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Preface

PKC 2012 was held at the Darmstadtium Congress Center in Darmstadt,
Germany, during May 21–23, 2012. The conference was sponsored by the In-
ternational Association for Cryptologic Research (IACR).

The proceedings of PKC 2012 contain 41 papers selected from 188 submis-
sions, which corresponds to a record number of submissions in the history of
PKC. Each submission was anonymized for the reviewing process and was as-
signed to at least three of the 30 Program Committee members. Submissions
co-authored by committee members were assigned to at least five members.
Committee members were allowed to submit at most one paper, or two if the
second one was co-authored by a student. The committee decided to give the
Best Paper Award to the paper “On Definitions of Selective Opening Security”
by Florian Böhl, Dennis Hofheinz, and Daniel Kraschewski. The program also
included an invited talk by David Pointcheval entitled “Password-Based Au-
thenticated Key Exchange.” On behalf of the Program Committee I would like
to thank David for accepting the invitation. David was so kind to also provide
a summary for the proceedings.

I would like to thank all the authors who submitted papers. I am also in-
debted to the Program Committee members and all external reviewers for their
voluntary work, especially since the huge number of submissions meant more
work for each committee member than I initially promised. The committee’s
work was tremendously simplified by Shai Halevi’s submission software and his
support. I would also like to thank the PKC Steering Committee for electing me
as Chair.

Many thanks also go to the General Chairs, Johannes Buchmann and Mark
Manulis, for making the event possible, and to Stanislav Bulygin and Heike
Meissner for their support. Following a loose tradition of past PKC conferences
you can find the General Chairs’ names as co-editors of the proceedings. Unlike
me, the General Chairs were in principle allowed to submit to the conference
because they did not intervene in the selection process. It is clear that any
objections or complaints about the program should be addressed to me.

I would have liked to say that we definitely picked the best papers among the
submissions. But this would assume that there was only one best subset. And
even if there was, the selection process inevitably contains some randomness, as
acknowledged by chairs of other conferences before. Also, the importance of a
paper has to stand the test of time, such that some uncertainty about our choice
of today remains. I therefore hope the good submissions which did not make the
cut for PKC eventually get accepted somewhere, and I hope that the papers we
have chosen are interesting to the readers.

May 2012 Marc Fischlin



Organization

Program Chair

Marc Fischlin Technische Universität Darmstadt, Germany

General Chairs

Johannes Buchmann Technische Universität Darmstadt, Germany
Mark Manulis University of Surrey, UK

Program Committee

Michel Abdalla ENS Paris, France
Alexandra Boldyreva Georgia Institute of Technology, USA
Colin Boyd Queensland University of Technology, Australia
Dario Catalano Università di Catania, Italy
Jean-Sebastien Coron University of Luxembourg
Marc Fischlin (Chair) Technische Universität Darmstadt, Germany
Georg Fuchsbauer University of Bristol, UK
Rosario Gennaro IBM Research, USA
Dov Gordon Columbia University, USA
Matthew Green Johns Hopkins University, USA
Jens Groth University College London, UK
Kaoru Kurosawa Ibaraki University, Japan
Miros�law Kuty�lowski Wroc�law University of Technology, Poland
Vadim Lyubashevsky ENS Paris, France
Adam O’Neill Boston University, USA
Christiane Peters Technical University of Denmark
Krzysztof Pietrzak IST Austria
Alon Rosen IDC Herzliya, Israel
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Better Bootstrapping in Fully Homomorphic Encryption

Craig Gentry1, Shai Halevi1, and Nigel P. Smart2

1 IBM T.J. Watson Research Center
2 Dept. Computer Science, University of Bristol

Abstract. Gentry’s bootstrapping technique is currently the only known method
of obtaining a “pure” fully homomorphic encryption (FHE) schemes, and it may
offers performance advantages even in cases that do not require pure FHE (e.g.,
when using the noise-control technique of Brakerski-Gentry-Vaikuntanathan).

The main bottleneck in bootstrapping is the need to evaluate homomorphically
the reduction of one integer modulo another. This is typically done by emulating a
binary modular reduction circuit, using bit operations on binary representation of
integers. We present a simpler approach that bypasses the homomorphic modular-
reduction bottleneck to some extent, by working with a modulus very close to a
power of two. Our method is easier to describe and implement than the generic
binary circuit approach, and we expect it to be faster in practice (although we did
not implement it yet). In some cases it also allows us to store the encryption of
the secret key as a single ciphertext, thus reducing the size of the public key.

We also show how to combine our new method with the SIMD homomorphic
computation techniques of Smart-Vercauteren and Gentry-Halevi-Smart, to get a
bootstrapping method that works in time quasi-linear in the security parameter.
This last part requires extending the techniques from prior work to handle arith-
metic not only over fields, but also over some rings. (Specifically, our method uses
arithmetic modulo a power of two, rather than over characteristic-two fields.)

1 Introduction

Fully Homomorphic Encryption (FHE) [12,7] is a powerful technique to enable a party
to compute an arbitrary function on a set of encrypted inputs; and hence obtain the
encryption of the function’s output. Starting from Gentry’s breakthrough result [6,7],
all known FHE schemes are constructed from Somewhat Homomorphic Encryption
(SWHE) schemes, that can only evaluate functions of bounded complexity. The cipher-
texts in these SWHE schemes include some “noise” to ensure security, and this noise
grows when applying homomorphic operations until it becomes so large that it over-
whelms the decryption algorithm and causes decryption errors. To overcome the growth
of noise, Gentry used a bootstrapping transformation, where the decryption procedure
is run homomorphically on a given ciphertext, using an encryption of the secret key
that can be found in the public key,1 resulting in a new ciphertext that encrypts the same
message but has potentially smaller noise.

Over the last two years there has been a considerable amount of work on developing
new constructions and optimizations [5,13,9,3,14,2,8,1,11], but all of these constructions

1 This transformation relies on the underlying SWHE being circularly secure.

M. Fischlin, J. Buchmann, and M. Manulis (Eds.): PKC 2012, LNCS 7293, pp. 1–16, 2012.
c© International Association for Cryptologic Research 2012



2 C. Gentry, S. Halevi, and N.P. Smart

still have noise that keeps growing and must be reduced before it overwhelms the de-
cryption procedure. The techniques of Brakerski et al. [1] yield SWHE schemes where
the noise grows slower, only linearly with the depth of the circuit being evaluated, but
for any fixed public key one can still only evaluate circuits of fixed depth. The only
known way to get “pure” FHE that can evaluate arbitrary functions with a fixed public
key is by using bootstrapping. Also, bootstrapping can be used in conjunction with the
techniques from [1] to get better parameters (and hence faster homomorphic evalua-
tion), as described in [1,11].

In nearly all SWHE schemes in the literature that support bootstrapping, decryption
is computed by evaluating some ciphertext-dependent linear operation on the secret key,
then reducing the result modulo a public odd modulus q into the range (−q/2, q/2], and
then taking the least significant bit of the result. Namely, denoting reduction modulo q
by [·]q, we decrypt a ciphertext c by computing a = [[Lc(s)]q ]2 where Lc is a linear
function and s is the secret key. Given an encryption of the secret key s, computing
an encryption of Lc(s) is straightforward, and the bulk of the work in homomorphic
decryption is devoted to reducing the result modulo q. This is usually done by comput-
ing encryptions of the bits in the binary representation of Lc(s) and then emulating the
binary circuit that reduces modulo q.

The starting point of this work is the observation that when q is very close to a power
of two, the decryption formula takes a particularly simple form. Specifically, we can
compute the linear function Lc(s) modulo a power of two, and then XOR the top and
bottom bits of the result. We then explain how to implement this simple decryption
formula homomorphically, and also how the techniques of Gentry et al. from [11] can
be used to compute this homomorphic decryption with only polylogarithmic overhead.

We note that applying the techniques from [11] to bootstrapping is not quite straight-
forward, because the input and output are not presented in the correct form for these
techniques. (This holds both for the standard approach of emulating binary mod-q cir-
cuit and for our new approach.) Also, for our case we need to extend the results from
[11] slightly, since we are computing a function over a ring (modulo a power of two)
and not over a field.

We point out that in all work prior to [11], bootstrapping required adding to the public
key many ciphertexts, encrypting the individual bits (or coefficients) of the secret key.
This resulted in very large public keys, of size at least λ2 · polylog(λ) (where λ is the
security parameter). Using the techniques from [14,1,11], it is possible to encrypt the
secret key in a “packed” form, hence reducing the number of ciphertexts to O(log λ)
(so we can get public keys of size quasi-linear in λ). Using our technique from this
work, it is even possible to store an encryption of the secret key as a single ciphertext,
as described in Section 4. We next outline our main bootstrapping technique in a few
more details.

Our method applies mainly to “leveled” schemes that use the noise control mecha-
nism of Brakerski-Gentry-Vaikuntanathan [1].2 Below and throughout this paper we
concentrate on the BGV ring-LWE-based scheme, since it offers the most efficient

2 Our method can be used also with other schemes, as long as the scheme allows us to choose a
modulus very close to a power of two. For example they can be used with the schemes from
[3,2].
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homomorphic operations and the most room for optimizations.3 The scheme is defined
over a ring R = Z[X ]/F (X) for a monic, irreducible polynomial F (X) (over the inte-
gers Z). For an arbitrary integer modulus n (not necessarily prime) we denote the ring

Rn
def
= R/nR = (Z/nZ)[X ]/F (X). The scheme is parametrized by the number of

levels that it can handle, which we denote by L, and by a set of decreasing odd moduli
q0 � q1 � · · · � qL, one for each level.

The plaintext space is given by the ring R2, while the ciphertext space for the i’th
level consists of vectors in (Rqi)

2. Secret keys are polynomials s ∈ R with “small”
coefficients, and we view s as the second element of the 2-vector s = (1, s). A level-
i ciphertext c = (c0, c1) encrypts a plaintext polynomial m ∈ R2 with respect to
s = (1, s) if we have the equality over R, [〈c, s〉]qi = [c0 + s · c1]qi ≡ m (mod 2),
and moreover the polynomial [c0 + s · c1]qi is “small”, i.e. all its coefficients are con-
siderably smaller than qi. Roughly, that polynomial is considered the “noise” in the
ciphertext, and its coefficients grow as homomorphic operations are performed.4 The
crux of the noise-control technique from [1] is that a level-i ciphertext can be publicly
converted into a level-(i+ 1) ciphertext (with respect to the same secret key), and that
this transformation reduces the noise in the ciphertext roughly by a factor of qi+1/qi.

Secret keys too are associated with levels, and the public key includes some ad-
ditional information that (roughly speaking) makes it possible to convert a ciphertext
with respect to level-i key si into a ciphertext with respect to level-(i + 1) key si+1.
In what follows we will only be interested in the secret keys at level L and level zero;
which we will denote by s and s̃ respectively to ease notation.

For bootstrapping, we have as input a level-L ciphertext (i.e. a vector c ∈ R/qLR
modulo the smallest modulus qL). This means that the noise-control technique can no
longer be applied to reduce the noise, hence (essentially) no more homomorphic op-
erations can be performed on this ciphertext. To enable further computation, we must
therefore “recrypt” the ciphertext c, to obtain a new ciphertext that encrypts the same
element of R with respect to some lower level i < L.

Our first observation is that the decryption at levelL can be made more efficient when
qL is close to a power of two, specifically qL = 2r + 1 for an integer r, and moreover
the coefficients of Z = 〈c, s〉 mod F (X) are much smaller than q2L in magnitude.
In particular if z is one of the coefficients of the polynomial Z then [[z]qL ]2 can be
computed as z〈r〉 ⊕ z〈0〉, where z〈i〉 is the i’th bit of z.

To evaluate the decryption formula homomorphically, we temporarily extend the
plaintext space to polynomials modulo 2r+1 (rather than modulo 2). The level-L secret
key is s = (1, s), where all the coefficients of s are small (in the interval (−2r,+2r)).
We can therefore consider s as a plaintext polynomial in R/2r+1R, encrypt it inside a
level-0 ciphertext, and keep that ciphertext in the public key. Thus, given the level-L
ciphertext c, we can evaluate the inner product [〈c, s〉 mod F (X)] homomorphically,
obtaining a level-0 ciphertext that encrypts the polynomial Z .

For simplicity, assume for now that what we get is an encryption of all the coeffi-
cients of Z separately. Given an encryption of a coefficient z of Z (which is an element

3 Our description of the BGV cryptosystem below assumes modulo-2 plaintext arithmetic, gen-
eralizing to modulo-p arithmetic for other primes p > 2 is straightforward.

4 We ignore here the encryption procedure, since it does not play any role in the current work.
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in Z/2r+1Z) we show in Section 3.1 how to extract (encryptions of) the zero’th and
r’th bit using a data-oblivious algorithm. Hence we can finally recover a new cipher-
text, encrypting the same binary polynomial at a lower level i < L.

To achieve efficient bootstrapping, we exploit the ability to perform operations on
elements modulo 2r+1 in a SIMD fashion (Single Instruction Multiple Data); much like
in prior work [14,1,11]. Some care must be taken when applying these techniques in our
case, since the inputs and outputs of the bootstrapping procedure are not in the correct
format: Specifically, these techniques require that inputs and outputs be represented
using polynomial Chinese Remainders (CRT representation), whereas decryption (and
therefore recryption) inherently deals with polynomials in coefficient representation.
We therefore must use explicit conversion to CRT representation, and ensure that these
conversions are efficient enough. See details in Section 4.

Also, the techniques from prior work must be extended somewhat to be usable in our
case: Prior work demonstrated that SIMD operations can be performed homomorphi-
cally when the underlying arithmetic is over a field, but in our case we have operations
over the ring Z/2r+1Z, which is not a field. The algebra needed to extend the SIMD
techniques to this case is essentially an application of the theory of local fields [4]. We
prove many of the basic results that we need in the full version [10], and refer the reader
to [4] for a general introduction and more details.

Notations. Throughout the paper we denote by [z]q the reduction of z mod q into the
interval (− q

2 ,
q
2 ]. We also denote the i’th bit in the binary representation of the integer

z by z〈i〉. Similarly, when a is an integer polynomial of degree d with coefficients
(a0, a1, . . . , ad), we denote by a〈i〉 the 0-1 degree-d polynomial whose coefficients are
all the i’th bits (a0〈i〉, a1〈i〉, . . . , ad〈i〉). If c, s are two same-dimension vectors, then
〈c, s〉 denotes their inner product.

Organization. We begin by presenting the simplified decryption formula in Section 2
and explain how to evaluate it homomorphically in Section 3. Then in Section 4 we
recall some algebra and explain how to use techniques similar to [11] to run bootstrap-
ping in time quasi-linear in the security parameter. Some of the proofs are omitted here,
these are found in the full version of this work [10].

2 A Simpler Decryption Formula

When the small modulus qL has a special form – i.e. when it equals u · 2r + v for some
integer r and for some small positive odd integers u, v – then the mod-qL decryption
formula can be made to have a particularly simple form. Below we focus on the case of
qL = 2r + 1, which suffices for our purposes.

So, assume that qL = 2r + 1 for some integer r and that we decrypt by setting
a ← [[〈c, s〉 mod F (X)]qL ]2. Consider now the coefficients of the integer polynomial
Z = 〈c, s〉 mod F (X), without the reduction mod qL. Since s has small coefficients
(and we assume that reduction mod-F (X) does not increase the coefficients by much)
then all the coefficients of Z are much smaller than q2L. Consider one of these integer
coefficients, denoted by z, so we know that |z| 	 q2L ≈ 22r. We consider the binary
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representation of z as a 2r-bit integer, and assume for now that z ≥ 0 and also [z]qL ≥
0. We claim that in this case, the bit [[z]qL ]2 can be computed simply as the sum of the
lowest bit and the r’th bit of z, i.e., [[z]qL ]2 = z〈r〉 ⊕ z〈0〉. (Recall that z〈i〉 is the i’th
bit of z.)

Lemma 1. Let q = 2r + 1 for a positive integer r, and let z be a non-negative integer
smaller than q2

2 − q, such that [z]q is also non-negative, [z]q ∈ [0, q2 ]. Then [[z]q]2 =
z〈r〉 ⊕ z〈0〉.

Proof. Let z0 = [z]q ∈ [0, q2 ], and consider the sequence of integers zi = z0 + iq for
i = 0, 1, 2, · · · . Since we assume that z ≥ 0 then z can be found in this sequence, say
the k’th element z = zk = z0+kq. Also since z < q2

2 −q then k = �z/q < q
2−1. The

bit that we want to compute is [[z]q]2 = z0〈0〉. We claim that z0〈0〉 = zk〈0〉 + zk〈r〉
(mod 2). This is because zk = z0 + kq = z0 + k(2r +1) = (z0 + k) + k2r, which
in particular means that zk〈0〉 = z0〈0〉 + k〈0〉 (mod 2). But since 0 ≤ z0 ≤ q/2 and
0 ≤ k < q/2 − 1 then 0 ≤ z0 + k < q − 1 = 2r, so there is no carry bit from the
addition z0 + k to the r’th bit position. It follows that the r’th bit of zk is equal to the
0’th bit of k (i.e., zk〈r〉 = k〈0〉), and therefore zk〈0〉 = z0〈0〉+k〈0〉 = z0〈0〉+zk〈r〉
(mod 2), which implies that z0〈0〉 = zk〈0〉+ zk〈r〉 (mod 2), as needed. ��

We note that the proof can easily be extended for the case q = u2r + v, if the bound
on z is strengthened by a factor of v. To remove the assumption that both z and [z]q are
non-negative, we use the following easy corollary:

Corollary 1. Let r ≥ 3 and q = 2r + 1 and let z be an integer with absolute value
smaller than q2

4 − q, such that [z]q ∈ (− q
4 ,

q
4 ). Then [[z]q]2 = z〈r〉 ⊕ z〈r − 1〉 ⊕ z〈0〉.

Proof. Denoting z′ = z+(q2−1)/4 = z+(q+1)(q−1)/4 =
(
z+ q−1

4

)
+q · q−1

4 , we
have z′ ≡ z + q−1

4 (mod q) (since q−1
4 = 2r−2 is an integer). Moreover since [z]q ∈

(− q
4 ,

q
4 ] then [z]q +

q−1
4 ∈ [0, q/2], hence [z′]q = [z]q +

q−1
4 (over the integers), and as

q−1
4 is an even integer then [z]q = [z′]q (mod 2), or in other words [[z]q]2 = [[z′]q]2.

Since z > − q2

4 and z is an integer then z ≥ − q2−1
4 and therefore z′ = z + q2−1

4 ≥ 0.
Thus z′ satisfies all the conditions set in Lemma 1, so applying that lemma we have
[[z]q]2 = [[z′]q]2 = z′〈r〉 ⊕ z′〈0〉.

We next observe that z′ = z+(q+1)(q−1)/4 = z+(2r+2)2r−2 = z+2r−1+22r−2.
Since 2r− 2 > r, this means that the bits 0 through r in the binary representation of z′

are determined by z + 2r−1 alone, so we have:

z′〈i〉 = z〈i〉 for i = 0, 1, . . . , r − 2

z′〈r − 1〉 = 1− z〈r − 1〉

z′〈r〉 =
{
z〈r〉 if z〈r − 1〉 = 0
1− z〈r〉 if z〈r − 1〉 = 1

}
= z〈r〉 ⊕ z〈r − 1〉

Putting it all together, we get [[z]q]2 = [[z′]q]2 = z′〈r〉⊕z′〈0〉 = z〈r〉⊕z〈r − 1〉⊕z〈0〉.
��
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Using Corollary 1 we can get our simplified decryption formula. First, we set our
parameters such that qL = 2r + 1 and all the coefficients of the integer polynomial

Z = 〈c, s〉 mod F (X) are smaller than q2L
4 − 1 in absolute value, and moreover they

are all less than qL−1
4 away from a multiple of qL. Given a two-element ciphertext

c = (c0, c1) ∈ ((Z/qLZ)[X ]/F (X))2, then compute Z ← 〈c, s〉 mod F (X) over
the integers (without reduction mod qL), and finally recover the plaintext as Z〈r〉 +
Z〈r − 1〉 + Z〈0〉. Ultimately, we obtain the plaintext polynomial a ∈ F2[X ]/F (X),
where each coefficient in a is obtained as the XOR of bits 0, r − 1, and r of the corre-
sponding coefficient in Z .

Working Modulo 2r+1. Since we are only interested in the contents of bit positions
0, r − 1, and r in the polynomial Z , we can compute Z modulo 2r+1 rather than over
the integers. Our simplified decryption of a ciphertext vector c = (c0, c1) proceeds as
follows:

1. Compute Z ← [〈c, s〉 mod F (X)]2r+1 ;
2. Recover the 0-1 plaintext polynomial a = [Z〈r〉 + Z〈r − 1〉+ Z〈0〉]2.

3 Basic Homomorphic Decryption

To get a homomorphic implementation of the simplified decryption formula from above,
we use an instance of our homomorphic encryption scheme with underlying plain-
text space Z2r+1 . Namely, denoting by s̃ the level-0 secret-key and by q0 the largest
modulus, a ciphertext encrypting a ∈ (Z/2r+1Z)[X ]/F (X) with respect to s̃ and q0
is a 2-vector c̃ over (Z/q0Z)[X ]/F (X) such that |[〈c̃, s̃〉 mod F (X)]q0 | 	 q0 and
[〈c̃, s̃〉 mod F (X)]q0 ≡ a (mod 2r+1).

Recall that the ciphertext before bootstrapping is with respect to secret key s and
modulus qL = 2r + 1. In this section we only handle the simple case where the public
key includes an encryption of each coefficient of the secret-key s separately. Namely,
denoting s = (1, s) and s(X) =

∑d−1
j=0 sjX

j , we encode for each j the coefficient sj
as the constant polynomial sj ∈ (Z/2r+1Z)[X ]/F (X). (I.e., the degree-d polynomial
whose free term is sj ∈ [−2r + 1, 2r] and all the other coefficients are zero.) Then for
each j we include in the public key a ciphertext c̃j that encrypts this constant polyno-
mial sj with respect to s̃ and q0. Below we abuse notations somewhat, using the same
notation to refer both to a constant polynomial z ∈ (Z/2rZ)[X ]/F (X) and the free
term of that polynomial z ∈ (Z/2rZ).

Computing Z Homomorphically. Given the qL-ciphertext c = (c0, c1) (that encrypts
a plaintext polynomial a ∈ F2[X ]/F (X)), we use the encryption of s from the public
key to compute the simple decryption formula from above. Computing an encryption of
Z = [〈c, s〉 mod F (X)]2r+1 is easy, since the coefficients of Z are just affine functions
(over (Z/2r+1Z)) of the coefficients of s, which we can compute from the encryption
of the sj’s in the public key.
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3.1 Extracting the Top and Bottom Bits

Now that we have encryptions of the coefficients of Z , we need to extract the relevant
three bits in each of these coefficients and add them (modulo 2) to get encryptions of
the plaintext coefficients. In more details, given a ciphertext c̃ satisfying [〈c̃, s̃〉 mod
F (X)]q0 ≡ z (mod 2r+1) where z is some constant polynomial, we would like to
compute another ciphertext c̃ satisfying [〈c̃, s̃〉 mod F (X)]q0 ≡ z〈0〉+z〈r − 1〉+z〈r〉
(mod 2) (with [〈c̃, s̃〉 mod F (X)]q0 still much smaller then q0 in magnitude). To this
end, we describe a procedure to compute for all i = 0, 1, . . . , r a ciphertext c̃i satisfying
[〈c̃i, s̃〉 mod F (X)]q0 ≡ z〈i〉 (mod 2). Clearly, we can immediately set c̃0 = c̃, we
now describe how to compute the other c̃i’s.

The basic observation underlying this procedure is that modulo a power of 2, the
second bit of z − z2 is the same as that of z, but the LSB is zero-ed out. Thus setting
z′ = (z − z2)/2 (which is an integer), we get that the LSB of z′ is the second bit of z.
More generally, we have the following lemma:

Lemma 2. Let z be an integer with binary representation z =
∑r

i=0 2
iz〈i〉. Define

w0
def
= z, and for i ≥ 1 define

wi
def
=

z −
∑i−1

j=0 2
jw 2i−j

j mod 2r+1

2i
(division by 2i over the rationals). (1)

Then the wi’s are integers and we have wi〈0〉 = z〈i〉 for all i.

Proof. The lemma clearly holds for i = 0. Now fix some i ≥ 1, assume that the lemma
holds for all j < i, and we prove that it holds also for i. It is easy to show by induction
that for any integer u and all j ≤ r we have

u2
j

mod 2r+1 = u〈0〉+ 2j+1t for some integer t.

Namely, the LSB of u2
j

mod 2r+1 is the same as the LSB of u, and the next j bits are

all zero. This means that the bit representation of vj
def
= 2jw2i−j

j mod 2r+1 has bits
0, 1, . . . , j − 1 all zero (due to the multiplication by 2j), then vj〈j〉 = wj〈0〉 = z〈j〉
(by the induction hypothesis), and the next i− j bits are again zero (by the observation
above). In other words, the lowest i+ 1 bits of vj are all zero, except the j’th bit which
is equal to the j’th bit of z.

This means that the lowest i bits of the sum
∑i−1

j=0 vj are the same as the lowest i

bits of z, and the i+ 1’st bit of the sum is zero. Hence the lowest i bits of z −
∑i−1

j=0 vj

are all zero, and the i+ 1’st bit is z〈i〉. Hence z −
∑i−1

j=0 vj is divisible by 2i (over the
integers), and the lowest bit of the result is z〈i〉, as needed. ��

Our procedure for computing the ciphertexts c̃i mirrors Lemma 2. Specifically, we are
given the ciphertext c̃ = c̃0 that encrypts z = w0 mod 2r+1, and we iteratively compute
ciphertexts c̃1, c̃2, . . . such that c̃i encrypts wi mod 2r−i+1. Eventually we get c̃r that
encrypts wr mod 2, which is what we need (since the LSB of wr is the r’th bit of z).
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Note that most of the operations in Lemma 2 are carried out in (Z/2r+1Z), and there-
fore can be evaluated homomorphically in our (Z/2r+1Z)-homomorphic cryptosystem.
The only exception is the division by 2i in Equation (1), and we now show how this di-
vision can also be evaluated homomorphically. To implement division we begin with an
arbitrary ciphertext vector c̃ that encrypts a plaintext element a ∈ (Z/2jZ)[X ]/F (X)
(for some j) with respect to the level-0 key s̃ and modulus q0. Namely, we have the
equality over Z[X ]:

(〈c̃, s̃〉 mod F (X)) = a+ 2j · S + q0 · T

for some polynomials S, T ∈ Z[X ]/F (X), where the norm of a+2jS is much smaller
than q0. Assuming that a is divisible by 2 over the integers (i.e., all its coefficients are
even) consider what happens when we multiply c̃ by the integer (q0 + 1)/2 (which is
the inverse of 2 modulo q0). Then we have

(
〈
q0+1
2 · c̃, s̃

〉
mod F (X)) = q0+1

2 · (〈c̃, s̃〉 mod F (X))

=
(q0 + 1) · a

2
+

(q0 + 1) · 2j · S
2

+
q0 · (q0 + 1) · T

2

= (q0 + 1) · (a/2) + (q0 + 1) · 2j−1S + q0 · q0+1
2 · T

= a/2 + 2j−1 · S + q0 ·
(
a/2 + 2j−1S + q0+1

2 T
)

Clearly the coefficients of a/2+2j−1S are half the size of those of a+2jS, hence they
are much smaller than q0. It follows that c̃′ = [c̃ · (q0 + 1)/2]q0 is a valid ciphertext
that encrypts the plaintext a/2 ∈ (Z/2j−1Z)[X ]/F (X) with respect to secret key s̃ and
modulus q0.

The same argument shows that if a is divisible by 2i over the integers (for some i < j)
then [c̃ · ((q0 +1)/2)i]q0 is a valid ciphertext encrypting a/2i ∈ (Z/2j−iZ)[X ]/F (X).
Combining this division-by-two procedure with homomorphic exponentiation mod
2r+1, the resulting homomorphic bit-extraction procedure is described in Figure 1.

3.2 Packing the Coefficients

Now that we have encryption of all the coefficients of a, we just need to “pack” all
these coefficients back in one polynomial. Namely, we have encryption of the constant
polynomials a0, a1, . . ., and we want to get an encryption of the polynomial a(X) =∑

i aiX
i. Since a is just a linear combination of the ai’s (with the coefficient of each ai

being the “scalar” X i ∈ (Z/2Z)[X ]/Φm), we can just use the additive homomorphism
of the cryptosystem to compute an encryption of a from the encryptions of the ai’s.

3.3 Lower-Degree Bit Extraction

As described in Figure 1, extracting the r’th bit requires computing polynomials of
degree upto 2r, here we describe a simple trick to lower this degree. Recall our sim-
plified decryption process: we set Z ← [〈c, s〉 mod Φm(X)]2r+1 , and then recover
a = [Z〈r〉 + Z〈r − 1〉+ Z〈0〉]2.
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Bit-Extraction(c̃, r, q0):
Input: A ciphertext c̃ encrypting a constant b ∈ (Z/2r+1Z) w.r.t. secret key s̃ and modulus q0.
Output: A ciphertext c̃′ encrypting b〈0〉 ⊕ b〈r − 1〉 ⊕ b〈r〉 ∈ F2 w.r.t. secret key s̃ and modulus q0.

1. Set c̃0 ← c̃ // c̃ encrypt z w.r.t. s̃
2. For i = 1 to r
3. Set acc← c̃ // acc is an accumulator
4. For j = 0 to i− 1 // Compute z −∑j 2

jwi−1
j

5. Set tmp← HomExp(c̃j , 2
i−j) // Homomorphic exponentiation to the power 2i−j

6. Set acc← acc− 2j · tmp mod q0
7. Set c̃i ← acc · ((q0 + 1)/2)i mod q0 // c̃i encrypts z〈i〉
8. Output c̃0 + c̃r−1 + c̃r mod q0

HomExp(c̃, n) uses native homomorphic multiplication to multiply c̃ by itself n times. To aid ex-
position, this code assumes that the modulus and secret key remain fixed, else modulus-switching
and key-switching should be added (and the level increased correspondingly to some i > 0).

Fig. 1. A Homomorphic Bit-Extraction Procedure

Consider what happens if we add qL to all the odd coefficients in c, call the resulting
vector c′: On one hand, now all the coefficients of c′ are even. On the other hand, the
coefficients of Z ′ = 〈c′, s〉 mod Φm(X) are still small enough to use Lemma 1 (since
they are at most cm · q · ‖s‖1 larger than those of Z itself, where cm is the ring constant
of mod-Φm(X) arithmetic and ‖s‖1 is the l1-norm of s). Since c′ = c (mod qL) then
we have

[[〈c, s〉 mod Φm(X)]qL ]2 = [[〈c′, s〉 mod Φm(X)]qL ]2 = Z ′〈r〉 + Z ′〈r〉−1 + Z ′〈0〉

However, since c′ is even then so is Z ′. This means that Z ′〈0〉 = 0, and if we divide
Z ′ by two (over the integers), Z ′′ = Z ′/2, then we have [[〈c, s〉 mod Φm(X)]qL ]2 =
Z ′′〈r − 1〉⊕Z ′′〈r − 2〉. We thus have a variation of the simple decryption formula that
only needs to extract the r − 1’st and r − 2’nd bits, so it can be realized using polyno-
mials of degree upto 2r−1. Note that we can implement this variant of the decryption
formula homomorphically, because Z ′ is even so an q0-encryption of Z ′ can be easily
converted into an encryption of Z ′/2 (by multiplying by q0+1

2 modulo q0 as described
in Section 3.1).

This technique can be pushed a little further, adding to c multiples of q so that it is
divisible by 4, 8, 16, etc., and reducing the required degree correspondingly to 2r−2,
2r−3, 2r−4, etc. The limiting factor is that we must maintain that 〈c′, s〉 has coefficients
sufficiently smaller than q2L, in order to be able to use Lemma 1. Clearly, if c′ = c+ qκ
where all the coefficients of κ are smaller than some bound B (in absolute value), then
the coefficients of 〈c′, s〉 can be larger than the coefficients of Z = 〈c, s〉 (in absolute
value) by at most cm · q ·B · ‖s‖1. (Heuristically we expect the difference to depend on
the l2 norm of s more than its l1 norm.)

If we choose our parameters such that the l1-norm of s is below m, and work over
a ring with cm = O(1), then the coefficients of Z can be made as small as cm ·m · q,
and we can make the coefficients of κ as large as B ≈ q/(4cm ·m) in absolute value
while maintaining the invariant that the coefficients of Z ′ are smaller than q2/4 (which
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is what we need to be able to use Lemma 1). By choosing an appropriate κ, we can
ensure that the least significant �log(q/(4cmm)) = r − �log(4cmm)� bits of c′ are
all zero. This means that we can implement bit extraction using only polynomials of
degree at most 2�log(4cmm)� < 8cmm = O(m). (Heuristically, we should even be able
to get polynomials of degreeO(

√
m) since the l2 norm of s is only O(

√
m).) Moreover

if we assume that ring-LWE is hard even with a very sparse secret, then we can use
a secret key with even smaller norm and get the same reduction in the degree of the
bit-extraction routine.

4 Homomorphic Decryption with Packed Ciphertexts

The homomorphic decryption procedure from Section 3 is rather inefficient, mostly be-
cause we need to repeat the bit-extraction procedure from Figure 1 for each coefficient
separately. Instead, we would like to pack many coefficients in one ciphertext and ex-
tract the top bits of all of them together. To this end we employ a batching technique,
similar to [1,11,14], using Chinese remaindering over the ring of polynomials to pack
many “plaintext slots” inside a single plaintext polynomial.

Recall that the BGV scheme is defined over a polynomial ring R = Z[X ]/F (X).
If the polynomial F (X) factors modulo two into distinct irreducible polynomials
F0(X)×· · ·×F�−1(X), then, by the Chinese Remainder Theorem, the plaintext space
factors into a product of finite fields R2

∼= F2[X ]/F0(X)× · · · × F2[X ]/F�−1(X).
This factorization is used in [14,1,11] to “pack” a vector of � elements (one from

each F2[X ]/Fi(X)) into one plaintext polynomial, which is then encrypted in one ci-
phertext; each of the � components called a plaintext slot. The homomorphic operations
(add/mult) are then applied to the different slots in a SIMD fashion. When F (X) is the
m-th cyclotomic polynomial, F (X) = Φm(X), then the field Q[X ]/F (X) is Galois
(indeed Abelian) and so the polynomials Fi(X) all have the same degree (which we
will denote by d). It was shown in [11] how to evaluate homomorphically the applica-
tion of the Galois group on the slots, and in particular this enables homomorphically
performing arbitrary permutations on the vector of slots in time quasi-linear in m. This,
in turn, is used in [11] to evaluate arbitrary arithmetic circuits (of average width Ω̃(λ))
with overhead only polylog(λ).

However, the prior work only mentions the case of plaintext spaces taken modulo a
prime (in our case two), i.e. R2. In this work we will need to also consider plaintext
spaces which are given by a power of a prime, i.e. R2r+1 for some positive integer r.
(We stress that by R2t we really do mean (Z/2tZ)[X ]/F (X) and not F2t [X ]/F (X).)
In the full version [10] we show how the techniques from [11] extends also to this case.
The “high brow” way of seeing this is to consider the message space modulo 2r+1 as
the precision r + 1 approximation to the 2-adic integers; namely we need to consider
the localization of the field K = Q[X ]/F (X) at the prime 2.

4.1 Using SIMD Techniques for Bootstrapping

Using the techniques from [11] for bootstrapping is not quite straightforward, however.
The main difficulty is that the input and output of are not presented in a packed form:
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The input is a single qL-ciphertext that encrypts a single plaintext polynomial a (which
may or may not have many plaintext elements packed in its slots), and similarly the
output needs to be a single ciphertext that encrypts the same polynomial a, but with
respect to a larger modulus. (We stress that this is not an artifact of our “simpler de-
cryption formula”, we would need to overcome the same difficulty also if we tried to
use these “SIMD techniques” to speed up bootstrapping under the standard approach of
emulating the binary mod-qL circuit.) Our “packed bootstrapping” procedure consists
of the following steps:

1. Using the encryption of the qL-secret-key with respect to the modulus q0, we con-
vert the initial qL-ciphertext into a q0-ciphertext encrypting the polynomial Z ∈
(Z/2r+1Z)[X ]/Φm(X).

2. Next we apply a homomorphic inverse-DFT transformation to get encryption of
polynomials that have the coefficients of Z in their plaintext slots.

3. Now that we have the coefficients ofZ in the plaintext slots, we apply the bit extrac-
tion procedure to all these slots in parallel. The result is encryption of polynomials
that have the coefficients of a in their plaintext slots.

4. Finally, we apply a homomorphic DFT transformation to get back a ciphertext that
encrypts the polynomial a itself.

Below we describe each of these steps in more detail. We note that the main challenge
is to get an efficient implementation of Steps 2 and 4.

4.2 Encrypting the qL-Secret-Key

As in Section 3, we use an encryption scheme with underlying plaintext space modulo
2r+1 to encrypt the qL-secret-key s under the q0-secret-key s̃. The qL-secret-key is
a vector s = (1, s), where s ∈ Z[X ]/Φm(X) is an integer polynomial with small
coefficients. Viewing these small coefficients as elements in Z/2r+1Z, we encrypt s as
a q0-ciphertext c̃ = (̃c0, c̃1) with respect to the q0-secret-key s̃ = (1, s̃), namely we
have

[〈c̃, s̃〉 mod Φm]q0 = [̃c0 + c̃1 · s̃ mod Φm]q0 = 2r+1k̃ + s (equality over Z[X ])

for some polynomial k̃ with small coefficients.

4.3 Step One: Computing Z Homomorphically

Given a qL-ciphertext c = (c0, c1) we recall from the public key the q0 ciphertext c̃ =
(̃c0, c̃1) that encrypts s, then compute the mod-2r+1 inner product homomorphically by
setting

z̃ =
(
[c0 + c1c̃0 mod Φm]q0 , [c1 c̃1 mod Φm]q0

)
. (2)

We claim that z̃ is a q0-ciphertext encrypting our Z with respect to the secret key s̃
(and plaintext space modulo 2r+1). To see that, recall that we have the following two
equalities over Z[X ],

(c0 + c1s mod Φm) = 2r+1k + Z and (̃c0 + c̃1s̃ mod Φm) = q0k̃ + 2r+1k̃′ + s,
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where k, k̃, k̃′ ∈ Z[X ]/Φm, the coefficients of 2r+1k + Z are smaller than 2q2L 	 q0,
and the coefficients of 2r+1k̃′ + s are also much smaller than q0. It follows that:

(〈z̃, s̃〉 mod Φm) = [c′0 + c1c̃0 mod Φm]q0 + (s̃ · [c1c̃1 mod Φm]q0 mod Φm)

= (c′0 + c1(̃c0 + c̃1s̃) mod Φm) + q0κ

= (c′0 + c1(2
r+1k̃′ + s) mod Φm) + q0κ

′

= (c′0 + c1s mod Φm) + q0κ
′ + 2r+1(c1 · k̃′ mod Φm)

= q0κ
′ + 2r+1(k + c1k̃

′ mod Φm) + Z (equality over Z[X ])

for some κ, κ′ ∈ Z[X ]/Φm. Moreover, since the coefficients of c1 are smaller than
qL 	 q0 then the coefficients of 2r+1(k + c1k̃

′ mod Φm) + Z are still much smaller
than q0. Hence z̃ is decrypted under s̃ and q0 to Z , with plaintext space 2r+1.

4.4 Step Two: Switching to CRT Representation

Now that we have an encryption of the polynomial Z , we want to perform the homo-
morphic bit-extraction procedure from Figure 1. However, this procedure should be
applied to each coefficient of Z separately, which is not directly supported by the native
homomorphism of our cryptosystem. (For example, homomorphically squaring the ci-
phertext yields an encryption of the polynomial Z2 mod Φm rather than squaring each
coefficient of Z separately.) We therefore need to convert z̃ to CRT-based “packed”
ciphertexts that hold the coefficients of Z in their plaintext slots.

The system parameter m was chosen so that m = Θ̃(λ) and Φm(X) factors mod-
ulo 2 (and therefore also modulo 2r+1) as a product of degree-d polynomials with
d = O(logm), Φm(X) =

∏�−1
j=0 Fj(X) (mod 2r+1). This allows us to view the plain-

text polynomialZ(X) as having � slots, with the j’th slot holding the value Z(X) mod
(Fj(X), 2r+1). This way, adding/multipliying/squaring the plaintext polynomials has
the effect of applying the same operation on each of the slots separately.

In our case, we have φ(m) coefficients of Z(X) that we want to put in the plaintext
slots, and each ciphertext has only � = φ(m)/d slots, so we need d ciphertexts to holds
them all. The transformation from the single ciphertext z̃ that encrypts Z itself to the
collection of d ciphertexts that hold the coefficients of Z in their slots is described in
Section 4.7 below. (We describe that step last, since it is the most complicated and it
builds on machinery that we develop for Step Four in Section 4.6.)

4.5 Step Three: Extracting the Relevant Bits

Once we have the coefficients of Z in the plaintext slots, we can just repeat the pro-
cedure from Figure 1. The input to the the bit-extraction procedure is a collection of
some d ciphertexts, each of them holding � = φ(m)/d of the coefficients of Z in its �
plaintext slots. (Recall that we chose m = Õ(λ) such that d = O(logm).) Applying
the procedure from Figure 1 to these ciphertexts will implicitly apply the bit extraction
of Lemma 2 to each plaintext slot, thus leaving us with a collection of d ciphertexts,
each holding � of the coefficients of a in its plaintext slots.



Better Bootstrapping in Fully Homomorphic Encryption 13

4.6 Step Four: Switching Back to Coefficient Representation

To finally complete the recryption process, we need to convert the d ciphertexts holding
the coefficients of a in their plaintext slots into a single ciphertext that encrypts the
polynomial a itself. For this transformation, we appeal to the result of Gentry et al.
[11], which says that every depth-L circuit of average-width Ω̃(λ) and size T can be
evaluated homomorphically in time O(T ) · poly(L, logλ), provided that the inputs and
outputs are presented in a packed form. Below we show that the transformation we
seek can be computed on cleartext by a circuit of size T = Õ(m) and depth L =
polylog(m), and hence (since m = Θ̃(λ)) it can be evaluated homomorphically in time
Õ(m) = Õ(λ).

To use the result of Gentry et al. we must first reconcile an apparent “type mismatch”:
that result requires that both input and output be presented in a packed CRT form,
whereas we have input in CRT form but output in coefficient form. We therefore must
interpret the output as “something in CRT representation” before we can use the result
from [11]. The solution is obvious: since we want the output to be a in coefficient
representation, then it is a polynomial that holds the value Aj = a mod Fj in the j’th
slot for all j.

Hence the transformation that we wish to compute takes as input the coefficients of
the polynomials a(X), and produces as output the polynomials Aj = a mod Fj for
j = 0, 1, . . . , � − 1. It is important to note that our output consists of � values, each
of them a degree-d binary polynomial. Since this output is produced by an arithmetic
circuit, then we need a circuit that operates on degree-d binary polynomials, in other
words an arithmetic circuit over GF(2d). This circuit has � · d inputs (all of which
happen to be elements of the base field F2), and � outputs that belong to the extension
field GF(2d).

Theorem 1. Fix m ∈ Z, let d ∈ Z be the smallest such that m|2d − 1, denote
� = φ(m)/d and let G ∈ F2[X ] be a degree-d irreducible polynomial over F2 (that
fixes a particular representation of GF(2d)). Let F0(X), F1(X), . . . , F�−1(X) be the
irreducible (degree-d) factors of the m-th cyclotomic polynomial Φm(X) modulo 2.

Then there is an arithmetic circuit Πm over F2[X ]/G(X) = GF(2d) with φ(m)
inputs a0, a1, . . . , aφ(m)−1 and � outputs z0, z1, . . . , z�−1, for which the following con-
ditions hold:

– When the inputs are from the base field (ai ∈ F2 ∀i) and we denote a(X) =∑
i aiX

i ∈ F2[X ], then the outputs satisfy zj = a(X) mod (Fj(X), 2) ∈
F2[X ]/G(X).

– Πm has depth O(logm) and size O(m logm).

The proof is in the full version. An immediate corollary of Theorem 1 and the Gentry
et al. result [11, Thm. 3], we have:

Corollary 2. There is an efficient procedure that given d ciphertexts, encrypting d
polynomials that hold the coefficients of a in their slots, computes a single cipher-
text encrypting a. The procedure works in time O(m) · polylog(m) (and uses at most
polylog(m) levels of homomorphic evaluation).
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4.7 Details of Step Two

The transformation of Step Two is roughly the inverse of the transformation that we
described above for Step Four, with some added complications. In this step, we have
the polynomial Z(X) over the ring Z/2r+1Z, and we view it as defining � plain-

text slots with the j’th slot containing Bj
def
= Z mod (Fj , 2

r+1). Note that the Bj’s
are degree-d polynomials, and we consider them as elements in the “extension ring”

R d
2r+1

def
= Z[X ]/(G(X), 2r+1) (where G is some fixed irreducible degree-d polyno-

mial modulo 2r+1).
Analogous to Theorem 1, we would like to argue that there is an arithmetic circuit

over R d
2r+1 that get as input the Bj’s (as elements of R d

2r+1), and outputs all the co-
efficients of Z (which are elements of the base ring Z/2r+1Z). Then we could apply
again to the result of Gentry et al. [11] to conclude that this circuit can be evaluated
homomorphically with only polylog overhead.

For the current step, however, the arithmetic circuit would contain not only addition
and multiplication gates, but also Frobenius map gates. Namely, gates ρk(·) (for k ∈
{1, 2, . . . , d− 1}) computing the functions

ρk
(
u(X)

)
= u(X2k) mod (G(X), 2r+1).

It was shown in [11] that arithmetic circuits with Frobenius map gates can also be eval-
uated homomorphically with only polylog overhead. The Frobenius operations being
simply an additional automorphism operation which can be applied homomorphically
to ciphertexts.

Theorem 2. Fix m, r ∈ Z, let d ∈ Z be the smallest such that m|2d − 1, denote
� = φ(m)/d and let G(X) be a degree-d irreducible polynomial over Z/2r+1Z (that
fixes a particular representation of R d

2r+1). Let F0(X), F1(X), . . . , F�−1(X) be the
irreducible (degree-d) factors of the m-th cyclotomic polynomialΦm(X) modulo 2r+1.

Then there is an arithmetic circuit Ψm,r with Frobenius-map gates over R d
2r+1 that

has � input B0, B1, . . ., B�−1 and φ(m) outputs Z0, Z1, . . . , Zφ(m)−1, for which the
following conditions hold:

– On any inputs B0, . . . , B�−1 ∈ R d
2r+1 , the outputs of Ψm,r are all in the base ring,

Zi ∈ Z/2r+1Z ∀i. Moreover, denotingZ(X) =
∑

i ZiX
i, it holds thatZ(X) mod

(Fj(X), 2r+1) = Bj for all j.
– Πm has depth O(logm+ d) and size O(m(d + logm)).

The proof is in the full version. As before, a corollary of Theorem 2 and the result from
[11], is the following:

Corollary 3. There is an efficient procedure that given a single ciphertext encrypt-
ing Z ′ outputs d ciphertexts encrypting d polynomials that hold the coefficients of Z ′ in
their plaintext slots. The procedure works in time Õ(m) (and uses at most polylog(m)
levels of homomorphic evaluation).
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4.8 An Alternative Variant

The procedure from Section 4.7 works in time Õ(m), but it is still quite expensive. One
alternative is to put in the public key not just one ciphertext encrypting the qL-secret-key
s, but rather d ciphertexts encrypting polynomials that hold the coefficients of s in their
plaintext slots. Then, rather than using the simple formula from Equation (2) above, we
evaluate homomorphically the inner product of s = (1, s) and c = (c0, c1) modulo
Φm(X) and 2r+1. This procedure will be even faster if instead of the coefficients of s
we encrypt their transformed image under length-m DFT. Then we can compute the
DFT of c1 (in the clear), multiply it homomorphically by the encrypted transformed
s (in SIMD fashion) and then homomorphically compute the inverse-DFT and the re-
duction modulo Φm. Unfortunately this procedure still requires that we compute the
reduction mod-Φm(X) homomorphically, which is likely to be the most complicated
part of bootstrapping. Finding a method that does not require this homomorphic poly-
nomial modular reduction is an interesting open problem.
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Abstract. In this paper, we consider the Polly Cracker with Noise
(PCN) cryptosystem by Albrecht, Farshim, Faugère, and Perret (Asi-
acrypt 2011), which is a public-key cryptosystem based on the hardness
of computing Gröbner bases for noisy random systems of multivariate
equations. We examine four settings, covering all possible parameter
ranges of PCN with zero-degree noise. In the first setting, the PCN cryp-
tosystem is known to be equivalent to Regev’s LWE-based scheme. In
the second, it is known to be at most as secure as Regev’s scheme. We
show that for one other settings it is equivalent to a variants of Regev’s
with less efficiency and in the last setting it is completely insecure and
we give an efficient key-recovery attack. Unrelated to the attack, we also
fix some flaws in the security proofs of PCN.

Keywords: Polly Cracker with Noise, Learning with Errors, Gröbner
bases, Cryptanalysis.

1 Introduction

Background. By the term Polly Cracker-type cryptosystem, we mean a family of
cryptosystems starting from the early 1990s that propose to base their security
on the difficulty of computing Gröbner bases ([8,2]). In its public key version
and the most simple form, the public key is an ideal I in a polynomial ring
(given by sufficiently many polynomials of degree b from I) and the secret key is
a Gröbner basis for I consisting of polynomials of degree d ≤ b. These systems
mostly lack a formal treatment of security and almost all of them have been
broken due fundamental limitations in the construction([2,1]). See [7] for a good
survey on various instantiations and attacks.

Recently, at Asiacrypt 2011, Albrecht, Farshim, Faugère, and Perret [1] pro-
posed a new cryptosystem called Polly Cracker with Noise (PCN) that tries
to overcome these limitations. Their cryptosystem can be seen both as a high-
dimensional generalization of Regev’s LWE-based scheme [12] and a noisy gener-
alization of the Polly Cracker-style cryptosystems. They also give a formal proof
of security, based on the hardness of computational problems related to Gröbner

� Due to space limitations, this version does not contain the proofs of Thm. 3. These
are contained in the full version, available on eprint.

M. Fischlin, J. Buchmann, and M. Manulis (Eds.): PKC 2012, LNCS 7293, pp. 17–33, 2012.
c© International Association for Cryptologic Research 2012
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bases and ideals in multivariate polynomial rings. Note that this paper refers
mainly to the full version of [1] on eprint, which contains more material than
the proceedings version.

One of the appealing features of the PCN cryptosystem comes from its ideal-
theoretic framework. In this framework it is prominently visible that the PCN
cryptosystem, which contains LWE as a special case, is both multiplicatively and
additively homomorphic for a limited number of operations. For the special case
of LWE, the recent fully homomorphic scheme by Brakerski and Vaikuntanathan
from FOCS 2011 [4] can be represented in this framework.

Our Contributions. Our first result is that the Polly Cracker with Noise cryp-
tosystem with zero-degree noise is either insecure or does not offer any secu-
rity benefit (although still a conceptual one) compared to Regev’s scheme. For
b > d > 1, we present an efficient attack that recovers the secret key from the
public key. For d = 1, the security of the PCN cryptosystem is at most that of
Regev’s scheme by [1]. For d = b > 1, PCN has the same security as Regev’s
schem, but with less efficiency. The only remaining case b = d = 1 is exactly
Regev’s scheme by [1].

Note that zero-degree noise is used for the homomorphic properties claimed
in [1], cf. Sect. 2.3.

As a second result, we point out flaws in the security proofs of [1], giving coun-
terexamples to the statements claimed therein. We then give corrected proofs for
d = 1, thereby showing their security proofs only work for d = 1. Note that the
attack against b > d > 1 is unrelated to these flaws. Due to space limitations,
the proofs are only contained in the full version, available on eprint.

Organization of this Work. This work is organized as follows: In Section 2, we
start by introducing some notation and recalling the Polly Cracker with Noise
cryptosystem and its security assumptions. In Section 3, we relate the PCN
cryptosystem to Regev’s scheme for b = d and for d = 1.

In Section 4, we give counterexamples to the security proofs of [1] and give
corrected statements for d = 1.

In Section 5, we present our key-recovery attack for b > d > 1.

2 The Polly Cracker with Noise Cryptosystem

2.1 Gröbner Bases

In this section, we introduce some notation and recall some facts regarding
Gröbner bases [5]. For a more detailed exposition, see e.g. [6].

Let P = Fq[X1, X2, . . . , Xn] be a polynomial ring and < be a fixed monomial
ordering for its monomials. For a subspace Q ⊂ P , we denote by Q<k, Q=k, Q≤k

the restriction of Q to polynomials of total degree < k,= k,≤ k, respectively.
We shall always assume that q is odd, for simplicity prime, and that the mono-
mial ordering is compatible with the total degree of monomials (e.g. deglex
or degrevlex), i.e. deg f < deg g implies f < g for all monomials f, g ∈ P ,
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where deg denotes total degree. W.l.o.g. we may assume X1 < X2 < . . . < Xn.
For a polynomial f ∈ P , let LC(f),LM(f),LT(f) denote the leading coefficient,
monomial and term, respectively. We always represent polynomials f ∈ P, f =∑

m≤LM(f) fm ·m by their dense coefficient representation, i.e. the list of the fm.
Note that for degree-compatible<, the length of this list is at most dimP≤deg f =(
n+deg f
deg f

)
, which is polynomial in n for fixed deg f .

Definition 1. Gröbner basis
Let I ⊂ P be an ideal. A finite set G = {g1, . . . , gl} is called a Gröbner basis for
I if G generates I as an ideal and if for every f ∈ I, there is a gi ∈ G such that
LM(gi) | LM(f).

If additionally, LC(gi) = 1 for all i and no term of gi is divisible by LC(gj)
for i �= j, we call G a reduced Gröbner basis.

Every ideal I ⊂ P has a Gröbner basis G. If one additionally insists on G being
reduced, G is unique. For any f ∈ P , we can use the multivariate polynomial
division algorithm to compute the remainder, denoted f mod G. The central
property of a Gröbner basis G is that f mod G is unique. We use this property
to identify P/I with the set of remainders, thus viewing P/I ⊂ P . As a vector
space, P/I is generated by those monomials not divisible by any LM(gi) and we
always have P = (P/I)⊕ I.

2.2 Polly Cracker with Noise

In this section, we briefly recall the (symmetric key variant of the) Polly Cracker
with Noise(PCN) cryptosystem.

The secret key of this cryptosystem is a Gröbner basis G for some ideal I ⊂
P . Ciphertexts are noisy samples from I, where the message is appropriately
embedded in the noise. More precisely, we encrypt a message bit M ∈ {0, 1} as
f +2e+M , where f ←$ I and e←$ X from some noise distribution X on P/I.
We can decrypt c by computing M = (c mod G) mod 2, provided the noise e is
small enough.

In more detail, let us consider P = Fq[X1, . . . , Xn] and < as above. We will
also need to fix some integers 0 < d ≤ b, which will denote the degree of the
Gröbner basis polynomials and the message polynomials, respectively. The pa-
rameters q = q(λ), n = n(λ) will be implicitly functions of the security param-
eter λ, with log q = poly(λ) (sometimes even q = poly(λ)), n = poly(λ) and
nd = Ω(λ) (so poly(n) = poly(λ)). Note that we assume b, d not to depend on
the security parameter λ.

The secret key of our cryptosystem will be a (reduced) Gröbner basis G =
{g1, . . . , gn} for some ideal I, so we need an algorithm to generate Gröbner bases.
In general, we require Gen(1λ) to be a ppt algorithm outputting a reduced
Gröbner basis G = {g1, . . . , gk} for an ideal I � P with deg gi ≤ d.

For definiteness, we will restrict our attention in Sect. 5 to the key generation
algorithm suggested in [1] called GBGendense.
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Algorithm 1. GBGendense

function GBGendense(1
λ):

for i = 1 to n do
gi ← Xd

i

for all monomials m ∈ P≤d with m < Xd
i and m �= Xd

j for any j do
gi,m ←$ Fq uniformly
gi ← gi + gi,m ·m

return G = {g1, . . . , gn}

Writing each gi as gi =
∑

m gi,m ·m wherem runs over the possible monomials of
P , GBGendense sets the leading term of gi to be Xd

i . The coefficients of smaller
monomials are chosen uniformly and independently at random.

Buchberger’s first criterion (cf. [3, Lemma 5.66, p. 222] or [6, section 2.9, pp.
99–108]) guarantees that this is indeed a Gröbner basis for its generated ideal
I = (g1, . . . , gn). Setting all coefficients of Xd

j in gi to be 0 for i �= j guarantees
that G is a reduced Gröbner basis. Note that sampling these coefficients at
random as well and then reducing the Gröbner basis afterward, as originally
done in [1], gives the same output distribution.

We denote by Q = P/I the quotient ring and identify it with a subspace
Q ⊂ P as above, such that P = I ⊕Q.

With G generated by GBGendense, Q is always finite-dimensional and a basis
is given by

{
Xt1

1 · · ·Xtn
n | ti < d

}
. Note that this does not depend on the ran-

domness of GBGendense and for simplicity we shall always assume that Q ⊂ P is
finite-dimensional and a basis for Q≤b is publicly known, even for general Gen.
It follows that for d = 1, Q = Fq is just the field of constants in P . In the case
d > 1, the full quotient Q has exponential dimension dimQ = dn, essentially
due to the lack of a fixed bound on total degree. In this case, our cryptosystem
will only make use of the polynomially-dimensional subspace Q≤b ⊂ Q.

Let X be an efficiently sampleable noise distribution onQ≤b. The distributions
we will later be concerned with will be either uniform or discrete Gaussian
distributions on vector sub-spaces. In the case of Gaussians, this will mean we
independently sample each coefficient of e ← X in a particular basis from a
discrete Gaussian distribution.

By the support S of a probability distribution Φ on a finite set Ω, we mean
those elements of Ω that are assigned a non-zero probability by Φ.

Using the Gröbner basis G for I, we can obtain noisy samples from I≤b + X
by applying algorithm 2.1

By SampleI without subscript, we denote the special case of noiseless sampling
from I≤b (i.e. with e = 0 above).

Following [1], we note that SampleI actually samples uniformly from I≤b and
also give an alternative sampling algorithm, whose equivalence we will need
later on:

1 Identifying a set with the uniform distribution on it, I≤b +X actually is the output
distribution of the algorithm.
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Algorithm 2. SampleIX
1: function SampleIX (G,b):
2: f ←$ P≤b uniformly
3: e←$ X
4: f := f − (f mod G) + e
5: return f .

Lemma 1. For any Gröbner basis G = (g1, . . . , gm) for I, SampleI(G, b) yields
uniform samples from I≤b.

Furthermore, if deg gi = di ≤ b for all gi and the underlying monomial order-
ing is compatible with deg, we have the following alternative sampling algorithm,
which gives the same distribution:

Let ti ←$ P≤b−di uniformly for i ∈ {1, . . . ,m} and sample f ∈ I as f =∑m
i=1 ti · gi.

Proof. Clearly, both ways of sampling give us polynomials from I≤b. We ob-
serve that both f �→ f mod G and (t1, . . . tm) �→ f =

∑m
i=1 ti · gi are Fq-linear

maps. Since surjective linear maps preserve uniform distributions, both resulting
distributions are uniform on their respective supports.

For SampleI, the support is clearly all of I≤b, since we may choose any element
from I≤b in step 2 of the algorithm.

For the alternative sampling, we note that for f ∈ I≤b, the multivariate poly-
nomial division algorithm for f mod G gives us a (typically non-unique) repre-
sentation f =

∑
i tigi. Since < is compatible with deg, the intermediate results

in that computation have degree ≤ b, which ensures that deg ti ≤ b− di. This
already proves the claim.

To encrypt a message bit M ∈ {0, 1}, we proceed as follows:

Algorithm 3. EncG
1: function EncG(M):
2: f ← SampleI(G)
3: e←$ X
4: c := f + 2e+M
5: return c

Accordingly, decryption of a ciphertext c ∈ P≤b is performed by the following
algorithm, where for f ∈ P , f=0 denotes the constant coefficient of f :

Algorithm 4. DecG
1: function DecG(c):
2: M := (c mod G)=0 ∈ {−� q2	, . . . , � q2	}
3: return M mod 2
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Decryption is correct, provided that for the noise 2e ←$ 2X we have |2e=0| <
� q2. If X is a sufficiently narrow discrete Gaussian distribution, this will be the
case with overwhelming probability.

Remark 1. Embedding the message in the noise
In algorithm EncG above, the message M is merely one bit and is embedded
only in the degree 0 term of the noise. Hence, in algorithm DecG, we also take
only the degree 0-coefficient (c mod G)=0. In particular, this means that fake
ciphertexts c not generated by EncG still decrypt to a bit, even if c mod G is
not in the support of 2X + {0, 1}. Alternatively, we could output an error in the
latter case.2

In fact, in [1] it is implicitly assumed (and also implemented that way in the
reference implementation) that the noise is completely contained in degree 0.
Unfortunately, these issues are not addressed in [1] and we will show in Sect. 5
that for d > 1 this choice renders the system insecure for b > d. For b = d or
d = 1, compare the following Sect. 3, where we show that these choice offer no
benefit compared to b = d = 1. For b = d = 1, the PCN cryptosystem is a
reformulation of Regev’s scheme.

Actually, if the message is contained only in degree 0, the coefficients belonging
to the monomials ofQ≤d other than the constant term of a ciphertext polynomial
c are completely irrelevant for decryption (cf. Prop. 1, which is a special case of
that).

So unless one wants to detect fake ciphertexts as mentioned above or make use
of the multiplicative homomorphic properties (cf. Sect. 2.3), one should really
use uniform noise for those coefficients (or just leave those coefficients out of the
ciphertext altogether).

In this work we will consider the more general setting, where the message is
contained in degree 0, but the noise distribution X on Q≤b is arbitrary. When
we assume that the noise is concentrated in degree 0, we will explicitly state
that.

2.3 Homomorphic Properties and Public Key Version

One of the appealing aspects of the PCN cryptosystem is that it is somewhat
homomorphic:
P → Q, f �→ f mod G is actually a ring map. This means that for ciphertexts

c1 = f1 +2e1 +M1, c2 = f2 +2e2 +M2, with fi ∈ I≤b, ei ∈ Q≤b,Mi ∈ {0, 1}, we
have

c1 + c2 = (f1 + f2) + 2(e1 + e2) +M1 +M2

and

c1 · c2 = g + 2 (2e1e2 + e1M2 + e2M1 mod G) + (M1M2 mod G),

where g ∈ I≤2b

2 Note that if the support of 2X + {0, 1} is a vector space, a CPA-attacker can check
for this error himself, so this does not affect security.
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From this, we get DecG(c1) � DecG(c2) = Dec(c1 � c2), provided that the
noise of the sum/product does not grow too large.

For sums, this implies that for a sufficiently narrow Gaussian X , the cryp-
tosystem supports a limited number of homomorphic additions at the cost of
increased noise, and still decrypts correctly with overwhelming probability.

Note that this also holds in the case that we embed several bits into one
ciphertext, provided the noise is narrow coefficient-wise. Via the usual generic
construction [14], these additive somewhat homomorphic properties allow to
convert the secret key cryptosystem into a public key cryptosystem by publishing
a sufficient amount of encryptions of 0 as the public key. Note that the same
applies to Regev’s scheme [12] described below in Section 3. For simplicity, in
this work we deal with the secret key versions of both schemes, but it is easy to
see that everything carries over directly to the public-key setting.

For multiplications, if the noise is concentrated in degree 0, we get that the
noise is approximately multiplied for each multiplication of ciphertexts3, so we
can also perform a limited number of homomorphic multiplications.

If d > 1 and X is not supported in degree 0, this will actually fail if done
näıvely. The reason is that even if all coefficients of e1, e2 are small, e1 ·e2 mod G
might have large coefficients due to reduction mod G.

This is the case even if the coefficients of theGröbner basis polynomials are small;
take for example the reduced Gröbner basis G = (g1, . . . , g2n) ⊂ Fq[X1, . . . X2n]
with
g1 = X2

1 − a1, g2 = X2
2 − a2,

g2i = X2
2i − a2iX2i−2X2i−3,

g2i+1 = X2
2i+1 − a2i+1X2i−2X2i−1 for i ≥ 1 and ai ∈ Fq small.

Then for e1 = e2 = X2nX2n−1 ∈ Q≤2, we have e1 · e2 mod G =
∏2n

i=1 ai, which
is exponentially large.

This observation makes it highly desirable to concentrate the noise and mes-
sage in degree 0. Unfortunately, this renders the system insecure (cf. Sect. 5)
unless d = 1 or b = d. By the results of Section 3, in the latter cases, we should
rather use b = d = 1.

2.4 Security Assumptions

[1] introduced the following three security problems related to the PCN cryp-
tosystem:

Definition 2. The Gröbner basis with noise (GBN) problem GBNn,Gen,d,b,X
for parameters as above is defined as follows:

Let G ← Gen(1λ) be a reduced Gröbner basis. Given access to a sampling
oracle for SampleIX , the task is to find G. The advantage for a (ppt) algorithm
A in solving the GBNn,Gen,d,b,X problem ist given as

Advgbnn,Gen,d,b,X ,A(λ) = Pr[A solves the GBNn,Gen,d,b,X -problem]− 1

|G| ,

3 Note that this also increases the total degree, which can be adressed by reencryption
techniques[4], but this will not be important for us here.
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where G is the set of possible secret keys and the probability is over the coins of
Gen, SampleI and A.

Note that we always assume that |G| is exponential.

Definition 3. The Ideal remainder with noise problem IRNn,Gen,d,b,X for pa-
rameters as above is defined as follows:

Let G← Gen(1λ) and a uniformly random challenge x←$ P≤b. Given x and
access to a sampling oracle for SampleIX , the task is to find x mod G ∈ Q≤b.
The advantage for a ppt algorithm B for this problem is given as

Advirnn,Gen,d,b,X ,B(λ) = Pr[B solves the IRNn,Gen,d,b,X -problem]− 1

|Q≤b|
,

where the probability is over the coins of Gen, SampleI, B and the uniform choice
of the challenge x.

Note that this definition of advantage implicitly assumes that Q≤b is known
to the attacker.

Definition 4. The Ideal membership with noise (IMN) problem IMNn,Gen,d,b,X
for parameters as above is defined as follows:

Let G← Gen(1λ). Given access to a sampling oracle for SampleIX , the task
is to distinguish a challenge polynomial x drawn either as x←$ SampleIX or as
a uniform x ∈R P≤b. The advantage for a ppt algorithm C for this is given as

Advimn
n,Gen,d,b,X ,C(λ) = Pr[C

SampleIX ()(x) = 1]−Pr[CSampleIX ()(u) = 1]

where x ←$ SampleIX , u ∈R Q≤b and the probability is over the coins of Gen,
SampleI, C and choices of x or u. Note that we differ by a factor 2 from [1].

The security assumption made in [1] is that for appropriate choice of parameters,
namely b ≤ d ≤ 1 arbitrary, Gen = GBGendense and X a sufficiently broad
discrete Gaussian distribution on Fq, the advantage for any ppt algorithm is
negligible for GBN / IRN / IMN.

Also, it was claimed in [1] that all of these assumptions and the IND-CPA-
security of PCN are essentially equivalent:

1. The GBN problem is hard iff the IRN problem is hard.
2. For polynomially-sized Q≤b, IRN is hard iff IMN is hard.
3. If IMN is hard, the PCN cryptosystem is IND-CPA-secure.

As their proofs of 1 and 2 contain errors (amongst other things, the reduction
presents the wrong distributions to the algorithms), we will redo the proofs for
1 and 2 in Sect. 4.

Unfortunately, we will have to make additional assumptions compared to [1],
most importantly we have to assume d = 1 for the ⇒ direction in the first
proof and for the ⇐ direction of the second. We will also give a counterexample
indicating that these additional assumptions are necessary.
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3 Relations to LWE and Regev’s Scheme

We will now relate the PCN cryptosystem to LWE and show that the cases b = d
and d = 1 both reduce to Regev’s LWE-based scheme. Let us briefly recall the
LWE distribution, the LWE assumption and Regev’s scheme from [12], which
has a reduction to the LWE assumption:

Definition 5. Learning with Errors (LWE)
Let Φ be some noise distribution on a finite field Fq and n ∈ N and s ∈ Fn

q .
The LWE distribution Ls,Φ on Fn

q × Fq is obtained by sampling a1, . . . , an ∈ Fq

uniformly random, e←$ Φ and outputting (a1, . . . , an,
∑

aisi + e).
The computational LWE problem LWEn,q,Φ is the following problem: For uni-

formly random s ∈ Fn
q , compute s when given oracle access to Ls,Φ.

The decisional LWE problem DLWEn,q,Φ is the following problem: For uni-
formly random s ∈ Fn

q , distinguish x ∈R Fn+1
q from x←$ Ls,Φ when given oracle

access to Ls,Φ.
The LWE assumption (for q,X given functions of n) states that any ppt al-

gorithm can only solve these problems with negligible advantage.

Definition 6. Regev’s scheme
Let Φ be some noise distribution on a finite field Fq. In its secret key version4,
Regev’s scheme generates a secret key s = (s1, . . . , sn) ∈ Fn

q uniformly. We
encrypt a message M ∈ {0, 1} by sampling a = (a1, . . . , an) ∈ Fn

q randomly,
e←$ Φ and defining the ciphertext as (a, 〈a, s〉+2e+M), where 〈a, s〉 =

∑
aisi

is the scalar product.
Decryption recovers 2e + M and, from that, M itself, provided e is small

enough.

As already noted in [1], Regev’s scheme is equivalent to the PCN cryptosystem
for d = b = 1. To see that, we can identify Regev’s secret s with the Gröbner
basis G = (X1 + s1, . . . , Xn + sn). We identify ciphertexts (a, b) with linear
polynomials

∑
aiXi + b and Φ with X .

In fact, such a relationship also holds for b = d > 1 and for b > d = 1, where
the cases with d = 1 were already discussed in [1]:

Theorem 1. Relationship of PCN with LWE for b = d or d = 1

– For b = d, the IND-CPA-security of PCN (with parameters q,X , b, d, n)
is equivalent to the IND-CPA-security of Regev’s scheme (with parameters
q,X , n).

– For d = 1, there exists a tight security reduction from the IND-CPA-security
of PCN (with parameters q,X , b, d, n) to the IND-CPA-security of Regev’s
scheme (with parameters q,X ,

(
n+b
b

)
).

– For b = d = 1, the PCN cryptosystem is a reformulation of Regev’s scheme.

4 The public-key version is obtained by using Rothblum’s construction [14] just as
with PCN and all observations carry over directly to the public-key versions of both
schemes.
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Proof. For b = d, this follows from proposition 1 below, showing that in this
case the PCN cryptosystem is a redundant version of Regev’s scheme. For d =
1, this follows from proposition 2 below, showing that in this case the PCN
cryptosystem is a structured version of Regev’s scheme. The case b = d = 1 was
already discussed above.

Regarding ciphertext length, recall that the PCN-ciphertexts are
(
n+b
b

)
elements

from Fq. As a consequence, for b = d > 1 we have a loss in efficiency, but no gain
in security. For b > 1, d = 1, we have no gain in efficiency (apart from a shorter
secret key compared to Regev’s) and potentially a loss in security. Therefore,
there is little point in using the PCN cryptosystem for b = d or d = 1 unless
b = d = 1.

Proposition 1. Relation of PCN with LWE for b = d
Consider the case b = d and assume that X outputs e ←$ X , e =

∑
m em ·m,

where the sum runs over the monomials and the em are chosen independently,
their distribution possibly depending on m (This is the case if the noise is con-
tained in degree 0). Then the PCN cryptosystem is essentially5 a reformulation
of (the secret key version) of the amortized6 variant [11] of Regev’s scheme,
where each monomial m of Q≤b corresponds to one parallel instance of Regev’s
original scheme.

To see this, consider a PCN-ciphertext c. By lemma 1, c is of the form c =∑
ti · gi + 2e+M for e←$ X with ti ∈ Fq. Let us write c =

∑
m cm ·m for the

monomials m of c. Then for 1 �= m ∈ Q≤b, the coefficients of the ciphertext are
cm =

∑
ti · gi,m + 2em and c1 =

∑
ti · gi,1 + 2e1 +M . These are noisy random

linear combinations of the secret gi,m as in Regev’s scheme. The other m /∈ Q≤b

are m = Xd
i and there we have cXd

i
= ti. It follows that the ciphertexts are

exactly as in the amortized variant of Regev’s.
When taking that point of view for general b = d > 1, beware that by con-

struction, for some m ∈ Q=b and some j ∈ {1, . . . , n} we can have m ≮ Xd
j ,

so gm,Xd
j
= 0. In that case, the corresponding LWE-instance has a secret key

from Fn′
q for some n′ < n. In particular, for GBGendense and m = Xb−1

n Xn−1

we have n′ = 1. Of course, since the message is contained in degree 0, only the
Regev-instance for the constant monomial m = 1 is relevant and the above is
not an issue. The other coefficients (apart from the Xd

i ) are superfluous, not
only for the ciphertexts but also for the secret key, since these coefficients are
independent of the gi,1 and the message. It follows that for b = d, the security
of the PCN cryptosystem does not depend on d at all, but the efficiency de-
grades with d. Note that if the em are not independent, this might only help the
attacker.

5 The only difference is that for some of the parallel instances, the secret key has fewer
coordinates.

6 This amortized variant just runs parallel instances of Regev’s, where the random
coefficients a of the noisy linear combinations 〈a, s〉+e are shared between instances.
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Proposition 2. Reduction from PCN to LWE for d = 1, b arbitrary
Consider the case d = 1, b arbitrary. Then the PCN cryptosystem can be
viewed as a structured version of Regev’s scheme. There is a reduction from
the (IND-CPA-)security of PCN to the (IND-CPA-)security of Regev’s original
scheme, as already noted in [1].

To see this, first observe that for d = 1, the secret Gröbner basis of the PCN
cryptosystem is necessarily of the form G = (X1 − s1, . . . , Xn − sn) for s =
(s1, . . . , sn). We then have f mod G = f(s), so SampleI(G, b) just gives us
polynomials f − f(s) · 1 for f ∈ P≤b uniformly. For a monomial m �= 1 of
P≤b, let s̃m := m(s) ∈ Fq. It follows that PCN-ciphertexts are of the form∑

m �=1 am ·m− (
∑

m �=1 amm̃s) · 1, where the am ∈ Fq are uniform and the sums
run over the monomials m of P≤b (except the constant one). This implies that
PCN-instances are nothing but Regev-instances with a structured secret key m̃s.

Our reduction just has to remove that structure from the key. This can be
done as in [13] by rerandomizing the secret:

Our reduction chooses tm ∈ Fq uniformly for m �= 1 monomial of Fq. Then
we bijectively transform any PCN-ciphertext c =

∑
m �=1 amm+ b into a Regev-

ciphertext Tt(c) = (a, b +
∑

m �=1 tmam). These ciphertexts are distributed as
Regev-ciphertexts with uniform secret s̃+ t with the same ai and the same noise
e←$ X .

4 Security Proofs

In this section, we clarify the relationships between the different security as-
sumptions we recalled in Sect. 2.4 and the security of the PCN cryptosystem.
We will first give counterexamples, showing that, under the LWE assumption,
the GBN, IRN and IMN problems are not equivalent for general d > 1, refuting
the claims from [1]. We will then give corrected proofs for d = 1.

In order to make the proofs for d = 1 work, we need to impose the following
technical restriction on X :

Definition 7. We call a noise distribution X on Q≤b recognizable with noise, if
for every p′ = poly(λ) there exists a ppt algorithm D that, given oracle access to
Xa,p with p ≤ p′, outputs a with overwhelming probability for uniform a←$ Q≤b.

Hereby, Xa,p is defined as a distribution that, with probability
(
1− 1

p(λ)

)
, outputs

a uniform x ←$ Q≤b, and otherwise (with probability 1
p(λ)) outputs x = e + a

for e←$ X .

We remark that a discrete Gaussian distribution with polynomial standard de-
viation is recognizable with noise (using as D the majority vote).

Theorem 2. IRN hard � GBN hard, IRN hard � IMN hard
Assume that the LWE assumption holds for some q = poly(n) and some noise
distribution Φ on Fq that is recognizable with noise. Then there exists an instanti-
ation for Gen with X recognizable with noise (and, in particular, distinguishable
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from uniform), such that the IRN problem is easy, but both the GBN problem
and the IMN problem are hard, contradicting the proofs from [1].

Proof. Consider the case b = d = 2 and let q = poly(n) and Φ be such that
the LWE assumption holds for q and Φ. We consider Gen that outputs reduced
Gröbner bases of the form G = (X2

1 , X2+s2X1, X3+s3X1, . . . , Xn+snX1). Then
Q = Q≤b is generated by X1 and 1 as a vector space. For the noise distribution
e1X1 + e2 ←$ X , we take e1 ←$ Φ and e2 uniform from Fq.

By construction, the constant coefficient of all Gröbner base polynomials is 0,
so for any f ∈ I≤b we have f mod G = f=0 + r(f)X1 for some r(f) ∈ Fq. This
already implies that we can guess the remainder by guessing r(f) with noticeable
probability 1

q , compared to |Q≤b| = q2, giving a non-negligible advantage for the
IRN problem.

Now let f ←$ SampleIX with f = f (2) + f (1) + f (0) be the homogenous parts
of degree 2, 1 and 0. Since P≥2 ⊂ I and the noise in degree 0 is uniform, we
get that f (2) and f (0) are independently uniform and independent of f (1). Let
us write f = e +

∑
i tigi with gi ∈ G, ti ∈ P, e ∈ Q. Since deg gi ≥ 1, f (1) only

depends on e and the degree-0 part of the ti.
It follows that f (1) = bX1+a2X2+. . . anXn with ai uniform and b =

∑
aisi+

e1 with e1 ←$ Φ, i.e. f
(1) is distributed as Ls,Φ. It follows that the IMN problem

is equivalent to the DLWEn−1,q,Φ-problem and the GBN problem is equivalent
to the LWEn−1,q,Φ-problem, both of which we assumed to be hard.

Remark 2. Separation of IRN and GBN.
There is also a separation between IRN and GBN, if we assume that the LWE-
assumption holds for some q and some Gaussian noise. Namely, take b = d = 2
and let Gen output Gröbner bases of the form X2

1 − s1, . . .X2
n− sn with si ∈ Fq

independent and uniformly. Note that there are no linear terms here. As noise
distribution choose Gaussian noise, concentrated in degree 0. Then the GBN
problem is is hard if the LWE assumption holds (cf. Prop. 1). However, IMN is
easy, because noisy samples from the ideal have no linear terms.

Note that we assumed Φ to be recognizable with noise to satisfy the requirements
from [1] and all requirements from Thm 3, apart from d = 1, below. Without that
restriction on the noise, we may take Φ to be uniform and get an information-
theoretical variant of Thm. 2 without the need for an LWE assumption.

For d = 1, the statements from [1] actually hold. The reason why we can make
the proof work only in that case is that we need an amplification step, for which
our rerandomization strategy only works for d = 1.

Theorem 3. IRN hard ⇔ GBN hard ⇔ IMN hard for d = 1, q = poly(n)
and X recognizable with noise
For any Gen,X , b ≤ d, we have:

1. If the IMN problem is hard, the PCN cryptosystem is IND-CPA-secure.
2. If d = 1,X recognizable with noise, then the IRN problem is hard iff the GBN

problem is hard.
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3. If q = poly(n), d = 1,X distinguishable from uniform, then then IRN problem
is hard iff the IMN problem is hard.

Proof. Statement 1 is proven in [1]. Statement 2 and 3 are proven in the appendix
of the full version.

5 Attack on Low-Dimensional Noise

In this section, we present our main contribution. We will present a polynomial
time CPA-attack against the PCN cryptosystem that recovers the secret key, if
b > d > 1, using that the noise is contained in degree 0. Note that all concrete
parameter choices of [1] use d = 1, but this attack still violates the explicit
security assumption, which is stated for general d.

Throughout this section we assume that d > 1 and that X is supported in
degree ≤ k. Furthermore, we assume for simplicity that we are using Gen =
GBGendense. Using the notation from Alg. 1 above, let us write the secret key
as G = (g1, . . . , gn) with gi = Xd

i +
∑

m gi,m ·m. Our attack will derive linear
equations for the gi,m.

The intuition behind the attack is the following:
Since the support of X is contained in Q≤k, all ciphertexts are contained in

a vector sub-space N := Ib ⊕ Q≤k � P≤b. We can recover this vector space N
via a CPA-oracle (In the public-key variant, N is directly given by the public
key). Note that the dimension of N is known, namely, it is dimN = dimP≤b −
dimQ≤b + dimQ≤k = O(nb).

Of course, since gi ∈ I≤b ⊂ N , the secret Gröbner base polynomials must also
lie in this subspace. If the inclusion is proper, this directly translates into linear
equations for the gi,m. Unfortunately (for the attacker), these equations do not
yet determine the gi: We may add any error term h ∈ Q≤k to gi and we still
have gi + h ∈ N .

To overcome this, we make use of the fact that I is an ideal, so t ·gi ∈ I≤b ⊂ N
for any polynomial t with deg t ≤ b − d. Roughly speaking, this effectively also
multiplies the error term by t and we will use this to move the error out of
Q≤k. In order to move the error completely out of Q≤k, we need to multi-
ply by polynomials t of degree > k, so we expect our attack to work when-
ever b − d > k. In particular, for k = 0, this strategy will recover the secret
key for b > d.

Note that we will also cover the case d > k:
Remember that for d > 1, Q has exponential (in n) dimension and contains

polynomials of degree > d for n large. In the case d > k, we will not get any
useful information from gi ∈ N . But for k < b we still have Q≤k � Q≤b � Q
for n large. This means we will get some useful equations from t · gi ∈ N for
polynomials t with b− d ≥ deg t ≥ d− k

We now present the actual algorithm and then we will give a rigorous analysis.
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Algorithm 5. ppt attack against PCN cryptosystem with low-degree noise

Input: 1n, k, b, d, access to a CPA oracle
Output: Secret key gi,m

1: N := a vector space basis of Q≤k

2: repeat
3: Create f ∈ I≤b ⊕Q≤k an encryption of 0
4: N := N ∪ {f}
5: until dim(SpanN) = dim(I≤b ⊕Q≤k)

� We now have Span(N) = I≤b ⊕Q≤k

6: Write N as a matrix and perform Gaussian elimination to obtain

Span(N) = kerA for linear A : P≤b → F
dimQ≤b−dimQ≤k
q .

7: for i = 1 to n do
8: Let Ei := ∅ be the set of equations for the gi,m.
9: for all monomials t ∈ P≤b−d do
10: Add the inhomogenous linear equations A(t · gi) = 0 in the variables gi,m

to Ei.

11: Solve the system of equations Ei

12: return A solution gi,m for each of the Ei

Theorem 4. Algorithm 5 is Correct and Runs in Polynomial Time
with Overwhelming Probability
With overwhelming probability, algorithm 5 runs in polynomial time O(n2b+d+1).

If n > k, d > 1 and b− d > k, the algorithm outputs the secret key.
In particular, for k = 0, that is, for noise concentrated in degree 0, the algo-

rithm gives an efficient key-recovery attack for b > d > 1.
More precisely, we claim that, if n > k, we have gi,m = gi,m whenever degm >

k − (b − d).
For any other m with degm ≤ k − (b− d), gi,m may be chosen arbitrarily by

the algorithm (the solution of the Ei is not unique if such monomials exist).

Proof. Let us start with the running time:
In line 2 to 5, we use the CPA-oracle to obtain f ∈ I≤b ⊕Q≤k (Note here that
if the message is embedded only within Q≤k as well, any ciphertext will do).

Since the I≤b-component of f is uniform, after O(dim I≤b) = O(nb) steps, we
will eventually obtain all of I≤b ⊕Q≤k with overwhelming probability.

After that, the running time of the algorithm is dominated by solving the Ei.
Each Ei consists of dimP≤b−d ·(dimQ≤b−dimQ≤k) = O(n2b−d) equations in at
most dimP≤d = O(nd) unknowns. Since 2b− d > d, this gives a running time of
O(n2b−d) · O(nd) · O(nd) = O(n2b+d) for solving each Ei, hence a total running
time of O(n2b+d+1) to solve all the Ei (cf. Rmk 3 below).

We now turn to the correctness statement:
By construction, Span(N) = I≤b ⊕Q≤k, starting from line 6.
Since gi ∈ I≤b ⊂ I≤b ⊕Q≤k, we have A(gi) = 0. Making use of the fact that

I is an ideal, we also have t · gi ∈ I≤b and hence A(t · gi) = 0 for deg t ≤ b− d.
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It follows that the equations we derive for the gi,m are correct, that is, the
gi,m satisfy the equations Ei.

Note that in line 10, we rewrite the linear equation A(tgi) as an equation in
the gi,m. Implicitly, we add the equations gi,m = 0 for m > Xd

i , gi,Xd
j
= 0 for

i �= j and gi,Xd
i
= 1 at this point. Since we set the coefficient of Xd

i to be 1 in that
last equation, the resulting system of equations Ei is a system of inhomogeneous
linear equations.

Now, the Ei might have more than one solution, apart from the secret key gi,m.
To show that the coefficients for monomials m with degm ≤ k − (b − d)

are undetermined, we first observe that P≤k mod G = Q≤k, so I≤b ⊕ Q≤k =
I≤b+P≤k. Consequently, by Lemma 1 I≤b⊕Q≤k are exactly all elements of the
form f = e+

∑
tigi with arbitrary e ∈ P≤k, ti ∈ P≤(b−d). The coefficients of the

gi of degree ≤ k − (b − d) then only affect the coefficients of f of degree ≤ k,
which are uniform due to e. So I≤b +P≤k does not depend on the coefficients of
gi of degree ≤ k − (b− d), which implies that these coefficients span a subspace
of the kernel of the Ei.

To show that for n ≥ k + 1, degm > k − (b − d), we have gi,m = gi,m, let
gi, gi

′ be 2 solutions for Ei and h = gi− gi′. We need to show deg h ≤ k− (b−d)
(which means h = 0 if the right-hand side is negative).

By construction of the Ei, we know that A(t · h) = 0, or equivalently t · h ∈
I≤b ⊕Q≤k, for all t ∈ P≤b−d. The other equations coming from the restrictions
on the set of monomials that can appear in the gi, gi

′ imply that h can only
contain coefficients for the set of monomials {m | m < Xd

i ,m �= Xd
j for any j}.

This implies that h ∈ Q≤d, in particular, deg h ≤ d.
We will show that deg h ≤ k−α for 0 ≤ α ≤ b− d, using induction on α. For

α = b− d, the claim then follows.
For the base case α = 0, we already observed that h ∈ Q≤d. Setting t = 1

in A(th) = 0 yields h ∈ I≤b ⊕ Q≤k. Together, these give h ∈ Q≤k ∩ Q≤d, so
deg h ≤ k as desired.

For the inductive step, assume deg h ≤ k−α for α < (b− d). Assume w.l.o.g.
that h �= 0, since otherwise we are done. Let H = LT(h) be the leading term.
Since the monomial order is degree-compatible, degH = deg h. We need to show
that degH < k − α.

For this, choose amonomial t of degree deg t = α+1 ≤ b−d such that t·H ∈ Q =
Span{Xv1

1 · · ·Xvn
n | vi < d for all i}. This can be accomplished for d > 1 and n ≥

k+1 by choosing t = Xi1 · · ·Xiα+1 a product of α+1 pairwise different variables,
disjoint from those ofH .7 By the properties of a monomial order, LT(t ·h) = t ·H .
Since t ·H ∈ Q, this is not reducedmoduloG, so we have LT((t ·h) mod G) = t ·H .
Since A(t · h) = 0, we have t · h ∈ I≤b ⊕Q≤k. This implies (t · h) mod G ∈ Q≤k,
in particular (t · h) mod G has degree at most k. It follows that H has degree at
most k − deg t = k − α− 1. This finally proves the theorem.

Remark 3. Algorithm 5 was optimized for simplicity of analysis. We can get a
better running time by using the highly structured nature of the equations on

7 Note that if k < d, any t of degree α+ 1 will do without the restriction on n.
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the Ei. In particular, we don’t need all t ∈ P≤b−d, as the proof above shows and
we also don’t need to solve the Ei separately for 1 ≤ i ≤ n.

Also, we would like to remark that Algorithm 5 also gives an attack to the
underlying GBN, IRN and IMN problems; in particular the existence of this
attack is not related to the flaws in security proof of [1] we pointed out in
section 4.

6 Conclusion and Open Problems

We have seen that for d > 1, the security reductions from [1] will no longer
work and there arise problems in choosing a noise distribution. Concentrating
the noise in low degree makes the scheme insecure unless b = d, so the obvious
way to go is to spread the noise over the full quotient. We remark that it might
be possible to retain the homomorphic properties by using a different strategy
to generate the Gröbner basis, allowing multiplicative homomorphic properties
in Ring-LWE [10] style. We leave this as an open problem.

Acknowledgements. We would like to thank Martin Albrecht for valuable
discussions and helpful comments.
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Ring-LWE in Polynomial Rings

Léo Ducas and Alain Durmus�
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Abstract. The Ring-LWE problem, introduced by Lyubashevsky, Peik-
ert, and Regev (Eurocrypt 2010), has been steadily finding many uses
in numerous cryptographic applications. Still, the Ring-LWE problem
defined in [LPR10] involves the fractional ideal R∨, the dual of the ring
R, which is the source of many theoretical and implementation techni-
calities. Until now, getting rid of R∨, required some relatively complex
transformation that substantially increase the magnitude of the error
polynomial and the practical complexity to sample it. It is only for rings
R = Z[X]/(Xn + 1) where n a power of 2, that this transformation is
simple and benign.

In this work we show that by applying a different, and much simpler
transformation, one can transfer the results from [LPR10] into an “easy-
to-use” Ring-LWE setting (i.e. without the dual ring R∨), with only a
very slight increase in the magnitude of the noise coefficients. Addition-
ally, we show that creating the correct noise distribution can also be
simplified by generating a Gaussian distribution over a particular exten-
sion ring of R, and then performing a reduction modulo f(X). In essence,
our results show that one does not need to resort to using any algebraic
structure that is more complicated than polynomial rings in order to
fully utilize the hardness of the Ring-LWE problem as a building block
for cryptographic applications.

1 Introduction

Since its recent introduction, the Ring-LWE problem [LPR10] has already been
used as a building block for numerous cryptographic applications. In addition
to its original functionality as the basis of efficient lattice-based cryptosystems
[LPR10], it has since been used as a hardness assumption in the constructions
of efficient signature schemes [MP11, Lyu11], fully-homomorphic encryption
schemes [BV11b, BV11a, BGV11, GHS11], pseudo-random functions [BPR11],
protocols for doing secure multi-party computation [DPSZ11, LATV11], and also
gives an explanation for the hardness of the NTRU cryptosystem [SS11].

A very natural way in which one would like to be able to define the (decisional)
Ring-LWE problem is as follows: for a polynomial ring Rq = Zq[X ]/(f(X)) and a
random polynomial w ∈ Rq, it is computationally hard to distinguish the uniform
distribution over Rq ×Rq from ordered pairs of the form (ai, aiw+ ei), where ai
are uniformly distributed in Rq and ei are polynomials in R whose coefficients are
independently distributed Gaussians. Unfortunately, the results from [LPR10]

� This work was partially supported by the European Research Council.

M. Fischlin, J. Buchmann, and M. Manulis (Eds.): PKC 2012, LNCS 7293, pp. 34–51, 2012.
c© International Association for Cryptologic Research 2012
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do not directly imply that the above problem is hard based on the worst-case
hardness of lattice problems, except in the one case when f(X) = Xn+1 for n a
power of 2, and thus most papers that use the Ring-LWE problem only use this
one specific ring. The reason for this limitation is that the problem statement
in [LPR10] requires w to be in the dual ring of R (which is a fractional ideal)
and for the distribution of the noise to be a spherical Gaussian in the embedding
representation of R. And it is only in the case that R = Z[X ]/(Xn+1) that the
dual ring is simply a scaling of R (thus, one can simply multiply by the scaling
and end up in R) and the embedding is just a rigid rotation and a scaling (thus
the spherical Gaussian distribution is not affected by the transformation). For
all other cyclotomic polynomials, while it is possible to transform the problem
that was proved hard in [LPR10] to the one described above, the transformation
between the polynomial and embedding representations involves multiplication
by a skewed matrix, and the dual of R is a (possibly very) skewed fractional
ideal of R. Therefore there is no obvious way to generate the noise directly in
the ring R, nor work entirely in the ring R without utilizing a transformation
that can substantially increase the magnitude of the error polynomials.

A natural question to ask at this point is whether there is ever a reason to
use a ring other than Rq = Zq[X ]/(Xn + 1). While it’s true that this ring has
some very nice features, and we believe that it should be used whenever possi-
ble, there are situations where an alternative may be preferable. Since Xn + 1
is only irreducible when n is a power of 2, these polynomials are scarce. Thus
it is conceivable that to achieve a certain security level, it may be advantageous
to try to find a polynomial of some particular degree rather than round up to
the next power of 2. A different, and a probably even stronger reason to use a
different ring, is that other cyclotomic polynomials may have a more desirable
structure for the task at hand. An example of this is the recent result of Gen-
try, Halevi, and Smart [GHS11] who show that there are particular cyclotomic
polynomials that allow for much faster (at least asymptotically) instantiations
of fully-homomorphic encryption. Their hardness assumption is that the Ring-
LWE problem, instantiated with polynomial rings as in our description above,
is a difficult problem. Using the result of our current paper, it can actually be
shown that their scheme has tight connections to worst-case lattice problems
(modulo a small change in the way the errors are generated, but this can be
easily remedied).

1.1 Our Results

Our main result (Theorem. 2) essentially shows that for any cyclotomic poly-
nomial Φm(X), one can work entirely in the ring Z[X ]/(Φm), and generate the
noise distribution without resorting to complex embeddings.

Our analysis (Sect. 5) shows that for primes m (and even wider class) our
simplification comes at almost no cost in term of algorithmic simplicity, tightness
and efficiency compared to the scarce class of m that are powers of 2 as used for
practical application in [LPR10]; thus increasing the density of usable m < M
from O(log(M)/M) to O(1/log(M)).
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Sampling : Q[X]/(Θm)

Canonical Embedding : H
σ−1◦T��
T−1◦σ

T−1◦σ◦β

�
Q[X]/(Φm) ∼= Q(ζm)

β : x �→ x mod Φm

�

Fig. 1.Mappings Between Different Representations (see Sect. f 2 or formal definitions.
The polynomial Θm is defined to be Xm−1 if m is odd, and Xm/2+1 when m is even.

Our main result is a consequence of two theorems with surprisingly elemen-
tary proofs. The first theorem (see Section 4) states that every cyclotomic ring
of integers R = Z[X ]/(Φm) ∼= Z[ζm] contains mR∨, where R∨ is its dual (if
m is even, it actually contains m

2 R
∨). What this means is that one can scale

everything that is in R∨ by a factor of m (or m/2) and end up in the ring
R. Similarly, if something were uniform, either statistically or computationally,
modulo R∨, then m times it will be uniform modulo mR∨ and thus uniform
modulo R, since mR∨ is an additive subgroup of R. This transformation is not
completely tight (except in the case that Φm(X) = Xm/2 + 1) because we end
up with something that is uniform modulo a subgroup of R, whereas we only
use the randomness modulo R. This loss of tightness, however, is very small,
resulting in the noise being at most

√
m/φ(m) “larger than necessary” (see the

discussion after Theorem 2).
Our second theorem (see Section 5) deals with the noise generation. In the

Ring-LWE definition of [LPR10], the noise needs to be a spherical Gaussian in the
canonical embedding representation of the ring Q[X ]/(Φm) (see Figure 1), and to
convert it to the polynomial representation, one needs to perform transformation
σ−1◦T , where σ−1 is the multiplication by the inverse of a complex Vandermonde
matrix (and T is a multiplication by a very simple matrix). Ideally, one would
like to avoid working with the complex numbers and generate the noise by simply
drawing it from the ringQ[X ]/(Φm); but unfortunately this method does not lead
to the correct distribution in the embedding representation. What we show is
that an almost equally simple way of generating the noise does lead to the correct
distribution. We consider the ring Q[X ]/(Θm), where Θm(X) = Xm − 1 if m is
odd, and Xm/2+1 if m is even (notice that Φm is a factor of Θm). We then show
that the transformation denoted by T−1 ◦ γ from Q[X ]/(Θm) to the embedding
representation actually preserves the spherical Gaussian distribution! This means
that one can sample in Q[X ]/(Θm) by picking each coefficient independently
from a continuous Gaussian distribution (rounded to Q, see details in 2), and it
will be the correct distribution required by [LPR10]. Then to move the noise from
Q[X ]/(Θm) to Q[X ]/(Φm), one simply performs the transformation β, which is
just a reduction modulo Φm.

In addition to making our noise generation much simpler to implement, the re-
duction modulo Φm is also simpler to analyze than σ−1◦T . This allows us to make
several improvements in constructions that use rings other than Z[X ]/(Xn + 1)
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(for rings Z[X ]/(Xn + 1), the mapping β is just the identity, and so there is
nothing to analyze). As realized in previous works that used ideal lattices (e.g.
[LM06, Gen10, GHS11]), multiplication in polynomial rings increases the size
of the coefficients by a factor that depends on the size of the coefficients in the
multiplicands, and also on the ring itself, and the ring in which the coefficients
grow the least is Zq[X ]/(Xn+1). As a consequence, if one were to, for example,
implement the encryption scheme from [LPR10] in the ring Z[X ]/(Φp) for some
prime p, one would observe that the noise grows by a factor of approximately

√
2

larger than in the ring Z[X ]/(Xn + 1). We show that by analyzing the noise in
the ring Q[X ]/(Φp), one can actually remove some of the noise that is introduced
by the reduction modulo Φm; it seems that our strategy makes the coefficients
grow only (1 + o(1)) times as much (see Section 6).

2 Preliminaries

Cyclotomic Ring. Let ζm be a primitive mth root of unity and the cyclotomic
polynomial Φm(X) ∈ Q[X ] be its minimal monic polynomial. Thus m is the
smallest integer for which ζmm = 1 and Φm is the rational polynomial with the
smallest degree of which ζm is a root. It is known that Φm ∈ Z[X ] and the other
roots of Φm (the conjugates of ζm) are the elements of the set {ζkm|k ∈ Z∗

m}.
Thus, Φm has degree φ(m), the totient of m. So, the number field Q(ζm), which
we will call the mth cyclotomic field, has degree φ(m) and its power basis is{
1, ζm, · · · , ζφ(m)−1

m

}
.

Extension of the Cyclotomic Ring. For a given each integerm we define the
polynomial Θm(X) asXm−1 ifm is odd, andXm/2+1 whenm is even. It gives a
natural ring extension Z[X ]/(Θm) of the cyclotomic ring Z[X ]/(Φm): as Φm is a
factor of Θm, the reduction modulo Φm, noted β is a ring morphism (it preserve
both sum and product). The power basis of Z[X ]/(Θm) is

{
1, ζm, · · · , ζm−1

m

}
when m is odd and

{
1, ζm, · · · , ζ

m
2 −1
m

}
when m is even.

Ring of Integers. The ring of integers of Q(ζm) is Z[ζm] ∼= Z[X ]/(Φm). Accord-
ing to the following theorem from [Con09, Theorem 3.7], the dual (or co-different
ideal) of Z[ζm], denoted by Z[ζm]∨, is the fractional ideal 1

Φ′
m(ζm)Z[ζm], where

Φ′
m is the derivative of Φm. While the dual has many nice properties and is

extensively used in the proof of the hardness of Ring-LWE in [LPR10], in the
current paper we only need its definition.

Embeddings of Cyclotomic Fields. The field Q(ζm)  Q[X ]/(Φm) has ex-
actly φ(m) embeddings (σk)k∈Z∗

m
, defined by σk : x �→ x(ζkm), for k ∈ Z∗

m. The

canonical embedding σ : Q(ζm) → Cφ(m) is defined as the direct sum of all the
embeddings : σ(x) =

⊕
k∈Z∗

m
σk(x). Note that that for each k ∈ Z∗

m and any
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x ∈ Q(ζm), we have σ−k(x) = σk(x). Thus for a proper indexation of Z∗
m the

image H of σ is the Q vector space generated by the columns of
√
2 · T where :

T =
1√
2

(
Idφ(m)/2 i Idφ(m)/2

Idφ(m)/2 −i Idφ(m)/2

)
with i =

√
−1

In other words, for any element x ∈ Q(ζm), there exists a vector v ∈ Qφ(m) such
that σ(x) =

√
2Tv, and vice versa. For the rest of the paper, we will consider

the column vectors of T as the canonical basis for the embedding space H .

Gaussian Distributions. By ψs we denote the Gaussian distribution with
mean 0 and standard deviation s over R; and by ψd

s the spherical Gaussian
distribution over Rd of the vector (v1, . . . , vd) where each coordinate is drawn
independently from ψs.

For our purpose, one would like the Gaussian distributions to be defined over

Q rather than R, so that an element drawn from ψ
φ(m)
s may be seen as element

of the field Q(ζm). The theoretical solution to that issues is to work with the
tensor product Q(ζm)⊗Q R as done in [LPR10].

However, in practice elements needs to be represented finitely, typically us-
ing floating points numbers of a fixed mantissa. For simplicity we choose this
solution: we consider that output of Gaussian distribution ψd

s are rounded off
to rational numbers using a fine enough grid so that all our results go through
except with a negligibly small probability.

3 The Main Result

In this section we give the main result of this paper. We describe a distribution
over Rq × Rq, where Rq = Zq[X ]/(Φm) which is computationally indistinguish-
able from the uniform distribution overRq×Rq based on the worst-case hardness
of the approximate shortest vector problem in ideal lattices. The proof of our
theorem will use results that we later prove in Sections 4 and 5 that will aid
us in transforming the hard Ring-LWE problem defined in [LPR10] into one in
which all operations are performed in polynomial rings.

Theorem 1 ([LPR10]). Let m be integer, and q be a prime congruent to 1
modulo m. Let denote K be the number field Q(ζm), R = Z[ζm] be its ring
of integers, R∨ be the fractional ideal 1

Φ′
m(ζm)Z[ζm], q be a prime congruent to

1(modm). Also, let k be any positive integer and α ∈ (0, 1) be a real number
such that αq > ω

(√
logm

)
. If there exists an algorithm that can solve the deci-

sional Ring-LWE problem, that is distinguish (with some advantage 1/poly(m))
between k uniformly random samples drawn from R/qR×K/R∨ and k samples
(ai,

aiw
q + ei) ∈ R/qR ×K/R∨ where ai are chosen uniformly at random from

R/qR, w is chosen uniformly at random from R∨/qR∨, and the ei are sampled

in the embedding space H from the distribution ψ
φ(m)
s for s = α ·

(
φ(m)k

log(φ(m)k)

)1/4

,
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then there exists a quantum algorithm that runs in time O(q ·poly(m)) that solves
the approximate Shortest Vector Problem to within a factor Õ(

√
m/α) in any

ideal of the ring Z[ζm].

Before stating our main theorem, we believe that it would be helpful to first
understand why everything turns out to be so simple and convenient when
working with the ring of integers Z[ζm] when m is a power of 2 (and not so
convenient otherwise). If m is a power of 2, then Φm = xn + 1, where n = m/2,
and therefore Φ′ = nXn−1, and so Φ′(ζm) = nζn−1

m . The last equation im-
plies that nζn−1

m R∨ = R (and since ζjmR = R for any integer j, we have
nR∨ = R), which gives us a very simple way to remove the ring R∨ and work
entirely in the ring R. When given a sample (ai,

aiw
q + ei) ∈ R/qR × K/R∨,

we can simply multiply the second element of the ordered pair by n and get
(ai,

aiwn
q +ein) ∈ R/qR×K/nR∨. Now we observe that since the ei were chosen

from the distribution ψ
φ(m)
s , the nei are distributed according to ψ

φ(m)
ns . And

since w was chosen uniformly at random from R∨/qR∨, we have that nw is uni-
formly random in R/qR. Thus the problem of distinguishing uniformly random

samples in R/qR ×K/R from samples (ai,
aiw

′
q + e′i) ∈ R/qR ×K/R where ai

and w′ are drawn uniformly from R/(q) and the e′i are drawn according to the

distribution ψ
φ(m)
ns is exactly equivalent to the problem from Theorem 1. We

now turn to how one would generate the errors e′i directly in the ζm power basis,
without first generating them in the embedding space and then doing the trans-
formation. The main observation here is that the linear transformation σ−1 ◦ T
(see Figure 1) from the embedding space H to the power basis representation
turns out to be a multiplication by a scaled orthogonal matrix. Therefore, the
spherical Gaussian distribution in H remains a spherical Gaussian distribution
in the power basis representation, and can therefore be sampled directly in the
latter domain.

On the other hand, if ζm is a primitive root of unity for any other m except
a power of 2, then neither of the above-described conditions hold. It is still
possible to multiply elements in R∨ by Φ′(ζm) in order to take them into R, but
this transformation does not result in “nice” distributions in the power basis of
R. It is known that there exist cyclotomic polynomials Φm whose coefficients
are of the order of mlogm, and thus Φ′

m also has coefficients of that magnitude.
Therefore when multiplying an element by Φ′(ζm), the coefficients of the product
in the power basis will also very likely have such large coefficients, and thus the
noise will increase by a super-polynomial factor. And even for simple cyclotomic
polynomials such as Φp for some prime p, its derivative will have Ω(p) coefficients
of size Ω(p), and so the multiplication by Φ′

p could increase the coefficients by a
factor of p2. Additionally, if ζm is a primitive root of unity and m is not a power
of 2, then the mapping σ−1 ◦T from the embedding space H to the power basis
representation is no longer an orthogonal linear map, and thus the spherical
Gaussian distribution is no longer preserved.

Theorem 2 (Main Theorem). Let m be an integer, and let Rq be the ring
Zq[X ]/(Φm) where q is a prime congruent to 1 modulo m. Also, let k be any
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positive integer, α ∈ (0, 1) be a real number such that αq > ω
(√

logm
)
, and

define m′ to be equal to m if m is odd and m/2 if m is even. If there is an
algorithm that can solve the Ring-LWE problem, that is distinguish (with some
advantage 1/poly(m)) between k uniformly random samples drawn from Rq×Rq

and k samples (ai, aiw+ ei) ∈ Rq ×Rq, where ai and w are chosen uniformly at
random from Rq and ei = �e′i mod Φm with e′i ∈ Q[X ]/(Θm) is distributed as

ψm′
s for s =

√
m′αq

(
φ(m)k

log(φ(m)k)

)1/4

; then there exists a quantum algorithm that

runs in time O(q ·poly(m)) that solves the approximate Shortest Vector Problem
to within a factor Õ(

√
m/α) in any ideal of the ring Z[ζm].

Before we give the proof of this theorem (which uses results from Sections 4 and
5), we would like to draw the reader’s attention to several things.

First, we emphasize that the error distribution is generated by sampling a
polynomial g0+ g1X+ . . .+ gd−1X

m′−1 ∈ Q[X ]/(Θm) where gi simply are inde-
pendants Gaussian variables, then reducing modulo Φm, and only then rounding
each coefficient to the nearest integer. While it would have been slightly more
convenient to be able to round and then do a reduction modulo Φm, the two
distributions are not equivalent.

Secondly, we point out that by using a Lemma similar to [ACPS09, Lemma
2], it can be shown that instead of choosing the secret w uniformly from Rq,
it can be drawn from the same distribution as the error vectors ei. The only
consequence of this is that the value of k in the theorem increases by one.

A third comment is that just as in Theorem 1, the
(

φ(m)k
log(φ(m)k)

)1/4

term in

the standard deviation of the error is a consequence of converting elliptic distri-
butions into spherical ones in [LPR10]. It is unclear whether having this term is
actually necessary for hardness or whether the elliptical distributions in [LPR10]
are an artifact of the proof, and so in practice it may be enough to just sam-
ple with standard deviation

√
m′αq. Fortunately, most constructions involving

Ring-LWE only require a small (usually a constant or a logarithmic) number of
samples, and so for theoretical applications when one does not care too much
about small polynomial factors, this term does not cause too much trouble.

The final comment that we would like to make is about the “tightness” of our
reduction. It is natural to wonder whether our transformation from Ring-LWE in
the domain in Theorem 1 to the one in the domain in Theorem 2 is tight, in the
sense that one did not need to add more noise than necessary in order to obtain
pseudo-randomness in Rq × Rq. We now give an intuition for why the trans-

formation is actually rather tight. Ignoring the
(

φ(m)k
log(φ(m)k)

)1/4

term, which is a

possibly removable artifact carried over from Theorem 1, the required noise in
our new theorem is

√
m′αq, where there is a requirement that αq > ω(

√
logm).

Thus the noise must have standard deviation at least ω(
√
m′ logm). This is

almost tight because by the result of Arora and Ge [AG11], if the standard
deviation were o(

√
φ(m)), then the Ring-LWE problem could be solved in sub-

exponential time 2o(φ(m)), which would them imply that the Shortest Vector
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Problem could be solved in sub-exponential time as well. And since
√
m′/φ(m) =

O(
√
log logm), this is essentially the maximum tightness factor that we lose

during our reduction.

Proof of Theorem 2. To prove the theorem, we will show how one can transform
the samples from Theorem 1 into samples from the ring Rq × Rq. Given samples
of the form (ai, aiw/q + ei) ∈ Rq × Q(ζm)/R∨ where ai are chosen uniformly at
random fromRq,w is chosen uniformly at random fromR∨

q , and the ei are sampled

from the distributionψ
φ(m)
s in the embedding spaceH , we scale the second element

of each ordered pair by a factor of m′q to obtain elements (ai, aiwm
′ + qm′ei) =

(ai, aiw
′ + e′i) ∈ Rq ×Q(ζm)/qm′R∨ where w′ is distributed uniformly at random

in m′R∨/m′qR∨, and e′i are sampled from the distribution ψ
φ(m)
sm′q . Since we did

nothing but scaling at this point, it is clear that distinguishing these ordered pairs
from uniform ones in Rq ×Q(ζm)/qm′R∨ is as hard as the original problem from
Theorem1.WenowapplyTheorem3which states thatm′R∨ ⊆ R to conclude that
if we reduce the second entry of the ordered pairs modulo qR to obtain elements
(ai, aiw

′ + e′i) ∈ Rq × Q(ζm)/qR where w′ is distributed uniformly at random

in m′R∨/qR, and e′i are sampled from the distribution ψ
φ(m)
sm′q , the distinguishing

problem is at least as difficult as before.
We now make the observation that instead of choosing w′ uniformly at random

from m′R∨/qR, we can choose it from R/qR without making the problem any
easier. The reason is that given a pair (ai, aiw

′ + e′i), we can choose a uniformly
random w′′ ∈ R/qR and output (ai, aiw

′ + aiw
′′ + e′i) = (ai, ai(w

′ + w′′) + e′i),
and the secret w′ + w′′ is uniform in R/qR. We can also observe that if we
consider the element aiw

′ + e′i in the power-basis representation and round each
coefficient to the nearest integer, it is equivalent to only rounding the error term
e′i to the nearest integer because the product aiw

′ already has integer coefficients.
Thus the problem of distinguishing rounded elements (ai, ais+ �e′i) ∈ Rq ×Rq

from random elements in Rq × Rq is at least as difficult as the problem from
Theorem 1. The last thing we need to address is the noise generation. Currently,

the e′i are generated from the distribution ψ
φ(m)
sm′q in the embedding space H .

Theorem 5 states that to obtain such a distribution, it is equivalent to sample
the distribution g0 + g1X + . . .+ gm′−1X

m′−1 ∈ Q[X ]/(Θm) where each gi is a
normally distributed random variable with mean 0 and standard deviation that
is
√
m′ times smaller than that required in the distribution in the embedding

space H . And this is exactly the distribution from which the errors come from
in the statement of our Theorem. ��

4 Mapping Z[ζm]∨ to Z[ζm]

In this section we prove that the element m′
Φm(ζm) , for m

′ = m when m is odd

and m/2 when it is even, is an element of the ring Z[ζm], which implies that the
ring Z[ζm] contains m′Z[ζm]∨.

Theorem 3. For R = Z[ζm], we have m′R∨ ⊆ R, where m′ = m if m is odd
and m/2 if m is even.
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Proof: Let Θm(X) be the polynomial Xm − 1, if m is odd, and Xm/2 + 1 if m
is even. Then it is easily seen that Φm(X) is a factor of Θm(X), and we can
write Θm(X) = Φm(X)g(X) for some polynomial g(X) ∈ Z[X ]. By taking the
derivative of both sides, we obtain the equation

m′Xm′−1 = Φ′
m(X)g(X) + Φm(X)g′(X),

or equivalently,

m′Xm′
= XΦ′

m(X)g(X) +XΦm(X)g′(X).

Evaluating both sides at ζm, we obtain

±m′ = ζmΦ
′
m(ζm)g(ζm) + ζmΦm(ζm)g′(ζm) = ζmΦ

′
m(ζm)g(ζm)

since ζm
′

m = 1 when m′ = m and −1 when m′ = m/2, and Φm(ζm) = 0. Now,
using the definition that R∨ = 1

Φ′
m(ζm)R, we obtain

m′R∨ =
m′

Φ′
m(ζm)

R = ±ζmg(ζm)R ⊆ R,

where the last inclusion is true because g(X) ∈ Z[X ], and so g(ζm) ∈ R. ��

We get that if we multiply the different ideal by m′, we find a set included in the
ring of integer. In fact, we prove in Appendix B that m′ is the smallest integer
which verifies this property. It mainly comes from the fact that m′ is the radical
of the finite group R∨/R, namely the least common multiple of orders of the
elements in this group. And we get eventually this following characterization:

Theorem 4. A integer k is such that kR∨ ⊂ R if and only if m′ divides k.

5 Geometry and Error Sampling

For the rest of the paper, let m′ ∈ Z denote m/2 if m is even, and m if m is odd.
To obtain the correct distribution of the error polynomials in the Ring-LWE

problem in Theorem 1, we want the noise distribution over Q[X ]/(Φm) to map
to a spherical Gaussian in the embedding space H . This is not a problem if the
map T−1 ◦ σ is a scaled-orthonormal map, which is the case when m is a power
of two. For a general m, a natural solution would be to generate the noise in
the space H and then map it to Q[X ]/(Φm), however this requires dealing with
the inverse Vandermonde matrix of σ−1, making the noise generation much less
efficient.

To overcome this technical issue, we use the ring extension Q[X ]/(Θm) and
show that it is a the natural ring for the error generation. First unlike Q[X ]/(Φm)
the canonical embedding from this ring preserves sphericity of Gaussian distri-
butions: thus one just needs to sample a spherical Gaussian in this extension
then reduce modulo φm.
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Theorem 5 (Geometry of T−1 ◦ σ ◦ β). Let v ∈ Q[X ]/(Θm) be a random
variable distributed as ψm′

s in the power basis. Then the distribution of (T−1 ◦
σ ◦ β)(v), seen in the canonical basis of H is the spherical Gaussian ψ

φ(m)

s
√
m′ .

Secondly, for a large class of integersm the reduction modulo Φm has a very sim-
ple and sparse matrix representation in the power basis. The knowledge of this
matrix representation simplifies the geometric analysis of the error and products
of errors, leading to some better theoretical bounds for correct decryption (see
lemma 7), detailed below.

5.1 Analysis of β, the Reduction Modulo Φm

First, if B is very sparse and structured, this reduction can be implemented in a
very simple ad-hoc way, while having better practical running time than general
quasi-linear reduction algorithms. We will show that it is the case when m = 2kp
for a any prime p, and also when m = 2kp′p if p′ is a small prime.

Secondly, error distributions in the Q[X ]/(Φm) representation depend on the
geometry of B, and thus the norms of B have an impact on the relation be-
tween m, s and q : the smaller the norms are, the smaller q one may choose
while ensuring correct decryption. In particular, for any e ∈ Q[X ]/(Θm) we
have: ‖β(e)‖∞ ≤ ‖B‖1 ‖e‖∞, which is related to the expansion factor inequal-
ity [LM06]. One may indeed only deal only with the expansion factor of Φm,
and bound the error preimage in Q[X ]/(Θm). As described later, the main part
of the error that needs to be dealt with for decryption has the form ab + cd
where a, b, c, d are drawn according to β(ψm′

s ). Considering the tailcut function

E(τ) = τe1/2−τ2/2 we have the following fact:

Fact 6 (Error Bound in the Extension Ring Q[X ]/(Θm)). Let a, b, c, d ∈
Q[X ]/(Θm) be distributed as ψm′

s . Then, ‖ab+ cd‖∞ ≤
√
2m′ τ τ ′s2 except with

probability less than nE(τ) + E(τ ′)2m′
.

Since β is ring morphism, preserving products as well as sums, this translate to
Q[X ]/(Φm):

‖β(a)β(b) + β(c)β(d)‖∞ = ‖β(ab + cd)‖∞ ≤ ‖B‖1
√
2m′ τ τ ′s2.

However, the exact knowledge of B, together with the knowledge of the error
distribution may lead to better bounds. While there is no simple explicit formula
for B in general, some specific values ofm makes B very simple. Obviously, when
m is a power of two, B is the identity since Θm = Φm. When m = 2kp we have:

B =

⎛⎜⎝ -1

Idp−1

...
-1

⎞⎟⎠ if k = 0; B =

⎛⎜⎜⎜⎜⎜⎝
-1

1

Idp−1

...
-1

1

⎞⎟⎟⎟⎟⎟⎠⊗ Id2k−1 otherwise
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In that case, a better bound can be proved, replacing the constant ‖B‖1 = 2 by

‖B‖2 =
√
2.

Fact 7 (Error Bound for m = 2kp). Let p be a prime number, k a posi-
tive integer and assume m = 2kp. Let a, b, c, d ∈ Q[X ]/(Θm) be distributed as
ψm′
s . Then, ‖β(ab + cd)‖∞ ≤ 2

√
m′ ττ ′s2, except with probability less than m′(

E(τ) + 3 E(τ ′)2�m′/3�
)
.

The proof is available in the full version of this article. This statement raises the
interesting question of whether it can be generalized to other values m, i.e. can
we replace ‖B‖1 by ‖B‖2 (while keeping the exponent of E(τ ′) big enough) ?
While such constant ‖B‖2 applies to Gaussian errors, its not clear if it applies
in general for products of Gaussians.

Other Polynomials Φm. For general values of m the coefficients of B may be
much bigger, and can even grow exponentially in m for product of many primes.
Few is known about the behavior of the coefficients of Φm in terms of the prime
decomposition of m, however Lam and Leung proved in [LL96] that Φpq for two
primes p and q have its coefficient in {−1, 0, 1}.

A generalization of their proof gives a more detailed behavior:

Theorem 8. If m is on the form m = 2kpq where p q are two odd primes and
k ∈ N, B has coefficients in {−1, 0, 1} and ‖B‖1 = 2min(p, q).

The proof will be detailed in the full version of this article.

Improved Decryption. Additionally, the explicit knowledge of B can suggest
strategies to improve the tolerance of the decryption algorithm. Such an idea is
described when m = p is a prime integer in section 6.4. It seems to improve the
tolerance, replacing the ‖B‖2 =

√
2 factor by ≈ 1.16 for dimension m ≈ 500;

and seems to be 1 + o(1) when the dimension grows. With that improvement
the tolerance loss compared to the encryption scheme based on Φ2k can becomes
marginal.

6 Ring-LWE Encryption Scheme

In this section we present an application example of our result, that is an adap-
tation of the [LPR10] scheme to general polynomial Φm, and sketch strategies
to improve the decryption rate.

6.1 Definition

We consider m to be our main security parameter, and we assume it grows
in an unbounded set of integer S such that ‖B‖1 is polynomially bounded :
‖B‖1 ≤ O(mb) for some b ≥ 0. For example, we can take b = 0 for the set
S =

{
2kp|k ∈ Z, p is prime

}
, while S =

{
2kpq|k ∈ Z, p, q are prime

}
gives

b = 1/2.
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Choose some small ε ∈ (0, 1/4), and set other parameters to grow as follow :
the modulus q = Θ(m2+b+2ε), and the standard deviation s = Θ(m3/4+ε). Our
encryption scheme is as follows :

– Gen(1m) : Sample w, e1 ← ψm′
s , and a uniformly in Rq. Set w̄ = �β(w)�

and ē1 = �β(e1)� The private key w̄ = �β(w)� ∈ Rq and the public key is
(a, t̄) where t̄ = aw̄ + ē1 mod q ∈ Rq

– Encrypt(t̄ ∈ Rq, μ ∈ {0, 1}φ(m)) : To encrypt the message μ under the

public key t̄, draw r, e2, e3 ← ψm′
s , and set r̄ = �β(r)�, ē2 = �β(e2)� and

ē3 = �β(e3)�. Output (u, v) ∈ Rq × Rq where u = ar̄ + ē2 mod q and
v = t̄r̄ + ē3 + μ�q/2 mod q.

– Decrypt(w̄ ∈ Rq, (u, v) ∈ Rq × Rq) : To decrypt (u, v) with the private
key w̄, compute d = v − uw̄ ∈ Rq, and decrypt the i-th bit μi as 0 if
di ∈ [−q/4; q/4], and as 1 otherwise.

6.2 Security

We prove semantic security based on the hardness of the approximate Shortest
Vector Problem to within a factor Õ(m5/2+b+ε). For any constant number of
samples k set :

α−1 =

√
m′q

s

(
φ(m′)k

log(φ(m′)k)

)1/4

= O(m2+b+ε).

To fulfill the condition of theorem 2, we verify that :

αq = s
log(φ(m)k)1/4
√
m′φ(m)k

1/4
≥ Θ(mε) > ω(

√
logm), since

m

φ(m)
= O(log logm).

Note that we use the main theorem 2 in its modified form that replaces the
uniform distribution of the secret w by the same Gaussian distribution as the
error (see the discussion under the statement of theorem 2).

First, the public key distribution (ā, t̄ = āw̄ + ē1) follows the distribution
defined in theorem 2 relatively to w which is distributed according to a Gaussian
distribution. Thus for k = 2, our theorem states that this public key (ā, t̄) is
indistinguishable from the uniform distribution over Rq ×Rq.

We can now assume that (ā, t̄) is uniformly random, in which case (a, u =
ar̄ + ē2) and (t̄, v′ = t̄r̄ + ē2) are two samples following the distribution of
theorem 2, where r̄ is once again Gaussian. Using theorem 2 with k = 3, we
deduce that (a, u) and (t̄, v′) are also is indistinguishable from random, so is
v = v′ + μ�q/2 That concludes the security proof.

6.3 Correctness

During decryption, we get :

d = v − uw̄ = (āw̄ + e1)r̄ + ē3 + μ�q/2 − (ār̄ + ē2) mod q

= ē1r̄ + ē3 + ē2w̄ + μ�q/2 mod q
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Thus, the decryption will be correct if ‖ē‖∞ < q/4 where ē = ē1r̄ + ē3 + ē2w̄.
First, note that the rounding operations have a limited effect on the final re-
sult of the error ē : the difference between that computation with and without
rounding is bounded by Õ(B1m

′s) = Õ(m7/4+b+ε), this negligible compared
to q = Θ(m2+b+2ε). Similarly, one can neglect the contribution of ē3 since
‖ē3‖∞ ≤ Õ(‖B‖1 s) = Õ(m3/4+b+ε).

According to lemma 6, we have that ‖ē‖∞ ≤ Õ(‖B‖1
√
ms2) ≤ Õ(m2+b+ε)

except with negligible probability. On the other hand, q grows as Θ(m2+b+2ε),
thus, decryption is correct with overwhelming probability for large enough values
of m.

6.4 Practical Improvements

For applications, any tricks to decrease theminimal value of q while preserving cor-
rect decryption might be worthwhile. We hereby presents two independent ideas.

Recovering Approximation of the Error Preimage e′ ∈ Z[X]/(Θm).
This first idea concerns the decryption algorithm. For simplicity, we restrict our
attention to m = p a prime. In this case we have for each index i ≤ p − 2 that
ēi = e′i − e′p−1 where e′ = e1r + e3 + e2w ∈ Z[X ]/(Θm). Thus if we recover
a good approximation x of e′p−1 we might reduce the error by adding x to
each coordinate. Without warping modulo q, an approximation of e′p−1 may be

recovered as the average −1
p−1

∑p−2
i=0 ēi; the error should be less than ≈ τs2, using

the heuristic that e′ behave like a spherical Gaussian.
However, we need to consider ēi modulo q/2 to get rid of the message. Our

heuristic algorithm proceeds as follow : for a certain constant α ∈ (0, 1), find (one
of) the smallest interval [a, b] such that for at least α(p − 1) indexes i ∈ [p− 1]
verifies ēi ∈ ([a, b] mod q/2). Consider ai ∈ Z as the unique integer representing
ēi ∈ Zq/2 in [a, b], compute the average x of those ai, and output the smallest
representative of −�x� modulo q/2 as an approximation of e′p−1. Note that this
algorithm can be implemented in quasi-linear time, by sorting the values ei.

Our experiments indicates that such a strategy decrease the
√
2 ≈ 1.41 factor

to ≈ 1.16 for m = 503 and α = 0.9, and keeps decreasing when the dimension
grows. We conjecture that it asymptotically decrease as 1 + o(1). Similar idea
should apply to m = 2kp. While this suggest that the quality loss compared to
cryptosystem based on the Φ2k polynomial can be almost reduced to nothing,
implementing such a error recovery strategy would require more study.

Rejection during Key Generation. The second idea consist of modifying
the key generation algorithmGen so that the couple (s, e1) is rejected whenever
‖(s|e1)‖ ≥

√
2m′τ ′′s, where τ ′′ is chosen such that E(τ ′′)2n ≤ 1/2; only half of

them are rejected, thus the advantage of the adversary is no more than doubled.
For m′ ≥ 500 this improves our bound by τ ′/τ ′′ ≈ 1.4/1.05. The same idea
applies when using the tight bound of lemma 7 by rejecting (s̄, ē1) depending on

‖B · Circ(s̄)‖2 + ‖B · Circ(ē1)‖2.
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A Proof of Theorem 5

Proof: We proceed by considering G ∈ Cφ(m)×m′
, the matrix representing the

linear map γ from the power basis of Z[X ]/(Θm) to the canonical basis of Cφ(m)

and will show GGt = m′Idφ(m). Also note that T−1 is hermitian, that is T−1 =

T
t
, and T−1 ◦ γ is a real linear map. Thus E = T−1G = E so EEt = EE

t
=

T−1GG
t
T = m′ Idφ(m).

This last equation implies that if a random variable v ∈ Q[X ]/(Θm) has

covariance s2 ·Idm′ then the covariance of (T−1◦γ)(v) is s·E·Idm′ ·Et
= s2m′·Idn:

the distribution of (T−1 ◦ γ)(v) is the spherical Gaussian ψ
φ(m)

s
√
m′ .

Now we show that GGt = m′Idφ(m) : let gi,j for (i, j) ∈ [m′] × Z∗
m denotes

the coefficients of G, that is gi,j = σj(X
i) = ζijm. Let ci,j for i, j ∈ Z∗

m denote

the coefficients of C = G ·Gt. For all i, j ∈ Z∗
m we have:

ci,j =
∑

k∈[m′]
ζikm ζjkm =

∑

k∈[m′]

(
ζi−j
m

)k
=

⎧
⎨

⎩

m′ if i = j , since ζi−j
m = 1

0 otherwise, since ζi−j
m �= 1 is a m-th root of unity

(or an m′-th root when m is even)

��

B Proof of Theorem 4

First of all, we remind some facts about free abelian groups of finite rank directly
apply to Z[X ]/(Φm) and its different ideal. For conciseness, we will note R for
the ring Z[X ]/(Φm) ∼= Z[ζm] in all this section.

Definition 9. Let G be a group and I a set. We says that a family of element
(ei)i∈I of G is a basis of G is every element of G can be written uniquely as a
finite linear combination with integer coefficients of elements of this family. If I
is finite, this cardinal is called the rank of G.

http://wstein.org/courses/
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Notations. For two integers k and n, the predicate k|n denotes that k divides
n. Also, let n be an integer and p a prime numbers. We define the order of n at
p, denoted by ordp(n), as the positive integer α such that pα|n and pα+1 does
not divide n. It is the exponent of p in the prime decomposition of n if p|n, and
0 otherwise.

Fact 10. There exists a basis (ei)1≤i≤φ(m) for R∨ and φ(m) positive integer
(bi)1≤i≤φ(m) such that (biei)1≤i≤φ(m) is a basis for R. And moreover, ∀i ≤
φ(m)− 1, bi|bi+1.

Proof: All elements of R can be uniquely written as a linear combination with
integer coefficients of (ζim)0≤i≤φ(m)−1, as this family is rationally independent.
In a similar way, we have that all elements of R∨ can be uniquely written as

a linear combination with integer coefficients of (
ζi
m

Φ′
n(ζm) )0≤i≤φ(m)−1. Since R ⊂

R∨, we can write for all i, ζim in the latter family : ∀i ∈ [|0, φ(m) − 1|], ζim =∑φ(m)−1
j=0 ai,j

ζj
m

Φ′
m(ζm) . We end with a square matrix A = (ai,j)0≤i,j≤φ(m)−1 of

dimension φ(m) with integer coefficients. And we consider its Smith normal
form (Proposition 2.1.5 in [Ste05]): namely, there exists two matrix U and V
with integer coefficients of dimension φ(m), invertible as integer matrices, such
that UAV = D, where D is a diagonal matrix with positive integer coefficients
on the form : ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 · · · 0

0
. . .

br
... 0

. . .

0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
And, we have bi|bi+1 for any i < r. Besides, in our case, r = φ(m) and ∀i <
r, bi �= 0. Indeed, let’s notice that A is a change-of-basis matrix for two Q-basis
of Q(ζm), then invertible, and then its determinant is non-zero. But det(D) =
det(UAV ) = det(U) det(A) det(V ) = det(A), because U and V are invertible as
integer matrices, and thus have their determinant equal to 1.

This decomposition of A gives us a basis (ei)1≤i≤φ(m) for R
∨ and φ(m) integer

(bi)1≤i≤φ(m) such that (biei)1≤i≤φ(m) is a basis for R, where bi|bi+1 for any
i ≤ φ(m) − 1. ��

Thanks to this result, we can state two immediate consequences.

Fact 11. With the notation of the previous Fact 10, an integer k is such that
kR∨ ⊂ R if and only if bφ(m)|k. Therefore, bφ(m)|m′.

Moreover we have the following equality:

φ(m)∏
i=1

bi = mφ(m)

/ ∏
p/m

p prime number

pφ(m)/(p−1)
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Proof: First, an integer k is such that kR∨ ⊂ R if and only if

∀i ≤ φ(m) kei ∈ R (1)

or equivalently, if and only if for all i, there exist ci ∈ N such that kei = aibiei.
This can be rewritten as

∀i, bi|k.
By Fact 10, all the bi’s divides bφ(m), so condition (1) is equivalent to: bφ(m)|k.

The Fact 10 gives us the cardinality of the finite group R∨/R, called the index

of R in R∨ and denoted [R∨ : R] : [R∨ : R] =
∏φ(m)

i=1 bi.
Yet, this index is known and in fact equals to the absolute value of the dis-

criminant of the cyclotomic field (Theorem 4.6 in [Con09]), whom we know an
exact expression (Proposition 2.7 of [Was97]):

disc(Q(ζm)) = (−1)
φ(m)

2 mφ(m)

/ ∏
p/m

p prime number

pφ(m)/(p−1)

��

Using previous facts, we may now prove our main results:

Theorem 12. With the notation above, m′ = bφ(m) and a integer k is such that
kR∨ ⊂ R if and only if m′|k.

Proof: First, we prove thatm′|bφ(m). To prove this, we work on the prime factors
of m′. More precisely, we show that for all prime p|m′, ordp(m

′) ≤ ordp(bφ(m)),
it immediately follows that m′|bφ(m) . Let p a prime factor of m′ different from
2. Then by definition of m′, ordp(m

′) = ordp(m).
We proceed by assuming that ordp(m) > ordp(bφ(m)), and show that it is

absurd. From Fact 10 we have bi|bi+1 for all i < φ(m). Thus: ordp(m) − 1 ≥
ordp(bi) and summing over all i we get:

(ordp(m)− 1)φ(m) ≥
φ(m)∑
i=1

ordp(bi). (2)

Fact 11 tells us that:

φ(m)∏
i=1

bi = mφ(m)

/ ∏
p/m

p prime number

pφ(m)/(p−1)

and therefore

ordp

⎛⎝φ(m)∏
i=1

bi

⎞⎠ = ordp(m)φ(m) − φ(m)

p− 1

φ(m)∑
i=1

ordp(bi) = φ(m) ·
(
ordp(m)− 1

p− 1

)
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Combining with the inequality (2) we deduce:

(ordp(m)− 1)φ(m) ≥ φ(m)(ordp(m)− 1

p− 1
)

which is absurd since p > 2. We actually get that ordp(m
′) ≤ ordp(bφ(m)), if p

is prime factor of m′ different from 2.
If 2 is a prime factor of m′, the same reasoning is similar, starting with

ord2(m
′) = ord2(m)− 1.

Thereforem′|bφ(m). And the Theorem 3 with the Fact 11 tell us that bφ(m)|m′.
Thus m′ = bφ(m). And by the Fact 11 again, a integer k is such that kR∨ ⊂ R
if and only if m′|k. ��
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Abstract. Chosen-Ciphertext (IND-CCA) security is generally consid-
ered the right notion of security for a cryptosystem. Because of its central
importance much effort has been devoted to constructing IND-CCA se-
cure cryptosystems.

In this work, we consider constructing IND-CCA secure cryptosystems
from (group) homomorphic encryption. Our main results give natural
and efficient constructions of IND-CCA secure cryptosystems from any
homomorphic encryption scheme that satisfies weak cyclic properties,
either in the plaintext, ciphertext or randomness space. Our results have
the added benefit of being simple to describe and analyze.

1 Introduction

Since the definition of security against a Chosen-Ciphertext Attack (IND-CCA)
was given in [NY90], [RS91], much effort has been devoted to constructing effi-
cient IND-CCA secure cryptosystems under a variety of cryptographic hardness
assumptions.

The first construction of an IND-CCA secure cryptosystem was given by
Dolev, Dwork and Naor in [DDN91]. Their construction builds on the ideas of
Naor and Yung [NY90], and relies on non-interactive zero-knowledge proofs, to
prove that a ciphertext was created honestly. The generic non-interactive zero-
knowledge proofs used in [DDN91] are too inefficient for practical use, but the
idea of including some sort of “proof of validity” in the ciphertext has strongly
shaped this area of research, and many of the subsequent IND-CCA secure cryp-
tosystems can be viewed in this light.
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The first IND-CCA secure cryptosystem efficient enough to be used in prac-
tice was given by Cramer and Shoup in [CS98], and the security of their con-
struction rested on the Decisional Diffie-Hellman (DDH) assumption. Since then,
there have many fairly efficient IND-CCA secure schemes proposed under a wide
variety of cryptographic hardness assumptions.

Constructions based on the DDH assumption include those of [CS98],[CS02]
and [PW08]. Recently, new constructions were given based on the Computa-
tional Diffie-Hellman (CDH) assumption [HJKS10], [CHK10]. IND-CCA secure
cryptosystems based on the RSA assumption are given in [CHK10]. Schemes
based on the Quadratic Residuosity (QR) assumption are given in [CS02]. IND-
CCA secure cryptosystems based on lattice assumptions like Learning With
Errors (LWE) are given in [PW08] and [Pei09]. In the pairing world, IND-CCA
secure schemes can be based on the Bilinear Diffie-Hellman (BDH) assump-
tion [CHK04],[BK05],[BCHK07], or the Decisional Linear (D-Lin) assumption
[FGK+10]. Chosen-ciphertext secure cryptosystems have also been proposed
based on the Syndrome Decoding problem [DMQN09], [FGK+10].

For a notion as fundamental as secure encryption, it is important to consider
generic constructions as well as concrete instantiations, and in fact, many of
the above constructions are best viewed as part of general frameworks for con-
structing IND-CCA secure encryption. In [DDN91], IND-CCA secure cryptosys-
tems were built from any one-way trapdoor permutation. In [CS02], Cramer
and Shoup gave a general construction based on universal hash proof sys-
tems, which can be viewed as an algebraic designated verifier proof system.
In [CHK04],[BCHK07], Boneh, Canetti, Halevi and Katz gave a general frame-
work for constructing IND-CCA secure encryption from any Identity-Based En-
cryption (IBE) scheme. In [PW08], Peikert and Waters created lossy trapdoor
functions (LTDFs) as a method for constructing IND-CCA secure encryption.
The notion of lossy trapdoor functions has since been relaxed to correlated prod-
uct secure functions [RS09], and slightly lossy trapdoor functions [MY09], and
both relaxations were shown to still be sufficient to construct IND-CCA secure
encryption.

These frameworks provide many different constructions of IND-CCA secure
encryption, and help to locate IND-CCA secure encryption in the cryptographic
landscape. Despite their utility, these frameworks all rely on fairly complicated
underlying primitives, and the search continues for the simplest primitive that
can be shown to imply IND-CCA secure encryption. Perhaps the simplest prim-
itive that could imply IND-CCA secure encryption is IND-CPA secure encryp-
tion. This, however, is widely believed to be false, and the results of Gertner,
Malkin and Myers [GMM07] give partial results towards the impossibility of
such a construction.

It is natural, then, to examine what additional properties of an IND-CPA
secure cryptosystem are sufficient to construct an IND-CCA secure cryptosys-
tem. One natural property, is that the IND-CPA secure cryptosystem supports a
group operation on the plaintext. Such cryptosystems are called homomorphic.
Indeed, one of the main open questions concerning homomorphic encryption is
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whether homomorphic encryption implies IND-CCA encryption, and this ques-
tion has attracted much attention over the years.

In this work, we will call an encryption scheme homomorphic if the plaintexts
form a group, the ciphertexts form a group, and E(pk,m1, r1) ·E(pk,m2, r2) =
E(pk,m1+m2, r

∗). Unless explicitly stated, we will not assume that r∗ = r1+r2,
schemes that satisfy this additional property are said to be homomorphic over
their randomness.1 Here we have written the group operation on the ciphertexts
multiplicatively and the group operations on the plaintexts additively. This is
simply a convention, but it is a natural one since it corresponds to the usual
method of writing the groups corresponding to Goldwasser-Micali [GM84], Pail-
lier [Pai99], and (additive) El-Gamal [Gam85]. We do not require our encryption
schemes to be fully homomorphic, as constructed in the breakthrough work of
Gentry [Gen09].

The consequences of the existence of homomorphic encryption have been well
studied, and many exciting results are known. Homomorphic encryption has been
show to imply Private Information Retrieval (PIR) [KO97],[Man98],[IKO05].
Since PIR implies Collision Resistant Hash Functions [IKO05], Oblivious Trans-
fer [CMO00], and lossy encryption [HLOV11], we immediately have construc-
tions of any of these primitives based on any homomorphic encryption. The
work of [AKP10] provides a clean abstraction of homomorphic encryption and a
discussion of homomorphic encryption and its relations to IND-CCA1 security.

It remains an important open question whether homomorphic encryption im-
plies IND-CCA secure cryptosystems, and in this work we present steps towards
closing the gap.

1.1 Previous Work

Chosen-ciphertext security was introduced by Rackoff and Simon in [RS91], and
the first cryptosystem provably secure in this model was given in [DDN91],
extending the work of [NY90]. Since that time, there has been a vast amount of
work done on the topic of IND-CCA secure encryption.

Our work draws most from the works of Cramer and Shoup on universal
hash proof systems [CS02], and Peikert and Waters on lossy trapdoor functions
[PW08], and we briefly highlight some key ideas of their constructions below.

The first practical IND-CCA secure cryptosystem was given by Cramer and
Shoup in [CS98]. In [CS02], Cramer and Shoup created Universal Hash Proof
systems, generalizing their work in [CS98], and providing a framework for creat-
ing IND-CCA secure encryption. In [CS02], Cramer and Shoup defined a natural
algebraic object called a Diverse Group System, and showed that diverse group
systems imply universal hash proof systems, and diverse group systems are im-
plied by many natural cryptographic hardness assumptions that occur in groups.
The algebraic nature of diverse group systems suggests a possible connection

1 Notice that our definition of homomorphic encryption implies that the randomness
space forms a group, since the randomness space is isomorphic to the subgroup of
encryptions of 0.
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between homomorphic encryption and IND-CCA secure encryption, and in this
work we explore this connection.

A different framework for constructing IND-CCA secure cryptosystems was
proposed by Peikert and Waters in [PW08]. In their work, Peikert and Wa-
ters defined Lossy Trapdoor Functions (LTDFs), and showed that LTDFs imply
IND-CCA secure cryptosystems. Roughly, a lossy trapdoor function, is a func-
tion that can operate in one of two computationally indistinguishable modes. In
injective mode, it is injective and has a trapdoor. In “lossy” mode, the function
statistically loses information about its input. In [PW08], Peikert and Waters
leveraged the homomorphic properties of the El-Gamal cryptosystem and the
Regev [Reg05] cryptosystem to create LTDFs based on the DDH and LWE as-
sumptions. At the highest level, their construction proceeds as follows. The de-
scription of an LTDF in injective mode is simply the encryption of the identity
matrix using some underlying homomorphic cryptosystem, and the description
of an LTDF in lossy mode is the encryption of the zero matrix. To evaluate a
function on an input x, viewed as a bit vector, we compute the matrix product of
the ciphertext matrix with the input vector. By the homomorphic properties of
the underlying cryptosystem, this results in either a ciphertext vector encrypt-
ing x, or a ciphertext vector encrypting the zero vector. It is easy to see that
the IND-CPA security of the underlying cryptosystem implies that the injective
and lossy modes are indistinguishable, and the decryption algorithm provides
a trapdoor in injective mode. The difficulty is in showing that the lossy mode
statistically loses information about its input. Let us examine this further. The
output of a lossy function is the encryption of the zero vector, so it is clear that
the underlying plaintexts are statistically independent of the input x (since they
are all 0). It is, however, unclear whether the randomness of the ciphertexts
statistically encodes the vector x. The constructions of LTDFs given by Peik-
ert and Waters, modify the underlying homomorphic cryptosystems to ensure
that the randomness of the resulting ciphertext vector does not leak too much
information about the input x.

Both the works of [CS02] and [PW08] give an indication of the connection
between homomorphic encryption and IND-CCA secure encryption, but despite
significant effort, no one has, as yet, been able to bridge the gap.

In this work, we show that if we have a homomorphic cryptosystem with some
natural cyclic structure, we immediately have IND-CCA secure encryption.

1.2 Our Contributions

In this work, we consider the problem of constructing an IND-CCA secure cryp-
tosystem from homomorphic encryption schemes. By a homomorphic encryption
scheme, we mean an IND-CPA secure cryptosystem, for which the plaintext space
forms a group, the ciphertext space forms a group, and the group operation on
ciphertexts induces a group operation on plaintexts. Cryptosystems of this type
arise naturally, e.g. [Gam85, GM84, Pai99, Ben94, OU98, NS98, DJ01, BGN05].

It has been a long standing open question whether an IND-CCA secure cryp-
tosystem can be constructed from any homomorphic encryption scheme. In this
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work,we give a number of simple properties for a homomorphic encryption scheme,
any one of which allows us to construct an IND-CCA secure cryptosystem.

Our results can be summarized as follows:

Lemma (Lemma 1 (informal)). If there exists a homomorphic encryption
with cyclic plaintext group X, and randomness space R, such that |X | > |R|,
then there exist lossy trapdoor functions.

Corollary (Corollary 1 (informal)). If there exists a homomorphic encryp-
tion with cyclic ciphertext space, with plaintext group X, and randomness space
R, such that |X | > |R|, then there exist lossy trapdoor functions.

Theorem (Main Theorem (informal)). If there exists a homomorphic en-
cryption with cyclic ciphertext space, then there exist universal hash proof sys-
tems, and hence IND-CCA secure encryption.

2 Preliminaries

2.1 Notation

If f : X → Y is a function, for any Z ⊂ X , we let f(Z) = {f(x) : x ∈ Z}. For
example, if E is an encryption algorithm E(pk, x,R) = {E(pk, x, r) : r ∈ R}, is
the set of all encryptions of x. Similarly, E(pk,X,R) = {E(pk, x, r) : x ∈ X, r ∈
R} is the ciphertext space of E. If G is a group, and g1, . . . , gd are elements of
G, then we use the notation 〈g1, . . . , gd〉 to denote the subgroup of G generated
by g1, . . . , gd.

If A is a PPT machine, then we use a ← A to denote running the machine
A and obtaining an output, where a is distributed according to the internal
randomness of A. If R is a set, and no distribution is specified, we use r← R to
denote sampling uniformly from the uniform distribution on R.

IfX andY are families of distributions indexed by a security parameter λ, we say
thatX is statistically close to Y , (writtenX ≈s Y ) tomean that for all polynomials
p and sufficiently large λ, we have

∑
x |Pr[X = x]− Pr[Y = x]| < 1

p(λ) .

We say that X and Y are computationally close (written X ≈c Y ) to mean
that for all PPT adversaries A, for all polynomials p, and for all sufficiently large
λ, we have |Pr[AX = 1]− Pr[AY = 1]| < 1/p(λ).

2.2 Homomorphic Encryption

A public key cryptosystem given by algorithms (G,E,D) is called homomorphic if

– The plaintext space forms a group X (written with group operation +).
– The ciphertexts are members of a group Y .
– For all x0, x1 ∈ X , and for all r0, r1 in the randomness space R, there exists

an r∗ ∈ R such that

E(pk, x0 + x1, r
∗) = E(pk, x0, r0)E(pk, x1, r1).
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Notice that we do not assume that the encryption is also homomorphic over the
randomness, as is the case of most homomorphic encryption schemes, e.g. El-
Gamal, Paillier, and Goldwasser-Micali. We also do not assume that the image
E(pk,X,R) is the whole group Y , only that E(pk,X,R) ⊂ Y . Since the homo-
morphic property implies closure, we have that E(pk,X,R) is a semi-group.2

Notice also, that while it is common to use the word “homomorphic” to describe
the cryptosystem, encryption is not a homomorphism in the mathematical sense
(although decryption is).

We now show some basic properties from all homomorphic encryption schemes.
These facts are commonly used but, since our definition is weaker than the (im-
plicit) definitions of homomorphic encryption that appear in the literature, it is
important to note that they hold under this definition as well.

– E(pk,X,R) is a group.
– E(pk, 0, R) is a subgroup of E(pk,X,R).
– For all x ∈ X , E(pk, x,R) is the coset E(pk, x, r)E(pk, 0, R).
– For all x0, x1 ∈ X , |E(pk, x0, R)| = |E(pk, x1, R)|.
– If y is chosen uniformly from E(pk, 0, R), then yE(pk, x, r) is uniform in
E(pk, x,R).

– E(pk,X,R) is such that E(pk,X,R)  X × E(pk, 0, R) and decryption is
the homomorphism

E(pk,X,R)→ E(pk,X,R)/E(pk, 0, R)  X.

– If y is chosen uniformly from E(pk, 0, R), then for any x ∈ X , yE(pk, x, r)
is uniformly distributed in E(pk,X,R). This follows because the map

f : E(pk, 0, R)→ E(pk,X,R)

y �→ yE(pk, x, r)

is an injection because the group element E(pk, x, r) has an inverse in Y
(we do not need to assume that the inverse is a valid ciphertext). Thus
by counting, we see that f is in fact a bijection. Hence if y is uniformly
distributed, so is f(y).

We call a public key cryptosystem a homomorphic public key encryption scheme,
if it is IND-CPA secure and homomorphic.

2.3 Diverse Group Systems

In [CS02], Cramer and Shoup defined diverse group systems and used them as
a foundation for all their constructions of Universal Hash Proof Systems. We
review these definitions here.

Let Z,L,Π be finite abelian groups written additively, with L � Z. Let
Hom(Z,Π) be the group of homomorphisms, φ : Z → Π . This is also clearly an
abelian group under the operation (φ1 + φ2)(x) = φ1(x) + φ2(x).

2 A semi-group satisfies the axioms of a group but is not guaranteed to have an identity
element or inverses.
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Definition 1 (Group System). Let Z,L,Π be finite abelian groups with L �
Z. Let H ⊂ Hom(Z,Π). We call

G = (H, Z, L,Π),

a group system.

Definition 2 (Diverse Group System). We call a group system G =
(H, Z, L,Π) diverse if for all z ∈ Z \ L, there exists φ ∈ H such that φ(�) = 0
for all � ∈ L, but φ(z) �= 0.

In [CS02] Cramer and Shoup show a natural method for constructing Universal
Hash Proof Systems from Diverse Group Systems.

Definition 3 (Hash Proof System Associated to a Diverse Group Sys-
tem). Let G = (H, Z, L,Π) be a diverse group system, and let g1, . . . , gd ∈ L be
a set of generators for L. We define the associated Hash Proof system UHP =
(H,K,Z, L,Π, S, α),

– For uniformly chosen k ∈ K, Hk is uniform on H.
Without loss of generality, we may assume K = H, and k = φ ∈ H.
We maintain Universal Hash Proof notation to emphasize that Hk(·) that
someone who can calculate Hk(·) on elements of L may not know the under-
lying homomorphism φ.

– S = Πd, and

α : K → S

k �→ (Hk(g1), . . . , Hk(gd)).

2.4 Lossy Trapdoor Functions

We briefly review the notion of Lossy Trapdoor Functions (LTDFs) as described
in [PW08].

Intuitively, a family of Lossy Trapdoor Functions is a family of functions which
have two modes, injective mode, which has a trapdoor, and lossy mode which is
guaranteed to have a small image size. In particular, the preimage of any element
in the image will have a large size. Formally we have:

Definition 4 (Lossy Trapdoor Functions). A tuple (Sltdf , Fltdf , F
−1
ltdf) of

PPT algorithms is called a family of (n, k)-Lossy Trapdoor Functions if the fol-
lowing properties hold:

– Sampling Injective Functions: Sltdf(1
λ, 1) outputs s, t where s is a func-

tion index, and t its trapdoor. We require that Fltdf(s, ·) is an injective de-
terministic function on {0, 1}n, and F−1

ltdf(t, Fltdf(s, x)) = x for all x.
– Sampling Lossy Functions: Sltdf(1

λ, 0) outputs (s,⊥) where s is a func-
tion index and Fltdf(s, ·) is a function on {0, 1}n, where the image of Fltdf(s, ·)
has size at most 2n−k.

– Indistinguishability: The first outputs of Sltdf(1
λ, 0) and Sltdf(1

λ, 1) are
computationally indistinguishable.
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3 Implications of Homomorphic Encryption

Much effort has been devoted studying the implications of homomorphic en-
cryption, and many results are now known. It is known that homomorphic en-
cryption implies Private Information Retrieval (PIR) [KO97],[Man98],[IKO05],
and since PIR implies Collision Resistant Hash Functions [IKO05], Oblivious
Transfer [CMO00], and lossy encryption [HLOV11], we immediately have con-
structions of these primitives based on any homomorphic encryption. It remains
open, however, whether homomorphic encryption implies IND-CCA secure cryp-
tosystems.

Our main contributions are a step towards resolving this long-standing open
question.

3.1 Constructing Lossy Trapdoor Functions

As in Section 2.2, throughout the following section, let (G,E,D) be a homo-
morphic encryption with plaintext group X , and randomness space R. We write
the group operation on X additively and the group operation on ciphertexts
multiplicatively.

We begin by attempting to generalize the construction of lossy trapdoor func-
tions from the Damg̊ard-Jurik cryptosystem given by [BFOR08], [RS08] and
[FGK+10].

– Sampling Injective Functions: Sltdf(1
λ, 1), runs (pk, sk) ← G(1λ), and

chooses r ← R, and sets e = E(pk, 1, r). The function index s = (pk, e), and the
trapdoor t = sk.

– Sampling Lossy Functions: Sltdf(1
λ, 0), runs (pk, sk) ← G(1λ), and chooses

r ← R, and sets e = E(pk, 0, r). The function index s = (pk, e), and the trapdoor
t = ⊥.

– Evaluation: Given s = e and an input a ∈ {0, 1, . . . , B − 1},
Fltdf(s, a) = ea

– Inversion: Given t = sk, and a value c, set a = D(sk, c).

Fig. 1. Generalizing the DCR-based LTDFs

Lemma 1. Let (G,E,D) be a homomorphic encryption such that the plaintext
group X is cyclic, with |X | ≥ B > |R|, for some publicly known bound B ∈ Z,
then the construction given in Figure 1 is a family of lossy trapdoor functions.

Proof. Note that the homomorphic property of the cryptosystem ensures that
the product of two ciphertexts can be computed efficiently, so ea can be computed
efficiently using the square-and-multiply algorithm. Correctness of inversion fol-
lows immediately from the correctness of decryption. The indistinguishability of
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modes follows immediately from the IND-CPA security of (G,E,D). It remains
only to consider the lossiness of the lossy mode.

The output of the function in lossy mode is Fltdf(s, a) = ea, where e =
E(pk, 0, r), thus Fltdf(s, a) is a valid encryption of 0, i.e. Fltdf(s, a) ∈ E(pk, 0, R).
Since the size of |E(pk, 0, R)| ≤ |R|, and there are B choices for a, with B > |R|,
the function is lossy. It is clear as well that as the ratio of B to |R| grows, the
functions become more lossy. If the size of X is efficiently computable, then it is
natural to take B = |X |.

Lemma 1 has an immediate corollary, that if we assume instead that the cipher-
text space is cyclic, we obtain the same result.

Corollary 1. If (G,E,D) is a homomorphic encryption such that the group
E(pk,X,R) is cyclic with |X | > |R|, then the construction in Lemma 1 is a
family of lossy trapdoor functions.

Proof. The decryption algorithm provides an isomorphism between E(pk,X,R)/
E(pk, 0, R) and X , and since the quotient group of a cyclic group is cyclic, we
conclude that X must be cyclic, and the result follows from Lemma 1.

The construction outline in Figure 1 leaves much to be desired, the three primary
drawbacks are:

1. This construction requires a known public bound B, separating the size of
the plaintext and randomness spaces. This condition seems extremely mild,
however, since the definition of IND-CPA security requires the plaintext
space be efficiently samplable, and the group is cyclic.

2. The requirement that the messages be longer than the randomness in Lemma
1 is rather strong. In fact, the Damg̊ard-Jurik cryptosystem is the only ho-
momorphic cryptosystem known to have this property.3 In the next section,
we show how to remove this restriction on the size of the plaintext space.

3. Decryption involves a somewhat more subtle difficulty. A careful look at the
functions in Lemma 1 shows that the input is a ∈ {0, . . . , B − 1}, yet the
trapdoor reveals 1 · a ∈ X . If a ∈ Z can be recovered from 1 · a ∈ X (i.e. the
Discrete Log Problem is easy in X4), this will not be an issue.
In the case that the discrete-log problem is hard in the plaintext group
X , we can still apply Fltdf on random inputs, which may be enough for
some applications. To see this, notice that we can sample pairs x, Fltdf(s, x),
by sampling a ← {0, 1, . . . , B − 1}, setting x = 1 · a ∈ X , and setting
Fltdf(s, x) = ea. With this (slightly modified) definition, inversion becomes
efficient. We can no longer evaluate, Fltdf(s, ·) on given values of x, but we
can sample pairs x, Fltdf(s, x), where x is chose (almost) uniformly. This is
not a serious restriction, however, since one-wayness only makes sense when
applying a function to a high min-entropy input.

3 It is trivial to construct non-homomorphic cryptosystems that have this property by
extending the randomness using a PRG.

4 As is the case with the Damg̊ard-Jurik cryptosystem.
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Unfortunately, this is not enough to apply the constructions of IND-CCA
secure encryption from LTDFs given in [PW08, RS09, MY09]. Although
these constructions require applying Fltdf(s, ·) on a random input, the de-
cryption algorithm requires inverting one function and then evaluating the
All-But-One function to the recovered input. This second evaluation cannot
be performed when the discrete-log problem is hard in the plaintext spaceX .

We can quantify the lossiness of the functions given in Figure 1 based on the ratio
of B to |R|. If B

|R| = ω(λ), then we obtain strong lossy trapdoor functions, as

required for the constructions in [PW08]. If we only have B/|R| > 1+1/poly(λ),
then we obtain slightly lossy trapdoor functions as defined by Mol and Yilek
[MY09]. The results of Mol and Yilek show that this is in fact sufficient for
constructing Correlated Product Secure Functions [RS09], and IND-CCA secure
cryptosystems.5

3.2 Constructing Diverse Group Systems

The generalization of the construction of the [BFOR08, RS08, FGK+10] given
in Section 3.1 leaves much to be desired. In this section, by applying a differ-
ent method, we are able to obtain a stronger result6 than in Section 3.1 under
a slightly different assumption. In particular, we show that any homomorphic
encryption with cyclic ciphertext space (e.g. Goldwasser-Micali, Paillier), im-
mediately implies Diverse Group Systems as defined by Cramer and Shoup in
[CS02]. This method does not suffer from many of the drawbacks of the previous
method.

Theorem 1. Let (G,E,D) be a homomorphic encryption with plaintext groupX
and ciphertext group Y . If the group E(pk,X,R) is cyclic, thenG = (H, Z, L,Π)
is a Diverse Group System. Let γ = |E(pk,X,R)|.

– Z = E(pk,X,R) ⊂ Y , is the group of all encryptions.
– H is the set of homomorphisms given by exponentiating in the group, i.e. for
k ∈ {0, 1, . . . , γ}, and z ∈ Z, Hk(z) = zk. So |H| = |E(pk,X,R)| = |Z|.

– L = E(pk, 0, R) is the group of all encryptions of 0.
– Π = Z = E(pk,X,R).

Proof. To show that G is diverse, we must show that for all z ∈ Z \ L, there
exists a φ ∈ H such that φ(L) = 〈0〉, but φ(z) �= 0.

Let η = |L|, and γ = |Z|. Since Z was assumed to be cyclic, and L is a
subgroup of Z, we know that L is cyclic and η = |L| divides |Z| = γ. Now, it is
also a basic fact about cyclic groups that L is exactly the subgroup of elements
of Z whose order divides η, i.e. L = {z : z ∈ Z, zη = 1}. For any z ∈ Z \ L,
5 Again, we reiterate, that to apply the results of [PW08, RS09, MY09], the discrete-
log problem must be solvable in X.

6 We will construct a Diverse Group System which is known to imply LTDFs by
[HO12].
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Let d be the order of z, i.e. d is the smallest positive integer such that zd = 1.
Since z �∈ L, we know that d doesn’t divide η. Thus we may set k = η, (or any
multiple of η not divisible by d). In which case, we have Hk(z) = zη �= 0. But
Hk(�) = �η = 0 for all � ∈ L. This shows that any cyclic group (with a proper
subgroup) gives rise to a Diverse Group System.

To prove security, however, we need to show that L and Z are indistinguish-
able. This follows easily, however, since L is the set of encryptions of 0, and Z
is the set of all encryptions, they are indistinguishable by the IND-CPA security
of (G,E,D).

Applying the results of [CS02], which show that Diverse Group Systems imply
universal hash proof systems, and universal hash proof systems imply IND-CCA
secure cryptosystems, we arrive at the following result.

Corollary 2. Homomorphic encryption with cyclic ciphertext space implies
IND-CCA secure encryption.

Applying the results of [HO12], which show that Diverse Group Systems imply
Lossy Trapdoor Functions, we have

Corollary 3. Homomorphic encryption with cyclic ciphertext space implies Lossy
Trapdoor Functions.

Applying the results of [BFOR08], we have

Corollary 4. Homomorphic encryption with cyclic ciphertext space implies De-
terministic Encryption.

Corollary 5. If (G,E,D) is a homomorphic encryption with cyclic randomness
space, and there is an element x0 ∈ X such that the order of x0 in the group X
is relatively prime to |R|, then there is an IND-CCA secure cryptosystem.

Proof. We define a new cryptosystem (G′, E′, D′), with plaintext space X ′, and
randomness space R′. We set X ′ = 〈x0〉 ⊂ X , and R′ = R. We define G′ =
G, E′(pk, x, r) = E(pk, x, r), for x ∈ X ′, and D′ = D. We claim that the
ciphertext space of (G′, E′, D′) is cyclic. To see this, notice first that the map
R → E(pk, 0, R), given by r �→ E(pk, 0, r) is a surjective homomorphism, thus
E(pk, 0, R) is isomorphic to a quotient group of R. Since R is cyclic, all its
quotient groups are cyclic, so we see that E(pk, 0, R) is also cyclic, in addition
|E(pk, 0, R)| divides |R|. Since E(pk, 0, R) = E′(pk, 0, R′), we have |E′(pk, 0, R′)|
divides |R|, and is thus relatively prime to the order of the cyclic group |〈x0〉|,
which has size equal to the order of x0. Thus the group 〈x0〉 × E′(pk, 0, R′) is
cyclic, but this group is isomorphic to E′(pk,X ′, R′), so we may apply Theorem
1 to construct an IND-CCA secure cryptosystem.

4 Conclusion

In this work, we examined the connection between homomorphic encryption and
chosen-ciphertext (IND-CCA) secure encryption. In particular, we showed that
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any homomorphic encryption with a large cyclic plaintext space implies Lossy
Trapdoor Functions, and when the discrete-log problem is easy in the plaintext
group, then this implies IND-CCA encryption.

More importantly, we showed that any homomorphic encryption with a cyclic
ciphertext space implies universal hash proof systems, and hence both Lossy
Trapdoor Functions and IND-CCA secure encryption.

Homomorphic encryption schemes arise naturally in many contexts, where
the security rests on a computational hardness assumption about groups. This
makes homomorphic encryption a natural candidate for creating more complex
cryptographic primitives.

Our constructions of IND-CCA secure cryptosystems from homomorphic en-
cryption over a cyclic space are efficient, and have the benefit of simple proofs
of security. Our results extend what is known to follow from homomorphic
encryption, and bring us one step closer to the long sought-after goal of a
generic construction of IND-CCA secure encryption from any homomorphic
cryptosystem.
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Abstract. Waters signatures (Eurocrypt 2005) can be shown existen-
tially unforgeable under chosen-message attacks under the assumption
that the computational Diffie-Hellman problem in the underlying (pai-
ring-friendly) group is hard. The corresponding security proof has a re-
duction loss of O(� · q), where � is the bitlength of messages, and q is
the number of adversarial signature queries. The original reduction could
meanwhile be improved to O(

√
� · q) (Hofheinz and Kiltz, Crypto 2008);

however, it is currently unknown whether a better reduction exists. We
answer this question as follows:

(a) We give a simple modification of Waters signatures, where messages
are encoded such that each two encoded messages have a suitably
large Hamming distance. Somewhat surprisingly, this simple modi-
fication suffices to prove security under the CDH assumption with a
reduction loss of O(q).

(b) We also show that any black-box security proof for a signature
scheme with re-randomizable signatures must have a reduction loss
of at least Ω(q), or the underlying hardness assumption is false. Since
bothWaters signatures and our variant from (a) are re-randomizable,
this proves our reduction from (a) optimal up to a constant factor.

Understanding and optimizing the security loss of a cryptosystem is im-
portant to derive concrete parameters, such as the size of the underlying
group. We provide a complete picture for Waters-like signatures: there
is an inherent lower bound for the security loss, and we show how to
achieve it.

Keywords: Digital signatures, Waters signatures, provable security,
black-box reductions.

1 Introduction

Waters Signatures. Waters signatures [22] form a simple and efficient digital
signature scheme in pairing-friendly groups. The existential unforgeability of the
scheme can be proved under the computational Diffie-Hellman (CDH) assump-
tion. Unfortunately, the corresponding security reduction from [22] suffers from
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a multiplicative loss of O(� · q), where � is the bitlength of signed messages, and
q is the number of adversarial signing queries. In other words, every signature
forger with success probability ε can only be mapped to a CDH-solver with
success probability Ω(ε/(� · q)).

From the proof of [22], it is not immediately clear whether this comparatively
large security gap is inherent or an artifact of the used proof technique. In fact,
[13,14] used a rather different simulation setup to show the security of Waters
signatures with a reduction loss ofO(

√
�·q). However, it is not at all clear whether

their reduction is optimal. There is no known lower bound on the reduction loss
of Waters signatures.

Our Contributions. Our contributions revolve around the possibility of achiev-
ing a better security reduction for Waters (and similar) signatures. Concretely:

(a) We first give a simple modification of Waters signatures. Essentially, we
simply encode each message before signing. This guarantees that any two
(encoded) messages have a suitably large Hamming distance. Perhaps some-
what surprisingly, this trivial modification can be shown secure under the
CDH assumption with a reduction loss of O(q). The price to pay for this
improved reduction is a constant-factor blowup (caused by the encoding) of
the public key size and signature/verification times.

(b) Building on work of Coron [7], we proceed to show that any security proof for
a signature scheme with re-randomizable signatures must have a reduction
loss of at least Ω(q), or the underlying complexity assumption is false. Coron
showed that statement for deterministic signature schemes. We extend the
statement to schemes in which any signature can be publicly re-randomized.
Since both Waters signatures and our variant from (a) are re-randomizable,
this proves our reduction from (a) optimal up to a constant factor.

Of course, the practical impact of our results is somewhat limited. In fact, it is
a bit disappointing that one can only save a reduction factor of

√
� (compared

to the proof of [13,14]), where � itself is typically significantly smaller than the
remaining reduction loss of O(q). However, we stress that from a conceptual
point of view, our results essentially give a complete picture: there is an inherent
lower bound for the security loss of Waters-like signature schemes, and we show
how to achieve this bound.

Other Related Work. There exist a number of tightly secure signature
schemes, both with (e.g., [1,18]) and without random oracles (e.g., [3,5,9,16,20]).
However, to the best of our knowledge, there is no standard-model signature
scheme whose security could be tightly reduced to the CDH problem. In particu-
lar, the only known results about the reduction tightness of Waters (or similar)
signatures are the discussed works [13,14,22]. We do mention that Guo et al. [11]
give a variant of Waters signatures and claim that this variant suffers from a
reduction loss of only O(�). However, their security proof is subtly flawed [12],
as we sketch briefly in Section 1.1. It is not clear if and how their argument can
be fixed.
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1.1 Technical Overview

Partitioning. In order to present our techniques, we briefly recall the “par-
titioning” proof strategy used in the context of signature schemes, e.g., by
Coron [6] and Waters [22]. A “partitioning” proof simulation partitions the mes-
sage space into two sets: those messages that can be signed during the simulation,
and those that cannot. Let us call those messages “signable,” resp. “unsignable.”
Any forged signature for an unsignable message can then be used to solve a
computational problem (e.g., a CDH challenge). The simulation thus succeeds if
(a) all adversarial signature queries correspond to signable messages, and (b) the
forger forges a signature for an unsignable message. For simplicity, assume that
each message is set up as signable with a certain probability p. Assume further
that these probabilities are independent for different messages. Then, it is not
hard to see that the probability that the simulation succeeds is P := pq · (1− p),
where q is the number of signature queries. This probability is maximized if we
set p suitably in the order of 1− 1/q, in which case P = O(1/q).

Coron’s Results. Specifically, using a partitioning technique, the best we can
hope for is a reduction with a loss of O(q). In fact, Coron [6] shows how to achieve
such a reduction for the RSA-FDH scheme in the (programmable) random oracle
model. Furthermore, he shows that any reduction of a deterministic signature
scheme must essentially be partitioning, and thus the loss of O(q) is inherent.
See also [17].

Waters Signatures. Waters [22] conducts a similar partitioning simulation
in the standard model, for a particular CDH-based signature scheme. For this
outline, we will only give a very abstract and idealized breakdown of his strategy.
In his scheme, a message m = (m1, . . . ,m�) to be signed selects group elements
hi (for i with mi = 1) that determine an intermediate hash value

H(m) = h0
∏

mi=1

hi.

Depending on H(m), the simulation in the security proof will be able to ei-
ther generate a signature for m, or use any forged signature for m to solve
a given CDH-challenge. Concretely, each hi is associated with an (information-
theoretically hidden) integer ai. A messagem in turn leads to an integer a(m) :=
a0 +

∑
mi=1 ai. If a(m) �= 0, then the simulation can sign m; if a(m) = 0, then

the simulation can use any forged signature for m to solve a CDH-challenge.

The Programming of the Hash Function. Unfortunately, neither the mes-
sages that need to be signed, nor the message on which the adversary forges are
known in advance. Hence, the crux in the security analysis is to set up the values
ai such that with significant probability (say, P ) over the ai,
(a) all q adversarial signature queries m(1), . . . ,m(q) can be answered (that is,

a(m(i)) �= 0 for all i), and
(b) the message m∗ on which the adversary forges can be used to embed a

challenge (i.e., a(m∗) = 0).
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The probabilistic argument from [22] chooses the ai uniformly over a suitable
domain that depends on q. This results in a simulation success probability of
P = Θ(1/(� · q)). Hofheinz and Kiltz [13,14] show that by setting up the ai as
suitably long random walks, the success probability can be improved to P =
Θ(1/(

√
� · q)).

The Problem. The reason for the somewhat annoying �, resp.
√
� terms in

these analyses is a bit subtle, and we will only try to give a brief idea here.
Consider what happens when the forgery message m∗ is “close” to a signed
message m in the sense that m∗ and m(i) differ in only one bit. Then, a(m∗)
and a(m) differ by only one ai. Now the analysis requires that the conditioned
probability Pr [a(m) = 0 | a(m∗) = 0] is O(1/q). (Otherwise, it becomes difficult
to prove that the probability is significant that, say, q random messagesm can all
be signed, given that m∗ cannot.) But since a(m∗) and a(m) differ by only one
(a-priori unknown) ai, each ai must have a distribution with min-entropy at least
log2 q. (That is, the probability that ai takes a particular value must always be
O(1/q).) Hence, e.g., for the all-one message m = (1, . . . , 1), we get that a(m) =

a0 +
∑�

i=1 ai, and we would expect that a(m) has a much larger min-entropy
than log2 q. (In particular, if m∗ is the all-one message, then Pr [a(m∗) = 0] will
be much smaller than Θ(1/q).)

Our Solution. Intuitively, our solution is simply to encode all messages using
a code with large minimum distance prior to signing. This avoids that two mes-
sages m∗,m that are “close” even exist. Concretely, we will ensure that any two
different (a(m∗), a(m) will always differ by at least a constant fraction of all ai.
This allows to set up the ai with lower min-entropy than in previous analyses,
and allows us to set up a simulation with success probability P = Θ(1/q).

For completeness, we note that Guo et al. describe another way to set-up the
ai in the proof of [11, Theorem 2], and claim that this set-up can used to give a
tighter security reduction for Waters signatures. However, it turns out that this
is not true [12]. The reason is that in the proof of [11, Theorem 2] the simulation
is set up in a way that depends on the messages to be signed. (Specifically, the
variables that correspond to our ai are not statistically hidden in [11].) Thus,
the view of the adversary is not independent of the event that the simulation
succeeds. Concretely, the setup in [11] potentially allows adversaries who forge
only signatures for messages m∗ with a(m∗) �= 0, in which case no solution to
the CDH problem can be extracted.

Optimality of Our Solution. Naturally, one may ask whether it is possible to
improve the reduction further.We answer this question in the negative. Concretely,
we show that it is impossible to prove any re-randomizable signature scheme se-
cure, using a black-box reduction to any of a large class of hardness assumptions,
such that the security loss in the reduction is significantly better than 1/q. Since
both Waters signatures and our new variant are efficiently re-randomizable, this
shows our reduction optimal.We stress that our impossibility result does not cover



70 D. Hofheinz, T. Jager, and E. Knapp

interactive assumptions (such as the LRSW assumption [19]). In particular, our
result does not contradict re-randomizable signature schemes with tight security
proofs based on interactive assumptions (such as [4]).

The proof technique is based on the meta-reduction technique of Coron [7],
which simulates a forger for R such that the simulation fails with probability at
most 1/q. For Coron’s proof it is essential that the considered signature scheme
is deterministic, and that for all public keys it is publicly verifiable that there
exists only a single valid signature per message (as it is the case for instance for
certified trapdoor permutations, cf. [17]). Since we want to consider probabilistic
schemes, we lose this leverage and Coron’s result does not apply.

Instead, we will show that it suffices that signatures are re-randomizable.
Moreover, since deterministic signature scehemes are re-randomizable, our result
can be seen as a generalization of previous work [7,17].

Let us intuitively sketch the reason why re-randomizability suffices. Basically,
if signatures are efficiently re-randomizable, then the only way left to prove
security is to partition the message space into messages which can be signed by
the reduction, and messages from which a solution to the given problem instance
can be extracted. To see this, suppose that for a random message m∗ it holds
with high probability that the reduction can simulate one signature for m∗, but
extract a solution to a hard problem from a different signature for m∗. Then the
reduction could solve the hard problem even without interacting with the forger,
by generating a simulated signature σ∗ for m∗, re-randomizing it to obtain some
random signature σ′, and finally extracting the solution to the hard problem
from σ′. Since the reduction would solve the problem without any additional
assumption (i.e. the existence of a signature forger), this would contradict the
assumption that the underlying problem is hard.

Further Applications. We note that the analysis from Section 4 can also be
applied to show that a security reduction from any hard problem to breaking
Waters’ identity-based encryption (IBE) scheme from [22] must lose a factor
of Ω(q), if the adversary may issue q adaptive chosen-identity key queries are
allowed.

