]. Gray, Dobson, and Kammer used the Melnikov 
method to investigate the onset of chaos in a viscously damped spacecraft that has 
small subbodies oscillating within it [16]. Meehan and Asokanthan numerically 
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studied a spinning rigid spacecraft with an internal energy dissipater in the form of 
a spring-mass-dashpot, and calculated the time history, phase trajectory, frequency 
spectrum, Poincaré map and Lyapunov exponents to demonstrate periodical and 
chaotic motions [17]. They also computed a 3-dimensional Poincaré map and 
correlation dimension [18]. Gray, Mazzoleni, and Campbell applied the Melnikov 
method to a model consisting of a torque-free, undamped rigid carrier body with 
a small elastic appendage that is constrained to undergo torsional vibration only 
and an on-board nonlinear controller that quantitatively simulates an energy sink 
[19, 20]. Gray, Kammer, Dobson, and Miller further considered a more realistic 
case of larger damping that is implemented via a rotor immersed in a viscous 
fluid, applied the Melnikov method to give a necessary condition of chaos, and 
compared the condition with numerical simulations [21]. Miller, Gary, and 
Mazzoleni studied a rigid-body spacecraft that is perturbed by the motion of 
small oscillating submasses, a small flexible appendage constrained to undergo 
only torsional vibration, and a rotor immersed in a viscous fluid. They not only 
derived an analytical criterion for chaos from the Melnikov method, but also 
checked the range of validity of the criterion via extensive numerical simulations 
[22, 23]. Iñarrea, Lanchares, Rothos, and Salas applied a higher dimensional 
generalization of the Melnikov method [24] to chaotic attitude motion of a rotating 
asymmetric body with a periodically changing moment of inertia and under the 
influence of an aerodynamic drag proportional to the angular velocity, and 
confirmed the analytical results via numerical simulations [25]. Kuang, Meehan, 
Leung, Tan investigated chaotic attitude motion of a central rigid body with two 
hinge-connected, completely deployed solar panel arrays in a circular orbit under 
the influence of the gravity-gradient torques via the Melnikov method and 
numerical simulations [26]. 

In addition, chaos in some simplified models of liquid-filled rigid-body spacecraft 
has been investigated. Ge, Lee, Chen, and Lee numerically studied chaotic attitude 
motion of a damped rigid body carrier with partially-filled liquid excited by a 
harmonic variation internal momentum via phase portraits, Poincaré map, power 
spectrum, Lyapunov exponents, and detected the route to chaos as period-doubling 
bifurcation [27]. Ge also considered chaos in partially-filled liquid spacecraft 
with a feedback controller [28]. Kuang, Leung, Tan applied the Melnikov method 
to predict heteroclinic transversal intersections in a liquid-filled rigid body 
spacecraft [29]. 

In this section, chaotic attitude motion is examined for an asymmetrical rigid 
body with an eccentrically rotating mass. The model is developed as an integrable 
Hamiltonian system with a small Hamiltonian perturbation. The generalized 
Melnikov theory is applied to detect transverse heteroclinic points. The transitions 
to chaos are demonstrated via Poincaré maps. 
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4.3.2 Dynamical Model 

Consider a torque-free asymmetrical rigid body attached by a small mass point P 
rotating in the plane ( , )x y  with relative angular velocity PΩ  about Oz-axis 
(Fig. 4.6). Assume that Pm  is the mass of P, and e  is the position vector from  
Oz-axis to the point P. Then 

 ( )cos sine θ θ= +e i j  (4.3.1) 

where θ  is the angle of vector e  to Ox-axis.  

 
Figure 4.6 Rigid body with rotating mass point 

The total angular momentum G of the system can be written as 

 PJ gω= ⋅ +G  (4.3.2) 

where Pg  is the increment of angular momentum caused by point P as 

 [ ]P P P( )m Ω× ×g = e + k eω  (4.3.3) 

In the torque-free case the angular momentum is conservative 

 2 2 2 2
1 2 3G G G G+ + =  (4.3.4) 

where the components ( 1,2,3)iG i =  of G  in central principal axes ( - )O xyz  of 
the body are derived as 

 

2
1 1 P 1 2

2
2 2 P 1 2

2
3 3 P P

sin ( sin cos )

cos ( sin cos )

G A m e

G B m e
G C m e

ω θ ω θ ω θ
ω θ ω θ ω θ
ω Ω

= + −

= − −

= +

 (4.3.5) 

Introduce a small parameter 2
Pm e Aε = . Then the components of angular velocity 

( 1,2,3)i iω =  can be expressed as functions of angular momentum 
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1 2
1 1

1 2
2 2

3 3 P

1 sin sin cos

1 cos sin cos

1 ( )

G GG A
A A B

G GG A
B A B

G A
C

ω ε θ θ θ

ω ε θ θ θ

ω ε Ω


 �� �= − −� �� 
� �� �


 �� �= + −� �� 
� �� �

= −

 (4.3.6) 

The kinetic energy T  of the system is 

2 2 2 2 2 2
1 2 3 1 2 3 P

1 1( ) ( sin cos ) ( )
2 2

T A B C meω ω ω ω θ ω θ ω Ω
 �= + + + − + +� �  (4.3.7) 

The zero-th and second degree homogeneous terms of generalized velocities in 
Eq. (4.3.7) can be written as 

 

2 2 2 2 2
2 1 2 3 1 2 3

2
0 P

1 1( ) ( sin cos )
2 2
1
2

T A B C A

T A

ω ω ω ε ω θ ω θ ω

ε Ω


 �= + + + − +� �

=
 (4.3.8) 

Substituting Eq. (4.3.6) into Eq. (4.3.8) and neglecting the constant terms yield 
the Hamiltonian 2 0T T−=�  expressed by ( 1,2,3)iG i =  as 

 0 1ε+=� � �  (4.3.9) 

where 

 

22 2
31 2

0

2
3 1 2

1 3 P2

1
2

( 2 ) sin cos
2

GG G
A B C

G G GA G C
C A B

Ω θ θ

� �
= + +� �

� �

 �� �= − − −� � �

� �� � �

�

�
 (4.3.10) 

4.3.3 Melnikov Analysis 

Expressed by the Euler equations in the form of Eq. (1.3.7) in which 
( 1,2,3)iM i =  are equal to zero and C B A> >  are assumed without loss of 

generality, the unperturbed system are 

 1 1 2 3 0G G Gα+ =�  (4.3.11a) 

 2 2 3 1 0G G Gα− =�  (4.3.11b) 

 3 3 1 2 0G G Gα+ =�  (4.3.11c) 
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where the constants ( 1,2,3)i iα =  are defined by Eq. (4.2.15). 
Equation (4.3.11) permits the first integral of the angular momentum (4.3.4), 

which corresponds to the sphere of the angular momentum. On the sphere there 
are two saddle points 0(0, ,0)G±  connected by four heteroclinic orbits. Denote the 
heteroclinic orbits by 0 ( )tG , which can be solved from Eq. (4.2.11). There exists 
the same sphere of angular momentum as described by Eq. (4.2.9). The 
heteroclinic orbits 0 ( )tG  connecting two saddle points 0(0, ,0)G±  have the 
similar form as Eq. (4.2.13) 

 

0 1
1 1 3

2

0
2 1 3

0 3
3 1 3

2

( ) sech( )

( ) tanh( )

( ) sech( )

G t G Gt

G t G Gt

G t G Gt

α α α
α

α α

α α α
α

= ± −

= −

= ± −

�  (4.3.12) 

The Melnikov function along the heteroclinic orbits can be calculated based on 
Eqs. (2.4.27) and (4.2.18). In this case, noticing Ptθ Ω= , one has 

{ }

0 0
0

0 1

0 0 0 2 21 2
1 2 3 P 0 P 02 2

0
0 2 0 23

2 1 1 2 P 0 P 0

0 0 03
1 2 3 P2
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( ) ( ) ( ) sin ( ) cos ( )

( )
[ ( )] [ ( )] cos ( )sin ( )

( ) ( )( ( ) )

AG t G t G t t t t t
A B

G t
G t G t t t t t

B
A

G t G t G t C
C

α αΩ Ω

α α Ω Ω

α Ω

⋅ ∇ × ∇


 �= − − −� � �

+ − − −

− −

G G
G H �

 (4.3.13) 

Substituting Eqs. (4.3.13) and (4.2.18) into Eq. (2.4.27) and considering the fact 
that 1 3,G G  are even functions and 2G  is an odd function with respect to  t, one 
calculates the Melnikov function after some trigonometric operations 

0 0 01 2
0 1 2 3 P2 2

P

0 2 0 2 0
2 1 1 2 3 P P 0

( ) ( ) ( ) ( )sin 2 d
2

1 ( ( ( )) ( ( )) ) ( )cos 2 d sin 2

α α Ω
Ω

α α Ω Ω

+∞

−∞

+∞

−∞


� �= +� ��
� ��

�+ − �

�

�

At G t G t G t t t
A B

G t G t G t t t t
AB

�
 (4.3.14) 

Substitution of Eq. (4.3.12) into the integrand in Eq. (4.3.14) and evaluation of 
the resulting integrals lead to the Melnikov function as 

 0 0 P 0( ) sin(2 )t tΩ=� �  (4.3.15) 

where 0�  is a constant defined by 
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 (4.3.16) 

Thus the Melnikov function 0( )t�  always has simple zero points. 

4.3.4 Numerical Simulations 

The differential equation of motion derived from the Hamiltonian (4.3.9) can be 
numerically solved to construct the Poincaré maps in perturbed case. In the 
calculations, let parameters 1, 1.5, 2, 15A B C G= = = =  and sixty differential initial 
points be given. The phase portraits on the sphere (4.3.4) are projected onto the 
( , )x z  plane. The Poincaré maps obtained from projection on ( , )x z  plane for 
different ε  are shown in Fig. 4.7. Figure 4.7(a) is essentially the projection of  

 
Figure 4.7 Poincaré maps of a rigid body spacecraft with a rotating particle 
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Fig. 1.17(a), as there are no perturbations. With the increase of ε, the heteroclinic 
orbits break up, and chaos occurs in the corresponding region (Fig. 4.7(b)). With the 
further increase of ε, the chaotic area is enlarged, and the local chaos becomes 
global (Fig. 4.7(c) and (d)). 

