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Abstract. Solving a system of multivariate polynomials over a finite
field is a promising problem in cryptography. Recently, Sakumoto et al.
proposed public-key identification schemes based on the quadratic ver-
sion of the problem, which is called the MQ problem. However, it is still
an open question whether or not it is able to build efficient constructions
of public-key identification based on multivariate polynomials of degree
greater than two. In this paper, we tackle the cubic case of this question
and construct public-key identification schemes based on the cubic ver-
sion of the problem, which is called the MC problem. The MQ problem
is a special case of the MC problem. Our schemes consist of a proto-
col which is zero-knowledge argument of knowledge for the MC problem
under the assumption of the existence of a non-interactive commitment
scheme. For a practical parameter choice, the efficiency of our scheme
is highly comparable to that of the schemes based on the M(Q problem.
Furthermore, the parallel version of our scheme also achieves the security
under active attack with some additional cost.

Keywords: public-key identification scheme, zero knowledge, MQ prob-
lem, MC problem.

1 Introduction

Diversity of underlying mathematical problems is important for cryptography.
Although the ones widely used today are factorization and a discrete logarithm
problem, there are other various problems which are used for cryptography.
Among them, a problem of solving a system of multivariate polynomials over
a finite field is a promising problem. In particular the quadratic case of the
problem is called the MQ problem. Even in the quadratic case, the associated
decision problem is known to be NP-complete |14, 23], and a random instance
of the problem is widely believed to be intractable. Naturally, the problem of
degree greater than two is expected to be equally or more intractable than the
quadratic one. The generic attacks on the MQ problem using Grobner basis are
known to have exponential complexity in time and space |3, [11], and there is no
known polynomial-time quantum algorithm to solve the MQ problem in contrast
to factorization or a discrete logarithm problem.
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Over the past few decades, many studies have been made on cryptographic
primitives based on multivariate polynomials. Most of them deal with quadratic
polynomials [5, 18, [19, 21), 26], and some of them deal with polynomials of
degree greater than two [6, 110, [12, 22, 132]. In symmetric cryptography, Berbain
et al. proposed QUAD, which is a stream cipher with provable security based
on the MQ problem [5]. In asymmetric cryptography, several public-key schemes
have been proposed, which are known as multivariate public-key cryptography
(MPKC) [18, 19, 21).

Recently, Sakumoto et al. proposed public-key identification schemes based
on the MQ problem [26]. A remarkable advantage of their schemes is that they
have provable security based on the conjectured intractability of the MQ problem
under the assumption of the existence of a non-interactive commitment scheme.
In fact, their schemes do not depend either on the Isomorphism of Polynomials
(IP) problem or on the Functional Decomposition (FD) problem, while the other
schemes in MPKC depend on the IP problem [18,[19, 21] or the FD problem [22].
Their new cut-and-choose techniques are specialized for the quadratic case and
are based on the bilinearity of the map (x,y) — Fa(x+y) — Fa(x) — Fa(y),
where Fy is a function consisting of multivariate polynomials of degree d. In
fact, their techniques do not work in the case of degree d > 2, because the map
(x,y) = Fgq(x +y) — Fa(x) — Fq(y) where d > 2 is not linear either in x or in
y. Thus it is an interesting question whether or not it is able to build efficient
constructions of public-key identification based on multivariate polynomials of
degree greater than two.

In this paper, we tackle the cubic case of this question and construct public-key
identification schemes based on the MC problem, which is a problem of solving
a system of multivariate cubic polynomials over a finite field. The MQ problem
is a special case of the MC problem, and we have less perspective on solving the
MC problem compared to the MQ problem even considering the state-of-the-art
algorithms [7, I8, [11]. Tt is important for higher security to be based on such a
more intractable problem even though the MQ problem is very hard. A function
consisting of multivariate cubic polynomials is also called an MC function.

We present two concrete protocols, a three-pass protocol and a five-pass one,
which are statistical zero-knowledge argument of knowledge for the MC problem.
Our schemes consisting of the protocol have provable security based on the con-
jectured intractability of the MC problem under the assumption of the existence
of a non-interactive commitment scheme. Concretely, the identification schemes
consisting of the sequential composition and the parallel composition of our pro-
tocol are secure against impersonation under active attack and under passive
attack, respectively. Moreover, the parallel version of our scheme is also secure
under active attack if its underlying MC function is substantially compressing
(e.g., mapping 160 bits to 80 bits). These levels of provable security are the same
as those of the identification schemes based on the MQ problem. Of course, our
schemes do not depend either on the IP problem or on the FD problem.

Efficiency of our five-pass protocol is highly comparable to that of the MQ-
based schemes for a practical parameter choice. The size of communication data
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in our five-pass protocol is 26,697 bits when the impersonation probability is less
than 273 while those in the three-pass protocol and in the five-pass protocol
of [26] are 29,640 bits and 26,565 bits, respectively. Our five-pass protocol also
has the small sizes of a public key and a secret key, 88 bits and 132 bits for
80-bit security, respectively. Although our schemes have the relatively large size
of the system parameter, it can be reduced to a small seed, e.g., 128 bits, by
employing a pseudo-random number generator. The technique is also used in the
implementation of QUAD [2]. We note that cubic systems with only 33 variables
and 22 equations over s achieve 80-bit security, while quadratic systems over
Fy4 require 45 variables and 30 equations. This evaluation is derived from the way
of 7] of selecting the minimum parameters for 80-bit security and contributes
to the efficiency of our five-pass scheme.