However, this bound is only achievable using our techniques if one wants
to prove that Waters’ IBE scheme is one-way under adaptive chosen-identity
attacks. The commonly accepted security notion for IBE is indistinguishability
under adaptive chosen-identity attacks, and it seems that in this setting our
techniques do not substantially improve on the results of [2,22]. Therefore we do
not elaborate this further.

1.2 Outline

We recall some notation, standard definitions, and Waters’ signature scheme in
Section 2. In Section 3, we present our modified signature scheme and prove it
secure with a reduction loss of O(q). Finally, in Section 4, we show a lower bound
of Ω(q) on the reduction loss of schemes with re-randomizable signatures.
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2 Preliminaries

For k ∈ N, we write 1k for the string of k ones, and [k] for {1, . . . , k}. Moreover,
|x| denotes the length of a bitstring x, while |S| denotes the size of a set S.

Further, s
$← S denotes the sampling a uniformly random element s of S. For

an algorithm A, we write z
$← A(x, y, . . .) to indicate that A is a (probabilistic)

algorithm that outputs z on input (x, y, . . .).

2.1 Digital Signatures

A digital signature scheme Sig = (Gen, Sign,Vfy) consists of three algorithms.

Key generation Gen generates a keypair (pk, sk)
$← Gen(1k) for a secret signing

key sk and a public verification key pk. The signing algorithm Sign inputs a

message and the secret signing key, and returns a signature σ
$← Sign(sk,m)

of the message. The verification algorithm Vfy takes a verification key and a
message with corresponding signature as input, and returns b ← Vfy(pk,m, σ),
where b ∈ {0, 1}. We say that a signature is valid, if Vfy(pk,m, σ) = 1. We
require the usual correctness properties.

Let us recall the existential unforgeability against chosenmessage attacks (EUF-
CMA) security experiment [10], played between a challenger and a forger F .

1. The challenger runs Gen to generate a keypair (pk, sk). The forger receives
pk as input.

2. The forger may ask the challenger to sign a number of messages. To query the
i-th signature, F submits a message m(i) to the challenger. The challenger
returns a signature σi under sk for this message.

3. The forger outputs a message m∗ and signature σ∗.

F wins the game, if 1← Vfy(pk,m∗, σ∗), that is, σ∗ is a valid signature for m∗,
and m∗ �= m(i) for all i.

Definition 1. We say that F (t, q, ε)-breaks the EUF-CMA security of Sig, if
F runs in time t, makes at most q signing queries, and has success probability
ε. Furthermore, we say that Sig is EUF-CMA secure if there is no PPT forger
F that t, q, ε-breaks the EUF-CMA security of Sig for polynomials t, q and a
non-negligible ε.

2.2 The Computational Diffie-Hellman Problem

Let G be a group of order p. The computational Diffie-Hellman problem is to
compute the group element gαβ, given random group elements (g, gα, gβ) ∈ G3.

Definition 2. We say that algorithm A (ε, t)-solves the computational Diffie-
Hellman problem in G, if

Pr
[
A(g, gα, gβ) = gαβ

]
≥ ε,

and A runs in time t.
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2.3 Waters Signatures

Recall Waters’ signature scheme SigWat = (GenWat, SignWat,VfyWat) from [22]:

GenWat(1
k): The key generation algorithm selects a group G of prime order p ≈

22k with generator g and bilinear map e : G×G→ GT . Then h0, h1, . . . , h�
$←

G and α, β
$← Zp are chosen at random. The public key is defined as

pk := (G, g, gα, gβ, h0, h1, . . . , h�),

and the secret key is sk := (pk, gαβ).
In the sequel we will denote with H : {0, 1}� → G the function mapping

m �→ h0
∏�

i=1 h
mi

i , where for i ∈ [�], we denote by mi ∈ {0, 1} the ith bit of
m.

SignWat(sk,m): The signing algorithm takes as input a message m ∈ {0, 1}�.
The algorithm samples r

$← Zp and computes

σ1 = gr and σ2 = gαβH(m)r.

Then it returns the signature σ = (σ1, σ2).
VfyWat(pk,m, σ): The verification algorithm returns 1 if the equation

e(gα, gβ) · e(σ1, H(m)) = e(g, σ2)

holds. Otherwise 0 is returned.

Waters [22] proved that the above signature scheme is EUF-CMA secure un-
der the computational Diffie-Hellman assumption in G. The original reduction
from [22] is not very tight. Concretely, it loses a factor of (16(�+1)q), where � is
the bit-length of the message and q is (an upper bound on) the number of sig-
nature queries issued by the forger. The original analysis was slightly improved
in [13], which gives the following theorem.

Theorem 1 ([22,13]). Suppose there exists a forger F that (t, q, ε)-breaks the
EUF-CMA security of SigWat. Then there exists an algorithm A (ε′, t′)-solving the
computational Diffie-Hellman problem in G in time t′ ≈ t with success probability
ε′ ≥ ε ·O( 1√

�q
).

3 A Variant of Waters’ Signature Scheme

As mentioned in Section 1, our only modification of Waters’ scheme will be to
encode messages prior to signing. For each security parameter k, we will therefore
assume a code C = Ck over F2 of dimension k, length �, and minimum distance
d ≥ γ · � for a fixed γ > 0. (For instance, one can use a family of expander codes
with suitable parameters [21,23].)

We will apply C to k-bit messages, and we assume that each encoded message
has Hamming weight at least d. (For instance, one could simply forbid any
message that leads to an all-zero output.)

Our scheme Sigtight = (Gentight, Signtight,Vfytight) is almost identical to the one
by Waters (see Section 2.3):
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Gentight(1
k) outputs pk := (G, g, gα, gβ, h1, . . . , h�) and sk := (pk, gαβ) just like

GenWat, but without h0. Now pk defines a hash function H(M) := h0
∏

i h
Mi

i

for M = (M1, . . . ,M�) ∈ {0, 1}�.
Signtight(sk ,m) (for m ∈ {0, 1}k) first computes M := Ck(m) ∈ {0, 1}� and then

outputs σ := (σ1, σ2) := (gr, gαβH(M)r).
Vfytight(pk ,m, σ) sets M := Ck(m) and then checks

e(gα, gβ) · e(σ1, H(M))
?
= e(g, σ2).

Obviously, this defines a signature scheme. We also claim:

Theorem 2. Suppose there exists a forger F that (t, q, ε)-breaks the EUF-CMA
security of Sigtight. Then there exists an algorithm A (ε′, t′)-solving the com-
putational Diffie-Hellman problem in G in time t′ ≈ t with success probability
ε′ ≥ ε ·Θ(1q ).

The rest of this section will be devoted to proving Theorem 2.

3.1 A Better Bound on the Success Probability of the Simulation

We start with our abstract setup and the analysis of the crucial variables ai for
our simulation. In the next subsection, we then proceed to outline how this setup
is embedded in a simulation of the signature scheme.

In the following let �, w ∈ N. In the simulation, � will be the bitlength of
(encoded) messages, and w will be an integer that determines how long each
random walk ai will be. For i ∈ [�], j ∈ [w], let ai,j be independently and
uniformly distributed random variables over {−1, 0, 1}. Let ai :=

∑w
j=1 ai,j .

Furthermore, for S ⊆ [�], let a(S) :=
∑

i∈S ai. Note that a(S) is a random walk
(with {−1, 0, 1}-steps) of length |S| · w. Hence, the following standard result
about random walks applies:

Theorem 3. There exist λ, Λ ∈ R that do not depend on �, w, such that for any
S ⊆ [�] of size s := |S|, we have

λ√
s · w ≤ Pr [a(S) = 0] ≤ Λ√

s · w .

Furthermore, for any �, w, S, the probability Pr [a(S) = i] is maximized for i = 0.

Proof. Although this is a standard fact about random walks (see [8,15] for a
thorough introduction), [14, Theorems 17 and 18] provide a direct proof of the
theorem adjusted to our setting.

We can now use Theorem 3 to derive the main technical lemma for the analysis
of our variant of Waters’ signature scheme. This result uses and extends tech-
niques of [13,14] to a setting in which there is a guaranteed “minimum distance”
between two random walks. (Later, this “minimum distance” will correspond to
the Hamming distance between two encoded messages to be signed.)
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Lemma 1. Let X,Y ⊆ [�] such that |X |, |Y | ≥ d, and |(X \ Y ) ∪ (Y \X)| ≥ d
for d ≥ 1. Then, we have

Pr [a(Y ) = 0 | a(X) = 0] ≤ C ·
√
�

d ·
√
w

(1)

for a fixed constant C that does not depend on �, w, d,X, Y .

Proof. We distinguish the two cases |X \ Y | ≥ d/2 and |Y \X | ≥ d/2:
Case |Y \X | ≥ d/2:

Pr [a(Y ) = 0 | a(X) = 0]
(a)

≤ max
i

Pr [a(Y ) = 0 | a(Y ∩X) = i]

(b)

≤ max
i

Pr [a(Y \X) = −i | a(Y ∩X) = i]

(c)
= max

i
Pr [a(Y \X) = −i]

(d)
= Pr [a(Y \X) = 0]

(e)

≤
√
2 · Λ√
d · w

(f)

≤
√
2 · Λ ·

√
�

d ·
√
w

Here, (a) holds because a(Y ) only depends on a(Y ∩X) but not on a(X \Y );
(b) uses a(Y ) = a(Y \X)+a(Y ∩X); (c) uses that a(Y \X) and a(Y ∩X) are
independent; (d) and (e) apply Theorem 3, using that a(Y \X) is a random
walk of length at least (d/2) · w; finally, (f) uses d ≤ �.

Case |X \ Y | ≥ d/2:

Pr [a(Y ) = 0 | a(X) = 0]
(a)
= Pr [a(X) = 0 | a(Y ) = 0] · Pr [a(Y ) = 0]

Pr [a(X) = 0]

(b)

≤
√
2 · Λ√
d · w

· Pr [a(Y ) = 0]

Pr [a(X) = 0]

(c)

≤
√
2 · Λ√
d · w

·
√
2 · Λ√
d · w

·
√
� · w√
2 · λ

=

√
2 · Λ2

λ
·
√
�

d ·
√
w

Here, (a) uses Bayes’ theorem; (b) uses what we have proved for the case
|Y \X | ≥ d/2 (with swapped X,Y ); (c) apply Theorem 3, using that a(X)
and a(Y ) are random walks of length at least d · w and at most � · w.

Since we have Λ ≥ λ, setting C :=
√
2 · (Λ2/λ) proves (1).

Next, we can plug Lemma 1 into the existing analysis of Waters’ scheme [22].
First, this means proving the following technical claim, which essentially bounds
the probability that all signing queries can be answered, while the adversary’s
forgery solves a computational challenge. This claim roughly corresponds to
[22, Claim 2].
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Lemma 2. Let X,Y1, . . . , Yq ⊆ [�] such that |X |, |Yi| ≥ d and |(X \ Yi) ∪ (Yi \
X)| ≥ d for some d ≥ 1 and all i. Then, we have

Pr [a(X) = 0 ∧ ∀i ∈ [q] : a(Yi) �= 0] ≥
(
1− C · q ·

√
�

d ·
√
w

)
· D√

d · w
(2)

for fixed constants C,D that do not depend on �, w, d, q,X, and the Yi.

Proof. We have

Pr [a(X) = 0 ∧ ∀i : a(Yi) �= 0] = Pr [∀i : a(Yi) �= 0 | a(X) = 0] · Pr [a(X) = 0]

(a)

≥ Pr [∀i : a(Yi) �= 0 | a(X) = 0] · λ√
d · w

= (1− Pr [∃i : a(Yi) = 0 | a(X) = 0]) · λ√
d · w

(b)

≥
(
1−

q∑
i=1

Pr [a(Yi) = 0 | a(X) = 0]

)
· λ√

d · w
(c)

≥
(
1− q · C ·

√
�

d ·
√
w

)
· λ√

d · w

Here, (a) applies Theorem 3, using that a(X) is a random walk of length at
least d ·w; (b) uses a union bound; (c) denotes a q-wise application of Lemma 1.
Setting D := λ yields (2).

Note that if we set d = γ · � and w = (2Cq/γ)2/� (for some γ > 0) in (2), a quick
calculation gives

Pr [a(X) = 0 ∧ ∀i ∈ [q] : a(Yi) �= 0] ≥
D
√
γ

4C
· 1
q
. (3)

Hence, if γ is a constant, then this probability lies in the order of 1/q.

3.2 The Full Simulation

We now briefly sketch how to use Lemma 2 to prove Theorem 2. We are very
brief because except for Lemma 2 and a few syntactic differences, the proof is
identical to the one from [22].

Our goal is to build a CDH adversary A from an EUF-CMA forger F on
Sigtight that makes at most q = q(k) signature queries. Our CDH adversary A
gets as input a CDH challenge (g, gα, gβ) for a group G of order p with pairing
e : G×G→ GT , and is supposed to output gαβ.

Public Key. The first task of A is to prepare a Sigtight public key for F . In
order to do so, A sets w = (2Cq/γ)2/� for the parameter γ of the code C, and
the constant C from Section 3.1. Then, A prepares random variables a1, . . . , a�
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as random walks (over {−1, 0, 1}) of length w, just as in Section 3.1. Finally, A
chooses uniformly blinding exponents b1, . . . , b� ← [p] and sets

hi := (gα)ai gbi (for i = 1, . . . , �)

pk := (G, g, gα, gβ, h1, . . . , h�).

This results in a public key that is distributed exactly as in Sigtight.

Signing Queries. Next, A runs F on pk , and answers F ’s signing queries
as follows. Suppose F asks for the signature of a message m ∈ {0, 1}k that
induces an encoded message M = C(m) ∈ {0, 1}�. Let us view M as a subset
of [n], such that i ∈ M iff the i-th bit of M is set. Write a(M) :=

∑
i∈M ai

and b(M) :=
∑

i∈M bi. Note that we can always write H(M) = (gα)a(M)gb(M).
Hence, valid signatures have the form

(gr, gαβ ·H(M)r) = (gr, gαβ+r·(α·a(M)+b(M)))

In particular, if we set gr =
(
gβ

)x
gy, then valid signatures are of the form

(gxβ+y, gαβ+(xβ+y)·(α·a(M)+b(M)))

=
((
gβ

)x
gy,

(
gαβ

)1+x·a(M)
(gα)y·a(M) (gβ)x·b(M)

gy·b(M)
)
. (4)

Thus, depending on a(M), we now distinguish two cases:
– if a(M) �= 0, then the simulation can generate properly distributed valid

signatures via (4) by setting x = −a(M)−1 mod p and choosing y uniformly
(notice that the gαβ term in (4) then vanishes);

– if a(M) = 0, then the simulation cannot generate a signature for m, and the
simulation fails.

Extraction. Suppose that eventually, F generates a valid forged signature σ∗

for a fresh message m∗ with associated encoding M∗ := C(m∗). Again, we can
distinguish two cases:
– if a(M∗) = 0, then the simulation can extract gαβ by using

σ∗ = (gr
∗
, gαβ ·H(M∗)r

∗
) =

(
gr

∗
, gαβ ·

(
gb(M

∗)
)r∗

)
=

(
gr

∗
, gαβ ·

(
gr

∗)b(M∗)
)

for some unknown r∗ but known b(M∗);
– if a(M∗) �= 0, then the extraction fails.

Simulation Success. Let fail denote the event that the simulation fails (ei-
ther because a(Mi) = 0 for a signature query, or because a(M∗) �= 0). Then
Lemma 2 immediately gives an upper bound of 1−Θ(1/q) on Pr [fail]. Indeed,
if we set X :=M∗ and Yi := Mi, then any two different encoded messages differ
in at least d = γ · � bits. In particular, |(X \ Yi) ∪ (Yi \ X)| ≥ d. Substituting
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d = γ ·� and w = (2Cq/γ)2/� in (2) yields (3), and thus a lower bound of Θ(1/q)
on ¬fail. Furthermore, the ai are information-theoretically hidden from F , so
conditioning on ¬fail does not change F ’s success in the EUF-CMA experi-
ment. Theorem 2 follows.

4 Lower Tightness Bounds for Re-randomizable
Signatures

In this section we show that it is impossible to prove security of a signature
scheme with significantly smaller security loss than Ω(q), if the signature scheme
is efficiently re-randomizable. To this end, we first define re-randomizable signa-
tures. Then we give abstract definitions of computational problems, and reduc-
tions that reduce solving a given computational problem to breaking the security
of a given signature scheme. All these results are generic, in the sense that they
apply to any re-randomizable signature scheme. Finally, we show that both Wa-
ters’ signature scheme from [22] and our modified scheme from Section 3 are
efficiently re-randomizable, which implies that the reduction from Section 3 is
optimal.

4.1 Re-randomizable Signatures

The intuition behind re-randomizable signatures is the property that, given only
the public key pk and a valid signature σ for some messagem, one can efficiently
generate a new signature σ′ that is distributed uniformly over the set of all
possible signatures for m.

Let Sig = (Gen, Sign,Vfy) be a signature scheme. For any string pk (which
may either be a honestly generated public key, or a fake public key generated by
a simulator in a security proof) let us denote with

Σ(pk,m) = {σ : Vfy(pk,m, σ) = 1}

the set of signatures σ for message m that verify correctly under public key pk.

Definition 3. We say that Sig is t-re-randomizable, if there exists an algorithm
ReRand running in time atmost t, such that for all (pk,m, σ)withVfy(pk,m, σ) = 1
holds that the output distribution of

ReRand(pk,m, σ)

is identical to the uniform distribution over Σ(pk,m).

4.2 Computational Problems and Reductions

The definitions in this section follow [7].
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Definition 4. A computational problem Π = (C,S) consists of a set C and a
family of sets S = (Sc)c∈C . We say that C is the set of challenges of Π, and
for each c ∈ C set Sc is the set of solutions for c. We say that an algorithm A
(εA, tA)-solves Π, if A runs in time tA and

Pr[A(c) ∈ Sc : c
$← C] ≥ εA.

As an example consider a group G of prime order p. Then the computational
Diffie-Hellman problem in G is the problem Π = (C,S) with C = G × G × G
and where for each c = (g, ga, gb) ∈ C we have Sc = {gab}.

Definition 5. R is a (tF , εF , q, εR, tR)-reduction from problem Π to breaking
the security of signature scheme Sig, if for any forger F that (tF , εF , q)-breaks
the EUF-CMA security of Sig in the sense of Definition 1, algorithm R (εR, tR)-
solves Π.

Note that we require that the R works for any forger F , in particular if F is
given as a black-box.

For instance, Section 3 gives an example for an algorithmR that (tF , εF , q, εF ·
Θ(1/q), tR)-reduces solving the computational Diffie-Hellman problem to break-
ing the security of Waters’ signature scheme with tR ≈ tF .

4.3 Lower Tightness Bound for Re-randomizable Signature Schemes

In this section we consider reductions that run Forger F only once, and show
that any such reduction loses a factor of at least q. A generalization to reductions
that run F repeatedly is straightforward, see Section 4.4.

Theorem 4. Let Sig be a tReRand-re-randomizable signature scheme and let Π
be a computational problem in the sense of Definition 4. If there exists an
(tF , εF , q, εR, tR)-reduction R that runs F once and reduces Π to breaking Sig,
then there exists an algorithm A that (εA, tA)-solves Π with tA ≈ 2tR + tReRand
and

εA ≥ εR − exp(−1)/q.

We will use the following lemma, which is due to Coron [7].

Lemma 3. LetM be a set and let Q be a set of sequences of at most q elements
ofM, such that for any sequence (m1, . . . ,mj) ∈ Q we have (m1, . . . ,mj−1) ∈ Q.

Let i
$← [q] and (m1, . . . ,mq,m

∗)
$←Mq+1 be uniformly random. Then

Pr [(m1, . . . ,mq) ∈ Q ∧ (m1, . . . ,mi−1,m
∗) �∈ Q] ≤ exp(−1)/q.

See [7, Appendix D] for the proof.

Proof (Proof of Theorem 4). Consider an (imaginary) forger F that (tF , εF , q)-
breaks the EUF-CMA security of a given signature scheme Sig with some success
probability εF in some time tF . Forger F works as follows.
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1. F receives as input a public key pk from the challenger.
2. It selects q+1 random pairwise different messages (m(1), . . . ,m(q),m∗) from

the message space of Sig.
3. Then F queries the challenger for signatures of messages (m(1), . . . ,m(q)).
4. F computes a valid signature σ∗ for message m∗, such that σ∗ is distributed

uniformly over Σ(pk,m∗). (Forger F may be inefficient, since it needs to
forge a signature. However, we will later show how to simulate F efficiently.)

5. Finally F tosses a (biased) coin b
$← {0, 1} with Pr[b = 1] = εF .

(a) If b = 1 then it outputs σ∗.
(b) Otherwise it outputs error symbol ⊥.

Note that any (tF , εF , q, εR, tR)-reduction from some computational problem Π
to breaking the security of Sig can use Forger F to (εR, tR)-solveΠ . In the sequel
we will apply the rewinding technique of Coron [7] to show how to simulate F ,
if Sig is re-randomizable.

Consider an algorithm A that uses R as follows.

1. A receives as input an instance c of Π , and starts R on input c.
2. R outputs a public key pk.
3. A selects a random integer i ∈ [q] and q + 1 random pairwise different

messages (m(1), . . . ,m(q),m∗).
4. It queriesR for a signature for each message inM0 = (m(1), . . . ,m(i−1),m∗).

If R aborts, then so does A.
5. Then A rewinds R to the state after it has output the public key (i.e. the

state after Step 2).
6. Now A queries a signature for each message inM1 = (m(1), . . . ,m(q)). Again,

if R aborts, then A aborts too.

7. Then A computes σ′ = ReRand(pk,m∗, σ∗) and tosses a coin b
$← {0, 1} with

Pr[b = 1] = εF .
(a) If b = 1 then it submits σ′ to R.
(b) Otherwise it submits error symbol ⊥.
Finally A returns outputs whatever R returns

Fix the internal coins of R, and let Q be the set of (ordered) message sequences
M of size at most q, such that R aborts when asked to sign the messages in M .
Let E denote the event that M0 �∈ Q and M1 ∈ Q. (In other words, E occurs
when R does not abort before the rewinding, but does abort after the rewinding
by A.) Note that, due to the re-randomizability of Sig, A outputs a uniformly
random signature σ′ from the set Σ(pk,m∗) of all valid signatures for m∗ and
public key pk. Therefore A simulates F perfectly (after the rewind), and thus
can use R to solve Π , unless E occurs. By applying Lemma 3, we obtain that
the success probability of A is at least

εA ≥ εR − Pr[E ] = εR − Pr[M0 �∈ Q ∧M1 ∈ Q] ≥ εR − exp(−1)/q.

A essentially runs R twice and performs one re-randomization, therefore the
running time of A is tA ≈ 2tR + tReRand.
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The above theorem directly gives rise to the following corollary.

Corollary 1. Let Π be a (ε, 2t + tReRand)-hard computational problem. Then
the success probability εR of any security reduction from Π to breaking a re-
randomizable signature scheme that runs in time t is at most

εR ≤ exp(−1)/q + ε.

In particular, if ε is close to zero and signatures are efficiently re-randomizable,
then this gives an upper bound on the success probability of the reduction of
εR � exp(−1)/q for all reductions running in time t.

Note that in principle any (probabilistic) signature scheme is re-randomizable,
though not necessarily efficiently. However, the running time of the simulated
forger depends on the running time of the re-randomization algorithm. Thus, in
order to get a meaningful result, we need to require that signatures are efficiently
re-randomizable.

4.4 Reductions That Run F More Than Once

So far we have only considered reductions that run the forger once. While the
reduction from [22] is of this type, it may be possible that there exist a tighter
reduction that runs F several times with different public keys. Fortunately, fol-
lowing [7,17] it is very simple to generalize the result of Section 4.3 to reductions
that run F repeatedly.

Theorem 5. Let Sig be a tReRand-re-randomizable signature scheme and let Π be
a computational problem as in Definition 4. If there exists a (tF , εF , q, εR, tR)-
reduction R that runs F at most r times and reduces Π to breaking Sig, then
there exists an algorithm A that (εA, tA)-solves Π with tA ≈ 2 · tR + r · tReRand
and

εA ≥ εR − (r · exp(−1))/q.

The proof is very similar to the proof of Theorem 4, the only difference is that
now A needs to simulate r executions of F . Consider an adversary A which
proceeds exactly like in the proof of Theorem 4, and let Ei denote the event that
the simulation of F fails in the i-th execution. Then we have

εA ≥ εR −
r∑

i=1

Pr[Ei] = εR −
r∑

i=1

Pr[Mi,0 �∈ Q ∧Mi,1 ∈ Q]

≥ εR − (r · exp(−1))/q,

where Mi,0 and Mi,1 are the sequences of chosen-message queries issued by the
simulated forger in the i-th execution of F .

4.5 Waters Signatures are Re-randomizable

To show that any reduction from a computationally hard problem to the (t, q, ε)-
EUF-CMA security of Waters signatures loses at least a factor 1/q, it remains
to show that Waters signatures are efficiently re-randomizable.
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Note that the original Waters scheme from [22] and the variant from Section 3
differ only in the way the hash value H(m) ∈ G is computed. The following
considerations do not depend on a specific function H . Therefore we consider
a Waters signature scheme that uses some abstract hash function H in the
sequel, which makes the analysis applicable to both schemes (and other similar
constructions) simultaneously.

Lemma 4. Waters signatures are t-re-randomizable, where t amounts to two
exponentiations in G plus some minor additional operations.

Proof. Let pk = (G, g, gα, gβ, H) be a given public key, and let m and σ =
(σ1, σ2) be a given message with valid Waters signature, i.e., σ satisfies

e(gα, gβ) · e(σ1, H(m)) = e(g, σ2). (5)

Since σ1 is a group element, we can write σ1 = gr for some integer r ∈ Zp,
where p = |G| is the order of G. Then Equation 5 implies that we can write
σ2 as σ2 = gαβH(m)r. The set of all (σ1, σ2) satisfying Equation 5 is therefore
identical to the set

Σ(pk,m) = {(gr, gαβH(m)r) : r ∈ Zp}.

It remains to show that there exists an efficient algorithm ReRand that produces
uniformly random elements of Σ(pk,m) given only the public key pk, message
m, and a valid signature σ = (σ1, σ2). Consider algorithm ReRand taking as
input pk, signature (σ1, σ2) = (gr, gαβH(m)r) for some r, and message m. The

algorithm samples s
$← Zp and computes and returns (σ′

1, σ
′
2) where

σ′
1 := σ1 · gs = gr+s and σ′

2 := σ2 ·H(m)s = gαβH(m)r+s.

Since s is uniformly distributed over Zp, the resulting signature (σ′
1, σ

′
2) is dis-

tributed uniformly over Σ(sk,m), as required.

Combining the above lemma with Theorem 4 yields the following result.

Theorem 6. Let Π be a computational problem according to Definition 4. If
there exists a (tF , εF , q, εR, tR)-reduction R that reduces solving Π to breaking
Waters signatures, then there exists an algorithm A that (εA, tA)-solves Π with
tA ≈ 2tR and

εA ≥ εR − exp(−1)/q.

Thus, a reduction from any computational problem Π to breaking Waters sig-
natures that runs in time t with success probability significantly better than 1/q
implies that there exists an algorithm solving Π in time ≈ 2t with significant
success probability.
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Abstract. We introduce a new and very weak security notion for sig-
nature schemes called target randomness security. In contrast to previ-
ous security definitions we focus on signature schemes with (public coin)
probabilistic signature generation where the randomness used during sig-
nature generation is exposed as part of the signature. To prove practical
usefulness of our notion we present a new signature transformation for
mapping target randomness secure signature schemes to weakly secure
signature schemes. It is well-known that, using chameleon hash func-
tions, the resulting weakly secure scheme can then be turned into a fully
secure one. Our transformation outputs signature schemes that in gen-
eral produce signatures with l elements, where l is the bit length of the
input randomness. We present an instantiation of a target randomness
secure signature scheme based on the RSA assumption and show that
after applying our new signature transformation to this scheme, we can
accumulate the l signature elements into a single element. This results
in a new efficient RSA-based signature scheme. In contrast to traditional
security definitions, all signature schemes obtained with our transforma-
tion enjoy strong security, i.e. they remain secure even if the adversary
outputs a new signature on a previously queried message. In our proofs,
we rely on the prefix-based technique introduced by Hohenberger and
Waters at Crypto’09. However, using a precise analysis we are able de-
crease the security loss in proofs relying on the prefix-based technique.
This result may be of independent interest.

Keywords: digital signature, signature scheme, RSA, accumulation,
target randomness, transformation, prefix, tightness.

1 Introduction

Signature transformations that map signature schemes with weak security guar-
antees to schemes which fulfill the standard notion of security have proven very
useful in the past. This is because it is much more easy to design a signature
scheme which only fulfills a very weak notion of security than a fully secure
scheme. Many of the existing signature schemes like [25,5,21,6] have been de-
veloped in this spirit by first specifying a signature scheme with weak guaran-
tees and then applying a corresponding signature transformation to construct a
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scheme with stronger properties. This is also true for the recent signature scheme
by Hohenberger and Waters (HW) from Crypto’09. In their work, Hohenberger
and Waters present the first RSA-based hash-and-sign signature scheme in the
standard model and so solved a long-standing open problem [21]. To this end,
they tackle the problem that the challenger can predict the message M that
the adversary will generate a signature on (in the following called target mes-
sage) only with negligible probability. Their solution is to force the adversary
to not only process M but also, independently, all prefixes of M . (In the follow-
ing, we refer to this approach as ’prefix-based technique’.) This greatly reduces
the complexity for the simulator, because now it can guess with non-negligible
probability one of the prefixes of M . The remaining task of the challenger is to
embed the RSA challenge such that it can extract a solution from the attacker’s
forgery if its guess was correct.

As Hohenberger-Waters and Brakerski and Tauman Kalai (BTK) [6] pointed
out, the HW scheme gives rise to a new transformation1 that step-wisely trans-
forms signature schemes which only guarantee a very weak form of security –
security against universal (message) forgeries under generic chosen (message)
attacks (UMUF-GMA)2, to weakly secure schemes, i.e. schemes secure against ex-
istential (message) forgeries under generic chosen message attacks (EMUF-GMA).
(For formal definitions we refer to Section 2.1.) The UMUF-GMA security game
is equivalent to the definition of EMUF-GMA security, except that the attacker is
given the message it has to produce a forgery on – subsequently called ’target
message’ – in the first move of the security experiment. The transformation es-
sentially grasps the ideas behind the prefix-based technique by HW. The key
idea is to use a UMUF-GMA secure scheme to sign the l prefixes of the message M
as in the HW scheme. The final signature consists of all the signatures on these
prefixes. However, apparently the HW scheme cannot be obtained as a direct
application of this transformation; HW signatures have constant size and do not
grow with the message length as one might expect given the BTK transforma-
tion description. There must be some additional structure that the HW scheme
exploits.

In this work we analyze public coin probabilistic signature schemes, where the
randomness used in the signature generation is also sent to the verifier (as part
of the signature). We show how public coin signatures schemes that only fulfill
very weak notions of security can be used to construct efficient fully and strongly
secure signature schemes.

Contribution. We extend the existing work on signature schemes in the stan-
dard model. In particular we

– define a new and very weak security notion called target randomness se-
curity that defines ’existential message universal randomness unforgeability
against generic chosen message and randomness attacks’ (EMURUF-GMRA) for

1 This transformation was implicitly given in [21] and made explicit in [6].
2 [6] use the term a-priori-message unforgeability to refer to UMUF-GMA security.
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signatures with public coin probabilistic signature generation. Signature
schemes that are EMURUF-GMRA secure are always secure in the strong sense.

– present a new general transformation from EMURUF-GMRA secure signature
schemes to weakly secure signature schemes. Signatures of the resulting
scheme consist of l elements and are strongly secure as well.

– present a new and efficient target randomness secure RSA-based signature
scheme with a probabilistic signing algorithm.

– show that when applying our transformation to our RSA-based scheme the
signature elements of the resulting weakly secure signature scheme can be
accumulated into a single group element. This results in a new and efficient
RSA-based signature scheme with constant-size signatures. Slightly modified
our technique makes obvious why the size of the HW signatures does not
grow with the message size.

– improve the loss of tightness in prefix-based security reductions. This im-
provement transfers to all proofs that rely on the prefix-based techniques
like HW [21], BTK [6], and the recent signature scheme by Hofheinz, Jager
and Kiltz (HJK) [18].

To obtain signature schemes secure under the standard definition – security
against existential message unforgeability under adaptive chosen message at-
tacks (EMUF-AMA) [17] or full security – we can apply the well-known Shamir-
Tauman transformation to generate EMUF-AMA secure schemes from EMUF-GMA

secure schemes [31]. In Section 2.2 we extend this result by showing that if the
chameleon hash function also guarantees a certain form of strong security, the
resulting signature scheme is strongly secure too. We stress that most chameleon
hash function are also secure in this strong sense. This is advantageous in scenar-
ios where strong security is required, as we do not have to apply an additional
transformation like the Bellare-Shoup [3] or Huang et al. [22] transformation to
turn EMUF-AMA secure schemes into strongly secure ones. These transformations
increase the signature size and make the signing and verification algorithms less
efficient.

Related Work. Our work is related to the existing standard model
signature schemes. Most of the factoring-based hash-and-sign signature
schemes were proven secure under the Strong RSA (SRSA) assump-
tion [16,13,25,34,35,7,15,19,30]. Until 2009, it was an open problem to design
an efficient signature scheme that is secure solely under the RSA assumption.
Hohenberger and Waters stepwisely solved this problem by first presenting a
stateful RSA-based signature scheme at EUROCRYPT’09 [20] and, in the same
year, a stateless RSA-based signature scheme at CRYPTO’09 [21]. Recently,
Hofheinz, Jager, and Kiltz (HJK) presented a new signature scheme that is se-
cure under the sole RSA assumption [18]. It essentially relies on programmable
hash functions as introduced in [19] and results in very small signature sizes
while having a relatively large number of public key elements. Technically, the
authors also rely on the prefix-based proof technique and similar to our result,
they also use all the prefixes of the randomness to sign a message. Our RSA-
based scheme differs from their scheme in the following way. 1) Signatures are
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longer as we need two random values for signature generation. However, in 2006
Mironov showed how to re-use the second random value as a key to a target
collision resistant (TCR) hash function [24]. Target collision resistant hash func-
tions can be used as an alternative to collision-resistant (CR) hash functions for
domain extension of the message space. In contrast to CRs, TCRs do only rely
on the existence of one-way functions. At the same time they are much more
efficient than provably secure CRs in groups of hidden (composite) order [9].
Thus our instantiation allows to efficiently sign long messages without relying
on additional security assumptions. Similar arguments hold if we compare our
scheme with the HW scheme, which also only uses a single random value, see
Section 6.1. 2) Our public key is much smaller and comparable to that of the
HW scheme. We stress that besides these issues our focus is much more general.
Our main result consist in a new security definition together with an appropriate
transformation to weakly secure schemes. We aim at showing that probabilistic
signature schemes, even with very weak security properties, provide interesting
starting points for the construction of strongly secure signature schemes. At the
same time our tightness improvements hold for prefix-based security proofs in
general and independent of the underlying security assumption.

By now there exist several security definitions and corresponding transforma-
tions for signature schemes. In 1989 Even, Goldreich and Micali showed 1) how
to construct fully secure signature schemes from schemes that are secure under
known message attacks and 2) how to construct practical fully secure signature
schemes from schemes that are chosen message secure [14]. Cramer, Damg̊ard,
and Pedersen presented an alternative construction for 1) that features a much
smaller signature size (O(κ) instead of O(κ2) in the Even et. al. transformation
where κ is the security parameter) [12]. The signature scheme by Naccache et al.
can be interpreted as an application of this transformation to an SRSA-based
known message secure signature scheme [25]. In 2001, Shamir and Tauman pre-
sented an improved transformation for 2) that maps weakly secure signature
schemes to fully secure schemes using chameleon hash functions [31]. Due to the
efficiency of the resulting signature schemes this transformation is very popu-
lar and an essential ingredient in several signature schemes like [5,21]. In 2007,
Bellare and Shoup [3] and independently Huang et. al. [22] presented a generic
transformation to construct strongly secure signature schemes. In contrast to
the standard security notion, in the attack game of strongly secure signature
schemes the adversary is also allowed to output a new signature on a previously
queried message. Figure 1 gives an overview of the existing (and new) notions and
transformations of chosen-message security. We have ignored selective security,
where the adversary may choose the target message/randomness, as universally
secure schemes can trivially be transformed into selectively secure schemes under
generic chosen message attacks (see HW [21] and BTK [6]). A random element
X is simply added to the public key and in the first step of the signature gener-
ation the message is XORed with X . This technique is implicit in HW and the
signature transformation of Section 3.
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EMURUF-GMRA

EMUF-GMAUMUF-GMA EMUF-AMA
Strong EMUF-AMA

this work

[21],[6]

this work

[14]

[31]

[3],[22]

Strong EMUF-GMA
[31], this work

Fig. 1. Security Notions and Transformations of Chosen-Message Secure Signature
Schemes. Arrows from A to B indicate that an efficient transformation exists that
constructs a secure instantiation of B from a secure instantiation of A. References
below arrows point to improved transformations.

With respect to tightness improvements, our work follows the line of work
initiated by Bellare and Rogaway who showed tight security of PSS [1]. We
concentrate on tightness improvements for existing signature schemes (without
introducing additional modifications). In 2000, Coron provided tighter proofs for
Full-Domain Hash [10,11]. Eight years later Bernstein [4] presented the first tight
proofs for the Rabin-William’s signature schemes. All these result hold in the
random oracle model. In 2008, Hofheinz and Kiltz [19] presented asymptotical
tightness improvements for the Computational Diffie-Hellman based signature
scheme by Waters [33] that is secure without random oracles. Recently, Schäge
presented tight proofs for (new and) existing SRSA and Strong Diffie-Hellman
based signature schemes in the standard model like the Cramer-Shoup [13], Fis-
chlin [15], Zhu [34,35], and Camenisch-Lysyanskaya [8] scheme.

2 Preliminaries and Notation

The security parameter is denoted as κ ∈ N. We write 1κ to describe the string
that consist of κ ones and let l = l(κ) and q = q(κ) be polynomials. For a set S,

we use x
$← S to denote that x is drawn from S uniformly at random and |S| to

denote the cardinality of S. If s is a string, we write |s| to denote its bit-length.We
let ⊥ denote the empty string. If M ∈ {0, 1}l we let M = m1m2 . . .ml with
mj ∈ {0, 1} for j ∈ {1, . . . , l} be the binary representation of M . We use M i to
denote the prefix ofM which consist of the first i ∈ [1; l] bits:M i = m1m2 . . .mi.
For an algorithm A we write A(i1, i2, . . .) to denote that A has input parameters
i1, i2, . . . . Similarly, we denote with y ← A(i1, i2, . . .) that A outputs y when
running on inputs i1, i2, . . . . We write PPT (probabilistic polynomial time) to
refer to randomized algorithms that run in polynomial time. As usual gcd(a, b)
with a, b ∈ Z denotes the greatest common divisor of a and b. Our new signature
scheme will be secure under the well-known RSA assumption [27].

Definition 1 (RSA assumption (RSA) ). Given an RSA modulus n = pq,
where p, q are sufficiently large primes, a prime α < φ(n) with gcd(α, φ(n)) = 1,
and an element u ∈ Z∗

n, we say that the (tRSA, εRSA)-RSA assumption holds if
for all tRSA-time adversaries A

Pr [(x)← A(n, u, α), x ∈ Z∗
n, x

α = u mod n] ≤ εRSA.

The probability is over the random choices of u, n, α and the random coins of A.
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2.1 Signature Scheme

In a digital signature scheme S = (KeyGen, Sign,Verify) the PPT algorithm
KeyGen generates the key material: secret key SK and public key PK. The
algorithm Sign(SK,M) uses SK and a message M from the message space
{0, 1}l to output a signature σ. If the signing algorithm is probabilistic we use

R
$← {0, 1}l to denote the randomness used for the signature generation. In this

case we also write Sign(SK,M,R). The verification algorithm Verify(PK,M, σ)
processes PK, a message M , and a purported signature σ on M and outputs
1 if σ is a legitimate signature on M and 0 otherwise. If Sign is probabilistic
Verify(PK,M, σ,R) additionally processes randomness R that was used for the
signature generation. Usually one may regard this randomness as a part of the
signature. For clarity we deviate from this convention and make R explicit.

We restrict ourself to signature schemes where the randomness R is gen-
erated in the signing phase and directly given to the verifier (as part of the
signature). Most of the existing signature schemes have this property, examples
are [16,13,25,34,35,7,15,20,21,5,8,19,29]. In the following two security definitions
we consider the most general case of forgeries – existential forgeries. We use the
terminology of Goldwasser, Micali and Rivest [17].

Full Security: Existential Message Unforgeability under Adaptive

Chosen Message Attacks (EMUF-AMA). The standard notion of security for
signature schemes is called existential message unforgeability under adaptive
chosen message attacks [17]. Here the adversary is given access to a signing
oracle OSK(·) to adaptively query signatures.

Setup. In the setup phase, KeyGen(1κ) is run and the public key PK is given
to the adversary.

Signature queries. The adversary adaptively queries the signing oracle OSK(·)
with q messagesM1, . . . ,Mq ∈ {0, 1}l of his choice and obtains q signatures
σ1, . . . , σq with Verify(PK,Mi, σi) = 1 for i ∈ {1, . . . , q}.

Output. The attacker outputs (M,σ) such that M /∈ {M1, . . . ,Mq} and at the
same time Verify(PK,M, σ) = 1.

Weak Security: Existential Unforgeability under Generic Chosen

Message Attacks (EMUF-GMA). In this attack model, the attacker specifies all
signature queries before it receives the public key.
Signature queries. At first the adversary outputs a list of q signature queries

M1, . . . ,Mq ∈ {0, 1}l.
Public Key Generation and Signature Output. In the next phase, the pub-

lic key PK is given to the adversary together with q signatures σ1, . . . , σq
such that Verify(PK,Mi, σi) = 1 for i ∈ {1, . . . , q}.

Output. The attacker outputs (M,σ) such that M /∈ {M1, . . . ,Mq} and at the
same time Verify(PK,M, σ) = 1.

Both of the above security notions are well-known. As sketched above, the only
difference between the definition of UMUF-GMA-security and weak security is that
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the attacker is given the ’target message’ M in the first step of the security
game and only has to output σ. Let us now present our new security definition
for signature schemes with a probabilistic signing algorithm.

Target Randomness Security: Existential Message Universal Ran-

domness Unforgeability under Generic Chosen Message & Random-

ness Attacks (EMURUF-GMRA). In contrast to the previous security definitions
we exploit the randomness R used in probabilistic public coin signing algorithms;
both the challenger and the attacker can now also specify the randomness used
for the signature generation. The adversary is given the target randomness in
the first step of the security experiment. Informally we refer to this notion as
target randomness security.

Target Randomness. At first the attacker is given the (target) randomness R.
Signature queries. The adversary outputs q pairs of message/randomness as

(M1, R1) . . . , (Mq, Rq) with Mi, Ri ∈ {0, 1}l. For at most one pair (Mi, Ri)
it may hold that Ri = R.

Public Key Generation and Signature Output. Next, the public key PK
is given to the adversary together with q signatures σ1, . . . , σq such that
Verify(PK,Mi, σi, Ri) = 1.

Output. The attacker outputs M,σ such that Verify(PK,M, σ,R) = 1 and
M,R is not among the signature queries.

We denote the success probability of an adversary A (taken over the random
coins of the challenger and the adversary) to win the i-security game as AdvS,A,i

where i ∈ {EMUF-AMA, EMUF-GMA, EMURUF-GMRA}.

Definition 2 (Secure signature scheme). An adversary A is said to (q, t, ε)-
break the i-security (i ∈ {EMUF-AMA, EMUF-GMA, EMURUF-GMRA}) of a signature
scheme S if A has success probability AdvS,A,i = ε after generating at most q
queries and running in time t. S is said to be (q, ε, t)-secure if there exists no
PPT adversary that (q, ε, t)-breaks the existential unforgeability of S. A signa-
ture scheme is called strongly secure if in the above games A may also output
a forgery with M ∈ {M1, . . . ,Mq} but (M,σ) /∈ {(M1, σ1), . . . , (Mq, σq)} (or
(M,σ,R) /∈ {(M1, σ1, R1), . . . , (Mq, σq, Rq)} in case of probabilistic signatures).

Discussion. In our new security definition the adversary is still allowed to out-
put messagesM of his choice (as in the first two security definitions), i.e. existen-
tial message forgeries (in contrast to UMUF-GMA security). Observe that previously
queried messages may be re-used in the forgery what makes our definition inher-
ently strongly secure. In the new security game, the adversary can now explicitly
specify the random values Ri. To the best of our knowledge no existing security
definition for signature schemes allows similar attack capabilities. It does not
only give the adversary control over the messages to be signed but also specifies
the randomness used for signature generation. In most signature schemes it is
essential for security that the randomness is not controlled by the adversary. In
our case, the only restriction is that the forgery must verify under randomness R,
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while R has been queried at most once before. However, due to this freedom it is
technically more difficult to construct a target randomness secure scheme than
a UMUF-GMA secure scheme. Informally, when constructing a UMUF-GMA secure
scheme one might directly use an ’all-but-one assumption’ where the simulator
can easily invert a function f for all but a single output value. This is possible
because we give the adversary the target forgery M that cannot be sent to the
signing oracle as the security definition requires M /∈ {M1, . . . ,Mq}. The signa-
ture must simply be set up such that the target message M exactly corresponds
to the one value that the simulator cannot invert. We cannot transfer this tech-
nique to target randomness secure schemes because here the adversary might
re-use the target randomness R in his signature queries. On the one hand, the
simulator must be able to answer all signature queries even the one with Ri = R.
On the other hand it must not be able to construct the forgery by itself as it
wants to extract a solution to an underlying problem from it. We must setup
the parameters such that the simulator is not required to invert this function
for the signature query (Mi, Ri) with Ri = R. The idea is to make the inversion
also depend on the message M such that only for Mi the simulator can produce
a signature without actually inverting. For all other M �= Mi this must not be
possible.

2.2 From Weakly to Fully Secure Schemes

There exists a well-known transformation by Shamir and Tauman [31] for con-
structing fully secure schemes from weakly secure signature schemes to using
chameleon hash functions [23].3 It will be applied to our final weakly secure sig-
nature scheme to yield a fully secure one. The basic idea is to first use the message
as input to a (randomized) chameleon hash function and then sign the output
using the weakly secure signature scheme. Signatures consist of the so produced
signature and the randomness used for the computation of the chameleon hash.
There exist chameleon hash functions that are secure under the RSA [21] or
the factoring assumption [31]. Since the factoring assumption is weaker than the
RSA assumption we can utilize this transformation without making additional
complexity assumptions. In both cases, the overhead amounts to an additional
element in the secret key and the public key. We can easily extend the Shamir-
Tauman result by showing that if 1) the chameleon hash function has slightly
stronger security guarantees than required by the standard definition and 2) the
weakly secure signature scheme is strongly secure then the resulting fully secure
scheme is strongly secure too. We again stress that most of the existing chame-
leon hash functions are secure in this strong sense. The proof of the following
theorem is straight-forward and, for space reasons, appears in the full version.

Theorem 1. If the underlying weakly secure signature scheme is strongly secure
and the chameleon hash function also guarantees that it is hard (given only the

3 In 1999, Gennaro-Halevi-Rabin also proposed a similar but less general solution for
their signature scheme [16].
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public parameters) to compute two distinct random values that make any message
map to the same output value, then the Shamir-Tauman transformation produces
fully and strongly secure signature schemes.

3 A New Transformation to Weakly Secure Signature
Schemes

Let us now present our new transformation that maps EMURUF-GMRA secure sig-
nature schemes to EMUF-GMA secure schemes. In Section 4 we then present a new
RSA-based EMURUF-GMRA secure signature scheme. First, we fix some additional
notation.

Encoding Function. In the following we will regularly produce signatures
on strings S ∈ {0, 1}l and on their prefixes. These strings will naturally be
interpreted as integers. Now, if sl = 0, Sl and Sl−1 obviously map to the same
integer. However, our proof technique requires that these strings map to different
values. To accomplish this we apply an injective and invertible encoding function
enc : {0, 1}≤l → {0, 1}l+1\{0k+1, 0k1} that maps to fixed-size outputs. Given an
input string S ∈ {0, 1}≤l, enc first prepends a 1 and subsequently leading zeros
until the result has length l + 1: enc(S) = 0l−|S|1s1 . . . s|S|. In the following, we

will denote with Ri ∈ {0, 1}l+1, i ∈ [1; l] the string Ri = enc(Ri) = enc(r1 . . . ri).
It is easy to see that we now always have Ri �= Rj for j ∈ [1; l] and i �= j.

Target Randomness Secure Signature Scheme => Weakly Secure

Signature Scheme. The final signature σ consist of l distinct signatures σ =
(σ1, . . . , σl). Each of the single signatures is on the same message M . We use
the prefixes of the randomness R to modify the signature generation, such that
σi = Sign(SK,M,Ri ⊕X) for all i ∈ [1; l]. Let us go into more detail.

Let StRand = (KeyGentRand, SigntRand,VerifytRand) be a probabilistic and
EMURUF-GMRA secure signature scheme. Then we can construct the EMUF-GMA

secure signature scheme S = (KeyGen, Sign,Verify) as follows.

– KeyGen(1κ): run KeyGentRand(1
κ) and obtain a key pair (PKtRand, SKtRand)

for the signature scheme. Next, draw a random X ∈ {0, 1}l+1. The scheme’s
secret key is SK = SKtRand, its public key is PK = (PKtRand, X).

– Sign(SK,M,R): to obtain a signature on messageM ∈ {0, 1}l using random-
ness R ∈ {0, 1}l, compute the l-tuple σ = (σ1, . . . , σl) s.t. for each i ∈ [1; l]
the i-th component is computed as σi = SigntRand(SKtRand,M,Ri ⊕X).

– Verify(PK,M, σ,R): parse σ as σ1, . . . , σl. If it holds that M,R ∈ {0, 1}l and∧l
i=1 Verify(PK,M, σi, R

i ⊕X) = 1 output 1, otherwise 0.

Theorem 2. Let StRand be a (q′, t′, ε′)-secure probabilistic signature scheme that
is secure under EMURUF-GMRA attacks. Then the application of the above trans-
formation produces a EMUF-GMA signature scheme S that is (q, t, ε)-secure under
generic chosen message attacks provided that

q = q′, t ≈ t′, ε ≤ 2(q(l − �log(q)) + 2�log(q)�+1 − 1)ε′ + q2/2l
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for q ≥ 1 and
q = q′, t ≈ t′, ε ≤ 2ε′

for q = 0. Moreover, if StRand is strongly secure so is S.

Theorem 2 already makes use of our improved security analysis. To prove The-
orem 2 we first need to analyze the set of prefixes of q l-bit strings.

Definition 3 (Prefix-Closure). Let S be an l-bit string. We use precl(S) =
{Sj| j ∈ [0; l]} ∪ ⊥ to denote the prefix-closure of S, i.e. the set of all prefixes
of S (including the empty string ⊥). If R is a set of q l-bit strings, i.e. R =
{R1, . . . , Rq} ⊆ {0, 1}l for q ∈ N and q > 0, we call precl(R) =

⋃q
i=1 precl(Ri)

the prefix-closure of R. It is the set of all the prefixes of all the Ri. In case q = 0,
we define precl(R) = {⊥}.

Definition 4 (Co-Path of Prefix-Closure). Let R = {R1, . . . , Rq} ⊆ {0, 1}l
for q ∈ N, q > 0 and precl(R) be the prefix-closure of R. Let Zprecl(R) denote the
set of all strings z = z1 . . . zk with k ∈ [1; l] such that z1 . . . zk−1 ∈ precl(R) but
z /∈ precl(R). We say that Zprecl(R) is the co-path of precl(R). For q = 0, we
define Zprecl(R) = {0, 1}.

In prefix-based security proofs it is essential to bound the maximal size of the co-
path of the prefix-closure. Roughly, in the proof the simulator chooses an element
z of Zprecl(R) uniformly at random. This element is used to embed the complexity
challenge. With probability ≥ 1/|Zprecl(R)| z will be a prefix of the randomness
in the forgery4. Thus the simulator’s success probability is ≥ 1/|Zprecl(R)|. This
accounts for the security loss in prefix-based proofs. The existing results up-
per bound |Zprecl(R)| simply as |Zprecl(R)| ≤ ql. Subsequently, in Theorem 3, we
present a more precise analysis. But first we need to analyze the worst-case size
of the prefix-closure of R.

Lemma 1. Let q, l ∈ N q, l > 0. Let R = {R1, . . . , Rq} ⊆ {0, 1}l be an arbitrary
set of q l-bit strings. Then it holds that

max
R
|precl(R)| = q(l − �log(q)) + 2�log(q)�+1 − 1

Proof. We will show which properties R must fulfill to have a maximum size
prefix-closure. For convenience we partition precl(R) = precl≤(R) ∪ precl>(R)
depending on q. We consider the set precl≤(R) of prefixes with length smaller
than or equal to �log(q) and the set of prefixes precl>(R) that are longer than
�log(q)-bits separately. If we maximize both sets, |precl(R)| = |precl≤(R)| +
|precl>(R)| is maximal too.

For q > 1 it is clear that there are ’prefix-collisions’, i.e. there are Rj , Rj′ with
Rj �= Rj′ such that precl(Rj) ∩ precl(Rj′ ) �= ∅. (In fact the pigeon-hole princi-
ple shows that for q > 2w and w ≥ 0 there is always a pair of distinct indices
j, j′ ∈ [1; q] with |precl(Rj)∩ precl(Rj′ )| = w+1.) The size of precl≤(R) is maxi-
mal if i) despite of these collisions the prefixes of the Ri cover all prefixes lower

4 In HW and BTK, z must be a prefix of the forgery’s message.
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than or equal to �log(q), i.e. precl≤(R) = {0, 1}≤�log(q)�. Thus, the maximal size

of precl≤(R) is |precl≤(R)| ≤
∑�log(q)�

i=0 = 2�log(q)�+1−1. To analyze precl>(R) ob-

serve that if 2�log(q)�+1 > q ii) there need not be any prefix-collisions among the
prefixes of length greater than �log(q). In this case every precl(Ri) adds the max-
imal number, l− �log(q), of additional prefixes to precl(R). Thus |precl>(R)| ≤
q(l − �log(q)) is maximal and |precl(R)| ≤ 2�log(q)�+1 − 1 + q(l − �log(q)).

Theorem 3. Let q, l ∈ N q, l > 0. Let R = {R1, . . . , Rq} ⊆ {0, 1}l be an arbi-
trary set of q l-bit strings. Then it holds that

q(l − �log(q)) + 2�log(q)� ≤ max
R

∣∣Zprecl(R)

∣∣ ≤ q(l − �log(q)) + 2�log(q)�+1 − 1.

Proof. To prove the upper-bound observe that for q ≥ 1 we always have that
|precl(R)| ≥ |Zprecl(R)|. This directly follows from the definition of precl(R).
Lemma 1 gives the maximal size of precl(R). To show the lower bound recall
the construction of sets R = {R1, . . . , Rq} with maximal sized prefix-closure.
For precl(R) to have maximal cardinality we must have that all prefixes lower
than �log(q) are in precl(R), i.e. {0, 1}≤�log(q)� ⊂ precl(R). However, this means
that for all prefixes with length i strictly lower than �log(q) we cannot find a
corresponding element in Zprecl(R). This is because all prefixes of length i + 1
are already in precl(R) and by definition cannot also be in Zprecl(R). Thus, for a
maximum size prefix-closure we have for the size of the corresponding co-path:

|Zprecl(R)| ≥ max
R
{|precl(R)|} −

�log(q)�−1∑
j=0

2j = q(l − �log(q)) + 2�log(q)�.

Now, the maximum size of |Zprecl(R)| over all R must be at least as large as

q(l − �log(q)) + 2�log(q)�. This concludes the proof of Theorem 3.

Discussion. Since |Zprecl(R)| ≤ q(l−�log(q))+2�log(q)�+1−1 ≤ q(l−�log(q)+2)
and both l and q are polynomials in the security parameter we obtain a clear
improvement, in particular for large q. Still q is the dominant factor of the
security loss. In their paper, HW also gave a new prefix-based security proof for
the CDH-based Waters signature scheme [33]. Before that, Hofheinz and Kiltz
(HK) have already proposed asymptotically better bounds for the security loss
in the Waters scheme. They give a new security analyses of the Waters hash
function showing that the security loss is in O(q

√
l) [19]. The original reduction

by Waters accounts for a security loss of 8q(l+1). The HK improvement relies on
random walks and essentially exploits that the message bits of the prefixes can
be processed independently as variables of a linear function in the exponents of
the hash function’s group elements. However, there does not seem to be a general
way to transfer their approach to signature scheme like the HW scheme where
prefixes are first mapped to prime numbers in a non-linear way. Although our
improvements are quantitatively smaller our result 1) provides a non-asymptotic,
i.e. concrete, bound on the security loss and 2) works for prefix-based technique
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in general and thus also applies to the (original) Waters, Hohenberger-Waters,
and Hofheinz-Jager-Kiltz scheme and the general transformation presented by
Brakerski and Tauman Kalai.

3.1 Proof of Theorem 2

We are now ready to prove the security of our transformation.

Proof. Assume S is not secure and let A be a successful attacker against S.
Then we can build a simulator B that uses A in a black box manner to break the
security of StRand. Let R̃ be the first message (the target randomness) received
from B’s challenger and let M1 . . . ,Mq be A’s signature queries. In the first step
B draws q random values R1, . . . , Rq ∈ {0, 1}l. With overwhelming probability
these values are all distinct: a simple union bound shows that a collision occurs
with probability ≤ q2/2l.

In the next step, B draws a random coin y
$← {0, 1} indicating whether A will

re-use any of the Ri as randomness in the forgery. According to y, B will setup
the public parameters in two different ways.

If y = 0, B assumes that A will not re-use any of the Ri in the forgery. Ob-

serve that R /∈ {R1, . . . , Rq} implies that there must be at least one prefix R
j

with R
j
/∈ precl(R). By construction of Zprecl(R) this means that there exists

a prefix R
v
with R

v ∈ Zprecl(R). In the first step, B guesses this R
v
upfront

by drawing a random string z
$← Zprecl(R). Then B computes X ∈ {0, 1}l+1

as X = enc(z) ⊕ R̃. Next, B sends ql signature queries {(Mi, T
j

i )}i∈[1;q],j∈[1;l]

to the challenger with T
j

i = R
j

i ⊕ X for all i ∈ [1; q]. The challenger an-
swers with a public key PKtRand and ql signatures {σi,j}i∈[1;q],j∈[1;l] on the

given messages such that VerifytRand(PKtRand,Mi, σi,j , T
j

i ) = 1 for all i ∈
[1; q], j ∈ [1; l]. In the next step B sends PKweak = (PKtRand, X) and q ran-
domness/signature pairs (Σ1, R1), . . . , (Σq, Rq) to A. Each Σi consist of l sig-
natures of the target randomness secure scheme: Σi = (σi,1, . . . , σi,l) for all
i ∈ [1; q]. By assumption A then outputs a forgery (M,Σ = (σ1, . . . , σl), R) with
R /∈ {R1, . . . , Rq}. Now with probability ≥ q(l − �log(q)) + 2�log(q)�+1 − 1 B’s
guess of z is right. In this case there exists a v ∈ [1; l] with R

v
= z and it holds

that VerifytRand(PKtRand,M, σv, R
v ⊕X) = 1. Since by definition we have that

R
v⊕X = enc(z)⊕X = R̃, (M,σv) breaks the security of the target randomness

secure signature scheme.
In case y = 1, B assumes that A will re-use any of the Ri in the forgery and

guesses the signature index of the corresponding randomness upfront by drawing

w
$← [1; q]. Next, B computes X = R

l
w ⊕ R̃ and T

j

i as T
j

i = R
j

i ⊕ X for all

i ∈ [1; q], j ∈ [1; l]. Then {(Mi, T
j
i )}i∈[1;q],j∈[1;l] is given to the challenger who in

turn answers with the public key PKtRand and ql signatures {σi,j}i∈[1;q],j∈[1;l]. By

assumption it must always be the case that VerifytRand(PKtRand,Mi, σi,j , R
j

i ⊕
X) = 1 with i ∈ [1; q], j ∈ [1; l]. As before B now gives PKweak = (PKtRand, X)
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and q signaturesΣ1, . . . , Σl with Σi = (σi,1, . . . , σi,l, Ri), i ∈ [1; q] toA. However,
this time A outputs a forgery (M,Σ = (σ1, . . . , σl), R) with R ∈ {R1, . . . , Rq}.
With probability ≥ q, we have that R = Rw. Then (M,σl) breaks the security of

the underlying EMURUF-GMRA secure signature scheme since R
l⊕X = R

l
w ⊕X =

R. Observe that only in case y = 1 we need that the Ri are all distinct to
comply with the requirement of the EMURUF-GMRA security game, i.e. the target
randomness is only queried at most once to the signature oracle.

With probability≥ 1/2, B’s guess of y is correct. Observe that by construction
A cannot tell apart the values produced by B from those of the original attack
game. This concludes the proof of Theorem 2. Also note that at no point in the
proof we rely on the fact that M /∈ {M1, . . . ,Mq}. Thus the resulting signature
scheme is strongly secure.

4 A Target Randomness Secure Signature Scheme Based
on the RSA Assumption

Let us now present our new RSA-based EMURUF-GMRA secure signature scheme.
For simplicity we focus on the practically most relevant case of balanced, safe
RSA moduli with prime public exponent but we stress that the signature scheme
can be instantiated in general RSA groups as well.

– KeyGen(1κ): Choose two large balanced and safe primes p̂ = 2p+1, q̂ = 2q+1
with |p| = |q|, p > q and 2l+1 < p·q. Set n = p̂q̂ and SK = p̂, q̂. Next choose a

randomX ′ $← {0, 1}l+1. We will also need a target collision-resistant function
p : {0, 1}l+1 → Primesl+1 that maps strings to the set of odd prime numbers
Primesl+1 ⊂ [1; 2l+1 − 1]. We use the following instantiation. Choose a key
s′ for a pseudo-random function t : {0, 1}∗ → {0, 1}l+1. Whenever we want
to evaluate p on input Ri ∈ {0, 1}l+1 we continually increment the resolving
index ind ∈ {0, 1}∗, which is initially set to ind := 0, until t(ind||Ri)⊕X is
prime. For a proof that p indeed is collision-free for the first polynomial many
input values we refer to [21] or [18].5 Finally, choose two random generators
a, b of a subgroup S of Z∗

n with <a>=<b>= S ⊂ Z∗
n and |S| = p · q. Publish

PK = (a, b, n, s′, X ′).
– Sign(SK,M,R): To sign a message M ∈ {0, 1}l+1, choose a random R ∈
{0, 1}l+1 and compute s = (abM )1/p(R) mod n. Output σ and R.

– Verify(PK,M,σ,R): If σp(R) = abM mod n output 1, else output 0.

Theorem 4. If the RSA assumption is secure then the above construction yields
a target randomness secure probabilistic signature scheme. Moreover, the security
reduction tightly reduces to the RSA assumption.

5 Basically, one first shows that with overwhelming probability one can always find a
prime while ind ≤ (l+ 1)2 – otherwise the PRF could be distinguished from a truly
random function. In the second step, one argues that the probability to find a collision
only after q(l+1)2 evaluations of the PRF must be negligible as otherwise the PRF
construction could again easily be distinguished from a truly random function.
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Proof. Assume the simulator B is given an RSA challenge (n, u, α). At first
B draws a random key s′ for the pseudo-random permutation and a random
R ∈ {0, 1}l. Next it constructs X ′ such that α = t(ind||Rl) ⊕ X ′ = p(R).
Then B sends R to the forger A. As an answer B receives q signature queries
(M1, R1), . . . , (Mq, Rq) from A. With these values B can now set up the rest of
the public key. To this end, B draws ha, hb ∈ [1; (n − 1)/4]. In the following, B
considers two cases.

– If there is no Ri with Ri = R (Case 1), B computes a = uha

∏q
i=1 p(Ri) and

b = uhb

∏q
i=1 p(Ri).

– If there exists such a value (Case 2) so let j ∈ [1; q] be the corresponding index

with that Rj = R. Now, B computes a = uha
∏q

i=1 p(Ri)+hbMj
∏q

i=1,i�=j p(Ri)

and b = u−hb

∏q
i=1,i�=j

p(Ri).

Observe that in both cases a and b are distributed almost like in the original
attack game. This is because ha, hb are almost distributed uniformly in [1;φ(n)].

The probability for a value h
$← [1; (n− 1)/4] not to be in [1; p · q] is

Pr[h
$← [1; (n− 1)/4], h /∈ [1; p · q]] ≤ (p+ q)/(2pq+ p+ q) < 1/(q+1) < 1/2|p|−2

and thus negligible.
B can now easily answer the signature queries by computing signatures σk on

(Mk, Rk) for all k ∈ [1; q] as follows.

– In Case 1, B computes σk = uha

∏q
i=1,i�=k p(Ri) · uMkhb

∏q
i=1,i�=k p(Ri).

– If it holds that Rk �= R in Case 2, B computes the queried signature σk as
follows: σk = uha

∏q
i=1,i�=k p(Ri)+Mjhb

∏q
i=1,i�=j,k p(Ri) · u−Mkhb

∏q
i=1,i�=j,k p(Ri).

– If Rk = R (or k = j) in Case 2, B computes σk = uha
∏q

i=1,i�=k
p(Ri).

Observe that these values perfectly simulate the original attack game.
The last case solves the problem that we are faced with when designing

EMURUF-GMRA secure schemes (see the discussion in Section 2.1). If Mk �= Mj

and Rk = R, B cannot compute a signature since for the exponent e it holds
that e = ha

∏q
i=1 p(Ri) + hb(Mj −Mk)

∏q
i=1,i�=k p(Ri) which implies p(R) � |e

and thus B would need to compute p(R) roots what, by the RSA assumption,
is not feasible. However, if Mj = Mk we get that e = ha

∏q
i=1 p(Ri) and clearly

p(R)|e. This time B can generate a signature by just exponentiating.
Now when A outputs the forgery (M,σ,R), B can extract a solution to the

RSA challenge as follows.

In Case 1, the verification equation gives us σp(R) = u(ha+Mhb)
∏q

i=1 p(Ri). Let
us analyze the probability for the event p(R)|(ha +Mhb)

∏q
i=1 p(Ri). Since p is

target collision-resistant the p(Ri) are all distinct from p(R) and we only must
analyze whether p(R)|(ha+Mhb). Since A never gets to see u in the clear, ha and
hb are perfectly hidden from her view. As 3 is the smallest prime number p(R) can
take on, the probability for A to output M with p(R)|(ha+Mhb) is at most 1/3.
We so have with probability ≥ 2/3 that gcd(p(R), (ha +Mhb)

∏q
i=1 p(Ri)) = 1.
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In this case, we can easily compute two integers w1 and w2 (using Euclidean
algorithm) such that w1p(R) + w2(ha + Mhb)

∏q
i=1 p(Ri) = 1. It then holds

that u = uw1p(R)+w2(ha+Mhb)
∏q

i=1 p(Ri) = uw1·p(R) · σw2·p(R). Therefore the final
solution to the RSA challenge is u1/p(R) = u1/α = uw1 · σw2 .

In Case 2, we can show with the same arguments as above that with probabil-

ity at least 2/3 we have p(R) � |
(
ha

∏q
i=1 p(Ri) + (Mj −M)hb

∏q
i=1,i�=j p(Ri)

)
.

Using the same techniques as before B finds the corresponding values w1 and w2

such that w1p(R) +w2

(
ha

∏q
i=1 p(Ri) + (Mj −M)hb

∏q
i=1,i�=j p(Ri)

)
= 1. The

final solution to the RSA challenge is u1/α = uw1 · σw2 .
This concludes the proof of Theorem 4.

5 Accumulation of Signature Schemes

When applying our transformation from target randomness secure signature
schemes to weakly secure schemes to the above signature scheme we get signa-
tures that consist of l group elements.

We now show how to accumulate signatures of the type σ′ = (σ′
1, . . . , σ

′
l)

where for each i ∈ [1; q] σ′
i = (abM )1/p(R

i) mod n to a single element Σ′ =

(abM )1/
∏l

i=1 p(R
i) mod n. The accumulation technique used here is a direct ap-

plication of the extended Euclidean algorithm. Observe that our accumulation
technique does not require knowledge of the secret key.

Lemma 2. Let PK, M , R, and σ′
1 = (abM )1/p(R

1), . . . , σ′
l = (abM )1/p(R

l) ∈ Z∗
n

with l ∈ N be given. Then we can easily compute Σ′ = (abM )1/
∏l

i=1 p(R
i) mod n.

Proof. Since for i �= j it holds that Ri �= Rj and because of the properties
of p(·) we have that the e1 = p(R1), . . . , el = p(Rl) are distinct primes. Let

ēi =
∏l

j=1,j �=i ei and e =
∏l

i=1 ei. By construction we have gcd(ē1, . . . , ēl) = 1.
Next we can use extended Euclidean algorithm to find a1, . . . , al ∈ Z such that

gcd(ē1, . . . , ēl) =
∑l

i=1 aiēi = 1. We have (abM ) = (abM )
∑l

i=1 aiēi mod n. As it
holds for all ei that gcd(ei, φ(n)) = 1 we can finally find the e-th root of abM as

Σ′ = (abM )1/
∏l

i=1 ei =
l∏

i=1

(abM )
ai/ei
i =

l∏
i=1

σ′ai mod n.

Lemma 3. Given PK, M , R, and Σ′ = (abM )1/(
∏l

i=1 p(R
i)) ∈ Z∗

n we can easily

compute σ′
1 = (abM )1/p(R

1), . . . , σ′
l = (abM )1/p(R

l) ∈ Z∗
n.

Proof. For all j ∈ {1, . . . , l}, if we want to find the j-th component of the basic
scheme we simply compute

σ′
j = Σ′

∏l
i=1,i�=j p(R

i) mod n.
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The previous two lemmas show that both signature descriptions, the l-element
signature and the accumulated signature, are equivalent. The above technique
can easily be adapted to accumulate a variant of the Gennaro-Halevi-Rabin [16]
signature scheme by Brakerski-Tauman-Kalai [6]. The result is the Hohenberger-
Waters signature. In the above we simply have to set (abM ) := u and R :=M .

6 Final RSA Signature Scheme

Like the Hohenberger-Waters scheme, our final RSA-based EMUF-GMA secure sig-
nature scheme features a built-in accumulation process.

– KeyGen(1κ): The key generation algorithm is exactly the same as in the
scheme of Section 4.

– Sign(SK,M,R): To sign a messageM ∈ {0, 1}l choose a random R ∈ {0, 1}l
and compute σ = (abM )1/(

∏l
i=1 p(R

i)) mod n. Output (σ,R).

– Verify(PK,M,σ,R): If σ
∏l

i=1 p(R
i) = abM mod n output 1, else output 0.

Theorem 5. Applying the Shamir-Tauman transformation to the above signa-
ture scheme as presented in Section 2.2 gives us a strongly and fully secure
signature scheme under the RSA assumption.

6.1 Comparison with the Hohenberger-Waters Scheme

Our RSA-based signature scheme presents an alternative to the Hohenberger-
Waters signature scheme. The times for signature generation and verification
are comparable. As a drawback, the size of our signatures is longer than the
Hohenberger-Waters signature. Besides a group element in Z∗

n, our scheme ad-
ditionally contains a random string R where |R| is ≈ 160. However, when sign-
ing long messages our scheme requires weaker security assumptions than the
Hohenberger-Waters scheme. Let us explain this in more detail. To extend the
input domain of a signature scheme, one usually applies a collision-resistant hash
function and signs the hash value of the input message. Alternatively, one can
also use a primitive called target collision resistant hash function (TCR) (or
universal hash function) [26]. TCRs are fundamentally weaker primitives than
collision-resistant hash functions, since on the one hand there exist efficient con-
structions of TCRs from one-way functions [28,26,17] but on the other hand
collision resistant hash function cannot be constructed from one-way functions
using black-box constructions [32]. There exists a standard transformation for
signature schemes by Bellare and Rogaway that allows to exchange the collision-
resistant hash function with a target collision-resistant function when signing
long messages [2]. Usually this would require an additional random element to
be embedded in the signature – the key of the TCR. However, following similar
arguments as Mironov [24] we can re-use the message-independent randomness
R of our signature scheme for this purpose. Therefore, our RSA-based signature
scheme can use target collision resistant hash functions without any modification
for domain extension.
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Abstract. Signature schemes from the RSA assumption are very impor-
tant because of their highly reliable security. Despite their importance,
only a few digital signature schemes from the RSA assumption are cur-
rently known. Thus, improvement of efficiency in this area seems to be
very important. In this paper, we propose various signature schemes
from the RSA assumption. First, we propose a scheme that simultane-
ously provides the shortest signatures and public key length among the
known schemes. Compared with the known best schemes, the signature
size is the same as that of the scheme proposed recently by Hofheinz,
Jager, and Kiltz, whereas the public key size is about the half that of the
Hohenberger-Waters scheme. The drawback of the scheme is its heavy
signing and verification algorithms. Second, we also propose a scheme
whose public key is longer than our first scheme, but the signing and
verification cost is more efficient. The scheme can be seen as a general-
ization of our first scheme and the Hofheinz-Jager-Kiltz scheme. Finally,
we propose a scheme whose signing and verification algorithms are more
efficient than our first and second schemes, whereas the signature size
is longer. All these schemes are constructed based on a new observation
about the relation betweenm-time signature schemes and short signature
schemes.

Keywords: Short signature, m-time signature, RSA assumption.

1 Introduction

1.1 Background

Construction of a digital signature scheme with existential unforgeability under
chosen message attack (EUF-CMA) [9] in the standard model is a main research
topic in cryptography. In particular, the construction of a short signature from a
mild assumption has been extensively studied. Earlier studies proposed various
efficient signature schemes in the standard model from various assumptions, such
as the strong q-DH assumption [2,11], the q-DH assumption [10,20], the strong
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RSA assumption [8,3,7,11], and the CDH assumption [19]. Many of these schemes
rely on the q-type assumption or the strong type assumption, except for Waters’
scheme [19]. Even though these assumptions seem reasonable, it is desired to
construct a signature scheme from a better studied, weaker assumption (such
as the RSA assumption), to obtain high confidentiality in security. A digital
signature scheme from the RSA assumption whose signatures are short enough,
is not known even in the stateful setting until the recent work by Hohenberger
and Waters [12]. Subsequently, they proposed a signature scheme from the RSA
assumption in the stateless setting using a new technique [13]. Very recently,
Hofheinz, Jager, and Kiltz showed that even shorter signature schemes can be
obtained using a programmable hash function [10]. Despite of their importance,
no (stateless) signature schemes from the RSA assumption are known, except
for the schemes proposed in the above two papers. Improvement in efficiency
for RSA based signature schemes seems very important as a step to obtaining a
truly efficient, reliable signature scheme in the future. In this paper, we propose
various novel signature schemes from the RSA assumption. For example, we
propose a scheme that achieves the shortest signature size and public key size
simultaneously.

1.2 Our Approach

As an approach to constructing short signature schemes, we focus on the fact
that a one-time signature scheme and a weakly secure signature scheme yield
a fully-fledged signature scheme. This is a variant of the generic construction
proposed in [18]. As we will discuss in a later section, the idea can be (infor-
mally) generalized to the combination of an m-time signature scheme and a
weakly secure scheme. This is the first time that this idea has been explicitly
discussed. Even though the idea is not formal, the idea is conceptually of inter-
est since it often leads to constructions of short signature schemes. For example,
recent generic constructions of short signature schemes from the programmable
hash function [10] and its variant [20] can be seen as the realizations of the
idea. Based on this idea, we construct various novel signature schemes from the
RSA assumption. Conceptually, we take two steps to construct a scheme. First,
we construct an m-time signature scheme from the RSA assumption. We then
combine it with a weakly secure signature scheme from the RSA assumption pro-
posed by Hohenberger-Waters [13]. According to this strategy, we obtain various
new schemes from the RSA assumption.

More concretely, we obtain three signature schemes based on the approach
described above. In section 4, we propose a signature scheme that provides the
shortest signature size and public key size simultaneously. Compared to currently
known best schemes, the signature size of our scheme is 1074 bits, which is the
same as that of SigRSA[Hcfs] in [10], whereas the public key size is about 2000
bits, which is about half the size of the scheme by Hohenberger and Waters [13].
The drawback of the scheme is its heavy signing and verification algorithms. To
compensate it, in section 5, we also propose another scheme whose signature size
is the same as our first scheme, and the public key is longer than for that scheme,
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but the signing and verification cost is more efficient. The scheme is equipped
with parameters u1, u2 and we can adjust the trade-off between public key length
and signing and verification cost. The scheme can be seen as a generalization of
our first scheme and SigRSA[Hcfs] in [10]. In fact, we can obtain a slight variant of
these schemes as a special case of the scheme. Finally, in section 6, we propose
a scheme whose signing and verification cost is more efficient than the our first
and second schemes whereas the public key and signature sizes are larger than
for our first scheme. The structure of the scheme can be seen as a hybrid of our
first scheme and SigRSA[Hrand] in [10].

Finally, we note that we have also constructed a stateful version of our second
and third schemes. The scheme is more efficient than corresponding stateless
version of the scheme except for the signature size, which is slightly larger.

2 Preliminaries

For λ ∈ N, 1λ denotes the string of λ ones, with λ expressing the security
parameter throughout this paper. [d] denotes the set {1, 2, . . . , d}. Moreover,
|x| and |S| denote, respectively, the length of bitstring x, and the size of set

S. If S is a set, s
$← S denotes the action of uniform randomly selecting an

element of S. Given algorithm A, we write z
$← A(x, y, . . .) to indicate that A

is a (probabilistic) algorithm that outputs z on input (x, y, . . .).

2.1 Digital Signature and Its EUF-CMA Security

Adigital signature scheme is defined by the three algorithms,Gen, Sign, andVerify.
The key generation algorithm Gen generates a keypair (PK, sk)

$← Gen(1λ) for
a secret key sk and a public key PK. The signing algorithm Sign inputs a mes-
sage and the secret key, and returns a signature σ

$← Sign(sk,M) of the message.
The verification algorithm Verify takes a public key and a message with a corre-
sponding signature as input, and returns ( or ⊥, indicating “accept” or “reject”,
respectively. We require the usual correctness properties.

We recall the EUF-CMA experiment played by a challenger and a forger F .
First, the challenger runs (PK, sk)

$← Gen(1λ) and F is given PK. Proceeding
adaptively, F requests signatures on messages M1, . . . ,Mq ∈ {0, 1}∗ under PK.

The challenger responds to each query with a signature σi
$← Sign(sk,Mi). Even-

tually, F outputs the pair (M∗, σ∗). We say that the adversary wins the game
if Verify(M∗, σ∗, PK) = ( and M∗ �∈ {M1, . . . ,Mq}. We say that F (t, q, ε)-
breaks the EUF-CMA security of the signature if F runs in time t, makes at
most q signing queries, and has success probability ε. We say that the signature
scheme is EUF-CMA secure if ε is negligible for any probabilistic polynomial-
time algorithm F .

2.2 Prime Numbers, the RSA-Assumption, and Generalized
Birthday Bounds

For x ∈ N let π(x) denote the number of primes between 0 and x. The following
lemma is a direct consequence of Chebyshev’s bounds on π(x).
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Lemma 1. x
log2 x

< π(x) < 2x
log2 x

We say that a prime p is a safe prime, if p = 2p′ + 1 and p′ is also prime. Let p
and q be two randomly chosen r′-bit safe primes, and let N = pq. Let e ∈ Zφ(N)

be a random odd prime with e �= p′, q′. We say that an algorithm A (t, ε)-breaks

the RSA assumption, if A runs in time t and Pr[y1/e
$← A(N, e, y)] ≥ ε. As

discussed in the previous papers [12,13,10], the definition above is equivalent to
a more standard version of the RSA assumption where e ∈ Zφ(N) is a random
integer relatively prime to φ(N) with only polynomial loss in reduction cost. We
say that an algorithm A (t, ε)-breaks the RSA assumption, if A runs in time t
and non-negligible ε.

We denote with QRN the group of quadratic residues modulo N . We recall
the following lemmas which is needed for the security proof of our constructions.

Lemma 2. ([17],[3]) There is an efficient algorithm that, on input y, z ∈ ZN

and integer e, f ∈ Z such that gcd(e, f) = 1 and ze ≡ yf mod N , computes
x ∈ ZN satisfying xe ≡ y mod N .

Lemma 3. ([10]) Let A be a set with |A| = a. Let X1, . . . , Xq be q independent
random variables, taking uniformly random values from A. Then the probability
that there exists m + 1 pairwise distinct indices i1, . . . , im+1 such that Xi1 =

· · · = Xim+1 is upper bounded by qm+1

am .

3 Overview of the Idea of Our Constructions

Here, we explain an underlying idea of our constructions. It is known that
the combination of a weakly secure signature scheme and a one-time signature
scheme yields an EUF-CMA secure signature scheme. It can be seen as a vari-
ant of the generic construction of an EUF-CMA secure signature from a weakly
secure signature scheme and a chameleon hash function [14,18]. It would be in-
teresting to consider what would happen if we used an m-time signature scheme
instead of a one-time signature scheme in the above. Even in this case, we can
obtain an analogous construction of a signature scheme as we explain below.

The public key of the scheme is (pkw, vk
(1)
m , . . . , vk

(2η)
m ) where pkw is the public

key of the weakly secure signature scheme and all vk
(s)
m (s ∈ [2η]) are verification

keys of the m-time signature. The secret key of the scheme is (skw, sk
(1)
m , . . . ,

sk
(2η)
m ) where skw is the secret key corresponding to pkw and sk

(s)
m (s ∈ [2η])

are secret keys corresponding to vk
(s)
m . To sign a message M , a signer first picks

a random bit string s with length η by s
$← [2η]. Then, the signer computes

signature σw on “message” s by the signing algorithm of the weakly secure

signature scheme. The signer also computes signature σm on M for vk
(s)
m using

sk
(s)
m . The final signature is σ = (σw, σm, s). The verification algorithm simply

checks the validity of σw and σm.
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In fact, the above idea does not work without change. This is simply because 2η

is exponentially large and the above construction needs an exponential number
of public keys. Nevertheless, the idea has a potential advantage over the previous
generic constructions. That is, if we take larger m (for example m = 4), then
we can take smaller η. Concretely, we can take η = lg(q) + λ/m where q is the
upper bound of the number of signing queries issued by the adversary and λ is
the security parameter [10]. Since the size of the signature is |s|(= η)+|σw|+|σm|,
this considerably reduces the size of the signature.

The generic construction of short signature schemes from a (m, 1)-
programmable hash function proposed by [11,10] can be seen as a realization of
the above informal idea. In fact, one can obtain anm-time signature from (m, 1)-
programmable hash function as suggested in [10]. Since m-time signatures form
a wider class than (m, 1)-programmable hash functions, we can obtain various
short signature schemes that cannot be captured by the generic construction
by [11,10].

Based on the above idea, we construct three short signature schemes from
the RSA assumption which are presented in section 4, 5, and 6. Specifically,
signature size of our first scheme in section 4 is the same as that of the best
known scheme [10], and furhtermore its public key size is significantly shorter
than that of [10]. Moreover, our second scheme in section 5 yields the same
signature size and better computational efficiency by admitting larger public
key size, and our third scheme in section 6 yields further better computational
efficiency by only slightly increasing signature size and public key size (compared
with our first scheme).

4 Our First Scheme

4.1 Basic Idea

As we discussed in the precious section, one possible approach to constructing a
(fully-fledged) short signature scheme is to combine an m-time signature scheme
and weakly secure signature scheme. We use the weakly secure signature scheme
proposed by [13] in this paper.

One possible choice of m-time signature would be the RSA-based m-time
signature considered in [4]. In fact, the construction of SigRSA[Hcfs] proposed in
[10] is closely related to the m-time signature in [4]. Since this choice of an m-
time signature leads to a signature scheme with huge public key size, we do not
use the scheme here. Instead, we construct a new m-time signature and propose
a fully-fledged short signature scheme based on it.

Here, we explain ourm-time signature. The verification key of our scheme vkm
consists of the odd primes e1, . . . , ed, the product of large two primesN = pq, and
h ∈ Z∗

N . Let S be a map S :M→ 2[d] where M = {0, 1}l is the message space.
We assume that for allM∗,M1, . . . ,Mm ∈ M, it holds that S(M∗) �⊆ ∪mi=1S(Mi)
if M∗ �∈ {M1, . . . ,Mm}. We remark that a map S with such a property can be
constructed from an m-cover free family [6,15]. The signature on a messageM is

σm = h1/
∏

i∈S(M) ei . The verification algorithm checks whether σ
∏

i∈S(M) ei
m

?
= h.
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We now explain how to combine our m-time signature with weakly secure
scheme in [13]. We need an exponentially large number of verification keys

vk
(1)
m , . . . , vk

(2η)
m where vk

(s)
m = (e

(s)
1 , . . . , e

(s)
d ) if we apply the idea described

in the previous section straightforwardly. We can resolve this problem by a tech-
nique from [12,13]. That is, we prepare a pseudorandom function F that can

be computed publicly and let e
(s)
j = F(s||j) where s||j is the concatenation

of s and j. Since all {e(s)1 , . . . , e
(s)
d }s∈[2η] can be computed from F, we do not

need these elements in the public key. The public key size of our scheme be-
comes very short by this idea. Another problem to consider is that the signature
σ = (σm, σw, s) is still longer than that of previous schemes. In the construction
below, we reduce the signature length by using the algebraic structure of σm and
σw. As a result, we obtain a signature scheme that achieves the shortest signa-
ture length and public key length simultaneously among the signature schemes
from the RSA assumption [13,10].

4.2 Construction

Let S be a map S : M → 2[d] where M = {0, 1}l is the message space. We
assume that for all M∗,M1, . . . ,Mm ∈ M it holds that S(M∗) �⊆ ∪mi=1S(Mi) if
M∗ �∈ {M1, . . . ,Mm}. Such S can be constructed using a cover free family [6,15]
if d ≥ 16m2l. See Appendix A for the details. We define the scheme as follows.

Gen(1λ): It picks two large safe r′-bit primes p and q, and sets N = pq. Then
it chooses a random key K for the pseudorandom function PRF : {0, 1}∗ ×
{0, 1}∗ → {0, 1}r and picks c

$← {0, 1}r, where r = �log2N−1. These values
define a function F as F(z) = PRFK(μ, z) ⊕ c where μ, called the resolving
index of z, denotes the smallest positive integer such that PRFK(μ, z)⊕ c is
an odd prime. Here ⊕ denotes the bit-wise XOR operation, and we interpret
r-bit string returned by F as an integer in the obvious way. Finally, it picks
h

$← Z∗
N . The public key is PK = (N, h,K, c), the secret key is sk =

(PK, p, q).

In the following, we define P : {0, 1}η → N as P(s) for P(s) =
∏η

i=1 F(s|i) where
s|i is the i-th prefix of s, i.e., the bit string consisting of the first i bits of s. We
also define s|0 = ∅, where ∅ is the empty string, for technical reasons. We define
another function Q : {0, 1}η × 2[d] → N as Q(s, S) =

∏
i∈S F(s||i) where S is a

subset of [d] and s||i denotes concatenation of a bit string s and i ∈ [d]. In this
case, we regard i as a bit string.

Sign(sk,M): It first picks random s
$← {0, 1}η and computes F(t) for t ∈

(∪i∈[η]{s|i}) ∪ (∪i∈S(M){s||i}). If the resolving index of t is more than r2

or F(t) divides φ(N) for some t ∈ (∪i∈[η]{s|i}) ∪ (∪i∈S(M){s||i}), then it
outputs ((p, q), s).1 Otherwise it computes

σ = h1/P(s)Q(s,S(M)),

1 The probability of these events happen is negligible as proven in the security proof
of the scheme. Thus this step can be ignored in practice.
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where inverse of P(s)Q(s, S(M)) is computed modulo the order φ(N) =
(p− 1)(q − 1) of the multiplicative group Z∗

N . The signature is (σ, s).

Verify(M, (σ, s), PK): Given a signature (σ, s), it first checks whether resolving
index of t is more than r2 or 2F(t) + 1 divides N (which is equivalent to
F(t) divides φ(N)) for some t ∈ (∪i∈[η]{s|i})∪ (∪i∈S(M){s||i}). If it holds, it
outputs ( if σ = (p, q) and otherwise ⊥. Next, it returns ( if

σP(s)Q(s,S(M)) = h.

Otherwise it returns ⊥.

Correctness. The correctness can be verified by the following equation:

σP(s)Q(s,S(M)) = hP(s)Q(s,S(M))/P(s)Q(s,S(M)) = h.

4.3 Security

In this subsection, we prove the following theorem which establishes the security
of the scheme.

Theorem 1. Let PRF be a (t′′, ε′′)-secure pseudo-random function. Suppose there
exists a forger F who (t, q, ε)-breaks the EUF-CMA security of the above scheme.
Then there exists an adversaryA that (t′, ε′)-breaks the RSAassumption with t ≈ t′

and ε ≤ (q + 1)ηd
(
4r2ε′ + 3ε′′ + r(q+1)2(η+d)2

2r−1

)
+ qm+1

2mη .

In the following, let Mk denote the k-th query to the signing oracle, and let
(σk, sk) denote the reply. Let (M∗, σ∗, s∗) be the forgery output of F . We dis-
tinguish between two types of forgers. A type1 forger returns (M∗, σ∗, s∗) such
that s∗ = sk for some k ∈ [q]. A type2 forger returns (M∗, σ∗, s∗) such that
s∗ �= sk for all k ∈ [q].

The following lemma proves security against Type1 forger.

Lemma 4. Let F be a Type1 forger that (t, q, ε)-breaks the existential unforgeabil-
ity of our scheme. Then there exists an adversary A that (t′, ε′)-breaks the RSA

assumption with t ≈ t′ and ε′ ≥ 1
4r2

(
1
qd (ε−

qm+1

2mη )− 3ε′′ − q(η+d)(2r+1+rq(η+d))
2r

)
.

Proof. In the following letXi denote the probability that F is successful in Game
i and the challenger does not abort.

Game 0. We define Game 0 as the EUF-CMA experiment between the challenger
and the forger F . By definition we have Pr[X0] = ε.

Game 1. In this game, the challenger aborts if there exist at least m+1 indices
k1, . . . , km+1 ∈ [q] such that sk = sk′ for all k, k

′ ∈ {k1, . . . , km+1}. We

denote this event by AbortmColl. We know Pr[AbortmColl] ≤ qm+1

2mη from Lemma

3. Thus we have Pr[X1] ≥ Pr[X0]− qm+1

2mη .
Game 2. In this game, the challenger chooses randomness s1, . . . , sq and guesses

k∗
$← [q] such that sk∗ = s∗ at the beginning of the game. The challenger

aborts if F outputs a forgery (M∗, σ∗, s∗) with sk∗ �= s∗. Since s∗ ∈ {si}qi=1,
we have Pr[X2] ≥ Pr[X1]/q.
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Game 3. In this game, the challenger chooses j∗
$← [d] before setting the public

key and aborts if j∗ �∈ S(M∗) or j∗ ∈ S(Mk) for some k ∈ {k | sk = sk∗}.
Recall that {k | sk = sk∗} ≤ m, so S(M∗) �⊆ ∪k∈{k|sk=sk∗}S(Mk) from the
property of S. Thus there exists at least one j′ ∈ [d] such that j′ ∈ S(M∗)
and j′ �∈ S(Mk) for all k ∈ {k | sk = sk∗}. We have Pr[X3] ≥ Pr[X2]/d.

Game 4. Let Eall be Eall = (∪(i,j)∈[q]×[η]{si|j}) ∪ (∪(i,j)∈[q]×[d]{si||j}) in the
following. The challenger in this game proceeds just like the challenger in
the previous game, except that we add an abort condition. The challenger
aborts if for some t ∈ Eall, the resolving index μ is greater than r2. We
denote this event with Abortμ. Let us assume PRFK is replaced with a truly
random function, and let us consider the probability of not finding a prime
by evaluating the random function r2 times and computing the exclusive
or with c. This is equivalent to sampling r2 uniform r-bit strings. Lemma
1 tells us that the probability of finding a prime by sampling r random
bits is at least 1/r, thus the probability of not finding a prime in r2 trials

is at most (1 − 1/r)r
2

. Since the challenger has to compute F at most
q(η + d) times, so we can therefore construct an adversary distinguishing
PRFK from a random function with probability at least εμ ≥ Abortμ− q(η+

d)(1 − 1/r)r
2 ≥ Abortμ − q(η + d)/2r, where the latter inequality uses that

(1 − 1/r)r ≤ 1/2 for all r ∈ N. Since we must have εμ ≤ ε′′, this implies
Pr[X4] ≥ Pr[X3]− ε′′ − q(η + d)/2r.

Game 5. In this game, the challenger aborts if there exists t ∈ Eall such that
F(t) divides φ(N). We denote this event by Abortdiv. Recall that φ(N) =
4p′q′ and that F returns only odd primes. Again replacing PRFK with a
truly random function, the probability that one out of at most q(η + d)
randomly chosen odd r-bit primes equals one of the two odd primes dividing
φ(N) is at most (q(η + d)2r)/2r by Lemma 1. Now consider the case where
the truly random function is instantiated with PRFK , and suppose that
a collision occurs with probability Pr[Abortdiv]. Then this would allow an
attack distinguishing PRFK from a random function with probability at least
εdiv ≥ Pr[Abortdiv] − (q(η + d)2r)/2r. Since we have εdiv ≤ ε′′, this implies
Pr[X5] ≥ Pr[X4]− Pr[Abortdiv] ≥ Pr[X4]− ε′′ − (q(η + d)2r)/2r.

Game 6. In the following, let E = ∪qi=1{si}, E∗ = E\{sk∗}. In this game the

challenger picks y
$← Z∗

N and sets h by

h = yP(sk∗ )Q(sk∗ ,[d]\{j∗})·
∏

t∈E∗ P(t)Q(t,[d]).

The distribution of the public key is unchanged from the previous game.
This change is only conceptual, so we have Pr[X6] = Pr[X5].

Game 7. Now the challenger computes a signature σk on some chosen-message
Mk as

σk =

{
yQ(sk∗ ,[d]\{S(Mk)∪{j∗}})·

∏
t∈E∗ P(t)Q(t,[d]) sk = sk∗

y
P(sk∗ )Q(sk∗ ,[d]\{j∗})·Q(sk,[d]\S(Mk))·

∏
t∈E∗

k
P(t)Q(t,[d])

sk �= sk∗
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where E∗
k = E∗\{sk}. It is easy to check that σk = h1/P(sk)Q(sk,S(Mk)). In

the above, we used the fact that j∗ �∈ S(Mk) if sk = sk∗ . This change is only
conceptual, so we have Pr[X7] = Pr[X6].

Game 8. The challenger in this game aborts if there exists t, t′ ∈ Eall such
that F(t) = F(t′) and t �= t′. This event is denoted with Abortcol. Recall that
F(z) = PRFK(μ, z)⊕c, where μ is incremented until PRFK(μ, z)⊕c is prime.
Let us again assume PRFK is replaced with a truly random function. Then
evaluating F is equivalent to sampling a uniformly random r-bit prime. There
are at least 2r/r such primes by Lemma 1, and at most q(η + d) primes are
sampled. Applying Lemma 3, we conclude that the collision probability for
a truly random function is at most rq2(η + d)2 · 2−r. Now consider the case
where the truly random function is instantiated with PRFK , and suppose
that a collision occurs with probability Pr[Abortcol]. Then this would allow
an attack distinguishing PRFK from a random function with probability at
least εcol ≥ Pr[Abortcol]−rq2(η+d)2/2r. Since we have εcol ≤ ε′′, this implies
Pr[X8] = Pr[X7]− Pr[Abortcol] ≥ Pr[X7]− ε′′ − rq2(η + d)2/2r.

Game 9. In this game, the challenger chooses μ∗ $← [r2] in advance and aborts
if μ∗ is not resolving index of sk∗ ||j∗. Due to the changes introduced in the
Game 4 we know that the resolving index of sk∗ ||j∗ lies in the interval [1, r2].
Thus we have Pr[X9] ≥ Pr[X8]/r

2.
Game 10. Recall that c is uniformly distributed, and we abort if μ∗ is not the

resolving index of sk∗ ||j∗. The latter implies that PRF(μ∗, sk∗ ||j∗) is prime,
thus e has the distribution of uniformly random prime. In this game, the
challenger determines c differently. Instead of sampling c at random, the
challenger sets c = PRF(μ∗, sk∗ ||j∗)⊕e, where e is the random r-bit prime the
challenger chooses. Observe that this defines F(sk∗ ||j∗) = e. The distribution
of μ∗, c, and e is not altered. Thus We have Pr[X10] = Pr[X9].

The RSA Adversary. We replace the challenger in Game 10 with RSA ad-
versary A. A receives a RSA challenge (N ′, e′, y′) as input and aborts if e′

is not an odd prime or e′ > 2r. Otherwise A sets N = N ′, e = e′ and pro-
ceeds like the challenger in Game 10. Recall that sk∗ = s∗, F(s∗||j∗) = e and
j∗ ∈ S(M∗). Otherwise A aborts as the challenger does in Game 10. Since we
have set r = �log2N − 1, the probability that e ≥ 2r is at most 1/4. Thus, the
success probability of A is at least Pr[X10 ∧ e < 2r] ≥ 1

4 Pr[X10].

Answering the Signing Queries.Due to the changes introduced in the Games
4 to 7, A can answer signing queries without the knowledge of the factorization
of N .

Extracting the Solution to the RSA Challenge. Eventually, F returns a
forgery (M∗, σ∗, s∗), from which A extracts the solution to the RSA challenge
as follows. First observe that

σ∗ = h1/P(s
∗)Q(s∗,S(M∗)) = y

(∏
t∈E∗ P(t)Q(t,[d])

)
·Q(s∗,[d]\{j∗})/Q(s∗,S(M∗))

= y

(∏
t∈E∗ P(t)Q(t,[d])

)
·Q(s∗,[d]\S(M∗))/F(s∗||j∗)

= y

(∏
t∈E∗ P(t)Q(t,[d])

)
·Q(s∗,[d]\S(M∗))/e = yf/e
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where f = Q(s∗, [d]\S(M∗)) ·
∏

t∈E∗ P(t)Q(t, [d]). Then we can see that (σ∗)e =

yf holds from the above equation. Furthermore, gcd(e, f) = 1 by Game 8. Thus
we can apply Lemma 2 and extract y1/e which is answer to the RSA challenge
from σ∗.

The following lemma proves security against Type2 forger.

Lemma 5. Let F be a Type2 forger that (t, q, ε)-breaks the existential unforge-
ability of our scheme. Then there exists an adversary A that (t′, ε′)-breaks the

RSA assumption with t ≈ t′ and ε′ ≥ 1
4r2

(
1

(q+1)η

(
ε− 2ε′′− q(η+d)(2r+1)

2r

)
− 2ε′′−

r(q+1)2(η+d)2+1
2r

)
.

Proof. Let Xi denote the probability that F is successful in Game i and the
challenger does not abort.

Game 0. We define Game 0 as the EUF-CMA experiment between the challenger
and the forger F . By definition we have Pr[X0] = ε.

Game 1. Let Eall be Eall = (∪(i,j)∈[q]×[η]{si|j}) ∪ (∪(i,j)∈[q]×[d]{si||j}) in the
following. In this game, the challenger aborts if for some t ∈ Eall, the
resolving index μ is greater than r2. As the proof of Lemma 4, we have
Pr[X1] ≥ Pr[X0]− ε′′ − q(η + d)/2r.

Game 2. In this game, the challenger aborts if there exists t ∈ Eall such that
F(t) divides φ(N). As the proof of Lemma 4, we have Pr[X2] ≥ Pr[X1] −
ε′′ − (q(η + d)2r)/2r.

Game 3. In this game, the challenger chooses the randomness s1, . . . , sq in ad-

vance. Let E = ∪qi=1{si}. The challenger picks y
$← Z∗

N and sets public key
h by

h = y
∏

t∈E P(t)Q(t,[d]).

The distribution of the public key is unchanged from the previous game.
This change is only conceptual, so we have Pr[X3] = Pr[X2].

Game 4. Now the challenger computes a signature σk on some chosen-message
Mk as

σk = y
Q(sk,[d]\S(Mk))

∏
t∈Ek

P(t)Q(t,[d])

where Ek = E\{sk}. It is easy to check that σk = h1/P(sk)Q(sk,S(Mk)). This
change is only conceptual, so we have Pr[X4] = Pr[X3].

Game 5. In this game the challenger guesses the shortest prefix of s∗ that differs
from all prefixes of s1, . . . , sq. Note that this prefix must exist, because the
Type2-forger will return a forgery (M∗, σ∗, s∗) with s∗ �∈ {s1, . . . , sq}. To this
end, the challenger proceeds as follows. If q = 0, it samples a bit ψ

$← {0, 1}
at random, and aborts if the forger returns s∗ with s∗|1 �= ψ. If q ≥ 0, the
challenger picks i ∈ [q] and j ∈ [η] and sets ψ = si|j−1||b, where b is the
complement of the j-th bit of si. (Recall that we defined the 0-th prefix as
the empty string ∅, thus si|0 = ∅.) The challenger aborts if either ψ is a pre-
fix of some si ∈ {s1, . . . , sq}, that is, there exists (i′, j′) such that ψ = si′ |j′
, or if the forger returns (M∗, σ∗, s∗) such that ψ is not a prefix of s∗. If q = 0,
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then the challenger aborts with probability 1/2. Otherwise there are at most
qη possible choices of ψ. Thus we have Pr[X5] = Pr[X4]/(q + 1)η.

Game 6. We add an abort condition. If F(ψ)|
∏

t∈E P(t)Q(t, [d]), or (equiva-
lently) F(ψ) = F(t) for some t ∈ Eall, then the challenger aborts. Note
that ψ �= t for all t ∈ Eall. As the proof of Lemma 4, we have Pr[X6] ≥
Pr[X5]− ε′′ − r(q + 1)2(η + d)2/2r.

Game 7. We introduce a number of changes to the challenger.
– The challenger aborts if the resolving index of ψ is greater than r2.
– The challenger guesses resolving index of ψ as μ∗ $← [r2] and aborts if
μ∗ is not the resolving index of ψ.

– Instead of sampling c at random, we set c = PRF(μ∗, ψ)⊕ e, where e is
the uniformly random r-bit prime that the challenger chooses.

With the same arguments as the proof of Lemma 4 we have Pr[X7] ≥
1/r2(Pr[X6]− ε′′ − 1/2r).

The RSA Adversary. We replace the challenger in Game 7 with the RSA
adversary A. A receives an RSA challenge (N ′, e′, y′) as input and aborts if e′

is not an odd prime or e′ > 2r. Otherwise A sets N = N ′, e = e′ and proceeds
like the challenger in Game 7. Recall that we have F(ψ) = e now. As the proof
of Lemma 4, the success probability of A is at least 1

4 Pr[X7].

Answering the Signing Queries. Due to the changes introduced in the Game
1 to 4, A can answer signing queries without the knowledge of the factorization
of N .

Extracting the Solution to the RSA Challenge. Eventually, F returns a
forgery (M∗, σ∗, s∗), from which A extracts the solution to the RSA challenge
as follows. In the case where resolving index of t is more than r2 or F(t)|φ(N)
for some t ∈ (∪i∈[η]{s∗|i})∪ (∪i∈S(M∗){s∗||i}), σ = (p, q) if F is successful. Thus

A can efficiently compute y1/e from the output of F in this case. Otherwise,

σ∗ = h1/P(s
∗)Q(s∗,S(M∗)) = y

(∏
t∈E P(t)Q(t,[d])

)
/P(s∗)Q(s∗,S(M∗))

= y

(∏
t∈E P(t)Q(t,[d])

)
/
(
z·F(ψ)

)
= y

(∏
t∈E P(t)Q(t,[d])

)
/ez

where z = Q(s∗, S(M∗)) ·
∏

{i∈[η]|s∗|i �=ψ} F(s
∗|i) holds. Thus we have

(
(σ∗)z

)e
=

y
∏

t∈E P(t)Q(t,[d]). Since gcd(e,
∏

t∈E P(t)Q(t, [d])) = 1 by Game 6, we can apply

Lemma 2 and extract y1/e.

5 Our Second Scheme

Our first scheme suffers from its heavy signing and verification algorithms while
providing very short public key size. This is because the signing and verification
algorithms need the generation of a large number of primes. On the other hand,
SigRSA[Hcfs] in [10] has an opposite property. That is, the signing and verification
algorithms are more efficient than our scheme, but the public key size is huge.
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In this section, we propose a generalized version of these schemes. The scheme
has parameters u1 and u2 with condition u1 · u2 = d where d is some constant
depending onm and λ. If we take u1 smaller, the public key size becomes smaller
and the signing and verification algorithms become heavier. On the other hand,
if we take u1 larger, the public key size becomes larger and the signing and ver-
ification algorithm becomes more efficient. Especially, if we set (u1, u2) = (1, d),
then the scheme can be seen as a slight variant of our first scheme. Similarly, if
we set (u1, u2) = (d, 1), then we can obtain a slight variant of SigRSA[Hcfs] in [10].
Furthermore, we can also construct a stateful version of the scheme. The scheme
is more efficient than the above scheme except for its slightly larger signature
size.

Construction. Let S be a map S : M → 2[u1]×[u2] where M = {0, 1}l is
the message space. We assume that for all M∗,M1, . . . ,Mm ∈ M it holds that
S(M∗) �⊆ ∪mi=1S(Mi) if M

∗ �∈ {M1, . . . ,Mm}. Such S can be constructed using
cover free family [6,15] as in [20] if u1u2 ≥ 16m2l. See Appendix A for the details.
We define the scheme as follows.

Gen(1λ): It picks two large safe r′-bit primes p and q, and sets N = pq. Then
it chooses a random key K for the pseudorandom function PRF : {0, 1}∗ ×
{0, 1}∗ → {0, 1}r and picks c

$← {0, 1}r, where r = �log2N−1. These values
define functions F : {0, 1}∗ → N, P : {0, 1}η → N, and Q : {0, 1}η×2[u2] → N
as in section 4. Finally, it picks h′, h1, . . . , hu1

$← QRN . The public key is
PK = (N, h′, h1, . . . , hu1 ,K, c), the secret key is sk = (PK, p, q).

Sign(sk,M): It first picks random s
$← {0, 1}η and computes F(t) for t ∈

(∪i∈[η]{s|i}) ∪ (∪j∈S′(M){s||j}) where S′(M) = {j|∃i, (i, j) ∈ S(M)}. Let
ej = F(s||j). If the resolving index of t is more than r2 or F(t) divides φ(N)
for some t ∈ (∪i∈[η]{s|i}) ∪ (∪j∈S′(M){s||j}), then it outputs ((p, q), s). If
gcd(P(s),Q(s, S′(M))) �= 1, then it outputs ((p, q), s). 2 Otherwise it com-
putes

σ = (h′)1/P(s) ·
∏

(i,j)∈S(M)

h
1/ej
i

where inverse of P(s) and ej is computed modulo the order φ(N) = (p −
1)(q − 1) of the multiplicative group Z∗

N . The signature is (σ, s).

Verify(M, (σ, s), PK): Given a signature (σ, s), it first checks whether resolving
index of t is more than r2 or 2F(t) + 1 divides N for some t ∈ (∪i∈[η]{s|i})∪
(∪j∈S′(M){s||j}), or gcd(P(s),Q(s, S′(M))) �= 1. If one of the above holds,
it outputs ( if σ = (p, q) and otherwise ⊥. Next, it returns if

σP(s)Q(s,S′(M)) = (h′)Q(s,S′(M)) ·
∏

(i,j)∈S(M)

h
P(s)Q(s,S′(M)\{j})
i .

Otherwise it returns ⊥.
2 Similarly to our first scheme, this step can be ignored in practice.
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Correctness. The correctness can be verified by the following equation:

σP(s)Q(s,S′(M)) =
(
(h′)1/P(s) ·

∏
(i,j)∈S(M)

h
1/F(s||j)
i

)P(s)Q(s,S′(M))

= (h′)Q(s,S′(M)) ·
∏

(i,j)∈S(M)

h
P(s)Q(s,S′(M)\{j})
i

The following theorem establishes the security of the scheme. The theorem can
be proven by a similar argument to the proof of Theorem 1 and [10]. We omit
the proof due to a lack of space.

Theorem 2. Let PRF be a (t′′, ε′′)-secure pseudo-random function. Suppose
there exists a forger F who (t, q, ε)-breaks the EUF-CMA security of the above
scheme. Then there exists an adversary A that (t′, ε′)-breaks the RSA assumption

with t ≈ t′ and ε ≤ (q + 1)ηu1u2
(
4r2ε′ + 3ε′′ + r(q+1)2(η+u2)

2

2r−1

)
+ qm+1

2mη .

Stateful Version of The Scheme. We can also construct a stateful version
of the above scheme. The scheme is more efficient than the above scheme except
for the signature size, which is slightly larger than the above scheme. There are
two reasons why we can obtain a more efficient scheme in the stateful setting.
The first reason is that we can remove the computation of P(s) from the above.
Conceptually, it is equivalent to removing the weakly secure signature scheme in
[13] from the above construction. Instead, we use a trick from [12], which leads
to a more efficient scheme. The second reason is that we can use a one-time
signature instead of the m-time signature (m ≥ 2) in the stateful setting. This
reduces the public key and signing and verification cost. See the full version of
this paper for the details.

6 Our Third Scheme

While providing a short signature size, the signing and verification algorithms
of our first and second schemes are heavy if we want the public key size to
be small. In this section, we propose another signature scheme that provides a
shorter public key and a more efficient signing and verification algorithm using
a chameleon hash-like technique [7,10]. A signature of the scheme is longer than
that of our first and second schemes, but still much shorter than that of the
scheme in [13]. The structure of the scheme can be seen as a hybrid of our first
scheme and SigRSA[Hrand] in [10]. Compared with SigRSA[Hrand] in [10], the scheme
has the same size of the signatures. The public key size of the scheme is smaller
than that of the other scheme, while the signing and verification algorithms are
slightly heavier than the other scheme. We can also construct a stateful version
of the scheme. The scheme is more efficient than the above scheme except for its
slightly larger signature size.
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Construction. We define the scheme as follows. In the following, let [X ]2l ∈ Z
denote a canonical interpretation of a field elementX ∈ F2l as an integer between
0 and 2l − 1. We assume that X and [X ]2l are efficiently computable from one
another. The message space of the scheme is M = {0, 1}l.
Gen(1λ): It picks two large safe r′-bit primes p and q, and sets N = pq. Then

it chooses a random key K for the pseudorandom function PRF : {0, 1}∗ ×
{0, 1}∗ → {0, 1}r and picks c

$← {0, 1}r, where r = �log2N−1. These values
define functions F : {0, 1}∗ → N, P : {0, 1}η → N, and Q : {0, 1}η×2[2m] → N
as in section 4. Finally, it picks h′, h1, . . . , hm

$← QRN . The public key is
PK = (N, h′, h1, . . . , hm,K, c), the secret key is sk = (PK, p, q).

Sign(sk,M): It first picks random s
$← {0, 1}η, ρ $← {0, 1}l and computes F(t) for

t ∈ (∪i∈[η]{s|i})∪(∪j∈[2m]{s||j}). Let ei = F(s||i). If the resolving index of t is
more than r2 or F(t) divides φ(N) for some t ∈ (∪i∈[η]{s|i})∪(∪j∈[2m]{s||j}),
then it outputs ((p, q), s, ρ). If gcd(P(s),Q(s, [2m])) �= 1, then it outputs
((p, q), s, ρ). 3 Otherwise it computes

σ = (h′)1/P(s) ·
∏

i∈[2m]

(
h0

∏
j∈[m]

h
([iM+ρ]

2l
)j

j

)1/ei
where inverse of P(s) and ei is computed modulo the order φ(N) = (p −
1)(q − 1) of the multiplicative group Z∗

N . The signature is (σ, s, ρ).
Verify(M, (σ, s), PK): Given a signature (σ, s, ρ), it first checks whether resolv-

ing index of t is more than r2 or 2F(t)+1 dividesN for some t ∈ (∪i∈[η]{s|i})∪
(∪j∈[2m]{s||j}), or gcd(P(s),Q(s, [2m])) �= 1. If one of the above holds, it re-
turns ( if σ = (p, q) and otherwise ⊥. Next, it returns ( if

σP(s)Q(s,[2m]) = (h′)Q(s,[2m]) ·
∏

i∈[2m]

(
h0

∏
j∈[m]

h
([iM+ρ]

2l
)j

j

)P(s)Q(s,[2m]\{i})
.

Otherwise it returns ⊥.

Correctness. The correctness can be verified by the following equation:

σP(s)Q(s,[2m]) =
(
(h′)1/P(s) ·

∏
i∈[2m]

(
h0

∏
j∈[m]

h
([iM+ρ]

2l
)j

j

)1/F(s||i))P(s)Q(s,[2m])

= (h′)Q(s,[2m]) ·
∏

i∈[2m]

(
h0

∏
j∈[m]

h
([iM+ρ]

2l
)j

j

)P(s)Q(s,[2m]\{i})

The following theorem establishes the security of the scheme. The theorem can
be proven by a similar argument to the proof of Theorem 1 and [10]. We omit
the proof due to a lack of space.

Theorem 3. Let PRF be a (t′′, ε′′)-secure pseudo-random function. Suppose
there exists a forger F who (t, q, ε)-breaks the EUF-CMA security of the above
scheme. Then there exists an adversary A that (t′, ε′)-breaks the RSA assumption

with t ≈ t′ and ε ≤ 4r2(q + 1)η
(
ε′ + 3ε′′ + m

2r/2
+ r(q+1)2(η+u2)

2

2r−1

)
+ qm+1

2mη .

3 Similarly to our first scheme, this step can be ignored in practice.
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Table 1. Comparison of signature schemes based on the RSA assumption

Signature scheme Signature size (bits) Public key size (bits) Efficiency

Hohenberger-Waters * 2 × |ZN |= 2048 |ZN | + |c|+ |pkch| = 4k 160 × P1024

SigRSA[HWat] , [10] |ZN |+ |s|=1094 l × |ZN | + |c| = 161k 70 × P1024

SigRSA[Hcfs] , (m = 4) [10] |ZN |+ |s|=1074 16m2l× |ZN | + |c| = 40m 50 × P1024

Ours in Sec. 4, (m = 4) |ZN |+ |s|=1074 |ZN | + |c|=2k 2610 × P1024

Ours in Sec. 5, (m = 4) |ZN |+ |s|=1074 u1 × |ZN | + |c| =411k 150 × P1024

(u1, u2) = (410, 100)

SigRSA[Hrand] , (m = 4) [10] |ZN | + |s| + |ρ|=1234 (2m2 + 1) × |ZN | + |c| = 34k 50 × P1024

Ours in Sec. 6, (m = 4) |ZN | + |s| + |ρ|=1234 (m + 1) × |ZN | + |c| = 6k 58 × P1024

* The RSA-based chameleon hash function from [12] was used (adding 1 × ZN

and 2× ZN to signature size and public key size respectively).
The chosen parameters are λ = 80, q = 230, l = 2λ = 160. We also set η = |s| =
log q+ λ/m = 50 so that the term qm+1/2ml is at most 1/2λ as in [10]. Signatures
are instantiated with a modulus of |N | = 1024 bits. The description of modulus
N and key for PRF are not counted in the public key. We assume l-bit messages
with l = 2λ = 160 in order to provide λ bits of security (to sign longer messages,
we can apply a collision resistant hash function first.) The efficiency column counts
the dominant operations for signing. k × Pμ counts the number of random μ-bit
primes that need to be generated in the signing and verification algorithms. (For
μ >> 60, 1× Pμ takes more time than one exponentiation over modulus N .)

Stateful Version of The Scheme. As our second scheme, we can consider a
stateful version of the above scheme. The scheme is more efficient than the above
scheme except for slightly longer signature size. The structure of the scheme can
be seen as a combination of (randomized) (1, 1)-programmable hash function
[11] in [7] with RSA based stateful signature scheme in [12]. See the full version
of this paper for the details.

7 Comparison

In the Table 1, we compare our schemes with other RSA based signature schemes
under appropriately chosen parameters. We ignore the penalty imposed on the
modulus size due to the non-tight reduction in the table. The signature size of our
first scheme is the same as that of SigRSA[Hcfs], which is currently the shortest
signature scheme. As for the public key size, our first scheme is about 2000 bits,
which is about 1/20000 of that of SigRSA[Hcfs], and about half compared with
Hohenberger-Waters scheme. However, as we can see, our first scheme requires
generation of about 2600 primes, which is impractical. For our second scheme,
the public key size is about 1/100 of that of SigRSA[Hcfs] while its signing and ver-
ification cost is about 3 times higher than for their scheme. The second scheme
indicates that we can considerably reduce the public key size of SigRSA[Hcfs]
at the cost of relatively small increase in computational efficiency. We remark
that other choices of parameters are also possible for this scheme. For our third
scheme, compared with SigRSA[Hrand], the public key is reduced to less than
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1/5 whereas the increase in the computational cost is less than 20 percent. We
remark that the reduction cost of our first and second scheme is essentially the
same as that of SigRSA[Hcfs], and that of our third scheme is also essentially the
same as SigRSA[Hrand]. We also remark that we can obtain more efficient schemes
in the stateful setting. Especially, stateful version of our third scheme is at least
as efficient as Hohenberger-Waters scheme [12] in all aspects. See the full version
for the details.
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A Construction of Map S

In many of our schemes, we use a map S with a special property. We describe
how we realize this map S from cover free family [6,15]. Although the idea we
describe in this section is not new, we include this section in this paper for
completeness.

We begin by recalling the definition of cover-free families. Let S1, S2 be sets.
We say that S2 does not cover S1 if S1 �⊆ S2. Let d,m, α be integers, and let
F = (Fμ)μ∈[α] be a family of α subsets of [d]. We say that F is m-cover free if
for any set I containing (up to) m indices I = {μ1, . . . , μm} ⊆ [α], it holds that
Fν �⊆ ∪μ∈IFμ for any ν that is not contained in I. In other words, if |I| ≤ m,
then the union ∪μ∈IFμ does not cover Fν for all ν ∈ [α]\I. We say that F is
w-uniform if |Fμ| = w for all μ ∈ [α]. Throughout this paper, we use a parameter
in the following lemma.

Lemma 6. ([6,15]) There is a deterministic polynomial-time algorithm that, on
input of integers m,α = 2n, returns d ∈ N and the set family F = (Fμ)μ∈[α],
such that F is m-cover free over [d] and w-uniform, where d ≤ 16m2n and
w = d/4m.

Note that in the case of m = 1, we have a cover-free family with smaller param-
eters. That is, α = 2n, d = 2n, and w = n. Fμ is defined as Fμ = {2i− 1+ bi|i ∈
[n]} where we regard μ as a concatenation of bit strings in a natural way as
μ = b1|| · · · ||bn with bi ∈ {0, 1} for i ∈ [n]. This cover-free family is used in many
cryptographic protocols explicitly or implicitly, for example [16,5].

For Our First Scheme. In our first scheme, we associate a message M ∈M
with a subset of [d] by a map S : M → 2[d]. S should satisfy the following
property: “For all M∗,M1, . . . ,Mm ∈ M, it holds that S(M∗) �⊆ ∪mi=1S(Mi) if
M∗ �∈ {M1, . . . ,Mm}.” We can construct a map S with this property by defining

S as S(M)
def
= FH(M) ⊆ [d] whereH :M→ [α] is an injective (or hash) function.

For Our Second Scheme. In our second scheme, we associate a message
M ∈ M with a subset of [u1] × [u2] by a map S : M → 2[u1]×[u2]. S should
satisfy the following property: “For all M∗,M1, . . . ,Mm ∈ M, it holds that
S(M∗) �⊆ ∪mi=1S(Mi) if M∗ �∈ {M1, . . . ,Mm}.” To construct such a map, we
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first regard [d] as [u1] × [u2], where u1 and u2 are integers satisfying u1 ≥ u2
and u1u2 ≥ d. (The case for u1 ≤ u2 is analogous. ) We regard i ∈ [d] as an
element of [u1] × [u2] by associating it with (i − u1(�i/u1� − 1), �i/u1�). Then,
all Fμ can be seen as a subset of [u1] × [u2] in a natural way and (Fμ)μ∈α
can be seen as an m-cover free family over [u1] × [u2]. Then we define S as

S(M)
def
= FH(M) ⊆ [u1] × [u2] where H : M → [α] is an injective (or hash)

function.

In the constructions, we treat H (and S) as an injective function for simplicity,
but it is enough to assume that H is a collision resistant hash for our schemes
to be secure. To avoid a birthday attack, we typically set n = 2λ. Besides, if we
require F to be w-uniform, then |S(M)| = w for all M ∈M.
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Abstract. Ambiguous Optimistic Fair Exchange (AOFE), introduced
by Huang et al. in ASIACRYPT 2008, is an extension of OFE that en-
hances the fairness of the two communicating parties in the exchange of
signatures. The first scheme was proven secure without random oracles
while its partial signature contains dozens of group elements. Recently,
interactive AOFE was introduced and the construction is more practi-
cal, where one partial signature only contains three group elements. It is
based on the existence of Designated Confirmer Signature (DCS) with a
special property where one is able to sample a confirmer signature effi-
ciently from a signer’s signature space. Nevertheless, we note that there
are only a few DCS schemes that have this special property. Security of
the interactive AOFE construction relies on the q-Computational and
Decisional Hidden Strong Diffie-Hellman assumptions. In this paper, we
propose a new construction of interactive AOFE from DCS, where the
underlying DCS is standard and does not require any special property.
We also propose a new DCS construction. By applying our transfor-
mation from DCS to interactive AOFE, we build a concrete interactive
AOFE which is secure under more standard number-theoretic assump-
tions, namely Strong Diffie-Hellman and Decision Linear assumptions,
without random oracles. A partial signature of the interactive AOFE
contains six group elements, while a full signature contains two only.

Keywords: Optimistic fair exchange, ambiguity, designated confirmer
signature, standard model.

1 Introduction

How to exchange items between parties so that either both the parties get their
counterpart’s item or none of them does, is an important problem in e-commerce.
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Optimistic Fair Exchange (OFE), introduced by Asokan, Schunter and Waidner
[1], is a kind of protocols for exchanging items between two parties say, Alice
and Bob, in a fair manner. There is an arbitrator, which is semi-trusted by Alice
and Bob and gets involved only when a party attempts to cheat the other or
simply crashes. Asokan, Shoup and Waidner later proposed an OFE protocol for
exchanging digital signatures [2]. In a typical run of OFE, Alice sends a partial
signature to Bob, who in turn sends back his full signature, which triggers Alice
to complete the protocol by releasing her full signature to Bob. If everything
goes well, Alice and Bob should get each other’s full signatures. However, if Alice
refuses or fails to respond in the third move, Bob then resorts to the arbitrator
for resolving Alice’s partial signature into a full one. Since the introduction, OFE
has attracted the attention of many researchers, i.e. [3, 13, 14, 23, 30].

In OFE, Alice’s partial signature is generally self-authenticating and indicates
her commitment to some message already. This may allow Bob to convince oth-
ers that Alice has already committed herself to the message; while Alice obtains
nothing. This could be unfair toAlice. Huang et al. [22] addressed this problemand
proposed the notion of ambiguous optimistic fair exchange (AOFE), which is sim-
ilar to the notion of abuse-free optimistic contract signing introduced by Garay et
al. [15]. Different from the traditional OFE, AOFE enjoys the property of signer
ambiguity. That is, Bob is able to produce partial signatures which are indistin-
guishable to those produced byAlice. Because of this property, given a valid partial
signature from Alice, Bob cannot transfer its conviction to others any more.

1.1 Our Contributions

In this paper, we propose a new efficient and yet generic construction of AOFE
from a primitive called designated confirmer signature (DCS) [10]. Compared
with previous work on the construction of AOFE from DCS, e.g. [20, 21], our
construction makes use of standard security properties of the underlying prim-
itive, rather than any special property, e.g. samplability [20, 21]. Our AOFE
protocol is interactive in the sense that the partial signature generation needs
an interaction between the signer and the verifier. Below we give an intuition.

To partially sign a message, the signer produces a confirmer signature on it
and then carries out a zero-knowledge proof with the verifier to show that the
confirmer signature belongs to either the signer or the verifier. Thanks to the
anonymity of the DCS scheme and the zero-knowledge property of the proof,
a third party (except the arbitrator) cannot tell who is the real signer of the
signature. We show that the resulting interactive AOFE protocol is secure in
the registered-key model1 [4] without random oracles if the underlying DCS
scheme is secure and the proof is sound and zero-knowledge.

To instantiate our construction of AOFE, we present a concrete and efficient
DCS scheme, which is secure based on Strong Diffie-Hellman assumption [6]
and Decision Linear assumption [7] without random oracles. It has short signa-
tures and keys, and the confirmation/disavowal protocol is practically efficient.

1 In this model the adversary has to prove its knowledge of the secret key before using
a public key.
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Compared with [20, 21], our scheme has much shorter signer public key and its
security relies on relatively more standard assumptions. Compared with [33],
the signature of our scheme is shorter, and the confirmation/disavowal proto-
col is more efficient. In Table 1 we give a comparison of our scheme with some
existing DCS schemes in terms of sizes of confirmer public key cpk, confirmer
secret key csk, signer public key spk, signer secret key ssk, confirmer signature
σ and standard signature ζ, the underlying assumptions and the need of random
oracles for security.

Table 1. Comparison with some existing DCS schemes

[8] [31] [33] [20, 21] Ours

cpk 5Zp 1G 2|N |+ 1|n| + 4|Zn2 | 1G 4G
csk 5Zq 1Zp 3(κ + κr) 1Zp 2Zp

spk 1ZN + k 1G |N0|+ |N1| + 1SQN0 + 1SQN1 163G 2G
ssk 1ZN 1Zp 2κ 1Zp 2Zp

σ 4Zp ≈ 4K 2G + 4Zp ≈ 0.95K 9Zn2 + 1ZN0 + 1ZN1 ≈ 22K 3G ≈ 0.47K 5G + 1Zp ≈ 0.96K
ζ 1ZN ≈ 1K 2G + 6Zp ≈ 1.2K 3SQn2 + 1Z∗

N0
+ 1Z∗

N1
≈ 10K 3G ≈ 0.47K 1G + 1Zp ≈ 0.32K

Asmp RSA+DDH DDH+EUF-CMA SRSA+DCRA+DDH HSDH+DHSDH SDH+DLIN
ROM no yes no no no

Legends:

DLIN : Decision Linear Assumption
DDH : Decision Diffie-Hellman
SRSA : Strong RSA Assumption
DCRA : Decision Composite Residuosity Assumption
HSDH : Hidden Strong Diffie-Hellman Assumption
DHSDH : Decision Hidden Strong Diffie-Hellman Assumption
EUF-CMA : Existential unforgeability (under chosen message attacks) of the

underlying signature scheme

Security Parameters:
κ = |n| = |N | = 1024, |N0| = |N1| = 2048, κr = 50, |G| ≈ 163, |Zp| ≈ 163 (for [8], we
choose |Zp| ≈ 1024).

1.2 Paper Organization

In the next section we review the related works on designated confirmer signature
and optimistic fair exchange. The definition and security models of ambiguous
optimistic fair exchange are given in Section 3. Our construction of interactive
AOFE is then proposed in Section 4, followed by a section which gives the
security analysis. In Section 6 we propose an efficient construction of designated
confirmer signature, the security of which does not rely on the random oracle
model. In Section 7 we compare our AOFE scheme with some existing schemes.
The paper is concluded in Section 8.

2 Related Work

Designated Confirmer Signature. The notion of designated confirmer sig-
nature was proposed by Chaum [10] to alleviate the burden of the signer in
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undeniable signature [9]. In DCS, the signer designates a confirmer to confirm
or disavow signatures for him, and the verifier cannot verify signatures alone. If
a DCS scheme is convertible, the confirmer has the ability to extract the signer’s
standard signature from a valid confirmer signature. There have been a lot works
on DCS since its introduction, e.g. [8, 11, 16, 17, 20, 21, 27, 28, 31, 32, 33, 34].
Readers can refer to [20, 21] for a brief review of the previous works.

The de facto security properties of a DCS scheme include unforgeability and
anonymity. The former requires that no one but the signer is able to produce
valid signatures; while the latter says that given a confirmer signature, no verifier
is able to distinguish the identity of the signer. A popular approach in the design
of DCS is known as the ‘sign-then-encrypt ’ paradigm. Intuitively, the confirmer
holds a key pair (PkE , SkE) for an encryption scheme E and the signer holds a
key pair (PkS , SkS) for a signature scheme Σ. To sign a message M w.r.t. the
confirmer, the signer computes a standard signature ζ on M using SkE , and
encrypts ζ under the confirmer’s public key PkS to obtain the ciphertext C.
Its confirmer signature is set to be C. To convert a confirmer signature C, the
confirmer decrypts it to ζ using SkE , and outputs ζ if it is valid under PkS . In
the confirmation (resp. disavowal) protocol, the confirmer proves to the verifier
(interactively) that the confirmer signature C can (resp. cannot) be decrypted
to a valid signature of the signer on message M . The unforgeability of the DCS
scheme simply follows that of Σ. On the other hand, the (chosen ciphertext)
security of E guarantees that given a ciphertext C, anyone who does not known
SkE , including the signer, is not able to tell C contains which signer’s signature.
Thus we have the anonymity.

Many DCS schemes follow this paradigm, e.g. [8, 16, 17]. The difficulty of im-
plementing the paradigm is in the design of confirmation and disavowal protocols
so that the scheme is efficient enough for practical use. It is known that the proto-
cols can be constructed in general, using complex NP reduction. However, the ef-
ficiency is a big issue. As far as we know, there are only a few DCS schemes which
have efficient confirmation and disavowal protocols, e.g. [16, 20, 21, 31, 33, 34].

Wikström [33] revisited the aforementioned paradigm of constructing DCS,
and proposed a similar generic construction, which makes use of a weak vari-
ant of CCA-secure cryptosystem, a signature scheme, and a weak form of zero-
knowledge proofs. A concrete instantiation was also presented in [33], which is
built from Cramer-Shoup version of Paillier encryption [29] and a twin-moduli
signature. The confirmation and disavowal protocols, although do not involve
any NP-reduction, are not efficient enough. The prover and the verifier have to
carry out a bunch of proofs of knowledge, and both of them need perform more
than 150 exponentiation evaluations.

Huang et al. [20, 21] proposed a new variant of DCS, in which both the
signer and the confirmer are able to not only confirm but also disavow signatures
efficiently. They also presented a concrete construction, the security of which is
based on new number-theoretic assumptions (e.g. Hidden Strong Diffie-Hellman
assumption and Decision Hidden Strong Diffie-Hellman assumption) without
random oracles. The new variant is useful in applications in which the signer
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prefers to retain the ability to disavow signatures, whereas there are still some
cases in which the signer only wants to keep the ability of confirmation.

Ambiguous Optimistic Fair Exchange. Garay et al. [15] for the first time
addressed the problem with the non-repudiation of a partial signature, and pro-
posed an efficient abuse-free contract signing protocol, in which no one but the
arbitrator can distinguish who produced which signature. The protocol makes
use of a type of signatures called ‘private contract signatures ’, which is similar
to but different from DCS. Their private contract signature scheme is built from
designated-verifier signature [24], and is secure based on DDH assumption in the
random oracle model [5] and the registered-key model [4], in which the adversary
has to show its knowledge of the secret key before using a public key.

Huang et al. [22] proposed an efficient construction of AOFE based on the
group signature scheme in [18]. Their scheme uses (the weakly secure) Boneh-
Boyen signature [6] and Groth-Sahai non-interactive proof techniques [19]. The
scheme is secure based on Strong Diffie-Hellman assumption [6] and Decision
Linear assumption [7] in the chosen-key model [23, 26] without random oracles, in
which the adversary is allowed to use public keys arbitrarily. However, the scheme
suffers from long signatures, which consist of more than 40 group elements.

Very recently, Huang et al. [20, 21] proposed a new approach to constructing
interactive AOFE, in which the signer interacts with the verifier to produce the
partial signature. Their construction applies to a specific class of DCS schemes,
in which anyone is able to sample confirmer signatures from the signer’s signature
space efficiently, e.g. in polynomial time. However, not many DCS schemes enjoy
this property, and thus limiting the application of Huang et al.’s construction.
They also instantiated the construction using the DCS scheme proposed in the
same paper. The resulting interactive protocol is secure without random oracles
in the registered-key model.

3 Ambiguous Optimistic Fair Exchange

3.1 Definition

Essentially, AOFE is a variant of the traditional OFE, in which both of the
exchanging parties can produce indistinguishable signatures on the same mes-
sage. An AOFE scheme consists of the following probabilistic polynomial time
algorithms/protocols:

PMGen. It takes 1k as input where k is the security parameter and outputs
the system parameter PM.

SetupTTP. It takes as input the system parameter PM and outputs a key pair
for the arbitrator. We denote it by (Apk, Ask)← SetupTTP(1k).

SetupUser. It takes the system parameter PM (and optionally Apk) as input and
outputs a key pair for the user. We denote it by (Pk, Sk)← SetupUser(1k, Apk).

PSig. This is the partial signature generation algorithm. It takes as input a mes-
sage M , the signer’s secret key Ski, the signer’s public key Pki, the verifier’s



The Construction of AOFE from DCS w/o ROs 125

public key Pkj and the arbitrator’s public key Apk, and outputs a partial
signature σ. We denote it by σ ← PSig(M, Ski, Pki, Pkj , Apk).

PVer. This is for the verification of a partial signature. It can be either an
algorithm or a protocol, depending on whether the verification requires the
interaction between the signer and the verifier or not. The (common) input
consists of (M,σ, Pki, Pkj , Apk). If the verification is interactive, the signer
has private input Ski. We denote it by b← PVer(M,σ, Pki, Pkj , Apk), where
b is the output of the verifier, which is 1 for acceptance and 0 for rejection.

Sig. This is the full signature generation algorithm. It takes as input (M, Ski, Pki,
Pkj , Apk) and outputs a full signature ζ. We denote it by ζ ← Sig(M, Ski, Pki,
Pkj , Apk).

Ver. This is for the verification of a full signature. It takes as input (M, ζ, Pki, Pkj ,
Apk) and outputs a bit b which is 1 if ζ is a valid full signature of Pki and 0
otherwise. We denote it by b← Ver(M, ζ, Pki, Pkj , Apk).

Res. This is for resolving a partial signature. It takes as input (M, Ask, σ, Pki, Pkj)
and outputs ζ if ζ is a valid full signature of Pki, and ⊥ otherwise.

The AOFE introduced in [22] is non-interactive in the sense that all the signature
generation and verification algorithms are non-interactive. However, in this work
we consider interactive AOFE (iAOFE in short), in which the partial signature
verification is an interactive protocol between the signer and the verifier. For
simplicity we treat PVer as a protocol universally for both interactive and non-
interactive AOFE. If the scheme is non-interactive, then in the PVer protocol
(which should be an algorithm) the signer does nothing and the verifier makes
the decision alone.

3.2 Security Models

The security of AOFE was originally defined in the chosen-key model [22], in
which the adversary is allowed to use any public key arbitrarily without showing
its knowledge of the corresponding secret key. While in this work we consider
AOFE in the registered-key model [4], which is weaker than the chosen-key model
yet still practical.

Registered-Key Model. In this model the adversary has to prove its knowl-
edge of the corresponding secret key before using a public key. Although this
model puts limits to the adversary on using public keys, it is still a practical
model, and has been considered in many works, such as [13, 25]. Usually, an
adversary in this model conducts a proof of knowledge of the secret key to the
game challenger or simply submits the key pair or even the randomness used in
key generation. In the rest of the paper we assume that the adversary has access
to a key registration oracle OKR, which takes as input a key pair (Pk, Sk), and
returns Pk if the pair is a valid output of the key generation algorithm and ⊥
otherwise.

Let Q(O) be the set of queries that the adversary submits to oracle O, where
O could be any of the oracles below.
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– OKR is the key registration oracle.

– OPSig takes as input (M, Pki) and returns a partial signature σ of the signer
with public key PkA, which is valid on M under PkA, Pki. The oracle then
starts an execution of PVer with the adversary to show the validity of σ.

– OFakePSig takes as input (M, Pki) and returns a partial signature σ generated
using SkB and valid under Pki, PkB. The oracle then starts an execution of
the PVer protocol with the adversary to show the validity of σ.

– ORes takes as input (M,σ, Pki, Pkj) and outputs ζ if it is a valid (standard)
signature on M under Pki, and ⊥ otherwise.

If the public key submitted to any of OPSig, OFakePSig and ORes was not ever
submitted to OKR, these oracles would simply return nothing to the adversary.

Signer Ambiguity. The signer ambiguity says that after obtaining the valid
partial signature from the signer S, the verifier V cannot transfer the conviction
to any third party. We require that V is able to produce signatures indistinguish-
able from those by S. Formally, we consider the game Gsa depicted in Figure 1
(page 127), where Υ is D’s state information. Note that after sending σ∗ to D
in the game, the challenger also starts an execution of the PVer protocol with
D to show the validity of σ∗ under PkA, PkB. The advantage of D, denoted by
AdvsaD (k), is defined to be the gap between its success probability in the game
and one half, i.e. AdvsaD (k) = |Pr[D Succ]− 1/2|.

Definition 1 (Signer Ambiguity). An AOFE scheme is signer ambiguous if
there is no PPT distinguisher D such that AdvsaD (k) is non-negligible in k.

Security Against Signers. It requires that (malicious) signer A cannot pro-
duce a partial signature, which looks good to V but cannot be resolved to a full
signature by the honest arbitrator, ensuring the fairness for verifiers. V should
always be able to obtain the full commitment of the signer if the signer has com-
mitted to a message. Formally, we consider the game Gsas depicted in Figure 1.
The advantage of A in the game, denoted by AdvsasA (k), is defined as its success
probability.

Definition 2 (Security Against Signers). AnAOFE scheme is secure against
signers if there is no PPT adversary A such that AdvsasA (k) is non-negligible in k.

Security Against Verifiers. It requires that any efficient verifier B should
not be able to convert a partial signature into a full one with non-negligible
probability if it obtains no help from the signer or the arbitrator. This ensures
the fairness for the arbitrator and the signer. Formally, we consider the game
Gsav depicted in Figure 1. The advantage of B = (B1,B2) in the game, denoted
by AdvsavB (k), is defined as its success probability.

Definition 3 (Security Against Verifiers). An AOFE scheme is secure
against verifiers if there is no probabilistic polynomial-time adversary B such
that AdvsavB (k) is non-negligible in k.
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Game Gsa :

PM← PMGen(1k), (Apk, Ask)← SetupTTP(PM),

(PkA, SkA)← SetupUser(PM, Apk), (PkB , SkB)← SetupUser(PM, Apk),

(M∗, Υ )← DOKR,ORes(Apk, (PkA, SkA), (PkB , SkB)), b← {0, 1},

σ∗ ←
{
PSig(M∗, SkA, PkA, PkB, Apk) if b = 0
FakePSig(M∗, SkB , PkA, PkB , Apk) otherwise

,

b′ ← DOKR,ORes(Υ, σ∗),

Succ. of D := [b′ = b ∧ (M∗, σ, {PkA, PkB}) �∈ Q(ORes)].

Game Gsaa :

PM← PMGen(1k), (Apk, Ask)← SetupTTP(PM),

(PkA, SkA)← SetupUser(PM, Apk), (M∗, PkB , ζ∗)← COKR,OPSig(Ask, Apk, PkA),

Succ. of C := [Ver(M∗, ζ, PkA, PkB , Apk) = 1 ∧ (M∗, PkB) �∈ Q(OPSig)].

Game Gsas :

PM← PMGen(1k), (Apk, Ask)← SetupTTP(PM), (PkB, SkB)← SetupUser(PM, Apk),

(M∗, PkA, σ
∗)← AOKR,OFakePSig,ORes(Apk, PkB), ζ∗ ← Res(M∗, σ∗, Ask, PkA, PkB),

Succ. of A := [PVer(M∗, σ∗, {PkA, PkB}, Apk) = 1

∧ Ver(M∗, ζ∗, PkA, PkB, Apk) = 0 ∧ (M∗, PkA) �∈ Q(OFakePSig)].

Game Gsav :

PM← PMGen(1k), (Apk, Ask)← SetupTTP(PM),

(PkA, SkA)← SetupUser(PM, Apk), (PkB , SkB)← SetupUser(PM, Apk),

(M∗, Υ )← BOKR,OPSig,ORes
1 (Apk, PkA, PkB , SkB),

σ∗ ← PSig(M∗, SkA, PkA, PkB , Apk), ζ∗ ← BOKR,OPSig,ORes
2 (Υ, σ∗),

Succ. of B := [Ver(M∗, ζ∗, PkA, PkB , Apk) = 1 ∧ (M∗, ·, {PkA, PkB}) �∈ Q(ORes)].

Fig. 1. Security models of AOFE

Security Against the Arbitrator. This is for ensuring the unforgeability of
the signer’s signatures. It says that no efficient adversary C, even the arbitrator,
is able to generate with non-negligible probability a valid full signature without
explicitly asking the signer for generating one. Formally, we consider the game
Gsaa depicted in Figure 1. The advantage of C in this game, denoted by AdvsaaC (k),
is defined as its success probability.

Definition 4 (Security Against the Arbitrator). An AOFE scheme is se-
cure against the arbitrator if there is no PPT adversary C such that AdvsaaC (k)
is non-negligible in k.

Remark 1. Our definitions of signer ambiguity and security against verifiers
are slightly weaker than those considered in [20, 21, 22]. In our definition of
signer ambiguity, the two challenge public keys (PkA, PkB) (along with their
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corresponding secret keys) are given to the adversary, rather than the adver-
sary chooses one of them as [20, 21] does. Similarly, in our definition of security
against verifiers, the two public keys are also chosen by the challenger and given
to the adversary. Nevertheless, it is this slight weakening in the security which
enables us to construct AOFE protocols from DCS schemes with standard se-
curity properties instead of any special property like samplability [20, 21], in a
general way, as we shall see in Section 4.

Similar to [22], it is straightforward to establish the relation between security
against verifiers and signer ambiguity. We have the following lemma and there-
fore, we need not consider security against verifiers in proving the security of an
AOFE scheme.

Lemma 1. If an AOFE scheme is both signer ambiguous (Definition 1) and se-
cure against the arbitrator (Definition 4), it is secure against verifiers (Definition
3) as well.

Definition 5 (Secure AOFE). An AOFE scheme is said to be secure in the
multi-user setting and registered-key model (or simply, secure), if it satisfies
signer ambiguity (Definition 1), security against signers (Definition 2), and se-
curity against the arbitrator (Definition 4).

4 Our Construction of iAOFE

In this part we present a construction of interactive AOFE based on a designated
confirmer signature (DCS) scheme. Before describing our construction, let us give
a brief introduction of DCS first.

In DCS, there are a signer S, a verifier V and a confirmer C. S and C run
algorithms SKg and CKg to produce their public/secret key pairs, respectively.
The signer can run Sig algorithm to produce its standard signatures, which can
be verified by V by calling the Ver algorithm. S can also run DCSig to produce
confirmer signatures by designating C as the confirmer, which could not be
verified by the verifier alone. To prove the validity/invalidity of a confirmer
signature, C runs Confirm/Disavow protocol with V . There are two confirmation
protocols, ConfirmS and ConfirmC, run by S and C to prove the validity of a
confirmer signature, respectively. Besides, C is able to convert (valid) confirmer
signatures to standard ones.

The Construction. Below we present our construction of interactive AOFE.
Compared with previous work on the construction of AOFE from DCS, e.g.
[20, 21], our construction makes use of the standard security properties of the
underlying DCS, rather than any special property, e.g. samplability [20, 21].
Intuitively, in our construction of interactive AOFE, Ui’s partial signature σ
on a message M is simply its confirmer signature. Since the DCS scheme is
anonymous, no one but the confirmer is able to tell σ was produced by Ui or
Uj . Let Σ be a DCS scheme. Our AOFE scheme works as below, where Ui is the
signer and Uj is the verifier.
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PMGen. It generates all the necessary system parameters for Σ.

SetupTTP. The arbitrator computes (Cpk, Csk)← Σ.CKg(1k), and sets its key
pair as (Apk, Ask) := (Cpk, Csk).

SetupUser. Each user computes (Spk, Ssk)← Σ.SKg(1k), and sets its key pair
as (Pk, Sk) := (Spk, Ssk).

PSsig. To partially sign amessageM forUj ,Ui computes σ ← Σ.DCSig(Ski, M̂),

where M̂ =M‖Pkj , and sends σ to Uj .

PVer. Given a partial signature σ, Ui and Uj carry out an execution of a zero-
knowledge proof Π which is the OR combination of two independent copies
of Σ.ConfirmS, to show that σ is a valid confirmer signature on M̂ of either
Ui or Uj . Ui plays the role of the prover in the proof. Uj outputs 1 if it
accepts at the end of the proof, and 0 otherwise.

Sig. To fully sign a messageM , Ui computes ζ ← Σ.Sig(Ski, M̂ , Apk), and sends
it to Uj .

Ver. Given a full signature ζ, Uj outputs Σ.Ver(M̂, ζ, Pki, Apk).

Res. Given (M,σ, Pki, Pkj), the arbitrator computes and returns ζ ← Σ.Ext(Ask,

M̂, σ, Pki) to Uj if 1← Σ.Ver(M̂, ζ, Pki, Apk) and ⊥ otherwise.

Remark 2. As we can see from the construction above, the resulting interac-
tive AOFE protocol is solely based on the underlying DCS scheme. The proof
run between the signer and the verifier is an OR composition of two copies of
the confirmation protocol of the DCS scheme. There are standard technique of
composing (the Σ-protocol [12] version of) the confirmation protocol.

The correctness of the construction above is obvious, and we skip the details
here. In the next section we analyze the security of the construction under the
models given in Fig. 1.

5 Security Analysis

Since our AOFE protocol is built from a DCS scheme, before proving the security
of our AOFE scheme (under the models given in Sec. 3.2), let us briefly describe
the security models of DCS.

A secure DCS scheme satisfies two security properties. One is unforgeability,
which requires that no one but the signer be able to generate valid (standard)
signatures. Even the confirmer could not forge either. The other property is
anonymity, which requires no one but the confirmer be able to tell a given con-
firmer signature was generated by which signer. If the signer does not store the
signatures it ever produced, it cannot distinguish either. Due to the page limit
we defer the detailed security definitions of DCS into the full version.

Now we begin to analyze the security of our construction of interactive AOFE.
We have the following theorem.

Theorem 1. The interactive AOFE scheme above is secure (Definition 5) pro-
vided that Σ is secure and the proof Π is sound and zero-knowledge.
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It follows the following lemmas immediately.

Lemma 2. The interactive AOFE scheme is signer-ambiguous if Σ is anony-
mous and the proof Π is zero-knowledge.

Proof. To simulate Ui’s partial signature on a message M , Uj computes σ′ ←
Σ.DCSig(Skj , M̂) where M̂ = M‖Pkj , and outputs σ′ as the simulated partial
signature. Guaranteed by the anonymity of Σ, we know that σ′ looks indistin-
guishable from Ui’s partial signature on M . Below we prove that the simulated
signature is indistinguishable from the output of a real signer.

Let D be a distinguisher which can tell Uj ’s simulated signatures apart from
Ui’s real signatures with probability 1/2 + ε, where ε is non-negligible. We use
it to build another algorithm D′ for breaking the anonymity of Σ.

Given the system parameters, two key pairs (Spk0, Ssk0), (Spk1, Ssk1) and a
confirmer public key Cpk, D′ sets Apk := Cpk, (PkA, SkA) := (Spk0, Ssk0) and
(PkB, SkB) := (Spk1, Ssk1), and invokesD on input (Apk, (PkA, SkA), (PkB, SkB)).
The oracles are simulated by D′ as follows:

OKR. Given a key pair (Pk, Sk), if it is not well-formed, D′ returns ⊥; otherwise,
it stores the pair and returns Pk.

ORes. Given (M,σ, Pki, Pkj), D′ sets M̂ := M‖Pkj and forwards (M̂, σ, Pki) to
its extraction oracle, which returns ζ. It returns ⊥ to the distinguisher if
ζ = ⊥ or 0← Σ.Ver(M̂, ζ, Pki, Apk), and ζ otherwise.

When D submits a challenge message M∗, D′ forwards M̂∗ := M∗‖PkB to its
own challenger, which tosses a coin b and returns a confirmer signature σ∗ on
M̂∗ valid under Spkb. It then sends σ∗ to D, and runs the simulator of protocol
Π to prove that σ∗ is a valid confirmer signature under either PkA or PkB . The
disgintuisher continues to issuing queries, which are handled by D′ as above.
Finally, D′ outputs the bit b′ that D outputs.

Assume that D wins its game, and thus it did not send a query on input
(M∗, σ∗, {PkA, PkB}) to the resolution oracle. Hence, D′ did not make an ex-
traction query on (M̂∗, σ∗, Spk0) nor (M̂

∗, σ∗, Spk1), and wins its own game as
well.

The view of D in this simulated game is the same as that in a real attack,
except that the proof of the validity of σ∗. However, since the protocol Π is zero-
knowledge, the simulated proof causes only a negligible difference to the view of
D, denoted by δ. Therefore, if D breaks the signer ambiguity with non-negligible
advantage ε, D′ breaks the anonymity of Σ with advantage at least ε− δ, which
is non-negligible as well. ��

Lemma 3. The interactive AOFE scheme is secure against signers if Σ is sound
and unforgeable and Π is sound.

Proof. Let A be a malicious signer which can break the security against signers
with non-negligible probability. We make use of it to construct another algorithm
A′ to break the unforgeability of Σ.
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Given (Cpk, Csk, Spk∗), algorithm A′ sets (Apk, Ask) := (Cpk, Csk) and PkB :=
Spk∗, and invokes the adversaryA on input (Apk, PkB). It then begins to simulate
the oracles for A as below:

OKR. Same as in the proof of Lemma 2.

OFakePSig. Given (M, Pki), if Pki �= PkB , A′ computes the simulated signature σ
using its knowledge of Ski, since we are working in the registered-key model.
Otherwise, it forwards M‖PkB to its signing oracle, and obtains a confirmer
signature σ. In either case, A′ returns σ to A.

ORes. Given (M,σ, Pki, Pkj), A′ perfectly computes the answer using its knowl-
edge of Ask.

Finally, A outputs (M∗, PkA, σ
∗), and starts an execution of Π with A′ to show

that σ∗ is a valid confirmer signature on M̂∗ := M∗‖PkB under either PkA or
PkB. A′ then computes

ζ∗A ← Σ.Ext(Ask, M̂∗, σ∗, PkA) and ζ∗B ← Σ.Ext(Ask, M̂∗, σ∗, PkB).

Suppose A wins the game. By the soundness of Π, we have that with overwhelm-
ing probability σ∗ is indeed a valid confirmer signature under either PkA or PkB,
but ζ∗ is not a valid standard signature under PkA. Therefore, it holds that ζ

∗
B

is a valid standard signature under PkB. A′ then outputs (M̂∗, ζ∗B), and wins the
game. If A succeeds in breaking the security against signers with non-negligible
probability, so does A′ in breaking the unforgeability of Σ. ��

Lemma 4. The interactive AOFE scheme is secure against the arbitrator if Σ
is unforgeable and Π is zero-knowledge.

Proof. Let C be a malicious arbitrator. Below we show how to use it to build an
algorithm C′ to break the unforgeability of Σ.

Given (Spk∗, Cpk, Csk), C′ sets PkA = Spk∗ and (Apk, Ask) := (Cpk, Csk), and
invokes C on input (Ask, Apk, PkA). The oracle queries are answered by C′ as
below:

OKR. Same as in the proof of Lemma 2.

OPSig. Given (M, Pkj), C′ forwards M̂ :=M‖Pkj to its signing oracle and obtains
a confirmer signature σ. It sends σ to C and then runs the simulator to prove
to C that σ is a valid confirmer signature under either PkA or Pkj .

Finally, C outputs (M∗, PkB, ζ
∗). Suppose that it wins the game. We have that

1 ← Σ.Ver(M̂∗, ζ∗, Spk, Cpk), where M̂∗ := M∗‖PkB. By the hypothesis, C did
not issue a partial signing query on input (M∗, PkB), and hence C′ did not send
M̂∗ to its signing oracle for a confirmer signature. If C succeeds in breaking the
security against the arbitrator, so does C′ in breaking the unforgeability of Σ
with at least the same advantage. ��
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6 A New Construction of Designated Confirmer
Signature

The unforgeability of DCS requires that no one but the signer can produce valid
signatures, while the anonymity requires no one but the designated confirmer
can tell the validity of a given confirmer signatures. Hence it is very natural
to construct a DCS from a standard signature scheme Σ and a public key en-
cryption scheme E, which is also known as the ‘sign-then-encrypt ’ paradigm.
Many constructions of DCS follow this paradigm, such as [16, 17, 33] and etc.
The difficulty of implementing the paradigm is in the design of confirmation and
disavowal protocol. It is known that the protocols can be constructed generally,
using complex NP reduction. However, the efficiency is a big issue. The resulting
protocols may not be useful in practice.

Intuitively, in the paradigm, the confirmer holds a key pair (PkE , SkE) for E
and the signer holds a key pair (PkS , SkS) for Σ. To sign a message M with
respect to the confirmer, the signer first computes a standard signature ζ on M
using SkE , and then encrypts ζ under the confirmer’s public key PkS to obtain
the ciphertext c. Its confirmer signature is set to be c. Given c, the confirmer
uses SkE to decrypt it to obtain ζ, and outputs it if it is valid under PkS . In
the confirmation (resp. disavowal) protocol, the confirmer proves to the verifier
(interactively) that a confirmer signature c can (resp. cannot) be decrypted to
the signer’s valid signature on M . The unforgeability of the DCS scheme simply
follows that of Σ. On the other hand, the chosen ciphertext security of E guar-
antees that given a ciphertext c, anyone who does not known SkE , including the
signer, is not able to tell the signature hidden in c belongs to which signer. Thus
we have the anonymity.

Below we present a concrete and efficient instantiation of the above paradigm,
which is based on Boneh-Boyen signature [6] and a variant of the linear encryp-
tion [7]. The confirmation and disavowal protocols in the construction are simple
and efficient, and do not use any complex reduction. In the scheme we assume
that the message space is Zp for simplicity. The space can be extended to {0, 1}∗
by applying a collision-resistant hash function to the message before signing.

6.1 The Construction

Let G,GT be two cyclic multiplicative groups of prime order p, and g a random
generator of G. Let ê : G × G → GT be an admissible bilinear pairing and
H : G3 → Zp a collision-resistant hash function. Our first DCS scheme, denoted
by Σ, works as follows:

Ckg. The confirmer chooses at random F,G,K,L ∈ G so that F ξ1 = Gξ2 = g
for some known ξ1, ξ2 ∈ Zp. It then sets Apk = (F,G,K,L) and Ask =
(ξ1, ξ2).

SKg. The signer chooses at random x, y ∈ Zp and computes X = gx, Y = gy.
It sets Spk = (X,Y ) and Ssk = (x, y).
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Sig. To sign a message M , the signer selects at random r ∈ Zp and computes
S = g1/(x+M+yr). In case that x +M + yr = 0 mod p, it chooses another r
and repeats the computation. Its signature on M is ζ = (S, r).

Ver. Given (M, ζ) where ζ = (S, r), the verifier checks if ê(S,XgMY r) = ê(g, g).
It accepts if the equation holds, and rejects otherwise.

DCSig. Given a message M , the signer randomly selects r, s, t ∈ Zp and com-
putes

S = g1/(x+M+yr), σ1 = F s, σ2 = Gt, σ3 = S · gs+t,

σ4 = (gαK)s and σ5 = (gαL)t,

where α = H(σ1, σ2, σ3). Again, if x+M + yr = 0 mod p, the signer chooses
another r and repeats the process. Its confirmer signature on M is σ =
(σ1, σ2, σ3, σ4, σ5, r).

Ext. Given (M,σ) where σ = (σ1, σ2, σ3, σ4, σ5, r), the confirmer computes

S = σ3/(σ
ξ1
1 σξ22 ) and α = H(σ1, σ2, σ3).

If either of the following equations does not hold, it returns ⊥; otherwise, it
returns ζ = (S, r):

ê(σ4, F ) = ê(σ1, g
αK) (1)

ê(σ5, G) = ê(σ2, g
αL) (2)

ê(g, g) = ê(S,XgMY r) (3)

ConfirmS. Toprove the validity of a confirmer signatureσ=(σ1, σ2, σ3, σ4, σ5, r)
on a message M that it ever generated, the signer makes use of the random-
ness (s, t) used in the signature generation to carry out the following proof of
knowledge with the verifier

PoK
{
(s, t) : F s = σ1 ∧Gt = σ2 ∧ ê(σ3g−s−t, XgMY r) = ê(g, g)

}
(4)

if both equations (1) and (2) hold, and does nothing otherwise.

ConfirmC. Given (M,σ) where σ = (σ1, σ2, σ3, σ4, σ5, r), the confirmer and
the verifier carry out the following (zero-knowledge) proof of knowledge

PoK
{
(ξ1, ξ2) : F

ξ1 = g ∧Gξ2 = g ∧ ê(σ3σ−ξ1
1 σ−ξ2

2 , XgMY r) = ê(g, g)
}

(5)

if both equations (1) and (2) hold, and do nothing otherwise.

Disavow. Given (M,σ) where σ = (σ1, σ2, σ3, σ4, σ5, r), the confirmer and the
verifier carry out an execution of the following (zero-knowledge) proof of
knowledge

PoK
{
(ξ1, ξ2) : F

ξ1 = g ∧Gξ2 = g ∧ ê(σ3σ−ξ1
1 σ−ξ2

2 , XgMY r) �= ê(g, g)
}

(6)

if both equations (1) and (2) hold, and do nothing otherwise.
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The correctness and extraction ambiguity of the DCS scheme above can be
verified trivially. The following theorem shows that the DCS scheme above is
secure under the models given in Sec. 5.

Theorem 2. The DCS scheme Σ is secure if Strong Diffie-Hellman assump-
tion and Decision Linear assumption hold, and the hash function H is collision-
resistant.

Due to the page limit we defer the detailed proof of the theorem and the defini-
tions of the assumptions into the full version.

6.2 Non-interactive AOFE

Huang et al.’s non-interactive AOFE is obtained by applying Fiat-Shamir heuris-
tic to their interactive AOFE protocol, specifically, to the confirmation proof of
the signature’s validity. Via the same technique, we can obtain a non-interactive
AOFE protocol as well.

7 Comparison

In Table 2 we compare the interactive AOFE protocol instantiated with the DCS
scheme proposed in Section 6, with previous AOFE protocols. The second column
shows if the protocol require interaction between the signer and the verifier in
order to verify a partial signature. The third and fourth columns show the size
of a partial signature and that of a full signature, respectively. The fifth column
indicates whether the protocol works under the registered-key model or chosen-
key model. The sixth column lists the basic number-theoretic assumptions used
for guaranteeing the security. The last column shows whether the security of the
protocols rely on the random oracle model or not.

Both of the interactive AOFE protocol proposed in [20, 21] and ours are
built from a DCS scheme, and are secure in the standard model. The protocol
in [20, 21] requires a special property of DCS, named samplability, while our
protocol only makes use of standard security properties of the underlying DCS
scheme. In the comparison, we consider that the signer’s partial signature merely
consists of its confirmer signature on the message, while leave the proof of the
validity of it to the verification part. Compared with [20, 21], our protocol has
longer partial signature, but smaller standard signature. In addition, the security
of our protocol relies on relatively more standard assumptions, while the protocol
in [20, 21] relies on newly proposed assumptions.

Table 2. Comparison with existing AOFE protocols

interact? Pk Apk PSig Sig PK Model Asmp ROM

[15] no 1G 1G 2G + 8Zp 2G+ 12Zp registered DDH yes
[22] no 1G 10G 45G + 1Zp 46G+ 1Zp chosen SDH+DLIN no

[20, 21] no 2G 1G 3G + 4Zp 3G registered HSDH+DHSDH no
[20, 21] yes 163G 1G 3G 3G registered HSDH+DHSDH yes

Ours yes 2G 4G 5G + 1Zp 1G+ 1Zp registered SDH+DLIN no
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8 Conclusion

In this paper we showed how to build an interactive ambiguous optimistic fair
exchange protocol using a designated confirmer signature scheme with slight
modifications. The resulting protocol is almost as efficient as the underlying
DCS scheme. It makes use of standard security properties of the underlying
DCS, and is secure without random oracles. We also proposed a concrete and
efficient construction of designated confirmer signature, which is secure based
on Strong Diffie-Hellman assumption and decision linear assumption without
random oracles, and to the best of our knowledge has the shortest standard
signature.
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Abstract. In this paper we present efficient implementations of McEliece
variants using quasi-dyadic codes. We provide secure parameters for a
classical McEliece encryption scheme based on quasi-dyadic generalized
Srivastava codes, and successively convert our scheme to a CCA2-secure
protocol in the random oracle model applying the Fujisaki-Okamoto
transform. In contrast with all other CCA2-secure code-based cryptosys-
tems that work in the random oracle model, our conversion does not
require a constant weight encoding function. We present results for both
128-bit and 80-bit security level, and for the latter we also feature an
implementation for an embedded device.

1 Introduction

The McEliece and Niederreiter public-key encryption schemes are based on error-
correcting codes. One drawback are the large public keys. There have been few
implementations reported; we cite for instance [29] and [30] for 32-bit software
implementations. An alternative scheme, called HyMES (Hybrid McEliece cryp-
tosystem), was implemented by Sendrier and Biswas [11], combining ideas from
both the previous schemes.

Recently, implementations of the McEliece and Niederreiter cryptosystems for
embedded devices have been presented, respectively by Eisenbarth et al. in [13]
and by Heyse in [18], with the disadvantage of an external memory requirement
for storing the key. A first proposal to deal with this issue from an implemen-
tational point of view is to make use of the quasi-dyadic variant of Misoczki
and Barreto [25]. This was done by Heyse in [19], along with the extension to
a CCA2-secure protocol. Unfortunately, the fields underlying the Goppa codes
chosen are still too big to fit on the flash memory of the embedded device and
this has repercussions in the speed of the implementation, since the use of tower
field arithmetic becomes necessary.

In our paper, we provide an alternative construction based on the more general
framework of generalized Srivastava codes described by Persichetti in [27]. We
then convert the encryption scheme into a CCA2-secure protocol with the help
of the Fujisaki-Okamoto transform [17]. To the best of our knowledge, a scheme

M. Fischlin, J. Buchmann, and M. Manulis (Eds.): PKC 2012, LNCS 7293, pp. 138–155, 2012.
c© International Association for Cryptologic Research 2012



Efficient Implementation of a CCA2-Secure Variant 139

based on this family of codes has never been implemented before; moreover, we
use McEliece with a twist, and we don’t require any constant weight encoding
function [32] for our conversion. This is also a novelty, and it allows to simplify
the construction and save computational costs at the same time. The finite fields
in use are much smaller than previous proposals, and fit completely on the flash
memory, with the result that our implementation is much faster.

We note that there exist schemes, such as Dowsley et al. [12] and Freeman
et al. [22], that provide CCA2-secure encryption based on coding theory in the
standard model, but these schemes are completely impractical.

The paper is organized as follows: in Section 2 the McEliece and Niederre-
iter encryption schemes are introduced, along with an overview of constructions
based on structured matrices. Security definitions such as IND-CCA2 and their
instantiations are discussed in Section 3, and the technical details about the im-
plementations with the respective timings are provided in Section 4, both for a
C++ code, and for implementation on an embedded device. Finally, we conclude
in Section 5.

2 Code-Based Public-Key Encryption Schemes

2.1 The McEliece Cryptosystem

The first cryptosystem based on coding theory was introduced in 1978 by Robert
J. McEliece [23] and, for an appropriate choice of parameters, is still unbroken. In
the original proposal, binary Goppa codes are used as a basis for the construction,
and the security comes from the hardness of the General Decoding Problem
(GDP).

Definition 1 (GDP). Let C be an [n, k] linear code over Fq and let y be a
vector of Fn

q .
Find the codeword closest to y, i.e. find c ∈ C such that d(c, y) is minimal.

This corresponds to correcting a certain number of errors occurred on the code-
word c, represented by an error vector e, that is y = c + e. A unique solution
exists if the weight of e is less than or equal to w = �d−1

2 , where d is the
minimum distance of the code C.

This problem is well known and was proved to be NP-complete [7]. Moreover,
GDP is believed to be hard on average, and not just on the worst-case instances.
The general framework proceeds as follows:

Key Generation: Pick a k × n generator matrix G for a w-error correcting
linear code with an efficient decoding algorithm over the finite field Fq, a k × k
invertible matrix S and an n×n permutation matrix P at random, then compute
G′ = SGP , which is another valid generator matrix. The private key consists of
G,S, P , and the public key is G′.The system parameters n, k, w are also public.

Encryption: To encrypt a plaintext x ∈ Fk
q , compute the corresponding code-

word xG′ and add a random error vector e of weight at most w, obtaining the
ciphertext y = xG′ + e.
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Decryption: Given a ciphertext y, calculate yP−1 = xG′P−1+ eP−1 = xSG+
eP−1, and since the weight of eP−1 is still the same, it is enough to apply the
decoding algorithm for the code to retrieve xS and consequently x.

The other computational assumption underlying the security is that the k ×
n matrix G′ so obtained is computationally indistinguishable from a uniform
matrix of the same size, hence an attacker that does not know the private key
is faced with solving GDP.

Remark. The encryption process is dominated by the cost of computing xG′,
which requires at most k×n field multiplications. Hence this is fast. On the other
hand, decryption requires performing a decoding algorithm and is not usually so
fast. Therefore, McEliece is most suitable for applications where encryption is
required to be fast. This is analogous to RSA using small encryption exponents.

2.2 The Niederreiter Cryptosystem

A first alternative version of the McEliece cryptosystem has been proposed by
Niederreiter [26] in 1986, and has been proved to be equivalent in terms of
security. It is often considered as a “dual” version, as the trapdoor is given by
the parity-check matrix rather than the generator matrix. The underlying hard
problem is the Syndrome Decoding Problem.

Definition 2 (SDP). Let H be an r × n matrix over Fq, s a vector of Fr
q and

w > 0.
Find a vector e in Fn

q of weight ≤ w such that HeT = s.

If H is the parity-check matrix for an [n, k] linear code C, then r = n− k and it
is immediate to see that the two problems are equivalent: in fact, for y = c+e we
have HyT = HcT +HeT but HcT = 0 since c is a codeword so HyT = HeT = s,
which means that SDP in this case corresponds, again, to finding an error vector
of weight less or equal to w.

This is a description of Niederreiter’s scheme:

Key Generation: Pick an (n − k) × n parity-check matrix H for a w-error
correcting linear code with an efficient decoding algorithm over the finite field
Fq, an (n− k) × (n − k) invertible matrix S and an n × n permutation matrix
P at random, then evaluate H ′ = SHP , which is another valid parity-check
matrix. The private key consists of H,S, P , and the the public key is H ′.The
system parameters n, k, w are also public.

Encryption: A plaintext here is a vector e ∈ Fn
q of weight at most w; to encrypt,

compute the corresponding syndrome, obtaining the ciphertext y = H ′eT .

Decryption: Given a ciphertext y, calculate first S−1y = HPeT , and then
apply the decoding algorithm for the code to retrieve PeT and consequently e.
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2.3 Structured Matrices

Definition 3. Given a ring R (in our case the finite field Fqm) and a vector
h̄ = (h0, . . . , hn−1) ∈ Rn, the dyadic matrix Δ(h̄) ∈ Rn×n is the symmetric
matrix with components Δij = hi⊕j, where ⊕ stands for bitwise exclusive-or on
the binary representations of the indices. The sequence h̄ is called its signature.
Moreover, Δ(t, h̄) denotes the matrix Δ(h̄) truncated to its first t rows. Finally,
we call a matrix quasi-dyadic if it is a block matrix whose component blocks are
t× t dyadic submatrices.

If n is a power of 2, then every 2k×2k dyadic matrix can be described recursively
as

M =

(
A B
B A

)
where each block is a 2k−1 × 2k−1 dyadic matrix (and where any 1 × 1 matrix
is dyadic).

Definition 4. Given two sequences x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn) ∈ Fn
q ,

a Generalized Reed-Solomon (GRS) code of order � is defined by a parity-
check matrix related to the Vandermonde form, i.e. the matrix with components
Hij = yjx

i−1
j :

H =

⎛⎜⎜⎜⎝
y1 . . . yn
y1x1 . . . ynxn
...

...
...

y1x
�−1
1 . . . ynx

�−1
n

⎞⎟⎟⎟⎠.

If the resulting code is then restricted to Fq it is called an Alternant code.

Definition 5. For m,n, s, t ∈ N and a prime power q, let ᾱ = (α1, . . . , αn),
w̄ = (w1, . . . , ws) be n+ s distinct elements of Fqm , and (z1, . . . , zn) be nonzero
elements of Fqm . The Generalized Srivastava (GS) code of order st and length
n is defined by a parity-check matrix of the form:

H =

⎛⎜⎜⎜⎝
H1

H2

...
Hs

⎞⎟⎟⎟⎠
where each block is

Hi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
α1 − wi

. . .
zn

αn − wi

z1
(α1 − wi)2

. . .
zn

(αn − wi)2
...

...
...

z1
(α1 − wi)t

. . .
zn

(αn − wi)t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The parameters for such a code are the length n ≤ qm − s, dimension k ≥
n−mst and minimum distance d ≥ st+ 1.

GS codes are part of the family of Alternant codes, and therefore benefit of
an efficient decoding algorithm. More information about this class of codes can
be found in [21, Ch. 12, §6].

2.4 Secure Parameters

Both the previous schemes share some common traits: a very fast and efficient
encryption procedure, and very big public keys. Our proposal to deal with these
issues is to use structured codes, and in particular, quasi-dyadic codes. See Ap-
pendix B for a summary of the key generation process.

Misoczki and Barreto in [25] give an assessment of the hardness of
decoding quasi-dyadic codes, providing a reduction to the Syndrome Decoding
Problem.

Keeping in mind the scope of the paper, the parameters proposed in [27, Table
3] seem to fit our proposal best; we report the table here for completeness.

Table 1. Quasi-dyadic GS codes [27, Table 3]. The column “Size” indicates the size
of the public key, while in the column “Security level” are reported the approximate
cost of general decoding attacks (log2 of binary operations).

Base Field m n k s t Errors Size (bytes) Security level1

F25 2 992 416 25 9 144 4680 128
F24 3 768 432 24 7 56 4536 80
F25 2 512 256 24 23 64 2560 80

3 CCA-Secure Schemes

Until now, we have been considering only the weakest notion of security for a
public-key encryption scheme, that is, One-Way Encryption (OWE). The fol-
lowing are formal definitions of public-key encryption and one-way security.

Definition 6. A Public-Key Encryption (PKE) scheme consists of a 6-tuple
(K,P , C,G, E ,D) defined as follows:

– K = Kpubl ×Kpriv is the key space.

– P is the set of messages to be encrypted, or plaintext space.

– C is the set of the messages transmitted over the channel, or ciphertext
space.

– G is a probabilistic key generation algorithm that takes as input a security
parameter 1δ and outputs a public key pk ∈ Kpubl and a private key sk ∈
Kpriv.

1 http://www2.mat.dtu.dk/people/C.Peters/isdfq.html
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– E is a (possibly probabilistic) encryption algorithm that receives as input a
public key pk ∈ Kpubl and a plaintext x ∈ P and returns a ciphertext ψ ∈ C.

– D is a deterministic decryption algorithm that receives as input a private key
sk ∈ Kpriv and a ciphertext ψ ∈ C and outputs either a plaintext x ∈ P or
the failure symbol ⊥.

Definition 7 (One-Way). A One-Way adversary is a polynomial-time algo-
rithm A that takes as input a public key pk ∈ Kpubl and a ciphertext ψ ∈ C. We
say that a PKE is One-Way Secure if the probability of success of any adversary
A is negligible in the security parameter, i.e.

Pr[pk ←− Kpubl, x←− P : A(pk, Epk(x)) = x] ∈ negl(δ)

The standard definitions for Indistinguishability, and the attack models CPA
and CCA2 are omitted here due to space requirements.

3.1 CCA2 Security Conversions

There are standard ways to obtain an IND-CCA2 secure encryption scheme
from one that only has OW-CPA, for example the Fujisaki-Okamoto transform
[17]. The construction achieves CCA2-security by integrating an asymmetric
encryption scheme with a symmetric scheme.

Definition 8. A Symmetric Encryption (SE) scheme consists of a 5-tuple
(K,P , C, E ,D) defined as follows:

– K is the key space.

– P is the set of messages to be encrypted, or plaintext space.

– C is the set of the messages transmitted over the channel, or ciphertext
space.

– E is a deterministic encryption algorithm that receives as input a key χ ∈ K
and a plaintext x ∈ P and returns a ciphertext ψ ∈ C.

– D is a deterministic decryption algorithm that receives as input a key χ ∈ K
and a ciphertext ψ ∈ C and outputs a plaintext x ∈ P.

The Fujisaki-Okamoto conversion requires an additional property of the encryp-
tion scheme called γ-uniformity. We define it here.