4.4 Magnetic Gyrostat Spacecraft in a Circular Orbit 

4.4.1 Introduction 

As stated in 1.4.3, a gyrostat consists of two parts, a small axisymmetric rotor 
spinning about its axis of symmetry inside a large platform. The development of 
dual-spin satellites has attracted much attention on the motion of gyrostats. 
Chaotic attitude motion of gyrostat spacecraft has been investigated by some 
researchers since 1993, as documented by the following brief survey. 

Tong and Rimrott developed the Hamiltonian canonical equation for an 
axisymmetric spinning gyrostat spacecraft in a circular orbit in a gravitational 
field, revealed regular and chaotic attitude motion via Poincaré maps, and found 
that increasingly chaotic trajectories disappeared as the spin speed of the rotor 
progressively increased [30]. Guran also investigated numerically chaotic attitude 
motion of a gyrostat spacecraft in a circular orbit in a gravitational field via 
Hamiltonian formalism and Poincaré map [31]. Meehan and Asokanthan 
developed Lagrange’s equation for dual-spin spacecraft with an axial nutational 
damper excited by a sinusoidally varying torque, calculated numerically bifurcation 
diagrams, frequency spectrum, Poincaré map and Lyapunov exponents to 
demonstrate chaotic attitude motions, while they did not account for any field 
torques [32]. Tong, Tabarrok, and Rimrott formulated motion of an asymmetric 
gyrostat in uniform weight field via Hamiltonian canonical equation in the 
Serret-Andoyer variables, applied the generalized Melnikov method to detect 
Smale’s horseshoes, and calculated numerically Poincaré maps to demonstrate 
regular and chaotic attitude motions [33]. Or used the Melnikov method to 
predict transverse homoclinic points in attitude dynamics of a dual-spinner subject 
to internal oscillatory torque and Coulomb friction between the two linked bodies, 
and numerically found that the attractor goes through a series of structures: limit 
cycle, quasi-periodic cycle, chaos, mode locking, intermittency, and chaos again 
[34]. Cheng, Liu, and Peng revisited the problem addressed in [33], while they 
considered the central gravitational field instead of the uniform weight field [35]. 
Peng and Liu investigated chaotic attitude motion of a gyrostat with an 
asymmetric rotor via the generalized Melnikov method and Poincaré maps [36]. 
Cheng and Liu expressed Hamiltonian function in the Serret-Andoyer variables 
for an asymmetric gyrostat spacecraft in a circular orbit subjected to both 
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gravitational and magnetic torques. Applying the generalized Melnikov method 
and calculating numerically Poincaré maps, they found that the increase of the 
magnetic moment of the gyrostat can intensify the chaotic motion while the 
increase of the rotor speed can suppress the chaotic motion [37]. Iñarrea and 
Lanchares studied chaos in the spin-up process of a dual-spin spacecraft with 
time-dependent moments of inertia, used the Melnikov function to estimate 
analytically the width of the stochastic layer, and check the validity of the 
analytical estimation via numerical calculation of the width of the layer [38]. 
Kuang, Tan, and Leung applied the Melnikov method to study chaotic attitude 
motion of spacecraft under small perturbation torques, which can degenerate to a 
quasi-rigid satellite model investigated in [15] as well as a dissipative gyrostat 
under small perturbation torques [39]. Kuang, Tan, Arichandran, and Leung 
studied chaotic attitude motion of a gyrostat satellite spinning about arbitrarily 
body-fixed axes [40] as well as an asymmetrical gyrostat composed of an 
asymmetrical carrier and three wheels installed along its principle axes and 
rotating about the mass centre of the entire system under the action of both 
damping torques and periodic disturbance torques [41]. Kuang, Tan, and Leung 
researched on chaotic attitude tumbling of an asymmetric gyrostat with three 
symmetrical wheels along the principal axes rotating about a fixed point in a 
gravitational field without any damping [42] or with both nonlinear damping and 
periodic torques [43]. Kuang and Leung investigated bias momentum satellites 
and axisymmetric gyrostat satellites under gravity-gradient torques without 
damping [44]. In these works [39 −44], the Serret-Andoyer variables are used to 
describe the Hamiltonian equations for attitude motions. The Melnikov functions 
are calculated to study analytically the criterion of chaos. Numerical examples 
are presented to reveal the existence of chaos. Considering asymmetrical gyrostat 
spacecraft whose rotor torque is generated by a potential field [45], Shirazi and 
Ghaffari-Saadat employed the Serret-Andoyer variables to describe the attitude 
motion, and calculated numerically second-order Poincaré maps to show that 
chaotic motion originates from the gravitational field effects [46]. They also 
applied the similar procedure to study an apparent-type gyrostat spacecraft, and 
calculated numerically the Lyapunov exponents to identify chaos quantitatively 
[47].  

This section treats chaotic motion of an asymmetric magnetic gyrostat spacecraft 
in a circular orbit subjected to both gravitational and magnetic torques. The 
Hamiltonian formalism is expressed in the Serret-Andoyer variables as an integrable 
system with a small perturbation. The unperturbed system has saddle points 
connected by heteroclinic orbits. The Melnikov function for the heteroclinic orbits 
is calculated. Numerical evaluations show that the function has simple zeros. 
Poincaré maps are numerically computed to demonstrate regular and chaotic attitude 
motions. Numerical results reveal that chaotic areas in the Poincaré maps increase 
with the magnetic moment of the gyrostat and decrease with the rotor speed.  
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4.4.2 Unperturbed Motion of a Gyrostat 

Consider a simple gyrostat (S) moving in a circular orbit as a model of a dual-spin 
satellite. The gyrostat is composed of a platform SP and a rotor SP rotating about 
axis Oz with relative angular velocity Ω0. When the gravitational and geomagnetic 
torques are considered the Hamiltonian � of the system can be expressed in the 
Serret-Andoyer variables as shown in Eqs. (4.1.28), (4.1.29) and (4.1.31) 

 0 1cω+=� � �  (4.4.1) 

where 

 

22 2
2 2 R

0

2 2 2
1 1 2 3 m

( )1 sin cos ( )
2 2
3 ( )
2 c

L gl l G L
A B C

A B C H Iω α α α κ γ

� � −+ − +� �
� �

= + + − −

=�

�

 (4.4.2) 

and 0�  is the Hamiltonian of a torque-free gyrostat. Since cω  is sufficiently small, 
the influence of gravitational and geomagnetic torques can be regarded as 
perturbations to the torque-free state. 

For the unperturbed motion of a torque-free gyrostat, the canonical equations 
with variables g and G require 

 
2 2sin cosE l lg G

G A B
� �∂ = +� �∂ � �

� = �  (4.4.3) 

Denote the right hand of (4.4.3) by Ω . Integration of Eq. (4.4.3) leads to 

 0 00
ˆ( ) ( )d ( )

t
g t g g t gΩ τ τ= + ≡ +�  (4.4.4) 

where 0g  is the initial value of g. The phase trajectories in phase plane ( , )l L  are 
determined by the following equations 

 
2 2

R1 sin cos gl ll L
L C A B C

� �∂ = − − −� �∂ � �
�= �   

 2 21 1 1( ) sin 2
2

L G L l
l B A

∂ � �− = − −� �∂ � �
� = �   

There are two saddle points at � 2l =  and R3� 2, [ ( )]L A A C g= −  as shown in 
Fig. 4.4. The heteroclinic orbits connected two saddle points can be solved from 
Eq. (4.4.5) and denoted by ˆ ˆ( ( ), ( ))l t L t  as 



Chapter 4 Chaos in Spatial Attitude Motion of Spacecraft 

123

 

2

2

2
1 2

2
3 4

( )( )( ) sechˆtan
( )( ) tanh

ˆ tanh
tanh

A B C a c c d ul
B A C a d u

D D uL
G D D u

− − −= ⋅
− −

+=
+

 (4.4.5) 

where 

 0
( )( )( )( ) ( )

2
G A C B C a c c du t t
C AB

− − − −= ⋅ −  (4.4.6) 

The parameters ( 1,2,3,4), , ,iD i a c d=  are functions of constants R, , , ,A B C G g  as 
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 (4.4.7) 

4.4.3 Melnikov Analysis 

According to Eq. (2.4.27) the Melnikov function can be calculated as 
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where the Lie-Poisson bracket in the integral can be decomposed as 
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 (4.4.10) 

Substitution of Eq. (4.4.2) into Eq. (4.4.9) leads to 
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Substitution of Eq. (4.4.12) into Eq. (4.4.8) yields 
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 (4.4.13) 

Since ˆ ˆ( , )D l L  and ˆ ˆ( , )E l L  are odd functions and ˆ ˆ( , )F l L  is an even function, 
Equation (4.4.13) can be simplified as 

 0 0
ˆ ˆˆ ˆˆ ˆ( ) ( , )sin 2 ( , )cos 2 d sin 2

∞

−∞

 �= − + ⋅� ��g E l L g F l L g t g�  (4.4.14) 

Denote the integral in Eq. (4.4.14) by f  
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 ˆ ˆˆ ˆˆ ˆ( , )sin 2 ( , )cos 2 d
∞

−∞

 �≡ − +� ��f E l L g F l L g t  (4.4.15) 

The integral f can be numerically evaluated for given parameters. For example, 
let 1.0, 0.4A C= = , R1, =1.6, =10c g Gω = . The dependence of f  on the parameter 
B is shown in Fig. 4.8. One can see that f  increases as B  increases and 0f →  
only when B A→ . It follows that in general case the integral f  is non-zero. 
Therefore the Melnikov function 0( )g�  has simple zeros. Thus we conclude that 
the motion of the gyrostat under actions of the gravitational and magnetic torques 
is chaotic in the sense of Smale’s horseshoe. 