Techniques for our constructions. First, we briefly review the techniques for
the MQ-based construction. They employ the cut-and-choose approach, where
a prover first divides her secret into shares and then proves the correctness of
some shares depending on the choice of a verifier without revealing the secret
itself.

Let Fyg be a function (z1,...,2,) — (y1,...,Ym) where y; = Zi’j ap; ;T T; +
> biizi. The function Fyq is called an MQ function. The associated bilinear
form of Fyq is defined as Gug(x, X) = Fug(x+X) —Fug(x) —Fug(X). It is easy to see
the bilinearity of the function Gug(x, X), since it maps (1, ..., Zn, Z1,...,&n) —
(#1,...,2m) where z; = Z” ar;;(xi&; + Z;xj). Let s be a secret key and v =
Fuq(s) the corresponding public key. When the secret key is divided as s = ro+ry,
the public key v = Fyg(rg + r1) can be represented as v = Fyg(rg) + Fug(r1) +
Gug(rp,r1). This representation still contains the term Gyg(ro, r1) which depends
on both ro and r;. Then, the two vectors ro and Fyg(rg) are also divided as
ro = to + t1 and Fyg(rg) = ep + e1. Accordingly, the public key can also be
represented as v = eg + €1 + Fug(r1) + Gug(to,r1) + Gug(t1,r1), due to the
bilinearity of Gug. As a result, it yields the following equations:

ro —to=t1, Fug(ro) —eg=e1, and
v — Gug(t1,r1) — Fig(r1) — e = eg + Gug(to,r1).

Each side of each of the three equations can be checked by using some one of
three tuples (rg, to,ep), (r1,t1,€1), and (r1,to, €g), while no information on the
secret key s can be obtained from one out of the three tuples. As described above
the bilinearity of Gyq plays an important role in their dividing technique.

Then we consider the case of the MC function Fyc : (z1,...,2n) = (Y1, -, Ym)
where y; = Z”k Ay, kLT + Zi,j biijxix; + Y, ciiw;. Unfortunately, the
mapping (x,%) — Fuc(x + X) — Fyc(x) — Fuc(X) is not bilinear, since it maps
(X1, Tn, Z1y ey Tpn) = (21, .., 2m) Where z; = Zi’j’k ar k(T jB+m T T+
TiTjTh + TiT ;T + TiT;Tg + iiirjxk) + Zi,j bl,m(xiij + 5:1963) Thus the dividing
technique using the mapping does not work in the cubic case. We also note that
there is a trivial construction derived from the MQ-based scheme, because it is
always possible to express degree three terms x;x ;7 as degree two terms w; ;jxy
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by introducing auxiliary variables w; ; and equations w; ; — z;z; = 0. However,
this reduction makes the numbers of variables and equations much larger, and
the construction becomes inefficient.

Therefore, in the cubic case, we introduce another function which is associ-
ated with Fyc. Concretely, we define a function Gye : (21,...,Zn, &1,...,&n) —
(Zl7 e Zm) where z; = Zi,j,k al,i’j,k(xiijik +i’i$jfk +fifi'jl'k) +Zi,j bl’i’jxif]‘.
The function Gyc(x,X) is linear in one argument x. In this paper we call Gyc
the associated linear-in-one-argument (LOA) form of Fyc. By using the function
G, it is able to divide Fyc(x 4+ X) — Fuc(x) — Fuc(X) into two parts Gye(x, X)
and Gyc(X, x) which are linear in x and in X, respectively. In fact, it is seen that
G‘Mc(x, )2) -+ GMc()E7 X) = FMc(X -+ 5() — FMc(X) — FMc(f()

With this associated LOA form Gy, our new dividing techniques for Fy
are briefly described as follows. Let s be a secret key and v = Fyc(s) the
corresponding public key. When the secret key is divided as s = rg + ry, the
public key v = Fyc(rg + r1) can be represented as v = Fyc(rg) + Fuc(ri) +
Gyc(rg, r1)+ Gue(ri, o). This representation still contains the terms Gy (ro, r1)
and Gyc(ri,ro) which depend on both ry and ry. Then, the two vectors ro and
Fuc(ro) + Gue(ri,ro) are also divided as rg = tg+u and Fye(rg) + Gue(r1,ro) =
ey + e; similarly to the quadratic case. However, the latter equation also con-
tains the term Gyc(ri,ro) depending on both ro and r; in contrast to the
case of Fyg(rg) = ep + e;. Thus ry is further divided as r1 = t; + u. Ac-
cordingly, the terms depending on both ry and r; are divided as Guc(ro,r1) =
GMc(to, I'1) + GMC(u,rl) and GMc(I‘l,I'o) = GMC(th I'o) + GMc(u,I‘o), due to the
linearity in one argument. As a result, it yields the following equations:

I‘o—uzto7 r1—u=t1,
Gue(u,r1) +e; = v — Fuyc(r1) — Gue(to,r1) —ep, and
GMC(uer) — €y =¢€1 — FMC(PO) - GMC(tler)-

Each side of each of the four equations can be checked by using some one of four
tuples (rg, u, egp), (ro,t1,e1), (r1,u,ey), and (ry, to, €g), while no information on
the secret key s can be obtained from one out of the four tuples. We note that
using the common u in dividing ry = tp + u and r; = t; + u does not damage
the zero-knowledge property, since each of the four tuples contains only one out
of tg, t1, and u.