Definition 9. Let Π be a PKE defined as above and let’s call R the set where
the randomness to be used in the (probabilistic) encryption is chosen. For given
(pk, sk) ∈ K, x ∈ P and a string y, we define

γ(x, y) = Pr[r
$←− R : y = Epk(x, r)]

where the notation Epk(x, r) makes explicit the role of the randomness r. We say
that Π is γ-uniform if, for any (pk, sk) ∈ K, any x ∈ P and any y, γ(x, y) ≤ γ
for a certain γ ∈ R.
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Table 2. The Fujisaki-Okamoto conversion. H1 and H2 are hash functions.

Encryption of x Decryption of ψ

σ
$←− PPKE ψ := (ψ1||ψ2)

r := H1(σ, x) σ̂ := DPKE
sk (ψ1) (return ⊥ if decryption fails)

ψ1 := EPKE
pk (σ, r) x̂ := DSE

H2(σ̂)(ψ2) (return ⊥ if decryption fails)

ψ2 := ESE
H2(σ)(x) r̂ := H1(σ̂, x̂)

if EPKE
pk (σ̂, r̂) == ψ1 return x := x̂

return ψ := (ψ1||ψ2) else return ⊥

In a successive paper [20], Kobara and Imai proposed three alternative construc-
tions in a similar fashion, tailored specifically for the McEliece cryptosystem
rather than a general OWE encryption scheme. The biggest contribution of the
new constructions is that the amount of overhead data (i.e. difference between
the bit-length of the ciphertext and the bit-length of the plaintext) is consider-
ably reduced.

While this is certainly an important issue for some applications, in the com-
mon cryptographic practice it will never constitute a serious concern. In fact,
the aim of public key cryptography is not to encrypt a whole, large plaintext,
but rather to encrypt just a small (e.g. 128 or 256 bits) key for a more efficient
symmetric scheme, that will be then used to encrypt the message. From a com-
putational point of view the Kobara-Imai encryption process seems to be more
expensive; in fact, the whole construction is rather complex.

Table 3. The Kobara-Imai hybrid conversion γ for the McEliece (McE) public-key
encryption scheme. H is a hash function, Gen a random number generator, Conv a
constant weight encoding function and Const a (predetermined) public constant.

Encryption of x Decryption of ψ

r
$←− {0, 1}∗ ψ := (y5||y′)

y1 := Gen(r)⊕ (x||Const) y3 := DMcE
sk (y′)

y2 := r ⊕H(y1) y3G
′ ⊕ y′

(y5||y4||y3) := (y2||y1) y4 := Conv−1(z)
z := Conv(y4) (y2||y1) := (y5||y4||y3)

r := y2 ⊕H(y1)
(x̂||Const′) := y1 ⊕Gen(r)
if Const′ == Const return x := x̂

return ψ := (y5||EMcE
pk (y3, z)) else return ⊥

Note that the Fujisaki-Okamoto decryption process includes an encoding
operation in the final check. This makes decryption slower. The cost of the
process, though, is still dominated by the decoding operation rather than the
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matrix-vector multiplication. Moreover, as we already remarked, we argue that
the distinctive feature of the McEliece scheme is the fast encryption process,
and the Fujisaki-Okamoto conversion preserves fast encryption better than the
Kobara-Imai approach.

3.2 Applying Fujisaki-Okamoto to McEliece

We give here a new way to use McEliece together with the Fujisaki-Okamoto
transform. Previous approaches always needed a constant weight encoding func-
tion to convert H1(σ, x) into an error vector. Our idea is to swap the message
and the error in the McEliece scheme, with a technique similar to the one used
by Micciancio in [24]. This means that we interpret EMcE

G′ (x, r) = rG′ + x, en-
coding the message in the error vector rather than in the codeword. This is
possible because, unlike other PKE’s, the decryption process of McEliece, con-
sisting mainly of decoding, returns both x and r, allowing to recover, in addition
to the plaintext, also the randomness used. With this simple trick, we avoid
having to use a (costly) constant weight encoding function and we simplify the
encryption process considerably.

For simplicity we take the symmetric encryption scheme to be the one-time
pad with an ephemeral key generated as H2(σ) where H2 is a random oracle
with arbitrary length output. This symmetric encryption scheme satisfies the
Find-Guess security property. In practice, one might use a block cipher in CBC
mode.

Table 4. The Fujisaki-Okamoto transform applied to McEliece

Encryption of x Decryption of ψ

σ
$←− Wn,w ψ := (ψ1||ψ2)

r := H1(σ||x) σ̂ := DMcE
G (ψ1) (return ⊥ if decoding fails)

ψ1 := rG′ + σ x̂ = H2(σ̂)⊕ ψ2

ψ2 := H2(σ)⊕ x r̂ := H1(σ̂||x̂)
if r̂G′ + σ̂ == ψ1 return x := x̂

return ψ := (ψ1||ψ2) else return ⊥

The following lemma is fundamental to prove that our scheme enjoys the
γ-uniformity required by the conversion.

Lemma 1. The McEliece encryption scheme described above is γ-uniform for

γ =
1

qk
.

Proof. Let G′ be a public key that is a generator matrix for the code C; in our
setting, y is a generic string in Fn

q . Then clearly:
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γ(σ, y) = Pr[r
$←− Fk

q : y = rG′ + σ] =

⎧⎪⎨⎪⎩
0 if y − σ /∈ C

1

qk
if y − σ ∈ C

and that concludes the proof. ��

Theorem 1. If the assumptions of indistinguishability and decoding hardness
of the McEliece PKE hold, the encryption scheme described in Table 4 is IND-
CCA2 secure.

Proof. The scheme enjoys one-way security because of the computational as-
sumptions in the hypothesis. Moreover, Lemma 1 provides the γ-uniformity as
required. Finally, the symmetric scheme used (one-time pad) satisfies the re-
quired security property (Find-Guess). It is then possible to apply [17, Th. 12].

��

4 Efficient Implementation

The implementation was done in C++ and is based on the library SBCrypt
(Syndrome-Based Cryptography Library) by Barreto, Misoczki and Villas
Boas [3].

We subsequently converted our code to run on an embedded device, namely
the microcontroller ATxmega256A3 from the AVR XMEGA family. It has 264
Kbytes of Flash memory, 16 Kbytes of SRAM memory and is running at a clock
frequency of 32 MHz.

To represent the finite fields we used exponential/antilog tables [21, Ch. 4,
§5], which is possible as our extension fields are small enough to fit completely in
the available memory (apart from the first code, for which the private trapdoor
would be too big). This is a key feature of our scheme and one of the main
reasons to choose GS codes over Goppa codes. In fact, when using GS codes,
it is possible to choose secure parameters even for codes defined over relatively
small extension fields. See Appendix C for a summary of the security discussion.
More information can be found in [27].

As for the hash functions H1 and H2, we opted for the Keccak family [10], one
of the five remaining SHA-3 finalists, with assigned output length equal to k, in
the first instance, or equal to the plaintext length (128 bits in our case), in the
second. Its flexibility also allows for using it as stream cipher, and we deployed
it for randomly choosing error vectors of weight w.

The procedure to generate error vectors for encryption is as follows: at first,
the error vector is initialized to zero. Next, we ask Keccak for β = �log2 n� bits
and interpret the result as an index into the error vector. If the interval is greater
than n then we reject and re-sample. Now, in case this index is still a zero en-
try, we ask Keccak for additional bits to be read as a field element. Otherwise, we
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ask Keccak for the next bits to be interpreted as the next index to be examined.
This simple procedure is iterated until the error vector has the desired weight.

It is clear that this process samples uniformly from Wn,w.
The test results for the C++ code have been executed on an Intel(R) Core

(TM) 2 Duo CPU E8400@3.00GHz running Ubuntu/Linux 2.6.32, where the
source has been compiled with gcc 4.4.3. Similar results have been obtained
using the Intel compiler icpc/icc. As for the embedded microcontroller, the code
has been simulated on AVR Studio 5.0 [1].

McEliece Based on GS Codes. We have measured two different operations:
the encoding step xG + e for x ∈ Fk

q and the decoding of a ciphertext y ∈ Fn
q .

Results are presented in Table 5 (timings expressed in milliseconds (ms)).

Table 5. Profiling results for McEliece using GS codes

Code Name Base Field m n k s t Errors Encoding Decoding

A F25 2 992 416 25 9 144 0.287 5.486
B F24 3 768 432 24 7 56 0.179 1.578
C F25 2 512 256 24 23 64 0.093 1.234

It is easy to see that the decoding process dominates the runtime.
The following tables report the results obtained when running the same op-

erations on the microcontroller, for the last two codes. The costs displayed are

Table 6. Details of the costs of encryption and decryption steps for codes B and C

Operation Code B Code C

Generate error vector e 313,114 316,568
Load the plaintext x 4,313 2,553
Encode xG 3,418,292 1,603,854
Add e 8,818 5,944

Encoding total 3,744,537 1,928,919

Operation Code B Code C

Compute syndrome HyT 6,910,742 5,440,245
Solve key equation 955,597 1,192,400
Compute error positions 2,061,066 1,571,689
Compute error values 611,898 794,463
Correct the errors 8,641 5,121

Decoding total 10,547,944 9,003,918
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in clock cycles; for a conversion to the standard time units, keep in mind that
the device runs at 32MHz, hence we have 32 million cycles per second.

Note on Decoding. In our scheme, we have implemented a standard alternant
decoder (see for example [21, Ch. 12, §9]). That consists of extrapolating the
key equation from the syndrome and then solve it and compute the error po-
sitions as the roots of the error locator polynomial. To find the roots, we use
the Horner scheme in the sense that we directly evaluate the polynomial on the
support. More sophisticated root-finding algorithms are available, for instance
Berlekamp’s trace algorithm [6]. However, our codes are punctured codes, and,
as also stated in [19], Berlekamp’s trace algorithm is not designed for such a case.
Moreover, although Berlekamp’s algorithm does find the roots of the polynomial,
there is an additional step necessary to find them in the support sequence, which
is not the case when using the Horner scheme and direct evaluation. Finally, one
can see from the timings of the decoding operation, that the by far dominating
part is the syndrome computation. For the time being, we therefore refrained
from implementing Berlekamp’s algorithm, opting for the much simpler Horner
scheme instead.

CCA2-McEliece Based on GS Codes. The performances of the scheme
are given in Table 7 and Table 8, respectively for the C++ code and for the
microcontroller.

Table 7. Profiling results for CCA2-McEliece using GS codes

Code Name Base Field m n k s t Errors Encryption Decryption

A F25 2 992 416 25 9 144 0.323 5.914
B F24 3 768 432 24 7 56 0.213 1.814
C F25 2 512 256 24 23 64 0.114 1.382

Table 8. Details of the costs of the encryption and decryption steps of CCA2-McEliece

Operation Code B Code C

Generate error vector σ 322,109 321,812
Load the plaintext x 1,019 1,019
Hash r = H(σ, x) 282,285 281,497
Encode rG 3,426,700 1,591,031
Add σ 1,103 1,314
Hash K(σ) 137,704 137,720
Pad K(σ)⊕ x 1,814 1,811

Encryption total 4,171,734 2,336,204
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Table 8. (Continued)

Operation Code B Code C

Compute syndrome HψT
1 7,029,985 5,425,696

Solve key equation 954,522 1,202,032
Compute error positions 2,031,514 1,561,946
Compute error values 611,944 794,524
Correct the errors 1,108 5,112
Hash K(σ̂) 147,822 144,768
Pad K(σ̂)⊕ ψ2 1,585 1,586
Hash r̂ = H(σ̂, x̂) 282,066 282,278
Encode r̂G 3,426,721 1,591,049
Add σ̂ 1,113 1,273
Check equality 9,207 6,135

Decryption total 14,497,587 11,016,399

Comparing the results in Table 5 and Table 7 (as well as Table 6 and Table 8),
we see that indeed the computational overhead is quite low.

For simplicity, the comparison of the total timings for both cases is reported
in Tables 9 and 10.

Table 9. Summary of the timings (ms) for the C++ code

Code Encoding CCA2 Encryption Decoding CCA2 Decryption

A 0.287 0.323 5.486 5.914
B 0.179 0.213 1.578 1.814
C 0.093 0.114 1.234 1.382

Table 10. Summary of the timings (clock cycles) for the embedded device

Code Encoding CCA2 Encryption Decoding CCA2 Decryption

B 3,744,537 4,171,734 10,547,944 14,497,587
C 1,928,919 2,336,204 9,003,918 11,016,399

5 Conclusions

In this paper we propose the implementation of a construction based on quasi-
dyadic generalized Srivastava codes. We first implement a plain McEliece encryp-
tion scheme, and then convert it to a CCA2-secure scheme using the Fujisaki-
Okamoto transform. The results are initially given for a C++ implementation,
and successively for an embedded device.

An independent work proposing a CCA2-secure scheme based on quasi-dyadic
Goppa codes has been recently presented at PQCrypto 2011 by Stefan Heyse
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[19]. The performance indicated for encryption and decryption on the embedded
device are slower than our results (the simulator program is the same, AVR
Studio, although in a slightly older version). Part of the reason is due to the use
a constant weight encoding function (more than three times as costly as hashing)
that we avoid thanks to the particular configuration of our scheme. However,
the major difference comes from the fact that our vector-matrix multiplication,
despite performing operations over non-binary fields, is at least two times faster,
and this is the dominating part in the encryption process and is also a very high
cost in the decryption process. This is a direct consequence of the structure of the
scheme. In fact, the construction in [19] makes use of binary Goppa codes, which
for security reasons [14] need to be defined over the extension field F216 : this is
too big to fit the corresponding log/antilog tables on the flash memory of the
device. The result is that, in order to avoid using additional, external memory,
the tables for F28 are represented instead, and operations are performed using
tower field arithmetic, which is much slower. For example, a multiplication over
a tower F(28)2 is equivalent to performing 5 multiplications over F28 .

Another disadvantage is constituted by the fact that the public key G′ is
computed as SG like in the original McEliece (P is supposed to be implicit into
the support of the code), and the scramble matrix S occupies a great amount of
memory (131,072 bytes, see [19, Table 3]). This is completely redundant, as the
reduction to the systematic form is enough to mask the trapdoor and provide
one-way security [11].

On the other hand, the length of the encrypted plaintext is about 10 times
the length of our plaintext (1288 bits, as opposed to 128 bits); however, we stress
again that, in a “real-world” scenario, public-key encryption would only be used
for encrypting a small amount of data, for obvious reasons. So if a large number
of bits needs to be encrypted, with every probability a PKE would be used to
exchange a small key (usually 128 or 256 bits) and then the plaintext would be
encrypted with a symmetric encryption scheme.

If we follow this approach in our case, the timings that we obtain strongly
support our claim. The latest benchmark speed indicated for AES-128 is about
16 cycles per byte2. Hence, if we want to encrypt, for a comparison, a plaintext
of length 1288 bits = 161 bytes, it would take only 2,576 clock cycles; even
on an embedded device, this number is very small compared to the rest of the
encryption process. In total, our encryption process ranges from around 1.5 to
2.7 times faster than [19].

Table 11. Cost of encrypting a plaintext of length 1288 bits

Code Cost (clock cycles)

Goppa + Kobara-Imai 6,358,952
Code B 4,174,310
Code C 2,338,780

A similar argument holds for decryption.

2 http://www.cryptopp.com/benchmarks.html
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Finally, we would like to highlight that we are using Keccak to represent
both our hash functions and a random number generator; the flexibility that it
provides is evident. Other SHA-3 competitors like the function Blue Midnight
Wish (BMW) used in [19] have been proved to be faster [16], but do not reach
the same level of security, and for this have been discarded: although, as noted in
the announcement of the finalists, “none of these candidates was clearly broken”,
several attacks have been presented3.

Further investigation is certainly still required, but for a totally detailed anal-
ysis probably even a comparison at source code level would become necessary,
and that falls beyond the scope of this paper.
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A Additional Definitions

We present here some additional definitions needed for the key generation process.

Definition 10. Given two disjoint sequences v̄ = (v1, . . . , v�) ∈ F�
q and L̄ =

(L1, . . . , Ln) ∈ Fn
q , the Cauchy matrix C(v̄, L̄) is the matrix with components

Cij =
1

vi − Lj
, i.e.

C(v̄, L̄) =

⎛⎜⎜⎜⎜⎜⎜⎝

1

v1 − L1
. . .

1

v1 − Ln
...

...
...

1

v� − L1
. . .

1

v� − Ln

⎞⎟⎟⎟⎟⎟⎟⎠.

Cauchymatrices have the property that all of their submatrices are invertible [31].

Definition 11. Fix a finite field Fq and an integer m > 1. Choose a polynomial
g(z) in Fqm [z] of degree t < n/m and a sequence of distinct elements α1, . . . , αn ∈
Fqm such that g(αi) �= 0 for all i. The polynomial g(z) is called the Goppa poly-
nomial. The set of words c̄ = (c1, . . . , cn) ∈ Fn

qm with
∑n

i=1
ci

z−αi
≡ 0 (mod g(z))

defines an [n, n− t] linear code over Fqm . The corresponding Goppa code is the
restriction of this code to Fq, i.e. the set of elements c̄ = (c1, . . . , cn) ∈ Fn

q which
satisfy the above condition.

Alternatively (and usually) a Goppa code is defined by means of its parity-check
matrix, which is of the form:

H =

⎛⎜⎜⎜⎜⎜⎝
1

g(α1)
. . .

1

g(αn)
...

...
...

αt−1
1

g(α1)
. . .

αt−1
n

g(αn)

⎞⎟⎟⎟⎟⎟⎠
It is clear then that a Goppa code has dimension k ≥ n − mt. The minimum
distance is t+ 1, or 2t+ 1 in the special binary case (q = 2).

http://www.eccpage.com/
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Goppa codes are a particular instance of Alternant codes, with xi = αi,
yi = 1/g(αi).

B Quasi-Dyadic Key Generation

Misoczki and Barreto in [25] first introduced a scheme based on quasi-dyadic
Goppa codes, making use of codes simultaneously in dyadic [25, Th. 2] and
Cauchy form [21, Ch. 12, Pr. 5]. Necessary conditions are that the generator
polynomial has to be monic and without multiple zeros, and that the code needs
to be defined over a field of characteristic 2, with a dyadic signature satisfying

1

hi⊕j
=

1

hi
+

1

hj
+

1

h0
. (1)

The scheme was subsequently extended and generalized to the case of GS codes
[27], with multiple benefits including security improvements (described in the
next section). Since it can be easily proved that every generalized Srivastava
code with t = 1 is a Goppa code, the two cases are in fact just two instances
of the same scheme. For the construction, we follow the steps presented in [27,
Section 4].

Equation (1) is the core of the key generation algorithm. The procedure takes
input parameters n, s, t such that n = n0s, mst < n for s a power of 2 and a
finite field Fqm = F2u where q = 2λ, u = mλ, then assigns distinct values at
random to the elements h2j for j = 1, . . . , log2 (n− 1), in the meantime fixing
the elements between h2j and h2j+1 by using (1).

An initial block in dyadic form is formed from the signature h̄ just built; this
is equivalent to a Goppa code. In case t > 1, the other blocks are computed by
successive powering, up to the power of t. The parity-check matrix eventually
obtained is projected onto the base field and finally, we retain the non-trivial
part of its systematic form to be used as trapdoor.

We refer to [27] for a fully detailed description of the construction process.

C Resistance to Structural Attacks

The main threat against quasi-dyadic schemes is represented by the so-called
FOPT attack [14]. It relies on the fundamental property H ·GT = 0 to build an
algebraic system, using then Gröbner bases techniques to solve it. The special
properties of codes in quasi-dyadic form are of key importance, as they con-
tribute to considerably reduce the number of unknowns of the system. Also,
the parameters m and t come into account as they define the dimension of the
solution space.

The aim is to find a valid parity-check matrix for the code, that is, a matrix
H in Alternant form, H = {yjxij}; these elements are represented by two sets
of unknowns {Xi} and {Yi}. The first step of the attack is then generating the
following system of equations:{
gi,0Y0X

j
0 + · · ·+ gi,n−1Yn−1X

j
n−1 = 0 | i = 0, . . . , k − 1, j = 0, . . . , �− 1

}
. (2)
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As is easy to see, the case j = 0 produces a set of linear equations involving only
the Yi. These can be further reduced with the help of some properties derived
from the dyadicity and the key-generation algorithm [14, Pr. 5]; in particular,
we have that Yis+j = Yis for each block, i.e. i = 0, . . . , n0 − 1, j = 1, . . . s (a
proof is given for the case t = 1; for the adaptation to the case t > 1 see [27]).
This results in having only n0 − 1 unknowns Yi, since we can arbitrarily choose
one of them. Moreover, the linear equations are identical for all the rows of each
dyadic block, hence only n0−mt distinct equations remain after eliminating the
redundant ones.

As in any linear system, the difference between these two numbers gives the
number of free variables of the system: in this case, mt − 1. If it is possible to
recover the free variables (if the number of those is very small, even just by
guessing) it is possible to reduce (2) to a simplified system involving only the
Xi. Once the reduction is done, a linearization trick is used to solve and retrieve
the remaining unknowns.

Hence, it is crucial to keep the dimension of the solution space (number of
free variables) high enough to prevent the attack to succeed; the authors in [15]
indicate that this number should be not smaller than 20. In this case in fact,
the computational effort required to solve the system is too high: experimental
results indicate a complexity of approximately 2128 bit operations.

Additional security comes from another phenomenon that occurs when the
base field is F2. In this case the Gröbner basis necessary to solve the system is
easy to compute, but somehow “trivial” (reduced to one equation) and doesn’t
provide enough information, hence the attack cannot be completed.
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Abstract. Solving systems of m Multivariate Quadratic (MQ) equa-
tions in n variables is one of the main challenges of algebraic cryptanaly-
sis. Although the associated MQ-problem is proven to be NP-complete,
we know that it is solvable in polynomial time over fields of even char-
acteristic if either m ≥ n(n − 1)/2 (overdetermined) or n ≥ m(m + 1)
(underdetermined). It is widely believed that m = n has worst case com-
plexity. Actually in the overdetermined case Gröbner Bases algorithms
show a gradual decrease in complexity from m = n to m ≥ n(n − 1)/2
as more and more equations are available. For the underdetermined case
no similar behavior was known. Up to now the best way to deal with
the case m < n < m(m + 1) was to randomly guess variables until
m = n. This article shows how to smartly use additional variables and
thus obtain a gradual change of complexity over even characteristics also
for the underdetermined case. Namely, we show how a linear change of
variables can be used to reduce the overall complexity of solving aMQ-
system with m equations and n = ωm variables for some ω ∈ Q>1 to the
complexity of solving a MQ-system with only (m − �ω�+ 1) equations
and variables, respectively. Our algorithm can be seen as an extension of
the previously known algorithm from Kipnis-Patarin-Goubin (extended
version of Eurocrypt ’99) and improves an algorithm of Courtois et al.
which eliminates �log2ω� variables. For small ω we also adapt our algo-
rithm to fields of odd characteristic. We apply our result to break current
instances of the Unbalanced Oil and Vinegar public key signature scheme
that uses n = 3m and hence ω = 3.

Keywords: Underdetermined Multivariate Equations, UOV Signature
Scheme.

1 Introduction

It is well known that algebraic equations can be an Achilles’ heel for crypto-
graphic systems. Whether stream ciphers [5, 13], hash functions [19] or block
ciphers [16], they all can be expressed through a system of equations over a fi-
nite field F with a solution that yields the private key. For asymmetric schemes
the importance is even more obvious. For example variants of McEliece [12] or
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Multivariate Quadratic (MQ) schemes such as Hidden Field Equations [11]
were broken using algebraic techniques. So it is fair to say that solving sys-
tems of MQ equations is one of the main challenges of algebraic cryptanalysis.
However, as the underlying MQ-problem is proven to be NP-complete [14], we
cannot hope to find an efficient algorithm for all instances. In particular, if the
number of equations m equals the number of unknowns n, all known empirical
algorithms are exponential on random instances of the MQ-problem. Neverthe-
less we know that the problem becomes easy for fields of characteristic 2 if either
m ≥ n(n−1)/2 or n ≥ m(m+1). In the first case, we replace each monomial by
a new variable and solve a linear system in n(n − 1)/2 equations and variables.
The second case is covered by an algorithm of Kipnis-Patarin-Goubin [15, Sec. 7]
and will be further explored in this article.

Until now, research mainly covered the overdetermined case m ≥ n. There are
many algorithms like F4, F5 and XL that benefit of additional equations [8, 9, 10].
So for m = n even guessing one or two variables can help to reduce the complexity
dramatically [2]—and thus make a big difference in practice. In contrast none
of the algorithms benefits in the same way of the underdetermined case n > m
(cf. Section 1.1). In particular, their complexity is exponentially linked to the
number of variables. Hence, having more variables will dramatically increase
their running time (and also space requirements). As finding one solution often
suffices for cryptographic purpose, the best way of “using” more variables today,
is to fix them to random values and thus receive a hard instance with n = m and
one solution on average. This is not very sophisticated and in a sense similar to
throw away additional equations in the overdetermined case and only work with
the remaining ones. This article shows how to us additional variables and hence
closes the complexity gap between n = m and n ≥ m(m + 1). Our main result
applies to fields of even characteristic. In section 6 we discuss a generalization
to arbitrary characteristics.

1.1 Related Work

The best treatment of the overdetermined case m ≥ n is covered by XL or
Gröbner bases algorithms like F4 or its successor F5. The overall complexity is
well understood [1] and becomes gradually easier if more and more equations are
available. In particular for m ≥ n(n − 1)/2 over F2k and m ≥ n(n + 1)/2 over
Fpk for p an odd prime, the overall problem can be solved in polynomial time
by Linearization. For the underdetermined case not much is known. Basically,
all research so far has centered around two cases: n = m and n ≥ m(m + 1).
The first has exponential, the latter polynomial time complexity. In particular,
an algorithm from Kipnis-Patarin-Goubin [15, Sec. 7] can efficiently solve the
latter case in F2k . Courtois et al. [6] extended this result to arbitrary fields Fpk

and showed that the problem becomes polynomial as soon as n ≥ 2
m
7 (m + 1).

Furthermore they showed how to eliminate �log2ω� variables and thus get a
system of m − �log2ω� variables and equations (cf. Prop. 1 in [6]). We extend
this result, using a tight analysis of the technique of Kipnis-Patarin-Goubin, to
obtain a system of m − �ω� + 1 variables and equations.
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1.2 Achievement and Organization

We close an important gap in understanding the underdetermined case especially
for F2k . In particular we show that there is a gradual change from exponential
running time to polynomial running time if n gets larger than m. This improves
the cryptanalysis of the Unbalanced Oil and Vinegar Signature scheme (UOV)
[17] and therefore forces a change of parameter sets (cf. section 5).

The organization of the paper is as follows. Section 2 gives some notation.
Section 3 shows how to describe the transformation of variables we are using,
shortly repeats the algorithm of Kipnis-Patarin-Goubin and introduce our new
algorithm. Section 4 is the most important, as it gives a theoretical analysis
of the correctness of our algorithm and also the one of Kipnis-Patarin-Goubin.
Section 5 gives a complexity analysis and shows that parameters of UOV have
to be increased. In section 6 we adapt our algorithm to the general case Fpk for
small ω and motivate future research on this question.

2 Notation

A MQ-system of equations over a finite field Fq with q elements is given by m
equations p(k) = 0 for polynomial functions p(k) : Fn

q → Fq for 1 ≤ k ≤ m and
γ

(k)
ij , β

(k)
i , α(k) ∈ Fq according to

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj +

∑
1≤i≤n

β
(k)
i xi + α(k) . (1)

If we speak of solving such an MQ-system, we always mean finding one solution.
For cryptanalytic purposes, this is actually sufficient in most cases. We call p(k)

as defined by (1) inhomogeneous. The homogeneous case consists only of terms
in xixj for 1 ≤ i ≤ j ≤ n and is thus defined by

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj .

The corresponding MQ-map P : Fn
q → Fm

q is defined by P :=
(
p(1), . . . , p(m)

)ᵀ
.

To ease notation, we restrict to homogeneous systems in the sequel. Note that
our algorithm also works for inhomogeneous systems without introducing a ho-
mogenization variable.

Let π(k) be the coefficient vector of p(k)(x1, . . . , xn) in lexicographic order, i.e.

π(k) = (γ(k)
11 , γ

(k)
12 , . . . , γ

(k)
1n , γ

(k)
22 , γ

(k)
23 , . . . , γ(k)

nn ).

Note that our algorithm also works with other monomial orderings. However, for
the ease of explanation, we have fixed lexicographic ordering throughout this pa-
per. The corresponding coefficient matrix Π is defined by Π :=

(
π(1), . . . , π(m)

)ᵀ
.
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3 Transformation of Variables

Let P : Fn
q → Fm

q be an MQ-map with m equations and n = ωm variables
x1, . . . , xn for some ω ∈ Q>1. To make parts of the arguments easier, we will
sometimes change to the notation n = m+v with v = (ω−1)m. The current way
to find a solution of this system is to fix v variables at random [2, 3, 7] and solve
the remaining system of m equations and m variables using a MQ-solver such as
F5 or XL. Kipnis-Patarin-Goubin [15, Sec. 7] were the first who took benefit of
the additional v variables and showed that the system is solvable in polynomial
time for n ≥ m(m + 1). In a nutshell they applied a linear transformation
S ∈ GLn(Fq) of variables to obtain a new MQ-system F := P◦S with coefficient
matrix Φ. The transformation matrix S is calculated in polynomial time such
that fixing v variables in F provides a linear system in the remaining m variables
for fields of characteristic 2. We will investigate this approach in more detail in
section 3.2.

To understand how S operates on the coefficients of P and F , we introduce
the transformation Σ such that ΣΠᵀ = Φᵀ. This transformation was previously
used to determine short key variants of UOV [18].

3.1 How to Determine Σ

We can write every equation p(i) of P as a quadratic form p(i) = xᵀP(i)x for
x = (x1, . . . , xn) and a matrix P(i) ∈ Fn×n

q consisting of the coefficients of p(i).
Note that this matrix is not symmetric if F is of characteristic 2. Applying the
change of variables, i.e. y = S−1x, we obtain a new MQ-system F with f (i) =
yᵀSᵀP(i)Sy for y = (y1, . . . , yn). The coefficients of this new map are determined
by SᵀP(i)S =: F(i). Or in other words f (k)(y1, . . . , yn) :=

∑
1≤i≤j≤n

γ̃
(k)
ij yiyj and

xi =
n∑

p=1
sipyp. Comparison of coefficients in the following equation reveals an

explicit formula for Σ.∑
1≤i≤j≤n

γ̃
(k)
ij yiyj =

∑
1≤i≤j≤n

γ
(k)
ij xixj

=
∑

1≤i≤j≤n

γ
(k)
ij (

n∑
p=1

sipyp)(
n∑

p=1

sjpyp)

Let si· ∈ Fn
q be the i-th row of S and Dij := sᵀ

i·sj· the dyadic product of the
i-th and j-th row of S. Now we can express xixj by

xixj = (
n∑

p=1

sipyp)(
n∑

p=1

sjpyp) =
∑

1≤l≤n

Dij
ll y2

l +
∑

1≤l<p≤n

(Dij
lp + Dij

p l)ylyp.

Let I := ((ai, bi) | 1 ≤ ai ≤ bi ≤ n) be the ordered index set of all quadratic
monomials. We have chosen lexicographic order of the monomials, i.e.

I = ((1, 1), (1, 2), . . . , (1, n), (2, 2), (2, 3), . . . , (n, n)).
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For (ai, bi), (aj , bj) ∈ I we obtain Σ := (σij) with

σij :=

{
sajai · sbjbi for ai = bi,
sajai · sbjbi + sajbi · sbjai for ai 	= bi,

(2)

by collecting the appropriate entries of all the dyadic products. The matrix Σ,
obtained by comparing coefficients, maps the coefficients of p(k) to the coefficients
of f (k). Denoting τ := |I| = n(n+1)

2 (for q > 2) and τ := |I| = n(n−1)
2 (for q = 2)

the number of monomials, this leads to

Σ ·

⎛⎜⎜⎝
γ

(k)
a1,b1
...

γ
(k)
aτ ,bτ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
γ̃

(k)
a1,b1
...

γ̃
(k)
ar,br

⎞⎟⎟⎠ . (3)

3.2 Algorithm of Kipnis-Patarin-Goubin

We briefly recap the algorithm of Kipnis-Patarin-Goubin for n ≥ m(m + 1), cf.
[15, Sec. 7] for details. In section 3.3 we will generalize this technique to n ≤
m(m+1) and show that we can force enough elements of Φ, i.e. coefficients of F ,
to be zero, such that we obtain (�ω�−1) linear equations. The first idea is to split
the variables y1, . . . , yn into two sets V := {ym+1, . . . , yn} and O := {y1, . . . , ym}.
Here V denotes the set of variables we want to fix and O the set of variables
we want to determine. Due to the strong connection to the Oil and Vinegar
Signature Scheme, we call V the vinegar variables and O the oil variables. The
aim of Kipnis-Patarin-Goubin was to find S such that most coefficients of F are
zero and thus the new MQ-system is easily solvable e.g. by Linearization. The
overall idea to find such a linear transformation S efficiently is the following.
First all equations of (3) are quadratic in sij . But if we fix certain elements of
S at random, some of the equations become linear. Solving this linear equations
enable us to fix some coefficients of F to zero. More precisely Kipnis-Patarin-
Goubin aimed at solving the quadratic equations in sij of (3) we obtain by
setting

γ̃
(k)
i,j = 0 for 1 ≤ i, j, k ≤ m, i 	= j . (4)

To ease notation we label (4) by (i, j, k) or just (i, j) if we want to denote
all equations (i, j, 1) to (i, j, m). As all these equations are quadratic, Kipnis-
Patarin-Goubin fixed the first column of S to random values. Note that regarding
to (2) all monomials in equation (i, j) consists of one variable of the i-th and
one variable of the j-th column of S. This means γ̃

(k)
1,1 is fixed to a random value

and equations (1, 2) to (1, n) become linear. (1, 2) gives us m linear equations
in the si2 and after randomly fixing the superfluous variables, we can determine
them such that γ̃

(k)
1,2 = 0 for 1 ≤ k ≤ m. Now that the second column of S is

determined, we obtain additional linear equations (2, 3) to (2, n). Using the 2m
linear equations of (1, 3) and (2, 3), we can determine si3. If the first k columns
of S are determined, we solve the km linear equations (1, k + 1) to (k, k + 1) to
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determine the (k + 1)-th column of S. The algorithm continues until columns 1
to m of S are determined. At each level, more and more of the equations become
linear. For the last step we have to solve the linear equations (1, m) to (m−1, m)
in the unknowns s1m to snm and thus n ≥ m(m − 1) must hold.

After this transformation we obtain m equations 1 ≤ j ≤ m of the form

m∑
i=1

βi,jy
2
i + y1L1,j(ym+1, . . . , ym+v) + . . .

+ ymLm,j(ym+1, . . . , ym+v) + Qj(ym+1, . . . , ym+v) . (5)

The terms Li,j denote some linear functions in the V variables we want to fix
and Qj denotes some quadratic function in these variables. Now Kipnis-Patarin-
Goubin determined ym+1, . . . , ym+v by Gaussian Elimination such that Li,j = 0
for all 1 ≤ i, j ≤ m. This is possible for v ≥ m2 and thus we obtain the condition
n ≥ m(m+1). For fields of characteristic 2 the remaining system in (5) is linear
in the O variables and can thus be easily solved. This is due to the Frobenius
Homomorphism x 
→ x2 which effectively allows us to treat monomials of the
form y2

i as linear variables.
In the next section we provide a tight analysis for n ≤ m(m + 1) and show

that solving a MQ-system P with m equations and n = ωm variables is roughly
as hard as solving a MQ-system of (m − �ω� + 1) equations in (m − �ω� + 1)
variables.

3.3 Tight Analysis for n = ωm and Improvement

To obtain linear equations we also fix the first column of S at random. This step
is similar to Kipnis-Patarin-Goubin. As we are in the case m < n < m(m + 1)
we cannot fulfill all equations (4) and have to adjust our strategy accordingly. In
particular, we have to reduce the number of equations during the intermediate
steps, i.e. due to a lack of variables in S we can only solve equations (i, j, k) for
some fixed bound bj and 1 ≤ i < j, 1 ≤ k ≤ bj .

The overall process is depicted in figure 1. Remember, lines of Φᵀ denote
coefficients and columns denote polynomials f (1) to f (m). The dotted areas are
of no interest for us, as all the corresponding monomials in F vanish after fixing
the variables in V . Hence, setting them to a specific value is no use. The gray part
are arbitrary values. To make the interesting part of Φᵀ clearer, we reordered
the rows in the right block of figure 1, what is indicated by the ordered pairs
labeling the rows.

Let Bj := {(i, j, k) | 1 ≤ k ≤ bj, 1 ≤ i < j} be the j-th block of coefficients for
which we want to gain γ̃

(k)
i,j = 0 in Φ where bj is some bound to be determined

later (cf. section 4) and V(Bj) := (j − 1)bj the volume of such a block or in
other words the number of zero coefficients. As depicted in figure 1 we are able
to eliminate all O×O coefficients with i 	= j in the first bm columns of Φ. Solving
the linear system in the γ̃

(k)
i,i y2

i for i ∈ {1, . . . , m} allows us to replace a total
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· =
Σ Πᵀ Φᵀ

(1, 1)

(1, 2)

(1, n)

(2, 2)

(m,n)

(m + 1,m + 1)

(n, n)

0

0

0

0

0

0

(i, i)

1 ≤ i ≤ m

(1, 2)

(1, 3)

(2, 3)

(1, 4)

(2, 4)

(3, 4)

(m − 1,m)

(1,m + 1)

(1, n)

(m,n)

Fig. 1. Overview of coefficients in Φᵀ we want to fix to zero

of bm variables in the remaining equations (see Section 4.2). This leads effectively
to a new system of (m − bm) equations and variables. The crucial point is to
determine the correct value of bm. One might be inclined to choose bj ≤ m
maximal such that V(Bj) is less than the number of variables n in the j-th
column of S in order to produce as much zeros in Φ as possible. However note
that V(Bj) cannot be equal to n as we need one more variable than equations in
each block, as the system is homogeneous. Hence, by having as many variables
as linear equations, we only would obtain the all-zero vector. In section 4 we will
show that the naive approach will not work in general, as if bj is to large the
obtained solution S will not be regular. This question did not come up in the
Kipnis-Patarin-Goubin approach, as they fixed enough variables at random to
trivially assure regularity of S.

Algorithm 1. High-level description of our algorithm.
1: Fix the last n−m columns of matrix S to linearly independent vectors.
2: for i = 1→ m do
3: A := ∅
4: for j = 1→ i− 1 do
5: Append linear equations (i, j, 1) to (i, j, ω) to A.
6: end for
7: Solve A and include its solution into S.
8: end for
9: Apply linear transformation S to P .

10: A := ∅
11: for i = 1→ ω do
12: Append linear equations L1,i to Lm,i to A.
13: end for
14: Solve A and derive corresponding vinegar variables.
15: Substitute ω linear equations in remaining MQ-polynomials.
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4 Equivalent Solutions S and Their Impact on bj

Up to this point our approach is a straightforward enhancement of Kipnis-
Patarin-Goubin idea. This section covers the main idea of our approach and
gives new insights to the theory of solving underdetermined systems of equa-
tions. Kipnis-Patarin-Goubin claimed that all the linear equations provide at
least one solution in general and that S is regular with high probability. Due to
the large n this is actually true for their approach. But as we want to use as
many sij as possible to fix elements in Φ to zero, it is not clear at all, how many
equations γ̃

(k)
i,j = 0 we are able to solve in order to obtain a regular solution S.

We use the theory of equivalent keys [20, 21] for the Unbalanced Oil and Vine-
gar Scheme as a toolkit to show that for every solution S there is an equivalent
solution S′ with a special structure. The number of variables in S′ will upper
bound the number of equations γ̃

(k)
i,j = 0 that yield a regular solution.

4.1 Equivalent Solutions

First let us determine bm and thus the number of zeros in Φ for n ≥ m(m + 1),
i.e. for the original algorithm of Kipnis-Patarin-Goubin.

0

(i, i) for i ∈ {1, . . . , m}

(i, j) for i �= j, i, j ∈ {1, . . . , m}

(i, j) for i ∈ {1, . . . , m}

and j ∈ {m + 1, . . . , n}

Fig. 2. Upper part of Φᵀ for n ≥ m(m + 1)

Denote S the subset of equations of ΣΠᵀ = Φᵀ labeled by (i, j) for i, j ∈
{1, . . . , m} and i 	= j, i.e. the zero part in figure 2. Let S be a solution to S.
We call S′ an equivalent solution, if it preserves the structure of Φ, i.e. if S′

also fulfills all equations of S. Every element of the equivalence class of such
solutions solves our problem. To determine an upper bound on bj we search for
a small (linear) family of matrices S̃ such that every equivalence class has a
representative in this family. We call this a minimal representative. Or loosely
speaking these are solutions with large fixed parts for arbitrary Π or a matrix
S̃ with minimal number of variables.

Obviously all equations in S remain zero if we map every variable {y1, . . . , ym}
to itself or some permutation and any variable within {ym+1, . . . , yn} to sums
of these variables. The only two things we are not allowed to do is mapping



164 E. Thomae and C. Wolf

variables of V to variables of O as this would lead to quadratic terms in the O
variables and mapping O variables to a sum of O variables, as this would also
lead to quadratic terms in the O variables due to γ̃

(k)
i,i 	= 0 for i ∈ {1, . . . , m}. So

if S is a solution to S then SΩ−1 with

Ω :=

(
Ω

(1)
(m×m) Ω

(2)
(m×v)

0 Ω
(3)
(v×v)

)

for Ω
(1)
(m×m) some regular diagonal matrix and Ω

(3)
(v×v) some regular matrix is also

a solution as x = SΩ−1Ωy holds and Ωy preserves γ̃
(k)
i,j = 0 for i 	= j, 1 ≤ i, j ≤

m. Note that Ω−1 has the same form as Ω, i.e.

Ω−1 =

⎛⎝Ω
(1)−1

(m×m) Ω̃
(2)
(m×v)

0 Ω
(3)−1

(v×v)

⎞⎠ with Ω̃(2) := −Ω(1)−1
Ω(2)Ω(3)−1

.

Thus we are able to choose Ω−1 such that

SΩ−1 =

(
S

(1)
(m×m) S

(2)
(m×v)

S
(3)
(v×m) S

(4)
(m×m)

)
Ω−1 =

(
S̃

(1)
(m×m) 0

S̃
(3)
(v×m) I

)
(6)

under the condition that S(1)Ω̃(2)+S(2)Ω(3)−1
= I and S(3)Ω̃(2)+S(4)Ω(3)−1

= 0.
Note that this is always the case because S is regular and thus S(1)||S(2) has full
rank. As Ω(1)−1

is just a diagonal matrix, we are only able to fix the first row in
S̃(1) and thus the remaining number of free variables per column is di = n − 1
for 1 ≤ i ≤ m and di = 0 for m + 1 ≤ i ≤ n.

Corollary 1. For n ≥ m(m + 1) the Kipnis-Patarin-Goubin approach is upper
bounded by V(Bi) = n− 1 for 1 ≤ i ≤ m and V(Bi) = 0 for m + 1 ≤ i ≤ n. This
leads to bi ≤ (n − 2)/(i − 1) for 1 ≤ i ≤ m and bi = 0 for m + 1 ≤ i ≤ n.

As V(B1) ≤ . . . ≤ V(Bm) = m(m − 1) < m(m + 1) − 1 ≤ n − 1 hold, Kipnis-
Patarin-Goubin were right in assuming that their system of linear equations is
solvable. But as V(Bi) = 0 for m + 1 ≤ i ≤ n they indeed have to use (5) to
eliminate the O × V coefficients.

Let us now come back to our case of figure 1. Our approach eliminates as
many O×O coefficients γ̃

(k)
i,j with i 	= j as possible using a linear transformation

S of variables. After applying (5) we obtain equations that are linear in fields of
characteristic two and thus can be used to substitute variables in the remaining
equations. This introduces new O × O coefficients in the remaining equations
and thus we skip eliminating them beforehand (see figure 3).

In order to preserve the structure of Φ, the only transformation of variables Ω
applicable is mapping O variables to itself or some permutation and V variables
to sums of V variables. In contrast to corollary 1 we are not allowed to map O
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0

0

0

0

0

0

(i, i) for i ∈ {1, . . . , m}
(1, 2)
(1, 3)
(2, 3)
(1, 4)
(2, 4)
(3, 4)

.

.

.
(m − 1, m)
(1, m + 1)

.

.

.

(1, n)
.
.
.

(m, n)

Fig. 3. Upper part of Φᵀ fixing only significant coefficients

variables to V variables as this would introduce new O × V monomials due to
γ̃

(k)
i,i 	= 0. Thus Ω−1 is of form

Ω−1 =

⎛⎝Ω
(1)−1

(m×m) 0

0 Ω
(3)−1

(v×v)

⎞⎠ ,

with Ω
(1)−1

(m×m) a diagonal matrix. This leads to a minimal representative of every
equivalence class of the form

SΩ−1 =

(
S̃

(1)
(m×m) S̃

(2)
(m×v)

S̃
(3)
(v×m) I

)
, (7)

where the first row of S̃
(1)
(m×m) is fixed.

Corollary 2. For n = ωm our approach pictured in figure 3 is upper bounded
by V(Bi) = n − 1 for 1 ≤ i ≤ m and V(Bi) = m for m + 1 ≤ i ≤ n. This leads
to bi = (n − 1)/(i − 1) for 1 ≤ i ≤ m and bi = 1 for m + 1 ≤ i ≤ n.

Claim. We claim that corollary 1 as well as corollary 2 also yields a lower bound
and thus are sharp. The crucial question is, if the SΩ−1 given by (6) or (7)
is minimal for all columns i with V(Bi) = di, i.e. we cannot find a represen-
tative S̃ with less free variables in those columns we are actually using all the
free variables. This is the case, if these columns are uniquely defined for some
generic Π . For fixed columns 1 to (i − 1) this is obviously the case. Although
intuitively clear, a rigorous mathematical proof seems to require stronger tools.
Nevertheless, experiments prove that there are no systematic dependencies and
thus corollary 1 as well as corollary 2 are tight (cf. appendix 5).
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The volume of the zero blocks Bm+1, . . . , Bn in figure 3 is

mbm = m
n − 1
m − 1

> n − 1 > m

i.e. larger than the number of independent variables for m+1 ≤ i ≤ n. Thus the
solution S would be singular. In order to eliminate the O×V coefficients, we also
have to calculate ym+1, . . . , ym+v by Gaussian Elimination such that Li,j = 0 for
all 1 ≤ i, j ≤ m (see equation 5). Corollary 2 leads to bm = (n−1)/(m−1) > �ω�
for ω ≥ 2, i.e. we are able to reduce the MQ-system to (m−�ω�) equations and
variables in this case.

But in order for the bmm equations Li,j = 0 in (ω − 1)m variables to be
solvable, we have to choose bm = �ω�−1 and thus we are only able to reduce the
MQ-system to (m − �ω� + 1) equations and variables, respectively. For �ω� |m
our algorithm in the next section will merge both strategies, i.e. first eliminating
some O × V coefficients and then use equation (5). This allows us to reduce to
an MQ-system with (m − �ω�) equations and variables.

4.2 Our Algorithm in Its Most General Form

For a very tight analysis, which give a further improvement if �ω� |m, we first
use algorithm 1. to eliminate the O × O coefficients γ̃

(k)
i,j with i 	= j in the first

�ω� equations. Corollary 2 ensures that this is possible. Next we eliminate the
O × V coefficients γ̃

(k)
i,j for m + 1 ≤ j ≤ n, 1 ≤ k ≤ �ω� and 1 ≤ i ≤ (m/ �ω�).

See figure 4 for illustration.

0

0

(1, m + 1)
· · ·

( m
�ω� , m + 1)

· · ·
(m, m + 1)

· · ·

(1, n)
· · ·

( m
�ω� , n)

· · ·
(m, n)

0

0

0

0

(i, i) for i ∈ {1, . . . , m}
(1, 2)
(1, 3)
(2, 3)
(1, 4)
(2, 4)
(3, 4)

.

.

.
(m − 1, m)
(1, m + 1)

.

.

.

(1, n)
.
.
.

(m, n)

Fig. 4. Upper part of Φᵀ for tight analysis

This is possible as the number of coefficients γ̃
(k)
i,j for 1 ≤ i ≤ (m/ �ω�) equals

the number of independent variables in the j-th column of S due to m = dj (cf.
corollary 2). To eliminate the linear terms Li,j (cf. equation (5)) we have to solve
ω (m − (m/ω)) = (ω− 1)m equations, which equals the number of variables and
thus yields a solution. We obtain ω equations of the form (8). Using the Frobenius
Homomorphism several times x 
→ x2p−1

over F2p leads to equation (8).
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m∑
i=1

βi,jy
2
i + cj = 0 for j ∈ {1, . . . , ω}

⇔
m∑

i=1

β2p−1

i,j yi + c2p−1

j = 0 (8)

After using equation (8) to eliminate �ω� variables in the remaining (m − �ω�)
equations we obtain a MQ-system of (m − �ω�) variables and equations. Note
that if m

�ω� /∈ N this very tight analysis fails and we are only able to eliminate
(�ω� − 1) instead of �ω� variables.

5 Complexity Analysis

The complexity of our approach is on the one hand the complexity of the pre-
processing step, i.e. applying the transformation of variables and on the other
hand the complexity of solving the obtained MQ-system by some algorithm like
F5. In the case of m

�ω� /∈ N we would have to solve (m − 1) systems of linear
equations of different dimensions to eliminate the O × O coefficients. Deleting
the O × V coefficients requires solving another linear system of size (�ω�− 1)m.
The overall complexity is

O
(

m∑
i=1

((�ω� − 1) i)3
)

= O (
m(�ω�m)3

)
.

In the tight case of m
�ω� ∈ N we have to solve (m− 1) systems of linear equations

of different dimension to eliminate the O×O coefficients and another (�ω�−1)m
systems of dimension m to delete some of the O × V coefficients. Deleting the
remaining coefficients using (5) requires solving another linear system of size
(�ω� − 1)m. The overall complexity is

O
(

m(�ω� − 1)m3 + ((�ω� − 1)m)3 +
m−1∑
i=1

(�ω� i)3
)

= O (
m(�ω�m)3

)
.

To determine the complexity of solving a MQ-system using F5 we refer to [1].
In a nutshell, we first have to calculate the degree of regularity. For semi-regular
sequences, which generic systems are assumed to be, the degree of regularity is
the index of the first non-positive coefficient in the Hilbert series Sm,n with

Sm,n =
∏m

i=1(1 − zdi)
(1 − z)n

,

where di is the degree of the i-th equation. Then the complexity of solving a
zero-dimensional (semi-regular) system using F5 [2, Prop. 2.2] is

O
((

m

(
n + dreg − 1

dreg

))α)
,
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with 2 ≤ α ≤ 3 the linear algebra constant. We use α = 2 as the equations are
sparse and to be comparable to the results of [2], who gave the currently best
attack against UOV.

Table 1. Attack complexity against UOV, comparing the improved attack with the
previously known best attack using the hybrid approach of [2], i.e. guessing g variables
beforehand. The previously secure value for m = 26 is marked in bold. Rows where m
is divisible by ω = 3 are marked with “←”.

direct attack [2] our approach improvement
m g dreg log2 complexity log2 Gauss g dreg log2 complexity overall log2

24 1 13 78.0 19.8 1 11 68.2 68.2 9.8 ←
25 1 13 79.5 18.1 1 12 73.6 73.6 5.9
26 1 14 83.7 18.3 1 13 78.1 78.1 5.6
27 1 14 85.7 20.4 1 13 78.1 78.1 7.6 ←
28 1 15 89.4 18.7 1 14 83.7 83.7 5.7
29 1 15 90.6 18.9 1 14 85.1 85.1 5.5
30 1 16 95.0 21.0 1 14 85.1 85.1 9.9 ←

Table 1 give some examples of the complexity of our algorithm applied to
attack UOV. The underlying field is F28 and nowadays parameters are n = 78
variables and m = 26 equations, i.e. ω = 3 [2]. We use the HybridF5 algorithm
and thus g denote the optimal number of variables to guess. Referring to table 1,
we see that today’s parameter of UOV are insecure (row with bold values). Based
on our analysis, we suggest UOV with m = 28 for n = 3m.

Table 2. Experimental complexities of our approach (TW) in seconds [s]

F26 F28

ω m n standard TW standard TW
1 3 6 0 0 0 0
1 4 8 0.01 0 0 0
1 5 10 0.03 0.02 0.03 0.02
1 6 12 0.25 0.06 0.25 0.06
1 7 14 2.94 0.33 3.10 0.34
1 8 16 33 3.51 36 3.60
1 9 18 460 43 479 45
2 3 9 0 0 0 0
2 4 12 0.01 0 0 0.03
2 5 15 0.05 0.07 0.05 0.08
2 6 18 0.35 0.29 0.36 0.28
2 7 21 3.40 0.80 3.45 0.80
2 8 24 38 2.19 41 2.25
2 9 27 520 8.34 546 8.10

We have implemented our algorithm using the software system Magma V2.16-1
[4] and found it to be in line with the theoretical predictions. All experiments were
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performed on a Intel Xeon X33502.66GHz (Quadcore) with 8 GB of RAM using
only one core. Table 2 compares the time complexities of the standard approach
of guessing v variables and solve the remaining MQ-system in m variables and
our algorithm for various parameter sets. The source code of our implementation
can be found on the homepage of the first author.

6 Odd Cases

In this section we outline some ideas to extend our results to fields of odd charac-
teristic. Hence we are now working over Fpk for some prime p 	= 2 and k ∈ N>0.
Unfortunately there is no straightforward extension of our ideas. The main prob-
lem is that equations (8) are not longer linear and thus we are not able to elimi-
nate variables in the remaining equations. Nevertheless, Gröbner algorithms are
empirically faster on systems containing equations (8), but it is hard to quantify
the gain from a theoretical perspective. An argument that this task is inherently
difficult is also the odd-characteristic algorithm of Courtois et al. [6]. It extended
the algorithm for even characteristics by Kipnis-Patarin-Goubin [15] to the odd
case. However, it requires now n ≥ 2

m
7 (m + 1)—which is infeasible in practice.

However, for small values of ω, we can actually adapt our algorithm from
even to odd characteristics. This coincides with the cryptanalytically interesting
case of UOV, where we have ω ≈ 3 for efficiency reasons. Our main concern is to
obtain some equations yi = g(yω+1, . . . , ym) for 1 ≤ i ≤ ω and some polynomial
function g of low degree from the ω equations given by (8). They will be used to
eliminate the variables y1, . . . , yω. Therefore, we need to determine coefficients
(βω+1,i, . . . , βm,i) such that they are linearly dependent on (βω+1,1, . . . , βm,1)
for every i ∈ {2, . . . , ω}. This way we could eliminate these parts in equations
2 to ω by Gaussian Elimination. Producing an upper triangular form on these
equations leads to y2

i = ci for 2 ≤ i ≤ ω, which is efficiently solvable for finite
fields of size pk. Still, the question remains how to determine the coefficients
βij . Fixing γ̃

(j)
i,i = βij to some value for 2 ≤ j ≤ ω leads to a quadratic system

of (ω − 1) equations and variables sij (cf. figure 1)—so we seem to be back on
square one. However, if ω is sufficiently small, i.e. smaller than 20, we can use
any MQ-solver, such as Gröbner algorithms for this task.

7 Conclusions and Open Questions

In this article we showed a more “gradual” change between exponential run-
ning time in the determined case (n = m) and the polynomial running time in
massively underdetermined case (n ≥ m(m + 1)). Previously, this change was
abrupt (Kipnis-Goubin-Patarin), i.e. there was a polynomial time algorithm in
one case, and a fully exponential algorithm in the other. The situation is depicted
in figure 5.

Our algorithm can be used as a general preprocessing step for further appli-
cations. Applied to UOV we would have to raise parameters from m = 26 to
m = 28 in order to make the scheme secure.
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n

n = m 2m 3m 4m 5m

Number of Variables
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om
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. . . m(m + 1)

Kipnis-Goubin-Patarinexp(m)

exp(m− 1)

exp(m− 2)

exp(m− 3)

poly(m)

Fig. 5. Achievement of this paper (solid), compared with Kipnis-Goubin-Patarin (thin)
for fixed m
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Abstract. Solving a system of multivariate polynomials over a finite
field is a promising problem in cryptography. Recently, Sakumoto et al.
proposed public-key identification schemes based on the quadratic ver-
sion of the problem, which is called the MQ problem. However, it is still
an open question whether or not it is able to build efficient constructions
of public-key identification based on multivariate polynomials of degree
greater than two. In this paper, we tackle the cubic case of this question
and construct public-key identification schemes based on the cubic ver-
sion of the problem, which is called the MC problem. The MQ problem
is a special case of the MC problem. Our schemes consist of a proto-
col which is zero-knowledge argument of knowledge for the MC problem
under the assumption of the existence of a non-interactive commitment
scheme. For a practical parameter choice, the efficiency of our scheme
is highly comparable to that of the schemes based on the MQ problem.
Furthermore, the parallel version of our scheme also achieves the security
under active attack with some additional cost.

Keywords: public-key identification scheme, zero knowledge, MQ prob-
lem, MC problem.

1 Introduction

Diversity of underlying mathematical problems is important for cryptography.
Although the ones widely used today are factorization and a discrete logarithm
problem, there are other various problems which are used for cryptography.
Among them, a problem of solving a system of multivariate polynomials over
a finite field is a promising problem. In particular the quadratic case of the
problem is called the MQ problem. Even in the quadratic case, the associated
decision problem is known to be NP-complete [14, 23], and a random instance
of the problem is widely believed to be intractable. Naturally, the problem of
degree greater than two is expected to be equally or more intractable than the
quadratic one. The generic attacks on the MQ problem using Gröbner basis are
known to have exponential complexity in time and space [3, 11], and there is no
known polynomial-time quantum algorithm to solve the MQ problem in contrast
to factorization or a discrete logarithm problem.

M. Fischlin, J. Buchmann, and M. Manulis (Eds.): PKC 2012, LNCS 7293, pp. 172–189, 2012.
c© International Association for Cryptologic Research 2012
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Over the past few decades, many studies have been made on cryptographic
primitives based on multivariate polynomials. Most of them deal with quadratic
polynomials [5, 18, 19, 21, 26], and some of them deal with polynomials of
degree greater than two [6, 10, 12, 22, 32]. In symmetric cryptography, Berbain
et al. proposed QUAD, which is a stream cipher with provable security based
on the MQ problem [5]. In asymmetric cryptography, several public-key schemes
have been proposed, which are known as multivariate public-key cryptography
(MPKC) [18, 19, 21].

Recently, Sakumoto et al. proposed public-key identification schemes based
on the MQ problem [26]. A remarkable advantage of their schemes is that they
have provable security based on the conjectured intractability of the MQ problem
under the assumption of the existence of a non-interactive commitment scheme.
In fact, their schemes do not depend either on the Isomorphism of Polynomials
(IP) problem or on the Functional Decomposition (FD) problem, while the other
schemes in MPKC depend on the IP problem [18, 19, 21] or the FD problem [22].
Their new cut-and-choose techniques are specialized for the quadratic case and
are based on the bilinearity of the map (x,y) �→ F2(x + y) − F2(x) − F2(y),
where Fd is a function consisting of multivariate polynomials of degree d. In
fact, their techniques do not work in the case of degree d > 2, because the map
(x,y) �→ Fd(x + y) − Fd(x)− Fd(y) where d > 2 is not linear either in x or in
y. Thus it is an interesting question whether or not it is able to build efficient
constructions of public-key identification based on multivariate polynomials of
degree greater than two.

In this paper, we tackle the cubic case of this question and construct public-key
identification schemes based on the MC problem, which is a problem of solving
a system of multivariate cubic polynomials over a finite field. The MQ problem
is a special case of the MC problem, and we have less perspective on solving the
MC problem compared to the MQ problem even considering the state-of-the-art
algorithms [7, 8, 11]. It is important for higher security to be based on such a
more intractable problem even though the MQ problem is very hard. A function
consisting of multivariate cubic polynomials is also called an MC function.

We present two concrete protocols, a three-pass protocol and a five-pass one,
which are statistical zero-knowledge argument of knowledge for the MC problem.
Our schemes consisting of the protocol have provable security based on the con-
jectured intractability of the MC problem under the assumption of the existence
of a non-interactive commitment scheme. Concretely, the identification schemes
consisting of the sequential composition and the parallel composition of our pro-
tocol are secure against impersonation under active attack and under passive
attack, respectively. Moreover, the parallel version of our scheme is also secure
under active attack if its underlying MC function is substantially compressing
(e.g., mapping 160 bits to 80 bits). These levels of provable security are the same
as those of the identification schemes based on the MQ problem. Of course, our
schemes do not depend either on the IP problem or on the FD problem.

Efficiency of our five-pass protocol is highly comparable to that of the MQ-
based schemes for a practical parameter choice. The size of communication data
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in our five-pass protocol is 26,697 bits when the impersonation probability is less
than 2−30, while those in the three-pass protocol and in the five-pass protocol
of [26] are 29,640 bits and 26,565 bits, respectively. Our five-pass protocol also
has the small sizes of a public key and a secret key, 88 bits and 132 bits for
80-bit security, respectively. Although our schemes have the relatively large size
of the system parameter, it can be reduced to a small seed, e.g., 128 bits, by
employing a pseudo-random number generator. The technique is also used in the
implementation of QUAD [2]. We note that cubic systems with only 33 variables
and 22 equations over F24 achieve 80-bit security, while quadratic systems over
F24 require 45 variables and 30 equations. This evaluation is derived from the way
of [7] of selecting the minimum parameters for 80-bit security and contributes
to the efficiency of our five-pass scheme.

Techniques for our constructions. First, we briefly review the techniques for
the MQ-based construction. They employ the cut-and-choose approach, where
a prover first divides her secret into shares and then proves the correctness of
some shares depending on the choice of a verifier without revealing the secret
itself.

Let FMQ be a function (x1, . . . , xn) �→ (y1, . . . , ym) where yl =
∑

i,j al,i,jxixj +∑
i bl,ixi. The function FMQ is called an MQ function. The associated bilinear

form of FMQ is defined asGMQ(x, x̃) = FMQ(x+x̃)−FMQ(x)−FMQ(x̃). It is easy to see
the bilinearity of the function GMQ(x, x̃), since it maps (x1, . . . , xn, x̃1, . . . , x̃n) �→
(z1, . . . , zm) where zl =

∑
i,j al,i,j(xix̃j + x̃ixj). Let s be a secret key and v =

FMQ(s) the corresponding public key. When the secret key is divided as s = r0+r1,
the public key v = FMQ(r0 + r1) can be represented as v = FMQ(r0) + FMQ(r1) +
GMQ(r0, r1). This representation still contains the termGMQ(r0, r1) which depends
on both r0 and r1. Then, the two vectors r0 and FMQ(r0) are also divided as
r0 = t0 + t1 and FMQ(r0) = e0 + e1. Accordingly, the public key can also be
represented as v = e0 + e1 + FMQ(r1) + GMQ(t0, r1) + GMQ(t1, r1), due to the
bilinearity of GMQ. As a result, it yields the following equations:

r0 − t0 = t1, FMQ(r0)− e0 = e1, and

v −GMQ(t1, r1)− FMQ(r1)− e1 = e0 +GMQ(t0, r1).

Each side of each of the three equations can be checked by using some one of
three tuples (r0, t0, e0), (r1, t1, e1), and (r1, t0, e0), while no information on the
secret key s can be obtained from one out of the three tuples. As described above
the bilinearity of GMQ plays an important role in their dividing technique.

Then we consider the case of the MC function FMC : (x1, . . . , xn) �→ (y1, . . . , ym)
where yl =

∑
i,j,k al,i,j,kxixjxk +

∑
i,j bl,i,jxixj +

∑
i cl,ixi. Unfortunately, the

mapping (x, x̃) �→ FMC(x + x̃) − FMC(x) − FMC(x̃) is not bilinear, since it maps
(x1, . . . , xn, x̃1, . . . , x̃n) �→ (z1, . . . , zm) where zl =

∑
i,j,k al,i,j,k(xixj x̃k+xix̃jxk+

xix̃j x̃k + x̃ixjxk + x̃ixj x̃k + x̃ix̃jxk) +
∑

i,j bl,i,j(xix̃j + x̃ixj). Thus the dividing
technique using the mapping does not work in the cubic case. We also note that
there is a trivial construction derived from the MQ-based scheme, because it is
always possible to express degree three terms xixjxk as degree two terms wi,jxk
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by introducing auxiliary variables wi,j and equations wi,j − xixj = 0. However,
this reduction makes the numbers of variables and equations much larger, and
the construction becomes inefficient.

Therefore, in the cubic case, we introduce another function which is associ-
ated with FMC. Concretely, we define a function GMC : (x1, . . . , xn, x̃1, . . . , x̃n) �→
(z1, . . . , zm) where zl =

∑
i,j,k al,i,j,k(xix̃j x̃k+ x̃ixj x̃k+ x̃ix̃jxk)+

∑
i,j bl,i,jxix̃j .

The function GMC(x, x̃) is linear in one argument x. In this paper we call GMC

the associated linear-in-one-argument (LOA) form of FMC. By using the function
GMC, it is able to divide FMC(x + x̃) − FMC(x) − FMC(x̃) into two parts GMC(x, x̃)
and GMC(x̃,x) which are linear in x and in x̃, respectively. In fact, it is seen that
GMC(x, x̃) +GMC(x̃,x) = FMC(x + x̃)− FMC(x)− FMC(x̃).

With this associated LOA form GMC, our new dividing techniques for FMC

are briefly described as follows. Let s be a secret key and v = FMC(s) the
corresponding public key. When the secret key is divided as s = r0 + r1, the
public key v = FMC(r0 + r1) can be represented as v = FMC(r0) + FMC(r1) +
GMC(r0, r1)+GMC(r1, r0). This representation still contains the termsGMC(r0, r1)
and GMC(r1, r0) which depend on both r0 and r1. Then, the two vectors r0 and
FMC(r0)+GMC(r1, r0) are also divided as r0 = t0+u and FMC(r0)+GMC(r1, r0) =
e0 + e1 similarly to the quadratic case. However, the latter equation also con-
tains the term GMC(r1, r0) depending on both r0 and r1 in contrast to the
case of FMQ(r0) = e0 + e1. Thus r1 is further divided as r1 = t1 + u. Ac-
cordingly, the terms depending on both r0 and r1 are divided as GMC(r0, r1) =
GMC(t0, r1) +GMC(u, r1) and GMC(r1, r0) = GMC(t1, r0) +GMC(u, r0), due to the
linearity in one argument. As a result, it yields the following equations:

r0 − u = t0, r1 − u = t1,

GMC(u, r1) + e1 = v − FMC(r1)−GMC(t0, r1)− e0, and

GMC(u, r0)− e0 = e1 − FMC(r0)−GMC(t1, r0).

Each side of each of the four equations can be checked by using some one of four
tuples (r0,u, e0), (r0, t1, e1), (r1,u, e1), and (r1, t0, e0), while no information on
the secret key s can be obtained from one out of the four tuples. We note that
using the common u in dividing r0 = t0 + u and r1 = t1 + u does not damage
the zero-knowledge property, since each of the four tuples contains only one out
of t0, t1, and u.

Related work. Identification schemes based on Permuted Kernels (PK) [27], bi-
nary Syndrome Decoding (SD) [28, 30], Constrained Linear Equations (CLE) [29],
Permuted Perceptrons (PP) [24, 25], and q-ary SD [9] have some features similar
to the MQ-based schemes [26] and ours as follows. First, these schemes depend
on the hardness of a random instance of each of the problems whose associ-
ated decision version is known to be NP-complete. Second, their protocols have
perfect correctness. Finally, assuming the existence of a non-interactive com-
mitment scheme, the sequential version and the parallel version of the schemes
are secure against impersonation under active attack and passive attack, respec-
tively. However, it is not explicitly known that the parallel versions of these
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schemes achieve the security under active attack. The efficiency of our scheme
is highly comparable to that of these schemes. Indeed, the data sizes of a public
key of the schemes of [9, 24, 25, 27–30] are between 245 bits and 2,450 bits, and
those of communication are between 27,234 bits and 120,652 bits.

Paper Organization. The remainder of this paper is organized as follows. In
Section 2 we define some notions related to the MC function and evaluate the
intractability of the function. In Section 3 and Section 4, our 3-pass construction
and 5-pass one are presented, respectively. In Section 5 we discuss their security
and efficiency for a practical parameter choice. In Section 6 we study the security
of the parallel composition of our scheme at the expense of the efficiency. Finally,
we close with some extensions, open problems, and conclusion.

2 Multivariate Cubic Functions

In this section we define a family of MC functions MC(n,m,Fq) and study its
parameters achieving 80-bit security.

Definition 1. We denote by MC(n,m,Fq) a family of functions {F = (f1, . . . ,
fm)} such that, for l = 1, . . . ,m, fl(x1, . . . , xn) =

∑
i,j,k al,i,j,kxixjxk

+
∑

i,j bl,i,jxixj+
∑

i cl,ixi where al,i,j,k, bl,i,j , cl,i ∈ Fq. We call F ∈MC(n,m,Fq)
an MC function.

For the simplicity, constant terms are omitted without any security loss. The
MQ function is a special case of the MC function, where the coefficients al,i,j,k
are all zero. For the MC function F, we define a binary relation RF = {(v,x) ∈
Fm
q × Fn

q : v = F(x)}. and a set RF(v) = {x : (v,x) ∈ RF}. Given an instance
F ∈MC(n,m,Fq) and a vector v ∈ Fm

q , the MC problem is finding a solution s ∈
RF(v). The associated linear-in-one-argument (LOA) form of the MC function
is defined as follows.

Definition 2. Let F = (f1, . . . , fm) ∈ MC(n,m,Fq) and fl(x1, . . . , xn)
=

∑
i,j,k al,i,j,kxixjxk +

∑
i,j bl,i,jxixj +

∑
i cl,ixi. Then a function G =

(g1, . . . , gm) is called the associated linear-in-one-argument (LOA) form of F
if, for l = 1, . . . ,m, gl(x1, . . . , xn, y1, . . . , yn) =

∑
i,j,k al,i,j,k(xiyjyk + yixjyk +

yiyjxk) +
∑

i,j bl,i,jxiyj.

When x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors of n variables, the
associated LOA form G(x,y) is linear with respect to the first argument x.
Moreover, it satisfies that F(x + y) = F(x) +G(x,y) +G(y,x) + F(y).

Then, we study the intractability of the MC function. An intractability as-
sumption for a random instance of MC(n,m,Fq) is defined as follows.

Definition 3. For polynomially bounded functions n = n(λ), m = m(λ), and
q = q(λ), it is said that MC(n,m,Fq) is intractable if there is no polynomial-
time algorithm that takes (F,v) generated via F ∈R MC(n,m,Fq), s ∈R Fn

q , and
v ← F(s) and finds a preimage s′ ∈ Fn

q such that F(s′) = v with non-negligible
probability ε(λ).
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Fig. 1. The complexity of the hybrid approach where n = m, q = 24, and w = 2

All the state-of-the-art solving techniques have exponential complexity to break
the intractability [7, 8, 11]. In particular, it is known that complexity of generic
attacks using Gröbner basis is exponential in time and space [3, 11]. In this pa-
per we use two sets of parametersMC(84, 80,F2) andMC(33, 22,F24) for 80-bit
security. It is easy to see that the former achieves 80-bit security, because even a
quadratic system with 84 variables and 80 equations over F2 satisfies 80-bit secu-
rity [26]. In fact, the complexity of the improved exhaustive search algorithm [8]
and the F5 algorithm [11] to break MC(84, 80,F2) is more than 280. On the
other hand, the latter requires more detailed analysis. The hybrid approach
which is proposed by Bettale et al. [7] is the best known algorithm for solving
multivariate cubic systems over F24 . We follow their evaluation method of [7] to
select the minimal parameters for 80-bit security and obtain the parameter set
MC(33, 22,F24) as follows.

Let D(n,m, d) be the degree of regularity of a semi-regular system with m
equations of degree d in n variables. The complexity of solving a semi-regular
system with n variables and m equations of degree d over Fq is estimated as

min0≤k≤n(q
k · (m ·

(n−k−1+D(n−k,m,d)
D(n−k,m,d)

)
)w) where 2 ≤ w ≤ 3. They stated that

D(n,m, d) corresponds to the index i of the first non-positive coefficient ci of the

series
∑

i>0 ci ·zi =
(1−zd)m

(1−z)n . Let Td(m) be the complexity of the hybrid approach

where n = m, q = 24, and w = 2. Figure 1 shows the comparison of T2(m)
and T3(m). The complexity T3(m) increases faster than T2(m). In particular,
min{m|T3(m) > 280} = 22 and T3(22) ≈ 281. Finally, the number of variables
n is conservatively chosen as n = 3

2m. Thus we can see that MC(33, 22,F24)
achieves 80-bit security.

3 A 3-Pass Protocol

This section describes our 3-pass protocol which is statistical zero-knowledge
argument of knowledge for RF with knowledge error 3/4, assuming the existence
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Prover’s input: ((F,v), s) Verifier’s input: (F,v)

Pick r0,u ∈R Fn
q , e0 ∈R Fm

q

r1 ← s− r0, t0 ← r0 − u, t1 ← r1 − u
e1 ← F(r0) +G(r1, r0)− e0

c0 ← Com(r1,G(u, r1) + e1)
c1 ← Com(r0,G(u, r0)− e0)
c2 ← Com(t0, e0)
c3 ← Com(t1, e1)
c4 ← Com(u)

(c0, c1,
c2, c3, c4)�

Pick Ch ∈R {0, 1, 2, 3}Ch�
If Ch = 0, Rsp ← (r0,u, e0)
If Ch = 1, Rsp ← (r0, t1, e1)
If Ch = 2, Rsp ← (r1,u, e1)
If Ch = 3, Rsp ← (r1, t0, e0)

Rsp �
If Ch = 0, parse Rsp = (r0,u, e0) and check

c1
?
= Com(r0,G(u, r0)− e0)

c2
?
= Com(r0 − u, e0), c4

?
= Com(u)

If Ch = 1, parse Rsp = (r0, t1, e1) and check
c1

?
= Com(r0, e1 − F(r0)−G(t1, r0))

c3
?
= Com(t1, e1)

If Ch = 2, parse Rsp = (r1,u, e1) and check
c0

?
= Com(r1,G(u, r1) + e1)

c3
?
= Com(r1 − u, e1), c4

?
= Com(u)

If Ch = 3, parse Rsp = (r1, t0, e0) and check
c0

?
= Com(r1,v −F(r1)−G(t0, r1)− e0)

c2
?
= Com(t0, e0)

Fig. 2. Our 3-pass protocol

of a non-interactive commitment scheme Com which is statistically hiding and
computationally binding.

We begin with describing a setup algorithm and a key-generation algorithm.
Let λ be a security parameter. Let n = n(λ), m = m(λ), and q = q(λ) be poly-
nomially bounded functions. The setup algorithm Setup takes 1λ and outputs
a system parameter F ∈R MC(n,m,Fq) which consists of m-tuple of random
multivariate cubic polynomials. The key-generation algorithm Gen takes F. Af-
ter choosing a random vector s ∈R Fn

q , Gen computes v ← F(s), then outputs
(pk , sk) = (v, s).

The basic idea for our 3-pass construction is that a prover proves that she has
a tuple (r0, r1,u, t0, t1, e0, e1) satisfying

G(u, r1) + e1 = v − F(r1)−G(t0, r1)− e0, (1)

t0 = r0 − u, (2)

t1 = r1 − u, (3)

and G(u, r0)− e0 = e1 − F(r0)−G(t1, r0), (4)

since if the tuple satisfies (1), (2), (3), and (4) then v = F(r0 + r1). Note
that G is the associated LOA form of F. Then, corresponding to a challenge
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Ch ∈ {0, 1, 2, 3} of a verifier, the prover reveals one out of four tuples (r0,u, e0),
(r0, t1, e1), (r1,u, e1), and (r1, t0, e0). The verifier can check each side of each
of the equations (1), (2), (3), and (4) by using some one of the four tuples.
Such vectors r0, r1,u, t0, t1, e0, e1 are produced by using the dividing techniques
described in Section 1. Thus, when r0, u, and e0 are randomly chosen, the verifier
can obtain no information on the secret key s from only one out of the four tuples.

The 3-pass protocol is described in Figure 2. For the simplicity, a random
string ρ in Com is not written explicitly. The verifier finally outputs 1 if all

of the checks “
?
=” are passed, otherwise outputs 0. This is denoted by 0/1 ←

Dec(F,v; (c0, c1, c2, c3, c4),Ch,Rsp). It is easy to see that the verifier always
accepts an interaction with the honest prover. Thus the 3-pass protocol has
perfect correctness.

Now we show two properties of the protocol in Theorem 4 and Theorem 5 as
follows.

Theorem 4. The 3-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s,
and interacts with a cheating verifier CV . We show that the simulator S can
impersonate the honest prover with probability 3/4.

The simulator S randomly chooses a value Ch∗ ∈R {0, 1, 2, 3} and vectors
s′, r′0,u

′ ∈R Fn
q , e

′
0 ∈R Fm

q , where Ch∗ is a prediction of what value the cheating
verifier CV will not choose. Then, it computes r′1 ← s′ − r′0, t′0 ← r′0 − u′, and
t′1 ← r′1 −u′. If Ch∗ ∈ {0, 1} then it computes e′1 ← v−F(r′1)−G(r′0, r

′
1)− e′0,

else e′1 ← F(r′0)+G(r′1, r
′
0)−e′0. If Ch∗ = 2 then it computes c′0 ← Com(r′1,v−

F(r′1) −G(t′0, r
′
1) − e′0), else c′0 ← Com(r′1,G(u′, r′1) + e

′
1). If Ch

∗ = 0 then it
computes c′1 ← Com(r′0, e

′
1 −F(r′0)−G(t′1, r

′
0)), else c

′
1 ← Com(r′0,G(u′, r′0)−

e′0). It computes c′2 ← Com(t′0, e
′
0), c

′
3 ← Com(t′1, e

′
1), and c′4 ← Com(u′) and

sends (c′0, c
′
1, c

′
2, c

′
3, c

′
4) to CV .

Due to the statistically hiding property of Com , a challenge Ch from CV is dif-
ferent from Ch∗ with probability 3/4. If Ch �= Ch∗ then (r′0,u

′, e′0), (r
′
0, t

′
1, e

′
1),

(r′1,u
′, e′1), and (r′1, t

′
0, e

′
0) are accepted responses to Ch = 0, 1, 2, and 3, re-

spectively. Note that if Ch∗ ∈ {0, 1} and Ch = 3 then it is seen that v −
F(r′1) − G(t′0, r

′
1) − e′0 = e′1 + G(r′0 − t′0, r′1) = e′1 + G(u′, r′1), since e′1 =

v−F(r′1)−G(r′0, r
′
1)−e′0 and t′0 = r′0−u′. Note that if Ch∗ ∈ {2, 3} and Ch = 1

then it is seen that e′1−F(r′0)−G(t′1, r
′
0) = G(r′1− t′1, r′0)−e′0 =G(u′, r′0)−e′0,

since e′1 = F(r′0) +G(r′1, r
′
0)− e′0 and t′1 = r′1 − u′. ��

Theorem 5. The 3-pass protocol is argument of knowledge for RF with knowl-
edge error 3/4 when the commitment scheme Com is computationally binding.

Proof sketch. For i ∈ {0, 1, 2, 3}, let ((c0, c1, c2, c3, c4),Chi,Rspi) be a transcript
such that Dec(F,v; (c0, c1, c2, c3, c4),Ch i,Rspi) = 1 and Chi = i. Then, by
using the four transcripts, it is shown to be able to either break the bind-
ing property of Com or extract a solution for v. Consider the situation where

the responses are parsed as Rsp0 = (r̃
(0)
0 , ũ(0), ẽ

(0)
0 ), Rsp1 = (r̃

(1)
0 , t̃

(1)
1 , ẽ

(1)
1 ),
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Rsp2 = (r̃
(2)
1 , ũ(2), ẽ

(2)
1 ), and Rsp3 = (r̃

(3)
1 , t̃

(3)
0 , ẽ

(3)
0 ). Then, it is seen that

c0 = Com(r̃
(2)
1 ,G(ũ(2), r̃

(2)
1 ) + ẽ

(2)
1 )

= Com(r̃
(3)
1 ,v − F(r̃(3)1 )−G(t̃

(3)
0 , r̃

(3)
1 )− ẽ(3)0 ), (5)

c1 = Com(r̃
(0)
0 ,G(ũ(0), r̃

(0)
0 )− ẽ(0)0 )

= Com(r̃
(1)
0 , ẽ

(1)
1 − F(r̃(1)0 )−G(t̃

(1)
1 , r̃

(1)
0 )), (6)

c2 = Com(r̃
(0)
0 − ũ(0), ẽ(0)0 ) = Com(t̃

(3)
0 , ẽ

(3)
0 ), (7)

c3 = Com(t̃
(1)
1 , ẽ

(1)
1 ) = Com(r̃

(2)
1 − ũ(2), ẽ(2)1 ), and (8)

c4 = Com(ũ(0)) = Com(ũ(2)). (9)

If the two pairs of the arguments of Com are distinct on any one of the above
equations, the binding property of Com is broken. Otherwise, the equation (5)

yields v = G(ũ(2) + t̃
(3)
0 , r̃

(2)
1 ) + F(r̃

(2)
1 ) + ẽ

(2)
1 + ẽ

(3)
0 . By combining it with the

equations (6), (7), and (8), it is seen that v = F(r̃
(0)
0 )+G(r̃

(0)
0 +ũ(2)−ũ(0), r̃(2)1 )+

G(r̃
(2)
1 + ũ(0)− ũ(2), r̃(0)0 )+F(r̃

(2)
1 ). Finally, putting it together with the equation

(9), we obtain v = F(r̃
(0)
0 )+G(r̃

(0)
0 , r̃

(2)
1 )+G(r̃

(2)
1 , r̃

(0)
0 )+F(r̃

(2)
1 ) = F(r̃

(0)
0 + r̃

(2)
1 ).

It means that a solution r̃
(0)
0 + r̃

(2)
1 for v is extracted. ��

Extension. A standard trick for saving the communication data size can be
applied to our 3-pass protocol. The trick employs a collision resistant hash func-
tion H . Let ca = H(c0, c2) and cb = H(c1, c3) be hash values. In the first pass,
a prover sends one hash value c = H(ca, cb, c4) instead of five commitments
(c0, c1, c2, c3, c4). In the third pass, the pairs of the hash values (c0, c3), (ca, c4),
(c1, c2), and (cb, c4) are appended to prover’s responses Rsp for Ch = 0, 1, 2,
and 3, respectively. Finally, a verifier checks c = H(ca, cb, c4). We note that the
hash values ca, cb, and c4 can be obtained from the prover’s response Rsp in
every case of Ch = 0, 1, 2, and 3. As a result, the number of hash values sent is
reduced from 5 to 3. The modified version of our 3-pass protocol is also shown
to be zero-knowledge argument of knowledge with knowledge error 3/4.

4 A 5-Pass Protocol

This section describes our 5-pass protocol which is statistical zero-knowledge
argument of knowledge for RF with knowledge error 1/2 + 1/2q, assuming the
existence of a non-interactive commitment scheme Com which is statistically
hiding and computationally binding. The knowledge error of the 5-pass protocol
is smaller than that of the 3-pass protocol when q ≥ 3. The setup algorithm and
the key-generation algorithm for the 5-pass protocol are identical to those for
the 3-pass protocol.

In the 5-pass protocol, a prover also divides the secret key s and the public key
F(s) as s = r0+r1 and F(s) = F(r0+r1) = F(r0)+F(r1)+G(r0, r1)+G(r1, r0),
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Prover’s input: ((F,v), s) Verifier’s input: (F,v)

Pick r0,u0,u1 ∈R Fn
q , e0 ∈R Fm

q

r1 ← s− r0
c0 ← Com(r0,u0,G(u1, r0)− e0)

c1 ← Com(r1,u1,G(u0, r1) + e0) (c0, c1)�
Pick α ∈R Fqα�

t0 ← αr0 − u0, t1 ← αr1 − u1

e1 ← αF(r0) + αG(r1, r0)− e0
(t0, t1, e1)�

Pick Ch ∈R {0, 1}Ch�
If Ch = 0, Rsp ← r0
If Ch = 1, Rsp ← r1 Rsp�

If Ch = 0, parse Rsp = r0 and check
c0

?
= Com(r0, αr0 − t0,

e1 − αF(r0)−G(t1, r0))
If Ch = 1, parse Rsp = r1 and check

c1
?
= Com(r1, αr1 − t1,

α(v − F(r1))−G(t0, r1)− e1)

Fig. 3. Our 5-pass protocol

respectively. The difference from the 3-pass protocol is that r0, r1, and F(r0) +
G(r1, r0) are divided as αr0 = t0+u0, αr1 = t1+u1, and αF(r0)+αG(r1, r0) =
e0 + e1 where α ∈ Fq is a choice of a verifier. In particular, we note that r0
and r1 are divided by using two independent vectors u0 and u1. The reason is
that the prover of the 5-pass protocol sends both t0 and t1, while that of the
3-pass protocol sends either t0 or t1. After sending (t0, t1, e1) to the verifier,
corresponding to a challenge Ch ∈ {0, 1} of the verifier, the prover reveals one
out of two vectors r0 and r1. When r0, u0, u1, and e0 are randomly chosen, the
verifier can obtain no information on the secret key s from only one out of the
two vectors r0 and r1. On the other hand, the argument-of-knowledge property
comes from that, for more than one choice of α ∈ Fq, an impersonator cannot
response both of verifier’s challenges Ch = 0 and Ch = 1 unless the impersonator
has a solution s for v.

The 5-pass protocol is described in Figure 3 where G is the associated LOA

form of F. The verifier finally outputs 1 if the check of “
?
=” is passed, otherwise

outputs 0. This is denoted by 0/1← Dec(F,v; (c0, c1), α, (t1, e1),Ch,Rsp). It is
easy to see that the verifier always accepts an interaction with the honest prover.
Thus the 5-pass protocol has perfect correctness.

Now we show two properties of the protocol in Theorem 6 and Theorem 7 as
follows.

Theorem 6. The 5-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s,
and interacts with a cheating verifier CV . We show that the simulator S can
impersonate the honest prover with probability 1/2. The simulator S randomly
chooses a value Ch∗ ∈R {0, 1} and vectors s′, r′0,u

′
0,u

′
1 ∈R Fn

q , e
′
0 ∈R Fm

q ,
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where Ch∗ is a prediction of what value the cheating verifier CV will choose.
Then, it computes r′1 ← s′ − r′0, c′0 ← Com(r′0,u

′
0,G(u′1, r

′
0) − e′0), and c′1 ←

Com(r′1,u
′
1,G(u′0, r

′
1)+e

′
0). It sends (c

′
0, c

′
1) to CV . Receiving a challenge α from

CV, it computes t′0 ← αr′0−u′0 and t′1 ← αr′1−u′1. If Ch∗ = 0 then it computes
e′1 ← αF(r′0)+αG(r′1, r

′
0)−e′0, else e′1 ← α(v−F(r′1)−G(r′0, r

′
1))−e′0. It sends

(t′0, t
′
1, e

′
1) to CV . Due to the statistically hiding property of Com , a challenge

Ch from CV is equal to Ch∗ with probability 1/2. If Ch = Ch∗ then r′0 and
r′1 are accepted responses to Ch = 0 and 1, respectively. Note that the case of
α = 0 does not spoil the zero-knowledge property. ��

Theorem 7. The 5-pass protocol is argument of knowledge for RF with knowl-
edge error 1/2 + 1/2q when the commitment scheme Com is computationally
binding.

Proof sketch. Let α0, α1 ∈ Fq such that α0 �= α1. For (i, j) ∈ {(0, 0), (0, 1), (1, 0),
(1, 1)}, let ((c0, c1), αi, (t̃

(i)
0 , t̃

(i)
1 , ẽ

(i)
1 ),Chj ,Rsp

(i,j)) be a transcript such that

Dec(F,v; (c0, c1), αi, (t̃
(i)
0 , t̃

(i)
1 , ẽ

(i)
1 ),Chj ,Rsp

(i,j)) = 1 and Chj = j. By using
the four transcripts, it is shown to be able to either break the binding property
of Com or extract a solution for v. Consider that the responses are parsed as

Rsp(0,0) = r̃
(0)
0 , Rsp(0,1) = r̃

(0)
1 , Rsp(1,0) = r̃

(1)
0 , and Rsp(1,1) = r̃

(1)
1 . Then, it is

seen that

c0 = Com(r̃
(0)
0 , α0r̃

(0)
0 − t̃(0)0 , ẽ

(0)
1 − α0F(r̃

(0)
0 )−G(t̃

(0)
1 , r̃

(0)
0 ))

= Com(r̃
(1)
0 , α1r̃

(1)
0 − t̃(1)0 , ẽ

(1)
1 − α1F(r̃

(1)
0 )−G(t̃

(1)
1 , r̃

(1)
0 )) and (10)

c1 = Com(r̃
(0)
1 , α0r̃

(0)
1 − t̃(0)1 , α0(v − F(r̃(0)1 ))−G(t̃

(0)
0 , r̃

(0)
1 )− ẽ(0)1 )

= Com(r̃
(1)
1 , α1r̃

(1)
1 − t̃(1)1 , α1(v − F(r̃(1)1 ))−G(t̃

(1)
0 , r̃

(1)
1 )− ẽ(1)1 ). (11)

If the two tuples of the arguments of Com are distinct on either of the above
equations, the binding property of Com is broken. Otherwise, it is seen that

(α0 − α1)(v − F(r̃(0)1 )) = G(t̃
(0)
0 − t̃(1)0 , r̃

(0)
1 ) + ẽ

(0)
1 − ẽ(1)1 and t̃

(0)
1 − t̃(1)1 =

(α0 − α1)r̃
(0)
1 from the equation (11). Combining them with the equation (10)

yields (α0−α1)(v−F(r̃(0)1 )) =G(t̃
(0)
0 − t̃(1)0 , r̃

(0)
1 ) + (α0−α1)F(r̃

(0)
0 ) +G(t̃

(0)
1 −

t̃
(1)
1 , r̃

(0)
0 ) = (α0 − α1)(G(r̃

(1)
0 , r̃

(0)
1 ) + F(r̃

(0)
0 ) + G(r̃

(0)
1 , r̃

(0)
0 )). Thus, we obtain

v = F(r̃
(0)
1 )+G(r̃

(1)
0 , r̃

(0)
1 )+G(r̃

(0)
1 , r̃

(0)
0 )+F(r̃

(0)
0 ) = F(r̃

(0)
1 +r̃

(0)
0 ), since α0 �= α1.

It means that a solution r̃
(0)
1 + r̃

(0)
0 for v is extracted. ��

5 Security and Efficiency

This section we summarize the security of our identification schemes which is
easily obtained from results in Section 3 and 4, and evaluate the efficiency of our
schemes for a practical parameter choice.
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5.1 Security

Here we briefly mention the security of each of the sequential and the parallel
compositions in the same way as [26]. Let (P, V) be our 3-pass protocol or 5-pass
protocol and ε its knowledge error. Let N = ω(logλ). Then identification pro-
tocols which consist of repeating (P, V) N -times in sequential and in parallel are

denoted by (P
(s)
N , V

(s)
N ) and (P

(p)
N , V

(p)
N ), respectively. When MC(n,m,Fq) is in-

tractable and the commitment scheme Com is statistically hiding and computa-

tionally binding, the security of our identification schemes (Setup, Gen, P
(s)
N , V

(s)
N )

and (Setup, Gen, P
(p)
N , V

(p)
N ) is evaluated as follows.

The former (P
(s)
N , V

(s)
N ) is statistically zero-knowledge argument of knowledge

with knowledge error εN due to the sequential composition lemma [15] and
Stern’s proof techniques of [29, 30]. Thus the identification scheme (Setup, Gen,

P
(s)
N , V

(s)
N ) is secure against impersonation under active attack. On the other

hand, the parallel repetition of (P, V) reserves zero-knowledge with respect to
an honest verifier. By combining it with Pass and Venkitasubramaniam’s re-

sult [20], the latter (P
(p)
N , V

(p)
N ) is also honest-verifier zero-knowledge argument of

knowledge with a negligible knowledge error. Therefore, the identification scheme

(Setup, Gen, P
(p)
N , V

(p)
N ) is secure against impersonation under passive attack. In

addition, for a certain parameter choice, the parallel version of our scheme is
also secure under active attack as shown in Section 6.

5.2 Efficiency

The efficiency of the schemes consisting of our 5-pass protocol is highly compa-
rable to that of the schemes based on binary SD, q-ary SD, CLE, PP, PK, and
MQ, even though our 3-pass protocol is not so efficient. Here we evaluate the
data sizes of system parameters, a public key, a secret key, and a transcript of our
schemes. The numbers of arithmetic operations, computing permutations, and
computing hash functions are also estimated as computational cost. These are
evaluated according to [9, 26]. In this paperMC(84, 80,F2) andMC(33, 22,F24)
are used for our 3-pass protocol and for our 5-pass one, respectively.

First, we consider the schemes consisting of each of the 3-pass protocols. Ta-
ble 1 compares our scheme with the schemes based on binary SD, CLE, PP, and
MQ when each protocol is sequentially repeated until impersonation probability
is less than 2−30. In this comparison we consider the case where each scheme uses
techniques for saving the communication data size such as the trick mentioned
at the end of Section 3.

Second, consider the 5-pass protocols. Table 2 compares our scheme with the
schemes based on binary SD, q-ary SD, CLE, PK, PP, and MQ when each pro-
tocol is sequentially repeated until impersonation probability is less than 2−30.
The data sizes of a public key and a secret key of our scheme are smaller than
those of the other schemes. The communication data size is almost the smallest
in Table 2. Although the size of system parameter of our scheme is relatively
large, it can be reduced to some small seed, e.g. 128 bits, if a pseudo-random
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Table 1. Comparison of 3-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 2−30

SD [30] CLE [29] PP [25] MQ [26] Our

round 52 52 73 52 73
system parameter (bit) 122,500 4,608 28,497 285,600 7,908,320

public key (bit) 350 288 245 80 80
secret key (bit) 700 192 177 84 84

communication (bit) 59,800 45,517 100,925 29,640 53,290
arithmetic ops. (times/field) 224 / F2 216 / F257 222 / F127 226 / F2 232 / F2

permutations*1 (times/size) 2/S700 4/S24 2/S161 ,S177 NO NO
hash function (times) 4 4 8 4 8

best known key-recovery attack 287 284 > 274 280 280

Table 2. Comparison of 5-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 2−30

SD [30] SD [9] PK [27] CLE [29] PP [24, 25] MQ [26] Our

round 31 31 31 31 52 33 33

system parameter (bit) 122,500 32,768 4,608 4,608 28,497 129,600*2 581,768
public key (bit) 2450 512 384 288 245 120 88
secret key (bit) 4900 1024 203 192 177 180 132

communication (bit) 120,652 61,783 27,234 27,528 105,060 26,565 26,697
arithmetic ops. (times/field) 223/F2 218/F256 215/F251 215/F257 221/F127 222/F24 227/F24

permutations*1 (times/size) 8/S700 2/S128 3/S48 4/S24 2/S161,S177 NO NO
hash function (times) 2 2 2 2 5 2 2

best known key-recovery attack 287 287 285 284 > 274 283 281

*1 This shows the number of times of computing permutations and the size of the
permutation, where Sn means a permutation over {1, . . . , n}.

*2 This is the correct size of the system parameters, although it is stated as 259,200
bits in the original paper [26].

number generator is used as the implementation of QUAD [2]. Although the cost
of arithmetic operations of our scheme is relatively high, it is still reasonable.

6 On the Security against Active Attack in Parallel
Repetition

In this section we focus on the case of n = m + k and k = ω(logλ). For ex-
ample, the MC function F ∈ MC(2m,m,Fq) satisfies the requirement where

m = ω(logλ). In this case, (Setup, Gen, P
(p)
N , V

(p)
N ) is shown to be secure against

impersonation under active attack, although the data sizes of the secret key and
the communication increase at most double compared to those of Section 5.2.
The security can be shown in almost the same way as that of the MQ-based
scheme. Although we consider the scheme consisting of our 3-pass protocol
in this section, the same argument can also be applied to that of our 5-pass
protocol.

We begin with defining the preimage resistance and the second-preimage re-
sistance of the MC function. Note that the difference between the preimage
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resistance and the intractability of Definition 3 is only in the distribution of the
challenge v, and both of them are widely believed.

Definition 8. For polynomially bounded functions n = n(λ), m = m(λ), and
q = q(λ), it is said that MC(n,m,Fq) is preimage resistant if there is no
polynomial-time algorithm that takes (F,v) generated via F ∈R MC(n,m,Fq)
and v ∈R Fm

q and finds a preimage s ∈ Fn
q such that F(s) = v with non-

negligible probability ε(λ). On the other hand, it is said that MC(n,m,Fq) is
second-preimage resistant if there is no polynomial-time algorithm that takes
(F,x) generated via F ∈R MC(n,m,Fq) and x ∈R Fn

q and finds a second preim-
age x′ ∈ Fn

q such that F(x′) = F(x) and x′ �= x with non-negligible probability
ε(λ).

Then we present the following lemma.

Lemma 9. If there exists an algorithm that breaks the second-preimage resis-
tance of MC(n+ 1,m,Fq) with advantage ε, then there exists an algorithm that
breaks the preimage resistance of MC(n,m,Fq) with advantage ε/(q− 1)(n+1).
That is, if MC(n,m,Fq) is preimage resistant, thenMC(n+1,m,Fq) is second-
preimage resistant.

Proof sketch. Let A be an algorithm that breaks the second-preimage resis-
tance of MC(n + 1,m,Fq). Let F = (f1, . . . , fm) ∈R MC(n,m,Fq) and v =
(v1, . . . , vm) ∈R Fm

q , where fl(x1, . . . , xn) =
∑n

i=1

∑n
j=1

∑n
k=1 al,i,j,kxixjxk +∑n

i=1

∑n
j=1 bl,i,jxixj +

∑n
i=1 cl,ixi. We show that, given F and v, a preim-

age x satisfying v = F(x) can be found by using the algorithm A. For the
simplicity, suppose that the algorithm A takes F̃ = (f̃1, . . . , f̃m) ∈ MC(n +
1,m,Fq) and t = (t1, . . . , tn+1) ∈ Fn+1

q and outputs a second preimage t + Δ

such that F̃(t + Δ) = F̃(t) and Δ = (d1, . . . , dn, 1), where f̃l(x1, . . . , xn+1) =∑n+1
i=1

∑n+1
j=1

∑n+1
k=1 ãl,i,j,kxixjxk+

∑n+1
i=1

∑n+1
j=1 b̃l,i,jxixj +

∑n+1
i=1 c̃l,ixi. Note that

in the full proof it is necessary to guess an index ξ and a value dξ of a non-zero
element in Δ, but in this proof sketch we suppose ξ = n+ 1 and dξ = 1. In this

case, the equation F̃(t+Δ)− F̃(t) = 0 is expanded as follows:

n∑
i=1

n∑
j=1

n∑
k=1

ãl,i,j,kdidjdk

+

n∑
i=1

n∑
j=1

⎛⎜⎝
n+1∑
k=1

(ãl,k,j,i + ãl,i,k,j + ãl,j,i,k)tk

+b̃l,i,j + ãl,i,j,n+1 + ãl,n+1,i,j + ãl,i,n+1,j

⎞⎟⎠ didj

+

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝

n+1∑
j=1

n+1∑
k=1

(ãl,k,j,i + ãl,j,i,k + ãl,i,k,j)tjtk

+

n+1∑
k=1

(
ãl,k,i,n+1 + ãl,n+1,k,i + ãl,n+1,i,k

+ãl,k,n+1,i + ãl,i,k,n+1 + ãl,i,n+1,k + b̃l,k,i + b̃l,i,k

)
tk

+ãl,n+1,i,n+1 + ãl,i,n+1,n+1 + ãl,n+1,n+1,i + b̃l,n+1,i + b̃l,i,n+1 + c̃l,i

⎞⎟⎟⎟⎟⎟⎟⎠ di
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+

⎛⎜⎜⎜⎜⎜⎜⎝

n+1∑
j=1

n+1∑
k=1

(ãl,k,j,n+1 + ãl,j,n+1,k + ãl,n+1,k,j)tjtk

+

n+1∑
k=1

(ãl,k,n+1,n+1 + ãl,n+1,k,n+1 + ãl,n+1,n+1,k + b̃l,k,n+1 + b̃l,n+1,k)tk

+ãl,n+1,n+1,n+1 + b̃l,n+1,n+1 + c̃l,n+1

⎞⎟⎟⎟⎟⎟⎟⎠=0

for l = 1, . . . ,m. From the above equation, we can see that the output t+Δ of
A satisfies v = F(d1, . . . , dn) if the input (F̃, t) of A is produced as follows.

– The vector t is generated via t ∈R Fn+1
q .

– For 1 ≤ i, j, k ≤ n do ãl,i,j,k ← al,i,j,k, otherwise ãl,i,j,k ∈R Fq.

– For 1 ≤ i, j ≤ n do b̃l,i,j ← bl,i,j −
∑n+1

k=1(ãl,k,j,i + ãl,i,k,j + ãl,j,i,k)tk −
(ãl,i,j,n+1 + ãl,n+1,i,j + ãl,i,n+1,j), otherwise b̃l,i,j ∈R Fq.

– For 1 ≤ i ≤ n do c̃l,i ← cl,i −
∑n+1

j=1

∑n+1
k=1(ãl,k,j,i + ãl,j,i,k + ãl,i,k,j)tjtk −∑n+1

k=1(ãl,k,i,n+1 + ãl,n+1,k,i + ãl,n+1,i,k + ãl,k,n+1,i + ãl,i,k,n+1 + ãl,i,n+1,k +

b̃l,k,i+ b̃l,i,k)tk− (ãl,n+1,i,n+1+ ãl,i,n+1,n+1+ ãl,n+1,n+1,i+ b̃l,n+1,i+ b̃l,i,n+1).

– c̃l,n+1 ← −vl −
∑n+1

j=1

∑n+1
k=1(ãl,k,j,n+1 + ãl,j,n+1,k + ãl,n+1,k,j)tjtk

−
∑n+1

k=1(ãl,k,n+1,n+1 + ãl,n+1,k,n+1 + ãl,n+1,n+1,k + b̃l,k,n+1 + b̃l,n+1,k)tk −
(ãl,n+1,n+1,n+1 + b̃l,n+1,n+1).

The details of the proof of Lemma 9 are described in the full paper. ��

Moreover, the following lemma is shown.

Lemma 10. Let n = m + k, k = ω(logλ), and N = ω(logλ). Suppose that

MC(n,m,Fq) is second-preimage resistant. Then, (P
(p)
N , V

(p)
N ) achieves the secu-

rity against impersonation under active attack when Com is statistically hiding
and computationally binding.

Proof sketch. The proof of this lemma is described in the full paper, since it is
similar to that of Lemma 8 of [26]. ��

Finally, combining Lemma 9 and Lemma 10 yields the following theorem.

Theorem 11. Let n = m + k, k = ω(log λ), and N = ω(logλ). Suppose that

MC(n − 1,m,Fq) is preimage resistant. Then, (P
(p)
N , V

(p)
N ) achieves the security

against impersonation under active attack when Com is statistically hiding and
computationally binding.
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7 Concluding Remarks

In this section we mention some extensions and an open problem.

Extensions. The Fiat-Shamir method transforms an identification scheme into
a signature scheme which is secure against chosen-message attack in the random
oracle model, if the underlying identification scheme is secure against imperson-
ation under passive attack [1, 13]. According to it, a signature scheme based
on the conjectured intractability of the MC problem can be obtained from the
parallel composition of our 3-pass protocol. Using the signature scheme, we can
also extend our identification/signature scheme to an identity-based one in a
natural way [4].

An open problem. Efficient constructions based on multivariate polynomials of
degree d ≥ 4 remain as an open problem. However, it might be difficult to
construct them by using techniques similar to those of [26] or of ours. This is
because, for a multivariate polynomial f(x) of degree d ≥ 4, the polynomial
f(x+ y)− f(x)− f(y) contains terms which are not linear either in x or in y.

8 Conclusion

We proposed an efficient construction of zero-knowledge argument of knowledge
for the MC problem, and showed that the MC function is useful for public-
key identification as well as the MQ function. In particular the efficiency of
our scheme is highly comparable to the identification schemes based on another
problem including PK, SD, CLE, PP, and MQ.
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Abstract. In this work, we study a new multivariate quadratic (MQ)
assumption that can be used to construct public-key encryptions. In
particular, we research in the following two directions:

– We establish a precise asymptotic formulation of a family of hard MQ
problems, and provide empirical evidence to confirm the hardness.

– We construct public-key encryption schemes, and prove their security
under the hardness assumption of this family. Also, we provide a new
perspective to look at MQ systems that plays a key role to our design
and proof of security.

As a consequence, we construct the first public-key encryption scheme
that is provably secure under the MQ assumption. Moreover, our public-
key encryption scheme is efficient in the sense that it only needs a ci-
phertext length L + poly(k) to encrypt a message M ∈ {0, 1}L for any
un-prespecified polynomial L, where k is the security parameter. This is
essentially optimal since an additive overhead is the best we can hope
for.

1 Introduction

Exploring different types of assumptions has been an important direction in
the agenda of cryptography research. For robustness, this reduces the risk of a
new mathematical/algorithmic/hardware breakthrough that breaks a particular
assumption and renders all its following constructions insecure; for versatility,
different assumptions usually have advantages for different applications. How-
ever, over the past 30 years, only a few candidates of computational problems
are built as foundations on which more exciting cryptographic applications can
build; for example, some well-structured algebraic, coding, or geometric prob-
lems (and their variants): DDH[17], Pairing (some are instantiated by elliptic
curves)[10], RSA[46], McEliece[38], LWE [1, 43, 45], and some recent works for
combinatorial problems[2].

This work is in a step of this agenda. We study a new type of assumption
inspired from the field of solving multivariate quadratic (MQ) equations. In par-
ticular, we give the first asymptotic formulation of a family of MQ problems
that enjoy some good mathematical structures and hardness. Thus one can use
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this formulation as a base to construct more interesting crypto primitives, such
as public-key encryption schemes. Our assumption considers a family of prob-
lems that can be viewed as solving MQ equations described as the followings
(informally) :

Definition 1 (The Hard Task (Informal)). Let Fq be a finite field, and H
be some subset of Fq. Let S be a multivariate quadratic system with n variables
and m polynomials whose coefficients are sampled from some distribution χ.

Then a solver A, given (S,y = S(x)) where x is sampled uniformly from Hn,
is asked to output some x′ such that S(x′) = y.

Actually, solving systems of non-linear equations is not a new topic, for it has
been studied in commutative algebra and algebraic geometry, at least since Fran-
cis Sowerby Macaulay [36] (1902). Around the turn of the millennium, these tech-
niques [14] were also found that they can be used as a cryptanalytic step. Claims
(e.g. XSL [15]) concerning such techniques, today called “algebraic cryptanal-
ysis”, were often over-optimistic, but equation-solvers over different finite fields
such as XL [14], F4, F5 [23, 24] are now significant topics for crypto.

The fundamental reason that algebraic cryptanalysis is not all-powerful is that
solving systems of non-linear equations does not scale well with the parameters
even with Moore’s Law. Theoretically, solving multivariate non-linear systems, or
even just multivariate quadratic (MQ) equations has been proven to be NP-hard
[25, 41] in the worst case, and practically, all the proposed solvers fail to solve
the systems efficiently (i.e. in polynomial-time) for most non-trivial distributions
[4, 35].

The above approach hints at inherent hardness in solving MQ equations, and
consequently MQ could be a good choice as a base for designing crypto systems.
Although this direction in fact has been considered for the last 20 years, however,
it has had a rocky history. Many schemes were proposed, broken, sometimes
patched, and sometimes broken again (see [18, 20, 21, 37, 39, 42], and [5, 6,
12, 40]). One objection frequently voiced is that the security of these systems
is often ad-hoc, and thus hard to evaluate. Fundamentally, these approaches
mostly were designed with a practical goal in mind. As a result, they considered
concrete and fixed-parameter constructions, with a design security of, e.g., 280,
with specialization to signatures with 160-bit hashes and optimizing for speed.
Since MQ was examined not as a hardness basis but only as the most obvious
attack or even some sanity check, the designers’ mindsets were not focusing
on how to construct a reduction for their security proof, nor about extending
their schemes in an asymptotic way. Thus, it seems that using the hardness to
construct crypto construction remains an interesting open direction.

Berbain, Gilbert, and Patarin [4] explored this and constructed efficient pseu-
dorandom generators (PRGs) based on the hardness of solving MQ equations.
Berbain et al. considered fixed and concrete-parameter constructions, yet an
asymptotic formulation of hard problems is implicit in their work. Consequently,
many primitives such as pseudorandom functions (PRFs), symmetric encryp-
tions, etc., in the Minicrypt world (i.e., one way functions exist) [33] can be con-
structed based on this formulation of hard problems. For the more sophisticated
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Cryptomania world (i.e., public-key crypto systems exist) [33], the possibilities
have not yet been explored in the MQ literature. This line of research will be
our main focus in the rest of this paper.

Our Main Results. In this work, we study a new MQ assumption that can be
used to construct more sophisticated primitives such as public-key encryptions
in the Cryptomania world [33]. In particular, we research in the following two
directions:

– On the one hand, we establish a precise asymptotic formulation of a family
of hard problems, and provide empirical evidence to confirm the hardness.
Since there are many practical solvers studied and implemented during the
studies of algebraic attacks, we use these to examine the hardness of the
problems.

– On the other hand, we construct public-key encryption schemes, and prove
their security under the hardness assumption of the said family. Also, we
provide a new perspective to look at MQ systems that plays a key role to
our design and proof of security.

As a consequence, we construct the first public-key encryption scheme that is
provably secure under the MQ assumption. Moreover, our public-key encryption
scheme is efficient in the sense that it only needs a ciphertext length L+poly(k)
to encrypt a message M ∈ {0, 1}L for any un-prespecified polynomial L.1 This
is essentially optimal since an additive overhead is the best we can hope for.

The MQ assumption has some interesting properties for its potential. In the
following, we will discuss that the MQ problems share some structures with
the learning with error (LWE) problems[26, 44, 45]. Thus the MQ assumption
may also enjoys the versatility as LWE. On the other hand, there are many
experiences or fast implementations under a variety of hardwares [4, 9, 11] in
the MQ literature, and thus this can be a good basis for practical applications.

Note: we are unaware of any reductions between our MQ assumption or in-
deed any MQ-type assumptions and lattice-related ones such as LWE. Further-
more, lattice problems have been studied for a much shorter period of time than
equation-solving, and new methods such as BKZ 2.0 [13] are still proposed. So
it is difficult to compare PKC constructions based on lattice-related hard prob-
lems and MQ problems. The comparison is a very interesting research direction
but outside the scope of this paper. This paper will simply focus on the MQ as-
sumption and its consequent constructions. In section 3.1, we give a brief remark
on the difference between MQ and LWE assumptions. More detailed discussions
will appear in the full version of this paper.

A Closer Look at Our Assumption. In the following, we take a closer look at
our assumption and techniques, and still maintain a high-level perspective for
intuitions. First, we give some notation for convenience of exposition. Let Fq be
a field which we use in the following discussion, and let S describe a multivariate

1 k is the security parameter.
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quadratic system with n variables andm polynomials. For example, the following
system is one with 3 variables and 2 polynomials, and for a concrete explanation
we set q = 13.

S

⎡
⎣x1

x2

x3

⎤
⎦ def

=

{
x1x3 + x2

2 + 3x1 + 2
x1x2 + 2x1 + 2x2 + 7

(1)

In addition to viewing S as a set of polynomials, we can view the above system
S as a function mapping from F3

q to F2
q. For example, S([1, 2, 3]T ) = [12, 2]T ,

where T denotes transposes of vectors. In the rest of the paper, we use S[·] to
denote a system of polynomials, and S(·) to denote the corresponding function.
Now we are ready to describe the hard problem of our assumption with more
details (still informally). Note that here the system S includes quadratic terms,
linear terms and constant terms. Throughout the paper, we will use S to denote
a system with all quadratic, linear and constant terms.

Definition 2 (The Hard Task (Informal)). Let q be a large enough prime,
and H be some small subset of Fq. Let S be a multivariate quadratic system with
n variables and m = Θ(n) polynomials sampled from a distribution where the co-
efficients of linear and constant terms are uniformly random, and the quadratic
terms come from independent Gaussian distributions with means 0 and moder-
ately large standard deviations.

Then a solver A, given (S,y = S(x)) where x is sampled uniformly from Hn,
is asked to output some x′ such that S(x′) = y.

To make the seemingly intimidating parameters more reader-friendly, we give
an intuitive-level discussion as follows. First, we observe that depending on the
parameters, solving MQ equations can be easy or hard. As discussed in [4],
when m is significantly larger or smaller than n, solving the problem is easy.
The interesting hard instances fall on the cases when m is close to n, as stated
in the above definition that m = Θ(n). Moreover, the problem is believed to be
not only hard in the worst case, but hard on average over random instance of S,
and random input x. Under a series of empirical studies and theoretical studies
[3, 16, 47, 48] for the best known solvers, the best known algorithms still remain
exponential-time.

Previously, [35] observed (from experiments) that even if the instance S is
drawn from a biased distribution (whose quadratic coefficients are not uniform
but instead sparse), solving the problem is still hard. This result hints at an
intuition that MQ problems are hard for most (non-trivial) distributions from
which S is drawn. In this work, we further test this intuition by investigating the
case that the instance S is drawn from a distribution whose quadratic coefficients
come from Gaussian distributions with moderately large standard deviation, and
the input x is drawn from a smaller subset Hn. Our experiment results (in the
full version of this paper) confirm our intuition that the problem does not become
significantly easier. In the following paragraphs, we explain how and why this
type of assumption and hardness help our design.
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We remark that here we only give a structural description of the problem,
and leave the precise quantitative statement in Section 3. Before going to the
detailed calculation of numbers, we first focus on the structural properties of the
hard problem and maintain a high-level perspective.

Overview of Our Construction. Inspired by the recent constructions of public-
key crypto systems by learning with error (LWE) problems [45], we observe that
the problem in Definition 2 also shares the same structure with LWE. We can
take advantage of this similarity for our construction of public-key encryption
schemes. This is a new perspective of how we can view MQ equations.

First, let us take a look at the LWE problem, which can be stated as the
following: let A ∈ Fm×n

q be a matrix, and b be a vector b = A · s + e, where
s ∈ Fn

q is some secret, and e comes from some error distribution. The task of
the LWE problem is to find out s given a random A, and an induced b.

We highlight the similarity by way of the following observation: recall that
the task of the problem in Definition 2 is to invert y = S(x) given S,y. We can
rewrite y into S(x) = L · x + d + R(x), where L is the matrix of the terms of
linear coefficients, d is the coefficient vector of constant terms, and R(x) are the
mapping by the quadratic terms. Take Equation 1 for example, we can rewrite
the expression of S(x) as:

S(x) =

{
x1x3 + x2

2

x1x2
+

3x1

2x1 + 2x2
+

2
7
= R(x) +

(
3 0 0
2 2 0

)
·
⎛
⎝x1

x2

x3

⎞
⎠+

(
2
7

)

In this expression, S(x) is a combination of an affine transformation (L · x+ d)
plus some quadratic mappingR(x). We remark that without loss of generality, we
can assume d = 0, since solving a multivariate system with all 0s for the constant
coefficients is equivalent to solving that with random constant coefficients.2 Then
if we view the quadratic terms as noise (analogous to the vector e), the shared
structure becomes apparent. Thus, the ideas that com from using LWE may be
translated into candidates of constructions by MQ problems.

However, to bridge the two problems, we need to deal with some subtleties. In
the LWE problems, the noise (error vector e) comes from a Gaussian distribu-
tion that has “moderately” large standard deviation. Intuitively, if the standard
deviation is too small, then the problems become easier; on the other hand, if
it is too large, then the ciphertexts (constructed from LWE) become undecrypt-
able. Thus, in this series or works [26, 44, 45], certain ranges of parameters for
stds have been identified such that both the hardness of the problems and the
correctness of the decryption hold simultaneously.

When MQ problems are viewed in this way, we also need to argue that the
noise R(x) is also “moderate.” To achieve this, we use the structure of the
assumption that the coefficients of each quadratic term come from Gaussian

2 There is a simple reduction showing that solving (S,y = S(x)) for S contains random
constant coefficients is equivalent to solving (S′,y′ = S′(x)), where S′ has the same
distribution as S, except for the 0 constant coefficients.
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distributions with moderately large standard deviations, and the input x comes
from a small subset Hn ⊆ Fn

q . That property allows us to bound the size of the
noise R(x). On the other hand, we need to examine the hardness of the problem
for these parameters. To do so, we conduct experiments under what to our
knowledge the best quadratic equation solver. Our experiment results confirm
our intuitions that MQ problems do not become significantly easier under any
(non-trivial) particular distribution of the inputs S and x. This particularly gives
us evidence of the hardness of the problem in Definition 2, which we can use to
construct public-key encryptions.

Our First Construction of Encryption for Bits. In our first attempt, we construct
a public-key encryption scheme for bits. This construction is similar in spirit to
those LWE-based constructions [26, 44, 45]. Because of the similarity, here we
omit discussions of intuitions and refer the curious readers to [26, 44, 45]. Here
we give an informal outline of the construction:

– In key generation, the algorithm samples an MQ system S with n variables
and m = c · n polynomials, and x ∈ Hn. Then it sets the public key to be
(S,y = S(x)), and the secret key to be x.

– To encrypt a bit b, the encryption algorithm samples r ∈ Hm, and computes
(c1, c2) = (rT ·L, rT · (y − d) + b · [q/2]). Recall that L is an m× n matrix,
and m > n. Thus, given rT · L, r is still hidden information theoretically.

– To decrypt, the algorithm computes t = c2 − cT1 ·x. It outputs 1 if and only
if |t− q/2| ≤ q/4.

Security Proof. The key to the security proof of the bit-encryption scheme is
based on a proof that relates the hardness of the assumption to some pseu-
dorandom distribution. Namely, suppose the problem in Definition 2 is hard,
then (S, S(x)) is indistinguishable from (S,Um) where Um is uniform over Fm

q .
Moreover, we prove a more general theorem that suppose there exist a dis-
tribution over the quadratic terms of S, and a subset H ⊆ Fq such that the
problem is hard, then (S, S(x)) is indistinguishable from (S,Um). The crux of
our proof is a new application of the new version of Goldreich-Levin Theorem by
Dodis et. el [19].

We remark that this general theorem also, as a consequence, implies Theorem
2 plus 3 in [4], and Proposition 5 plus 6 in [35] as its special cases.3

Improving Efficiency Using KEM. Feasibility results for bit-encryptions are nice
but not quite satisfactory. One general technique to improve efficiency is to use
Key Encapsulation Mechanism (KEM). We know that to use KEM, it is sufficient
to have an efficient symmetric encryption scheme or a pseudorandom genera-
tor (PRG). (Note that a pseudorandom generator implies an efficient symmetric

3 We present our theorem and assumption in asymptotic forms, and both [4, 35] pre-
sented their theorems in concrete parameters.
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encryption scheme.) Although there are many implementations of PRGs and
thus symmetric encryptions as well[7, 8, 22, 30–32, 34], the constructions are
either not practically efficient, or require some additional assumption(s).

Here we further observe that the MQ assumption (Definition 2) already gives
us an efficient construction of a certain form of PRG4 that is sufficient to imple-
ment the KEM technique. As a consequence, in the resulting scheme, we are able
to achieve a public-key encryption scheme that only needs a ciphertext length
L + poly(k) to encrypt a message M ∈ {0, 1}L for any un-prespecified poly-
nomial L, where k is the security parameter. This is essentially asymptotically
optimal since we know the ciphertext length must be at least as large as the
message (otherwise there will be decryption errors), and an additive overhead in
the security parameter is the the best we can hope for.

2 Preliminary

2.1 Notation

All vectors are assumed to be column vectors. Unless stated otherwise, all scalar
and vector operations are performed modulo q. We use arrow notation to repre-
sent a vector, and subscripts to represent the corresponding element, i.e. r ∈ Fn

q

means r is a vector of n elements in Fq and ri means the i-th element of the
vector. We denote the transpose of a vector r as rT .

For simplicity we will assume that q is an odd prime. We represent elements
in Fq by integers within the range [−(q − 1)/2, (q − 1)/2]. We denote the inner
product of a and b as 〈a, b〉, or aT · b.

Let m,n, q be numbers. Though out the paper, we will use S = (R,L,d) to
denote a MQ system with n variables and m equations, where R ∈ Fm×n×n

q

denotes the quadratic coefficients, and L ∈ Fm×n
q denotes the linear coeffi-

cients and d ∈ Fm
q denotes the constant coefficients. In particular Ri,j,k de-

notes the coefficient of xjxk in the i-th equation, and Li,j denotes the coefficient
of xj in the i-th equation, and di denotes the constant coefficient in the i-th
equation.

Definition 3 (Multivariate Quadratic Problems). Let n,m, q ∈ N be pa-
rameters such that q is a prime, let χ be a distribution between Fm×n×n

q , and
let H ⊆ Fq. The goal for a solver A to the (average-case) multivariate quadratic
problem MQ(n,m, q, χ,H) is that A on a random instance (S, S(x)) tries to
output some x′ ∈ Fn

q such that S(x′) = S(x), where S = (R,L,d) with R ← χ,
L ← Fm×n

q , d ← Fm
q , and x ← Hn. If A does so, we say it successfully solves

the instance.

4 The PRG constructed by the MQ assumption is somewhat non-standard but is
sufficient for KEM. See Section 5 for further discussions.
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Definition 4 (Hardness of a MQ Family). 5 Let k be the security parameter,
n,m, q : N → N be efficiently computable and polynomially bounded such that q
is an odd prime. Let χ be a distribution over Fm×n×n

q and H ⊆ Fq. We say
that the family MQ(n,m, q, χ,H) is hard to solve if for every PPT solver A,
there exists some negligible function ngl(·) such that the following holds for all
sufficiently large k:

Pr
S ←MQ(n,m, q, χ,H)

x← Hn

[x′ ← A(S, S(x)) : S(x′) = S(x)] < ngl(k).

3 Public-Key Encryption Schemes for Bits

In this section, we show a construction of public-key encryption schemes (for bits)
under the hardness of some specialized MQ problem. We present our results in
the following order: (1) the hardness assumption, (2) the construction of the
scheme, and (3) the analysis.

3.1 The Assumption

Definition 5 (MQ Hardness Assumption). Let k be the security parameter.
For every constant c > 1 ∈ N, every efficiently computable and polynomially
bounded n,m, q : N → N, α : N → [−q/2, q/2] and every 0 < β ≤ [q/2] such
that (1) m = cn, (2) q is prime, (3) α = O(1), let Φα be the distribution
of m × n × n identical independent discrete Gaussian distribution Dα’s with
mean 0, standard deviation α, namely, each Dα samples z ← N(0, α2) (normal
distribution with mean 0, and standard deviation α), and then outputs �z� (mod
q), and let Hβ = {−β,−β + 1 . . . , β − 1, β}.

Then the problem MQ(n,m, q, Φα, Hβ) is hard to solve.

As discussed in the introduction, we need to choose the parameters α such that
|R(x)| is “moderate” for two aspects. First, α cannot be too large, otherwise
there will be decryption errors. On the other hand, if α is too small, then with
high probability, most coefficients are 0, so the system becomes sparse. There are
known attacks for sparse systems where there are only o(1) non-zero coefficients,
so in our assumption, the α cannot fall into this region. In our setting, α ≥ O(1)
implies that each quadratic terms has at least a constant probability not being
zero, and thus there will be O(n2) quadratic terms in expectation. In the full
version of this paper, we will discuss more details about the parameters and how
they influence the hardness of the problem.

5 To lend more credence to our contention that our family is hard, we attach logarith-
mic plots in the appendix in which we compare the behavior under MAGMA-2.17
of systems with m/n = 2 in cases (A) random systems in GF(3) and GF(5); (B)
systems in larger fields but with variables restricted to {−1, 0, 1} and the equations
x3
i = xi included for every i; (C) systems in larger fields but with variables restricted

to {−2,−1, 0, 1, 2} and the equations xi(x
2
i − 1)(x2

i − 4) = 0 included for every i.
The trend looks quite exponential. For more discussion see the full version of this
paper.
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Remark 1. As we discussed in the introduction, the MQ assumption has a similar
structure to the LWE assumption. Here we do a brief comparison of the two
assumptions for different range of parameters.
For q being superpolynomial, we can show that an MQ instance (S, S(x)) can
be transformed to (L, b) that is statistically close to an LWE instance. The
transformation just sets L as the linear part of S, and sets b = S(x) + e′, where
each coordinate of e′ comes from some i.i.d. Gaussian with a small std. For
q = superpoly(k), one can show that b is statistically close to L · x + e′′ where
each coordinate of e′′ comes from i.i.d. Gaussian with a slightly bigger std. Thus,
(L, b) is statistically close to an LWE instance, and consequently, there is a simple
reduction from MQ to LWE.

In this paper, we need q = poly(k) for our construction. For this range of
parameters, the above argument does not work. In fact, an MQ instance and an
LWE instance can be statistically far. Thus, a straitforward reduction from MQ
to LWE does not work. We are not aware of any other reduction from any one
to the other, and leave this issue as an interesting open question.

Under the above assumption, we are able to obtain the following lemma, which is
a key to the security proof of our construction of public-key encryption scheme. In
the following section, we are going to prove a more general result as Theorem 2,
which directly implies this lemma. Thus, we only put the statement of the lemma.

Lemma 1. Let k be the security parameter, and assuming MQ(n,m, q, Φα, Hβ)
be the hard problem as stated in Definition 5. Then (S, S(x)) is computationally
indistinguishable from (S,Um), where S ← MQ(n,m, q, Φα, Hβ), x ← Hn

β , Um

is the uniform distribution over Fm
q .

Here we remark that the MQ hardness assumption in Definition 5 can be gen-
eralized in the following sense.

Remark 2. Actually all we need for our construction is to bound the quantity
R(x).Thus any distribution of S, and x that has the following properties (1)
the problem of equation solving is hard, and (2) we are able to bound R(x), are
sufficient for us to construct public-key encryptions. Here for concreteness, we
present study Φα and Hn

β as a candidate for the hard problem.

3.2 Construction of a Public-Key Encryption Scheme for Bits

In this section we present our construction of a public-key bit-encryption scheme.

Construction of the Scheme E = (KeyGen(·),Enc(·),Dec(·)):

– KeyGen(1k): choose public parameters n,m, q, α, β, and λ ∈ N satisfying the
following constraints:
1. k · α · n(2+λ) ·m · β2 ≤ q/4.
2. m · log(2nλ + 1) ≥ (n+ 1) · log q + 2k.
3. n,m, q, α, β satisfy the condition in the MQ assumption such that

MQ(n,m, q, Φα, Hβ) is hard to solve.
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Then it samples a random instance (S, S(x)) ← MQ(n,m, q, Φα, Hβ), and
deontes y = S(x). Then it sets pk = (S,y) = ((R,L, d),y), sk = x.

– Enc(b) for b ∈ {0, 1}: sample r ∈ Hm
nλ , and outputs (c1, c2) = (rT · L, rT ·

(y − d) + b · [q/2]).
– Dec(c1, c2): compute t = c2 − cT1 · x. If |t − q/2| ≤ q/4 then output 1,

otherwise 0.

The intuition of the construction and analysis of security are similar to the case
of the work [45]. Thus we only state the theorem and leave the discussions in
the full version of this paper.

Theorem 1. Assume the MQ assumption holds for the above parameters. Then
the scheme E is a semantically secure encryption scheme.

4 Hardness of MQ Problems Implies Pseudorandom
Distributions

Recall that in the previous section, we claimed that the hardness of some family
of MQ problems implies a pseudorandom distribution (Lemma 1). In this section,
we are going to show that the hardness of more general families of MQ problems
also implies a pseudorandom distribution. In particular, we obtain the following
theorem.

Theorem 2. Let k be the security parameter, n,m, q be efficiently computable
and polynomially bounded such that q is an odd prime, χ is a distribution over
Fm×n×n
q , and H ⊆ Fq.
Suppose for these parameters the problem MQ(n,m, q, χ,H) is hard to solve,

then the following two distributions are computationally indistinguishable. D1 =
(S, S(x)), D2 = (S,Um), where S ← MQ(n,m, q, χ,H), x ← Hn, and Um is a
uniform distribution over Fm

q .

If we set H to be Hβ , and χ to be Φα as the setting in Definition 5, then this
version of the theorem directly becomes Lemma 1.

We prove the theorem by contradiction. For intuition, first we state our high
level ideas and then delve into details. Suppose there exists a distinguisher A
that distinguishes D1 and D2, from here we want to construct an inverter B that
solves the MQ problem (S, S(x)), which leads to a contradiction. We achieve this
goal using the following strategy:

– First we show that from A, we can construct another algorithm A′ that
distinguishes D′

1 = (S, S(x), r, 〈r,x〉) and D′
2 = (S, S(x), r, U) where r ∈

Fn
q is a random vector, and U is uniform over Fq. For any r ∈ Fn

q , we can
view 〈r,x〉 as the r’s location of the (Hadamard) encoding of x. The ability
to distinguish D′

1 and D′
2 gives us a somewhat corrupted codeword of x, i.e.,

the codeword is correct in at least a noticeable fraction of places over all r’s.
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– Then from A′, we construct an inverter B that applies the list-decoding algo-
rithm by the Goldreich-Levin Theorem to recover x. We remind the reader
that the Goldreich-Levin Theorem is essentially a decoding algorithm for the
Hadamard code, which says (informally) that if given f(x), for random r’s
one can distinguish 〈r,x〉 from a uniform element with noticeable probabil-
ity, then one can invert f with noticeable probability (for any function f).

However, when applying the Goldreich-Levin Theorem here, we encountered
some subtleties. First the classical theorem [28] deals with the boolean field only
(i.e. q = 2); thus it is not applicable in general cases. A generalized version of
[29] handles the case for large q’s, but it works only for the case where the input
x ∈ Fn

q . It remains unclear for the case where x comes from a subset Hn
β ⊆ Fn

q .
Recently, Dodis et al. [19] proved a new version of the theorem that is essentially
what we need in our setting. With it, we are able to implement the list-decoding
algorithm in the second bullet above, and this completes the proof. The formal
proof will appear in the full version of this paper.

5 Key Encapsulation Mechanism

In the previous section, we constructed a public-key encryption for bits. However,
this approach is not satisfactory when we want to encrypt a long message M ∈
{0, 1}L for some large L. As discussed in the introduction, we can use a key
encapsulation mechanism (KEM) to achieve better efficiency.

First, we recall how we can achieve this by the KEM technique: let Enc be
any public-key encryption scheme for bits, and let G : {0, 1}k → {0, 1}k+t be
a pseudorandom generator. To encrypt a long message M ∈ {0, 1}L, we first
sample a seed s ∈ {0, 1}k for the PRG, and then stretch the generator G6 to
get a pseudorandom string G′(s) ∈ {0, 1}L. Then we encrypt the seed by the
public-key scheme and use the pseudorandom string as a one-time pad to XOR
M . The resulting ciphertext becomes (Encpk(s), G

′(s)⊕M).
In this paper, we observe that the MQ assumption implies a certain form of

PRG. Thus, we can implement KEM under the same assumption as the one
from which we construct the public-key encryption scheme. However, this type
of PRG is somewhat non-standard, so we avoid using this term formally. We will
discuss this issue in the full version of this paper.

In the next section, we are going to show how we can obtain the desired long
pseudorandom string G′(s), and then present the entire scheme in Section 5.2.
Finally we sketch the proof of security, which follows from the folklore.

Remark 3. We remark that KEM is a generic way to construct efficient public-
key encryption schemes. As discussed in the introduction and the above, we
know that a PRG plus any bit-encryption public encryption scheme is sufficient
to achieve the task. In this paper, we observe that the MQ assumption implies
an efficient constructions of PRGs and a public-key bit-encryption scheme, so
we can obtain an efficient public-key encryption under one single assumption.

6 We refer the readers to [27] for the details of how to stretch a PRG.
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5.1 Longer Pseudorandom Strings

Recall that Lemma 1 states that (S, S(x)) ≈c (S,Um). This means we can get
a pseudorandom string S(x) ∈ Fm

q by only sampling a shorter seed x ∈ Hn
β .

Note: m > n, and H ⊆ Fq. To get a longer pseudorandom string, we can use the
following iterative method (analogous to how we can stretch a PRG.)

Definition 6. Let S ← MQ(n,m, q, Φα, Hβ). For x ∈ Hn
β , and let (x0, y0) =

S(x) where x0 ∈ Fn
q , y0 ∈ Fm−n

q be the prefix n elements and the suffix m− n
elements of S(x) respectively.

Let h : Fn
q → Hn

β be a hash function, and for i ∈ N, we recursively define

(xi,yi) = S(h(xi−1)) where xi ∈ Fn
q ,yi ∈ Fm−n

q (representing the prefix and

suffix of S(h(xi−1)) respectively). Then we define Si
h(x) = (y0,y1, . . . ,yi).

Initial input = x
S(x)

−−−−−−−−→ x0

S(h(x0))−−−−−−−−→ x1

S(h(x1))−−−−−−−−→ x2 · · ·⏐⏐⏐�
⏐⏐⏐�

⏐⏐⏐�
output: y0 y1 y2 · · ·

Then we are going to argue that for any i ≤ poly(k), we have (S, Si
h(x)) ≈c

(S,U(m−n)·(i+1)), given (S, S(x)) ≈c (S,Um). This means, we can get an arbi-
trarily long (polynomially bounded) pseudorandom string Si

h(x) from an initial
random seed x.

The proof of security follows from a hybrid argument, and it is similar to that
of QUAD in the work [4]. We remark that here we need the hash function for
some technical reason. The only property we require is that h(Un) outputs a
(statistically close) uniformly random element in Hn

β . The hash function h does
not need to be collision resistant nor one-way. We can view h as a reinterpre-
tation from elements in Fn

q to elements in Hn
β , and thus there are many simple

constructions.
Then we are able to achieve the following theorem.

Theorem 3. Let k be the security parameter. Assuming the MQ problem
MQ(n,m, q, Φα, Hβ) is hard, and let h : Fn

q → Hn
β be a (randomized) hash func-

tion such that h(z) maps a uniformly random z ∈ Fn
q to a uniformly random

y ∈ Hn
β .

Then for any i = poly(k), (S, Si
h(x)) is computationally indistinguishable to

(S,U(m−n)·(i+1)), where S ← MQ(n,m, q, Φα, Hβ), x ← Hn
β , and U(m−n)·(i+1)

is uniform over F(m−n)·(i+1)
q .

The proof will appear in the full version of this paper.

5.2 Construction of the KEM Scheme

In previous sections, we have constructed the bit encryption scheme
E = (KeyGen (·),Enc(·),Dec(·)) described in section 3.2, and the pseu-
dorandom generator above. Here we describe a KEM scheme EKEM =
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(KeyGenKEM(·),EncKEM(·),DecKEM(·)) that can encrypt messages with un-
prespecified lengths (polynomially bounded).

– KeyGenKEM(1
k): run KeyGen(1k). In particular, the algorithm chooses pub-

lic parameters n,m, q, Φα, Hβ in the range as stated in the MQ assumption,
and also a hash function h : Fn

q → Hn
β with the property h(Un) being uni-

form over Hn
β as discussed in the above section. Then it samples a random

instance (S, S(x)) ← MQ(n,m, q, Φα, Hβ), and deontes y = S(x). Then it
sets pk = (S,y), sk = x.

– For any L = poly(k), and any message M ∈ FL
q , EncKEM(M) does the

following: the algorithm samples s ∈ Hn
β , and computes ci = Enc(pk, si)

for i ∈ [n]. Then let t = �L/(m− n)�, and compute c∗ = M ⊕ St
h(s).

7 The
resulting ciphertext will be c = (c1, c2, . . . , cn, c

∗).
– DecKEM(c): the algorithm computes s by running Dec(sk, ci) for i ∈ [n]. Then

it outputs M = c∗ ⊕ St
h(s).

Then we are able to obtain the following theorem.

Theorem 4. The scheme above EKEM is a semantically secure encryption
scheme.

5.3 Concrete Parameters

Our goal here is to instantiate Theorem 4 with concrete parameters. Here, we
exhibit two sets of parameters (for proven security levels 280 and 2128) based
on a conservative estimate of the hardness of MQ systems (i.e., assuming the
general applicability of sparse matrix solvers in XL [47]), and no particular effort
in optimization.

Our security level aims for time 280 (and 2128), and ε = 2−10 for plaintext
length L = 220 (1 Mb), i.e., no adversary within running time 280 (and 2128)
can distinguish two ciphertexts with advantage better than 2−10. Since our con-
struction uses the KEM mechanism, we need parameters for (1) (S, St

h(x)) to
be a PRG some length L, and (2) E to be a semantically secure bit-encryption
scheme. It follows from a standard argument that the KEM security achieves
this level (with a slight loss) once both the underlying PRG and the encryption
scheme achieve this level of security. In particular, we instantiate the scheme
with the following parameters:

Case k n m α β q
1 12 200 400 10 2 18031317546972632788519≈ 274

2 12 256 512 10 2 52324402795762678724873≈ 276

And we approximate the hardness in the following table:

Case Hardness of MQ Security of Enc Security of PRG Security of KEM
1 2156, 2−100 287, 2−11 285, 2−11 285, 2−10

2 2205, 2−104 2130, 2−11 2134, 2−11 2130, 2−10

7 Here ⊕ means we add two vectors component-wise. That is, let a, b ∈ FL
q , then we

say a⊕ b = [a1 + b1,a2 + b2, · · · ,aL + bL]
T .
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We remark the tuple (T, ε) in each cell means for any adversary running in time
T has advantage (or success probability) less than ε.

In the full version of this paper, we will explain our methodology of the exper-
imental studies, and provide the data. Due to space limit, we omit most details
for proofs and experiments.
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duction to zero (f5). In: ISSAC, New York, NY, USA (2002)

24. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE)
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Abstract. In this paper we consider anonymity in the context of Broad-
cast Encryption (BE). This issue has received very little attention so
far and all but one of the currently available BE schemes fail to pro-
vide anonymity. Yet, we argue that it is intrinsically desirable to provide
anonymity in standard applications of BE and that it can be achieved at
a moderate cost. We provide a security definition for Anonymous Broad-
cast Encryption (ANOBE) and show that it is achievable assuming only
the existence of IND-CCA secure public key encryption (PKE). Focusing
on reducing the size of ciphertexts, we then give two generic constructions
for ANOBE. The first is from any anonymous (key-private) IND-CCA
secure PKE scheme, and the second is from any IBE scheme that sat-
isfies a weak security notion in the multi-TA setting. Furthermore, we
show how randomness re-use techniques can be deployed in the ANOBE
context to reduce computational and communication costs, and how a
new cryptographic primitive – anonymous hint systems – can be used
to speed up the decryption process in our ANOBE constructions. All of
our results are in the standard model, achieving fully collusion-resistant
ANOBE schemes secure against adaptive IND-CCA adversaries.

Keywords: Broadcast Encryption, Anonymity.

1 Introduction

Anonymity. In a world that is increasingly relying on digital technologies,
addressing the issue of protecting users’ privacy is of crucial importance. This
is reflected by the great attention given to anonymity in all the main fields of
modern cryptography. In the area of Public-Key Encryption (PKE), anonymity
is often referred to as key-privacy [6]. This notion captures the property that an
eavesdropper is not able to tell under which one of several public keys a ciphertext
was created. The analogous concept in the ID-based setting was studied in [1].
The benefit of preserving receivers’ privacy is relevant in more elaborate systems
involving for example Hierarchical IBE [12], Attribute-Based Encryption (ABE)
or Predicate Encryption [26], where achieving anonymity guarantees becomes
increasingly challenging. Furthermore, in the context of digital signatures, a
number of primitives effectively rely on anonymity: group signatures [16] and
anonymous credentials [15] are well-known examples of this.
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Broadcast Encryption. Broadcast Encryption (BE) addresses the issue of
confidentially broadcasting a message to an arbitrary subset drawn from a uni-
verse of users. We will call the universe of n users U and the target, or privileged,
set S, where S ⊆ U . Since its introduction in 1993 by Fiat and Naor [22], var-
ious flavours of BE have been introduced: the scheme can be in a symmetric
or asymmetric setting; the set of receivers could be static or dynamic; revoca-
tion and traitor-tracing algorithms could be integrated into the system, users’
keys might or might not be updated and then forward secrecy may be achieved.
We refer to some of the relevant work in the area and the references therein
[22,32,19,39,9,18,17,24,36]. One of the fundamental properties of a BE scheme
is collusion resistance in the sense that no coalition of users in U \ S should
be able to recover the message. In the literature we can find several schemes
that resist collusion attacks mounted by coalitions of at most t < n users; only
some schemes are fully collusion-resistant, i.e. they can tolerate attacks by coali-
tions of any size. For the purpose of this paper, we will consider systems that
are public-key, allow stateless receivers (users that are not required to update
their private keys) and are fully collusion-resistant. These are by now standard
objectives for a BE scheme in the public-key setting.

Several additional practical aspects need to be taken into consideration, espe-
cially in view of the real-life applications of BE: strength of security notions, pub-
lic and private storage requirements, ciphertext length, and computational costs.
The specific nature of the primitive has led researchers to focus in particular on
solutions having ciphertexts that are as short as possible. In this respect, the re-
sults of [9] and [24] are nearly optimal. However, designing BE schemes for real-life
applications to broadcasting should not only involve efficiency and confidentiality
issues. In particular, the privacy of users should be protected as much as possi-
ble. We believe that, to date, this aspect has not been adequately dealt with. Our
study of the literature reveals that anonymity in BE has only been considered in a
single paper [5], in the context of encrypted file systems1. Surprisingly, almost all
subsequent work on BE has ignored the issue of anonymity. Moreover, as we shall
explain below, state-of-the-art BE schemes are inherently incapable of providing
any kind of anonymity.

Anonymity in Broadcast Encryption. According to commonly accepted
definitions [24,10,17], a BE scheme consists of four algorithms: Setup, KeyGen,
Enc and Dec. Each user in the system can obtain his private key from the KeyGen
algorithm, and the sender can choose an arbitrary target set of users S to which
he wishes to broadcast a message. To decrypt, a legitimate user, i.e. a user
in S, has to run the decryption algorithm on input the ciphertext, his private
key and a description of the target set S. This set S is required specifically
as an input to Dec in the existing definitions of BE. Hence the user needs to
somehow know to which set S the message was broadcast, otherwise he cannot
decrypt. Unfortunately, solving this problem is not just a matter of removing
this requirement from the model, as current schemes explicitly rely on S as an

1 We observe that [25] addresses the issue of hiding the identity of the sender in a broad-
cast protocol, which is not what we intend by anonymous broadcast encryption.
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input to Dec for decryption to work. Thus these schemes cannot provide any
anonymity.

This limitation in the existing BE model and schemes clearly causes serious
privacy issues: imagine we deploy a BE scheme, as defined above, for television
broadcasting. Suppose the privileged set is the set of all users who have paid
a subscription to a certain channel. Each customer should have access to that
channel using his private key. The problem is that, to decrypt, he will have to
know who else has paid for the specific subscription! Not only is this require-
ment very inconvenient for the practical deployment of BE schemes, it is also
a severe violation of the individual subscriber’s privacy. Ideally, a BE scheme
should protect users’ privacy by guaranteeing that ciphertexts do not leak any
information about the privileged set S.

Current BE schemes such as those in [24,10,17] do not account for the cost of
broadcasting a description of S when calculating the size of ciphertexts. In the
most general usage scenario intended for BE, where S is dynamic and may be
unpredictable from message to message, the ciphertexts in such schemes must
effectively include a description of S as part of the ciphertexts themselves. This
means that the true ciphertext size in these schemes is linear in n rather than
constant-size, as a cursory examination of the schemes might suggest2. How-
ever, achieving linear-sized ciphertext is already an impressive achievement, since
there is a simple counting argument showing that, for a universe of n users in
which every possible subset S should be reachable by secure broadcast, cipher-
texts must contain at least n bits.

Further Details on Related Work. As mentioned above, the only prior
work addressing the issue of anonymity in BE appears to be that of Barth et al.
[5] (there, it is called privacy). In [5], several BE systems used in practice were
examined with respect to anonymity. In addition, a generic construction for a BE
scheme using a key-private, IND-CCA secure PKE scheme was given, with the
scheme achieving anonymity and IND-CCA security against static adversaries.
The construction encrypts the message for each intended receiver using the PKE
scheme, and then ties together the resulting ciphertexts using a strongly secure
one-time signature. Barth et al. [5] also provided a technique which can be used
to speed-up decryption, but this technique was only analysed in the Random
Oracle Model.

In very recent work [21] that builds on [5] and this paper, the authors have
given constructions for anonymous broadcast encryption schemes with compact
ciphertexts, but using a much weaker notion of anonymity that does not seem
to relate very closely to real-world requirements.

In [11] the authors provide a private linear broadcast encryption (PLBE)
scheme to realise a fully collusion-resistant traitor-tracing scheme. A PLBE,
however, is a BE system with limited capabilities (i.e. it cannot address arbitrary

2 This does not rule the use of compact encodings of S being transmitted with cipher-
texts in more restrictive usage scenarios, for example, only sending the difference in
S when the set S changes only slowly from message to message.
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sets of users) and hence this work does not provide a solution to the problem
considered so far.

There is much work, both cryptographic and non-cryptographic, on pseudony-
mous systems. In principle, pseudonyms could be used to enhance the anonymity
of BE schemes: now users would not be identifiable directly, since a certificate
would link a public key to a pseudonym rather than a real name. However, ci-
phertexts would still be linkable, in the sense that it would be possible to detect
if two ciphertexts were intended for the same set of recipients or not. The ap-
proach we take here offers much stronger levels of privacy, removing ciphertext
linkability in particular.

Our Contributions. Despite its importance, anonymous broadcast encryption
has not received much attention since the initial work of Barth et al. [5]. This
paper aims to raise the profile of this neglected primitive.

We start by giving a unified security definition for Anonymous Broadcast En-
cryption (ANOBE). Instead of separating anonymity and confidentiality as in
[5], we use a combined security notion for ANOBE which helps to streamline
our presentation and proofs. In addition, we strengthen the model to allow the
adversary to make adaptive corruptions, with all of our constructions achieving
security in this setting. In contrast, the definition of [5] is static, requiring the
adversary to choose whom to corrupt before seeing the public keys in the sys-
tem. As a first step, we show that our enhanced security definition is satisfiable:
adaptively secure ANOBE can be built based only on the existence of IND-
CCA secure PKE (without requiring the base PKE scheme to have anonymity
properties itself). This construction results in a very efficient (constant-time)
decryption procedure but has ciphertexts whose size is linear in n, the number
of users in the universe U .

Our second contribution is to show that the generic construction for ANOBE
suggested by Barth et al. [5] actually possesses adaptive security, and not merely
static security as was established in [5]. This construction starts from any weakly
robust (in the sense of [2]), key-private PKE scheme with chosen-ciphertext se-
curity. In comparison with our first generic construction, this result imposes
stronger requirements on the underlying encryption scheme. However, it achieves
shorter ciphertexts, with the size being linear in the size of the target set S. We
also provide a variant of this construction that replaces the IND-CCA secure
PKE component with an identity-based encryption (IBE) scheme having suit-
able security properties. This alternative further increases the set of components
that can be used to obtain ANOBE.

One major drawback of the latter constructions is that decryption takes linear
time in the size of the set S. Our third result is a technique allowing for constant
decryption cost and which we prove secure in the standard model (i.e., without
random oracles) using our enhanced security definition. So far, the only known
technique – put forth by Barth et al. [5] – enabling constant-time decryption
requires the random oracle heuristic in the security analysis. To eliminate the
random oracle, we introduce a new primitive, which we call an anonymous hint
system. In essence, this primitive provides a way for an encrypter to securely
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tell receivers which ciphertext component is intended for them, allowing them
to ignore all but one ciphertext component and so decrypt more efficiently. The
hint primitive, for which we provide an implementation based on the Decision-
Diffie-Hellman (DDH) assumption, is defined and realized in such a way that
its integration with our generic ANOBE constructions maintains compatibility
with our proofs of adaptive security.

Our fourth contribution is to show how randomness re-use techniques orig-
inally developed for PKE in [28,8,7] can be modified for secure deployment in
the ANOBE setting. In particular, we identify a slightly stronger notion of re-
producibility that we call key-less reproducibility. We show that if our base PKE
scheme has this property (in addition to the other properties needed in our
generic construction) then it can be used with the same randomness across all
ciphertext components in our main ANOBE construction. This not only allows
the size of ciphertexts to be reduced further (by eliminating repeated ciphertext
elements) but also reduces the sender’s computational overhead.

In the full version of the paper [30], we establish that the Kurosawa-Desmedt
(KD) [29] hybrid encryption scheme can be tweaked to have all the properties
that are needed of the base PKE scheme in our constructions. The KD scheme
is an ideal starting point since it is one of most efficient PKE schemes with IND-
CCA security in the standard model.

Tying everything together and using KD∗ as the base scheme, we obtain
the currently most efficient instantiation of an ANOBE scheme, for which ci-
phertexts contain only 2 group elements and |S| symmetric ciphertexts (plus a
signature and a verification key). Decryption can be achieved in constant time
by combining this scheme with our DDH-based hint system, with an additional
2|S|+ 1 group elements in the ciphertext.

As can be seen from the details of our constructions, achieving anonymity
does not add any cost to the encryption process compared to non-anonymous
schemes (for example, [9,24]): in our ANOBE schemes, encryption requires a
number of group operations that is linear in |S|. As for decryption, our speed-up
technique allows the legitimate user to recover the message in constant time.
Our ciphertext size is linear in |S| (and thus linear in n and of the same or-
der of magnitude as the true ciphertext size in existing BE schemes). Thus one
interpretation of our results is that anonymity does not “cost” anything in an
asymptotic sense. Naturally, the constants matter in practice, and reducing the
constant in the ciphertext size for ANOBE to something closer to what can be
achieved in the non-anonymous setting is a major open problem. However, we
reiterate that reducing the true size of ciphertexts below linear in n in either the
anonymous or non-anonymous setting is impossible.

2 Anonymous Broadcast Encryption

We define a model of public-key Broadcast Encryption, where algorithms are
specified to allow for anonymity (similarly to [5]) and they are general enough
to include the identity-based variant of BE introduced in [17].
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Definition 1. Let U = {1, ..., n} be the universe of users. A broadcast encryp-
tion (BE) scheme is defined by four algorithms and has associated message space
MSP and ciphertext space CSP.

BE.Setup(λ, n): This algorithm takes as input the security parameter λ and the
number of users in the system n. It outputs a master public key BE-MPK
and a master secret key BE-MSK.

BE.Key-Gen(BE-MPK,BE-MSK, i): This algorithm takes as input BE-MPK,
BE-MSK and an index i ∈ U and outputs the private key ski for user i.

BE.Enc(BE-MPK,m, S): This algorithm takes as input BE-MPK, a message
m ∈MSP and a subset S ⊆ U , the broadcast target set. It outputs a cipher-
text c ∈ CSP.

BE.Dec(BE-MPK, ski, c): This algorithm takes as input BE-MPK, a private key
ski and a ciphertext c ∈ CSP. It outputs either a message m ∈ MSP or a
failure symbol ⊥.

For all S ⊆ U and i ∈ U , if c = BE.Enc(BE-MPK,m, S) and ski is the private
key for i ∈ S, then BE.Dec(BE-MPK, ski, c) = m with overwhelming probability.

We observe that this definition no longer requires the set S as an input to the
decryption algorithm. This is crucial in developing the notion of anonymous
broadcast encryption (ANOBE), for which we next provide an appropriate se-
curity model for the case of adaptive adversaries.

Definition 2. We define the ANO-IND-CCA security game for BE as follows.
Setup. The challenger C runs BE.Setup(λ, n) to generate the master key pair
(BE-MPK,BE-MSK) and gives BE-MPK to the adversary A.
Phase 1. A can issue queries to a private key extraction oracle for any index i ∈
U . The oracle will respond by returning ski = BE.Key-Gen(BE-MPK,BE-MSK, i).
A can also issue decryption queries of the form (c, i), where i ∈ U , and the oracle
will return the decryption BE.Dec(BE-MPK, ski, c).
Challenge. A selects two equal-length messages m0, m1 ∈ MSP and two dis-
tinct sets S0, S1 ⊆ U of users. We require that S0 and S1 be of equal size
and also impose the restriction that A has not issued key queries for any i ∈
S0) S1 = (S0 \ S1) ∪ (S1 \ S0). Further, if there exists an i ∈ S0 ∩ S1 for which
A has queried the key, then we require that m0 = m1. The adversary A passes
m0,m1 and S0, S1 to C. The latter picks a random bit b ∈ {0, 1} and computes
c∗ = BE.Enc(BE-MPK,mb, Sb) which is returned to A.
Phase 2. A continues to make queries to the private key extraction oracle with
the restrictions that i /∈ S0) S1 and that, if i ∈ S0 ∩ S1, then m0 = m1. A may
continue issuing decryption queries (c, i) with the restriction that if c = c∗ then
either i /∈ S0) S1 or i ∈ S0 ∩ S1 and m0 = m1.
Guess. The adversary outputs its guess b′ for b.

Definition 3. We say that a BE scheme is anonymous and semantically secure
against chosen-ciphertext attacks (ANO-IND-CCA) if all polynomial-time adap-
tive adversaries A have at most negligible advantage in the above game, where
A’s advantage is defined as AdvANO-IND-CCA

A,BE (λ) =
∣∣Pr[b′ = b]− 1

2

∣∣ .
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Like the definition of [5], Definition 2 does not require the ANOBE ciphertext
to hide the number of receivers. However, specific schemes (such as the one in
Section 3.1) can also conceal the cardinality of S.

We will next show that this notion is indeed feasible by presenting a generic
construction that relies solely on the existence of IND-CCA secure PKE schemes.
We will then improve its performance by giving alternative generic constructions
whose underlying primitives require additional security properties.

3 Generic Constructions for ANOBE from PKE

3.1 ANOBE from Minimal Assumptions

Since our aim is to provide a formal treatment of anonymous broadcast en-
cryption, we begin by showing that ANOBE can be achieved. Indeed, by simply
assuming the existence of an IND-CCA secure PKE scheme we can construct an
ANOBE scheme as follows.

Let πpke = (Gen,KeyGen,Encrypt,Decrypt) be a PKE scheme with message
space M = {0, 1}m. Here, algorithm Gen takes as input a security parameter
and outputs public parameters par, used by KeyGen to generate a key pair
(pk, sk). Let Σ = (G,S,V) be a one-time signature scheme consisting of a key
generation algorithm G, a signing algorithm S and a verification algorithm V . We
assume that the key space of Σ is K = {0, 1}v, for some v ∈ poly(λ). We use πpke

and Σ to generically instantiate a BE scheme, with message space {0, 1}m−v. In
the description hereafter, we include the symbol ε as a valid but distinguished
message in {0, 1}m−v: in other words, all the messages that receivers accept as
legal plaintexts are different from ε.

BE.Setup(λ, n): Generate par ← Gen(λ) and, for i = 1 to n, generate (ski, pki)←
Keygen(par). The master private key is BE-MSK = {ski}ni=1 and the master
public key consists of BE-MPK =

(
par, Σ, {pki}ni=1

)
.

BE.Key-Gen(BE-MPK,BE-MSK, i): parse the master secret key BE-MSK as
{ski}ni=1 and output ski.

BE.Enc(BE-MPK,M, S): to encrypt M for a receiver set S ⊆ {1, . . . , n}, gen-
erate a one-time key pair (SK,VK) ← G(λ). For each j = 1 to n, compute
Cj = Encrypt(par, pkj ,M ||VK) if j ∈ S and Cj = Encrypt(par, pkj , ε||VK) if
j �∈ S. Finally, output C =

(
C1, . . . , Cn, σ

)
, where σ = S

(
SK, (C1, . . . , Cn)

)
.

BE.Dec(BE-MPK, ski, C): given the ANOBE ciphertext C =
(
C1, . . . , Cn, σ

)
,

compute M ′ = Decrypt(ski, Ci). If M
′ �=⊥, parse M ′ as M ′ = M ||VK for

some bitstrings M ∈ {0, 1}m−v and VK ∈ {0, 1}v. Then, if it holds that
V
(
VK, (C1, . . . , Cn), σ

)
= 1 and M �= ε return M . Otherwise, output ⊥.

The correctness follows directly from the correctness of πpke and Σ. This con-
struction is reminiscent of generic constructions of chosen-ciphertext-secure mul-
tiple encryption [20] and it is easily seen to yield a secure ANOBE. A proof of
the following theorem is available in the full version of the paper [30].
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Theorem 1. Let πpke be an IND-CCA secure PKE scheme and let Σ be a
strongly unforgeable one-time signature scheme. The BE scheme constructed
above is ANO-IND-CCA secure against adaptive adversaries.

We have described an ANOBE scheme from minimal assumptions. We note that
encryption time is linear in n but decryption is performed in constant time,
since a user simply selects the ciphertext component to decrypt according to its
index. However, the ciphertext size is linear in n, as we encrypt to each user
in the universe. It is desirable to improve on this and achieve a realization of
ANOBE with more compact ciphertexts.

We will next see how to modify this first generic construction, obtaining an
ANOBE scheme whose ciphertext size is linear in the size of the target set S.

3.2 Adaptively Secure ANOBE from Robust, Anonymous PKE

A simple solution to the broadcast problem is to encrypt the message under
the public key of each user in the privileged set. This naive approach, so often
discarded in most BE literature due to efficiency reasons, turns out to provide
another generic construction for ANOBE, which differs from the previous one
as now we deploy a public-key encryption scheme only to encrypt the message
to the users in the target set.

For this approach, the underlying PKE scheme has to be key-private (or IK
secure [6]), in that the ciphertext does not leak under which public key it was
created. We also require the PKE scheme to be weakly robust, in the sense of
[2], not only for correctness but also for consistency in the CCA security proof
simulation. This property can be generically achieved [2] for any PKE scheme
using a simple redundancy-based transformation.

This is essentially the construction that was already suggested by Barth,
Boneh and Waters [5]. We now prove that it is actually adaptively secure, rather
than just statically secure, as was established in [5].

Let πpke = (Gen,Keygen,Encrypt,Decrypt) be a PKE scheme andΣ = (G,S,V)
be a one-time signature. Our ANOBE scheme, ANOBEπpke,Σ , is as follows.

BE.Setup(λ, n): Run Gen(λ, n) to obtain public parameters par. For i = 1 to n,
run Keygen(par) to generate (ski, pki). The master private key is BE-MSK =
{ski}ni=1 and the master public key is BE-MPK =

(
par, Σ, {pki}ni=1

)
.

BE.Key-Gen(BE-MPK,BE-MSK, i): given BE-MSK = {ski}ni=1, output ski.

BE.Enc(BE-MPK,M, S): to encrypt M for a receiver set S = {i1, . . . , i�} ⊆
{1, . . . , n} of size � = |S|, generate a signature key pair (SK,VK)← G(λ). For
j = 1 to �, compute Cj = Encrypt(par, pkij ,M ||VK). The ANOBE ciphertext

is C =
(
VK, Cτ(1), . . . , Cτ(�), σ

)
, where σ = S

(
SK, Cτ(1), . . . , Cτ(�)

)
and τ :

{1, . . . , �} → {1, . . . , �} is a random permutation.

BE.Dec(BE-MPK, ski, C): parse C as a tuple
(
VK, C1, . . . , C�, σ

)
. Return ⊥ if

V
(
VK, C1, . . . , C�, σ

)
= 0. Otherwise, repeat these steps for j = 1 to �.

1. Compute M ′ = Decrypt(ski, Cj). If M
′ �=⊥ and can moreover be parsed

as M ′ = M ||VK for some M of appropriate length, return M .
2. If j = � output ⊥.
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The correctness of ANOBEπpke,Σ follows directly from the correctness and weak
robustness of πpke.

Theorem 2. ANOBEπpke,Σ is adaptively ANO-IND-CCA secure assuming that:
(i) πpke is key-private and IND-CCA (AI-CCA) secure and weakly robust under
chosen-ciphertext attacks (as defined in [2]); (ii) Σ is a strongly unforgeable
one-time signature scheme.

In our proof (given in the full version of the paper) we make use of a sequence
of hybrid arguments where ciphertext components are gradually modified at
each step and each hybrid argument requires the reduction to guess upfront the
identity of an uncorrupted user.

In terms of efficiency, from this construction we will obtain secure ANOBE
schemes with typically very small (constant) private key storage requirements
and ciphertexts which are |S| times the size of the ciphertext of the underlying
PKE scheme. Encryption and decryption have both cost linear in the size of S.

If we look at recent efficient instantiations of BE, for example that of Gentry-
Waters [24], we have private keys whose size is linear in the number of users,
and ciphertexts which consist of n bits plus 3 group elements (if we include the
cost of transmitting a description of S as part of the ciphertext). It is clear that
in general the solution of [24] is more efficient in terms of ciphertext size. The
key point though is that it is not anonymous.

4 Generic Construction for ANOBE from IBE

An IBE scheme I typically consists of four algorithms (Setup,KeyExt,Enc,Dec),
where Setup and KeyExt are run by a trusted authority (TA). Our construction
uses a multi-TA IBE scheme I ′ = (CommonSetup,TASetup,KeyDer,Enc′,Dec′)
as formalized in [34]. We recall from [34] that CommonSetup, on input the secu-
rity parameter, outputs the system’s parameters par and a set of labels of the
TAs in the system, and that TASetup, on input par, outputs a master public key
mpk and a master secret key msk. This algorithm is randomized and executed
independently for each TA in the system. The remaining algorithms are as per a
normal IBE scheme. For this primitive we consider the notion of TA anonymity,
as defined in [34], which formally models the inability of the adversary to dis-
tinguish two ciphertexts corresponding to the same message and identity, but
created using different TA master public keys. An example of a TA-anonymous
IBE scheme is the multi-TA version of Gentry’s IBE [23] developed in [35].

Now, let I ′ = (CommonSetup,TASetup,KeyDer,Enc′,Dec′) be a weakly robust
(in the sense of a definition of robustness deferred to the full version of the pa-
per), multi-TA IBE scheme and let Σ = (G,S,V) be a signature scheme. We will
use I ′ and Σ to generically instantiate a BE scheme in the following way.

BE.Setup(λ, n): Run CommonSetup on input of λ ∈ N to obtain the system’s
parameters par. Run TASetup(par) n times to obtain n distinct master key
pairs {mpki,mski}i∈U . Return the par, Σ and n public keys {mpki}i∈U .



Anonymous Broadcast Encryption 215

BE.Key-Gen(par, λ, i): Return mski, the secret key corresponding to the public
key mpki of user i.

BE.Enc(par,M, S): Run G to obtain a one-time signature key pair (SK,VK). For
each i ∈ S run Enc′(mpki,M,VK) to obtain ciphertext Ci. The ANOBE ci-
phertext is C =

(
VK, Cτ(1), . . . , Cτ(�), σ

)
, where σ = S

(
SK, Cτ(1), . . . , Cτ(�)

)
and τ : {1, . . . , �} → {1, . . . , �} is a random permutation.

BE.Dec(par,mski, C): Parse C as
(
VK, C1, . . . , C�, σ

)
. If V

(
VK, C1, . . . , C�, σ

)
=

0, return ⊥. Otherwise, compute skiVK = KeyDer(mpki,mski,VK) and repeat
the following steps for j = 1 to �.

1. Compute M ′ = Dec′(mpki, skiVK , Cj). If M
′ �=⊥ and can moreover be

parsed as M ′ =M ||VK for some M of appropriate length, return M .
2. If j = � output ⊥.

The correctness of the BE scheme follows directly from the correctness and the
weak robustness of the IBE scheme I ′ used to construct it.

If instantiated with the multi-TA version of Gentry’s IBE scheme [23,35]
(which can be made weakly robust simply by applying the transform in [2]),
this construction yields very short constant size private keys (just one element
in Z∗

p) and ciphertexts consisting of roughly 3 · |S| group elements (|S| in G and
2 · |S| in GT ) plus a signature and a verification key. Encryption and decryption
have both cost linear in the size of S.

Theorem 3. Let I ′ be a TA-anonymous, sID-IND-CPA secure IBE scheme and
let Σ be a strongly unforgeable one-time signature. Then, the above BE scheme
is adaptively ANO-IND-CCA secure.

We give some intuition for the proof. We observe that, in [35], the authors
apply a modified version of the Canetti-Halevi-Katz (CHK) transform [13] using
the same primitives as our generic construction to obtain a key-private IND-
CCA PKE scheme. We introduce further modifications to build a BE scheme
achieving ANO-IND-CCA security. The idea is that, within this transform, we
encrypt m for the same identity VK under the |S| different public keys. We
then sign all ciphertexts and append the verification key VK (note that this
signature binds all these ciphertexts together). Upon decryption, a user verifies
the signature against VK and, if valid, proceeds to derive the decryption key for
identity VK by running the IBE key-extraction algorithm on input his private
key. By similar arguments to those in [13] and [35], and by applying techniques
analogous to those proving adaptive security in Theorem 2, we can show that
adaptive ANO-IND-CCA security is achieved.

5 Efficient Decryption in the Standard Model

The generic constructions for ANOBE presented in Section 3.2 and 4 both suffer
from linear time decryption. This arises from the fact that users do not know
which ciphertext component is intended for them, and hence will have to per-
form an average of |S|/2 decryptions before recovering the message. Clearly this
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procedure is quite cumbersome. We now present a technique which achieves con-
stant time decryption in the standard model. We make use of a new primitive,
called tag-based anonymous hint systems, for which we provide a definition, the
relevant security models and a concrete instantiation.

5.1 Tag-Based Anonymous Hint Systems

A tag-based anonymous hint system is a tag-based encryption scheme [27] allow-
ing to generate weak forms of encryption under a tag t and a public key pk. The
result of the process consists of a value U and a hint H . The pair (U,H) should
be pseudo-random (in particular, hints generated under two distinct public keys
should be indistinguishable) when only the public key pk is available. Also, the
private key sk makes it possible to check whether a given hint H is valid w.r.t.
a tag t. A value-hint pair can be seen as an extractable commitment to a public
key. Formally, such a system is defined in terms of the following algorithms.

Keygen(cp) : takes as input a set of common public parameters cp and outputs
a key pair (sk, pk). We assume that cp specifies a randomness space Rh and
a space T h of acceptable tags for the scheme.

Hint(cp, t, pk, r): is a deterministic algorithm taking as input common public
parameters cp, a public key pk, a tag t and random coins r ∈R Rh. It
outputs pair (U,H) consisting of a value U and a hint H . It is required that
U only depends on the random coins r and not on pk.

Invert(cp, sk, t, U): is a deterministic “inversion” algorithm taking as input a
value U , a tag t and a private key sk. It outputs either a hint H or ⊥ if U
is not in the appropriate domain.

Correctness requires that, for any pair (sk, pk) ← Keygen(λ) and any possible
random coins r, if (U,H)← Hint(t, pk, r), then Invert(cp, sk, t, U) = H .

Although hint systems bear similarities with tag-KEMs, as formalized by Abe
et al. [3], the two primitives are different and incomparable. In the tag-KEM
syntax, the symmetric “session key” is chosen first and it does not depend on
the tag. In hint schemes, the syntax requires to choose a pair (U,H), where U
does not depend on pk but the session key H can depend on both pk and the tag
(this is what happens in the construction we give). The security definitions are
also different since, in Definition 4 hereafter, there is no inversion oracle (that
would return H given U and t) but only a verification oracle that determines if
(U,H, t) form a valid triple with respect to public keys pk0 and pk1.

In certain aspects, hint schemes are reminiscent of extractable hash proof
systems [38] but there are several differences. In [38], in addition to the value
that we call U , the random coins allowing to compute U are used to compute
a witness S such that (U, S) satisfies some relation. From U , the element S
is also computable using the private key and the value that we call H (which
is termed “hash value” in [38]). At the same time, S should be infeasible to
compute without the private key or the random coins used to sample U . Hint
schemes are different in that they rather require the hardness of computing H
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from U without the private key. In addition, tag-based hints require that it be
hard to decide if a pair (U,H) is valid for a certain tag t� (i.e., to decide if
H = Invert(cp, sk, t�, U)) even with access to a decision oracle for tags t �= t�.

Definition 4. A tag-based hint system (Keygen, Hint, Invert) is anonymous if
no PPT adversary has non-negligible advantage in the following game:

1. On input of common public parameters cp, the adversary A chooses a tag t�

and sends it to the challenger.
2. The challenger generates two key pairs (sk0, pk0)← Keygen(λ), (sk1, pk1)←

Keygen(λ) and gives pk0, pk1 to A.
3. On polynomially-many occasions, A adaptively invokes a verification or-

acle on value-hint-tag triples (U,H, t) such that t �= t�. The challenger
replies by returning bits (d0, d1) ∈ {0, 1}2 where d0 = 1 if and only if H =
Invert(cp, sk0, t, U) and d1 = 1 if and only if H = Invert(cp, sk1, t, U).

4. When A decides to enter the challenge phase, the challenger flips a bi-
nary coin b

$← {0, 1} and chooses other random coins r�
$← Rh. It outputs

(U�, H�) = Hint(cp, t�, pkb, r
�).

5. A makes further queries but is not allowed to make queries involving the
target tag t�.

6. A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

As usual, A’s advantage is the distance Advanon-hint(A) = |Pr[b′ = b]− 1/2|.
Definition 5. A tag-based hint system (Keygen, Hint, Invert) is strongly ro-
bust if no PPT adversary A has non-negligible advantage in the following game,
where A’s advantage is its probability of success.

1. The challenger chooses public parameters cp and generates pairs (sk0, pk0)←
Keygen(λ), (sk1, pk1)← Keygen(λ). It gives cp and pk0, pk1 to A.

2. A invokes a verification oracle on arbitrary value-hint-tag triples (U,H, t).
The challenger replies by returning bits (d0, d1) ∈ {0, 1}2 where d0 = 1
if and only if H = Invert(cp, sk0, t, U) and d1 = 1 if and only if H =
Invert(cp, sk1, t, U).

3. A outputs a triple (U�, H�, t�) and wins if H� = Invert(cp, sk0, t
�, U�) = 1

and H� = Invert(cp, sk1, t
�, U�) = 1.

Analogously to the PKE case [2], weak robustness is defined for tag-based
hint schemes by letting the adversary simply make a challenge request in step
3. The challenger then chooses a tag t� as well as random coins r�, gener-
ates a value-hint pair (U�, H�) = Hint(cp, t�, pk0, r

�) and A wins if H� =
Invert(cp, sk1, t

�, U�) = 1. Weak robustness will be sufficient for our purposes
but the scheme hereafter is also strongly robust assuming that the discrete log-
arithm assumption holds in G.

To show that this newly defined primitive is indeed feasible, we give an ex-
ample of an anonymous hint system based on the DDH assumption and the
CCA-secure public key encryption scheme described in [14].

Let the common public parameters cp = {G, p, g} consist of a group G of
prime order p > 2λ with a generator g ∈R G. We assume that tags are elements
of T h = Z∗

p and that the randomness space is Rh = Z∗
p.
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Keygen(cp): chooses random x1, x2, y1, y2
$← Z∗

p and computes Xi = gxi and

Yi = gyi for each i ∈ {1, 2}. The public key is pk =
(
X1, X2, Y1, Y2

)
and the

private key is sk = (x1, x2, y1, y2).
Hint(cp, t, pk, r): given pk = (G, p, g,X1, X2, Y1, Y2), return ⊥ if r �∈ Rh = Z∗

p.
Otherwise, compute (U,H) as

U = gr, H = (V,W ) =
(
(Xt

1X2)
r, (Y t

1 Y2)
r
)
.

Invert(cp, sk, t, U): return ⊥ if U �∈ G. Otherwise, parse the private key sk as
(x1, x2, y1, y2) ∈ (Z∗

p)
4 and output H = (V,W ) = (U t·x1+x2 , U t·y1+y2)

In the full version of the paper, we prove that the scheme provides anonymity
in the sense of Definition 4 under the DDH assumption and strong robustness
(in the sense of Definition 5) under the discrete logarithm assumption.

5.2 ANOBE with Efficient Decryption

Let πhint = (Keygen, Hint, Invert) be an anonymous hint system with its set of
common public parameters cp. Let πpke = (Gen,Keygen,Encrypt,Decrypt) be a
PKE scheme and Σ = (G,S,V) be a signature scheme.

BE.Setup(λ, n): Obtain (par) ← Gen(λ) and, for each i ∈ {1, . . . , n}, and gen-
erate encryption key pairs (s̃ki, p̃ki) ← πpke.Keygen(par) as well as hint
key pairs (skhi , pk

h
i )← πhint.Keygen(cp). The master private key consists of

BE-MSK = {s̃ki, skhi }ni=1 and the master public key is

BE-MPK =
(
cp, par, {

(
p̃ki, pk

h
i

)
}ni=1, Σ

)
.

BE.Key-Gen(BE-MPK,BE-MSK, i): parse BE-MSK as {s̃ki, skhi }ni=1 and out-
put ski = (s̃ki, sk

h
i ).