 
Figure 4.8 Dependence of f on parameter B 

4.4.4 Numerical Simulations 

Numerical integration of the canonical equations derived from the Hamiltonian 
(4.4.1) leads to the results on Poincaré maps. Since the Hamiltonian of the system 
is a constant, one may define the Poincaré map as a surface of section in the 
phase plane ( , )l L G  with the condition that � 2g = . At first the computations 
are performed for a gyrostat without magnetic moment in the gravitational field. 
The parameters are given as 1.0, 0.8, 0.4A B C= = = , 1cω = , and the results of 
Poincaré maps for different Rg  are shown in Fig. 4.6. When the rotor speed is 
fairly small as in Fig. 4.9(a), the Poincaré map is full of irregular points. As the 
rotor speed increases the chaotic trajectories gradually disappear and the motion 
becomes quite regular, as shown in Fig. 4.9(b), (c), (d). 

For the case of a magnetized gyrostat in gravitational and geomagnetic fields 
for 1, 90κ = =� , the results are shown in Fig. 4.10. As the magnetic moment mI  
increases, the region of chaos is enlarged in Fig. 4.7(a), (b), (c), but as Rg  increases, 
the chaotic trajectories in the chaotic region decrease and the motion gradually 
becomes regular as shown in Fig. 4.7(d), (e), (f). 
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Figure 4.9 Poincaré maps of a gyrostat spacecraft 

 
Figure 4.10 Poincaré maps of a magnetic gyrostat spacecraft 



Chapter 4 Chaos in Spatial Attitude Motion of Spacecraft 

127

References 

[1] Serret JA. Mémoire sur l’emploi de la méthode da la variation des arbitraries dans la 
théorie des mouvements de rotation. Mémoire s de l’académie de science de Paris, 1866, 
35, 585-616 

[2] Andoyer H. Cours de mécanique céleste. Paris: Gauthier-Villars, 1923, 1, 55-56 
[3] Deprit, A. Free rotation of a rigid body studied in the phase plane. Amer. J. Physics, 1967, 

35(5), 424-428 
[4] Guran A, Tong X, Rimrott FPJ. Instabilities in a spinning axisymmetric rigid satellite, 

Mech. Res. Comm., 1991, 18(5), 287-291 
[5] Kane T R, Barba PM. Attitude stability of a spinning satellite in an elliptic orbit. Journal 

of Applied Mechanics, 1966, 33, 402-405 
[6] Cole JW, Calico RA. Nonlinear oscillations of a controlled periodic system, Journal of 

Guidance, Control, and Dynamics, 1992, 15(3), 627-633 
[7] Beletsky VV, Starostin EL. Regular and chaotic rotations of a satellite in sunlight flux; in: 

Nonlinearity and Chaos in Engineering Dynamics, Thomson JMT and Bishop SR eds., 
Wiley, New York. 193-204, 1994 

[8] Balan R. Horseshoes and nonintegrability in the restricted cases of a spinless axisymmetric 
rigid body in a central gravitational field, Celestial Mechanics and Dynamical Astronomy, 
1995, 63(1), 59-79 

[9] Cheng G, Liu YZ. Chaotic motion of a rigid-body satellite in the magnetic field of the 
earth. Journal of Shanghai Jiaotong University, 1999, 33, 723-726 (in Chinese) 

[10]  Peng JH., Liu YZ. Chaotic attitude motion of a satellite on a Keplerian elliptic orbit. 
Technische Mechanik, 2000, 20(4), 311-318 

[11]  Kinoshita H. First-order perturbations of the two finite body problem. Publications of the 
Astronomical Society of Japan, 1972, 24, 423-457 

[12]  Cochran J. Effects of gravity-gradient torque on the motion of a triaxial satellite. 
Celestial Mechanics, 1972, 6, 131-152 

[13]  Holmes PJ, Marsden JE. Horseshoes and Arnold diffusion for Hamiltonian systems on 
Lie groups. Indiana University Mathematics Journal, 1983, 32, 273-310 

[14]  Gray GL, Kammer DC, Dobson I. Chaos in an attitude maneuver of a damped satellite due 
to time-periodic perturbations, Advances in the Astronautical Sciences, 1992, 79(1), 
593-612 

[15]  Gray GL, Dobson I, Kammer DC. Chaos in a spacecraft attitude maneuver due to time- 
periodic perturbations. ASME Journal of Applied Mechanics, 1996, 63(2), 501-508 

[16]  Gray GL, Dobson I, Kammer DC. Detection of chaotic saddles in an attitude maneuver 
of a spacecraft containing a viscous damper, Advances in the Astronautical Sciences, 
1993, 82(1), 167-184 

[17]  Meehan PA, Asokanthan SF. Chaotic motion in a rotating body with internal energy 
dissipation, Fields Institute Communications, 1996, 9, 175-202 

[18]  Meehan PA, Asokanthan SF. Chaotic motion in a spinning spacecraft with circumferential 
nutational damper, Nonlinear Dyn., 1997, 12(1), 69-87 



Chaos in Attitude Dynamics of Spacecraft 

128 

[19]  Gray GL, Mazzoleni AP, Campbell IIIDR. Chaotic dynamics of a spacecraft with a nearly 
symmetric flexible appendage and energy dissipation via a nonlinear controller. Advances 
in the Astronautical Sciences, 1996, 93(2), 1093-1112 

[20]  Gray CL, Mazzoleni AP, Campbell DR. Analytical criterion for chaotic dynamics in 
flexible satellites with nonlinear controller damping, Journal of Guidance, Control, and 
Dynamics, 1998, 21(5), 558-565 

[21]  Gray GL, Kammer DC, Dobson I, Miller AJ. Heteroclinic bifurcations in rigid bodies 
containing internally moving parts and a viscous damper. ASME Journal of Applied 
Mechanics, 1999, 66(3), 720-728 

[22]  Miller AJ, Gary GL, Mazzoleni AP. Nonlinear dynamics of a viscously damped 
spacecraft with a flexible appendage and time-dependent forcing, Advances in the 
Astronautical Sciences, 1999, 103(2), 2453-2473 

[23]  Miller AJ, Gray GL, Mazzoleni AP. Nonlinear spacecraft dynamics with a flexible 
appendage, internal damping and moving internal submasses, Journal of Guidance, 
Control and Dynamics, 2001, 24(3), 605-615 

[24]  Wiggins S. Global Bifurcations and Chaos: Analytical Methods. Berlin: Springer-Verlag, 
1988 

[25]  Iñarrea M, Lanchares V, Rothos VM, Salas JP. Chaotic rotations of an asymmetric body 
with time-dependent moments of inertia and viscous drag, International Journal of 
Bifurcation and Chaos, 2003, 13(2), 393-409 

[26]  Kuang J, Meehan PA, Leung AYT, Tan S. Nonlinear dynamics of a satellite with 
deployable solar panel arrays, International Journal Non-Linear Mechanics, 2004, 39(7), 
1161-1179 

[27]  Ge ZM, Lee CI, Chen HH, Lee SC. Nonlinear dynamics and chaos control of a damped 
satellite with partially-filled liquid, Journal of sound and Vibration, 1998, 217, 807-825 

[28]  Ge ZM. Nonlinear and Chaotic Dynamics of Satellites. Taipei: Gau Lih Book Company, 
1999  

[29]  Kuang J, Leung AYT, Tan S. Chaotic attitude oscillations of a satellite filled with a 
rotation ellipsoidal mass of liquid subject to gravity-gradient torques, Chaos, 2004, 14(1), 
111-117 

[30]  Tong X, Rimrott FPJ. Chaotic attitude motion of gyrostat satellites in a central force field, 
Nonlinear Dynamics, 1993, 4, 269-278 

[31]  Guran A. Chaotic motion of a Kelvin type gyrostat in a circular orbit, Acta Mechanica, 
1993, 98(1-4), 51-61 

[32]  Meehan PA, Asokanthan SF. Nonlinear instabilities in a dual-spin spacecraft with an axial 
nutational damper, Advances in the Astronautical Sciences, 1996, 93(1), 905-923 

[33]  Tong X, Tabarrok B, Rimrott FPJ. Chaotic motion of an asymmetric gyrostat in   the 
gravitational field, International Journal of Non-Linear Mechanics, 1995, 30(3), 191-203 

[34]  Or AC. Chaotic motions of a dual-spin body, ASME Journal of Applied Mechanics, 1998, 
65(1), 150-156 

[35]  Cheng G, Liu YZ, Peng JH. Chaotic motion of gyrostat in the central gravitational field. 
Acta Mechanica Sinica, 2000, 32(3), 379-384 (in Chinese) 

[36]  Peng, J, Liu, YZ. Chaotic motion of a gyrostat with asymmetric rotor. Int. J. of Nonlinear 



Chapter 4 Chaos in Spatial Attitude Motion of Spacecraft 

129

Mechanics, 2000, 35(3), 431-437 
[37]  Cheng, G., Liu, YZ. Chaotic motion of an asymmetric gyrostat in the magnetic field of 

the Earth. Acta Mechnica, 2000, 141(3-4), 125-134 
[38]  Iñarrea M, Lanchares V. Chaos in the reorientation process of a dual-spin spacecraft with 

time-dependent moments of inertia. International Journal of Bifurcation and Chaos, 2000, 
10(5), 997-1018 

[39]  Kuang J, Tan S, Leung AYT. Chaotic attitude motion of satellites under small perturbation 
torques, Journal of Sound and Vibration, 2000, 235(2), 175-200 

[40]  Kuang J, Tan S, Arichandran K, Leung AYT. Chaotic attitude motion of gyrostat satellite 
via Melnikov method. International Journal of Bifurcation and Chaos, 2001, 11(5), 
1233-1260 

[41]  Kuang J, Tan S, Arichandran K, Leung AYT. Chaotic dynamics of an asymmetrical 
gyrostat, International Journal of Non-Linear Mechanics, 2001, 36, 1213-1233 

[42]  Kuang J, Tan S, Leung AYT. Chaotic attitude tumbling of an asymmetric gyrostat in a 
gravitational field, Journal of Guidance, Control, and Dynamics, 2002, 25(4), 804-815 