Related work. Identification schemes based on Permuted Kernels (PK) [27], bi-
nary Syndrome Decoding (SD) [28,130], Constrained Linear Equations (CLE) [29],
Permuted Perceptrons (PP) [24,125], and ¢g-ary SD |9] have some features similar
to the MQ-based schemes [26] and ours as follows. First, these schemes depend
on the hardness of a random instance of each of the problems whose associ-
ated decision version is known to be NP-complete. Second, their protocols have
perfect correctness. Finally, assuming the existence of a non-interactive com-
mitment scheme, the sequential version and the parallel version of the schemes
are secure against impersonation under active attack and passive attack, respec-
tively. However, it is not explicitly known that the parallel versions of these
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schemes achieve the security under active attack. The efficiency of our scheme
is highly comparable to that of these schemes. Indeed, the data sizes of a public
key of the schemes of [9, 124, [25, [27-30] are between 245 bits and 2,450 bits, and
those of communication are between 27,234 bits and 120,652 bits.

Paper Organization. The remainder of this paper is organized as follows. In
Section 2] we define some notions related to the MC function and evaluate the
intractability of the function. In Section Bl and Section ] our 3-pass construction
and 5-pass one are presented, respectively. In Section Bl we discuss their security
and efficiency for a practical parameter choice. In Section [fl we study the security
of the parallel composition of our scheme at the expense of the efficiency. Finally,
we close with some extensions, open problems, and conclusion.

2 Multivariate Cubic Functions

In this section we define a family of MC functions MC(n, m,F,) and study its
parameters achieving 80-bit security.

Definition 1. We denote by MC(n,m,Fy) a family of functions {F = (fi,...,
fm)} such that, for 1 = 1,....m, fi(x1,...,2,) = Zm—’k Ay kTiTjTh
+ 2205 DL TS, cuii where ayg gk, b s cri € Fg. We callF € MC(n,m,Fy)
an MC' function.

For the simplicity, constant terms are omitted without any security loss. The
MQ function is a special case of the MC function, where the coefficients a;; j i
are all zero. For the MC function F, we define a binary relation Rg = {(v,x) €
Fyr x Fy : v =F(x)}. and a set Rp(v) = {x: (v,x) € Rp}. Given an instance
F € MC(n,m,F;) and a vector v € F*, the MC problem is finding a solution s €
Ry (v). The associated linear-in-one-argument (LOA) form of the MC function
is defined as follows.

Definition 2. Let F = (f1,...,fm) € MC(n,m,Fy) and fi(z1,...,2)

Zm—’k ar; K Ti%jTr + Z” biijrix; + >, cixi. Then a function G =
(g1,---,9m) is called the associated linear-in-one-argument (LOA) form of F
Zf: fOT’ l= ]-a cee,Mm, gl(xh ey Ty Y1, e 7yn) = Z@Lk al,i,j,k(xiyjyk + yzxjyk +
Yiyer) + 225 5 0L iy

When x = (21,...,2,) and y = (y1,...,Yyn) are vectors of n variables, the
associated LOA form G(x,y) is linear with respect to the first argument x.
Moreover, it satisfies that F(x +y) = F(x) + G(x,y) + G(y,x) + F(y).

Then, we study the intractability of the MC function. An intractability as-
sumption for a random instance of MC(n,m,F,) is defined as follows.

Definition 3. For polynomially bounded functions n = n(\), m = m(X\), and
q = q(N), it is said that MC(n,m,Fy) is intractable if there is no polynomial-
time algorithm that takes (F,v) generated via F €r MC(n,m,F,), s €r Fy, and
v < F(s) and finds a preimage s’ € ¥y such that F(s') = v with non-negligible
probability e(\).
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Fig. 1. The complexity of the hybrid approach where n = m, ¢ = 2*, and w =2

All the state-of-the-art solving techniques have exponential complexity to break
the intractability |7, 8, [11]. In particular, it is known that complexity of generic
attacks using Grobner basis is exponential in time and space [3, [L1]. In this pa-
per we use two sets of parameters MC(84, 80, F3) and MC(33,22,F54) for 80-bit
security. It is easy to see that the former achieves 80-bit security, because even a
quadratic system with 84 variables and 80 equations over s satisfies 80-bit secu-
rity [26]. In fact, the complexity of the improved exhaustive search algorithm |[§]
and the Fy algorithm [11] to break MC(84,80,F2) is more than 289. On the
other hand, the latter requires more detailed analysis. The hybrid approach
which is proposed by Bettale et al. [7] is the best known algorithm for solving
multivariate cubic systems over Fos. We follow their evaluation method of [7] to
select the minimal parameters for 80-bit security and obtain the parameter set
MC(33,22,FF54) as follows.

Let D(n,m,d) be the degree of regularity of a semi-regular system with m
equations of degree d in n variables. The complexity of solving a semi-regular
system with n variables and m equations of degree d over I, is estimated as

ming<x<n(¢® - (m - (”71651(:36(%5’)7"’(1)))”) where 2 < w < 3. They stated that
D(n,m,d) corresponds to the index ¢ of the first non-positive coefficient ¢; of the
series ) .o Ci 2= ((11__25)): . Let T;(m) be the complexity of the hybrid approach
where n = m, ¢ = 2%, and w = 2. Figure [ shows the comparison of T(m)
and T5(m). The complexity T3(m) increases faster than T5(m). In particular,
min{m|T3(m) > 289} = 22 and T3(22) ~ 28!. Finally, the number of variables
n is conservatively chosen as n = gm. Thus we can see that MC(33,22,F,4)

achieves 80-bit security.