BE.Enc(BE-MPK,M, S): given a receiver set S = {i1, . . . , i�} ⊆ {1, . . . , n}
of size � = |S| and a message M , generate a one-time signature key pair

(SK,VK) ← G(λ). Then, choose random coins r
$← Rh for the hint scheme

and compute (U,Hj) = πhint.Hint(cp,VK, pkhij , r) for j = 1 to � (recall that

the first output U of Hint does not depend on the public key). For j = 1 to
�, compute Cj = πpke.Encrypt(par, p̃kij ,M ||VK). Choose a random permu-
tation τ : {1, . . . , �} → {1, . . . , �} and set the final ciphertext as

C =
(
VK, U, (Hτ(1), Cτ(1)), . . . , (Hτ(�), Cτ(�)), σ

)
,

where σ = S
(
SK, U, (Hτ(1), Cτ(1)), . . . , (Hτ(�), Cτ(�))

)
.

BE.Dec(BE-MPK, ski, C): on input of C =
(
VK, U, (H1, C1), . . . , (H�, C�), σ

)
and ski = (s̃ki, sk

h
i ), return ⊥ if V

(
VK, U, (H1, C1), . . . , (H�, C�), σ

)
= 0 or

if U is not in the appropriate space defined by πhint. Otherwise, compute
H = πhint.Invert(cp, skhi ,VK, U). If H �= Hj for all j ∈ {1, . . . , �}, return
⊥. Otherwise, let j be the smallest index such that H = Hj and compute

M ′ = πpke.Decrypt(s̃ki, Cj). If M
′ can be parsed as M ′ = M ||VK for some

M of appropriate length, return M . Otherwise, output ⊥.
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The correctness of this scheme follows directly from the correctness and weak
robustness of its component schemes πhint and πpke.

The following security result is proved in the full version of the paper.

Theorem 4. The above construction is adaptively ANO-IND-CCA secure if (i)
πhint is anonymous; (ii) πpke is AI-CCA secure and weakly robust under chosen-
ciphertext attacks; (iii) Σ is a strongly unforgeable one-time signature.

In [5] a technique to speed up decryption was presented. The scheme of [5] can
be seen as using a hint scheme where tags are empty strings and pairs (U,Hj)
consist of U = gr and Hj = H(Xr

ij
), where H is a random oracle and Xij ∈ G

is the public key of the hint scheme. In the present context, it is tempting to
believe that simple hints of the form Xr

ij
suffice to achieve efficient decryption

in the standard model. Indeed, one step of the proof consists of a DDH-based
transition from one hybrid game to another and, during that specific transition,
the simulator B could simply handle all decryption queries using the private
keys {s̃ki}ni=1 in the underlying encryption scheme since it knows them all. For
reasons that will become apparent in the proof of a key lemma for Theorem 4
below, this does not suffice. The reason is that, the adversary can issue decryp-
tion queries where (g, U = gr, Xij , Hij = Xr′

ij ) does not form a Diffie-Hellman
tuple. In this case, the answer of the simulator would differ from that of the
real decryption procedure in the chosen-ciphertext scenario: more precisely, the
simulation could accept a ciphertext that would be rejected by a real decryption.

In [5], Barth, Boneh and Waters addressed this problem using a random or-
acle and the Gap Diffie-Hellman assumption [33]: each hint was of the form
Hj = H(Xr

ij
), where H is the random oracle. By invoking the DDH-oracle at

each random oracle query, the simulator was able to figure out which ciphertext
components had to be decrypted so as to perfectly emulate the real decryption
algorithm. Here, we address this issue in the standard model using the tag-based
anonymous hint primitive.

It is convenient to instantiate the above construction by combining our DDH-
based hint scheme with an encryption scheme based on the same assumption
such as the Cramer-Shoup cryptosystem. Interestingly both schemes can be in-
stantiated using the same DDH-hard cyclic group. Considering efficiency, it is
moreover possible to recycle the group element gr of the hint system and simul-
taneously use it as part of a Cramer-Shoup ciphertext. In the security proof,
everything goes through with these optimizations.

6 Shortening Ciphertexts with Randomness Re-use

This section considers randomness re-use [7,4], which is a powerful tool provid-
ing computational and bandwidth savings, as a technique to optimize ANOBE
schemes. In [7], Bellare et al. introduce a property, called reproducibility, provid-
ing a condition under which randomness re-use is secure. We define the notion
of key-less reproducibility, which is better suited for the anonymity setting.
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Definition 6. Let πpke = (Gen,Keygen,Encrypt,Decrypt) be a PKE scheme. Let
M and R be the message and randomness space of πpke. Let R be an algorithm
that takes as input the public parameters, a ciphertext, another random message
and a key pair (sk, pk), and outputs a ciphertext. Consider the experiment:

ExpKLRπpke,R(λ)

(par)
$← Gen(λ)

(pk, sk)
$← Keygen(par)

m
$←M; r

$←R
c = Encrypt(pk,m; r)

(pk′, sk′)
$← Keygen(par)

m′ $←M
return 1 if Encrypt(par, pk′,m′; r) = R(par, c,m′, pk′, sk′) and 0 otherwise.

πpke is key-less reproducible if, for any λ, there is a PPT algorithm R such that
the above experiment outputs 1 with probability 1.

We note that this definition differs from the one in [7] since the algorithm R does
not take pk (the public key under which c was created) as an input. Indeed, this
is a crucial difference which allows extending the notion of reproducibility to the
context where anonymity is required. We now reconsider the generic construction
for ANOBE presented in Section 3.2.

Let πpke = (Gen,Keygen,Encrypt,Decrypt) be a key-less reproducible PKE

scheme and let Σ = (G,S,V) be a one-time signature. We call ANOBE πpke,Σ
rr

the scheme constructed from Σ and πpke as follows.

BE.Setup, BE.Key-Gen, BE.Dec are as in Section 3.2.

BE.Enc(BE-MPK,M, S): to encrypt M for a receiver set S = {i1, . . . , i�} ⊆
{1, . . . , n} of size � = |S|, generate a signature key pair (SK,VK) ← G(λ).
Choose r

$←R, where R is the randomness space of πpke
par. Then, for each j =

1 to �, compute Cj = Encrypt(par, pkij ,M ||VK; r). The final BE ciphertext

consists of C =
(
VK, Cτ(1), . . . , Cτ(�), σ

)
, where σ = S

(
SK, Cτ(1), . . . , Cτ(�)

)
and τ : {1, . . . , �} → {1, . . . , �} is a random permutation.

Theorem 5. Let πpke = (Gen,Keygen,Encrypt,Decrypt) be an AI-CCA secure,
weakly robust and key-less reproducible PKE scheme. Let Σ be a strongly un-

forgeable one-time signature scheme. Then, ANOBE πpke,Σ
rr is adaptively ANO-

IND-CCA secure.

The proof for Theorem 5 (which is given in the full paper) is analogous to that
of Theorem 2, the only difference being the use of algorithm R in the simulation.

We have shown that the key-less reproducibility of a PKE scheme guaran-
tees that randomness can be re-used securely. We can exploit this property to
compress the ANOBE ciphertexts and, depending on the concrete instantia-
tion, significantly increase the efficiency of the scheme. More precisely, given
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an ANOBE πpke,Σ
rr ciphertext C = (VK, Cτ(1), . . . , Cτ(�), σ), let ccc denote the

common ciphertext components that may arise in Cτ(1), . . . , Cτ(�) from sharing
randomness across PKE components, i.e.,

Cτ(1) = (ccc, c̃τ(1)), . . . , Cτ(�) = (ccc, c̃τ(�)).

The compressed ANOBE ciphertext will be C̃ = (VK, ccc, c̃τ(1), . . . , c̃τ(�), σ).
Upon receipt, the user simply reconstitutes the original ciphertext C and runs
BE.Dec as usual. We explore instantiations of this idea in the full version.

7 Conclusions and Open Problems

In the context of broadcast encryption the main focus of research to date has been
on reducing ciphertext size. Achieving this has entailed sacrificing all anonymity
properties. Yet we have argued that anonymity is a fundamental property to
strive for in broadcast encryption. With the aim of highlighting the importance
of this overlooked feature, we have formally defined the notion of anonymous
broadcast encryption (ANOBE) and given several constructions for this primi-
tive. We have also shown how these constructions can be improved via anony-
mous hint systems (to optimize decryption performance) and randomness re-use
(to reduce the ciphertext size and the computational costs of encryption).

Much work still needs to be done in this area, from improving the efficiency of
ANOBE schemes to considering all the additional properties that can be found in
standard BE, such as traitor tracing, revocation, dynamism of users joining the
system, and realising them in the anonymous setting. There is still a gap between
the sizes of ciphertexts in state-of-the-art BE schemes and our ANOBE schemes.
This gap is hidden in the constants in an asymptotic evaluation of ciphertext
size (when the true size of ciphertexts is measured) but is nevertheless significant
in practice. A major challenge, then, is to further reduce the size of ciphertexts
in ANOBE, whilst maintaining its full anonymity properties.
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Abstract. In the standard setting of broadcast encryption, information
about the receivers is transmitted as part of the ciphertext. In several
broadcast scenarios, however, the identities of the users authorized to ac-
cess the content are often as sensitive as the content itself. In this paper,
we propose the first broadcast encryption scheme with sublinear cipher-
texts to attain meaningful guarantees of receiver anonymity. We for-
malize the notion of outsider-anonymous broadcast encryption (oABE),
and describe generic constructions in the standard model that achieve
outsider-anonymity under adaptive corruptions in the chosen-plaintext
and chosen-ciphertext settings. We also describe two constructions with
enhanced decryption, one under the gap Diffie-Hellman assumption, in
the random oracle model, and the other under the decisional Diffie-
Hellman assumption, in the standard model.

Keywords: Recipient Privacy, Broadcast Encryption, Anonymous IBE,
Subset Cover Framework.

1 Introduction

Conventional encryption provides the means for secret transmission of data in
point-to-point communication. The setting of broadcast encryption [1, 2], in-
stead, consists of a sender, an insecure unidirectional broadcast channel, and a
universe of receivers. When the sender wants to transmit some digital content,
it specifies the set of authorized receivers and creates an encrypted version of
the content. A secure broadcast encryption scheme enables legitimate receivers
to recover the original content, while ensuring that excluded users just obtain
meaningless data, even in the face of collusions.

The intrinsic access control capabilities of broadcast encryption schemes make
them a useful tool for many natural applications, spanning from protecting copy-
righted content distributed as stored media [3], to managing digital subscrip-
tions to satellite TV, to controlling access in encrypted file systems [4]. Thanks
to its versatility, broadcast encryption has received a lot of attention from the
crypto research community in recent years (see e.g., [5–14]). The quest, however,
has been for ever more efficient solutions in terms of broadcast communication,
key storage and encryption/decryption running time. Little attention, instead,
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has been devoted to the exploration of refined security models that accurately
account for the requirements inherent in multi-recipient communication. More
specifically, the focus has been on providing assurance for sender-oriented prop-
erties, while overlooking the security and privacy concerns of the receivers.

One problem with the above (informal) definition of broadcast encryption is
the implicit requirement that, whenever the digital content is encrypted and
sent in broadcast, information about the set of authorized receivers is necessary
to decrypt it correctly. Therefore, the set of authorized receivers is transmitted
as part of the ciphertext. This in particular implies that an eavesdropper, even
if unable to recover the message, can still easily discover the identities of the
actual receivers of the content. A way to address the privacy implications that
result from specifying explicitly the set of authorized receivers in the broadcast
is to use ephemeral IDs and to keep secret the table that associates such IDs
with the actual receivers. This simple solution, however, would at best result
in a pseudonym system, in which it is still possible to link pseudonyms across
transmissions and determine whether the same entity is an authorized receiver
for two different broadcasts.

Anonymous Broadcast Encryption. An interesting variant of the broadcast
encryption setting was proposed by Barth et al. in [15]. Therein, the authors
introduce the notion of private broadcast encryption scheme, explicitly aiming
to protect the identities of the receivers. As a proof-of-concept, they also suggest
both generic and number-theoretic public-key constructions that do not leak any
information about the list of authorized receivers, and are secure in the standard
model and in the random oracle model, respectively. The proposed schemes,
however, have communication complexity linear in the number of recipients. In
[16], Libert et al. recently suggested proof techniques to argue the security of (a
variant of) the number-theoretic construction of [15] without reliance on random
oracles, thus attaining anonymous broadcast encryption with efficient decryption
in the standard model. Still, ciphertexts in the resulting construction have length
linear in the number of recipients.

Krzywiecki et al. presented a private public-key broadcast encryption scheme
with communication complexity proportional to the number of revoked users [17].
The security analysis of the proposed solution is rather informal, however, so the
security guarantees are at best heuristic.

In [18], Yu et al. presented the first secret-key multicast scheme with mem-
bership anonymity and communication complexity independent of the number
of receivers. The proposed scheme not only hides the identities of the receives,
but also the number of users allowed to receive the content. A shortcoming is
that only a single user can be revoked for each broadcast.

A promising research line toward practical receiver-anonymous broadcast en-
cryption has recently been started by Jarecki and Liu [19]. The authors propose
the first construction of an efficient unlinkable secret handshake scheme, which is
an authenticated key exchange protocol providing affiliation/policy hiding (i.e.,
the transmission hides the affiliation and the identities of all parties) and unlink-
ability (i.e., it is impossible to link any two instances of the secret handshake
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protocol). The proposed construction can be seen as a stateful version of a public-
key broadcast encryption scheme, with the additional property of protecting the
receivers’ identities. Statefulness, however, implies that the key used to encrypt
the broadcasts changes for each transmission, and receivers need to keep track
of the changes to be able to recover the content.

An interesting trait of the of construction of [19] is that it trades some degree
of anonymity for better efficiency: while the receiver’s identities are hidden from
outsiders, the scheme still allows authorized users to learn information about
other members of the receiver set.

Our Contributions. In this paper we propose the first broadcast encryption
scheme with sublinear ciphertexts to achieve meaningful guarantees of receiver
anonymity. In particular, we formalize the notion of outsider-anonymous broad-
cast encryption (oABE), and describe a generic construction based on any anony-
mous identity-based encryption scheme (AIBE). Compared with the work of [19],
our construction has the advantage of being stateless, and with constant public
key size.

Additionally, by adapting the techniques of [15], we also obtain an efficient
construction with enhanced decryption, where for a given oABE ciphertext, the
decryption algorithm executes a single AIBE decryption operation. As outlined
in Table 1, by relaxing the anonymity guarantees, our constructions achieve
sublinear ciphertexts size and constant public key size.

Table 1. Comparison of the main efficiency parameters of our oABE scheme with [15]
and [16]. Our construction trades full anonymity (achieved by [15, 16]) for sublinear
ciphertexts and constant public key size.

Scheme PK Length SK Length CT Length Decryption Attempts

R
eg
u
la
r BBW06 [15] O (N) O (1) O (N − r) O (N − r)

LPQ11 [16] O (N) O (1) O (N − r) O (N − r)

Ours (oABE) O (1) O (logN) O (r log (N
r

)) O (r log (N
r

)
logN

)

E
n
h
a
n
ce
d BBW06 [15] O (N) O (1) O (N − r) 1

LPQ11 [16] O (N) O (1) O (N − r) 1

Ours (oABE) O (N) O (logN) O (r log (N
r

))
1

Organization. Section 2 provides a brief review of the Subset Cover Frame-
work [6] and of Anonymous Identity-Based Encryption [20, 21]. The setting of
outsider-anonymous broadcast encryption is introduced in Sect. 3. In Sect. 4 we
first present generic constructions in the standard model that achieve outsider-
anonymity under adaptive corruptions in the chosen-plaintext (Sect. 4.1) and
chosen-ciphertext (Sect. 4.2) settings. Next, we describe a CCA-secure construc-
tion with enhanced decryption (Sect. 4.3) under the gap Diffie-Hellman assump-
tion in the random oracle model, and outline how to extend it to the standard
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model, using the twin-DH-based techniques of [16]. Finally, we outline an op-
timization for the symmetric-key setting to accommodate storage-sensitive sys-
tems and attain constant key storage at the Center, while maintaining efficient
decryption and logarithmic storage at the receivers (Sect. 4.4).

2 Background

2.1 The Subset Cover Framework

The Subset Cover Framework proposed by Naor et al. [6] is an environment for
defining and analyzing the security of revocation schemes in the symmetric key
setting, where only the Center can broadcast. The main idea of this framework is
to define a collection S of subsets of the universe of users U = {1, . . . , N} in the
system, and assign each subset Sj ∈ S a long-lived key, which is also provided
to the users belonging to Sj . When broadcasting a message m, first the Center
determines the set of revoked users R, then it finds a set of disjoint subsets
C from the collection S that “covers” the set U\R of receivers, and finally it
encrypts the short-lived session key used to encrypt m under all the long-lived
keys associated with each subset in C.

In [6], the authors also provide two instantiations of revocation schemes in
the Subset Cover framework namely, the Complete Subtree (CS) method and
the Subset Difference (SD) method. In the CS method, the key assignment is
information-theoretic but the ciphertext is O

(
r log

(
N
r

))
long, whereas in the SD

method, the ciphertext length is O (2 r − 1) but the key assignment is computa-
tional, where r is the number of revoked users. Although the ciphertext length
of the CS method is asymptotically bigger than that of the SD method, we are
still interested in the CS method due to its information-theoretic key assignment
nature, which seems to be crucial for efficiently preserving the anonymity of the
receivers.

Complete Subtree (CS) Method. In the Complete Subtree (CS) method as
introduced in [6], the N users in the system are represented as the leaves of a
full binary tree T . Since this requires N to be a power of 2, dummy users are
added to the system in case N is not a power of 2. The collection S contains all
possible complete subtrees of T . More precisely, S contains a subtree for every
node vj ∈ T . Since there are 2N − 1 nodes in T , |S| = 2N − 1.

As for key assignment, every subtree in S is assigned a long-lived symmetric
key which is also made available to the users (leaves) of the given subtree. Since
any user ui, for 1 ≤ i ≤ N , is a member of all the subtrees rooted at each node
vj , for 1 ≤ j ≤ logN + 1, in the path from the root of T down to ui, the length
of the user secret key is O (logN).

The ciphertext length in the CS method is O
(
r log

(
N
r

))
due to the fact that

a logarithmic number of subtrees is required to exclude each of the r revoked
users (see [6] for further details).

Extension of the CS Method to the Public Key Setting. As mentioned
earlier, the original CS method applies in the symmetric key setting. Thus, only
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the Center can broadcast since only it knows all the long-lived keys associated
with each subtree in S. In [8], Dodis and Fazio extended the original CS method
to the public key setting by using a two step process.

The first step is a unique assignment of hierarchical identifiers (HID) to the
nodes in the full binary tree T as follows. First, assign the root of T a special ID,
which we refer to as Root. Then, assign each edge of T with ID 0 or 1 depending
on whether the edge connects its parent node to the left or right child. Now,
HIDj of any node vj ∈ T can be computed by concatenating all the edge IDs
starting from the root of T down to vj and then pre-pending the root ID at the
front. Since any prefix of HIDj of vj represents the valid HID of a parent node of
vj , for the simplicity of notation, we denote HIDi|j the prefix of the hierarchical
identifier HIDi of length j.

The second step is to use Identity-Based Encryption (IBE), further explained
in Sect. 2.2, to encrypt the short-lived session key during broadcast, essentially
porting the original CS method to the public key setting. This allows any user to
broadcast a message since the tree structure of the users T and the HIDs of the
roots of the subtrees of T are publicly known. In this setting, the Center acts as
the trusted authority to provide each user with the (logN + 1) IBE secret keys
of the HIDs of the roots of the subtrees of T that the user belongs to.

2.2 Anonymous Identity-Based Encryption (AIBE)

Identity-Based Encryption (IBE), originally proposed by Shamir in [22], is a
public key encryption scheme in which the user public key is an arbitrary bit-
string and the user secret key is generated by a trusted authority known as the
Private Key Generator (PKG) using its master key. The first implementation of
this scheme was given in [23] (further implementations can be found in [24–26]
to name a few).

An IBE scheme is called anonymous, formally called Anonymous Identity-
Based Encryption (AIBE), if an adversary cannot distinguish the public key
under which a ciphertext is generated. This notion of anonymity was first intro-
duced in [20]. Subsequent implementations can be found in [27] and [21]. Given
below is the formal definition of an AIBE scheme. We refer the reader to [20] for
further details including the formal definition of security.

Definition 1. An anonymous identity-based encryption (AIBE) scheme, asso-
ciated with a message space MSP, and a ciphertext space CSP, is a tuple of
probabilistic polynomial algorithms (Init,Ext,Enc,Dec) such that:

(PK,MSK)← Init(1λ): The initialization algorithm Init takes as input the secu-
rity parameter 1λ, and outputs the public key PK and the master secret key
MSK of the system.

ski ← Ext(PK,MSK, ID): The key extraction algorithm Ext takes as input the
public parameters PK, the master secret key MSK, and an identifier IDi ∈
{0, 1}∗. It outputs the secret key ski capable of decrypting ciphertexts in-
tended for the holder of the given identifier IDi.
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c← Enc(PK, ID,m): The encryption algorithm Enc algorithm takes as input the
public parameters PK, an identifier IDi ∈ {0, 1}∗, and a message m ∈ MSP.
It then outputs a ciphertext c ∈ CSP.

m/⊥ := Dec(PK, ski, c): Given a secret key ski and a ciphertext c ∈ CSP, the
decryption algorithm Dec either outputs a message m ∈ MSP or the failure
symbol ⊥. We assume that Dec is deterministic.

Correctness. For every IDi ∈ {0, 1}∗ and every m ∈ MSP, if ski is the secret
key output by Ext(PK,MSK, ID), then Dec(PK, ski,Enc(PK, ID,m)) = m.

Weakly Robust AIBE. The Robust Encryption, formalized by Abdalla et al.
[28], requires that it is hard to produce a ciphertext that is valid for two different
users. In [28], the authors define two types of robustness, strong and weak.
Informally, an AIBE scheme is called weakly robust, if any adversary has negligible
advantage in producing two identities ID0, ID1 and a message m such that the
encryption ofm under ID0 can be decrypted with the private key associated with
ID1 leading to a non-⊥ result. In [28], the authors also provide a transformation
algorithm which makes possible to obtain a weakly robust AIBE scheme from a
regular AIBE one.

3 Outsider-Anonymous Broadcast Encryption (oABE)

3.1 The Setting

Definition 2. An outsider-anonymous broadcast encryption (oABE) scheme,
associated with a universe of users U = {1, . . . , N}, a message space MSP,
and a ciphertext space CSP, is a tuple of probabilistic polynomial algorithms
(Setup,KeyGen,Encrypt,Decrypt) such that:

(PK,MSK)← Setup(1λ, N): The Setup algorithm takes as input the security pa-
rameter 1λ and the number of users in the system N . It outputs the public
key PK and the master secret key MSK of the system.

ski ← KeyGen(PK,MSK, i): The key generation algorithm KeyGen takes as in-
put the public parameters PK, the master secret key MSK, and a user i ∈ U .
It outputs the secret key ski of the user i.

c← Encrypt(PK, S,m): The Encrypt algorithm takes as input the public param-
eters PK, the set of receivers S ⊆ U , and a message m ∈ MSP. It then
outputs a ciphertext c ∈ CSP.

m/⊥ := Decrypt(PK, ski, c): Given a secret key ski and a ciphertext c ∈ CSP,
the Decrypt algorithm either outputs a message m ∈ MSP or the failure
symbol ⊥. We assume that Decrypt is deterministic.

Correctness. For every S ⊆ U , every i ∈ S, and every m ∈ MSP , if ski is the
secret key output by KeyGen(PK,MSK, i) then Decrypt(PK, ski, Encrypt(PK, S,
m)) = m.

Notice that the decryption algorithm in the above definition does not require
the set of recipients S as an input. We stress that this is crucial for providing
any level of anonymity in a broadcast encryption scheme.
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3.2 The Security Model

Degrees of Anonymity. The degree of recipient-set anonymity captured in
our security model, which we call outsider-anonymity, lies between the complete
lack of protection that characterizes traditional broadcast encryption schemes
as introduced in [2, 14], and the full anonymity provided in schemes such as
[15, 16]. In an oABE scheme, when the adversary receives a ciphertext of which
she is not a legal recipient, she will be unable to learn anything about the iden-
tities of the legal recipients (let alone the contents of the ciphertext). Still, for
those ciphertexts for which the adversary is in the authorized set of recipients,
she might also learn the identities of some the other legal recipients. This seems
a natural relaxation, since often the contents of the communication already re-
veals something about the recipient set. At the same time, our new intermediate
definition of security might allow the construction of more efficient anonymous
broadcast encryption schemes; for example, in Sect. 4 we describe the first broad-
cast encryption scheme with sub-linear ciphertexts that attains some meaningful
recipient-set anonymity guarantees.

CCA Security. We now present the security requirements for a broadcast en-
cryption scheme to be outsider-anonymous against chosen-ciphertext attacks
(CCA). First we define the CCA of an oABE scheme as a game, which we term
oABE-IND-CCA, played between a probabilistic polynomial time (PPT) adver-
sary A and a challenger C. The security requirement is that A’s advantage of
winning the oABE-IND-CCA game is negligible. The high-level idea of this game
is for any two sets of recipients S0, S1 ∈ U , A cannot distinguish between a
ciphertext intended for the recipient set S0 and a ciphertext intended for the
recipient set S1 given the fact that the A does not possess the secret key of any
user in S0∪S1. We require the two sets S0, S1 be the same size in order to avoid
trivial attacks. The formal definitions follow.

Definition 3. The oABE-IND-CCA game defined for an oABE scheme Π =
(Setup,KeyGen,Encrypt, Decrypt), a PPT adversary A, and a challenger C is as
follows:

Setup: C runs (PK,MSK)← Setup(1λ, N) and gives A the resulting public key
PK, keeping the master secret key MSK to itself. C also initializes the set of
revoked users Rev to be empty.

Phase 1: A adaptively issues queries q1, . . . , qm where each qi is one of the
following:

- Secret key query i: A requests the secret key of the user i ∈ U .
C runs ski ← KeyGen(PK,MSK, i) to generate the secret key ski of the
user i, adds i to Rev, and sends ski to A.

- Decryption query (i, c): A issues a decryption query where i ∈ U and
c ∈ CSP. First, C runs ski ← KeyGen(PK,MSK, i) to generate the secret
key ski of the user i. Then, it runs Decrypt(PK, ski, c) and gives the
output to A.
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Challenge: A gives C two equal length messages m0,m1 ∈MSP and two equal
length sets of user identities S0, S1 ⊆ U with the restriction that Rev∩ (S0 ∪
S1) = ∅. C picks a random bit b ∈ {0, 1}, runs c∗ ← Encrypt(PK, Sb,mb),
and sends c∗ to A.

Phase 2: A adaptively issues additional queries qm+1, . . . , qn where each qi is
one of the following:
- Secret key query i such that i �∈ S0 ∪ S1.
- Decryption query (i, c) such that, if i ∈ S0 ∪ S1, then c �= c∗.

In both cases, C responds as in Phase 1.
Guess: The A output a guess b′ ∈ {0, 1} and wins if b′ = b.

We refer to such an adversary A as an oABE-IND-CCA adversary. The ad-
vantage of A winning the above game is defined as,

AdvoABE-IND-CCA
A,Π =

∣∣Pr [b′ = b]− 1
2

∣∣
The probability is over the random bits used by the adversary A and the chal-
lenger C.

Definition 4. An oABE scheme Π = (Setup,KeyGen,Encrypt,Decrypt) is (t,
qsk, qd, ε)-secure if for any t-time oABE-IND-CCA adversary A making at most
qsk chosen secret key queries and at most qd chosen decryption queries, we
have that AdvoABE-IND-CCA

A,Π ≤ ε. As a shorthand, we say that Π is (t, qsk, qd, ε)-
oABE-IND-CCA secure.

CPA Security. The chosen plaintext attack (CPA) of an oABE scheme is defined
similar to the oABE-IND-CCA game with the restriction that the adversary is
not allowed to issue any decryption queries during Phase 1 and Phase 2. The
adversary is still allowed to issue secret key queries. The CPA security game is
termed oABE-IND-CPA.

Definition 5. An oABE scheme Π = (Setup,KeyGen,Encrypt,Decrypt) is (t,
qsk,ε)-oABE-IND-CPA secure if Π is (t, qsk, 0, ε)-oABE-IND-CCA secure.

Remark 1. Our definition of security of an outsider-anonymous broadcast en-
cryption scheme can be easily transformed to a definition of security of a fully
anonymous broadcast encryption scheme by changing the restriction in the chal-
lenge phase, which is currently Rev ∩ (S0 ∪ S1) = ∅, to Rev ∩ (S0 ) S1) = ∅.1

4 Our Constructions

We now present a CPA secure construction and two CCA secure constructions
of outsider-anonymous broadcast encryption (oABE) schemes. In a nutshell, the
key point of our constructions is to combine an anonymized version of the public-
key extension by Dodis and Fazio [8] of the CS method by Naor et al. [6] with a

1 For any two sets S0, S1, their symmetric difference is denoted by S0 � S1.
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fully secure weakly robust AIBE scheme such as [21]. Notice that our approach
can be seen as a framework for achieving an oABE scheme by using any weakly
robust AIBE scheme as an underlying primitive.

The ciphertext length in all constructions isO
(
r log

(
N
r

))
times the ciphertext

length of the underlying AIBE scheme, and the user secret key length is O (logN)
times the user secret key length of the underlying AIBE scheme, where r is the
number of revoked users and N is the total number of users in the system.

We provide two generic public-key constructions: a CPA secure construction
in Sect. 4.1 and a CCA secure construction in Sect. 4.2. The limitation with
both of these constructions is that on average, the Decrypt algorithm attempts
O

(
r log

(
N
r

)
logN

)
decryption operations of the underlying AIBE scheme. In

Sect. 4.3, we present an optimized CCA secure construction in which for a given
oABE ciphertext, the Decrypt algorithm executes a single AIBE decryption oper-
ation.

4.1 A Generic CPA Public-Key Construction

Given a weakly robust AIBE scheme Π ′ = (Init,Ext,Enc,Dec), we construct an
oABE scheme Π = (Setup,KeyGen,Encrypt,Decrypt) as follows. Let T denote
the binary tree of N users in the system with respect to the CS method. For
simplicity, we assume below that N = 2n.

Setup(1λ, N): Obtain (PK′,MSK′) ← Init(1λ). Output the PK and MSK as
follows,

PK = (PK′, N) MSK = MSK′

KeyGen(PK,MSK, i): Let HIDi = (Root, ID1, . . . , IDn) be the hierarchical iden-
tifier associated with the user i in the binary tree T . For j = 1 to n + 1,
compute ski,j ← Ext(PK′,MSK′,HIDi|j). Output the secret key ski of the
user i as follows,

ski = (ski,1, . . . , ski,n+1)

Encrypt(PK, S,m): Let Cover be the family of subtrees covering the set of re-
ceivers S according to the CS method. For each subtree Tj in Cover, let HIDj

be the hierarchical identifier associated with the root of Tj . Let l = |Cover|,
r = N − |S| and L =

⌊
r log

(
N
r

)⌋
.

For 1 ≤ j ≤ l, compute cj ← Enc(PK′,HIDj ,m). Choose m̃
$←MSP .

For l + 1 ≤ j ≤ L, compute cj ← Enc(PK′, dummy, m̃), where dummy is a
special identifier used to obtain padding ciphertext components. Output the
ciphertext c as follows,

c =
(
cπ(1), . . . , cπ(L)

)
where π : {1, . . . , L} → {1, . . . , L} is a random permutation.2

2 For the simplicity of exposition, our construction encrypts the actual message m.
The ciphertext length could be further reduced by using a hybrid encryption where
m is encrypted using a symmetric key encryption algorithm with a symmetric key
k, and k is then encrypted using the oABE scheme.
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Decrypt(PK, ski, c): Parse the secret key ski as the tuple (ski,1, . . . , ski,n+1) and
the ciphertext c as the tuple (c1, . . . , cL). For k = 1 to n+ 1,

1. For j = 1 to L,
(a) Compute m← Dec(PK′, ski,k, cj).
(b) If m �= ⊥, return m. Otherwise, continue to next j.

2. If k = n+ 1, return ⊥. Otherwise, continue to next k.

The correctness of this CPA secure generic public-key construction follows from
the correctness of the underlying AIBE scheme. In Theorem 1 (whose proof is
provided in Appendix A.1), we establish the security of the above generic public-
key construction based on the security of the underlying AIBE scheme.

Theorem 1. If Π ′ = (Init,Ext,Enc,Dec) is (t, qsk, ε)-AIBE-IND-CPA secure,
then the above construction is

(
t, qsk, 2 ε r log

(
N
r

))
-oABE-IND-CPA secure.

Parameters. When the above construction is instantiated with Gentry’s Fully
Secure IBE scheme in the CPA setting [21], we obtain the following parameter
lengths. MSK is just one element in Zp and the integer N . PK is only 3 group
elements in G. The user secret key consists of (logN + 1) elements in Zp and
(logN + 1) elements in G. The ciphertext consists of

⌊
r log

(
N
r

)⌋
elements in G

and 2
⌊
r log

(
N
r

)⌋
elements in GT. Also notice that the Enc algorithm in Gentry’s

AIBE scheme does not require any pairing computations since they can be pre-
computed.

4.2 A Generic CCA Public-Key Construction

Given a weakly robust AIBE scheme Π ′ = (Init,Ext,Enc,Dec) and a strongly
existentially unforgeable one-time signature scheme Σ = (Sig-Gen, Sign, Vrfy),
we construct an oABE scheme Π = (Setup,KeyGen,Encrypt,Decrypt) as follows.
Let T denote the binary tree of N users in the system with respect to the CS
method. For simplicity, we assume below that N = 2n.

Setup(1λ, N): Obtain (PK′,MSK′) ← Init(1λ). Output the PK and MSK as
follows,

PK = (PK′, N) MSK = MSK′

KeyGen(PK,MSK, i): Let HIDi = (Root, ID1, . . . , IDn) be the hierarchical iden-
tifier associated with the user i in the binary tree T . For j = 1 to n + 1,
compute ski,j ← Ext(PK′,MSK′,HIDi|j). Output the secret key ski of the
user i as follows,

ski = (ski,1, . . . , ski,n+1)

Encrypt(PK, S,m): Generate (VK, SK)← Sig-Gen(1λ). Let Cover be the family
of subtrees covering the set of receivers S according to the CS method. For
each subtree Tj in Cover, let HIDj be the hierarchical identifier associated
with the root of Tj .
Let l = |Cover|, r = N − |S| and L =

⌊
r log

(
N
r

)⌋
.
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For 1 ≤ j ≤ l, compute cj ← Enc(PK′,HIDj ,VK||m). Let m̃ be a ran-
dom string of the same length as VK||m. For l + 1 ≤ j ≤ L, compute
cj ← Enc(PK′, dummy, m̃), where dummy is a special identifier used to obtain
padding ciphertext components. Compute the ciphertext c as follows,

c =
(
cπ(1), . . . , cπ(L)

)
where π : {1, . . . , L} → {1, . . . , L} is a random permutation.
Generate σ ← SignSK(VK||c), and output C = σ||c.

Decrypt(PK, ski, C): Parse the secret key ski as the tuple (ski,1, . . . , ski,n+1)
and the ciphertext C as the tuple σ|| (c1, . . . , cL). For k = 1 to n+ 1
1. For j = 1 to L

(a) Compute m′ ← Dec(PK′, ski,k, cj).
(b) If m′ �= ⊥, parse m′ = VK||m, and return m if Vrfy(VK, σ,VK||c).

Otherwise, continue to next j.
2. If k = n+ 1, return ⊥. Otherwise, continue to next k.

The correctness of this CCA secure generic public-key construction follows from
the correctness of the underlying Σ and AIBE schemes. Next, in Theorem 2
(whose proof is provided in the full version of this paper [29]), we establish the
security of the above generic public-key construction based on the security of
the underlying Σ and AIBE schemes.

Theorem 2. If Σ = (Sig-Gen, Sign,Vrfy) is (t, ε1)-strongly existentially un-
forgeable and Π ′ = (Init, Ext, Enc, Dec) is (t, qsk, qd, ε2)-AIBE-IND-CCA secure,
then the above construction is (t, qsk, qd, 2(ε1 + ε2) r log

(
N
r

)
)-oABE-IND-CCA

secure.

Parameters. The parameter lengths of the above construction when instan-
tiated with Gentry’s Fully Secure IBE scheme in the CCA setting [21] are as
follows. MSK is one element in Zp and the integer N . PK consists of 5 group
elements in G and the definition of a hash function H from a family of universal
one-way hash functions. The user secret key consists of 3(logN + 1) elements
in Zp and 3(logN + 1) elements in G. The ciphertext consists of

⌊
r log

(
N
r

)⌋
elements in G and 3

⌊
r log

(
N
r

)⌋
elements in GT. Similar to Gentry’s CPA secure

AIBE construction, the Enc algorithm in the CCA secure construction does not
require any pairing computations since they can be pre-computed.

4.3 An Enhanced CCA Public-Key Construction

The main limitation of our generic public-key constructions is the running time of
the decryption algorithm. As described in the opening paragraphs of Sect. 4, de-
cryption amounts to performing O

(
r log

(
N
r

)
logN

)
AIBE decryption attempts

on average. The root cause behind this limitation is the decryption process’s
inability to identify the correct AIBE ciphertext component efficiently. In this
section, we describe an enhancement of our generic public-key construction un-
der the gap Diffie-Hellman assumption, in the random oracle model. The main
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idea of this enhancement is to adapt the techniques of [15] to the structure of
our ciphertexts and attach a unique tag to each AIBE ciphertext component of a
given oABE ciphertext. With this optimization, the Decrypt algorithm is able to
identify the correct AIBE ciphertext component via a linear search through the
whole oABE ciphertext components, at which point a single AIBE decryption
operation suffices to recover the original plaintext. This yields an asymptotic
decryption time of O

(
r log

(
N
r

)
logN

)
, but in fact this is in a sense an overesti-

mate, since the cost of searching for the correct ciphertext component is much
less than carrying out multiple decryption attempts.

Given a weakly robust AIBE scheme Π ′ = (Init,Ext,Enc,Dec) and a strongly
existentially unforgeable one-time signature scheme Σ = (Sig-Gen, Sign,Vrfy),
we construct an optimized oABE scheme Π = (Setup,KeyGen,Encrypt,Decrypt)
as follows. Let T denote the binary tree of N users in the system with respect
to the CS method. For simplicity, we assume below that N = 2n. Let G = 〈g〉 be
a group with prime order q > 2λ in which CDH is hard and DDH is easy, where
g is a group generator. Let H ′ : G → {0, 1}λ be a cryptographic hash function
that will be modeled as a random oracle in the security analysis.

Setup(1λ, N): Obtain (PK′,MSK′)← Setup′(1λ). For each node (with the hier-

archical identifier HID) in T , draw aHID
$← Z∗

q , and compute yHID = gaHID .
Output the PK and MSK as follows,

PK =
(
PK′, N,G, g, {yHID}HID∈T

)
MSK =

(
MSK′, {aHID}HID∈T

)
KeyGen(PK,MSK, i): Let HIDi = (Root, ID1, . . . , IDn) be the hierarchical iden-

tifier associated with the user i in the binary tree T . For j = 1 to n + 1,
set ski,j = aHIDi|j , and compute ski,j ← Init(PK′,MSK′,HIDi|j). Output the
secret key ski of the user i as follows,

ski =
((
ski,1, ski,1

)
, . . . ,

(
ski,n+1, ski,n+1

))
Encrypt(PK, S,m): Generate (VK, SK)← Sig-Gen(1λ). Let Cover be the family

of subtrees covering the set of receivers S according to the CS method. For
each subtree Tj in Cover, let HIDj be the hierarchical identifier associated
with the root of Tj .

Let l = |Cover|, r = N−|S| and L =
⌊
r log

(
N
r

)⌋
. Draw s

$← Z∗
q , and compute

c0 = gs.
For 1 ≤ j ≤ l, compute cj = H ′(ysHIDj

), cj ← Enc(PK′,HIDj ,VK||ysHIDj
||m).

Let m̃ be a random string of the same length as VK||c0||m. For l+1 ≤ j ≤ L,

set sj
$← Z∗

q , and compute cj = H ′(gsj ), cj ← Enc(PK′, dummy, m̃), where
dummy is a special identifier used to obtain padding ciphertext components.
Compute the ciphertext c as follows,

c =
(
c0,

(
cπ(1), cπ(1)

)
, . . . ,

(
cπ(L), cπ(L)

))
where π : {1, . . . , L} → {1, . . . , L} is a random permutation. Generate σ ←
Sign(SK,VK||c), and output C = σ||c.
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Decrypt(PK, ski, c): Parse the secret key ski as the tuple ((ski,1, ski,1), . . . ,
(ski,n+1, ski,n+1)) and the ciphertext C as the tuple (σ|| c0, (c1, c1), . . . ,
(cL, cL)).
1. For k = 1 to n+ 1

(a) Compute yk = H ′(c
ski,k

0 )
2. Check whether ∃ k ∈ [1, n+ 1], ∃ j ∈ [1, L] such that yk = cj

(a) If suitable k, j exist, compute m′ ← Dec(PK′, ski,k, cj). Parse m
′ as

VK||x||m and return m if x = c
ski,k

0 and Vrfy(VK, σ,VK||c).
(b) Otherwise, return ⊥.

Notice that the check in Step 2. can be performed in expected time O (n+ L)
= O (L), e.g., using a hash table HT to compute the intersection between
{yk}k∈[1,n+1] and {cj}j∈[1,L] as follows:

a. Initialize HT to be empty.
b. For k = 1 to n+ 1

– Insert (yk, k) in HT.
c. For j ∈ 1 to L

– Look up an entry of the form (cj , k) in HT. If found, return k.

Theorem 3. If Σ = (Sig-Gen, Sign,Vrfy) is (t, ε1)-strongly existentially un-
forgeable, Π ′ = (Init, Ext, Enc, Dec) is (t, qsk, qd, ε2)-AIBE-IND-CCA secure, and
CDH is (t, ε3)-hard in G and DDH is efficiently computable in G, then the above
construction is (t, qsk, qd, 2(ε1 + ε2 + ε3) r log

(
N
r

)
)-oABE-IND-CCA secure, in

the random oracle model.

Proof. The proof follows the same structure of the proof for Theorem 2. We
defer the details to the full version of this paper [29].

Remark 2. Using the twin Diffie-Hellman methodology [30] via techniques simi-
lar to [16], it is possible to modify the enhanced CCA construction of Sect. 4.3 to
get an outsider-anonymous broadcast encryption scheme that is adaptively CCA
secure, in the standard model, under the decisional Diffie-Hellman assumption.
We defer the details to the full version of the paper [29].

4.4 An Enhanced CCA Symmetric-Key Construction

The enhanced CCA public key construction achieves a major performance gain
in the Decrypt algorithm compared to the generic CCA construction, but it also
changes the length of the public key from O (1) to O (N). This increase in pub-
lic key length may not be a concern for many practical constructions, since the
public key can be stored as a static data file on a server on the Internet and also
in users’ computers. Still, for the symmetric-key setting it is possible to accom-
modate storage-sensitive systems and attain constant key storage at the Center,
while maintaining efficient decryption and logarithmic storage at the receivers.

In particular, recall from Sect. 2.1 that in the symmetric-key setting, only the
Center can broadcast messages to the receivers. Thus, the O (N) information
from which the tags for efficient decryption are created does not need to be



238 N. Fazio and I.M. Perera

published. Therefore, this information can be compressed into O (1) key storage
using a standard trick based on any length-tripling pseudo-random number gen-
erator G (cf. e.g., the SD method of Naor et al. [6]). In other words, the random
exponents associated with the subtrees of T (cf. Sect. 4.3) are now pseudo-
randomly generated from a single seed, by repeated invocations of G on the left
or right third of the result of the previous iteration, based on the path to the
root of the subtree at hand. Finally, upon reaching the subtree root, the middle
third of the pseudorandom output is used to generate the required exponent.

5 Conclusions and Future Work

In this work, we introduced the notion of outsider-anonymity in the broadcast
encryption setting and showed that it enables efficient constructions of broad-
cast encryption schemes with sublinear communication complexity and mean-
ingful anonymity guarantees. It remains an interesting open problem to con-
struct receiver-anonymous broadcast encryption schemes that at once afford full
anonymity to the receivers and attain performance levels comparable to those
of standard broadcast encryption systems.
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A Security Proofs

For ease of reference, we report below some notation that will be used in the
proofs presented in this section.

Notation. U = {1, . . . , N} is the universe of users. T denotes the binary tree
of N users in the system with respect to the CS method. Let r be the number of
revoked users and L =

⌊
r log

(
N
r

)⌋
. For b ∈ {0, 1}, let Sb be the set of authorized

receivers chosen by the adversary in the challenge phase (|S0| = |S1|). Coverb
is the family of subtrees covering the set Sb according to the CS method. Let
lb = |Coverb|. For each subtree T b

j in Coverb, let HID
b
j be the hierarchical identifier

associated with the root of T b
j where 1 ≤ j ≤ lb.

A.1 Proof of Theorem 1

Theorem 1. If Π ′ = (Init,Ext,Enc,Dec) is (t, qsk, ε)-AIBE-IND-CPA secure, then
the above construction is

(
t, qsk, 2 ε r log

(
N
r

))
-oABE-IND-CPA secure.

Proof. We organize our proof as a sequence of games, Game00, . . . ,Game0l0 ≡
Game1l1 , . . . ,Game10, between the adversary A and the challenger C. In the first
game (Game00), A receives an encryption of m0 for S0 and in the last game
(Game10), A receives an encryption of m1 for S1.

Game00: corresponds to the game given in Definition 5 when the challenge bit
b is fixed to 0. The interaction between A and C during Setup, Phase 1, and
Phase 2 follow exactly as specified in the construction Π given in Sect. 4.1.
During Challenge, A gives C two equal length messages m0,m1 ∈MSP and
two equal length sets of user identities S0, S1 ⊆ U with the restriction that
Rev ∩ (S0 ∪ S1) = ∅, where Rev is the set of users that A corrupted during
Phase 1. C computes the challenge ciphertext c∗, which will subsequently be
sent to A, as follows,
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1. For j = 1 to l0, compute cj ← Enc(PK′,HID0
j ,m0).

2. Choose m̃
$←MSP .

3. For j = l0 + 1 to L, compute cj ← Enc(PK′, dummy, m̃).
4. Set c∗ =

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a ran-

dom permutation.
Eventually, A outputs a bit b′ and wins if b′ = 0.

Game0h (1 ≤ h ≤ l0): is similar to Game0h−1, but C computes the challenge ci-
phertext c∗ as follows,
1. For j = 1 to l0 − h, compute cj ← Enc(PK′,HID0

j ,m0).

2. Choose m̃
$←MSP .

3. For j = l0 − h+ 1 to L, compute cj ← Enc(PK′, dummy, m̃).
4. Set c∗ =

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a ran-

dom permutation.
At the end, A outputs a bit b′ and wins if b′ = 0.

Game1l1: is identical to Game0l0
Game1k (0 ≤ k < l1): is similar to Game1k+1, but the challenge ciphertext c∗ is

now computed by C as,
1. For j = 1 to l1 − k, compute cj ← Enc(PK′,HID1

j ,m1).

2. Choose m̃
$←MSP .

3. For j = l1 − k + 1 to L, compute cj ← Enc(PK′, dummy, m̃).
4. Set c∗ =

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a ran-

dom permutation.
Finally, A outputs a bit b′ and wins if b′ = 0.

For 0 ≤ i ≤ l0 and 0 ≤ j ≤ l1, let Adv0,iA,Π and Adv1,jA,Π denote A’s advantage

of winning Game0i and Game1j respectively. In Lemma 1, we show that if the
underlying AIBE scheme is (t, qsk, ε)-AIBE-IND-CPA secure, then A’s advantage
of distinguishing Game0h−1 from Game0h is at most ε. Similarly, Lemma 2 states

that under similar conditions A’s advantage of distinguishing Game1k+1 from

Game1k is at most ε. Therefore, we have,∣∣∣Adv0,0A,Π − Adv1,0A,Π

∣∣∣ ≤ ε (l0 + l1)

≤ 2 ε L

≤ 2 ε r log

(
N

r

)
.

Lemma 1. For 1 ≤ h ≤ l0, if the underlying AIBE scheme Π ′ is (t, qsk, ε)-
AIBE-IND-CPA secure, then A’s adv. of distinguishing Game0h−1 from Game0h is
at most ε: ∣∣∣Adv0,h−1

A,Π − Adv0,hA,Π

∣∣∣ ≤ ε.

Proof. We build a PPT adversary B that runs the AIBE-IND-CPA game with its
challenger C′ as follows. First, B receives the public key PK′ of the AIBE scheme
from C′. Next, B internally executes the oABE-IND-CPA game with A in order
to gain advantage in the AIBE-IND-CPA game. The specifics of the interaction
between C′, B, and A are given below.
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Setup: B forwards PK′ to A. B also initializes the set of revoked users Rev to
be empty.

Phase 1: When A invokes a secret key query for user i, first, B computes HIDi,
which is the hierarchical identifier associated with the user i in the binary
tree T . Next, for j = 1 to n+1, B obtains the secret key ski,j of the identity
HIDi|j from its challenger C′. After adding i to Rev, B sends to A the secret
key of the user i as ski = (ski,1, . . . , ski,n+1).

Challenge: B receives from A two equal length messages m0,m1 ∈MSP and
two equal length sets of user identities S0, S1 ⊆ U with the restriction that

Rev ∩ (S0 ∪ S1) = ∅. B draws m̃
$←MSP and computes the components of

its challenge query as follows,

id′0 = HID0
l0−h+1, id′1 = dummy m′

0 = m0, m′
1 = m̃

Observe that the condition Rev ∩ (S0 ∪ S1) = ∅, together with the key
assignment strategy of the CSmethod guarantees that the identity id′0 hadn’t
been queried to B’s extraction oracle, and thus this is a valid challenge query
to C′.
B sends the two identities id′0, id

′
1 and the two messages m′

0,m
′
1 as the

challenge query to C′. C′ picks a random bit b ∈ {0, 1} and sends c∗′ ←
Enc(PK′, id′b,m

′
b) to B.

Finally, B computes the challenge ciphertext c∗, which is eventually sent to
A, as follows,
1. For j = 1 to l0 − h, compute cj ← Enc(PK′,HID0

j ,m0).

2. Set cl0−h+1 = c∗′.
3. For j = l0 − h+ 2 to L, compute cj ← Enc(PK′, dummy, m̃).
4. Set c∗ =

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a ran-

dom permutation.
Phase 2: This phase is handled similarly to Phase 1 with the usual restriction

that A does not invoke a secret key query i such that i ∈ S0 ∪ S1.
Guess: A outputs a guess b′ and B passes this bit as its guess for b to C′.
Observe that, by construction, it holds that if C′ chooses b = 0, then B is
playing Game0h−1, whereas if b = 1, then B is playing Game0h. Therefore, B’s
AIBE-IND-CPA advantage is equivalent toA’s advantage in distinguishing Game0h−1

from Game0h. More formally,∣∣∣Adv0,h−1
A,Π − Adv0,hA,Π

∣∣∣ = AdvAIBE-IND-CPA
B,Π′ ≤ ε.

Lemma 2. For 0 ≤ k < l1, if the underlying AIBE scheme Π ′ is (t, qsk, ε)-
AIBE-IND-CPA secure, then A’s adv. of distinguishing Game1k+1 from Game1k is
at most ε. More precisely, ∣∣∣Adv1,k+1

A,Π − Adv1,kA,Π

∣∣∣ ≤ ε.

Proof. The argument is analogous to the proof of Lemma 1, and is therefore
omitted.
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Abstract. In this paper, we focus on verifiability of predicate encryp-
tion. A verifiable predicate encryption scheme guarantees that all le-
gitimate receivers of a ciphertext will obtain the same message upon
decryption. While verifiability of predicate encryption might be a desir-
able property by itself, we furthermore show that this property enables
interesting applications.

Specifically, we provide two applications of verifiable predicate en-
cryption. Firstly, we show that for a large class of verifiable predicate
encryption schemes, it is always possible to convert a chosen-plaintext
secure scheme into a chosen-ciphertext secure one. Secondly, we show
that a verifiable predicate encryption scheme allows the construction of
a deniable predicate authentication scheme. This primitive enables a user
to authenticate a message to a verifier using a private key satisfying a
specified relation while at the same time allowing the user to deny ever
having interacted with the verifier. This scheme furthermore guarantees
the anonymity of the user in the sense that the verifier will learn nothing
about the user’s private key except that it satisfies the specified relation.

Lastly, we show that many currently known predicate encryption
schemes already provide verifiability, and furthermore demonstrate that
many predicate encryption schemes which do not provide verifiability,
can be easily converted into schemes providing verifiability.

Our results not only highlight that verifiability is a very useful prop-
erty of predicate encryption, but also show that efficient and practical
schemes with this property can be obtained relatively easily.

1 Introduction

In many practical data transmission systems, we often encounter situations in
which a sender would like to securely transmit data to a set of users satisfying
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certain criteria. To address this, several frameworks and concrete instantiations
providing encryption with multiple receivers have been proposed in the literature.
Examples of such frameworks include broadcast encryption (BE) [8,35], spa-
tial encryption [9,2], and ciphertext-policy/key-policy attribute-based encryp-
tion (CP/KP-ABE) [17,7,36,22,21,28]. All of the above mentioned schemes can
be seen as special cases of predicate encryption (PE) which is a new emerg-
ing paradigm for public key encryption that allows a fine-grained access control
mechanism to be specified for encrypted data. More specifically, in an PE scheme
for relation R, a ciphertext will be associated with a ciphertext attribute Y while
a private key corresponds to key attribute X , and the decryption can be done
only if the relation R(X,Y ) is satisfied. In this paper, we consider a wide class
of relations which covers the above mentioned special cases.

Previous works on PE have mainly focused on security properties regarding
privacy, namely message privacy (also referred to as payload hiding) and ci-
phertext attribute hiding (also referred to as anonymity). The former captures
the property that a ciphertext with attribute X reveals no information about
the encrypted messages if one does not possess a key with attribute Y such that
R(X,Y ) is satisfied. The latter captures the property that for anyone in the pos-
session of a private key with attribute X ′, a ciphertext reveals no information
about the ciphertext attribute Y other than what is implied by R(X ′, Y ).

In this paper, we focus on verifiability of PE and the applications of PE
schemes providing this property. If an PE scheme provides verifiability, it is
guaranteed that all legitimate receivers of a ciphertext will obtain the same
message upon decryption i.e. for a ciphertext with attribute Y , the decryption
using two different private keys corresponding to attributes X and X ′ where
both R(X,Y ) and R(X ′, Y ) are satisfied, will always yield the same message.
Verifiability in itself is arguably a useful property and might even be required
for some applications. For example, in pay-per-view systems, receivers might
demand to be able to confirm that decryption results among all paying receivers
are identical, especially in the case the decryption result is different from the
expected. This property is guaranteed if an PE scheme with verifiability is used
to broadcast data to the receivers.

However, besides guaranteeing consistency of the decryption results among
all legitimate receivers, verifiability will furthermore enable interesting applica-
tions of PE schemes providing this property. In this paper, we show two specific
applications of verifiable predicate encryption (VPE). More specifically, firstly
we show that it is always possible to convert an arbitrary chosen-plaintext se-
cure (CPA-secure) VPE with an arbitrary flavor into chosen-ciphertext secure
(CCA-secure) one with the same flavor. For example, if it is possible to show
that a CPA-secure spatial encryption scheme provides verifiability (this is, for
example, the case for the spatial encryption scheme presented in [9]), we imme-
diately obtain a CCA-secure spatial encryption scheme. One might think that
this can easily be achieved by applying the Canetti-Halevi-Katz [12,10] tech-
nique. However, it is unclear whether this technique can be adapted to PE in
general, and specifically, for concrete special cases of PE such as inner product
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encryption and broadcast encryption, the Canetti-Halevi-Katz technique cannot
be applied in a straight forward manner. The method applied in our conversion
is closer related to the Naor-Yung technique [26]. We also remark that the tech-
niques presented in this paper can be seen as a non-trivial generalization of the
technique presented in [37].

Secondly, we show that a VPE scheme allows the construction of an anony-
mous deniable predicate authentication (ADPA) scheme. This primitive enables
a user to prove to a verifier that he is the owner of a private key corresponding
to a specific set of attributes while at the same time being able to deny ever hav-
ing interacted with the verifier. More specifically, for a ciphertext attribute Y ,
possibly chosen at the time of authentication, a user can authenticate a message
to a verifier using a private key with attribute X such that R(X,Y ) is satisfied.
The deniability property furthermore guarantees that the verifier’s view of the
communication can be produced a posteriori without the knowledge of the pri-
vate key corresponding to X . Hence, the transcript of the interaction cannot be
used as evidence of the user authenticating the message to the verifier, and the
user will be able to deny ever having done so. ADPA will furthermore guarantee
anonymity of the user in the sense that the verifier will not be able to determine
the attribute X of the private key of the user, but will only be able to verify
that R(X,Y ) is satisfied. In other words, the verifier will be able to confirm
that the user belongs to the set of users to which the key authority issued a
key with property X such that R(X,Y ) is satisfied. This anonymity property is
guaranteed to hold even if verifier collude with the authority issuing the private
keys of the users. While not being directly comparable, this is reminiscent of the
properties provided by anonymous credentials which allows a user to demon-
strate knowledge of a credential issued by an authority, but without revealing
his identity.

Lastly, we show that many concrete PE schemes already provide verifiabil-
ity, and furthermore demonstrate that many PE schemes which do not provide
verifiability, can be easily converted into schemes providing verifiability. Our con-
version techniques are applicable to a wide range of (non-verifiable) PE schemes.
As examples, we briefly discuss how Waters BE scheme [35], Attrapadung-Libert
inner product encryption (IPE) scheme and spatial encryption scheme [1], and
Okamoto-Takashima KP-ABE schemes [28] can be transformed into schemes
providing verifiability by introducing only simple modifications. This shows that
efficient and practical VPE scheme can be constructed, which, due to the results
presented in this paper, implies that efficient and CCA-secure variants of these
schemes can be obtained as well.

Related Works on PE. In its simplest form, PE corresponds to id-based
encryption [5,4,34]. Sahai and Waters [33] proposed the first ABE system with
much more expressive relations called Fuzzy IBE. It was subsequently general-
ized to support general access policies by [17,7,29,22]. These results are proved
secure in a weak model called selective security. The first fully-secure ABE sys-
tems were given by Lewko et al. [21] and Okamoto and Takashima [28], fol-
lowing the general dual-system encryption methodology introduced in [35,24].
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When efficiency is the main consideration, the first system with constant-size
ciphertexts and with reasonably expressive policies was proposed by Boneh and
Hamburg [9], where a system called spatial encryption was presented. A fully-
secure scheme for spatial relations was then proposed by Attrapadung and Lib-
ert [2], where its extension to support inner-product, of which many applications
such as CNF/DNF formulae policy expressions as described in [20], was also
given. All the aforementioned systems so far do not concern the security property
regarding the privacy of ciphertext attributes. The first attribute-hiding predi-
cate encryption, or equivalently known as functional encryption was suggested
by Boneh and Waters [11] and generalized by Katz, Sahai, and Waters [20] to
support inner product relations. These attribute-hiding systems were recently
made fully secure in [21,28].

Related Works on Deniable Authentication. The formal treatment of
deniability for public key authentication was initiated by Dwork, Naor and Sa-
hai in their paper on concurrent zero-knowledge[13], followed by a series of pa-
pers [25,30,31]. In [13], Dwork et al. propose a deniable authentication protocol
based on a CCA-secure encryption scheme. Naor [25] later extended the work
by Dwork et al., and introduced the concept of deniable ring authentication by
combining the approach of Dwork et al. and the paradigm of ring signatures pro-
posed by Rivest et al. [32]. In a deniable ring authentication, a member of a ring
can authenticate a message in a deniable way to a receiver. Another approach
not relying on CCA-secure encryption scheme was proposed by Raimondo and
Gennaro [31]. They successfully eliminate the need for CCA-secure encryption
by using another primitive, i.e., multi-trapdoor commitments [14]. It should be
noted that all these works are in the plain model. Meanwhile, Pass in [30] inves-
tigates the possibility of constructing deniable zero-knowledge protocols in the
non-plain models, i.e., the common reference string model and random oracle
model. Pass shows an impossibility result regarding the construction of non-
trivial deniable zero-knowledge protocols in the common reference string model,
and a positive result, in the random oracle model, regarding the construction of
efficient deniable zero-knowledge arguments of knowledge which preserve both
the zero-knowledge property and the proof of knowledge property under concur-
rent executions.

Notations. a
$← A denotes the action of picking a from uniform random distri-

bution over A. negl(λ) denotes negligible function in λ. A
c≈ B denotes A and B

are computationally indistinguishable. [A(x)] for randomized algorithm A and
its input x denotes a set {y|Pr[A(x) = y] �= 0}.

2 Definition of Verifiable Predicate Encryption

In this section we introduce the definition and security notion for PE, and fur-
thermore introduce verifiability. Note that our definition of verifiability is similar
but slightly different from the definitions given in [37]. More specifically, the defi-
nition given in [37] explicitly requires a Verify algorithm, whereas our definition
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defines verifiability as a property of the decryption algorithm. Thus, our defi-
nition of the verifiability is more similar to that of [18]. We also note that our
definition of verifiability is orthogonal to the notion defined in [6].

2.1 Definition of Predicate Encryption

Here, we define the notion of predicate encryption.

Syntax. Let R = {Rn : An×Bn → {0, 1} | n ∈ N} be a relation family where An

and Bn denote “key attribute” and “ciphertext attribute” spaces. A predicate
encryption (PE) scheme for R consists of the following algorithms:
Setup(λ, n)→ (PK,MSK): The setup algorithm takes as input a security pa-

rameter λ and a dimension n of the relation R and outputs a public key PK
and a master secret key MSK.

KeyGen(MSK,PK,X)→ SKX : The key generation algorithm takes as input
the master secret keyMSK, the public key PK, and a key attributeX ∈ An.
It outputs a private key SKX . We assume X is included in SKX implicitly.

Encrypt(PK,M, Y )→ CT : The encryption algorithm takes as input a public
key PK, the message M, and a ciphertext attribute Y ∈ Bn. It will output
a ciphertext CT .

Decrypt(PK,CT, Y, SKX)→ M or ⊥: We assume that the decryption algo-
rithm is deterministic. The decryption algorithm takes as input the public
parameters PK, a ciphertext CT , ciphertext attribute Y ∈ Bn and a pri-
vate key SKX . It outputs the message M or ⊥ which represents that the
ciphertext is not in a valid form. We require that the decryption algorithm
outputs ⊥ if R(X,Y ) = 0.

We require correctness of decryption: that is, for all λ, all n, all (PK,MSK) ∈
[Setup(λ, n)], all X ∈ An, Y ∈ Bn such that R(X,Y ) = 1, all CT ∈ [Encrypt
(PK,M, Y )] and all SKX ∈ [KeyGen(MSK,PK,X)], Decrypt(PK,CT, Y,
SKX) = M holds.

Security. We now define the security notion indistinguishability under chosen
ciphertext attack (CCA-security) for an PE scheme Π . This security notion is
defined by the following game between a challenger and attacker A.

At first, the challenger runs the setup algorithm and gives PK to A. Then A
may adaptively make key-extraction queries and decryption queries. We denote
this phasePhase1. In this phase, ifA submitsX to the challenger, the challenger
returns SKX ← KeyGen(MSK,PK,X) if X has not been submitted before.
Otherwise, the challenger returns the previously extracted SKX . If A submits
(CT, Y,X) to the challenger in a decryption query, the challenger extracts the
private key for X by SKX ← KeyGen(MSK,PK,X) if this has not been
previously extracted and returns the output of Decrypt(PK,CT, Y, SKX) to
A. At some point, A outputs two equal length messagesM0 andM1 and challenge
ciphertext attribute Y � ∈ Bn. Y

� cannot satisfy R(X,Y �) = 1 for any attribute
sets X such that A already queried private key for X . Then the challenger flips a
random coin β ∈ {0, 1}, runs Encrypt(PK,Mβ, Y

�)→ CT � and gives challenge
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ciphertext CT � to A. In Phase2, A may adaptively make the same queries as
in Phase1 with following added restriction: A cannot make a key-extraction
query for X such that R(X,Y �) = 1, and A cannot submit (CT, Y,X) such that
R(X,Y �) = 1 and (CT, Y ) = (CT �, Y �). At last, A outputs a guess β′ for β.
We say that A succeeds if β′ = β and denote the probability of this event by
PrPE

A,Π . The advantage of an attacker A is defined as AdvPE
A,Π = PrPE

A,Π − 1
2 .

Definition 1. We say that an PE scheme Π is CCA-secure (payload hiding)1

if for all PPT A, AdvPE
A,Π is negligible. We also say that an PE scheme Π is

CPA-secure if for all PPT A who does not make any decryption queries, AdvPE
A,Π

is negligible.

We say that the PE scheme is selectively CCA/CPA-secure if we add an Initial
stage Init before the setup where the adversary submits the target ciphertext
attribute Y � ∈ Bn.

Typical Relations. An PE scheme captures the functionality of a large num-
ber of existing types of encryption schemes. In the following, we briefly illustrate
how the most popular schemes can be obtained from an PE scheme by choosing
the relation appropriately.

Broadcast Encryption. Broadcast encryption allows a sender to encrypt a
message for any subset S of n users. To achieve this functionality, we set
n to be the number of user, An = {1, 2, . . . n}, Bn = 2{1,2,...n}. We define
Rn(j, S) = 1 if and only if j ∈ S for j ∈ An, S ∈ Bn.

Inner Product Encryption (for Non-Zero Relation). Inner product en-
cryption (resp. for non-zero relation) allows a sender to encrypt a message
for a vector Y so that a user with a secret key for a vector X, can decrypt
it if and only if X · Y = 0 (resp. X · Y �= 0). To achieve this functionality,
we set n to be dimension of the vectors, An = Zn

N , and Bn = Zn
N where N

is some integer determined by the scheme. We define Rn(X,Y ) = 1 if and
only X · Y = 0 (resp. X · Y �= 0) for X ∈ An, Y ∈ Bn.

Spatial Encryption. Spatial encryption allows a sender to encrypt a message
for some vector V so that a user with secret key for a space V such that
Y ∈ V can decrypt it. To achieve this functionality, we set n to be the
dimension of the vector, An = {Aff(M,a)|M ∈ Zn×l

N , 0 ≤ l ≤ n,a ∈ Zn
N},

Bn = Zn
N where Aff(M,a) = {Mx�+a�|x ∈ Zl

N} which is subspace of Zn
N .

We define Rn(V,Y ) = 1 if and only if Y � ∈ V for V ∈ An, Y ∈ Bn.
Key (Ciphertext) Policy Attribute based Encryption. Key (resp. ci-

phertext) policy attribute based encryption allows a sender to encrypt a
message for some set of attribute S (resp. access structure A) so that a user
with secret key for an access structure A (resp. set of attribute S) such that
S ∈ A can decrypt it. To achieve this functionality, we set n to be the size of
attribute universe U . An is the collection of access structures over U (resp.
An = 2U ). Bn is set as Bn = 2U (resp. access structure over U). Here, access

1 In this paper, we work only on payload-hiding security and not attribute-hiding
which is considered for many other predicate encryption schemes such as [20].
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structure over U can be described by linear secret sharing (LSSS) matrix
whose size is bounded by some polynomial. We define Rn(A, S) = 1 if and
only if A ∈ An accepts S ∈ Bn.

2.2 Definition of Verifiability

In this subsection, we define verifiability of an PE scheme. Intuitively, verifiability
guarantees that the decryption of any ciphertext is the same regardless of which
user decrypt it, as long as this user is authorized to decrypt.

Definition 2. (Verifiablity) An PE scheme Π is said to have verifiability if
for all λ, n, (PK,MSK) ∈ [Setup(λ, n)], X,X ′ ∈ An, Y ∈ Bn the following
holds.

If SKX ∈ [KeyGen(MSK,PK,X)], SKX′ ∈ [KeyGen(MSK,PK,X ′)], and
R(X,Y ) = R(X ′, Y ), then for all CT ∈ {0, 1}∗, Decrypt(PK,CT, Y, SKX) =
Decrypt(PK,CT, Y, SKX′) holds.

We remark that verifiability is not implied by correctness, since the definition of
correctness is only concerned about correctly generated ciphertext whereas the
definition of verifiability needs is about any ciphertext (including invalid one).

We also define public verifiability which is stronger notion than verifiability.
That is, we can convert any PE scheme with public verifiability into PE scheme
with verifiability very easily as we explain later. The reason why we introduce
the notion of public verifiability is that in many case, we can check whether an
PE scheme have public verifiability or not very easily.

Definition 3. (Public Verifiablity) An PE scheme Π is said to have pub-
lic verifiability if there exists a polynomial-time algorithm Verify which takes
as input the public key PK, a possible ciphertext CT ∈ {0, 1}∗, a ciphertext at-
tribute Y ∈ Bn and outputs 0 or 1. We require that for all λ, n, (PK,MSK) ∈
[Setup(λ, n)], Y ∈ Bn, CT ∈ {0, 1}∗,

Verify(PK,CT, Y ) = 1⇔ ∃M such that CT ∈ [Encrypt(PK,M, Y )].

An PE scheme with public verifiability can be modified to be verifiable by
changing decryption algorithm slightly. That is, modified decryption algorithm
Decrypt′(PK,CT, Y, SKX) first checks whether Verify(PK,CT, Y ) = 1 holds
and outputs Decrypt(PK,CT, Y, SKX) if it holds. Otherwise it outputs ⊥.

3 CCA-Secure VPE from CPA-secure VPE

In this section, we show that VPE for a large class of relations can be trans-
formed to be CCA-secure VPE with the same relation. Our requirement for
this transformation is very weak, and many important relations defined for PE
schemes satisfy this requirement. Our conversion works for wide class of PE such
as spatial encryption, IPE, BE, KP/CP-ABE and can be seen as a nontrivial
generalization of the conversion proposed by [37] which only works for ABE. We
also remark that our conversion works for BE and IPE for which the Canetti-
Halevi-Katz [12] transform cannot be applied in a straightforward manner.



250 S. Yamada et al.

3.1 Definitions

We define the notions of “OR-compatibility” and “equality test” for a relation.
Intuitively, a relation is said to have OR-compatibility if for two attributes, the
relation is able to capture the presence of one or the other, whereas a relation
is said to support equality test over a domain D if it can be used to emulate an
equality test for elements in D. The formal definitions are as follows:

Definition 4. (OR-compatibility) Consider a relation family R = {Rn :
An ×Bn → {0, 1} | n ∈ N}. We say that R is OR-compatible if for all n,m ∈ N
there are maps OR : Bn×Bm → Bn+m and s : An → An+m and t : Am → An+m

such that for all X1 ∈ An, X2 ∈ Am and Y1 ∈ Bn, Y2 ∈ Bm it holds that

Rn+m(s(X1),OR(Y1, Y2))=Rn(X1, Y1), Rn+m(t(X2),OR(Y1, Y2)) = Rm(X2, Y2).

Definition 5. (Equality test) Consider a relation family R = {Rn : An ×
Bn → {0, 1} | n ∈ N}. Consider a set D. We say that R can perform equality
test over D by using dimension d if there are maps u : D → Ad and v : D → Bd

such that for all z, z′ ∈ D we have Rd(u(z), v(z)) = 1 and Rd(u(z), v(z
′)) = 0 if

z �= z′.

3.2 Generic Conversion

Let Π = (Setup,KeyGen,Encrypt,Decrypt) be a CPA-secure PE for re-
lation R and let Σ = (G,S,V) be a strongly unforgeable one-time signature
scheme. Here, G, S, and V are the key generation, sign, and verify algorithms
of the scheme, respectively. Assume that Π has verifiability, OR-compatibility
(as per definition 4), and can perform equality test (as per definition 5) over
the verification key space of Σ. We can construct a CCA-secure VPE scheme
Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′) also for relation R as follows.

Setup′(λ, n). Output Setup(λ, n+ d)→ (PK,MSK).
KeyGen′(MSK,PK,X). Output KeyGen(MSK,PK, s(X))→ SKs(X).

Hence SK ′
X = SKs(X).

Encrypt′(PK,M, Y ) First create a one-time signature key pair by running
G(λ) → (vk, sk). Then run Encrypt(PK,M,OR(Y, v(vk))) → CT and
S(sk, (CT, Y ))→ σ. Lastly, output CT ′ = (vk, CT, σ).

Decrypt′(PK,CT ′, Y, SK ′
X) Parses the ciphertext CT ′ as (vk, CT, σ). If V(vk,

(CT, Y ), σ) = 0, output ⊥. Output Decrypt(PK,CT,OR(Y, v(vk)), SK ′
X)

otherwise.

Correctness. Decryption can be done using SKs(X) if Rn(X,Y ) = 1 since
Rn+d(s(X),OR(Y, v(vk))) = Rn(X,Y ) = 1. Thus, correctness of Π ′ follows
from correctness of Π .

Verifiability. The verifiability of Π ′ follows directly from the verifiability
of Π .

Selective security. Our conversion can be also applied to selectively (CPA-
)secure PE schemes, and in such cases, resulting CCA-secure schemes are only
selectively (CCA-)secure as well.
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Theorem 1. If Π is CPA-secure PE for relation R, then Π ′ is CCA-secure PE
for relation R.

Proof. Assume we are given PPT adversary A which breaks CCA-security of
the scheme Π ′ for relation Rn with advantage ε. Then we construct another
adversary B which breaks CPA-security of the scheme Π for relation Rn+d with
advantage negligibly close to ε using A. Define adversary B as follows:

Setup. The challenger runs Setup(λ, n + d) → (PK,MSK). Then B is given
PK and gives it to A. B also runs G(λ)→ (vk�, sk�).

Phase1. A may adaptively make queries of the following types:

− Key-extraction query. When A submits X , then B submits s(X) to chal-
lenger. B is given private key SKs(X) and gives it to A.
−Decryption query.WhenA submits (CT ′, Y,X) such that CT ′ = (vk, CT, σ),
B respond to A as follows. First, B checks whether R(X,Y ) = 0 or not. If so, B
outputs ⊥. Otherwise B checks whether V(vk, (CT, Y ), σ) = 1 holds. If it does
not hold, then B returns ⊥. If it holds and vk� = vk, then B aborts. Otherwise
B submits t(u(vk)) to the challenger and is given SKt(u(vk)). Then B returns
output of Decrypt(PK,CT,OR(Y, v(vk)), SKt(u(vk))) to A.
Challenge. A declares two equal length messages M0 and M1 and an challenge
attribute Y �. Then B declares the same messagesM0,M1 and OR(Y �, v(vk�)) for
the challenger. The challenger flips a random coin β ∈ {0, 1}, runs Encrypt(PK,
Mβ,OR(Y

�, v(vk�)))→ CT � and givesCT � to B. Then B runs S(sk�, (Y �, CT �))
→ σ�, and gives CT �′ = (vk�, CT �, σ�) to A.
Phase2. B responds to A’s queries as the same as in Phase1.

Guess. Finally, A outputs a guess β′ for β. Then B outputs β′ as its guess.

First we check that the key extraction query of A is legal. B can submit s(X)
to the challenger, since Rn+d(s(X),OR(Y �, v(vk�))) = Rn(X,Y

�) = 0. B can
also submits t(u(vk)) to the challenger since Rn+d(t(u(vk)),OR(Y

�, v(vk�))) =
Rd(u(vk), v(vk

�)) = 0 if vk �= vk�. Next, we see that in the simulation of decryp-
tion oracle, Decrypt(PK,CT,OR(Y, v(vk)), SKt(u(vk))) = Decrypt(PK,CT,
OR(Y, v(vk)), SKs(X)) by the verifiability since Rn+d(t(u(vk)),OR(Y, v(vk))) =
Rn+d(s(X),OR(Y, v(vk)) = 1 if R(X,Y ) = 1. Thus the simulation is perfect if
B does not abort.

Let Win denote the event that A correctly guess β, Abort denote the
event that B aborts. If Abort does not occur, B’s simulation is perfect. So,
B’s advantage for guessing β is estimated as Pr[B correctly guesses β] − 1

2 =

Pr[Win|Abort] Pr[Abort] − 1
2 ≥ Pr[Win]− Pr[Abort]− 1

2 ≥ ε − Pr[Abort].
Since Pr[Abort] = negl(λ) due to the unforgeability of the one-time-signature,
the proof is completed.

3.3 Qualifying Relations

In this subsection, we show that important relations defined for PE schemes
in the literature satisfy OR-compatibility and can perform equality test by
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describing their corresponding maps OR : Bn×Bm → Bn+m, s : An → An+m, t :
Am → An+m, u : D → Ad, v : D → Bd.

Inner Product Relation. Equality test can be performed with d = 2.

OR(Y 1,Y 2) = Y 1||Y 2, s(X) = X||0, t(X) = 0||X,

u(z) = (z, 1), v(z) = (−1, z)

Spatial Relation. Equality test can be performed with d = 1.

OR(Y 1,Y 2) = Y 1||Y 2, s(Aff(M,a)) = Aff(

[
M 0
0 Im

]
,a||0),

t(Aff(M,a)) = Aff(

[
In 0
0 M

]
,0||a), u(z) = Aff(0, (z)), v(z) = (z)

Here, Im and In are unit matrices of size m and n respectively.
We can also capture the case of CP/KP-ABE by a technique in [37]. We need

to generalize the definition of equality test to instantiate BE and non-zero IPE
in our framework. See the full version for the details.

4 Anonymous Deniable Predicate Authentication

In this section, we introduce the notion of ADPA. Intuitively, ADPA is a gen-
eralization of deniable authentication in which the prover holds a private key
corresponding to an attribute, and the verifier will learn nothing about this at-
tribute, except that it satisfies a relation with the verifier attribute. Firstly, we
define functionality and security, and then show how a ADPA scheme can be
constructed from a CCA-secure VPE scheme.

4.1 Definition of Anonymous Deniable Predicate Authentication

Syntax. Let relation R = {Rn : An ×Bn → {0, 1} | n ∈ N} be a collection of
boolean functions, where n ∈ N denotes a “scheme description”, An and Bn

denote the “prover attribute” and “verifier attribute” spaces. An anonymous
deniable predicate authentication (ADPA) for a relation R is defined by a tuple
of four algorithms ΛDPA

R = (Setup,KeyGen,P,V). The setup algorithm Setup takes
as inputs a security parameter λ, a scheme description n ∈ N, and outputs a
public key PK and a master secret keyMSK. And the key generation algorithm
KeyGen takes as inputs the master secret keyMSK, the public key PK, a prover
attribute X ∈ An, and outputs a private key SKX . The interactive Turing
machines prover P and verifier V perform the interactive protocol (P,V) with
common inputs PK, Y ∈ Bn, message M, where P also takes input the private
key for X , SKX . At the end of protocol (P,V) , V outputs a bit to indicate
whether V accepts P as a valid prover or not. With 〈P(xP),V(xV)〉(y), we denote
the output of verifier V at the end of execution of interactive protocol (P,V),
where P and V take xP and xV as private inputs respectively and y denotes the
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common input. For the basic requirement completeness, ΛDPA

R needs to satisfy
that for all λ, n ∈ N, X ∈ An, Y ∈ Bn such that Rn(X,Y ) = 1, M, the following
holds.

(PK,MSK)← Setup(λ, n), SKX ← KeyGen(MSK,PK,X) :

〈P(SKX),V〉(PK, Y,M) = 1.

For security, ΛDPA

R is also required to satisfy the following notions.

Concurrent Soundness. First, we define the adversary A as a man-in-the-
middle attacker such that A is interacting with provers P1, . . . ,PmL in mL “left
sessions” as verifier, and at the same time interacting with an honest verifier V
in a “right session” as prover, in any arbitrary interleaving, where mL is polyno-
mial in security parameter λ. The adversary A is given access to two additional
oracles: (1) prover instantiator oracle P , and (2) key generator oracle K.

When A submits to prover instantiator oracle P a message M, a verifier at-
tribute Y , and a prover attribute X , P will initiate a new prover P′ with inputs
(PK, Y,M, SKX), where SKX is a valid secret key corresponding to the key
attribute X . The adversary A is allowed to send a prover attribute X and then
retrieve the corresponding secret key SKX from the key generator oracle K with
the restriction that R(X,Y �) �= 1 holds, where Y � is the verifier attribute used
as common input in the right session. The following notion guarantees that such
adversary A will not be able to make the honest verifier V to accept it as a valid
prover in right session.

Definition 6 (Concurrent Soundness). Let ΛDPA

R = (Setup,KeyGen,P,V) be
an ADPA for relation R = {Rn : An ×Bn → {0, 1} | n ∈ N}. We say that ΛDPA

R

satisfies concurrent soundness if for all sufficiently large λ, for any n ∈ N, for
any efficient algorithm A, the following holds.

Pr
[
Setup(λ, n)→ (PK,MSK) : AP,K(PK)→(M�,Y �,state)

〈AP,K(state),V〉(PK,Y �,M�)=1

]
= negl(λ),

where

– the key generator oracle K, on input a prover attribute Xi ∈ An such that
Rn(Xi, Y

�) �= 1 holds, returns SKXi ← KeyGen(PK,MSK,Xi),
– the prover instantiator oracle P, on input a tuple (Mi, Yi ∈ Bn, Xi ∈ An)

such that (Mi, Yi) �= (M�, Y �) holds, allows A access to a prover Pi ∈
{P1, . . . ,PmL} which has been initiated with inputs (PK, Yi,Mi, SKXi), where
SKXi ← KeyGen(PK,MSK,Xi),

– A interacts as a verifier with provers P1, . . . ,PmL generated by P concur-
rently, and for each instantiated prover P1, . . . ,PmL , and A interacts in the
protocol (Pi,A) with common inputs PK, Yi ∈ Bn, M, where Pi also takes
input SKXi .

We remark that we can consider a weaker version of the above security notion in
which the adversary is required to output Y � at the beginning of the game. We
denote this security selective concurrent soundness. Next, we define the special
security notions we require an ADPA to satisfy.
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Anonymity (Source Hiding). Here we describe the security notion which
guarantees that no one is able to know which key attribute is associated to the
prover P in the interactive protocol (P,V), even when one is allowed to act as
a cheating verifier in the interactive protocol and is given access to the master
secret key generated by the setup algorithm.

Let R = {Rn : An ×Bn → {0, 1} | n ∈ N} be a relation and ΛDPA

R = (Setup,
KeyGen,P,V) be an ADPA for R. Let us consider an adversary A which engages
in the following game.

GameanomA (λ, n):
Setup→ (PK,MSK) , A(PK,MSK)→ (X�

0 , X
�
1 )

KeyGen(MSK,PK,X�
0 )→ SKX�

0
, KeyGen(MSK,PK,X�

1 )→ SKX�
1

A(PK,MSK)→ (Y �,M�, state) s.t. Rn(X
�
0 , Y

�) = Rn(X
�
1 , Y

�)

b
$← {0, 1} , AP(SKX�

b
)
(state, SKX�

0
, SKX�

1
,MSK,PK, Y �,M�)→ b̂

If b = b̂ return 1, otherwise return 0.

The notation AP(SKX�
b
)
(state, SKX�

0
, SKX�

1
,MSK,PK, Y �,M�) in

GameanomA (λ, n) denotes that A interacts as verifier with P in the interac-
tive protocol (P,A) with common inputs (PK, Y �,M�) where P also takes
input secret key SKX�

b
and A also takes inputs (state, SKX�

0
, SKX�

1
,MSK).

The following notion guarantees that there no such adversary A will be able to
correctly guess whether P uses SKX�

0
or SKX�

1
as its secret key.

Definition 7 (Anonymity (Source Hiding)). Let ΛDPA

R =
(Setup,KeyGen,P,V) be an ADPA for relation R =
{Rn : An ×Bn → {0, 1} | n ∈ N}. We say that ΛDPA

R satisfies anonymity
(source hiding) if for all sufficiently large λ, for any n ∈ N, for any machine A
with unbounded power,

∣∣Pr [GameanomA (λ, n) = 1]− 1
2

∣∣ = negl(λ) holds.

Deniability. Here we describe the security notion which guarantees that the
communication transcript which is produced from an interaction between prover
and verifier in an ADPA cannot be used as a proof that an interaction between
prover and verifier has taken place. More precisely, the security notion says that
for any verifier (including dishonest verifiers), there exists a simulator which
can poses as a valid prover even without knowledge about the secret key. Also,
with View(〈P, V 〉), we denote the view which is obtained at the end of interaction
between P and V , where the view is the communication transcripts concatenated
by random coins used by V .

Definition 8 (Deniability). Let R = {Rn : An ×Bn → {0, 1} | n ∈ N} be a
relation and ΛDPA

R = (Setup,KeyGen,P,V) be an ADPA for relation R. Let us
also define the following two probability distributions for a fixed λ, n ∈ N, M,
and X ∈ An, Y ∈ Bn such that Rn(X,Y ) = 1.



Verifiable Predicate Encryption and Applications to CCA Security 255

Real(λ, n,X, Y,M) =

⎡⎣ Setup(λ, n)→ (PK,MSK),
KeyGen(PK,MSK,X)→ SKX ,

View (〈P(SKX),A(MSK,X)〉(PK, Y,M))

⎤⎦ ,

Sim(λ, n,X, Y,M) =

⎡⎣ Setup(λ, n)→ (PK,MSK),
KeyGen(PK,MSK,X)→ SKX ,

View (〈Sim,A(MSK,X)〉(PK, Y,M))

⎤⎦ ,
where A and Sim are both efficient algorithms. ΛDPA

R is said to be deniable if for
all sufficiently large λ, for any n ∈ N, M, and for all X ∈ An, Y ∈ Bn such that
Rn(X,Y ) = 1, the following holds.

∀A ∃Sim : Real(λ, n,X, Y,M)
c≈ Sim(λ, n,X, Y,M).

4.2 Construction from CCA-Secure VPE

We can construct an ADPA ΛDPA

R = (Setup,KeyGen,P,V) from a CCA secure
VPE Π = (Setup,KeyGen,Encrypt,Decrypt) and a perfectly binding and
computationally hiding commitment scheme COM = (com, open). Here, com
and open are commit and open algorithms of the scheme, respectively. Setup
and KeyGen are exactly the same as Setup and KeyGen. We describe the
interactive protocol (P,V) as follows. Note that P and V perform (P,V) with
common input the public key PK, a verifier attribute Y ∈ Bn, and a message
M, while P also takes as input the secret key SKX corresponding to a key
attribute X ∈ An such that Rn(X,Y ) = 1 holds.

Step1 (P⇐ V): V chooses randomly r ← {0, 1}λ and then computes CT ←
Encrypt(PK,M||r, Y ). Then V sends CT to P.

Step2 (P⇒ V): P computes y ← Decrypt(PK,CT, Y, SKX). If y = ⊥ or y =
M′||r′ such that M′ �= M, P chooses random pairs (ri0, ri1) ∈ {0, 1}λ×{0, 1}λ
for i = 1, . . . , λ. Otherwise, P chooses (ri0, ri1) ∈ {0, 1}λ × {0, 1}λ such
that ri0 ⊕ ri1 = r′ holds for all i = 1, . . . λ. Then P sends {(Ci0, Ci1) =
(com(σi0, ri0), com(σi1, ri1))}i=1,...,λ to V, where σi0 and σi1 are random-
nesses used to calculate the commitments Ci0 and Ci1 respectively.

Step3 (P⇐ V): V sends λ random bits b1, b2, . . . bλ to P.

Step4 (P⇒ V): P sends {ribi = open(σibi , Cibi), σibi}i=1,2,...,λ to V.

Step5 (P⇐ V): V opens CT by revealing r and ρ to P, where ρ is randomness
used to create CT .

Step6 (P⇒ V): P sends {rib̄i = open(σib̄i , Cib̄i), σib̄i}i=1,2,...,λ to V.
V outputs 1 if for all 1 ≤ i ≤ λ, ri0 ⊕ ri1 = r, and outputs 0 otherwise.

We remark that our conversion can also be applied to selectively CCA-secure PE
schemes, and in this case, the resulting ADPA schemes satisfies only selective
concurrent soundness.
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4.3 Security Analysis

Theorem 2. If Π is CCA-secure VPE and COM is perfectly binding and com-
putationally hiding commitment, then ADPA ΛDPA

R constructed as above satisfies
concurrent soundness, deniability, and anonymity. Especially, source hiding is
satisfied for any adversary (even unbounded).

The theorem can be proved following a very similar strategy to that of [15,25],
and we will therefore only sketch how the proof is obtained in the following.

Lemma 1. (Concurrent Soundness.) If Π is CCA-secure PE and COM is per-
fectly secure binding commitment, then ΛDPA

R satisfies concurrent soundness.

Similar to the case of [25], it is easy to see that the above construction satis-
fies concurrent soundness. We can construct an IND-CCA adversary B of the
underlying predicate encryption using adversary A who violates soundness of
above scheme. Note that B can easily simulate the prover instantiator oracle
P perfectly using the given decryption oracle and also simulate the key gener-
ator oracle K perfectly via key extraction queries. The key point of the proof
is that B is allowed to rewind A and to let A answer two different sequences
of {bi}i=1,...,λ in Step3, so that B is able to compute r = ri0 ⊕ ri1 for some
i ∈ [1, λ]. In the challenge phase, B can select two messages M0, M1 such that
M0 = M||r̂, M1 = M||r̃. and then forward the received challenge ciphertext CT �

to A in Step1. Since B can obtain r from A through the rewinding described
above, where M||r is the result of the decryption of CT �, B can check whether
r̂ = r or r̃ = r, and thereby easily determine whether CT � is the encryption of
M0 or M1.

Lemma 2. (Deniability.) If Π satisfies correctness and COM is computation-
ally hiding commitment, then ΛDPA

R satisfies deniability.

One can prove that the above instantiation is deniable using the same techniques
as shown in [15,25]. Intuitively, the procedure to construct the simulator Sim is
to firstly run the interaction with the verifier until Step5 where the verifier
has to reveal the randomness r it used in Step1 to create the CT , and then
rewind the verifier until the end of Step1. In the second run after the rewind,
we can easily simulate a prover until the last step Step6, since the randomness
r should have been obtained in the first run. (Here, we resort to correctness of
Π .) The most crucial point here is how to safely perform Step2 in the first run
(before the rewind). The trick is that although we do not know the randomness
r yet, we can send commitments of random messages to A in Step2, as the
computationally hiding property of the underlying commitment COM prevents
A from detecting that the commitments sent by Sim are actually commitments
to random messages.

Lemma 3. (Anonimity) If Π is VPE, then ΛDPA

R satisfies anonymity.

Anonymity of the scheme follows immediately from verifiability. Notice that the
difference between an interaction with a prover which uses SKX�

0
and an inter-

action with a prover which uses SKX�
1
will only possibly occur at Step2, when
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the prover decrypts the ciphertext CT sent by the verifier at Step1. Thanks to
the verifiable property of the underlying verifiable predicate encryption scheme,
the result of the decryption is always the same, both in the case of SKX�

0
and

SKX�
1
, as long as Rn(X

�
0 , Y ) = Rn(X

�
1 , Y ). Note that security level of anonymity

achieved by our scheme is stronger than that of [25]. We achieve anonymity even
against an adversary with unbounded computational power, whereas [25] only
achieves anonymity against a computational bounded adversary.

5 Instantiations

To be able to apply our framework for constructing CCA-secure PE schemes
or ADPA schemes, we require that the underlying PE schemes are verifiable.
We note that many selectively-secure PE schemes [8,9,17,29,22,3,7,16,36] have
public verifiability. That is, we can construct an Verify algorithm (as per def-
inition 3). Hence, these can be used directly in our framework. On the other
hand, this is not the case for the PE schemes with full security [35,1,2,21,28].
This is because all existing fully secure PE schemes make use of the dual system
encryption methodology [35]. The security of these schemes rely on the indistin-
guishability between normal ciphertexts and semi-functional ciphertexts where
a semi-functional ciphertext is special kind of incorrectly generated ciphertext.
To achieve public verifiability, we should be able to distinguish between a semi-
functional (i.e. incorrectly generated) ciphertext and a normal (i.e. correctly gen-
erated) ciphertext efficiently, but this conflicts with the security of the scheme.
However, even though we cannot achieve public verifiability for these schemes, it
is possible to achieve our definition of (non-public) verifiability. Recall that our
definition of verifiability does not require that we can check whether ciphertext
is correctly generated or not, but only requires that we can check whether the
decryption of a ciphertext under a different secret key will be the same or not.

In the following, we first discuss how we add verifiability to the schemes in
[35,1,2,21,28], then focus on the schemes which we obtain by applying our frame-
work to the above mentioned verifiable PE schemes.

Table 1. Overview of existing PE schemes. In the table. “PubVer” represents that
the scheme has public verifiability. “Veri” represents that the schemet can be modified
to be verifiable.

Schemes Type Verif. Security Assumption

Boneh et al. [8, Sec. 3] BE PubVer selective D-l-BDHE
Boneh et al. [8, Sec. 5] BE PubVer selective D-l-BDHE
Waters [35, Sec. 5] BE Veri full DLIN and DBDH
Boneh et al. [9] Spatial PubVer selective BDDHE
Attrapadung et al.[2, Sec. B] Spatial Veri full 3assumptions
Attrapadung et al.[1] IPE Veri full DLIN and DBDH
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Modifying Existing Schemes to be Verifiable. Here, we explain how
we modify the schemes in AL10 spatial encryption scheme [2], OT10 KP-ABE
scheme [28], Waters09 BE scheme [35], AL10 IPE scheme [1] to be verifiable. Our
first approach is to modify the original scheme so that its decryption algorithm
first checks the validity of a ciphertext to a certain extent. We cannot check the
validity of the ciphertext perfectly because of the above reason, but for the AL10
spatial encryption scheme and the OT10 KP-ABE scheme, this partial validity
check is enough to prove verifiability. (We remark that in the modification, we
also make some parts of master secret key public. The anonymity of OT10 scheme
is lost by this modification.) For the Waters09 BE and AL10 IPE schemes,
the above strategy does not seem to be enough. We then further modify these
schemes so that a user has some additional keys for the same attributes, but
which uses different randomness. Then, in the decryption algorithm, the user
checks whether the decryption of a ciphertext using different keys are the same
or not. If it is different, then it indicates that the ciphertext is invalid. With this
modification, we can prove verifiability of these schemes. For the description of
the schemes and proofs of security and verifiability, see the full version of this
paper.

CCA secure PE schemes. Since our conversion works for PE schemes which
are not captured by the CPA-ABE to CCA-ABE conversion proposed by [37],
we obtain a number of new CCA-secure PE schemes. Especially, our conversion
works for BE, IPE, and spatial encryption scheme. In Tabel. 1, we list some
candidate scheme in this category which we can use as underlying schemes in our
framework. Hence, we can obtain an adaptively secure CCA-secure BE scheme by
applying our conversion to the Waters09 BE scheme [35]. Furthermore, we also
obtain a new selectively and adaptively secure CCA spatial encryption scheme
by applying our conversion to the Boneh-Hamburg [9] and AL10 [2] spatial
encryption schemes, respectively. Finally, we also obtain a new adaptively secure
CCA IPE scheme by applying our conversion to [1]. We also note that it is
easy to modify the Katz-Sahai-Waters [20] scheme to have verifiability. But the
anonymity of the scheme is lost by this modification. Furthermore, it seems
possible to transform the schemes [27] and [21] into verifiable variants. We note
that our conversion also works for the ABE schemes [35,1,2,21,28], since our
conversion capture the case of ABE as well. We also note that a special case of
our conversion is considered in [18] in a context of BE. But they do not consider
how to apply the conversion to the Waters09 BE scheme.

ADPA schemes. Our CCA-secure VPE scheme to ADPA scheme conversion
works for all the schemes we obtained above. Hence, we can obtain a deniable ring
authentication system with (adaptive) concurrent soundness and constant size
ciphertexts by applying our conversion to the CCA-secure BE obtained above.
As far as we know, this is the first time a scheme with these properties have
been proposed. Furthermore, we can obtain an ADPA for a spatial relation and
with selective and adaptive concurrent soundness by applying our conversion to
the CCA-secure spatial encryption scheme obtained above. We can also obtain
an ADPA for an inner product relation with (adaptive) concurrent soundness by
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applying our conversion to adaptively secure CCA IPE scheme obtained above.
All of these schemes are new types of deniable authentication schemes. We can
also see that if we use a CCA-secure ABE as the underlyingscheme (obtained
by applying the transformation in [37] to [17,29,22,3,7,16,36]), then we obtain
an ADPA for an attribute based relation.
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Abstract. In this work, we present efficient public-key encryption
schemes resilient against linear related key attacks (RKA) under stan-
dard assumptions and in the standard model. Specifically, we obtain
encryption schemes based on hardness of factoring, BDDH and LWE that
remain secure even against an adversary that may query the decryption
oracle on linear shifts of the actual secret key. Moreover, the ciphertext
overhead is only an additive constant number of group elements.

1 Introduction

The traditional model for security assumes that the internal states of the honest
parties are completely hidden from the adversary. We often also extend the same
assumption to cryptographic hardware devices such as a RSA SecurID token;
here, we assume the internal states to be both completely hidden and protected
from the adversary. However, recent timing, ‘cold-boot’ and virtual-machine
attacks demonstrated that physical side-channels can leak partial information
about internal states of program executions [32, 25, 40]. Similarly, given physical
access to a hardware device, we can use fault injection techniques to tamper
with and induce modifications to the internal state of the device [10, 8]. When
an adversary tampers with the key stored in a cryptographic hardware device
and subsequently observes the outcome of the cryptographic primitive under this
modified key, we have a related-key attack (RKA) [21, 7]. The key here may be
a signing key of a certificate authority or SSL server or a decryption key for an
encryption scheme.

1.1 RKA Security

In this work, we study public-key encryption schemes secure against related-key
attacks (RKA).

Modeling RKA Security. We follow the definition of RKA security for public-
key encryption given by Bellare et. al [7]. The attack is on the secret key,
so we are considering a chosen-ciphertext related-key attack (CC-RKA). The
decryption oracle refuses to act only when the ciphertext it is given matches the
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challenge ciphertext and the derived key equals the real one. We will also consider
weak CC-RKA security, where the decryption oracle refuses to act whenever the
ciphertext it is given matches the challenge ciphertext. Note that both notions
imply IND-CCA security [39, 19], which correspond to the special case where
the related-key attack uses the identity function.

We view the system as having the following components: algorithms (code),
public parameters, public/secret key pairs. Of these, only the public and
secret keys are subject to RKAs. The public parameters are system-wide,
meaning fixed beforehand and independent of users. In an implementation,
these parameters could be hardwired into the algorithm code and stored on
tamper-proof hardware, or distributed via some public channel where tampering
is infeasible or could be easily detected. In our constructions, the decryption
algorithms do not use the public key and therefore we will only consider attacks
on secret keys. We note that our model is the same as that considered in prior
works [4, 7], though it is by no means the only possible model.

1.2 Our Results

We present the first public-key encryption schemes resilient against linear related
key attacks (RKA) under standard assumptions and in the standard model.
Specifically, we obtain encryption schemes based on hardness of factoring and
BDDH that remain secure even against an adversary that may query the
decryption oracle on linear shifts of the actual secret key. In addition, we present
schemes based on DDH and LWE that achieve the weaker notion of RKA
security where the adversary is not allowed to query the decryption oracle on
the challenge ciphertext.

Moreover, in all these schemes, the ciphertext overhead is only an additive
constant number of group elements. Our factoring-based scheme is also the first
RKA-secure primitive based on standard number-theoretic assumptions related
to factoring, as well as the first from search assumptions not related to lattices.
(The latter is somewhat surprising in lieu of the negative results in [22], showing
that certain natural classes of constructions based on search assumptions cannot
achieve RKA-pseudorandomness).

Warm-Up. The starting point of our constructions are CCA-secure encryption
schemes in which the decryption of a ciphertext C using a secret key φ(sk) –
where φ denotes a linear shift – equals the decryption of some other (efficiently
computable) ciphertext C′ using the original secret key sk. We refer to this
property as key homomorphism. Roughly speaking, this enables us to reduce
the CC-RKA-security of the scheme to its CCA-security. The same high-level
strategy of exploiting homomorphism was also used in [4, 3] to achieve RKA
security for pseudorandom functions and private-key encryption respectively.

The above strategy breaks down whenever the ciphertext C′ equals challenge
ciphertext in the CCA-security game. We address this problem with the following
modifications:
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– We work with a tag-based notion of CCA-security [34, 30], where we derive
the tag using a strong one-time signature scheme and add a signature to the
ciphertext. In addition, we require that the two ciphertexts above C and C′

(where C′ is derived from C via key homomorphism) share the same tag.
We may then consider two cases: if C shares the same tag as the challenge
ciphertext, then the one-time signature scheme tells us that C must equal
the challenge ciphertext. On the other hand, if C has a different tag from
the challenge ciphertext, then so does C′ and we can decrypt C′ using the
decryption oracle in the CCA-security game. This suffices for weak CC-
RKA security, where the RKA decryption oracle refuses to act whenever the
ciphertext it is given matches the challenge ciphertext.

– In order to achieve “full fledged” CC-RKA security, we need to handle the
case where the ciphertext C equals the challenge ciphertext but φ(sk) �=
sk. Here, we simply stipulate that the challenge ciphertext is an invalid
ciphertext under any key sk

′ �= sk; we refer to this property as finger-
printing (c.f. [4, 7]). In other words, a random valid ciphertext (by itself,
even without the public key) uniquely determines a consistent secret key.

At this point, it suffices to describe how we instantiate the underlying building
blocks, namely a tag-based CCA-secure encryption scheme that achieves both
finger-printing and key-homomorphism, as well as an efficient strong one-time
signature scheme.

Achieving Finger-Printing. As it turns out, the Cramer-Shoup CCA-secure
constructions [15, 16] do not satisfy the finger-printing; this is in some sense
inherent since the smoothness requirement in hash proof systems essentially
stipulate the secret key has some residual entropy given only its evaluation on a
no instance of the underlying subset membership problem (but not the public
key). Instead, we turn to constructions of CCA-secure public-key encryption
based on the “all-but-one extraction” paradigm, starting with [9], and further
developed in [12, 11, 30, 38, 26, 1, 31, 42, 35]. In these constructions, the secret
key is often only a single group element, which makes achieving finger-printing
much simpler. While the Cramer-Shoup framework inherently relies on decisional
assumptions e.g., the Decisional Diffie-Hellman (DDH) assumption or the
quadratic residuosity assumption, the “all-but-one extraction” paradigm admits
instantiations from search assumptions, such as factoring. Search assumptions
encompass a larger class of intractable problems than decisional assumptions.

Achieving Key Homomorphism. This leads us to our final technical
hurdle, namely that CCA-secure public-key encryption schemes based on search
assumptions may not be key-homomorphic. Take for instance the Hofheinz-Kiltz
factoring-based CCA-secure scheme [26]; it is not key-homomorphic because the
underlying Blum-Blum-Shub PRG is not homomorphic. As it turns out, the “all-
but-one extraction” paradigm allows us to overcome this hurdle too – informally,
the trapdoor decryption algorithm allows us to recover the seed of the PRG (for
CCA security, it suffices to recover the output of the PRG). For this reason, we
present our schemes via the framework of adaptive trapdoor relations [42, 31],
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which seems particularly suited for our analysis, as it abstracts the “all-but-
one” aspect for achieving CCA-security, allowing us to directly focus on the new
challenges posed by CC-RKA-security. For the concrete instantiations of CC-
RKA-secure encryption, we look at known instantiations of adaptive trapdoor
relations given in [42, 35]; we show that the ones based on hardness of factoring
and BDDH satisfy key homomorphism and finger-printing, and that the ones
based on DDH and LWE satisfy key homorphism.

One-Time Signatures. As a result of independent interest, we present a
new strong one-time signature scheme based on hardness of factoring, which
is inspired by Groth’s one-time signature based on hardness of discrete log
[24]. In Appendix B, we also sketch a generic construction of strong one-time
signatures starting from any Σ-protocol. In the application to CCA-security and
our CC-RKA-secure schemes, we want to design one-time signature schemes
where the total cost of key generation and signing is small. In our factoring-
based scheme, the signing algorithm does not require knowing the factorization
of the modulus and we may therefore use a modulus from the public parameter
instead of generating RSA modulus from scratch (which requires a linear number
of exponentiations).

1.3 Discussion

There is a general transformation for achieving security against linear related key
attacks via algebraic manipulation detection (AMD) codes [18, 20] – in the case
of encryption, this requires modifying the key generation algorithm of a CCA-
secure encryption scheme, so that the stored secret key is the encoded version
of the original secret key, using such a code (thereby increasing the secret key
size). The encoding has the property that with high probability any linear shift
of a valid codeword can be detected (and in those cases the new decryption
algorithm would simply reject). Our constructions achieve several advantages
over this generic approach: first, the key generation algorithm coincides with
existing CCA-secure encryption schemes. This offers compatibility with existing
public key set-ups. Second, we avoid the blow-up in key sizes. Finally, the existing
constructions of AMD codes only work over finite fields, which are not applicable
to the constructions based on hardness of factoring.

Perspective. In practice it is not clear that security against linear relations
would actually be useful for specific applications. As such, we regard our results
largely as proof of concept, demonstrating that we can indeed achieve RKA-
security for a non-trivial class of functions while paying only a small overhead
in efficiency and without changing existing public-key set-ups.

Additional Related Work. The works of Lucks, Goldenberg and Liskov, and
Bellare, Cash and Miller [33, 22, 7] gave constructions of RKA-secure primitives
from RKA-secure building blocks, but provided no new constructions of the
latter and hence of the former. Also, a number of works gave RKA-secure
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schemes in the standard model, notably symmetric encryption [2, 3], signatures
[23] (based on q-ary assumption) in addition to PRFs [4]; these schemes all
rely lattices and Diffie-Hellman type assumptions, none of these are based on
number-theoretic assumptions. There are also feasibility results on RKA-secure
public-key encryption based on non-standard assumptions, e.g. [28] as well as
results on tamper-resilient UC-secure computation [14]. We also point out here
that encryption schemes secure against linear related-key attacks have also found
applications in garbled circuits used in secure computation [3, 29].

Organization. We present our main construction in Section 3. We present the
instantiations from various classes of assumptions in Sections 5 through 6.

2 Preliminaries

Strong One-Time Signatures. For a stateful adversary A, we define the
advantage function Adv.OTSA(λ) to be:

Pr

⎡⎢⎢⎢⎣Verify(vksig,M ′, σ′) = 1

and (M ′, σ′) �= (M,σ)
:

(vksig, sksig)← SignKeyGen(1λ);

M ← A(vksig);
σ ← Sign(sksig,M);

(M ′, σ′)← A(σ)

⎤⎥⎥⎥⎦
A signature scheme is a strong one-time signature if for all PPT adversaries A,
the advantage Adv.OTSA(λ) is a negligible function in λ.

Adaptive Trapdoor Relations. Informally, trapdoor functions are a family
of functions {Ffid} that are easy to sample, compute and invert with trapdoor,
but hard to invert without the trapdoor (we always assume that the functions
are injective). In the tag-based setting, the function takes an additional input,
namely the tag; also, the trapdoor is independent of the tag. A family of adaptive
trapdoor functions [31] is one that remains one-way even if the adversary is given
access to an inversion oracle, except the adversary cannot query the oracle on
the same tag as that in the challenge. In a trapdoor relation, instead of requiring
that Ffid be efficiently computable, we only require that we can efficiently sample
from the distribution (s,Ffid(tag, s)) for a random s given fid,tag.

More precisely, a family of (tag-based) adaptive trapdoor relations [42] is given
by a family of injective functions {Ffid} that satisfies the following properties:

(trapdoor generation.) There is an efficient randomized algorithm TDG
that outputs a random (fid,tid).

(public sampling.) There is an efficient randomized algorithm PSamp that on
input (fid,tag), outputs (s,Ffid(tag, s)) for a random s.

(trapdoor inversion.) There is an efficient algorithm TdInv such that for
all (fid,tid) ← TDG and for all tag, y, computes TdInv(tid,tag, y) =
F−1
fid

(tag, y).
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(adaptive one-wayness.) For all efficient stateful adversariesA, the following
quantity is negligible in λ:

Pr

⎡⎢⎢⎢⎣s = s′ :

tag
∗ ← A(1λ);

(fid,tid)←r TDG(1λ);

(s, y)←r PSamp(fid,tag∗);

s′ ← AF−1
fid

(·,·)(fid, y)

⎤⎥⎥⎥⎦
where A is allowed to query F−1

fid
(·, ·) on any tag different from tag

∗.
It is convenient to work with the following stronger notion of adaptive

pseudorandomness [37], where the adversary has to distinguish G(s) from random
given y and an inversion oracle, for some pseudorandom generator G associated
with the family {Ffid}. There is indeed a generic way to obtain adaptive
pseudorandomness from adaptive one-wayness via the Goldreich-Levin hard-core
bit (since the proof relativizes with respect to the inversion oracle). However,
for the concrete instantiations we consider here, there are more efficient ways to
derive multiple hard-core bits.

(adaptive pseudorandomness.) For all efficient stateful adversaries A, the
following quantity is negligible in λ:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b = b′ :

tag
∗ ← A(1λ);

(fid,tid)←r TDG(1λ);

(s, y)←r PSamp(fid,tag∗);

K0 := G(s);K1 ←r {0, 1}λ;
b←r {0, 1};
b′ ← AF−1

fid
(·,·)(fid, y,Kb)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 1

2

where A is allowed to query F−1
fid

(·, ·) on any tag different from tag
∗.

2.1 RKA Security

Related-Key Derivation Functions. Following [5], a class of Φ of related-key
deriving functions (RKDFs) is a finite set of functions, all with the same domain
and range that could possibly depend on the public parameter pp. The class
of functions should also admit an efficient membership test, and its functions
should be efficiently computable. For our concrete instantiations, we consider
the class Φ+ of linear shifts.

CC-RKA Security. We follow the definition of related-key attack (RKA)
security from [7, 4]. For a stateful adversary A, we define the advantage function
Adv.RKA.PKEA,Φ(λ) to be:
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Pr

⎡⎢⎢⎢⎢⎢⎢⎣b = b′ :

pp← Setup(1λ); (pk, sk)← Gen(pp);

(m0,m1)← ARKA.Dec(sk,·,·)(pp, pk), |m0| = |m1|;
b←r {0, 1};
C∗ ← Enc(pk,mb);

b′ ← ARKA.Dec(sk,·,·)(C∗)

⎤⎥⎥⎥⎥⎥⎥⎦−
1

2

where RKA.Dec(sk, ·, ·) is an oracle that on input (φ,C): returns Dec(φ(sk), C).
We restrict the adversary A to only make queries (φ,C) such that φ ∈ Φ and
(φ(sk), C) �= (sk, C∗). An encryption scheme is said to be Φ-CC-RKA secure if
for all PPT A, the advantage Adv.RKA.PKEA,Φ(λ) is a negligible function in λ.

Weaker CC-RKA Security. We also consider weak CC-RKA security, where
in the security experiment, we further restrict the adversary A to only make
queries (φ,C) such that φ ∈ Φ and C �= C∗ where C∗ is the challenge ciphertext.
Previously, we also allow queries (φ,C∗) as long as φ(sk) �= sk.

3 Realization from Adaptive Trapdoor Relations

In this section, we present our constructions of RKA-secure encryption via
adaptive trapdoor relations. We begin by introducing two additional notions
for adaptive trapdoor relations.

Φ-Key Homomorphism. We say that {Ffid} is Φ-key homomorphic if there
is a PPT algorithm T such that for all φ ∈ Φ and all tid,tag, y:

TdInv(φ(tid),tag, y) = TdInv(tid,tag, T (pp, φ,tag, y))

In fact, a weaker formulation that asserts an oracle PPT algorithm T that
outputs TdInv(φ(tid),tag, y) given oracle access to TdInv(tid,tag, ·) suffices
for our proofs. This latter formulation is more similar to the formulation of key-
malleability in [4, Section 3.1] for achieving RKA-security for pseudorandom
functions. A similar notion also appears in [3] for symmetric-key encryption.

Φ-Fingerprinting. Informally, Φ-fingerprinting stipulates that any attempt to
maul tid invalidates a random output of Ffid(·). More formally, for a stateful
adversary A, we define the advantage function Adv.FPA,Φ(λ) to be:

Pr

⎡⎢⎢⎢⎣TdInv(φ(tid),tag∗, y) �=⊥
and φ ∈ Φ and φ(tid) �= tid

:

tag
∗ ← A(pp);

(fid,tid)← TDG(pp);

(s, y)←r PSamp(fid,tag∗);

φ← A(pp, fid,tid, y);

⎤⎥⎥⎥⎦
A trapdoor relation admits a Φ-fingerprint if for all PPT adversaries A, the
advantage Adv.FPA,Φ(λ) is a negligible function in λ. We stress that in the
above experiment, the adversary receives tid, which it can use to compute s
from y.
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3.1 Our Construction

We present our construction in Fig 1, which is the same as the construction
of CCA-secure encryption schemes from adaptive trapdoor relations via strong
one-time signatures, as given in [31, 42].

RKA PKE

Gen(pp): Run TDG(pp)→ (fid, tid). Output (pk, sk) := (fid, tid).

Enc(pk,m): On input pk and a message m:

1. Run SignKeyGen(pp)→ (vksig, sksig);

2. Run PSamp(pk,vksig)→ (s, y);

3. Compute ψ := G(s)⊕m;

4. Run Sign(sksig, y‖ψ)→ σ;

Output as ciphertext vksig‖σ‖y‖ψ

Dec(sk, C): On input sk and a ciphertext C = vksig‖σ‖y‖ψ,
1. Output ⊥ if Verify(vksig, y‖ψ,σ) = reject.

2. Compute s := TdInv(tid,vksig, y). Output ⊥ if s =⊥.
Otherwise, output G(s)⊕ ψ

Fig. 1. CC-RKA security from adaptive trapdoor relations

Theorem 1. Suppose the following hold:

1. {Ffid} is a family of adaptive trapdoor relations;

2. {Ffid} is Φ-key homomorphic;

3. {Ffid} admits a Φ-fingerprinting;

4. (SignKeyGen, Sign,Verify) is a strong one-time signature scheme.

Then, (Gen,Enc,Dec) as given in Fig 1 is a Φ-CC-RKA secure public-key
encryption scheme. Moreover, if all of the conditions hold apart from Φ-
fingerprinting, then (Gen,Enc,Dec) as given in the above construction is a Φ-
weak-CC-RKA secure public-key encryption scheme.

We observe that correctness of the encryption scheme follows readily from the
correctness of trapdoor inversion. Φ-CC-RKA security follows from the next
technical claim. After the proof, we explain how to deduce Φ-weak-CC-RKA
security without relying on Φ-fingerprinting.

Lemma 1. Let A be an adversary against the Φ-CC-RKA security of the
above encryption scheme (Gen,Enc,Dec) that makes at most Q oracle queries.
Then, we can construct an adversary B0 against the strong one-time security of
(SignKeyGen, Sign,Verify), an adversary B1 against Φ-fingerprinting of {Ffid},
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and an adversary B2 against adaptive pseudorandomness of {Ffid} and G such
that:

Adv.RKA.PKEA,Φ(λ) ≤ Adv.OTSB0(λ)+Adv.FPB1,Φ(λ)+Adv.Adaptive.PRGB2(λ)

The running times of B0 and B1 are that of A plus an additional polynomial
overhead that grows linearly with Q. The running time of B2 is similar to that
of A, and B2 makes at most Q oracle queries.

Proof. In the following, we write C∗ = vksig
∗‖σ∗‖y∗‖ψ∗ to denote the

ciphertext in the Φ-CC-RKA experiment. We proceed via a sequence of games.
We start with Game 0 as in the Φ-CC-RKA experiment and end up with a
game where the view of A is statistically independent of the challenge bit b.
The sequence of games is analogous to those for obtaining CCA security from
all-but-one extractable hash proofs and adaptive trapdoor functions [42, 31]; the
main difference lies in handling the RKA queries in the first two games.

game 1: eliminating tag reuse. We replace the decapsulation mechanism
RKA.Dec with RKA.Dec′ that outputs ⊥ on ciphertexts vksig‖σ‖y‖ψ such
that vksig = vksig

∗ but otherwise proceeds like RKA.Dec. We show that
Games 0 and 1 are computationally indistinguishable, by arguing that
RKA.Dec and RKA.Dec′ essentially agree on all inputs vksig‖σ‖y‖ψ. We
consider four cases depending on the input:

– Case 1: vksig �= vksig
∗. Here, RKA.Dec and RKA.Dec′ agree by

definition of RKA.Dec′.

– Case 2: vksig = vksig
∗, (σ, y‖ψ) = (σ∗, y∗‖ψ∗) and φ(sk) = sk. Such

queries are ruled out by definition of the Φ-CC-RKA security game.

– Case 3: vksig = vksig
∗, (σ, y‖ψ) �= (σ∗, y∗‖ψ∗). Here, by the security

of the signature scheme, we have:

Pr[Verify(vksig, y‖ψ, σ) = 1] ≤ Adv.OTS(λ)

Therefore, RKA.Dec outputs ⊥ except with negligible probability.

– Case 4: vksig = vksig
∗, (σ, y‖ψ) = (σ∗, y∗‖ψ∗) and φ(sk) �= sk. Here,

by the Φ-fingerprinting property, we have:

Pr[TdInv(φ(sk),vksig∗, y) �=⊥] ≤ Adv.FP(λ)

(Here, we use the fact that the adversary in the Φ-fingerprinting exper-
iment is given tid, which is needed to simulate the decryption oracle.)
Therefore, RKA.Dec outputs ⊥ except with negligible probability.

game 2: decrypting using F−1
fid

(·, ·). Next, we simulate oracle access to
RKA.Dec′ using oracle access to F−1

fid
(·, ·) as follows: on input (φ,vksig‖σ‖y‖ψ),

1. If vksig = vksig
∗ or Verify(vksig, y‖ψ, σ) = 0, output ⊥.

2. Compute s′ := F−1
fid

(vksig, T (pp, φ,vksig, y)). Output ⊥ if s′ =⊥.
3. Otherwise, output ψ := G(s′)⊕ ψ.



Public Key Encryption against Related Key Attacks 271

Note that we only query F−1
fid

(·, ·) on tags different from vksig
∗. Observe

that

s′ = F−1
fid

(vksig, T (pp, φ,vksig, y))

= TdInv(tid,vksig, T (pp, φ,vksig, y)) using trapdoor inversion

= TdInv(φ(tid),vksig, y) using Φ-key homomorphism

Correctness of the simulation follows readily, and thus Games 1 and 2 are
identically distributed.

game 3: replacing G(·) with random. In the computation of Enc(pk,mb)
in the Adv.RKA.PKE experiment, we replace ψ∗ := G(s∗) ⊕ mb with
ψ∗ := K ⊕ mb where K ←r {0, 1}λ. Then, Games 2 and 3 and
computationally indistinguishable by adaptive pseudorandomness using
vksig

∗ as the selective tag.

We conclude by observing that in Game 3, the distribution of φ∗ is statistically
independent of the challenge bit b. Hence, the probability that b′ = b is exactly
1/2. ��

Observe that in the above proof, we only used Φ-fingerprinting in the analysis
of Game 1 Case 4. For Φ-weak-CC-RKA security, the queries for this case are
ruled out by definition and therefore we do not need Φ-fingerprinting.

4 Instantiations from Hardness of Factoring

Fix a Blum integer N = PQ for λ-bit primes P,Q ≡ 3 (mod 4) such that
P = 2p+ 1 and Q = 2q + 1 for primes p, q. Let JN denote the subgroup of Z∗

N

with Jacobi symbol +1, and let QRN denote the subgroup of quadratic residues.
Observe that |JN | = 2pq = 2|QRN |. Following [27], we work over the cyclic group
of signed quadratic residues, given by the quotient group QR+

N := JN/±1. QR+
N

is a cyclic group of order pq and is efficiently recognizable (by verifying that
the Jacobi symbol is +1). Here, we use a hash function H : {0, 1}∗ → {0, 1}λ,
though we will treat the output of H as a number in Z2λ .

4.1 Strong One-Time Signature

For main construction in Section 3, we require efficient strong one-time signature
schemes, where the total computational complexity for key generation and
signing is small. In addition, we want short verification key and signatures.
Previous factoring-based one-time signatures [41, 36] require generating an RSA
modulus during key generation, which is computationally expensive. We provide
a new construction that uses a public modulus. For the one-time signature, we
can work with any Blum integer N = PQ, that is, we do not require that P,Q
be safe primes.
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SignKeyGen(pp), pp = (N):

sksig := (s0, s1, x) ←r

QR
+
N

(u0, u1, c) := (s2
λ

0 , s2
λ

1 , x2λ)
vksig := (u0, u1, c)
return (vksig, sksig)

Sign(sksig,m):

e←r Z2λ

w := x·se0 ·sH(m)+e mod 2λ

1

return (e, w) ∈ Z2λ ×
QR

+
N

Verify(vksig,m, (e, w))

check w2λ = c · ue
0 ·

u
H(m)+e mod 2λ

1

Fig. 2. Factoring-based strong one-time signature

Theorem 2. Suppose factoring Blum integers is hard on average and H is
collision resistant. Then, the protocol (SignKeyGen, Sign,Verify) described above
is a strong one-time signature scheme for signing messages m ∈ {0, 1}∗ with
perfect correctness.

Proof. Correctness is straight-forward. To establish security, we first describe
two simulators Sim0, Sim1 that given (u0, s1) and (s0, u1) respectively, simulates
the verification key and the signature on a single message.

Sim0(N, u0, s1): Pick w̃ ←r QR+
N , e←r Z2λ . Output

vksig := (u0, u1, w̃
2λ · u−e

0 )

When asked to sign a message m ∈ {0, 1}∗, output(
e, w̃ · sH(m)+e mod 2λ

1

)
Sim1(N, s0, u1): Pick w̃ ←r QR+

N , ẽ←r Z2λ . Output

vksig := (u0, u1, w̃
2λ · u−ẽ

1 )

When asked to sign a message m ∈ {0, 1}∗, output(
ẽ−H(m) mod 2λ, w̃ · sẽ−H(m) mod 2λ

0

)
It is straight-forward to check that the outputs of both Sim0 and Sim1 are
identically distributed to the output of a honestly generated vksig and an
honestly generated signature on a single message. Now, we consider several cases
for a forgery (e′, w′) on m′:

– m′ = m, same e′ = e: then, w′ = w.

– e �= e′: in Sim0, the forgery will allow us to compute the 2λ’th root of ue−e′
0

where |e− e′| < 2λ, i.e.:

(ue−e′
0 )2

−λ

=
w

w′ ·
s
H(m′)+e′
1

s
H(m)+e
1

Using Shamir’s GCD in the exponent algorithm, this value along with u0
allows us to recover a square root of u0.
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– e = e′, H(m) �= H(m′): in Sim1, extract a square root of u1, analogous to the
previous case.

– e = e′, H(m) = H(m′), but m′ �= m: contradict collision resistance of H.

That is, we can show that if an adversary outputs a forgery with probability ε,
then we can compute a square root of a random challenge u with probability
roughly ε/2 as follows: we pick b←r {0, 1}, run Simb with u as ub and choosing
a random s1−b. ��

TDG(pp), pp = (N, g):

tid←r [(N − 1)/4]

fid := g2
λ+�·tid

return (fid,tid)

G(s) := BBS(s)

PSamp(fid,tag; r):

(s, u) := (g2
�r, g2

λ+�r)
τ := (fid · gtag)r
return (s, u‖τ )

TdInv(tid,tag, u‖τ ):
check u, τ ∈ QR

+
N

check τ 2λ+�

= utag+2λ+�·tid

find a, b, c ∈ Z: 2c = atag +
b2λ+�

return (τa · ub−a·tid)2
�−c

Fig. 3. An adaptive trapdoor relation based on factoring [42, 26]

4.2 Adaptive Trapdoor Relations

The class Φ+. The functions φΔ : [N/4] → Z in this class are indexed by
Δ ∈ [−N/4, N/4], where φΔ(tid) := tid+Δ.

Φ+-key homomorphism. Observe that for all tid, Δ ∈ Z, all tag and all u, τ ∈
QR+

N :

TdInv(tid+Δ,tag, u‖τ) = TdInv(tid,tag, u‖(τ · u−Δ))

The above equality follows from the fact that TdInv returns s = u2
−λ

in both
sides of the equation when the following condition holds

τ2
λ+�

= utag+2λ+�·(tid+Δ) ⇐⇒ (τ · u−Δ)2
λ+�

= utag+2λ+�·tid

and ⊥ otherwise.

Φ+-fingerprinting. We establish a stronger statement, namely Φ-fingerprinting
for any class Φ of efficiently computable functions φ : [(N − 1)/4] →
{−N, . . . , N}. Fix an adversary A. Let y = u‖τ denote the challenge in the
security experiment. Furthermore, suppose A outputs φ such that φ(tid) �= tid

and TdInv(φ(tid),tag∗, y) �=⊥. This means:

τ2
λ+�

= utag
∗+2λ+�·tid = utag

∗+2λ+�·φ(tid)

and thus

utid = uφ(tid)

With probability 1−O(
√
N), both g and u are generators of QR+

N . This means
tid = φ(tid) (mod φ(N)/4). This would allow us to factor N .
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5 Instantiations from Diffie-Hellman Assumptions

5.1 Strong One-Time Signature from Hardness of Discrete Log

For completeness, we present here Groth’s one-time signature scheme [24,
Section 5.4]; we modified the underlying algebra in order to clarify the similarity
to our factoring-based scheme. Here, we use a hash function H : {0, 1}∗ → Zq.
The scheme is secure if computing discrete log is hard on average and H is
collision resistant.

SignKeyGen(pp), pp =
(G, q, g):

sksig := (s0, s1, x)←r Z3
q

(u0, u1, c) := (gs0 , gs1 , gx)
vksig := (u0, u1, c)
return (vksig, sksig)

Sign(sksig,m):

e←r Zq

w := x+e ·s0+(H(m)+e) ·s1
return (e, w) ∈ Zq × Zq

Verify(vksig,m, (e,w))

check gw = c · ue
0 ·

u
H(m)+e
1

Fig. 4. Discrete-log-based strong one-time signature [24]

5.2 Instantiations from BDDH

The class Φ+. The functions φΔ : Zq → Zq in this class are indexed by Δ ∈ Zq,
where φΔ(tid) := tid+Δ.

Φ+-key homomorphism. Observe that for all tid, Δ ∈ Zq, all tag and all u, τ ∈
G:

TdInv(tid+Δ,tag, u‖τ) = TdInv(tid,tag, u‖(τ · u−Δ))

The above equality follows from the fact that on both sides of the equation,
TdInv computes s such that

stag = τ · u−(tid+Δ) = (τ · u−Δ) · u−tid

Φ+-fingerprinting. We establish a stronger statement, namely Φ-fingerprinting
for any class Φ of functions φ : Zq → Zq. Fix an adversaryA. Let y = u‖τ denote
the challenge in the security experiment. Furthermore, suppose A outputs φ such
that TdInv(φ(tid),tag∗, y) �=⊥. This means:

(τ · u−tid)tag
∗−1

= (τ · u−φ(tid))tag
∗−1

TDG(pp), pp =
(G, q, g, gα, gγ):

tid←r Zq ; fid := gtid

return (fid,tid)

G(s) := e(s, gγ)

PSamp(fid,tag; r):

(s, u) := ((gα)r, gr)
τ := (fid · (gα)tag)r
return (s, u‖τ )

TdInv(tid,tag, u‖τ ):
compute s := (τ · u−tid)tag

−1

if e(g, s) = e(gα, u):
return s, else ⊥

Fig. 5. An adaptive trapdoor relation based on BDDH [42, 9]



Public Key Encryption against Related Key Attacks 275

and thus

utid = uφ(tid)

Hence, tid = φ(tid).

TDG(pp), pp = (G, q, g):

tid := (α, β, γ0, γ1)←r Z4
q

fid := (gα, gβ, gγ0 , gγ1)
return (fid,tid)

G(s) := s

PSamp(fid,tag; r):

(s, u) := ((gα)r, gr)
τ0 := (gγ0 · (gα)tag)r
τ1 := (gγ1 · (gβ)tag)r
return (s, u‖τ0‖τ1))

TdInv(tid,tag, u‖τ0‖τ1):
compute s0 := (τ0 ·u−γ0)tag

−1

compute s1 := (τ1 ·u−γ1)tag
−1

if s0 = uα ∧ s1 = uβ :
return s0, else ⊥

Fig. 6. An adaptive trapdoor relation based on DDH [42, 13]

5.3 Weakly CC-RKA-Secure Schemes from DDH

The class Φ+. The functions φΔ : Z4
q → Z4

q in this class are indexed by Δ ∈ Z4
q ,

where φΔ(tid) := tid+Δ.

Φ+-key homomorphism. Observe that for all tid, Δ ∈ Z4
q, all tag and all

u, τ0, τ1 ∈ G:

TdInv(tid+Δ,tag, u‖τ0‖τ1) = TdInv(tid,tag, u‖(τ0 · u−Δ)‖(τ1 · u−Δ))

6 Instantiations from LWE

We rely on a construction from [35, 1]. Here, G is a public matrix with special
structure for which the bounded-distance decoding problem is easy.

The class Φ+. The functions φΔ : Zm×w
q → Zm×w

q in this class are indexed by

Δ ∈ Zm×w
q , where φΔ(tid) := tid+Δ.

TDG(pp), pp = (G,A) ∈
Z

n×(w+m)
q :

tid := R←r Dm×w
q

fid := A′ := AR
return (fid,tid)

PSamp(fid,tag):

u := A
�
s+e, s←r Zn

q

Atag := A′ + tag ·G
v := A�

tag
s+ e′

return (s,u‖v)

TdInv(tid,tag,u‖v):
compute v′ = v −R�u
solve s s.t. v′ ≈ tag ·G�s
if ‖v′ − tag · G�s‖, ‖u −

A
�
s‖ are small:

return s else ⊥

Fig. 7. An adaptive trapdoor relation based on LWE [35]



276 H. Wee

Φ+-key homomorphism. Observe that for all R, Δ ∈ Zm×w
q , all tag and all

u‖v ∈ Zm+w
q :

TdInv(R+Δ,tag,u‖v) = TdInv(R,tag,u‖(v −Δ�u))

The above equality just follows from the fact that on both sides of the equation,
TdInv computes

v′ = v − (R +Δ)�u = (v −Δ�u)−R�u
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A Related-key Attacks on Cramer-Shoup

We point out two simple linear RKAs on the Cramer-Shoup CCA-secure
encryption scheme [15] based on DDH, since these attacks highlight some of
the main technical difficulities in achieving RKA security. We stress that this
does not undermine the Cramer-Shoup scheme in any way, since the scheme was
not designed to resist RKAs. The scheme is as follows:
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Gen(pp), pp = (G, q, g1, g2):

sk := (x, y, a, b, a′, b′)←r Z6
q

(h, c, d) := (gx1g
y
2 , g

a
1g

b
2, g

a′
1 gb

′
2 )

pk := (h, c, d)
return (pk, sk)

Enc(pk,m; r):

(u, v, w) := (gr1 , g
r
2 , h

r ·m)
t := TCR(u‖v‖w)
e := (cdt)r

return u‖v‖w‖e

Dec(sk, u‖v‖w‖e):
t := TCR(u‖v‖w)

if ua+t·a′ · vb+t·b′ = e:
return w/(uxvy) else ⊥

The following attacks work for any Δ ∈ Zq and suppose we are given a valid
encryption (u, v, w, e) of some unknown message m:

– if we change a in the secret key to a+Δ, observe that (u, v, w, e·uΔ) decrypts
to m under the modified secret key.

– if we change x in the secret key to x +Δ, observe that (u, v, w, e) decrypts
to m · u−Δ under the modified secret key.

In both cases, we can easily recover the message m given the output of the
decryption algorithm on the modified secret key.

B Strong One-Time Signatures from Σ Protocols

We sketch here a generic construction of one-time signatures for Σ protocols. We
start with a Σ-protocolΠ for any one-way relation. Applying the CDS-transform
[17], we may derive another Σ-protocol that given a pair of instances (u0, u1),
proves knowledge for one of the two witnesses. Now consider the following
signature scheme: the verification key is (u0, u1, c0, c1) and a signature on a
message M is a triplet (e, a0, a1) such that (c0, e, a0) and (c1,M ⊕ e, a1) are
accepting transcripts for Π for the instances u0 and u1 respectively.

We show that this scheme is one-time unforgeable; moreover, if Π has unique
responses, then the scheme is one-time strongly unforgeable. The proof of
security is very simple: we generate (u0, u1) along with the witness for ub, where
b ∈ {0, 1} is chosen at random. Using the witness, we can simulate the signature
oracle for a single message. Given a forgery, we can extract a witness to one of
u0, u1, which with probability 1/2, is different from the one we already know.

Constructions of one-time signatures from Σ-protocols were also given in
[36, 6]. However, the transformation given here as well as our factoring-based
instantiation appear to be novel.



Functional Encryption for Threshold Functions

(or Fuzzy IBE) from Lattices

Shweta Agrawal 1, Xavier Boyen 2, Vinod Vaikuntanathan 3,
Panagiotis Voulgaris 4, and Hoeteck Wee 5

1 UCLA
2 PARC

3 University of Toronto
4 Google Inc.

5 George Washington University
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have recently acquired much importance due to their average-case
to worst-case equivalence, their conjectured resistance to quantum
cryptanalysis, their ease of implementation and increasing practicality,
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In this work, we construct “Fuzzy” Identity Based Encryption from
the hardness of the Learning With Errors (LWE) problem. We note that
for our parameters, the underlying lattice problems (such as gapSVP or
SIVP) are assumed to be hard to approximate within supexponential
factors for adversaries running in subexponential time. We give CPA
and CCA secure variants of our construction, for small and large
universes of attributes. All our constructions are secure against selective-
identity attacks in the standard model. Our construction is made possible
by observing certain special properties that secret sharing schemes
need to satisfy in order to be useful for Fuzzy IBE. We also discuss
some obstacles towards realizing lattice-based attribute-based encryption
(ABE).

1 Introduction

Lattices have recently emerged as a powerful mathematical platform on which
to build a rich variety of cryptographic primitives. Starting from the work of
Ajtai [5], lattices have been used to construct one-way functions and collision-
resistant hash functions [5,29], signatures [14], public-key encryption [7,35,36],
identity-based encryption schemes [24,17,1,2], trapdoor functions [24] and
even fully homomorphic encryption [22,23,16,15]. Lattice-based cryptography
is attractive not only as a fallback in case factoring and discrete-log turn out
to be easy (which they are on quantum computers), but it is also an end in its
own right — lattice-based systems resist quantum and sub-exponential attacks,
and they are efficient, admit highly parallel implementations and are potentially
quite practical.
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At the same time, encryption schemes have grown more and more sophis-
ticated, and able to support complex access policies. Specifically, the idea
of functional encryption has emerged as a new paradigm for encryption. In
functional encryption in its broad sense, a secret key allows its holder to unlock
data (or some piece or function of the data) based on policies and logic, rather
than by merely addressing the recipient(s). The usefulness of such a primitive
is evident — access to encrypted data moves beyond mere enumeration to
potentially arbitrary functions.

Since its introduction with Fuzzy Identity-Based Encryption by Sahai and
Waters [37], several systems have emerged that move beyond the traditional
“designated recipient(s)” paradigm of encryption. In this line of work, the key
(or, in some variants, the ciphertext) is associated with a predicate, say f , while
the ciphertext (or the key) is associated with an attribute vector, say x. Decryp-
tion succeeds if and only if f(x) = 1. Specifically, attribute-based encryption
[25,32,10,18,27,28] refers to the case where the predicate is a Boolean formula to
which the attributes provide binary inputs. Fuzzy IBE is a special case where f is a
k-out-of-� threshold function. In predicate encryption [26,27], the predicate f is to
be evaluated without leaking anything about the attributes other than the binary
output of f(x), i.e., achieving attribute hiding along with the standard payload
hiding; known constructions are currently limited to inner-product predicates
between embedded constants and attributes living in some field, though.

Notably, all known instantiations of Functional Encryption are based on
bilinear maps on elliptic curves — and most are based on the IBE framework by
Boneh and Boyen [11]. Non-pairing constructions have remained elusive, even
though factoring-based IBE has been known since 2001 [19,13] and lattice-based
IBE since 2008 [24]. This is even more notable in the lattice world, where we now
have an array of sophisticated (hierarchical) IBE schemes [24,3,17,1,2], but the
construction of more expressive functional encryption schemes has been lagging
far behind.

Our Contributions. We take the first step in this direction by constructing a
fuzzy identity-based encryption (fuzzy IBE) scheme based on lattices. A fuzzy
IBE scheme is exactly like an identity-based encryption scheme except that
(considering identities as bit-vectors in {0, 1}n) a ciphertext encrypted under
an identity idenc can be decrypted using the secret key corresponding to any
identity iddec that is “close enough” to idenc. Examples arise when using one’s
biometric information as the identity, but also in general access control systems
that permit access as long as the user satisfies a certain number of conditions.

Our construction is secure in the selective security model under the learning
with errors (LWE) assumption and thus, by the results of [36,34], secure under
the worst-case hardness of “short vector problems” on arbitrary lattices. We then
extend our construction to handle large universes, and to resist chosen ciphertext
(CCA) attacks. Finally, we point out some difficulties involved in extending our
approach to functional encryption systems.

This work constitutes one of the first examples of lattice-based schemes that
generalize the basic “(H)IBE” functionality.
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Concurrent Work. A concurrent work of Agrawal, Freeman and Vaikuntanathan
[4] gave a construction of inner product predicate encryption from lattices.
Combined with a generic transformation given by Katz, Sahai and Waters [26,
Section 5.5], this yields a lattice-based fuzzy IBE for “exact thresholds” where
decryption succeeds whenever iddec and idenc differ in exactly k positions; we
address the setting where the identities differ in at most k positions.

1.1 Overview of our Construction

Our construction borrows ideas from the pairing-based fuzzy IBE scheme of
Sahai and Waters [37] and the lattice identity-based encryption scheme of [3,17],
together with an interesting observation about the Shamir secret-sharing scheme
and the Lagrange interpolation formula.

First, consider the setting where the identities are �-bit strings. This
corresponds to the setting where there are � attributes, and each attribute can
take two values (either 0 or 1). Decryption using SKid succeeds on a ciphertext
encrypted under identity id′ if the bitwise difference of id and id′ has Hamming
weight at most k. We then show how to extend it to the case where the universe
of attributes is (exponentially) large in a rather generic way.

Previous Lattice-Based IBE. We begin by recalling the IBE schemes of [3,17],
which we view as fuzzy IBE schemes where k = �. The public parameters
consist of 2�matrices (A1,0,A1,1, . . . ,A�,0,A�,1) ∈ Zn×m

q (where n is the security
parameter, q is a small prime, and m ≈ n log q is a parameter of the system)
and a vector u ∈ Zn

q . The master secret key then consists of the trapdoors Ti,b

corresponding to each matrix Ai,b.
We view the secret key derivation in the IBE scheme as a two-step procedure

that proceeds as follows: on input an identity id:

1. First, secret-share the vector u into � vectors u1, . . . ,u� which are uniformly
random in Zn

q subject to the condition that
∑�

i=1 ui = u.

2. The secret key SKid is then a vector (e1, . . . , e�) ∈ (Zm)�, where

SKid
.
= (e1, . . . , e�) and Ai,idiei = ui

The secret key ei is computed using the trapdoor Ti,idi using the Gaussian
sampling algorithm of [24].

This is a different, yet completely equivalent, way to view the secret key
derivation in the IBE schemes of [3,17].

To encrypt for an identity id in these schemes, one chooses a vector s ∈ Zn
q

and “small error terms” x1, . . . ,x� ∈ Zm and x′ ∈ Z, and outputs

CTid
.
= IBE.Enc(id, b ∈ {0, 1}) .

= (AT
1,id1s+x1, . . . ,A

T
�,id�s+x�,u

T s+x′+b�q/2)

The key observation in decryption is that if id = id′, then “pairing” each
component of CTid′ and SKid gives us a number that is approximately uTi s.
Namely,

eTi (A
T
i,idis + xi) = (Ai,idiei)

T s+ eTi xi = u
T
i s+ e

T
i xi ≈ uTi s (1)
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By linearity, we can then add up these terms and obtain (approximately) uT s.
The “approximation” we get here is not terrible, since the error terms eTi xi are
small, and we add up only � of them. Thus, the magnitude of the error remains
much smaller than q/2, which is sufficient for decryption.

Our Approach. A natural thought to extend this methodology to fuzzy IBE
is to use Shamir’s k-out-of-� secret-sharing scheme in the first step of the key
derivation procedure. Since reconstructing the secret in Shamir’s scheme involves
computing a linear combination of the shares, we can hope to do decryption as
before. As it turns out, the resulting scheme is in fact neither correct nor secure.
For simplicity, we focus on the issue of correctness in this section.

Recall that correctness of the previous lattice-based IBE schemes lies in
bounding the decryption “error terms” eTi xi. More concretely, the analysis
bounds the “cummulative error term”

x′ −
k∑

i=1

eTi xi

by q/4. Upon instantiating the previous schemes with Shamir’s secret-sharing
scheme, we need to bound a new cummulative error term, which is given by:

x′ −
∑
i∈S

Lie
T
i xi

Here, Li are the fractional Lagrangian coefficients used in reconstructing the
secret, interpreted as elements in Zq and S identifies the subset of shares used in
reconstruction. Indeed, while we can bound both the numerator and denominator
in Li as a fraction of integers, once interpreted as an element in Zq, the value
Li may be arbitrarily large.

The key idea in our construction is to “clear the denominators”. LetD := (�!)2

be a sufficiently large constant, so that DLi ∈ Z for all i. Then, we multiply D
into the noise vector, that is, the ciphertext is now generated as follows:

CTid
.
= IBE.Enc(id, b ∈ {0, 1}) .

= (AT
1,id1s+Dx1, . . . ,A

T
�,id�s+Dx�,u

T s+Dx′+ b�q/2	)

For correctness, it now suffices to bound the expression:

Dx−
∑
i∈S

DLie
T
i xi

by q/4. Now, further observe that each DLi is an integer bounded by D2, so
it suffices to pick the noise vectors so that they are bounded by q/4D� with
overwhelming probability.

Thus, for appropriate parameter settings, we get a fuzzy IBE scheme based on
the classical hardness of computing a sub-exponential approximation to “short
vector problems” on arbitrary lattices.
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Additional Related Work. The idea of using Shamir’s secret-sharing scheme in
lattice-based cryptography appears in the work of Bendlin and Damg̊ard [9] on
threshold cryptosystems. The security of their scheme, as with ours, relies on the
hardness of computing sub-exponential approximation for lattice problems. In
more detail, their scheme uses a pseudorandom secret-sharing from [20] in order
to share a value in some interval, for which they do not have to address the
issue of bounding the size of Lagrangian coefficients. Our idea of “clearing the
denominator” is inspired by the work on factoring-based threshold cryptography
(e.g. [39]), where the technique is used to handle a different technical issue:
evaluating fractional Lagrangian coefficients over an “unknown” modulus φ(N),
where N is a public RSA modulus.

2 Preliminaries

Notation: We use uppercase boldface alphabet for matrices, as in A, lowercase
boldface characters for vectors, as in e, and lowercase regular characters for
scalars, as in v. We say that a function f : R+ → R+ is negligible if for all
d > d0 we have f(λ) < 1/λd for sufficiently large λ. We write f(λ) < negl(λ).
For any ordered set S = {s1, . . . , sk} ∈ Rm of linearly independent vectors,

we define ‖S̃‖ = maxj ‖s̃j‖, where S̃ = {s̃1, . . . , s̃k} refers to the Gram-
Schmidt orthogonalization of S, and ‖ · ‖ refers to the euclidean norm. We let
σTG := O(

√
n log q ) denote the maximum (w.h.p.) Gram-Schmidt norm of a

basis produced by TrapGen(q, n).

2.1 Definition: Fuzzy IBE

A Fuzzy Identity Based Encryption scheme consists of the following four
algorithms:

Fuzzy.Setup(λ, �)→ (PP,MK): This algorithm takes as input the security pa-
rameter λ and the maximum length of identities �. It outputs the public
parameters PP and a master key MK.

Fuzzy.Extract(MK,PP, id, k)→ SKid: This algorithm takes as input the master
key MK, the public parameters PP, an identity id and the threshold k ≤ �.
It outputs a decryption key SKid.

Fuzzy.Enc(PP, b, id′)→ CTid′: This algorithm takes as input: a message bit b, an
identity id′, and the public parameters PP. It outputs the ciphertext CTid′ .

Fuzzy.Dec(PP,CTid′ , SKid)→ b: This algorithm takes as input the ciphertext
CTid′ , the decryption key SKid and the public parameters PP. It outputs the
message b if |id ∩ id′| ≥ k.

2.2 Security Model for Fuzzy IBE

We follow the Selective-ID model of security for Fuzzy Identity Based Encryption
as given by Sahai and Waters [37, Section 2.1]. The security game is very
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similar to the standard Selective-ID model for Identity-Based Encryption with
the exception that the adversary is only allowed to query for secret keys for
identities which have less than k overlap with the target identity id∗.

Target: The adversary declares the challenge identity, id∗, that he wishes to be
challenged upon.

Setup: The challenger runs the Setup algorithm of Fuzzy-IBE and gives the
public parameters to the adversary.

Phase 1: The adversary is allowed to issue queries for private keys for identities
idj of its choice, as long as |idj ∩ id∗| < k; ∀j

Challenge: The adversary submits a message to encrypt. The challenger
encrypts the message with the challenge identity id∗ and then flips a random
coin r. If r = 1, the ciphertext is given to the adversary, otherwise a random
element of the ciphertext space is returned.

Phase 2: Phase 1 is repeated.
Guess: The adversary outputs a guess r′ of r. The advantage of an adversary

A in this game is defined as |Pr[r′ = r]− 1
2 |

A Fuzzy Identity Based Encryption scheme is secure in the Selective-Set model
of security if all polynomial time adversaries have at most a negligible advantage
in the Selective-Set game.

The adaptive version of the above game is identical except it does not have
the target step, hence the adversary is allowed to choose an attack identity
adversarially.

3 Preliminaries: Lattices

Throughout the paper, we let the parameters q = q(λ),m = m(λ), n = n(λ) are
polynomial functions of the security parameter λ.

3.1 Random Integer Lattices

Definition 1. Let B =
[
b1

∣∣ . . . ∣∣ bm ]
∈ Rm×m be an m ×m matrix whose

columns are linearly independent vectors b1, . . . ,bm ∈ Rm. The m-dimensional
full-rank lattice Λ generated by B is the infinite periodic set,

Λ = L(B) =
{
y ∈ Rm s.t. ∃s = (s1, . . . , sm) ∈ Zm , y = Bs =

m∑
i=1

si bi

}
Here, we are interested in integer lattices, i.e, infinite periodic subsets of Zm,
that are invariant under translation by multiples of some integer q in each of the
coordinates.

Definition 2. For q prime and A ∈ Zn×m
q and u ∈ Zn

q , define:

Λ⊥
q (A) =

{
e ∈ Zm s.t. Ae = 0 (mod q)

}
Λu
q (A) =

{
e ∈ Zm s.t. Ae = u (mod q)

}
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3.2 Trapdoors for Lattices: The Algorithm TrapGen

Ajtai [6] showed how to sample an essentially uniform matrix A ∈ Zn×m
q with

an associated full-rank set TA ⊂ Λ⊥(A) of low-norm vectors. We will use an
improved version of Ajtai’s basis sampling algorithm due to Alwen and Peikert
[8]:

Proposition 1 ([8]).
Let n = n(λ), q = q(λ),m = m(λ) be positive integers with q ≥ 2 and
m ≥ 5n log q. There exists a probabilistic polynomial-time algorithm TrapGen
that outputs a pair A ∈ Zn×m

q ,TA ∈ Zm×m
q such that A is statistically close to

uniform and TA is a basis for Λ⊥(A) with length L = ‖T̃A‖ ≤ m · ω(
√
logm)

with all but n−ω(1) probability.

3.3 Discrete Gaussians

Definition 3. Let m ∈ Z>0 be a positive integer and Λ ⊂ Rm an m-dimensional
lattice. For any vector c ∈ Rm and any positive parameter σ ∈ R>0, we define:

ρσ,c(x) = exp
(
−π ‖x−c‖2

σ2

)
: a Gaussian-shaped function on Rm with center c

and parameter σ,
ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) : the (always converging) discrete integral of ρσ,c over

the lattice Λ,
DΛ,σ,c : the discrete Gaussian distribution over Λ with center c and parameter

σ,

∀y ∈ Λ , DΛ,σ,c(y) =
ρσ,c(y)

ρσ,c(Λ)

For notational convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ.

Sampling Discrete Gaussians over Lattices. Gentry, Peikert and Vaikun-
tanathan [24] construct the following algorithm for sampling from the discrete
Gaussian DΛ,σ,c, given a basis B for the m-dimensional lattice Λ with σ ≥
‖B̃‖ · ω(

√
logm):

SampleGaussian(Λ,B, σ, c) [24]: On input lattice Λ, a basis B for Λ, a positive
Gaussian parameter σ, and a center vector c ∈ Rm, it outputs a fresh random
vector x ∈ Λ drawn from a distribution statistically close to DΛ,σ,c.

3.4 Preimage Sampling

We will need the following algorithm from [24]. Let q ≥ 2, m ≥ 2n log q.

Algorithm SamplePre(A,TA,u, σ): On input a matrix A ∈ Zn×m
q with ‘short’

trapdoor basis TA for Λ⊥
q (A), a target image u ∈ Zn

q and a Gaussian parameter

σ ≥ ‖T̃A‖ · ω(
√
logm), outputs a sample e ∈ Zm from a distribution that is

within negligible statistical distance of DΛu
q (A),σ.
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3.5 Sampling from an “Encryption” Matrix

We will also need the following algorithm defined in [17,1]:

Algorithm SampleLeft(A,M1,TA,u, σ):

Inputs:
a rank n matrix A in Zn×m

q and a matrix M1 in Zn×m1
q ,

a “short” basis TA of Λ⊥
q (A) and a vector u ∈ Zn

q ,

a gaussian parameter σ > ‖T̃A‖ · ω(
√
log(m+m1)).

(2)

Output: Let F1 := (A | M1). The algorithm outputs a vector e ∈ Zm+m1

sampled from a distribution statistically close to DΛu
q (F1),σ. In particular, e ∈

Λu
q (F1).

3.6 Hardness Assumption

The LWE (learning with errors) problem was first defined by [36], and has since
been extensively studied and used. We use the decisional version of the LWE
problem.

Definition 4. Consider a prime q, a positive integer n, and a distribution χ
over Zq, all public. An (Zq, n, χ)-LWE problem instance consists of access to an
unspecified challenge oracle O, being, either, a noisy pseudo-random sampler Os

carrying some constant random secret key s ∈ Zn
q , or, a truly random sampler

O$, whose behaviors are respectively as follows:

Os: outputs noisy pseudo-random samples of the form (wi, vi) =
(
wi, w

T
i s +

xi
)
∈ Zn

q × Zq, where, s ∈ Zn
q is a uniformly distributed persistent secret

key that is invariant across invocations, xi ∈ Zq is a freshly generated
ephemeral additive noise component with distribution χ, and wi ∈ Zn

q is
a fresh uniformly distributed vector revealed as part of the output.

O$: outputs truly random samples
(
wi, vi

)
∈ Zn

q × Zq, drawn independently
uniformly at random in the entire domain Zn

q × Zq.

The (Zq, n, χ)-LWE problem statement, or LWE for short, allows an unspecified
number of queries to be made to the challenge oracle O, with no stated prior
bound. We say that an algorithm A decides the (Zq , n, χ)-LWE problem if∣∣Pr[AOs = 1]− Pr[AO$ = 1]

∣∣ is non-negligible for a random s ∈ Zn
q .

It has been shown in [36] that there is a poly(n, q)-time reduction from Search
LWE(Zq, n, χ) to Decision LWE(Zq, n, χ).

The confidence in the hardness of the LWE problem stems in part from a
result of Regev [36] which shows that the for certain noise distributions χ, the
LWE problem is as hard as the worst-case SIVP and GapSVP under a quantum
reduction (see also [33]). A classical reduction with related parameters was later
obtained by Peikert [34].
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Proposition 2 ([36]).
Consider a real parameter α = α(n) ∈ (0, 1) and a prime q = q(n) > 2

√
n/α.

Denote by T = R/Z the group of reals [0, 1) with addition modulo 1. Denote
by Ψα the distribution over T of a normal variable with mean 0 and standard
deviation α/

√
2 π then reduced modulo 1. Denote by �x� = �x + 1

2 the nearest
integer to the real x ∈ R. Denote by Ψ̄α the discrete distribution over Zq of the
random variable �q X� mod q where the random variable X ∈ T has distribution
Ψα.

Then, if there exists an efficient, possibly quantum, algorithm for deciding the
(Zq, n, Ψ̄α)-LWE problem, there exists a quantum q · poly(n)-time algorithm for

approximating the SIVP and GapSVP problems, to within Õ(n/α) factors in the
�2 norm, in the worst case.

Since the best known algorithms for 2k-approximations of gapSVP and SIVP

run in time 2Õ(n/k)) [21,38,31], it follows from the above that the LWE problem
with the noise ratio α = 2−nε

is likely hard for some constant ε < 1.

Two Lemmas to Bound Norms. The following lemma about the distribution Ψα

will be needed to show that decryption works correctly. The proof is implicit in
[24, Lemma 8.2].

Lemma 1. Let e be some vector in Zm and let y
R← Ψ

m

α , where Ψα is as defined
in Proposition 2. Then the quantity |e�y| treated as an integer in [0, q − 1]
satisfies

|e�y| ≤ ‖e‖ qαω(
√
logm ) + ‖e‖

√
m/2

with all but negligible probability in m.

Micciancio and Regev showed that the norm of vectors sampled from discrete
Gaussians is small with high probability.

Lemma 2 ([30]). For any lattice Λ of integer dimension m, any lattice point
c, and any two reals ε ∈ (0, 1) and σ ≥ ω(

√
logm),

Pr
{
x ∼ DΛ,σ,c : ‖x− c‖ >

√
mσ

}
≤ 1 + ε

1− ε
2−m

4 The Fuzzy IBE Scheme

We refer the reader to Section 1.1 for an overview of our construction, and
proceed directly to the details. Let λ ∈ Z+ be a security parameter. Let q = q(λ)
be a prime, n = n(λ) and m = m(λ) two positive integers, and σ = σ(λ) and
α = α(λ) two positive Gaussian parameters. We assume that id ∈ {0, 1}� for
some � ∈ N.
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4.1 Construction

Fuzzy.Setup(1λ, 1�): On input a security parameter λ, and identity size �, do:

1. Use algorithm TrapGen(1λ) (from Proposition 1) to select 2� uniformly
random n×m-matrices Ai,b ∈ Zn×m

q (for all i ∈ [�], b ∈ {0, 1}) together
with a full-rank set of vectors Ti,b ⊆ Λ⊥

q (Ai,b) such that ‖T̃i,b‖ ≤ m ·
ω(
√
logm).

2. Select a uniformly random vector u ∈ Zn
q .

3. Output the public parameters and master key,

PP =
(
{Ai,b}i∈[�],b∈{0,1},u

)
; MK =

(
{Ti,b}i∈[�],b∈{0,1}

)
Fuzzy.Extract(PP,MK, id, k): On input public parameters PP, a master keyMK,

an identity id ∈ {0, 1}� and threshold k ≤ �, do:

1. Construct � shares of u = (u1, ..., un) ∈ Zn
q using a Shamir secret-sharing

scheme applied to each co-ordinate of u independently. Namely, for each
j ∈ [n], choose a uniformly random polynomial pj ∈ Zq[x] of degree k−1
such that pj(0) = uj.
Construct the jth share vector

ûj = (ûj,1, . . . , ûj,n)
def
= (p1(j), p2(j), . . . , pn(j)) ∈ Zn

q

Looking ahead (to decryption), note that for all J ⊂ [�] such that |J | ≥ k,
we can compute fractional Lagrangian coefficients Lj such that u =∑

j∈J Lj · ûj (mod q). That is, we interpret Lj as a fraction of integers,
which we can also evaluate (mod q).

2. Using trapdoor MK and the algorithm SamplePre from Section 3.3, find
ej ∈ Zm such that Aj,idj · ej = ûj , for j ∈ [�].

3. Output the secret key for id as (id, {e1, . . . , e�}).
Fuzzy.Enc(PP, id, b): On input public parameters PP, an identity id, and a

message b ∈ {0, 1}, do:
1. Let D

def
= (�!)2.

2. Choose a uniformly random s
R← Zn

q .
3. Choose a noise term x← χ{α,q} and xi ← χ{α,q}

m,
4. Set c0 ← u� s +Dx+ b� q2 ∈ Zq.
5. Set ci ← Ai,idi

� s+Dxi ∈ Zm
q for all i ∈ [�].

6. Output the ciphertext CTid := (c0, {ci}i∈[�], id).
Fuzzy.Dec(PP, SKid,CTid′): On input parameters PP, a private key SKid, and a

ciphertext CTid′ :

1. Let J ⊂ [�] denote the set of matching bits in id and id′. If |J | < k,
output ⊥. Otherwise, we can compute fractional Lagrangian coefficients
Lj so that ∑

j∈J
LjAjej = u (mod q)

2. Compute r ← c0 −
∑

j∈J Lj · e�
j cj (mod q). View it as the integer r ∈

[−� q2, �
q
2) ⊂ Z.

3. If |r| < q
4 , output 0, else output 1.
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Correctness. To establish correctness for decryption, we only need to consider
the case |J | ≥ k. Let Lj be the fractional Lagrangian coefficients as described
above. Then,

r = c0 −
∑
j∈J

Lj e
�
j cj (mod q) (3)

= u� s+Dx+ b
⌊ q
2

⌋
−
∑
j∈J

Lj e
�
j (Aj

� s+D · xj) (mod q)

= b
⌊ q
2

⌋
+
(
u� s−

∑
j∈J

(Lj Ajej)
� s
)

︸ ︷︷ ︸
= 0 (mod q)

+
(
Dx−

∑
j∈J

DLje
�
j xj

)
︸ ︷︷ ︸

≈ 0

(mod q) ≈ b
⌊ q
2

⌋

It suffices to set the parameters so that with overwhelming probability,

|Dx−
∑
j∈J

DLje
�
j xj | ≤ D|x|+

∑
j∈J

D2|e�
j xj | < q/4 (4)

For the first inequality, we use the following lemma on Lagrangian coefficients
which states that the numbers DLj are integers bounded above by D2 ≤ (�!)4.

Lemma 3. Let D = (�!)2. Given k ≤ � numbers I1, . . . , Ik ∈ [1 . . . �], define the
Lagrangian coefficients

Lj =
∏
i�=j

−Ii
(Ij − Ii)

Then, for every 1 ≤ j ≤ k, DLj is an integer, and |DLj | ≤ D2 ≤ (�!)4.

Proof. To see this, note that the denominator of the jth Lagrange coefficient Lj

is of the form
dj =

∏
i�=j

(Ij − Ii)

The numbers |Ij − Ii| lie in the interval [−(� − 1), . . . , (� − 1)], and they can
repeat at most twice (namely, for every number n ∈ [�], there are at most two
i, i′ such that |Ij − Ii| = |Ij − Ii′ |).

Since each of the factors Ij − Ii can appear at most twice in absolute value,
(�!)2 divides dj . Thus, DLj is an integer. Also,

|DLj | ≤ D ·
∣∣∏
j �=i

(−Ii)
∣∣ ≤ (�!)3

4.2 Proof of Security

We show that the Fuzzy IBE construction provides ciphertext privacy under
a selective identity attack as in Definition 2.2. Recall that ciphertext privacy
means that the challenge ciphertext is indistinguishable from a random element
in the ciphertext space. More precisely, we have the following theorem:
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Theorem 1. If there exists a PPT adversary A with advantage ε > 0 against the
selective security game for the Fuzzy IBE scheme of Section 4.1, then there exists
a PPT algorithm B that decides the LWE problem with advantage ε/(�+ 1).

Proof. Recall from Definition 4 that an LWE problem instance is provided as
a sampling oracle O which can be either truly random O$ or noisy pseudo-
random Os for some secret key s ∈ Zn

q . The simulator B uses the adversary A
to distinguish between the two, and proceeds as follows:

Instance. B requests fromO and receives (�m+1) LWE samples that we denote
as:

(w1, v1) ∈ Zn
q × Zq

{(w1
1, v

1
1), (w

2
1, v

2
1), . . . , (w

m
1 , v

m
1 )} ∈

(
Zn
q × Zq

)m
. . . . . .

{(w1
� , v

1
� ), (w

2
� , v

2
� ), . . . , (w

m
� , v

m
� )} ∈

(
Zn
q × Zq

)m
Targeting. A announces to B the identity it intends to attack, namely id∗.
Setup. B constructs the system’s public parameters PP as follows:

1. The � matrices Ai,id∗i , i ∈ [�] are chosen from the LWE challenge
{(w1

i ), (w
2
i ), . . . , (w

m
i )}i∈[�]. The � matrices Ai,id∗i

, i ∈ [�] are chosen

using TrapGen with a trapdoor Ti,id∗i
.

2. The vector u is constructed from the LWE challenge, u = w1.

The public parameters are returned to the adversary.
Queries. B answers each private-key extraction query for identity id as follows:

1. Let id∩id∗ := I ⊂ [�] and let |I| = t < k. Then, note that B has trapdoors
for the matrices corresponding to the set Ī, where |Ī| = � − t. W.l.o.g.,
we assume that the first t bits of id are equal to id∗.

2. Represent the shares of u symbolically as ûi = u + a1i + a2i
2 + . . . +

ak−1i
k−1 where a1, . . . , ak−1 are vector variables of length n each.

3. For i s.t. id∗i = idi, pick ei randomly using algorithm SampleGaussian.
Set ûi := Ai,idiei; i ∈ [t].

4. Since t ≤ k − 1, and there are k − 1 variables a1........ak−1, by choosing
k− 1− t shares ût+1, . . . , ûk−1 randomly, the values for a1........ak−1 are
determined. This determines all � shares û1, . . . , û�.

5. To find ej s.t. Aj,idjej = ûj for j = t+ 1, . . . �, invoke

SamplePre(Aj,idj ,Tj,idj , ûj , σ)

6. Return (e1, . . . , e�).

Note that the distribution of the public parameters and keys in the real
scheme is statistically indistinguishable from that in the simulation.

Challenge. A outputs a message bit b∗ ∈ {0, 1}. B responds with a challenge
ciphertext for id∗:

1. Let c0 = Dv1 + b�q/2.
2. Let ci = (Dv1i , Dv

2
i .....Dv

m
i ) for i ∈ [�].

Guess. The adversary A outputs a guess b′. The simulator B uses that guess to
determine an answer on the LWE oracle: Output “genuine” if b′ = b∗, else
output “random”.
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4.3 Parameters

We set the parameters to ensure that the decoding works with high probability,
and that the security reductions are meaningful. Our security parameter is λ, and
given (an upper bound on) �, the size of the universe, the rest of the parameters
are set under the following constraints:

1. For the lattice trapdoor generation algorithm of Alwen and Peikert [8], we
need m ≥ 5n log q.

Given this constraint onm, the TrapGen algorithm outputs a basis of (Gram-
Schmidt) length at most m ·

√
logm. Using the SamplePre algorithm, the

secret key vectors ej are drawn from a discrete Gaussian with standard
deviation σ ≥ m · logm (using the SamplePre algorithm), and thus, by
Proposition 2, have length at most σ

√
m ≤ m1.5 · logm with all but

exponentially small probability.

2. We set the noise distribution χ = Ψ
m

α , where α ≥ 2
√
m/q in order to apply

Regev’s reduction (see Lemma 2). A vector x sampled from this distribution
has length O(αq

√
m) ≤ 2m with all but exponentially small probability.

3. For the correctness to hold, we need to satisfy equation 4. Since D = (�!)2,
and letting α = 1

√
m/q, we have

D|x|+
∑
j∈J

D2|e�
j xj | ≤ D · αq

√
m+ � ·D2 · (αq

√
m ·m1.5 logm ·

√
m)

≤ 4 ·m3 logm · �(�!)4 ≤ m3 logm · 25�

where we used the fact that (�!)4 ≤ (�)4� ≤ 25�. Setting q ≥ m3 logm · 25�
ensures correctness.

As for concrete parameters settings under these constraints, we set:

– The lattice dimension n = λ and � = nε for some constant ε ∈ (0, 1).
– The modulus q to be a prime in the interval [n625�, 2 · n625�].
– m = n1.5 ≥ 5n log q, satisfying (1) above.

Putting together the last two bullets, we see that q ≥ m3 logm · 25�, satisfying
(3) above.

– The noise parameter α = 2
√
m/q = 1/(25n

ε · poly(n)).

Combining this with the worst-case to average-case connection (Proposition 2),
we get security under the hardness of 2O(nε)-approximating gapSVP or SIVP
on n-dimensional lattices using algorithms that run in time q · poly(n) = 2O(nε).
With our state of knowledge on lattice algorithms and algorithms for LWE,
security holds for ε < 1/2.

We describe a construction for identities that live in a large universe in
Appendix A and connections to attribute based encryption in Appendix B.
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5 Conclusion

We constructed a Fuzzy Identity-Based Encryption scheme, selectively secure in
the standard model, from the hardness of the Learning With Errors problem.
Ours is among the first realization of attribute-based encryption from lattices,
and among the first and only “post-quantum, beyond-IBE” cryptosystems known
to date. Extending the system by showing full security, improving the parameters
of the underlying LWE assumption, or transforming it to support more expressive
attributes, are important open problems.
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A Extensions

CCA security. Both our small-universe and the large-universe schemes can be
lifted from CPA to CCA security using standard methods [12]. Here we describe
the extension for our small universe construction; details for the large universe
construction follow directly.
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Specifically, we make use of a one-time strongly unforgeable signature
scheme S0 to augment the underlying FuzzyIBE scheme. The Fuzzy.Setup and
Fuzzy.Extract algorithms remain unchanged.

During Fuzzy.Enc, the encryptor runs S0.KeyGen to obtain a public-secret key
pair, which we denote by (VK, SK). We assume that VK is represented as a
binary string. Then, the encryptor picks the identity id he wants to encrypt to,
and sets id′ = (id|VK). Let CTid′ ← Fuzzy.Enc(PP, b, id′). Next, the encryptor
sets σ ← S0.Sign(CTid′ , SK) and returns the tuple (σ,VK,CTid′).

During Fuzzy.Dec, the decryptor first checks that S0.Verify(CTid′ , σ,VK) = (,
and rejects if not. Next, she uses her secret key SKid1 to derive a secret key SKid′′

for the “delegated” identity id′′ ← (id1|VK). Such delegation can be done using
the standard technique from [17]. Note that if the Hamming weight |id− id1| ≤ k,
then |id′ − id′′| ≤ k, and conversely. Hence, if the decryptor is authorized to
decrypt in the underlying scheme, she can use her extended key SKid′′ to decrypt
in the augmented scheme, and only then. The details are deferred to the full
paper.

Construction for Identities in a Large Universe. The construction outlined above
can only support identities that are binary vectors of length �. We desire to
have the identities live in a larger space so that they capture more expressive
attributes.

At a high level, we shall combine our small-universe Fuzzy IBE with a
compatible standard-model IBE, such as [3,17,1], to construct a Fuzzy IBE
that can support large-universe identities. In the scheme outlined here, we use
the efficient IBE from Agrawal, Boneh, and Boyen [1] to provide large-universe
entities. Our identities are now �-vectors of attributes in Zn

q , while our parameters
are linear in � (� depends on n however; see Section 4.3). We defer the detailed
construction to the full version.

B Connections to Attribute Based Encryption

A natural question that arises from this work is whether the construction can
be generalized to Attribute-Based Encryption (ABE) for more expressive access
structures. Specifically, we could ask that the secret key for a user be associated
with a set of her attributes (e.g., “PhD Student at University X”, “Ran in Boston
marathon”) represented by some vector x, and the ciphertext be created with
respect to an access policy, represented by a (polynomial-size) Boolean circuit C,
so that decryption works if and only if C(x) = 1. (Conversely, we could instead
bind the policy C to a user and the attributes x to a ciphertext.) In the world
of bilinear maps, many constructions are known [25,32,10,18,27,28], the most
general being for access policies that can be described using Boolean formulas.

The difficulty of generalizing our construction to handle arbitrary Boolean
formulas is quite subtle. To see this, recall that Fuzzy IBE is a particular type
of ABE where the policy is restricted to a single k-out-of-n threshold gate. Since
any monotone Boolean formula has an associated linear secret sharing scheme
(LSSS), we might imagine generalizing the Fuzzy IBE construction as follows:
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1. During ABE.Setup, sample � matrices A1, . . . ,A� with trapdoors.
2. During ABE.Extract, given a formula f , represent it as a LSSS matrix M,

share u according toM to obtain û1, . . . , û� (instead of using Shamir secret
sharing). Compute ei, i ∈ [�] such thatAiei = ûi mod q and release e1, . . . e�.

3. During ABE.Enc: Say γ is a binary vector representing attributes. Then let
ci = A

�
i s + x for i s.t. γi = 1. Let c0 = u�s + y + b� q2� as before (x, y is

Gaussian noise and b is the bit being encrypted).
4. During ABE.Dec, if attributes γ satisfy f , we can find low norm coefficients

ρi so that ρiûi = u and decrypt by computing c0 −
∑

i ρie
�
i ci as before.

The problem with this scheme is that the shares ûi, ûj may be correlated; for,
e.g. it is possible to get u1 = u2 for queries such as (x1∨x2)∧x3 and (x1∨x2)∧x5,
etc. Then, their preimages e1 and e2 can be combined to form a short vector
in the null-space of [A1|A2]. Over several such queries, the attacker can then
construct a full basis for Λ⊥([A1|A2]), that can be used to break the challenge
ciphertext for a target attribute vector such as 1100 . . .00.

This problem does not arise in our Fuzzy IBE approach since we enforce the
policy using secret sharing based on Reed Solomon (RS) codes. RS codes have
the property that given k shares, either the shares are sufficient to reconstruct
the vector u, or they look jointly uniformly random. This property is crucial in
the Fuzzy IBE simulation, and is not satisfied by the ABE generalization outlined
above. Thus, we suspect that new techniques will be required to construct
Attribute-Based Encryption from lattices.
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1 Introduction

Constructions of identity-based encryption schemes constitute one of the most
challenging problems of public-key cryptography. The notion of IBE was pro-
posed in [14] and solved in [3,7]. This lead to a great deal of research on the
topic. The solution in [3], though simple and elegant, had several features which
were not satisfactory from a theoretical point of view.

In this work, we will be interested in IBE schemes built from bilinear pairings.
Till date, most pairing based cryptographic schemes have been based on a bilin-
ear map e : G×G→ GT , where G is a prime-order group of elliptic curve points
over a finite field and GT is a subgroup of a finite field. Such maps arise from
Weil and Tate pairings and there is an extensive literature on efficient implemen-
tation of such maps. Since the two components of the domain of e are same, such
an e is called a symmetric pairing. Another kind of pairings, where the order of
G is composite has been proposed [4]. Such pairings are called composite-order
pairings and provide additional flexibility in designing schemes. The trade-off,
however, is that computing the pairing itself becomes significantly slower and
also the representation of the group elements becomes substantially longer.

Symmetric pairings (over prime order groups), are neither the most general
nor the most efficient of possible pairings over elliptic curves. A general bilinear
map is of the form e : G1 × G2 → GT , where G1 is a prime-order group of
points of an elliptic curve over a finite field F and G2 is a group (of the same
prime-order) of points of the same curve over an extension of F. Such maps
are called asymmetric pairings. Studies [16,8,5] have indicated that compared to
symmetric pairings, asymmetric pairings are much faster and more compact to
implement.

An important work on pairing based IBE is [17] which builds upon earlier
work in [1,2] to provide an efficient IBE scheme with full security without random
oracles. Variants have been reported [6,12] which result in IBE schemes which
are efficient and have practical sized parameters. Though important, a drawback
of the scheme in [17] is that the size of the public parameters grows linearly with
the security parameter.

In a major innovation, Waters [18] introduced a new technique – called dual
system encryption – for construction of IBE schemes and related primitives. The
scheme presented in [18] has the feature that the size of the public parameters
is constant while retaining full security. Dual system encryption is by itself an
interesting notion and worthy of further investigation. The goal of a better un-
derstanding of dual system encryption would be to obtain IBE schemes with
improved efficiency compared to the one proposed in [18].

An immediate follow-up work [11] took the route of composite-order pairings.
Such pairing groups have ‘more structure’ which can possibly help in getting a
clearer understanding of the technique. (Waters remarks in [18] that his scheme
was first obtained for composite order groups.) The approach taken by [11] is to
look at a realization of the IBE scheme of [1] in the setting of composite order
groups so as to obtain adaptive-id security. They also gave a conversion of their
composite-order IBE scheme to an IBE scheme using prime-order asymmetric
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pairing. In a very recent work [10], the framework of dual system encryption
has been thoroughly investigated and an IBE scheme using prime-order pairing
has been presented. We note that the conversion from composite-order to prime-
order pairings in [11] and considering prime-order groups in [10] are motivated
by efficiency considerations.

Waters IBE scheme in [18] is based on symmetric pairings. The security of the
scheme is based on the hardness of the decision linear (DLin) and the decision
bilinear Diffie-Hellman (DBDH) assumptions. It is of interest to convert this to
asymmetric pairings. For one thing, this will enable faster and smaller imple-
mentations which will arise from the advantages of asymmetric pairings over
their symmetric variants. There is, however, another reason. Use of asymmetric
pairings brings forward the possibility of reducing the number of group elements
in ciphertexts and keys. In fact, Waters [18] himself mentions: “using the SXDH
assumption we might hope to shave off three group elements from both cipher-
texts and private keys”. The rationale for this comment is that for asymmetric
pairings with no known efficiently computable isomorphisms between the groups
G1 and G2, the decision Diffie-Hellman (DDH) assumption holds for both G1

and G2. This is the symmetric external Diffie-Hellman (SXDH) assumption. For
symmetric pairings the DDH assumption does not hold in G. Using the SXDH
assumption will potentially lead to a simpler scheme requiring a lesser number
of group elements.