[43]  Kuang J, Tan S, Leung AYT. On Melnikov’s method in the study of chaotic motions of 
gyrostat, International Journal of Control, 2002, 75(5), 328-351 

[44]  Kuang J, Leung AYT, Tan S. Hamiltonian and chaotic attitude dynamics of an orbiting 
gyrostat satellite under gravity-gradient torques, Physica D, 2003, 186, 1-19 

[45]  Shirazi KH, Ghaffari-Saadat MH. Near-integrability in a class of asymmetrical gyrostat 
satellites, International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 
3(2), 145-151 

[46]  Shirazi KH, Ghaffari-Saadat MH. Chaotic motion in a class of asymmetrical Kelvin type 
gyrostat satellite, International Journal of Non-Linear Mechanics, 2004, 39, 785-793 

[47]  Shirazi KH, Ghaffari-Saadat MH. Bifurcation and chaos in an apparent-type gyrostat 
satellite, Nonlinear Dynamics, 2005, 39(3), 259-274 

[48]  Kinoshita, H. First order perturbations of the two finite body problem. Publications of the 
Astronautical Society of Japan, 1972, 24, 423-457 

 
 



 

 

Chapter 5 Control of Chaotic Attitude Motion 

Abstract This chapter covers the control of chaos. It begins with an 
introduction to control of chaos. The control problem is formulated in the 
framework of system theory. The OGY method is presented as a significant 
and representative approach. Synchronization of chaos is briefly introduced. 
The parametric open-plus-closed-loop method and the stability criterion 
method are respectively proposed with the main ideas, the control laws, and 
the numerical examples. The chapter ends with controlling chaotic attitude 
motion. After the survey of recent investigations, planar libration of magnetic 
rigid spacecraft in an elliptic orbit in the gravitational and the magnetic field 
is treated as an example to demonstrate the applications of the parametric 
open-plus-closed-loop method and the stability criterion method. 

Keywords control of chaos, system theory, synchronization of chaos, 
parametric open-plus-closed-loop method, stability criterion method, planar 
libration, magnetic rigid spacecraft, elliptic orbit 
 
 

This chapter covers control of chaos. It begins with an introduction to control  
of chaos. The control problem is formulated in the framework of system theory. 
The OGY method is presented as a significant and representative approach. 
Synchronization of chaos is briefly introduced. The parametric open-plus-closed- 
loop method and the stability criterion method are respectively proposed with the 
main ideas, the control laws, and the numerical examples. The chapter ends with 
controlling chaotic attitude motion. After the survey of recent investigations, planar 
libration of magnetic rigid spacecraft in an elliptic orbit in the gravitational and 
the magnetic field is treated as an example to demonstrate the applications of the 
parametric open-plus-closed-loop method and the stability criterion method. 

5.1 Control of Chaos: An Overview 

5.1.1 Introduction 

Chaos occurs in a large variety of engineering systems and natural processes. 
Identification and prediction of chaos is surely beneficial to scientific understanding 
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and technical applications, but chaos has to be controlled so that the benefits  
will be maximized. Traditionally, chaos is believed to be uncontrollable because 
any small disturbance usually leads to other chaotic motions but not to any 
regular motion. However, the pioneering work of Ott, Grebogi, and Yorke in 
1990 demonstrated that chaos can be converted to any one of a large number of 
periodic motions by making only small perturbations of an available system 
parameter [1]. The contributions by Ott, Grebogi, and Yorke referred to as the 
OGY method, and its generalization will be presented in 5.1.3. Since then, 
controlling chaos has been one of the most fascinating and rapidly growing 
directions within the research area of nonlinear dynamics.  

Generally, controlling chaos is regarded as processes or mechanisms that 
purposefully change a chaotic motion to achieve a regular motion. Specifically, 
controlling chaos consists of suppression, direction, and control of chaos. 
Suppression of chaos eliminates chaotic motion while applies no requirements 
on the resulting motion. Direction of chaos targets a chaotic trajectory in the 
state space to a small neighborhood of previously prescribed points, circles or 
tori. Control of chaos is to manipulate a chaotic motion via an actively applied 
input in order to track a desired regular motion. Its special but significant case is 
stabilization of chaos that transforms one of an infinite number of unstable 
periodic orbits embedded within the chaotic attractor to stable ones. Suppression 
of chaos is, in the broadest sense, removing chaotic motions regardless of the 
outcomes. Direction of chaos is usually a necessary preparation for control of chaos. 
Control of chaos has the strict meaning that the controlled motion should be a 
periodic one with a previously given amplitude and period. Only control of chaos 
will be covered in this chapter. 

Controlling chaos is widely investigated because of its theoretical importance 
and possible applications. Academically, controlling chaos is a new stage of the 
development of chaos theory. The development begins with the focus on the 
transition from order to chaos, including conditions, mechanisms, and routes of 
chaos occurrence. Order within chaos was then revealed as universality in chaos, 
statistical characteristics of chaos, and fractal structures of chaos. At the present 
stage, the processes that form chaos to order can be implemented via the active 
control. Practically, controlling chaos is an essential step toward the application 
of chaos theory. Controlling chaos can not only remove chaotic motion from a 
system when chaos is harmful but also take advantage of some aspects of chaos 
such as the extreme sensitivity to initial states. For example, based on the sensitivity 
of the three-body problem to small perturbations, NASA scientists utilized small 
amounts of residual fuel to send the spacecraft ISEE-3/IEC more than 50 million 
miles across the solar system, achieving the first scientific cometary encounter. 
Due to control of chaos, if a system is designed for several purposes or under 
diverse conditions at different times, purposefully building chaos into the system 
may allow the desired flexibilities for multiple uses. 
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5.1.2 Problem Formulations  

As stated above, the problem of control of chaos contains a specified chaotic system 
to be controlled and a regular motion as the desired control goal, construction of 
a control law such that the controlled system display the desired motion. In order 
to facilitate the study of control design later, a formal definition of the problem is 
presented as follows. Consider a nonlinear system governed by a set of ordinary 
differential equations 

 ( , , )t=x f x u�  (5.1.1) 

with an observable output function 

 ( , , )t=y h x u  (5.1.2) 

where t is the time variable, x∈Rm is the state variable, u∈Rn is the control input, 
and y∈Rl are the output variable. If no control is applied, e.g. u = 0, one or more 
components of y are chaotic. For a desired regular goal yd(t), a control law  

 ( , )t=u g x  (5.1.3) 

is designed for the input u, such that starting from any initial state in a region, 
within the precision of measurement, the desired regular motion 

 d( ) ( )t t=y y  (5.1.4) 

can be realized for all t > t0 (a given time instant). If the control law (5.1.3) is 
independent of the state x, the control is called an open-loop control. If the 
control law (5.1.3) depends on both time t and state x, the control is called a 
closed-loop control or feedback control. If the control goal yd(t) is one of the 
unstable solutions of Eq. (5.1.1), namely, 

 d d( , , )t=y f y u�  (5.1.5) 

then it is the problem of chaos stabilization. In the following, the output variables 
are simply some state variables. 

As formulated above, control of chaos is actually a tracking problem [2] in 
which the tracking goal is a periodic motion and the system to be controlled is 
chaotic. Therefore, the approaches developed for control of chaos are neither 
exclusive of nor conflictive with the established control strategies in system theory 
or control engineering. In fact, chaos can be successfully controlled via various 
methods, such as conventional linear feedback control, feedback linearization, 
optimal control, stochastic control, adaptive control, and intelligent control. On 
the other hand, control of chaos seeks to develop new theories and methods that 
are particularly appropriate for chaotic motions.  
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There are some qualitative specifications in the design of a control law for a 
nonlinear system. Stability must be guaranteed for the controlled system at least 
for reasonably large region of initial states. Accuracy and speed of response 
should be examined as the control performance. Robustness should be taken into 
consideration. Robustness is the insensitivity to effects that are not modeled. The 
controlled system should be able to withstand these neglected effects. The energy 
needed by the control, reflected in the control input should be as small as possible. 
However, the above-mentioned qualities conflict to some extend, and a good 
control design can be proposed only based on the effective trade-offs in terms of 
stability/robustness, stability/performance, performance/energy-saving, and so on. 

5.1.3 OGY Method and Its Generalization 

The OGY method is based on the geometrical structure of chaotic attractors. The 
control goal must be one of the infinitely many unstable periodic orbits embedded 
in the chaotic attractor. The unstable periodic orbit is stabilized via the linear 
feedback control. To highlight the essence of the method, only the stabilization of 
a fixed point is addressed. 

Consider a 2-dimensional map with an adjustable parameter as the control input 

 2
1 ( , ) ( )i i i iu R+ = ∈z M z z  (5.1.6) 

If no control is applied, e.g. ui=0, map (5.1.6) has a chaotic attractor in which a 
unstable fixed point is located that needs to be stabilized 

 F F( ,0)=z M z  (5.1.7) 

Local linearization of Eq. (5.1.6) in the neighborhood of (zF, 0) yields 

 1 F F( )i i iu
u+

∂− = − +
∂z
Mz z M z zD  (5.1.8) 

where the 2× 2 Jacobian matrix DzM and 2-dimensional vector ∂M/∂u are both 
calculated at (zF,0). Assume that the eigenvalues λs and λu of DzM satisfy |λs |<1 
and |λu |>1. Then the eigenvectors es and eu corresponding to λs and λu determine 
the stable and unstable directions in the small neighborhood of (zF, 0). Denote the 
contravariant eigenvectors of es and eu as fs and fu such that 

 T T T T
s s u u s u u s1 , 0⋅ = ⋅ = ⋅ = ⋅ =f e f e f e f e  (5.1.9) 

then 

 T T
s s s u u uλ λ= +z M e f e fD  (5.1.10) 
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Therefore, if the control law is designed as  

 u
u F

u

( )i iu
λ

= − ⋅ −
∂⋅
∂

f z zMf
u

 (5.1.11) 

then Eqs. (5.1.8), (5.1.9), (5.1.10), and (5.1.11) lead to 

 u 1 F( ) 0i+⋅ − =f z z  (5.1.12) 

Equation (5.1.12) implies that the control law (5.1.11) moves z i+1 into the stable 
direction of zF. Hereafter, the control is unnecessary until z i+1 drifts away from 
the stable direction. In that case, the control law should be actuated again. This 
original idea was proposed by Ott, Grebogi and Yorke in 1990. Hence it is called 
the Ott-Grebogi-Yorke method or OGY method. 