3 A 3-Pass Protocol

This section describes our 3-pass protocol which is statistical zero-knowledge
argument of knowledge for Rp with knowledge error 3/4, assuming the existence



178 K. Sakumoto

Prover’s input: ((F,v),s) Verifier’s input: (F,v)

Pick ro,u €r Fy, eo €r Fg'
ri<s—ro,toro—u,ti1<r;i—u
e F(I‘o) —+ G(I‘1, I‘o) — €p
co + Com(r1,G(u,r1) +e1)
¢1 + Com(ro,G(u,rg) —eq)
c2 + Com(to,eo0)

( ) (co,c1,

( 02,03,64)

Ch Pick Ch €r {0,1,2,3}

cg + Com(t1,er
cs + Com(u)

If Ch =0, Rsp < (ro,u,eq) h

If Ch =1, Rsp < (ro,t1,e1)

If Ch =2, Rsp + (1'1,11,61) Rsp
If Ch = 3, Rsp — (I‘1,to,eo)

>

If Ch7: 0, parse Rsp = (ro, u,eo) and check
c1 f Com(ro, G(u,ro) — e70)
¢z = Com(ro —u,ep), ca = Com(u)

If Ch7: 1, parse Rsp = (ro,t1,e1) and check
c1 = Com(ro,e1 — F(ro) — G(t1,r0))
cs = Com(t1,e1)

If Ch7: 2, parse Rsp = (r1,u,e1) and check
co f Com(ri, G(u,r1) + e71)
c¢s = Com(r1 —u,e1), ca = Com(u)

If Ch = 3, parse Rsp = (r1,to, e0) and check
co = Com(r1,v — F(r1) — G(to,r1) — eo)
Cc2 C’om(to, eo)

[l

Fig. 2. Our 3-pass protocol

of a non-interactive commitment scheme Com which is statistically hiding and
computationally binding.

We begin with describing a setup algorithm and a key-generation algorithm.
Let A be a security parameter. Let n = n(X), m = m(A), and ¢ = g(\) be poly-
nomially bounded functions. The setup algorithm Setup takes 1* and outputs
a system parameter F € MC(n,m,F,) which consists of m-tuple of random
multivariate cubic polynomials. The key-generation algorithm Gen takes F. Af-
ter choosing a random vector s € F}/, Gen computes v < F(s), then outputs
(pk, 5k) = (v,5).

The basic idea for our 3-pass construction is that a prover proves that she has
a tuple (ro,r1,u,tp,t1, €, €1) satisfying

G(u,r1)+ e =v—F(r;) — G(to,r1) — e, (1)
to =19 — u, (2)
t; =r; —u, (3)
and G(u,rg) — ey =e1 — F(rg) — G(t1,r0), (4)

since if the tuple satisfies (), @), @), and @) then v = F(ry + r1). Note
that G is the associated LOA form of F. Then, corresponding to a challenge
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Ch € {0,1,2,3} of a verifier, the prover reveals one out of four tuples (rg, u, ep),
(ro,t1,e1), (r1,u,e1), and (r1,to,eg). The verifier can check each side of each
of the equations (), @), @), and (@) by using some one of the four tuples.
Such vectors rg, r1, u, tg, t1,eg, e; are produced by using the dividing techniques
described in Section 1. Thus, when rg, u, and e are randomly chosen, the verifier
can obtain no information on the secret key s from only one out of the four tuples.

The 3-pass protocol is described in Figure Pl For the simplicity, a random
string p in Com is not written explicitly. The verifier finally outputs 1 if all

of the checks “%” are passed, otherwise outputs 0. This is denoted by 0/1 «
Dec(F,v; (co,c1,¢2,c3,c¢4), Chy, Rsp). Tt is easy to see that the verifier always
accepts an interaction with the honest prover. Thus the 3-pass protocol has
perfect correctness.

Now we show two properties of the protocol in Theorem [ and Theorem [l as
follows.

Theorem 4. The 3-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s,
and interacts with a cheating verifier CV. We show that the simulator S can
impersonate the honest prover with probability 3/4.

The simulator S randomly chooses a value Ch* € {0,1,2,3} and vectors
s',rp, v’ €g Fy, ey €g Fy', where Ch™ is a prediction of what value the cheating
verifier CV will not choose. Then, it computes r} < s’ —r(, t, < rj; — u’, and
t) < r] —u'. If Ch* € {0,1} then it computes €] «+ v — F(r}]) — G(r{,r}) — €f,
else €] «+ F(r()+ G(r},r() —e(. If Ch™ = 2 then it computes ¢}, + Com(r}, v —
F(r)) — G(th, 1)) — €}), else ¢ < Com(r|,G(u',r}) +¢€}). If Ch* = 0 then it
computes ¢ + Com(r(, e} — F(ry) — G(t], 1)), else ¢} « Com(ry, G(u/,r}) —
e(). It computes ¢, < Com(ty, e}), ¢4 < Com(t],e}), and ¢ < Com(u’) and
sends (cf, ¢}, ¢h, ¢k, cy) to CV.

Due to the statistically hiding property of Com, a challenge Ch from CV is dif-
ferent from Ch* with probability 3/4. If Ch # Ch™ then (r(, u’, e}), (rh,t],€}),
(rf,u’,e)), and (r},t(,e}) are accepted responses to Ch = 0, 1, 2, and 3, re-
spectively. Note that if Ch* € {0,1} and Ch = 3 then it is seen that v —
F(r}) — G(th1}) — ¢ — €} + G{r) — th,1}) — €} + G(u,r}), since ¢} —
v—F(r])— G(r(,r}) —ep and t( = rj —u’. Note that if Ch* € {2,3} and Ch =1
then it is seen that €] — F(r)) — G(t},ry) = G(r] —t},r)) — el = G(u', 1)) — e,
since €] = F(r() + G(r],r)) —ej and t] =1} —u'. O

Theorem 5. The 3-pass protocol is argument of knowledge for Ry with knowl-
edge error 3/4 when the commitment scheme Com is computationally binding.