Following up on the above mentioned remark by Waters, we have systemati-
cally investigated the various possibilities for using asymmetric pairings. To start
the study, we performed a straightforward conversion to the setting of asymmet-
ric pairings. The scheme in [18] is quite complex. Several scalars are used in
the public parameters, encryption and key generation. These have definite and
inter-connected roles in the security proof. Our first task was to pin down the
relationships between these scalars and separate them out. This enabled us to
work with one group of scalars with minimal changes to other groups.

With a good understanding of the roles of the scalars, we are able to apply
simplifications in a stage-wise manner. The first simplification gives an IBE
scheme (Scheme 1) which shrinks ciphertexts and keys by two elements each
and whose security can be based on DDH1 (DDH assumption in G1), DLin and
DBDH assumptions. We argue that the DDH2 assumption cannot be directly
used. So, the afore-mentioned suggestion by Waters cannot be fulfilled. On the
other hand, we show that using a natural and minimal extension of the DDH2
assumption, a significantly more efficient scheme (Scheme 6) can be obtained.

Waters original scheme [18] used random tags in the ciphertext and the
decryption key. Simplification of this scheme by both Lewko-Waters [11] and
Lewko [10] yielded IBE schemes which did not use such tags. In contrast, all our
simplifications retain the tags used in the original description [18]. Even then, we
are able to obtain significant simplifications and efficiency improvements. This
suggests that for the purpose of simplification as an IBE it is not important to
do away with the tags. Removing them has other positive consequences such as
obtaining a constant size ciphertext hierarchical IBE [11].
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Scheme 6 has the interesting feature that, apart from the tags, exactly one
randomiser each is used for encryption and key generation which is minimal in
case of ciphertext. However, it is not known whether the key generation could
be made deterministic within the dual system framework. To show that our
simplification retains the flexibility of the original technique byWaters, we obtain
an analogue of the HIBE scheme and prove it secure in the full security model.
This HIBE scheme inherits all the security properties from [18], but, provides
improved efficiency. From this HIBE scheme we construct an adaptively secure
BE scheme which is more efficient than all the previously known BE schemes
with adaptive security. We provide only the construction of the BE scheme here;
the full version of this paper [13] contains the security proof. The construction
and proof for the HIBE scheme will appear in the full version [13].

A comparison of the features of various IBE schemes based on the dual sys-
tem technique is shown in Tables 1 and 2. The columns #PP, #MSK, #cpr,
#key provide the number of group elements in the public parameters, the master
secret key, ciphertexts and decryption keys. The public parameters and cipher-
texts consist of elements of G1 while the master secret key and decryption keys
consist of elements of G2. Encryption efficiency counts the number of scalar mul-
tiplications in G1 while decryption efficiency counts the number of pairings that
are required. Key generation (a less frequent activity) efficiency is given by the
number of scalar multiplications in G2. Currently, Scheme 6 is the most efficient
among all the known dual system IBE schemes.

Table 1. Comparison of dual system IBE schemes secure under standard assump-
tions. Waters-09 and Lewko-11 use symmetric pairings while Scheme 6 uses asymmetric
pairings.

scheme #PP #MSK #cpr #key enc eff dec eff key gen assump

Waters-09 [18] 13 5 9 8 14 9 12 DLin, DBDH

Lewko-11 [10] 24 30 6 6 24 6 6 DLin

Scheme 1 9 8 7 6 10 6 9 DDH1, DLin, DBDH

Table 2. Comparison of dual system IBE schemes secure under non-standard but static
assumptions. Both the schemes use asymmetric pairings. DDH1 is a weaker assumption
than LW1 and DDH2v is a weaker assumption than LW2.

scheme #PP #MSK #cpr #key enc eff dec eff key gen assump

LW [11] 9 6 6 6 9 6 10 LW1, LW2, DBDH

Scheme 6 6 7 4 4 7 3 6 DDH1, DDH2v, DBDH

The figures in the table indicate that Scheme 6 is more efficient than Lewko-
Waters scheme. In particular, decryption in Scheme 6 is about twice as fast as
that of LW scheme (note that both constructions are based on Type-3 pairings).
Since Scheme 1 and Scheme 6 use Type-3 pairings which offer much better
performance compared to symmetric pairings, the gain in speed over Waters’
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scheme and Lewko’s scheme cannot be quantified just in terms of the number of
operations performed. It also depends on the performance gain of asymmetric
pairings over their symmetric variants for the chosen security level.

2 Prerequisites

We follow standard definitions and corresponding full security models of IBE,
HIBE and BE schemes. Here we briefly describe asymmetric pairings and related
assumptions. For more details on these the reader is referred to [16,8,5].

2.1 Bilinear Maps

Let G1, G2 and GT be cyclic groups of prime order p. G1 and G2 are written
additively while GT is written multiplicatively. A cryptographic bilinear map
e : G1 ×G2 → GT has the following properties.

1. Bilinearity: For elements A1, B1 ∈ G1 and A2, B2 ∈ G2, e(A1 +B1, A2) =
e(A1, A2)e(B1, A2) and e(A1, A2 +B2) = e(A1, A2)e(A1, B2).

2. Non-degeneracy: If e(P1, P2) = 1T , the identity of GT , then either P1 is
the identity of G1 or P2 is the identity of G2.

3. Efficiency: The map e is efficiently computable.

A bilinear map is called symmetric or a Type-1 bilinear map if G1 = G2; oth-
erwise it is asymmetric. Asymmetric bilinear maps are further classified into
Type-2 and Type-3 bilinear maps. In the Type-2 setting, there is an efficiently
computable isomorphism either from G1 to G2 or from G2 to G1 whereas in the
Type-3 setting no such isomorphisms are known. Previous works [16,8,5] have
established that the Type-3 setting is the most efficient from an implementation
point of view.

We introduce some notation: Given generators P1 of G1 and P2 of G2 and
elements R1 ∈ G1 and R2 ∈ G2, the notation R1 ∼ R2 indicates that R1 has
the same discrete logarithm to base P1 as that of R2 to base P2. For a set X, let
x ∈R X denote that x is a uniform random element of X.

In the following, we will assume the availability of a Type-3 bilinear map
e : G1 ×G2 → GT where G1 = 〈P1〉, G2 = 〈P2〉 and both G1 and G2 are groups
of the same prime order p. Being of prime order, any non-identity element of G1

is a generator of the group and the same holds for G2.

2.2 Hardness Assumption

We introduce a new hardness assumption for Type-3 pairings. Here we provide
a discussion of this. The other standard hardness assumptions required in this
work are DDH in G1, DLin and DBDH assumptions.

Let P1 and P2 be random generators of G1 and G2 respectively. The DDH
problem in G1 is to decide, given (P1, x1P1, x2P1, P2, Z1), whether Z1 = x1x2P1
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or Z1 is a random element of G1. Here x1, x2 ∈R Zp. Similarly one can de-
fine the DDH assumption in G2. In this case, an instance will have the form
(P1, P2, x1P2, x2P2, Z2) and the task is to determine whether Z2 = x1x2P2 or
whether Z2 is a random element of G2. For convenience we will denote the DDH
problem in G1 as DDH1 and that in G2 as DDH2. The symmetric external Diffie-
Hellman (SXDH) assumption is that both DDH1 and DDH2 problems are hard.
Note that for a symmetric pairing (i.e., for G1 = G2 = G = 〈P 〉), DDH is easy
to solve by comparing e(P,Z2) with e(x1P, x2P ).

We will use DDH1 in our proofs. But DDH2 is not directly applicable to our
proofs. An instance of DDH2 has a single element P1 of G1. For our proofs,
we will require some information about x1P1 to be carried as part of the in-
stance. If the instance is directly augmented by x1P1, then the problem be-
comes easy, since one can compute the pairing e(x1P1, x2P2) and compare to
e(P1, Z2). Suppose that instead of x1P1 we include the elements zP1 and zx1P1

where z is chosen randomly from Zp. This pair of elements carries some in-
formation about x1P1, but, not the element itself. An instance will now be
(P1, zP1, zx1P1, P2, x1P2, x2P2, Z2). It, however, is easy to check whether Z2

equals x1x2P2 by checking whether e(zx1P1, x2P2) equals e(zP1, Z2). This sug-
gests that the information about zP1 itself needs to be blinded by another ran-
domiser. So, instead of having zP1 directly, the elements dP1, dzP1 and dP2 are
included where d is a random element of Zp. The information about x1P1 is
carried by the elements dP1, dzP1, zx1P1 and dP2. Augmenting an instance of
DDH2 with these elements embeds information about x1P1 but, does not seem
to provide any way to use this information to determine whether Z2 is real
or random. The entire thing can now be formulated as an assumption in the
following manner.

Assumption DDH2v. Let P1, P2 be random generators of G1, G2 respectively
and let x1, x2, d, z be random elements of Zp. The DDH2v problem is to decide,
given (P1, dP1, dzP1, zx1P1, P2, dP2, x1P2, x2P2, Z2), whether Z2 = x1x2P2 or
Z2 is a random element of G2.

This corresponds to a two-level blinding of x1P1. We have seen that providing
x1P1 directly or using a single-level blinding makes the problem easy. So, a two-
level blinding is the minimum that one has to use to get to an assumption about
hardness.

The assumption DDH2v (the “v” stands for variant) is no harder than DDH2.
This is because an instance of DDH2v contains an embedded instance of DDH2
and an algorithm to solve DDH2 can be invoked on this embedded instance to
solve the instance of DDH2v. On the other hand, there is no clear way of using
an algorithm to solve DDH2v to solve DDH2. Intuitively, this is due to the fact
that an instance of DDH2v contains some information about x1P1 whereas an
instance of DDH2 does not contain any such information.

In our reduction, we will use the assumption DDH2v. Since assumption DDH2v
does not appear earlier in the literature, it is a non-standard assumption. Hav-
ing said this, we would also like to remark that DDH2v arises naturally as a
minimal assumption when one tries to augment an instance of DDH2 with some
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information about x1P1 while maintaining the hardness of the problem. A proof
of security of this assumption in the generic group model is provided in the full
version [13]. We feel that assumption DDH2v will have applications elsewhere
for schemes based on asymmetric pairings.

3 Framework for Conversion

Our goal is to transform Waters-2009 IBE scheme to the asymmetric setting
so that we can reduce the number of components both in the ciphertext and
the key. To that end, we first perform a straightforward conversion of Waters
IBE from the setting of symmetric pairing to the setting of asymmetric pairing.
(See [18] for the original description of Waters 2009 scheme.)

Let e : G1 × G2 → GT be a Type 3 bilinear map and let P1 and P2 be
generators of G1 and G2 respectively. After the conversion, either the ciphertext
or the key will consist of elements of G1; the other will consist of elements from
G2. Elements of G1 have shorter representation compared to those of G2. For
encryption, we want the ciphertext to be short and hence we choose its elements
to be from G1. The public parameters will consist of elements of G1 whereas
the master secret key will consist of elements of G2. We note that if the final
goal were to construct a signature scheme, then one would perform a conversion
where the secret key consists of elements of G1.

A straightforward conversion will have the same structure as the one described
in [18]. We use the convention in this and later schemes that the subscript 1 will
denote elements of G1 while the subscript 2 will denote elements of G2. Further,
messages are elements of GT and identities are elements of Zp.

To generate the public parameters PP, first choose α, b, a1, a2 at random from
Zp and consider the following. Let v, v′ and v′′ be random elements of Zp and
define V2 = vP2, V

′
2 = v′P2 and V ′′

2 = v′′P2. Let τ = v+ a1v
′ and τ ′ = v+ a2v

′′.
Set T1 = τP1 and T ′

1 = τ ′P1. The PP will have elements Q1, U1,W1 ∈ G1 and
correspondingly the master secret key will have elements Q2, U2,W2 ∈ G2 with
Q2 ∼ Q1, U2 ∼ U1 and W2 ∼ W1. The structure of the PP and the MSK are
as follows.

PP : (P1, bP1, a1P1, a2P1, ba1P1, ba2P1, T1, T
′
1, bT1, bT

′
1,

Q1,W1, U1, e(P1, P2)
ba1α).

MSK: (P2, αP2, a1αP2, V2, V
′
2 , V

′′
2 , Q2,W2, U2).

Encrypt(M, id,PP): Randomisers s1, s2, t, ctag are chosen from Zp and define
s = s1 + s2. The ciphertext is (C0, C1, . . . , C7, E1, E2, ctag) where the various
elements are defined as follows.

C0 = M · e(P1, P2)
ba1αs2

C1 = bsP1, C2 = ba1s1P1, C3 = a1s1P1, C4 = ba2s2P1,
C5 = a2s2P1, C6 = s1T1 + s2T

′
1, C7 = s1bT1 + s2bT

′
1 − tW1

E1 = t(idQ1 + ctagW1 + U1), E2 = tP1
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KeyGen(id,MSK,PP): Randomisers r1, r2, z1, z2, ktag are chosen from Zp and
define r = r1+r2. The key SKid is (K1, . . . ,K7, ktag) where the various elements
are defined as follows.

K1 = a1αP2 + rV2, K2 = −αP2 + rV ′
2 + z1P2, K3 = −z1bP2

K4 = rV ′′
2 + z2P2, K5 = −z2bP2, K6 = r2bP2, K7 = r1P2

D = r1(idQ2 + ktagW2 + U2).

The decryption algorithm (as described by Waters) requires 9 pairings and suc-
ceeds only if ctag in the ciphertext is not equal to ktag of the decryption key, an
event which occurs with overwhelming probability (see [18] for the details).

Waters defines algorithms to generate semi-functional ciphertexts and keys.
These cannot be computed without knowledge of the secret components and
are only used in the security reduction. They are defined such that one should
be able to decrypt a semi-functional ciphertext with a normal key and a nor-
mal ciphertext with a semi-functional key; but decryption of a semi-functional
ciphertext with a semi-functional key should fail.

Semi-functional Ciphertext: Let C′
0, . . . , C

′
7, E

′
1, E

′
2, ctag be the ciphertext ele-

ments normally generated by the Encrypt algorithm for message M and iden-
tity id. Choose μ ∈ Zp at random. Let V ′

1 = v′P1 and V
′′
1 = v′′P1 so that V ′

1 ∼ V ′
2

and V ′′
1 ∼ V ′′

2 . The semi-functional ciphertext generation algorithm will modify
the normal ciphertext as: C0 = C′

0, C1 = C′
1, C2 = C′

2, C3 = C′
3, E1 = E′

1,
E2 = E′

2 and

C4 = C′
4 + ba2μP1, C5 = C′

5 + a2μP1, C6 = C′
6 − a2μV

′′
1 , C7 = C′

7 − ba2μV
′′
1 .

Semi-functional Key: Let K ′
1, . . . ,K

′
7, D

′, ktag be secret key components nor-
mally generated by theKeyGen algorithm for the identity id. Choose at random
γ ∈ Zp. The semi-functional key generation algorithm will modify the normal
key as: K3 = K ′

3, K5 = K ′
5, K6 = K ′

6, K7 = K ′
7, D = D′ and

K1 = K ′
1 − a1a2γP2, K2 = K ′

2 + a2γP2, K4 = K ′
4 + a1γP2.

It is easy to see that one can decrypt a semi-functional ciphertext with a nor-
mal key and a normal ciphertext with a semi-functional key. However, decryption
of a semi-functional ciphertext with a semi-functional key will fail because the
masking factor e(P1, P2)

ba1αs2 will be blinded by the factor e(P1, P2)
ba1a2μγ .

Security Proof. The security argument for the scheme proceeds through q+3
games where q is the number of key extraction queries made by the adversary.
These games are

Gamereal,Game0, . . . ,Gameq,Gamefinal.

The transition between these games can be seen as three different reductions.

First Reduction: The transition from Gamereal to Game0 is made by replac-
ing the challenge ciphertext by a semi-functional ciphertext. It is argued that
detecting this change should be hard.
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Second Reduction: There is a sequence of q changes from Gamek−1 to Gamek
(for k = 1, . . . , q). The k-th change is as follows. For the queries numbered 1
to k − 1, the adversary is given a semi-functional key; for queries numbered
k + 1 to q, the adversary is given a normal key. For the k-th query, the
adversary is given a response such that deciding whether the response is
normal or semi-functional is hard. The challenge ciphertext is semi-functional
as in the first reduction.

Third Reduction: This tackles the transition from Gameq to Gamefinal. At
this point, all responses to key extraction queries are semi-functional and so
is the challenge ciphertext. In the last transition, the challenge ciphertext
is changed such that deciding whether it is the encryption of a message or
whether it is statistically independent of the challenge messages is hard.

The first and second reductions are based on the hardness of the DLin problem
whereas the third reduction is based on the hardness of the DBDH problem. In
the proof, the second reduction is the most complex step. The subtle point is
that the simulator should not be able to generate a semi-functional ciphertext
for the k-th identity which will allow it to easily determine whether the key
for this identity is semi-functional or not. This is ensured by using algebraic
techniques from [1] to create ktag using a pair-wise independent function so
that the simulator is able to create a semi-functional ciphertext for idk only
with ctag = ktag, in which case decryption fails unconditionally and hence the
simulator gains no information.

3.1 An Analysis

Our conversion to asymmetric pairing and subsequent simplifications are based
on an analysis of the various scalars used in the scheme and their respective roles
in the proof. Based on the scheme itself and a study of the three reductions used
by Waters, we make the following observations.

1. PP uses the scalars a1, a2 and b, while MSK uses the scalars α and a1.
2. Key generation uses scalar randomisers r1, r2 and z1, z2. The scalar r is set

to r1 + r2. We will call this the split of r.
3. Ciphertext generation uses the scalar randomisers s1, s2 and t. The scalar s

is set to s1 + s2. We will call this the split of s.
4. The first two reductions in Waters proof are based on the DLin assumption.

The first reduction uses the split of s whereas the second reduction uses the
split of r.

For conversion to asymmetric pairing, the following points are to be noted. These
have been inferred from a careful analysis of the security proof in [18].

1. The scalar α needs to be retained.
2. The tags are chosen randomly and they play a crucial role in the security

argument. We do not consider the question of removing tags in this paper.
If the tags are removed, then it will be necessary to introduce copies of the



Variants of Waters’ Dual System Primitives Using Asymmetric Pairings 307

identity-hash (as done in [11]) to obtain the functionality of tags in the semi-
functional components. This leads to an increase in the number of elements
in the ciphertext and key.

3. There are three basic possibilities for simplification: remove the split of s;
remove the split of r; remove z1, z2.

4. Getting rid of a1 and a2 and using a single a will eliminate the requirement
of the split of s. This also means that the separate z1 and z2 are not required
and instead a single z can be used.

5. Removing the split of r does not have a direct influence on the other scalars.
6. Removing the split of r and also z1, z2 means that the scalar b is no longer

required.
7. In all but one of our schemes, the scalar t is kept either as part of the

ciphertext or as part of the key. In the final scheme, we show that the scalar
t can also be removed. For this scheme, there is a single randomiser s for the
ciphertext and a single randomiser r for the key, excluding the tags.

8. If the first reduction is to be based on DLin, then the split of s and a1,a2
must be retained. If the split is removed, then we can base the first reduction
on DDH1.

9. If the split of r is retained, then the second reduction has to be based on
DLin. If it is removed, we can no longer base the second reduction on DLin.
However, it can neither be based on DDH2 for the following reason. An
instance of DDH2 will provide P1 and some elements of G2. Apart from
P1 no other element of G1 is provided. The PP consists of elements of G1

which have to be related to the instance in some way. Just having P1 does not
provide any way to construct the PP in the second reduction. So, removing
the split of r implies that the second reduction can be based on neither
DLin nor DDH2. The assumption DDH2v introduced in Section 2 provides
the necessary mechanism for carrying the proof through.

Based on the above points, we explore the different natural ways in which Waters
2009 IBE scheme can be converted to asymmetric pairing. These are discussed
below.

Scheme 1: Remove the split of s. This eliminates the requirement of having
separate a1, a2 and z1, z2. Reductions of ciphertext and key are by two ele-
ments each. Removing the split of s allows the first reduction to be based
on DDH1. Since the split of r is retained, the second reduction is still based
on DLin.

Scheme 2: Retain the split of s; this means that separate a1 and a2 are re-
quired. Remove the split of r and also remove z1 and z2; this means that
b can be removed. Leads to reductions of ciphertext and key by 3 elements
each. The first reduction of the proof can be based on DLin, but, the second
reduction cannot be based on either DLin or DDH2.

Scheme 3: Remove the split of s; retain the split of r but, remove z. Reductions
of ciphertext and key are by 3 elements each. In the proof, the first reduction
can be based on DLin. The second reduction cannot be based on DDH2.
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Neither can it be based on DLin. This requires a more involved reasoning
which we provide in the full version [13].

Scheme 4: Remove the splits of both r and s, but, retain z. Ciphertext and
key are reduced by 3 elements each. In the proof, the first reduction can be
based on DDH1, but, the second reduction cannot be based on either DLin
or DDH2.

Scheme 5: Remove the splits of both r and s and also remove z. Ciphertext
and keys are reduced by 4 elements each. As in the previous case, the first
reduction of the proof can be based on DDH1, but, the second reduction
cannot be based on either DLin or DDH2.

Scheme 6: In Schemes 1 to 5, the randomiser t is present in the ciphertext.
In Scheme 6, the splits of both r and s are removed; z is removed and the
role of t is played by s. This leads to a scheme where there is exactly one
randomiser for encryption and exactly one randomiser for key generation.
Compared to Waters’ IBE [18], ciphertext size is reduced by 5 elements and
the key size by 4 elements. The first reduction of the proof can be based on
DDH1, while the second reduction is based on assumption DDH2v.

In Table 3, we provide the use of scalars in the various schemes. This illustrates
the manner in which the simplification has been obtained.

Table 3. Usage of scalars in various schemes. Note that all the schemes use ktag for
key generation and ctag for encryption.

scheme PP MSK key gen enc

Waters-09 [18] α, a1, a2, b α, a1 r1, r2, (r = r1 + r2), z1, z2 s1, s2, (s = s1 + s2), t

Scheme 1 α, a, b α, b r1, r2, (r = r1 + r2), z s, t

Scheme 2 α, a1, a2 α r s1, s2, (s = s1 + s2), t

Scheme 3 α, a, b α, b r1, r2, (r = r1 + r2) s, t

Scheme 4 α, a, b α, b r, z s, t

Scheme 5 α, a α r s, t

Scheme 6 α, a α r s

4 Constructions

In this section, we provide the description of Scheme 6. In the full version [13], the
description of Scheme 1 along with its security proof are provided. For Schemes 2
to 5, only the descriptions are provided in the full version. These schemes primar-
ily serve the purpose of showing the stepping stones in moving from Scheme 1
to Scheme 6. In Section 5, we present a security proof for Scheme 6.

4.1 Scheme 6

Descriptions of PP,MSK, ciphertext generation, key generation and decryption
are provided.
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Parameters P1, P2, Q1,W1, U1, Q2,W2, U2, α are chosen as described in Sec-
tion 3. Let a, v, v′ be random elements of Zp. Set V2 = vP2, V

′
2 = v′P2 and

τ = v + av′ so that τP2 = V2 + aV ′
2 .

PP : (P1, aP1, τP1, Q1,W1, U1, e(P1, P2)
α).

MSK: (P2, αP2, V2, V
′
2 , Q2,W2, U2).

Encrypt(M, id,PP): Choose random s, ctag from Zp; ciphertext C is given by
(C0, C1, C2, C3, E, ctag) where the elements are defined as follows.

C0 = M · e(P1, P2)
αs,

C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1, E = s(idQ1 + ctagW1 + U1).

KeyGen(id,MSK,PP): Choose random r, ktag from Zp; the secret key SKid is
(K1,K2,K3, D, ktag) where the elements are defined as follows.

K1 = αP2 + rV2, K2 = rV ′
2 , K3 = rP2, D = r(idQ2 + ktagW2 + U2).

Decrypt (C, id,SKid,PP): As before, decryption succeeds only when ctag �=
ktag. Define ϑ = (ctag− ktag)−1. Decryption is done by unmasking the message
as follows.

M =
C0

e(C1,K1 + ϑD)e(C2,K2)e(C3 − ϑE,K3)

The correctness of decryption is shown by the following calculations. We break
up the denominator into two parts - A1 and A2 such that the product A1A2 gives
the masking factor.

A1 = e(C1, ϑD)e(−δE,K3)

= e(C1, D)ϑe(−E,K3)
ϑ

= e(sP1, r(idQ2 + ktagW2 + U2))
ϑe(−s(idQ1 + ctagW1 + U1), rP2)

ϑ

= e(−(idQ1 + ktagW1 + U1), P2)
−rsϑe(idQ1 + ctagW1 + U1, P2)

−rsϑ

= e(ϑ(ctag − ktag)W1, P2)
rs

= e(W1, P2)
−rs

A2 = e(C1,K1)e(C2,K2)e(C3,K3)

= e(sP1, αP2 + rV2)e(asP1, rV
′
2 )e(τsP1 + sW1, rP2)

= e(P1, P2)
αse(P1, V2 + aV ′

2 − τP2)
rse(W1, P2)

rs

= e(P1, P2)
αse(W1, P2)

rs

Extension to HIBE: Waters extends the IBE scheme in [18] in a natural
way to a HIBE scheme. In the full version of this paper [13], we show that our
simplification of Waters scheme retains the original flexibility and describe a
HIBE which extends Scheme 6. This HIBE scheme is secure under the DDH1,
DDH2v and the DBDH assumptions and provides lesser and smaller parameters
and better efficiencies of key generation, delegation, encryption and decryption
compared to the HIBE in [18]. The security proof for the HIBE follows the
Shi-Waters model [15] and is given in [13].
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Conversion to Signature Scheme: There is a “dual” of Scheme 6 where the
ciphertext elements are in G2 and decryption keys consist of elements of G1.
Using Naor’s observation, this dual of Scheme 6 can be converted to a secure
signature scheme. The signatures will be composed of elements of G1 and will be
smaller than the signatures obtained by the conversion of Waters’ 2009 scheme
to a signature scheme. In a similar manner, one can convert the dual of our
HIBE to obtain a HIBS scheme where signatures consist of elements of G1.

4.2 Broadcast Encryption

The full version of Waters paper described a public key broadcast encryption
(BE) scheme based on the dual system IBE in [18]. In this section, we describe a
BE scheme based on Scheme 6 in the Type-3 pairing setting. The security proof
is given in the full version [13] and is based on the hardness of the DDH1, DDH2v
and the DBDH problems. The new BE scheme provides adaptive security and
is more efficient than previously known BE schemes providing adaptive secu-
rity [9,18]. In what follows, n denotes the total number of users and {1, . . . , n},
the set of users.
Setup(n): Generators P1 ∈R G1 and P2 ∈R G2 are chosen. Also choose random
elements Q1,1, . . . Q1,n,W1 ∈ G1 and Q2,1, . . . , Q2,n,W2 ∈ G2 such that Q2,i ∼
Q1,i for 1 ≤ i ≤ n, W2 ∼ W1. Let α, a, v, v

′ be random elements of Zp. Set
V2 = vP2, V

′
2 = v′P2 and τ = v + av′ so that τP2 = V2 + aV ′

2 . The public key
PK and secret key SK are given by

PK : (P1, aP1, τP1, Q1,1, . . . , Q1,n,W1, e(P1, P2)
α).

SK : (P2, αP2, V2, V
′
2 , Q2,1, . . . , Q2,n,W2).

Encrypt(PK, S ⊆ {1, . . . , n},M): Choose random s from Zp; ciphertext C for
the subset S of users is (C0, C1, C2, C3, E) where the elements are defined as
follows.

C0 = M · e(P1, P2)
αs,

C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1, E = s(
∑

i∈S Q1,i).

KeyGen(SK, j ∈ {1, . . . , n}): Let r be chosen at random from Zp; secret key
for user j is SKj = (K1,K2,K3, D, ∀i�=jDi) where the elements are defined as
follows.

K1 = αP2 + rV2, K2 = rV ′
2 , K3 = rP2

D = r(Q2,j +W2), Di = rQ2,i for i �= j.

Decrypt (C, S,SKj): Decryption works only if j ∈ S. Unmask the message as

M =
C0

e(C1,K1 −D −
∑

i∈S

i�=j
Di)e(C2,K2)e(C3 + E,K3)

.
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5 Security Proof for Scheme 6

First we define the semi-functional key and ciphertext for Scheme 6. As men-
tioned earlier, these are used only in the security reductions and are not part of
the scheme itself.

Semi-functional Ciphertext: Let (C′
0, C

′
1, C

′
2, C

′
3, E

′, ctag) be a normal cipher-
text. Choose a random μ from Zp. The semi-functional ciphertext is given by
(C0, C1, C2, C3, E, ctag) where C0 = C′

0, C1 = C′
1, C2 = C′

2+μP1, C3 = C′
3−μV ′

1

and E = E′.

Semi-functional Key: Let (K ′
1,K

′
2,K

′
3, D, ktag) be a normal key. Choose a ran-

dom γ from Zp. The semi-functional key is (K1,K2,K3, D, ktag) where K1 =
K ′

1 − aγP2, K2 = K ′
2 + γP2, K3 = K ′

3 and D = D′.

Let Gamereal, Gamek (for 0 ≤ k ≤ q) and Gamefinal be defined as in Sec-
tion 3. Let Let Xreal, Xk and Xfinal denote the events that the adversary wins
in Gamereal, Gamek and Gamefinal for 0 ≤ k ≤ q respectively.

Lemma 1. If there exists an adversary A such that AdvAGamereal
− AdvAGame0 =

ε, then we can build an algorithm B having advantage ε in solving the DDH1
problem.

Proof. The algorithm B receives (P1, sP1, aP1, P2, Z1) as an instance of DDH1.
We describe how it will simulate each phase in the security game.
Setup: B chooses random elements α, yv, y

′
v, yq, yw, yu from Zp and sets the

parameters as follows: P1 = P1, aP1 = aP1, Q1 = yqP1, W1 = ywP1, U1 = yuP1,
P2 = P2, V2 = yvP2, V

′
2 = y′vP2, Q2 = yqP2, W2 = ywP2, U2 = yuP2. The

element τP1 is computed as yvP1 + y′v(aP1) implicitly setting τ = yv + ay′v. The
simulator computes the remaining parameters using α and gives the following
public parameters to A: PP = (P1, P2, aP1, τP1, Q1,W1, U1, e(P1, P2)

α).
Phase 1: A makes a number of key extract queries. B knows the master secret
and using that it returns a normal key for every key extract query made by A.
Challenge: B receives the target identity id∗ and two messages M0 and M1

from A. It chooses β ∈ {0, 1} at random. To encrypt Mβ, B chooses ctag∗

at random from Zp and computes the ciphertext elements as follows: C0 =
Mβ · e(sP1, P2)

α, C1 = sP1, C2 = Z1, C3 = −yv(sP1) − y′vZ1 + yw(sP1) and
E = (id∗yq + ctag∗yw + yu)(sP1). B returns C∗ = (C0, C1, C2, C3, E, ctag

∗) to A.
If Z1 = asP1 then the challenge ciphertext is normal; otherwise if Z1 is a

random element of G1 i.e., Z1 = (as+c)P1 then the ciphertext is semi-functional
with μ = c. Note that, to check whether C∗ is semi-functional or not, B itself
could try to decrypt it with a semi-functional key for id∗. However since aP2 is
not known to B, it cannot create such a key.
Phase 2: As in first phase, B returns a normal key for every query.
Guess: The adversary returns its guess β′ to B.

If C∗ is normal then B simulates Gamereal and if it is semi-functional B simu-
lates Game0. Therefore if A is able to distinguish between Gamereal and Game0,
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then the B can solve the DDH1 problem with advantage

AdvBDDH1 = |Pr[Xreal]− Pr[X0]| = AdvAGamereal
− AdvAGame0 = ε.

��

Lemma 2. If there exists an adversary A such that AdvAGamek−1
−AdvAGamek

= ε,
then we can build an algorithm B having advantage ε in breaking the assumption
DDH2v.

Proof. Let (P1, dP1, dzP1, zx1P1, P2, dP2, x1P2, x2P2, Z2) denote the instance of
DDH2v that B receives.
Setup: B chooses random elements a, α, λ, ν, y′v, yq, yu, yw ∈R Zp and sets the
parameters as follows. P1 = P1, P2 = P2, Q2 = −λ(dP2)+yqP2, U2 = −ν(dP2)+
yuP2, W2 = dP2 + ywP2, V2 = −a(x1P2) and V ′

2 = x1P2 + y′vP2 setting τ = ay′v
using which one can compute τP1 = ay′vP1. The public parameters Q1,W1, U1

can be computed since B has dP1. The remaining parameters required to provide
PP to A are computed using a, α and other elements of the problem instance.
Phases 1 and 2: The key extraction queries for identities id1, . . . , idq are
answered in the following way. For i < k, a semi-functional key is returned and
for i > k a normal key is returned. Note that normal and semi-functional keys
can be generated since B has the MSK and knows a. For i = k, a normal key
K ′

1,K
′
2,K

′
3, D

′ is generated using randomiser r′ ∈R Zp, ktag = λidk + ν and
then modified as: K1 = K ′

1 − aZ2, K2 = K ′
2 + Z2 + y′v(x2P2), K3 = K ′

3 + x2P2

and D = D + (yqid + ywktag + yu)(x2P2), thus implicitly setting r = r′ + x2.
Since dx2P2 is not known to B it can create D only when ktag = λidk + ν. If
Z2 = x1x2P2 then the key for idk will be normal and otherwise it will be semi-
functional with γ = c where Z2 = (x1x2 + c)P2. Note that a semi-functional
ciphertext for idk with any value of ctag except for �= λidk+ν cannot be generated
without the knowledge of dx1zP1 which is neither available from the assumption
nor can be computed by B. This rules out the obvious way of checking whether
the key for idk is semi-functional or not.
Challenge: B receives two messages M0,M1 and a challenge identity id∗ dur-
ing the challenge phase. It chooses β ∈R {0, 1} and sets ctag∗ = λid∗ + ν.
Since λ and ν are chosen independently and uniformly at random, the func-
tion λX + ν is a pairwise independent function for a variable X over Zp. This
causes the tag values of the challenge ciphertext and the k-th key to appear
properly distributed from the adversary’s view. B computes the ciphertext el-
ements as: C0 = e(zx1P1, P2)

α, C1 = zx1P1, C2 = a(zx1P1) + dzP1, C3 =
(yw − ay′v)(zx1P1) − y′v(dzP1) and E = (yq id + ctag∗yw + yu)(zx1P1), setting
s = zx1 and μ = dz. It is easy to check that C3 is well-formed.

Now A will be able to distinguish between Gamek−1 and Gamek if it can
decide whether SKidk is normal or semi-functional. In this case B can break the
assumption DDH2v with advantage

AdvBDDH2v = |Pr[Xk−1]− Pr[Xk]| = AdvAGamek−1
− AdvAGamek = ε.

��
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Lemma 3. If there exists an adversary A such that AdvAGameq − AdvAfinal = ε,
then we can build an algorithm B having advantage ε in breaking the DBDH
assumption.

Proof. B receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, Z) as an instance of the
DBDH problem.
Setup: With yv, y

′
v, yq, yw, yu chosen at random from Zp, B sets the parameters

as: P1 = P1, P2 = P2, aP1 = aP1, V2 = yvP2, V
′
2 = y′vP2, τP1 = yvP1 + y′v(aP1),

Q1 = yqP1, W1 = ywP1, U1 = yuP1, e(P1, P2)
α = e(xP1, aP2), thus implicitly

setting a = a, α = xa and τ = yv + ay′v. The remaining parameters can be
computed easily. B returns PP to A.
Phases 1 and 2: When A asks for the secret key for the i’th identity idi, B
chooses at random r, ktag, γ′ ∈ Zp implicitly setting γ′ = x−γ. It then computes
a semi-functional key for idi as follows.

K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2

K2 = rV ′
2 − γ′P2 + xP2 = rV ′

2 − xP2 + γP2 + xP2 = rV ′
2 + γP2

K3 = rP2, D = r(idiQ2 + ktagW2 + U2).

Here B knows γ′ but not γ. Also, observe that B does not know α and hence
cannot create a normal key.
Challenge: B receives the challenge identity id∗ and two messages M0 and
M1 from A. It chooses β ∈ {0, 1} and ctag∗, μ′ ∈ Zp at random and generates a
semi-functional challenge ciphertext as follows. Here B implicitly sets μ′ = μ+as
and it does not know μ.

C0 =Mβ · Z

C1 = sP1, C2 = μ′P1 = asP1 + μP1

C3 = −yv(sP1)− μ′y′vP1 + yw(sP1) = −τsP1 − μV ′
1 + sW1

E = (yq id
∗ + ywctag

∗ + yu)(sP1)

The challenge ciphertext C∗ = (C0, C1, C2, C3, E, ctag
∗) is returned to A. If

Z = e(P1, P2)
xas then C∗ will be a semi-functional encryption of Mβ; if Z is a

random element of GT then C∗ will be a semi-functional encryption of a random
message. If A can identify whether the game simulated was Gameq or Gamefinal,
then B will be able to decide whether Z = e(P1, P2)

xas or not and hence break
the DBDH assumption with advantage

AdvBDBDH = |Pr[Xq]− Pr[Xfinal]| = AdvAGameq − AdvAGamefinal
= ε.

��

Theorem 1. If the DDH1, DDH2v and DBDH assumptions hold, then no poly-
nomial time adversary A making at most q key extraction queries can break the
security of Scheme 6.
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Proof. Using lemmas 1, 2 and 3, we have for any polynomial time attacker A,

AdvAScheme 6 ≤ |Pr[Xreal]− Pr[X0]|+
q∑

k=1

(|Pr[Xk−1]− Pr[Xk]|)

+ |Pr[Xq]− Pr[Xfinal]|
= εDDH1 + qεDDH2v + εDBDH

which is negligible in the security parameter κ. ��

6 Conclusion

We have convertedWaters dual system IBE scheme from the setting of symmetric
pairings to that of asymmetric pairings. This has been done in a systematic
manner going through several stages of simplifications. We have described in
detail an IBE scheme, Scheme 6, which is quite simple and minimal in the
sense that both encryption and key generation use one randomiser each. The
security of Scheme 6 is based on two standard assumptions and a natural and
minimal extension of the DDH assumption for G2. On the other hand, security of
Scheme 1 is based on standard assumptions and reduces the sizes of ciphertexts
and keys by 2 elements each from the original scheme of Waters.

Acknowledgement. We would like to thank the anonymous reviewers of PKC
2012 for helpful comments and suggestions.
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Abstract. In this paper, we propose an efficient, standard model, semi-
generic transformation of selective-secure (Hierarchical) Identity-Based
Encryption schemes into fully secure ones. The main step is a proce-
dure that uses admissible hash functions (whose existence is implied by
collision-resistant hash functions) to convert any selective-secure wild-
carded identity-based encryption (WIBE) scheme into a fully secure
(H)IBE scheme. Since building a selective-secure WIBE, especially with a
selective-secure HIBE already in hand, is usually much less involved than
directly building a fully secure HIBE, this transform already significantly
simplifies the latter task. This black-box transformation easily extends
to schemes secure in the Continual Memory Leakage (CML) model of
Brakerski et al. (FOCS 2010), which allows us obtain a new fully secure
IBE in that model. We furthermore show that if a selective-secure HIBE
scheme satisfies a particular security notion, then it can be generically
transformed into a selective-secure WIBE. We demonstrate that several
current schemes already fit this new definition, while some others that do
not obviously satisfy it can still be easily modified into a selective-secure
WIBE.

1 Introduction

The concept of identity-based encryption (IBE) is a generalization of the stan-
dard notion of public-key encryption in which the sender can encrypt messages
to a user based only on the identity of the latter and a set of user-independent
public parameters. In these systems, there exists a trusted authority, called pri-
vate key generator, that is responsible for generating decryption keys for all
identities in the system. Since being introduced by Shamir in 1984 [28], IBE has
received a lot of attention due to the fact that one no longer needs to maintain
a separate public key for each user. Despite being an attractive concept, it was
only in 2001 that the first practical IBE construction was proposed based on
elliptic curve pairings [11]. Later that year, Cocks proposed an alternative IBE
construction based on the quadratic residuosity problem [19].
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The now-standard definition of security of IBE schemes, first suggested by
Boneh and Franklin [11], is indistinguishability under adaptive chosen-identity
attacks (we refer to it as full security). In this security model, the adversary is
allowed to obtain secret keys for adaptively chosen identities before deciding the
identity upon which it wishes to be challenged. By allowing these queries, this
notion implicitly captures resistance against collusion attacks as different users
should be unable to combine their keys in an attempt to decrypt ciphertexts
intended to another user.

In 2002, Horwitz and Lynn introduced the notion of hierarchical identity-
based encryption (HIBE), which allows intermediate nodes to act as private
key generators. They also provided a two-level HIBE construction based on the
Boneh-Franklin IBE scheme, but their scheme could provide full collusion resis-
tance only in the upper level. The first HIBE scheme to provide full collusion
resistance in all levels is due to Gentry and Silverberg [22]. Like the Horwitz-
Lynn HIBE scheme, the Gentry-Silverberg HIBE scheme was also based on the
Boneh-Franklin IBE scheme and proven secure in the random-oracle model [6].

The first HIBE to be proven secure in the standard model is due to Canetti,
Halevi, and Katz [16], but in a weaker security model, called the selective-identity
model. Unlike the security definitions used in previous constructions of (H)IBE
schemes, the selective-identity model requires the adversary to commit to the
challenge identity before obtaining the public parameters of the scheme. Despite
providing weaker security guarantees, Canetti, Halevi, and Katz showed that
the selective-identity model is sufficient for building forward-secure encryption
schemes, which was the main motivation of their paper.

Although the selective-identity model has been considered in many works,
and is interesting in its own right (e.g., it implies forward-secure public key
encryption), if we focus solely on the (H)IBE application, then the selective
notion is clearly unrealistic because it does not model the real capabilities of an
adversary attacking a (H)IBE scheme. So while the design of selective-identity
secure schemes seems to be an easier task, the quest for fully secure solutions is
always considered the main goal for (H)IBE construction.

It is therefore a very interesting problem to investigate whether there are
ways to efficiently convert a selective secure scheme into a fully secure one.
In the random oracle model, this question has been resolved by Boneh, Boyen
and Goh [9], who provided a very efficient black-box transformation. In the
standard model, however, no such conversion is known1, and all fully-secure
(H)IBE schemes (e.g., [8], [30], [18]) had to be constructed and proved secure
essentially from scratch.

Our Results. In this paper, we explore the relationship between selective-
identity and fully secure (H)IBE schemes in the standard model.

1 It was shown by Boneh and Boyen in [7] that any selective secure IBE scheme is
already fully secure, but the concrete security degrades by a factor 1/|ID |, where ID
is the scheme’s identity space. Since ID is usually of exponential size, this conversion
is too expensive in terms of efficiency to be considered practical.
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From Selective-Secure WIBE to Fully-Secure HIBE. Our first main
contribution is a generic construction of fully-secure HIBE schemes from selective-
pattern-secure wildcarded identity-based encryption (WIBE) schemes. The no-
tion of a WIBE, introduced by Abdalla et al. [1], is very similar to the notion of
a HIBE except that the sender can encrypt messages not only to a specific iden-
tity, but to a whole range of receivers whose identities match a certain pattern
defined through a sequence of fixed strings and a special wildcard symbol (*).
The security notion, called selective-pattern security, requires the adversary to
commit ahead of time to the pattern P ∗ that he intends to attack. He can then
ask for the secret keys of any identity not matching P ∗, and for the challenge
ciphertext on any pattern P matching P ∗. This notion of security is slightly
more general than that given in [1]. Yet, as noted in Remark 1 at the end of
Section 2, it is satisfied by all known WIBE constructions.

Our transformation from any selective-pattern-secure WIBE to a fully-secure
HIBE is generic and relies on the notion of admissible hash functions (whose ex-
istence is implied by collision-resistant hash functions) introduced by Boneh and
Boyen in [8]. Since building selective-pattern-secure WIBE schemes seems to be
much easier than directly building a fully secure HIBE scheme, this transforma-
tion already significantly simplifies the latter task. In fact, it is worth noticing
that the selective-pattern security of all currently-known instantiations of WIBE
schemes (see [1]) follows from the selective-identity security of their respective
underlying HIBE schemes.

One direct consequence of our construction is that several existing fully se-
cure (H)IBE schemes can be seen as a particular case of our transformation.
For instance, the fully secure IBE scheme of Boneh and Boyen in [8] turns out
to be a particular case of our generic construction when instantiated with the
selective-pattern-secure Boneh-Boyen WIBE scheme given in [1]. Likewise, the
fully secure HIBE by Cash, Hofheinz, Kiltz, and Peikert [18] can be seen as
the result of our generic transformation when applied to our new WIBE scheme
in Section 5. Another consequence of our transformation is that one can obtain
new constructions of fully secure HIBE schemes by applying our methodology to
existing selective-pattern-secure WIBE schemes, such as the Boneh-Boyen-Goh
WIBE in [1]. Interestingly, the result obtained from this instantiation closely
resembles the Waters (H)IBE scheme [30].

An important point about our transformation fromWIBE to (H)IBE is that it
also works in the Continual Memory Leakage (CML) model [15,20]. In particular,
we show how to modify the IBE scheme in [15] into a WIBE scheme and prove
it selective-pattern-secure in the CML model under the same assumption. Then,
by applying our transformation to this newly-constructed WIBE, we obtain a
(CML) fully-secure version of the IBE in [15]. For lack of space we fully describe
these extensions in the full version of our work.

The Role of WIBE in our Transformation. Somewhat surprisingly, our
transformation seems to imply that the WIBE notion is of central importance
when going from selective to full security in (H)IBE. To see why, one has to
take a look at our proof strategy and at the notion of Admissible hash functions
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(AHF). AHFs are a tool which allows to partition the identity space into two
subsets, B and R (both of which are of exponential size) so that in the security
proof the identities of secret key queries fall in B while the challenge identity falls
in R. In particular, by carefully selecting the AHFs parameters (as described in
[8], for instance) one can make sure that the above (good) event occurs with non-
negligible probability. In our proof from selective-secure WIBE to fully-secure
HIBE, the simulator first uses AHFs to partition the identity space into B and R.
Next, it declares to the WIBE challenger a challenge pattern which corresponds
to R, by expressing R in the form of a pattern. By the property of AHFs, if
the good event occurs (for all key derivation queries and the challenge identity
chosen by the adversary), then the simulator can easily forward all queries to
the WIBE challenger. In particular, it is guaranteed that the challenge identity
falls in R. When that happens, the simulator can output the challenge identity
chosen by the adversary as its own challenge.

We remark that the proof strategy described above does not work if one
starts from a selective-secure HIBE instead of a WIBE. Unlike the selective-
WIBE simulator, the simulator against the selective security of a HIBE should
commit to the challenge identity ID∗ at the very beginning. And even if the
simulator chooses the AHFs parameters so that all secret key queries fall in
B and the challenge identity falls in R, it still needs to guess ID∗ in R at the
very beginning. But the probability that the challenge identity chosen by the
adversary matches such ID∗ is 1/|R|, which is negligible (recall that both B and
R are of exponential size).

Selective WIBE from selective HIBE. The second contribution of this pa-
per is to identify conditions under which we can generically transform a selective-
identity-secure HIBE scheme into a selective-pattern-secure WIBE scheme. To-
wards this goal, we introduce a new notion of security for HIBE schemes, called
security under correlated randomness, which allows us to transform a given HIBE
into a WIBE by simply re-encrypting the same message to a particular set of
identities by reusing the same randomness. Informally speaking, in order for a
HIBE scheme to be secure under correlated randomness, it must satisfy the fol-
lowing two properties. First, when given an encryption of the same message under
the same randomness for two identity vectors ID0 = (ID0,1, . . . , ID0,j , . . . , ID0,λ)
and ID1 = (ID1,1, . . . , ID1,j , . . . , ID1,λ) differing in exactly one position (say j),
one can easily generate a ciphertext for any identity vector matching the pat-
tern ID = (ID1,1, . . . , *, . . . , ID1,λ). Secondly, when given these two ciphertexts,
the adversary should not be able to generate an encryption of the same mes-
sage under the same randomness for any identity vector that does not match
the pattern. In Section 4 we show that selective-correlated-randomness-secure
HIBE schemes can be converted to selective-pattern-secure WIBEs. Moreover,
in the full version, we show that several existing HIBE schemes already sat-
isfy this slightly stronger notion of security, e.g., [7,9,30], and in particular we
show that their security under correlated randomness black-box reduces to their
selective-identity security.



320 M. Abdalla, D. Fiore, and V. Lyubashevsky

Hence, if we combine our first generic transformation from selective-pattern-
secure WIBE to fully-secure (H)IBE, together with our second result described
above, we obtain a compiler that allows us to construct a fully secure (H)IBE
starting from a selective-secure (H)IBE. In particular, the resulting transforma-
tion works in the standard model and is semi-generic because the second part
assumes a specific property of the underlying scheme (i.e., security under cor-
related randomness). Nevertheless, by reducing the task of building fully secure
HIBE schemes to that of building a selective-pattern-secure WIBE scheme, we
believe that our result makes the former task significantly easier to achieve.

New WIBE Schemes. One final contribution of this paper are two construc-
tions of selective-pattern-secure WIBE schemes. The first one, whose description
is given in the full version of this paper, is obtained by modifying the IBE in
[15]. It is based on pairings and is secure under the Decision Linear assump-
tion in the CML model. Such modification essentially follows the correlated-
randomness paradigm. Since for some technical reasons (related to the specific
scheme) the selective-pattern security of this WIBE cannot be black-box reduced
to the selective-identity security of the related IBE (like we do for other pairing-
based WIBEs), we give a direct proof under the Decision Linear assumption.
However, we notice that such proof closely follows the one in [15]. The second
WIBE is based on lattices and its security follows from the selective-identity se-
cure HIBE construction from [18]. Even though the Cash-Hofheinz-Kiltz-Peikert
HIBE scheme does not meet the notion of security under correlated randomness
introduced in Section 4 (because the scheme is not secure when the same ran-
domness is reused for encryption), we show in Section 5 that one can easily
modify it to obtain a selective-pattern-secure WIBE scheme. Similarly to the
case of pairing-based WIBE schemes, the selective-pattern security of the new
WIBE can be reduced directly to the selective-identity security of the original
Cash-Hofheinz-Kiltz-Peikert HIBE scheme. However, in this case, it turns out
to be even simpler to prove the selective-pattern security of our scheme directly
from the decisional Learning With Errors Problem (LWE) [27,26].

Discussion. In this paper, we concentrate on building HIBE schemes that are
adaptive-identity-secure against chosen-plaintext attacks. As shown by Boneh,
Canetti, Halevi, and Katz [17,13,10], such schemes can easily be made chosen-
ciphertext-secure with the help of one-time signature schemes or message au-
thentication codes. Similarly to the (H)IBE schemes by Boneh and Boyen [8],
by Waters [30], and by Cash, Hofheinz, Kiltz, and Peikert [18], the schemes
obtained via our transformation are only provably secure when the maximum
hierarchy’s depth L is some fixed constant due to the loss of a factor which is
exponential in L. While for lattice-based HIBE schemes [18,3,4], this seems to be
the state of the art, the same is not true for pairing-based HIBE schemes. More
precisely, there have been several proposals in recent years (e.g., [21,29,25,24]),
which are fully secure even when the HIBE scheme has polynomially many lev-
els. Most of these schemes use a new proof methodology, known as dual system
encryption [29].



From Selective to Full Security 321

Organization. The paper is organized as follows. In Section 2, we start by
recalling some standard definitions and notations used throughout the paper.
Next, in Section 3, we present our first main contribution, which is a generic
construction which can transform any selective-pattern-secure WIBE into a fully
secure HIBE scheme. Then, in Section 4, we introduce the notion of security
under correlated randomness for HIBE schemes and show how such schemes
can be used to build selective-pattern-secure WIBEs. In Section 5, we show
a selective-pattern-secure WIBE scheme that is obtained by transforming the
Cash-Hofheinz-Kiltz-Peikert HIBE. Finally, in Section 6, we summarize some
future directions left open by our work.

2 Basic Definitions

(Hierarchical) Identity Based Encryption. A hierarchical identity-based
encryption scheme (HIBE) is defined by a tuple of algorithms HIBE = (Setup,
KeyDer,Enc,Dec), a message space M, and an identity space ID. The algo-
rithm Setup is run by a trusted authority to generate a pair of keys (mpk ,msk)
such that mpk is made public, whereas msk is kept private. The users are
hierarchically organized in a tree of depth L whose root is the trusted au-
thority. The identity of a user at level 1 ≤ � ≤ L is represented by a vector−→
ID = (ID1, . . . , ID�) ∈ ID�. A user at level � with identity

−→
ID = (ID1, . . . , ID�)

can use the key derivation algorithm KeyDer(sk−→
ID
,
−→
ID ′) to generate a secret key

for any of its children
−→
ID ′ = (ID1, . . . , ID�, ID�+1) at level �+1. Since this pro-

cess can be iterated, every user can generate keys for all its descendants. Then,
every user holding the master public key mpk , can encrypt a message m ∈ M
for the identity

−→
ID by running C

$← Enc(mpk ,
−→
ID ,m). Finally, the ciphertext

C can be decrypted by running the deterministic decryption algorithm, m ←
Dec(sk−→

ID ′ , C). For correctness, it is required that for all honestly generated mas-

ter keys (mpk ,msk)
$← Setup, for all messages m ∈ M, all identities

−→
ID ∈ ID�

and all
−→
ID ′ ancestors of

−→
ID ,m← Dec(KeyDer(msk ,

−→
ID ′),Enc(mpk ,

−→
ID ,m)) holds

with overwhelming probability. An IBE is defined as an HIBE with a hierarchy
of depth 1.

The security of a HIBE scheme is captured by the standard notion of indistin-
guishability under chosen-plaintext attacks. Informally, this is captured by the
following game. The adversary A receives as input the master public key and it
can ask for the secret key of any identities of its choice. Then it chooses a chal-

lenge identity
−→
ID∗ and two messages m0 and m1, and it is given the encryption

of mβ under
−→
ID∗ for a random β. The goal of the adversary is to guess β under

the restriction that A never asks for the secret key of
−→
ID∗.

In the context of hierarchical identity-based encryption a lot of works in the
literature also considered a weaker notion of security, called selective-identity
indistinguishability under chosen-plaintext attacks (IND-sHID-CPA). The main
difference with the standard IND-HID-CPA notion is that here the adversary
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is required to commit ahead of time to the challenge identity
−→
ID∗. The rest of

the game is the same as IND-HID-CPA. Sometimes, in order to have a clear
distinction with the standard notion of IND-HID-CPA, the latter is called “full
security”.

Identity Based Encryption with Wildcards. The notion of Identity-Based
Encryption with Wildcards was introduced by Abdalla et al. in [1] as a gener-
alization of the HIBE’s notion. A WIBE scheme is defined by a tuple of algo-
rithms WIBE = (Setup,KeyDer,Enc,Dec) that works exactly as a HIBE, except
that here the encryption algorithm takes as input a value P ∈ (ID ∪ *)� (for
1 ≤ � ≤ L), i.e., the pattern, instead of an identity vector. Such pattern may
contain a special “don’t care” symbol *, the wildcard, at some levels. An identity−→
ID = (ID1, . . . , ID�) ∈ ID� is said to match a pattern P ∈ (ID∪*)�′ , denoted as
−→
ID ∈* P , if and only if � ≤ �′ and ∀i = 1, . . . , �: ID i = Pi or Pi = *. Note that un-
der this definition, any ancestor of a matching identity is also a matching identity.
This makes sense for the notion of WIBE, as any ancestor can derive the secret
key of a matching descendant identity anyway. For any pattern P ∈ (ID ∪ *)�,
we denote with W(P ) the set of indices j ∈ [�] such that Pj = *. For correctness,

it is required that for all honestly generated master keys (mpk ,msk)
$← Setup,

for all messages m ∈M, all patterns P ∈ (ID ∪ *)�
′
and all identities

−→
ID ∈ ID�

such that
−→
ID ∈* P , m ← Dec(KeyDer(msk ,

−→
ID),Enc(mpk , P,m)) holds with all

but negligible probability.
Similarly to HIBEs, WIBE schemes allow for similar notions of security under

chosen-plaintext attacks. In particular, in our work we consider only the notion
of selective security that we call IND-sWID-CPA. Roughly speaking, it is similar
to the IND-sHID-CPA notion for HIBE, except that here the adversary has to

commit to a pattern P ∗ (instead of an identity
−→
ID∗) at the beginning of the

game. Next, when he has to choose the challenge pattern, he can provide any P
that matches P ∗, i.e., such that either P is an identity matching P ∗, or P is a
sub-pattern of P ∗.

Remark 1. We notice that our notion of selective-security for WIBE schemes
is slightly more general than the one that was originally proposed in [1]. The
main difference is that in the original work of Abdalla et al. the notion is purely
selective, meaning that the adversary declares the challenge pattern P ∗ at the
beginning of the game, and later it receives an encryption of either m0 or m1

under P ∗. Instead, our notion allows for more flexibility. Indeed, the adversary
still declares P ∗ at the beginning of the game, but later it may ask the challenge
ciphertext on a pattern P , possibly different from P ∗, but such that P matches
P ∗. We stress that this property is not artificial for at least two reasons. First, it
is more general than the previous one. Second, it is satisfied by all known WIBE
schemes, and in particular we will show that it is satisfied by those schemes
obtained through our transformation, from selective-secure HIBE to selective
WIBE, that we describe in Section 4.
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3 Fully-Secure HIBE from Selective-Secure WIBE

In this section we concentrate on the first part of our main result. We show how
to construct a fully-secure HIBE scheme starting from any WIBE scheme that
is secure only in a selective sense. Our transformation is black-box and makes
use of admissible hash functions, a notion introduced by Boneh and Boyen in [8]
that we recall below.

Admissible Hash Functions. Admissible hash functions were first introduced
by Boneh and Boyen in [8] as a tool for proving the full security of their identity-
based encryption scheme in the standard model. Such functions turn out to be
particularly suitable for this purpose as they provide a way to implement the
so-called “partitioning technique”, a proof methodology that allows to secretly
partition the identity space into two sets, the blue set and the red set, both of
exponential size, so that there is a non-negligible probability that the adversary’s
secret key queries fall in the blue set and the challenge identity falls in the red set.
This property has been shown useful to prove the full security of some identity-
based encryption schemes (e.g., [8,30,18]). In particular, it fits those cases when,
in the reduction, one can program the simulator so that it can answer secret key
queries for all the blue identities, whereas it is prepared to generate a challenge
ciphertext only for red identities.

In our work we employ admissible hash functions for a similar purpose, i.e.,
constructing a fully-secure HIBE from a selective-secureWIBE, and in particular
we adopt a definition of admissible hash functions which follows the one used by
Cash et al. in [18]. The formal definition follows.

Let k ∈ N be the security parameter, w and λ be two values that are at most
polynomial in k, and Σ be an alphabet of size s. Let H = {H : {0, 1}w → Σλ}
be a family of functions. For H ∈ H, K ∈ (Σ ∪ {*})λ and any x ∈ {0, 1}w we
define the following function which colors strings in {0, 1}w as follows:

FK,H(x) =

{
R if ∀i ∈ {1, . . . , λ} : H(x)i = Ki or Ki = *

B if ∃i ∈ {1, . . . , λ} : H(x)i �= Ki

For any μ ∈ {0, . . . , λ}, we denote with K(λ,μ) the uniform distribution over
(Σ∪{*})λ such that exactly μ components are not *. Moreover, for everyH ∈ H,
K ∈ K(λ,μ), and every vector x ∈ ({0, 1}w)Q+1 we define the function

γ(x) = Pr[FK,H(x0) = R∧FK,H(x1) = B∧FK,H(x2) = B∧ · · · ∧FK,H(xQ) = B].

Definition 2. [Admissible Hash Functions] H = {H : {0, 1}w → Σλ} is a
family of (Q, δmin)-admissible hash functions if for every polynomial Q = Q(k),
there exists an efficiently computable function μ = μ(k), efficiently recognizable
sets badH ⊆ ({0, 1}w)∗ and an inverse of a polynomial δmin = 1/δ(k,Q) such
that the following properties holds:

1. For every PPT algorithmA that, on inputH ∈ H, outputs x ∈ ({0, 1}w)Q+1,
there exists a negligible function ε(k) such that:

AdvadmH (A) = Pr[x ∈ badH : H ← H,x← A(H)] ≤ ε(k)
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2. For every H ∈ H, K
$← K(λ,μ), and every vector x ∈ ({0, 1}w)Q+1 \ badH

such that x0 /∈ {x1, . . . , xQ} we have: γ(x) ≥ δmin.

Our Transformation. Let WIBE be a WIBE scheme with identity space ID =
Σ of size s and depth ≤ λ · L, and H = {H : {0, 1}w → Σλ} be a family of
functions. Then we construct the following HIBE scheme that has identity space
ID ′ = {0, 1}w and depth at most L:

HIBE .Setup: run (mpk ′,msk ′)
$← WIBE .Setup and select H1, . . . , HL

$← H.
Output mpk = (mpk ′, H1, . . . , HL) and msk = msk ′.

HIBE .KeyDer(msk ,
−→
ID): let

−→
ID = (ID1, . . . , ID�) and define I = (H1(ID1), . . . ,

H�(ID�)) ∈ Σλ·�. Output sk−→
ID

= WIBE .KeyDer(msk , I).

HIBE .Enc(mpk ,
−→
ID ,m): let

−→
ID = (ID1, . . . , ID�) and define I = (H1(ID1), . . . ,

H�(ID�)) ∈ Σλ·�. Output C = WIBE .Enc(mpk , I,m).
HIBE .Dec(sk−→

ID
, C): return m = WIBE .Dec(sk−→

ID
, C).

Our scheme is very simple. Essentially, the HIBE algorithm uses the algorithms
of the WIBE scheme in a black-box way, where each identity component ID i is
first hashed using a function Hi ∈ H. Boneh and Boyen show how to construct
admissible hash functions based on collision-resistance and error-correction, and
propose some concrete parameters for their instantiation (which satisfy our def-
inition). In particular, for convenience of their construction, they consider func-
tions that map to strings in an alphabet Σ of size s = 2. Here we notice that if
the given WIBE has an alphabet Σ′ of size s′ > 2, then one can simply choose
two values x1, x2 ∈ Σ′, set Σ = {x1, x2}, and then consider the same WIBE
restricted to these two identities.

The security of our scheme follows from the following theorem, whose proof
is deferred to the full version.

Theorem 3. If H = {H : {0, 1}w → Σλ} is a family of (Q, δmin)-admissible
hash functions, and WIBE is IND-sWID-CPA-secure, then the scheme HIBE
given in Section 3 is IND-HID-CPA-secure, where the maximum hierarchy’s
depth L is some fixed constant.

Intuitively speaking, the proof of Theorem 3 proceeds by showing an algorithm
B that plays game IND-sWID-CPA against the scheme WIBE and simulates
the game IND-HID-CPA to an adversary A against HIBE . B first generates
the parameters for the admissible hash functions, which define the partitions B
and R, and then it declares the set R as the challenge pattern (notice that by
definition of K ∈ K(λ,μ), R can be described using a pattern). In this way, all
secret key queries made by A for identities in B can be forwarded by B to its
own challenger, and the same can be done if the challenge identity chosen by
A falls in R. In particular, by the properties of admissible hash functions, the
event that the identities of secret key queries fall in B and the challenge identity
falls in R occurs with non-negligible probability. However, things are not that
simple, as there may be unlucky events in which B is unable to simulate the
right game to A and thus it needs to abort. As it already occurred in other
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works [30,18], these events may not be independent of the adversary’s view,
and one solution is to force the simulator to run an expensive artificial abort
step. Our proof of Theorem 3 proceeds in this way, requiring B to (eventually)
artificially abort at the end of the simulation. Alternatively, one can extend
the techniques introduced by Bellare and Ristenpart in [5] to obtain a proof of
Theorem 3 which avoids the need of artificial aborts. However, this requires a
slightly different definition of admissible hash functions.

Remark 4. Even though our transformation requires a WIBE scheme with λ·L
levels to get a HIBE with L levels, we observe that the HIBE key derivation
algorithm will use the WIBE key derivation at most L times. The point is that
while L is supposed to be a constant, λ can be instead non-constant, as it is
the case for known constructions of admissible hash functions, whose output
length depends on the number of secret key queries made by the adversary.
This might have been a problem for those WIBE schemes that do not support
key derivation (delegation) for a polynomial number of levels, such as the new
lattice-based scheme described in the full version of this paper.

Extensions. Our transformation easily allows for two extensions. First, it can
be used to build an IBE by using a WIBE without the delegation property.
Second, we show that it works also in the Continual Memory Leakage model of
[15,20]. We provide a complete description of these extensions in the full version
of our work.

4 Selective WIBE Schemes from Selective HIBE

In this section we investigate methodologies that allow to build a selective-
pattern secure WIBE scheme starting from a HIBE which is selective-identity
secure. In particular, we identify conditions under which this transformation
works, and then, in the full version we will show that such conditions are satis-
fied by many known schemes, e.g., [7,9,30]. Then, by combining this result, i.e.,
a transformation from selective-identity secure HIBE to selective-pattern secure
WIBE, with the result of Section 3, i.e., a conversion from selective-pattern se-
cure WIBE to fully-secure HIBE, we obtain a methodology which allows to turn
a selective-secure HIBE into a fully-secure one.

Security under Correlated Randomness. Towards this goal, our first con-
tribution is a notion of security for HIBE schemes, called security under corre-
lated randomness .The main idea can be described as follows. Assume that one
is given encryptions of the same message with the same randomness but for dif-

ferent identities
−→
ID0, . . . ,

−→
IDn. Then there should be an efficient algorithm that

allows to efficiently generate a new ciphertext encrypting the same message but

intended to another identity
−→
ID ′ ∈ ID ′ ⊆ ID. The first technical point is to

delineate which is this subspace ID ′ of the identity space. So, our first contri-
bution is to show that ID ′ follows from the differences between the identities
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−→
ID0, . . . ,

−→
IDn. More technically, we will show that starting from any set of identi-

ties
−→
ID0, . . . ,

−→
IDn one can define a matrix Δ whose column i contains the vector

which is computed as the difference between
−→
ID0 and

−→
ID i (i.e.,Δ(i) =

−→
ID0−−→ID i).

Then the identity subspace ID ′ fixed by
−→
ID0, . . . ,

−→
IDn is the set of all identities

that can be obtained by making affine operations over
−→
ID0 and Δ. (i.e.,

−→
ID0 plus

vectors obtained from integer linear combinations of vectors in Δ). Given this

property, encrypting a message with the same randomness for
−→
ID0, . . . ,

−→
IDn is

equivalent to encrypting for the entire ID ′, that we call Span(
−→
ID0, . . . ,

−→
IDn). As

one may guess, this is already a first step towards building a WIBE, in which
the set of recipients of an encryption is actually a subspace of ID described by
the pattern P .

Given the intuitive notion of Span described above, we define below the prop-
erty for HIBE schemes that we call Ciphertext Conversion.

Property 1 (Ciphertext Conversion). A HIBE scheme satisfies Ciphertext
Conversion if there exists an algorithm Convert that, on input n+ 1 ciphertexts
(C0, . . . , Cn) encrypting the same message with the same randomness r, under

identities (
−→
ID0, . . . ,

−→
IDn) respectively, can generate a new ciphertext (encrypting

the same message) intended to any
−→
ID ∈ Span(

−→
ID0, . . . ,

−→
IDn).

For any HIBE satisfying Property 1, the notion of selective security under cor-
related randomness (IND-sCR-CPA) is defined by a game which is the same as
the IND-sID-CPA one except that: at the beginning the adversary chooses n+1

identities
−→
ID0, . . . ,

−→
IDn; it receives n+1 challenge ciphertexts generated using the

same randomness under identities
−→
ID0, . . . ,

−→
IDn respectively; it cannot ask for

the secret keys of identities in Span(
−→
ID0, . . . ,

−→
IDn). The IND-sCR-CPA notion

is parametrized by a distribution R on the identities
−→
ID0, . . . ,

−→
IDn that can be

chosen by the adversary.
We defer the interested reader to the full version of our work for more formal

and precise definitions.

From HIBE Selective-Secure under Correlated Randomness to
Selective-Secure WIBE. Now that we have defined the notion of selective se-
curity under correlated randomness (IND-sCR-CPA), we can show how to build
a selective-pattern secure WIBE from an IND-sCR-CPA-secure HIBE. Towards
this goal, let us first introduce some notation and basic definitions.

Let ID = Zλ
q be the identity space, for some q ≥ 2 and λ ≥ 1. For any pattern

P ∈ (ID ∪ {*})� we define the function (
−→
ID0, . . . ,

−→
IDn) ← F (P ) as follows. Let

{j1, . . . , jn′} = W(P ) ⊆ {1, . . . , �} be the set of levels in which P contains *. Let

n = n′ · λ, (−→ID0, . . . ,
−→
IDn) is defined as:

ID0
i =

{
Pi if Pi �= *

0λ if Pi = *

IDk+l−1
i,m =

{
−1 if i = jk ∧m = l

ID0
i,m otherwise

:
1 ≤ k ≤ n′, 1 ≤ l ≤ λ
1 ≤ i ≤ �, 1 ≤ m ≤ λ
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Moreover, we let B =
[
B(1)|| · · · ||B(�λ)

]
∈ {0, 1}�λ×�λ be the canonical basis

of R�λ.
The function F (P ) allows to specify a set of identities (

−→
ID0, . . . ,

−→
IDn) such that

the induced subspace Span(
−→
ID0, . . . ,

−→
IDn) is exactly the same subspace described

by the pattern P . Intuitively, this can be seen by looking at the way the identities

are defined.
−→
ID0 is equal to P on all the positions different from * and 0 elsewhere.

Instead each identity
−→
ID i is such that its difference with

−→
ID0 leads to a 1 in the

single position where they differ and 0 elsewhere. Basically, this means that the
matrix Δ obtained from F (P ) contains a subset of vectors in B. In this way,

adding linear combinations of these vectors to
−→
ID0 allows to reach identities

−→
ID

such that ID i = Pi where Pi �= *, while ID i can take any value in ID in those
positions i where Pi = *. Notice that the number n of such linearly independent
vectors strictly depends on the number of * in P . We formally show this property
of F (·) by proving the following claim (the proof appears in the full version of
our paper):

Claim 5. For any P ∈ (ID∪{*})� and any
−→
ID ∈ ID� it holds

−→
ID ∈ Span(F (P ))

iff
−→
ID ∈* P .

Our WIBE Scheme. Let HIBE = (Setup′,KeyDer′,Enc′,Dec′,Convert) be a
HIBE scheme with identity space ID = Zλ

q (for q ≥ 2 and λ ≥ 1), and equipped
with an efficient algorithm Convert satisfying Property 1. Then we construct the
scheme WIBE = (Setup,KeyDer,Enc,Dec) as follows.

Setup: Return the output of Setup′.

KeyDer(sk−→
ID ′ ,

−→
ID): Run sk−→

ID

$← KeyDer′(sk−→
ID′ ,

−→
ID) and output sk−→

ID
.

Enc(mpk , P,m): Let (
−→
ID0, . . . ,

−→
IDn)← F (P ). For all i = 0 to n, compute Ci

$←
Enc′(mpk ,

−→
IDk,m; r), where r is taken at random from the randomness space of

HIBE .Enc. Finally, output C = (C0, . . . , Cn).

Dec(sk−→
ID
, C, P ): If

−→
ID �∈* P , then output ⊥. Otherwise, compute (

−→
ID0, . . . ,

−→
IDn)← F (P ), run C′ ← Convert(mpk , C0,

−→
ID0, . . . , Cn,

−→
IDn,

−→
ID) and then out-

put m← Dec′(sk−→
ID
, C′).

Remark 6. We notice that our transformation assumes a HIBE scheme that
works with the identities returned by our function F (·). This function is defined
so that it assigns to the identities values Pi, 0 or −1. However, it may be the
case that 0 and/or 1 are not considered valid values in some specific identity
space (e.g., assume ID = Zq \ {0}). This issue can be overcome by observing
that everything still works if one takes any two different (and valid) values of
the identity space, instead of 0 and 1. All we want is that when we compute the
matrix Δ, if two identity components are equal, then their difference becomes
0, otherwise they lead to some value c (not necessarily 1). To see that every-
thing works even with any constant c, observe that it is possible to consider our
operations over Δ/c.



328 M. Abdalla, D. Fiore, and V. Lyubashevsky

Now, we state the security of our scheme via the following theorem, whose
proof can be found in the full version.

Theorem 7. If HIBE satisfies Property 1 and is IND-sCR-CPA-secure w.r.t.

R = ID�×(n+1), then the scheme WIBE described above is correct and IND-
sWID-CPA secure.

A Sufficient Distribution for Building a WIBE. In the previous section, we
showed that an HIBE scheme satisfying Property 1 and the notion of selective-
security under correlated randomness can be transformed into a WIBE. In par-
ticular, Theorem 7 considers the most general definition where the distribution

R is arbitrary, i.e., R = ID�×(n+1). However, we observe that in order for the
transformation to work, it is sufficient to consider a more restricted distribution
that we call RWIBE .

Let B =
[
B(1)|| · · · ||B(�λ)

]
∈ {0, 1}�λ×�λ be the canonical basis. defined in the

previous section. We define the distribution

RWIBE = {(−→ID0, . . . ,
−→
IDn) :

−→
ID0 ∈ Zλ�

q ,
−→
ID i =

−→
ID0 + ki · B(ji), 1 ≤ i ≤ n,

ji ∈ {1, . . . , λ�},k ∈ Zn}

It is interesting to observe that for any pattern P the identities obtained from
F (P ) follow the distribution RWIBE . We show the following claim whose proof
appears in the full version.

Claim 8. For any pattern P ∈ (ID ∪ {*})� we have F (P ) ∈ RWIBE.

Hence, we can combine the results of Theorem 7 and Claim 8 to obtain the
following Corollary.

Corollary 9. If HIBE satisfies Property 1 and is secure under the IND-sCR-
CPA notion w.r.t. RWIBE, then the scheme WIBE described above is correct
and IND-sWID-CPA-secure.

5 Lattice-Based WIBE

In this section, we give a construction of a lattice-based selectively-secure WIBE,
based on the hardness of the LWE Problem [27], that very closely resembles the
selectively-secure HIBE construction from [18]. In fact, the master/secret key
generation and delegation procedures are exactly the same for the HIBE and the
WIBE. The only difference lies in the encryption and decryption procedures; yet
even there, the distinction is fairly minor. For the benefit of those readers familiar
with the HIBE of [18], we present the constructions of the WIBE along with the
construction of the HIBE and also try to use the same notational conventions.

Algorithms Used in Constructing the HIBE and WIBE.We now briefly
describe the algorithms that were used in [18] to construct the HIBE, which we
will be using in this section for constructing the WIBE.
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1. GenBasis(1n, 1m, q) : This algorithm generates a matrix A ∈ Zn×m
q (where

m = Ω(n log q)) and a basis S ∈ Zm×m of Λ⊥(A) such that the distribution
of A is negligibly close to uniform over Zn×m

q and ‖S̃‖ = O(
√
n log q).

2. ExtBasis(S,A′ = A||Ā) : This algorithm takes as input a matrix A′ =

A||Ā ∈ Zn×(m+m̄)
q and a matrix S ∈ Zm×m, which is basis of Λ⊥(A), and

outputs a matrix S′ ∈ Z(m+m̄)×(m+m̄) that is a basis of Λ⊥(A′) such that

‖S̃‖ = ‖S̃′‖.
3. SampleD(S,A,y, s) : This algorithm takes as input a basis S ∈ Zm×m of the

lattice Λ⊥(A), a vector y ∈ Zn
q , and a real number s ≥ ‖S̃‖ · ω(

√
logn) and

outputs a vector z ∼ DΛ⊥
y (A),s.

4. RandBasis(S, s) : This algorithm takes as input an m×m lattice basis S and
a real number s ≥ ‖S̃‖ ·ω(

√
logn), and outputs a basis S′ of the same lattice

such that ‖S′‖ ≤ s
√
m. Furthermore, if S0,S1 are bases of the same lattice

and s > max{‖S̃0‖, ‖S̃1‖}, then the distributions of RandBasis(S0, s) and
RandBasis(S1, s) are statistically close.

The Lattice-Based WIBE Scheme.We now describe the master key genera-
tion, key derivation, encryption and decryption algorithms of our WIBE scheme.
For any distribution χ over Z, and any vector x ∈ Zn

q let Noisyχ(x) be the dis-
tribution obtained by first creating a vector y ∈ Zn each of whose coordinates
is independently sampled according to χ, and then outputting x+ y mod q.

Master Key Generation. We assume that the identities are of the form
{0, 1}t, for all t ≤ L. The generation of the master public and secret keys is
done exactly in the same fashion in the HIBE and in the WIBE. The WIBE
is parametrized by the integers n,m, q where n is the security parameter, m is
an integer of size Ω(n log q) and q is some prime whose size is related to the
number of allowable key derivations, and is discussed in Section 5. We first run
the GenBasis(1n, 1m, q) procedure to obtain a matrix A0 ∈ Zn×m

q and a basis

S0 ∈ Zm×m of Λ⊥(A). Then for all (i, j) ∈ {0, 1} × {1, . . . ,L}, we generate a

uniformly random matrix A
(i)
j ∈ Zn×m

q , and choose a uniformly-random y ∈ Zn
q .

The master public key is[
A0,A

(0)
1 ,A

(1)
1 , . . . ,A

(0)
L ,A

(1)
L ,y

]
,

and the master secret key is S0.

Key Derivation. The key derivation procedure is again performed exactly the
same for the HIBE and the WIBE. The public key of identity id = (id1, . . . , idt)

is (Aid,y), where Aid = A0‖A(id1)
1 ‖ . . . ‖A(idt)

t . The secret key of user id is
(Sid,xid) where Sid is a “short” basis of the lattice Λ⊥(Aid) and xid is a “short”
vector satisfying AT

idxid = y. The matrix Sid will be used for delegation, while
the vector xid will be used for decryption.

If a user with id = (id1, . . . , idt) would like to generate a secret key for a user
id′ = (id1, . . . , idt, idt+1, . . . , idt′) whose public key is (Aid′ = Aid||Ā,y), where
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Ā = A
(idt+1)
t+1 ‖ . . . ‖A(idt′)

t′ , he computes the following:

Sid′ ← RandBasis(ExtBasis(Sid,Aid′), s)

xid′ ← SampleD(ExtBasis(Sid,Aid′),Aid′ ,y, s)

where s ≥ ‖S̃id‖ · ω(
√
logn). We point out that with every key derivation, the

value of ‖S̃id‖ increases by a factor of Õ(
√
n). When the norm of the secret

key gets too large, decryption becomes impossible, and so, just like in [18], it
is important to adjust the ratio of the size of the secret key S0 and the prime
q based on how many levels of delegations one wishes to have. With each level
of delegation increasing the norm of the user id by a factor of Õ(

√
n), the ratio

between ‖S̃0‖ and q should be on the order of
√
n
d
, where d is the maximum

allowable levels in the hierarchy. Since the LWEn,q,χ problem becomes easier as q
gets larger (and the distribution χ stays the same), there is a trade-off between
security and the maximum number of delegation levels. We direct the reader to
[18] for the precise parameters.

Encryption and Decryption. In the HIBE, encryption of a message κ ∈ {0, 1}
is performed to identity id = (id1, . . . , idt) by picking a random r ∈ Zn

q and

outputting the pair (uid, v) ∈ Zm(t+1)+1
q , where

(uid, v) =
(
Noisyχ

(
AT

idr
)
, Noisyχ

(
yT r+ κ · �q/2

))
where

Aid = A0‖A(id1)
1 ‖ . . . ‖A(idt)

t (1)

and χ is some “narrow” distribution such that the LWEn,q,χ problem is hard.
The decryption of the HIBE ciphertext by the identity id = (id1, . . . , idt) is

performed as follows: for a ciphertext (uid, v) and secret key xid, the algorithm
computes v−xTiduid mod q and outputs 0 if the result is closer to 0 than to q/2,
and outputs 1 otherwise.

In our WIBE, encryption is defined in essentially the same way as in the
HIBE. To encrypt to a pattern pat = (pat1, . . . , patt) ∈ {0, 1, *}t, we pick a
random r ∈ Zn

q , define

Apat = A0‖A(pat1)
1 ‖ . . . ‖A(patt)

t (2)

where A*
i := A

(0)
i ‖A(1)

i , and output the pair (upat, v) ∈ Zm(t+t*+1)+1
q (where t*

is the number of * in the pattern pat),

(upat, v) =
(
Noisyχ(A

T
patr), Noisyχ

(
yT r+ κ · �q/2

))
.

Notice that instead of the matrix Apat being n×mt as in the HIBE, it can be as
large as n× 2mt because every position pati that contains the wildcard * results

in the concatenation of both A
(0)
i and A

(1)
i into the matrix Apat. Therefore the

ciphertext of the WIBE could be twice as large as the HIBE ciphertext.
The decryption procedure of the WIBE is also very similar to that of the

HIBE. For every id = (id1, . . . , idt) ∈ {0, 1}t, the matrix Apat contains the
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matrix Aid, where Aid is defined as in (1). Therefore, since we know upat =
Noisyχ(A

T
patr), we can retrieve from it uid = Noisyχ(A

T
idr). And now, using

the secret key xid, the user can decrypt the ciphertext (uid, v) the same way
as in the HIBE scheme by computing v − xTiduid mod q and outputting 0 if the
result is closer to 0 than to q/2, and 1 otherwise.

Security. The security proof of our scheme, which can be found in the full
version of this paper, is a simple adaptation of the HIBE security proof in [18].

Theorem 10. Given an adversary A who breaks the WIBE with parameters
n,m, q allowing d key derivations, there exists an algorithm S that solves the
LWEn,q,χ problem where q > σ · nd/2 · poly(n) where σ is the standard deviation
of the distribution χ and poly(n) is some fixed polynomial function in n.

6 Future Directions

First, in its most general form (i.e., without restrictions on R), our notion of
security under correlated randomness gives a generic methodology for encrypting

messages to sets S of recipients that are defined by Span(
−→
ID0, . . . ,

−→
IDn). In this

sense, a WIBE can be seen as a special case of this notion in which the recipients’
sets always have a fixed form specified by the pattern P , i.e., S = Span(F (P )).
However, one may think of a more general notion in which these sets can have a

more “irregular” form that we can express using a set of identities (
−→
ID0, . . . ,

−→
IDn)

and its Span.
Since we were mostly interested in building WIBE schemes in this work, we

considered security under correlated randomness w.r.t. the distribution RWIBE .
However, as a future direction, it would be interesting to explore whether there
exist HIBE schemes that are IND-sCR-CPA-secure according to the most generic
notion, i.e., without any restriction on R. Perhaps more interestingly, the result-
ing primitive could be seen as the dual version of the notion of Spatial Encryption
proposed by Boneh and Hamburg in [12]. In Spatial Encryption, ciphertexts are
associated to points in Z�

p, while secret keys correspond to affine subspaces of

Z�
p. In this setting, a ciphertext for x ∈ Z�

p can be decrypted by any secret key

for W ⊆ Z�
p as long as x ∈ W . In contrast, our new notion would consider

ciphertexts that are associated to affine subspaces of ID�.

As a second direction, it would be interesting to investigate whether our tech-
niques can be applied to other cryptographic primitives. Indeed, the problem
of selective vs. full security has already been considered in the context of other
cryptographic notions, such as attribute-based encryption or verifiable random
functions (VRFs). In the particular case of VRFs, finding a fully secure scheme
has been a long standing open problem until the very recent works by Hohen-
berger and Waters [23] and by Boneh et al. [14]. In fact, both of these works can
be seen as obtaining a fully secure VRF from a selective secure one. While the
work of Boneh et al. explicitly builds a selective-secure VRF and then turns it
into a fully secure one, the work of Hohenberger and Waters can be interpreted
as a fully secure version of the selective-secure VRF scheme of Abdalla et al. [2].
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20. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 51st FOCS, pp. 511–520. IEEE Computer Society
Press (2010)

21. Gentry, C., Halevi, S.: Hierarchical Identity Based Encryption with Polynomially
Many Levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

22. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

23. Hohenberger, S., Waters, B.: Constructing Verifiable Random Functions with Large
Input Spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010)

24. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

25. Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

26. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342.
ACM Press (May/June 2009)

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (May
2005)

28. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

29. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

30. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)



Circular and KDM Security for Identity-Based

Encryption

Jacob Alperin-Sheriff and Chris Peikert�

Georgia Institute of Technology

Abstract. We initiate the study of security for key-dependent messages
(KDM), sometimes also known as “circular” or “clique” security, in the
setting of identity-based encryption (IBE). Circular/KDM security re-
quires that ciphertexts preserve secrecy even when they encrypt mes-
sages that may depend on the secret keys, and arises in natural usage
scenarios for IBE.

We construct an IBE system that is circular secure for affine func-
tions of users’ secret keys, based on the learning with errors (LWE)
problem (and hence on worst-case lattice problems). The scheme is se-
cure in the standard model, under a natural extension of a selective-
identity attack. Our three main technical contributions are (1) showing
the circular/KDM-security of a “dual”-style LWE public-key cryptosys-
tem, (2) proving the hardness of a version of the “extended LWE” prob-
lem due to O’Neill, Peikert and Waters (CRYPTO’11), and (3) building
an IBE scheme around the dual-style system using a novel lattice-based
“all-but-d” trapdoor function.

1 Introduction

Traditional notions of secure encryption, starting with semantic (or IND-CPA)
security [22], assume that the plaintext messages do not depend on the secret
decryption key (except perhaps indirectly, via the public key or other cipher-
texts). In many settings, this may fail to be the case. One obvious scenario is, of
course, careless or improper key management: for example, some disk encryption
systems end up encrypting the symmetric secret key itself (or a derivative) and
storing it on disk. However, there are also situations in which key-dependent
messages are used as an integral part of an cryptosystem. For example, in their
anonymous credential system, Camenisch and Lysyanskaya [13] use a cycle of
key-dependent messages to discourage users from delegating their secret keys.
More recently, Gentry’s “bootstrapping” technique for obtaining a fully homo-
morphic cryptosystem [19] encrypts a secret key under the corresponding public
key in order to support unbounded homomorphism; the cryptosystem therefore
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opinions, findings, and conclusions or recommendations expressed in this material
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needs to be “circular secure.” More generally, a system that potentially reveals
encryptions of any party’s secret key under any user’s public key needs to be
“clique” or “key-dependent message” (KDM) secure. This notion allows for prov-
ing formal symbolic soundness of cryptosystems having complexity-based secu-
rity proofs [1].

Since Boneh et al.’s breakthrough work [9] giving a KDM-secure encryption
scheme, in the standard model, from the Decision Diffie-Hellman assumption, a
large number of results (mostly positive) have been obtained regarding circular-
and KDM-secure encryption [23, 5, 6, 10, 4, 26, 11, 12]. However, all these
works have dealt only with the symmetric or public-key settings; in particular,
the question of circular/KDM security for identity-based cryptography has not
yet been considered. Recall that in identity-based encryption [35], any string
can serve as a public key, and the corresponding secret keys are generated and
administered by a trusted Private Key Generator (PKG).

Circular Security for IBE. In this work we define and construct a circular/KDM-
secure identity-based encryption (IBE) scheme. KDM security is well-motivated
by some natural usage scenarios for IBE, as we now explain.

Recall that identity-based encryption gives a natural and lightweight solution
to revocation, via expiring keys. The lifetime of the cryptosystem is divided
into time periods, or “epochs.” An identity string consists of a user’s “true”
identity (e.g., name) concatenated with an epoch; when encrypting, one uses the
identity for the current epoch. To support revocation, the PKG gives out a user’s
secret key only for the current epoch, and only if the user is still authorized to
be part of the system. Therefore, a user’s privileges can be revoked by simply
refusing to give out his secret key in future epochs; in particular, this revocation
is transparent to the encrypter.

The above framework makes it necessary for users to periodically get new
secret keys from the PKG, confidentially. The most lightweight method, which
eliminates the need for the user to prove his identity every time, is simply for
the PKG to encrypt the new secret key under the user’s identity for the previous
epoch. This can be proved secure, assuming the underlying IBE is CPA-secure, as
long as there are no cycles of encrypted keys. However, if a user deletes or loses an
old secret key and wants to decrypt a ciphertext from the corresponding epoch,
it would be natural for the authority to provide the old secret key encrypted
under the user’s identity for the current epoch. But because the current secret
key has also been encrypted (perhaps via a chain of encryptions) under the old
identity, this may be unsafe unless the IBE is KDM-secure.

1.1 Our Contributions

As already mentioned, in this work we define a form of circular/KDM security
for identity-based encryption, and give a standard-model construction based on
the learning with errors (LWE) problem, hence on worst-case lattice problems
via the reductions of [34, 32].
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As in prior positive results on circular security [9, 5, 10], our definition allows
the adversary to obtain encrypted “key cliques” for affine functions of the secret
keys. More precisely, for any tuple of identities (id1, . . . , idd), the attacker may
adaptively query encryptions of f(skidi) under any of the identities idj , where
f is any affine function over the message space, and each skidi is a secret key
for identity idi. Our attack model is in the style of a “selective identity” attack,
wherein the adversary must declare the target identities id1, . . . , idd (but not the
functions f) before seeing the public parameters of the scheme. While this is not
the strongest security notion we might hope for, it appears to at least capture the
main security requirements of the scenarios described above, because encrypted
key cycles are only ever published for the same “real-world” identity at different
time epochs. Therefore, just as in a standard selective-identity attack for IBE,
the adversary is actually limited to attacking just a single real-world identity, on
a set of d epochs (which could, for example, include all valid epochs). We also
point out that by a routine hybrid argument, security also holds when attacking
a disjoint collection of identity cliques (that are named before seeing the public
parameters).

Our IBE construction is built from two components, both of which involve
some novel techniques. First, we give an LWE-based public-key cryptosystem that
is clique secure (even for an unbounded number of users) for affine functions, and
is suitable for embedding into an IBE like the one of [20]. Second, we construct
a lattice-based “all-but-d” trapdoor function that serves as the main foundation
of the IBE. We elaborate on these two contributions next.

Clique-Secure Public-Key Cryptosystem. We first recall that Applebaum et al. [5]
showed that a variant of Regev’s so-called “primal” LWE cryptosystem [34] is
clique secure for affine functions. Unfortunately, this primal-type system does
not seem suitable as the foundation for identity-based encryption using the tools
of [20]. The first reason is that the proof of clique security from [5] needs the users’
public keys to be completely independent, rather than incorporating a shared
random string (e.g., the public parameters in an IBE system). The second reason
is a bit more technical, and is already described in [20]: in primal-style systems,
the user-specific public keys are exponentially sparse pseudorandom values (with
unique secret keys), and it is difficult to design an appropriate mapping from
identities to valid public keys that actually admit usable underlying secret keys.

Therefore, we first need to obtain clique security for a so-called “dual”-type
cryptosystem (using the terminology from [20]), in which every syntactically
valid public key has a functional underlying secret key (actually, many such
secret keys) that can be extracted by the PKG. It turns out that achieving this
goal is quite a bit more technically challenging than it was for the “primal”-style
schemes. This is primarily because the KDM-secure scheme from [5] (like the
earlier one from [9]) has the nice property that given the public key alone, one
can efficiently generate statistically well-distributed encryptions of the secret key
(without knowing the corresponding encryption randomness). This immediately
implies circular security for “self-loops,” and clique security follows from a couple
of other related techniques.
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Unfortunately, this nice statistical property on ciphertexts does not seem at-
tainable for dual-style LWE encryption, because now valid ciphertexts are expo-
nentially sparse and hard to generate without knowing the underlying encryption
randomness. In addition, because the adversary may obtain an unbounded num-
ber of key-dependent ciphertexts, we also cannot rely on any statistical entropy
of the secret key conditioned on the public key, as is common in the security
proofs of most dual-style cryptosystems.

We resolve the above issues by relying on computational assumptions twice
in our security proof, first when changing the way that challenge ciphertexts
are produced (i.e., by using knowledge of the secret key), and then again when
changing the form of the public key. Notably, unlike prior works (e.g., [17, 31])
in which ciphertexts in intermediate games are created by “encrypting with an
(information theoretically revealed) secret key,” we are able to avoid the use
of super-polynomially large noise to “overwhelm” the slight statistical difference
between the two ways of generating ciphertexts. This lets us prove security under
fully polynomial lattice/LWE assumptions, i.e., those involving a polynomially
bounded modulus q and inverse error rate for the LWE problem, and therefore
polynomial approximation factors for worst-case lattice problems. We do so by
proving the hardness of a version of the extended -LWE problem, as defined and
left open by the recent work of [31]. We believe that this result should be useful
in several other contexts as well.

All-but-d trapdoor functions. We use the clique-secure cryptosystem described
above as the foundation for a clique-secure IBE. To make the cryptosystem
identity-based, as in [20] we need to embed a “strong” trapdoor into the public
parameters so that the PKG can extract a secret key for any identity. Here we
use the ideas behind the tag-based algebraic construction of [2], and follow the
somewhat simpler and more efficient realization recently due to [28]. We remark
that these trapdoor constructions are well-suited to security definitions in which
the adversary attacks a single tag, because the trapdoor can be “punctured”
(i.e., made useless for extracting secret keys, and useful for embedding an LWE
challenge) at exactly one predetermined tag. Unfortunately, this does not ap-
pear to be sufficient for our purposes, because in the clique security game, the
adversary is attacking d identities at once and can obtain challenge ciphertexts
under all of them.

To resolve the insufficiency of a single puncture, we extend the trapdoor con-
structions of [2, 28] so that it is possible to puncture the trapdoor at up to
d arbitrary, prespecified tags. To accomplish this, we show how to statistically
hide in the public key a degree-d polynomial f(·) over a certain ring R, so that
f(idi) = 0 for all the targeted tags (identities) idi, while f(id) is a unit in R
(i.e., is invertible) for all other identities. The d components of the public key
can be combined so as to homomorphically evaluate f on any desired tag. The
underlying trapdoor is punctured exactly on tags id where f(id) = 0, and is
effective for inversion whenever f(id) is a unit in R. Our construction is analo-
gous to the one of [15] in the setting of prime-order groups with bilinear pairings
(where arithmetic “in the exponent” happens in a field), and the all-but-d lossy
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trapdoor functions of [24]. However, since lattice-based constructions do not
work with fields or rings like ZN , we instead use techniques from the literature
on secret sharing over groups and modules, e.g., [16, 18].

We remark that, for technical reasons relating to the number of “hints” for
which we can prove the hardness of the extended-LWE problem, we have not been
able to prove the KDM-security of our IBE under fully polynomial assumptions
(as we were able to do for our basic public-key cryptosystem). We instead rely on
the conjectured hardness of LWE for a slightly super-polynomial modulus q and
inverse error rate 1/α, which translates via known reductions [34, 32] to the con-
jectured hardness of worst-case lattice problems for slightly super-polynomial ap-
proximation factors, against slightly super-polynomial-time algorithms. Known
lattice algorithms are very far from disproving such conjectures.

2 Preliminaries

We denote the real numbers by R and the integers by Z. For a positive integer
d, we use [d] to denote the set {1, . . . , d}. We denote vectors over R and Z with
lower-case bold letters (e.g. x), and matrices by upper-case bold letters (e.g. A).
We say that a function is negligible, written negl(n), if it vanishes faster than the
inverse of any polynomial in n. The statistical distance between two distributions
X , Y over a finite or countable set D is Δ(X,Y ) = 1

2

∑
w∈D |X(w) − Y (w)|.

Statistical distance is a metric, and in particular obeys the triangle inequality.
Let {Xn} and {Yn} be ensembles of random variables indexed by the security
parameter n. We say that X and Y are statistically close if Δ(Xn, Yn) = negl(n).
For a matrix X ∈ Rn×k, the largest singular value (also known as the spectral
norm) of X is defined as s1(X) = max‖u‖=1‖Xu‖.

2.1 Lattices and Gaussians

A (full-rank) m-dimensional integer lattice Λ is an additive subgroup of Zm with
finite index. This work is concerned with the family of integer lattices whose
cryptographic importance was first demonstrated by Ajtai [3]. For integers n ≥ 1,
modulus q ≥ 2, anm-dimensional lattice from this family is specified by an “arity
check” matrix A ∈ Zn×m

q :

Λ⊥(A) = {x ∈ Zm : Ax = 0 ∈ Zn
q } ⊆ Zm.

For any y in the subgroup of Zn
q generated by the columns of A, we also define

the coset

Λ⊥
y (A) = {x ∈ Zm : Ax = y mod q} = Λ⊥(A) + x̄,

where x̄ ∈ Zm is an arbitrary solution to Ax̄ = y.
We briefly recall Gaussian distributions over lattices (for more details see

[29, 20]). For s > 0 and dimension m ≥ 1, the Gaussian function ρs : Rm → (0, 1]
is defined as ρs(x) = exp(−π‖x‖2/s2). For a coset Λ+c of a lattice Λ, the discrete
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Gaussian distribution DΛ+c,s (centered at zero) assigns probability proportional
to ρs(x) to each vector in the coset, and probability zero elsewhere.

We will need a few standard concepts and facts about discrete Gaussians over
lattices. First, for ε > 0 the smoothing parameter [29] ηε(Λ) of an n-dimensional
lattice is a positive real value. We will not need its precise definition, which
depends on the notion of the dual lattice, but only recall the few relevant facts
that we need; for details, see, e.g., [29, 20, 28].

Lemma 1. Let m ≥ Cn lg q for some constant C > 1.

1. For any ω(
√
logn) function, we have ηε(Zn) ≤ ω(

√
logn) for some negligible

ε(n) = negl(n).
2. With all but negl(n) probability over the uniformly random choice of A ∈

Zn×m
q , the following holds: For e ← DZm,r where r = ω(

√
logn), the dis-

tribution of y = Ae mod q is within negl(n) statistical distance of uniform,
and the conditional distribution of e given y is DΛ⊥

y (A),r.

3. For any m-dimensional lattice Λ, any c ∈ Zm, and any r ≥ ηε(Λ) where
ε(n) = negl(n), we have ‖DΛ+c,r‖ ≤ r

√
m with all but negl(n) probability.

In addition, for Λ = Z we have |DZ,r| ≤ r · ω(
√
logn) except with negl(n)

probability.
4. For any r > 0, and for R← Dn×k

Z,r , we have s1(R) ≤ r ·O(
√
n+

√
k) except

with negl(n) probability.

Lemma 2. For any real number r = ω(
√
logn) and c ∈ Z, the statistical dis-

tance between DZ,r and c+DZ,r is O(|c|/r).

2.2 Trapdoors for Lattices

We recall the efficient trapdoor construction and associated sampling algorithm
of Micciancio and Peikert [28]. This construction uses a universal public “gadget”
matrix G ∈ Zn×w

q for which there is an efficient discrete Gaussian sampling

algorithm for any parameter r ≥ ω(
√
logn) ≥ ηε(Λ

⊥(G)) (for some ε(n) =
negl(n)), i.e., an algorithm that, given any y ∈ Zn

q and r, outputs a sample from

DΛ⊥
y (G),r. For concreteness, as in [28] we takeG = In⊗[1, 2, 4, . . . , 2k−1] ∈ Zn×nk

q

for k = �lg q�.
Following [28], we say that an integer matrixR ∈ Z(m−n)×w is a “strong” trap-

door with tag H forA ∈ Zn×m
q if A [RI ] = H(G) for some efficiently computable

and invertible linear transformation H over Zn
q , which is applied column-wise

to G. Equivalently, in place of H(G) we may write H ·G for some invertible
matrix H ∈ Zn×n

q , but in our constructions it will be more natural to work with
invertible linear transformations, without explicitly referring to the matrices that
represent them.

Lemma 3 ([28, Theorem 5.1]). Let R be a strong trapdoor for A ∈ Zn×m
q .

There is an efficient randomized algorithm that, given R, any u ∈ Zn
q , and any

r ≥ s1(R) · ω(
√
logn) ≥ ηε(Λ

⊥(A)) (for some ε(n) = negl(n)), samples from a
distribution within negl(n) distance of DΛ⊥

u (A),r.
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2.3 Learning With Errors

The learning with errors (LWE) problem is parameterized by a dimension n ≥ 1,
an integer modulus q ≥ 2 and an error distribution χ over Z (or its induced
distribution over Zq). For a vector s ∈ Zn

q , the distribution As,χ over Zn
q ×Zq is

sampled by choosing a ∈ Zn
q uniformly at random and outputting (a, 〈a, s〉+ x),

where x← χ.
The search version of LWE is to recover an arbitrary s given oracle access to

As,χ. The decision version of LWE is to distinguish, with non-negligible advan-
tage, between samples from As,χ for uniformly random s ∈ Zn

q and uniformly
random samples from Zn

q ×Zq. There are search-to-decision reductions for LWE
for a variety of moduli q and parameter conditions ([34, 32, 5, 27, 28]). Of par-
ticular importance to us are the reductions from [5, 28] for q = pe, where p is
prime, e ≥ 1 is an integer, and Prx←χ[|x| ≥ p/2] = negl(n). The reductions runs
in time polynomial in n, p, and e.

For error distribution χ = DZ,αq, where αq ≥ 2
√
n, the search version of LWE

is at least as hard as quantumly approximating certain worst-case problems on
n-dimensional lattices to within Õ(n/a) factors [34]; for certain parameters, a
classical reduction is known for a subset of these lattice problems [32]. Note that
the original hardness result for search-LWE was for a continuous Gaussian error
distribution, but this can be converted to a discrete Gaussian disribution with
a suitable randomized rounding method [33].

We will need the transformation of Applebaum et al. [5] from the standard
decision-LWE problem (where s is uniform) to one where the secret s is chosen
from the error distribution χ.

Lemma 4 ([5, Lemma 2]). Let q = pe be a prime power. There is a deter-
ministic polynomial-time transformation that, for arbitrary s ∈ Zn

q and error
distribution χ, maps As,χ to Ax̄,χ where x̄← χn, and maps U(Zn

q ×Zq) to itself.

The transformation also produces an invertible square matrix Ā ∈ Zn×n
q and

b̄ ∈ Zn
q that, when mapping As,χ to Ax̄,χ, satisfy x̄ = −Āts+ b̄.

2.4 Key-Dependent Message Security

In defining key-dependent message security for public-key encryption and for
identity-based encryption, we adapt the original definitions of Black et al. [7].
As in their definitions, the adversary plays a game with a challenger, and is able
to make encryption queries for functions from a certain family F of the users’
secret keys. (Technically, F is a family of sets of functions parameterized by the
security parameter n and the number of users d.)

To simplify our security proofs, in our definition the adversary specifies two
functions (f0, f1) ∈ F with each query, and must distinguish between encryptions
of f0 and encryptions of f1. If f(k1, . . . , kd) = 0 is contained in F (which should
be the case if we want KDM security to imply standard semantic security), then
this definition is at least as strong as (and is in fact equivalent to) the original.

To define KDM-security for identity-based encryption, we extend the standard
definition of selective security for IBE from [14, 8]. Note that we add a parameter
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d to the Setup algorithm denoting the maximum number of users in a clique (i.e.,
a set of users such that the secret key for any user in the clique may be safely
encrypted under the identity for any user in the clique). An adversary plays a
game with a challenger that answer encryption queries for functions of the secret
keys for identities from a list I, encrypted under identities from I. For selective
security, I must be specified before the adversary sees the public key and remains
static throughout the game. In addition to (key-dependent) encryption queries,
the adversary is also allowed to make extraction queries for any identity id /∈ I.

For an identity-based encryption scheme (Setup,Ext,Enc,Dec), the security
game between an adversary and a challenger is parameterized by some β ∈ {0, 1}
and proceeds as follows.

1. A(1n, d) outputs a list of (distinct) target identities I = (id1, id2, . . . id�) for
some � ≤ d.

2. The challenger runs (mpk,msk)← Setup(1n, d). The adversary is givenmpk.
The challenger then extracts secret keys for each of the target identities,
running ski ← Extmsk(idi) for each i ∈ [�].

3. A then can make extraction and encryption queries, in the order of its choice.
Extraction Queries: A can query Extmsk(·) for any identity id /∈ I
Encryption Queries: A can make encryption queries of the form (f0, f1, i),

where f0, f1 ∈ F and 1 ≤ i ≤ �. The challenger computes m ←
fβ(sk1, . . . , sk�) and c← Enc(idi,m), and returns c to A.

We say that the scheme is selective-identity KDM-CPA secure with respect to
F if the games for β = 0, 1 are computationally indistinguishable.

We define KDM-CPA security for a public-key scheme (Gen,Enc,Dec) in a
similar manner. Starting at phase two above (since there are no identities to
target), the challenger now runs Gen d times, and gives pk1, . . . , pkd to the ad-
versary. In phase three, the adversary can only make encryption queries (since
there are no identities to extract), and requests encryptions under public keys
instead of identities. Everything else is exactly the same.

3 Hardness of Extended LWE

In this section we describe the extended -LWE problem (as originally defined
in [31]), and give a reduction to it from the standard LWE problem (with
polynomially bounded parameters), thus establishing its hardness under a mild
assumption.

3.1 Background and the Problem

O’Neill, Peikert and Waters [31] introduced the extended-LWE problem as a
simplifying tool for certain security proofs in which LWE is used in a “hash
proof-like” fashion, and additional information about the secret key is revealed
to the attacker. In prior works, dealing with such situations often involved adding
some “overwhelming” (super-polynomial) extra noise in order to disguise a small
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but noticeable statistical difference between, e.g., creating a ciphertext honestly
according to an encryption algorithm, and creating one by combining the secret
key with a challenge LWE instance. Unfortunately, the use of such overwhelming
noise requires an underlying LWE problem with super-polynomial modulus q and
inverse error rate 1/α, which corresponds to a substantially stronger assumption
than is needed in the security proofs for many other cryptosystems.

Here we recall the formal definition of the extended-LWE problem. In addition
to the usual n, q, and χ parameters for LWE, we also have a number m = poly(n)
of LWE samples, an efficiently sampleable “hint” distribution τ over Zm (often,
a discrete Gaussian Dm

Z,r for some r ≥ 1) and another Gaussian parameter β > 0.
The problem is to distinguish, with non-negligible advantage, between the two
experiments described next; the extended-LWE assumption is that this distin-
guishing problem is hard. In the ExptLWE experiment, the challenger chooses
A ← Zn×m

q , a secret s ← Zn
q and error vector x ← χm defining bt = stA + xt,

along with a “hint” vector z← τ and error term x̃← DZ,βq, and outputs

(A,b, z, b′ = 〈x, z〉+ x̃).

The first two components are just m LWE samples, while the latter two com-
ponents may be seen as a hint about the error vector x ∈ Zm in the form of
a (noisy) inner product with a vector z ∈ Zm, which is not reduced modulo
anything. The ExptUnif experiment is the same, except that b is defined to be
uniformly random and independent of everything else.

Notice that because A and z are public, one can “amortize” the extended-
LWE problem by including any poly(n) number of vectors bti = stiA + xti and
hints b′i = 〈xi, z〉, for independent si,xi (and the sameA, z). By a routine hybrid
argument, the two forms of the problem are equivalent, up to a poly(n) factor
in the distinguishing advantage. We use the amortized form of the problem in
our security proof in Section 4.

As observed in [31] (and implicitly in prior works like [21, 17]), there is a
straightforward reduction from LWE with χ = DZ,αq to extended-LWE where
τ is any m-fold product distribution with variance r2, if the ratio β/(r · α) is
superpolynomial in n. In fact, in this case we can securely give out an unbounded
polynomial number of hints zi, b

′
i = 〈x, zi〉+ x̃i about the error x. This is simply

because by Lemma 2, the terms x̃ ← DZ,βq statistically hide the inner product
〈x, z〉, since the latter has magnitude ≈ r‖x‖ ≤ rαq

√
m = βq · negl(n). As a

result, the reduction can just simulate the hints (z, 〈x, z〉 + x̃) on its own. The
disadvantage of this approach is that in order to be useful, the modulus q and
inverse error rate 1/α typically must be super-polynomially large in n, which
corresponds to assuming the worst-case hardness of various lattice problems for
super-polynomial approximation factors and running times.

We also point out that in the above setting, if the ratio βq/r is polynomial
in n and a sufficiently large h = poly(n) number of hints are given out, then
extended-LWE is easy to solve. To see this, view the h hints as (Z ∈ Zm×h,yt :=
xtZ + x̃t). With overwhelming probability, the singular values of Z will all be
r ·Ω(

√
h−C

√
n+m) for some universal constant C > 0 (see, e.g., [36, Theorem



Circular and KDM Security for Identity-Based Encryption 343

5.39]). Thus, for sufficiently large h = poly(n), with overwhelming probability
the singular values of the right-inverse Z+ ∈ Rh×m of Z will all be small enough
so that �x̃t · Z+� = 0. As a result, we can compute �ytZ+� = xt, which trivially
allows for solving the extended-LWE problem.

In the full version, we contrast our results for extended-LWE with syntactically
similar (but qualitatively different) results, such as the Goldreich-Levin theorem
and those of [21, 17].

3.2 Reduction from LWE

Here we give a tight reduction from standard LWE to extended-LWE, which holds
for the same parameters n, q, χ,m ≥ n + ω(logn) in the two problems, and in
which no noise is added to the hint 〈z,x〉 (i.e., β = 0). Our reduction imposes
one requirement on the parameters: for x ← χm and z ← τ , we need it to be
the case that |〈x, z〉| < p with overwhelming probability, where p is the smallest
prime divisor of the modulus q. For example, if χ = DZ,αq and τ = Dm

Z,r, by

standard tail inequalities it suffices to have αq · r
√
m+ n · ω(

√
logn) < p. In

other words, the LWE inverse error rate is 1/α > (q/p) · r
√
m+ n, which is only

polynomial in n when q, r,m are.

Theorem 1. There exists a probabilistic polynomial-time oracle machine (a
simulator) S such that for any adversary A,

AdvLWE(SA) ≥ 1
2p−1 ·AdvELWE(A)− negl(n),

where the parameters of the LWE and extended-LWE problems satisfy the condi-
tion specified above.

Proof. For the proof it is convenient to use the equivalent “knapsack” form of

LWE, which is: given H ← Z(m−n)×m
q and c ∈ Zm−n

q , where c is either c = Hx
for x ← χm, or is uniformly random and independent of H, determine (with
non-negl(n) advantage) which is the case. The extended form of the problem
also reveals a hint (z, 〈x, z〉+ x̃), analogously to extended-LWE. The equivalence
between LWE and its knapsack form for m ≥ n + ω(logn), which also applies
to their extended versions, has been noticed in several works; a proof appears
in [27, Lemmas 4.8 and 4.9].

We construct the reduction S as follows. It receives an LWE instance (in

knapsack form) H ∈ Z(m−n)×m
q , c ∈ Zm−n

q . It samples z ← τ , x′ ← χm, and
v← Zm−n

q , then lets

H′ := H− vzt ∈ Z(m−n)×m
q , c′ = c− v · 〈z,x′〉 ∈ Zm−n

q .

It sends (H′,b′, z, 〈x′, z〉) to A (an adversary for extended-LWE in knapsack
form), and outputs what A outputs.

We now analyze the behavior of S. First consider the case where H, c are
uniform and independent. Then it is clear that H′, c′ are as well, and both x′
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and z are also chosen exactly as in ExptUnif, so S perfectly simulates ExptUnif
to A.

Now, consider the case where H, c are drawn from the knapsack distribution,
with c = Hx for x ← χm. In this case, we have that H′ is uniformly random
(solely over the choice of H), and

c′ = Hx− v · 〈z,x′〉 = H′x+ v · 〈z,x− x′〉.

So in the event that 〈x′, z〉 = 〈x, z〉, we have c′ = H′x and so S perfectly
simulates ExptLWE to A. Whereas if 〈z,x − x′〉 is a unit modulo q, then for
any fixed choice of H′, z, x, and x′ (subject to this condition), we have that
c′ is uniformly random over the choice of v alone. Finally, since x and x′ are
identically distributed, it follows that S perfectly simulates ExptUnif to A.

It remains to analyze the probabilities that 〈z,x − x′〉 is zero or a unit (modulo
q), respectively. First, by assumption |〈z,x − x′〉| < p with overwhelming prob-
ability, so exactly one of the two cases holds; moreover, we have 〈x, z〉 = 〈x′, z〉
with probability at least 1

2p−1 − negl(n) because x and x′ are independent. The
theorem then follows from a routine calculation.

Normal Form. In our cryptosystems, we need to assume the hardness of extended-
LWE in “normal form” (as in [30, 5]), where the secret s ← χn is drawn from
the error distribution, the matrix A and vector bt have m−n columns, and the
hint is of the form z← τ , b′ = 〈(s,x), z〉 ∈ Z. Suppose m is sufficiently large so
that a uniformly random matrix from Zn×m

q contains an invertible n-by-n sub-
matrix with overwhelming probability. Then the reduction from [30, 5] applies
to extended-LWE in this form, with the slight modification that LWE samples in
the first phase are never “thrown away” but are instead recycled to the second
phase.

4 KDM-CPA Secure Public-Key Scheme

Here we present a “dual”-style LWE cryptosystem that is KDM-CPA secure for
affine functions of the secret keys. In fact, by setting the parameters appropri-
ately, the construction and security proof also encompass (a slight variant of)
the cryptosystem from [25], which has somewhat smaller keys and ciphertexts
than “primal” or “dual” systems. In Section 6 we build a KDM-CPA secure IBE
around this system.

The cryptosystem involves a few parameters: a modulus q = p2 for a prime p
where the message space is Zp; integer dimensions n,m relating to the underlying
LWE problems; and a Gaussian parameter r for key generation and encryption.
To make embedding this scheme into our IBE more natural, Gen includes an
additional parameter d, which will be used to specify the size of identity cliques
in the IBE scheme, and outputs public keys A that are md columns wide. In the
public-key scheme alone, the value d is unrelated to the number of public keys
that the adversary can obtain in an attack (which is unbounded), and we would
just fix d = 1.
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– Gen(1n, d): choose A ∈ Zn×md
q , z0 ← Dn

Z,r, z1 ← Dmd
Z,r , and let y = z0 −

Az1 = [In | −A]z ∈ Zn
q where z = (z0, z1) ∈ Zn+md. The public key is

(A,y) and the secret key is z1.
(Notice that, unlike the dual-style encryption of [20], but like the scheme
of [25], the public key component y is a perturbed value of −Az1. This will
be important in the proof of KDM security.)

– Enc(A,y, μ): to encrypt a message μ ∈ Zp, choose x0 ← Dn
Z,r, x1 ← Dmd

Z,r

and x′ ← DZ,r. Output the ciphertext ct = xt0[A | y] + [xt1 | x′] + [0 | p · μ].
– Dec(z1, c): Compute μ′ = ct [ z11 ] ∈ Zq. Output the μ ∈ {0, . . . , p− 1} = Zp

such that μ′ is closest to (pμ) mod q.

For the public-key system alone, it suffices to take m ≥ n + ω(logn) by our
use of the extended-LWE assumption and its proof of hardness as in Section 3.
When embedding the system into an IBE scheme, however, we will use m =
Θ(n log q) because we need the public parameters to be statistically close to
uniform over the choice of the master secret key. The error parameter r must be
small enough (relative to q/p) so that decryption is correct with overwhelming
probability, but large enough to satisfy the reductions to LWE from worst-case
lattice problems [34, 32]; for the latter purpose, r ≥ 2

√
n suffices. (Note that

even if part of the security proof relies on LWE in dimension > n, this problem
is no easier than LWE in dimension n, and so we can still securely use r = 2

√
n

with the larger dimension.)
Here we give some example bounds. Let r = 2

√
n, let

p = r2
√
n+md · ω(

√
logn) = n

√
n+md · ω(

√
logn),

and let q = p2. Then decryption is correct except with probability negl(n): let
(A,y, z)← Gen(1n, d). For a ciphertext c← Enc(A,y, μ), we have

ct [ z11 ] = xt0Az1+〈x1, z1〉+〈x0,y〉+x′+p·μ = 〈x0, z0〉+〈x1, z1〉+x′+p·μ mod q,

so decryption is correct whenever |〈x0, z0〉+ 〈x1, z1〉+ x′| < p/2. By known tail
bounds on discrete Gaussians, this bound holds except with probability negl(n)
(over the choice of all the random variables), as required.

A proof of the following appears in the full version.

Theorem 2. The above cryptosystem is KDM-CPA secure with respect to the
set of affine functions over Zp, under the extended-LWE assumption for param-
eters described above.

5 All-But-d Trapdoor Functions

Here we develop a technique for constructing “all-but-d” (tag-based) trapdoor
functions, which, informally, are trapdoor functions for which the trapdoor en-
ables efficient inversion for all but (up to) d tags, which are specified at the time
of key generation. This is the main tool we use for embedding our KDM-CPA-
secure public-key cryptosystem into an identity-based encryption scheme.
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Our construction is a generalization (to higher-degree polynomials) of the
main technique from [2]. For simplicity and somewhat better efficiency, we follow
the construction of [28], specifically the use of a fixed, public “gadget” matrix
G as described in Section 2.2.

5.1 Algebraic Background

Let n ≥ 1, q ≥ 2, and d = poly(n) be integers. Let R denote any commutative
ring (with efficiently computable operations, including inversion of multiplicative
units) such that the additive group G = Zn

q is an R-module, and such that
there are at least d + 1 known elements U = {u0 = 0, u1, u2, . . .} ⊆ R where
ui − uj is invertible in R (i.e., a unit) for every i �= j. In particular, we have an
(efficiently computable) scalar multiplication operation R× G → G. Note that
multiplication by u ∈ R is an invertible linear transformation on G exactly when
u is invertible (i.e., a unit). We extend scalar multiplication in the natural way to
vectors and matrices, i.e., Ra×b×Gb×c → Ga×c. To avoid confusion with vectors
and matrices over Zq, we use u notation for vectors over R, and V notation for
matrices over R.

To construct a suitable ring, we use ideas from the literature on secret shar-
ing over groups and modules, e.g., [16, 18]. We use an extension ring R =
Zq[x]/(F (x)) for any monic, degree-n, irreducible F (x) = F0 + F1x + · · · +
Fn−1x

n−1 + xn ∈ Zq[x]. Scalar multiplication R × G → G is defined by iden-
tifying each a = (a0, . . . , an−1)

t ∈ G with the polynomial a(x) = a0 + a1x +
· · ·+ an−1x

n−1 ∈ R, multiplying in R, then mapping back to G. In other words,
scalar multiplication is defined by the linear transformation x · (a0, . . . , an−1)

t =
(0, a0, . . . , an−2)

t − an−1(F0, F1, . . . , Fn−1)
t. It is easy to check that with this

scalar product, G is an R-module. In addition, by the Chinese remainder theo-
rem, r ∈ R is a unit if and only if it is nonzero (as a polynomial residue) modulo
every prime integer divisor p of q. (This is because Zp[x]/(F (x)) is a field by con-
struction.) Letting p be the smallest such divisor of q, we can define the universe
U = {u0 = 0, u1, u2, . . .} ⊆ R to consist of all the polynomial residues having
coefficients in {0, . . . , p− 1}. Then |U | = pn ≥ 2n and ui − uj is a unit for all
i �= j, as desired.

5.2 Basic Construction

As in [28], we fix a universal public “gadget” matrixG ∈ Zn×w
q for which there is

an efficient Gaussian preimage sampling algorithm for parameter s ≥ ω(
√
logn),

i.e., an algorithm that given any u ∈ Zn
q outputs a sample from DΛ⊥

u (G),s. E.g.,

we can let G = In ⊗ (1, 2, 4, . . . , 2k−1) ∈ Zn×nk
q for k = �lg q�.

As input, the trapdoor generator takes:

– an integer d ≥ 1 and a monic degree-d polynomial f(z) = c0+c1z+· · ·+zd ∈
R[z],

– a (usually uniformly random) matrix Ā ∈ Z(nd)×m̄
q for some m̄ ≥ 1, which

is made up of stacked submatrices Āi ∈ Zn×m̄
q for i = 0, . . . , d− 1.
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– a “short” secret R ∈ Zm̄×w chosen at random from an appropriate distribu-
tion (typically, a discrete Gaussian) to serve as a trapdoor.

As output it produces a matrix A ∈ Z(nd)×(m̄+w)
q (which is statistically close

to uniform, when the parameters and input Ā are appropriately chosen). In
addition, for each tag u ∈ U there is an efficiently computable (from A) matrix

Au ∈ Zn×(m̄+w)
q for which R may be a trapdoor, depending on the value of

f(u) ∈ R.
We write the coefficients of f(z) as a column vector c = (c0, c1, . . . , cd−1)

t ∈
Rd, and define

A′
f :=

[
Ā c ⊗G

]
=

⎡⎢⎣ Ā0 c0 ·G
...

...
Ād−1 cd−1 ·G

⎤⎥⎦ ∈ Z(nd)×(m̄+w)
q .

To hide the polynomial f , we output the public key

A := A′
f ·

[
I −R
I

]
=

[
Ā (c⊗G)− ĀR

]
.

Note that as long as the distribution of [Ā | −ĀR] is statistically close to
uniform, then so is A for any f .

The tag space for the trapdoor function is the set U ⊂ R. For any tag u ∈ U ,
define the row vector ut := (u0, u1, · · · , ud−1) ∈ Rd (where 00 = 1) and the
derived matrix for tag u to be

Au := ut ·A+
[
0 ud ·G

]
=

[
ut · Ā f(u) ·G

]
·
[
I −R
I

]
.

By the condition in Lemma 3, R is a (strong) trapdoor for Au exactly when
f(u) ∈ R is a unit, because Au · [RI ] = f(u) ·G and f(u) represents an invertible
linear transformation when it is a unit.

5.3 Puncturing

In our cryptosystems and security proofs we will need to generate (using the
above procedure) an all-but-d trapdoor function that is “punctured” at up to d
tags. More precisely, we are given as input:

– a set of distinct tags P = {u1, . . . , u�} ⊆ U for some � ≤ d,
– uniformly random matrices A∗

i ∈ Zn×m̄
q for i ∈ [�] (which often come from

an SIS or LWE challenge),
– a “short” secret R ∈ Zm̄×w chosen at random from an appropriate distribu-

tion (typically, a discrete Gaussian) to serve as a trapdoor,
– optionally, some uniformly random auxiliary matrices Y∗

i ∈ Zn×k
q for i ∈ [�]

and some k ≥ 0.
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As output we produce a public key A ∈ Z(nd)×m̄
q and auxiliary matrix Y ∈

Z(nd)×k
q so that:

1. EachAui matches the challenge matrixA∗
i , andR is only a “weak” trapdoor

for Aui . More precisely,

Aui =
[
A∗

i 0
]
·
[
I −R
I

]
.

2. R is a (strong) trapdoor for Au for any nonzero u ∈ U \ P , i.e., f(u) is a
unit.

3. The auxiliary matrix Yui := ui
t ·Y equals the auxiliary input Y∗

i for each
ui ∈ P .

We satisfy these criteria by invoking the above trapdoor generator with the
following inputs f and Ā:

1. We define the monic degree-d polynomial

f(z) = zd−� ·
∏
i∈[�]

(z − ui) ∈ R[z]

and expand to compute its coefficients ci ∈ R. Note that f(ui) = 0 for every
ui ∈ P , and f(u) is a unit for any nonzero u ∈ U \ P because 0 ∈ U and
ui − uj is a unit for every distinct ui, uj ∈ U .

2. We define Ā using interpolation: let A∗ ∈ Z(n�)×m̄
q denote the stack of

challenge matrices A∗
i , and let V ∈ R�×d be the Vandermonde matrix whose

rows are the vectors ui
t defined above. We then let Ā ∈ Z(nd)×m̄

q be a
uniformly random solution to V · Ā = A∗.
Such a solution exists, and is efficiently computable and uniformly random
(over the uniformly random choice of A∗ and the random solution chosen).
To see this, extend V to an invertible d × d Vandermonde matrix over R
having unit determinant

∏
i<j(uj − ui) ∈ R∗, by adding d − � additional

rows uj
t for arbitrary distinct uj ∈ U \ P . Likewise, extend A∗ to have

dimension (nd) × m̄ by adding uniformly random rows. Then for any fixed
choice of the (extended) matrix V , the (extended) matrix A∗ and solution
Ā are in bijective correspondence, and so the latter is uniformly random
because the former is.

3. We also define the auxiliary matrix Y similarly using interpolation, as a
uniformly random solution to V ·Y = Y∗.

6 Circular-Secure IBE

Our IBE scheme is a generalization of the efficient IBE scheme of Agrawal et
al. [2]. Other than some minor changes in the parameters, the main difference
is the use of the all-but-d trapdoor construction, which allows us to “puncture”
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the master public key at up to d identities in the security proof. The scheme
has parameters modulus q, message space Zp for some p < q, dimension m, and
Gaussian parameters r and γ. Most of the parameters match those in the public-
key encryption scheme of Section 4, with the additional constraint that r must
be large enough that we can run the preimage sampling algorithm (Lemma 3) in
Ext. Due to space considerations, the conditions on the parameters are described
in the full version.

The identity space for the scheme is U \{0} ⊂ R, where U , R are constructed
as in Section 5.

– Setup(1n, d): On input security parameter 1n and secret key clique size d:
1. Sample R ← Dmd×w

Z,ω(
√
logn)

, and for i = 0, . . . , d − 1, choose uniformly

random Ai ← Zn×md
q , yi ← Zn

q and let Ãi = −AiR ∈ Zn×w
q . (Note that

this is simply calling the all-but-d trapdoor construction from Section 5
with an empty set of punctured tags.) Let At :=

[
At

0 · · · At
d−1

]
, Ãt :=[

Ãt
0 · · · Ãt

d−1

]
, yt :=

[
yt0 · · · ytd−1

]
. Note that Ã = −AR.

2. The public key is mpk = (A, Ã,y). The master secret key is msk = (R).
– Ext(mpk,msk, u) On input mpk,msk and u ∈ U \ {0} ⊆ R:

1. Let ut := (u0, u1, . . . , ud−1), Āu = ut ·A, yu = ut · y and Au = [Āu |
udG− ĀuR], as in Section 5.

2. Sample z0 ← Dn
Z,r, z1 ← DΛ⊥

z0−yu
(Au),r using the preimage sampling

algorithm (Lemma 3), so that yu = z0 − Auz1 (as in the public-key
cryptosystem from Section 4). Output sku := z1.
Note that the above is possible because ud ∈ R is a unit, and by our
choice of r below, because s1(R) = O(

√
md+

√
w)·ω(

√
logn) = O(

√
md)·

ω(
√
logn) with all but negl(n) probability by Lemma 1.

– Enc(mpk, u, μ): On input master public key, identity u ∈ U\{0}, and message
μ ∈ Zp do:

1. Let ut := (u0, u1, . . . , ud−1), Au = [ut ·A | udG + ut · Ã] ∈ Zn×md+w
q ,

and yu = ut · y.
2. Choose s← Dn

Z,r, x0 ← Dmd
Z,r ,x1 ← Dw

Z,γ , x2 ← DZ,r. Let x
t = [xt0 | xt1].

3. Output the ciphertext ct = st[Au | yu] + [xt | x2] + [0 | p · μ].
– Dec(mpk, sku = z1, c): output the μ ∈ Zp such that ct [ z11 ] is closest to p · μ

modulo q.

Theorem 3. For the above parameters, the above IBE scheme is selective iden-
tity KDM-CPA secure with respect to the set of affine functions over Zp, under
the LWEq,χ assumption for χ = DZ,r, and the KDM-CPA security of the system
from Section 4.

Proof (Sketch). Here we give an overview of the proof strategy, deferring the
formal proof to the full version. Game 0 is the actual attack game. In Game
1, we use the all-but-d trapdoor construction from Section 5 to generate the
master public key, “puncturing” it at the targeted identities. Finally, in Game 2,
we play the KDM-CPA security game against a challenger running the public-
key encryption scheme from Section 4 and use the outputs of the challenger
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to simulate Game 1. This requires some care because the IBE secret keys and
ciphertexts have larger dimension by an additive term of w (the width of G).
To address this, we fill in the missing dimensions of the secret keys by choosing
them ourselves, and use knowledge of the master secret key to fill in the missing
dimensions of the ciphertexts (here is where we use the fact that noise with
parameter γ “overwhelms” noise with parameter r).

Acknowledgments. We thanks Oded Regev for helpful comments, and for
pointing out a subtle error in a prior version of our reduction from Section 3.
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1 Introduction

Background. It is now widely recognized that most practical applications of
public-key cryptosystems require more than the basic passive security against
chosen-plaintext eavesdropping attacks (known as IND-CPA security). The de
facto standard requirement that suffices for the majority of applications is secu-
rity against chosen-ciphertext attacks, known as IND-CCA2 security[28].

With the recent development of lattice-based cryptography, a public-key cryp-
tosystem with public-key length O(n2 log2 n) and ciphertext length O(n log2 n)
(for security parameter n) was given by Regev [29], having IND-CPA security
provably based on the Learning With Errors (LWE) problem, which in turn was
shown to be as hard as the quantum worst-case hardness of standard lattice
problems. A ‘dual’ variant system with similar complexity was later proposed
in [11]. The large quadratic factor n2 in the public-key length is due to the un-
structured matrices used in the LWE problem. By moving to a structured matrix
(first proposed for lattice-based hash functions in [20,17,25]), it was shown in-
dependently and concurrently in [33] and [19] how one could construct variants
of Regev’s cryptosystem based on the Ring-LWE problem (a variant of LWE
over rings of cyclotomic number fields) with IND-CPA security provably based
on the quantum worst-case hardness of lattice problems over the class of struc-
tured lattices called ideal lattices. The corresponding structured matrices allow
the public-key length to be reduced to O(n log n) (as well as the encryption and
decryption complexity, by using FFT techniques).

While the above systems are supported by theoretically sound proofs of se-
curity, the most practical and efficient lattice-based cryptosystem to date has
been the NTRU encryption scheme, proposed in 1996 [7]. The scheme, now known
as NTRUEncrypt, has been suggested as one of the most practical public-key en-
cryption scheme with conjectured ‘post-quantum’ security (see, e.g., [27]). Its
practicality is also evidenced by its industrial standardization by the IEEE [15].
However, until recently, the security of NTRUEncrypt has only been analyzed
heuristically. But recently, Stehlé and Steinfeld [34] showed that a slight vari-
ant of NTRUEncrypt(that we call pNE) can be shown to achieve IND-CPA secu-
rity based on worst-case lattice problems over ideal lattices. Unfortunately, the
pNE scheme (like the original NTRUEncrypt scheme) is trivially insecure against
chosen-ciphertext attacks, due to its homomorphic properties.

Our Results. The practicality and standardization of the NTRUEncrypt scheme
on the one hand, together with the recent result of [34] on the passive (IND-CPA)
security of a slight variant of NTRUEncrypt, raise the natural question of whether
NTRUEncrypt can be adapted efficiently to achieve IND-CCA2 security in the
standard model, while preserving the strong security guarantees of [34] based on
the worst-case hardness of lattice problems in ideal lattices. In this paper, we
answer this question affirmatively, in the asymptotic sense. We present a variant
of NTRUEncrypt called NTRUCCA, that is IND-CCA2 secure in the standard model
assuming the worst-case quantum hardness of problems in ideal lattices, and
only incurs a constant factor overhead in ciphertext and key length over the
pNE variant shown to be IND-CPA in [34]. Namely, our scheme still enjoys a key
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and ciphertext length and encryption/decryption computation costs quasi-linear
in the security parameter, given the best known attacks. To our knowledge,
our scheme is the first efficient variant of NTRUEncrypt achieving IND-CCA2
security based on standard cryptographic assumptions. We emphasize that our
aim is here is to show the asymptotic feasibility of obtaining an efficient IND-
CCA2 NTRUEncrypt variant from standard cryptographic assumptions, and we
leave it to future work to reduce the constant factor overhead incurred by our
construction, as well as the overhead incurred by the pNE scheme of [34] over the
original NTRUEncrypt scheme.

As an intermediate step, we present a construction for an All-But-One (ABO)
lossy trapdoor function from pNE, which may be of independent interest. The
public key of our ABO function consists of just one NTRU public-key and one
NTRU ciphertext, while our function output is a single NTRU ciphertext. As part
of our ABO construction, using the results of [32] on a variant of the NTRUSign
signature scheme, we also present a variant of pNE, preserving its security re-
duction, but with full randomness recovery during decryption (i.e. the random-
ness used in encryption is recovered during decryption along with the message,
whereas in the pNE scheme from [34], only the message is recovered in decryp-
tion). Our NTRUCCA scheme is built from our ABO lossy trapdoor function by
using a generalization of the generic Peikert-Waters construction of IND-CCA2
encryption from ABO lossy trapdoor functions. This generalization, which may
be of independent interest, is required since our pNE-based ABO does not have
a sufficient lossiness to be used within the generic IND-CCA2 construction of
Peikert and Waters [26]. Our generalized construction uses (k−1)-of-k-correlated
input distributions (used also in [22]) to weaken the lossiness requirement from
the ABO sufficiently to allow us to use it.

Related Work. The first construction of a cryptosystem with IND-CCA2 security
provably based on worst-case lattice problems (in the standard model) was given
by Peikert and Waters [26]. Their general framework, which also forms the basis
for our result, was a construction of IND-CCA2 secure encryption from a primi-
tive called a lossy ABO trapdoor function family, along with a one-time signature
scheme. They then showed how to construct a lossy ABO family from the LWE
problem (and hence from worst-case lattice problems). The resulting IND-CCA2
scheme, however, has quadratic complexity Ω(n2) in the security parameter n
due to the use of the LWE problem in the underlying ABO, rather than the
structured Ring-LWE problem. While the ABO construction of [26] could be
applied in the Ring-LWE setting to obtain a quasi-linear complexity in n (like
the complexity of our NTRUEncrypt-based ABO in this paper), the lossiness of
the construction is based on non-square Ring-LWE matrices (having at least
two ring elements), and is not directly applicable to our NTRUEncrypt setting
in which the Ring-LWE matrix is square and consists of a single ring element.
Instead, we show how to use a ‘masking’ based approach to provide lossiness in
our NTRUEncrypt-based ABO (see Sec. 3 for more details).

Rosen and Segev [30] gave another general construction for an IND-CCA2
secure scheme inspired by Peikert and Waters [26], but starting from a weaker
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primitive called a correlation-secure trapdoor function family (which can be
constructed from a lossy trapdoor function family). Subsequently, Peikert [24]
showed how to construct a correlation-secure trapdoor function family from the
LWE problem, and used it within the Rosen-Segev scheme, to obtain another
lattice-based IND-CCA2 secure scheme. Unfortunately, the latter scheme suffers
from long public-key and ciphertext length of Ω(n2) in the security parameter
n, even if applied in the Ring-LWE setting.

More constructions of IND-CCA2 secure lattice-based encryption schemes can
be obtained by using the lattice-based selective-ID secure IBE schemes of [1,2]
within the generic construction of [5], and a one-time signature or commitment
scheme. Until very recently, it was unknown how to instantiate the most efficient
scheme from [1] based on Ring-LWE with a poly-time reduction from worst-
case problems in ideal lattices, but this has now been resolved by Langlois and
Stehlé [16], who show the hardness of decision Ring-LWE for any modulus q.
A similar and more efficient (in terms of constant factors) system follows by
adapting the recent techniques of [21] to the Ring-LWE setting. Thus several
candidates now exist, besides our NTRU-based scheme, for efficient IND-CCA2
encryption based on Ring-LWE. We leave it to future work to optimize and
compare the concrete performance of all these schemes.

The ‘masking’ approach we use for constructing our NTRUEncrypt based ABO
is similar to that used in constructions of lossy functions in [9] based on clas-
sical number-theoretic assumptions; our construction shows how to extend this
approach to the NTRUEncrypt setting. Our use of a (k− 1)-of-k correlated input
distribution in our IND-CCA2 scheme is similar to a technique used by Mol
and Yilek [22] to improve the Rosen-Segev [30] construction. Our generalized
Peikert-Waters construction offers efficiency gains by a factor linear in the secu-
rity parameter, when one starts from an ABO lossy function losing a constant
fraction of its input entropy (such as our NTRUEncrypt-based ABO function).

Note that this paper focuses exclusively on the standard model. If one is will-
ing to use hash functions modeled as random oracles [3], then one can obtain
efficient IND-CCA2 secure variants of NTRUEncrypt by generic transformations
from IND-CPA secure cryptosystems [10], or by using more optimized variants
tailored for NTRUEncrypt [23,14,31]. However, in practice, when the random ora-
cle is instantiated with a public cryptographic hash function, one does not obtain
any security guarantees for the resulting scheme from standard cryptographic as-
sumptions.

Due to space limitations, we have omitted some proofs in this version of the
paper. They can be found in the full version, on the authors’ web page.

2 Preliminaries

2.1 Notation

We assume throughout this paper that n is a power of 2, and q is a prime such
that xn + 1 splits into n linear factors modulo q (i.e. 2n divides q − 1), and we
denote by R and Rq the rings Z[x]/(xn +1) and Zq[x]/(xn +1), respectively, and
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by K the field Q[x]/(xn + 1). The set of invertible elements of Rq is denoted by
R×

q . We use the asymptotic notations O(·), Õ(·), o(·), ω(·), Ω(·), Ω̃(·), Θ(·). We
let U(D) denote the uniform distribution over domain D.

2.2 Lattice Background

A lattice is a set of the form L =
∑

i≤n Zbi, where the bi’s are linearly indepen-
dent vectors in Rn. The integer n is called the lattice dimension, and the bi’s are
called a basis of L. The minimum λ1(L) is the Euclidean norm of any shortest
non-zero vector of L. A lattice L is called ideal if it consists of the set of coeffi-
cient vectors of the elements in an ideal of the ring R. The γ-Ideal-SVP(IdSVP)
problem is, given a basis for an ideal lattice L, to compute a non-zero vector in
L whose norm is at most γλ1(L).

For a lattice L and a deviation parameter σ > 0, we denote by DL,σ the dis-
crete Gaussian probability distribution on L, defined by DL,σ(x) = ρσ(x)/ρ(L),
where ρσ(x) = exp(−π‖x‖2/σ2). We denote by χα a certain discrete ‘Gaussian-
like’ distribution (denoted Γ̄α in [34]) on ring R, which is used in [19] as the error
distribution for the Ring-LWE problem in order to allow a security reduction
from the γ-Ideal-SVP problem. The precise definition of this distribution is quite
technical (we refer to [34] and [19] for more details). For the purposes of this
paper, it suffices to know that χα can be sampled efficiently (in expected time
Õ(n)) and samples from it have small norm. Here we need a stronger version of
this Lemma that applies for all r ∈ Rp, rather than just for one fixed r.

Lemma 1 (Adapted from [32]). For y sampled from χα, we have:

Pr
[
∃r ∈ Rp such that ‖yr‖∞ ≥ p · ω(n

√
log n) · αq

]
≤ n−ω(1)

and
Pr

[∃r ∈ Rp such that ‖yr‖∞ ≥ p · n1.5 · αq
] ≤ 2−Ω(n).

For s ∈ Rq, let As,χα denote the distribution on Rq × Rq, where a sample from
As,χα consists of a pair (a, y) with a independently and uniformly distributed
in R×

q and y = a · s + e with e independently sampled from χα. The Ring-LWE
problem R-LWEα,q (denoted by R-LWE×

HNF in [34]) is the following: Let s ∈ Rq

be sampled from χα. Given an oracle O that produces samples in Rq × Rq,
distinguish whether O outputs samples from the distribution As,χα or from the
uniform distribution on R×

q × Rq.

Theorem 1 (Adapted from [19]). Assume that αq = ω(n
√

log n) (resp.
Ω(n1.5)) with α ∈ (0, 1) and q = Poly(n). There exists a randomized polynomial-
time (resp. subexponential) quantum reduction from γ-Ideal-SVP to R-LWEq,α,
with γ = ω(n1.5 log n)/α (resp. Ω(n2.5)/α).

We recall the scheme pNE, the provably secure variant of NTRUEncrypt, with pa-
rameters n, q, p, α, σ [34]. pNE differs from the original NTRUEncrypt [13] in several
minor aspects: the choice of ring R = Z[x]/(xn + 1) (versus R = Z[x]/(xn − 1)),
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Key generation.
• Sample f from DZn,σ; let f = p · f ′ + 1; if (f mod q) 	∈ R×

q , resample.
• Sample g from DZn,σ; if (g mod q) 	∈ R×

q , resample.
• Return secret key sk = f ∈ R×

q and public key pk = h = g/f ∈ R×
q .

Encryption. Given message M ∈ Rp, set s, e ←↩ χα and return ciphertext
C = p · (hs + e) + M ∈ Rq.
Decryption. Given ciphertext C and secret key f , compute C′ = f · C ∈ Rq

and return message M = C′ mod p.

Fig. 1. The encryption scheme pNE(n, q, p, σ, α)

the choice of q prime (versus q a power of 2), the choice of distributions for f, g as
restricted discrete Gaussians (versus sparse binary polynomials), and the extra
error term pe in encryption C = phs + pe + M (versus C = phs + M).

We will need a variant of pNE with message space B a large subset of Rp =
Zp[x]/(xn + 1) such that b1 − b2 is invertible in Rp for all b1 	= b2 in B. If
xn+1 =

∏r
i=1 fi mod p denotes the factorization of xn+1 into irreducibles fi over

Zp, then by the Chinese Remainder Theorem, a polynomial b ∈ Zp[x]/(xn + 1)
is invertible in Rp if and only if it is coprime to fi over Zp for all i = 1, . . . , r.
The following lemma shows how to choose p such that r = 2 and f1, f2 are both
irreducibles of degree n/2. This allows us to take B = {b ∈ Rp : deg(b) < n/2}.
Lemma 2 ([4]). If n = 2k with k ≥ 2 and p is a prime with p ≡ 3 mod 8,
then xn + 1 = f1f2 mod p where each fi is irreducible in Zp[x] and can be
written fi = xn/2 + tix

n/4 − 1 with ti ∈ Zp.

Our generalized Peikert-Waters construction of IND-CCA2 encryption from lossy
trapdoor functions uses the following Generalized Leftover Hash lemma.

Lemma 3 ([8]). Suppose that random variable X on {0, 1}n has min-entropy
�x and random variable Y (that may depend on X) has at most 2�y possible
values. Let H be a family of universal hash functions from {0, 1}n to {0, 1}�

with �x − (�y + �) ≥ 2 log 1/ε for some ε > 0. Then the statistical distance
between (h, h(X), Y ) (for h chosen uniformly from H) and (h, r, Y ) (for h chosen
uniformly from H and r chosen uniformly and independently from {0, 1}�) is at
most ε.

2.3 ABO Lossy Trapdoor Functions

We recall the definition of ABO Lossy Trapdoor Functions [26].

Definition 1. An ABO Lossy Trapdoor Function Family F = (KGF , F, F−1) is
a collection of three polynomial time algorithms:

– Key Generation algorithm KGF : On input 1n (for a security parameter
n ∈ N), and a lossy branch b∗ ∈ B (B denotes the branch space), the
probabilistic algorithm KGF outputs a public/secret key pair (pk, sk).
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– Evaluation algorithm F: On input public key pk, x ∈ X (X denotes
the function input space) and branch b ∈ B, the deterministic algorithm F
returns an output y = F(pk, b, x) ∈ Y (where Y denotes the output space).

– Inversion algorithm F−1: On input y ∈ Y , b ∈ B and secret key sk, the
deterministic algorithm F−1 returns x = F−1(sk, b, y) ∈ X ∪ {⊥} (where ⊥
indicates an inversion failure).

These algorithms satisfy the following properties, for some parameters δ ∈ (0, 1)
(failure probability) and ρ ∈ (0, 1) (lossiness leakage rate):

– δ-Inversion Correctness: For any b∗ ∈ B, except with negligible prob-
ability ≤ δ over the key pair (sk, pk) output by KGF (n, b∗), we have
F−1(sk, b, F(pk, b, x)) = x for all x ∈ X and b ∈ B \ {b∗}.

– ρ-Lossiness (with failure probability δ): For any b∗ ∈ B, except with
negligible probability ≤ δ over the key pair (sk, pk) output by KGF (n, b∗), the
size of the image set {y ∈ Y : ∃x ∈ X with y = F(pk, b∗, x)} is at most |X |ρ.

– (T, ε) Lossy Branch Hiding: The advantage of any T -time (for T =
Poly(n)) attacker A in distinguishing between the following two experiments
Exp(0) and Exp(1) is a negligible function ε of the security parameter n.
For i ∈ {0, 1}, the experiment Exp(i) is defined as follows. On input 1n, A
outputs a pair of branches b∗0, b∗1 ∈ B. Then KGF is run on input (1n, b∗i ),
returning a key pair (pk, sk), and A is given pk.

Remark 1. In our definition of ρ-lossiness, ρ is an upper bound on the leakage
rate of the lossy branch, i.e. the fraction of the input min-entropy that is leaked
by the output.

3 An ABO Lossy Trapdoor Function from pNE

3.1 Modifying pNE for Full Randomness Recovery in Decryption

The decryption algorithm for the provable NTRUEncrypt variant pNE from [34]
only recovers the encrypted message M but not the randomness (s, e) used to
encrypt M . For constructing the ABO trapdoor function that is used in our
NTRUCCA scheme, we need an additional randomness recovery algorithm that can
also recover the randomness (s, e). In this section, we show how to modify the
scheme pNE to achieve this, while preserving its security reduction. It turns out
that most of the tools we need in this section have been worked out in [32] for
the purpose of analyzing the NTRUSign signature scheme, and we only need to
slightly tweak them for our application.

Our main observation for constructing a randomness recovery algorithm for
pNE is that, after M is recovered by the decryption algorithm and C′ = p−1 ·
(C − M) = h · s + e is computed, we have:[

C′

0

]
=

[
h
−1

]
· s +

[
e
s

]
.
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The vector c = [C′, 0]T ∈ R2
q is in the form of an (Ring) LWE instance c = A·s+e

over the ring Rq, where A = [h,−1]T ∈ R2×1
q and e = [e, s]T ∈ R2 is ‘small’.

Thus, given a full trapdoor matrix T ∈ R2×2 for the matrix A over R, (i.e. the
entries of T have ‘small’ coefficients, T · A = 0 mod q and T has full rank over
the field K = Q[x]/(xn + 1)), the randomness e can be recovered by standard
techniques for LWE inversion [11,24,33], namely one can compute T · c mod q =
T · e mod q = Te, where the last equality holds over K, since ‖T · e‖∞ < q/2
when ‖T ‖ and e are sufficiently small. Since T has full rank over K, T−1 exists
over K, and e can be recovered from e = T−1 · (T ·c mod q). Note that since the
secret key polynomials f, g satisfy f ·h−g = 0 mod q, the vector [f, g]T can serve
as the first row of the trapdoor matrix T . In designing their signature scheme,
the NTRUSign authors [12] give a heuristic algorithm to compute another small
pair (F, G) ∈ R2 such that F · h − G mod q, which is linearly independent of
[f, g] over K. A variant of this algorithm, that we call TrapKG, is presented and
analyzed rigorously in [32]. In [32], the algorithm TrapKG is applied for obtaining
a provably secure variant of NTRUSign. Here, we apply it to obtain a provably
secure variant of pNE with full randomness recovery. For our application, one does
not need to store the full trapdoor matrix T . Indeed, from the above description
of the decryption process, it is clear that one need only store (f, F ) and a low
precision approximation T̃ to T−1 The algorithm TrapKG is shown in Fig. 2. To

Inputs: n, q, p ∈ Z, σ, η ∈ R.
Output: A key pair (sk, pk).
1. Sample f ′ from DZn,σ; if (f mod q) 	∈ R×

q or (f mod p) 	∈ R×
p , resample.

2. Sample g from DZn,σ; if (g mod q) 	∈ R×
q , resample.

3. If ‖f‖ >
√

n · σ or ‖g‖ >
√

n · σ, restart.
4. If ideal 〈f, g〉 	= R, restart.
5. Compute F1, G1 ∈ R such that fG1 − gF1 = 1; Fq := qF1, Gq := qG1.
6. Use Babai’s nearest plane algorithm to approximate (Fq, Gq) by an integer
linear combination of (f, g), (xf, xg), . . . , (xn−1f, xn−1g).
Let (F, G) ∈ R2 be the output with (F, G) = (Fq, Gq)− k(f, g) and k ∈ R.
7. If ‖(F, G)‖ > nσ, restart.

8. Compute T =

[
f g
F G

]
.

9. Compute T̃ ∈ K2×2, an approximation to T−1 (over K) with precision η.
(i.e. the entries of matrix T̃ − T−1 have infinity norm at most η).
10. Return secret key sk = (f, F, T̃ ), pk = h

def
= g/f ∈ R×

q .

Fig. 2. Full Trapdoor Key Generation Algorithm TrapKG (adapted from [32])

obtain a high efficiency for our NTRUCCA scheme, we will choose p = nθ(1), versus
the choice p = O(1) used in pNE. To obtain a tighter security reduction with this
choice, we dropped the restriction f = 1 mod p used in pNE. Instead, we sample
f from a Gaussian (as in the NTRUSign variant of [32]), but here we must reject
and resample f if it is not invertible mod q or mod p.
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Lemma 4 (Adapted from Lemma 4.1 in [32]). Let n ≥ 8, q ≥ 5 and
p = 3 mod 8. Let σ ≥ √

n ln(2n(1 + 1/δ))/π · q1/2, for an arbitrary δ ∈ (0, 1/2).
Let a ∈ R and p ∈ R×

q . Then Prf←↩DZn,σ
[f 	∈ R×

q ∩ R×
p ] ≤ n(1/q + 2δ) + 2 ·

(1/qn/2 + 2δ).

The algorithm TrapKG in Fig. 2 differs from the NTRUSign key generation algo-
rithm analyzed in [32] only in the extra rejection step for f if f 	∈ Rp. Using
the above Lemma 4 (in place of Lemma 4.1 of [32]) to evaluate the rejection
probability in the proof of Lemma 4.4 of [32] gives the following performance
result for this algorithm.

Theorem 2 (Adapted from [32], Th. 4.2). Suppose q ≥ 256n and p is
a prime with p = 3 mod 8. Let ε ∈ (0, 1/2) and σ ≥ max(2n

√
ln(8nq) ·

q
1
2+2ε, ω(n1.5 log5 n)). Then the algorithm of Fig. 2 terminates in expected poly-

nomial time, and T · [h,−1]T = 0 mod q. Furthermore, we have ‖f‖, ‖g‖ ≤ √
nσ

and ‖F‖, ‖G‖ ≤ nσ. Finally, if n is sufficiently large, the distribution of the re-
turned h is rejected with probability c < 1 for some absolute constant c from a
distribution whose statistical distance from U(R×

q ) is ≤ 23nq−�εn�.

Our pNE variant with randomness recovery, called pNErr, is shown in Fig. 3.
The decryption algorithm for pNErr requires an additional multiplication by
f−1

p mod p during decryption (versus pNE) since in pNErr we have dropped the
restriction f = 1 mod p.

Key generation. Given input parameters (n, q, p, σ, η), run algorithm TrapKG

of Fig. 2 on input (n, q, p, σ, η) and return sk = (f, F, T̃ ), pk = h
def= g/f ∈ R×

q .
Encryption. Given message M ∈ P , set s, e ←↩ χα and return ciphertext
C = p · (hs + e) + M ∈ Rq.
Decryption. Given ciphertext C and secret key (f, F, T̃ ), compute C′ = f ·C ∈
Rq and return message M = f−1

p C′ mod p, where f−1
p denotes the multiplicative

inverse of f in Rp.
Randomness Recovery. Given ciphertext C, message M and secret
key (f, F, T̃ ), compute C′ = p−1 · (C − M) ∈ Rq, te = fC′ ∈ Rq and
ts = FC′ ∈ Rq, and [e, s]T = �T̃ · [te, ts]T � ∈ R2, where �·� denotes round-
ing coordinate-wise to the nearest integers. Return (s, e).

Fig. 3. The encryption scheme pNErr(n, q, p, σ, α, η)

Conditions on the scheme parameters that guarantee correctness of decryption
and randomness recovery are summarized in the following Lemma. Note that
we gain a factor ‖p‖ over the bounds in [32] due to dropping the condition
f = 1 mod p.

Lemma 5. If ω(
√

n log n)αpσ < 1, the decryption algorithm of pNErr recov-
ers M with probability 1 − n−ω(1) over the choice of s, e, f, g. If the conditions
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ω(n log n)ασ < 1 and η < 1
mnq hold, then the randomness recovery algorithm of

pNErr recovers (s, e) with probability 1 − n−ω(1) over the choice of s, e, f, g.

As in [32], the security of the scheme follows from the invertibility of p in Rq,
and the hardness of the decisional Ring LWE problem in Rq with h uniform in
R×

q . Here we also have to deal with the additional fact that h is sampled from
a distribution that is rejected with constant probability from an almost uniform
distribution on R×

q (by Theorem 2).

Lemma 6. Suppose q ≥ 256n and p ∈ R×
q is a prime with p = 3 mod 8. Let ε ∈

(0, 1/2) and σ ≥ max(2n
√

ln(8nq)·q 1
2 +2ε, ω(n1.5 log5 n)). If there exists an IND-

CPA attack against pNErr that runs in time T and has success probability 1/2+δ,
then there exists an algorithm solving R-LWEα,q that runs in time T ′ = O(n ·
δ̄−2 · T ) and has advantage δ′ ≥ δ̄2/4 − 2−Ω(n), where δ̄ = (1 − c) · δ − q−Ω(n)

and c < 1 is the rejection constant from Theorem 2.

3.2 Our ABO Lossy Trapdoor Function

Outline. We now use the pNErr scheme to construct an ABO Lossy Trapdoor
function. Our construction uses as a starting point the paradigm underlying the
constructions presented in [26]. In this paradigm, one starts with an encryption
scheme E that is homomorphic with respect to addition and multiplication by
known messages, i.e. given a ciphertext c = E(b) for message b, and two messages
b1 and b2, then c′ = b1 ·E(b) + b2 is a ciphertext for the message b′ = b1 · b + b2.
Given such an encryption scheme E, for a desired lossy branch b∗, the ABO key
generation algorithm computes ciphertext pk = E(b∗) as the public key (with
the decryption key as the trapdoor), and on input a message x and branch b, the
function evaluation algorithm computes F (pk, b, x) = x·(pk−b) = x·E(b∗−b) =
E(x · (b∗ − b)). Thus, when evaluating F on the lossy branch (b = b∗), we
just have F (pk, b, x) = E(0), a ciphertext of a zero message independent of
x, and we may hope that F (pk, b∗, x) indeed loses at least some information
on x, whereas for b 	= b∗, we have F (pk, b, x) = E(x · (b∗ − b)), which allows
recovery of x if the mapping x 
→ (b∗ − b) · x is injective. Unfortunately, this
idea does not immediately work for pNErr. On the positive side, the pNErr
scheme has the desired homomorphic properties. Namely, given a ciphertext
c = h · s + pe + M ∈ Rq for a message M ∈ Rp and two messages M1, M2 ∈ Rp,
we have that M1 · c + M2 = h · (M1s) + p(M1e) + (M1M + M2) is a valid
ciphertext for M1M + M2 mod p, assuming that M1s and M1e are chosen small
enough compared to q. The problem is that the resulting function evaluated on a
lossy branch i.e. y = F (pk, b∗, x) = x · (pk− b) = x · (hs+pe), is not lossy, indeed
it is injective with high probability. This is because pk − b may be invertible in
Rq, and even if it is not, one can recover x with high probability from x · s and
x·e, where the latter two can be recovered from y = x·(hs+pe) = h ·(xs)+p(xe)
and h using the randomness recovery algorithm of pNErr.

Our solution to the lossiness problem of the above construction uses the ob-
servation that pNErr is in fact additively homomorphic with respect to addition
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of two ciphertexts, not just with respect to addition of a known message to
a ciphertext, i.e. given ciphertexts E(b1) and E(b2) for messages b1, b2 respec-
tively, E(b1) + E(b2) is a ciphertext for the message b1 + b2. This means that
we can modify the function evaluation algorithm to add an encryption of the
zero message without hurting message recovery for injective branches, i.e. we
can use the function evaluation y = F (pk, b, (x, s̄, ē)) = x · (pk− b)+ (hs̄ + pē) =
h(xs + s̄) + p(xe + ē) + x(b∗ − b), where hs̄ + pē is a random ciphertext for the
zero message. Note that y is still an encryption of x(b∗ − b) as before, allowing
recovery of x by decryption for injective branches. But the additional random-
ness of s̄, ē masks the x-dependent terms xe and xs in y for evaluation of F on
the branch b = b∗, making this branch lossy, as required, assuming the masking
terms s̄, ē are sufficiently large. Of course, since F must be a deterministic al-
gorithm, the masking terms s̄, ē now become part of the function input (along
with x), and must be recoverable by the ABO’s inversion algorithm F−1 for
injective branches b 	= b∗. For the latter, note that once x is recovered (by the
decryption algorithm), then we can recover the added ciphertext of zero, namely
y − x(pk − b) = hs̄ + pē and use the randomness recovery algorithm of pNErr to
obtain s̄, ē.

Construction. Our ABO construction FNTRU is shown in Fig. 4. We give conditions
for ABO inversion correctness in Lemma 7. Unlike Lemma 5 for pNErr, which is
only valid probabilistically over the randomness of the encryption algorithm, our
definition of ABO inversion correctness requires that, except for a set of keys of
negligible probability, inversion succeeds for all valid outputs of F. This is used
in the CCA security proof, to prevent attacks that choose outputs that make
the inversion fail in one game but not the other.

Lemma 7 (Inversion Correctness). If αq >
√

n, η < 1
mnq , and q > max(p2 ·

ω(n2
√

log n) ·αq · σ + 2pp̄ ·n ·σ + p2 ·n2 · σ, p̄ ·n1.5 · σ) (resp. q > max(2p2 ·n2.5 ·
αq · σ + 2pp̄ · n · σ + p2 · n2 · σ, p̄ · n1.5 · σ)), then FNTRU satisfies n−ω(1)-Inversion
Correctness (resp. 2−Ω(n)-Inversion Correctness).

Proof. Any output y = F((h, c), b, (x, s̄, ē)) of F has the form of a pNErr cipher-
text y = p · (hs′ + e′) + (b∗ − b)x for message (b∗ − b) · x, with s′ = sx + s̄
and e′ = ex + ē being the ciphertext randomness. By the choice of p and
Lemma 2, (b∗ − b)−1

p exists. A sufficient condition for successful recovery of x is
that ‖C′‖∞ < q/2, where C′ = p(gs′ + fe′) + f(b∗ − b)x. The Cauchy-Schwarz
inequality gives ‖gs′‖∞ ≤ ‖g‖ · ‖s′‖. From Theorem 2, we have ‖g‖ ≤ √

nσ,
while Lemma 1 says that ‖sx‖ ≤ p · ω(n1.5

√
log n) · αq (resp. ‖sx‖ ≤ p · n2 · αq)

for every x ∈ Rp, except with probability ≤ n−ω(1) (resp. ≤ 2−Ω(n)) over the
choice of s during key generation. Since ‖s̄‖ ≤ √

np̄, it follows that ‖pgs′‖∞ ≤
p2 ·ω(n2

√
log n) ·αq ·σ+pp̄ ·n ·σ (resp. ‖pgs′‖∞ ≤ p2 ·n2.5 ·αq ·σ+pp̄ ·n ·σ). The

same argument gives the same bound on ‖pfe′‖∞. Finally, applying Cauchy-
Schwarz again, we have ‖f(b∗ − b)x‖∞ ≤ √

n · ‖f‖ · ‖b∗ − b‖ · ‖x‖ ≤ p2 · n2 · σ.
This implies ‖C′‖∞ < q/2 by the assumed lower bound on q.

The inversion algorithm succeeds to recover (s̄, ē) if ‖T · [ē, s̄]T ‖∞ = ‖[f ē +
gs̄, F ē+Gs̄]T ‖∞ < q/2 and η < 1

mnq . Using the bounds ‖f‖, ‖g‖, ‖F‖, ‖G‖ ≤ nσ
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• Key generation KGFNTRU : Given as input 1n, primes q, p, integer p̄ and reals
α, σ, η and b∗ ∈ B (where B = {b ∈ Rp : deg(b) < n/2} denotes the branch
space), run the key generation algorithm of pNErr on input (1n, q, p, σ, α, ρ)
to obtain a public key h = gf−1 ∈ R×

q and a secret key (f, F, T̃ ) for pNErr.
Return pk = (h, c = p·(hs+e)+b∗ ∈ Rq), where s, e ←↩ χα and sk = (f, F, T̃ ).

• Evaluation algorithm F: Given as input public key pk = (h, c) ∈ R2
q ,

branch b ∈ B and function input (x, s̄, ē) ∈ X (where X = Rp × R2
p̄ denotes

the input space), return y = F((h, c), b, (x, s̄, ē)) = (c−b)·x+p·(hs̄+ ē) ∈ Rq.
• Inversion algorithm F−1: Given as input y ∈ Rq, b ∈ B and secret key

sk = (f, F, T̂ ):
• Use the decryption algorithm of pNErr to decrypt ciphertext y with

secret key f to recover message x ∈ Rp (i.e. compute y′ = f · y ∈ Rq

and x = (b∗ − b)−1
p · f−1

p · y′ mod p, where (b∗ − b)−1
p and f−1

p denote
multiplicative inverses of f and b∗ − b, respectively, in Rp).

• Compute y′′ = y − (c − b) · x ∈ Rq and use the randomness recovery
algorithm of pNErr to recover randomness (s̄, ē) from ciphertext y′′ with
message 0 and secret key sk (i.e. compute te = fp−1y′′ ∈ Rq and ts =
Fp−1y′′ ∈ Rq, [ē, s̄]T = �T̃ · [te, ts]T � ∈ R2, where �·� denotes rounding
coordinate-wise to the nearest integers).

• Return (x, s̄, ē).

Fig. 4. The ABO Lossy Trapdoor Function Family FNTRU(n, q, p, p̄, σ, α, η)

from Theorem 2, and ‖ē‖, ‖s̄‖ ≤ p̄
√

n, the Cauchy-Schwarz inequality gives
‖f ē + gs̄‖∞, ‖F ē + Gs̄‖∞ ≤ p̄n1.5σ < q/2, by the assumed condition on q,
as required. ��
We now analyze the lossiness of FNTRU.

Lemma 8 (Lossiness). If p̄ > p · ω(n
√

log n) · αq (resp. p̄ > 2p · n1.5 · αq + 1),
then FNTRU satisfies ρ-Lossiness with failure probability n−ω(1) (resp. 2−Ω(n)),
with ρ ≤ log(4p̄2)

log(pp̄2) .

Proof. For evaluation on the lossy branch b∗, the function output is h · (xs +
s̄) + p(xe + ē). Hence the number of possible outputs N is upper bounded by
(2B+1)2n, where B is an upper bound on ‖xs+s̄‖∞ and ‖xe+ē‖∞. By Lemma 1,
we have ‖xs‖∞ ≤ p · ω(n

√
log n) · αq (resp. ‖xs‖∞ ≤ p · n1.5 · αq) for all x ∈ Rp

except with probability ≤ n−ω(1) (resp. 2−Ω(n)) over the choice of s ←↩ χα in
key generation, and ‖s̄‖∞ ≤ p̄/2. The same bounds also hold for ‖xe‖∞ and
‖ē‖∞, respectively. Using the condition on p̄, we have 2B + 1 ≤ p̄, and since
|X | = (pp̄2)n, we get the stated bound on ρ. ��
Note that the bound on the leakage rate ρ of FNTRU in Lemma 8 is (since log p̄ >
log p + O(log n)) greater than 1 − log p

3 log p+O(log n) > 2/3.
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The lossy branch hiding property follows directly from the IND-CPA security
of the underlying pNErr encryption scheme, which in turn is as hard as the
Ring-LWE problem, by Lemma 6.

Lemma 9 (Lossy Branch Hiding). If there exists an attack against the lossy
branch hiding of FNTRU that runs in time T and has distinguishing advantage ε,
then there exists an IND-CPA attack against pNErr with run time T and success
probability at least 1/2 + ε/2.

4 The NTRUCCA Scheme

4.1 Generalized Peikert-Waters Construction

Outline. The Peikert-Waters construction [26] of IND-CCA2 encryption from
ABO lossy trapdoor functions uses a pair of ABO lossy trapdoor functions F1

and F2
1. The ciphertext contains F1(b, x) and F2(b, x) for a random x that is

hashed to obtain a key with which to mask the message. The security proof relies
on the assumption that for the lossy branch b = b∗, the pair (F1(b∗, x), F2(b∗, x))
does not leak all the information on x. If both F1 and F2 have leakage rate ρ on
their lossy branch b∗, then the leakage rate of the pair (F1(b∗, x), F2(b∗, x)) is at
most 2ρ, so to ensure that not all the information on x is leaked, we must have
ρ < 1/2. Unfortunately, the leakage rate of our ABO FNTRU is greater than 2/3,
so FNTRU cannot be directly used in this construction.

Instead, we show that the Peikert-Waters construction generalizes to
use ciphertexts containing k ≥ 2 ABO evaluations F (k)(x1, . . . , xk) def=
(F1(b, x1), . . . , Fk(b, xk)), where F1, . . . , Fk denote k ABO functions, and the
evaluation points (x1, . . . , xk) sampled from a (k−1)-of-k Subset Reconstructible
Distribution (SRDk−1,k), in which any subset of k − 1 of the xi’s suffices to
uniquely reconstruct all xi’s (the Peikert-Waters construction corresponds to
the case k = 2). The advantage of using the SRDk−1,k distribution for k > 2, as
first observed by Mol and Yilek [22], is that the min-entropy of the SRDk−1,k

distribution when sampled with a Reed-Solomon code is (k−1) log |X | versus the
≤ kρ log |X | leaked min-entropy, implying that the leakage rate of F (k) on the
lossy branch b = b∗ with input distribution SRDk−1,k is ρ(k) ≤ k

k−1 ·ρ. Hence by
using a sufficiently large k, one can make ρ(k) exceed ρ by an arbitrarily small
amount. In particular, starting with ρ ≈ 2/3 as in our ABO, a constant k ≥ 4
suffices for our scheme, so the ciphertext length only incurs a constant factor
overhead over the length of a single ABO output (which corresponds to a single
NTRU ciphertext).

We remark that Mol and Yilek applied the k-product one-way function F (k)

to the IND-CCA2 encryption scheme of Rosen and Segev [30], that requires F (k)

to be one-way under the SRDk−1,k distribution. The advantage of our gener-
alized Peikert-Waters scheme over Rosen-Segev when the underlying functions
1 Actually only F2 needs to be an ABO lossy trapdoor function, whereas F1 can be

just a plain lossy trapdoor function.
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Fi are lossy, is that in our scheme the only lower bound constraint on k comes
from the requirement that F (k) is lossy (which for our ABO FNTRU, can be sat-
isfied with a constant k = O(1)), whereas in the Rosen-Segev scheme, k is also
lower bounded by the security parameter (because in Rosen-Segev, k is lower
bounded by the public key length of a one-time signature scheme, or at least
the length of a collision-resistant hash of the public key). Thus, starting from
ρ-lossy ABO functions Fi, our generalized Peikert-Waters scheme yields shorter
ciphertexts than Rosen-Segev by a factor Ω((1 − ρ) · n), where n denotes the
security parameter.

Construction. Figure 5 shows our generalized Peikert-Waters scheme GPWk,
parameterized by an integer k. We use an ABO lossy trapdoor function family
F = (KGF , F, F−1) with function input space X and branch space B, which
is ρ-lossy. As in the Peikert-Waters scheme, we also use a strongly unforgeable
one-time signature scheme OTS = (OTS.KG, OTS.Sign, OTS.Ver) with public
key space P . We assume for convenience that P ∪ {b0} ⊆ B, for some branch
b0 	∈ P (if |P | > |B|, we can hash a key in P into P ′ ⊂ B using a collision-
resistant hash function). We also use a family H of universal hash functions
from Xk to {0, 1}�. We assume that we have efficient algorithms Sampk−1,k and
Reck−1,k for, respectively, sampling from the distribution SRDk−1,k over Xk,
and reconstructing xj from {xi}i
=j for any (x1, . . . , xk) output by Sampk−1,k

and any j ∈ [k], and that the min-entropy of SRDk−1,k is μ ≥ (k − 1) log X (as
mentioned above, the latter assumption can be satisfied using Shamir’s secret
sharing scheme [22]).

Key generation. Given input parameters 1n and k, run algorithm KGF k times
on input (1n, b0) to get k independent key pairs (pki, ski) (i ∈ [k]) for ABO lossy
trapdoor function family F , all having lossy branch b0. Sample a hash function
h ←↩ H. Return key pair (pk, sk) with secret key sk = (sk1, . . . , skk−1) and
public key pk = (pk1, . . . , pkk, h).
Encryption. Given public key pk = (pk1, . . . , pkk, h) and message M ∈ {0, 1}�,
run OTS.KG to generate a one-time signature key pair (skS , pkS). Sample
(x1, . . . , xk) = Sampk−1,k and for i ∈ [k], compute yi = F(pki, pkS , xi) (i.e.
use branch pkS for all k evaluations). Compute C = M ⊕ h(x1, . . . , xk), and
σ = Sign(skS , (y1, . . . , yk, C)). Return ciphertext c = (pkS , y1, . . . , yk, C, σ).
Decryption. Given ciphertext c = (pkS , y1, . . . , yk, C, σ) and secret key sk =
(sk1, . . . , skk−1), check that OTS.Ver(pkS , (y1, . . . , yk, C), σ) = Acc. If not, re-
turn ⊥. Compute xi = F−1(ski, pkS , yi) for i ∈ [k − 1]. Compute xk =
Reck−1,k(x1, . . . , xk−1). If xi ∈ X and F(pki, pkS , xi) = yi for all i ∈ [k] then
return M = C ⊕ h(x1, . . . , xk). Else, return ⊥.

Fig. 5. The generalized Peikert-Waters encryption scheme GPWk

The security of the scheme is summarized by Theorem 3, a quantitative gen-
eralization of Theorem 4.2 in [26] (the latter is the special case k = 2).
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Theorem 3. Suppose there exists an IND-CCA2 attack A against the GPWk

encryption scheme of Fig. 5, that runs in time T and has success probability
1/2 + ε, F satisfies δ-correctness and ρ-lossiness, the min-entropy μ ≥ (k − 1) ·
log |X |, and k ≥ 1

1−ρ ·
(
1 + 2n+�

log |X|
)
. Let ε′ = ε − 2kδ − 2−n. Then, at least one

of the following attacks exist:

– An attack As against the strong existential unforgeability of OTS with run-
time Ts = T and success probability εs ≥ ε′

k+1 .
– An attack Ah against the lossy branch hiding property of F , with run-time

Th = T and distinguishing advantage εh ≥ ε′
k+1 .

A Simpler IND-CCA2 KEM. For encrypting long messages efficiently, one typ-
ically uses a hybrid IND-CCA2 encryption scheme, combining an IND-CCA2
Key Encapsulation Mechanism (KEM) with an efficient IND-CCA2 symmetric
encryption scheme [6]. The encryption algorithm of a KEM takes as input the
public key and a security parameter, and returns a uniformly random key K
in the key space {0, 1}� and ciphertext c for K. The above construction can be
simplified in the KEM setting, replacing the one-time signature scheme in the
above scheme by a collision-resistant hash function family G mapping Xk to
BG ⊆ B, i.e. the branch pkS encryption is replaced by b = g(x1, . . . , xk) where
g ∈ G is the hash function in the public key. The decryption algorithm checks
that b = g(x1, . . . , xk) (here X and B denote the input and branch space, re-
spectively, of the ABO lossy trapdoor function family). The security result is
only slightly modified to account for the extra leakage by b on (x1, . . . , xk). We
call the resulting scheme GPWKEMk (see full paper for a detailed definition).

Theorem 4. Suppose there exists an IND-CCA2 attackA against the GPWKEMk

KEMthat runs in timeT and has success probability 1/2+ε,F satisfies δ-correctness
and ρ-lossiness, μ ≥ (k − 1) · log |X |, and k ≥ 1

1−ρ ·
(
1 + 2n+�+log |BG |

log |X|
)
. Let

ε′ = ε − 2kδ − 2−n. Then, at least one of the following attacks exist:

– An attack Ac against the collision-resistance of hash family G with run-time
Tc = T and success probability εc ≥ ε′

k+1 .
– An attack Ah against the lossy branch hiding property of F , with run-time

Th = T and distinguishing advantage εh ≥ ε′
k+1 .

4.2 Instantiation and Choice of Parameters

Our NTRUCCA scheme is defined as the GPWk scheme with the following instanti-
ation choices, in terms of n, the security parameter. We let ε, εp > 0 denote pos-
itive constants (independent of n) that one may adjust to trade-off the scheme’s
concrete performance. The constant ε controls the uniformity of the NTRU key
h (its statistical distance from uniform over Rq is at most 23nq−ε·n, by Theo-
rem 2). The constant εp controls the size of the ABO branch space B (its size
is |B| = pn/2). The procedure we use for choosing parameters is as follows. We
choose αq = θ(n1.5) to satisfy worst-case reduction condition against 2o(n)-time
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attacks, by Theorem 1. Next, setting p = nεp , we choose p̄ = p · ω(n1.5 log nαq),
the condition in lossiness Lemma 8. Then, we plug the condition on σ from
Lemmas 9 and 6 in the condition on q from Lemma 7. This determines our
choice of q and σ and η, and then we can determine from αq and q the value of
α−1 and hence the resulting γ-Ideal-SVP approximation factor.