The above idea can be extended to higher-dimensional maps [3]. Consider an 
n-dimensional map with a controllable parameter 

 1 ( , ) ( )n
i i i nu R+ = ∈z M z x  (5.1.13) 

If ui = 0, a fixed point 

 F F( ,0)=z M z  (5.1.14) 

embedded in the chaotic attractor is the control goal. Local linearization of Eq. 
(5.1.13) in the neighborhood of (zF, 0) gives 

 1 F F( )i i iu+ − = − +z z A z z B  (5.1.15) 

where both the n× n Jacobian matrix A = DxM(x,u) and n× 1 Jacobian matrix 
B = DuM(x,u) are calculated at (x,u) = (xF,0). To stabilize xF, let us introduce a 
linear feedback control law 

 T
F( )i iu = −k z z  (5.1.16) 

where kT is the transpose of n×1 matrix k to be determined later. Substitution of 
Eq. (5.1.6) into Eq. (5.1.15) leads to 

 T
1 F F( )( )i i+ − = + −z z A Bk z z  (5.1.17) 

which implies that the fixed point xF is stable on the condition that all eigenvalues 
of the n× n matrix A + BkT have modulus smaller than 1. The solution to the 
problem of the determination of k for given A and B such that the eigenvalues of 
the matrix A + BkT have specified values is well known in system theory. The 
eigenvalues of the matrix A + BkT are called the regulator poles, and the problem 
is called the pole placement problem. There is a standard algorithm, Ackermann’s 
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method [4]. Obviously, the choices of poles are not unique. A natural and effective 
choice is setting ns of these poles equal to the eigenvalues of A with modulus 
smaller than 1 and the remaining n − ns poles to zero. Under this circumstance, 
the control law (5.1.16) makes zi+1 into the local stable manifold of zF. 

The method is proposed for maps, but it can also be applied to systems governed 
by differential equations via the Poincaré map. In the method, the control goal 
must be an unstable periodic orbit embedded in the chaotic attractor, and thus the 
method only solves the stabilization of chaos. The control energy needed is 
reasonably small, as the intrinsic stable directions are used. Because the method 
is based on the local linearization, the control law can be actuated only if the 
chaotic trajectory is sufficiently close to the goal. In the absence of noise, the 
control input can be arbitrarily small, while it needs a long time to wait for the 
chaotic trajectory to enter a very small neighborhood of the goal. To increase the 
effectiveness of the method, direction of chaos can be performed to target the 
chaotic trajectory to the desired neighborhood of the goal. 

5.1.4 Synchronization: Chaos Control in a Broader Sense  

In a broader sense, chaos control is a process or a mechanism that suppresses 
existing chaotic motion when it is harmful, as well as creates chaotic motion or 
enhances chaotic motion when it is beneficial or useful. Making an original regular 
motion chaotic is referred as anticontrol of chaos or chaotification. Therefore, 
chaos control concerns two systems, which may be identical, one to be controlled 
and the other to be achieved. In this view, chaos control may be regarded as a 
special case of system synchronization.  

Synchronization literally means correlated time-dependent behavior between 
different processes that interact with each other in one way or another. The relevant 
research on synchronization can be dated back to Huygens who investigated 
frequency locking between two clocks, which is perhaps first nonlinear phenomenon 
observed. Synchronization has become an active research topic in nonlinear 
dynamics since the early 1990s when researchers realized that chaotic systems 
can be synchronized and recognized its potential for communications [5]. A 
unifying definition of synchronization is proposed for systems with control inputs 
as follows [6]. 

Consider two finite dimensional systems governed by the ordinary differential 
equations 

 1 2( , , , ) ( 1,2)i i t i= =x f x x u�  (5.1.18) 

with the observable output functions 

 1 2( , , , ) ( 1,2)i i t i= =y h x x u  (5.1.19) 
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where t is the time variable, xi∈Rmi is the state variables, u∈Rn is the control 
input, and yi∈Rl are the output variables. If there exists the control law 

 1 2( , , )t=u g x x  (5.1.20) 

such that, within the measuring precision, 

 1 2( ) ( )t t=y y  (5.1.21) 

for all t> t0 (a given time instant), there is synchronization at beginning time t0 
between the two systems (5.1.18) with respect to the output functions (5.1.19). 

In the above-mentioned definition, no details of initial conditions are involved. 
Actually, initial conditions are crucial in nonlinear systems, especially chaotic 
systems. Synchronization with respect to initial conditions can be divided into 
two classes. Local synchronization holds only for trajectories starting in small 
neighborhoods of given initial states, while global synchronization holds for all 
trajectories. In fact, there is a special synchronization problem to identify chaotic 
behaviors of a dynamical system for different initial conditions, which may be 
regarded as the two dynamical systems defined here being identical. 

According to the definition presented here, both widely studied control of chaos 
and newly proposed anticontrol of chaos are essentially synchronization of 
dynamical systems. In fact, controlling chaos is the synchronization between a 
specific chaotic system to be controlled and a prescribed periodical system. The 
anti-control of chaos is the synchronization between a specific non-chaotic system 
and a chaotic system, usually not prescribed. 

5.2 The Parametric Open-plus-closed-loop Method 

5.2.1 Introduction 

In 1990, Jackson advanced the entrainment control [7], which is the development 
of the resonant control [8] presented by Hübler and Lüscher in 1989, one of the 
earliest methods of controlling chaos. Its essence is to design an external 
excitation based on the control goal, as the open-loop control, so that the control 
goal is a particular solution of the controlled system. To ensure the stability of a 
particular solution, it is required that the control goal be in suitable regions of the 
state space (called convergent regions) and there be suitable initial conditions 
(called the basin of entrainment) when the control is activated [9, 10]. The 
entrainment control established by Jackson is suitable for the systems with 
additive controllable parameters. Extension of its idea to the systems without 
additive controllable parameters forms the parametric entrainment control [11]. 
Both the entrainment control and the parametric entrainment control have two 
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restrictions. The system must be dissipative, because the convergent region exists 
only in this case. The unstable periodic orbits of the uncontrolled system cannot 
be the goal of the control, that is, the methods cannot be applied to solve the 
problems of stabilization. In addition, the convergent regions and the basin of 
entrainment are difficult to determine in practical applications. 

In 1995, Jackson and Grosu advanced an open-plus-closed-loop control based 
on the entrainment control [12]. For systems with additive controllable parameters, 
introducing a closed-loop part into the entrainment control law remedies its defects, 
and may be implemented in experiments [13]. In fact, the basin of entrainment in 
the open-plus-closed-loop control for all classic chaotic systems is infinitely 
large [12]. The authors modified the approach to control nonlinear oscillators 
governed by non-autonomous second-order ordinary differential equations [14]. 
For systems without additive controllable parameters, the authors developed a 
parametric open-plus-closed-loop control [15], which will be presented in this 
section. The necessary inputs of the control and the robustness of the control will 
be discussed in numerical examples. The final subsection will clarify the relations 
among the entrainment control, the parametric entrainment control, the open- 
plus-close-loop control, and the parametric open-plus-closed-loop control, as well 
as the differences between the controls of an oscillator and a general dynamical 
system. 

5.2.2 The Control Law 

Consider a controllable inertial uncoupling nonlinear oscillation system with n 
degrees-of-freedom 

 ( , , , )t=q f q q u�� �  (5.2.1) 

where n dimensional vectors q, q�  and q��  are the generalized coordinate, velocity 
and acceleration, respectively, n dimensional vector u is a control parameter, and 
t is the time variable. Assume that the system displays chaotic motion when no 
control is applied (u = 0). Give a periodic control goal qg(t). The local linearization 
of Eq. (5.2.1) in the neighborhood of g g( , , , )tq q� 0  leads to 

 g g g g( , , , ) ( ) ( )t= + − + − + ⋅q q uq f q q f q q f q q f u��� � � �D D D0  (5.2.2) 

where the Jacobians 

 , ,i i i

j j jn n n n n n

f f f
u q q

× × ×


 � 
 � 
 �∂ ∂ ∂
= = =�  �  � 

∂ ∂ ∂�  �  � � � � � � �
u q qf f f�D D D  (5.2.3) 

are evaluated at g g( , , , )tq q� 0 . Assume Duf  be an inevitable matrix. Let 
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 1
g g g g g( ) ( , , , ) ( )( ) ( )( )t− 
 �= − + − − + − −� �u q qu f q f q q f A q q f B q q��� � � �D D D0   

    (5.2.4) 

where the n× n matrices of both Α and Β are diagonal 

 1 2 1 2diag[ , , , ], diag[ , , , ]n nα α α β β β= =A B� �  (5.2.5) 

with the undetermined elements αi and βj (i, j =1,2, ,n). Substitution of Eq. (5.2.4) 
into Eq. (5.2.5) yields 

 g g g( ) ( ) ( ) 0− + − + − =q q A q q B q q�� �� � �  (5.2.6) 

Hence coefficients αi and βj (i, j =1,2, ,n) can be determined by a normal design 
principle, such as pole placement, linear-quadratic optimal regulator, or robust 
service regulator, so that the differential equations  

 0 ( 1,2, , )i i i i iy y y i nα β+ + = =�� � �  (5.2.7) 

have asymptotically stable zero solutions. 
Notice that the control input determined by Eq. (5.2.4) is composed of two 

parts. The open-loop part without feedback is 

 1
o g g g( ) ( , , , )t− 
 �= −� �uu f q f q q�� �D 0  (5.2.8) 

and the closed-loop part with feedback is 

 1
c g g( ) ( )( ) ( ) ( )− 
 �= − − + − −� �u q qu f f A q q f B q q� � �D D D  (5.2.9) 

Besides, the system in (5.2.1) is not required to have additive controllable 
parameters. Therefore Eq. (5.2.4) gives a parametric open-plus-closed-loop 
control law. 