Proof sketch. For i € {0,1,2,3}, let ((co, c1, c2,c3,¢4), Chyy Rsp;) be a transcript
such that Dec(F,v;(co,c1,c2,c¢3,¢4), Chiy Rsp;) = 1 and Ch; = 4. Then, by
using the four transcripts, it is shown to be able to either break the bind-
ing property of Com or extract a solution for v. Consider the situation where
the responses are parsed as Rsp, = (f'(()o),ﬁ(o)7é(()0)), Rsp, = (f'(()l),fgl),é(ll)),
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Rspy = (T3 P2 a®), e( ), and Rsps = (rf”), (()3),(3(()3)). Then, it is seen that
— Com (2) ( (2) (2))+é(12))
3 2(3) ~(3 ~(3
= Com(¢{® FEY) - ca? #¥) — &), (5)
= Com (u(O (0)) — é(()o))

é”r%” F(iy)) - G, 1)), (6)
¢ —a®, &) = com(ty &), (7)
£V,6l") = Com(#? —a &), and (8)

9)

¢y = Com(u®) = Com(u®?).

= Com 7

c3 = Com

(¥
G
(£
= Com(r
(¥
(t
(n

9

If the two pairs of the arguments of Com are distinct on any one of the above
equations, the binding property of Com is broken. Otherwise, the equation ()
yields v = G(a® + t(?’)7 ~(2)) + F(r (2)) + egz) + e(s) By combining it with the
equations (@), (), and (&), it is seen that v = F(t (()0))+G(f'(()o)+ﬁ(2)fﬁ(0)7 f'gz))Jr
G(f'(lz) +a@—a® 5 )) —|—F(f'(12)). Finally, putting it together with the equation
(@), we obtain v = F( N+GED, #$)+GE? F+FE?) = FED +52).

It means that a solution f‘éo) + f'(lz) for v is extracted. O

Ezxtension. A standard trick for saving the communication data size can be
applied to our 3-pass protocol. The trick employs a collision resistant hash func-
tion H. Let ¢, = H(cp,c2) and ¢, = H(c1,c3) be hash values. In the first pass,
a prover sends one hash value ¢ = H(c,,cp,cq) instead of five commitments
(co, 1, €2, c3,cq). In the third pass, the pairs of the hash values (co, ¢3), (ca, ca),
(c1,¢2), and (cp,cq) are appended to prover’s responses Rsp for Ch = 0, 1, 2,
and 3, respectively. Finally, a verifier checks ¢ = H(cq, ¢p, ca). We note that the
hash values ¢, ¢y, and ¢4 can be obtained from the prover’s response Rsp in
every case of Ch =0, 1, 2, and 3. As a result, the number of hash values sent is
reduced from 5 to 3. The modified version of our 3-pass protocol is also shown
to be zero-knowledge argument of knowledge with knowledge error 3/4.

4 A 5-Pass Protocol

This section describes our 5-pass protocol which is statistical zero-knowledge
argument of knowledge for Rg with knowledge error 1/2 + 1/2¢, assuming the
existence of a non-interactive commitment scheme Com which is statistically
hiding and computationally binding. The knowledge error of the 5-pass protocol
is smaller than that of the 3-pass protocol when g > 3. The setup algorithm and
the key-generation algorithm for the 5-pass protocol are identical to those for
the 3-pass protocol.

In the 5-pass protocol, a prover also divides the secret key s and the public key
F(s)ass =rg+r; and F(s) = F(ro+r1) = F(ro) + F(r1)+ G(ro, r1)+ G(r1, ro),
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Prover’s input: ((F,v),s) Verifier’s input: (F,v)

Pick ro,uo,u1 €r Fy, eo €r F"

ris < S—rp

Cco < Com(ro, Uo, G(lh,ro) — eo)

c1 < Com(ri,u1,G(uo,r1) + €o) (00701),

« Pick o €r Fy

«
to <+ arg — Up, t1 < ar;y —up

e1 + aF(ro) + aG(r1,r0) —eo (to, t1,€1)
Ch ~ Pick Ch €g {0,1}
If Ch =0, Rsp < ro -

_ Rsp
If Ch =1, Rsp 1 "It Ch7: 0, parse Rsp = ro and check

co = Com(ro, aro — to,
e; — OéF(I‘o) — G(t1,r0))
If Ch =1, parse Rsp = r1 and check
C1 ; C’om(r1,ar1 — t1,
Oé(V — F(I‘1)) — G(to,r1) — 61)

Fig. 3. Our 5-pass protocol

respectively. The difference from the 3-pass protocol is that rg, r1, and F(ro)
G(r1,rp) are divided as arg = to+ug, ar; = t; +uy, and oF(rg)+aG(r1,rp)
ey + e; where o € F, is a choice of a verifier. In particular, we note that rg
and ry are divided by using two independent vectors ug and u;. The reason is
that the prover of the 5-pass protocol sends both tg and t;, while that of the
3-pass protocol sends either to or t1. After sending (to,t1,e1) to the verifier,
corresponding to a challenge Ch € {0,1} of the verifier, the prover reveals one
out of two vectors rg and ry. When rg, ug, uj, and ey are randomly chosen, the
verifier can obtain no information on the secret key s from only one out of the
two vectors ro and rp. On the other hand, the argument-of-knowledge property
comes from that, for more than one choice of o € F,, an impersonator cannot
response both of verifier’s challenges Ch = 0 and Ch = 1 unless the impersonator
has a solution s for v.