– ABO Trapdoor Function Family F : We use FNTRU(n, q, p, p̄, σ, α, η) from
Sec. 3.2 with the following parameters:

• q = Θ̃

(
n

max(5.5+εp,5+2εp)
1/2−2ε

)
, p = nεp , p̄ = Θ̃

(
n3+εp

)
.

• σ = Θ̃
(
n1+max(5.5+εp,5+2εp)· 1/2+2ε

1/2−2ε

)
.

• α−1 = Θ̃

(
n

max(5.5+εp,5+2εp)
1/2−2ε

−1.5

)
.

• η−1 = Θ̃(nq).
Note that this choice of parameters implies:
• FNTRU leakage rate, ρ ≤ 1 − 1− 2

log p

1+2 log p̄
log p

≤ 1 − 1
3+6ε−1

p +o(1)
(By Lemma 8).

• FNTRU input entropy, log |X | = n·(log p+2 log p̄) = (3εp+6+o(1))·n logn.
• k=

⌈
3 + ε−1

p ·
(
6 + 2+�/n

log n

)
+ o(1)

⌉
. (k = 4 is possiblewith � = θ(n log n)).

• Worst-Case IdSVP Approximation Factor, γ = O(n2.5α−1).
– One-Time Signature Scheme OTS: We use the One-Time Signature

scheme of [18]. It operates on vectors of dimension mots ≥ 2 over the ring
Rqots = Zqots [x]/(xn

ots +1), with a public key of length (mots+2)·nots log qots

and a signature of length ≤ mots · nots log qots. We instantiate it with:
• mots = 2.
• qots = Θ(n5

ots log5+ε′
nots).

• Worst-case IdSVP Approximation Factor, γots = O(n4
ots log3 nots).

• nots ≤ n log p
8 log qots

= Θ(n). (Note this implies that the verification key
length is ≤ B).

– Universal Hash Family H: We use a random linearmapping from GF (2�)k′

to GF (2�), where:
• k′ = log |X|

� = O(1). (This means that the key length of H is O(n log n)
and evaluating it costs Õ(k′�) = Õ(n) time).

– Sampk−1,k and Reck−1,k: We use three Reed-Solomoncodes (one overGF (pn)
and two over GF (p̄n)) to implement Sampk−1,k for encoding x ∈ Rp and s̄, ē ∈
Rp̄, and we use Lagrange interpolation to implement Reck−1,k. Both can be
done in time Õ(n).

Overall, we obtain our main asymptotic result.

Corollary 1. If there exists an attack against the IND-CCA2 security of
NTRUCCA with run-time T = 2o(n) and success probability 2−o(n), then there
exists a quantum algorithm with run-time 2o(n) against the γ-IdSVP problem

with γ = Θ̃

(
n1+

max(5.5+εp,5+2εp)
1/2−2ε

)
. The scheme has key and ciphertext size of

O(n log n) and encryption and decryption computation time of Õ(n).
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Note that with the current state of the art, the best quantum attack against
Poly(n)-IdSVP takes time 2Ω(n), so with this assumption, the above results
says that for any constant 0 < ε < 1/2, and εp > 0, the time required to break
the IND-CCA2 security of NTRUCCA is 2Ω(n).

5 Conclusions

We constructed the first asymptotically efficient IND-CCA2 secure variant of
the NTRUEncrypt encryption scheme, with a provable security from worst-case
problems in ideal lattices. Although the efficiency overhead of our scheme over
the IND-CPA scheme of [34]) amounts to only a constant factor, this factor
could in practice be quite significant. An interesting direction for future work
is to construct provably secure variants of NTRUEncrypt which have a smaller
constant overhead factor close to 1 (as well as reducing the constant overhead
of [34] over the original heuristic NTRUEncrypt scheme).
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Abstract. This paper introduces new techniques to generate provable
prime numbers efficiently on embedded devices such as smartcards,
based on variants of Pocklington’s and the Brillhart-Lehmer-Selfridge-
Tuckerman-Wagstaff theorems. We introduce two new generators that,
combined with cryptoprocessor-specific optimizations, open the way to
efficient and tamper-resistant on-board generation of provable primes.
We also report practical results from our implementations. Both our
theoretical and experimental results show that constructive methods can
generate provable primes essentially as efficiently as state-of-the-art gen-
erators for probable primes based on Fermat and Miller-Rabin pseudo-
tests. We evaluate the output entropy of our two generators and provide
techniques to ensure a high level of resistance against physical attacks.
This paper intends to provide practitioners with the first practical so-
lutions for fast and secure generation of provable primes in embedded
security devices.

Keywords: Prime Numbers, Pocklington’s theorem, Public Key Cryp-
tography, Embedded Software, Modular Exponentiation, Cryptographic
Accelerators, Primality Proving.

1 Introduction

Large prime numbers are a basic ingredient of keys in several standardized primi-
tives such as RSA [21], Digital Signature Algorithm (DSA) [12] or Diffie-Hellman
key exchange (DH) [10]. This paper precisely addresses the generation of prov-
able prime numbers in embedded, crypto-enabled devices.

When it comes to RSA key generation, two approaches coexist: key pairs may
be generated off-board (i.e. out of the device) in a secure environment such as a
certified Hardware Security Module (HSM) running in a personalization center,
and loaded into devices afterwards. Key pairs may also be generated on-board,
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that is, by the device itself. In this case the private key cannot be compromised
as it is never transmitted to the outside world. This capability also allows the
device to generate new keys later on, when deployed in the field. However it
implies that the device must be able to generate large primes very efficiently and
in a side-channel-secure manner.

Surprisingly enough, in spite of a quite abundant literature on primality test-
ing and on the validation of provable primes, research works that specifically
suggest generators for embedded devices are pretty inexistant. Commonly found
prime number generators rely on primality (pseudo-)tests to provide a high level
of confidence that the output number is prime. It is widely known that this con-
fidence level can be increased arbitrarily by applying sufficiently many iterations
of the Miller-Rabin test [12].

Technical requirements for the generation of prime numbers well-suited for
RSA, DSA and ECDSA are described in industry standards such as FIPS 186-
3 [12]. To ensure compliance, generating a 1024-bit DSA prime number requires
as many as 40 Miller-Rabin iterations, which can be reduced to 3 when perform-
ing an additional Lucas test. However carrying out a Lucas test is more costly
on an embedded device than a single modular exponentiation, and thus leads
to a performance loss. This paper investigates another approach, namely the
application of constructive techniques to achieve truly provable primality.

In this paper, we introduce two efficient methods for generating provable
primes and present fast implementations of these methods on a popular smart-
card cryptoprocessor. Our methods rely on Pocklington’s theorem and an ex-
tended result due to Brillhart, Lehmer and Selfridge. We establish bounds on
the entropy of the output distribution of each method and provide evidence that
both of them are secure and can be used for cryptographic purposes. Performance
measurements are given that demonstrate the efficiency of our algorithms and
how they compare with probable prime generation. We also suggest a number
of countermeasures against state-of-the-art side-channel and fault-based analysis
to ensure security in an untrusted environment.

Roadmap. Section 2 recalls the usual methods for primality testing, where
we distinguish between probabilistic and true tests. Generation algorithms for
provable primes are discussed in Section 3, where we introduce our two efficient
constructive methods. The security of these methods in terms of output entropy
is discussed in Section 4. Practical results are reported in Section 5 together
with performance comparisons for smartcard implementations of our probable
prime and provable prime generators. Section 6 addresses threats arising from
side-channel attacks and shows how to adapt our algorithms to resist these. We
conclude in Section 7.

2 Prime Number Generation Based on Primality Testing

In the broadest possible sense, a primality test ( is a procedure that outputs a
guess((n) ∈ {true, false} as to whether a positive integer n is prime or composite.
It can be a pseudo-primality test (also called compositeness test), in which case
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the guess can be a false positive with some probability, or a true primality test
that never fails and provides a proof for primality when positively answered.
Once one is given some primality test (, it is natural to derive Algorithm 2.1
which provides a generic method for generating prime numbers.

Alg. 2.1. Generic Prime Number Generation

Input: a primality test �, a constraining property P
Output: a prime integer n

1. generate a random candidate n verifying property P
2. while �(n) = false do
3. update n while preserving property P
4. return n

Following the naming of Brandt and Damg̊ard [18], we refer to the list of
tested candidates as the search sequence. In the generic prime number generator,
each candidate along the search sequence is required to verify some property P .
The purpose of this requirement is to reduce the average number of calls to (,
which is assumed to be the most time-consuming subroutine of the algorithm,
by avoiding candidates known to be composite.

Without this requirement – or equivalently, when P is satisfied for any n – the
average number of calls to ( when generating an �-bit prime is close to ln(2�).
An obvious improvement is to let P be the property that n is odd and proceed to
updating a candidate by adding 2 to it. In that case the average number of calls to
( drops to ln(2�)/2. A straightforward generalization of this idea is to take for P
the property that n is relatively prime with the t smallest primes p1, . . . , pt. The
first candidate in the search sequence thus requires the generation of an invertible
element modulo Π =

∏t
i=1 pi, which can be done either with trial divisions

by each of p1, . . . , pt, using Chinese remaindering (e.g. Garner [13] or Gauss
algorithms), or using a technique due to [16] based on Carmichael’s theorem.
Several methods can be applied to update n while preserving gcd(n,Π) = 1;
Π can simply be added to n, or one can keep track of an array of indicators
ωi = n mod pi for i = 1, . . . , t and modular-add 2 to all of those until none
is equal to zero. Alternately, an efficient method for preserving gcd(n,Π) = 1
for maximally large Π is found in Joye et al. [15,16]. Overall, the techniques
described in [15,16] provide the most efficient approach on a cryptoprocessor
as they generate an invertible element modulo Π faster than the classical trial
division method. Irrespective of the chosen methods to implement the different
subroutines of Algorithm 2.1, the average number of calls to ( is close to

N(�,Π) = ln(2�) · φ(Π)

Π

where φ is Euler’s function. The optimal choice therefore consists in taking the
largest possible prime product Π = p1 · · · · · pt. While N(�,Π) obviously further
decreases with larger t, the relative gain rapidly decreases as well as Π becomes
larger.
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2.1 Pseudo-primality Tests

Pseudo-primality tests may erroneously view a composite number as being prime.
Among these, Fermat and Miller-Rabin tests are the most commonly used in
embedded applications as they are particularly fast and easy to implement. The
random-base Miller-Rabin test has an error probability ε < 1/4. By iterating
this test h times with different random bases this probability is (often quite
loosely) upper bounded by 1/4h. Practitioners choose the number h of iterations
depending on the bitsize of the tested number, the cryptosystem intended to
make use of the generated prime, and the specific security requirements imposed
by industry standards. Referring to FIPS 186-3, a 1024-bit prime to be used as a
DSA parameter requires 40 Miller-Rabin tests (or 3 Miller-Rabin tests followed
by a Lucas test). For a 2048-bit RSA key, each 1024-bit prime must pass 4 Miller-
Rabin tests, and although applying the Lucas test is not required, it is highly
recommended. The random-base Fermat test has approximately the same effi-
ciency as the random-base Miller-Rabin test while its error probability is higher.
However, it is more simple to implement and leads to optimally efficient pseudo-
testing when using a base fixed to 2: modular multiplications by 2 can then
be replaced with modular additions in the modular exponentiation 2n−1 mod n.
Fermat testing is usually performed first with a = 2, and only when n passes
the Fermat test, does it undergo several Miller-Rabin rounds with random bases
before being considered to be prime. This leads to the efficient prime number
generator referred to as Algorithm 2.2, where Fa(n) and MRa(n) respectively
denote Fermat and Miller-Rabin tests with base a.

Alg. 2.2. Efficient Generation of Probable Primes

Input: a bitsize �, Π = 2 · 3 · 5 · . . . · pt, a confidence parameter h
Output: an �-bit probable prime n

1. generate a random �-bit integer n with gcd(n,Π) = 1 and go to 3
2. update n such that gcd(n,Π) = 1
3. if F2(n) = false then go to 2
4. for i = 1 to h do
5. pick a base a at random from [2, n− 2]
6. if MRa(n) = false then go to 2
7. return n

Neglecting the probability that the output prime is a Fermat or a strong pseu-
doprime, and denoting respectively by Ti, Tu, TF2 and TMRa the execution times
of the routines for generating the first candidate, updating the current candidate
and performing Fermat and Miller-Rabin tests, the average total execution time
to generate a probable l-bit prime amounts to

Tprobable(�) = Ti(�)− Tu(�) +N(�,Π) · (Tu(�) + TF2(�)) + h · TMRa(�) . (1)

This generation method is among the most popular ones in use in the embedded
security industry at the present time. Section 5 reports practical performance
figures for a typical smartcard implementation of this generator.
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2.2 True Primality Tests

Prime number generators make use of pseudo-primality tests because of their
efficiency. However, to fully eliminate the error probability ε, one has to rely on
true primality testing a.k.a. primality proving. The asymptotically fastest true
primality test is the AKS method [1], which is the only known algorithm that
runs in polynomial time. However, the preferred general-purpose method for
testing large numbers is currently the Elliptic Curve Primality Proving test [4]
which was used to ascertain the primality of the largest general number, a prime
with more than 20′000 decimal digits. Unfortunately the AKS and ECPP meth-
ods are way too complex to be of any interest for embedded implementations,
where algorithms are preferably based on simple arithmetic operations such as
modular exponentiations.

A possible step in this direction relates to a deterministic variant of the Miller-
Rabin criterion. Following a result from Ankeny [3], Bach [5] proved under the
Extended Riemann Hypothesis (ERH) that any composite number n has a strong
witness1 upper bounded by 2 ln2 n. Thus, verifying that n passes Miller-Rabin
testing for all bases smaller than 2 ln2 n would actually prove that n is prime.
The drawback of this approach is the fairly large amount of bases to consider
before making sure that n is prime. Proving the primality of a 512-bit number
would require more than 250′000 Miller-Rabin rounds. A secondary drawback is
that the primality proof only holds under ERH.

Instead of relying on the existence of a small witness, it may be better to rely
on the existence of a small set containing at least one witness. Given an upper
bound x on candidates, a reliable set of witnesses is a setW such that every odd
composite integer n ≤ x has a witness in W . An interesting result from Alford
et al. [2] unconditionally proves the existence of a reliable set containing at most
(6/5) lnx integers smaller than x. This result does not rely on any conjecture and
proves that n is prime with much fewer Miller-Rabin rounds (only 426 rounds
for 512-bit numbers). Unfortunately the constructive method put forward by the
authors for identifying such a reliable set does not seem to be computationally
practical.

3 Constructive Generation of Provable Primes

As previously discussed, there does not seem to be any practical true primal-
ity test that would suit our context. Rather than testing the true primality of
candidates along a search sequence, we revisit Maurer’s approach [18] wherein
provable primes are generated in a constructive manner using Pocklington’s
criterion:

Theorem 1 (Pocklington’s theorem). Let n > 3 be an odd integer, and let
n = rF + 1 where the factorization of F is known as F =

∏s
j=1 q

ej
j . If there

exists an integer a such that

1 A strong witness for a composite number n is an integer a such that n does not pass
the Miller-Rabin test with base a, thereby proving its compositeness.
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(i) an−1 ≡ 1 (mod n) and
(ii) gcd(a(n−1)/qj − 1, n) = 1 for each j = 1 . . . s,

then every prime divisor p of n is congruent to 1 modulo F . In particular, if
F >

√
n− 1 then n is prime.

As opposed to Fermat and Miller-Rabin’s theorems, Pocklington’s theorem iso-
lates sufficient conditions for true primality. Unfortunately it cannot be used to
test any given integer since the factorization of n− 1 must be partially known.
Based on Pocklington’s theorem, Maurer [18] suggested a constructive method
for generating provable primes. The main idea there is to construct a prime n
such that n − 1 is divisible by one or more smaller primes. A recursive use of
the criterion then allows to generate larger primes at each round starting from
small integers whose primality proof is trivial.

Theorem 2. Let p be an odd prime, and r an integer such that r < p. Let
n = 2rp+ 1.

(i) If there exists an integer a with 2 ≤ a < n such that an−1 ≡ 1 (mod n)
and gcd(a2r − 1, n) = 1 then n is prime.

(ii) If n is prime, the probability that a random value a satisfies an−1 ≡ 1
(mod n) and gcd(a2r − 1, n) = 1 is 1− 1/p.

A generation algorithm can be derived from Theorem 2 (i) by iteratively produc-
ing provable primes twice larger at each iteration. Maurer proposed an iterative
(and recursive) provable generation method based on this approach [19]. This
iterative method requires precomputing and storing the intermediate bitsize of
all provable primes from the highest to the lowest. In Maurer’s algorithm, the
number of iterations is variable and depends on a parameter r which is computed
in order to provide the best output entropy. The main drawback of this imple-
mentation is that it is not efficient enough and therefore not suited to embedded
implementations.

3.1 The Square Root Method

We now show how to generate provable primes more efficiently using Theorem 2
with fixed bitsizes for intermediate primes. We generate a provable prime by
doubling at each iteration the size of the current prime p to derive the new
prime n = 2rp+ 1. While the entropy of this approach – estimated later in the
paper – is not as optimized as in Maurer’s algorithm, this offers a more suitable
and efficient algorithm in embedded environments.

The intermediate prime sizes can be seen as equivalent to those in Maurer’s
algorithm when fixing r = 0.5. An iterative and recursive method relying on this
idea – doubling each time the size of primes – was also proposed by Shawe-Taylor
in [22] before Maurer’s publication and is recommended by the NIST [12] to
generate provable primes for public key schemes. The first algorithm we propose
can therefore be seen as an adaptation of the Shawe-Taylor method, which also
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relies on Pocklington’s theorem. As opposed to Shawe-Taylor, our algorithm
is not recursive but directly generates the primes iteratively from the smallest
to the largest and many additional optimizations are put forward to improve
efficiency.

Initialization. Before making use of Pocklington’s theorem, one starts the gen-
eration with a first prime with initial bitsize l0. In his algorithm, Maurer sug-
gests generating the first prime (which is 20-bit long in the best case) using
Erathostene’s sieve. Our approach here is different and applies the Miller-Rabin
criterion to generate initial primes up to 232. Indeed, Pomerance et al. [20] and
Jaeschke [14] have proven that any number lesser2 than 232 is proven prime if
it successfully passes the Miller-Rabin test with the three bases 2, 7 and 61.
Making use of this trick, we obtain the algorithm InitGenPrime(�0) (given in
Appendix A). We define the bitsize of the initial prime as

�0 = min
k>0

{⌈
�n − 1

2k

⌉
+ 1 such that

⌈
�n − 1

2k−1

⌉
+ 1 > 32

}
.

As indicated previously, we make use of InitGenPrime(�0) to generate the initial
prime p for any given size �0 lesser than 32. To illustrate the different steps of
our method, Table 1 gives for different bitsizes �n, the initial prime size �0, the
number k of iterations of Pocklington’s theorem, and the intermediate prime
sizes �i at each iteration.

Table 1. Intermediate bitsizes (�0 and �i) and number k of iterations

�n k �0 �1 �2 �3 �4 �5 �6 �7
512 5 17 33 65 129 257 512 - -

768 5 25 49 97 193 385 768 - -

1024 6 17 33 65 129 257 513 1024 -

2048 7 17 33 65 129 257 513 1025 2048

In order to reduce the number of Fermat tests throughout the generation,
we apply the same idea as in the generation of probable primes: we get rid of
candidates n which are not coprime to a product Π of the smallest primes. We
thus obtain the provable prime generator presented as Algorithm 3.1.

Selection and Update of r and n. A first solution for finding a suitable
r at Step 10 of Algorithm 3.1 consists in randomly selecting a first value r ∈
[I + 1, 2I], setting n = 2rp + 1, and then incrementing r by 1 and n by 2p
until the modular residues (ωi = n mod pi)i=1,...,t are all non zero. Each ωi is
then incremented by 2p mod pi. An efficient trick consists in obtaining the values
2p mod pi by doubling modulo pi the residues ωi of the previous iteration since
the previous value of n corresponds to the new value of p in the current iteration.

2 More precisely, the exact bound is 4′759′123′141.
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Alg. 3.1. Efficient-Square-Root-Generation(�n)

Input: a bitsize �n, Π = 3 · 5 · . . . · pt
Output: an �n-bit provable prime n

1. �← �n
2. while � > 31 do
3. �← �/2
4. �← �+ 1
5. n← GenInitPrime(�) [compute the initial small prime]
6. while � < �n do
7. p← n
8. �← min(2�− 1, �n)

9. I ← � 2�−1

2p
	

10. Select r at random from [I + 1, 2I ] such that n← 2rp+1 is coprime to Π and
go to 12

11. Update r in [I + 1, 2I ] such that n← 2rp+ 1 is coprime to Π
12. if � < 129 then
13. pick an integer a at random from [2, n− 2]
14. else
15. a← 2
16. if an−1 mod n �= 1 then go to 11
17. if gcd(a2r − 1, n) �= 1 then go to 11
18. return n

At Step 11, the same incremental update of r and n is applied for generating
the next candidate coprime to Π .

A second solution consists in generating n simultaneously compliant with
Pocklington’s property (an even multiple of p plus one) and coprime to Π . This
is done by first selecting r as (x− (2p)−1 mod Π) where x is randomly selected
from Z�

Π using the technique of [15] based on Carmichael’s function. Then r
is added to a random multiple of Π so that it lies in [I + 1, 2I], and the first
candidate n is computed as 2rp+1. Doing so, n is constructively coprime to Π .
At Step 11, the next candidate is computed in the same vein from the updated
value x← pt+1 · x mod Π .

Fixing a = 2 in Fermat Testing. From Theorem 2 (ii), we know that the
probability that a random value a rejects a prime n at Step 16 or 17 is 1/p.
Assuming that the fraction of rejected primes does not vary much from one
value of a to another, choosing a constant value a has a negligible impact on
the distribution of the generated primes when the bitsize � is sufficiently large.
For instance when generating a 128-bit prime number n = 2rp+1 from a 65-bit
provable prime p, less than 1/264 of the primes would never be reached. We
accept this negligible loss of entropy and use a = 2 for the Fermat test when
� > 128. This leads to faster exponentiations for steps 16 and 17 where modular
multiplications by the base can be replaced with modular additions.



380 C. Clavier et al.

Estimated Performance. Denoting respectively by Tinit, TI , Tu, TFa and
Tg the execution times taken by the initialization, computing I, updating the
candidate n, the Fermat test with base a and the gcd computation, the total
average execution time of Algorithm 3.1 amounts to

Tprovable(�n) = Tinit(�0) +
k∑

i=1

(TI(�i) +N(�i,Π) · (Tu(�i) + TFa(�i)) + Tg(�i)) . (2)

We report experimental results from our smartcard implementation of this prime
number generator in Section 5. Note that the value N(�i, Π) equals the average
number of primality tests in the generation of probable primes for �i-bit integers
coprime to Π . Also, as expected, we observed in our simulations that only one
gcd is computed per �i-bit prime so that its execution time is almost negligible
compared to the overall execution time.

3.2 The Cube Root Method

Our second method relies on (what we refer to) as the Cube Root Theorem put
forward by Brillhart, Lehmer and Selfridge in 1970. More details on this result
can be found in [6].

Theorem 3 (Brillhart-Lehmer-Selfridge-Tuckerman-Wagstaff [6]). Let
n > 3 be an odd integer, let n = rF + 1 where F is completely factored and
gcd(F, r) = 1. Suppose there exists an integer a such that

(i) an−1 ≡ 1 (mod n),
(ii) gcd(a(n−1)/q − 1, n) = 1 for each prime factor q of F .

Let r = uF + s, 1 ≤ s < F , and suppose n < 2F 3 + 2F , F > 2. If u is odd, or
if u is even and s2 − 4u is not a perfect square, then n is prime.

As a corollary of Theorem 3, we derive the following result:

Theorem 4 (Cube Root Theorem). Let p be an odd prime, n = 2rp+1 with
r an integer such that r < p2 + 1. If there exists an integer a with 2 ≤ a ≤ n
such that

(i) an−1 ≡ 1 (mod n) and gcd(a2r − 1, n) = 1,
(ii) r = up+ s, 1 ≤ s < p for odd u,

then n is prime.

Theorem 4 makes it possible to put together a prime number generator that
iteratively produces provable primes three times larger at each iteration (instead
of twice larger in the Square Root method). In order to speed-up the whole
generation, we only consider cases where the quotient u is odd. This reduces
the output entropy by one bit but has no significant impact on the security of
cryptosystems such as RSA and DSA. To generate a provable prime of �n bits,
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our algorithm starts with the generation of an initial prime p of �0 bits, where
�0 is established as follows:

�0 ← �n
while (�0 > 31) �0 ← ��0/3+ 1

The generation of this �0-bit initial prime is performed as previously using the
Miller-Rabin criterion and algorithm InitGenPrime(�0) of Appendix A. The sizes
�i of intermediate primes are displayed on Table 2.

Table 2. Intermediate sizes (�0 and �i) and number k of iterations

�n k �0 �1 �2 �3 �4
512 3 20 59 176 512 -

768 3 29 86 257 768 -

1024 4 14 41 122 365 1024

2048 4 26 77 230 689 2048

We then obtain the Cube Root prime number generator described in Algo-
rithm 3.2.

Alg. 3.2. Efficient-Cube-Root-Generation(�n)

Input: a bitsize �n, Π = 3 · 5 · . . . · pt
Output: an �n-bit provable prime n

1. �← �n
2. while � > 31 do
3. �← ��/3	
4. �← �+ 1
5. n← GenInitPrime(�) [compute the initial small prime]
6. while � < �n do
7. p← n
8. �← min(3�− 1, �n)

9. I ← � 2�−1

2p
	

10. Select r at random from [I + 1, 2I ] such that r = up + s, 1 ≤ s < p for odd u
and n← 2rp+ 1 is coprime to Π and go to 12

11. Update r in [I + 1, 2I ] such that r = up+s, 1 ≤ s < p for odd u and n← 2rp+1
is coprime to Π

12. if � < 129 then
13. select a at random from [2, n− 2]
14. else
15. a← 2
16. if an−1 mod n �= 1 then go to 11
17. if gcd(a2r − 1, n) �= 1 then go to 11
18. return n



382 C. Clavier et al.

Initial Selection and Update of r and n. A first solution for selecting a
suitable r at Step 10 of Algorithm 3.2 is similar to the one used in the Square
Root algorithm 3.1. An additional step is necessary that consists in computing
u and s in r = up+ s in order to avoid candidates for which u is even.

Our second and most efficient solution for Step 10 consists in generating n in
a constructive manner so that n is simultaneously compliant with Pocklington’s
requirement (an even multiple of p plus one), is coprime to Π and such that
the quotient u = �r/p is forced to be odd. To this end, we keep track of an
invertible element x ∈ Z�

Π which will serve as the residue of n modulo the prime
product Π , and set r = x − 1/(2p) mod Π to ensure that n = 2xp mod Π is
invertible modulo Π , so that the first two requirements are fulfilled. Now note
that letting r = up + s, u is odd if and only if r and s have opposite parities.
Therefore, if s is set to a fixed odd value throughout the search sequence, it is
enough to ensure that r is even to force the parity of u to one. We now describe
our method in more detail. Focusing on the search sequence associated with the
i-th iteration, our generator proceeds as follows:

1. Fetch precomputed values Π ← Π [i] and Λ ← Λ[i] from code data. Π ≈
2�i−1−2 is a product of small odd primes (thereby excluding 2 from the
factorization of Π), and Λ is the Carmichael function of Π .

2. Use [15] to generate a random invertible element x ∈ Z�
Π , namely:

(a) Randomly select x modulo Π
(b) Compute t = xΛ mod Π
(c) If t �= 1

i. Randomly select z modulo Π
ii. Update x = x+ z(1− t) mod Π
iii. Goto 2b

3. Compute 1/(2p) = (2p)Λ−1 mod Π and derive 1/p mod Π
4. Randomly select an odd value s modulo p
5. Use Chinese remaindering to compute r ∈ [0, 2pΠ ] such that r = x −

1/(2p) mod Π , r = s mod p and r = 0 mod 2. More precisely:
(a) Compute rΠp = (((x − 1/(2p)− s)/p) mod Π) · p+ s
(b) Compute r = (rΠp mod 2) ·Π · p+ rΠp

(c) Add appropriate multiple of 2pΠ to r to get r ∈ [I + 1, 2I]

This concludes the initialization of the i-th loop i.e. the random selection of
r at Step 10 at the i-th iteration. Updating r consists in just refreshing x as
x = 2x mod Π and performing a new round of Chinese remaindering as per
Step 5 above. It is worthwhile noticing optimizations here: since p and s are
fixed throughout the search sequence, the generator can just compute 1/p mod Π
and (−1/(2p) − s) mod Π once and for all and store these values. Step 5 then
amounts to a couple of multiplications and additions. Also, modular exponenti-
ations modulo Π are particularly efficient since Λ is small due to the particular
form – extreme smoothness – of Π .
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4 Estimating the Output Entropy

The rule for deriving at each iteration an �i-bit provable prime from an �i−1-bit
other provable prime (n ← 2rp + 1) intrinsically generates primes pi such that
pi − 1 is a multiple of a half-size prime pi−1. This particular structure is not
representative of the majority of prime integers, and obviously does not allow to
generate them all. This section establishes the entropy of the output distribution
of primes generated by Algorithms 3.1 and 3.2 3 and compare the output entropy
with that obtained by a perfect generator that outputs uniformly random primes
of a given bitsize �n.

Let us denote by R�i the number of �i-bit primes that are attainable by the
Square Root method at the end of iteration i. Note that any one of them can be
uniquely derived from the sequence (r1, . . . , ri) of the values taken by r at each
iteration. Since r is drawn at random, this suggests the heuristic approximation
that the distribution of generated primes is uniform and that its entropy is equal
to H�i = log2(R�i). According to Gauss’s theorem, the number π(x) of primes
lesser than x is well approximated by x

ln(x) for large x. The number of exactly

�-bit primes can thus be estimated by

S� =
2�

ln(2�)
− 2�−1

ln(2�−1)
.

In an initial step, the algorithm randomly generates an �0-bit prime p0, so that
R�0 = S�0 . For x ∈

[
2�i−1−1, 2�i−1

]
, consider an interval of width dx centered

on x. Every pi−1 in this interval can generate I = � 2�i−1

2·pi−1
  2�i−2

x candidates

among which 2�i−2

x·ln(2�i ) are prime numbers4. The total number of primes – that

can or cannot be reached by the generator – in the considered interval is dx
ln(x) ,

but only a fraction

R�i−1 · ln(2�i−1)

2�i−1−1

of these can be generated at iteration (i− 1), so that the number of primes pi−1

to consider in the interval is

R�i−1 · ln(2�i−1) · dx
2�i−1−1 · ln(x) .

Integrating over
[
2�i−1−1, 2�i−1

]
the number of primes that each pi−1 can gener-

ate, we obtain

3 Note that for efficiency purposes Algorithm 3.2 only selects r values for which u =
� r
p
	 is odd. In the sequel we first derive the entropy of our method when ignoring

this trick. We subsequently address the effect of this feature later on.
4 This derives from a commonly accepted approximation that the Chebotarëv density
theorem also stands for large intervals. This theorem actually implies that for any
coprime integers a and d, the proportion of primes less than x belonging to the
arithmetic progression {a+ nd}n tends to 1

φ(d)
when x tends to infinity.
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R�i

R�i−1

 
∫ 2�i−1

2�i−1−1

ln(2�i−1) · 2�i−2

2�i−1−1 · ln(2�i) ·
dx

x ln(x)

 �i−1 · 2�i−2

�i · 2�i−1−1
·
∫ 2�i−1

2�i−1−1

dx

x lnx

 �i−1

�i
· 2�i−�i−1−1 ·

(
ln(�i−1)− ln(�i−1 − 1)

)
 �i−1

�i
· 2

�i−�i−1−1

�i−1 − 1

whence

R�n = S�0 ·
�0
�n
· 2�n−�0−k∏k

i=1(�i−1 − 1)
(3)

where examples cases for k, �0 and �i are given in Tables 1 and 2.

As mentioned above, Equation (3) does not take into account that only half
of the values for r are selected as prime candidates in Algorithm 3.2. Assuming
that even and odd values of u are evenly distributed for r ranging from I + 1
to 2I, the effect of ignoring half of potential candidates is that every prime pi−1

in the neighborhood of x can generate only 2�i−3

x·ln(2�i ) primes. This results in the

following expression for the number of ln-bit primes generated by Algorithm 3.2
when only odd u values are selected:

R�n = S�0 ·
�0
�n
· 2�n−�0−2k∏k

i=1(�i−1 − 1)
. (4)

The estimated entropies H�n provided by Algorithms 3.1 and 3.2 are given
in Table 3 for different output bitsizes �n together with the entropy H∗

�n
of a

perfectly uniform distribution.

Table 3. Entropy loss w.r.t. ideal prime generation

�n 512 768 1024 1536 2048

H∗
�n 503 758 1014 1525 2037

H�n (Alg. 3.1, Eq. (3)) 467 720 968 1476 1980

H�n (Alg. 3.2, Eq. (4)) 479 733 981 1490 2000

The entropy loss of the proposed prime generation ranges from 36 bits for
512-bit primes to 57 bits for 2048-bit primes for the Square Root method, and
only from 24 to 37 bits for the Cube Root method. While somewhat larger than
the entropy loss of about 4 bits found in Maurer’s method, it is noticeable that it
is small enough so that exhaustive search remains infeasible for currently secure
bitsizes. We believe that the security of RSA and DSA cryptosystems is not (or
only marginally) affected by using either Algorithm 3.1 or 3.2 for generating
provable primes.
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5 Implementation Results and Practical Aspects

5.1 On-board Generation of Probable Primes

Our implementation relies on an AT90SC chip supplied by Inside Secure em-
bedding the Ad-X cryptoprocessor and the 8-bit AVR core both running at 30
MHz. The chip manufacturer provides a cryptographic toolbox for cryptography
developers with all basic operations over large integers: modular multiplication,
modular exponentiation, GCD, inversion, division, and so forth. The associated
documentation provides estimated performances (cycle count) for these oper-
ations. Using this information we know the exact cycle count for any step of
the generation algorithm. The exact average timings of our prime number gen-
erators can then be deduced on this component using Equation 1. Using the
development kit from IAR running on a chip emulator loaded with the toolbox,
the performance of our implementation of the generator for probable primes was
experimentally confirmed to coincide perfectly with Equation 1.

The Fermat test with base 2 runs in 11 ms for a 512-bit integer n while the
Miller-Rabin test with a random base is computed in 18 ms. We chose t = 54,
so that Π is the product of small primes ranging from 2 to 251 and we choose
h = 3 (the number of Miller-Rabin rounds).

On average, our generator outputs 512-bit probable primes in 580 ms
(N(512, Π) = 35.6), 768-bit probable primes in 2′130 ms (N(768, Π) = 53.4)
and 1024-bit probable primes in 5′780 ms (N(1024, Π) = 71.2).

5.2 Generating Provable Primes

Similarly, we deduced from Equation 2 the execution timings for our generator
of provable primes on the same smartcard platform. We made use of the base-2
Fermat test when � is greater than 128 bits, and took the same value for Π as
in the case of probable primes. We have also implemented Algorithm 3.1 on the
target chip. As a result, using the Square Root method to generate provable
primes of respectively 512, 768 and 1024 bits requires on average 810, 2′580 and
5′940 ms. The Cube Root method decreases these figures to 760, 2′240 and 5′700
ms respectively.

5.3 Comparing Generators for Probable and Provable Primes

Given the expressions of TProb(�) and TProvable(�), a rough guesstimate is that
about the same number of modular exponentiations should be required to gener-
ate probable and provable primes of the same size, assuming trial divisions and
identical values for Π . This is because the extra workload needed to generate
the sequence of intermediate primes in the provable case remains fairly small
compared to the resources needed to generate the full-length �n-bit provable
prime. Moreover, this extra workload is somewhat compensated by the absence
of final Miller-Rabin rounds or the Lucas test. All in all, we observe that the
generation of a provable prime is slightly less efficient that the one of a probable
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prime when only a few Miller-Rabin rounds are required. However, the Cube
Root algorithm becomes the fastest option when either a significant amount of
Miller-Rabin iterations or a Lucas test is needed.

Figure 1 provides performance measurements for the various generation meth-
ods discussed in the paper.

Bitlength �n h 512 768 1024 1536 2048 Lucas test

Algorithm 2.2 3 640 2130 5780 25700 74400 yes

Algorithm 2.2 40 1170 3700 9290 36800 98900 no

Algorithm 3.1 - 810 2580 5940 26500 75600 provable

Algorithm 3.2 - 760 2240 5700 24400 73550 provable

Fig. 1. Time (in milliseconds) measurements for various prime number generators

We find that a Lucas test, as defined in FIPS 186-3, is roughly equivalent
to 3.5 Miller-Rabin rounds and is therefore rather efficient on the AT90SC –
comparatively to higher ratios found on other architectures. Overall, our exper-
imental validation shows that the Cube Root method is essentially as efficient
as the state-of-the-art generation algorithms for probable primes.

6 Achieving Leakage-Resistant Prime Number
Generation

This section addresses side-channel attacks and ways to protect prime number
generation from information leakage. Recent research works [11,8] have high-
lighted that prime number generation may be subject to power analysis. It is
therefore necessary to ensure resistance against side-channels, especially when
the device is operated in an untrusted environment. We give in this section a
few guidelines for designing a protected implementation.

Assets to be protected are the output prime number as well as the secret
elements used throughout its generation, more precisely the random values r
and the sequence of intermediate primes reached by each iteration. It is therefore
necessary to ensure that the implementation does not leak these values either
during their generation or while they are being manipulated by the generation
algorithm.

A first information leakage can occur during the generation of the first �0-
bit prime. Since this is done using the Miller-Rabin criterion, the Miller-Rabin
test itself has to be protected against side-channel attacks. A typical protection
mechanism consists in performing an atomic modular exponentiation in the sense
of [7] but since the base we use here is small, there is a risk that the exponent n−1
leaks at each multiplication as explained in [9]. The exponentiation may therefore
be computed using a Square and Multiply-Always exponentiation which is a
regular algorithm. A second operation to protect is the computation of I. This
step involves the manipulation of p which must be kept secret. We therefore
suggest to implement a secure division algorithm as described in [17].
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Finke et al.presented in [11] an attack that specifically targets the computation
of the next prime candidate (coprime to Π) at Step 2. of Algorithm 2.2. The
attack is particularly applicable when a trial update operation is done with
increments of 2 or Π . This attack does not seem applicable on Step 9 (performed
with trial updates) of Algorithm 3.1 since the value used for next value of n is
n + 2p and p is unknown to the attacker. We recommend to implement the
constructive method which is not sensitive to this attack and resists physical
observation if the computation of p is done with the same exponentiation as the
one used when applying the Miller-Rabin criterion.

We also note that the exponentiation an−1 mod n in Step 11 must be per-
formed securely and that the atomic exponentiation is neither resistant nor effi-
cient when a = 2. This part can be computed in a regular way using a Square
and Multiply-Always exponentiation. In this case using a = 2 still results in neg-
ligible computational time for the multiplication and the computation remains
protected against the SPA attack published in [9]. However the first squaring
and multiplication operations (when the accumulator is still a power of 2 smaller
than the modulus n) could leak information. It would then reveal the first bits
of the exponent (about 10). It is then recommended to blind the modulus with a
random value: in that case the computation would be (2n−1 mod r1 · n) mod n.

The final computations to protect from power analysis lie in Step 12. The ex-
ponentiation 22r mod n must be protected against the disclosure or r by using,
as previously, the Square and Multiply-Always exponentiation technique. Also,
the GCD operation gcd(22r−1, n) could reveal the value of p if not implemented
in a secure way. Our implementation of the GCD calculation has been carried
out in constant time using dummy operations.

Applying these methods we obtain a side-channel protected efficient generator
for provable primes. Finally, we note that fault-based attacks are not considered
as a serious threat for prime number generators at the present time. This is
mainly due to the inherently randomized nature of the generation algorithms.

7 Conclusion

The paper introduced two new methods to efficiently generate provable primes in
embedded environments. We put forward novel algorithmic solutions and report
practical results from our smartcard implementations. We have demonstrated
that efficient generators exist for provable primes in constrained environments
and compared the new methods with state-of-the-art generators for probable
primes. We addressed side-channel analysis to ensure secure implementations of
our generation methods. Overall, the paper opens the way to embedded gener-
ation of provable primes in nearly similar or better performances than current
generators.

Acknowledgments. The authors would like to thank Vincent Verneuil for his
valuable comments on this manuscript.
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A Detailed Efficient Algorithms for Our Method

Alg. A.1. Generation of the initial prime based on Miller-Rabin testing

Input: bitsize �0 < 32 of the initial (provable) prime, Π = 2 · 3 · 5 · . . . · pt
Output: GenInitPrime(�0): a �0-bit provable prime

1. generate a random �0-bit integer n with gcd(n,Π) = 1 and go to 3
2. update n such that gcd(n,Π) = 1,
3. if F2(n) = false then go to 2
4. if MR2(n) = false then go to 2
5. if MR7(n) = false then go to 2
6. if MR61(n) = false then go to 2
7. return n



Password-Based Authenticated Key Exchange

David Pointcheval

ENS, Paris, France�

Abstract. Authenticated Key Exchange protocols enable several parties
to establish a shared cryptographically strong key over an insecure net-
work using various authentication means, such as strong cryptographic
keys or short (i.e., low-entropy) common secrets. The latter example is
definitely the most interesting in practice, since no additional device is
required, but just a human-memorable password, for authenticating the
players.

After the seminal work by Bellovin and Merritt, many settings and
security notions have been defined, and many protocols have been pro-
posed, in the two-user setting and in the group setting.

1 Introduction

Key exchange protocols are cryptographic primitives used to provide several
users (two or more), communicating over a public unreliable channel, with
a secure session key. This thus allows establishment of virtual secure chan-
nels over insecure networks, which is one of the main practical applications of
cryptography. Bellare and Rogaway gave the first foundations in [13, 14], but
password-based authentication required more work: in this setting, where the
authentication means is a short secret chosen from a small set of possible values
(a four-digit pin, for example), the brute-force method which consists in trying
all the possible values in the dictionary succeeds after a rather small number of
attempts. This attack is called on-line dictionary attack and is unavoidable. But
its damages can be limited by a policy that invalidates or blocks the use of a
password if a certain number of failed attempts has occurred, unless failures are
undetectable [27].

This paper presents a brief survey on Password-based Authenticated Key
Exchange (PAKE) protocols, with a presentation of some security models in
Section 2, and relations to practice. Section 3 deals with some practical con-
structions.

2 Security Models

Bellare, Pointcheval and Rogaway [12], and Boyko, MacKenzie and Patel [16]
first formalized security of Password-based Authenticated Key Exchange, in two
different frameworks.

� CNRS – UMR 8548 and INRIA – EPI Cascade.

M. Fischlin, J. Buchmann, and M. Manulis (Eds.): PKC 2012, LNCS 7293, pp. 390–397, 2012.
c© International Association for Cryptologic Research 2012



Password-Based Authenticated Key Exchange 391

2.1 Game-Based Security

The former model [12], the so-called Find-then-Guess scenario, is in the indis-
tinguishability-based framework where an adversary should not be able to get
an advantage significantly greater than qS/N (or at most O(qS)/N for some
technicality reasons) in distinguishing a random session key from a real session
key, if qS is the number of active attacks and N the size of the dictionary. It has
thereafter been improved to the Real-or-Random scenario [7]. More precisely,
the adversary is given access to oracles: Execute-queries model passive attacks,
Send-queries model active attacks, Corrupt-queries model corruptions with the
leakage of long-term secrets, Reveal-queries model bad uses of session keys and
thus the leakage of ephemeral secrets, and Test-queries model the semantic se-
curity of the session key with a real or random answer. In the Find-then-Guess
scenario, only one Test-query can be asked, whereas in the Real-or-Random sce-
nario many Test-queries can be asked with either always-real or always-random
answers. The latter is clearly at least as strong as the former. But while both
scenarios were known to be equivalent for encryption schemes [11], a linear loss
in the number of Test-queries makes them quite different for PAKE, where the
advantage should remain in O(qs)/N , whatever the number of Test-queries. We
have then showed [7] that in this Real-or-Random scenario, Reveal-queries are
not useful anymore, hence simplifying the security games.

2.2 Simulation-Based Security

The latter model [16] is in the simulation-based framework, with an ideal func-
tionality in which the adversary is allowed to check one password per session.
This models on-line dictionary attacks. Excepted this test instance password, no
information is leaked about the passwords and the session keys.

2.3 Universal Composability

In both above models, one formalized the fact that, with an active attack, the
adversary can basically test one password, whereas passive eavesdropping does
not (computationally) leak any information. The goal is essentially to rule out
off-line dictionary attacks in which the adversary makes some active and passive
attacks, and then makes an off-line brute-force attack on the dictionary. On-line
brute-force attacks, which are unavoidable, should be the only possible way to
have some information about the session keys, and thus many interactions with
a real player are required.

However, there were still some limitations on the password distributions and
for composition with other protocols, which were overcome by Canetti, Halevi,
Katz, Lindell and MacKenzie [24]. They indeed provided an ideal functional-
ity in the Universally Composable (UC) security framework [23], see Figure 1.
This functionality also models on-line dictionary attacks with a TestPwd-query
that can be asked once to each user in sessions. An important property is that
passwords are chosen by the environment which then hands them to the parties
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The functionality FPAKE is parameterized by a security parameter k. It interacts with
an adversary S and a set of parties P1,. . . ,Pn via the following queries:

– Pi asks for a (NewSession, sid, Pi, Pj, pw): Send (NewSession, sid, Pi, Pj) to S .
If this is the first NewSession-query, or if this is the second NewSession-query
and there is a record (Pj , Pi, pw

′), then record (Pi, Pj , pw) and mark this record
fresh.

– S asks for a (TestPwd, sid, Pi, pw
′): If there is a record of the form (Pi, Pj , pw )

which is fresh, then do:
• If pw = pw ′, mark the record compromised and reply with “correct guess”;
• If pw �= pw ′, mark the record interrupted and reply with “wrong guess”.

– S asks for a (NewKey, sid, Pi, sk): If there is a record of the form (Pi, Pj , pw),
and this is the first NewKey-query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then out-

put (sid, sk) to player Pi;
• If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw ′ = pw ,
and a key sk ′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then
output (sid, sk ′) to Pi;

• In any other case, pick a new random key sk ′ of length k and send (sid, sk ′)
to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Fig. 1. The PAKE Ideal Functionality FPAKE

as inputs. This guarantees security even in the case where two honest players
execute the protocol with two different passwords: the environment can emu-
late any distribution, mistypes of passwords and related passwords. Also note
that allowing the environment to choose the passwords guarantees forward se-
crecy. This functionality mimics quite well some concrete requirements, but still,
some leakage of information is not modeled, and could be exploited by a real-life
adversary, whereas the ideal functionality does not allow it to the ideal-world
adversary.

Explicit Authentication. With the above functionality, if neither party is cor-
rupted, then they both end up with a uniformly-distributed session key, either
the same key if the passwords are the same (success), or independent keys if
the passwords are different (failure). Furthermore, the adversary learns nothing
about the keys and the passwords, and even nothing about the status of the ses-
sion (success or failure), but the users either. Explicit authentication, or mutual
authentication modeled in [5], provides the players with a session key if and only
if the passwords are the same, informing the adversary of success or not. This
is an interesting additional feature, which is also more relevant in practice. In
the real life, the adversary anyway learns whether the protocol succeeded or not,
since in the latter case the communication stops.

Combined with the split functionality [10], it also allows to remove the
TestPwd-query since the NewKey-query would reveal to the adversary whether
the passwords are the same or not, by leaking the success or failure status. The
split functionality allows the adversary to split a session between users Alice and
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Bob into two sessions, one between Alice and the adversary trying to imperson-
ate Bob, and a second one between Bob and the adversary trying to impersonate
Alice. When the adversary plays with Alice, in case of success, this means it has
guessed Alice’s password, which is similar to the TestPwd-query.

Contributiveness. In the FPAKE functionality, if one party is corrupted, or if the
adversary successfully guessed the player’s password, the adversary is granted
the right to fully determine the session key. Note that as soon as a party is
corrupted, the adversary anyway learns the key, so one can think that nothing
is lost by allowing it to fully determine it. But this is precisely the difference
between key agreement and key distribution protocols.

In case of groups, this makes a huge difference. Hence the more recent func-
tionality proposed by Abdalla, Catalano, Chevalier and Pointcheval [4] which
provides the contributiveness property to Group Password-based Authenticated
Key Exchange (GPAKE), see Figure 2. PAKE is a particular case of GPAKE with

The functionality FGPAKE is parameterized by a security parameter k, and the param-
eter t of the contributiveness. It interacts with an adversary S and a set of parties
P1, . . . , Pn via the following queries:

– Pi asks for a (NewSession, sid,Pid, Pi, pw i): If this is the first NewSession-
query for Pi, where Pid is a set of at least two distinct identities containing Pi,
record (sid,Pid, Pi, pw i), mark it fresh, and send (sid,Pid, Pi) to S . Ignore any
subsequent NewSession-queries with a different Pid set. If all the players involved
in Pid have submitted their NewSession-queries, then record (sid,Pid, ready) and
send it to S .

– S asks for a (TestPwd, sid,Pid, Pi, pw
′): If there exists a record of the form

(sid,Pid, Pi, pw i) which is fresh:
• If pw i = pw ′, mark the record compromised and reply with “correct guess”;
• If pw i �= pw ′, mark the record interrupted and reply with “wrong guess”.

– S asks for a (NewKey, sid,Pid, sk): If there is a record of the form
(sid,Pid, ready), then, denote by nc the number of corrupted players, and
• If all Pi ∈ Pid have the same passwords and nc < t, choose sk ′ ∈ {0, 1}k

uniformly at random and store (sid,Pid, sk ′).
• If all Pi ∈ Pid have the same passwords but nc ≥ t, store (sid,Pid, sk).

In both cases, for all Pi ∈ Pid, mark the record (sid,Pid, Pi, pw i) completed.
In any other case, store (sid,Pid, error), and for all Pi ∈ Pid, mark the record
(sid,Pid, Pi, pw i) error. When the key is set, report the result (either error or
completed) to S .

– S asks for a (SendKey, b, sid,Pid, Pi): If Pi ∈ Pid and there is a recorded tuple
(sid,Pid, α) where α ∈ {0, 1}k ∪ {error}, send (sid,Pid, α) to Pi if b = 1 or
(sid,Pid, error) if b = 0.

– S asks for a (Corrupt, sid,Pid, Pi): If there is a recorded tuple (sid,Pid, Pi, pw i),
then reveal pw i to S . If there also is a recorded tuple (sid,Pid, sk), that has not
yet been sent to Pi, then send (sid,Pid, sk) to S .

Fig. 2. The Contributory GPAKE Ideal Functionality FGPAKE



394 D. Pointcheval

groups of size 2. The latter property allows the adversary to fully determine the
session key only if it has corrupted enough players, more than a threshold. This
threshold can even be maximal: as soon as a player is honest, if a common key
is generated, it is uniformly distributed in an unpredictable way. This means
that no player has a more important role, and so there is no player to corrupt in
priority for the adversary. As explained above, and as done in [5], one can even
remove TestPwd-queries, allowing the adversary to split the group into several
subgroups, with sub-session-IDs, where the adversary plays the role of the other
users.

3 Constructions

3.1 Two-Party Password-Based Authenticated Key Exchange

Bellovin and Merritt [15] proposed the first scheme, the so-called Encrypted
Key Exchange (EKE), see Figure 3 for a sketch of the protocol, where E is
assumed to be an encryption scheme onto the group G, sometimes modeled
as an ideal cipher. A first security analysis has been provided in the indistin-
guishability-based framework, in the ideal-cipher model [12], followed by several
proofs of variations [18, 19, 8], trying to reduce the need of ideal models but
still keeping the initial efficiency of EKE. EKE has also been studied in the
simulation-based framework, in the random-oracle model [16], followed by studies
in the UC framework [3] with security against adaptive corruptions, but still in
ideal models. Our “simple PAKE” protocols [8] are definitely the most efficient,
with a random oracle only for extracting the session key, with a security analysis
in the Find-then-Guess scenario, under the CDH assumption.

Katz, Ostrovsky and Yung [33] proposed the first practical scheme, but still
less efficient than above schemes, in the standard model with a common reference
string, followed by a generalization from Gennaro and Lindell (GL) [29, 28],
using the power of smooth-projective hash functions [26], in the Find-then-Guess
scenario. Many variations [24,6,34,31,35] have thereafter been proposed, to get
security in the UC framework, to improve round efficiency, or to rely on new
assumptions.

A pw B pw

x
R←{1, . . . , |G|}

X ← gx, X ′ ← Epw (X) A‖X ′
� y

R←{1, . . . , |G|}
Epw (gy)� Y ← gy, Y ′ ← Epw (Y )

Y ← Dpw (Y ′) X ← Dpw (X ′)
Z ← Y x Z ← Xy

sk ← H(A‖B‖X‖Y ‖Z)

Fig. 3. Encrypted Key Exchange
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Whereas the huge majority of the protocols rely on Diffie-Hellman assump-
tions, some efficient schemes have also been proposed on factoring-related
assumptions [36, 37, 25, 30]. Besides the Secure Remote Password (SRP) pro-
tocol [39] and the Simple Password Exponential Key Exchange (SPEKE) proto-
col [32] that have been standardized, EKE-like and GL-like schemes are the two
main streams, with security analyses in the UC framework.

3.2 Group Password-Based Authenticated Key Exchange

For groups, while the first proposals were extensions of the group Diffie-Hellman
key exchange [38, 20, 17], the Burmester and Desmedt construction [21, 22] be-
came more appropriate, because of its constant number of rounds, independently
of the size of the group. Several group password-based authenticated key ex-
change protocols have then been proposed [2, 9, 1, 5], essentially combining a
two-party PAKE with the Burmester and Desmedt methodology.
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Abstract. We introduce the idea of associating a set of elements with
a rational function represented using a reversed Laurent series. Using
this representation, we propose private set-union protocols in the multi-
party setting, assuming an honest majority. Our protocols are the first
efficient protocol for private set union with constant round complexity
(in both the semi-honest and malicious settings), as well as the first with
statistical security (in the semi-honest setting).

1 Introduction

We focus here on constructing protocols for privacy-preserving set operations.
In this setting, we have a set of parties P1, . . . ,Pn with each party Pi holding a
set Si ⊆ U of elements in some known universe U ; the parties want to compute
some function of their sets such as their intersection

⋂
i Si or union

⋃
i Si. Of

course, the problem can be solved using protocols for generic secure multi-party
computation [13,3], but we are interested in more efficient solutions. This prob-
lem, for various types of set operations, has received a lot of attention in both
the two-party [10,4,14,7,6,17,9,15,8] and multi-party [19,11,23] settings.

In this paper, we propose a new framework for privacy-preserving set oper-
ations based on representing sets using rational polynomial functions and ma-
nipulating this representation using reversed Laurent series. (See the following
section for an overview.) Although our framework can be extended to apply to
a more general class of set operations, we focus here on computing set union
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Table 1. Privacy-preserving set-union protocols. DCR denotes the decisional
composite-residuosity assumption [21], and DL denotes the discrete-logarithm assump-
tion. The number of parties is n, the maximum set size is k, the number of corrupted
parties is t, and τN , ρN (resp., τp, ρp) are the size and multiplication cost for a modu-
lus N (resp. prime p) used for Paillier encryption (resp., representing domain elements).
τ ′
p and ρ′p are the size and multiplication cost for a cyclic group of order p used for Ped-
ersen commitment scheme and Gennaro-Rabin-Rabin verifiable secret sharing scheme.

Semi-honest:

Ref. Rounds Communication Computation Assumptions Threshold

[19] O(n) O(n2 k τN ) O(n3k2τNρN) DCR t < n

[11] O(n) O(n2 k τN ) O(nk2τNρN) DCR t < n

Here O(1) O(n3k2τp) O((n4k2 + n2k2τp)ρp) none t < n/2

Malicious:

Ref. Rounds Communication Computation Assumptions Threshold

[11] O(n) O((n3 k + n2 k2) τN ) O(nk2τNρN) DCR t < n

Here O(1) O(n3k2τ ′
p) O(n4k2τ ′

pρ
′
p) DL t < n/2

in the multi-party setting. Set union is not trivial to compute securely, and in
particular the solution in which each party publicly reveals its set is not secure
since it reveals which parties hold which elements, as well as the multiplicity of
each element in the union.

Our framework yields efficient multi-party protocols for private set union that
are secure against any dishonest minority, and in particular we obtain the first ef-
ficient multi-party protocols for set union (in both the semi-honest and malicious
settings) that use a constant number of rounds. Moreover, our protocol achieves
statistical security in the semi-honest (aka, honest-but-curious) setting. In con-
trast, previous protocols [19,11] have round complexity linear in the number of
parties, and achieve computational security even in the semi-honest setting. On
the other hand, previous protocols tolerate any number of corrupted users. We
compare our work to prior work in Table 1.

Beyond the result just stated, we believe our techniques are of independent
interest as they provide what is, to the best of our knowledge, a novel approach
to privacy-preserving computation on sets. We explain our approach in more
detail in the following section.

1.1 Overview of Our Techniques

As in some prior work (e.g., [10,19,11,6,7]), we begin with the observation that
a set S can be represented by a polynomial fS(x) over a field F ⊇ S such that
the roots of fS(x) are exactly the elements of S; namely,

fS(x) =
∏
s∈S

(x− s).

In contrast to previous work, however, we then switch to viewing S as being rep-
resented by the rational polynomial 1/fS(x). This representation is well suited
for computing set union, since
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1

fS(x)
+

1

fS′(x)
=
fS(x) + fS′(x)

fS(x) · fS′(x)
=

gcd (fS(x), fS′(x)) · p(x)
fS(x) · fS′(x)

=
p(x)

lcm (fS(x), fS′(x))
, (1)

for some polynomial p(x). That is, the denominator of (the reduced represen-

tation of) the rational polynomial 1
fS(x) +

1
fS′(x) is a polynomial fS∪S′(x)

def
=

lcm(fS(x), fS′(x)) with no repeated roots, whose roots are exactly the elements
of S ∪ S′. Because of how it is defined (in particular, the fact that it has no
repeated roots), the polynomial fS∪S′(x) reveals nothing beyond S ∪ S′ and
therefore provides a starting point for secure computation of the union.

The above does not yet give a secure protocol for computing the union, as
we must still address several challenges. First, we need an efficient way to ma-
nipulate rational polynomials. For this, we rely on the reversed Laurent series
representation of rational functions [25, Section 16.8]; see Section 2 for details.
Second, we need to deal with the fact that the numerator in (1) might reveal
information beyond the union S∪S′. We thus modify the above, having the par-
ties choose random polynomials r(x), r′(x) of degree at most |S|−1 and |S′|−1,
respectively, and then compute

r(x)

fS(x)
+

r′(x)

fS′(x)
=
fS(x)r

′(x) + fS′(x)r(x)

fS(x) · fS′(x)
=

gcd (fS(x), fS′(x)) · u(x)
fS(x) · fS′(x)

=
u(x)

lcm (fS(x), fS′(x))
.

We prove that u(x), above, is a uniformly distributed polynomial of degree at
most deg(lcm(fS(x), fS′ (x))) − 1. Thus, assuming |F| � |S|, it holds with over-
whelming probability that u(x) and fS∪S′(x) have no roots in common and so
recovering the denominator of the above still yields the correct result. Moreover,
uniformity of u(x) implies that computing the above leaks no information about
either party’s original set.

Although we describe the two-party case above for simplicity, we can easily
extend the above argument to the case n > 2 in which we are mostly interested.
See Section 3.1 for details.

1.2 Related Work

Private set-union protocols should hide both (1) which parties hold which ele-
ments, and (2) the multiplicity of each element in the union. There are only a few
multi-party protocols satisfying these two requirements. Kissner and Song [19]
proposed a protocol which can be utilized for multi-party set union in the semi-
honest setting. Frikken [11] proposed a privacy-preserving set-union protocol in
the malicious setting. Both protocols rely on a “mix-net” approach, where t+1
parties mix encrypted elements (when security against t corruptions is required).
This approach inherently requires round complexity O(t).
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Some protocols achieving relaxed privacy guarantees have been proposed. In
particular, Kissner and Song [19], Sang and Shen [23], and Hong et al. [16] pro-
posed multi-party set-union protocols that leak the multiplicity of each element
in the union.

In the two-party case, other protocols are known. Brickell and Shmatikov [4]
proposed two-party set-union protocols secure against honest-but-curious ad-
versaries. Recently, Hazay and Nissim [15] proposed very efficient protocols for
privacy-preserving set union secure against malicious adversaries; their protocol
achieves (almost) linear complexity in the number of private inputs. Neither of
these protocols appear to generalize easily to the multi-party case.

1.3 Outline of the Paper

In the next section, we recall the notion of the reversed Laurent series (RLS)
representation of a rational function, and discuss efficient conversions between
a rational function and its RLS representation. In Section 3, we show how to
use the RLS representation of rational functions to perform set union. As ap-
plications of our technique, we give constant-round protocols for computing set
union in both the semi-honest and malicious settings.

2 Reversed Laurent Series

We let Zp denote the set of integers modulo p. In this paper, we always take p
prime so that Zp is also the finite field of size p. As usual, Zp[x] denotes the set
of polynomials over Zp. We use [a, b] (with a ≤ b and both possibly negative) to
denote the set of integers between a and b, inclusive.

2.1 Reversed Laurent Series and Rational Functions

A reversed Laurent series (RLS) over Zp is a singly infinite, formal sum of the
form

f(x) =

m∑
i=−∞

ai x
i (am �= 0),

for m an integer and ai ∈ Zp. We refer to m as the degree of f , denoted deg(f).
Given d1 ≤ d2 ≤ m, we define

f(x)[d1,d2] =

d2∑
i=d1

ai x
i.

The set of all reversed Laurent series, denoted Zp((x
−1)), forms a field with

addition and multiplication defined in the natural way. Since Zp[x] is a subring
of Zp((x

−1)), any rational function f/g with f, g ∈ Zp[x] and g �= 0 can be
expressed as a reversed Laurent series and we refer to this as the RLS represen-
tation of the rational function f/g. Note that the RLS representation for a given
rational function is unique. That is, if f/g = f ′/g′ then the RLS representations
of f/g and f ′/g′ are identical.
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2.2 Conversion from a Rational Function to Its RLS

Let f, g ∈ Zp[x], and assume deg(f) < deg(g) ≤ �. (The case deg(f) ≥ deg(g) can
be reduced to this case by first performing polynomial division with remainder.)
One can compute k > deg(g) high-order terms of the RLS representation of f/g
using the following algorithm:

RationalToRLS(f, g, k):

(1) Compute F (x) = f(x) · xk.
(2) Use polynomial division to compute Q(x) and R(x) with

F (x) = g(x) ·Q(x) +R(x) and deg(R) < deg(g).
(3) Output Q(x) · x−k.

Since F/g = Q+R/g and deg(R) < deg(g), we haveQ = (F/g)[0,k+deg(f)−deg(g)].

Since F/g = xk · f/g and we assumed deg(f) < deg(g), we see that the output
consists of exactly the k high-order terms of the RLS of f/g; that is, Q(x)·x−k =
(f/g)[−k,deg(f)−deg(g)] = (f/g)[−k,−1].

The computational cost of the above algorithm is essentially just the com-
plexity of polynomial division.

2.3 Conversion from an RLS Representation to a Rational Function

The RLS representation of a rational function f/g will, in general, have infinitely
many terms. However, all “information” about f/g is contained in a finite num-
ber of high-order terms. Specifically, let f, g ∈ Zp[x] with deg(f) < deg(g) ≤ �
and g �= 0. Then the rational function f/g is determined by the 2� high-order
terms of its RLS representation. Moreover, there is an efficient algorithm to re-
cover f/g (in reduced terms) given these 2� high-order terms and the bound �
on the degree of g. See [25, Section 17.5.1] for details.

3 Privacy-Preserving Set Union

We begin with an overview of our approach to computing set union, followed by
formal descriptions of protocols in the semi-honest and malicious settings. We
consider n parties, each of whom holds a set over some universe U ⊂ Zp where
p > n is known and U is a negligible fraction of Zp. (This can be easily obtained
by padding every element in the original universe with sufficiently many 0s.) We
further assume the size ki of each party’s set is known. (In fact, for simplicity
here we assume that ki = k for all i. A treatment of the general case will be
found in the full version.) By having parties pad out their sets to some maximum
size using random elements, this can be relaxed to requiring only that

∑
i ki is

known; we omit the details.
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3.1 Representing Sets and Computing Their Union

Given a set S ⊆ U of size |S| = d, we define the polynomial

fS(x)
def
=

∏
s∈S

(x− s).

Note that deg(fS) = |S|. We are actually going to work with the RLS representa-
tion of 1/fS(x). The set S can be recovered from the 2|S| high-order terms of the
RLS representation of 1/fS(x): given the high-order terms, we first reconstruct
fS(x) using the conversion algorithm; the entire set S can then be obtained by
factoring fS(x) (which can be done in polynomial time over the finite field Zp).

Given sets S1, . . . , Sn held by n parties P1, . . . ,Pn, note that f∪iSi(x) =
lcm(fS1(x), . . . , fSn(x)). Rather than have the parties compute the least com-
mon multiple directly (which would be difficult to do securely), we have them
compute it using the following high-level approach:

1. The parties collectively define random polynomials r1(x), . . . , rn(x) of degree
(at most) d − 1 in such a way that no coalition of up to t parties knows
anything about any of the ri(x). This is done via standard techniques using
Shamir secret sharing (in the semi-honest setting) or a form of verifiable
secret sharing (in the malicious setting).

2. The parties securely compute (sufficiently many terms of the RLS of) the

sum
∑

i
ri(x)
fSi

(x) . Note that

n∑
i=1

ri(x)

fSi(x)
=

u(x)

lcm(fS1(x), . . . , fSn(x))

for some polynomial u(x) of degree at most deg(lcm(fS1(x), . . . , fSn(x)))−1.

3. Each party locally computes u′(x) and L(x) such that u′(x)/L(x) =
∑

i
ri(x)
fSi

(x)

and gcd(u′(x), L(x)) = 1. Each party then factors L(x) over Zp and outputs
the roots as

⋃
i Si.

We need to prove both correctness and privacy of the above. To do so we will
rely on the following result:

Lemma 1. Let f1(x), . . . , fn(x) be polynomials of degree d1, . . . , dn ≥ 1. Say
r1(x), . . . , rn(x) are chosen uniformly and independently from the set of polyno-
mials of degree at most di − 1, respectively, and let u(x) be such that

u(x)

lcm(f1(x), . . . , fn(x))
=

n∑
i=1

ri(x)

fi(x)
.

Then u(x) is uniformly distributed among polynomials having degree at most
deg(lcm(f1(x), · · · , fn(x))) − 1.
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Proof . We prove the lemma for n = 2; the general case follows by induction.
Let f1(x) and f2(x) be polynomials of degree d1, d2, respectively. Say r1(x)
and r2(x) are chosen uniformly and independently from the set of polynomials
of degree at most d1 − 1 and d2 − 1, respectively, and let u(x) be such that
r1(x)
f1(x)

+ r2(x)
f2(x)

= u(x)
lcm(f1(x),f2(x))

. We show that u(x) is uniformly distributed among

polynomials of degree at most deg(lcm(f1(x), f2(x))) − 1.
Define f ′

1(x) = f1(x)/ gcd(f1(x), f2(x)), with f ′
2(x) defined analogously. We

have

r1(x)

f1(x)
+
r2(x)

f2(x)
=
r1(x)f2(x) + r2(x)f1(x)

f1(x)f2(x)

=
gcd (f1(x), f2(x)) · u(x)

f1(x)f2(x)
=

u(x)

lcm (f1(x), f2(x))

where u(x) = r1(x)f
′
2(x) + r2(x)f

′
1(x) has degree at most

d′
def
= deg(lcm(f1(x), f2(x))) − 1.

Identifying a polynomial of degree at most d with a vector over Zp of length

d + 1, consider the map M : Zd1
p × Zd2

p → Zd′+1
p defined via M(r1(x), r2(x)) =

r1(x)f
′
2(x) + r2(x)f

′
1(x). Say M(r1(x), r2(x)) =M(r′1(x), r

′
2(x)). This implies

(r1(x)− r′1(x)) · f ′
2(x) = (r′2(x)− r2(x)) · f ′

1(x).

Since gcd(f ′(x), g′(x)) = 1, the above holds iff there exists some h(x) ∈ Zp[x]
such that

r1(x) − r′1(x) = h(x) · f ′
1(x)

r′2(x) − r2(x) = h(x) · f ′
2(x).

Note that deg(h) ≤ gcd(f1(x), f2(x))− 1 because of the bound on the degrees of
r1(x), r

′
1(x), r2(x), and r

′
2(x). The above means that each point M(r1(x), r2(x))

in the image of M has exactly K
def
= pgcd(f1(x),f2(x)) pre-images. Furthermore,

since

|Zd1
p × Zd2

p |/K = pd1+d2/pgcd(f1(x),f2(x))

= plcm(f1(x),f2(x)) = pd
′+1 = |Zd′+1

p |,

we see that M is also surjective. Since M is regular and surjective, choosing
r1(x), r2(x) uniformly and independently at random yields a uniform element
u(x) = M(r1(x), r2(x)) in its range.

Correctness and privacy now follow easily from the lemma. Since u(x) is random,
and the universe U is a negligible fraction of Zp, the probability that u(x) and
lcm(fS1(x), . . . , fSn(x)) have a factor in common is negligible. Thus, u′(x) =
u(x) and L(x) = lcm(fS1(x), . . . , fSn(x)) with overwhelming probability and so
correctness holds. Moreover, the view of any coalition of up to t parties can be
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simulated given the result
⋃

i Si, implying privacy. This simulation is done as
follows. Let D = |

⋃
i Si|. Compute f∪iSi(x), choose a random polynomial u(x)

of degree at most D− 1, and then compute (sufficiently many high-order terms
of) the RLS representation of u(x)/f∪iSi(x).

In the next sections, we fill in the missing details in the above description
and give a protocol for computing set union in the semi-honest setting. We then
show how to extend the protocol to the malicious setting as well.

3.2 (Verifiable) Secret Sharing of Polynomials

In our protocols, we use Shamir’s secret-sharing scheme [24] in the semi-honest
model, and the verifiable secret-sharing (VSS) protocol of Gennaro et al. [12],
denoted GRR-VSS scheme, in the malicious model. (We assume the availability
of private channels between all pairs of parties.) In either case, addition of shares
can be performed locally (without interaction), and multiplication of shares can
be done using a suitable multiplication sub-protocol (i.e., Simple-Mult in the
semi-honest model, and Mult in the malicious model [12]).

A polynomial can be (verifiably) shared by (verifiably) sharing each of its
coefficients. Addition and multiplication of polynomial shares follows from addi-
tion and multiplication of the underlying shares of the coefficients. In particular,
addition of polynomial shares can be done locally. Multiplication of two shared
polynomials of degrees d1, d2 requires O(d1 ·d2) invocations of an underlyingMult
protocol (plus local additions); nevertheless, because these can be parallelized,
the entire process takes only a constant number of rounds.

3.3 A Protocol Secure against Honest-But-Curious Adversaries

We propose a privacy-preserving set-union protocol, denoted PPSU-HBC, for the
honest-but-curious (HBC) adversary model. Every party contributes to obtain-
ing ∪i∈[1,n]Si, where Si is the private set of the i-th party; however, a semi-honest
adversary corrupting less than n/2 parties should not obtain additional infor-
mation about the set of any other party (except for its size). For simplicity here,
we assume that for each set Si has the same cardinality, denoted by k.

In Figure 1, we present the protocol. The basic idea follows the overview
from Section 3.1. Each party Pi contributes random polynomials rij(x) for j ∈
{1, . . . , n}. Define rj(x) =

∑n
i=1 rij(x). The parties then (privately) compute the

high-order 2nk terms of the RLS representation of

U(x) =
∑

j∈[1,n]

rj(x)

fj(x)
,

where fj(x) is the polynomial associated with the set of party Pj . To compute
the 2nk higher-order terms of U(x), we utilize the fact that the 2nk higher-order
terms of ∑

j∈[1,n]

rj(x) · (
1

fj
)[−(2n+1)k−1,−k]
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Private Input for each party Pi (i ∈ [1, n]): A set Si ⊂ U of size k.
Goal: Each party obtains

⋃
i∈[1,n] Si.

Each party Pi:

1. Constructs fi(x) =
∏

α∈Si
(x − α), runs RationalToRLS(1, fi(x), (2n + 1)k −

1)→ ( 1
fi(x)

)[−(2n+1)k+1,−k], defines f̃i(x) := ( 1
fi(x)

)[−(2n+1)k+1,−k] ·x(2n+1)k−1,

and chooses random polynomials rij(x) of degree at most k − 1 for j ∈ [1, n].
2. Secret shares f̃i(x) and rij(x) for ∀j ∈ [1, n] in parallel.
3. Locally sums his shares of rij(x) to obtain shares of rj(x) =

∑
i∈[1,n] rij(x) for

∀j ∈ [1, n].
4. Runs (in parallel) a shared polynomial multiplication protocol to compute

shares of f̃j(x) · rj(x) for ∀j ∈ [1, n].
5. Locally sums his shares of f̃j(x)rj(x) to obtain shares of the 2nk high-order

terms of U ′(x) =
∑

j∈[1,n] f̃j(x)Rj(x) (i.e., U
′(x)[k−1,(2n+1)k−2]).

6. All parties reconstruct the 2nk high-order terms of the RLS representation
of U(x), and then use these to recover two polynomials u(x) and L(x) such that

( u(x)
L(x)

)[−2nk,−1] = U(x)[k−1,(2n+1)k−2] · x−(2n+1)k+1 and gcd(u(x), L(x)) = 1.

Then, each party extracts all roots of L(x).

Fig. 1. The PPSU-HBC protocol

is equal to that of U(x), where the degree of rj is k − 1. Then, each party
can recover (the rational function) U(x) from its RLS representation using the
conversion algorithm; each party can then compute the union by factoring the
denominator of U(x).

Privacy follows from Lemma 1, along with the fact that the rj(x) are random
polynomials for any coalition of fewer than n/2 corrupted parties. (This security
threshold comes from the threshold needed by the Simple-Mult protocol.)

Theorem 1. The PPSU-HBC protocol presented in Figure 1 is statistically t-
secure against a semi-honest adversary, for any t < n/2.

Proof . Let C be a coalition of t corrupted parties controlled by the adversary
A, and let H be the set of honest parties. Given all private inputs of corrupted
parties and the result S = ∪i∈[1,n]Si, we construct a simulator Sim as follows:

It first divides S \ (∪i∈CSi) into sets Ŝi (for i ∈ H) such that the number of
elements in each set is exactly k. (An element may appears in multiple sets,
if necessary.) Now, ∪i∈H Ŝi = S \ (∪i∈CSi) and |Ŝi| ≤ k. Then, Sim runs the
PPSU-HBC protocol by treating each Ŝi as private input of an honest party.

We argue that the view of A in the simulation is identically distributed to
the view of A in the real world. It is easy to see that this holds for steps (1)–
(5) of the protocol. In step (6), the only information revealed consists of the
polynomials u(x) and L(x). But (with all but negligible probability) L(x) exactly
encodes the union (i.e., L(x) =

∏
α∈S(x−α)), and u(x) is a random polynomial

of appropriate degree (using here the fact that the ri are uniform conditioned
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on the adversary’s view, since they are generated by summing over random
contributions from all parties).

Complexity Analysis: Secret sharing requires O(n2) multiplications in Zp, and
an execution of also uses O(n2) multiplications.

The computation overheads of Pi in each step of PPSU-HBC protocol is as
follows:

– To compute fi(x) and f̃i(x), O(nk2) multiplications are required.

– To secret-share the ((2n+1)k−1)-degree polynomial f̃i(x) and (k−1)-degree
polynomial rij(x) for j ∈ [1, n], O(n3k) multiplications are required.

– To compute U ′(x) =
∑

j∈[1,n] f̃j(x)(
∑

i∈[1,n] rij(x)) from f̃j(x) and rij(x), we

need O(n2k2) multiplications and O(n2k2) additions. Therefore, all parties
should run Simple-Mult and the local addition O(n2k2) times; hence, each
party requires O(n4k2) multiplications in all.

– To recover U ′(x)[k−1,(2n+1)k−2], O(n3k) multiplications are required.

– To recover a rational function G(x)
F (x) from U ′(x)[k−1,(2n+1)k−2] · x−(2n+1)k+1,

O(n2k2) multiplications are required. To factor a polynomial F (x) with a
degree of at most nk, O((nk)1.5+o(1) + (nk)1+o(1) log p) multiplications are
required [20,26].

Therefore, the total computation cost is O(n4k2 + n2k2 log p) multiplications
in Zp.

The communication overheads of secret-sharing and Simple-Mult are O(n) in-
tegers modulus p for each party; hence, the PPSU-HBC protocol’s communication
cost is O(n3k2) elements in Zp. Further, the round complexity is constant since,
in each step, all transmissions can be performed in parallel.

3.4 A Protocol Secure against Malicious Adversaries

We can extend the protocol presented in Section 3.3 to obtain security in the
presence of malicious adversaries by using verifiable secret sharing and adding
zero-knowledge proofs. Intuitively, in the PPSU-HBC protocol, if we utilize GRR-
VSS and Mult instead of secret sharing and Simple-Mult, respectively, no coali-
tion of fewer-than-half corrupted parties can behave maliciously without detec-
tion. In addition, however, we require each party to prove that they honestly
follow Step (1). Namely, they must prove that f̃j(x) is well-formed; that is,
that it is the RLS representation of 1/f(x) for some f of degree k. We let
ZKPK[Com(f(x)),Com(g(x))] denote a zero-knowledge proof that (committed)
polynomials f, g of known degree satisfy g(x) = ( 1

f(x))[−(2n+1)k+1,−k] ·x(2n+1)k−1.

We give the details of such a proof now.

Pedersen Commitment Scheme. To commit an element in a ∈ Zp, we use the
Pedersen commitment scheme [22]. Here, a commitment of a is Com(a; r) = gahr

for random r ∈ Zp, where g, h are group elements of a cyclic group G of order p.
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(When there will be no confusion, we write Com(·) instead of Com(·; ·).) The
Pedersen commitment scheme is additively homomorphic. That is,

Com(a; r) · Com(b; s) = gahrgbhs = ga+bhr+s = Com(a+ b; r + s).

In addition, the Pedersen commitment scheme is perfectly hiding and computa-
tionally binding under the discrete logarithm assumption in G.

Define a commitment of a polynomial f(x) =
∑

i∈[0,k] aix
i to be a tuple of

commitments to its coefficients. Given Com(f(x)) and Com(g(x)) where f, g are
monic polynomials of degree k and deg(g(x)) = 2nk−1, respectively, we provide
a zero-knowledge proof that g(x) = ( 1

f(x))[−(2n+1)k+1−,−k] · x(2n+1)k−1. (Note

that the degrees of f, g can be verified if they are known to be monic by simply
decommitting to their high-order coefficient.) The main observation is that the
desired relation holds iff deg(f(x)g(x) − xdeg(f(x))+deg(g(x))) < deg(f(x)), using
the following lemma.

Lemma 2. If f(x), g(x) satisfy deg(f(x)g(x)−xdeg(f(x))+deg(g(x))) < deg(f(x)),
then g(x) = ( 1

f(x))[− deg(f(x))−deg(g(x)),− deg(f(x))] · xdeg(f(x))+deg(g(x)).

Proof . Let df = deg(f) and dg = deg(g). The assumption of the lemma is that
deg(f(x)g(x)− xdf+dg) < df . Then,

f(x)g(x) = xdf+dg +
∑

i∈[0,df−1]

aix
i,

and hence,

g(x) · x−df−dg =
1

f(x)
+

1

f(x)
·

⎛⎝ ∑
i∈[−df−dg ,−dg−1]

aix
i

⎞⎠
for some ai ∈ Zp.

Since g(x)·x−df−dg and 1
f(x) ·(

∑
i∈[−df−dg,−dg−1] aix

i) have no common mono-

mials, we obtain

g(x) · x−df−dg = (
1

f(x)
)[−df−dg,−df ].

This concludes the proof.

Given the above, a zero-knowledge protocol for ZKPK[Com(f(x)),Com(g(x))]
can be constructed using standard techniques, following [5]. We omit the details.

By applying all above changes to PPSU-HBC, we obtain a protocol PPSU-MAL
for the malicious adversarymodel; see Figure 2. Note that GRR-VSS and our zero-
knowledge proofs use the Pedersen commitment scheme, which is binding under
the discrete logarithm assumption so that the security of PPSU-MAL requires
such a computational assumption. The following theorem proves the security of
PPSU-MAL.



Constant-Round Multi-party Private Set Union 409

Common Input: A domain of private data P ⊂ Zp. Description of GRR-VSS and
Mult: common reference strings for public parameters in GRR-VSS.
Private Input for each party Pi (i ∈ [1, n]): A set Si of k private elements in P .
Goal: Each party obtains ∪i∈[1,n]Si without learning other information.

Each party Pi

1. Constructs fi(x) =
∏

α∈Si
(x − α), runs RationalToRLS(1, fi(x), (2n + 1)k −

1)→ ( 1
fi(x)

)[−(2n+1)k+1,−k], defines f̃i(x) := ( 1
fi(x)

)[−(2n+1)k+1,−k] ·x(2n+1)k−1,

and chooses random polynomials rij(x) of degree at most k − 1 for j ∈ [1, n].
2. Commits to fi(x) and f̃i(x), runs ZKPK[Com(fi),Com(f̃i)] protocol.
3. Verifiably secret shares f̃i(x) and rij(x) for ∀j ∈ [1, n] in parallel.
4. Locally sums his shares of rij(x) to obtain shares of rj(x) =

∑
i∈[1,n] rij(x) for

each j ∈ [1, n].
5. Runs (in parallel) a shared polynomial multiplication protocol to compute

shares of f̃j(x) · rj(x) for ∀j ∈ [1, n].
6. Locally sums his shares of f̃j(x)rj(x) to obtain shares of 2nk high-order terms

of U ′(x) =
∑

j∈[1,n] f̃j(x)rj(x) (i.e., U
′(x)[k−1,(2n+1)k−2]).

7. All parties reconstruct U ′(x)[k−1,(2n+1)k−2], and then use it to recover two

polynomials u(x) and L(x) such that ( u(x)
L(x)

)[−2nk,−1] = U ′(x)[k−1,(2n+1)k−2] ·
x−(2n+1)k+1 and gcd(u(x), L(x)) = 1. Then, each party extracts all roots of
L(x).

Fig. 2. PPSU-MAL protocol in the malicious adversary model

Theorem 2. Assuming that the number of corrupted parties is t < n/2, where
n is the number of all parties of the PPSU-MAL protocol in Figure 2, and that the
discrete logarithm assumption holds in the underlying cyclic group, then PPSU-
MAL protocol is computationally t-secure in the malicious setting.

Proof . We prove this theorem by showing that for any arbitrarily malicious
adversary A controlling all corrupted parties (t < n/2), there exists an efficient
simulator S such that for any inputs to all parties, the view of the corrupted
parties and the outputs of the honest parties in the PPSU-MAL protocol are
computationally indistinguishable from the outputs of S and the honest parties
in the ideal world interacting with a trusted third party F computing set union.

Now, we describe S. Let C be a coalition of corrupted parties controlled by
A, and H be a set of honest parties.

1. S generates public parameters for GRR-VSS and Mult and publishes them
with securely keeping the discrete logarithms between parameters as a trap-
door. Then, Sim interacts with C on behalf of H . First, it chooses random
polynomials fi(x) of degree at most k, the corresponding f̃i(x), and random
polynomials rij(x) of degree at most k − 1 for i ∈ H and j ∈ [1, n]. Then, it
runs Steps 2 of the PPSU-MAL protocol.

2. From the ZKPK[Com(fi(x)),Com(f̃i(x))] protocol for i ∈ C, Sim extracts wit-
nesses fi(x) for i ∈ C using the strong soundness property of the
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zero-knowledge proof protocol. Then, it computes all roots of fi(x), which are
the inputs of the corrupted parties, using a polynomial factoring algorithm.

3. Let C′ be a set of corrupted parties who correctly pass the zero-knowledge
proofs protocol in Step 2 and secret-share their inputs in Step 3. Sim par-
ticipates with the inputs of C′ in the ideal world. It receives the result of
the ideal PPSU functionality, which is the union of the inputs of C′ and H .

Then, it computes U(x) = u(x)
L(x) , where L(x) is the polynomial associated

with the result set of the ideal PPSU functionality and u(x) is a random
polynomial of degree at most deg(L(x))− 1.

4. Sim rewinds A with the same auxiliary inputs and runs protocol through
Step 6 with the same public parameters and polynomials fi(x) of H as the
previous execution.

5. In Step 7, Sim contributes to recover U(x)[−2nk,−1] ·x(2n+1)k−1. Since Sim has
a trapdoor of GRR-VSS, Sim can equivocate on the recovered secret-shared
values. Further, Sim already knows shared secrets of corrupted parties so
that Sim can contribute U(x)[−2nk,−1] ·x(2n+1)k−1 to be recovered in Step 7.

6. Sim outputs a transcript of all interactions with A in the last execution.

At the end of the simulation, A obtains the union of all inputs of C′ and H .
GRR-VSS, Mult and ZKPK are secure against any probabilistic polynomial-time
adversary A under the discrete logarithm assumption. That is, any probabilistic
polynomial-time adversary A cannot anomalously behave without
detection during the protocols GRR-VSS, Mult and ZKPK when the discrete
logarithm assumption holds in the underlying cyclic group. Furthermore, if A
follows the predetermined description of PPSU-MAL protocol, then Sim’s out-
put (outS

F ,S(aux)(1
λ,x)) and outputs of H (outhon

F ,S(aux)(1
λ,x)) in the ideal

world is identical to the view of A (viewΠ,A(aux)(1
λ,x)) and outputs of H

(outhon
Π,A(aux)(1

λ,x)) in the real world, respectively, since GRR-VSS, Mult and
ZKPK are perfectly simulatable when the honest parties are majority. Therefore,
there exists only negligible chance in the security parameter that two distribu-
tions will be different so that{

realΠ,A(aux)(1
λ,x)

}
λ∈N,x∈{0,1}∗ and

{
idealF ,S(aux)(1

λ,x)
}
λ∈N,x∈{0,1}∗

are computationally indistinguishable.

Complexity Analysis: In GRR-VSS, the dealer requires O(n) exponentiations and
O(n2) multiplications in G. The verifier requires O(1) exponentiations. In the
reconstruction phase of GRR-VSS, each party requires O(n) exponentiations and
O(n2) multiplications. In Mult, each party requires O(n2) exponentiations and
O(n2) multiplications. In local addition, O(n) multiplications are required for
each party. The zero-knowledge proofs protocol do not significantly affect the
computational and communication complexity. The overall computational over-
heads and communication overheads of PPSU-MAL are O(n4k2) exponentiations
in G, and O(n3k2) group elements G, respectively. The round complexity of the
malicious protocol is still O(1).
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4 Conclusion

We introduced the Reversed Laurent Series (RLS) representation of a rational
function, and showed a surprising relationship between rational function arith-
metics (in particular, addition and multiplication) and set union computations.
On the basis of these approach, we developed constant-round private set union
protocol in both the semi-honest setting and the malicious setting. Our protocol
is the first constant-round multi-party private set union protocol without aids
of third party.

To the best of our knowledge, this paper shows the first instantiation of us-
ing the Reversed Laurent Series for cryptographic purpose. We leave finding
other cryptographic applications, either inside or outside secure computing of
set operations, as an interesting open problem.
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Abstract. Companies, organizations, and individuals often wish to
share information to realize valuable social and economic goals. Unfor-
tunately, privacy concerns often stand in the way of such information
sharing and exchange.

This paper proposes a novel cryptographic paradigm called Policy-
Enhanced Private Set Intersection (PPSI), allowing two parties to share
information while enforcing the desired privacy policies. Our construc-
tions require minimal additional overhead over traditional Private Set
Intersection (PSI) protocols, and yet we can handle rich policy seman-
tics previously not possible with traditional PSI and Authorized Private
Set Intersection (APSI) protocols. Our scheme involves running a stan-
dard PSI protocol over carefully crafted encodings of elements formed as
part of a challenge-response mechanism. The structure of these encod-
ings resemble techniques used for aggregating BLS signatures in bilinear
groups. We prove that our scheme is secure in the malicious model, under
the CBDH assumption, the random oracle model, and the assumption
that the underlying PSI protocol is secure against malicious adversaries.

1 Introduction

The need for two parties to exchange privacy-sensitive information arises in
numerous application domains. Often, the two parties involved in the exchange
are mutually distrustful and do not wish to reveal any additional information
other than what is necessary. In particular, we consider the scenario where two
parties each hold a set of elements and wish to find the intersection of their
elements without revealing other elements that are not in the intersection. In
such applications, it is important to ensure that each data item being exchanged
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is properly authenticated or authorized by the owner(s) or creator(s) of that data
item due to the following reasons:

– Thwart dishonest behavior. Unless some form of authentication is re-
quired, a malicious party can claim possession of fictitious data items, in an
attempt to find out whether the other party possesses these data items. For
example, if hospitals A and B are trying to find out their common patients,
a malicious hospital A can fictitiously claim that Carol is their patient, in
an attempt to find out whether Carol is a patient with hospital B.

– Comply with privacy policies. Sharing of privacy-sensitive information
may be governed by certain privacy regulations, either made by the govern-
ment or individual organizations. For example, two healthcare providers A
and B may wish to exchange information about their common patients to
improve service and facilitate diagnosis. However, due to privacy regulations
such as the Health Insurance Portability and Accountability Act (HIPAA),
they can only share a patient’s record if both providers have obtained the
patient’s consent. The above is an example of a simple privacy policy. In
other application scenarios, we may also desire the ability to support richer
privacy policies. We demonstrate how to support rich privacy policies in
Section 4.

In this paper, we propose Policy-Enhanced Private Set Intersection (PPSI). In
PPSI, each party has a set of elements, where each element may be authorized
(signed) by a different authority or authorities. PPSI allows two parties to find
the intersection of their sets, while enforcing rich privacy policies. The policies
specify what authorizations each party must possess for its elements. Our scheme
thwarts dishonest behavior by preventing a malicious party from using unautho-
rized elements during the set intersection to violate the privacy of the other
party.

1.1 Results and Contributions

New problem definitions One important contribution we make is the definition
of a new problem, namely, Policy-Enhanced Private Set Intersection (PPSI).
Existing Private Set Intersection (PSI) protocols and Authorized Private Set In-
tersection (APSI) protocols are not general enough and fail to adequately address
the needs of above-mentioned application scenarios. To resolve this problem our
PPSI scheme offers the following rich capabilities not previously possible with
existing PSI and APSI protocols:

– Multiple authorities. PPSI supports privacy policies where each element
may be authorized by a different authority or different authorities. This
makes PPSI particularly useful when each data item may not be owned or
created by the same entity.

– Rich privacy policies. Many applications desire the ability to support
expressive privacy policies. Our PPSI constructions can support rich policy
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Table 1. Efficiency of our construction in Section 3.3. n is the maximum number
of elements per user and m is the maximum number of authorities per element. The
complexities are calculated assuming that we use [15] as the underlying PSI scheme.

Overall Additional overhead over PSI

Computation O(nm+ n log log n) at most nm pairings

Bandwidth O(n) 2 group elements

# Rounds O(1) 1 round

semantics during the information sharing process, including conjunctive and
disjunctive policies, asymmetric policies, policies with attributes, and bundles
of elements.

Novel, Provably Secure Constructions. We propose novel PPSI constructions
that offer two main functionalities: 1) a signing functionality which allows an
authority to authenticate or authorize an element for a party; 2) a set intersection
protocol that allows two parties to find the intersection of their elements, while
enforcing the desired privacy policy.

We prove the security of our scheme against malicious adversaries, assuming
that the underlying PSI scheme is also secure in the malicious model. The proof
also relies on the CBDH assumption and the random oracle model.

Efficiency. Our constructions are efficient in practice. Specifically, we require
O(n) communication bandwidth and O(nm+ n log logn) computation, where n
is the maximum number of elements per party and m is the maximum number
of authorities per element. Also, our protocol executes in O(1) rounds.

Notably, our constructions require only minimal overhead over standard Pri-
vate Set Intersection (PSI) protocols, but can support rich policies that are not
possible with standard PSI. We need one additional round of communication
over standard PSI, during which the parties exchange two group elements (ellip-
tic points). In terms of computation, we incur an additional overhead of at most
nm bilinear pairings over the traditional PSI protocols.

Table 1 summarizes the efficiency of our basic construction described in Sec-
tion 3.3.

1.2 Technical Challenges and Highlight of Our Techniques

It turns out that the problem is non-trivial, even with relatively simple policies.
A straightforward idea is to adopt an existing PSI protocol and require that
each party demonstrate a zero-knowledge proof that each element encoded in
a cryptographic commitment has the appropriate authorizations. However, the
complication is that when each element has a different authority or different
authorities, one cannot reveal the identity of the authority when performing the
zero-knowledge proofs, as the identity of the authority can leak information about
the corresponding element.
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Special encodings. Our techniques may be of independent interest. Our scheme
leverages a type of special encoding that allows us to circumvent the need for
performing complicated and costly zero-knowledge proofs. Each party computes
the special encodings over their elements and then runs a standard PSI protocol
over these encodings.

A party’s encoding for an element x is essentially a product of terms demon-
strating its authorization on x and the anticipated terms demonstrating the
other party’s authorization on x. The terms are cleverly crafted so that a party
can compute its own terms by combining its own authorizations and a challenge
sent by the other party. It can also compute the anticipated terms of the other
party without having the other party’s authorizations.

If both parties satisfy their respective policies for an element, then both par-
ties obtain the same encoding for that element, and this particular encoding
appears in the set intersection. However, if a party does not possess the correct
authorizations for an element, it is unable (computationally intractable) to com-
pute the correct encoding for this element. As a result, this party is unable to
learn whether the other party owns the element.

We point out that our encoding idea bears resemblance to techniques used for
aggregating BLS signatures in bilinear groups [5].

1.3 Related Work

A Private Set Intersection (PSI) protocol [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
allows two parties to find the intersection of their respective sets such that neither
party can infer elements in the other party’s set that are not in the intersection.
However, PSI protocols allow each party to place any element in their own set.
A dishonest party can therefore insert fabricated elements in its set that she
suspects the other party might have. The intersection will reveal if the other
party indeed has those elements in its set.

To address this issue, Authorized Private Set Intersection (APSI) and vari-
ants [6, 8, 10] ensure that each party can only use elements certified by a trusted
authority in the intersection protocol. Existing APSI protocols assume that for
each party, there exists a single authority responsible for certifying all of its el-
ements. Therefore, these schemes do not support rich privacy policies coming
from multiple authorities, such as the application scenarios mentioned earlier.

2 Problem Definitions

2.1 Notations and Terminology

Let U denote a (countable) universe of all possible elements. Let Λ denote the
set of all authorities.

As mentioned earlier, two parties, PA and PB , wish to find the intersection
of their sets in a way that complies with certain privacy policies, that is, only
when both parties have the appropriate authorizations for an element should it
appear in the intersection.
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Table 2. Table of notations

n Max number of elements in each party’s set.

m Max number of authorities per element.

U The set of all possible elements.

x ∈ U An element.

Λ The set of all authorities

authi ∈ Λ An authority that signs elements.

Pi A party participating in our protocol.

Si Pi’s set.

I The resulting intersection.

vki, ski authi’s public verification key and secret signing key.

σ or σi A signature issued by an authority.

attr An attribute attached to a signature.

F (x) Authorities for element x (for symmetric policies).

F (x,Pi) Authorities for element x and party Pi (for asymmetric policies).

g A random generator for the bilinear group.

Ri = gri Pi’s challenge for the other party.

Policy. A privacy policy defines which authority or authorities must sign an
element for a given party. For ease of exposition, we will first focus on symmetric
policies, where each element needs to be authorized by one or more authorities,
and the set of authorities is determined by the element itself, but is not dependent
on the parties. Two exampless of symmetric policies are: (1)Claimed friendship
with Alice needs to be authorized by Alice, and (2) Claimed membership in a
social group needs to be authorized by the administrator(s) of the group.

As each element’s authorities are determined by the element itself, we can
use a function F to describe symmetric policies. Formally, let F : U → 2|Λ|

denote a publicly-known policy function that maps each element to the set of
authorities that must sign it. For example, let x ∈ U , if F (x) = {auth1, auth3},
this means that element x has to be signed by authorities auth1 and auth3. One
simple policy function is the identity function, e.g., each patient’s record must
be authorized by the patient herself, or claimed friendship with a user must be
authorized by that user herself.

We say that x ∈ U is an authorized element for party P , if party P has
received all the necessary signatures for x, i.e., P has received a signature σi for
every authi ∈ F (x).

2.2 Basic Problem Definitions

Apart from the necessary setup and key generation functionalities, a PPSI
scheme should offer two main functionalities: 1) a signature scheme allowing
an authority authi to authorize an element x for a party P ; 2) a set intersec-
tion protocol that allows two parties to find the intersection of their authorized
elements.
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We now present formal definitions for a basic PPSI scheme supporting sym-
metric policies. A Policy-Enhanced Private Set Intersection (PPSI) scheme (sup-
porting symmetric policies) should provide the following algorithms or protocols:

– Setup(λ): The Setup algorithm is run only once at system initialization to
generate public parameters param. The input λ represents the security pa-
rameter.

– KeyGen(param): Each authority authi runs the KeyGen algorithm to generate
a signing and verification key pair (ski, vki). authi then announces the public
verification key vki but keeps the private signing key ski to itself.

– Authorize(param, ski, x, Pj): The Authorize algorithm allows an authority authi
to grant a party Pj a signature on a specific element x.

– Intersect(Pi, Pj , Si, Sj): Let Si, Sj ⊆ U . Intersect is an interactive protocol
run by any two parties Pi and Pj on input sets Si and Sj respectively. When
both parties are honest, and assuming that Pi and Pj both have the necessary
signatures for elements in Si and Sj respectively, then both parties would
learn the intersection Si ∩ Sj at the end of the protocol.

2.3 Security Definitions

We prove the security of our protocol against a malicious adversary, who may
deviate arbitrarily from the specified protocol. We define security by comparing
what a malicious adversary can do in the real protocol execution against what
the adversary can do in an ideal world. In the ideal-world execution, both parties
would submit their sets to an imaginary trusted third-party denoted as T. The
trusted party T would make sure that both parties have the correct authoriza-
tions on the elements they submitted. If a party submits an element without
the necessary authorizations, T simply ignores that element. T then computes
the intersection of the elements satisfying the privacy policy and returns the
intersection to both parties. In the real-world, we do not use T and the par-
ties communicate directly to execute the real set intersection protocol. Roughly
speaking, the security definition implies that any attack that a polynomial-time
adversary can perform in the real world is also possible in the ideal world. Intu-
itively, this suggests that the real-world set intersection protocol is as secure as
the protocol in the ideal world that relies on a trusted third-party.

We now formally define the ideal functionality. The security definition involves
multiple parties a subset of which is controlled by the adversary.

Authorize. T receives an authorization request from party Pi, requesting authj
to authorize element x. T forwards the request to authj , who can either accept or
reject the request. If authj accepts the authorization request, T replies accept to
Pi and remembers that T has authorized Pi on element x. Otherwise, T replies
reject to Pi.

SetIntersect. T receives a request from party Pi to perform set intersection
with party Pj . T forwards the request to Pj . Pi and Pj now run an ideal set
intersection protocol as below (unless Pj replies abort).
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– i) Pi sends a set Si to T, and T sends |Si| to Pj ; or ii) Pi sends abort.
– i) Pj sends a set Sj to T, and T sends |Sj | to Pi; or ii) Pj sends abort.
– T now checks whether each element in Si and Sj has appropriate authoriza-

tions. Let Ŝi ⊆ Si and Ŝj ⊆ Sj denote maximal subsets of Si and Sj that

have appropriate authorizations. T computes the intersection I ← Ŝi ∩ Ŝj .
– T sends I to Pi, and Pi responds ok or abort.
– T sends I to Pj , and Pj responds ok or abort.

Definition 1. Let E = (E1, E2, . . . , Em) denote a sequence of events, where
each Ei is of the form (Authorize, Pi, authj) or (SetIntersect, Pi, Pj). Let IdealS,E
denote the joint output distribution of all parties and the adversary S in the ideal
world under event sequence E. Let RealA,E denote the joint output distribu-
tion of all parties and the adversary A in the real world under event sequence
E.

We say that a PPSI scheme is secure, if for any polynomial-time adversary A
in the real world, there exists simulator S in the ideal world, such that for any
sequence of events E,

IdealS,E
c
= RealA,E

where
c
= denotes computational indistinguishability.

Note that we cannot prevent an adversary from refusing to participate in the
protocol or aborting in the middle of the protocol execution. As a result, our
definition explicitly allows the ideal-world adversary to abort any time during
the ideal-world protocol. Our definition also allows each party to use only a
subset of their authorized elements as input to the protocol.

Our protocol is not size-hiding, i.e., each party can learn the size of the other
party’s set. Therefore, in the ideal functionality, the trusted third-party reveals
to each party the size of the other party’s set. In particular, when both parties
honestly use their authorized elements as inputs, i.e., ŜA = SA and ŜB = SB,
each party learns the size of the other party’s authorized set. However, notice
that a party can potentially fuzz the size of its set by padding the input set with
random dummy elements for which it does not possess appropriate authoriza-
tions. These dummy random elements will not appear in the final set intersection
due to lack of authorizations; however, they can hide the number of authorized
elements each party has.

3 Construction

3.1 Strawman Schemes

One strawman approach would be for the two parties to perform a regular Pri-
vate Set Intersection (PSI) over the elements’ signatures, thereby revealing the
signed elements that they have in common. However, this requires that both
parties have the exact same signature for the same element. This does not allow
authorities to bind a signature to a specific party. The signature can thus be
easily transferred to unauthorized parties.



420 E. Stefanov, E. Shi, and D. Song

It is conceivable that there are other solutions based on standard techniques
for the problem than our construction. For example, we can imagine schemes
based on secure multi-party computation, verifiable shuffles, and matching pairs
of blinded elements. However, to the best of our knowledge, these approaches all
tend to have much higher computational and bandwidth complexity than our
construction which achieves O(nm + n log logn) computational overhead and
O(n) bandwidth overhead – both almost linear in the number of elements n if
we assume the number of authorities per element m to be a constant.

3.2 Preliminaries

Bilinear group. Our scheme utilizes a bilinear G group of primary order p.
There exists a non-degenerate bilinear mapping e : G × G → GT such that
∀g1, g2 ∈ G, ∀a, b ∈ Z, e(ga1 , g

b
2) = e(g1, g2)

ab. Our scheme relies on the following
computational assumption.

Computational Bilinear Diffie-Hellman (CBDH) Assumption. Let g ∈ G denote
a random generator of the group. The CBDH assumption posits the computa-
tional hardness of the following problem. Given randomly chosen ga, gb, gc ∈ G,
compute e(g, g)abc.

Private Set Intersection. A Private Set Intersection (PSI) protocol allows two
parties to compute their set intersection without revealing other elements. Our
protocol utilizes a standard PSI protocol (e.g., the scheme by Hazay and Nis-
sim [15]) as a blackbox. We assume that the PSI protocol is secure in the ma-
licious model, and refer the readers to [15] for a formal security definitions of
PSI.

3.3 Main Construction

Our construction involves running a standard PSI protocol over special encodings
formed as part of a challenge-response protocol. Below, we first describe our
construction, including the key generation and authorization algorithm, as well
as the intersection protocol. Then, in Section 3.4, we explain in detail how to
construct the encodings used in the set intersection protocol, and the properties
required for the encodings.

Setup. The Setup algorithm chooses a bilinear group G of prime order p with
pairing function e : G × G → GT . It then chooses a random generator g ∈ G.
Next, it picks a hash functionH : {0, 1}∗ → G which will be modeled as a random
oracle. Finally, the Setup algorithm publishes a description of the bilinear group,
the generator g, as well as the hash function.

Key generation algorithm. To pick a signing and verification key pair, each
authority authi randomly selects ski ∈R Zp. The verification key is vki:=g

ski .
Each authority i publishes its public verification key vki, but withholds its secret
signing key ski.
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Inputs: PA, PB each has sets SA and SB, with the appropriate authorizations.
Outputs: PA, PB each obtains I :=SA ∩ SB

Protocol:

1. PA : Select random rA ∈R Zp, let RA ← grA

PB : Select random rB ∈R Zp, let RB ← grB

PA → PB : RA

PB → PA : RB

2. PA : CA ← {EncodeElem(x, rA, RB, PA, PB)|x ∈ SA}
PB : CB ← {EncodeElem(x, rB, RA, PB , PA)|x ∈ SB}

3. PA ⇔ PB : Engage in a PSI protocol with input sets CA and CB respectively.
As a result, both parties obtain the set C′:=CA ∩ CB of encodings.

4. PA, PB : Recover the intersection I from their encodings C′.

Fig. 1. Intersection protocol

Authorization algorithm. Let H : {0, 1}∗ → G denote a hash function modeled
as a random oracle. We assume that each party Pi has a publicly-known unique
name (e.g., an assigned name or a randomly generated identifier). Without risk
of ambiguity, we overload the notation Pi to denote either the party or its name.

For authority authi to authorize element x for party Pj , authi computes the
following BLS signature [5] and issues it to Pj .

σ ← H(x, Pj)
ski

In the above, the hash function is computed over the name of the element con-
catenated with the name of the receiving party. Notice that since the name of
the party is incorporated into the signature, the signature cannot be transferred
to another party.

Intersection protocol. Our protocol takes place in following four phases. The
detailed construction is presented in Figure 1.

1. Challenge Phase. PA sends PB a random challenge RA, and PB sends PA

a random challenge RB.
2. Encoding Phase. Each party computes an encoding for each element it

possesses and with the appropriate authorizations. The encoding is depen-
dent on the random challenges RA and RB. Figure 2 specifies the encoding
function.

3. Set Intersection Phase. Both parties perform a standard Private Set In-
tersection (PSI) protocol using their respective encodings as the inputs. For
the underlying PSI scheme we use the protocol described in [15].

4. Recovery Phase. At the end of the PSI protocol, each party learns the
intersection of the encodings. Through the intersection of encodings, each
party recovers the original elements in the intersection.
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function EncodeElem(x, rself, Rother, Pself, Pother)
c← 1 ∈ GT

for authi ∈ F (x) do
Let σi denote Pself’s signature on x from authi.
c← c · e(σi, Rother) · e(H(x,Pother), vki)

rself

end for
return c

end function

x ∈ U is the element to encode. rself ∈ Zp is the random exponent generated by the
party itself. Rother ∈ G is the random challenge received from the other party. Pself

and Pother represent the names of the party itself and the party it is communicating
with.

Fig. 2. The EncodeElem function

3.4 Encodings for Symmetric Policies

As shown in Figure 2, the encoding is computed as a product of multiple terms,
where each term is the result of a bilinear pairing. Intuitively, the encodings
satisfy the following properties:

– Conformity. If both parties have an element x ∈ U and the appropriate
authorizations, their respective encodings of the element x will be the same.
Therefore, the encoding for element x will appear in the intersection at the
end of the PSI protocol.

– Unforgeability. If a party does not have appropriate authorizations for the
element x, it is unable to forge the correct encoding for x. In this way, a
dishonest party who does not possess authorizations for element x cannot
find out whether the other party has element x.

The encoding contains two corresponding terms for each element-authority pair
(x, authi):

– Response to the other party’s challenge. The first term, e(σi, Rother), is a
response to the other party’s challenge Rother. Intuitively, if a party does not
possess an authorization from authi, then it will not be able to generate this
part of the encoding.

– Anticipated response from the other party to one’s own challenge. The sec-
ond term,
e(H(x, Pother), vki)

rself , is the anticipated response from the other party for
one’s own challenge Rself. Note that a party is always able to compute the
anticipated response for its own challenge, even without knowing the other
party’s signature, since a party knows the exponent rself of a challenge gen-
erated by itself. Let σ′

i:=H(x, Pother)
ski denote the signature given to Pother

from authi on element x. It is not hard to see that

e(σ′
i, Rself) = e(H(x, Pother), vki)

rself
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In other words, if Pother has the correct signature from authi, its actual response
to Pself’s challenge should match the response anticipated by Pself. In summary,
this term enforces that the other party can only compute the encoding if it has
a signature from the correct authority.

Theorem 1. The PPSI scheme described in this section is secure against ma-
licious adversaries, assuming 1) the underlying PSI protocol is simulatable in
the malicious model; 2) the Computational Bilinear Diffie-Hellman (CBDH) as-
sumption holds in the bilinear group G; and 3) the hash function H is a random
oracle.

Proof overview. We now give an overview of our proof, and defer the detailed
proof to Appendix 5. We first define a hybrid protocol by replacing the PSI
protocol with an ideal functionality for PSI. Due to the sequential modular
composition theorems by Canetti [7], it suffices to prove that the hybrid protocol
securely computes the ideal functionality defined in Section 2. We then construct
a simulator which is given black-box access to a hybrid-world adversary A. We
show that if the encoding scheme is unforgeable in some sense, then the joint
output distribution of all parties in the ideal world is indistinguishable from the
joint output distribution in the hybrid world.

The description of our protocol in Figure 1 does not hide the number of autho-
rized elements from the other party. If this number is also considered sensitive, a
party can pad its set of encodings with random dummy encodings, and use the
resulting set as inputs to the PSI protocol. Effectively, this reveals to the other
party the total number of authorized elements and dummy elements.

Another possible method to hide the size of one’s set is to use a Size-Hiding
PSI protocol in place of the PSI protocol used in our construction. Our security
proofs would still hold if the Size-Hiding PSI protocol is simulatable in the
malicious model. Notably, Ateniese et al. recently propose a Size-Hiding PSI
protocol secure under the semi-honest model [3]. Therefore, it is conceivable
that a Size-Hiding PSI protocol in the malicious model will become available in
the near future.

4 Extensions for Richer Policies

In this section, we describe how to compute the encodings in the intersection
protocol for different kinds of policies. Our main construction in Section 3.3
supports simple symmetric policies, and we now incrementally add support for
asymmetric policies, attributes, bundles, and DNFs.

4.1 Asymmetric Policies

So far we have focused on symmetric policies, where the authorities associated
with each element depend on the element itself. In other application scenarios,
the right authority may depend on both the element and the party performing
set intersection.
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function EncodeElem(x, rself, Rother, Pself, Pother)
c← 1 ∈ GT

for authi ∈ F (x, Pself) do
Let σi denote authi’s signature for Pself on x.
c← c · e(σi, Rother)

end for
for authi ∈ F (x, Pother) do

Let σi denote authi’s signature for Pother on x.
c← c · e(H(x,Pother), vki)

rself

end for
return c

end function

Fig. 3. The EncodeElem function for asymmetric policies

Let U denote a countable universe of elements, let P denote the set of all
parties, and let Λ denote the set of authorities. We denote asymmetric policies
using a publicly known policy function F : U × P → 2Λ. F outputs the set of
appropriate authorities given an element and a party. For example, if F (x, P ) =
{auth1, auth2}, this means that auth1 and auth2 must sign element x for party
P .

Figure 3 describes how to modify the EncodeElem function to support asym-
metric policies.

The idea is essentially the same as the symmetric case. If authi must sign
element x for party Pself, then Pself computes the term e(σi, Rother), which is
a response to the challenge from Pother. If authj must sign element x for party
Pother, then Pself computes the term e(H(x, Pother), vkj)

rself , which is the antic-
ipated response from Pother to one’s own challenge. The final encoding for an
element is basically the product of all responses to the other party’s challenge,
and all anticipated responses from the other party.

4.2 Attributes

Authorities may wish to attach attributes to an element when making autho-
rizations. For example, attributes may be used to determine the type or level of
authorization given (e.g., sensitivity level of medical records). We show that our
construction can be extended to support policy attributes.

Let V denote the set of all possible attributes. Suppose a public function
F : U × P → 2Λ×V exists which outputs the necessary (authority, attribute)
pairs given an element and a party. For example, if

F (x, P ) = {(auth1, attr1), (auth1, attr2), (auth5, attr3)},

it means that for party P to be a rightful owner of element x, it is necessary
that auth1 has signed element x with attributes attr1 and attr2 for party P , and
auth5 has signed element x with attribute attr3 for party P .
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function EncodeElem(x, rself, Rother, Pself, Pother)
c← 1 ∈ GT

for (authi, attr) ∈ F (x,Pself) do
Let σi denote authi’s signature for Pself on x and attribute attr.
c← c · e(σi, Rother)

end for
for (authi, attr) ∈ F (x,Pother) do

Let σi denote authi’s signature for Pother on x and attribute attr.
c← c · e(H(x, attr, Pother), g

vki)rself

end for
return c

end function

Fig. 4. The EncodeElem function supporting attributes and asymmetric policies

To support attributes, first, the authorities need to incorporate the attribute
values in the hash when computing signatures. To authorize element x with
attribute attr to party P , authi now computes the following signature:

σ ← H(x, attr, P )ski

Second, the EncodeElem function needs to be modified to incorporate the at-
tributes as in Figure 4.

4.3 Bundles

A group of elements may form a bundle. The bundle should appear in the inter-
section if both parties have all elements in the bundle, as well as the appropriate
authorizations. Otherwise, the bundle should not appear in the intersection, and
neither party should learn any partial information about elements in the bundle
that the other party has.

Our scheme can be easily adapted to handle bundles by combining the en-
coding of each element of the bundle to produce a single encoding for the entire
bundle. Specifically, the bundle’s encoding is the product of the encodings of its
elements.

4.4 Disjunctions and DNFs

So far, we have considered conjunctive policies. More generally, policies may
also contain disjunctions, or Disjunctive Normal Forms (DNFs). For example,
if a hospital A may want to share Carol’s record with hospital B either if the
record has low sensitivity and hospital B has permissions to receive low sensi-
tivity records from Carol, or the record is cardiology related, and hospital B has
permissions to retrieve Carol’s cardiology records.

As another example, imagine two online stores (e.g., Dell and Newegg) want
to investigate a consumption pattern of their shared customers. Specifically, they
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want to determine which customers have bought both a computer from Dell
and a monitor from Newegg. Therefore, they need to perform a set intersection
operation on their sales datasets. Meanwhile, to prevent each company from
inserting fictitious records, each sales record must be authorized by a recognized
credit company, Mastercard or Visa.

In general, for parties PA and PB to share an element x, a DNF-style policy
of the following form must be satisfied:

policy := C1 ∨ C2 ∨ . . . ∨ Ck

where each Ci(1 ≤ i ≤ k) is a conjunctive clause of the form:

(authi1 , PA, x, attr1) ∧ . . . ∧ (authi� , PA, x, attr�)

∧(authj1 , PB , x, attr1) ∧ . . . ∧ (authj�′ , PB, x, attr�′)

In the above, each tuple (authi, P, x, attr) means that “authi gave authorizations
to party P on element x with attribute attr”. Specifically, each conjunctive clause
specifies the policies for party PA and PB respectively.

Our basic construction can be extended to support DNFs, with the caveat
that each party reveals to the other party which conjunctive clause is satisfied
for an element. The idea is quite straightforward: for each conjunctive clause,
each party uses the algorithm described in Figure 4 to compute an encoding. The
encoding for an element is now the union of all encodings corresponding to all
conjunctive clauses. Furthermore, each party will use the union of all encodings
for all elements as inputs to the PSI protocol.

5 Proofs of Security

Suppose the PSI protocol we use in the protocol is fully simulatable under
the malicious model. Due to the sequential modular composition theorems by
Canetti [7], we can replace the PSI module in our protocol with the ideal func-
tionality for PSI. We refer to the resulting protocol as the hybrid protocol. We
formally describe the hybrid protocol below. Although not explicitly stated, par-
ties PA and PB may abort the protocol at any message boundary. The proofs
for Lemma 1 and 2 are available in the full version [1] of this paper.

– PA picks random rA ∈ Zp, and sends to PB the value RA:=g
rA ∈ G.

– PB picks random rB ∈ Zp, and sends to PA the value RB:=g
rB ∈ G.

– PA computes CA ← {EncodeElem(x, rA, RB, PA, PB)|x ∈ SA} and sends it
to TPSI. TPSI sends |CA| to PB.

– PB computes CB ← {EncodeElem(x, rB , RA, PB, PA)|x ∈ SB} and sends it
to TPSI. TPSI sends |CB | to PA.

– TPSI computes C′:=CA ∩ CB, and sends C′ to PA.
– TPSI sends C

′ to PB.

Due to the sequential modular composition theorems by Canetti [7], it suffices
to show that the hybrid protocol is secure as stated by Lemma 1.
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Definition 2. Let E denote an event sequence. Let IdealS,E denote the joint
output distribution of all parties and the adversary S in the ideal world, under
event sequence E. Let HybridA,E denote the joint output distribution of all
parties and the adversary A in the hybrid world, under event sequence E. We
say that the hybrid protocol securely computes the ideal functionality defined in
Section 2.3, if for any polynomial-time adversary A in the hybrid world, there
exists simulator S in the ideal world, such that for any sequence of events E,

IdealS,E
c
= HybridA,E

where
c
= denotes computational indistinguishability.

Lemma 1 (Security of the hybrid protocol). Assume that the CBDH as-
sumption holds in the bilinear group G, and the hash function H is a random
oracle. Then, the hybrid protocol described earlier securely computes the ideal
functionality defined in Section 2.3.

Lemma 2 (Unforgeability of encodings). Assume that the CBDH assump-
tion holds in the group G, and the hash function H is a random oracle. Let A
denote polynomial-time adversary in the hybrid protocol, who has full control of
all corrupted parties. Let PA denote a corrupted party, and assume that PA has
not received authi’s signature on element x. Then, during a set intersection pro-
tocol between PA and any honest party PB, A is unable to compute the correct
encoding EncodeElem(x, rA, RB, PA, PB) except with negligible probability. In the
above, RB ∈R G is chosen at random by PB, and rA ∈ Zp is chosen arbitrarily
by the adversary A.

6 Performance

In this section, we present the asymptotic complexities and experimental per-
formance of our protocol.

6.1 Asymptotic Complexities

We first analyze the performance of our basic construction (described in Sec-
tion 3.3) supporting symmetric policies. Later, in Section 6.3, we discuss the
performance of the various extensions (described in Section 4).

The efficiency of our protocol depends on both the number of elements (n)
and the number of authorities per element (m). We now present asymptotic
bounds for the amount of computation, amount of bandwidth, and the number
of communication rounds.

Computation: O(nm+n log logn) The encoding phase performs a constant num-
ber of operations for each element-authority pair and is hence O(nm). It com-
putes a single encoding for each element resulting in O(n) encodings. Those
encodings are the input for the PSI phase, and by using the protocol by Hazay
and Nissim [15], we can perform the PSI phase in O(n log logn) time. The re-
covery phase is trivially O(nm) and the challenge phase is O(1). Summing up
the above, the total computation is O(nm+ n log logn).
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Bandwidth: O(n) The communication between the two parties consists of the PSI
protocol’s communication and the two group elements sent during the challenge
phase. Since the input size for the PSI is n, using the PSI protocol by Hazay
and Nissim [15], the bandwidth overhead for the PSI phase is O(n). Therefore,
the combined communication bandwidth for our scheme is O(n).

Rounds: O(1) The PSI protocol by Hazay and Nissim [15] consists of O(1)
communication rounds. We add one additional round for the challenge phase.

Note that our construction introduces only a small overhead on top of PSI,
namely, a single round of extra communication where 2 group elements are
exchanged, and at most nm bilinear pairings. And with this small additional
overhead, we provide the ability to support rich privacy policies previously not
possible with existing PSI and APSI schemes.

6.2 Empirical Performance

Our protocol can be broken down into two time consuming phases: (1) encoding
elements, and (2) performing standard Private Set Intersection (PSI). There is
a large body of existing work on building efficient PSI protocols [9, 10, 11, 12,
13, 15, 16, 17, 18], and one can plug into our construction any existing PSI
protocol that is fully simulatable under a malicious adversary model. Therefore,
our experimental analysis below focuses on the additional overhead introduced
by the encoding phase.

We generated 2,000 random elements with attributes and then computed the
signatures for 2 parties by 5 authorities. We used different authorities for each
element-authority pair, hence we have the total number of authorities |Λ| =
10,000. We set the maximum number of authorities per element to be m = 5.
We then varied m = 1, . . . , 5 by choosing a random subsets of the corresponding
authorities for each element, and computed all of the the element encodings in
parallel. After repeating this experiment 20 times, we calculated the average
encoding time per element and standard deviation. The results are shown in
Table 3.

Our experiment was implemented in C# and was run on 64-bit Windows 7
with an Intel Core i7 3.33 GHz CPU and 12GB of RAM (although the experiment
used much less memory). For all of the pairing and elliptic curve operations, we
used the Pairing Based Crypto Library [19].

Table 3. The time (in ms) for encoding an element given the number of authorities for
that element. These results are for the symmetric policy construction with attributes.

m 1 2 3 4 5

average 1.70 3.10 4.45 5.65 7.07

std. dev. 0.06 0.17 0.22 0.04 0.27
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6.3 Performance for Rich Policies

So far, we focused on the performance of the basic construction supporting sym-
metric policies. The performance of our protocols supporting richer policies can
be analyzed in a similar fashion.

Asymmetric Policies. The performance for asymmetric policies is essentially the
same as the performance for symmetric policies. Therefore, encoding n elements
each having at most m authorities per element using an asymmetric policy is at
least as fast as encoding using a symmetric policy for the same n and m.

Attributes. With attribute-enriched policies, the number of bilinear pairings is
the number of (element, authority, attribute) tuples for each party.

Bundle.s The cost of encoding a bundle scales linearly with the number of
elements. For example, the cost of encoding a bundle of b elements is b times
times the cost of encoding a single element. This is due to the fact that the
elements of the bundle have to be first encoded individually. Combining them
incurs a series of elliptic point multiplications, but their cost is significantly
outweighed by the pairing function that is applied to each element.

DNF policies. Each DNF policy consists of multiple conjunctive clauses. The
cost of encoding an element under a DNF policy is simply the sum of the cost
of encoding each conjunctive clause, where the cost for encoding a conjunctive
clause has been discussed earlier – depending on whether the conjunctive clause
is symmetric, asymmetric, attribute-enriched, etc.

With a DNF policy consisting of k conjunctive clauses, the encoding for an
element will consist of k group elements instead of one.

To summarize, suppose the maximum number of conjunctive clauses for a
DNF policy is k, and the maximum number of literals for a conjunctive clause
is m. Then, the communication overhead of our protocol will be O(nk), and the
computational overhead will be O(nmk + nk log log(nk)).

7 Conclusion

We introduced a new cryptographic paradigm for private set intersection with
rich policies, allowing two parties to selectively share data while satisfying pri-
vacy policies. Our protocol ensures that only properly authorized elements which
satisfy certain privacy policies appear in the set intersection. Our protocols
support rich policies, including conjunctive and disjunctive policies, attribute-
enriched policies, asymmetric policies, and bundles of elements. We prove that
our scheme is secure under the malicious model, given the CBDH assumption,
the security of the underlying PSI protocol, and assuming the random oracle
model.
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Abstract. We revisit shuffling in public [AW07a], a scheme which allows
a shuffle to be precomputed. We show how to obfuscate a Paillier shuffle
with O(N log3.5 N) exponentiations, leading to a very robust and efficient
mixnet: when distributed over O(N) nodes the mixnet achieves mixing in
polylogarithmic time, independent of the level of privacy or verifiability
required. Our construction involves the use of layered Paillier applied to
permutation networks. With an appropriate network the shuffle may be
confined to a particular subset of permutations, for example to rotations.
While it is possible that the mixnet may produce biased output, we show
that certain networks lead to an acceptable bias-efficiency tradeoff.

Keywords: Public key obfuscation, homomorphic encryption, electronic
voting.

1 Introduction

A re-encryption mix permutes and re-encrypts its input [PIK94]. A series of
mixes is called a mixnet and guarantees that input ciphertexts cannot be linked
to the decrypted output unless all mixes collude. A proof of shuffle allows a mix
to prove they have correctly processed their input. A fundamental challenge in
electronic voting is the design of mixnets that can accomodate a large number
of encrypted ballots in a relatively short space of time. An additional goal is
robustness, a mixnet must be able to recover from the failure of faulty or dis-
honest mixes. In this paper we present efficient constructions for shuffling in
public [AW07a], a scheme which allows a shuffle to be precomputed before any
input is received. Evaluating the precomputed shuffle upon input is public, that
is requires no secret information and can be performed even by untrusted parties.
Evaluation is also highly parallelisable, thus the work required to mix votes can
be distributed over an arbitrary number of workstations at election time.

1.1 Improving the Efficiency and Robustness of Mixnets

Most mixnets achieve robustness through the detection and replacement of cor-
rupt mixes. Although a few schemes [Cha81, PIK94, GZB+02] verify that the
mixnet as a whole functioned properly, these schemes provide no way to recover
from errors or identify dishonest mixes. The most common method to audit a
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mix is to require it to output a zero knowledge proof. Cut and choose tech-
niques [SK95] are generally applicable but inefficient, hence much work has been
devoted to optimising the proof of a shuffle.

Abe [Abe99] and later Jakobsson and Juels [JJ99] presented the first prac-
tical proofs of a shuffle based upon re-encryption permutation networks. Fu-
rukawa and Sako [FS01] used a commitment to a permutation matrix and Neff
[Nef01] used unique factorisation of polynomials to prove a shuffle of ElGamal
ciphertexts with improved efficiency. Efficient arguments and proofs have also
been devised in the case that the shuffle is restricted to a subset of permuta-
tions [RW04, dHSŠV09]. Generic techniques may be used to further optimise
the above proofs, including pre-computation of re-encryption factors, fixed base
and multi-exponentiation and batch proof techniques [BGR98] and PRGs for
challenge generation. Wikström [Wik09] has also observed that a proof of shuffle
may be split into offline and online phases. A mix provably commits to its per-
mutation offline allowing a highly efficient commitment-consistent proof in the
online phase.

Despite these enhancements there remain inherent limitations on the robust-
ness and efficiency of mixnets which makes use of private techniques for online
mixing. Firstly, if a mix is detected cheating then the mixnet must either be
restarted or delayed until a replacement is found. Secondly, the opportunities
for parallelisation are quite limited. As each mix must keep its permutation se-
cret, it must perform its round of mixing and output a correct proof without
assistance. Therefore the runtime is at least linear in the number of votes and
mixes. Thirdly, it is commonly assumed that each mix server in a mixnet should
belong to a different organisation (e.g. political party). Online private mixing
depends upon a quorum of these co-operating in the short space of time before
tallying begins.

In contrast, two schemes shuffling in public [AW07a] and offline/online mix-
ing [AW07b] allow a shuffle to be precomputed. These schemes imply that no
mix servers need be present at election time for mixing to take place. A major
downside of offline/online mixing is that each voter requires a separate key to en-
crypt their vote. Additionally the scheme significantly restricts the number and
size of votes. The main disadvantage of shuffling in public is its inefficiency, with
generation and evaluation of the precomputed shuffle requiring O(N2) exponen-
tiations. In this work we reduce both phases to O(N log3.5N) exponentiations.
Experiments indicate that our scheme is faster when N > 1200.

1.2 Shuffling in Public

The goal of shuffling in public is the public-key obfuscation of the shuffle phase of
a mix-net comprising either a decryption shuffle or re-encryption shuffle function-
ality (program) [AW07a]. Informally, a public-key obfuscator O takes a program
F and outputs a new program O(F ) which outputs encryptions of F ’s outputs.
That is ∃ , ∀x O(F ) , x = O(F (x)) for some encryption function O and we say
the operator , evaluates the obfuscated program on input x. A formal model
is proposed in Definition 3 [AW07a] which builds upon an earlier definition by
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Ostrovsky and Skeith [OS07]. Adida and Wikström present obfuscators for de-
cryption and re-encryption shuffles in the BGN [BGN05] and Paillier [Pai99]
cryptosystems respectively. They also prove that their obfuscators are seman-
tically secure (Definition 4 [AW07a]). Given a set of parties who sample and
obfuscate a shuffle before any input is received, one can construct a mixnet
provided that joint decryption is verifiable.

1.3 Our Contributions

We public key obfuscate a Paillier shuffle using permutation networks. Our ob-
fuscated shuffle comprises O(N logN) ciphertexts and requires O(N log3.5N)
exponentiations to generate and evaluate, rather than O(N2) ciphertexts and
exponentiations in [AW07a]. Utilising a suitable network, we can restrict the
space of permutations, for example we can obfuscate homomorphic rotation. We
propose a distributed protocol for sampling and obfuscating a shuffle allowing
the construction of a verifiable mixnet. A side effect of the use of permutation
networks is that the resulting distribution over permutations may be biased.
However it is possible to reduce the bias at the expense of increasing the com-
plexity to O(N logcN) for a constant c > 3.5. Moreover for some applications
weaker anonymity may be acceptable.

1.4 Outline

The paper is organised as follows. In Section 2 we discuss cryptographic prelim-
inaries. In Section 3 we review permutation networks. In Section 4 we show how
to obfuscate shuffles of Damg̊ard-Jurik ciphertexts as well as an operation to
compose obfuscations. These ideas when applied to permutation re-encryption
networks lead to an improved obfuscator for a Paillier shuffle. In Section 5 we
provide a distributed protocol for sampling and obfuscating a shuffle via an
arbitrary permutation network. In Section 6 we analyse the properties of the
resulting mixnet and prove that it is secure under standard assumptions. In
Section 7 we conclude and suggest future directions.

2 Preliminaries

2.1 Notation

We denote by κ the security parameter (i.e the bitlength of the RSA modulus),
and say that a function ε(κ) is negligible if for each c ∈ N there exists κ0 ∈ N

such that for all κ > κ0, ε(κ) < κ−c. We denote probabilistic polynomial time
by PPT and assume all adversaries are PPT Turing machines. Let ΣN be the
symmetric group on N elements. By a “random encryption” of a message m,
we will implicity mean an encryption of m where the randomisation factor is
chosen uniformly and independently from the randomisation space. Suppose a
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PPT Turing Machine A distinguishes distributions D1 and D0. We denote by
Adv(A) the advantage of A in distinguishing D1 and D0, where

Adv(A) = | Pr
t←D1

[A(t) = 1]− Pr
t←D0

[A(t) = 1]|

is a function of κ.

2.2 Homomorphic Encryption

Definition 1 (Homomorphic). The public key of a homomorphic cryptosys-
tem CS = (G, E ,D) specifies a message space (Mpk,+), a randomiser space
(Rpk, ·) and a ciphertext space (Cpk,×) all of which are abelian groups. En-
cryption is homomorphic

Epk(m, r) × Epk(m′, r′) = Epk(m+m′, r · r′).

For any homomorphic cryptosystem we can define a scalar homomorphism gener-
ically

c⊗ Epk(m, r) = Epk(m, r) × . . .× Epk(m, r)︸ ︷︷ ︸
c

= Epk(cm, rc).

Definition 2 (Indistinguishability under Chosen Plaintext Attacks).
Let CS = (G, E ,D) be a cryptosystem and A = (A1, A2) be an adversary. Define

Experiment ExpIND−CPA−b
A,CS (κ) :

(pk, sk)← G(1κ); (m0,m1, δ)← A1(pk) : |m0|= |m1|; c← Epk(mb);

v ← A2(m0,m1, δ, c)

return v
and let

Adv(A) =| Pr[ExpIND−CPA−1
A,CS (κ) = 1]− Pr[ExpIND−CPA−0

A,CS (κ) = 1] |

Then CS satisfies indistinguishability under chosen plaintext attacks (IND-CPA)
if for any PPT A, Adv(A) is negligible.

2.3 The Damg̊ard-Jurik Cryptosystem

The Damg̊ard-Jurik Cryptosystem [DJ01] is a generalisation of the Paillier Cryp-
tosystem [Pai99] based on the isomorphism Zni × Z∗

n → Z∗
ni+1 . Let Ei,n be the

ith generalised Paillier encryption, where i ≤ s for some integer s.

Key Generation. Let n = pq be an RSA modulus. Let λ = lcm(p− 1, q − 1).
Compute via the Chinese Remainder Theorem d such that d = 1 mod ns

and d = 0 mod λ.
Encryption. Given a plaintext m ∈ Zni , choose a random r ∈ Z∗

n.

Let Ei,n(m, r)= (1 + n)mrn
i

mod ni+1.
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Decryption. Di,n(c) = log(1+n) c
d mod ni+1. We have:

cd = (1 + n)mdrn
id = (1 + n)md mod ni

rn
id = (1 + n)m mod ni+1.

One can extract m given (1 + n)m mod ni+1 using the binomial-expansion
based algorithm presented in Section 3 of [DJ01].

Semantic Security. Semantic security of the scheme is based upon the Deci-
sion Composite Residuosity Assumption (DCRA) [Pai99], which states that
no PPT algorithm can distinguish the uniform distribution on Z∗

n2 from the
uniform distribution on the subgroup of nth residues in Z∗

n2 . In fact an adver-
sary with advantage εi(κ) against Ei,n implies an adversary with advantage
at least εi(κ)/i against E1,n as shown in [Gjø05].

2.4 Privacy of a Shuffle

Nguyen et al. in [NSNK04] formally define shuffle privacy by observing that a
shuffle of ciphertexts is an “encryption” that hides the permutation. The corre-
sponding security notion is “indistinguishability under chosen permutation at-
tacks” (IND-CPAS). A discussion is included in Appendix A.

3 Permutation Networks

A permutation network is a circuit composed of configurable switches that per-
mutes a set of inputs. For convenience we assume that every switch accepts the
same number of inputs. This includes the important special cases of rotation and
shuffling - the networks we present are also optimal in the sense that the size
and depth are minimal. We assume that the number of inputs, N , is a power of
two.

Definition 3. Suppose Ψ is a permutation network of dimension Δ×W . Then
each layer consists of W independent switches where each switch imposes a fixed
mapping on N ′ = N/W inputs when its control bit is true. Let the switches in
the ith layer partition the set of inputs {1, . . . , N} into subsets Vi,1, . . . , Vi,W with
corresponding mappings σi,1, . . . , σi,W . Let A(i) be the adjacency matrix of the
ith layer. Then

A
(i)
lm =

{
1 if l = m ∨ σi,j(l) = m for some j ∈ [W ]
0 otherwise.

(1)

Let the control bits of the ith layer be bi,1, . . . , bi,W . Then the permutation im-

posed by that layer is πi � σ
bi,1
i,1 . . . σ

bi,W
i,W . Moreover the state of the network is

π
Ψ
= πΔ . . . π1.

3.1 Rotation

We describe the barrel shifter network which is capable of implementing every
possible rotation. Let the set of rotations be φ0, . . . , φN−1. Observe that a switch
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on N inputs can output φ0 or φ2i for each i in [log2N ]. Cascading these switches
together, we obtain a network that has Δ = log2N and W = 1. Clearly φj :
0 ≤ j < N is output iff blog2 N−1 . . . b0 = j2, therefore each rotation is possible.
Figure 1(a) shows an example for N = 8.

3.2 Shuffling

We require a rearrangeable permutation network, i.e. one that is capable of im-
plementing all possible permutations of its input. Since there are N ! possible
outputs, at least log2N ! = Ω(N logN) switches are required. A number of net-
works meet this bound for example the Waksman network [Wak68] consists of
N log2N−N+1 switches. For convenience we will use the slightly simpler Beneš
network [Ben64] which consists of a butterfly network composed with a reflected
butterfly network, where the middle layer is shared. Note that the network has
Δ = 2 log2N − 1,W = N/2. Figure 1(b) shows an example for N = 8.

3.3 Biased Networks

Abe and Hoshino observed that setting each switch uniformly and independently
in most permutation networks leads to a biased distribution over ΣN [AH01].
For example, in the Beneš network, there are 2(N/2)(log2 N−1) switch settings
that produce the identity permutation, while other permutations result from
only one switch setting. This issue cannot be avoided in Protocol 1 leading to
biased output of the mixnet. However we provide some results that suggest that
for certain applications the protocol may be acceptable.

Definition 4. Suppose Ψ is a permutation network. Let k ≤ N be a positive
integer. Let Ck and Pk be the set of ordered (resp. unordered) k-tuples whose
elements are drawn without replacement from 1, . . . , N . For t ∈ Ck, let Ct and
Pt be the distributions of {Ψ(t1), . . . , Ψ(tk)} and (Ψ(t1), . . . , Ψ(tk)) respectively,
when all switches are set uniformly at random. The bias over ordered (resp.
unordered) k-tuples of Ψ is

εCk
(N) = max

t∈Ck

‖Ct − U(Ck)‖, εPk
(N) = max

t∈Ck

‖Pt − U(Pk)‖

where U is the uniform distribution and ‖ · − · ‖ denotes the statistical distance.

Proposition 1. The bias over 1-tuples of the Beneš network is 0.

Proof. It is well-known that the Butterfly network sends any input to each out-
put with probability 1/N when set uniformly. This property is maintained when
the network is composed with its reflection.

Theorem 1 (Lemma 4.2 [CKKK01]). One can construct a permutation net-
work of depth O(log4N) with bias over ordered N/ log2N -tuples in O(1/N2).

Theorem 2 (Corollary 1.10 [CKKK01]). There are permutation networks
of depth O(log2N) with bias over unordered N -tuples in O(1/N).
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(a) Barrel Shifter. (b) Beneš.

Fig 1. Permutation Networks

Proposition 1 guarantees the privacy of any input in the absence of infor-
mation about the images of other inputs. On the other hand, the network in
Theorem 1 guarantees that the images of any k ≤ N/ log2N inputs cannot be
determined except with low probability. Unfortunately privacy is only guaran-
teed between ordered k-tuples, for example it is possible that the order of inputs
is maintained. For applications where there is a lot of redundancy in the inputs,
such as first-past-the post voting, this level of bias may be acceptable. Theorem 2
is unfortunately non-constructive, but states that efficient networks with small
bias exist.

4 Obfuscation of a Paillier Shuffle

In this section we show how to obfuscate Paillier shuffles via permutation net-
works. A key property we use is that the Damg̊ard-Jurik cryptosystem supports
nested homomorphic encryption. Let Ei,n : Mi,n × Rn → Ci,n denote the ith

generalised Paillier encryption, where Mi,n and Ci,n are the message and ci-
phertext spaces.1 Similiarly define re-encryption RE i,n : Ci,n × Rn → Ci,n.
Then Ci,n ⊆ Mi+1,n for all i ≥ 1 and additionally Ei,n(m, r) ⊗ Ej,n(m′, r′) =
Ej,n(Ei,n(m, r) × m′, Ei,n(m, r) ⊗ r′) for all m ∈ Ci,n,m

′ ∈ Mj,n, r, r
′ ∈ Rn.

The latter property appears to have been first observed by Lipmaa [Lip05] who
used it in a recursive fashion to develop an efficient 1-out-of-n computationally
private information retrieval (CPIR) protocol. Adida and Wikström in [AW07a]
independently noticed this fact and used it define a form of homomorphic matrix
multiplication.

4.1 Matrix Notation

Let Ēi,n and R̄E i,n be encryption and re-encryption defined for matrices of in-
puts. Let ◦ denote point-wise matrix multiplication and ⊗ denote point-wise

1 Note that Rn is actually equivalent to C0,n.
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matrix exponentiation, note that like ciphertext exponentiation the exponent
matrix is written on the left. Variables in lower case will generally denote vec-
tors, while variables in upper case will denote matrices.

Definition 5 (Homomorphic Matrix Multiplication [AW07a]). Suppose

d = (dl) ∈ C1×N
i,n and C = (clm) ∈ CN×N

j,n . Then d ! C �
(∏N

l=1(clm)dl

)N

m=1
.

Proposition 2. Suppose d ∈ C1×N
i,n and C = Ēj,n(M,R) ∈ CN×N

j,n . Then d!C =

Ēj,n(d×M,d ! R).

Proof. The proof follows easily from the homomorphic properties of Ej,n.

4.2 Obfuscation of Damg̊ard-Jurik Shuffles

The main idea behind standard Paillier obfuscation is to represent the shuffle
as a modified permutation matrix where the ones are replaced by re-encryption
factors and then encrypt it (see Definition 9 [AW07a]). A straightforward gen-
eralisation allows one to obfuscate Damg̊ard-Jurik shuffles of arbitrary degree
(Proposition 3). Moreover it turns out that homomorphic matrix multiplica-
tion actually composes obfuscated shuffles, although this fact was not noted in
[AW07a]. The composition of two obfuscated shuffles multiplies both underlying
permutations, but re-encrypts using the re-encryption factors of the first shuffle.
This is formalised in Lemma 1.

Definition 6. Suppose Λπ = (λπlm) is a permutation matrix. Let a = (al) ∈
M1×N

i,n and r = (rl) ∈ R1×N
n be vectors. Then P π

i [a, r] � (λπlmEi,n(al, rl)).

Definition 7. The ith generalised Paillier shuffle is a functionality PSi =
{PSi,N(κ),κ}κ∈N, where N(·) is a polynomially bounded and polynomi-
ally computable function, such that for every κ ∈ N,PSi,N(κ),κ =
{PSi[π, r]}π∈ΣN(κ),r∈({0,1}∗)N(κ) and for every (n, sk) ∈ G(1κ) and (c1, . . . , cN ) ∈
C1×N
i,n the circuit PSi[π, r] is defined by

PSi[π, r](n, c1, . . . , cN) = (c1, . . . , cN )× P π
i [0, r].

Proposition 3. Let PSi[π, r] ∈ PSi,N(κ),κ be a shuffle and let i < j. Then

C = Ēj,n(P π
i [0, r], S) : S ∈R Rn

N×N is an obfuscation of PSi[π, r].

Proof. Let d ∈ C1×N
i,n . Define d′ = d ! C. By Proposition 2

d′ = d ! Ēj,n(P π
i [0, r], S) = Ēj,n(d× P π

i [0, r], d ! S) = Ēj,n(PSi[π, r](d), d ! S).

Lemma 1 (Composition). Suppose PSi[μ, r] ∈ PSi,N(κ),κ, PSj [ν, r
′] ∈

PSj,N,κ are shuffles with corresponding obfuscations Cμ
i � Ēi+1,n(P

μ
i [0, r], S),

Cν
j � Ēj+1,n(P

ν
j [0, r

′], S′), where i < j. Then (Cμ
i , C

ν
j ) is an obfuscation of

PSi[νμ, r].
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Proof. Let d ∈ C1×N
i,n . Define d′ = d ! Cμ

i and d′′ = d′ ! Cν
j . By Proposition 2

d′′ = Ēj+1,n(PSj [ν, r
′](d′), d′ ! S′)

= Ēj+1,n(PSj [ν, r
′](Ēi+1,n(PSi[μ, r](d), d ! S)), d

′ ! S′)

= Ēj+1,n(Ēi+1,n(PSi[μ, r](d), d ! S + r′(j−i))× Λν , d′ ! S′)

= Ēj+1,n(Ēi+1,n(PSi[νμ, r](d), ν(d ! S + r′(j−i))), d′ ! S′).

4.3 Obfuscation of Shuffle Networks

The composition lemma implies that a sequence of obfuscated shuffles of ar-
bitrary length may be composed by multiplication, the result is an obfuscated
shuffle that composes all permutations but inherits re-encryption factors from
only the first shuffle in the sequence. Therefore it is possible to obfuscate the
set of shuffles induced by the layers of a re-encryption permutation network
[Abe99, JJ99] and compose them, provided that the ith layer is lifted to ac-
cept ith generalised Paillier ciphertexts (Proposition 4). We further observe that
each layer can be obfuscated using only O(N) ciphertexts, by decomposing the
corresponding permutation into switches (Proposition 5). Combining these ob-
servations yields an efficient obfuscator of an arbitrary shuffle (Definition 8). We
prove that our obfuscator is semantically secure if the network has polylogarith-
mic depth and the DCRA holds (Theorem 3).

Proposition 4. Let Ψ be a re-encryption permutation network with state

π
Ψ
= πΔ . . . π1. Suppose that PS1[π1, r

(1)] ∈ PS1,N(κ),κ, . . . , PSΔ[πΔ, r
(Δ)] ∈

PSΔ,N(κ),κ is the sequence of shuffles corresponding to the layers of Ψ .

Let {Cπi

i = Ēi+1,n(P
πi

i [0, r(i)], Si) : Si ∈ RN×N
n } be obfuscations. Then

(Cπ1
1 , . . . , CπΔ

Δ ) is an obfuscation of PS1[π, r
(1)].

Proof. The result follows from recursive application of Lemma 1.

Proposition 5. Let PSi[πi, r
(i)] and Cπi

i be defined as in Proposition 4 and let
A(i) be the adjacency matrix of the ith layer of Ψ . Then C′

i
πi = A(i) ⊗ Cπi

i is
also an obfuscation of PSi[πi, r

(i)].

Proof. Observe that by Equation (1), Definition 3, A(i) ◦ Λπi = Λπi . By the
homomorphic properties of ciphertext exponentiation

A(i) ⊗ Cπi

i = A(i) ⊗ Ēi+1,n(P
πi

i [0, r(i)], Si)

= Ēi+1,n(A
(i) ◦ P πi

i [0, r(i)], A(i) ⊗ Si)

= Ēi+1,n(P
πi

i [0, r(i)], A(i) ⊗ Si).

Note that matrix A(i) is zero except for the co-ordinates which correspond to
input and output nodes in the ith layer which are linked by switch. It follows
that C′

i
πi is a matrix which consists of only 2N non-trivial ciphertexts.
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Definition 8. Let Ψ be a rearrangeable permutation network of depth Δ.
The obfuscator OΨ for the Paillier shuffle PS1 takes as input the tuple
(1κ, n, d, PS1[π, r]), where (n, sk) ∈ G(1κ) and PS1[π, r] ∈ PS1,N(κ),κ.

It computes π
Ψ
= πΔ . . . π1 and generates shuffles PS1[π1, r

(1)] ∈
PS1,N(κ),κ, . . . , PSΔ[πΔ, r

(Δ)] ∈ PSΔ,N(κ),κ such that r(1) = r and

r(2), . . . , r(N) ∈R R1×N
n . It produces obfuscations {Ci

πi = A(i) ⊗
Ēi+1,n(P

πi [0, r(i)], Si) : Si ∈ RN×N
n }Δi=1. It outputs a circuit with hardcoded

C1
π1 , . . . CΔ

πΔ that, on input d ∈ C1×N
1,n outputs d′ = d ! C1

π1 ! . . . ! CΔ
πΔ ∈

CΔ+1,n.

Theorem 3. The obfuscator OΨ is polynomially indistinguishable (Definition 4
[AW07a]) if Ψ has polylogarithmic depth and the DCRA holds.

5 Distributed Sampling and Obfuscation of a Shuffle

We construct a distributed protocol for sampling and obfuscating a shuffle via
an arbitrary permutation network. Suppose that mix serversM1 −Mk sample
and obfuscate the shuffle. Denote the switch at position (i, j) in Ψ by χi,j . Recall
that the permutation in the ith layer of a permutation network may be written as

a product of the switches which are set to true, i.e. πi = σ
bi,1
i,1 . . . σ

bi,W
i,W . To ensure

that the state of the permutation network is set uniformly at random, every mix
flips the state of χi,j at random hence bi,j = 1 with probability 1/2. In practice

χi,j is simply a permutation matrix of encrypted control bits, hiding σ
bi,j
i,j . When

the matrices χi,1, . . . , χi,W are superimposed, they form the permutation matrix
Ci of the shuffle πi. Thus the obfuscated shuffle is the tuple (C1, . . . , CΔ).

Protocol 1 (Sampling and Obfuscation of a Shuffle).
Common Input: A Paillier public key n, integerN and permutation network
Ψ of dimension Δ×W .
Mix serverMI proceeds as follows.

1. For i = 1, . . . , Δ do:

(a) Generate N×N matrix Ci whose entries are all initially Ei+1,n(0, 0
∗).

(b) For j = 1, . . . ,W do:

i. Generate N ′ double encrypted zeroes of the form Ei+1,n(Ei,n(0))
in a distributed way using Protocol 3 [AW07a]. Denote these

(c
(1)
i,j , . . . , c

(N ′)
i,j ).

ii. Form the matrix:

χ
(0)
i,j =

(
c
(1)
i,j , . . . , c

(N ′)
i,j

Ei+1,n(0, 0
∗) , . . . , Ei+1,n(0, 0

∗)

)
.

iii. For l = 1, . . . , k do:
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– If l = I, permute the rows of χ
(l−1)
i,j with μ

(l)
i,j ∈R Σ2 respec-

tively and re-encrypt them with randomness r
(l)
i ∈R R2×N ′

n

publishing matrix

χ
(l)
i,j = R̄E i+1,n(μ

(l)
i,j(χ

(l−1)
i,j ), r

(l)
i ).

– If l �= I, verify that the above equation holds.
iv. Suppose Vi,j = {l1, . . . , lN ′}. Update matrix Ci:

Ci

(
l1, l1 , . . . , lN ′ , lN ′

l1, σi,j(l1) , . . . , lN ′ , σi,j(lN ′)

)
← χ

(k)
i,j .

2. Output (C1, . . . , CΔ).

6 Mixnet Properties

We analyse the mixnet which result from mix servers generating an obfuscated
shuffle according to Protocol 1, evaluating it upon input and requesting that a
threshold number of decryption servers decrypt the output. Note thatN(Δ+1) =
O(N logN) threshold decryptions are required to recover the input messages.

6.1 Privacy

We assume the existence of at least one honest mix in Protocol 1, hence the ob-
fuscated shuffle should be identically distributed to the output of a trusted party
running obfuscator OΨ (Definition 8), albeit according to a biased permutation
distribution, namely that formed by setting the network uniformly at random.
Therefore the security of the mixnet follows from the following theorem.

Theorem 4. Suppose the DCRA holds. Let (CSpai, S, (P ,V)) be the verifiable
shuffle which results from a trusted party obfuscating a random Paillier shuf-
fle according to Definition 8, evaluating it upon input and then revealing (and
proving correct) each layer of intermediate decryptions. Then (CSpai, S, (P ,V))
is IND-CPAS secure.

We note that a weakness of the IND-CPAS model is that it does not guarantee
that all information usable by an attacker remains hidden when the mixed ci-
phertexts are finally opened. In particular an attacker will at least know their
own output and may combine this with knowledge of the bias to infer other out-
puts. Therefore analysis of a realisable ideal (biased) mixnet in the universally
composable framework [Can01] is desirable but unfortunately beyond the scope
of this paper.
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Remark 1. Alternatively it is possible to construct an unbiased mixnet as follows.
The Ith mix samples a shuffle from PS(I−1)Δ+1 at random and obfuscates it by
setting the state of the Beneš network accordingly and applying the obfuscator
in Definition 8. The obfuscated shuffles are then homomorphically multiplied
with the input. Note, however, this approach incurs an overhead of k3.5 (see
Section 6.2) thus is only practicable for small k.

6.2 Complexity

The expansion factor of the mix-net is 1/Δ. We count the effective number of
multiplications modulo n for each stage of the mixing process, and compare
them to [AW07a]. We assume that multiplication modulo ns is s1.5 times as
costly as multiplication modulo n, and that exponentiation is performed by
repeated squaring. This implies complexity proportional to Δ3.5. Note that κc
is a parameter of Protocol 2 [AW07a] and satisfies κc 	 κ.

Sample & Prove Evaluate Decrypt
Obfuscate

[AW07a] (Shuffle) O(N2κ) O((N2 +Nκc)κ ) O(N2κ) O(N logNκ)

Proposed O(N log3.5Nκ) O(N log3.5Nκcκ) O(N log3.5Nκ) O(N log3.5N
(Shuffle & Rotate) (logN + κ))

An implementation using GMP [Gra12] suggests that our scheme is faster when
N > 1200.

6.3 Parallelisation

Generating an obfuscated shuffle makes use of a private mixnet, therefore par-
allelisation is limited to that within individual mixes, of course the verification
of each mix’s shuffle proofs can be distributed over other mixes or the public.
The evaluation of the shuffle is public, though, hence can be safely parallelised
over arbitrarily many parties. The most obvious parallelisation has k processors
evaluate O(N/k) switches at each layer of the network, resulting in O(logN)
parallel steps. Thus when k ≈ N it is possible to mix votes in polylogarithmic
time.

7 Conclusion

We have presented a more efficient method of obfuscating a Paillier shuffle based
upon re-encryption permutation networks. An interesting further direction is to
investigate to what extent it is possible to distribute the sampling and obfusca-
tion of a shuffle over a variable number of parties, without incurring a prohibitive
loss in efficiency. Such a protocol could conceivably allow voters to directly con-
tribute to the anonymisation of their votes without any assistance from third
parties.
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A Shuffle Privacy

A verifiable shuffle is a tuple (RP , S, (P ,V)) whereRP is a public-key cryptosys-
tem with a re-encryption algorithm, S is a PPT algorithm that shuffles input ci-
phertexts and (P ,V) is a proof system that proves the existence of re-encryption
factors linking input and output ciphertexts [NSNK04]. One definition for secu-
rity of a verifiable shuffle is indistinguishability under chosen permutation attacks
(IND-CPAS) and is an extension of classical IND-CPA security for cryptosys-
tems. A related definition is semantic privacy under chosen permutation attacks
(SP-CPAS) which specifies that whatever can be computed after the shuffle exe-
cution could be computed using only prior information. Nguyen et al. [NSNK04]
prove that the two notions are equivalent.

Definition 9 (Indistinguishability under Chosen Permutation Attacks).
Let
(RP , S, (P ,V)) be a verifiable shuffle and A = (A1, A2) be a pair of PPT algo-
rithms. Let t ∈ {0, 1}poly(κ). Define
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Experiment ExpIND−CPAS−b
A,(RP,S,(P,V))(κ, t) :

(pk, sk)← G(1κ); ((π(0), π(1), Lin, L
(p)
in , C

L
(p)
in

Epk
), δ)← A1(pk, t);

Lout ← S(pk, Lin, π(b));

o(b) ← (Lout,VIEW
P
V (pk, Lin, Lout), Lin, L

(p)
in , C

L
(p)
in

Epk
);

v ← A2(δ, o(b))

return v
and let

Adv(A) =

max
t∈{0,1}poly(κ)

| Pr[ExpIND−CPAS−1
A,(RP,S,(P,V))(κ, t) = 1]− Pr[ExpIND−CPAS−0

A,(RP,S,(P,V))(κ, t) = 1] |

Then (RP , S, (P ,V)) satisfies indistinguishability under chosen plaintext attacks
(IND-CPAS) if for any A with polynomially bounded auxiliary input, Adv(A) is
negligible.

B Proofs

B.1 Proof of Theorem 3

Proof. Suppose there is an adversary A against the the obfuscator OΨ with ad-
vantage ε(κ). Let A′ be an adversary in the IND-CPA experiment for EΔ+1,n.

When A outputs challenge circuits PS0, PS1, adversary A′ generates sequences
{P 0

i }Δi=1, {P 1
i }Δi=1 as would be generated by OΨ . When the IND-CPA experi-

ment returns Sb = {ĒΔ+1,n(P
b
i )}Δi=1, A

′ produces Sb
red = {A(i) ⊗ ĒΔ+1,n(P

b
i )

(mod ni+1)}Δi=1 and passes it to A, outputting 1 iff A does. Since Sb
red is identi-

cally distributed to OΨ (PS
b), the advantage of A′ in the IND-CPA experiment

is identical to that of A in distinguishing the obfuscated shuffles. Then by the re-
marks in Section 2.3, A′ has advantage at least ε(κ)/(Δ+1) = ε(κ)/O(logcN) in
breaking the DCRA. Since N < 2κ, logcN < κc thus ε(κ)/κc must be negligible
if the DCRA holds. Then ε(κ) is also negligible and polynomial indistinguisha-
bility of OΨ follows.

B.2 Proof of Theorem 4

Proof. The proof is via a hybrid argument. First define D̄i,n to be the vector
form of Di,n, and define D̄j:i,n = D̄j,n ◦ . . . ◦ D̄i,n for j > i. Suppose Π(b) is the

distribution of the challenge o(b) in ExpIND−CPAS−b
A, (CSpai,S,(P,V))

, where A = (A1, A2) is
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an adversary. Define the following hybrid distributions:

Π(b) =

(
L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, D̄Δ+1,n(Leval), . . . , D̄Δ+1:2,n(Leval)

)
:

(Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t), π(b)

Ψ
= πΔ . . . π1,

Ci = A(i) ⊗ Ēi+1,n(P
πi [0, r(i)], Si) : r

(i) ∈ R1×N
n , Si ∈ RN×N

n ,

Leval ← Lin !

Δ∏
i=1

Ci.

Π̂(b) =

(
L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, D̄Δ+1,n(Leval), . . . , D̄Δ+1:2,n(Leval)

)
:

(Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t), π(b)

Ψ
= πΔ . . . π1,

Ci=A
(i) ⊗ Ēi+1,n(P

πi [x(i), r(i)], Si) :x
(i)∈M1×N

i,n , r(i)∈R1×N
n , Si∈RN×N

n ,

Leval ← Lin !

Δ∏
i=1

Ci.

Π̃Ψ =

(
L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, yΔ, . . . , y1

)
:

(Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t),

Ci = A(i) ⊗ Ēi+1,n(0, Si) : Si ∈ RN×N
n ,

Leval ← Lin !
Δ∏
i=1

Ci, yΔ ∈R C1×N
Δ,n , . . . , y1 ∈R C1×N

1,n .

We are required to show that the distributionsΠ(0) andΠ(1) are computationally

indistinguishable. By transitivity it suffices to prove that Π(b) and Π̃(b) are
computationally indistinguishable for each b. However this in turn follows from
combining Lemmas 2 and 3.

Lemma 2. Suppose the DCRA holds. Then the distributions Π(b) and Π̂(b) are
computationally indistinguishable.

Proof. Suppose there is an adversary A = (A1, A2) against Π(b) and Π̂(b) with
advantage ε(κ). Let A′ be the adversary that distinguishes a ciphertext cΔ that
is a random encryption of 0 or a uniform message under EΔ,n as follows.

Adversary A′(cΔ, n, t)

1. Set (Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t)

2. Compute π(b)
Ψ
= πΔ . . . π1.

3. For i = 1, . . . , Δ do:

(a) Compute ci ≡ cΔ mod ni+1.
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(b) Apply Protocol 2 on (ci, πi) to generate modified permutation matrix
P πi

i [a(i), r(i)].
(c) Generate Ci = A(i) ⊗ Ēi+1,n(P

πi

i [a(i), r(i)], Si) : Si ∈R RN×N
n .

4. Set Leval ← Lin !
∏Δ

i=1 Ci.
5. For i = 1, . . . , Δ do:

(a) Compute D̄Δ+1:i+1,n(Leval) = πΔ . . . πi+1 (li−1 × P πi

i [a(i), r(i)]).
6. Run A2 on

o(b) = (L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, D̄Δ+1,n(Leval), . . . , D̄Δ+1:2,n(Leval))

and output 1 iff A2 does.

Clearly A′ has advantage ε(κ) in breaking the semantic security of EΔ,n. Since
Δ = O(logcN) the DCRA implies ε(κ) is negligible, hence the lemma follows.

Lemma 3. Suppose the DCRA holds. Then the distributions Π̂(b) and Π̃ are
computationally indistinguishable.

Proof. Suppose there is an adversary A = (A1, A2) against Π̂(b) and Π̃ with
advantage ε(κ). Let A′ be the adversary that distinguishes a ciphertext cΔ+1

that is a random encryption of 0 or 1 under EΔ+1 as follows.

Adversary A′(cΔ+1, n, t)

1. Set (Lin, L
(p)
in , C

L
(p)
in

E1,n
, π(0), π(1))← A1(n, t).

2. Compute π(b)
Ψ
= πΔ . . . π1.

3. For i = 1, . . . , Δ do:
(a) Compute ci ≡ cΔ+1 mod ni+2.
(b) Generate modified permutation matrix P πi

i [x(i), r(i)] where x(i) ∈R
Mi,n

1×N , r(i) ∈R R1×N
n .

(c) Apply Protocol 3 on (ci, πi) to generate matrix of ciphertexts Mi.
(d) Generate Ci = A(i)⊗(P πi

i [x(i), r(i)]⊗Mi⊕Ei,n(0, Si)) : Si ∈R RN×N
n .

4. Set Leval ← Lin !
∏Δ

i=1 Ci.
5. For i = 1, . . . , Δ do:

(a) Compute D̄Δ+1:i+1,n(Leval) = πΔ . . . πi+1 (li−1 × P πi

i [x(i), r(i)]).
6. Run A2 on

o(b) = (L
(p)
in , C

L
(p)
in

E1,n
, Lin, Leval, D̄Δ+1,n(Leval), . . . , D̄Δ+1:2,n(Leval))

and output 1 iff A2 does.

Clearly A′ has advantage ε(κ) in breaking the semantic security of EΔ+1,n. Since
Δ = O(logcN) the DCRA implies ε(κ) is negligible, hence the lemma follows.

Protocol 2.

Input Ciphertext c which is a random encryption of 0 or a uniformly chosen
message under Ei and permutation πi ∈ ΣN .
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Output Modified permutation matrix P πi

i [a, r] with distribution

P πi

i [0, r] : r ∈R R1×N
n if c is a random encryption of 0,

P πi

i [x, r] : x ∈R Mi,n
1×N , r ∈R R1×N

n otherwise.

Procedure Use standard amplification to generate N independent copies
c1, . . . , cN which have the same distribution as c. Replacing the ones in Λπi

with {ci}Ni=1 yields the required distribution.

Protocol 3.

Input Ciphertext c which is a random encryption of 0 or 1 under Ei+1,n and a
permutation πi ∈ ΣN .

Output Matrix Mi with distribution

Ēi+1,n(0, S) : S ∈R RN×N
n if c is a random encryption of 0,

Ēi+1,n(Λ
πi , S) : S ∈R RN×N

n otherwise.

Procedure Use standard amplification to generate N independent copies
c1, . . . , cN which have the same distribution as c. Replacing the ones in Λπi

with {ci}Ni=1 and the zeroes with random encryptions of zero yields the re-
quired distribution.
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Abstract. We present a new framework for constructing efficient pass-
word authenticated key exchange (PAKE) protocols based on oblivious
transfer (OT). Using this framework, we obtain:

– an efficient and simple UC-secure PAKE protocol that is secure
against adaptive corruptions without erasures.

– efficient and simple PAKE protocols under the Computational Diffie-
Hellman (CDH) assumption and the hardness of factoring. (Previous
efficient constructions rely on hash proof systems, which appears to
be inherently limited to decisional assumptions.)

All of our constructions assume a common reference string (CRS) but
do not rely on random oracles.
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1 Introduction

Password authenticated key-exchange (PAKE) allows two parties with a shared
password to mutually authenticate each other and establish a shared key, without
explicitly revealing the password in the process [bm93]. PAKE is well-suited
for use in web authentication (in place of having the user input her password
directly), as it resists phishing and other social engineering attacks; if a user
mistakenly authenticates herself to a phisher via a PAKE protocol, the protocol
will fail, but the user’s password remains safe. For this application, it is important
that the PAKE protocol remains secure even amidst concurrent executions, as
is unavoidable on the Internet.
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Prior work. The study of PAKE was initiated by Bellovin and Merritt [bm93].
Formal models for PAKE were developed several years later in [bpr00, bmp00,
gl01, chk+

05], and solutions were first presented in the random oracle/ideal
cipher models [bpr00, bmp00, mps00]. Since then, there has been a large number
of constructions in the standard model, without relying on random oracles. For
instance, we now know how to achieve security in the “plain model” without
any additional trusted set-up [gl01, nv04, bcl+05, gjo10]; these constructions
typically rely on general techniques for secure computation. However, these
protocols are fairly inefficient in terms of communication, computation and round
complexity and seem unlikely to lead to a practical instantiation.

In this work, we focus on efficient constructions in the common reference string
(CRS) model, initiated by Katz, Ostrovsky and Yung [koy01] and revisited in
[gl03, jg04, chk+

05, kmtg05, g08, acp09, kv09, gk10, kv11]. Note that in
practice, the CRS can be hard-coded into an implementation of the protocol. In
addition to being computationally efficient and constant-round, these protocols
remain secure even with adversarially coordinated concurrent executions. All
of these works rely on the paradigm of smooth projective hashing [cs02, cs98]
(either directly or indirectly). The most general and most recent is that of Groce
and Katz [gk10], which building on [jg04], shows how to realize efficient PAKE
with two building blocks: a CPA-secure encryption scheme supporting projective
hashing, and a CCA-secure encryption scheme. This improves over previous
works which require a CCA-secure scheme that supports smooth projective
hashing.

The reliance on smooth projective hashing leads to two limitations on the
ensuing protocols: first, all known instantiations of smooth projective hashing
rely on decisional assumptions. e.g., the Decisional Diffie-Hellman (DDH)
assumption or the quadratic residuosity assumption. In general, decisional
assumptions are a much stronger class of assumptions than computational
assumptions based on search problems, such as factoring, finding shortest vectors
in lattices, or even the Computational Diffie-Hellman (CDH) problem. Indeed,
there are groups, such as certain elliptic curve groups with bilinear pairing map,
where the DDH assumption does not hold, but the Computational Diffie-Hellman
(CDH) problem appears to be hard. As such, schemes based on search problems
are generally preferred to those based on decisional assumptions. However, such
schemes seem very hard to obtain.

Second, modifying the schemes based on smooth projective hashing to achieve
security against adaptive corruptions (where an adversary may choose which
parties to corrupt during the execution of the protocol) appears to be fairly
challenging. This was first achieved in the recent work of Abdalla et al. [acp09],
under the additional assumption of secure erasures.

1.1 Our Contributions

We present the first construction of reasonably efficient PAKE protocols that
bypass the “projective hashing” paradigm. Instead, we rely on oblivious transfer
(OT) as the main cryptographic building block. We obtain new PAKE protocols
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that achieve various combinations of the following properties: (a) conceptual
simplicity, (b) efficiency, (c) security against adaptive corruptions even without
erasures, and (d) reliance on relatively weak hardness assumptions.

Before we outline our result, we first mention that there are two prevailing
security notions for PAKE that achieve security under concurrent executions
and in particular, guarantee resilience against man-in-the-middle attacks. The
first and most basic notion is that of “concurent PAKE” put forth by Bellare
et al. and Boyko et al. [bpr00, bmp00]. The second and stronger notion is
that of “UC secure PAKE” [chk+

05, c01], which guarantee security amidst
composition with arbitrary protocols, and with arbitrary, unknown and possibly
correlated password distributions.

Our results. Specifically, we show:

– Two UC-secure PAKE protocols. The first only assumes an ideal OT
functionality, and is secure against adaptive corruptions without erasures.
Combined with the OT protocol with Garay et al. [gwz09], we obtain a
reasonably efficient UC-secure PAKE protocol in the CRS model that is
secure against adaptive corruptions without erasures. (Prior protocols that
achieve adaptive security are either in the Random Oracle model [accp08],
or require secure erasures [acp09] or are highly inefficient [bcl+05].)
The second protocol builds on [gk10], is a more efficient variant of the first,
and relies on a CCA2-secure PKE in addition to OT. It only tolerates static
corruptions. We defer the details of this construction to the full version.

– New PAKE protocols under search assumptions, notably CDH and hardness
of factoring. Previous efficient instantiations rely on hash proof systems,
which appears to be inherently limited to decisional assumptions. This
construction requires a special variant of OT. Here we also provide some
constructions of this special OT variant.

1.2 Overview of Our Constructions

We proceed to provide an overview of our constructions.

The UC Constructions. The main novelty in our UC constructions are
protocols that assume ideal authenticated channels as well as ideal “OT
channels” and realize the following two party functionality, which we call
randomized equality (Fre): If the inputs provided by the parties are equal, then
both parties obtain the same fresh random key. If the parties provide different
inputs, then each party obtains a special symbol ⊥.

Given such a protocol, we use a generic transformation from [bcl+05] to
obtain a protocol that realizes the “split version” of Fre, which turns out to
be equivalent to FpwKE, the ideal password-based key exchange functionality.
The above transformation results in an additional cost of generating a key for a
signature scheme, and then signing each message. Alternatively, we may rely on a
more efficient transformation described in [ccgs10], that costs only a single key
exchange protocol, plus a MAC creation and verification per message (although
this transformation only achieves adaptive security with erasures).
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First Construction. Our first protocol for realizing Fre is extremely simple.
Assume for now that we have an ideal 1-out-of-|D| OT functionality. The first
party acts as the OT receiver and uses as input his password. The second party
acts as the OT sender and picks |D| random strings r1, . . . , r|D| as input. The
first party uses the OT output as his session key, and the second party uses the
string indexed by his password. Indeed, if both parties are honest, they agree
on the same random key, and if the first party is corrupted, he learns nothing
about the session key unless he guesses the right password. There are two issues
with the protocol as described:

– The protocol only handles dictionaries of polynomial size. To fix this, we
observe that we only require that the |D| random strings be pairwise
independent. In particular, we can replace the 1-out-of-|D| OT functionality
with log |D| copies of 1-out-of-2 OT, where the second party now picks log |D|
pairs of random string, and the first party outputs the XOR of the log |D|
OT outputs. (In the overview of the remaining constructions, we omit this
optimization for simplicity.)

– The protocol does not tolerate corruptions of the second party; for instance,
the second party could set all |D| strings to be equal thereby learning the
session key. To fix this, we repeat the basic protocol one more time, with the
roles of the parties reversed, and the final session key is the XOR of the two
session keys. By running the basic protocol in reverse, we guarantee that the
second party also learns nothing about the session key unless it guesses the
right password. (This idea of running a basic protocol with reversed roles
appears in the early works of Katz et al. [koy01, gl03] too.)

Combining this construction with the adaptively secure OT given in [gwz09],
we obtain the following result:

Proposition 1 (informal). There exists a constant-round UC-secure
PAKE protocol in the CRS model that is secure against an adaptive
adversary without erasures and without authenticated channels. The
protocol may be based on DDH or DCR and both parties exchange a
constant number of group elements.

Second Construction. To motivate our second construction, which is inspired
by that of Groce and Katz [gk10, jg04], consider again our basic protocol based
on an ideal 1-out-of-|D| OT functionality. Instead of running the basic protocol
a second time in order to handle corruptions of the second party, we have the
second party send an encryption of her password. The advantage over the first
protocol is that the computation costs for a CCA2-secure encryption is typically
lower than that of running another OT protocol. In more detail, we assume in
addition a common reference string (CRS), and handle corruptions of the second
party as follows:

– Both parties run the basic protocol. Let r1, . . . , r|D| denote |D| random
strings chosen by the second party, and let π denote her password. She then
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parses rπ as a pair of random strings skey‖rand, sends along an encryption
C of π (and her identifier) using randomness rand, under a public key for
a CCA2-secure encryption scheme that is part of the CRS. The first party
encrypts her password with randomness determined by the output from the
basic protocol. If the ciphertext matches C, both parties output skey as the
session key.

If the first party is corrupted and fails to guess the right password, then both skey
and rand are truly random from her point of view, and the ciphertext C reveals
no information about the second party’s password via semantic security. On the
other hand, if the second party is corrupted and fails to guess the right password,
then C will not match the first party’s password by (perfect) correctness of the
underlying encryption. In the proof of security, the simulator will decrypt C to
extract the password of the second party.

The Concurrently-Secure PAKE. Our concurrently-secure PAKE is essen-
tially the same as our second UC-secure construction, except we replace the
underlying UC-secure OT with an OT protocol that achieves much weaker
guarantees. Roughly speaking, we relax the security guarantee for corrupted
senders to an indistinguishability-based notion, and moreover, we no longer
require that the OT guarantee non-malleability. The resulting construction may
also be viewed as an abstraction of the Groce-Katz protocol [gk10, jg04], where
we use an OT primitive in lieu of the CPA-secure encryption with projective
hashing. We provide two different approaches towards realizing the underlying
OT primitive.

Concurrent PAKE from Lossiness. Our first approach is based on dual-
mode cryptosystems, a “lossy” primitive introduced by Peikert et al. [pvw08].
Combined with our general framework, we obtain the following result:

Proposition 2 (informal). There exists a three-message PAKE pro-
tocol in the CRS model that relies on black-box access to a dual-mode
cryptosystem and a CCA-secure encryption scheme and achieves con-
curent security with mutual authentication (against a static adversary).

We stress that this construction should be viewed mainly as a feasibility result on
black-box constructions of PAKE protocols in the CRS model based on general
assumptions. The work of Peikert and Waters [pw08] introduced the notion of
lossy trapdoor functions, and showed that they also yield CCA-secure encryption
schemes. This raised the natural question of understanding connections between
smooth projective hashing and “lossy” primitives. Our work demonstrates that
for concurrently-secure PAKE protocol, it is indeed possible to avoid the use
of smooth projective hashing and rely solely on “lossy” primitives (notably the
dual mode encryption scheme in [pvw08] and lossy trapdoor functions) in a
black-box way.
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Concurrent PAKE from Search Assumptions. Our second approach starts
with the Bellare-Micali OT protocol based on CDH. Combined with our general
framework, we obtain the following result:

Proposition 3 (informal). There exists a constant-round PAKE pro-
tocol in the CRS model based on hardness of factoring or CDH (com-
putational Diffie-Hellman assumption) that achieves concurrent security
with mutual authentication (against a static adversary). Moreover, each
party sends a quadratic number of group elements.