Suppose to start control when t = t1. To make Eq. (5.2.1) approximate Eq. 
(5.2.2) sufficiently well, the control should be actuated in a small neighborhood 
of g g( , , , )tq q� 0 . Hence the parametric open-plus-closed-loop control law takes the 
form 

1
1 g g g g g

g g

( ) ( ) ( | | | |) ( , , , )

( ) ( ) ( ) ( )

S t t S tε− 
= − − − − − −�
�+ − − + − − �

u

q q

u f q q q q q f q q

f A q q f B q q�

� � �� �

� �

D

D D

0
 (5.2.10) 

where ε is a small positive real number, and the switch function is defined by 

 
0 0

( )
1 0

z
S z

z
�

= � >�
 (5.2.11) 

In this chapter, only the nonlinear oscillator with one degree-of-freedom will 
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be treated. For such an oscillator 

 ( , , , )q f q q u t=�� �  (5.2.12) 

where q, q�  and q�� are the generalized coordinate, generalized velocity and 
generalized acceleration, respectively, u is a control parameter, and t is the time 
variable. For a given control goal qg, the parametric open-plus-closed-loop control 
law starting at t = t1 is designed as 

 
1 g g g g g

g g

1 ( ) ( | | | |) ( , ,0, )

( ) ( ) ( ) ( )
u

q q

u S t t S q q q q q f q q t
f

f q q f q q

ε

α β


= − − − − − −�′

′ ′ �+ + − + + − ��

� � �� �

� �
 (5.2.13) 

where α and β can be determined via placing the poles of equation 

 ( ) ( ) ( ) 0g g gq q q q q qα β− + − + − =�� �� � �  (5.2.14) 

such that the solution asymptotically tends to zero.  

5.2.3 Numerical Examples 

The forced Duffing oscillator with a controllable parameter 

 30.2 (1 ) 0.3cosq q u q q t= − + + − +�� �  (5.2.15) 

is treated as an example to demonstrate the application of the parametric open-plus- 
closed-loop control. Chaotic behavior appears without control. The control goals 
successively are an equilibrium point and a period 2 motion 

 g ( ) 1q t =  (5.2.16) 

 g ( ) 0.5 0.4sin 0.5q t t= +  (5.2.17) 

The control goals (5.2.16) and (5.2.17) satisfy 0uf ′ ≠  evaluated at g g( , ,0, )q q t� . 
Let ε = 1.0, and the control is started after t1 = 40.0. 

The coefficients α and β are determined by the pole assignment. The roots of 
the characteristic polynomial associated with the closed-loop system 

 2 0r rα β+ + =  (5.2.18) 

should have negative real parts. Hence choose α = 2.8 and β = 4.0. 
The control can be implemented via the classical nonlinear system approaches, 

such as input-output linearization. The results for two goals are shown in Figs. 5.1 
and 5.2, respectively. The solid lines denote the time histories of the system subjected 
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to the parametric open-plus-closed-loop control law (5.2.13). The dashed lines 
denote the time histories of the system subjected to the input-output linearization 
control law. The dot lines denote the time histories of the uncontrolled system. In 
this example, the parametric open-plus-closed-loop control has a slightly longer 
time transition to achieve the goals than that of the input-output linearization 
control. 

 
Figure 5.1 Controlling chaos to the equilibrium point 

 
Figure 5.2 Controlling chaos to the period motion 

The control inputs u = u(t) for two goals are shown in Figs. 5.3 and 5.4. 
respectively. The solid lines denote the control signals given by Eq. (5.2.13), and 
the dashed lines denote the control signals given by the input-output linearization 
control. For both goals, a great pulse input is needed to activate the input-output 
linearization control. Since the parametric open-plus-closed-loop control starts  
just when the chaotic phase trajectory is closed to the goal periodic orbit, only a 
small pulse input is needed. Directly applying the input-output linearization control 
in the neighborhood of the goal gives the same results, but the nonlinear control 
law is not necessary in this case. In most practical circumstances, linear control 
laws are easy to implement. 
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Figure 5.3 Control inputs for the equilibrium point 

 
Figure 5.4 Control inputs for the period motion 

The following example focuses on the robustness. Although the parametric 
open-plus-closed-loop control law (5.2.13) is model-based, the following example 
indicates that it is robust to model errors. Let us consider the forced oscillator with 
an additive controllable parameter 

 2 30.2 0.05 0.3cosq q q q q t uω= − + − − + +�� �  (5.2.19) 

Chaos occurs in it if u = 0. The control goals successively are an equilibrium 
point and a period 2 motion 

 g ( ) 0q t =  (5.2.20) 

 g ( ) sin 0.5q t t=  (5.2.21) 

Suppose that the real model governed by Eq. (5.2.19) is unknown, and the 
control law is designed based on the approximate model 

 30.2 1.1 0.3cosq q q q t uω= − + − + +�� �  (5.2.22)  

There exist both a structural error (no q2 term) and a parametric error. Let ε = 1.0. 
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Choose α = 2.8 and β = 4.0. Start control after t1 = 40.0. 
The results for both goals are shown in Figs. 5.5 and 5.6, respectively. The solid 

lines denote the time histories of the controlled system, and the dot lines denote 
the time histories of the uncontrolled system. The control error is defined as the 
difference between the system output and the desired goal. As shown in Figs. 5.7  

 
Figure 5.5 Control of chaos to the equilibrium point 

 
Figure 5.6 Control error to the equilibrium point 

 
Figure 5.7 Control of chaos to the periodic motion 
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and 5.8, the control errors are small. Therefore the real system governed by Eq. 
(5.2.19) may be controlled sufficiently well by the control law (5.2.13) designed 
based on the model system represented by Eq. (5.2.20) if the model error is small 
enough. 

 
Figure 5.8 Control error to the periodic motion 

5.2.4 Discussions 

The parametric open-plus-closed-loop control law can also proposed for a general 
dynamical system (5.1.1) as 

 1
g g( ) [ ( , , ) ( ( ))( )]t t−= − + − −u xu f x f x f B x xD D0  (5.2.23) 

where xg is the control goal and the matrix function B(t) provides the solution to 

 ( )+ =y B y� t 0  (5.2.24) 

asymptotically tending to zero. In practical designs, B(t) can be chosen as a 
constant matrix whose all eigenvalues have negative real parts. 

For a system with an additive control input 

 ( , )t= +x f x u�  (5.2.25) 

Duf is the unit matrix. Thus Eq. (5.2.23) leads to the open-closed-loop control law. 
If one lets 

 ( )t = xB fD  (5.2.26) 

then Eqs. (5.2.23) and (5.2.25) yield respectively the parametric entrainment 
control law and the entrainment control law.  

The control law (5.2.23) can be employed to control nonlinear oscillators governed 
by non-autonomous second-order ordinary differential equations. Nevertheless 
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the number of control inputs required by the open-plus-closed-loop control for 
general dynamical systems defined by Eq. (5.2.25) is equal to the dimension of 
state spaces. Consider a nonlinear oscillator with one degree-of-freedom, 2 
control inputs are needed. The controlled system should take the form 

 1 2 1 2

2 1 2 1 2

( , , )
( , , ) ( , , )

x x v x x t
x f x x t u x x t

= +
= +

�
�

 (5.2.27) 

where x1 and x2 are state variables, and u and v are controllable inputs. In some 
practical circumstances, there may be no such controllable inputs available. Section 
5.2.2 developed a control approach that requires only one control parameter. The 
controlled system should take the form 

 1 2

2 1 2 1 2( , , ) ( , , )
x x
x f x x t u x x t

=
= +

�
�

 (5.2.28) 

or more general 

 1 2

2 1 2 1 2( , , ( , , ), )
x x
x f x x u x x t t

=
=

�
�

 (5.2.29) 

5.3 The Stability Criterion Method 

5.3.1 Introduction 

This section presents a method for controlling chaos in the form of special 
nonlinear feedback proposed by Yu, Liu and Peng [16]. The method is inspired 
by Pyragas’s continuous linear feedback control method [17] and Ushio’s 
contraction mapping control method of discrete systems [18]. The validity of the 
method is based on the stability criterion of linear system, and it can be called 
the stability criterion method. The construction of a special form of a time- 
continuous perturbation feedback in the stability criterion method does not change 
the form of the desired unstable periodic orbit. The close return pairs technique 
[19] is utilized to estimate a desired periodic orbit chosen from numerous unstable 
periodic orbits embedded within a chaotic attractor. This method does not require 
linearization of the system around the stabilized orbit and calculation of the 
derivative at unstable periodic orbits. As examples of numerical simulations, the 
control of the Rössler system and the control of two coupled Duffing oscillators 
are investigated. The complexity of the experimental realization of the stability 
criterion method is mainly to input the desired unstable periodic orbits. Besides, the 
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method relies on the explicit knowledge of the mathematical model of the system. 
In this section, the stability criterion method is proposed only for the stabilization 

problem, while the idea can be employed to solve the tracking problem. The idea 
was also implemented in the synchronization of chaos [20]. 

5.3.2 The Control Law 

Consider a system with an additive control input defined by Eq. (5.2.25). The 
system without control (u = 0) has a chaotic attractor. Decompose the vector 
function f(x,t) into a suitably chosen linear part and the other nonlinear part 

 ( , ) ( , )t t= +f x Ax h x  (5.3.1) 

where A is a constant matrix whose all eigenvalues have negative real parts and 
h(x,t) is a nonlinear function. Let the control goal xg(t) be an unstable periodic 
orbit embedded within the chaotic attractor. Then 

 g g g( , )t= +x Ax h x�  (5.3.2) 

Design the control input as 

 g( , ) ( , )t t= −u h x h x  (5.3.3) 

Substitution of Eq. (5.3.1) into Eq. (5.3.3) leads to the nonlinear feedback control 
law 

 g g( ) ( , ) ( , )t t= − + −u A x x f x f x  (5.3.4) 

Equations (5.2.25), (5.3.1), (5.3.2) and (5.3.3) yield the governing equation of the 
controlled system 

 g g( )− = −x x A x x� �  (5.3.5) 

Because all eigenvalues of matrix A have negative real parts, the stability criterion 
of linear systems guarantees the zero solution of the following equation 

 =y Ay�  (5.3.6) 

is asymptotically stable. Therefore the controlled trajectory x(t) tends asymptotically 
to the goal xg(t). It implies that the unstable periodic orbit is stabilized. Note that 
the control input u(t) becomes zero after the state when the controlled system 
converges to the unstable periodic orbits. 