The 5-pass protocol is described in Figure [l where G is the associated LOA

I+

form of F. The verifier finally outputs 1 if the check of «Ln g passed, otherwise
outputs 0. This is denoted by 0/1 < Dec(F,v; (o, c1), e, (t1,€1), Ch, Rsp). It is
easy to see that the verifier always accepts an interaction with the honest prover.
Thus the 5-pass protocol has perfect correctness.

Now we show two properties of the protocol in Theorem [6] and Theorem [7 as
follows.

Theorem 6. The 5-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s,
and interacts with a cheating verifier CV. We show that the simulator S can
impersonate the honest prover with probability 1/2. The simulator S randomly

chooses a value Ch* €r {0,1} and vectors s',rj,up,uy €r ¥y, e €r FY',
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where Ch* is a prediction of what value the cheating verifier CV will choose.
Then, it computes r} « s’ —r{, ¢ + Com(rj,up, G(uj,ry) — €f), and ¢ +
Com(r,ul, G(ug,r})+ep). It sends (¢, ¢}) to CV. Receiving a challenge « from
CV, it computes t(, < arj —uj and t} < arj —u}. If Ch* = 0 then it computes
e} < oF(r}) +aG(r],r)) —ep, else €] « a(v—F(r}]) — G(ry,r})) —ef. It sends
(th,t7,€}) to CV. Due to the statistically hiding property of Com, a challenge
Ch from CV is equal to Ch™ with probability 1/2. If Ch = Ch™ then rj and
r} are accepted responses to Ch = 0 and 1, respectively. Note that the case of
a = 0 does not spoil the zero-knowledge property. a

Theorem 7. The 5-pass protocol is argument of knowledge for Ry with knowl-
edge error 1/2 + 1/2q when the commitment scheme Com is computationally
binding.

Proof sketch. Let ag, a1 € Fy such that oy # a1. For (4, 5) € {(0,0), (0, 1), (1,0),
(1,1)}, let ((co,cl),ai,(E(()i),fgi),é(li)), Chj,Rsp(i’j)) be a transcript such that
Dec(F, v; (co,cl),ai,(E(()i),fgi)7é(li))7 Chj,Rsp(i’j)) = 1 and Ch; = j. By using
the four transcripts, it is shown to be able to either break the binding property
of Com or extract a solution for v. Consider that the responses are parsed as
Rsp(o’o) = f'(()o), Rsp(o’l) = f'(lo), Rsp(l’o) = f'(()l), and Rsp(l’l) = f'gl). Then, it is
seen that

0 7é(10) - aOF(
(

If the two tuples of the arguments of Com are distinct on either of the above
equations, the binding property of Com is broken. Otherwise, it is seen that
(ap — a)(v — FE)) = G@EY — t",5”) + & — & and t{” — (V) =
(g — al)f'go) from the equation ([II). Combining them with the equation (0
yields (ag —a1)(v —FFE)) = GEY =157, #7) + (ag — a)FEY) + G -
Eﬁ”,fé‘”) = (o — al)(G(f‘(()l),f'(lo)) + F(f‘éo)) + G(f‘go),f(()o))). Thus, we obtain
v = F(I~'(1O))+Gr(f'él)7 f'go))+G(f'go)7 f'éo))+F(f‘(()O)) = F(f‘(lo) +f‘(()0)), since ap # .

It means that a solution f'(lo) + f'(()o) for v is extracted. O

5 Security and Efficiency

This section we summarize the security of our identification schemes which is
easily obtained from results in Section [Band [ and evaluate the efficiency of our
schemes for a practical parameter choice.
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5.1 Security

Here we briefly mention the security of each of the sequential and the parallel
compositions in the same way as [26]. Let (P, V) be our 3-pass protocol or 5-pass
protocol and e its knowledge error. Let N = w(logA). Then identification pro-
tocols which consist of repeating (P, V) N-times in sequential and in parallel are
denoted by (Pﬁ),vg\?)) and (PS\Z,’),VE\]?)), respectively. When MC(n, m,F,) is in-
tractable and the commitment scheme Com is statistically hiding and computa-
tionally binding, the security of our identification schemes (Setup, Gen, Pg\s,)7 Vs\s,))
and (Setup, Gen, PS\’,’), st;)) is evaluated as follows.

The former (PS{;), VS{;)) is statistically zero-knowledge argument of knowledge
with knowledge error ¢V due to the sequential composition lemma [15] and
Stern’s proof techniques of |29, [30]. Thus the identification scheme (Setup, Gen,
PE{?,VE{?)) is secure against impersonation under active attack. On the other
hand, the parallel repetition of (P, V) reserves zero-knowledge with respect to
an honest verifier. By combining it with Pass and Venkitasubramaniam’s re-
sult |20], the latter (PE\Z,D)7 Vs\’;)) is also honest-verifier zero-knowledge argument of
knowledge with a negligible knowledge error. Therefore, the identification scheme
(Setup, Gen, P%)),Vg\};)) is secure against impersonation under passive attack. In
addition, for a certain parameter choice, the parallel version of our scheme is
also secure under active attack as shown in Section

5.2 Efficiency

The efficiency of the schemes consisting of our 5-pass protocol is highly compa-
rable to that of the schemes based on binary SD, g-ary SD, CLE, PP, PK, and
MQ, even though our 3-pass protocol is not so efficient. Here we evaluate the
data sizes of system parameters, a public key, a secret key, and a transcript of our
schemes. The numbers of arithmetic operations, computing permutations, and
computing hash functions are also estimated as computational cost. These are
evaluated according to |9, 26]. In this paper MC(84,80,F2) and MC(33,22,F54)
are used for our 3-pass protocol and for our 5-pass one, respectively.