Password Based Group Key Exchange. The second UC construction and
the concurrently secure construction have the following additional attractive
property: The generated session key is determined exclusively by one of the
parties. Furthermore, this key can be chosen by this party in advance, before
the protocol begins. This property allows for a natural extension of these PAKE
protocols to efficient password based group key exchange protocols: One party
exchanges a key with each one of the other parties, using the above property to
ensure that all parties agree on the same key.

This approach to group key exchange is indeed different than the approach
in prior works on this problem, e.g. [abcp06, ap06], which concentrate on
“contributory protocols” where all parties “contribute” to the group key. Still,
it arguably provides an adequate level of security. This approach is particularly
suitable to groups where there is one special party (either the group manager
or the multi-caster of the data): here this party is the only one that does work
that’s proportional to the size of the group. The work done by all other parties
is independent of the size of the group.

2 UC-Secure PAKE from Oblivious Transfer

We present a UC-secure PAKE protocol from Oblivious Transfer. An alternative
construction appears in the full version.

Definitions. For simplicity and clarity, we begin by realizing single-session
PAKE, and we extend all of these definitions and results to multi-sessions in
the full version1. We present the functionality FpwKE for password-based key
exchange. The description of the functionality is a modified version of the
description in [gk10] (which is itself a modification of [chk+

05]). In particular,
FpwKE captures PAKE protocols which achieve explicit mutual authentication.
We refer the reader to [chk+

05, gk10] for motivating discussion regarding the
particular choices made in this formulation of the functionality.

1 Note that for single-session PAKE we may require an independent common reference
string for each concurrent PAKE session; however, realizing multi-session PAKE
allows us to have a single global common reference string for an unbounded number
of concurrent PAKE sessions.
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Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter λ. It interacts
with an adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, I, RπI) from party I:
Record (I,R, πI), mark this record fresh, and send a message (sid, I, R) to
S . Ignore all future messages from I with the same ssid.

Upon receiving a query (sid, ok) from S:
Send a message (NewSession, sid, I, R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I, R, πR) from R: Record (R, I, π)
and mark this record fresh.

Upon receiving a query (TestPwd, sid, P, π′) from the adversary S:
If P ∈ {I,R}, there is a record of the form (P, ∗, π) which is fresh, then
do: If π′ = π, mark the record compromised and reply to S with “correct
guess”. If π �= π′, mark the record interrupted and reply to S with “wrong
guess”. fresh,

Upon receiving a query (NewKey, sid, P, skey) from S, where |skey| = λ:

If there is a record of the form (P, ∗, π) that is not marked completed, do:
• If this record is compromised, or either I or R is corrupted, then output
(sid, skey) to player P .
• else, if there is a record (∗, P, π′, server, skey′) with π′ = π, then send
skey′ to player P .

Fig. 1. The password-based key-exchange functionality FpwKE

Constructions. The construction of both protocols proceeds in three steps.
First, in Section 2.1, we define a (randomized) equality-testing functionality Fre

which, informally speaking, captures PAKE in the authenticated channels model.
In Section 2.2, we show a protocol that securely implements Fre in the OT-hybrid
model, tolerating adaptive corruptions (a second protocol that implements Fre

is presented in the full version). These protocols assume built-in authenticated
channels whereas our end goal, of course, is to implement PAKE without any
authenticated channels. Thus, our second step is to transform these protocols
into ones that do not assume authenticated channels, but implement a “split
version” of Fre (See Section 2.3 for more details) using the transformation of
Barak, Canetti, Lindell, Pass and Rabin [bcl+05]. Together with the adaptively
secure OT protocol of Garay, Wichs and Zhou [gwz09], this gives us a protocol
implementing the split Fre functionality in the common reference string model,
tolerating adaptive corruptions. Finally, we show (in Proposition 4) that the split
Fre functionality already captures UC-secure PAKE. We note that this three step
method of constructing UC PAKE protocols was pointed out in the work of Barak
et al. [bcl+05].

2.1 The Randomized Equality-Testing Functionality

We define a (randomized) equality-testing functionality Fre that, roughly
speaking, takes inputs from two parties and does the following:
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– if the inputs are equal, sends both parties the same random session key;
moreover, if either party is corrupted, the adversary is allowed to set the
key.

– if the inputs are unequal, send both parties the special symbol ⊥.
More precisely, Fre captures a protocol between two players – an “initiator” I
and a “responder” R. The initiator starts the protocol by sending a message to
the functionality Fre that includes his input πI . The functionality then allows
the adversary S to determine when to “wake up” the responder R into starting
the protocol. Once woken up, R sends his input xR to the functionality. If the
inputs match, then the functionality assigns the same random key to both parties.
Otherwise, it assigns a special symbol ⊥ to both of them. Thus, this definition
corresponds to achieving explicit mutual authentication. We allow the ideal-model
adversary two special powers. First, we allow him to set the shared key if one of the
parties is corrupted and both the parties have the same input (jumping ahead, we
note that this corresponds to his ability to set the key in case he guessed one of the
parties’ password correctly). Furthermore, he controls the delivery of messages to
the parties. This is an ability that he inevitably has in the real world.

Functionality Fre

The functionality Fre is parameterized by a security parameter λ and a
“dictionary” D. It interacts with an initiator I , a responder R, and the
adversary S via the following messages:

Upon receiving a query (Init, sid, I, R, πI), πI ∈ D from party I:
Record (I, πI) and send a message (sid, I, R) to S . Ignore all future
messages from I with the same ssid.

Upon receiving a query (sid, ok) from S:
Send a message (wakeup, sid, I, R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I, R, πR) from R:
– If πR = πI , then choose skey← {0, 1}λ and store outI = outR = skey.
– If πR �= πI , then set outI = outR = ⊥.

In both cases, ignore subsequent inputs from R.
Upon receiving a query (Corrupt, sid, I, R, (P,K)) from S, where P ∈ {I,R}:

If πR = πI , then set outI = outR = K. Output the message (corrupted) to
P .

Upon receiving a query (sid,Out, P ), P ∈ {I,R} from S:
Send (output, sid, I, R, outP ) to the player P . Ignore all subsequent (Out, P )
queries for the same player P .

Fig. 2. The Randomized Equality-Testing functionality Fre

Connection to FpwKE. Let sFre be the functionality obtained by applying
the “split functionality” transformation of [bcl+05] to the functionality Fre.
We show that sFre is already powerful enough to capture the password-
authenticated key exchange functionality FpwKE. More formally, we show the
following proposition whose proof is deferred to the full version.
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Proposition 4. There is a protocol ΠREtoPAKE that securely implements the
FpwKE functionality in the sFre-hybrid model, tolerating adaptive corruptions and
without assuming authenticated channels.

2.2 Randomized Equality Testing Protocol 1

We now describe our first randomized equality testing protocol ΠREfromOT in
the FOT-hybrid model. We show that the protocol is secure against adaptive
corruptions in a model with built-in authenticated channels.

UC Randomized Equality Testing Protocol ΠREfromOT in the
FOT-Hybrid Model

The protocol is between two players I and R. Assume that the dictionary
D ⊆ {0, 1}�.

Code for Player Pb interacting with P1−b, where b ∈ {0, 1} and

P0, P1 ∈ {I,R}.
1. Pb, on input π ∈ D does the following. Let π = π1, . . . , π�, where πi ∈
{0, 1}.
– (Run OT as the Receiver) For every i ∈ [1 . . . �], send

(Receiver, sid||i, πi) to FOT.
– (Run OT as the Sender) For every i ∈ [1 . . . �], choose a

pair of random strings (wb
i,0, w

b
i,1) ∈ {0, 1}3λ and send the message

(Sender, sid||i, (wb
i,0, w

b
i,1)) to FOT.

2. Pb waits to receive messages (Output, sid||i, (w′)bi) from FOT for all i ∈
[1 . . . �]. It then computes K′ =

⊕�
i=1 w

′
i = skey′||test′0||test′1.

3. Pb computes the value

K =
�⊕

i=1

wb
i,πi

Δ
= skey||test0||test1 (where skey, test0, test1 ∈ {0, 1}λ)

and sends (testb ⊕ test′b) to P1−b.

4. Pb waits to receive test⊕ test′ ∈ {0, 1}λ from P1−b, and checks if test⊕ test′

matches test1−b ⊕ test′1−b.
– If the check does not pass, then output ⊥.
– If the check passes, output (sid, skey′ ⊕ skey).

In either case, terminate the session.

Fig. 3. Randomized Equality Testing Protocol ΠREfromOT
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Theorem 1. The protocol ΠREfromOT in Figure 3 securely realizes the random-
ized equality testing functionality Fre in the FOT-hybrid model, in the presence
of adaptive corruptions, and assuming authenticated channels.

Proof. Let A be an adaptive adversary interacting with a pair of parties I and
R running the protocol ΠREfromOT. We show that for every such A, there is an
ideal-world adversary (simulator) S interacting with dummy parties and the
ideal functionality Fre such that no environment Z can distinguish between an
interaction with A in the protocol ΠREfromOT and an interaction with S in the
ideal world.

Description of the Simulator. The simulator S starts by invoking a copy of
A and running a simulated interaction of A with the environment Z and the
parties running the protocol. S proceeds as follows:

Simulating the Communication with Z: Every message that S receives
from the environment Z is written to A’s input tape. In the same vein,
every output value that A writes to its output tape is copied to S’s own
output tape (to be read later by Z).

Simulating the Case when the Initiator I is Corrupted: S does the fol-
lowing.
– Upon receiving a message (Sender, sid||i, (ω0, ω1)) from A in session

sid, ssid, record wb
i,0 = ω0 and wb

i,1 = ω1.
– Upon receiving a message (Receiver, sid||i, β) from A, record πi = β.

Choose a uniformly random string (w′)bi,πi
← {0, 1}λ and send it to A.

– As soon as all the bits πi are received, let π = π1 . . . π�, and write the
message (Init, sid, ssid, I, R, π) on the outgoing communication tape of
the corrupted (ideal model) I (to be sent to the functionality Fre). Also
send (ok) to the ideal functionality Fre.

– As soon as all the pairs (wb
i,0, w

b
i,1) have been recorded (for all i ∈ [�]),

compute the key

K ′ =
�⊕

i=1

(w′)bi,πi

Δ
= skey′||test′ and K =

�⊕
i=1

wb
i,πi

Δ
= skey||test

where skey, skey′, test, test′ ∈ {0, 1}λ. Send a message
(Corrupt, sid, I, R, skey⊕ skey′) to the functionality Fre.

– Send the messages (out, I) and (out, R) to Fre, and receive outI from Fre.
(Remark: Note that in case the inputs of I and R match, outI = skey⊕
skey′, otherwise outI = ⊥. Thus, given outI , S can tell if the inputs of I
and R are the same or not.)

– If outI �= ⊥, send test′ to A. Otherwise send a uniformly random string
test′′ ← {0, 1}λ to A.

Simulating the case when the Responder R is Corrupted: Since the pro-
tocol is completely symmetric between the two parties, the simulation is
identical to that for a corrupted initiator I, except that S runs the following
pre-amble phase:
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– Wait to receive a message (sid, ssid, I, R) from the functionality Fre. Send
(sid, ssid, ok) to Fre and receive a message (wakeup, sid, ssid, I, R) from
Fre.

The simulation from this point on is identical to the simulation for a
corrupted I.

Simulating the case when both or neither of the parties is Corrupted:
When both parties are corrupted, the simulator simply runs A internally
(who itself generates all the messages). When neither party is corrupted, S
produces uniformly random strings test, test′ ← {0, 1}� and forwards them
to A.

Dealing with Corruptions: Upon receiving a “Corrupt Pb” message from A,
where Pb ∈ {I, R}, corrupt the ideal-model P̃b ∈ {Ĩ , R̃}, and obtain its input
πb and output outPb

. When party Pb is corrupted by A, S must produce both
an input (and output) as well as random tape and private view for party
Pb in the simulation. The random tape of party Pb consists of the pairs
(wb

i,0, w
b
i,1) for every i ∈ [1 . . . �] and the private view of party Pb consists of

the strings (w′)bi for every i ∈ [1 . . . �] . Thus, upon corruption of party Pb

S will return to A the input πb and output outPb
obtained by corrupting

the ideal-model P̃b as well as the values wb
i,0, w

b
i,1) ∈ {0, 1}3λ, (w′)bi for every

i ∈ [1 . . . �]. There are several cases to consider:
Corruption of party Pb before messages have been exchanged in
Stage 3. S corrupts the ideal-model P̃b ∈ {Ĩ, R̃}, and obtains its input πPb

.
– If party P1−b is not yet corrupted then S chooses wb

i,0, w
b
i,1, (w

′)bi for
every i ∈ [1 . . . �] uniformly at random and returns these values to A. S
continues the simulation for the case that party Pb is corrupted.

– If party P1−b has already been corrupted then the values
w1−b
i,0 , w1−b

i,1 , (w′)1−b
i for every i ∈ [1 . . . �] are already known and so S

must ensure that the values of wb
i,0, w

b
i,1, (w

′)bi for every i ∈ [1 . . . �] are
consistent with these values.
Thus, S does the following: For every i ∈ [1 . . . �], S sets wb

i,π1−b,i
=

(w′)1−b
i and chooses wb

i,1−π1−b,i
uniformly at random. For every i ∈

[1 . . . �], S sets (w′)bi = w1−b
i,πb,i

. S returns these values to A and continues
the simulation for the case that both parties are corrupted.

Corruption of party Pb after messages have been exchanged in
Stage 3. S corrupts the ideal-model P̃b ∈ {Ĩ , R̃}, obtains its input πb, and
output of either skey or ⊥.
– If party P1−b is not yet corrupted then S does the following: If the output

is skey then S chooses wb
i,0, w

b
i,1, (w

′)bi for every i ∈ [1 . . . �] uniformly
at random conditioned on K ⊕ K ′ being consistent with testb ⊕ test′b,
test1−b ⊕ test′1−b and returns these values to A. If the output is ⊥
S chooses wb

i,0, w
b
i,1, (w

′)bi for every i ∈ [1 . . . �] uniformly at random
conditioned on K ⊕ K ′ being consistent with testb ⊕ test′b and returns
these values to A. S continues the simulation for the case that party Pb

is corrupted.
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– If party P1−b has already been corrupted then the values
w1−b
i,0 , w1−b

i,1 , (w′)1−b
i for every i ∈ [1 . . . �] are already known and so S

must ensure that the values of wb
i,0, w

b
i,1, (w

′)bi for every i ∈ [1 . . . �] are
consistent with these values.
Thus, if the output is skey, S does the following: For every i ∈ [1 . . . �],
S sets wb

i,π1−b,i
= (w′)1−b

i and chooses wb
i,1−π1−b,i

uniformly at random.

For every i ∈ [1 . . . �], S sets (w′)bi = w1−b
i,πb,i

. S returns these values to A.
If the output is ⊥ then there must be some i∗ ∈ [1 . . . �] such that
πb,i∗ �= π1−b,i∗ . Thus, S does the following: For every i ∈ [1 . . . �], S
sets wb

i,π1−b,i
= (w′)1−b

i and chooses wb
i,1−π1−b,i

uniformly at random

conditioned on K⊕K ′ being consistent with testb⊕ test′b. (note that this
is always possible since we can set wb

i∗,πb,i∗ to be whatever we want. For

every i ∈ [1 . . . �], S sets (w′)bi = w1−b
i,πb,i

. S returns these values to A and
continues the simulation for the case that both parties are corrupted.

Proof of Indistinguishability.We show that idealFre,S,Z ≡ realΠREfromOT,A,Z .
The main idea of the proof is this: Let πI and πR be the inputs of I and R. (In
case one or both of them are corrupted, then set πI , resp. πR, to be the string
that the simulator extracts from I, resp. R) If πI = πR, it is easy to see that
the simulation is perfect. If πI �= πR, then we claim that the key KR that the
responder R computes is uniformly random from the view of A. This is because
the adversary A receives w′

i,πI,i
for all i ∈ [�] and KR is computed as

KR =

�⊕
i=1

w′
i,πR,i

Without loss of generality, say πR,1 �= πI,1. Then, (w
′)b1,πR,1

is uniformly random
from the view of A. In particular, this means that KR is uniformly random
from A’s view, and thus, the message test′ that it gets is correctly distributed.
Furthermore, the simulated distribution is identical to the distribution generated
by executing ΠREfromOT except for this. Thus, it follows that idealFre,S,Z ≡
realΠREfromOT,A,Z .

2.3 Implementing the Split Fre Functionality without Authenticated
Channels

The protocol ΠREfromOT in Section 2.2 implements the randomized equality
testing functionality Fre in the authenticated channels model. In this section, we
use the results of Barak et al. [bcl+05] together with a specific implementation
of the FOT functionality from Garay, Wichs and Zhou [gwz09] to show that
the protocol can be transformed into a protocol sΠREfromOT that implements
the “split version” of the equality-testing functionality (called sFre). The new
protocol does not assume authenticated channels, and yet, retain security against
adaptive corruptions. For completeness, we define sFre in the full version, and
state the result of this transformation in Theorem 2.



Efficient Password Authenticated Key Exchange via Oblivious Transfer 461

Theorem 2. There is a protocol sΠREfromOT that securely implements the split
functionality sFre in the Fcrs-hybrid model, tolerating adaptive corruptions
without erasures and without authenticated channels. The protocol is based on
either DDH or the decisional composite residuosity (DCR) assumption, runs in
a constant number of rounds and exchanges a constant number of group elements
per session key.

Proof. First, we note that the multi-session version of Fre can be implemented
using access to the multi-session version of FOT – essentially each new session
of Fre utilizes new invocation of the OT protocol. Then, using the result of
Garay et al., the multi-session version of FOT can be implemented in the Fcrs-
hybrid model under either the DDH or DCR assumption. Put together, we have
a protocol that implements the multi-session version of Fre in the Fcrs-hybrid
model. Now, a theorem of Barak et al. [bcl+05] shows that any such protocol
can be converted into a protocol for the split functionality sFre.

3 Concurrent PAKE from OT

We present a framework for concurrent PAKE based on OT, and show how to
instantiate the underlying building blocks from search assumptions.

Definitions. We begin with an overview of the security definition for concurrent
PAKE given in [gk10, bpr00] (detailed definitions are presented in the
full version). Informally, an adversary interacts with various instances in the
following ways:

– it can initiate and interact in an instance with any honest party;
– it can ask for the session key for some completed instance;
– it can passively eavesdrop on an instance between two honest parties;

The first two modes of interaction constitute a so-called “on-line attack”; the
third one does not. Informally, a secure PAKE protocol guarantees secrecy of
the session keys even in the presence of an active adversary. That is, we say
that an adversary succeeds if it manages to distinguish the session key for some
fresh instance from random (where an instance is “fresh” if the adversary has not
previous asked for its session key). We useAdvPAKEA(λ) to denote the success
probability of an adversary A. Now, an adversary can always succeed with
probability 1 by trying all passwords in the dictionary one-by-one. Informally,
a protocol is secure if this is the best an adversary can do. Formally, we say
that an instance represents an on-line attack if the adversary participated in the
instance. The number of on-line attacks is a bound on the number of passwords
the adversary could have tested in an on-line fashion.

We say that a PAKE protocol is concurrently secure with explicit mutual
authentication if for all dictionaries Dλ and for all PPT adversaries A making at
most Q(λ) online attacks, the quantity AdvPAKEA(λ)−Q(λ)/|Dλ| is bounded
by a negligible function.
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3.1 A General Framework

We present our general framework for concurrent PAKE (a variant of the
Groce-Katz protocol) in Fig 4. The ingredients are a labeled CCA-secure
encryption (Gen,Enc,Dec), and an OT protocol (S,R) in the CRS model that
is (1) computationally hiding against S∗ and (2) straight-line extractable and
statistically hiding against R∗

Overview. Here is an overview of the construction, assuming 1-out-of-|D| OT
for simplicity:
– Both parties U and U ′ run the basic protocol: U acts as the OT receiver and

uses as input his password πU,U ′ . U ′ acts as the OT sender and picks |D|
random strings r1, . . . , r|D| as input. U parses the OT output as skey‖rand
and U ′ parses rπU,U′ as skey′‖rand′.

– U ′ sends an encryption C of πU,U ′ using randomness rand′ and as label the
transcript of the basic protocol (plus the identities), under a public key for
a CCA2-secure encryption scheme that is part of the CRS.

– U checks if C is computed with the same password by encrypting πU,U ′ with
randomness rand. If the ciphertext matches C, both parties output skey as
the session key.

See Figure 4 for a description of the protocol. We establish the following:

Proposition 5. Suppose (Gen,Enc,Dec) is a labeled CCA-secure encryption
scheme and (S,R) is an OT protocol in the CRS model that is (1) computation-
ally hiding against S∗ and (2) straight-line extractable and statistically hiding
against R∗. Then, the protocol in Fig 4 is a secure PAKE protocol with explicit
mutual authentication.

Proof Overview. We begin with a brief argument of security for the case where
there is a single instance on the left and on the right:

– First, we want to argue that by OT security against senders, the LHS Stage
1 hides U ’s input π (which we extract) and so A’s input π̃ to the RHS
Stage 1 must be “independent” of π. This would imply that with probability
1− 1/|D|, we have π̃ �= π and thus U ′’s challenge test is statistically hidden
from A. Thus we bound the probability A wins on the right.

– Next, observe that if A plays a relaying strategy for Stages 1 on the left
and the right, then it must continue to play a relaying strategy for U or U ′

to accept (since the transcript of Stage 1 uniquely determines an accepting
transcript for the protocol). Otherwise, the labels for the CCA encryptions
in Stage 2 on the left and right must differ. We may then argue that U ′’s
encryption of π on the right does not help A provide a valid encryption of
π on the left. Thus, we bound the probability A wins on the left.

The main subtlely lies in the first step: as stated, we require the underlying OT
protocol to hide the receiver’s input against a cheating sender that has access to
an extraction trapdoor (which would require that the underlying OT protocol
non-malleable). We bypass this issue via a more refined analysis. We defer the
formal proof to the full version.
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Concurrent PAKE

Common Reference String: The CRS for (S,R) and a public key pk for
(Gen,Enc,Dec).

Inputs: Parties U and U ′ participating in instances Πi
U and Πj

U′ , respectively,
hold joint password π = πU,U′ ∈ D, where D ⊆ {0, 1}�.

PAKE phase:

Stage 1. U and U ′ engage in � executions of (S,R) in parallel. In the i’th
execution of (S,R):

– U ′ chooses a pair of random strings (w0
i , w

1
i )←r {0, 1}3λ and runs

S with input (w0
i , w

1
i ).

– U runs R with input πi ∈ {0, 1} and receives output w′
i := wπi

i .

Stage 2. U ′ computes

rand||test||skey :=

�⊕
i=1

wπi
i (where rand, skey, test ∈ {0, 1}λ)

and sends C := Enc
U||U′||trans
pk (π; rand) to U where trans is the

concatenation of the transcripts of all � executions of (S,R).

Stage 3. U computes

rand′||test′||skey′ :=
�⊕

i=1

w′
i (where rand′, skey′, test′ ∈ {0, 1}λ)

and sends test′ and sets its session key to skey′ if C =

Enc
U||U′||trans
pk (π; rand′) and aborts otherwise.

Stage 4. U ′ sets its session key to skey if test′ = test and aborts otherwise.

Fig. 4. Concurrent PAKE

3.2 Instantiating the Underlying OT

We present two approaches for instantiating the underlying OT in our general
framework for concurrent PAKE. Recall that we require an OT protocol (S,R)
in the CRS model that is (1) computationally hiding against S∗ and (2) straight-
line extractable and statistically hiding against R∗.

Instantiations from Dual-Mode Encryption. In [pvw08], Peikert, Vaikun-
tanathan and Waters present a novel abstraction called “dual-mode cryp-
tosystems” and show how to construct UC-secure OT from any dual-mode
cryptosystem in the CRS model (where every pair of parties share a CRS).
Moreover, in the so-called “messy mode”, the ensuing OT protocol achieves
statistical security against a corrupted receiver. We observe that the same
protocol also achieves the security guarantees that we require. Combined with
our general framework, we obtain the result stated in Proposition 2.
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Instantiations from CDH and hardness of factoring. We start with a two-
message bit-OT protocol in the CRS model that is (1) computationally hiding
against R∗ and (2) straight-line extractable and statistically hiding against S∗

(note these are the “opposite” properties of what we need). Indeed, the Bellare-
Micali OT protocol [bm89] based on CDH satisfies these properties. To obtain an
instantiation based on hardness of factoring, we use the fact that CDH over Z∗

N

is as hard as factoring [hk09, m88, s85]. We note that 2-message OT protocols
were given by Halevi and Kalai [hk07]; however, their constructions are based
on hash proof systems and thus are limited to decisional assumptions.

Next, we apply the “OT reversal” transformation of Wolf and Wullschleger
[ww06] to obtain a three-message bit-OT protocol. We show that the ensuing
bit-OT protocol has the properties we need, namely computationally hiding
against S∗ and straight-line extractable and statistically hiding against R∗.
Finally, we apply the bit OT to string OT transformation of Brassard, et. al
[bcr86] (which is round-preserving) to obtain a string OT protocol with the
properties we need. We defer details to the full version.
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Abstract. An unresolved problem in research on authenticated key ex-
change (AKE) is to construct a secure protocol against advanced attacks
such as key compromise impersonation and maximal exposure attacks
without relying on random oracles. HMQV, a state of the art AKE pro-
tocol, achieves both efficiency and the strong security model proposed
by Krawczyk (we call it the CK+ model), which includes resistance to
advanced attacks. However, the security proof is given under the ran-
dom oracle model. We propose a generic construction of AKE from a
key encapsulation mechanism (KEM). The construction is based on a
chosen-ciphertext secure KEM, and the resultant AKE protocol is CK+

secure in the standard model. The protocol gives the first CK+ secure
AKE protocols based on the hardness of integer factorization problem,
code-based problems, or learning problems with errors. In addition, in-
stantiations under the Diffie-Hellman assumption or its variant can be
proved to have strong security without non-standard assumptions such
as πPRF and KEA1.

Keywords: authenticated key exchange, CK+ model, key encapsulation
mechanism.

1 Introduction

1.1 Background

Establishing secure channels is one of the most important areas of cryptographic
research. Secure channels provide secrecy and authenticity for both communi-
cation parties. When parties can share secret information via a public com-
munication channel, secure channels would be constructed on (symmetric key)
encryptions and message authentication codes with the shared secret informa-
tion called session keys. Public-key cryptography can provide various solutions:
one approach uses a key encapsulation mechanism (KEM) and another uses au-
thenticated key exchange (AKE).

In KEM, a receiver has public information, called a public key, and the corre-
sponding secret information, called a secret key. The public key is expected to be
certified with the receiver’s identity through an infrastructure such as a public key
infrastructure (PKI). A sender whowants to share information, a session key, with
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the receiver sends a ciphertext of the information and, the receiver decrypts the ci-
phertext to extract the information. KEM can be easily constructed from public-
key encryption (PKE) under the reasonable condition that the plaintext space is
sufficiently large. The desirable security notion of KEM is formulated as the indis-
tinguishability against chosen ciphertext attacks (IND-CCA).

In AKE, each party has public information, called a static public key, and the
corresponding secret information, called a static secret key. The static public key
is also expected to be certified with a party’s identity through an infrastructure
such as PKI. A party who wants to share information with a party exchanges
ephemeral public keys, generated from the corresponding ephemeral secret keys,
and computes a session state from their static public keys, the corresponding
static secret keys, the exchanged ephemeral public keys, and the corresponding
ephemeral secret keys. Both parties then derive a session key from these values
including the session state using a function called the key derivation function.
Many studies have investigated the security notion of AKE [1,2,3,4,5]. The first
security notion of AKE based on indistinguishability was provided by Bellare
and Rogaway [1] (BR model). The BR model captures basic security require-
ments for AKE such as known key security and impersonation resilience. How-
ever, the BR model cannot grasp more complicated situations where a static
secret key or session state of a party has been leaked. Accordingly, Canetti and
Krawczyk [2] defined the first security notion of AKE capturing the leakage of
static secret keys and session state and called it the Canetti-Krawczyk (CK)
model. Though the CK model represents leakage of information other than the
target session of the adversary, some advanced attacks such as key compromise
impersonation (KCI), the breaking of weak perfect forward secrecy (wPFS) and
maximal exposure attacks (MEX) use secret information of the target session;
thus, the CK model is not resilient to such attacks. KCI means that when given
a static secret key, an adversary will try to impersonate some honest party in
order to fool the owner of the leaked secret key. wPFS implies that an adver-
sary cannot recover a session key if the adversary does not modify messages
of the target session and the session is executed before the static secret keys
are compromised. In MEX, an adversary tries to distinguish the session key
from a random value under the disclosure of any pair of secret static keys and
ephemeral secret keys of the initiator and the responder in the session except
for both the static and ephemeral secret keys of the initiator or the responder.
Resistance to MEX requires security against any leakage situation that was not
presumed. For example, an implementer of AKE may pretend to generate secret
keys in an insecure host machine in order to prevent the randomness generation
mechanisms in a tamper-proof module such as a smart card. Additionally, if a
pseudo-random number generator implemented in a system is poor, secret keys
will be known to the adversary even when the generation of ephemeral secret
keys is operated in a tamper-proof module. Most AKE protocols are proved in
the CK model; however, it is unclear whether such protocols satisfy resistance to
advanced attacks due to the limitations of the CK model. A state of the art AKE
protocol HMQV [3] satisfies all known security requirements for AKE, including
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resistance to KCI, wPFS1, and MEX, as well as provable security in the CK
model. In this paper, we call this security model the CK+ model; it is known to
be one of the ‘strongest’ models for AKE. LaMacchia et al. [4] and Sarr et al. [5]
also proposed very strong security models for AKE by re-formulating the concept
of the CK+ model; they called them the eCK model and the seCK model, re-
spectively. These models allow an adversary to pose a query that directly reveals
the ephemeral secret key of the target session. However, Cremers points out that
the CK model and the eCK model are incomparable [9,10]; thus, the eCK model
is not stronger than the CK model while the CK+ model is. We will briefly show
the difference between the CK+ model and these models. Since MEX includes
any non-trivial leakage situation, HMQV (and CK+ secure protocols) achieves
surprisingly strong security.

1.2 Motivating Problem

HMQV is one of the most efficient protocols and satisfies one of the strongest
security models (i.e., CK+ security). However, the security proof is given in
the random oracle model (ROM) under a specific number-theoretic assumption
(Diffie-Hellman (DH) assumption). Moreover, to prove resistance to MEX, the
knowledge-of-exponent assumption (KEA1) [11] (a widely criticized assumption
such as [12]) is also necessary. Hence, one of the open problems in research on
AKE is to construct a secure scheme in the CK+ model without relying on
random oracles under standard assumptions.

Boyd et al. [13,14,15] gave a partial solution to this problem by noting that
KEM and AKE are closely related and that it might be natural to construct AKE
from KEM. They proposed a generic construction of AKE from KEM (BCGNP
construction), and its security is proved in the CK model in the standard model
(StdM). Also, the BCGNP construction is shown to satisfy resistance to KCI.
However, it is unclear whether the BCGNP construction is secure when leak-
age of secret information occurs (i.e., resistance to MEX). In fact, the BCGNP
construction fails to satisfy CK+ security when we consider the following attack
scenario: Two parties exchange ciphertexts of an IND-CCA secure KEM scheme
and generate a session key from these. An adversary who obtains the ephemeral
secret keys (randomness used in generating ciphertexts) of the parties can com-
pute the session key and win the game. Though the BCGNP construction can
be extended to satisfy wPFS, it is guaranteed under the DH assumption, not a
general assumption. It is quite restrictive because it cannot be instantiated from
the hardness of something other than the DH assumption such as an integer

1 HMQV does not provide full perfect forward secrecy (fPFS), which is the same as
wPFS except that the adversary can modify messages of the target session. Some
schemes [6,7,8] have achieved fPFS. However, the schemes [6,7] are clearly vulnerable
to MEX; that is, the session key is computable if an adversary obtains an ephemeral
secret key of parties in the target session. The other scheme [8] is resilient to MEX,
but security is proved in the random oracle model. Upgrading wPFS to fPFS is not
that difficult; it can be done by simply adding MAC or a signature of ephemeral
public keys. Thus, we do not discuss fPFS in this paper.
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factoring problem, code-based problem, or lattice problem. Thus, we still have
no AKE protocol that is secure in the ‘strongest’ model under just a general
assumption without relying on random oracles (ROs).

1.3 Our Contribution

We fully solve the open problem by providing a generic construction of AKE
from KEM. Our construction is a generalization of the BCGNP construction.
The BCGNP construction uses IND-CCA KEM, a strong randomness extrac-
tor, and a pseudo-random function (PRF) as building blocks. Our construction
effectively follows the design principle of the BCGNP construction. However, we
first point out that the security proof of the BCGNP construction is not com-
plete. Specifically, a requirement for KEM has not been formulated. KEM keys
must have enough min-entropy in order to make outputs of the strong random-
ness extractor statistically indistinguishable from a uniformly random chosen
element. Thus, the assumption that the KEM scheme satisfies such a property
is additionally required. Fortunately, almost all IND-CCA KEM schemes satisfy
that. Also, we need an IND-CPA secure KEM in addition to the BCGNP con-
struction. Such an additional KEM can make our scheme wPFS and resilient to
MEX. The resultant AKE protocol is CK+ secure. Its security is proved under
the existence of such KEMs, a strong randomness extractor, and a PRF in the
StdM. The existence of an IND-CCA secure KEM has been shown from the
hardness of integer factoring [16,17], a code-based problem [18,19], or a lattice
problem [20,21,22,23,24,25,26]. To the best of our knowledge, our generic con-
struction provides the first CK+ secure AKE protocols based on the hardness
of the above problems. Regarding the DH assumption or its variant, our generic
construction is the first protocol that achieves CK+ security in the StdM without
non-standard assumptions (e.g., πPRF and KEA1).

We also rewrite the CK+ model before proving the security of our generic
construction in order to simplify the original model in [3]. Specifically, the origi-
nal model is defined as a mix of four definitions (i.e., the CK model, wPFS, and
resistance to KCI and MEX); thus, the security proof must also be separated
into four theorems, which may reduce the readability. Therefore, we reformulate
the CK+ model as follows: wPFS, resistance to KCI, and resistance to MEX are
integrated into the experiment of the extended model by exhaustively classify-
ing leakage patterns. This definition is handy to prove security and rigourously
captures all required properties.

We summarize our contributions as follows:

– We propose a two-pass generic CK+ secure AKE construction from IND-
CCA secure KEM and PRF in the StdM.

– We achieve the first CK+ secure AKE protocols based on the hardness of in-
teger factorization problem, code-based problem, and lattice-based problem
in the StdM.

– We achieve the first CK+ secure AKE protocol based on the DH assumption
or its variant in the StdM without knowledge assumptions.

– We reformulate the CK+ model to gain readability of the security proof.
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The proposed generic construction can allow a hybrid instantiation; that is, the
initiator and the responder can use different KEMs under different assumptions.
For example, the initiator uses a factoring-based KEM while the responder uses
a lattice-based KEM.

2 Security Model

In this section, we recall the CK+ model that was introduced by [3]. We show a
model specified to two pass protocols for simplicity. It can be trivially extended
to any round protocol.

2.1 CK+ vs. eCK

As indicated in Table 1, the CK+ model captures all non-trivial patterns of
leakage of static and ephemeral secret keys. The eCK model [4], which is a
variant of the CK model [2], also captures all non-trivial patterns of leakage, as
in Table 1. Since the CK+ model captures all non-trivial patterns of leakage of
static and ephemeral secret keys, the CK+ model can theoretically be seen as a
completion of the AKE security model.

In Table 1, the six cases in Definition 2 are listed, and these six cases cover
wPFS, resistance to KCI, and MEX as follows: Cases 2-(a), 2-(c), and 2-(f)
capture KCI, since the adversary obtains the static secret key of one party and
the ephemeral secret key of the other party of the test session. Case 2-(e) captures
wPFS, since the adversary obtains the static secret keys of both parties of the
test session. Cases 2-(b) and 2-(d) capture MEX, since the adversary obtains the
ephemeral secret keys of both parties of the test session.

The main difference between the CK+ model and the eCK model is that the
CK+ model captures the session state reveal attack, but the eCK model does
not. Thus, we adopt the CK+ model, which is stronger than the eCK model
from the viewpoint of the session state reveal attack, in this paper.

Notice that the timing of the static and ephemeral key reveal differs in the
eCK and CK+ models. In the eCK model, an adversary can issue the static
and ephemeral key reveal query adaptively. In contrast, in the CK+ model, an
adversary can issue a corrupt query to obtain the static key, and the ephemeral
key is given to the adversary when it is determined. We summarize this in
Table 2.

2.2 CK+ Security Model

We denote a party by Ui, and party Ui and other parties are modeled as proba-
bilistic polynomial-time (PPT) Turing machines w.r.t. security parameter κ. For
party Ui, we denote static secret (public) key by si (Si) and ephemeral secret
(public) key by xi (Xi). Party Ui generates its own keys, si and Si, and the
static public key Si is linked with Ui’s identity in some systems like PKI.2

2 Static public keys must be known to both parties in advance. They can be obtained
by exchanging them before starting the protocol or by receiving them from a certifi-
cate authority. This situation is common for all PKI-based AKE schemes.
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Table 1. Classification of attacks and proposed CK+ model [3] and eCK model [4]

Cases in Def.2 sskA eskA sskB eskB attack type CK+ model [3] eCK model [4]

2-(a) r ok ok n KCI � �
2-(b) ok r ok n MEX � �
2-(c) r ok ok r KCI � �
2-(d) ok r ok r MEX � �
2-(e) r ok r ok wPFS � �
2-(f) ok r r ok KCI � �

“2-(*)” means the corresponding case in Definition 2. “sskA” means the static
secret key of owner A of test session sid∗, and “sskB” means the static secret
key of peer B of test session sid∗. “eskA” means the ephemeral secret key of
test session sid∗, and “eskB” means the ephemeral secret key of the matching
session sid∗. “ok” means the secret key is not revealed, “r” means the secret
key may be revealed, and “n” means no matching session exists. A � means
that the model captures the attack.

Table 2. Comparison of CK+ model [3] and eCK model [4]

CK+ model [3] eCK model [4]

All non-trivial key leakage � �

Session state reveal � �

Adaptive key leakage � �

A �/�means that the model does/does not capture the attack.

Session. An invocation of a protocol is called a session. Session activation is
done by an incoming message of the forms (Π, I, UA, UB) or (Π,R, UB, UA, XA),
where we equate Π with a protocol identifier, I and R with role identifiers, and
UA and UB with user identifiers. If UA is activated with (Π, I, UA, UB), then
UA is called the session initiator. If UB is activated with (Π,R, UB, UA, XA),
then UB is called the session responder. The initiator UA outputs XA, then
may receive an incoming message of the forms (Π, I, UA, UB, XA, XB) from the
responder UB, UA then computes the session key SK if UA received the message.
On the contrary, the responder UB outputs XB, and computes the session key
SK.

If UA is the initiator of a session, the session is identified by sid = (Π, I, UA, UB,
XA) or sid = (Π, I, UA, UB, XA, XB). If UB is the responder of a session, the ses-
sion is identified by sid = (Π,R, UB , UA, XA, XB). We say that UA is the owner
of session sid, if the third coordinate of session sid is UA. We say that UA is the
peer of session sid, if the fourth coordinate of session sid is UA. We say that a
session is completed if its owner computes the session key. The matching session
of (Π, I, UA, UB, XA, XB) is session (Π,R, UB, UA, XA, XB) and vice versa.
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Adversary. The adversary A, which is modeled as a probabilistic polynomial-
time Turing machine, controls all communications between parties including
session activation by performing the following adversary query.

– Send(message): The message has one of the following forms: (Π, I, UA, UB),
(Π,R, UB, UA, XA), or (Π, I, UA, UB, XA, XB). The adversaryA obtains the
response from the party.

To capture leakage of secret information, the adversary A is allowed to issue the
following queries.

– SessionKeyReveal(sid): The adversary A obtains the session key SK for the
session sid if the session is completed.

– SessionStateReveal(sid): The adversary A obtains the session state of the
owner of session sid if the session is not completed (the session key is not
established yet). The session state includes all ephemeral secret keys and
intermediate computation results except for immediately erased information
but does not include the static secret key.

– Corrupt(Ui): This query allows the adversary A to obtain all information of
the party Ui. If a party is corrupted by a Corrupt(Ui, Si) query issued by the
adversary A, then we call the party Ui dishonest. If not, we call the party
honest.

Freshness. For the security definition, we need the notion of freshness.

Definition 1 (Freshness). Let sid∗ = (Π, I, UA, UB, XA, XB) or
(Π,R, UA, UB, XB, XA) be a completed session between honest users UA

and UB. If the matching session exists, then let sid∗ be the matching session of
sid∗. We say session sid∗ is fresh if none of the following conditions hold:

1. The adversary A issues SessionKeyReveal(sid∗), or SessionKeyReveal(sid∗) if

sid∗ exists,
2. sid∗ exists and the adversary A makes either of the following queries

– SessionStateReveal(sid∗) or SessionStateReveal(sid∗),

3. sid∗ does not exist and the adversary A makes the following query
– SessionStateReveal(sid∗).

Security Experiment. For the security definition, we consider the following
security experiment. Initially, the adversary A is given a set of honest users and
makes any sequence of the queries described above. During the experiment, the
adversary A makes the following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈U {0, 1},
and return the session key held by sid∗ if b = 0, and return a random key if
b = 1.
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The experiment continues until the adversaryA makes a guess b′. The adversary
A wins the game if the test session sid∗ is still fresh and if the guess of the
adversary A is correct, i.e., b′ = b. The advantage of the adversary A in the
AKE experiment with the PKI-based AKE protocol Π is defined as

AdvAKE
Π (A) = Pr[A wins]− 1

2
.

We define the security as follows.

Definition 2 (Security). We say that a PKI-based AKE protocol Π is secure
in the CK+ model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.

2. For any PPT bounded adversary A, AdvAKE
Π (A) is negligible in security

parameter κ for the test session sid∗,
(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is

given to A.
(b) if sid∗ does not exist, and the ephemeral secret key of sid∗ is given to A.
(c) if sid∗ exists, and the static secret key of the owner of sid∗ and the

ephemeral secret key of sid∗ are given to A.
(d) if sid∗ exists, and the ephemeral secret key of sid∗ and the ephemeral

secret key of sid∗ are given to A.
(e) if sid∗ exists, and the static secret key of the owner of sid∗ and the static

secret key of the peer of sid∗ are given to A.
(f) if sid∗ exists, and the ephemeral secret key of sid∗ and the static secret

key of the peer of sid∗ are given to A.

Note that the items 2.a, 2.c, and 2.f correspond to resistance to KCI, item 2.e
corresponds to wPFS, and items 2.b and 2.d correspond to resistance to MEX.

3 Generic AKE Construction from KEM without
Random Oracles

In this section, we propose a generic construction of CK+-secure AKE from
KEM.

3.1 Preliminaries

Security Notions of KEM Schemes. Here, we recall the definition of IND-
CCA and IND-CPA security for KEM, and min-entropy of KEM keys as follows.

Definition 3 (Model for KEM Schemes). A KEM scheme consists of the
following 3-tuple (KeyGen, EnCap, DeCap):

(ek , dk) ← KeyGen(1κ, rg) : a key generation algorithm which on inputs 1κ

and rg ∈ RSG, where κ is the security parameter and RSG is a randomness
space, outputs a pair of keys (ek , dk ).
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(K,CT )← EnCapek (re) : an encryption algorithm which takes as inputs encap-
sulation key ek and re ∈ RSE, outputs session key K ∈ KS and ciphertext
CT ∈ CS, where RSE is a randomness space, KS is a session key space,
and CS is a ciphertext space.

K ← DeCapdk (CT ) : a decryption algorithm which takes as inputs decapsula-
tion key dk and ciphertext CT ∈ CS, and outputs session key K ∈ KS.

Definition 4 (IND-CCA and IND-CPA Security for KEM). A KEM
scheme is IND-CCA-secure for KEM if the following property holds for se-
curity parameter κ; For any PPT adversary A = (A1,A2), Adv

ind−cca =

|Pr[rg ← RSG; (ek, dk)← KeyGen(1κ, rg); (state)← ADO(dk,·)
1 (ek); b← {0, 1};

re ←RSE ; (K
∗
0 , CT

∗
0 )← EnCapek(re); K

∗
1 ← K; b′ ← ADO(dk,·)

2 (ek, (K∗
b , CT

∗
0 ),

state); b′ = b]− 1/2| ≤ negl, where DO is the decryption oracle, K is the space
of session key and state is state information that A wants to preserve from A1

to A2. A cannot submit the ciphertext CT = CT ∗
0 to DO.

We say a KEM scheme is IND-CPA-secure for KEM if A does not access
DO.

Definition 5 (Min-Entropy of KEM Key). A KEM scheme is k-min-
entropy KEM if for any ek, for distribution DKS of variable K defined by
(K,CT ) ← EnCapek (re) and random re ∈ RSE, H∞(DKS) ≥ k holds, where
H∞ denotes min-entropy.

Security Notions of Randomness Extractor and Pseudo-Random
Function. Let Ext : S × X → Y be a function with finite seed space S,
finite domain X , and finite range Y .

Definition 6 (Strong Randomness Extractor). We say that function Ext
is a strong randomness extractor, if for any distribution DX over X with
H∞(DX) ≥ k, Δ((US , Ext(US , DX)), (US , UY )) ≤ negl holds, where both US

in (US ,Ext(US , DX)) denotes the same random variable, Δ denotes statisti-
cal distance, US , UX , UY denotes uniform distribution over S,X, Y respectively,
|X | = n ≥ k, |Y | = k, and |S| = d.

Let κ be a security parameter and F = {Fκ : Domκ × FSκ → Rngκ}κ be
a function family with a family of domains {Domκ}κ, a family of key spaces
{FSκ}κ and a family of ranges {Rngκ}κ.

Definition 7 (Pseudo-Random Function).We say that function family F =
{Fκ}κ is the PRF family, if for any PPT distinguisher D, Advprf = |Pr[DFκ(·)

→ 1] − Pr[DRFκ(·) → 1]| ≤ negl, where RFκ : Domκ → Rngκ is a truly random
function.

3.2 Construction

Our construction (GC) is based on an IND-CCA secure KEM, an IND-CPA
secure KEM, PRFs, and strong randomness extractors. While the requirements
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for the underlying building blocks are not stronger than those for the previous
generic construction [13,14], GC achieves stronger security (i.e., CK+ security)
without random oracles.

Necessity of Min-Entropy of KEM Key. In the BCGNP construction, a
KEM scheme is only assumed to be IND-CCA. However, it is not enough to
prove the security. Both parties derive the session key by applying decapsulated
KEM keys to a strong randomness extractor before applying them to PRFs.
This extractor guarantees to output a statistically indistinguishable value from
a uniform randomly chosen element from the same space. It requires as input a
seed and a KEM key with min-entropy κ, where κ is a security parameter. IND-
CCA states that no PPT adversary can distinguish the KEM key from a random
element, but this is “only” computational indistinguishability. What we need is
statistical indistinguishability. Thus, we must also assume that min-entropy of
the KEM key is equal or larger than κ. This property is not very strong; almost
all IND-CCA secure schemes satisfy it. We will discuss later about this property
of concrete KEM schemes.

Design Principle. The main ideas to achieve CK+ security are to use the
twisted PRF trick and session-specific key generation.

First, we have to consider resistance to MEX. The most awkward pattern
of MEX is the disclosure of ephemeral secret keys of the initiator and the re-
sponder. If we use KEM naturally, all randomness used to generate ciphertexts
is leaked as ephemeral secret keys; thus, the adversary can obtain encrypted
messages without knowing secret keys. Hence, we have to avoid using ephemeral
secret keys as randomness of KEM directly. A possible solution is to generate
randomness from the static secret key as well as the ephemeral secret key by
using a technique such as the ordinary NAXOS trick [4]. Though this trick leads
to security against leakage of ephemeral secret keys, the trick must apply an RO
to the concatenation of the static and ephemeral secret keys, and it uses the out-
put as a quasi-ephemeral secret key. It is unsuitable for our purpose to construct
secure protocols in the StdM. Thus, we use a trick to achieve the same proper-
ties as the NAXOS trick but without ROs. We call it the twisted PRF trick.3

This trick uses two PRFs (F, F ′) with reversing keys; we choose two ephemeral
keys (r, r′) and compute Fσ(r) ⊕ F ′

r′(σ), where σ is the static secret key. The
twisted PRF trick is especially effective in the following two scenarios: leakage
of both ephemeral secret keys of the initiator and the responder, and leakage of
the static secret key of the initiator and the ephemeral secret key of the respon-
der (i.e., corresponding to KCI). If (r, r′) is leaked, Fσ(r) cannot be computed
without knowing σ. Similarly, if σ is leaked, F ′

r′(σ) cannot be computed without
knowing r′. In our KEM-based generic construction, the output of the twisted
PRF is used as randomness for the encapsulation algorithm.

Next, we have to consider the scenario in which static secret keys are leaked
as the attack scenario in wPFS. We cannot achieve a CK+ secure scheme by

3 A similar trick is used in the Okamoto AKE scheme [27].
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any combination of KEMs using static secret keys as decapsulation keys against
leakage of both static secret keys of the initiator and the responder because an
adversary can obtain all information the parties can obtain by using static secret
keys. Our solution is to generate session-specific decapsulation and encapsulation
keys. The initiator sends the temporary encapsulation key to the responder, the
responder encapsulates a KEM key with the temporary encapsulation key, and
the initiator decapsulates the ciphertext. Since this procedure does not depend
on the static secret keys, the KEM key is hidden even if both static secret keys
of the initiator and the responder are leaked. Note that security of KEM for
temporary use only requires IND-CPA. The session-specific key generation is
effective for achieving wPFS.

As the BCGNP construction [13,14], we use IND-CCA secure KEM schemes to
exchange ciphertexts. CCA security is necessary to simulate SessionStateReveal
queries in the security proof. When we prove security in the case where ephemeral
secret keys are leaked, the simulator needs to embed the challenge ciphertext in
the ephemeral public key in the test session. Then, the static secret key to decrypt
the challenge ciphertext is not known; that is, the simulator must respond to
the SessionStateReveal query for a session owned by the same parties as the
test session without knowing the static secret key. Hence, the simulator needs
the power of the decryption oracle to obtain intermediate computation results
corresponding to the SessionStateReveal query.

Generic Construction GC. The protocol of GC from KEMs (KeyGen, EnCap,
DeCap) and (wKeyGen, wEnCap, wDeCap) is as follows.

Public Parameters. Let κ be the security parameter, F : {0, 1}∗ ×FS → RSE ,
F ′ : {0, 1}∗ × FS → RSE , and G : {0, 1}∗ × FS → {0, 1}κ be pseudo-random
functions, where FS is the key space of PRFs (|FS| = κ), RSE is the random-
ness space of encapsulation algorithms, and RSG is the randomness space of key
generation algorithms, and let Ext : SS × KS → FS be a strong randomness
extractor with randomly chosen seed s ∈ SS, where SS is the seed space and
KS is the KEM key space. These are provided as some of the public parameters.

Secret and Public Keys. Party UI randomly selects σI ∈ FS and rI ∈ RSG, and
runs the key generation algorithm (ekI,1, dkI,1) ← KeyGen(1κ, rI), where RSG

is the randomness space of KeyGen. Party UI ’s static secret and public keys are
((dkI,1, σI), ekI,1).

Key Exchange. Party UA with secret and public keys ((dkA,1, σA), ekA,1), and
who is the initiator, and party UB with secret and public keys ((dkB,1, σB), ekB,1),
and who is the responder, perform the following two-pass key exchange protocol.

1. Party UA randomly chooses ephemeral secret keys rA,1, r
′
A,1 ∈

FS and rA,2 ∈ RSG. Party UA computes (CTA,1, KA,1) ←
EnCapekB,1

(FσA(rA,1) ⊕ F ′
r′A,1

(σA)) and (ekA,2, dkA,2) ← wKeyGen(1κ, rA,2)

and sends (UA, UB, CTA,1, ekA,2) to party UB.
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2. Upon receiving (UA, UB, CTA,1, ekA,2), party UB chooses the ephemeral
secret keys rB,1, r

′
B,1 ∈ FS and rB,2 ∈ RSE , computes (CTB,1,

KB,1) ← EnCapekA,1
(FσB (rB,1) ⊕ F ′

r′B,1
(σB)) and (CTB,2, KB,2) ←

wEnCapekA,2
(rB,2), and sends (UA, UB, CTB,1, CTB,2) to party UA.

Party UB computes KA,1 ← DeCapdkB,1
(CTA,1), K ′

1 ← Ext(s,KA,1),
K ′

2 ← Ext(s,KB,1) and K ′
3 ← Ext(s,KB,2), sets the session transcript ST

= (UA, UB, ekA,1, ekB,1, CTA,1, ekA,2, CTB,1, CTB,2) and the session key
SK = GK′

1
(ST) ⊕ GK′

2
(ST) ⊕ GK′

3
(ST), completes the session, and erases

all session states.
3. Upon receiving (UA, UB, CTB,1, CTB,2), party UA computes KB,1 ←

DeCapdkA,1
(CTB,1), KB,2 ← wDeCapdkA,2

(CTB,2), K
′
1 ← Ext(s,KA,1),

K ′
2 ← Ext(s,KB,1) and K ′

3 ← Ext(s,KB,2), sets the session transcript ST
= (UA, UB, ekA,1, ekB,1, CTA,1, ekA,2, CTB,1, CTB,2) and the session key
SK = GK′

1
(ST) ⊕ GK′

2
(ST) ⊕ GK′

3
(ST), completes the session, and erases

all session states.

The session state of a session owned by UA contains ephemeral secret keys
(rA,1, r

′
A,1, rA,2), KEM keys (KA,1,KB,1,KB,2), outputs of the extractor (K

′
1,K

′
2,

K ′
3) and outputs of PRFs (FσA(rA,1), F

′
r′A,1

(σA), GK′
1
(ST), GK′

2
(ST), GK′

3
(ST)).

Similarly, the session state of a session owned by UB contains ephemeral secret
keys (rB,1, r

′
B,1, rB,2), decapsulated KEM keys (KA,1,KB,1,KB,2), outputs of

the extractor (K ′
1,K

′
2,K

′
3) and outputs of PRFs (FσB (rB,1), F

′
r′B,1

(σB), GK′
1
(ST),

GK′
2
(ST), GK′

3
(ST)).

Remark 1. Obviously, we can use arbitrary combinations of KEM schemes in
the generic construction. This means that each party can rely on a different
assumption from the peer. Since our construction does not contain any direct
operation between derivatives of KEM schemes, it is no problem that randomness
spaces, public keys, or ciphertext are distinct from each other.

Security. We show the following theorem.

Theorem 1. If KEM (KeyGen,EnCap,DeCap) is IND-CCA secure and is κ-
min-entropy KEM, KEM (wKeyGen,wEnCap, wDeCap) is IND-CPA secure and
is κ-min-entropy KEM, F, F ′, G are PRFs, and Ext is a strong randomness
extractor, then AKE scheme GC is CK+-secure.

Due to space limitations we defer the proof of Theorem 1 to the full version.
Here, we give an overview of the security proof.

We have to consider the following four leakage patterns in the CK+ security
model (matching cases):

2-(c) the static secret key of the initiator and the ephemeral secret key of the
responder

2-(d) both ephemeral secret keys
2-(e) both static secret keys
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2-(f) the ephemeral secret key of the initiator and the static secret key of the
responder

In case 2-(c),KA,1 is protected by the security ofCTA,1 because r
′
A,1 is not leaked;

therefore, F ′
r′A,1

(σA) is hidden and dkB,1 is not leaked. In case 2-(d), KA,1 and

KB,1 are protected by the security of CTA,1 and CTB,1 because σA and σB are
not leaked; therefore, FσA (rA,1) and FσB (rB,1) are hidden and dkA,1 and dkB,1

are not leaked. In case 2-(e), KB,2 is protected by the security of CTB,2 because
dkA,2 and rB,2 are not leaked. In case 2-(f), KB,1 is protected by the security of
CTB,1 because r′B,1 is not leaked; therefore, F ′

r′B,1
(σB) is hidden and dkA,1 is not

leaked. Then, we transform the CK+ security game since the session key in the test
session is randomly distributed. First, we change part of the doubled PRF in the
test session into a random function because the key of part of the doubled PRF
is hidden from the adversary; therefore, the randomness of the protected KEM
can be randomly distributed. Second, we change the protected KEM key into a
random key for each pattern; therefore, the input of Ext is randomly distributed
and has sufficient min-entropy. Third, we change the output of Ext into randomly
chosen values. Finally, we change one of the PRFs (corresponding to the protected
KEM) into a random function. Therefore, the session key in the test session is
randomly distributed; thus, there is no advantage to the adversary. We can show
a similar proof in non-matching cases.

4 Instantiations

4.1 Diffie-Hellman-Based

We can achieve various AKE schemes as concrete instantiations based on the
hardness of the DH problem and its variants. These are derived from the generic
construction GC in Section 3. For example, we can apply efficient IND-CCA KEM
schemes to GC from the decisional DH [28,29] (DDH), computational DH [30,31],
hashed DH [32] and bilinear DH assumptions [33].

We can easily show that these schemes have κ-min-entropy KEM keys. The
KEM part of the Cramer-Shoup PKE consists of gzr1 ∈ G, where G is a finite
cyclic group of order prime p, gz1 is part of ek, and r is uniformly chosen ran-
domness, and |r| is 2κ. Thus, gzr1 has min-entropy larger than κ. Similarly, other
schemes also have κ-min-entropy KEM keys.

The significant advantage of our instantiations in the StdM is reasonable
assumption. First, HMQV satisfies the same security model as our construction.
However, it requires the KEA1 assumption and relies on ROs. Since it has been
criticised, in particular because the KEA1 assumption does not appear to be
“efficiently falsifiable” as Naor put it [12], this assumption is quite undesirable.
Also, it was shown that there exist some protocols that are secure in the ROM
but are insecure if ROs are replaced by any specific function [34]. A disadvantage
of our construction to HMQV is that HMQV is a one-round protocol but our
scheme is not. One-round protocols mean that the initiator and the responder
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Table 3. Comparison of previous DH-based schemes and an instantiation of our scheme

Model Resource Assumption Computation Communication
(#[multi,regular]-exp) complexity

[3] CK+ ROM gap DH & KEA1 [2, 2] 2|p| 512

[27] eCK StdM DDH & πPRF [6, 6] 9|p| 2304

[14] CK & KCI StdM DDH [4, 8] 6|p| 1536

Ours CK+ StdM DDH [4, 12] 8|p| 2048

For concreteness the expected ciphertext overhead for a 128-bit implementa-
tion is also given. Note that computational costs are estimated without any
pre-computation technique.

can send their messages independently and simultaneously. Conversely, in our
scheme, the responder must wait to receive the message from the initiator. Next,
the AKE scheme by Okamoto [27] is secure in the StdM. However, it is not
proved in the CK+ model and needs to assume existence of πPRF. πPRF is a
stronger primitive than ordinary PRF, and it is not known how to construct
πPRF concretely. On the contrary, our instantiations only require the standard
notions of KEM and pseudo-random function security. Moreover, the BCGNP
construction [13,14] is secure in the StdM with standard assumption. However,
the security is not proved in the CK+ model.4 Thus, DH-based AKE schemes
from GC are first CK+ secure schemes in the StdM with standard assumptions.

For example, our scheme can be instantiated with the Cramer-Shoup KEM [35]
as an IND-CCA KEM, and with the ElGamal KEM as an IND-CPA KEM under
the DDH assumption. Communication complexity (for two parties) of this instan-
tiation is 8|p|, where |p| is the length of a group element. Computational complex-
ity (for two parties) of this instantiation is 4 multi-exponentiations and 12 regular
exponentiations (all symmetric operations such as hash function/KDF/PRF and
multiplications are ignored). We show a comparison between this instantiation
and previous schemes in Table 3.

4.2 Factoring-Based

We can achieve several new AKE protocols as concrete instantiations based on
the hardness of integer factorization and its variants such as the RSA problem.

Some instantiations in the StdM are based on the hardness of the integer
factorization problem. By applying the Hofheinz-Kiltz PKE [16] and the Mei-Li-
Lu-Jia PKE [17], which are IND-CCA secure in the StdM under the factoring
assumption to GC, we can obtain first CK+ secure AKE protocols in the StdM

4 The BCGNP construction with an additional exchange of a DH value (called Proto-
col 2 in [13,14]) can be proved in the CK model, and it satisfies wPFS and resistance
to KCI. We can extend the security of Protocol 2 to the CK+ security with the
twisted PRF trick. If IND-CPA KEM in GC is instantiated with the ElGamal KEM,
our scheme is the same as Protocol 2 with the twisted PRF trick. Thus, our scheme
can also be seen as a generalization of the BCGNP construction.
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under the integer factorization assumption. Also, we have other instantiations
based on the hardness of RSA inversion. By applying the Chevallier-Mames-
Joye PKE [36] and the Kiltz-Mohassel-O’Neill PKE [37], which are IND-CCA
secure in the StdM under the instance-independent RSA assumption to GC, we
can obtain first CK+ secure AKE protocols in the StdM under the RSA-type
assumption.

We can regard a message in PKE as a KEM key when the message space is
larger than κ and messages are uniformly chosen randomness. In this case, it is
obvious that such a KEM scheme has κ-min-entropy KEM keys.

4.3 Code-Based

We can achieve new AKE protocols as concrete instantiations based on code-
based problems.

For the AKE protocol in the StdM, we can apply Dowsley et al.’s PKE [19]
that is IND-CCA secure in the StdM under the McEliece and LPN assumptions
to GC. (See Ref. [19] for definitions of these assumptions.) This is the first CK+

secure AKE protocol without ROs based on a code-based problem.
As for factoring-based PKE, code-based PKE schemes also have κ-min-entropy

KEM keys when the message space is larger than κ and messages are uniformly
chosen randomness.

Remark 2. Bernstein et al. [38] estimated the size of a public key of the original
McEliece at about 2 Mbits for 128-bit security. If we employ “wild” McEliece by
Bernstein et al. [39] rather than the original McEliece PKE, the size of the public
key is reduced to 750K bits. Our generic construction contains the public key of
the KEM from the temporary key generation in the first round message. If the
randomized McEliece PKE by Nojima et al. [40] is employed as the IND-CPA
secure KEM, which is IND-CPA secure and requires the same size for the public
key as the original, the communication complexity of the resultant AKE scheme
is high. However, the way to construct an efficient and CK+ secure AKE scheme
from codes is an open problem.

4.4 Lattice-Based

We also achieve new concrete AKE protocols based on the worst-case hardness
of the (ring-)LWE problems derived from our generic constructions.

PKE schemes [20,21,22,23,24,25,26,41] which are IND-CCA secure in the
StdM are easily converted into IND-CCA secure KEM schemes. Also, PRFs are
obtained from one-way functions [42,43,44,45] and directly constructed from the
(ring-)LWE assumptions with sub-exponential parameters [46]. Thus, by apply-
ing these building blocks to GC, we can obtain first CK+ secure AKE protocols in
the StdM under the (ring-)LWE assumption. Unfortunately, the obtained AKE
protocols are still theoretical since these PKE schemes require huge keys, say, of
the quadratic or cubic order of the security parameter, and thus, an efficient and
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direct construction of PRFs from the (ring-)LWE assumption with polynomial
parameters has not yet been achieved.

As for factoring-based PKE, lattice-based PKE schemes also have κ-min-
entropy KEM keys when the message space is larger than κ and messages are
uniformly chosen randomness.
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Abstract. We define a new notion of relatively-sound non-interactive
zero-knowledge (NIZK) proofs, where a private verifier with access to
a trapdoor continues to be sound even when the Adversary has access
to simulated proofs and common reference strings. It is likely that this
weaker notion of relative-soundness suffices in most applications that
need simulation-soundness. We show that for certain languages which
are diverse groups, and hence allow smooth projective hash functions,
one can obtain more efficient single-theorem relatively-sound NIZKs as
opposed to simulation-sound NIZKs. We also show that such relatively-
sound NIZKs can be used to build rather efficient publicly-verifiable
CCA2-encryption schemes.

By employing this new publicly-verifiable encryption scheme along
with an associated smooth projective-hash, we show that a recent PAK-
model single-round password-based key exchange protocol of Katz and
Vaikuntanathan, Proc. TCC 2011, can be made much more efficient. We
also show a new single round UC-secure password-based key exchange
protocol with only a constant number of group elements as communica-
tion cost, whereas the previous single round UC-protocol required Ω(k)
group elements, where k is the security parameter.

1 Introduction

Authentication based on passwords is a significant security paradigm in today’s
world. Security in this scenario has been a challenging problem to solve because
passwords typically come from low-entropy domains resulting in insufficient ran-
domness for generating cryptographically secure keys. Gong et al. [11] raised the
problem of designing protocols resistant to offline password guessing attacks,
where other than guessing the low-entropy password by an online attack, the
protocol must otherwise provide strong security based on a security parame-
ter. Beginning with the work of Bellovin and Merritt [2], there has been con-
siderable theoretical work in formalizing and obtaining secure protocols in the
setting where only passwords are shared by peers (e.g. [1]), referred to as the
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PAK-security model. From [15] onwards, these protocols employ smooth projec-
tive hash functions which have been a standard tool in cryptography ever since
Cramer and Shoup defined them to give an efficient chosen ciphertext secure
(CCA2) encryption scheme [7].

As illustrated by Gennaro and Lindell [10], who call this the non-malleable
commitment paradigm, these protocols require the two peers A and B to non-
malleably commit to their password to their peer (say B), e.g. by CCA2 encrypt-
ing the password under a public key given as a common reference string (CRS).
While, the peer B cannot decrypt this commitment, it might be able to compute
a smooth projective-hash on this commitment using a smooth hash key that it
generates. The projection of this smooth hash key is sent to peer A, and peer
A can compute the same smooth hash using the witness it has for the commit-
ment. The two peers then output a product of two such smooth hashes, one for
its own commitment and one for its peer. The problem, however, is that smooth
projective-hash for the language, which in this case is the CCA2-ciphertext en-
crypting a password, is not easy to define, and [10] requires an adaptive smooth
hash key, which makes the key-exchange protocol a multi-round protocol.

Recently, Katz and Vaikuntanathan [16] gave a single round protocol for
password-based authenticated key exchange, by utilizing a publicly-verifiable
CCA2-encryption scheme of Sahai [19]. A publicly-verifiable encryption scheme
allows a (non-interactive) public verification of well-formedness of the cipher-
text, i.e. it returns TRUE if and only if the decryption oracle will not return an
“invalid ciphertext” response when queried with this ciphertext. The public ver-
ification allows the smooth hash to be defined on only a part of the ciphertext,
which in [16] happens to be two El-Gamal encryptions of the password. Such
smooth projective hashes are easy to define and compute.

While the resulting protocol requires only a constant number of group ele-
ments, as it employs simulation-sound extensions of Groth-Sahai NIZKs [13],
under the decisional linear assumption (DLIN [3]) it still requires each party to
send 65 group elements (and the run-time is proportionately high).

In this paper we show that the above scheme can be made much more efficient
by using a novel concept of relatively-sound NIZKs rather than using simulation-
sound NIZKs. Simulation-Sound NIZKs were first defined by Sahai [19], where it
was used to convert Naor-Yung [18] CCA1-encryption scheme into the aforemen-
tioned CCA2-encryption scheme. In simulation-sound NIZKs the NIZK (public)
verifier continues to be sound even when the Adversary is given the simulated
CRS and proofs. We notice that in most applications what is really required
is that a (private) verifier with access to a trapdoor continues to be sound in
the simulated world, as long as this private verifier is equivalent to the pub-
lic verifier in the real-world. The novel relatively-sound NIZKs captures this
idea1. While it is an open problem whether relatively-sound NIZKs are strictly
weaker than adaptive simulation-sound NIZKs, we show that relatively-sound
NIZKs imply soundness under simulation of proofs of random (false or true)

1 Relatively-sound NIZKs can be considered a hybrid of designated-verifier simulation-
sound NIZKs [9] and simulation-sound NIZKs.
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statements. Since, for many applications (including the current) such non-adaptive
(random) simulation-sound NIZKs suffice, relative-soundness can be seen as a
useful abstraction and tool for obtaining the former.

While it is easy to check that relative-soundness suffices in Sahai’s original
proof, in this paper we consider a further optimized construction. We prove that
an augmented El-Gamal encryption scheme (reminiscent of [8]), along with a la-
beled single-theorem relatively-sound NIZK leads to a publicly-verifiable CCA2-
encryption scheme. In the augmented El-Gamal scheme the public key (under
the DDH or SXDH assumptions) consists of g, ga, gk, and the encryption of m
with randomness x is gx, gax,m · gkx. The labeled relatively-sound NIZK proves
that the first two elements of the ciphertext use the same randomness x, with
the third element used as label.

While a single-theorem simulation-sound NIZK could also have been used
above, we show that one can obtain single-theorem relatively-sound NIZK far
more cheaply than simulation-sound NIZK for this language. We use the fact
that the language is a finite diverse group, and hence allows simple 2-universal
projective hash functions [7], which allows us to build a private verifier. Under
the SXDH assumption [13], converting a NIZK for this language to a relatively-
sound NIZK only requires two more group elements, whereas the best-known
simulation-sound extension would require nine group elements. Similarly, under
the DLIN assumption, our extension requires only three more elements, whereas
a simulation-sound extension requires at least 18 more elements [16]. Overall
under the DLIN assumption, our publicly-verifiable CCA2 ciphertexts have only
19 group elements versus the 47 group elements in the Sahai scheme [19].

We show that using the new encryption scheme in the PAK-model protocol
of [16], leads to a new protocol which is two to three times more efficient (under
both SXDH and DLIN assumptions), with the SXDH-based scheme requiring
only 10 group elements to be communicated2.

UC Security. Canetti et al. [6] proposed a definition of security for password-
based key exchange protocols within the Universally Composable (UC) security
framework [5], which has the benefit of the universal composition theorem and
as such can be deployed as a part of larger security contexts. In addition, their
definition of security considers the case of arbitrary and unknown password
distributions.

Katz and Vaikuntanathan [16] also gave a single round UC-secure protocol
for password-based authenticated key exchange. However, their single round UC
protocol is still inefficient as it uses general purpose NIZKs (for NP languages),
and further requires proof of knowledge NIZKs. Even if the language for which
zero knowledge proofs are required can be made to be given by simple algebraic
relations in bilinear groups, the proof of knowledge for exponents of elements as
required in their protocol makes it rather expensive.

2 It should be remarked that other efficient publicly-verifiable CCA2-encryption
schemes such as [17], which allow hash proofs on the (proof-less) part of the ci-
phertext can also be used in [16].
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A second main contribution of this paper is an efficient UC-secure single-
round protocol for password based key exchange. The main new ideas required
for this efficient protocol are as follows: (a) The shared secret key is obtained
in the target group of the bilinear pairings used in the NIZKs which allows for
efficient simulator-extraction of group elements corresponding to the smooth-
hash trapdoor keys. Such an extraction is required for UC-simulatability. (b) The
NIZK proof of knowledge (for extraction) requires the NIZKs to be unbounded
simulation-sound. A general construction for unbounded simulation-soundness
was given in [4] which is based on a construction due to Groth [12], both of
which can be seen to be using relative-soundness implicitly. This leads us to give
an optimized version of this general construction. (c) We continue to use the
Damgard style [8] encryption scheme, which allows for even more optimization
of the unbounded simulation-sound construction for this specific language.

As a result, we get a single-round UC-secure protocol, where under the DLIN-
assumption, each party only communicates 63 group elements, which is as effi-
cient as the PAK-model protocol described in [16]. Under the SXDH assumption,
our UC-secure protocol only requires 33 group elements.

For sake of exposition, we focus on giving complete proofs only under the
SXDH assumption. All of the protocols are also given under the DLIN assump-
tion in the full paper [14].

2 NIZK Definitions

In this section we give some definitions related to Non Interactive Zero Knowl-
edge (NIZK) proofs. We will assume familiarity with usual definitions of NIZKs
(see e.g. [19,13]). A proof for a relation R consists of a key generation algorithm
K which produces the CRS ψ, a probabilistic polynomial time (PPT) prover P
and a PPT verifier V .

Zero-Knowledge.We call (K,P, V ) a NIZK proof for R if there exists a poly-
time simulator (S1, S2), such that for all non-uniform PPT adversariesA we have

Pr[ψ ← K(1m) : AP (ψ,·,·)(ψ) = 1] ≈ Pr[(σ, τ)← S1(1
m) : AS(σ,τ,·,·)(σ) = 1],

where S(σ, τ, x, w) = S2(σ, τ, x) for (x,w) ∈ R and both oracles output failure if
(x,w) �∈ R.

One-time Simulation Soundness.A NIZK proof is one-time simulation sound
NIZK if for all non-uniform PPT adversaries A = (A1,A2) we have
Pr[(σ, τ)← S1(1

m); (x, s)← A1(σ);π ← S2(σ, τ, x); (x
′, π′)← A2(x, π, σ, s) :

((x′, π′) �= (x, π)) and ¬∃w′ s.t. (x′, w′) ∈ R, and V (σ, x′, π′) = 1] ≈ 0.

Unbounded Simulation Sound Extractability (uSS-NIZK). Consider a
NIZK proof (K,P, V, S1, S2) along with an initialization algorithm SE1 and a
knowledge extractor E2, such that SE1 outputs (σ, τ, ξ) with (σ, τ) identical to
values output by S1. Such a proof is said to have the Unbounded Simulation
Sound Extractability property if for all non-uniform PPT adversaries A we have
Pr[(σ, τ, ξ)← SE1(1

k); (x, π)← AS2(σ,τ,·)(σ);w ← E2(σ, ξ, x, π) :
(x, π) /∈ Q and (x,w) /∈ R and V (σ, x, π) = 1] ≈ 0
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where Q is the set of simulation queries and responses (xi, πi). For some subset
of witnesses the extractor E2 may extract witnesses in polynomial time, which
will be the focus in this paper.

2.1 Relative Soundness

We now define a novel weaker notion of simulation soundness, which might
suffice for most applications, especially in the case of single theorem (or one-
time) simulation. It is possible that this weaker notion may be more efficient to
implement, as we demonstrate later for a particularly important language, where
we also show that the weaker notion suffices for the application at hand. In a
nutshell, the weaker notion allows for the simulator to have a private verifier of its
own, with access to a trapdoor. Simulation-soundness is now defined with respect
to simulator’s private verifier, and hence the name relative-soundness. There is an
important further stipulation in the definition that the zero-knowledge property
should hold even when the Adversary is given oracle access to private verifier in
the simulated world (and public verifier in real world).

Labeled Single-Theorem Relatively-Sound NIZK (l-SRS-NIZK). Con-
sider a sound and complete (labeled) proof (K,P, V ) for a relation R along with
a PPT private-verifier W and a PPT simulator (S1, S2). In a labeled proof, the
prover P takes an input label, in addition to the statement to be proven. The
verifier takes a statement, a label, and a proof. Such a proof is called a labeled
single-theorem relatively-sound NIZK for R if for all non-uniform PPT
adversaries A = (A1,A2,A3,A4) we have

relative-ZK:
Pr[(ψ) ← K(1m); (x,w, lbl, s)← AV (ψ,·,·,·)

1 (ψ); π ← P (ψ, x, w, lbl) :

AV (ψ,·,·,·)
2 (π, s) = 1] ≈

Pr[(σ, τ)← S1(1
m); (x,w, lbl, s)← AW (σ,τ,·,·,·)

1 (σ); π ← S2(σ, τ, x, lbl) :

AW (σ,τ,·,·,·)
2 (π, s) = 1],

for A1 restricted to producing (x,w) satisfying R, and
relative-simulation-soundness:

Pr[(σ, τ)← S1(1
m); (x, lbl, s)← AW (σ,τ,·,·,·)

3 (σ);π ← S2(σ, τ, x, lbl);

(x′, lbl′, π′)← AW (σ,τ,·,·,·)
4 (π, s) : ((x′, lbl′, π′) �= (x, lbl, π)) and

¬∃w′ s.t. R(x′, w′) = 1, and W (σ, τ, x′, lbl′, π′) = 1] ≈ 0.

Note that there are no other requirements on W other that those listed above. It
is critical that relative-ZK is required only w.r.t. adversaries (A1) that produce
language members. Otherwise, relative-simulation-soundness would already im-
ply normal simulation-soundness. Although it remains an open problem whether
relatively-sound NIZKs are strictly weaker than simulation-sound NIZKS, the
following shows the relation to non-adaptive simulation soundness, i.e. where
the statements for which the proofs need to be simulated are chosen randomly.

Relation to Simulation-Soundness. Consider the following variant of One-
time Simulation Soundness defined in Section 2. A NIZK proof for language
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L ⊆ X is a non-adaptive one-time simulation-sound NIZK if for all non-
uniform PPT adversaries A = (A3,A4) we have

Pr[(σ, τ)← S1(1
m);x

$←− X ; (lbl, s)← A3(σ, x);π ← S2(σ, τ, x, lbl);
(x′, lbl′, π′)← A4(π, s) : ((x′, lbl′, π′) �= (x, lbl, π))
and ¬∃w′ s.t. R(x′, w′) = 1, and V (σ, x′, lbl′, π′) = 1] ≈ 0.

Now, assume that the language L is efficiently witness-samplable, i.e. there is
PPT machine which can efficiently sample from L along with the witness for the
language member. Also, a language L, subset of a domain X , is called hard if
no PPT adversary can distinguish between a (uniformly) random element of L
from a random element of X .

Lemma 1. For a hard and efficiently witness-samplable language L, an l-SRS-
NIZK for L also satisfies the non-adaptive labeled one-time simulation soundness
property for L.

The proof of this lemma uses standard arguments, and a version of this lemma
for unbounded simulation soundness also holds.

3 Smooth Projective Hash Functions

Fix a cyclic group G = 〈g, ·〉 of prime order q, such that 1/q is a negligible
function of the security parameter. We define the El-Gamal encryption function
as follows. For K,m in G, and x, define

enc
eg
K (m;x) = 〈gx,Kx ·m〉

For K and pwd in G, define LK,pwd = {c = 〈R,P 〉 | ∃x : c = enc
eg
K (pwd;x)} ∩

G×G. A projective hash function [7] is a keyed family of functions mapping
elements in some message space X to the group G, and is associated with a
language. Further, it comes with a projection function α : K → S, where K
is the key space and S is the projected key space. For our hash family, the key
space is Zq × Zq, and the projected key space is G. The message space X is the
space of ciphertexts. For n, n̂ in Zq, c in G2, and K, pwd in G, define the hash

family HK,pwd associated with LK,pwd by

Hpwd
n,n̂ (c = 〈R,P 〉) = (P/pwd)n̂ ·Rn, αK,pwd(n, n̂) = gn · (K)n̂.

It is straightforward to see that, if c = enc
eg
K (pwd;x) for some x, thenHpwd

n,n̂ (c) =

αK,pwd(n, n̂)x.

For any K and pwd in G, HK,pwd is said to be smooth [7] w.r.t. L =
LK,pwd, if for any c′ in G2, but not in L, the statistical distance between the

distribution of the pair (HK,pwd
n,n̂ (c′), αK,pwd(n.n̂)) and the pair (gd1 , gd2) is

negligible, where n, n̂, d1, d2 are chosen randomly and independently from Zq. It

is a simple exercise to see that HK,pwd is smooth with respect to LK,pwd.

We also define a projective hash function family associated with any language
L to be 2-universal [7] if for all s ∈ S, x, x′ ∈ X , and π, π′ ∈ G with x �∈ L∪{x′},
it holds that Prk[Hk(x) = π | Hk(x

′) = π′ ∧ α(k) = s] ≤ 1/q.
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4 Bilinear Assumptions

Throughout the paper, we use (bilinear) groupsG1,G2,GT each of prime order q,
which allow an efficiently computable Zq-bilinear pairing map e : G1×G2 → GT .

SXDH: [13] The symmetric external decisional Diffie-Hellman (SXDH) assump-
tion states that the decisional Diffie-Hellman (DDH) problem is hard in both
groups G1 and G2.

DLIN: [3] In groups such that G1 is same as G2, the decisional linear (DLIN)
assumption states that given (αP , βP , rαP , sβP , tP) for random α, β, r, s ∈ Zq,
and arbitrary generator P of G1, it is hard to distinguish between t = r+ s and
a random t.

5 A Publicly-Verifiable CCA2-Encryption Scheme

In this section we describe a CCA2-Encryption scheme that has the property
that a potential ciphertext can be publicly verified to be a valid ciphertext of
some message. Note that Sahai [19] had previously given a publicly-verifiable
CCA2-encryption scheme employing the Naor-Yung CCA1-scheme [18], but our
scheme is simpler and more efficient.

One might be tempted to take the Cramer-Shoup encryption scheme, and
extend the ciphertext by including a NIZK proof that the 2-universal smooth
projective-hash [7] was correctly computed. However, since the NIZK scheme
by itself may be malleable, this may render the scheme insecure in the CCA2-
model. There are two potential fixes to this: (a) make the NIZK single theorem
simulation-sound, or (b) include the NIZK commitments to the witness in the
projective-hash. While it is not that difficult to see that (a) may lead to a correct
publicly-verifiable CCA2-scheme (just as in [19]), the second idea (b) may seem
far-fetched.

We now show that it suffices to make the NIZK proof a labeled single-theorem
relatively-sound NIZK, and further one just needs to prove in this NIZK that the
Diffie-Hellman tuple in the ciphertext is well-formed, i.e. it is of the form gx, Ax.
We later show that there exists a very efficient way to extend a single-theorem
Groth-Sahai NIZK of this statement to be a relatively-sound proof, such that the
resulting publicly-verifiable CCA2-scheme is just the idea (b) mentioned above.

To formally define publicly-verifiable CCA2-encryption schemes, one just ex-
tends the standard IND-CCA2 definition of encryption with a public verification
function V which takes the public key and a potential ciphertext as arguments,
and it returns true iff the decryption function when supplied with the same
ciphertext does not return “invalid ciphertext”.

For given g,A, let the relation R = {((ρ, ρ̂), x) | ρ = gx, ρ̂ = Ax}. We now
define a labeled publicly-verifiable public-key encryption scheme DHENC as fol-
lows:

Key Generation: Generate g,A
$←− G1, and k

$←− Zq. Let K = gk. Let ψ be
the CRS for an l-SRS-NIZK. The public key is (g,A,K, ψ) and the private
key is k.
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Encrypt: Given plaintextm ∈ G1, and label lbl. Choose x
$←− Zq. Let the triple

〈ρ, ρ̂, γ〉 be 〈gx, Ax,mKx〉. Let π be an l-SRS-NIZK proof of ((ρ, ρ̂), x) ∈ R
with label γ, lbl. The ciphertext is (ρ, ρ̂, γ, π).

Decrypt: Given ciphertext c = (ρ, ρ̂, γ, π) and label lbl. Verify if π is an l-
SRS-NIZK proof for (ρ, ρ̂) and label γ, lbl. If verification fails output ⊥.
Otherwise output m = γ

ρk .

Verify: Given ciphertext c = (ρ, ρ̂, γ, π) and label lbl. Verify if π is an l-SRS-
NIZK proof for (ρ, ρ̂) and label γ, lbl. If verification fails output false else
output true.

Theorem 1. The scheme DHENC is publicly-verifiable (labeled) IND-CCA2
secure.

The full proof of this theorem can be found in [14], but the main idea is that the
decryption can be done as either γ/ρk, or as γ/(ρk

′
ρ̂k

′′
), where the Simulator

chooses the public key K as gk
′
Ak′′

. The encryption oracle hides the message
by employing DDH as follows: (1) The NIZK CRS in the original experiment
is the binding-CRS, and the decryption oracle in the original experiment does
a public verification of proofs in each adversarially supplied ciphertext. (2) The
NIZK CRS is switched to be the hiding CRS, the proof switched to a simulator
generated proof, and decryption oracle now uses private-verification. This is an
indistinguishable change by the relative-ZK property of l-SRS-NIZK. Note, x is
no more used in the simulated proof. (3) The decryption is done as γ/(ρk

′
ρ̂k

′′
),

which is equivalent because of relative-simulation soundness property of l-SRS-
NIZK. (4) DDH is employed, as only A(= ga) is being used in the simulation,
instead of a. This leads to Ax being replaced by an independent X ′. (5) The
decryption is done as γ/ρk, which is again equivalent by relative-soundness. (6)
the message in the encryption can be switched by pairwise independence in k,
and this step is information-theoretic. More precisely, gxk

′
(X ′)k

′′
is random and

independent of gx, X ′, K, A, as well as Adversary’s coins with high probability.
(7) Next we do all the above steps (2)-(5) in reverse.

6 l-SRS-NIZK for the DDH Language

Let G1 and G2 be two groups with a bilinear pairing e : G1 × G2 → GT and
|G1| = |G2| = |GT | = q, a prime number. Also assume that DDH is hard for both
G1 and G2. Recall that this is the SXDH assumption. Let Lg,A be the language:
{(ρ, ρ̂) ∈ G1

2 | ∃x. ρ = gx ∧ ρ̂ = Ax}, with g,A in G1.
Note that this language is actually a cyclic group with generator 〈g,A〉, and

forms a diverse group system [7]. In [7], Cramer and Shoup show how to obtain
2-universal projective hash functions for such languages, and we use these hash
functions for private-verification.

We construct an l-SRS-NIZK proof system for Lg,A, as follows:

CRS Generation: Generate P $←− G2 and u, v, d1, d2, e1, e2
$←− Zq. Compute

(P,Q,R, S, d, e) = (P , Pu, Pv, Puv+1, gd1Ad2 , ge1Ae2). The CRS is ψ =
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(P,Q,R, S, d, e). The first four elements are as in the Groth-Sahai NIZK
for SXDH (binding CRS), and the last two are the projection keys for a
2-universal projective-hash for the DDH language (just as [7]), to be used in
the relatively-sound system.
The simulation CRS σ is (P,Q,R, S, d, e) = (P , Pu, Pv, Puv, gd1Ad2 ,
ge1Ae2). This is the hiding CRS of GS-NIZK for SXDH along with d and e
as above. The trapdoor is τ = (u, d1, d2, e1, e2).

Prover: Given witness x, candidate (gx, Ax), and label lbl, construct proof as

follows. Generate s
$←− Zq. Compute t← H(gx, Ax, QxP s, SxRs, lbl), where

H is a collision resistant hash function. Then compute: (β, c1, c2, θ, φ, χ) ←
((det)x, QxP s, SxRs, gs, As, (det)s). Output proof π = (β, c1, c2, θ, φ, χ).
The first element is a 2-universal projective-hash computed on the candidate
with witness x. The last five elements can be interpreted as generated by
the Groth-Sahai NIWI proof (which also happens to be a NIZK proof) for
the language {ρ, ρ̂, h | ∃x : ρ = gx, ρ̂ = Ax, h = (det)x}, where t is a hash of
ρ, ρ̂, lbl, and the commitment to x in the NIWI system, i.e. QxP s, SxRs.

Simulator: Given a candidate (ρ, ρ̂), generate the proof as follows. Generate

s
$←− Zq and compute t← H(ρ, ρ̂, P s, Rs, lbl). Then compute

π = (β, c1, c2, θ, φ, χ) =
(
ρd1 ρ̂d2(ρe1 ρ̂e2)t, P s, Rs, ρ−ugs, ρ̂−uAs, β−u(det)s

)
Public Verify: Given π = (β, c1, c2, θ, φ, χ) as a candidate proof of (ρ, ρ̂) with

label lbl, compute t ← H(ρ, ρ̂, c1, c2, lbl). Then check the following
equations:⎛⎜⎝ e(g, c1)

?
= e(ρ,Q) · e(θ, P ), e(g, c2)

?
= e(ρ, S) · e(θ,R)

e(A, c1)
?
= e(ρ̂, Q) · e(φ, P ), e(A, c2)

?
= e(ρ̂, S) · e(φ,R)

e(det, c1)
?
= e(β,Q) · e(χ, P ), e(det, c2)

?
= e(β, S) · e(χ,R)

⎞⎟⎠
Private Verify: Given π = (β, c1, c2, θ, φ, χ) as a candidate proof of (ρ, ρ̂) with

label lbl, compute t← H(ρ, ρ̂, c1, c2, lbl). Then first do public verification

and if that succeeds then check the following equation: β
?
= ρd1 ρ̂d2(ρe1 ρ̂e2)t.

Note that this private verifier is well-defined in the real world as well. In
addition, its trapdoor (d1, d2, e1, e2) is identically generated in both the real
and the simulated worlds.

Theorem 2. The above system is an l-SRS-NIZK proof system for Lg,A.

Proof Sketch: We focus on Relative-ZK and Relative-SS properties. For the for-
mer, we need to show that the simulation CRS, and a proof for (ρ, ρ̂) with label
lbl is computationally indistinguishable from the real CRS and a real proof,
even when the Adversary has oracle access to respective verifiers. This is accom-
plished by a sequence of games, where the first game is same as the real world
game. In the second game, the CRS and the proof remain the same but the
verifier in the oracle is changed to be the private verifier, which in our case is
well-defined in the real world. We need to show that public verification implies
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private verification, but this follows from soundness of the Groth-Sahai NIZK, as
well as the fact that on a valid DDH tuple the projection hash is same whether it
is computed using the witness and the projection key or using the private hash
keys. In the final game we switch to the simulation CRS and simulated proof,
and indistinguishability follows from ZK property of Groth-Sahai NIZKs and
the fact that the private verification trapdoor is independent of the Groth-Sahai
NIZK CRS (hiding or binding).

The relative-simulation-soundness property is proven using the 2-universal
property of the projective smooth hash (just as in [7]), but additionally using
the fact that in Groth-Sahai NIZKs, once the commitments to the witnesses
are fixed, there is a unique proof satisfying the linear equations of the type
used in the above NIZK proof. This holds for both the SXDH and the DLIN
assumptions. ��
The l-SRS-NIZK proof for DDH language above consists of six group elements.
The l-SRS-NIZK proof for the DLIN language (and under the DLIN assumption),
given in the full paper [14], consists of 15 group elements.

7 Secure Protocol in the PAK Model

In this section we present a password-based key exchange protocol secure in
the PAK model of security due to Bellare, Pointcheval and Rogaway [1]. We
instantiate the single-round scheme due to Katz and Vaikuntanathan [16], which
is described in Figure 1, with the more efficient publicly-verifiable CCA-secure
encryption scheme DHENC of Section 5, which enables a more efficient hash
proof as well. The common reference string (CRS) is just the public key of this
scheme.

The projective-hash family used in this scheme is Hpw along with the projec-
tion function αK,pw defined in Section 3, where K is from the public-key (i.e.
CRS). Note that the input label to the hash function is ignored in Hpw. Also, α
does not depend on pw.

CRS = pk

Party Pi A Party Pj

ki
$←− Hash-K; si ← α(ki)

labeli,Ci−−−−−−→ labelj ,Cj←−−−−−−
kj

$←− Hash-K; sj ← α(kj)
labeli ← (Pi, Pj , si) labelj ← (Pj , Pi, sj)
Ci ← encpk(labeli, pw) Cj ← encpk(labelj, pw)

label′j ,C
′
j←−−−−−− label′i,C

′
i−−−−−−→

Reject if C′
j is not a publicly Reject if C′

i is not a publicly
verified ciphertext with label verified ciphertext with label
label′j . label′i.
ski ← Hki(label

′
j , C

′
j , pw) skj ← Hkj (label

′
i, C

′
i, pw)

·Hkj (labeli, Ci, pw) ·Hki(labelj, Cj , pw)

Fig. 1. Single-round PAK-Model Secure Password-based Authenticated KE



Relatively-Sound NIZKs and Password-Based Key-Exchange 495

Theorem 3. Assume the existence of SXDH-hard groups G1 and G2. Then the
protocol in Figure 1 is secure in the PAK model.

The proof of this theorem is same as the proof in [16], as we have modularized
the various constructs required in that proof. The main idea is that once the
CCA2-encryption scheme is publicly verifiable, then the smooth hash needs to
be just over the language LK,pw, which are CPA encryptions of password.

8 Secure Protocol in the UC Model

The essential elements of the Universal Composability framework can be found
in [5]. We adopt the definition for password-based key exchange from Canetti et
al [6]. The following description is a summary from [6]. The formal description
is given in Figure 2.

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter k. It
interacts with an adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from Pi: Send
(NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there
is a record (Pj , Pi, pw

′), then record (Pi, Pj , pw) and mark this record
fresh.

Upon receiving a query (TestPwd, sid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If
pw = pw′, mark the record compromised and reply to S with “correct
guess”. If pw �= pw′, mark the record interrupted and reply with “wrong
guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k: If
there is a record of the form (Pi, Pj , pw), and this is the first NewKey
query for Pi, then:
– If this record is compromised, or either Pi or Pj is corrupted, then

output (sid, sk) to player Pi.
– If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw′ =
pw, and a key sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the
time, then output (sid, sk′) to Pi.

– In any other case, pick a new random key sk′ of length k and send
(sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Fig. 2. The password-based key-exchange functionality FpwKE

Like the key exchange functionality, if both participating parties are not cor-
rupted, then they receive the same uniformly distributed session key and the
adversary learns nothing of the key except that it was generated. However, if
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one of the parties is corrupted, then the adversary determines the session key. If
the adversary makes a wrong password guess in a given session, then the session
is marked interrupted and the parties are provided random and independent ses-
sion keys. If the adversary makes a successful guess, then the session is marked
compromised, and the Adversary gets the power to set the session key.

8.1 A Single Round UC Password-Based Key Exchange Protocol

The single-round UC protocol under the SXDH assumption uses labeled un-
bounded simulation sound G2-extractable NIZKs (uSS-NIZK). Consider parties
Pi and Pj involved in the protocol with SSID ssid. The CRS is three group ele-
ments g,A(= ga),K(= gk) chosen randomly from G1, another element P chosen
randomly from G2, and a uSS-NIZK CRS ψ. Since g, P are also part of the uSS-
NIZK CRS, having chosen the NIZK CRS, g, P are already determined. The
protocol is symmetric and asynchronous with each party computing a message to
be sent, then receiving a corresponding message and computing a key. Therefore,
we just describe it from the perspective of one party; the other is symmetric.

Party Pi generates x
$←− Zq and computes c1 = 〈gx, Ax,Kx · pw〉. It also

generates hash key (n1, n̂1)
$←− (Zq)

2 and computes the projection key η1 =

αK,pwd(n1, n̂1) = gn ·K n̂. Finally it computes a NIZK proof of consistency in
the following way:

π1 = uSS-NIZKψ(g
x, Ax, η1;x,Pn1 ,P n̂1) with label 〈Pi, Pj , ssid〉

Note that π here denotes the commitments to the witnesses as well as the further
proof as in the Groth-Sahai system. The NP language L for the NIZK is

L = {ρ, ρ̂, η | ∃x,N, N̂ : ρ = gx, ρ̂ = Ax, e(η,P) = e(g,N)e(K, N̂)}

Now, the message sent by Pi is 〈c1, η1, π1〉. Let the message received by Pi in

this session, supposedly from Pj , be 〈c′2, η′2, π′
2〉. Let c′2 be parsed as (ρ′2, ρ̂

′
2, γ

′
2).

If any of ρ′2, ρ̂
′
2, γ

′
2, η

′
2 is not in G1\{1}, or uSS-NIZK-Verify(π′

2; ρ
′
2, ρ̂

′
2, η

′
2) with

label 〈Pj , Pi, ssid〉 turns out to be false, then it sets its session key sk1 randomly
from the target group of e, GT . Otherwise it is computed as follows:

h′2 = (
γ′2
pwd

)n̂1(ρ′2)
n1 h1 = (η′2)

x1 h3 = h′2 · h1 sk1 = e(h3,P).

Theorem 4. Assume the existence of a SXDH-hard group, a labeled unbounded
simulation-sound G2-extractable NIZK proof system. Then the protocol in Fig-
ure 3 securely realizes the F̂pwKE functionality in the F crs hybrid model, in the
presence of static corruption adversaries.

In the next section we demonstrate a simulator which uses F̂pwKE to simulate
the protocol to an adversary, thus proving Theorem 4.

A more optimized version of such a general labeled unbounded simulation
sound G2-extractable NIZK [7] is given in the Appendix in Section A. In fact,
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CRS = g,P , A,K, ψ : g,A,K
$←− G1 P $←− G2 ψ = uSS-NIZK CRS

Party Pi Adv A
Input (NewSession, sid, ssid, Pi, Pj ,pwd, initiator/responder)

Choose x1, n1, n̂1
$←− Zq.

c1,η1,π1−−−−−→ ASet ρ1 = gx1 , ρ̂1 = (A)x1 , γ1 = pwd ·Kx1 , η1 = gn1(K)n̂1 ,
Let c1 = 〈ρ1, ρ̂1, γ1〉, and
π1 = uSS-NIZKψ(ρ1, ρ̂1, η1;x1,Pn1 ,P n̂1) with label 〈Pi, Pj , ssid〉.

c′2,η
′
2,π

′
2←−−−−− A

Let c′2 = 〈ρ′2, ρ̂′2, γ′
2〉.

If any of ρ′2, ρ̂
′
2, γ

′
2, η

′
2 is not in G1\{1}, or

not uSS-NIZK-Verify(π2; ρ
′
2, ρ̂

′
2, η

′
2) with label 〈Pj , Pi, ssid〉

set sk1
$←− GT , else

compute h′
2 = (

γ′
2

pwd
)n̂1(ρ′2)

n1 , h1 = (η′
2)

x1 , sk1 = e(h′
2 · h1,P).

Output (sid, ssid, sk1).

Fig. 3. Single round UC-secure Password-based KE under SXDH Assumption

for the language above for which such a NIZK is required, we give a further op-
timization in [14]. Based on this optimized construction, the uSS-NIZK requires
29 group elements. A similar construction under the DLIN assumption, and for
the DLIN based UC-secure PWKE-construction (given in the full paper [14])
requires 54 group elements.

8.2 The Simulator for the UC Protocol

The trapdoor keys a, k for the CRS are chosen differently by the simulator.
Instead of choosing a, k randomly from Zq, the simulator chooses a, k′, k′′ from

Zq and sets k = k′+a ·k′′. It outputs A = ga and K = gk = gk
′
(ga)k

′′
as before.

Note that this does not change the distribution of A and K, as Zq is a field.
(We will continue to write k for k′ + ak′′, except when the simulation in some
experiments needs to be done with ga, instead of a).

Simulator S also invokes the initialization phase SE1 of the labeled uSS-NIZK
(with security parameter m) to obtain (σ, τ, ξ). S then gives A, K, and σ to the
real world adversaryA as the common reference string. Thereafter, the simulator
S interacts with the environment Z, the functionality F̂pwKE, and uses A as a
subroutine. The messages between Z and A are just forwarded by S.

The main difference in the simulation of the real world parties is that S uses
a dummy message μ instead of the real password which it does not have access
to. Further, it generates all proofs using the NIZK simulator S2 instead of real
prover.

New Session: Sending a message to A. On message (NewSession, sid, ssid,

i, j, role) from F̂pwKE, S starts simulating a new session of the protocol Π for
party Pi, peer Pj , session identifier ssid, and CRS = (A,K,ψ). We will denote
this session by (Pi, ssid). To simulate this session, S chooses x1 at random, and
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sets c1 ( = 〈ρ1, ρ̂1, γ1〉) to 〈gx1 , Ax1 , μ ·Kx1〉. It also chooses hash keys n1, n̂1 at
random, and computes the smooth-hash projected key η1 as in the real protocol
as well. S obtains a fake NIZK proof π1 using the simulator S2 of the NIZK, and
the CRS σ, and simulation trapdoor τ . It then hands c1, η1, π1 to A on behalf
of this session.

On Receiving a Message from A. On receiving a message c′2, η
′
2, π

′
2 from A

intended for this session (Pi, ssid), the simulator S makes the real world protocol
checks including verifying the NIZK proof using the NIZK-verifier. If any of
the checks fail, it issues a TestPwd call to F̂pwKE with the dummy password
μ, followed by a NewKey call with a random session key, which leads to the
functionality issuing a random and independent session key to the party Pi

(regardless of whether the session was interrupted or compromised).
Otherwise, it computes pwd′ by decrypting c′2, i.e. setting it to γ′2/(ρ

′
2)

k. If
the message received from A is same as message sent by S on behalf of peer Pj

in session ssid, then S just issues a NewKey call for Pi. Otherwise, S calls F̂pwKE

with (TestPwd, ssid, Pi, pwd
′). Regardless of the reply from F , it then issues a

NewKey call for Pi with key computed as follows (this is different from the real-
world protocol.). This has the effect that if the pwd′ was same as the actual pwd in

F̂pwKE then the session key is determined by the Simulator, otherwise the session
key is set to a random and independent value. Here is the complete simulator
code (stated as it’s overall experiment with Z, including F ’s communication
with Z):
1. Let c′2 = 〈ρ′2, ρ̂′2, γ′2〉.
2. If any of ρ′2, ρ̂

′
2, γ

′
2, η

′
2 is not in G1\{1}, or not uSS-NIZK-Verify(π′

2; ρ
′
2, ρ̂

′
2, η

′
2)

with label 〈Pj , Pi, ssid〉, output sk1 $←− GT , else compute as follows.

3. If msg rcvd == msg sent in same session (same SSID) by peer, set sk1
$←− GT ,

unless the peer also received a legitimate message and its key has already
been set, in which case that same key is used to set sk1.

4. Else, compute N ′
2, N̂

′
2 from the proof π′

2, using the extraction trapdoor ξ.

5. Compute pwd′ = γ′2/(ρ
′
2)

k. If (pwd′ �= pwd) then sk1
$←− GT , else

6. h′2 = (
γ′
2

pwd′ )n̂1(ρ′2)
n1 , h1 = (η′2)

x1 ; set sk1 = e(h′2,P)·e(h1,P)·e(μ/pwd, N̂ ′
2).

Note that the main difference is the additional factor e(μ/pwd, N̂ ′
2).

8.3 Proof of Indistinguishability for the UC Protocol

We now describe a series of experiments between the Simulator and the environ-
ment, starting with Expt0 which is the same as the experiment described as the
Simulator in Section 8.2 above, and ending with an experiment which is identical
to the real world execution of the protocol in Fig 3. We will show that the envi-
ronment has negligible advantage in distinguishing between these experiments,
leading to a proof of realization of FpwKE by the protocol Π .

For each instance, we will use subscript 2 along with a prime, to refer to
variables after the reception of the message from A, and use subscript 1 to refer
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to variables computed before sending the message to A. We will call a message
legitimate if it was not altered by the adversary, and delivered in the correct
session, and to the correct party.

Expt1: The experiment Expt1 is same as Expt0 except for the following modified
step 3 in the reception code: If msg rcvd == msg sent in same session by peer,
set sk1 to

e(Hpwd
n1,n̂1

(enc
eg
gk (μ;x2)) · Hpwd

n2,n̂2
(enc

eg
gk (μ;x1)),P).

Because the hash proof system is for languages with messages encrypting real
password, the smooth-hash-proof yields random values from the adversary’s
point of view. Note that we only employ the hash proof system correspond-
ing to n1 and n̂1, and note that the second factor corresponding to n2 and n̂2 is
independent of the first. In step 6, n1 and n̂1 are being used, but the code never
gets there if the msg received is same as message sent by legitimate peer.

Expt2: Next, we replace all occurrences of e(h1,P) (= e((η′2)
x1 ,P)) in the com-

putation of sk1 in Step 6 of the reception code by e(g,N ′
2)

x1 · e(K, (N̂ ′
2)

x1),
which is the same as e(gx1 , N ′) · e(Kx1 , N̂ ′). This leads to an indistinguish-
able change as the simulator had verified the NIZK proofs, and the NIZK
proofs have unbounded simulation extractability property, and thus e(η′2,P) =
e(g,N ′

2)e(K, N̂
′
2).

Expt3: The next change in simulation is to replace μ by the real password in
the outgoing message element γ. However, since the simulator is employing k to
compute pwd′, one cannot directly employ DDH to replace μ by pwd in outgoing
γ. However, since we are using an augmented El-Gamal encryption scheme, i.e.
also including ρ̂ in the outgoing message along with a proof of its relation to
ρ, we can use the pairwise independence in k to accomplish our goal, just as in
CCA2 scheme DHENC described in Section 5.

At this point, not only is the outgoing γ1 being computed as Kx1 · pwd, i.e.
c1 = enc

eg
K (pwd;x1), but also in the reception phase of the same (ssid, Pi), the

term e(μ/pwd, N̂ ′
2) has been replaced by 1. Recall that in Expt2, e(h1,P) was

replaced by e(gx1, N ′) · e(Kx1, N̂ ′), and now e(Kx1 , N̂ ′) has been replaced by
e(pwd/μ ·Kx1, N̂ ′), which is then equivalent to replacing e(μ/pwd, N̂ ′

2) by 1 in
Step 6. Further, if the message received was legitimate, then sk1 is now set to

e(Hpwd
n1,n̂1

(enc
eg
gk (μ;x2)) · Hpwd

n2,n̂2
(enc

eg
gk (pwd;x1),P).

Similarly, if the peer received a legitimate message, its computation of sk1 has
a similar change, i.e. its first factor has μ replaced by pwd. Thus, at the end
of these sequence of hybrid experiments, if the message received was legitimate,

then sk1 is now set to e(Hpwd
n1,n̂1

(enc
eg
gk (pwd;x2)) · Hpwd

n2,n̂2
(enc

eg
gk (pwd;x1)),P).

Expt4: In this experiment we drop the condition if (pwd′ �= pwd) then set sk1 to
random in Step 5, and always output as follows

h′2 = (
γ′2
pwd

)n̂1/ssid(ρ′2)
n1 , h1 = (η′2)

x1 ; set sk1 = e(h′2,P)·e(gx1, N ′
2)·e(Kx1 , N̂ ′

2).
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This is accomplished by a series of hybrid experiments, one for each (ssid, Pi),
we employ the hash proof smoothness, as pwd′ �= pwd implies the tuple c′2 is not
in the language, and hence h′2 is anyway random and independent.

Expt5: In this experiment we set sk1 in the last step as e(h′2,P) · e(η′x1
2 ,P). This

change is indistinguishable as the simulator is checking the validity of the NIZK
proofs, and by simulation-soundness extractability.

Expt6: In this experiment we can drop the extraction of N ′
2 and N̂ ′

2, as they
are no longer needed, and further we drop step 3. Note that currently that step

is computing sk1 as e(Hpwd
n1,n̂1

(enc
eg
gk (pwd;x2)) · Hpwd

n2,n̂2
(enc

eg
gk (pwd;x1)),P), but

since η′2 = η2, and c′2 = c2 for this session, then the above expression is same as
e(h′2,P)·e(η′x1

2 ,P). We replace all simulator generated proofs by proofs generated
by real prover, and switch from the CRS generated by SE1 to the real world
CRS. Experiment Expt6 is indistinguishable from the real-world experiment by
completeness of the hash proof system, i.e. when the labeled tuple c, ssid is in
the language, then the hash can be computed from the projection keys and the
witness x1 of c. This completes the proof of Theorem 4. ��

Acknowledgments. The authors would like to thank the referees for several
helpful comments.
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A More Efficient Unbounded Simulation Sound NIZKs

In [4], an unbounded simulation sound NIZK scheme is given for bilinear groups,
building on the Groth-Sahai NIZKs and using Cramer-Shoup like CCA2 encryp-
tion schemes under K-linear assumptions. In this section we show various general
optimizations for that construction, and further optimizations for specific lan-
guages involving generalized Diffie-Hellman tuples.

The general optimizations can be summarized as follows.

1. The scheme in [4] uses a one-time signature scheme. However, since it also
uses a labeled CCA2 encryption scheme, the one-time signature scheme can
be dropped, and one can use the label in the CCA2 scheme to get the sig-
nature property.

2. The scheme in [4] allows the simulator to generate a CCA2 encryption of ux

(for trapdoor x) along with a proof, instead of the proof of the statement.
In order for the Adversary to cheat, it must also produce such an encryp-
tion, which is impossible under CCA2. However, one notices that since the
simulator knows ux, instead of a normal encryption, the simulator can hide
ux with just the smooth hash.

http://eprint.iacr.org/
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We now give this optimized version under the SXDH-assumption for groups
(G1, G2, GT ), with a Zq-bilinear map e. We will write the bilinear map e(A,B)
in infix notation asA·B. The group operation will be written in additive notation.

Languages for the simulation-sound NIZK can be specified by equations (rela-
tions) of the form x·A = T , where x are variables from Zq, A are constants from
G2, and T is a constant from GT , and thus x serves as witness for a member of
a language specified by A and T . Languages can also be specified by equations
of the form B ·Y = T1 ·T2, where B are elements from G1, Y are variables from
G2, and T1 and T2 are constants from G1 and G2 resp. One can also consider
languages with multiple such relations of both kinds.

Note that languages for which Groth-Sahai NIWI proofs can be given are
more general, including equations like x · A + b · Y = T , as well as quadratic
equations.

The uss-NIZK CRS will consist of the usual Groth-Sahai NIWI CRS for
SXDH, along with g,A=ga,k = gk1Ak2 ,d=gd1Ad2 , e=ge1Ae2 , and h=gx,u=gu,
with g ∈ G1, and a, k1, k2, d1, d2, e1, e2, x, u chosen at random from Zq. One
could alternatively choose these values from G2. Let H be a collision resistant
hash function.

Given a set of relations as above, along with satisfying variables, the prover
does the following:

1. – For each equation of the kind x ·A = T , it generates a modified equation
x ·A = δ · T , where δ is a new global integer variable.

– Get modified equations of the form B · Y + T1 · V = 0, where V is a
new variable representing elements from G2, along with an additional
equation V + (δ − 1) · T2 = 0 [13].

– Generate an additional quadratic equation δ(1− δ) = 0.
2. Produce a Groth-Sahai NIWI proof for the above modified set of equations,

with δ set to 1. Call this proof, which includes all commitments to original
variables as well as δ and V , as π1. Also append the original statement to be
proven in π1.

3. Generate ρ = gw, ρ̂ = Aw, with w chosen at random.
4. Produce a Groth-Sahai NIWI proof of the following statements (using the

same commitment to δ as in step 2, and w′, x′ committed to zero): ρ1−δ =
gw

′
, ρ̂1−δ = Aw′

, h1−δ = gx
′
. Call this proof along with commitments to

x′, w′ as π2.
5. Set b = u · (kdet)w, where t = H(ρ, ρ̂, π1, π2).
6. Produce a Groth-Sahai NIWI proof of the following statement (using the

same commitment to δ as in step 2, and same commitment for w′, x′ as in
Step 4): b1−δ = ux

′ · (kdet)w′
. Call this proof π3.

7. The uss-NIZK proof consists of (π1, π2, π3, ρ, ρ̂, b).

The proof of zero-knowledge is similar to the construction in [4]. The proof of
unbounded simulation sound extractability is also similar to as in [4] but using
the CCA2 encryption scheme (and its proof) as described in Section 5.
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It is noteworthy that the uss-NIZK CRS can just give the product of k and
d, and it follows that k can be deleted altogether from the scheme. The above
can also be made a labeled unbounded simulation-sound extractable NIZK, by
including the label in the collision-resistance hash computation t in step 5.

Note that it takes 14 extra group elements to convert an SXDH based NIZK
proof into a uSS-proof using this construction (and 28 elements for a DLIN based
construction) [13]. For the language in Section 8.1, the NIZK proof requires 18
group elements. In the full paper [14] we show a further optimization for this
specific language, which saves another 3 group elements, resulting in a total of
29 group elements for a uss-NIZK proof for the language.
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Abstract. Understanding and modeling leakage in the context of cryp-
tographic systems (connecting physical protection of keys and crypto-
graphic operation) is an emerging area with many missing issues and
hard to understand aspects. In this work we initiate the study of leakage
out of cryptographic devices when the operation is inherently replicated
in multiple locations. This setting (allowing the adversary access to leak-
age at different locations) arises naturally in cases like protocols, where
different parties activate the same cryptographic function, or in the case
of a global service providers (like cloud operators) which need to repli-
cate the cryptographic function to allow for accessible and responsive
services. We specifically deal with the theoretical setting of “leakage re-
silient cryptography,” (modeling leakage as a bound associated with al-
gorithmic steps), and in the most general model of continual leakage on
memory, randomness (and thus computation) with periods of operation
and refresh of private keys between them.

We first investigate public-key cryptography, and construct a multi-
location leakage resilient signature scheme (with unbounded number of
locations) with optimal (i.e., total n(1− o(1)) leakage) in a period, and
O(log n) leakage during updates (n is the key size). The new crucial is-
sue behind our scheme is how to maintain leakage at each location at
the level of key leakage in the single location variant, even under par-
allel adaptive leakage at the different locations. We then construct a
shared-symmetric-key authenticated session protocol that is resilient to
leakage on both the sender and the receiver, and tolerates O(log n) bits of
leakage per computation. We construct and utilize a single-location pseu-
dorandom generator which is the first to tolerate continual leakage with
only an efficient pseudorandom function as a primitive component. This
protocol highlights the importance of protocol level “per message syn-
chronization” against leakage adversaries. Interestingly, the construction
is secure in spite of the entire randomness used in the refresh processes
being publicly available.

1 Introduction
When a cryptographic function/ service is performed at more than one location,
and an adversary attacks it, if the adversary has only black-box access to it
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and the scheme is stateless or state-synchronized (for correctness), then from
security point of view, it does not seem to matter (i.e., and it does not require
a new model) whether the scheme is operated from a single location or multiple
ones (since the black box information revealed in a sequence of cryptographic
application is insensitive to the location). However, when leakage is allowed to
be part of the outputs, the adversary gets this added side-channel information
[23] and as a result, may have different power, depending on whether the leakage
is at a single location or if it comes from multiple locations.

The above observation is the motivation to this work, since the sensitivity
to multiple location leakage is important to various systems settings, and we
investigate this issue from the “leakage resistance cryptography” perspective.
Note that multi location is natural when two parties in a protocol operate the
same cryptographic service or when the same function is inserted in various
devices (e.g., different cloud servers, different mobile devices within the same
organization), etc.

The theme of this work is the design of secure cryptosystems under the exis-
tence of multiple locations. We consider both public key systems: in particular a
signature scheme (while the methods we design may apply in more generality to
encryption, etc.), and symmetric key systems: in particular session authentica-
tion protocols providing sender continual authentication to the receiver, based
on shared pseudorandomness. We consider the model of continual leakage with
no relaxation, i.e., where the leakage function is not only a result of computa-
tion but can be a function of the memory (state) and the randomness (i.e., the
computation) as well. In these models, the parties need to go through periods
of operation where leakage is given to the adversary and once the accumulated
amount of leakage is large enough, the private keys are refreshed between periods
(obviously if refresh is not possible, continued leakage may reveal over time the
entire key bits, say one by one). We note that the above model is the strongest,
compared with more limited types of leakage models that have been consid-
ered as well in the literature (such as: leakage in the presence of leakage-free
components, leakage where “only computations leak,” and only memory leakage
(without leaking the randomness used in the cryptographic computation)).

1.1 Multi-location Leakage Resilient Signature

Since we consider continual leakage we have to make sure that we have a scheme
where the total leakage in a period is only a fraction of the state (if the state
is l bits long we can allow at most l(1 − o(1)) bits of information about the
secret to be given to the adversary. Indeed, a few recent schemes have achieved
such leakage in a period, allowing logarithmic leakage in the refresh process (e.g.
[8,5]). In this version we concentrate on the signature scheme of [28].

In a multi-location setting, the scheme is replicated in various locations to
allow better accessibility o the signing service, say, and necessarily these locations
contain related key information (since the verification key is identical regardless
of location). If the adversary collects enough information at different locations,
each of which by itself is too small to break the key, the cumulative effect may
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nevertheless be that the adversary is in possession of enough bits to break the
key (e.g., may collect all bits of a single replicated key). Thus, in the naive
solution (which allows very limited leakage per location), we may restrict the
amount of leakage at each location to be smaller than the total allowed per
single location divided by the number of locations. This approach as we will
show works sometimes, but sometimes fails!

We then turn into the challenging problem of constructing direct multi-
location leakage resilient scheme which allows large leakges per location. Our
starting point is a recent signature secure against continual leakage, where the
crux behind this scheme is the fact that a key within a period is hidden within
a large set of keys and the leakage within a period is simulatable by leakage cor-
related with a random value rather than the key [28]. Then, the key is refreshed
to another value within a large set of keys. A crucial point behind extending the
signature to a multi location scheme which is refreshed at all locations periodi-
cally (when a bound on signatures at any single location is reached) is extension
of the space from which private keys are drawn, so that multiple location leakage
will also be simulatable by random values taking the two dimensions of variety
of keys, namely, “periods” and “locations,” into account when building the space
of keys.

1.2 Multi-location Symmetric-Key Authentication

We next design a session authentication protocol from symmetric key whose
goal is to continuously authenticate the sender to the receiver. A natural way of
doing it is to base this on a stream cipher (i.e., a pseudorandom generator) which
is run by both parties. Dziembowski and Pietrzak [12] and Pietrzak [31] gave
leakage-resilient stream ciphers in the only-computation-leaks model (where the
adversary gets a bounded size (logarithmic, in fact) leakage bits each time). Their
seminal constructions use two pieces of memory connected by a public channel,
and computation alternates between the two pieces. For an authenticated session
we have two parties, a sender A and a receiver B, where A is sending message
pieces to B, and we wish to ensure that an adversary cannot modify or reorder
messages pieces, or insert message pieces of his own without this being detected
by B. The adversary obtains leakage from both parties. The existing security
definitions of leakage-resilient stream ciphers do not deal with this case at all.
In fact, in the existing ciphers, an adversary that can cause parties A and B to
“get out of sync” can attack the system and eventually learn the cipher’s entire
state. This suggests that we need a way to somewhat synchronize the stream
cipher computations performed by the two parties.

Our construction, in turn, builds on Pietrzak’s stream cipher construction [31],
and uses a single piece of memory along with a source of strings that are chosen
according to distribution of high min-entropy but are not kept secret (public
min-entropy source), and are rather communicated between the parties. Our
stream cipher uses a pseudo-random function generator Fs : {0, 1}n → {0, 1}2n.
The initial secret state is randomly chosen K0 ∈ {0, 1}n. For each i > 0, the i-th
output is produced and the state is updated. A authenticates the message using
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the output, while B generates the next round high entropy string and sends it
back for synchronization and update to A. Of course, the adversary controls the
public channel and may insert strings of his choice (purporting to be sent by the
other party) to induce a party to continue its computation; we show that such
tampering by the adversary will be detected by B when it attempts to verify the
authenticity of the message pieces he receives; the construction allows continual
leakage of logarithmic bits per round.

Remark:We note that Dodis et al [8] present a signature scheme which is multi-
location leakage resilient (Theorem 7.6 in [8]), although they do not explicitly
call it such. However, their scheme does not allow the adversary to obtain leakage
on the randomness of signing. In contrast, in this work we define and present a
signature scheme with multi-location resilience to full leakage (including signing
randomness), and provide several generic theorems for obtaining multi-location
leakage bounds for schemes that were intended to support only a single location.

1.3 Related Work

Side channel attacks [23] have often been shown to have devastating effects on the
security of cryptographic schemes (some recent attacks that specifically pertain
to general memory leakage are described in e.g., [17,32,36], and others). As a
result a significant effort has been wielded to design cryptographic schemes that
provably withstand large classes of such attacks.

The influential theoretical works of Ishai, Sahai, and Wagner [19] and Micali
and Reyzin [30] enable us to construct schemes under the “any computation,
and only computation, leak information,” model, which has led to many recent
achievements. In contrast, memory leakage [1] (which, in some sense, can be
traced to the original works of Shamir [34] and Rivest [33]) are produced as a
function of the memory state itself. This type of leakage is orthogonal to com-
putational leakage: an adversary can get memory leakage by probing memories
even if the memories are not currently used in any computation (e.g., the cold-
boot attacks [17]). For example, the scheme of [9,8] is secure against memory
attacks (even continual), but assumes that the signing process leaks no infor-
mation. The most general model allows full leakage which includes leakage both
from processing and memory.

The most demanding case for designing digital signature schemes seems to be
the case of adaptive and continual full leakage that is available to the adversary
from both computational and memory sources (without protection of sub-steps of
computations). However, till recently there are no known schemes which achieve
a digital signature scheme in this adversarial setting in the standard model.
and without further relaxations. All known schemes with full (memory and pro-
cessing) leakage either did not have a key update algorithm and thus are not
continual (cf., [22]), have a key update algorithm but require some restrictions
(e.g., [3,2] which requires an additional leakage-free master key), or are based on
the random oracle model (with a relaxation of the definition of a “time period”)
[5]. Faust et al [13] construct signature schemes resilient to continual leakage in
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the only computation leaks model. Recently, two schemes have appeared with
continual full leakage [28,4].

In the private key setting, Dziembowski and Pietrzak [12], and Pietrzak [31]
describe the first stream ciphers resilient to continual leakage in the only com-
putation leaks model. Our private key construction uses the works of [12,31] as
a starting point. Many other schemes dealt with the case of designing pseudo-
random generation [12,31,39,11].

Faust et al [14] give a general compiler using secure hardware that protects
an arbitrary circuit against continual leakage that can be modeled as a shal-
low (AC0) boolean circuit. Juma and Vahlis [20], and separately Goldwasser
and Rothblum [16], give compilers that protect any algorithm against contin-
ual leakage (without complexity restrictions), using secure hardware. Recently,
Dodis and Pietrzak [11] show how to build continual leakage resilient pseudoran-
dom functions that are secure against non-adaptive leakage. Finally, Lewko et al
[26,25] show how to achieve leakage resilient Identity Based Encryption (IBE)
and super-logarithmic leakage on key updates in signatures, and Chow et al [7]
show an efficient leakage resilient IBE. A separate line of work studies strong
leakage resilience in information theoretic implementation settings [35].

Finally, we mention a parallel rich line of work on tamper resistant cryp-
tography [6,27,24,29,18,15]. Here, an adversary has the ability to modify, rather
than observe, the state of the cryptographic primitive. Tamper resistant schemes
provide security guarantees, even when the secret state is transformed through
a tampering function adversarially chosen from a large class of functions. We
remark that the techniques seem to be quite different from the ones employed
to achieve leakage resilience. Indeed, studying the relation between tamper re-
sistance and leakage resistance is an important direction.

Roadmap. In Section 2 we present our definitions of multi-location continuous
leakage resilient signatures, and constructions. In Section 3 we present a shared
key authenticated session protocol that is resilient to continuous leakage, and in
Section 4 we present our variant of the Dziembowsky-Pietrzak leakage resilient
stream cipher [12].

Notation. We write PPT to denote Probabilistic Polynomial Time. When we
wish to fix the random bits of a PPT algorithm M to a particular value, we
write M(x; r) to denote running M on input x and randomness r. We write
timen(M) to denote the running time of algorithm M on security parameter n.
We use x ∈R S to denote the fact that x is sampled according to a distribution
S. Similarly, when describing an algorithm we may write x ←R S to denote
the action of sampling an element from S and storing it in a variable x. For a
randomized algorithm M , we denote by Rnd[M ] the space of its random coins.
Namely, if M uses at most nM random bits in any execution, then Rnd[M ] =
{0, 1}nM .
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2 Multi-location Leakage Resilience in the Public Key
Setting

In a multi-location setting, an adversary (or perhaps multiple colluding adver-
saries) simultaneously mount side channel attacks on multiple devices. When
the devices contain unrelated data, and perform unrelated computations, such
an attack should be viewed as a single side channel attack on each of the devices,
since none of the other devices can provide any information that would help the
attacker. The problem becomes much more serious when the devices contain
correlated secret data. As an extreme case, consider a situation where multiple
identical copies of a secret key are stored on several servers. Even if the crypto-
graphic scheme where the key is used remained secure when the key is partially
leaked, an adversary in a multi-location setting may be able to reconstruct the
entire key from partial leakage from each of the locations. In this scenario, surely
all reasonable security properties of the scheme can be broken. One possible ap-
proach to dealing with this apparent limitation is to restrict the total amount
of leakage that the adversary can obtain across all copies of the key. Indeed, for
some primitives (such as encryption) we show a straightforward reduction from
multi-location leakage resilience with a bound on the total amount of leakage to
single location leakage resilience. We note that, perhaps surprisingly, the same
straightforward reduction fails for other primitives, such as signature schemes.

Note however that ideally, we want to obtain transformations where the leak-
age per location remains as large as the leakage bound in the single location set-
ting. In Section 2.1 we give constructions of signature and encryption schemes
where the leakage bound per location does not decrease with the number of
different locations that maintain an equivalent copy of the key.

Overall, we note that extending multi-location leakage resilience to the con-
tinuous setting introduces several subtle challenges that do not appear when
considering leakage from only a single location. Before describing these issues,
we describe (informally) a generic transformation of a continuous leakage re-
silient signature scheme into a multi-location variant of itself. This will serve
two purposes: firstly, it will help us illustrate the definitional issues that arise
in multi-location continual leakage resilience. Secondly, our actual constructions
and transformations can all be viewed as variants of the general approach that
we describe here.

Consider a signature scheme that is resilient to continual leakage in the single
location setting. As we have already discussed, such a scheme must have a key
refresh procedure (otherwise, an adversary can eventually obtain the entire key).
Moreover, suppose that the refresh procedure produces a new signing key chosen
uniformly from the set of all valid keys that correspond to the public verifica-
tion key that is generated once at the beginning. Now consider the following
initialization procedure for an n-location signature scheme:

1. A public-private key pair (vk, sk) is generated using the key generation
procedure of the single location scheme.
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2. The key refresh procedure is used to produce n random signing keys
sk1, . . . , skn, all corresponding to the verification key vk.

3. Location i receives key sk i. Whenever location i receives a request to update
the key, it runs the refresh algorithm on its own key ski.

Essentially, each location maintains an independently chosen random signing
key for vk, and when the leakage bound is reached for that specific location,
the key is randomized. When n = 1, this is exactly what happens in the single
location setting (and thus for n = 1 the security of the scheme trivially follows
from its single location security). Consider now what happens when n > 1: at
first glance it may seem that, because the keys at the different locations are
independently chosen, leakage from one location would be completely useless in
attacking another location. This turns out to be false for multiple reasons.

2.1 Signature Schemes

A signature scheme with key update SGN consists of four algorithms Kg, Sig,
Ver, and Update. The inputs and outputs of Kg, Sig, and Ver are the same as in
standard signature schemes. Update takes as input a secret key and a public key
and outputs a new element of the secret key space. SGN = (Kg, Sig,Ver,Update)
has to satisfy the following property:

(Correctness) For any integers n,m, i ≥ 0 and any message M , if we com-

pute (pk , sk
(0)
1 , . . . , sk (0)

m )← Gen(1κ,m), sk0 ← sk
(0)
i , sk1 ← Updatepk (sk0),

. . ., skn ← Updatepk (skn−1), and σ ← Sig(skn,M), Ver(pk ,M, σ) = 1 al-
ways holds.

We now define multi-location leakage resilience for signatures. Intuitively, the
definition is a natural extension of the definitions of leakage resilient signatures
that appeared in [28,5,8,4,10]. Intuitively, the adversary can submit signature
queries and leakage queries that are directed at a specific location. For example,
the adversary may submit a query that is interpreted as “Have the ith signer
sign message m, and obtain side-channel information f(ski, r), where r is the
randomness used during signing, along with the resulting signature”. The other
types of queries are location specific signature queries without leakage (to allow
longer periods between updates, as discussed in the introduction), and update
queries. For update queries, we distinguish between synchronized updates where
all locations refresh their keys simultaneously and unsynchronized updates where
the adversary instructs the signer at some location i to refresh his key. Finally,
the adversary’s goal is to produce a valid signature of a message that he has not
submitted for signing in any of his queries.

Experiment ExpMLSIG(1n,A,SIG):

Setup. The adversary submits an integer m, and the challenger runs Gen(1n,m) to
obtain a public verification key pk , and m location secret keys sk1, . . . , skm.

Queries. A submits queries of the following three types:
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Update queries.
Unsynchronized setting. Update queries of the form (update, f, i) where f is

a circuit satisfying |f(sk i, R)| ≤ ρU (|sk i|+ |R|) for any R. If Li+ |f(sk i, R)| ≤
ρM |sk i| holds, the challenger chooses R

$← Rnd[Update] randomly, computes
sk i ← Updatepk (sk i, R), sends f(sk i, R) back to A, and sets Li ← |f(sk i, R)|.
Otherwise, the challenger aborts.

Synchronized setting. Update queries of the form (update, f1, . . . , fn) where
|fi(sk i, R)| ≤ ρU(|sk i| + |R|) for any R. If Li + |f(sk i, R)| ≤ ρU |sk i| holds,
the challenger chooses R1, . . . , Rn

$← Rnd[Update] randomly, computes sk i ←
Updatepk (sk i;Ri), sends (fi(sk i, Ri))

n
i=1 back to A, and sets Li ← |fi(sk i, Ri)|.

Otherwise, the challenger aborts.

Memory leak queries (leak, f, i), where f is a circuit. If Li + |f(sk i)| ≤ ρM |sk i|
holds, the challenger sends f(sk i) to adversary and resets Li ← Li + |f(sk i)|.
Otherwise, the challenger aborts.

Signing queries (sig,M, f, i) where f is a circuit with |f(sk i, R)| ≤ ρS(|sk i|+
|R|) for any (sk i, R). The challenger chooses R← Rnd[Sig] randomly, computes
σ ← Sig(sk i,M ;R) and sends (σ, f(sk i, R)) back to A.

Challenge. Assuming the challenger did not abort, A outputs (M∗, σ∗). It succeeds
if Ver(pk ,M∗, σ∗) = 1 holds and A never made query (sig,M∗, i) for any i.

Definition 1. Let ρG, ρU , ρM , and ρS be elements of the real range [0, 1].
We say that SGN = (Gen, Sig,Ver,Update) is (ρG, ρU , ρM , ρS)- EU-CMA-CML
secure (stand for existentially unforgeable under chosen message attack in the
CML model) if no PPT adversary A succeeds in the experiment of ExpMLSIG
with non-negligible probability. Here Rnd[Algo] denote the set of randomnesses
for algorithm Algo.

In the full version of this paper [21] we show several negative results regarding
generic transformations of single to multi location signature schemes, as well as
a simple transformation that does work, under some restrictions on the base
signature scheme. We now turn to a direct construction that achieves optimal
leakage bounds.

Direct Multi-Location Leakage Resilience. The simple generic transfor-
mation (described in [21]) may not be satisfactory if the number of locations is
very large. For instance, for a key of length 256 bits, even an optimally leakage
resilient scheme that is transformed to a multi-location setting with more than
256 locations would be able to withstand less than one bit of leakage per location
before the key has to be refreshed. This would require an extremely high refresh
rate if even a small (but unknown) number of locations are suspected to leak
information.

To address this, we turn to constructing signature and encryption schemes
directly, that will withstand large amounts of leakage per location, and will
allow the total amount of leakage among different locations to exceed the length
of the key between updates. At the core of our constructions is a strengthening
of the Leakage Resilient Subspaces Lemma from [5]. On a high level, the BKKV
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lemma can be described as follows: let K be an n-dimensional vector space,
and let Z1, . . . , Zl, 1 ≤ l < k be random elements in K. Then, no adversary
(even a computationally unbounded one) can distinguish between leakage from
random samples from Span(Z1, . . . , Zl) and random samples from K. The key
difference between the lemma in [5] and the one we present here is the ability of
the adversary to leak on samples in parallel rather than sequentially: we show
that even if the adversary breaks his leakage on a given sample into several
rounds, where at each round he chooses the leakage function adaptively based
on leakage from other samples, he is still unable to distinguish between random
samples from K and from the l dimensional subspace. We next describe the
parallel leakage resilient subspace game:

Parallel-leakage resilient subspaces. Let b ∈ {0, 1}, n, �,m, λ be integers satisfy-
ing n ≥ � > m ≥ 2, p be a prime, and K be a n-dimensional vector space over
Zp. The following is the parallel leakage resilient subspace game, played with a
computationally unbounded adversary D:

1. Let Z1, . . . , Z�
$← K. Initially a set Γ = {Γ1, . . . , Γm} of size m is sampled

uniformly at random from K if b = 1 and from Span(Z1, . . . , Z�) if b = 0.
2. The adversary can make leakage queries: (leak, i, F ) where i ∈ [m] and F :
K → {0, 1}λF , PF ⊆ P ; and refresh queries: refresh. For a leakage query, the
adversary is given F (Γi), as long as

∑
F λF ≤ λ where the sum is over all

the leakage functions F that are applied to Γi between two refresh queries.
When the adversary submits a refresh query, (Γ1, . . . , Γm) are assigned a
random values from K if b = 1 and random values from Span(Z1, . . . , Z�) if
b = 0.

3. Finally, D is given Z1, . . . , Z�, and it outputs a bit b′.

We denote by ExpLRS(b,D) the above experiment with an adversary D, and
with the bit b specified as a parameter. The output of ExpLRS(b,D) is defined
to be the output of D at the end of the experiment. We now state the central
parallel leakage resilient subspaces lemma:

Lemma 1. Let D be an adversary for the above game. Then, for all δ ≥ 0, if
2λtotal ≤ p�−m−1δ2/q2, then

|Pr[ExpLRS(0,D) = 0]− Pr[ExpLRS(1,D) = 0]| ≤ δ.

The proof of Lemma 1 appears in the full version of this paper [21].

2.2 Construction

We present a simple adaptation of the signature scheme of [28] to the multi-
location setting. The modified construction allows us to achieve optimal leakage
resilience, even when multiple versions of the key leak simultaneously. That is,
the total amount of leakage across all locations between updates significantly
exceeds the length of a single complete key (this is in contrast to the simple
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generic transformation, where the amount of leakage per location decreases as
the number of locations increases to guarantee that the total amount does not
exceed the size of a key). The changes required to the scheme and analysis are
quite minimal. Indeed, the only substantial modification to the analysis is the use
of the parallel leakage-resilient subspaces lemma (Lemma 1). For completeness,
we describe the complete scheme here, and give a high level overview of the
necessary modifications to the security analysis.

Our construction relies on the Symmetric External DDH assumption in bilin-
ear groups (details of the assumption are given in [21]). The description of our
scheme is as follows. Let n ≥ 3 and m be integers. Let Setup be a polytime algo-
rithm that generates a group description gk = (p,G,H,T, e), as discussed above,
where e : G×H→ T. For H = (H0,H1, . . . ,Hm) ∈ (H2)m+1 and M ∈ {0, 1}m,
we define a Water’s hash function [38] h as

hgk (H,M) = H0 +
∑
k∈[m]

MkHk,

where Mk is the k-th bit of M . Let Prf and Vrf be the proof algorithm and the
verification algorithm of the Groth-Sahai proof system (reviewed in [21]). Our
signature scheme SGN = (Kg,Update, Sig,Ver) works as follows.

Key Generation Gen(1κ,m): gk ← (p,G,H,T, e)← Setup(1κ),G← H2,H ←
(H0,H1, . . . ,Hm)← (H2)m+1.

Randomly select A
$← G, Q

$← H, and a, q
$← Zn

p satisfying 〈a, q〉 = 0

and compute A ← aA, Q ← qQ. Select W [0] $← Hn randomly, compute
T ← e(A,W [0]). Then, the location specific keys are generated as: choose

si
$← Zp, and set W

[0]
i ← W [0] + siQ. Outputs pk ← (gk ,G,H,A, T,Q)

and location specific private keys (sk
[0]
i )i∈[m].

Key Update Updatepk (sk
[i]): Parse pk and sk [i] as (gk ,G,H,A, T,Q) andW [i]

respectively, select s
$← Zp randomly, and output sk [i+1] ← W [i+1] ←

W [i] + sQ.
Signing Sig(sk [i],M) for M ∈ {0, 1}m: Parse pk and sk [i] as (gk ,G,H,A, T,Q)

and W [i]. Compute HM ← hgk(H,M), set crsM ← (G,HM ), and σ ←
Prf(gk , crsM , (A, T ),W [i]) and output σ.

Verification Ver(pk ,M, σ): Parse pk as (gk ,G,H,A, T,Q), compute HM ←
hgk (H,M), and set crsM ← (G,HM ). If Ver(gk , crsM , (A, T ), σ) = 1, out-
put 1. Otherwise, output 0.

Theorem 2. For any constants c > 0 and any γ = Θ(1/
√
κ), the proposed

scheme SIG is (ρG, ρU , ρM , ρS)-EU-CMA-CML secure under the SXDH assump-
tion. Here

(ρG, ρU , ρM , ρS) =

(
c · log k
n log p

,
c · log k
n log p

, 1− 2 + γ

n
, 1− 2 + γ

n

)
.

We can achieve the fraction 1 − o(1) of leakage in signing and in memory by
setting n = κ.
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Overview of the modifications to the analysis of the MTVY scheme. Essentially
the analysis of the above scheme proceeds similarly to the analysis of the original
(single-location) variant of [28]. The main modification to the argument is to
replace the use of the original leakage resilient subspace lemma from [5] with
our parallel version, given by lemma 1. Specifically, in the proof of [28, Lemma
9] we replace the use of [28, Proposition 10] with our Lemma 1. Once we use
Lemma 1, the subspace W remains information theoretically hidden from the
adversary throughout the security, and therefore any successful forgery would
yield a successful attack on the Independent Pre-Image Resistant Hash Function
described in [28, Section 3]. We leave the full details of the analysis to the full
version of this paper.

3 Authenticated Session Protocols

Next, we describe our definition and construction of a leakage resilient authen-
ticated session protocol in the private key setting.

3.1 Security Definition

The intuitive goal of an authenticated session protocol involving two parties, the
sender A and the receiver B, where A is sending message pieces m1,m2, . . . ,
to B, is that B can verify that the message pieces he receives are indeed those
sent by A, in the same order. This should hold even when all message pieces
mi sent by A are adversarially chosen. Of course, the adversary has complete
control of the public channel over which A and B are communicating. This
means that he controls the timing and contents of all communication. In the
leakage-resilient case, we strengthen the adversary by allowing him to obtain
leakage on both parties. We are interested in the continual leakage setting, where
the adversary obtains some bounded amount of leakage on each computation
by each party but the total amount of leakage obtained by the adversary over
the course of the execution of the protocol is unbounded. The leakage on each
computation is computed by an adversarially-chosen function is applied to the
inputs and randomness involved in the computation along with the entire state
of the party performing the computation. This means that we do not rely on
the only-computation-leaks assumption. In our case, we further strengthen the
adversary by giving him all the entropy used by each party after the initial state.
Equivalently, we require that A and B are deterministic but each have access to
a (separate) source of public min-entropy; whenever a party obtains a string its
source of high min-entropy strings, this string is also given to the adversary.

We begin by formally defining session protocols (we restrict our definition to
protocols as ours with two flows per message, but the idea can be extended).

Definition 3. (Shared-private-key session protocol with public min-
entropy) A shared-private-key session protocol with public min-entropy (which
we will henceforth simply refer to as a session protocol) consists of deterministic
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polytime algorithms EvalB1 (producing message from B), EvalA (receiving the
emssage from B), and EvalB2 (producing the message received from after evalu-
ation), polynomials sB(n), �B(n), sA(n), and �A(n), and distribution ensembles
{ZA

n } and {ZB
n } that satisfy the following properties for all n ∈ N:

1. ZA
n is a distribution over strings of length sA(n) such that H∞(ZA

n ) ≥
log2(n). Similarly, ZB

n is a distribution over strings of length sB(n) such
that H∞(ZB

n ) ≥ log2(n).

2. EvalB1 takes as input KB ∈ {0, 1}n and rB ∈ {0, 1}sB(n), and outputs
β ∈ {0, 1}�B(n) and K ′

B ∈ {0, 1}n such that β has prefix rB.
Informally, the strings KB and K ′

B are the state of party B before and
after it executes EvalB1, rB is the public min-entropy used by EvalB1, and
β is a flow from party B to party A.

3. EvalA takes as input KA ∈ {0, 1}n, m ∈ {0, 1}n, β ∈ {0, 1}�B(n), and
rA ∈ {0, 1}sA(n), and outputs e ∈ {0, 1}�A(n) and K ′

A ∈ {0, 1}n such that e
has prefix rA.

Informally, the strings KA and K ′
A are the state of party A before and

after it executes EvalA, m is a message piece that party A would like to
send to party B, β is a flow from party B to party A, rA is the public
min-entropy used by EvalA, and e is a flow from party A to party B.

4. EvalB2 takes as input KB ∈ {0, 1}n, rB ∈ {0, 1}sB(n), and e ∈ {0, 1}�A(n),
and outputs either m ∈ {0, 1}n and K ′

B ∈ {0, 1}n or a special message
Fail.

Informally, the strings KB and K ′
B are the state of party B before and

after it executes EvalB2, rB is the public min-entropy used by the immedi-
ately preceding run of EvalB1, e is a flow from party A to party B, and m
is a message piece received by party B.

5. For all K ∈ {0, 1}n, every polynomial p(n), all rA,1, rA,2, . . . , rA,p(n) ∈
{0, 1}sA(n), all rB,1, rB,2, . . . , rB,p(n) ∈ {0, 1}sB(n), and all sequences of
message pieces m1,m2, . . . ,mp(n) ∈ {0, 1}n, if we define KA,0 = KB,0 = K
and, for 1 ≤ i ≤ p(n), we iteratively define KA,i,K

′
B,i,KB,i, ei, βi,m

′
i in

the following manner:

(βi,K
′
B,i)← EvalB1(KB,i−1, rB,i)

(ei,KA,i)← EvalA(KA,i−1,mi, βi, rA,i)

(m′
i,KB,i)← EvalB2(K

′
B,i, rB,i, ei)

then m′
i = mi for all 1 ≤ i ≤ p(n).

Informally, this means that in the absence of an adversary, the message
pieces output by party B are exactly those sent by party A, in the same
order.

We now define the security experiment for leakage-resilient authenticated session
protocols. The adversary will be a family of polynomial-size circuits C = {Cn}.
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Letting λ : N → N be a function, we will say that an adversary C is λ(n)-
bounded if the leakage functions produced by Cn over the course of the security
experiment each have output length λ(n). Fixing a session protocol

(EvalB1,EvalA,EvalB2, sB(n), �B(n), sA(n), �A(n), {ZA
n }, {ZB

n })

a function λ : N → N, a λ(n)-bounded adversary C = {Cn}, and n ∈ N, the
security experiment proceeds as follows.

A string K ∈ {0, 1}n is randomly chosen. We define KA,0 = KB,0 = K. Then,
Cn is allowed to run EvalA, EvalB1, and EvalB2 in the following manner. Cn

may run these algorithms as many times as he wishes and in any order of his
choice as long as for every i > 0, the (i + 1)-st invocation of EvalB1 does not
occur before the i-th invocation of EvalB2, and the i-th invocation of EvalB2

does not occur before the i-th invocation of EvalB1. (This restriction captures
the fact that even though the adversary controls the public channel, party B will
still alternate between executing EvalB1 and executing EvalB2.) We now describe
what happens when the adversary Cn runs each algorithm.

For i > 0, the i-th invocation of EvalB1 proceeds as follows. Cn pro-
duces the description of a circuit fB1,i : {0, 1}n × {0, 1}sB(n) → {0, 1}λ(n).
Then, rB,i ← ZB

n is chosen. Next, (βi,K
′
B,i) ← EvalB1(KB,i−1, rB,i) and

leakB1,i ← fB1,i(KB,i−1, rB,i) are computed. Finally, Cn is given βi and
leakB1,i.

For i > 0, the i-th invocation of EvalA proceeds as follows. Cn pro-
duces mi ∈ {0, 1}n and β′

i ∈ {0, 1}�B(n), and the description of a cir-
cuit fA,i : {0, 1}n × {0, 1}sA(n) → {0, 1}λ(n). Then, rA,i ← ZA

n is ran-
domly chosen. Next, (ei,KA,i) ← EvalA(KA,i−1,mi, β

′
i, rA,i) and leakA,i ←

fA,i(KA,i−1, rA,i) are computed1. Finally, Cn is given ei and leakA,i.

For i > 0, the i-th invocation of EvalB2 proceeds as follows. Cn produces a
string e′i ∈ {0, 1}�A(n) and the description of a circuit fB2,i : {0, 1}n →
{0, 1}λ(n). Then, (m′

i,KB,i) ← EvalB2(K
′
B,i, rB,i, e

′
i) and leakB2,i ←

fB2,i(K
′
B,i) are computed2; if EvalB2 outputs Fail, the experiment ends

immediately. If the i-th invocation of EvalA has previously occurred and
m′

i = mi, Cn is given leakB2,i; otherwise, the experiment ends immediately.

Say that the final invocation of EvalB2 is the j-th invocation. Define qC(n) to
be the probability that the j-th invocation of EvalB2 does not output Fail and
either EvalA has been invoked fewer than j times or m′

j �= mj.

Definition 4. (Leakage-resilient authenticated session protocol) Let λ :
N→ N be a function. A session protocol is a λ(n)-leakage-resilient authenticated

1 It is not necessary to provide mi or β
′
i as inputs to fA,i since Cn chose these values

himself and hence he can simply hardcode them into fA,i if he wishes.
2 It is not necessary to provide rB,i to fB2,i since this was previously provided to Cn

as the prefix of βi, and it is not necessary to provide e′i to fB2,i since Cn chose this
value himself.
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session protocol if for every λ(n)-bounded adversary C as above, we have qC(n) ≤
1/nd for all d and sufficiently large n.

3.2 Our Construction

In our construction, only party B requires a source of public min-entropy. Ac-
cordingly, to simplify notation, we use Zn rather that ZB

n to denote the high
min-entropy distribution used by B.

Given pseudo-random function generators F : {0, 1}n × {0, 1}n → {0, 1}2n
and F ′ : {0, 1}n × {0, 1}n → {0, 1}n, and given a distribution ensemble {Zn}
such that for all n, Zn is a distribution over {0, 1}n and H∞(Zn) ≥ log2(n), we
construct a leakage-resilient authenticated session protocol SP as follows.

EvalB1: On input (KB, rB), where KB ∈ {0, 1}n and rB ∈ {0, 1}n, EvalB1 lets
K ′

B = KB and β = rB , and outputs (β,K ′
B).

EvalA: On input (KA,m, β), where KA,m ∈ {0, 1}n and β ∈ {0, 1}n, EvalA
computes K ′

A||XA ← FKA(β) (where |K ′
A| = |XA| = n) and α = F ′

XA
(m),

lets e = 〈m,α〉, and outputs (e,K ′
A).

EvalB2: On input (KB, rB, e
′), where KB ∈ {0, 1}n, rB ∈ {0, 1}n, and e′ ∈

{0, 1}2n, EvalB2 parses 〈m′, α′〉 ← e′, computes K ′
B||XB ← FKB (rB) (where

|K ′
B| = |XB| = n), and α = F ′

XB
(m′). If α′ = α, EvalB2 outputs (m′,K ′

B);
otherwise, EvalB2 outputs Fail.

It is not hard to see that SP satisfies the definition of a session protocol. The
idea is that parties A and B both run a stream cipher (see Section 4) starting
from the same key and using the same inputs, and use the i-th output Xi to
compute a signature F ′

Xi
(mi) of the i-th message piece mi.

Theorem 5. For all c > 0, SP is a c logn-leakage-resilient authenticated session
protcol.

For the details of the proof of Theorem 5 we direct the reader to [21].

4 Stream Cipher Construction

In this section, we present our modified version of Pietrzak’s stream cipher. The
main purpose of our construction is to prove Theorem 6, which in turn is used
in the proof of Theorem 5. Our construction uses only a single piece of memory
but requires a public source of min-entropy. We believe that the construction
below and its analysis are of independent interest due to the involved analysis
of the leakage resilient stream cipher with public randomness.

The construction. Let F : {0, 1}n × {0, 1}n → {0, 1}2n be a pseudo-random
function. Let {Zn} be such that for all n, Zn is a distribution over strings of
length n and H∞(Zn) ≥ log2(n). The initial state is K0, where K0 ∈ {0, 1}n is
randomly chosen. For each i > 0, the i-th round consists of:
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1. Ri ← Zn is chosen.

2. Ki||Xi ← FKi−1(Ri).

3. The new state is Ki.

The adversary’s interaction. Fix c > 0. A (c log n)-bounded adversary interacts
as follows. For each i > 0:

1. Before round i, the adversary outputs the description of a function fi :
{0, 1}2n → {0, 1}c logn.

2. After round i, the adversary sees Ri, Xi, fi(Ki−1, Ri).

4.1 Security Analysis

We begin by defining some notation.
For an adversary A, we will use reali to denote the adversary’s view after

the first i rounds along with the corresponding Xj . That is,

reali = 〈R1, f1(K0, R1), X1, R2, f2(K1, R2), X2, . . . , Ri, fi(Ki−1, Ri), Xi〉

Note that the fj are not fixed functions, but rather are chosen adaptively by the
adversary A as described in Section 4.

We will also define a version of reali that includes an additional round where
there is no leakage. Specifically, we define

real+i = 〈reali, Ri+1,Ki+1, Xi+1〉

That is, real+i includes the inputs and outputs of an additional leak-free round
along with the entire state at the end of that round.

Theorem 6. Let F : {0, 1}n × {0, 1}n → {0, 1}2n be a pseudo-random func-
tion. Let K ′ and X ′ be independent random variables that are each uniformly
distributed over {0, 1}n. Let {Zn} be such that for all n, Zn is a distribution
over strings of length n and H∞(Zn) ≥ log2(n). For all c > 0, d > 0, e > 0,
every function p : N → N, sufficiently large n, all (c logn)-bounded adversaries
A interacting as described in section 4 and obtaining leakage for p(n) rounds,
and all adversaries D such that 2 · size(A) + size(D) + p(n)size(F ) ≤ ne,∣∣∣Pr [D(real+p(n)) = 1

]
− Pr

[
D(realp(n), Rp(n)+1,K

′, X ′) = 1
]∣∣∣ ≤ 6p(n) + 6

nd
.

Specifically, for sufficiently large n (depending only on c, d, and e), if there
exists an adversary D breaking the above, then there exists an adversary of size
ne+8d+2c+8 breaking F with advantage 1/n5d+2c+3.

The details of the proof of Theorem 6 are given in [21]. The high-level approach
is similar to that of Pietrzak [31], but there are differences in the details, due to
the differences in our security models.
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Abstract. Assume that an adversary observes many ciphertexts, and
may then ask for openings, i.e. the plaintext and the randomness used
for encryption, of some of them. Do the unopened ciphertexts remain
secure? There are several ways to formalize this question, and the ensuing
security notions are not known to be implied by standard notions of
encryption security. In this work, we relate the two existing flavors of
selective opening security. Our main result is that indistinguishability-
based selective opening security and simulation-based selective opening
security do not imply each other.

We show our claims by counterexamples. Concretely, we construct
two public-key encryption schemes. One scheme is secure under selective
openings in a simulation-based sense, but not in an indistinguishability-
based sense. The other scheme is secure in an indistinguishability-based
sense, but not in a simulation-based sense.

Our results settle an open question of Bellare et al. (Eurocrypt 2009).
Also, taken together with known results about selective opening secure
encryption, we get an almost complete picture how the two flavors of
selective opening security relate to standard security notions.

Keywords: security definitions, selective opening security, public-key
encryption.

1 Introduction

Security under Selective Openings. Assume that an adversary observes
many ciphertexts, and may then ask for openings of some of them. Do the
unopened ciphertexts remain secure? Somewhat surprisingly, security in this
setting is not known to be implied by standard security notions for encryption
schemes (such as IND-CPA security). In fact, very recently, Bellare et al. [2]
showed that a whole class of IND-CPA secure public-key encryption schemes do
not achieve a simulation-based notion of selective open security.

To date, there are two flavors of definitions to capture security under selective
openings: simulation-based selective opening security (SIM-SO security, [8, 1])
and indistinguishability-based selective opening security (IND-SO security, [1]).
There are indications that SIM-SO and IND-SO security constitute orthogo-
nal requirements. For instance, when looking at selective opening security for
commitment schemes, Bellare et al. prove that any statistically hiding commit-
ment scheme is IND-SO secure; however, there are severe limitations on the
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On Definitions of Selective Opening Security 523

construction of SIM-SO secure commitment schemes from a number of standard
assumptions [1]. Nonetheless, in case of encryption schemes (which are the focus
of this paper), no similar result is known.

We will now describe the existing security notions for selective opening secu-
rity, along with known results.

Simulation-Based Selective Opening Security (SIM-SO-CPA). An en-
cryption scheme is called SIM-SO-CPA secure, if anything an adversary can
compute from a vector of ciphertexts and openings of a subset of these cipher-
texts, can also be computed by a simulator that only sees the opened messages
(but no ciphertexts at all). SIM-SO-CPA security dates back to Dwork et al.
[8], who consider the same security notion for commitments. In the encryption
context, SIM-SO-CPA security has been investigated by Bellare et al. [1], who
also observe that Goldasser-Micali encryption [10] achieves SIM-SO-CPA secu-
rity. Later on, several other SIM-SO-CPA secure encryption schemes have been
constructed [9, 13, 14].

However, all known SIM-SO-CPA secure encryption schemes are compara-
tively inefficient: they either encrypt messages bitwise [10, 9], or they are based
on assumptions related to Paillier encryption [13, 14]. There is no known efficient
SIM-SO-CPA secure encryption scheme based on, say, the DDH problem in a
suitable cyclic group. One key difficulty seems to be that SIM-SO-CPA security
essentially requires that the encryption is non-committing, such that a cipher-
text can be efficiently opened to any message [4, 5, 9] (possibly using a special
trapdoor). In fact, Bellare et al. [2] use this property in a clever way to construct
an encryption scheme that is IND-CPA secure, but not SIM-SO-CPA secure.

Indistinguishability-Based Selective Opening Security(IND-SO-CPA).
An encryption scheme is called IND-SO-CPA secure, if no adversary, after given
a vector of ciphertexts and openings of a subset of these ciphertexts, can distin-
guish the unopened messages from fresh messages. There is one subtlety here.
Namely, in most applications, the initially received ciphertext vector may contain
encryptions of related messages (e.g., encryptions of shares of a secret value).
Hence, the “fresh” messages that the adversary must distinguish from the ac-
tually encrypted (but unopened) messages must be conditioned on the already
opened messages. Note that depending on the underlying distribution of mes-
sage vectors, conditioning on an arbitrary subset of messages can be an inefficient
process. In particular, the IND-SO-CPA security experiment may be inefficient.

This subtlety has led to two different IND-SO-CPA variations. Full IND-SO-
CPA security requires exactly what we have sketched above, with a potentially
inefficient security experiment. The problem with full IND-SO-CPA security is
that there are no known fully IND-SO-CPA secure encryption schemes.1

1 We mention that for commitments, the situation is less problematic: every statis-
tically commitment scheme is (fully) IND-SO secure [1]. However, a moment of
reflection shows that there can be no statistically hiding encryption scheme. The
closest we can get to statistically hiding encryption is lossy encryption, which is
only known to imply weak IND-SO-CPA security.
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On the other hand, weak IND-SO-CPA security requires the above, but only
for distributions of message vectors that are efficiently re-samplable. Here, ef-
ficiently re-samplable means that the message distribution can be efficiently
sampled, even when fixing any subset of messages to a particular value.2 The
advantage of weak IND-SO-CPA security is that any lossy encryption scheme [17]
is already weakly IND-SO-CPA secure [1]. In particular, there are very efficient
weakly IND-SO-CPA secure encryption schemes based on standard assumptions.
This is also an important advantage over full IND-SO-CPA security for which
no realizations are known yet.

The main disadvantage of weak IND-SO-CPA security is that it is obviously
only useful in settings in which the joint distribution of all encrypted messages
actually is efficiently re-samplable. Many conceivable settings (e.g., when com-
mitments or other non-invertible functions of other messages are encrypted) do
not conform to such a re-samplability condition.

The Current Situation. So far, we can summarize that SIM-SO-CPA as well
as (full or weak) IND-SO-CPA security both have advantages and disadvantages.
It depends on the concrete setting and requirements which notion is to prefer.
However, so far little is known about the relations among those notions of selec-
tive opening security. A few implications are trivial or at least follow with little
effort: full IND-SO-CPA security obviously implies weak IND-SO-CPA security,
and it is not hard to see that SIM-SO-CPA security implies weak IND-SO-CPA
security. However, otherwise the relation in particular between full IND-SO-CPA
security and SIM-SO-CPA security is not known. (We again stress that for com-
mitments, the situation is a little different, as sketched above; however, these
results do not apply to encryption schemes.)

Our Contribution. This paper attempts to fill this gap: we relate full IND-
SO-CPA security and SIM-SO-CPA security. Our results show that full IND-
SO-CPA security does not imply SIM-SO-CPA security, and vice versa. We give
concrete counterexamples, i.e., encryption schemes that are fully IND-SO-CPA
secure, but not SIM-SO-CPA secure (and the other way around). In a sense, our
results further isolate full IND-SO-CPA security from other notions of encryption
scheme security. Thus, there is even less motivation to study full IND-SO-CPA
security. Figure 1 depicts the relations of the different flavors of selective opening
security to one another and to IND-CPA security.

We now provide some more technical background on our results.

Our First Counterexample. We first construct a scheme that is SIM-SO-
CPA secure, but not fully IND-SO-CPA secure. The basic idea is to take any
SIM-SO-CPA secure scheme, and modify it such that it becomes vulnerable to a
full IND-SO-CPA attack (while preserving its SIM-SO-CPA security, of course).
Our modification is simple: we add a tuple

((gsut)M , (hsvt)) (1)

2 For instance, the distribution of message tuples (x, x) is efficiently re-samplable,
while the distribution (x, gx) is not (where x ∈ �|�| is uniform, and g ∈ � for some
group � in which discrete logarithms are hard to compute).
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IND-CPA SIM-SO-CPA

weak IND-SO-CPA full IND-SO-CPA

BDWY11

Fig. 1. Relations of different definitions of selective opening security and IND-CPA.
The bold arrows illustrate the results of our work while BDWY11 is the main result of
[2]. Crossed arrows symbolize concrete counterexamples and dashed arrows stand for
open questions. All other arrows are implications that are pretty much straightforward
or follow directly from the already settled relations. Note that the question whether
weak IND-SO-CPA security implies SIM-SO-CPA security is settled negatively if a
fully IND-SO-CPA secure encryption scheme exists.

to each ciphertext, whereM is the encrypted message, s, t are random exponents,
and g, h, u, v are group elements that are part of the public key. In the scheme,
(g, h, u, v) = (g, h, gω, hω) is a Diffie-Hellman tuple, such that (1) is a perfectly
binding commitment to M . However, during the proof that the modified scheme
is still SIM-SO-CPA secure, we will switch (g, h, u, v) to a non-Diffie-Hellman
tuple. Then, (1) becomes a perfectly hiding commitment, which can actually
be equivocated arbitrarily. (Note that this added commitment really only is an
instance of the dual-mode commitment schemes from Damg̊ard and Nielsen [6].)
This allows to open ciphertexts in our modified scheme arbitrarily, and shows
the modified scheme SIM-SO-CPA secure.

To prove that the modified scheme is not fully IND-SO-CPA secure, we first
define a suitable distribution dist of message tuples (x, z), such that re-sampling
dist essentially requires computing a discrete logarithm. Concretely, we define
dist such that (x, z) = (x, gx), resp. (x, z) = (x, hx) (for uniform x and g, h from
the scheme’s public key) with probability 1/2 each. Now suppose an adversary
starts off with two ciphertexts, one for x and one for z = gx. He then chooses
to open the second ciphertext (for z = gx), which fixes the second component
of the ciphertext vector. (However, note that the adversary does not know x at
this point.)

Assume, when invoked with the challenge message vector, he then gets a first
component y, sampled from dist conditioned on the second component z. By
our definition of dist, with a probability of 1/2, the adversary then does not get
y = x, but the unique y with z = hy. Note that then, x = y · dloggh. Using this
relation, the adversary can recognize that the first unopened ciphertext (with
commitment ((gsut)x, (hsvt))) really contained x. This check works only if re-
sampling occurred, and hence the adversary successfully distinguishes authentic
from re-sampled messages. As SIM-SO-CPA security implies IND-CPA security,
this counterexample also shows that IND-CPA security does not imply full IND-
SO-CPA security.
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Our Second Counterexample. We proceed to construct a scheme that is fully
IND-SO-CPA secure, but not SIM-SO-CPA secure. Again, we simply modify
an assumed fully IND-SO-CPA secure scheme to make a SIM-SO-CPA attack
possible. Concretely, we add a statistically hiding commitment Com(M) to each
ciphertext, where M is the encrypted message. (In fact, we will require non-
interactive statistically hiding commitments without any kind of setup, which
can be built from collision-resistant hash functions. See Section 4 for details.)
This makes the encryption scheme binding (i.e., a public key and a ciphertext
form a binding commitment to the message). Hence, applying a general result
due to Bellare et al. [2] shows that the scheme is not SIM-SO-CPA secure.

To show that the modified scheme is still fully IND-SO-CPA secure, we show
that any IND-SO-CPA adversaryA′ on the modified scheme can be mapped to an
IND-SO-CPA adversary A on the old scheme. The problem for A is that it must
present (an internal simulation of) A′ with ciphertexts with added commitments
Com(Mi), and later open some of those commitments to the right Mi. In this,
A must not know any of the Mi in advance. Our solution to this commitment
problem is to embed the Com(Mi) into A’s message distribution. (That is, if A′’s
message distribution over the Mi is dist′, then A’s message distribution is dist,
which is the same as dist′, only with added commitments to the Mi.) Hence,
A can go ahead and open all Com(Mi)-encryptions (and only those) in advance
to be able to prepare authentic commitments for A′. The remaining translation
between A′’s and A’s IND-SO-CPA experiment is then straightforward.

The technical difficulty in pushing this line of proof through is that by initially
opening commitments Com(Mi) to all messages, A may slightly skew a later re-
sampling of the Mi. If the used commitment scheme is perfectly hiding, this is a
non-issue: then, Com(Mi) reveals no information about Mi, and conditioning on
Com(Mi) does not change the distribution of Mi. However, the most interesting
candidates for non-interactive statistically hiding commitment schemes are only
statistically, but not perfectly hiding. We thus need to show that conditioning
on a statistically hiding commitment does not significantly change a message
distribution. This in fact turns out to be surprisingly nontrivial. Specifically, the
statement only holds for bit messages Mi, but not necessarily for messages, say,
from {0, 1}k. See Section 4 for details.

Outline. We start by recalling some notation and definitions (including the
definitions of selective opening security) in Section 2. We present our counterex-
amples in Section 3 and Section 4. In Appendix A, we prove a technical lemma
that is necessary for our second counterexample.

2 Preliminaries

Notation. For n ∈ �, let [n] := {1, . . . , n}. Throughout the paper, k ∈ �
denotes the security parameter. For a finite set S, we denote by s← S the process
of sampling s uniformly from S. For a distribution X , we denote by x← X the
process of sampling x from X . For a probabilistic algorithm A, we denote with
y ← A(x;R) the process of running A on input x and with randomness R, and
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assigning y the result. We let RA denote the randomness space of A; we require
RA to be of the form RA = {0, 1}r. We write y ← A(x) for y ← A(x;R) with
uniformly chosen R ∈ RA. If A’s running time is polynomial in k, then A is
called probabilistic polynomial-time (PPT). Two sequences of random variables
X = (Xk)k∈� and Y = (Yk)k∈� are computationally indistinguishable (denoted

X
c≈ Y ) iff for any PPT algorithm D, the probability Pr

[
D(1k, Xk) = 1

]
−

Pr
[
D(1k, Yk)

]
is negligible in k. The statistical distance of Xk and Yk is defined

as SD (Xk ; Yk) :=
1
2

∑
s |Pr [Xk = s]− Pr [Yk = s]|.

DDH Assumption. The decisional Diffie-Hellman (DDH) assumption over a
group � (that may depend on the security parameter k) stipulates that

(g, ga, gb, gab)
c≈ (g, ga, gb, gc),

where g ← � and a, b, c← [|�|] are uniformly distributed.

PKE Schemes. A public-key encryption (PKE) scheme consists of three PPT
algorithms (Gen,Enc,Dec). Key generation Gen(1k) outputs a public key pk and
a secret key sk . Encryption Enc(pk ,M) takes a public key pk and a message M ,
and outputs a ciphertext C. Decryption Dec(sk , C) takes a secret key sk and a
ciphertext C, and outputs a message M . For correctness, we want Dec(sk , C) =
M for all M , all (pk , sk)← Gen(1k), and all C ← Enc(pk ,M).

Definition of Selective Opening Security. We present and discuss three
definitions for security under selective openings that capture security of an en-
cryption scheme under adaptive attacks. Two definitions are indistinguishability-
based, following the IND-SO-COM, resp. IND-SO-ENC definitions by Bellare
et al. [1]. These definitions demand that even an adversary that gets to see a
vector of ciphertexts cannot distinguish the true contents of the ciphertexts from
independently sampled plaintexts. While one of these definitions, called weak
IND-SO-CPA here, only considers efficiently re-samplable message distributions,
the other one, dubbed full IND-SO-CPA, does not restrict the considered mes-
sage distributions in this way. The third definition, dubbed SIM-SO-CPA by us,
resembles the SEM-SO-COM, resp. SEM-SO-ENC definitions from [1] (which in
turn follow Dwork et al. [8]). This definition is simulation-based and does not
have to cope with different strategies to handle re-sampling.

Definition 1 (Efficiently re-samplable). Let N = N(k) > 0, and let dist be
a joint distribution over ({0, 1}k)N . We say that dist is efficiently re-samplable
if there is a PPT algorithm ReSampdist such that for any I ⊆ [N ] and any partial
vectorM′

I := (M ′(i))i∈I ∈ ({0, 1}k)|I|, ReSampdist(M
′
I) samples from dist |MI,

i.e., from the distribution dist, conditioned on M (i) = M ′(i) for all i ∈ I.

Opening Oracles. In our definitions of selective opening security we provide
the adversary with an opening oracle to allow adaptive queries. Such an oracle
is a stateful functionality that takes one argument. When queried with a set of
indexes, it responds with the corresponding openings. When queried with the
string get queries, it returns the set of all indexes it has provided openings for
since its instantiation.



528 F. Böhl, D. Hofheinz, and D. Kraschewski

Definition 2 (Weak indistinguishability-based selective opening secu-
rity). For a PKE scheme PKE = (Gen,Enc,Dec), a polynomially bounded func-
tion N = N(k) > 0, an opening oracle O and a stateful PPT adversary A,
consider the following experiment:

Experiment Expweak-ind-soPKE,A

b← {0, 1}
(pk , sk)← Gen(1k)
(dist,ReSampdist)← A(pk )
M0 := (M (i))i∈[n] ← dist

R := (R(i))i∈[n] ← (REnc)
N

C := (C(i))i∈[n] := (Enc(pk ,M (i);R(i)))i∈[n]

O := (M (i), R(i))i∈[n]

AO(·)(select,C)
I := O(get queries)
M1 ← dist |MI
outA ← A(output,Mb)
return 1 if outA = b, 0 otherwise

We only allow A that always output efficiently re-samplable distributions dist
over ({0, 1}k)N with corresponding efficient re-sampling algorithms ReSampdist.
We say that PKE is weakly IND-SO-CPA secure, if

Advw-ind-soPKE,A (k) := Pr
[
Expweak-ind-soPKE,A (k) = 1

]
− 1

2
is negligible.

There are some minor technical differences between Definition 2 and the IND-
SO-ENC definition from [1]: IND-SO-ENC security universally quantifies over
all (efficiently re-samplable) message distributions dist. We let A choose dist
instead, e.g., to allow a message distribution that depends on the public key pk .
(In fact, otherwise it is not even clear that the resulting definition implies IND-
CPA security.) Besides, our definition grants the adversary multiple, possibly
adaptive openings, whereas IND-SO-ENC security only allows for a one-shot
opening phase. We believe that multiple openings are more realistic in view of
a scenario with adaptive party corruptions.

Definition 3 (Full indistinguishability-based selective opening secu-
rity). For a PKE scheme PKE = (Gen,Enc,Dec), a polynomially bounded func-
tion N = N(k) > 0, a stateful opening oracle O and a stateful PPT adversary
A, we define the experiment Expfull-ind-soPKE,A analogously to Expweak-ind-soPKE,A but do not
require the adversary to provide an algorithm for re-sampling, i.e., A(pk ) just
outputs a message distribution dist. We say that PKE is fully IND-SO-CPA se-
cure if

Advs-ind-soPKE,A (k) := Pr
[
Expfull-ind-soPKE,A (k) = 1

]
− 1

2
.

is negligible.
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Definition 3 resembles the IND-SO-COM definition from [1], only for encryption
instead of commitments, and with the same syntactic differences as above. (We
note that [1] only consider efficiently re-samplable message spaces in their re-
sults about encryption schemes. In their results about selective opening secure
commitments, the involved message spaces are arbitrary, as in Definition 3.)

Definition 4 (simulation-based selective opening security). For a PKE
scheme PKE = (Gen,Enc,Dec), a polynomially bounded function N = N(k) > 0,
and a stateful PPT adversary A, consider the following experiments:

Experiment Expsim-so-real
PKE,A

(pk , sk)← Gen(1k)
dist← A(pk )
M := (M (i))i∈[n] ← dist

R := (R(i))i∈[n] ← (REnc)
N

C := (C(i))i∈[n] := (Enc(pk ,M (i);R(i)))i∈[n]

O := (M (i), R(i))i∈[n]

outA ← AO(·)(select,C)
I := O(get queries)
return (M, dist, I, outA)

Experiment Expsim-so-ideal
S

dist← S()
M := (M (i))i∈[n] ← dist

outS ← SO(·)(select)
I := O(get queries)
return (M, dist, I, outS)

We say that the scheme is SIM-SO-CPA secure iff for every aversary A there
is a PPT algorithm, the simulator, S such that the distributions induced by the
experiments Expsim-so-real

PKE,A and Expsim-so-ideal
S are computationally indistinguishable.

Apart from the differences mentioned above, Definition 4 is identical to the SEM-
SO-ENC definition from [1].

3 SIM-SO-CPA Security Does Not Imply Full
IND-SO-CPA Security

We prove by counterexample that there are SIM-CO-CPA secure PKE schemes
that are not fully IND-SO-CPA secure. Let PKE = (Gen, Enc, Dec) be a PKE
scheme with message space {0, 1}k that is SIM-SO-CPA secure3. From PKE we
construct a scheme PKE′ = (Gen′, Enc′, Dec′) (see Figure 2) that is still SIM-
SO-CPA secure, which is what we prove first, but not fully IND-SO-CPA secure.

For the construction of PKE′ (see Figure 2) we use a cyclic DDH group � of
prime order. We assume that the underlying SIM-SO-CPA secure scheme PKE
can encrypt elements of � and �-exponents.4 The idea of our modification is to

3 Such schemes exists under reasonable assumptions, see [1, 9] for example.
4 Specifically, in the term (gsut)M used in Enc′, the message M can be a group element.
We thus implicitly assume a suitable encoding of group elements as (nonzero) �-
exponents; depending on �, this may additionally require application of a collision-
resistant hash function H , so that the term becomes (gsut)H(M). We stress that our
results do not depend on the used encoding or hash function.
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Gen′ (1k)
(pk , sk)← Gen(1k)
g ← �, h← �

ω ← [|�|]
u := gω, v := hω

return ((pk , g, h, u, v), sk)

Enc′ (pk ′, M)
((pk , g, h, u, v) := pk ′

s← [|�|], t← [|�|]
C1 ← Enc(pk ,M)
C2 := ((gsut)M , hsvt)
return (C1, C2)

Dec′ (sk , C)
(C1, C2) := C
M := Dec(sk , C1)
return M

Fig. 2. PKE′, a scheme which is SIM-SO-CPA but not fully IND-SO-CPA secure

extend the ciphertext by a “dual-mode” commitment (in the spirit of [6]). If the
public key is generated honestly, the commitment is perfectly binding. However,
in the course of the proof of Lemma 1, we will swap the public key. Thereby we
switch to the alternative mode where the commitment is equivocable with the
help of a trapdoor. Finally, in the proof of Lemma 2, we can use the commitment
to show that PKE′ is not fully IND-SO-CPA secure.

For a ciphertext C ← Enc′(pk ,M) under PKE′ we write (M, (r, s, t)) for the
corresponding opening. (r, s, t) resembles the randomness used to generate c: r
is the randomness used by Enc and s and t are the coins for the commitment
(see Figure 2).

3.1 PKE′ is SIM-SO-CPA Secure

Lemma 1. PKE′ is SIM-SO-CPA secure.

Proof. Let A′ be an adversary for PKE′. Our goal is to construct a simulator
S such that Expsim-so-real

PKE′,A′ and Expsim-so-ideal
S are computationally indistinguishable.

Towards this goal we first construct an adversary A that uses A′ to attack PKE.
Then we show the indistinguishability of Expsim-so-real

PKE′,A′ and Expsim-so-real
PKE,A and finally

use the SIM-SO-CPA security of PKE to obtain S.
The SIM-SO-CPA-real experiment calls A twice, once to obtain the message

distribution dist, and once to obtain the output of the adversary after the opening
phase. Based on these calls we define A as follows:

Message distribution. A uniformly picks g, h from� and ωu �= ωv from [|�|].
It then computes u := gωu , v := hωv and returns A′((pk , g, h, u, v)).