Some very complicated periodically driven dynamical systems along with the 
stabilized unstable periodic orbit can have alternative stable solutions belonging 
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to different basins of initial conditions. Besides, large initial values of the control 
input can be also undesired for some experiments. Such problems can be solved 
by restriction of the control input. Therefore the stabilization is achieved by small 
input values if Eq. (5.3.4) is modified as follows 

 g g g( ) ( , ) ( , ) if | |
otherwise

t t ε− + − − <�
= �

�

A x x f x f x x x
u

0
  

where ε >0 is a restriction value of error within which u ≠ 0. The control input 
has a simple form as shown in Eq. (5.3.7). It is unnecessary to calculate any 
derivatives at the unstable periodic orbit of the uncontrolled system, while some 
Jacobian matrixes are required in the open-plus-closed-loop control.  

In order to obtain the necessary information on an appropriate location of a 
desired periodic orbit xg(t), the strategy of the close return pairs described in 
[21, 22] is utilized. A time series of the chaotic trajectory generated by the system 
(5.2.25) is stroboscopically sampled in every period T when u = 0. The data 
sampling can be used to detect the close return pairs, which consist of two 
successive points near each other, and indicate the existence of a periodic orbit 
nearby. Because of the ergodic character of orbits on a chaotic attractor, many 
such pairs can be obtained if the data string is long enough. Suppose that 1

ix  and 
2
ix  are used to denote the first point and its successive point of the i-th collected 

return pair, i = 1,2,� , M, respectively, where M is the maximum number of 
collected return pairs. When the first close return pair has been detected within a 
predesignated region, let us take the first point 1

1x  of this pair as a reference point. 
Then a number of close return pairs near the reference point is 

 1 1 2 2
1 1 1 2| | , | | ( 1,2, , )i i i Mε ε− − =x x x x �  (5.3.7) 

The mean value  

 1 2
g

1

1 ( )
2

M

i i
iM =

= +	x x x  (5.3.8) 

can be regarded as an approximate fixed point. This fixed point can be used to 
define a restriction condition in Eq. (5.3.5). 

5.3.3 Numerical Examples 

The first numerical example is the Rössler system with control inputs as 

 1 2 3 1 2 1 2 2 3 3 1 3, 0.2 , 0.2 ( 5.7)x x x u x x x u x x x u= − − + = + + = − +� � �  (5.3.9) 

The nonlinear vector function 
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2 3

1 2

3 1

( , ) 0.2
0.2 ( 5.7)

x x
t x x

x x

− −� �
� �= +� �
� �−� �

f x  (5.3.10) 

can be cast into Eq. (5.3.1) with 

 2

1 3

0 1 1 0
1 0 , ( , ) ( 0.2)
0 0 5.7 0.2

t x
x x

β β
− − � �� �

� �� �= − = +� �� �
� � � �−� � � �

A h x  (5.3.11) 

where β is a constant that will be determined to satisfy the stability criterion of 
the linear system. The eigenvalues of matrix A are 

 2
1 2,35.7 , 0.5( 4)r r β β= − = − −�  (5.3.12) 

Thus all eigenvalues of matrix A have negative real parts if and only if β >0. 
Equation (5.3.7) yields the following control input to stabilize the goal xg(t) 

 2 g 2 g

1 3 g1 g3

0
( 0.2)( ) if | |

otherwise

x x
x x x x

β ε
�� �
�� �− + − − <�� �= �� �− +�� �
�
�

x x
u

0

  (5.3.13) 

where β >0. 
The results of the stabilization of a period-3 motion of the Rössler system are 

illustrated in Figs. 5.9, 5.10, and 5.11 for β = 1, ε = 2, and T = 17.5. The constant 
β cannot be very large. For example, if β >11.1, an unsuccessful control process 
results from the large control input u2. The problem can be solved by restriction 
of control inputs. Fix a saturating value U0>0 for the control input, and let u2 = U0 
if u2 U0 and u2 = −U0 if u2 −U0. Figures 5.12 and 5.13 show the results of 
stabilization of period-3 unstable periodic orbit within the Rössler attractor at  

 
Figure 5.9 Control input u2 to stabilize a period-3 motion 
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Figure 5.10 Time history of controlled state variable x1 

 
Figure 5.11 (x1, x3) phase portrait of the period-3 motion 

 
Figure 5.12 Control input with the restriction 

β = 13, ε = 2, and U0 = 0.08. 
Next numerical example is a 4-dimensional nonautonomous system consisting 

of two coupled Duffing oscillators 

 3 3
1 1 1 2 2 2 2 1cos ,q aq q q b t q cq q q+ + = + + + =�� � �� �  (5.3.14) 

The first oscillator is driven by an external periodic force, and two oscillators interact  
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Figure 5.13 Process of stabilization of a prriod-3 motion: component x1 

with each other by q1 and q2. When the parameters are fixed at a = 0.2, b = 10.0, 
and c = 0.45, the chaotic behavior occurs in the system. Equation (5.3.14) can be 
rewritten in the form of Eq. (5.2.25) after introducing the additive control inputs 
and letting  
 1 1 1 2 2 3 2 4, , ,q x q x q x q x= = = =� �  (5.3.15) 

Then the right hand nonlinear vector function is 

 

2
3

2 1 3

4
3

1 4 3

cos
( , )

x
ax x x b t

t
x

x cx x

� �
� �− − + +� �=
� �
� �

− −� �

f x  (5.3.16) 

The vector function f (x,t) can be decomposed into Eq. (5.3.1) where 

 

1
3
1

4
3

1 3

1 1 0 0
cos0 1 0

, ( , )
0 0 1 1
0 0 0

x
x b ta

t
x

x xc

− � �� �
� �� � − +− � �� �= =
� �� �−
� �� � −−� � � �

A h x  (5.3.17) 

the matric A has negative real eigenvalues −1, −a, −1, and −c. Hence it satisfies 
the stability condition of linear systems. Equation (5.3.7) yields the following control 
input to stabilize the goal xg(t) 

 

1 g1
3 3
1 g1

g
4 g 4
3 3

1 3 g1 g3

if | |

otherwise

x x
x x
x x

x x x x

ε

� − +� �
�� �−�� � − <�� �− += �� ��� �− + + −� ��
��

x x
u

0

 (5.3.18) 
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Figures 5.14-5.16 show a chaotic trajectory in 2-dimentional subspaces (x1, x2), 
(x3, x4), and (x1, x3) respectively. The results of stabilization of the unstable 
period-1 orbit embedded in the chaotic attractor are shown in Figs. 5.17-5.19 in 
2-dimentional subspaces (x1, x2), (x3, x4), and (x1, x3).  

 
Figure 5.14 Uncontrolled chaos: subspaces (x1, x2) 

 
Figure 5.15 Uncontrolled chaos: subspaces (x3, x4) 

 
Figure 5.16 Uncontrolled chaos: subspaces (x1, x3) 
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Figure 5.17 Stabilization of the period-1 motion: subspaces (x1, x2) 

 
Figure 5.18 Stabilization of the period-1 motion: subspaces (x3, x4) 

 
Figure 5.19 Stabilization of the period-1 motion: subspaces (x1, x3) 
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5.4 Controlling Chaotic Attitude Motions 

5.4.1 Introduction 

As many different control techniques are developed or employed for chaotic systems, 
control of chaotic attitude motion emerges as a new research direction of spacecraft 
attitude dynamics. Several investigators worked on the topic, and their contributions 
will be summarized as follows. 

Dracopoulos and Jones used neural networks for modeling and genetic algorithms 
for control to develop a hybrid method of adaptive control [23, 24], and applied the 
method to control chaotic attitude motion of a rigid body spacecraft [25]. Ge, Lee, 
Chen, and Lee applied the continuous delayed feedback control [50] and an 
adaptive control [51] to regularize chaotic attitude motion of a damped satellite 
with partially-filled liquid [49]. Meehan and Asokanthan employed a recursive 
proportional feedback method [27], which is a variety of the OGY method [1], 
and the continuous delayed feedback method [17] to control chaotic attitude 
motion of a spinning spacecraft with a circumferential nutational damper [28]. 
Iñarrea, Lanchares, and Salas used a spinning rotor about one of the principal 
axes of inertia to stabilize chaotic attitude motion of a dual-spin spacecraft with 
time dependent moments of inertia [29]. Chen and Liu developed a parametric 
open-plus-closed-loop approach to control chaotic planar libration of a rigid body 
spacecraft in an elliptic orbit in the gravitational field with air drag and internal 
damping [30]. Chen and Liu revisited the problem in [31] via a modified inversion 
system control [30] and the input-output feedback linearization [32]. Fujii, Ichiki, 
Suda, and Watanabe applied the continuous delayed feedback method [17] to 
control chaotic planar libration of a rigid body spacecraft in an elliptic orbit in 
the gravitational field [33]. Tsui and Jones examined three techniques, the 
continuous delayed feedback method [17], a parametric control method using an 
artificial neural network [34], and a higher dimensional variation of the OGY 
method [35] in a six-dimensional system describing a rigid body spacecraft 
subjected to external perturbations, and found that the delayed feedback method 
yields the most satisfactory solution to control chaos [36]. Bernhard and Hans 
proposed a strategy for the deployment of a tethered satellite in a circular orbit by 
gravity gradient and used the chaos to fasten the process to the desired stable 
radial relative equilibrium [37]. Meehan and Asokanthan applied a recursive 
proportional feedback method [27] and the continuous delayed feedback method 
[17] to control chaotic attitude motion of a dual-spin spacecraft with a nutational 
damper [38]. They revisited the problem in [38] via a conventional energy 
method by minimizing the kinetic energy components associated with nutational 
motion that occurs during chaotic instability [39]. They also applied Lyapunov’s 
direct method to design globally stable nonlinear control law for chaotic attitude 
motion of a spinning spacecraft with dissipation [40]. Chen and Liu modified the 
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exact feedback linearization method [41] to control chaotic attitude motion of a 
magnetic rigid spacecraft in a circular orbit [47] and in an elliptic orbit [48] in the 
gravitational and magnetic fields. Kojima, Iwasaki, Fujii, Blanksby and Trivailo 
proposed a decoupling and model tracking control method, combined with the 
delayed feedback control method, for chaotic librational motion of the tethered 
satellite in an elliptic orbit, with the periodic motion of a tethered satellite in a 
circular orbit as the reference trajectory for tracking [42]. Liu and his coworkers 
applied stability criterion method to control chaotic attitude motion of magnetic 
rigid spacecraft in a circular orbit [43, 44]. Barkow, Steindl and Troger utilized 
chaotic dynamics of a tethered satellite system to steer the subsatellite with small 
control inputs into the final radial relative equilibrium position far away from the 
spaceship [45]. Kuang, Meehan, and Leung designed a linear feedback control 
law based on the Lyapunov-Krasovskii method for nonlinear systems with singular 
Jacobian matrixes and applied the control law to chaotic behavior of a disturbed 
gyrostat [46]. 