First, we consider the schemes consisting of each of the 3-pass protocols. Ta-
ble [l compares our scheme with the schemes based on binary SD, CLE, PP, and
M@ when each protocol is sequentially repeated until impersonation probability
is less than 2730, In this comparison we consider the case where each scheme uses
techniques for saving the communication data size such as the trick mentioned
at the end of Section Bl

Second, consider the 5-pass protocols. Table [2] compares our scheme with the
schemes based on binary SD, g-ary SD, CLE, PK, PP, and MQ when each pro-
tocol is sequentially repeated until impersonation probability is less than 2730,
The data sizes of a public key and a secret key of our scheme are smaller than
those of the other schemes. The communication data size is almost the smallest
in Table Pl Although the size of system parameter of our scheme is relatively
large, it can be reduced to some small seed, e.g. 128 bits, if a pseudo-random
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Table 1. Comparison of 3-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 273°

SD [30] CLE [29] PP [25] MQ [26] Our

round 52 52 73 52 73
system parameter (bit) 122,500 4,608 28,497 285,600 7,908,320
public key (bit) 350 288 245 80 80
secret key (bit) 700 192 177 84 84
communication (bit) 59,800 45,517 100,925 29,640 53,290

arithmetic ops. (times/field) 224 / Fa 216 / Fas7 922 / Fia7 226 / Fa 232 / Fa
permutations’ ' (times/size)  2/S700  4/S2a  2/S161,5177  NO NO
hash function (times) 4 4 8 4 8
best known key-recovery attack 287 284 > 2™ 280 280

Table 2. Comparison of 5-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 273°

SD [30] SD [9] PK [27] CLE [29] PP [24, 25] MQ [26] Our

round 31 31 31 31 52 33 33
system parameter (bit) 122,500 32,768 4,608 4,608 28,497 129,600 581,768
public key (bit) 2450 512 384 288 245 120 88
secret key (bit) 4900 1024 203 192 177 180 132
communication (bit) 120,652 61,783 27,234 27,528 105,060 26,565 26,697

arithmetic ops. (times/field) 223 /Fy 28 /Fasg 2% /Fas1 25 /Fosr 2% /Fiar 222 /Fpu 2% /Fou
permutations™ (times/size) 8/S7o0 2/Si2s  3/Sis  4/S2a  2/Si61,5177  NO NO
hash function (times) 2 2 2 2 5 2 2
best known key-recovery attack 257 287 285 284 > 2™ 283 281

1 This shows the number of times of computing permutations and the size of the
permutation, where S, means a permutation over {1,...,n}.

*2 This is the correct size of the system parameters, although it is stated as 259,200
bits in the original paper [26].

number generator is used as the implementation of QUAD [2]. Although the cost
of arithmetic operations of our scheme is relatively high, it is still reasonable.

6 On the Security against Active Attack in Parallel
Repetition

In this section we focus on the case of n = m + k and k£ = w(log\). For ex-

ample, the MC function F € MC(2m,m,F,) satisfies the requirement where

m = w(log \). In this case, (Setup, Gen, ng;), VS\];)) is shown to be secure against

impersonation under active attack, although the data sizes of the secret key and
the communication increase at most double compared to those of Section
The security can be shown in almost the same way as that of the MQ-based
scheme. Although we consider the scheme consisting of our 3-pass protocol
in this section, the same argument can also be applied to that of our 5-pass
protocol.

We begin with defining the preimage resistance and the second-preimage re-
sistance of the MC function. Note that the difference between the preimage
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resistance and the intractability of Definition Blis only in the distribution of the
challenge v, and both of them are widely believed.

Definition 8. For polynomially bounded functions n = n(\), m = m(X\), and
g = q(N), it is said that MC(n,m,F,) is preimage resistant if there is no
polynomial-time algorithm that takes (F,v) generated via F €r MC(n,m,F,)
and v €r F' and finds a preimage s € Fy such that F(s) = v with non-
negligible probability e(N). On the other hand, it is said that MC(n,m,Fy) is
second-preimage resistant if there is no polynomial-time algorithm that takes
(F,x) generated via F €p MC(n,m,F,) and x €r Fy and finds a second preim-
age x' € Fy such that F(x') = F(x) and x" # x with non-negligible probability
e(A).

Then we present the following lemma.

Lemma 9. If there exists an algorithm that breaks the second-preimage resis-
tance of MC(n+1,m,F,) with advantage €, then there exists an algorithm that
breaks the preimage resistance of MC(n,m,F,) with advantage €¢/(g—1)(n+1).
That is, if MC(n,m,F,) is preimage resistant, then MC(n+1,m,F,) is second-
preimage resistant.