This section will treat controlling chaotic attitude motion of magnetic rigid 
spacecraft in an elliptic orbit in the gravitational and geomagnetic field. Based on 
the governing equation of controlled spacecraft, the parametric open-plus-closed- 
loop method and the stability criterion method will respectively apply to control 
chaos to a given fixed point or periodic motion and to stabilize chaos to a periodic 
motion. 

5.4.2 Dynamical Model of Controlled Spacecraft 

Consider a magnetic rigid spacecraft moving in an elliptic orbit in the gravitational 
and magnetic field of the Earth. The chaotic attitude motion was treated in 
Section 3.3.2. However, the spacecraft here has an actuator that can provide the 
control torque Mc. Then Eq. (3.3.2) becomes 

 g m d c= + + +G M M M M�  (5.4.1) 

With the same notations and in a similar way, the dimensionless governing equation 
of controlled spacecraft can be derived from the projection of Eq. (5.4.1) as 

 
2

4

2 sin sin 2(1 )
1 cos 1 cos (1 cos )

cos( ) 3cos( )
1 cos (1 cos )

e
e e e

u
e e

ν κ ϕ γϕ ϕ ϕ
ν ν ν

ϕ ν ω ϕ ν ωα
ν ν

− + + +
+ + +

+ + − − −− =
+ +
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 (5.4.2) 

where 
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5.4.3 Applications of the Parametric Open-plus-closed-loop Method 

Equation (5.4.2) can be cast into the form of Eq. (5.2.12) with  

2

4

2 sin sin 2( , , , ) (1 )
1 cos 1 cos (1 cos )

cos( ) 3cos( )
1 cos (1 cos )

ef u
e e e

u
e e

ν κ ϕ γϕ ϕ υ ϕ ϕ
ν ν ν
ϕ ν ω ϕ ν ωα

ν ν

= + − −
+ + +

+ + − − −+ +
+ +

� � �
 (5.4.3) 

It follows that 
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1 cos (1 cos )

2 cos 2 sin( ) 3sin( )
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e
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ν γ
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+ + − − −′ = − −
+ +

′ =
+

�

 (5.4.4) 

Substitution of Eqs. (5.4.3) and (5.4.4) into Eq. (5.2.13) yields the parametric 
open-plus-closed-loop control law for the spacecraft. 

For the chaotic motions in Eq. (3.4.3) with the parameters given by Eqs. (3.4.16) 
and (3.4.17), respectively, the control goals successively are taken as a fixed 
point 

 g1( ) 0ϕ ν =  (5.4.5) 

and a period-2 motion 

 g 2 ( ) sin 0.5ϕ ν ν=  (5.4.6) 

Start control after ν0 = 1300. Let ε = 1.0, and choose α = 2.8 and β = 4.0 in Eq. 
(5.2.14). The results for two goals are shown in Figs. 5.20 and 5.21, respectively. 
The solid lines stand for the libration angle subjected to the parametric 
open-plus-closed-loop control law (5.2.13). The dashed lines stand for the libration 
angle subjected to the input-output linearization control law [31]. The dot lines 
denote the libration angle of the uncontrolled system. In this example, the 
parametric open-plus-closed-loop control has a slightly longer transition process 
to achieve the goals. 

The control signals u = u (ν) for ϕg1 and ϕg2 are respectively shown in Figs. 5.22 
and 5.23. The solid lines stand for the control inputs given by Eq. (5.2.13), and 
the dashed lines stand for the control inputs of the input-output linearization 
control law. For both the goal ϕg1 and ϕg2, a great pulse input is needed to activate 
the input-out linearization control. Since the parametric open-plus-closed-loop 
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control begins just when the chaotic phase trajectory is close to the goal periodic 
orbit, only a small pulse signal is necessary. 

 
Figure 5.20 Control of chaos to the fixed point 

 
Figure 5.21 Control of chaos to the period-2 motion 

 
Figure 5.22 Control input for the fixed point 
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Figure 5.23 Control input for the period-2 motion 

5.4.4 Applications of the Stability Criterion Method 

Equation (5.4.2) can be rewritten in the form of Eq. (5.2.25) by introducing 
x1 = ϕ and x2 = dϕ /dν, 

 1 1 1 2 1

2 2 1 2 2

( , , )
( , , )

x f x x u
x f x x u

ν
ν

= +
= +

�
�

 (5.4.7) 

where 
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e e e

e
uu

e
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ν

ν

=

= + − −
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+ + − − −+
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=
+

� �

 (5.4.8) 

and u1 is an additional control input.  
The nonlinear vector function 

 2

2 1 2

( , )
( , , )

x
f x x

ν
ν

� �
= � �
� �

f x  (5.4.9) 

can be cast into Eq. (5.3.1) with 

 1

2 1 2 2

0.50.5 1
, ( , )

( , , ) 0.50 0.5
x

t
f x x xν

− � �� �
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A h x  (5.4.10) 

where matrix A has double negative real eigenvalues –0.5 satisfying the stability 



Chaos in Attitude Dynamics of Spacecraft 

158 

condition of linear system (5.3.6). The stability criterion method control law to 
stabilize goal xg(t) is derived from Eq. (5.3.7) 

 
1 g1

g
2 1 2 2 2 g1 g 2 g 2

0.5 0.5
if | |

( , , ) 0.5 ( , , ) 0.5

otherwise

x x
f x x x f x x x

ε
ν ν

� − +� �
− <�� �− − + += �� �

�
�

x x
u

0

 

  (5.4.11) 
For uncontrolled case with parameters given by Eq. (3.4.18), the chaotic 

motion occurs. The stability criterion method will be applied to stabilize the 
chaotic motion onto the period-1 trajectory as a fixed point in the Poincaré map. 
The fixed point is approximately estimated at (0.50237, 0.74536)T. The results of 
stabilization of the unstable period-1 orbit with ε = 0.06 are shown in Fig. 5.24, 
where i is the step of data sampling and δ is the error between the presently sampled 
point and its previous point, namely,  

 | ( ) (( 1) ) |iT i Tδ = − −x x  (5.4.12) 

After a transient process, the system comes into periodic region at 31st sampled 
ν = 31T. The control input is maintained until ν = 81T and then it is turned off.  
The stabilization process of the period-1 trajectory is shown in Fig. 5.24(a). The  

 
Figure 5.24 Results of stabilization of the unstable period-1 orbit with ε = 0.06: 
(a) stabilization process of period-1 orbit, (b) the plot of lgδ versus i and (c) the 
period-1 orbit 
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error δ rapidly decreases with each step and eventually becomes less than 10– 6 
signifying that the period-1 orbit is automatically detected in the control process 
with increasing accuracy. The fast convergence property is shown in Fig. 5.24(b). 
The detected period-1 orbit is plotted in the phase plane as shown in Fig. 5.24(c), 
which is embedded within the chaotic attractor. 

The magnitude of control input u = |u| for stabilization of period-1 orbit is 
shown in Fig. 5.25. In the transient process, u is rather large in the case of ε = 1.5 
(Fig. 5.25(c)), and is sufficient small in the case of ε = 0.06 (Fig. 5.25(a)). The 
control is switched on only when the trajectory comes near the period-1 orbit at 
certain time, namely, when the condition of ε<0.06 is satisfied. 

 
Figure 5.25 The control input u (ν ), (a) ε = 0.06; (b) ε = 0.3 and (c) ε = 1.5 

The influence of restriction value ε on the convergence speed of the control 
process is illustrated in Fig. 5.26. The shortest control steps imin is defined as the 
step at which the error δ becomes 10–6. It is shown in Fig. 5.26 that, if ε is larger 
than 0.26, the convergence of control is quite fast (7< imin<10). The shortest control 
steps imin fluctuate between 6 and 65 for 0.04<ε<0.25. Hence, an appropriate 
value of ε can be chosen to suit different control requirements. 

The results of the flexible control of the chaos to unstable period-1 or period-2 
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orbits are shown in Fig. 5.27. The control is turned on at the 20th step after free 
running, and the chaos is stabilized on period-1 orbit. After the maintenance of 
the control for 50 steps, the orbit returns to chaos as the control is turned off. The 
control is turned on again to stabilize the period-2 orbit at the 100th step, and 
then lasts for 60 steps. 

 
Figure 5.26 Influence of ε on shortest control steps imin 

 
Figure 5.27 Flexible control of the chaotic attitude motion: (a) process of stabilization 
of period-1 and period-2 orbits, and (b) the plot of lgδ versus i 
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