Proof sketch. Let A be an algorithm that breaks the second-preimage resis-
tance of MC(n + 1,m,Fy). Let F = (f1,..., fm) €r MC(n,m,F,;) and v =
(Ul, RN Um) €R F , where fl(xl, cey Z‘n) = Z:-L:l Z;L:1 ZZZI a5, kTiTj T +
S Z?zl bl’i,jxlx] + >, iz We show that, given F and v, a preim-
age x satisfying v = F(x) can be found by using the algorithm A. For the
simplicity, suppose that the algorithm A takes F = (f17 coiifm) € MC(n +
1,m,Fy) and t = (t1,...,tn41) € F2T' and outputs a second preimage t + A
such that F(t + A) F(t) and A = (dy,.. ,dn, 1), where fl(;ﬂl,..  Tpy1) =
ZnH Zn—H Zk 1 Qli,g, k$z$g$k+zn+1 ZnH byijxix; + Zl 1 Ci,i7;. Note that
in the full proof it is necessary to guess an 1ndex & and a value d¢ of a non-zero
element in A, but in this proof sketch we suppose £ =n + 1 and d¢ = 1. In this
case, the equation F(t + A) — F(t) = 0 is expanded as follows:

Z Z Z ati,j,kdid;dy,

n n ~ ~ ~
(a,k,ji + Qi + Qi) e
—+ i didj
+b1ij + g1+ Alnt1,4,5 F Qling,)
n+ln+1

ZZ Ay eji + 1k + ik, )tith

n Jj=1 k=1

n+1 .
+ Z 4 Z A1k, in+1 T Qlnt1,ki T Qlnt1,ik d;
i—1 L . L 7 7 k
! =\ Haiknt1,i + Qi ka1 + Ains 1k + bk + bk

+ay n+11,n+1+alzn+1n+1+aln+1n+1z+bln+lz+blzn+1+Clz
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n+1n+1
DD (nkjner + @ngnstk + dnnt)tits
G=1 k=1
+ n+1 B B =0
+ Z(&z,k,n+1,n+1 + A1t knt1 + Gnt1nt+1,k + 0L knd1 + Oint1 k) tk
k=1 ~
+alnt+1,n+1,n+1 + Ol n+1,n4+1 + Cint1

for I =1,...,m. From the above equation, we can see that the output t + A of
A satisfies v =F(dy, ..., d,) if the input (F,t) of A is produced as follows.

— The vector t is generated via t €gr ]F”+1

— For1<i,5,k<ndo al”k ealmk, otherwise a;; ;.1 €r Fq.

—For 1 < 4,57 < ndo bl,z,j — bl,z,j Zk 1(0'1 kji T alzk,j + al,J?,k)tk -
(ai,g,n4+1 + Qlnt 1,0, + liint1,5) OtherWISe biij €r Fy.

—Forlgigndoémec“ Zn+1 k 1(alk’]l+al’]lk+a“m)ttkf
Zzg@l,k,i,nﬂ + At 1,k T QLng1,ik + QLknt1, T al,i,k,zﬂrl + al,iinJrl,k +
bik,i + 000 k)t — (Q1nt1.0n+1 F Glint1,n41 + Glnt1,n+1,i + 01415+ Dint1)-

— Clpy1 Znﬂ Z+11(al kjmtl + Gljnt1k + Gint1k,)ttk

- ZZi%(dl,k,nJrl,njl + An+1, k41 + Qlptlnt1k + bz,k,n+1 + bl,n+1,k)tk -

(@1n+1,n+1,n+1 + b1,nt1,n41)-

The details of the proof of Lemma [@ are described in the full paper. O

Moreover, the following lemma is shown.

Lemma 10. Let n = m + k, k = w(log)), and N = w(log ). Suppose that
MC(n,m,F,) is second-preimage resistant. Then, (Pg\’;),vg\],))) achieves the secu-
rity against impersonation under active attack when Com is statistically hiding
and computationally binding.

Proof sketch. The proof of this lemma is described in the full paper, since it is
similar to that of Lemma 8 of [26]. O

Finally, combining Lemma [0 and Lemma [I0 yields the following theorem.

Theorem 11. Let n = m+ k, k = w(log\), and N = w(log\). Suppose that

MC(n —1,m,F,) is preimage resistant. Then, (Py p) V(p)) achieves the security

against impersonation under active attack when C’om is statistically hiding and
computationally binding.
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7 Concluding Remarks
In this section we mention some extensions and an open problem.

Extensions. The Fiat-Shamir method transforms an identification scheme into
a signature scheme which is secure against chosen-message attack in the random
oracle model, if the underlying identification scheme is secure against imperson-
ation under passive attack [1, [13]. According to it, a signature scheme based
on the conjectured intractability of the MC problem can be obtained from the
parallel composition of our 3-pass protocol. Using the signature scheme, we can
also extend our identification/signature scheme to an identity-based one in a
natural way [4].

An open problem. Efficient constructions based on multivariate polynomials of
degree d > 4 remain as an open problem. However, it might be difficult to
construct them by using techniques similar to those of [26] or of ours. This is
because, for a multivariate polynomial f(x) of degree d > 4, the polynomial
f(x+y)— f(x) — f(y) contains terms which are not linear either in x or in y.

8 Conclusion

We proposed an efficient construction of zero-knowledge argument of knowledge
for the MC problem, and showed that the MC function is useful for public-
key identification as well as the MQ function. In particular the efficiency of
our scheme is highly comparable to the identification schemes based on another
problem including PK, SD, CLE, PP, and MQ.

Acknowledgements. We thank Taizo Shirai and Harunaga Hiwatari for their
generous support, and Marc Fischlin and the anonymous reviewers for useful
comments.
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