Opening queries. A uniformly picks vectors S,T← [|�|]N of values and com-

putes C
(i)
1 := C(i), C

(i)
2 := (uS

(i)

, vT
(i)

) and C′ := (C
(i)
1 , C

(i)
2 )i∈[|C|]. Next

A constructs an opening oracle O′ that works as follows: If called with an
index i, it fetches the corresponding opening (M,R) := O(i) from O and
computes

s := ωuωv(S
(i) − T (i)M)/(ωuM − ωvM)

and
t := T(i) − s/ωv

which yield the opening (M, (R, s, t)) for C′(i). Note that we have (gsut)Mi =

uS
(i)

and hsvt = vT
(i)

. A returns A′O′(·)(select,C′).
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We now provide a sequence of games that shows the computational indistin-
guishability of Expsim-so-real

PKE′,A′ and Expsim-so-real
PKE,A . Game 1 is simply the real SIM-

SO-CPA experiment with A′ and PKE′. In Game 2 the experiment runs with
a modified public key: Let pk ′ = (pk , g, h, u, v) denote the public key generated
by Gen′. The experiment in Game 2 uniformly picks ωu �= ωv from [#�] and
sends the tuple (pk , g, h, gωu, hωv ) instead of pk ′ to A′. Every efficient algorithm
that could distinguish the distribution generated by Game 1 from that gener-
ated by Game 2 with non-negligible probability would win the DDH-experiment
with non-negligible probability. In Game 3 we remove the information about
the encrypted message from the commitment part of the ciphertext. For each
ciphertext C = (Enc(pk ,M), ((gsut)M , hsvt)) in C the experiment picks s and
t uniformly from [|�|] and replaces C2 by (us, vt). If A′ wishes to open the
ciphertext, the experiment computes an opening as described in the definition
of A above using the knowledge of ωu and ωv. The distributions of Game 2
and Game 3 are identical: The commitment part of the ciphertext consists of
((gsut)M , hsvt) for uniform s and t. Since ωu = logg(u) �= logh(v) = ωv, its

distribution is identical to5 (gaM , gb) for uniformly random a and b and hence
obviously identical to (us, vt) for random s, t. Similarly we can see that the
random values in the openings are still distributed uniformly as well.

The situation in Game 3 is identical to running the SIM-SO-CPA-real experi-
ment with A and PKE. Since A is SIM-SO-CPA secure there is a simulator S such
that Expsim-so-real

PKE,A

c≈ Expsim-so-ideal
S . Altogether we find Expsim-so-real

PKE′,A′
c≈ Expsim-so-real

PKE,A
c≈ Expsim-so-ideal

S . Hence S simulates A′ which concludes our proof.

3.2 PKE′ Is Not Fully IND-SO-CPA Secure

Lemma 2. PKE′ is not fully IND-SO-CPA secure.

Proof. We construct an adversary A that wins the full IND-SO-CPA experiment
with non-negligible probability. Basically, A benefits from the fact that the ex-
periment conditions the distribution of messages dist on the choice of openings
I to sample M1 even if this re-sampling could not be done efficiently by A. In
the course of this proof we will see that A can therefore utilize the experiment to
compute a discrete logarithm which helps A to learn the experiment’s choice b.

We now describe the adversary A.

Message distribution. When A receives the public key pk ′ = (pk , g, h, u, v) it
responds with a distribution of tuples (x, z) ∈ Z|�| ×� determined by the
following algorithm:

Distribution dist
b← {0, 1}
x← [|�|]
if b = 0 then return (x, gx) otherwise return (x, hx)

5 Recall that we have assumed an encoding of M that does not map to 0.
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Intuitively, this algorithm draws a random element z from � and returns
either (logg z, z) or (logh z, z).

Challenge ciphertexts. A receives C← (Enc′(pk ′, x),Enc′(pk ′, z)) for some x
and z = gx or z = hx. Let (Enc(pk , x), ((gsut)x, hsvt)) = C(1).

Opening queries. A callsO(2) to open the second component ofC. The return
value of this call is of no interest for A here. However, it is important that
the value of z is fixed for the re-sampling of M1.

Challenge messages. Finally, A receives a message vector Mb = (y, z) from
the experiment. If

(hsvt)y = (gsut)x (2)

then A returns 1 and 0 otherwise.

Analysis. Game 1 is the full IND-SO-CPA experiment Expfull-ind-soPKE,A . In Game

2 the experiment calls Gen(1k) to generate the public key (pk , g, h, u, v) = pk ′ ←
Gen(1k) until g �= h and gh �= 1 before sending pk ′ to A. The statistical distance
of the two distributions of public keys is 2

|�| and hence negligible.

We now analyze the advantage of A in Game 2. By opening the second compo-

nent of the ciphertext vector A fixes its value, i.e. z :=M
(2)
0 =M

(2)
1 . However,

since the value of z does not determine whether the first component of Mb

contains the logarithm to base g or to base h, this is decided only when M1 is
sampled. An adversaryA benefits from this re-sampling ifM0 = (x = logg(z), z),
M1 = (y = logh(z), z) and b = 1. In this case A learns y and only then6 we have
that equation 2 holds.

We now show that the advantage of A is non-negligible. We define the three
events
– B: The experiment samples b = 1.
– M0 : The experiment samples M0 = (x, gx) (i.e. the first message vector

contains a logarithm to base g).
– M1 : The experiment samplesM1 = (y, hy = z) for a fixed z (i.e. the second

message vector contains a logarithm to base h).
Let E denote the complementary event for an event E. We observe that A
outputs 1 if B ∧M0 ∧M1 and 0 if B ∧M0 ∧M1 . Hence

Pr
[
Expfull-ind-soPKE,A = 1

]
= Pr

[
B ∧B ∧M0 ∧M1

]
+ Pr [B ∧ (B ∧M0 ∧M1 )]

(∗)
= Pr

[
B ∨ (B ∧ (M0 ∨M1 ))

]
+ Pr [B ∧M0 ∧M1 ]

= Pr
[
B
]
+ Pr [B] Pr [M0 ] Pr [M1 ]

=
1

2
+

1

2
· 1
2
· 1
2
=

5

8
,

where (∗) uses that B, M0 and M1 are independent events. Altogether, the
adversary’s advantage in Game 2 is

6 Since g �= h and gh �= 1.
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Advs-ind-soPKE,A = Pr
[
Expfull-ind-soPKE,A = 1

]
− 1

2
=

1

8

which is non-negligible.

4 Full IND-SO-CPA Does Not Imply SIM-SO-CPA

4.1 Outline

We will now construct a fully IND-SO-CPA secure PKE scheme that is not
SIM-SO-CPA secure. To this end, we will start from a fully IND-SO-CPA secure
scheme PKE.7 We will then add a commitment (to the encrypted message) to
each PKE ciphertext, such that the resulting scheme PKE′ becomes committing.
The result of Bellare et al. [2] then implies that PKE′ is not SIM-SO-CPA secure.

The heart of our argument will thus be to show that PKE′ is still fully IND-
SO-CPA secure. We will reduce the IND-SO-CPA security of PKE′ to that of
PKE. Concretely, assume an IND-SO-CPA adversary A′ on PKE′. We need to
construct an IND-SO-CPA adversary A on PKE. Of course, A will internally run
A′ and try to map PKE ciphertexts and openings to those of PKE′.

The concrete problem for A is that initially, A′ expects a vector of PKE′ cipher-
texts, which contain commitments to each message. Because these commitments
do not appear in PKE ciphertexts, A will have to make up those commitments for
A′ without knowing the respective messages. Later on, however, when A′ requests
openings, A will have to also open those commitments to messages not known in
advance (to A). In other words, A will have to equivocate commitments for A′.

This seems like an insurmountable problem: we need PKE′ to be committing,
in order to derive (using [2]) that PKE′ is not SIM-SO-CPA secure. However,
if PKE′ is committing, then how could A possibly equivocate commitments?
Our solution is to abuse the (possibly inefficient) re-sampling that occurs during
the IND-SO-CPA experiment. Namely, observe that statistically hiding commit-
ments can always be equivocated inefficiently (at least with high probability).
In fact, equivocating a commitment com = Com(M ;R) (with message M and
randomness R) can be formulated as re-sampling from the message distribution
(M,R,Com(M ;R)), conditioned on a fixed value com for the third component.
This will essentially allow our adversary A to formulate the necessary equivoca-
tions as a re-sampling of suitable message distribution.

4.2 Non-interactive Statistically Hiding Commitments

As a technical tool for our separation, we will require the notion of suitable
commitments. To allow for (inefficient) equivocation, we will require that the
commitments are statistically hiding. Additionally, for the use in a PKE scheme,

7 To date, there is no PKE scheme that is known to be fully IND-SO-CPA secure.
However, in case no IND-SO-CPA secure scheme exists, of course no separating
example can be constructed.
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the commitments should be non-interactive. Finally, we stress that we do not
allow any public parameters (such as a common reference string).

Definition 5 (NISHCOMs). A non-interactive statistically hiding commit-
ment scheme (NISHCOM) is a PPT algorithm Com that takes as input a message
M ∈ {0, 1} and outputs a commitment com ∈ {0, 1}∗. We require the following
properties:
Statistical hiding. The statistical distance SD (Com(0) ; Com(1)) is negligible

in k.
Binding. For every PPT A, the following probability is negligible (in k):

Pr
[
Com(0;R0) = Com(1;R1) | (R0, R1)← A(1k)

]
.

While one-way functions imply statistically hiding commitments [12], we can-
not expect to construct NISHCOMs even from trapdoor one-way permutations
[11]. In fact, there can be no NISHCOM that is binding against non-uniform
adversaries. (The statistical hiding property implies that for each k, there exist
many tuples (R0, R1) with Com(0;R0) = Com(1;R1). We can always hardcode
one such tuple into a non-uniform A.) However, under specific assumptions, we
can construct NISHCOMs:

NISHCOMs from CRHFs. Assume a collision-resistant hash function H :
{0, 1}∗ → {0, 1}k. We stress that H is not keyed but fixed. (In particular, we can
only hope for collision-resistance against uniform adversaries.) Instantiated with
such anH , Naor and Yung [15], and Damg̊ard et al. [7] yield several constructions
of NISHCOMs. For instance, implicit in [15] is the NISHCOM

Com(M ; (X,h)) := (H(X), h, h(X)⊕M)

for M ∈ {0, 1}, X ∈ {0, 1}� for suitably large �, and a suitable randomness
extractor h.

NISHCOMs from Fixed Groups. Let (�k, gk, hk)k∈� be a family of finite
groups, one for each value of the security parameter k, along with (fixed) genera-
tors gk, hk of�k. If we assume that the problem of computing dloggk(hk) is com-
putationally infeasible, then Pedersen’s commitment [16] (i.e., Com(M ;R) :=
gMk hRk ) is a NISHCOM that is even perfectly hiding.

4.3 The Separating Scheme

We are now ready to describe our scheme. We assume a fully IND-SO-CPA
secure scheme PKE = (Gen,Enc,Dec) with message space {0, 1}, as well as a
NISHCOM Com. In our scheme, depicted in Figure 3, we simply append to each
ciphertext a commitment to the encrypted message. This commitment is never
checked or opened during execution of the scheme; it only serves as a means to
make the scheme committing in the sense of Bellare et al. [2].
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Gen′(1k)
(pk , sk)← Gen(1k)
return (pk , sk)

Enc′(pk ′,M)
C ← Enc(pk ,M)
com ← Com(M)
return C′ := (C, com)

Dec′(sk ′, C′)
(C, com) := C′

M ← Dec(sk ′, C)
return M

Fig. 3. PKE′ — a fully IND-SO-CPA, but not SIM-SO-CPA secure PKE scheme

4.4 SIM-SO-CPA Insecurity of the Scheme

First, we note that because of our use of Com, scheme PKE′ is a binding CE
(“committing encryption”) scheme in the sense of Bellare et al. [2]. Concretely,
opening a ciphertext (by releasing the encryption randomness) as an honest en-
cryption in two different ways (i.e., for two different messages) requires breaking
the binding property of Com. Hence, we can apply [2, Theorem 4.1]8, and we
get:

Theorem 1. PKE′ as depicted in Figure 3 is not SIM-SO-CPA secure.

4.5 Full IND-SO-CPA Security of the Scheme

The main part of our work is to prove that PKE′ is fully IND-SO-CPA secure. As
explained above, our intuition will be to use the (potentially inefficient) message
re-sampling in the full IND-SO-CPA experiment to equivocate Com commit-
ments.

Theorem 2. PKE′ as depicted in Figure 3 is fully IND-SO-CPA secure, pro-
vided that PKE is fully IND-SO-CPA secure, and Com is a NISHCOM.

Proof. Given an IND-SO-CPA adversary A′ on PKE′, we construct an IND-SO-
CPA adversary on PKE with roughly the same complexity and success. Con-
cretely, A proceeds as follows:

Message distribution. When invoked with a PKE public key pk , A sets pk ′ :=
pk and runs dist′ ← A′(pk ′) to obtain an N ′-message distribution dist′. Then
A creates and outputs its own N -message distribution (for N := 3N ′) dist
as follows:

Distribution dist
(M ′

i)i∈[N ′] ← dist′

(RCom
i )i∈[N ′] ← (RCom)

N ′

(com i)i∈[N ′] := (Com(M ′
i ;R

Com
i ))i∈[N ′]

return (M ′
1, R

Com
1 , com1, . . . ,M

′
N ′ , RCom

N ′ , comN ′)

8 Note that there is an important difference between our SIM-SO-CPA definition and
the one from [2]: In [2] the simulator and the adversary are allowed a common
auxiliary input which is of importance for Theorem 4.1. However, it is easy to verify
that all of our proofs concerning SIM-SO-CPA security are still valid in presence of
an auxiliary input, which we omitted for the sake of simplicity.
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Challenge ciphertexts. When receiving an N -ciphertext vector (Ci)i∈[N ], A
prepares an N ′-ciphertext vector (C′

i)i∈[N ′] for A
′ as follows. First, A asks

its own IND-SO-CPA experiment for openings of C3, C6, . . . , CN to obtain
the commitments com i (for i ∈ [N ′]). It then sets C′

i := (Ci, com i) for all i
and hands (C′

i)i∈[N ′] to D. Note that this results in a challenge ciphertext
for D that is perfectly distributed as in D’s own IND-SO-CPA experiment.
Furthermore, because Com is statistically hiding, opening the encrypted com-
mitments does not fix any of the encrypted messages.

Opening queries. When A′ wants a ciphertext C′
i opened, A asks for an open-

ing of C3i−2 and C3i−1. The opening of C3i−2 yields a properly distributed
opening of the PKE part Ci of C

′
i = (Ci, com i). On the other hand, the open-

ing of C3i−1 reveals the randomness RCom
i of the corresponding commitment

com i. Together, this forms a perfectly distributed opening of C′
i, which A

then hands to A′.
Challenge messages. Finally, when A′ is finished asking for openings and re-

quests challenge messages, A does the same and hands the corresponding
M ′

i (for i ∈ [N ′]) to A′. When A′ outputs a decision bit b′, then A outputs
the same bit.

To analyze this A, first note that up to the challenge message, A provides a
perfect internal simulation of A′ running in its own IND-SO-COM experiment
with PKE′. In particular, both challenge ciphertexts and openings are exactly
distributed as with PKE′. For the eventual challenge message (and A′’s decision
bit), we make the following case distinction:
When A’s experiment tosses b = 0 (i.e., no re-sampling). In this case, A

eventually obtains the initially sampled plaintext vector with all M ′
i , R

Com
i ,

com i. In particular, A′ gets the messagesM ′
i just as it would have in its own

IND-SO-CPA experiment with PKE′. We get:

Pr
[
Expfull-ind-soPKE,A (k) = 1 | b = 0

]
= Pr

[
Expfull-ind-soPKE′,A′ (k) = 1 | b = 0

]
. (3)

When A’s experiment tosses b = 1 (i.e., re-sampling occurs). In this
case, A eventually obtains a plaintext vector that has been re-sampled from
dist, conditioned on all opened messages M ′

i (along with the corresponding
RCom

i ), and all commitments comi. In particular, A′ gets a re-sampled
message vector that is additionally conditioned on all com i. This marks a
difference to what A′ would have gotten in its IND-SO-CPA experiment
with PKE′: there, A′ would have gotten M ′

i that are only conditioned on
the so far opened messages, but not on all comi. However, recall that Com
is statistically hiding, and thus the distribution of the com i is statistically
close to, say, commitments to all-zero strings. Thus, we will now prove that

Pr
[
Expfull-ind-soPKE,A (k) = 1 | b = 1

]
− Pr

[
Expfull-ind-soPKE′,A′ (k) = 1 | b = 1

]
. (4)

is negligible in k, using a sequence of Games.
Game 1 is simply the IND-SO-CPA experiment with A and PKE as de-
scribed above, but with b fixed to 1.
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In Game 2, we substitute all comi ← Com(M ′
i) by comi ← Com(0). We

stress that during the resampling operation, we still condition on the com i

being output asMi-commitments. Note that this conditioning operation may
fail, e.g., when some Mi has been opened as Mi = 1, but com i lies not in the
range of Com(1). However, this can happen only with negligible probability
by the hiding property of Com. Namely, note that for each sampled message
vector (M ′

i)i∈[N ′], we can view the whole experiment (including A′’s output)
as a probabilistic function of the commitments comi. If any commitment
randomness RCom

i is to be revealed, this randomness can be — inefficiently
— generated from com i and the corresponding Mi. Since Com is statisti-
cally hiding, we know that hence, A′’s output does not significantly change
compared to Game 1.
In Game 3, we no longer condition on the comi during re-sampling. (Of
course, we still condition on the so far opened M ′

i .) Lemma 3 in Appendix A
shows that this has no significant effect on the experiment’s output. Con-
cretely, note that we can view both Game 2 and Game 3 (including A) as
an unbounded algorithm that
– gets a vector (com i)i∈[n] of 0-commitments as input,

– then deterministically9 selects a message distribution d̃ist over {0, 1}n
(that internally corresponds to dist′, conditioned on all opened mes-
sages),

– and finally gets a sample from either d̃ist, or d̃ist conditioned on all

commitments comi. With a d̃ist-sample, this results in Game 3, whereas

with a sample from d̃ist | (com i)i, this yields an execution of Game 2.
Applying Lemma 3 yields that the output in Game 3 does not significantly
differ from that in Game 2. (Somewhat surprisingly, the same statement
would not hold if the Mi were not bits but, say, k-bitstrings. See the full
version [3] for details.) At first glance, it might seem like we only need a non-
adaptive version of Lemma 3, in which the adversary chooses the distribution
ahead of time. However, such a non-adaptive Lemma would not be sufficient

in our case, because the distribution d̃ist depends on the adversary’s opening
requests and thus may depend on the commitments comi.
Finally, in Game 4, we replace all com i ← Com(0) again by comi ←
Com(M ′

i). Like in Game 2, this has no significant effect on the output of
the experiment.
Now note that in Game 4, re-sampled message vectors (M ′

i) are no longer
conditioned on the com i, and are hence distributed exactly as in Expfull-ind-soPKE′,A′

with b = 1. Also, commitments and openings are distributed exactly as with
PKE′. We obtain (4).

Taking (3,4) together, we get that

Advs-ind-soPKE,A (k)− Advs-ind-soPKE′,A′(k)

is negligible, which proves the theorem.

9 At this point, we can assume without loss of generality that the experiment, including
A′, is unbounded, and can thus choose its own random coins deterministically.
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A A Technical Lemma

For a concise presentation, in the following lemma we represent
– the distributions of 0-commitments and 1-commitments by two probability

mass functions γ0, γ1,
– the initially given commitment vector (com i)i∈[n] by a random variable C,
– by a family of probability mass functions βc we represent how the message

distribution d̃ist is generated from the initially given commitment vector,
– and the two possible sample distributions by two random variablesM,M′.

Lemma 3. Fix the following parameters:
– message space {0, 1} and some countable commitment space C
– a tuple (γm)m∈{0,1}, consisting of two probability mass functions over C
– some n ∈ � and a family (βc)c∈Cn of probability mass functions over {0, 1}n

In this setting let the random variables C = (Ci)i∈[n] ∈ Cn andM = (Mi)i∈[n] ∈
{0, 1}n and M′ = (M ′

i)i∈[n] ∈ {0, 1}n be given, distributed as follows:

Pr [C = c] =
∏

i∈[n]
γ0(ci)

Pr [M =m | C = c] = βc(m)

Pr [M′ =m′ | C = c] =
βc(m

′)·
∏

i∈[n] γm′
i
(ci)∑

m∈{0,1}n βc(m)·
∏

i∈[n] γmi
(ci)

Let μ := SD (γ0 ; γ1) in slight abuse of notation. Now, if (1+
√
μ)n < 2, it holds:

SD ((C,M) ; (C,M′)) ≤ 2n
(√

μ+ μ
)
+

1

2− (1 +
√
μ)n

− 1

In particular, if μ is negligible and n is polynomially bounded, then the statistical
distance SD ((C,M) ; (C,M′)) is also negligible.

In the lemma we implicitly assume that the distribution d̃ist conditioned on
the initially given commitments (com i)i∈[n] is well defined in the sense that
it assigns a non-zero probability to some message vector for which (com i)i∈[n]

is a possible commitment vector. This corresponds to the assumption that in
Theorem 2, opening a 0-commitment as a commitment to M ′

i does not fail. In
particular, this assumption may be violated with at most negligible probability
by the statistical hiding property of the commitment.

For the proof of Lemma 3 and a discussion why it only holds for small message
space we refer to the full version [3].
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Abstract. Traditional definitions of encryption security guarantee se-
crecy for any plaintext that can be computed by an outside adver-
sary. In some settings, such as anonymous credential or disk encryp-
tion systems, this is not enough, because these applications encrypt
messages that depend on the secret key. A natural question to ask is
do standard definitions capture these scenarios? One area of interest is
n-circular security where the ciphertexts E(pk1, sk2), E(pk2, sk3), . . . ,
E(pkn−1, skn), E(pkn, sk1) must be indistinguishable from encryptions
of zero. Acar et al. (Eurocrypt 2010) provided a CPA-secure public key
cryptosystem that is not 2-circular secure due to a distinguishing attack.

In this work, we consider a natural relaxation of this definition. In-
formally, a cryptosystem is n-weak circular secure if an adversary given
the cycle E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1) has no
significant advantage in the regular security game, (e.g., CPA or CCA)
where ciphertexts of chosen messages must be distinguished from cipher-
texts of zero. Since this definition is sufficient for some practical appli-
cations and the Acar et al. counterexample no longer applies, the hope
is that it would be easier to realize, or perhaps even implied by stan-
dard definitions. We show that this is unfortunately not the case: even
this weaker notion is not implied by standard definitions. Specifically, we
show:
– For symmetric encryption, under the minimal assumption that one-

way functions exist, n-weak circular (CPA) security is not implied
by CCA security, for any n. In fact, it is not even implied by authen-
ticated encryption security, where ciphertext integrity is guaranteed.
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– For public-key encryption, under a number-theoretic assumption, 2-
weak circular security is not implied by CCA security.

In both of these results, which also apply to the stronger circular secu-
rity definition, we actually show for the first time an attack in which the
adversary can recover the secret key of an otherwise-secure encryption
scheme after an encrypted key cycle is published. These negative results
are an important step in answering deep questions about which attacks
are prevented by commonly-used definitions and systems of encryption.
They say to practitioners: if key cycles may arise in your system, then
even if you use CCA-secure encryption, your system may break catas-
trophically; that is, a passive adversary might be able to recover your
secret keys.

Keywords: Encryption, Definitions, Circular Security,
Counterexamples.

1 Introduction

Encryption is one of the most fundamental cryptographic primitives. Most defi-
nitions of encryption security [22,19,35] follow the seminal notion of Goldwasser
and Micali which guarantees indistinguishability of encryptions for messages cho-
sen by the adversary [22]. However, Goldwasser and Micali wisely warned to be
careful when using a system proven secure within this framework on messages
that the adversary cannot derive himself.

Over the past several years, there has been significant interest
in designing schemes secure against key-dependent message attacks,
e.g., [15,11,31,3,27,29,13,14,5,2], where the system must remain secure even
when the adversary is allowed to obtain encryptions of messages that depend on
the secret keys themselves. In this work, we are particularly interested in circular
security [15]. A public-key cryptosystem is n-circular secure if the ciphertexts
E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1), as well as ciphertexts
of chosen messages, cannot be distinguished from encryptions of zero, for
independent key pairs. Either by design or accident, these key cycles naturally
arise in many applications, including storage systems such as BitLocker [13],
anonymous credentials [15], the study of “axiomatic security” [31,3] and more.
See [13] for a discussion of the applications.

Until recently, few positive or negative results regarding circular security were
known outside of the random oracle model. On one hand, no n-circular secure
cryptosystems were known for n > 1. On the other hand, no counterexamples
existed for n > 1 to separate the definitions of circular and CPA security; that
is, as far as anyone knew the CPA-security definition already captured circular
security for any cycle larger than a self-loop.

Recently, this gap has been closing in two ways. On the positive side, several
circular-secure schemes have been proposed [13,5,14]. The focus of the current
work is on negative results – namely, investigating whether standard notions of
encryption are “safe” for circular applications.
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In 2008, Boneh, Halevi, Hamburg and Ostrovsky proved, by counterexample,
that one-way security does not imply circular security [13]. Recently, Acar, Be-
leniky, Bellare and Cash [2] proved that, under an assumption in bilinear groups,
CPA-security does not imply circular security.

Our Results. We narrow this gap even further by studying the extent to which
standard definitions (e.g., CPA, CCA) imply a weak form of circular security.
Our results are primarily negative.

1. Relaxing the Circular Security Notion. Perhaps the current formulation of
circular security is “too strong”; that is, perhaps there is a relaxed notion of this
definition which simultaneously satisfies many practical applications and yet is
also already captured by standard security notions. This is an area worth inves-
tigating. We begin by proposing a natural relaxation called weak circular secu-
rity where the adversary is handed an encrypted cycle E(pk1, sk2), E(pk2, sk3),
. . . , E(pkn−1, skn), E(pkn, sk1) along with the public keys and then proceeds to
play the CPA or CCA security game as normal (where these ciphertexts are also
off-limits for the decryption oracle). We stress here that the encrypted cycle is
always generated as described, and is never changed to encryptions of zero. This
definition is intriguing, and perhaps of independent interest, for two reasons.

First, the Acar et al. [2] counterexample does not apply to it. That construc-
tion uses the bilinear map to test whether a sequence of ciphertexts contain a
cycle or zeros. Here the adversary knows he’s getting an encrypted cycle, but
then must extract some knowledge from this that helps him distinguish two
messages of his choosing.

Second, this definition appears sufficient for some practical settings. Using
a weak circular secure encryption scheme, Alice and Bob could exchange keys
with each other over an insecure channel knowing that: (1) Eve can detect that
they did so, but (2) Eve cannot learn anything about their other messages.
Similarly, an adversary scanning over a user’s BitLocker storage may detect
that her drive contains an encrypted cycle, but cannot read anything on her
drive. In an anonymous credential system of Camenisch and Lysyanskaya [15],
a user has multiple keys. To participate in the system, the user must encrypt
them in a cycle, provide this cycle to the other users, and prove that she has
done this correctly. Then, if she shares one key, she automatically shares all her
keys. In their application, detection of a cycle is actually desirable, provided that
subsequent encryptions remain secure.

2. Symmetric-Key Counterexamples. In the symmetric setting, we show that
standard notions do not imply n-circular security for any positive n. Specifically,
given any n ≥ 1, we show how to construct a secure authenticated encryption
scheme (which is necessarily CCA-secure; see Section 2) that is not n-weak circu-
lar secure, under the minimal assumption that secure authenticated encryption
schemes exist, which are equivalent to one-way functions.

The main technical ingredient in our counterexample is a lemma showing that
it is provably hard for an adversary to compute an encrypted key cycle itself,
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assuming that the symmetric scheme under attack is a secure authenticated
encryption scheme (or CCA secure). We stress that this lemma does not hold if
the encryption scheme is only CPA secure.

Our lemma gives us leverage in constructing a counterexample because it
means the adversary is given strictly more power in the weak circular security
game than in the standard security game. Specifically, the adversary is given an
encrypted key cycle in the weak circular security game that it could not have
computed itself, and we design a scheme to help such an adversary without
affecting regular security.

3. Public-Key Counterexamples. We show that neither CPA nor CCA-security
imply (even) weak circular security for cycles of size 2. That is, we show secure
systems that are totally compromised when the independently-generated cipher-
texts E(pkA, skB) and E(pkB , skA) are released. This is a difficult task, because
the system must remain secure if either one, but only one, of these ciphertexts
are released. Moreover, this counterexample requires new ideas. We cannot use
the common trick in self-loop counterexamples that test if the message is the
secret key corresponding to the public key, since there is no way for the encryp-
tion algorithm with public key pkA to distinguish, say, skB from any other valid
message. Specifically, we show that:

If there exists an algebraic setting where the Symmetric External Diffie-
Hellman1 (SXDH) assumption holds, then there exists a CPA-secure cryptosys-
tem which is not 2-weak circular secure. The proposed scheme is particularly
interesting in that it breaks catastrophically in the presence of a 2-cycle — re-
vealing the secret keys of both users.

Moreover, if simulation-sound non-interactive zero- knowledge (NIZK) proof
systems exist for NP and there exists an algebraic setting where the Symmetric
External Diffie-Hellman (SXDH) assumption holds, then there exists a CCA-
secure cryptosystem which is not 2-weak circular secure. This is also the first
separation of CCA security and (regular) circular security.

These results deepen our understanding of how to define “secure” encryption
and which practical attacks are captured by the standard definitions. They also
provide additional justification for the ongoing effort, e.g. [13,14,5], to develop
cryptosystems which are provably circular secure.

1.1 Related Work

In 2001, Camenisch and Lysyanskaya [15] introduced the notion of circular secu-
rity and used it in their anonymous credential system to discourage users from
delegating their secret keys. They also showed how to construct a circular-secure
cryptosystem from any CPA-secure cryptosystem in the random oracle model.

1 The SXDH assumption states that there is a bilinear setting e : G1×G2 → GT where
the DDH assumption holds in both G1 and G2. It has been extensively studied and
used e.g., [21,38,32,12,8,6,24,9,25], perhaps most notably as a setting of the Groth-
Sahai NIZK proof system [25].
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Independently, Abadi and Rogaway [1] and Black, Rogaway, Shrimpton [11] in-
troduced the more general notion of key-dependent message (KDM) security,
where the encrypted messages might depend on an arbitrary function of the se-
cret keys. Black et al. showed how to realize this notion in the random oracle
model.

Halevi and Krawczyk [27] extended the work of Black et al. to look at KDM
security for deterministic secret-key functions such as pseudorandom functions
(PRFs), tweakable blockciphers, and more. They give both positive and nega-
tive results, including some KDM-secure constructions in the standard model
for PRFs. In the symmetric setting, Hofheinz and Unruh [29] showed how to
construct circular-secure cryptosystems in the standard model under relaxed
notions of security. Backes, Pfitzmann and Scedrov [7] presented stronger no-
tions of KDM security (some in the random oracle model) and discussed the
relationships among these notions.

In the public-key setting, Boneh, Halevi, Hamburg and Ostrovsky [13] pre-
sented the first cryptosystem which is simultaneously CPA-secure and n-circular-
secure (for any n) in the standard model, based on either the DDH or Decision
Linear assumptions. As mentioned earlier, Boneh et al. [13] also proved, by coun-
terexample, that one-way security does not imply circular security. One-way en-
cryption is a very weak notion, which informally states that given (pk , E(pk ,m)),
the adversary should not be able to recover m. Given any one-way encryption
system, they constructed a one-way encryption system that is not n-circular
secure (for any n). Their system generates two key pairs from the original
and sets PK = pk1 and SK = (sk1, sk2). A message (m1,m2) is encrypted
as (m1, E(pk1,m2)). In the event of a 2-cycle, the values Enc(pkA, skB) =
(skB,1, E(pkA,1, skB,2)) and Enc(pkB, skA) = (skA,1, E(pkB,1, skA,2)) provide
the critical secret key information (skB,1, skA,1) in the clear.

Subsequently, Applebaum, Cash, Peikert and Sahai [5] adapted the circular-
secure construction of [13] into the lattice setting. Camenisch, Chandran and
Shoup [14] extended[13] to the first cryptosystem which is simultaneously CCA-
secure and n-circular-secure (for any n) in the standard model, by applying the
“double encryption” paradigm of Naor and Yung [34]. (Interestingly, we use this
same approach in Section 4.4 to extend our public-key counterexample from
CPA to CCA security.)

Haitner and Holenstein [26] recently provided strong impossibility results for
KDM-security with respect to 1-key cycles (a.k.a., self-loops.) They study the
problem of building an encryption scheme where it is secure to release E(k, g(k))
for various functions g. First, they show that there exists no fully-black-box re-
duction from a KDM-secure encryption scheme to one-way permutations (or even
some families of trapdoor permutations) if the adversary can obtain encryptions
of g(k), where g is a poly(n)-wise independent hash function. Second, there exists
no reduction from an encryption scheme secure against key-dependent messages
to, essentially, any cryptographic assumption, if the adversary can obtain an
encryption of g(k) for an arbitrary g, as long as the security reduction treats
both the adversary and the function g as black boxes. These results address
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the possibility of achieving strong single-user KDM-security via reductions to
cryptographic assumptions. The results in this paper study a version of KDM
security that is in one sense weaker – we only allow a narrow class of functions g
– but also stronger because it considers multiple users. Our results also address
a different question regarding KDM security. We study whether or not KDM se-
curity is always implied by regular security while Haitner and Holenstein study
the possibility of achieving strong single-user KDM security via specialized con-
structions.

Recently, Acar et al. [2] demonstrated both public and private key encryption
systems that are provably CPA-secure and yet also demonstrably not 2-circular
secure. Their counterexample does not apply to CCA or weak circular security.

There is also a relationship to recent work on leakage resilient and auxiliary
input models of encryption, which mostly falls into the “self-loop” category.
In leakage resilient models, such as those of Akavia, Goldwasser and Vaikun-
tanathan [4] and Naor and Segev [33], the adversary is given some function h
of the secret key, not necessarily an encryption, such that it is information the-
oretically impossible to recover sk . The auxiliary input model, introduced by
Dodis, Kalai and Lovett [18], relaxes this requirement so that it only needs to
be difficult to recover sk .

Self-Loops. In sharp contrast to all n ≥ 2, the case of 1-circular security is
fairly well understood. A folklore counterexample shows that CPA-security does
not directly imply 1-circular security. Given any encryption scheme (G,E,D),
one can build a second scheme (G,E′, D′) as follows: (1) E′(pk ,m) outputs
E(pk ,m)||0 if m �= sk and m||1 otherwise, (2) D′(sk , c||b) outputs D(sk ,m) if
b = 0 and sk otherwise. It is easy to show that if (G,E,D) is CPA-secure, then
(G,E′, D′) is CPA-secure. When E′(pk , sk) = sk ||1 is exposed, then there is
a complete break. Conversely, given any CPA-secure system, one can build a
1-circular secure scheme in the standard model [13].

2 Definitions of Security

A public-key encryption system Π is a tuple of algorithms (KeyGen,Enc,Dec),
where KeyGen is a key-generation algorithm that takes as input a security pa-
rameter λ and outputs a public/secret key pair (pk , sk); Enc(pk ,m) encrypts a
message m under public key pk ; and Dec(sk , c) decrypts ciphertext c with secret
key sk . A symmetric-key encryption system is a public-key encryption system,
except that it always outputs pk = ⊥, and the encryption algorithm computes
ciphertexts using sk , i.e. by running Enc(sk ,m). In the symmetric case we will
sometimes writeK instead of sk . As in most other works, we assume that all algo-
rithms implicitly have access to shared public parameters establishing a common
algebraic setting.

Our definitions of security will associate a message space, denoted M , with
each encryption scheme. Throughout this paper, we assume that the space of
possible secret keys output by KeyGen is a subset of the message space M and
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IND-CPA(Π,A, λ)
b

r← {0, 1}
(pk , sk)← KeyGen(1λ)
(m0,m1, z)← A1(pk)
y ← Enc(pk ,mb)

b̂← A2(y, z)

Output (b̂
?
= b)

AE(Π,A, λ)
b

r← {0, 1}
K ← KeyGen(1λ)

b̂← AEae
K,b(·,·),Dae

K,b(·)(1λ)

Output (b̂
?
= b).

Fig. 1. Experiments for Definitions 1 and 3

thus any secret key can be encrypted using any public key. For symmetric en-
cryption schemes we will always have M ⊂ {0, 1}∗.

By ν(k) we denote some negligible function, i.e., one such that, for all c > 0
and all sufficiently large k, ν(k) < 1/kc. We abbreviate probabilistic polynomial
time as PPT.

2.1 Standard Security Definitions

Public-key encryption. We recall the standard notion of indistinguishability of
encryptions under a chosen-plaintext attack due to Goldwasser and Micali [22].

Definition 1 (IND-CPA). Let Π = (KeyGen,Enc,Dec) be a public-key encryp-
tion scheme for the message space M . For b ∈ {0, 1}, A = (A1,A2) and λ ∈ N,
let the random variable IND-CPA(Π,A, λ) be defined by the probabilistic algo-
rithm described on the left side of Figure 1. We denote the IND-CPA advantage
ofA by AdvcpaΠ,A(λ) = 2·Pr[IND-CPA(Π,A, λ) = 1]−1. We say that Π is IND-CPA

secure if AdvcpaΠ,A(λ) is negligible for all PPT A.

We also consider the indistinguishability of encryptions under chosen-ciphertext
attacks [34,35,19].

Definition 2 (IND-CCA). Let Π = (KeyGen,Enc,Dec) be a public-key encryp-
tion scheme for the message space M . Let the random variable IND-CCA(Π,A, λ)
be defined by an algorithm identical to IND-CPA(Π,A, λ) above, except that both
A1 and A2 have access to an oracle Dec(sk , ·) that returns the output of the
decryption algorithm and A2 cannot query this oracle on input y. We denote the
IND-CCA advantage of A by AdvccaΠ,A(λ) = 2 ·Pr[IND-CCA(Π,A, λ) = 1]− 1. We
say that Π is IND-CCA secure if AdvccaΠ,A(λ) is negligible for all PPT A.

Symmetric-key authenticated encryption. We recall the definition of secure au-
thenticated (symmetric-key) encryption due to [36], except that we will not
require pseudorandom ciphertexts. Bellare and Namprempre [10] showed that
AE implies IND-CCA, and is in fact strictly stronger. For our counterexample,
we target this very strong definition of security in order strengthen our results
by showing that even this does not imply weak circular security.
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IND-CIRC-CPAn(Π,A, λ)
b

r← {0, 1}
For i = 1 to n:

(pk i, sk i)← KeyGen(1λ)
If b = 1 then

y← EncCycle(pk, sk)
Else

y← EncZero(pk, sk)

b̂← A(pk,y)
Output (b̂

?
= b)

EncCycle(pk, sk)

For i = 1 to n
yi ← Enc(pk i, sk (imod n)+1)

Output y

IND-WCIRC-CPAn(Π,A, λ)
b

r← {0, 1}
For i = 1 to n:

(pk i, sk i)← KeyGen(1λ)
y← EncCycle(pk, sk)
(j,m0,m1, z)← A1(pk,y)
y ← Enc(pk j ,mb)

b̂← A2(y, z)

Output (b̂
?
= b)

EncZero(pk, sk)

For i = 1 to n

yi ← Enc(pk i, 0
|sk(i mod n)+1|)

Output y

Fig. 2. Experiments for Definitions 4 and 5. Each is defined with respect to a mes-
sage space M , and we assume that m0,m1 ∈ M always. We write pk, sk, and y for
(pk1, . . . , pkn), (sk1, . . . , skn) and (y1, . . . , yn) respectively

Definition 3 (AE). Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryp-
tion scheme for the message space M . Let the random variable AE(Π,A, λ) be
defined by the probabilistic algorithm described on the right side of Figure 1.
In the experiment, the oracle EaeK,b(·, ·) takes as input a pair of equal-length
messages (m0,m1) and computes Enc(K,mb). The oracle Dae

K,b(·) takes as in-
put a ciphertext c and computes Dec(K, c) if b = 1 and always returns ⊥ if
b = 0. The adversary is not allowed to submit any ciphertext to Dae

K,b(·) that
was previously returned by EaeK,b(·, ·). We denote the AE advantage of A by
AdvaeΠ,A(λ) = 2·Pr[AE(Π,A, λ) = 1]−1. We say that Π is AE secure if AdvaeΠ,A(λ)
is negligible for all PPT A.

2.2 Circular Security Definitions

We next give definitions for circular security of public-key and symmetric-key
encryption. These definitions are variants of the Key-Dependent Message (KDM)
security notion of Black et al. [11]. By restricting the adversary’s power, we make
it significantly harder for us to devise a counterexample and thus prove a stronger
negative result.2

Definition 4 (IND-CIRC-CPAn). Let Π = (KeyGen,Enc,Dec) be a public-key
encryption scheme for the message space M . For b ∈ {0, 1}, integer n > 0,
adversary A and λ ∈ N, let the random variable IND-CIRC-CPAn(Π,A, λ) be

2 If we allowed the adversary to obtain encryptions of any affine function of the secret
keys, as is done in [27,13], then we could devise a trivial counterexample where the
adversary uses 1-cycles to break the system.
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defined by the probabilistic algorithm on the left side of Figure 2. We denote the
IND-CIRC-CPAn advantage of A by

Advn-circ-cpaΠ,A (λ) = 2 · Pr[IND-CIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-CIRC-CPAn secure if Advn-circ-cpaΠ,A (λ) is negligible for all
PPT A.

One could augment this definition by modifying the IND-CIRC-CPAn experiment
to allow for a challenge “left-or-right” query as in IND-CPA. While this is a quite
natural modification, it only strengthens the definition, and we are interested in
studying the weakest notions for which we can give a separation. Next we give
a definition of weak circular security of public-key encryption.

Definition 5 (IND-WCIRC-CPAn). Let Π = (KeyGen,Enc,Dec) be a public-key
encryption scheme for the message space M . For b ∈ {0, 1}, integer n > 0,
adversary A and λ ∈ N, let the random variable IND-WCIRC-CPAn(Π,A, λ)
be defined by probabilistic algorithm on the center of Figure 2. We denote the
IND-WCIRC-CPAn advantage of A by

Advn-wcirc-cpaΠ,A (λ) = 2 · Pr[IND-WCIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-WCIRC-CPAn secure if the function Advn-wcirc-cpaΠ,A (λ) is
negligible for all PPT A.

Finally, we give a definition of weak circular security for symmetric encryption.
We will abuse notation and also call this IND-WCIRC-CPAn security, since it will
be clear from the context whether or not we mean public-key and symmetric-key.

Definition 6 (IND-WCIRC-CPAn). Let Π = (KeyGen,Enc,Dec) be a symmetric-
key encryption scheme for the message space M . For b ∈ {0, 1}, integer n > 0,
adversary A and λ ∈ N, let IND-WCIRC-CPAn(Π,A, λ) be defined by the follow-
ing probabilistic algorithm:

IND-WCIRC-CPAn
b (Π,A, λ)

b
r← {0, 1}

For i = 1 to n:
Ki ← KeyGen(1λ)

y← EncCycle(K)

b̂← AẼnc(·,·,·)(y)

Output (b̂
?
= b)

EncCycle(K)

For i = 1 to n
yi ← Enc(Ki,K(imod n)+1)

Output y

Ẽnc(j,m0,m1)

Return Enc(Kj,mb)

We denote the IND-WCIRC-CPAn advantage of A by

Advn-wcirc-cpaΠ,A (λ) = 2 · Pr[IND-WCIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-WCIRC-CPAn secure if Advn-wcirc-cpaΠ,A (λ) is negligible for
all PPT A.
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Discussion. In both the IND-CPA and IND-CIRC-CPA notions, the adversary
must distinguish an encryption (or encryptions) of a special message from the
encryption of zero. This choice of the message zero is arbitrary. We keep it in the
statement of our definition to be consistent with [13]; however, it is important
to note, for systems such as ours where zero is not in the message space, that
zero can be replaced by any constant message for an equivalent definition. Acar
et al. [2] use an equivalent definition where zero is replaced by a fresh random
message.

We will not need to define a notion of security to withstand circular and
chosen-ciphertext attacks, because we are able to show a stronger negative re-
sult. In Section 4.4, we provide an IND-CCA-secure cryptosystem, which is prov-
ably not IND-CIRC-CPA-secure. In other words, we are able to devise a peculiar
cryptosystem: one that withstands all chosen-ciphertext attacks, and yet breaks
under a weak circular attack which does not require a decryption oracle.

3 Counterexample for Symmetric Encryption

Encryption Scheme Πae. Let Π ′
ae = (KeyGen′,Enc′,Dec′) be a secure authenti-

cated encryption scheme. To simplify our results, we assume that KeyGen′(1λ)
outputs a uniformly random key K in {0, 1}λ, that the message space M ′ =
{0, 1}∗, and that ciphertexts output by Enc′(K,m) are always in {0, 1}p(|m|),
where p is some polynomial that depends on λ. We also assume that the first λ
bits of a ciphertext are never equal to K. All of these assumptions can be re-
moved via straightforward and standard modifications to our arguments below.

Fix a positive integer n. We now construct our counterexample scheme, de-
noted Πae = (KeyGen,Enc,Dec). We will take KeyGen = KeyGen′, i.e., Πae also
uses keys randomly chosen from {0, 1}λ. The message-space of Πae will consist of
M = {0, 1}λ∪{0, 1}np(λ), bit strings of length either λ or np(λ). The algorithms
Enc and Dec are defined as follows.

Enc(K,m)

If IsCycle(K,m) then
Output K ‖ m

Else
Output Enc′(K,m)

Dec(K, c)

If c = K ‖ m̃ then
Output m̃

Else
Output Dec′(K, c)

IsCycle(K,m)

If |m| �= np(λ)
Return false

Parse m as (c1, . . . , cn)
K2 ← Dec′(K, c1)
For i = 2 to n
Kimod n+1 ← Dec′(Ki, ci)

Return (K1
?
= K)

Decryption is always correct. This follows from our assumption that Enc′ will
never output a ciphertext that contains K as a prefix. We first establish the AE
security of our scheme.
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Theorem 1. Encryption scheme Πae is AE secure whenever Π ′
ae is AE secure.

(Proof in the full version of this work [17].)

The proof proceeds by showing that computing an encrypted key-cycle during
the AE game is equivalent to recovering the secret key. From there we can reduce
the security of Πae to Π

′
ae easily.

Curiously, Theorem 1 is no longer true if one replaces AE security with a
symmetric version of IND-CPA security for both Πae and Π

′
ae. Namely, some type

of chosen-ciphertext security is required on Π ′
ae to prove even chosen-plaintext

security of Πae. Intuitively, this is because it might be possible for an adversary
to compute an encrypted key-cycle on its own if the scheme is only IND-CPA-
secure, but not if the scheme is AE-secure. In fact, the work of Boneh et al. [13]
gives an explicit example of a scheme where the adversary can compute a cycle
himself.

The Attack. We now show that Πae is not circular-secure for n cycles, even in a
weak sense.

Theorem 2. Πae is not IND-WCIRC-CPAn secure.

Proof. We give an explicit adversary A that has advantage negligibly close to 1.
The adversary takes as input the encrypted key-cycle y in the IND-WCIRC-CPAn

game. It queries Ẽnc(1,m0,m1), where m0 = y and m1 is a random message of
the same length. Let y be the ciphertext returned by the oracle.

At this point, there are many ways to proceed; perhaps the simplest is to
observe that the length of y depends on the challenge bit b. This is because, if
b = 0, then m0 = y was encrypted, resulting in y = K ‖ y, which is λ + np(λ)
bits long. If b = 1 then y was computed by running Enc′(K,m1), which will be
p(|m1|) = p(np(λ)) bits long if IsCycle(K,m1) returns false. Thus, as long as
IsCycle(K,m1) returns false, A2 can compute the value of b by measuring y’s
length.

But why should IsCycle(K,m1) return false? This follows from the AE security
of Π ′

ae. Let us parse m1 into (c1, . . . , cn), where each ci ∈ {0, 1}p(λ) is random.
When IsCycle(K,m1) returns true, it must be that Dec′(K, c1) did not return ⊥.
But if this happens, then we can construct an adversary to break the AE security
of Π ′

ae. The adversary simply queries Dae
K,b(·) at a random point, observes if it

returns ⊥ or not, and outputs b̂ = 0 or 1 depending on this observation.

We note that we could design an encryption scheme that does not have this
type of ciphertext-length behavior by giving a different attack that abuses the
fact that K is present in the ciphertext in one case, but not the other. We have
chosen to present the attack this way for simplicity only.

4 Counterexamples for Public-Key Encryption

4.1 Preliminaries and Algebraic Setting

Bilinear Groups. We work in a bilinear setting where there exists an efficient
mapping function e : G1×G2 → GT involving groups of the same prime order p.
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Two algebraic properties required are that: (1) if g generates G1 and h generates
G2, then e(g, h) �= 1 and (2) for all a, b ∈ Zp, it holds that e(g

a, hb) = e(g, h)ab.

Decisional Diffie-Hellman Assumption (DDH): Let G be a group of prime
order p ∈ Θ(2λ). For all PPT adversaries A, the following probability is 1/2 plus
an amount negligible in λ:

Pr

[
g, z0 ← G; a, b← Zp; z1 ← gab; d← {0, 1};
d′ ← A(g, ga, gb, zd) : d = d′

]
.

Strong External Diffie-Hellman Assumption (SXDH): Let e : G1×G2 →
GT be bilinear groups. The SXDH assumption states that the DDH problem is
hard in both G1 and in G2. This implies that there does not exist an efficiently
computable isomorphism between these two groups. The SXDH assumption ap-
pears in many prior works, such as [21,38,32,12,8,6,24,9,25,2].

Indistinguishability and Pseudorandom Generators.

Definition 7 (Indistinguishability). Two ensembles of probability distribu-
tions {Xk}k∈N and {Yk}k∈N with index set N are said to be computationally
indistinguishable if for every polynomial-size circuit family {Dk}k∈N, there ex-
ists a negligible function ν such that

|Pr [x← Xk : Dk(x) = 1]− Pr [y ← Yk : Dk(y) = 1]|

is less than ν(k). We denote such sets {Xk}k∈N

c≈ {Yk}k∈N.

Definition 8 (Pseudorandom Generator [30]). Let Ux denote the uniform
distribution over {0, 1}x. Let �(·) be a polynomial and let G be a deterministic
polynomial-time algorithm such that for any input s ∈ {0, 1}n, algorithm G
outputs a string of length �(n). We say that G is a pseudorandom generator if
the following two conditions hold:

– (Expansion:) For every n, it holds that �(n) > n.

– (Pseudorandomness:) For every n, {U�(n)}n
c≈ {s← Un : G(s)}n.

The constructions of Section 4.2 use a PRG where the domain of the function is
an exponentially-sized cyclic group.

4.2 Encryption Scheme Πcpa

We now describe an encryption scheme Πcpa = (KeyGen,Enc,Dec). It is set in
asymmetric bilinear groups e : G1×G2 → GT of prime order p where we assume
that the groups G1 and G2 are distinct and that the DDH assumption holds in
both. We assume that a single set of group parameters (e, p,G1,G2,GT , g, h),
where G1 = 〈g〉,G2 = 〈h〉, will be shared across all keys generated at a given
security level and are implicitly provided to all algorithms.
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The message space is M = {0, 1} × Z∗
p × Z∗

p. Let encode : M → {0, 1}�(λ)
and decode : {0, 1}�(λ) → M denote an invertible encoding scheme where �(λ)
is the polynomial length of the encoded message. Let F : GT → {0, 1}�(λ) be a
pseudorandom generator secure under the Decisional Diffie Hellman assumption.
(Recall that pseudorandom generators can be constructed from any one-way
function [28].)

KeyGen(1λ). The key generation algorithm selects a random bit β ← {0, 1} and
random values a1, a2 ← Z∗

p. The secret key is set as sk = (β, a1, a2). We note
that sk ∈M. The public key is set as:

pk =

{
(0, e(g, h)a1 , ga2) ∈ {0, 1} ×GT × G1 if β = 0

(1, e(g, h)a1 , ha2) ∈ {0, 1} ×GT ×G2 if β = 1.

Encrypt(pk ,M). The encryption algorithm parses the public key pk =(β, Y1, Y2),
where Y2 may be in G1 or G2 depending on the structure of the public key,
and message M = (α,m1,m2) ∈ M. Note that m1 and m2 cannot be zero,
but these values can be easily included in the message space by a proper
encoding.
Select random r ← Zp and R← GT . Set I = F (R)⊕ encode(M).
Output the ciphertext C as:

C =

{
(gr, R · Y r

1 , Y
rm2
2 · gm1 , I) if β = 0;

(hr, R · Y r
1 , Y

rm2
2 , I) if β = 1.

We note that in the first case, C ∈ G1 × GT × G1 × {0, 1}�(λ), while in the
second C ∈ G2 ×GT ×G2 × {0, 1}�(λ).

Decrypt(sk , C). The decryption algorithm parses the secret key sk = (β, a1, a2)
and the ciphertext C = (C1, C2, C3, C4). Next, it computes:

R =

{
(C2/e(C1, h))

a1 if β = 0;

(C2/e(g, C1))
a1 if β = 1.

Then it computes M ′ = F (R) ⊕ C4 ∈ {0, 1}�(λ) and outputs the message
M = decode(M ′).

Discussion. Like the circular-secure scheme of Boneh et al. [13], the above cryp-
tosystem is a variation on El Gamal [20]. It is a practical system, which on first
glance might be somewhat reminiscent of schemes the readers are used to seeing
in the literature. The scheme includes a few “artificial” properties: (1) placing
a public key in either G1 or G2 at random and (2) the fact that the ciphertext
value C3 is unused in the decryption algorithm. We will shortly see that these
features are “harmless” in a semantic-security sense, but very useful for recov-
ering the secret keys of the system in the presence of a two cycle. While it is
not unusual for counterexamples to have artificial properties (e.g., [16,23]), we
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can address these points as well.3 In the full version of this work [17], we show
that property (1) can be removed by doubling the length of the ciphertext. For
property (2), we observe that many complex protocols such as group signatures
(e.g., [12]) combine ciphertexts with other components that are unused in de-
cryption but are quite important to the protocol as a whole. Thus, we believe
our counterexample is not that far fetched. It is possible that such an attack
could exist on one of today’s commonly-used encryption algorithms.

We first show that Πcpa meets the standard notion of CPA security.

Theorem 3. Encryption scheme Πcpa is IND-CPA secure under the Decisional
Diffie-Hellman Assumption in G1 and G2 (SXDH).

The proof is given in the full version of this work [17]. It is relatively standard
and involves repeated applications of the DDH assumption and PRG security.

4.3 The Attack

Despite being IND-CPA-secure, cryptosystem Πcpa is not even weakly circular
secure for 2-cycles. Specifically, given a circular encryption of two keys, we show
that an adversary can distinguish another ciphertext with advantage 1/2. Our
adversary actually does much more than this: with probability 1/2 over the coins
used in key generation, it can recover both secret keys.

This is the first circular attack that allows the adversary to recover the secret
keys. (In the full version of this work [17], we discuss how to improve these
probabilities to almost 1.) Our attack combines elements of both ciphertexts in
an attempt to recover skA, which can then be used to decrypt the first ciphertext
and obtain skB. It is counterintuitive that this is possible, given that it is easy
to see that IND-CPA-security guarantees that it is safe for one of them to send
their message.

Theorem 4. Πcpa is not IND-WCIRC-CPA2-secure.

Proof. We give PPT adversary A = (A1,A2) such that Adv2-wcirc-cpaΠcpa,A (λ) is equal

to 1/2. Since IND-WCIRC-CPA security requires that this advantage be negligible,
this attack breaks security. The adversary proceeds as follows. The first stage of
the adversary, A1, obtains the two public keys, which we will write as pkA and
pkB , and an encrypted cycle, which we will write as (CA, CB).

If both keys have β = 0 or β = 1 (call this event E1), the adversary aborts and
instructs the second stage (A2) to output a random bit. Since the two keys are
independently generated by the challenger, this event will occur with probability
exactly 1/2. Below we will condition on E1 not happening, and wlog assume that
pkA = (0, e(g, h)a1 , ga2) and pkB = (1, e(g, h)b1 , hb2). The corresponding secret
keys skA = (0, a1, a2), skB = (1, b1, b2) are not known to the adversary.

3 While our scheme is different from that of Acar et al. [2], that scheme also has similar
artificial properties such as the presence of values that are not used in decryption.
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We write the given ciphertexts CA = (cA,1, cA,2, cA,3, cA,4) and CB = (cB,1,
cB,2, cB,3, cB,4). A1 will output two arbitrary distinct messages, and request
that the challenge use pkA. For the state passed to A2, it now computes:

X := cB,2 ·
e(cA,1, cB,3)

e(cA,3, cB,1)
.

A1 sets ŝkA = decode(cB,4⊕F (X)) and passes this with the challenge messages
as state to A2.
A2 receives a ciphertext y and the passed state. It parses ŝkA as a secret key

for Πcpa and computes Dec(ŝkA, y), and tests if this is equal to either of the
challenge messages. If so, it outputs the corresponding bit. Otherwise it outputs
a random bit.

Let’s explore why this test works. Write CA = Enc(pkA, skB) and CB =
Enc(pkB, skA). Then:

CA = (cA,1, cA,2, cA,3, cA,4)

= (gr, R · e(g, h)ra1 , gra2b2+b1 , F (R)⊕ encode(skB))

CB = (cB,1, cB,2, cB,3, cB,4)

= (hs, S · e(g, h)sb1 , hsa2b2 , F (S)⊕ encode(skA))

for some r, s ∈ Zp and R,S ∈ GT . Then we have that:

X := cB,2 ·
e(cA,1, cB,3)

e(cA,3, cB,1)
= S · e(g, h)sb1 · e(gr, hsa2b2)

e(gra2b2+b1 , hs)

= S · e(g, h)sb1 · e(g, h)rsa2b2

e(g, h)rsa2b2 · e(g, h)sb1 = S.

Thus, A1 recovers ŝkA = skA as decode(cB,4⊕F (S)), and A2 will correctly guess
bit b in this case.

Write b̂ for the output of A2. We have

Adv2-wcirc-cpaΠcpa,A (λ) = 2Pr[b̂ = b]− 1

= 2(Pr[b̂ = b|E1] Pr[E1]+

Pr[b̂ = b|¬E1] Pr[¬E1])− 1

= 2(1 · 1/2 + 1/2 · 1/2)− 1

= 1/2

This completes the proof.

4.4 Extension: A Counterexample for CCA Security

We show that there exists an IND-CCA-secure cryptosystem, which suffers a
complete break when Alice and Bob trade secret keys over an insecure channel;
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i.e., transmit the two-key cycle E(pkA, skB) and E(pkB, skA). Our construction
follows the “double-encryption” approach to building IND-CCA systems from
IND-CPA systems as pioneered by Naor and Yung [34] and refined by Dolev,
Dwork and Naor [19] and Sahai [37]. Our building blocks will be:

1. The IND-CPA-secure cryptosystem Πcpa = (G,E,D) from Section 4. Let
E(pk ,m; r) be the encryption of m under public key pk with randomness r.

2. An adaptively non-malleable non-interactive zero-knowledge (NIZK) proof
system with unpredictable simulated proofs and uniquely applicable proofs
for the language L of consistent pairs of encryptions, defined as:

L =

{
(e0, e1, c0, c1) : ∃m, r0, r1 ∈ {0, 1}∗ s.t.
c0 = E(e0,m; r0) and c1 = E(e1,m; r1)

}
.

A proof system for L can be realized under relatively mild assumptions, such
as the difficulty of factoring Blum integers (e.g., [37]). One complication is that
the secret keys for this cryptosystem now change and the construction must be
adapted accordingly, so that the secret key can still be recovered by the adversary
during a circular attack. We show that this is possible.

5 Conclusion and Open Problems

In this work, we presented a natural relaxation of the circular security definition,
which may prove interesting for positive results in its own right. We demon-
strated that its guarantees are not already captured by standard definitions
of encryption. To do this, we presented symmetric and public-key encryption
systems that are secure in the IND-CPA and IND-CCA sense, but fail catastroph-
ically in the presence of an encrypted cycle. This provides the first answer to the
foundational question on whether IND-CCA-security captures (weak or regular)
circular security for all cycles larger than self-loops. In either case, it does not.

Our work leaves open the interesting problem of finding a public-key coun-
terexample for cycles of size ≥ 3. Secondly, while our symmetric counterexample
depended only on the existence of AE-secure symmetric encryption, our public-
key counterexample, like that of Acar et al. [2], required a specific bilinear map
assumption. It would be highly interesting to find a counterexample assuming
only that IND-CPA- or IND-CCA-secure systems exist.

Finally, we observe that our public-key counterexample contains a novel and
curious property – certain combinations of independently generated ciphertexts
trigger the release of their underlying plaintext. From Rabin’s 1

2 -OT system to
DH-DDH gap groups, the cryptographic community has a strong history of turn-
ing such oddities to an advantage. If we view a cryptosystem with this property
as a new primitive, what new functionalities can be realized using it?

Acknowledgments. The authors thank Ronald Rivest for the suggestion to
view the public key counterexample in Section 4 as a potential building block
for other functionalities.
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Abstract. It is well-known that the k-wise product of one-way func-
tions remains one-way, but may no longer be when the k inputs are
correlated. At TCC 2009, Rosen and Segev introduced a new notion
known as Correlated Product secure functions. These functions have the
property that a k-wise product of them remains one-way even under
correlated inputs. Rosen and Segev gave a construction of injective trap-
door functions which were correlated product secure from the existence of
Lossy Trapdoor Functions (introduced by Peikert and Waters in STOC
2008).

In this work we continue the study of correlated product security, and
find many differences depending on whether the functions have trap-
doors.

The first main result of this work shows that a family of correlated
product secure functions (without trapdoors) can be constructed from
any one-way function. Because correlated product secure functions are
trivially one-way, this shows an equivalence between the existence of
these two cryptographic primitives.

In the second main result of this work, we consider a natural deci-
sional variant of correlated product security. Roughly, a family of func-
tions is Decisional Correlated Product (DCP) secure if f1(x1), . . . , fk(x1)
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DCP secure function family with trapdoor satisfies the security require-
ments for Deterministic Encryption as defined by Bellare, Boldyreva and
O’Neill in CRYPTO 2007. In fact, we also show that definitionally, DCP
secure functions with trapdoors are a strict subset of Deterministic En-
cryption functions by showing an example of a Deterministic Encryption
function which according to the definition is not a DCP secure function.

Keywords: Correlated Product Security, Lossy Trapdoor Functions,
Deterministic Encryption.

1 Introduction

If f and g are one-way functions on some domain X , it follows immediately
that (x, y) �→ (f(x), g(y)) is a one-way function. On the other hand, it is well-
known that x �→ (f(x), g(x)) may not be. The RSA function provides a simple
example of this observation. The RSA assumption posits that x �→ xe mod n
is a one-way function. Given xe1 mod n, and xe2 mod n, the extended eu-
clidean algorithm provides an efficient means of computing xgcd(e1,e2) mod n,
so if gcd(e1, e2) = 1, the map x �→ (xe1 , xe2) mod n, is trivially invertible, even
though its constituents are believed to be one-way.

In [RS09], Rosen and Segev formalized the notion of Correlated Product (CP)
Security. They called a family of one-way trapdoor functions CP secure if they
remained one-way when evaluated on correlated (and in particular, repeated)
inputs. Rosen and Segev were motivated by the construction of IND-CCA secure
encryption based on Lossy Trapdoor Functions (LTDFs) given by Peikert and
Waters in [PW08]. Rosen and Segev showed that CP security is exactly the
property needed to prove security of the Peikert and Waters construction.

Correlated Product security is an appealing notion because it is easy to define
and appears to be a significantly weaker property than the statistical lossiness
requirement of Lossy Trapdoor Functions. Despite this appearance of relative
simplicity there have been few examples of correlated product secure functions
that are not Lossy Trapdoor Functions. The notable exceptions are the construc-
tions given in [Pei09] and [FGK+10].

This work continues the study of Correlated Product Secure Functions. We
introduce a natural decisional variant of correlated product security, and show
how this notion of Decisional Correlated Product Security provides connections
to many areas in cryptography.

1.1 Our Results

In this work, we introduce (in Section 3) the notion of Decisional Corre-
lated Product (DCP) security, which strengthens the definition of Rosen and
Segev. We argue that this is a natural stepping-stone between Lossy Trap-
door Functions and Correlated Product secure functions. Intuitively, these
are families of functions such that for any k functions f1, . . . , fk, the distri-
butions {(f1(x1), . . . , fk(x1))} and {(f1(x1), . . . , fk(xk))} are indistinguishable
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when x1, . . . , xk are chosen uniformly at random. Like correlated product secu-
rity, decisional correlated product security can be defined for distributions other
than the repetition distribution. We have focused on the case of the repetition
distribution because it is conceptually simple while still capturing the essence of
the problem. The repetition distribution is also the distribution that is necessary
for applications to IND-CCA encryption [PW08, RS09].

Our results can be divided into three categories.

1. Connections to Correlated Product Security:
We begin by examining the connections between Correlated Product (CP)
and Decisional Correlated Product (DCP) security.

From the definition of DCP security, it is clear that a family of constant
functions is DCP secure, so for non-trivial results, we either specify that the
functions be (individually) one-way or that they be injective with large do-
main. It turns out that, under either one of these assumptions, these families
can be shown to also be Correlated Product secure. This is proven in Section
4 as the following lemmas:

Lemma 2. If F = (G,F ) is a family of k-DCP secure functions with super-
polynomial size domain that are injective, then F is k-correlated product
secure.

Lemma 3. If F = (G,F ) is a family of k-DCP secure one-way functions,
then F is k-correlated product secure.

2. DCP Secure Functions Without Trapdoors:
Our first main result considers families of one-way functions that are DCP se-
cure. We show that such families are automatically (plain) Correlated Prod-
uct secure, and demonstrate a construction from any pseudorandom function
family. Due to the celebrated fact that a PRF family can be constructed from
any one-way function ([GGM86, ILL89, HILL99]), we obtain an equivalence
between the existence of one-way functions, DCP secure one-way function
families, and CP secure function families. This is proven in Section 5 as the
following theorem:

Theorem 1. The following statements are equivalent:
(a) One-way functions exist.
(b) k-DCP secure families of one-way functions exist.
(c) k-CP secure families of one-way functions exist.
Theorem 1 shows that without a trapdoor, correlated product security essen-
tially, is no stronger than simple one-wayness. This is somewhat surprising
given the results of Vahlis [Vah10] that show that Correlated Product se-
cure functions with trapdoor cannot be constructed from enhanced one-way
trapdoor permutations. It is also somewhat surprising since lossy functions
(without trapdoor) have not proven to be significantly easier to construct
than lossy trapdoor functions.

3. DCP Secure Functions With Trapdoors:
Our second main result considers DCP secure function families which also
have trapdoor. We investigate the connection between this and other prim-
itives. In Section 6, we show a construction of these one-way trapdoor DCP
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secure families from sufficiently lossy LTDFs. This is stated as the following
theorem:

Theorem 2. Let ε(λ) be any function such that 1/2ε(λ) is negligible in λ. Let
F = (G,F ) be a family of LTDFs on domain {0, 1}λ, with residual leakage1

at most λ+2−2 log(1/ε)
k . Then functions of the form Fs(h(x)) form a family

of k-DCP trapdoor functions, where h is an injective pairwise independent
hash function.

Finally, in Section 7, we show that these families definitionally satisfy
the security requirements of Deterministic Encryption, but the converse is
not true in general. Using the notion of PRIV1 security for Deterministic
Encryption, which we will recall later, we have:

Theorem 3. DCP secure function families with trapdoor are also PRIV1
secure deterministic encryption schemes.

1.2 Previous Work

In [PW08] Peikert and Waters introduced a new paradigm for constructing IND-
CCA secure encryption based on the newly defined primitive Lossy Trapdoor
Functions (LTDFs). Their construction of IND-CCA was natural and appeal-
ing, but LTDFs proved difficult to construct because of their strong statistical
lossiness properties. Despite the power of LTDFs, in [PW08] they were able to
give constructions from DDH and Lattice-based assumptions, and the authors of
[BFO08] and [RS08, FGK+10] (independently) found identical efficient construc-
tions of LTDFs from Paillier’s Decisional Composite Residuousity Assumption.

In [RS09], Rosen and Segev examined which properties of LTDFs were neces-
sary to construct IND-CCA secure encryption via the methods in [PW08]. With
this goal, they defined Correlated Product secure functions, and gave a con-
struction of IND-CCA secure encryption from Correlated Product secure func-
tions with trapdoor paralleling the construction in [PW08]. One of the primary
difficulties in constructing Lossy Trapdoor Functions is creating functions the
necessary statistical lossiness property (i.e. that the image of the function is sig-
nificantly smaller than the domain). Correlated Product secure functions do not
have these statistical requirements, and thus should be easier to construct than
LTDFs. This intuition was reinforced in [RS09] where they showed that LTDFs
are Correlated Product secure, and showed a black-box separation in the op-
posite direction. Correlated Product secure functions remain difficult to realize,
however, and the recent results of Vahlis [Vah10], show a black-box separation
between (enhanced) one-way trapdoor permutations and Correlated Product
Secure functions.

In 2007, Bellare, Boldyreva, and O’Neill [BBO07] introduced a new notion
known as Deterministic Encryption (DE). The deterministic property of the

1 Recall that the residual leakage is defined to be the average number of bits leaked
about the input when the function is in lossy mode. In particular, the residual
leakage is defined to be the log of the size of the image of the function in lossy
mode.
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encryption affords the scheme many practical applications, such as searchable
encryption, but at the same time requires new security definitions. Subsequent
works [BFO08, BFOR08] demonstrate equivalences between various definitions
of DE and show that the existence of a sufficiently lossy LTDFs imply the exis-
tence of deterministic encryption, which in turn implies the existence of IND-CCA
secure cryptosystems.

The works [BFO08, BFOR08] show many different relationships between DE
and other primitives. Indeed, they show that any LTDF is almost immediately a
DE scheme, and show how a weaker notion of DE can be constructed from any
one-way trapdoor permutation.

In [ABBC10] Acar et al. studied the notion of cryptographic agility, where
families of cryptographic primitives are said to be agile if they remain secure
when the same key is re-used across families. While this is also a notion re-
garding correlated security, it does not appear to be connected to DCP security.
Cryptographic agility refers to the security of correlated keys across different
families of primitives, while DCP security refers to the one-wayness of functions
from the same family when evaluated on correlated inputs.

The notion of security under correlated inputs has been studied in other con-
texts as well. In [IKNP03], Ishai et al. defined the notion of correlation robustness
and used correlation robust functions to efficiently extend the number of inde-
pendent oblivious transfer pairs available in a secure multiparty protocol. Corre-
lation robustness was then used to create cryptosystems secure under related key
attacks [AHI11, GOR11]. The notion of correlation robustness is distinct from
the notion of correlated product security that is studied in this work. Correlation
robustness studies the security of a single function applied on correlated inputs,
while correlated product security studies the notion of different functions applied
to correlated inputs. This distinction makes the constructions and applications
quite different between the two areas.

2 Preliminaries

If A is a PPT machine, then we use a
$← A to denote running the machine A and

obtaining an output, where a is distributed according to the internal randomness
of A. For a PPT machine A, we use coins(A) to denote the distribution of the

internal randomness of A. So the distributions {a $← A} and {r $← coins(A) : a =

A(r)} are identical. If R is a set, we use r
$← R to denote sampling uniformly

from R. If X and Y are families distributions indexed by a security paramete
λ, we use X ≈s Y to mean the two distributions are statistically close i.e. the
statistical distance between X and Y is negligible in λ. We use X ≈c Y to mean
that the distributions are computationally close, i.e. no PPT distinguisher with
oracle access to the distribution has a non-negligible distinguishing advantage.
We will need an extension of the leftover hash lemma known as the Crooked
Leftover Hash Lemma [BFO08].
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Lemma 1 (Crooked Leftover Hash Lemma [BFO08]). Let H be a pairwise
independent hash family, such that for all h ∈ H, h : X → X. Let f : X → Y ,
and let Z be any random variable independent of h and DX a distribution over
X such that the min entropy H̃∞(DX |Z) ≥ log |Y |+ 2 log(1/ε)− 2. Then if we

define Λ1 = {h $← H;x
$← DX : (h, f(h(x)), Z)}, and Λ2 = {h $← H; y

$← Y :
(h, f(h(UX), Z))}, we have Δ(Λ1, Λ2) ≤ ε.

Notice that the Crooked Leftover Hash Lemma does not imply that h(DX) is
close to UX , and indeed this may not be the case.

2.1 Correlated Product Security

In this section, we review the definition of Correlated Product security, first
defined in [RS09]. We begin by defining the k-wise product of a Function Family.

Definition 1 (k-wise product). Let F = (G,F ) be a collection of efficiently
computable functions. G is a (randomized) algorithm which takes as input a size
parameter 1λ and generates a key (or seed) s for F . Each function F (s, ·) takes
as input an element of some domain X and outputs some value in the range Y ,
both of which implicitly depend on the parameter λ. For notational purposes, we
also write Fs(·) = F (s, ·).
For k ≥ 2, we define a family of k-wise products Fk = (Gk, F k) as follows:

– Key Generation:

Gk(1λ) independently generates si
$← G(1λ), for i = 1, . . . , k.

– Evaluation:
To evaluate F k on input ((s1, . . . , sk), (x1, . . . , xk)), we define

F k((s1, . . . , sk), (x1, . . . , xk)) = (Fs1(x1), . . . , Fsk(xk)).

Definition 2 (Correlated Product Security). Let F = (G,F ) be a collec-
tion of efficiently computable functions. Let Ck = Ck(1

λ) be a distribution. We
say that F is secure under Ck-correlated products if Fk is one-way with respect
to the input distribution Ck.

We remark that if the function family is very small, e.g. if it consists of only a
single function, then correlated product security can be trivially satisfied, since
s1 = · · · = sk and hence Fs1(x) = · · · = Fsk(x). This degenerate case only arises
when considering CP security for functions without trapdoor. Throughout this
work, we will focus on decisional correlated product security (Definition 3).
We note that a family with fewer than k functions can never be k-DCP secure.
Similarly, functions with trapdoor must also belong to a large (super-polynomial
size) family. Since all of our results deal with DCP security or DCP security with
trapdoor, we do not find it necessary to amend the definition of CP security
explicitly require the size of the function family to be large.

For the remainder of the paper, we will focus on the case where Ck is the uni-
form k-repetition distribution, i.e. k copies of a uniformly chosen input. We refer
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the reader to the Appendix for reminders of the definitions of the Discrete Log
and DDH assumptions, Deterministic Encryption, Lossy Trapdoor Functions,
and Pseudorandom Functions.

3 Decisional Correlated Product Security

In this work we introduce the notion of Decisional Correlated Product (DCP)
security, which can be viewed as the decisional variant of Correlated Product
security introduced in [RS09]. In [RS09], Rosen and Segev focused on the case
where Ck was the uniform k-repetition distribution, i.e. Ck uniformly samples
x and outputs k copies of x. We will also focus on the k-repetition distribution,
although we will consider a decisional variant of the problem.

First, we remark that Correlated Product security seems to be a much stronger
notion than simply one-wayness. For example, the map fe : x �→ xe mod n,
is one-way trapdoor permutation under the RSA assumption. However, given
fe1(x), fe2(x), if gcd(e1, e2) = 1, we can immediately recover x, by using the
extended Euclidean algorithm to calculate s, t such that se1+te2 = 1, and notic-
ing that (xe1 )s(xe2 )t = x. This example also shows that Decisional Correlated
Product security does not follow immediately from Computational Correlated
Product security, because if d1, d2, d3 are relatively prime, and ei = edi for some
fixed e, then fe1 , fe2 , fe3 will be Computationally Correlated Product secure un-
der the RSA assumption, but will not be Decisional Correlated Product secure
by a similar argument.

Definition 3 (Decisional Correlated Product Security). Let F = (G,F )
be a collection of efficiently computable functions. We say that Fk is k-wise
Decisional Correlated Product secure if for all efficient PPT adversaries A,∣∣Pr [Aindepdist = 1

]
− Pr

[
Arepdist = 1

]∣∣ < ν

for some negligible function ν, and where the games indepdist and repdist are
defined as in Figure 1.

Independent Repetition

s1
$← G(1λ), . . . , sk

$← G(1λ) s1
$← G(1λ), . . . , sk

$← G(1λ)

x1
$← X, . . . , xk

$← X x
$← X

b
$← A(s1, . . . , sk, Fs1(x1), . . . , Fsk(xk)) b

$← A(s1, . . . , sk, Fs1(x), . . . , Fsk (x))
Return b Return b

Fig. 1. Decisional Correlated Product Security

To illustrate the power of this definition, we construct a very natural IND-CPA
secure encryption from any family of 2-DCP secure injective trapdoor functions.
Let the public key be F1, F2, h where h is a pairwise independent hash function.
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Define encryption as E(m, r) = (F1(r), h(F2(r))⊕m). To decrypt, we simply in-
vert F1 to recover r, from this we can recover h(F2(r)) and recover the message.
If Fi have domain {0, 1}λ, and h maps from the range of Fi to {0, 1}λ/2, then
the leftover hash lemma tells us that (F1(r1), h(F2(r2))⊕m) is statistically close
to (F1(r1), h(F2(r2))). So if y0, y1 are chosen from the repetition-distribution
(y0, h(y1) ⊕m) is a valid ciphertext, while if (y0, y1) are chosen from the inde-
pendent distribution (y0, h(y1)⊕m) is independent of m, thus this scheme will
be IND-CPA secure. We emphasize that this is not one of our main results, but
simply an illustration of a natural construction that follows from this definition.

Remark. One of the appealing properties of the notion of k-DCP security is that
it abstracts one of the most important properties of the DDH assumption. To see
the parallel, recall a simple DDH-based PRG. The description of the function is
the group G, and two elements g, ga, and f(b) = (gb, (ga)b). The first element of
the output will be uniform if b is uniform, and the pair is indistinguishable from
uniform by the DDH assumption. Now, it is easy to see that this construction will
go through as before with an injective k-DCP family of functions. In particular,
the description of the PRG will be F , s1, . . . , sk, and f(x) = Fs1(x), . . . , Fsk(x).
If Fsi(·) is a permutation, f will be a PRG with no modification. If the Fsi(·)
are merely injective, we will have to apply an extractor to “smooth” the output,
but the proof of security remains exactly the same as in the DDH case. In
fact, this observation can be generalized, the full version of this work contains
a more detailed discussion of the parallel between DCP security and the DDH
assumption.

The notion of Decisional Correlated Product security is clearly a stronger
notion than the (Computational) Correlated Product security defined in [RS09]
for injective functions. In the next section, we examine under what conditions
DCP security implies CP security.

4 Relations to (Computational) Correlated Product
Security

The notion of k-DCP security seems like a stronger requirement than Compu-
tational Correlated Product security, but we observe that if we do not put any
requirements on the functions, then k-DCP security may be satisfied by trivial
functions. For example the constant functions are trivially k-DCP for any k ≥ 2.
The following lemmas give sufficient conditions for when a k-DCP secure family
is k-correlated product secure.

Lemma 2. If F = (G,F ) is a family of k-DCP secure functions with super-
polynomial size domain and are injective, then F is k-correlated product secure.

Proof. Let A be an efficient adversary that given s1, . . . , sk, and
(Fs1(x), . . . , Fsk(x)), finds the inverse (x′1, . . . , x

′
k) = (x, x, . . . , x) with

non-negligible probability ε, we exhibit an efficient distinguisher D that uses A
to break the k-DCP security of F .
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Algorithm 1. D(s1, . . . , sk, y1, . . . , yk)

(x′
1, . . . , x

′
k)

$← A(s1, . . . , sk, y1, . . . , yk)
if x′

1 = x′
2 = · · · = x′

k and Fsi(x
′
i) = yi for i ∈ [k] then

return 1
else

return 0
end if

We must analyze the probability that D outputs 1 in the repdist and indepdist
games.

Pr[Drepdist = 1] = Pr[x′
1 = · · · = x′

k ∧ Fsi(x
′
i) = yi|

x
$← X, si

$← G(1λ), yi = Fsi(x), {x′
i}ki=1

$← A({si}ki=1, {yi}ki=1)]

= Pr[A successfully inverts] = ε.

Pr[Dindepdist = 1] = Pr[x′
1 = · · · = x′

k ∧ Fsi(x
′
i) = yi|

xi
$← X, si

$← G(1λ), yi = Fsi(xi), {x′
i}ki=1

$← A({si}ki=1, {yi}ki=1)]

= Pr[x′
1 = · · · = x′

k ∧ x′
i = xi|

xi
$← X, si

$← G(1λ), yi = Fsi(xi), {x′
i}ki=1

$← A({si}ki=1, {yi}ki=1)]

≤ Pr[x1 = x2|xi
$← X] ≤ 1

|X| .

Thus the difference |Pr[Drepdist = 1] − Pr[Dindepdist = 1]| ≥ ε − 1
|X| is non-

negligible, as |X | is super-polynomial.

Next, we show that if a family F = (G,F ) is a DCP secure, and each function
is individually one-way, then the family is also Correlated Product secure.

Lemma 3. If F = (G,F ) is a family of k-DCP secure one-way functions, then
F is k-correlated product secure.

Proof. Suppose on the contrary that they were not. Let A be a PPT algo-
rithm that breaks the correlated product security of (G,F ), in particular given
{s1, . . . , sk, Fs1(x1), . . . , Fsk(x1)} A is able to find a pre-image (x′1, . . . , x

′
k) with

some non-negligible probability ε, where the si are generated by G at random,
and x1 is chosen uniformly at random. We use A to build a PPT distinguisher
D that can win in the k-DCP game.

We analyze the probability that D outputs 1. If indeed the inputs are corre-
lated, i.e. yi = Fsi(x1), then A succeeds with probability ε and so D will output
1 with that probability.

On the other hand, if the inputs are random and independent, i.e. yi = Fsi(xi),
then (x1, . . . , xk) is a uniformly chosen input from the product space. Because



Correlated Product Security from Any One-Way Function 567

Algorithm 2. D(s1, . . . , sk, y1, . . . , yk)

(x′
1, . . . , x

′
k)

$← A(s1, . . . , sk, y1, . . . , yk)
if Fsi(x

′
i) = yi for i ∈ [k] then

return 1
else

return 0
end if

each Fsi (·) is a one-way function, the product function (Fs1 (·), . . . , Fsk(·)) is also
one-way. Since the inputs are uncorrelated, the probability that A inverts it on
a random value is negligible. Thus, in this case, D outputs 1 with only negligible
probability.

This contradicts the k-DCP security of (G,F ).

Many of the results in this work will focus on the case where the family F are in
fact injective, or injective with trapdoor, and so the Correlated Product security
will follow immediately from the DCP security of F .

5 Equivalence of OWF and (Decisional) Correlated
Product Secure Families of OWFs

In this section, we aim to prove the main theorem relating the existence of OWFs
to that of (Decisional) Correlated Product secure OWF families.

Theorem 1. The following statements are equivalent:

1. One-way functions exist.
2. k-DCP secure families of one-way functions exist.
3. k-CP secure families of one-way functions exist.

To do this, we first show how to construct a DCP secure family of one-way
functions from any pseudorandom function family. The idea is that a PRF family
becomes DCP secure if we swap what we call the seed, and what we call the
input. This idea has also been used in the past by Luby and Rackoff [LR89] to
show the one-wayness of the UNIX-like password hash. If the PRF output is
sufficiently long, then the resulting functions are also one-way, thus we have a
family of DCP secure one-way functions. The exact lengths necessary are given
in Lemma 5.

We then show that DCP secure one-way function families are also (ordinary)
CP secure. This will follow directly from the fact that a product of one-way
functions remain one-way under uniform independent inputs (Lemma 3). Finally,
CP secure OWF families obviously are one-way, which completes the cycle of
implications.

Let (PRFGen,PRF) be a PRF family, such that if s
$← PRFGen(1λ), with

s ∈ {0, 1}w(λ) then the domain of

PRF(s, ·) : {0, 1}n(λ) → {0, 1}�(λ).
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We can define a DCP family (G,F ), by

– Sampling: G(1λ) outputs a uniform value s ∈ {0, 1}n(λ).
– Evaluation: For any s ∈ {0, 1}n(λ),

Fs(·) : {0, 1}w(λ) → {0, 1}�(λ)

x �→ PRF(x, s).

Lemma 4. (G,F ) forms a k-Decisional Correlated Product secure function
family for any k = poly(λ).

Proof. Define the distributions Λ0, Λ1 by sampling s1, . . . , sk
$← G(1λ), and

x1, . . . , xk
$← {0, 1}w(λ)

Λ0 = {s1, . . . , sk, Fs1(x1), . . . , Fsk(x1)}
Λ1 = {s1, . . . , sk, Fs1(x1), Fs2 (x2), . . . , Fsk(xk)}

Thus we must show that any adversary who can distinguish Λ0 from Λ1 can dis-
tinguish the underlying Pseudorandom Function from a truly random function.

Now, by the definition of F , we have

Λ0 = {s1, . . . , sk, Fs1(x1), . . . , Fsk (x1)} = {s1, . . . , sk,PRF(x1, s1), . . . ,PRF(x1, sk)},
Λ1 = {s1, . . . , sk, Fs1(x1), . . . , Fsk (xk)} = {s1, . . . , sk,PRF(x1, s1), . . . ,PRF(xk, sk)}.

Now, it is clear that the security of the Pseudorandom Function gives

Λ0 ≈c {s1, . . . , sk, U�(λ), . . . , U�(λ)} ≈c Λ1,

which gives the result.

Lemma 5. If the size of the key space of F is a negligible fraction of the size of
the output space, i.e. 1/2�(λ)−w(λ) is negligible in λ, then (G,F ) forms a family
of one-way functions.

Proof. Suppose to the contrary that for some key s, the function Fs(·) was not
one-way. Let A be a PPT inverter that succeeds with non-negligible probability
ε, i.e.

Pr
x
[Fs(z) = Fs(x)|z ← A(Fs(x))] = ε

We use A to construct a PPT algorithm B that distinguishes between oracle
access to PRF (with a randomly chosen seed x) and a truly random function
RO. The algorithm queries s on the oracle, and receives y, which is either y =
PRF(x, s) = Fs(x) for some x, or a truly random value. The distinguisher B runs
A on y, and receives some output x′. If it is the case that Fs(x

′) = y, then B
outputs 1, otherwise B outputs 0.
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We analyze the probabilities Pr[BRO(·) = 1] and Prx[B
PRF(x,·) = 1]. In the

former case, the probability that a random value is in the range of PRF(s, ·) is
|Range|

2�
≤ 2w

2�
which we assumed to be negligible. On the other hand,

Pr
x
[BPRF(x,·) = 1] = Pr

x
[PRF(z, s) = y|z ← A(y)]

= Pr
x
[PRF(z, s) = PRF(x, s)|z ← A(PRF(x, s))]

= Pr
x
[Fs(z) = Fs(x)|z ← A(Fs(x))] = ε

This contradicts the pseudorandomness of PRF.

Corollary 1. One-way functions imply k-DCP secure one-way function fami-
lies.

Proof. In Hastad, Impagliazzo, Levin and Luby [HILL99] it was shown that one-
way functions imply PRGs, and in Goldreich, Goldwasser, Micali [GGM86] it
was shown that PRGs imply the existence of PRF families with sufficiently long
output, thus combining these results with our result, we have one-way functions
imply k-DCP secure one-way functions.

Corollary 2. One-way functions imply k-CP secure function families.

Proof. This follows immediately from applying Lemma 3 to Corollary 1.

Since every Correlated Product secure function family is trivially a one-way
function family, we have

One-Way Functions

Pseudorandom Generators

Pseudorandom Functions

One-Way DCP Secure Functions

CP Secure Functions



570 B. Hemenway, S. Lu, and R. Ostrovsky

Since pseudo-random synthesizers [NR95, Rei98] are equivalent to one-way
functions, we also achieve an equivalence between DCP secure functions and
synthesizers. In the full version of this work, we give a direct proof that every
family of pseudo-random synthesizers is immediately DCP secure.

In [BHK11], Braverman, Hassidim and Kalai introduced the notion of leakage-
resilient random-input PRFs. A leakage-resilient random-input PRF is a pseudo-
random function which remains pseudo-random when queried on random inputs
(i.e. it is a weak PRF) even when partial information about the seed is leaked.
Applying our construction to a leakage-resilient random-input PRF, we obtain
a family of functions which is decisionally correlated product secure for any
distribution (X1, . . . , Xn) where that satisfies H̃∞(Xi|X1, . . . , Xi−1) > λ. Notice
that the repetition distribution does not have this property, so by applying our
construction to leakage-resilient random-input PRFs, we achieve DCP security
for a completely different class of distributions.

6 DCP with Trapdoor from Lossy Trapdoor Functions

In the preceding sections, we examined DCP secure functions without trapdoors,
and showed that one-way DCP secure functions without trapdoor could be con-
structed from any one-way function. Now, we show constructions of DCP with
trapdoor. In particular, in this section, we show that lossy trapdoor functions
with sufficient lossiness imply DCP secure injective trapdoor functions.

Theorem 2. Let H be a family of invertible2 pairwise independent hash func-
tions with h : {0, 1}λ → {0, 1}λ. Let ε(λ) be any function such that 1/2ε(λ) is
negligible in λ. Let F = (G,F ) be a family of LTDFs on domain {0, 1}λ, where
the lossy mode has residual leakage r ≤ λ+2−2 log(1/ε)

k , for some integer k. Define

F̂ = (Ĝ, F̂ ) by

– Ĝ(1λ), samples s
$← G(1λ), and h

$← H, and outputs the function index h, s.
– Given a function index (h, s) and an input x, F̂h,s(x) = Fs(h(x)).

Then F̂ is a k-DCP secure injective trapdoor function.

Proof. To prove the claim, we must show that distributions

{h1, s1, . . . , hk, sk, F̂h1,s1(x1), . . . , F̂hk,sk(x1)}
and

{h1, s1, . . . , hk, sk, F̂h1,s1(x1), F̂hk,sk(xk)}

are computationally indistinguishable, where h1, s1, . . . , hk, sk
$← Ĝ(1λ), and

x1, . . . , xk are sampled uniformly at random from the domain {0, 1}λ.
2 We remark that this is not a strong restriction, and the natural construction h(x) =
ax+ b over a finite field yields a collection of invertible pairwise independent hash
functions.
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If the function Fs(·) is in lossy mode, it has image size at most 2
λ+2−2 log(1/ε)

k ,
so if x is chosen uniformly from {0, 1}λ, then

H̃∞(x|F̂h1,s1(x), . . . , F̂hk−1,sk−1
(x)) ≥ λ− (k − 1)

λ+ 2− 2 log(1/ε)

k

= λ− (λ+ 2− 2 log(1/ε)) +
λ+ 2− 2 log(1/ε)

k

=
λ+ 2− 2 log(1/ε)

k
+ 2 log(1/ε)− 2.

By the Crooked Leftover Hash Lemma, we have

Δ
({
h1, s1, . . . , hk, sk, Fs1(h1(x1)), . . . , Fsk(hk(x))

}
,{

h1, s1, . . . , hk, sk, Fs1(h1(Uλ)), Fs2 (h2(x)), . . . , Fsk(hk(x))
})

< ε.

Repeating this argument a total of k times, we have

Δ
({

h1, s1, . . . , hk, sk, Fs1(h1(x)), . . . , Fsk(hk(x))
}
,{

h1, s1, . . . , hk, sk, Fs1(h1(Uλ)), . . . , Fsk(hk(Uλ))
})

< kε.

Since ε was assumed to be negligible, so is kε. Thus when the si are chosen to
be lossy keys, the two distributions {h1, s1, . . . , hk, sk, F̂h1,s1(x1), . . . , F̂hk,sk(x1)}
and {h1, s1, . . . , hk, sk, F̂h1,s1(x1), F̂hk,sk(xk)} are statistically indistinguishable.
The computational indistinguishability of lossy and injective keys implies that
when the si are injective keys, the two distributions are computationally indis-
tinguishable. Thus (Ĝ, F̂ ) forms a family of k-DCP secure trapdoor functions.

7 Decisional Correlated Product Security Is
Deterministic Encryption

In this section, we examine the consequences of DCP secure functions, again with
trapdoor. We show that any 2-DCP secure functions with trapdoor are – almost
without modification – a PRIV1 secure uniform deterministic encryption. The
notion of PRIV1 security is the original definition of security for deterministic
encryption put forward in [BBO07]. PRIV1 security is the natural relaxation of
the notion of semantically secure encryption to the deterministic setting. Recall
that a cryptosystem is semantically secure if for any function f(·), an adversary’s
probability of calculating f(m) remains essentially unchanged if the adversary
is given access to an encryption E(m). PRIV1 security requires that for any
function f(·) which is independent of the public key, an adversary’s ability to
calculate f(m) remains essentially unchanged whether he has access to the public
key, or the public key and an encryption E(m). See [BBO07] for the formal
definition of PRIV1 security.
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We follow the terminology of [BFOR08], where a uniform deterministic en-
cryption is one which is only guaranteed to be secure against message adversaries
that choose messages from the uniform distribution, instead of simply any high
min-entropy distribution.

Let F = (G,F ) be a family of 2-Decisional Correlated Product secure Func-
tions.

We can define a (Uniform) Deterministic Encryption by

KeyGen: Encryption: Decryption:

(s, t)
$← G(1λ) E(pk,m) = Fpk(m) D(sk, c) = F−1

t (c)
pk = s, sk = t

Fig. 2.Decisional Correlated Product Secure functions with trapdoor are PRIV1 secure

Theorem 3. The scheme outlined in Figure 2 is BB-CSS secure.

Proof. First, we recall the notion of BB-CSS (Balanced Boolean Comparison-
based Semantic Security) as defined in [BFOR08]. This is similar to the Com-
parison Semantic Security PRIV1, outlined by the games privreal and privideal,
except that the side information t is required to be a balanced boolean function,
i.e. Pr[t = 0] ≈ Pr[t = 1] ≈ 1

2 .
For simplicity, we assume that Pr[t = 0] = Pr[t = 1] = 1

2 , but it is easy to see
that if the distributions are only negligibly close to 1

2 then the argument goes
through as well.

Notice that in this setting any adversary has a 1
2 chance of winning in the

privideal game since his view is independent of the actual side information, thus
it is enough to consider the adversary’s probability of winning in the privreal
game.

Now, suppose there exists an adversary A = (Am, Ag), such that (m, t)
$←

Am(1λ), where m is uniform on X the domain of fs, and t is uniform on {0, 1}.
The guessing adversary Ag on input pk, c outputs a guess t′. If c = E(Pk,m),
then Pr[t = t′] = 1

2 + ε.
We show how to use A to create a distinguisher D that can distinguish the

2-repetition distribution from the 2-independent distribution. The algorithm D
takes as input the description of two functions s0, s1, and two outputs y0, y1,
which come from either the repetition distribution (in which case yi = Fsi(x)) or
the independent distribution (in which case yi = Fsi(xi), for two independently
sampled xi). The distinguisher D is described by Algorithm 3.

Now, we must analyze the probability that D succeeds. If y0, y1 were gener-
ated from the repetition distribution, then since Ag succeeds with probability
1
2 + ε, the probability that D guesses “repetition” is (12 + ε)2+(12 − ε)2 =

1
2 +2ε2.

If y0, y1 were generated from the independent distribution, because the side
information is a balanced boolean function, the probability that the t0, t1 that
would have been generated by Am are equal is 1

2 . Intuitively, this should mean
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Algorithm 3. D(s0, s1, y0, y1)

t′0
$← Ag(s0, y0)

t′1
$← Ag(s1, y1)

if t′0 = t′1 then
return Repetition

else
return Independent

end if

the probability that D correctly guesses “independent” is just 1
2 . This is in fact

the case, because

Pr[D correctly guesses independent]

=
1

2
Pr[D guesses independent|t0 = t1] +

1

2
Pr[D guesses independent|t0 �= t1]

=
1

2

(
2

(
1

2
+ ε

)(
1

2
− ε

))
+

1

2

((
1

2
+ ε

)2

+

(
1

2
− ε

)2
)

=
1

2
.

Thus the probability that D is correct is 1
2 + ε2.

Corollary 3. The scheme outlined above is PRIV1 secure.

Proof. In [BFOR08], they show that BB-CSS security (Comparison based Se-
mantic Security against Balanced Boolean side information) implies B-CSS se-
curity (Comparison based Semantic Security against any Boolean side informa-
tion), which in turns implies A-CSS which is security against Arbitrary side
information. A-CSS security is the terminology in [BFOR08] for PRIV1 secu-
rity. The only thing to do is to notice that both proofs in [BFOR08] go through
unchanged when the adversaries are restricted to be uniform adversaries.

Remark. We note that if the function family F = (G,F ) were assumed to be
Decisional Correlated Product (DCP) secure when the inputs were chosen not
uniformly, but simply from some high min-entropy distribution, the same proof
would go through to show PRIV1 security against any (not necessarily uniform)
adversary Am.

Remark. On the other hand, there is an example (outlined below) of a PRIV1
secure uniform DE scheme that is not n-DCP secure (treating the public key as
the seed, key generation as G, and encryption as F ), where n is the size of the
message. This does not preclude the construction of a DCP secure family from
such a DE scheme, but instead shows that these two notions are not definition-
ally equivalent. To see that a PRIV1 secure DE need not be n-DCP secure, take
any IND-CPA secure (randomized) encryption scheme, and transform it into a
“leaky” scheme that leaks the first bit of randomness used in encryption by sim-
ply taking an extra dummy bit of randomness and revealing it in the ciphertext.
The construction of uniform DE from one-way trapdoor permutations given in
[BFOR08] makes use of an IND-CPA secure (randomized) encryption scheme.
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Without fully reproducing the [BFOR08] construction, we only need to point
out that the first bit of randomness is the hard-core predicate defined by the
dot product of the message and a vector from the public key. If the “leaky”
encryption of the same message under n different public keys is revealed, the
message can be reconstructed using linear algebra. This immediately breaks
(Decisional) Correlated Product security.

8 Conclusion and Open Problems

In this work we suggested a new primitive, the decisional variant of Correlated
Product (DCP) secure functions. We argue that this primitive has many ap-
pealing properties. To this end, we show a parallel between Correlated Product
security and DCP and the Discrete Log Problem and its decisional variant DDH.
We also show how to construct simple primitives from DCP such as PRGs and
IND-CPA secure encryption.

Our main results examine two main cases: DCP functions with trapdoor and
without trapdoor. We show that DCP secure functions (and CP secure func-
tions) without trapdoor are equivalent to one-way functions. This is a somewhat
surprising result since notions of correlated product security appear to be much
stronger than simple one-wayness. When examining DCP secure functions with
trapdoor, we show that they are implied by Lossy Trapdoor Functions, and that
DCP secure functions are immediately a Deterministic Encryption scheme.

An interesting line of future research would be to develop further constructions
of DCP secure functions with trapdoor. A second line of research would be a
closer examination of the connections between DCP security and deterministic
encryption. For example, we know that DCP secure functions are deterministic
encryption, but it would be interesting to see how the security is affected by
auxiliary information, e.g. along the lines of [BS11].
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Abstract. In CRYPTO 2007, Hofheinz and Kiltz formalized a secu-
rity notion for key encapsulation mechanisms (KEMs), called constrained
chosen ciphertext (CCCA) security, which is strictly weaker than ordi-
nary chosen ciphertext (CCA) security, and showed a new composition
paradigm for CCA secure hybrid encryption. Thus, CCCA security of
a KEM turned out to be quite useful. However, since the notion is rel-
atively new and its definition is slightly complicated, relations among
CCCA security and other security notions have not been clarified well.
In this paper, in order to better understand CCCA security and the con-
struction of CCCA secure KEMs, we study relations between CCCA and
bounded CCA security, where the latter notion considers security against
adversaries that make a-priori bounded number of decapsulation queries,
and is also strictly weaker than CCA security. Specifically, we show that
in most cases there are separations between these notions, while there is
some unexpected implication from (a slightly stronger version of) CCCA
security to a weak form of 1-bounded CCA security. We also revisit the
construction of a KEM from a hash proof system (HPS) with compu-
tational security properties, and show that the HPS-based KEM, which
was previously shown CCCA secure, is actually 1-bounded CCA secure
as well. This result, together with the above general implication, suggests
that 1-bounded CCA security can be essentially seen as a “necessary”
condition for a CCCA secure KEM.

Keywords: key encapsulation mechanism, constrained CCA security,
bounded CCA security, hash proof system.

1 Introduction

Background and Motivation. Studies on constructing and understanding prac-
tical public key encryption (PKE) schemes secure against chosen ciphertext at-
tacks (CCA) [26,11] are important research topics in the area of cryptography.
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Among several approaches towards CCA secure PKE schemes, one of the promis-
ing approaches is to construct a PKE scheme via the hybrid encryption method-
ologies using a key encapsulation mechanism (KEM) which encapsulates (i.e.
encrypts) a random session-key, and a data encapsulation mechanism (DEM)
which encrypts an actual message using the session-key. Cramer and Shoup [10]
show that if we combine a CCA secure KEM and a CCA secure DEM, we ob-
tain a hybrid PKE scheme which is CCA secure. Abe et al. [1] show yet another
hybrid encryption paradigm from a Tag-KEM, which is an extension of a KEM,
and a passively secure DEM.

In CRYPTO 2007, Hofheinz and Kiltz [17] formalized a security notion for
KEMs called constrained chosen ciphertext (CCCA) security, which is strictly
weaker than ordinary CCA security. Then, they show that a CCA secure PKE
scheme can be constructed by combining a CCCA secure KEM and a DEM sat-
isfying the security of (one-time) authenticated encryption [4]. Therefore, CCCA
security turned out to be a quite useful security notion for constructing a CCA
secure PKE scheme.

However, the notion of CCCA security is relatively new, and the definition
of CCCA security is slightly technically complicated compared to other exist-
ing security notions for KEMs, such as (ordinary) CCA security. Therefore, the
relations between CCCA security and other security notions have not been stud-
ied and clarified well. Especially, “how” CCCA security is weak, compared to
ordinary CCA security, seems not to have been understood well previously. It
is naturally expected that the better we understand CCCA security itself, the
higher the possibility we will come up with practical CCCA secure KEMs be-
comes, which will also lead to practical CCA secure PKE schemes.

So far, there are several positive and negative results regarding how close
CCCA security and CCA security for KEMs are: Baek et al. [2] show that a
CCCA secure KEM can be generically converted into a CCA secure one by
using a one-time secure message authentication code. Hanaoka and Kurosawa
[13] show that in fact, a CCCA secure KEM can be turned into a CCA secure
one even without using any other additional building block, by using a part
of the session-key (for a DEM) to check the consistency of a ciphertext in the
decapsulation process. These results make us believe that CCCA security and
CCA security for KEMs are in fact very close.

On the other hand, Choi et al. [7] show that the well-knownKEM by Kurosawa
and Desmedt [21], which was shown to be CCCA secure under the decisional
Diffie-Hellman (DDH) assumption in [17], is not OW-2-CCA secure. That is, the
session-key hidden in a ciphertext of the Kurosawa-Desmedt KEM can be re-
covered if an adversary can submit two decapsulation queries of its choice. This
result, in contrast to the above positive results [2,13], makes us think that CCCA
security is far from CCA security.

These previous results may illustrate that it is difficult to grasp what is actu-
ally achieved by CCCA security and what is not. The motivation of this work
is to clarify the relations between CCCA security and other security notions, so
that it leads to better understanding of CCCA security itself and also leads to
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insights for constructing practical CCCA secure KEMs in the future. For that
purpose, we study relations between CCCA security and bounded CCA security
[8], which only captures security against adversaries that make a-priori bounded
number of decapsulation queries (denoted by “q-CCA” for q queries), and is also
strictly weaker than CCA security in a different sense from CCCA security.

It is known that we can construct a “q-bounded CCA” secure KEM whose ci-
phertext consists of only one group element (and thus “optimal” ciphertext size
as a KEM) under the DDH assumption [8], for any predetermined polynomial
q. On the other hand, the best known CCCA secure KEMs under the DDH as-
sumption (or weaker assumptions) [21,17,12] have at least two group elements in
a ciphertext. If we can construct a CCCA secure KEM under the DDH assump-
tion with just one group element ciphertext, it will lead to (by combining it with
a DEM satisfying the security of authenticated encryption) the best DDH-based
PKE scheme in terms of the ciphertext overhead1, i.e. one group element plus
the ciphertext overhead caused by the DEM, which can be as small as k-bit for
k-bit security. We believe that studying relations between CCCA security and
bounded CCA security will also lead to important insights for the possibility of
such “space-efficient” CCA secure PKE schemes (under DDH and weaker as-
sumptions). Especially, understanding “how hard” it is to construct a CCCA
secure KEM compared to a KEM with bounded CCA security will benefit the
future designers of CCCA secure KEMs.

Our Contribution. Firstly, in Section 3 we investigate relations between CCCA
security and bounded CCA security, i.e. implications/separations between these
two security notions. One might expect that there is always a separation of
CCCA security from bounded CCA security, and vice versa. As expected, we
show that in most cases we have separations in both directions, and thus our
contribution regarding this result is to give formal proofs, together with some ba-
sic ideas, for the separations. In particular, we show that IND-CCCA security does
not imply OW-2-CCA or IND-1-CCA security (here, OW and IND stand for “one-
wayness” and “indistinguishability”, respectively, and the formal definitions for
security notions are given in Section 2). Perhaps somewhat surprisingly, however,
it turns out that there is an implication from CCCA security to the weakest form
of bounded CCA security, namely, OW-1-CCA, if we slightly change the definition
of a valid CCCA adversary. The change we make to show the implication is
regarding the definition of uncertainty that plays an important role in defining
CCCA security, but is quite subtle. The proof for this result involves some un-
usual treatment (at least in the context of security proofs of CCCA/bounded
CCA security) of an adversary, and might be of independent interest. For more
details, see Section 3.2. We also show the separation of the opposite direction
(bounded CCA security does not imply CCCA security) in terms of the number
of queries allowed for an adversary. Specifically, we show that for any polynomial
q ≥ 0, IND-q-CCA security does not imply OW-(q + 1)-CCCA security.

1 Ciphertext overhead is the difference between the size of a ciphertext and the size
of its plaintext.
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Then, in Section 4 we revisit the construction of KEMs from a hash proof
system (HPS) [9,17], and show that the HPS-based KEM, which was shown to
be IND-CCCA secure [17] (under some computational security requirements), ac-
tually satisfies IND-1-CCA security under the same assumptions used to show
its IND-CCCA security. This result should be contrasted with the above men-
tioned separation of IND-1-CCA from IND-CCCA. Given the hybrid encryption
paradigm by Cramer and Shoup [10], the result here implies that if we combine
a HPS-based KEM (e.g. the Kurosawa-Desmedt KEM [21]) with a CCA secure
redundancy-free DEM (e.g. a strong pseudorandom permutation [25]), the re-
sulting PKE scheme still provides IND-1-CCA security. (As mentioned above,
OW-2-CCA attack on this KEM is possible, and thus this is the optimal security
result for the Kurosawa-Desmedt KEM, in terms of bounded CCA security.)
Given the fact that using computational HPS is one of the major methodologies
for constructing a practical CCCA secure KEM, we see that IND-1-CCA security
can essentially be viewed as a “necessary” condition for a CCCA secure KEM.
This result on the HPS-based KEM, together with the above general implica-
tion to OW-1-CCA security, also suggests that constructing a CCCA secure KEM
is harder than constructing a 1-bounded CCA secure one. To the best of our
knowledge, such insights have not been known previously.

Although it might be hard to imagine that 1-bounded CCA security (i.e.
OW-1-CCA security and IND-1-CCA security) plays a practical role in real world
applications in which KEMs (and PKE schemes) are used,2 we stress that our
aim in this paper is not to emphasize the importance of such security in practice,
but rather to give better understanding of CCCA security itself, and we believe
that our results give insights for constructing CCCA secure KEMs, and are useful
for the future users/designers of CCCA secure KEMs.

Due to space limitation, the full proofs of the theorems in this paper will be
given in the full version. We instead give proof sketches for each theorem.

Related Work. After Hofheinz and Kiltz [17] defined CCCA security, several
practical CCCA secure KEMs have been proposed [6,12,20,13,14]. Hiwatari et
al. [16] extended the CCCA secure KEM by Hanaoka and Kurosawa [12] to a
CCCA secure multi-recipient KEM. Sakai et al. [27] used a OW-CCCA secure KEM
which has reproducibility to construct a CCA secure KEM whose ciphertext
length is shorter than that of the building block KEM, using a random oracle.

Bellare et al. [3] formalized the security notions for PKE schemes in a system-
atic way and showed the relations among security notions. For KEMs, Nagao
et al. [23] and Herranz et al. [15] showed the relations among security notions.
Moreover, Herranz et al. investigated the security notions achieved by hybrid
encryption from a KEM and a DEM with several different levels of security.

2 Very recently, Hohenberger et al. [18] used an IND-1-CCA secure PKE scheme as one
of building blocks to construct a (fully) CCA secure PKE scheme. Although their
construction still does not yield a practical scheme (at least compared to the concrete
schemes, e.g. [10,21,17,6,12]), it would be interesting to seek for another application
of 1-(or more-)bounded CCA secure schemes.
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Bellare and Sahai [5] and later Pass, Shelat, and Vaikuntanathan [24] investi-
gated the relations among several types of non-malleability [11]. Cramer et al. [8]
introduced bounded CCA security, and show that non-malleability is separated
from bounded CCA security. Matsuda and Matsuura [22] considered parallel
decryption queries (which was originally introduced by Bellare and Sahai [5] in
the context of non-malleability of PKE schemes) in bounded CCA security of
PKE schemes and KEMs, and show several general implication/separation re-
sults. We note that the relations among security notions we show in this paper
are not covered by these previous works.

2 Preliminaries

In this section, we review the basic notation and the definitions for a KEM.

Basic Notation. N denotes the set of all natural numbers, and if n ∈ N then [n] =
{1, . . . , n}. “x← y” denotes that x is chosen uniformly at random from y if y is a
finite set, x is output from y if y is a function or an algorithm, or y is assigned to x
otherwise. If x and y are strings, then “|x|” denotes the bit-length of x, “msb(x)”
denotes the most significant bit of x, and “x||y” denotes a concatenation x and y.
“PPTA” denotes a probabilistic polynomial time algorithm. If A is a probabilistic
algorithm then y ← A(x; r) denotes that A computes y as output by taking x
as input and using r as randomness. AO denotes an algorithm A with oracle
access to O. A function f(k) : N→ [0, 1] is said to be negligible if for all positive
polynomials p(k) and all sufficiently large k ∈ N, we have f(k) < 1/p(k).

Syntax of KEMs. A key encapsulation mechanism (KEM) Γ consists of the
following three PPTAs (KG,Enc,Dec):

KG: The key generation algorithm that takes 1k (security parameter k) as input,
and outputs a public/secret key pair (pk, sk).

Enc: The encapsulation algorithm that takes pk as input, and outputs a cipher-
text c and a session-key K ∈ K (where K is the session-key space specified
by pk).

Dec: The (deterministic) decapsulation algorithm that takes sk and c as input,
and outputs a session-key K which could be a special symbol ⊥ meaning “c
is an invalid ciphertext”.

We require Dec(sk, c) = K for all (pk, sk) output by KG and all (c,K) output
by Enc(pk).

Security Notions for KEMs. Typically, security notions for KEMs are expressed
by the combination of a security goal (GOAL) and an adversary’s attack type
(ATK). In this paper, we will treat indistinguishability (IND) and one-wayness
(OW) as security goals, and chosen plaintext attacks (CPA), q-bounded chosen
ciphertext attacks (q-CCA) [8], constrained CCA (CCCA) [17], and its q-bounded
analogue, namely, q-bounded CCCA (q-CCCA) as an adversary’s attack types,
where q ≥ 0 is an integer.
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ExptIND-ATKΓ,A (k) :

(pk, sk)← KG(1k); b← {0, 1};
(c∗, K∗

1 )← Enc(pk); K∗
0 ← K;

b′ ← AO(pk, c∗,K∗
b );

If b′ = b then return 1 else return 0

ExptOW-ATKΓ,A (k):

(pk, sk)← KG(1k); (c∗,K∗)← Enc(pk);
K′ ← AO(pk, c∗);
If K′ = K∗ then

return 1 else return 0

Fig. 1. The security experiment for indistinguishability (IND-ATK experiment) (left)
and that for one-wayness (OW-ATK experiment) (right)

For a KEM Γ = (KG,Enc,Dec), we define the experiment ExptIND-ATKΓ,A (k) in
which an adversary A attacks indistinguishability of Γ under the attack type
ATK, and the experiment ExptOW-ATKΓ,A (k) in which A attacks one-wayness of Γ
under ATK, as in Fig. 1.

In the experiments, how the oracle O is defined and how it is available for A
is determined depending on ATK in the following ways:

– If ATK = CPA, the oracle is unavailable and thus A cannot make any query.
– If ATK = q-CCA, the oracle is the decapsulation oracle O(·) = Dec(sk, ·), and
A can submit at most q queries. Furthermore, A is not allowed to submit
the challenge ciphertext c∗ to O.

– If ATK ∈ {CCCA, q-CCCA}, the oracle is the constrained decapsulation (CDEC)
oracle Ocdec(·, ·), which takes a predicate pred : K → {0, 1} and a ciphertext
c as input, and returns a response as follows:

Ocdec(pred(·), c) =
{
K If Dec(sk, c) = K �= ⊥ ∧ pred(K) = 1

⊥ Otherwise

Moreover, A is not allowed to submit a query containing c∗ to Ocdec. Addi-
tionally, if ATK = q-CCCA, A can submit at most q queries (as in q-CCA).

For a KEM Γ and GOAL ∈ {IND, OW}, let A be an adversary that runs in
ExptGOAL-CCCAΓ,A (k) and makes in total Q queries, and let (predi(·), ci) be A’s i-th
CDEC query. “The running time of A in the GOAL-CCCA experiment” is defined
as the sum of A’s running time and the total of maximum running time for
evaluating each predi submitted by A. “The running time of the GOAL-CCCA

experiment” is defined as the total running time of the whole experiment
ExptGOAL-CCCAΓ,A (k) minus “the running time ofA in the GOAL-CCCA experiment”. For

a CCCA adversaryA and an experiment E (not necessarily ExptGOAL-CCCAΓ,A (k)) that
A runs in, we define the parameter called (plaintext) uncertainty uncertA,E(k)
by:

uncertA,E(k) =
1

Q

∑
i∈[Q]

Pr[E ;K ← K : predi(K) = 1]

Finally, we say that an adversary A is a valid GOAL-CCCA adversary if (1) “the
running time of A in the GOAL-CCCA experiment” is polynomial in k, and (2)
uncertA,E(k) is negligible for all experiments E whose running time is at most
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“the running time of GOAL-CCCA experiment” that A runs in. We define the
notion of a “valid GOAL-q-CCCA adversary” in exactly the same way as above.

For a KEM Γ , an adversary A, and ATK ∈ {CPA, q-CCA, CCCA, q-CCCA}, we
define IND-ATK advantage AdvIND-ATKΓ,A (k) and OW-ATK advantage AdvOW-ATKΓ,A (k) by:

AdvIND-ATKΓ,A (k) = |Pr[ExptIND-ATKΓ,A (k) = 1]− 1

2
|

AdvOW-ATKΓ,A (k) = Pr[ExptOW-ATKΓ,A (k) = 1]

Definition 1. Let GOAL ∈ {IND, OW} and q ∈ N. We say that a KEM Γ is
GOAL-CPA (resp. GOAL-q-CCA) secure if AdvGOAL-CPAΓ,A (k) (resp. AdvGOAL-q-CCAΓ,A (k))
is negligible for any PPTA A. We say that a KEM Γ is GOAL-CCCA (resp.
GOAL-q-CCCA) secure if AdvGOAL-CCCAΓ,A (k) (resp. AdvGOAL-q-CCCAΓ,A (k)) is negligible for
any valid GOAL-CCCA (resp. GOAL-q-CCCA) adversary A.

3 Relations between Constrained and Bounded Chosen
Ciphertext Security

In this section, we investigate relations between constrained and bounded CCA
security. One might expect that there is always a separation of CCCA secu-
rity from bounded CCA security, and vice versa. It is actually the case, and we
formally show that for most cases we have separations in both directions. Per-
haps somewhat surprisingly, however, it turns out that there is an implication
from IND-CCCA security to the weakest form of bounded CCA security, namely,
OW-1-CCA, if we slightly change the definition of a valid CCCA adversary.

The rest of this section is organized as follows: In Section 3.1. we show the
separations between CCCA and bounded CCA security. Then, in Section 3.2
we introduce slightly stronger CCCA security and its implication to OW-1-CCA
security.

3.1 Separations

Basic Ideas for Separations. Notice that a CDEC query by a valid CCCA ad-
versary A is answered with a value that is not ⊥ only when A already has some
“non-trivial” knowledge about the decapsulation result, where the non-triviality
is captured by the condition that A has to control the uncertainty negligible.
We note that CDEC queries made by a valid CCCA adversary A cannot (ex-
cept with negligible probability) reveal information on the decapsulation result
that is hard to guess and is independent from A’s view, because otherwise A’s
uncertainty cannot be negligible. We use this idea for showing the separations
of bounded CCA security from CCCA security.

On the other hand, CDEC queries by a valid adversary A can reveal (while
controlling A’s uncertainty negligible) information that is dependent on some
part of a public key, even if the decapsulation result itself is hard to guess, as
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KGsep1(1
k) :

(pk, sk)← KG(1k)
R← {0, 1}k
SK ← (sk,R)
Return (pk, SK).

Encsep1(pk) :
(c,K)← Enc(pk)
C ← (0||c)
Return (C,K).

Decsep1(SK,C) :
Parse SK as (sk,R) and C as (γ||c).
K ← Dec(sk, c)
If γ = 0 or K = ⊥ then return K.
Return K ⊕R.

KGsep2(1
k) :

(pk, sk)← KG(1k)
R← {0, 1}k−1

SK ← (sk,R)
Return (pk, SK).

Encsep2(pk) :
(c,K)← Enc(pk)
C ← (0||c)
Return (C,K).

Decsep2(SK,C) :
Parse SK as (sk,R) and C as (γ||c).
K ← Dec(sk, c)
If γ = 0 or K = ⊥ then return K.
Return (msb(K)||R).

KGsep3(1
k) :

RKG ← {0, 1}k
(pk, sk)← KG(1k;RKG)

v0 ← 1k

If q ≥ 1 then vi ← {0, 1}k for i ∈ [q]
Vi ← f(vi) for i ∈ {0, . . . , q}
PK ← (pk, {Vi}i∈{0,...,q})
SK ← (sk, {vi}i∈{0,...,q}, RKG)
Return (PK,SK).

Encsep3(PK) :
Parse PK as (pk, {Vi}i∈{0,...,q}).
(c,K)← Enc(pk)
C ← (0k||c)
Return (C,K).

Decsep3(SK,C) :
Parse SK as (sk, {vi}i∈{0,...,q}, RKG).
Parse C as (α||c) s.t. |α| = k.
Interpret α as an integer.
If α = 0 then return K ← Dec(sk, c).
If α ∈ [q] and c = Vα then return vα.
If α = q + 1 then
Parse c as (u0||u1|| . . . ||uq)

s.t. |ui| = k for i ∈ {0, . . . , q}.
(If parsing fails then return ⊥.)
If f(ui) = Vi for all i ∈ {0, . . . , q}

then return RKG.
End if
Return ⊥.

Fig. 2. The KEM Γsep1 that separates OW-2-CCA from IND-CCCA (upper-left), the KEM
Γsep2 that separates IND-1-CCA from IND-CCCA (upper-right), and the KEM Γsep3 that
separates OW-(q+1)-CCCA from IND-q-CCA (bottom). In Γsep3, f is a one-way function.

long as it is non-trivial. This idea is later used to separate CCCA security from
bounded CCA security in terms of the number of queries.

For simplicity, in this subsection we assume that the session-key space of a
KEM is {0, 1}k when the key generation algorithm is run with input 1k.

IND-CCCA vs. OW-2-CCA. Choi et al. [7] showed that the KEM part of the
Kurosawa-Desmedt PKE scheme [21], which was shown to be IND-CCCA secure
under the DDH assumption in [17], is not OW-2-CCA secure. This result implies
that if there is a group with prime order in which the DDH assumption holds,
then there exists a KEM which is IND-CCCA secure but is not OW-2-CCA secure
(and thus IND-CCCA security does not imply OW-2-CCA security, under the DDH
assumption). We remove the DDH assumption from this statement, and show
that in general IND-CCCA security does not imply OW-2-CCA security.

Theorem 1. If there exists an IND-CCCA secure KEM, then there exists a KEM
which is IND-CCCA secure but is not OW-2-CCA secure. Moreover, the OW-2-CCA
attack for the latter KEM succeeds even if an adversary has to make two decap-
sulation queries parallelly (i.e. non-adaptively).
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Proof Sketch. Let Γ = (KG,Enc,Dec) be an IND-CCCA secure KEM. Using the
KEM Γ , we construct another KEM Γsep1 = (KGsep1,Encsep1,Decsep1) for the
separation as in Fig. 2 (upper-left).

The OW-2-CCA attack for Γsep1 is easy: Consider the following OW-2-CCA adver-
saryA. Given (pk, C∗ = (0||c∗)), A computes (c′,K ′)← Enc(pk), and submits ci-
phertexts C1 = (1||c∗) and C2 = (1||c′) parallelly (i.e. non-adaptively) as decap-
sulation queries. According to the definition of Decsep1, A receives K1 = K∗⊕R
and K2 = K ′⊕R, respectively, from the decapsulation oracle. Then A calculates
R← K2 ⊕K ′ and K∗ ← K1 ⊕R, and terminates with output K∗. It is easy to
see that A’s OW-2-CCA advantage is 1.

In order to show that Γsep1 is IND-CCCA secure based on IND-CCCA security of
the building block KEM Γ , consider the following sequence of games:

Game 1. This is the original IND-CCCA experiment, i.e. ExptIND-CCCAΓsep1,A (k).

Game 2. Same as Game 1, except that any CDEC query containing a cipher-
text of the form C = (1||c) is answered with ⊥.

Let A be any valid IND-CCCA adversary that makes in total Q CDEC queries.
Then the difference in Game 1 and Game 2 can occur only when A submits
a CDEC query (pred, C) satisfying C = (1||c), Decsep1(SK,C) = K �= ⊥, and
pred(K) = 1. (In Game 1, it is answered with K, while in Game 2 it is an-
swered with ⊥.) By definition of Decsep1, if C = (1||c) and Dec(sk, c) �= ⊥, then
Decsep1(SK,C) = Dec(sk, c) ⊕ R. However, notice that the information on R
is information-theoretically hidden from A’s view in Game 2. Moreover, R is
chosen uniformly from {0, 1}k, and thus the decapsulation result Dec(sk, c)⊕R
of the query of the above type is also uniformly random and independent of A’s
view in Game 2. Then, the probability that some of A’s CDEC queries of the
form (pred, C = (1||c)) satisfies Decsep1(SK,C) = K ′ �= ⊥ and pred(K ′) = 1 will
be upperbounded by Q · uncertA,Game 2(k), which is negligible due to the fact
that A is a valid IND-CCCA adversary. Moreover, Game 2 can be perfectly simu-
lated by another valid IND-CCCA adversary for the building block KEM Γ , which
means that A’s advantage in Game 2 is negligible. In summary, A’s IND-CCCA
advantage is upperbounded to be negligible. ��

IND-CCCA vs. Non-malleability. In the above theorem, to break OW-2-CCA secu-
rity of the KEM Γsep1, the two decapsulation queries can be made parallelly.
Hence, due to the equivalence of non-malleability under chosen plaintext attack
and indistinguishability under one parallel decapsulation query [5,23,15], and
the transitivity of the implication of security notions, it follows that IND-CCCA
security does not imply non-malleability (under chosen plaintext attack).

IND-CCCA vs. IND-1-CCA. We next show that if the security goal is IND, then
even IND-1-CCA security is in general separated from IND-CCCA.

Theorem 2. If there exists an IND-CCCA secure KEM, then there exists a KEM
which is IND-CCCA secure but is not IND-1-CCA secure.
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Proof Sketch. Let Γ = (KG,Enc,Dec) be an IND-CCCA secure KEM. Using the
KEM Γ , we construct another KEM Γsep2 = (KGsep2,Encsep2,Decsep2) for the
separation as in Fig. 2 (upper-right).

The IND-1-CCA attack for Γsep2 is quite easy to see. Consider the following
IND-1-CCA adversaryA. Given (pk, C∗ = (0||c∗),K∗

b ), A submits a decapsulation
query C = (1||c∗), and receives the result K, which must be of the form K =
(msb(K∗

1 )||R) according to the definition of Decsep2. Then A checks ifmsb(K∗
b ) =

msb(K), and outputs b′ = 1 if this is the case, and outputs b′ = 0 otherwise. A
simple calculation shows that A’s IND-1-CCA advantage is 1/4.

The proof of IND-CCCA security of Γsep2 based on IND-CCCA security of the
building block KEM Γ proceeds almost in the same way as that of Γsep1, con-
sidering the two games Game 1 (ExptIND-CCCAΓsep2,A (k) itself) and Game 2 (in which

every CDEC query containing a ciphertext of the form C = (1||c) is rejected).
Game 1 and Game 2 are identical unless a valid IND-CCCA adversary A makes a
CDEC query (pred, C) satisfying C = (1||c), Decsep2(SK,C) = K �= ⊥, and
pred(K) = 1. The decapsulation result of such a ciphertext is of the form
(msb(Dec(sk, c))||R) where R is the value in the secret key (if c is not invalid).
However, recall that this R is chosen uniformly at random, and is information-
theoretically hidden from A and independent of A’s view in Game 2. Therefore,
the predicates contained in A’s CDEC queries of the above type are almost
never satisfied by the corresponding decapsulation results due to the condition
that A has to control its uncertainty negligible, which implies that the differ-
ence between A’s success probability (in guessing the challenge bit) in Game 1
and that in Game 2 is negligible. More specifically, in the full proof, we show
that the difference in A’s success probability in these games is upperbounded
by 2Q · uncertA,Game 2(k) where Q is the total number of A’s CDEC queries
(the reason why “2” appears is because the value R in Γsep2 is not k-bit but
(k − 1)-bit, and we lose the factor 2 when relating it with the uncertainty that
considers whether the predicates are satisfied by a k-bit randomness). The fact
that A’s advantage in Game 2 is negligible follows from the IND-CCCA security
of the building block KEM Γ , as in Γsep1. ��

IND-q-CCA vs. OW-(q + 1)-CCCA. The above separations show that CCCA se-
curity does not imply bounded CCA security in most cases. Here, we show the
separation of the opposite direction: if there is no trivial implication in terms of
the number of queries, CCCA security is separated from bounded CCA security.

Theorem 3. For any polynomial q ≥ 0, if there exists an IND-q-CCA secure
KEM, then there exists a KEM which is IND-q-CCA secure but is not OW-(q +
1)-CCCA secure.

Proof Sketch. Fix q ≥ 0. Let Γ = (KG,Enc,Dec) be an IND-q-CCA secure KEM.
Here, without loss of generality, we assume that the randomness space of KG
is {0, 1}k. Moreover, let f : {0, 1}∗ → {0, 1}∗ be a one-way function (OWF),
whose existence is guaranteed by the existence of Γ . Using the KEM Γ and the
OWF f , we construct another KEM Γsep3 = (KGsep3,Encsep3,Decsep3) for the
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separation as in Fig. 2 (bottom). In the following, whenever we treat an integer
as a k-bit string, we use “hat” (e.g. 1̂ is the k-bit representation of 1).

The OW-(q+1)-CCA attack against the KEM Γsep3 is as follows (if q = 0, then
we skip this part and goes to the (q + 1)-th query below): Given (PK,C∗ =
(0k||c∗)), for i ∈ [q], a OW-(q + 1)-CCCA adversary A defines the predicate predi
by “predi(K) = 1 iff f(K) = Vi”, and submits the i-th CDEC query of the form

(predi, Ci = (̂i||Vi)). Since Decsep3(SK,Ci) = vi by definition, A receives vi from
the oracle. After obtaining v1, . . . , vq,A defines the (q+1)-th predicate predq+1 by

“predq+1(K) = 1 iff KG(1k;K) = (pk, ∗)”, sets Cq+1 ← (q̂ + 1||v0||v1|| . . . ||vq),
and submits (predq+1, Cq+1) to the oracle as the (q + 1)-th CDEC query. Since
Dec(SK,Cq+1) = RKG, A receives RKG as a response. A can then compute sk
from RKG and decrypt c∗, and thus A’s OW-(q + 1)-CCCA advantage is 1.

Here, we also have to show that the above A is a valid OW-(q + 1)-CCCA
adversary. We have to be careful because we have to show that A’s uncertainty is
negligible for any experiment E that is as efficient as the original OW-(q+1)-CCCA
experiment.3 Fortunately, we can use the following statistical property that is
satisfied by any OWF. (The proof is given in the full version.)

Lemma 1. If f is a OWF, then Pr[x← {0, 1}k : f(x) = y] is negligible for any
string y ∈ {0, 1}∗.
This guarantees that, for i ∈ [q], whatever value is assigned to Vi by an ex-
periment E , the probability that predi is satisfied by a random K is negligible.
Furthermore, recall that the key generation algorithm of any secure (at least
OW-CPA secure) KEM can be viewed as a OWF whose domain is the randomness
space of KG and whose image is pk (sk is discarded). Then we can use Lemma 1
also for the (q + 1)-th CDEC predicate predq+1, and conclude that uncertA,E(k)
is negligible for any experiment E .

IND-q-CCA security of Γsep3 is explained as follows. Let A be any IND-q-CCA
adversary against Πsep3. Recall that a decapsulation query of the form C =

(q̂ + 1||c) is answered with RKG only when all preimages v0, v1, . . . , vq are known
to A. Since v0 is the fixed value 1k, A actually needs to find q preimages
v1, . . . , vq. However, due to one-wayness of f , it is hard to find vi without mak-

ing a decapsulation query of the form C = (̂i||Vi). But since A can make only
q queries, if A makes q queries to obtain (v1, . . . , vq), A can no longer use the
decapsulation oracle. This means that unless A breaks the OWF, A cannot make

a decapsulation query of the form C = (q̂ + 1||c) that reveals RKG. Then, in or-
der to break IND-q-CCA security of Γsep3, A has to essentially break IND-q-CCA
security of the building block KEM Γ , which is hard by assumption. ��

3.2 Slightly Stronger CCCA Security and Its Implication

In the previous subsection, we have seen that IND-CCCA security does not imply
OW-2-CCA or IND-1-CCA security. Then, a natural question would be whether

3 For example, A’s uncertainty has to be negligible in which PK and/or C∗ are gen-
erated incorrectly (as long as the experiment is efficient).
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IND-CCCA security implies (or does not imply) OW-1-CCA security, which is the
weakest bounded CCA security for KEMs. Actually, we could not show im-
plication/separation from IND-CCCA. Alternatively, however, we find that if we
consider a slightly stronger definition for IND-CCCA, we actually have an impli-
cation. The modification we will make is in the definition of uncertainty, and is
quite subtle. We explain this in this subsection.

Note that the IND-CCCA experiment is fixed if we fix the following: (a) the
randomness for key generation ((pk, sk) ← KG(1k)), (b) the randomness for
challenge ciphertext/session-keys ((c∗,K∗

1 ) ← Enc(pk) and K∗
0 ← K), (c) the

challenge bit (b ← {0, 1}), and (d) the randomness for an adversary. We de-
note the process of randomly picking these randomness and fixing the IND-CCCA
experiment by “E ← ExptIND-CCCAΓ,A (k)”. We introduce the following definition.

Definition 2. Let Γ be a KEM and A be an IND-CCCA adversary (against Γ )
that makes Q CDEC queries. Let predi be the predicate contained in A’s i-th
CDEC query. We define the average uncertainty uncertaveA (k) of A by:

uncertaveA (k) = E
E←ExptIND-CCCAΓ,A (k)

[uncertA,E(k)]

= E
E←ExptIND-CCCAΓ,A (k)

⎡⎣ 1

Q

∑
i∈[Q]

Pr[E ;K ← K : predi(K) = 1]

⎤⎦
Furthermore, we say that A is a valid IND-CCCA∗ adversary (against Γ ) if (1)
the running time of A in the IND-CCCA experiment is polynomial in k, and (2)
uncertaveA (k) is negligible.

Using average uncertainty, we define IND-CCCA∗ security of a KEM as follows:

Definition 3. We say that a KEM Γ is IND-CCCA∗ secure if AdvIND-CCCAΓ,A (k) is
negligible for any valid IND-CCCA∗ adversary A.

We define OW-CCCA∗, IND-q-CCCA∗, and OW-q-CCCA∗ security in exactly the same
way as above.

Note that to define IND-CCCA∗ security, we have not changed anything about
the definition of IND-CCCA advantage AdvIND-CCCAΓ,A (k). The only difference between
IND-CCCA∗ security defined here and the original IND-CCCA security in [17] is for
which class of adversaries we require the advantage to be negligible. In order for
a CCCA adversary A to be valid as an IND-CCCA∗ adversary, A only needs to
control his uncertainty in the original IND-CCCA experiment to be negligible on
an average, and thus for example, its uncertainty can be 1 accidentally (as long as
it is negligible on an average). On the other hand, the original IND-CCCA security
definition requires thatA’s uncertainty to be negligible for any experiment whose
running time is at most that of the original IND-CCCA experiment. Therefore, if
A is a valid IND-CCCA adversary, then it is a valid IND-CCCA∗ adversary as well.
Since IND-CCCA security requires the IND-CCCA advantage to be negligible for
adversaries of a smaller class, IND-CCCA∗ security implies IND-CCCA security.
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Although the difference between IND-CCCA∗ and IND-CCCA security seems
quite subtle and small, so far we are not sure if the latter implies (or is sep-
arated from) the former, and we would like to leave it as an open problem.

Now, we show the implication that bridges CCCA and bounded CCA security.

Theorem 4. If a KEM is IND-1-CCCA∗ secure, then it is OW-1-CCA secure.

Proof Sketch. Without loss of generality, a OW-1-CCA adversary A can be divided
into two stages (A1,A2) so that the OW-1-CCA experiment is rewritten as:

(pk, sk)← KG(1k); (c∗,K∗)← Enc(pk); (ĉ, st)← A1(pk, c
∗); K̂ ← Dec(sk, ĉ);

K ′ ← A2(K̂, st); If K ′ = K∗ then return 1 else return 0

where ĉ represents A’s decapsulation query (which can be made only once).
Moreover, we can assume that A2 is deterministic because in case A2 needs
randomness, it can be chosen by A1 and passed via st. Now, using a OW-1-CCA
adversary A = (A1,A2), we construct an IND-1-CCCA adversary B as follows:

On input (pk, c∗,K∗
b ) (where b is B’s challenge bit), B runs (ĉ, st)← A1(pk, c

∗).
Then B defines pred by “pred(K) = 1 iff A2(K, st) = K∗

b ” and submits a CDEC
query (pred, ĉ). If the answer from Ocdec is not ⊥, B outputs 1. Otherwise B
checks if A2(⊥, st) = K∗

b , and returns 1 if the check holds or returns 0 otherwise.
Assume that A breaks OW-1-CCA security with non-negligible advantage. Since

A2, which is given a correct decapsulation Dec(sk, ĉ) during the evaluation of pred
in Ocdec, outputs K

∗
1 = Dec(sk, c∗) with non-negligible probability, B outputs

1 with non-negligible probability when b = 1. (The check “A2(⊥, st) = K∗
b ”

performed by B covers the case in which Dec(sk, ĉ) = ⊥.) On the other hand,
K∗

0 is information-theoretically hidden from A’s view, and A2 can output it only
with negligible probability. Thus, when b = 0, pred is almost never satisfied and
B outputs 1 only with negligible probability. Therefore, there is a non-negligible
difference in the probabilities that B outputs 1 between the cases b = 1 and
b = 0, namely, B has non-negligible IND-1-CCCA advantage. The idea of using an
adversary in the predicate in a CDEC query might be of independent interest.

Note that B’s uncertainty depends on A, and we could not rule out the pos-
sibility that there is an experiment (which is as efficient as the IND-1-CCCA
experiment) such that when B (which internally runs A) is run, B’s uncertainty
is non-negligible. However, it is possible, using IND-1-CCCA∗ security of the KEM
itself, to show that B’s average uncertainty is negligible, and thus B is shown to
be a valid IND-1-CCCA∗ adversary. We can show this roughly because the defini-
tion of average uncertainty considers the distribution of the public key and the
challenge ciphertext/session-key pair (rather than fixed values for these), which
makes it possible to use security of the KEM itself. Specifically, in the full proof
we show that if the KEM is OW-CPA secure (which is trivially satisfied by the
IND-1-CCCA∗ security of the KEM), then B is a valid IND-1-CCCA∗ adversary.

��
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4 KEMs from Computational Hash Proof Systems,
Revisited

In this section, we revisit the construction of KEMs from a HPS [17] for which we
only require computational security properties, as opposed to the information-
theoretic ones in [9,21]. More concretely, we show that if a HPS satisfies the
computational security requirements defined in [17], then the KEM constructed
based on the HPS satisfies not only IND-CCCA security but also IND-1-CCA secu-
rity. (In particular, our result implies that the Kurosawa-Desmedt KEM [21] is
IND-1-CCA secure under the DDH assumption.) This result should be contrasted
with the separation of IND-1-CCA from IND-CCCA security in Section 3.2.

Below, we review the definitions of computational HPS in Section 4.1, and we
show that the HPS-based KEM satisfies IND-1-CCA security in Section 4.2.

4.1 Definitions for Computational HPS

Here, we review the definition of hash proof systems as defined by Cramer and
Shoup [9,21,17]. (We mainly borrow the notations from [17], which we customize
slightly for our purpose.)

Let C, K, S, and P be sets, and V be the set of “languages” satisfying V ⊂ C.
Let Dsk : C → K be a hash function indexed by sk ∈ S. Informally speaking, a
HPS is a special type of a designated-verifier proof system for a “subset member-
ship problem” (i.e. whether a “statement” c ∈ C satisfies c ∈ V). A hash function
Dsk is said to be projective if there exists an efficiently computable projection
μ : S → P such that pk = μ(sk) ∈ P defines the action of Dsk over the subset V .
That is, for every c ∈ V , the value K = Dsk(C) is uniquely determined by μ(sk)
and c. In the context of the HPS-based KEM that will be explained later, we will
identify C as the ciphertext space, V as the set of all valid ciphertexts, S as the
secret key space, P as the public key space, K as the session-key space, μ(·) as
the key generation algorithm, and Dsk(·) as the decapsulation algorithm. Taking
this into account, hereafter we call an element c ∈ C valid if c ∈ V and invalid
if c ∈ C\V . As usual, we require: (1) C is efficiently recognizable, (2) a valid
element c ∈ V can be efficiently sampled together with a witness w about the
fact that c ∈ V , and (3) we can sample elements from C\V , S, and K efficiently
and (statistically close to) uniformly.

The above are the description of the parameters for a HPS. For simplicity, we
assume that the definitions of the sets and the functions we described above are
generated and determined by a probabilistic algorithm HGen. Formally, a HPS
Π consists of the following three PPTAs (HGen,Pub,Priv):

HGen: The parameter generation algorithm for HPS which takes 1k as input,
and outputs parameters pub = (C,V ,K,S,P ,D(·) : C → K, μ : S → P).
For notational convenience, we assume that pub is provided as input to the
following algorithms Pub and Priv, and do not write it explicitly.

Pub: The (deterministic) public evaluation algorithm which takes pk = μ(sk) ∈
P , a valid element/witness pair (c, w) (where w is about the fact that c ∈ V)
as input, and outputs a hash value K = Dsk(c).
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ExptCU2Π,A(k):

pub← HGen(1k);
sk ← S ; pk ← μ(sk);
c∗ ← C\V; K∗ ← Dsk(c

∗);
(c′, st)← AO

1 (pub, pk, c∗,K∗);
K′

1 ← Dsk(c
′); K′

0 ← K; b← {0, 1};
b′ ← A2(K

′
b, st);

If b′ = b then return 1 else return 0

ExptCU1Π,A(k):

pub← HGen(1k);
sk ← S ; pk ← μ(sk); c∗ ← C\V;
K∗

1 ← Dsk(c
∗); K∗

0 ← K; b← {0, 1};
b′ ← AO(pub, pk, c∗,K∗

b );
If b′ = b then return 1 else return 0

The definition of the oracle O
in ExptCU2Π,A and ExptCU1Π,A:

O(c) =
{
Dsk(c) If c ∈ V
⊥ Otherwise

Fig. 3. The CU2 experiment (left), the CU1 experiment (upper-right), and the defini-
tion of the oracle (lower-right)

Priv: The (deterministic) private evaluation algorithm which takes sk ∈ S and
an element c ∈ C as input, and outputs a hash value K = Dsk(c).

For all pub ← HGen(1k), we require the following: (1) for all c ∈ C and all
sk ∈ S, it holds that Priv(sk, c) = Dsk(c), and (2) for all c ∈ V with the
corresponding witness w (about the fact that c ∈ V), and all sk ∈ S, it holds
that Pub(μ(sk), c, w) = Priv(sk, c) = Dsk(c).

Security Requirements. As usual, we define the subset membership problem for
a HPS Π and its hardness.

Definition 4. We say that the subset membership problem in a HPS Π is hard
if the following advantage function AdvSMΠ,A(k) is negligible for any PPTA A:

AdvSMΠ,A(k) = |Pr[pub← HGen(1k); b← {0, 1}; c∗1 ← V ; c∗0 ← C\V ;

b′ ← A(pub, c∗b) : b′ = b]− 1

2
|

Hofheinz and Kiltz [17] defined the computational analogue of strong universal2
that is defined in [21] for a HPS, called computational universal2 (CU2 security,
for short), which we recall here. The CU2 experiment ExptCU2Π,A(k) for a HPS Π
that an adversary A = (A1,A2) runs in is defined as in Fig. 3 (left). In the
experiment, it is required that A1’s output c

′ satisfy c′ ∈ C\V and c′ �= c∗.

Definition 5. We say that a HPS Π is CU2 secure if the advantage function
AdvCU2Π,A(k) = |Pr[Expt

CU2
Π,A(k) = 1]− 1/2| is negligible for any PPTA A.

Moreover, we define a universal1-analogue of CU2 security, which we call com-
putational universal1 (CU1 security, for short). We define the CU1 experiment
ExptCU1Π,A(k) for a HPS Π that an adversary A runs in as in Fig. 3 (upper-right).

Definition 6. We say that a HPS Π is CU1 secure if the advantage function
AdvCU1Π,A(k) = |Pr[Expt

CU1
Π,A(k) = 1]− 1/2| is negligible for any PPTA A.
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KG(1k) :
pub← HGen(1k)
sk ← S ; pk ← μ(sk)
PK ← (pub, pk)
Return (PK, sk).

Enc(PK) :
Pick c ∈ V uniformly

together with a witness w.
K ← Pub(pk, c, w)
Return (c,K).

Dec(sk, c) :
K ← Priv(sk, c)
Return K.

Fig. 4. The KEM ΓΠ based on a HPS Π

Although CU1 security is not explicitly defined in [17], it seems to us that this
security is implicitly used for proving the CCCA security of the HPS-based
KEM. Jiang and Wang [19] defined a slightly stronger version of CU2 security
which allows the second stage adversary A2 to have access to the oracle O. This
version of CU2 security is satisfied by all known instantiations of HPS (see the
following paragraph), and implies CU1 security defined here. Thus, CU1 security
is not an additional security requirement for a HPS in practice. The reason
why we introduce CU1 security separately is that we believe that it makes our
security analysis clearer. We also remark that CU1 security is strictly weaker
than “smoothness” defined in [19, Def. 7].

Concrete Instantiations of HPS. There are several known concrete instantia-
tions of computational HPS that satisfy the above security requirements. The
Kurosawa-Desmedt HPS [21,17] based on the DDH assumption, and its n-linear
variant under the n-linear assumption [17], both of which are discrete logarithm-
type constructions. Meanwhile, we also have a computational HPS based on the
Paillier’s decision composite residuosity assumption [9]. For more details, see
[9,17] and the references therein.

4.2 HPS-Based KEM and Bounded CCA Security

Let Π = (HGen,Pub,Priv) be a HPS. Then, the HPS-based KEM ΓΠ = (KG,
Enc, Dec) [21,17] is constructed as in Fig. 4.

The following was shown by Hofheinz and Kiltz [17].

Theorem 5. ([17]) If the subset membership problem of Π is hard, Π satisfies
CU2 and CU1 security, then the HPS-based KEM ΓΠ is IND-CCCA secure.

We show that under the same assumptions on the HPS used to prove its IND-CCCA
security, the KEM ΓΠ satisfies IND-1-CCA security as well.

Theorem 6. If the subset membership problem of Π is hard, Π satisfies CU2

and CU1 security, then the HPS-based KEM ΓΠ is IND-1-CCA secure.

Intuition. CU1 security of Π guarantees that, under the situation where the
challenge ciphertext c∗ is sampled from invalid elements (i.e. c∗ ← C\V), the
real challenge session-key K∗

1 = Dsk(c
∗) looks random to A, as long as A’s de-

capsulation query is a valid one. However, A is free to choose a ciphertext for a
decapsulation query, and in particular, it can be invalid. This is the place where
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CU2 security comes into play. CU2 security of Π guarantees that, even if A’s
decapsulation query c is an invalid one, A gets no significant information from
the response, compared to just receiving a random value in K, as long as A
does not make any query after this query (and it is guaranteed because A is
an IND-1-CCA adversary). Therefore, CU1 and CU2 together guarantee that A’s
decapsulation query essentially gives no significant information for distinguish-
ing the real challenge session-key K∗

1 from a random. Although CU1 and CU2

security are guaranteed only when the challenge ciphertext is an invalid one, the
hardness of the subset membership problem in Π guarantees that A’s behavior
cannot be non-negligibly different between the case in which the challenge ci-
phertext is a valid one (i.e. in the original IND-1-CCA experiment), and the case
in which the challenge ciphertext is an invalid one (and thus we can use CU1

and CU2 security of Π).

Proof Sketch. Let A be any PPTA IND-1-CCA adversary against the HPS-based
KEM ΓΠ . Consider the following sequence of games.

Game 1. This is the original IND-1-CCA experiment, i.e. ExptIND-1-CCAΓΠ ,A (k).
Game 2. Same as Game 1, except that K∗

1 is generated by K∗
1 ← Priv(sk, c∗).

Game 3. Same as Game 2, except that c∗ is picked uniformly from C\V .
Game 4. Same as Game 3, except that if A’s decapsulation query c satisfies

c ∈ C\V , then it is answered with a uniformly random value K ∈ K.

For i ∈ [4], let Si be the event that A succeeds in guessing the challenge bit (i.e.
b′ = b occurs) in Game i. A’s IND-1-CCA advantage can be estimated as follows:

AdvIND-1-CCAΓΠ ,A (k) = |Pr[S1]−
1

2
| ≤

∑
i∈[3]

|Pr[Si]− Pr[Si+1]|+ |Pr[S4]−
1

2
|

The proof is completed by upperbounding each term in the right hand side of the
above inequality to be negligible. We have Pr[S1] = Pr[S2] due to the correctness
of Π . |Pr[S2]−Pr[S3]| is negligible due to the hardness of the subset membership
problem in Π . |Pr[S3]−Pr[S4]| and |Pr[S4]− 1/2| can be shown to be negligible
by using CU2 security and CU1 security of Π , respectively. ��
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Abstract. A discrete logarithm problem with auxiliary input (DLP-
wAI) is a problem to find α from G, αG, αdG in an additive cyclic
group generated by an element G of prime order r, and a positive inte-
ger d satisfying d|(r − 1). The infeasibility of this problem assures the
security of some cryptographic schemes. In 2006, Cheon proposed a novel
algorithm for solving DLPwAI (Cheon’s algorithm). This paper reports
our experimental results of Cheon’s algorithm by implementing it with
some speeding-up techniques. In fact, we have succeeded to solve DLP-
wAI on a pairing-friendly elliptic curve of 160-bit order in 1314 core
days. Implications of our experiments on cryptographic schemes are also
discussed.

Keywords: DLPwAI (DLP with Auxiliary Input), Barreto-Naehrig
pairing-friendly elliptic curve, Cheon’s algorithm.

1 Introduction

Let G be an additive cyclic group generated by an element G of prime order
r. A discrete logarithm problem (DLP) is a problem to find α from G and αG.
In the general setting, DLP is considered to be infeasible, and the infeasibility
of DLP assures the security of some cryptographic schemes such as ECDH and
ECDSA. When G is defined on elliptic curves over finite fields, the currently best
algorithms for solving DLP require exponential time with regard to r, namely,
O(
√
r). In fact, Shanks’ baby-step giant-step (BSGS) method [20] requiresO(

√
r)

group operations in time and O(
√
r) group elements in space. On the other hand,

Pollard’s ρ-method also requires O(
√
r) in time, but much smaller elements in

space. Since the state-of-the-art record of solving DLP on elliptic curves is 112-
bit [7], 160-bit elliptic curves have been used as a secure parameter.
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Table 1. Required time for solving DLPwAI

log2 r Required Time Sub-algorithm
(in bit) (by a single core)

Jao, Yoshida [17] 60 3 hours ρ-method

Izu, Takenaka, Yasuda [15,16] 83 14 hours BSGS method

Sakemi et al. [21] 128 131 hours BSGS method

Sakemi et al. [22] 128 136 hours ρ-method

This paper 160 1314 days ρ-method

At the beginning of 2000’s, bilinear maps were introduced to establish efficient
cryptographic schemes with new functions, whose security rely on the infeasibil-
ity of newly proposed mathematical problems such as Bilinear Diffie-Hellmann
Problem (BDHP) [4], �-Strong Diffie-Hellmann Problem (�-SDHP) [2], �-Bilinear
Diffie-Hellmann Inversion Problem (�-BDHIP) [1], �-simplified Strong Diffie-
Hellmann Problem (�-sSDHP) [3], and �-BDHEP [5]. In 2006, Cheon defined the
discrete logarithm problem with auxiliary input (DLPwAI) as a generarization
of some mathematical problems in the above [8]: find α from G, αG, αdG ∈ G
and a positive integer d satisfying d|(r − 1). Cheon also proposed a novel al-
gorithm for solving DLPwAI [8,9]. The time complexity of Cheon’s algorithm

is O
(√

(r − 1)/d+
√
d
)
, and especially when d can be chosen as d ≈

√
r, the

complexity becomes O( 4
√
r), which is more efficient than that for solving DLP

in general groups (which requires O(
√
r)). Thus, it is indispensable to evaluate

the infeasibility of DLPwAI from implementational viewpoints in order to adopt
cryptographic schemes based on such new mathematical problems in practice.

In this paper, we investigate useful techniques for speeding up Cheon’s al-
gorithm, and demonstrate that it is possible to solve 160-bit DLPwAI over a
pairing-friendly elliptic curve within a practical time. Specifically, we clarify that
Cheon’s algorithm effectively works by using some accelerating techniques such
as a precomputation table technique effective for scalar multiplications needed
for the algorithm, the automorphism technique, and parallelization (see section 3
for details). In fact, we have successfully solved a DLPwAI in 25 days with about
160 cores (1314 days with a single core), which amounts USD 3,150 in Amazon
EC2, in a group with 160-bit order defined on the pairing-friendly elliptic curve
proposed by Barreto and Naehrig [6].

As far as the authors know, this is the largest result of solving DLPwAI by
Cheon’s algorithm (see Table 1). Note that solving DLP on this 160-bit elliptic
curve is regarded to be infeasible. Our result implies that, if USD 1,000,000 is
available, a DLPwAI on the 192-bit Barreto-Naehrig elliptic curve can be solved.
Implications of our experimental results to the security of some cryptographic
schemes are also discussed in this paper.
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Algorithm 1. Cheon’s Algorithm [8,9]

Require: : G, G1 = αG, Gd = αdG ∈ G, d dividing r − 1
Ensure: : α ∈ Z/rZ
1: Find a generator ζ ∈ (Z/rZ)∗

2: Set ζd ← ζd

3: [Step 1] Find 0 ≤ k1 < (r − 1)/d such that Gd = ζk1
d G

4: Set ζe ← ζ(r−1)/d, Ge ← ζ−k1G1

5: [Step 2] Find 0 ≤ k2 < d such that Ge = ζk2
e G

6: Output ζk1+k2(r−1)/d

2 Preliminaries

This section introduces Cheon’s algorithm for solving DLPwAI [8,9] and ρ-
method [19].

2.1 Cheon’s Algorithm

Let G = 〈G〉 be an additive cyclic group generated by an element G of prime
order r > 2. The discrete logarithm problem with auxiliary input (DLPwAI) is
a problem to find α on input G, G1 = αG, Gd = αdG ∈ G and an integer d
dividing r − 1. In 2006, Cheon proposed a novel algorithm for solving DLPwAI
(Cheon’s algorithm, [8,9]), which is the center topic of this paper. Cheon’s algo-

rithm requires O
(√

(r − 1)/d+
√
d
)
group operations in time. Especially, when

d ≈
√
r, it only requires O( 4

√
r) operations, which is much smaller than required

in the baby-step giant-step (BSGS) method or in the ρ-method for solving DLP.
Let us briefly describe how Cheon’s algorithm works. A goal of Cheon’s al-

gorithm is to find an integer k ∈ Z/rZ such that α = ζk for a generator ζ
of the multiplicative group (Z/rZ)∗ (Note that the generator ζ can be found
efficiently). Here, such k is uniquely determined. In order to find k, Cheon’s
algorithm searches two integers k1, k2 such that k = k1 + k2(r − 1)/d satisfies
0 ≤ k1 < (r − 1)/d, 0 ≤ k2 < d in two steps (see Algorithm 1). Step 1 searches
an integer k1 such that Gd = ζk1

d G, since k1 satisfies αd = ζk1

d for ζd = ζd.
Similarly, Step 2 searches an integer k2 such that Ge = ζk2

e G, since k2 satisfies
α = ζk1ζk2

e for ζe = ζ(r−1)/d and Ge = ζ−k1G1.
In Cheon’s algorithm, searching k1 (resp. k2) in Step 1 (resp. Step 2) requires

another sub-algorithm. Since these problems are very similar to DLP in the
general setting, the baby-step giant-step method [20] or the ρ-method [19] can
be used as a sub-algorithm. Since this paper is interested in Cheon’s algorithm
combined only with the ρ-method, we briefly describe its outline in the next
subsection.

2.2 Pollard’s ρ-Method

Pollard’s ρ-method is one of the algorithms for solving DLP [19], which finds a
solution α, from G, αG ∈ G of prime order r, whose time complexity is O(

√
r)
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because of the birthday paradox. Let us describe the outline in the context of
Cheon’s algorithm. Especially, since Step 1 and Step 2 of Cheon’s algorithm
(Algorithm 1) are almost the same, we focus only on Step 1.

The idea of the ρ-method in Step 1 of Cheon’s algorithm is to find a col-
lision F (i)(Gd) = F (j)(G) for a given function F : G → G, where F (i)(P ) =
F (F (i−1)(P )) and F (0)(P ) = P . For an efficient evaluation, the function F (P )
is desired to be (i) random as possible, and (ii) of the form F (P ) = ζf(P )P for
some function f on G. Such a function F is called a random-walk function. In
our experiment, we use

F (P ) : P �→ ζ
fe(P )
d P

with a pseudo-random function fe : G→ Z/eZ, where e = (r−1)/d and ζd = ζd.
By definition, we have

F (i)(Gd) = ζ
∑i−1

l=0 fe(F
(l)(Gd))

d Gd and F (j)(G) = ζ
∑j−1

l=0 fe(F
(l)(G))

d G.

Thus, one can find k1 by computing

k1 =

i−1∑
l=0

fe(F
(l)(Gd))−

j−1∑
l=0

fe(F
(l)(G)) mod (r − 1)/d

from a collision F (i)(Gd) = F (j)(G). Since the image of the function F has
(r−1)/d elements, the time complexity of Step 1 is O(

√
(r − 1)/d) (if the KKM

method [18] is used, which will be described later).
In the ρ-method, the distinguished element technique [23] reduces the number

of elements to be stored. An element which satisfies the specific condition (the
least significant 6 bits of an element are zero, for example) is called a distin-
guished element. With this technique, one has to store elements F (l)(Gd) and
F (l)(G) only when they are distinguished elements. Note that there exists a col-
lision on the distinguished elements: in fact, for a collision F (i)(Gd) = F (j)(G),
we have F (i+1)(Gd) = F (j+1)(G), F (i+2)(Gd) = F (j+2)(G), · · · , and thus, we
eventually have a collision F (i+w)(Gd) = F (j+w)(G) on the distinguished ele-
ments for an integer w. The space complexity (also the number of elements) can
be reduced to 1/w with arbitrary parameter w, while the time complexity is

increased to O
(√

(r − 1)/d+ w
)
. However, the increase can be neglected since

w 	 (r − 1)/d in practice.

3 Implementation

This section describes our strategy for implementing Cheon’s algorithm.

3.1 Evaluating F (X)

In Cheon’s algorithm, the most computationally heavy operation is the evalua-
tion of the function F (l)(P ) = F (F (l−1)(P )), which consists of
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1. Evaluate fe(F
(l−1)(P )),

2. Compute ζ
fe(F

(l−1)(P ))
d as an exponentiation in (Z/rZ)∗,

3. Compute ζ
fe(F

(l−1)(P ))
d P as a scalar multiplication in G.

In our implementation, an element P ∈ G is represented by a pair of x-coordinate
and y-coordinate, and we used the pseudo-random function fe(P ) = x(P ) mod e,
where x(P ) is the x-coordinate of P . Thus, procedure 1 is negligible compared
to procedure 2 and 3.

Procedure 3 computes a scalar multiplication of a fixed element P independent
from l, so that a precomputation table for scalar multiplications is significantly
effective (KKM method, [18]). Let us describe the KKM method for a scalar
multiplication δP (δ ∈ Z/rZ, P ∈ G). For a fixed integer c (which will be
optimized later) and n = � c

√
r�, obtain the n-array expansion of the scalar δ =∑c−1

l=0 δln
l (0 ≤ δl < n). For all 0 ≤ l < c and 0 ≤ l′ < n, compute S(l, l′) = l′nlP

and store them in a table in advance to the scalar multiplications. Then, the
scalar multiplication δP is computed by

δP = δ0P + δ1nP + · · ·+ δc−1n
c−1P

= S(0, δ0) + S(1, δ1) + · · ·+ S(c− 1, δc−1).

Note that the precomputation table can be computed by at most cn additions.
Similar to procedure 3, procedure 2 also computes an exponentiation of a

fixed element ζd independent from l, so that the KKM method can be applied
to procedure 2 in the same way.

3.2 Using Automorphisms

If there exists an efficiently computable automorphism φ : G → G of order m
on a group G satisfying the condition φ(P ) = ζsdP for an integer s, the random-
walk function F (P ) : G → G can be extended to the random-walk function
F̃ (P ) : G/∼φ→ G/∼φ on the set G/∼φ of the equivalence classes. Here, two
elements P, Q are in the same equivalence class if and only if there exists an
integer l such that P = φ(l)(Q) (0 ≤ l < m). Since the number of elements in
G/∼φ is reduced to 1/m, the ρ-method can be sped-up by a factor of

√
m.

In our experiment, the pairing-friendly elliptic curve introduced by Barreto-
Naehrig (BN curve, [6]) is used. The BN curve is an elliptic curve y2 = x3+b (b ∈
Fp) defined over a prime field Fp satisfying 3|(p − 1). On the BN curve, there
exist the negation map (P �→ −P ) which is an automorphism of order 2, and,
in addition, the automorphism of order 3 [13]. For an element P = (x, y) ∈ G,
the map φ3(P ) = (εx, y) = γP is an automorphism of order 3, where ε is a fixed
primitive cube root of a unity in Fp and γ ∈ (Z/rZ)∗ satisfies γ2 + γ + 1 ≡
0 mod r, i.e. γ is a primitive cube root of unity in (Z/rZ)∗. Such automorphism
φ3 can be computed with one multiplication in Fp only.

Let us consider when these automorphisms satisfy the condition φ(P ) = ζsdP
on the BN curve.
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– Negation map: Since −1 = ζ(r−1)/2 ∈ (Z/rZ)∗, the negation map satisfies
the condition if 2d|(r − 1). The ρ-method can be sped-up by

√
2 with the

negation map.
– Automorphism φ3: Since γ is a primitive cubic root of a unity in (Z/rZ)∗,
γ can be represented by γ = ζ(r−1)/3. Thus, the automorphism satisfies
the condition if 3d|(r − 1). The ρ-method can be sped-up by

√
3 with the

automorphism φ3.

As a result of the above analysis, the time complexity of Cheon’s algorithm can be

reduced to T̃ = O
(√

e/gcd(d, 6) +
√
d/gcd(e, 6)

)
by using the automorphism

technique.
For a random-walk function F̃ of additive type such as Teske’s adding walk

[24] or the function proposed by [12], the function F̃ on G/∼φ can fall into short
cycles, which are called “fruitless cycles”, and hence the optimal speed-up cannot
be expected in general [11][12]. However, since our random-walk function is of
multiplicative type, our function on G/∼φ rarely falls into fruitless cycles. There-
fore, using both the negation map and the automorphism φ3, the time complexity

of the algorithm can be reduced to T̃ = O
(√

e/gcd(d, 6) +
√
d/gcd(e, 6)

)
.

When the above automorphism technique is used, all elements have to be con-
verted to the representative elements of equivalence classes. In our implemen-
tation, the representative element is the smallest element when a concatenation
x(P )||y(P ) is regarded as an integer. Since there are at most 6 elements in an
equivalence class, and x-coordinates of a half coincide with those of another half,
only one multiplication in Fp is enough to compute the representative element.

3.3 Parallelization

The ρ-method can be sped-up by parallelization. However, in order to make paths
different, initial elements are randomized in the following way [9]: when a core
computes F (l)(Gd), F

(l)(G) for Step 1, two random integers cL, cR are assigned
to this core and initial points are converted to G′

d = ζcLd Gd and G′ = ζcRd G.
Then, one can find k1 by computing

k1 =

(
i−1∑
l=0

fe(F
(l)(G′

d)) + cL

)
−

(
j−1∑
l=0

fe(F
(l)(G′) + cR

)
mod (r − 1)/d

from a collision F (i)(G′
d) = F (j)(G′). Note that since all converted initial points

can be regarded as scalar multiple point of G, Gd, or Ge, the KKM method can
be applied to the conversion.

In our experiment, we also developed a management system for parallelized
ρ-method. Outline of the system is described in the appendix.

4 Experimental Results

This section reports our experimental results of Cheon’s algorithm for the pairing-
friendly elliptic curve with 160-bit order. We have successfully solved a DLPwAI
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on this curve in 1314 core days. We emphasize that DLP on the same elliptic
curve has been believed to be secure.

4.1 Parameters

We used an additive cyclic group G with order r on the pairing-friendly elliptic
curve E : y2 = x3 + 3 over a prime field Fp introduced by Barreto-Naehrig [6].
Concrete values of these parameters are summarized in the following:

p = 1461501624496790265145448589920785493717258890819 (160-bit)

#G = 1461501624496790265145447380994971188499300027613 (160-bit, prime)

r = 1461501624496790265145447380994971188499300027613 (160-bit)

r − 1 = 22 · 3 · 12132793 · 164442871007 · 448873741399 · 135993458106516349

where #G denotes the number of elements in the additive group G = E(Fp). In
our implementation, we used the following parameters:

d = 2 · 3 · 12132793 · 135993458106516349 (84-bit)

e = (r − 1)/d = 2 · 164442871007 · 448873741399 (77-bit)

ζ = 2

where the generator ζ ∈ (Z/rZ)∗ was selected as the smallest one. With these
parameters, Step 1 can be sped-up by

√
2, and Step 2 can be sped-up by

√
6

with the automorphism technique, and the estimated time complexity is 240.5.
We selected the solution α as 49 decimal places of the circle ratio π:

α = 1415926535897932384626433832795028841971693993751 (160-bit)

We used a base point G whose x-coordinate coincides 48 decimal places of the
Napier’s constant. Then, coordinates of G, G1 = αG, Gd = αdG are as follows:

x(G) = 718281828459045235360287471352662497757247093699

y(G) = 267920135876087743710291823125072055976344820822

x(G1) = 673981942030616258426617938323441969041367773762

y(G1) = 1145655312172916339251351940414297415585122330072

x(Gd) = 1132176601528857211869915802893630944932743676162

y(Gd) = 948528425611362859774760991656937949436755965122

With these parameters, we have optimized n = 220, c = 8 for the KKM method.
With this optimization, one F -evaluation requires 24 μseconds (on Intel core i7
2.93GHz) while 980 μseconds without KKM.

4.2 Results

This section reports experimental results for solving DLPwAI. Required re-
sources are summarized in Table 2.
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Table 2. Required resource for solving a 160-bit DLPwAI

CPU (Hz) # of PCs # of cores Time

Step 1

Q9450 (2.66GHz) 8 32 7 days

Step 2

Q9450 (2.66GHz) 8 32 18 days

Q9450 (3.00GHz) 8 32 13 days

X3460 (2.80GHz) 10 80∗ 1 day

Pentium D (3.40GHz) 9 18 1 day

*Hyper-Threading is used

Step 1. Step 1 required 7 days with 8 PCs (Intel Core2 Quad CPU Q9450
2.66GHz), namely 32 cores: 16 cores are used for computing F (l)(G′

d) while
other 16 cores are for computing F (l)(G′). The required storage for distin-
guished elements was 53.3 MByte in total. Obtained partial solution was k1 =
108516124982482634887141.

Step 2. Step 2 was estimated to require 4.7 times more cores compared to
Step 1. Thus, we used many PCs with different specifications as in Table 2.
Thanks to the flexibility of our management system for the parallelization, PCs
are invested one-by-one (see Figure 1). In total, Step 2 required 18 days with
35 PCs (162 cores), more precisely 1090 core days. The required storage for
distinguished elements was 256 MByte in total. Obtained partial solution was
k2 = 6016166550002150274479850 and k is obtained by

k = k1 + k2(r − 1)/d

= 888155679312448193339542847931449754121424529241.

Consequently, the final solution α is obtained by

α = ζk mod r

= 1415926535897932384626433832795028841971693993751,

which required 1314 core days in total.

4.3 Discussion

Let us estimate the required monetary cost of our experiment on Amazon Elastic
Compute Cloud (Amazon EC2), a service to provide resizable computing envi-
ronment in the cloud. In Amazon EC2, various instances corresponding to CPU
power, memory size, and storage size are available. For our experiments, high-
spec CPUs and large memory (for the KKM method) are required. Thus, the
high-CPU extra-large instance (Memory: 7 GB, Cores: 8 (in virtual)) is adapted,
which requires USD 0.1 per hour per 1 virtual core. Since our experiment re-
quired 1314 core days (T = 240.5), it is estimated to cost USD 3,150 in Amazon
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Fig. 1. One-by-one investment in Step 2

EC2. If USD 1,000,000 is available, it is estimated to use 320 times more PCs
(T = 248.3) than the experiment. With this environment and if the parameter d
can be selected as d ≈ 4

√
r, it is possible to solve a DLPwAI on an elliptic curve

with 193.2-bit order.
On the other hand, if USD 1,000,000 is available for the same parameters

(namely, a group with 160-bit order), the parameter d can be reduced to d = 264,
while d was optimized as d ≈ 4

√
r in our experiment. Effects of this reduction

will be discussed in the next section.

5 Feedback to Cryptographic Schemes

In recently proposed cryptographic schemes, the infeasibility of new mathemati-
cal problems are assumed. For example, �-BDHEP is used in Boneh, Gentry,
and Waters’ broadcast encryption system [5], where �-BDHEP is the prob-

lem to find e(G, Ĝ)α
�+1

for a given bilinear map e : G × Ĝ → GT on input

G, αG, . . . , α�G, α�+2G, . . . , α2�G ∈ G and Ĝ ∈ Ĝ, where G = 〈G〉, Ĝ = 〈Ĝ〉,
and GT is a multiplicative group with order r. Let d be the largest divisor of
(r − 1) among 2, 3, . . . , �, �+ 2, . . . , 2�. As shown in section 4.3, if the param-
eter d can be selected as d ≈ 280 and a 160-bit elliptic curve is used, Cheon’s
algorithm can solve a DLPwAI. In addition, if USD 1,000,000 is available, the
parameter d can be reduced to d = 264 with a 160-bit elliptic curve. Therefore,
if the parameter � is chosen to be larger than 280 (or 264), Cheon’s algorithm
can solve the �-BDHEP and thus break the scheme: by finding α as a DLPwAI,
a solution of �-BDHEP is obtained. Thus, when such cryptographic schemes are
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Fig. 2. Selectable range of d

implemented with a 160-bit elliptic curve, the parameter � should be smaller
than 280 (or 264).

In this section, we discuss feedbacks of our experiments on a 160-bit ellip-
tic curve to some cryptographic schemes including Boneh, Gentry, and Waters’
broadcast encryption scheme [5], Boneh and Boyen’s ID-based encryption [1],
and Boneh and Boyen’s signature scheme [2].

5.1 Boneh, Gentry, and Waters’ Broadcast Encryption Scheme

Boneh, Gentry, and Waters’ broadcast encryption scheme is provably secure
under an assumption that �-BDHEP is infeasible [5], where � is the number of
users (receivers) in the broadcast encryption scheme. In the special construction,
the sender publishes his public key as

pk = (G,αG, . . . , α�G,α�+2G, . . . , α2�G, γG) ∈ G2�+1

where γ ∈ Z/rZ is a random number. Thus, when the broadcast encryption
scheme is implemented with a 160-bit elliptic curve, � should be chosen smaller
than 280 (or 264) to avoid Cheon’s algorithm for DLPwAI.
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However, restricting � < 280 ≈ 1024 has almost no effect on the scheme in
practice since 1024 is far beyond the population on the earth. Even if USD
1,000,000,000 is available, � can be chosen as 264 ≈ 1019.2 so that the restriction
has little effect.

5.2 Boneh and Boyen’s ID-Based Encryption Scheme

Boneh and Boyen’s ID-based encryption scheme is proved to be IND-sID-CCA
secure under an assumption that �-BDHIP is infeasible [1], where � is the number
of queries to the key generation algorithm. Here, �-BDHIP is a problem to find
e(G,G)1/α ∈ GT on input G, αG, . . . , α�G ∈ G. Thus, when the ID-based
encryption scheme is implemented with a 160-bit elliptic curve, � should be
smaller than 280 (or 264) to avoid Cheon’s algorithm for DLPwAI. In the ID-
based encryption scheme, queries to the key generation algorithm will be online
so that such queries are almost impossible for adversaries. Note that the same
discussion can be applied to some ID-based encryption schemes [3,14].

5.3 Boneh and Boyen’s Signature Scheme

Boneh and Boyen’s signature scheme is provable secure under the assumption
that �-SDHP is infeasible [2] (moreover, it is proven that the infeasibility and the
unforgeability is equivalent [17]), where � is the number of queries to the signing
algorithm. Here, �-SDHP is the problem to find a pair (a, 1

a+αG) ∈ Z/rZ × G
on input G, αG, . . . , α�G ∈ G and Ĝ ∈ Ĝ. Thus, when the signature scheme is
implemented with a 160-bit elliptic curve, � should be smaller than 280 (or 264)
to avoid Cheon’s algorithm for DLPwAI. The effect of this restriction depends
on how the signing algorithm is implemented. If it is implemented online similar
to Boneh and Boyen’s ID-based encryption scheme, this restriction has almost
no effect. However, if the query to the signing algorithm can be offline (for
example, the case where the signing algorithm is implemented in IC chip), more
queries will be available compared to the online case. Thus, this case is the most
attackable for adversaries with Cheon’s algorithm.

6 Concluding Remarks

This paper successfully solved a discrete logarithm problem with auxiliary input
(DLPwAI) in 1314 core days over a 160-bit pairing-friendly elliptic curve. If
cryptographic schemes based on mathematical problems such as �-BDEP, �-
SDHP, �-sSDHP, or �-BDHIP are implemented, such weak parameters should be
avoided. However, there are pairing-based cryptographic schemes which are not
affected by Cheon’s algorithm such as Boneh and Franklin’s ID-based encryption
scheme.
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A Large Scale Solving System

This appendix describes the management system “Large Scale Solving System
(LSSS)” for the parallelized ρ-method for Cheon’s algorithm dedicated to the
large-scale experiment.

For such a large-scale parallelized experiment, the distributed.net is used
worldwide [10], which supports to solve large scale problems using idle PCs,
CPUs or GPUs in everywhere in the world. For example, the distributed.net
has broken RC5-64 (64-bit RC5), and is trying to break RC5-72 (72-bit RC5)
currently. Anyone can join to the distributed.net simply by downloading and
executing a client program. A server of the distributed.net system distributes a
“key-block” to each client, and each client exhaustively searches the correct key.
In the distributed.net system, the HTTP protocol over proxy-server is used for
the communication between the server and clients.

the distributed.net has high scalability and is suitable for large-scale experi-
ment. However, since the connection between the server and clients in the dis-
tributed.bet is loose, the system is not efficient. Thus, we have designed more
tightly-connected and more efficient but less scalable system in our experiment.
An overall design of LSSS is shown in Figure 3. We have also adopted the HTTP
protocol over proxy-server for the communication between the server and clients
so that any clients of any organizations can join to LSSS at any time (this is
very important when the experiments are conducted in academic organizations
and private companies).

For solving a 160-bit DLPwAI by Cheon’s algorithm in our experiment, two
LSSSs are used as in Figure 4. Each LSSS consists of one server, numerous
calculating clients, and one DB organizer. A calculating client evaluates the
random-walk function and outputs a result if it is the distinguished element.
Every client sends distinguished elements to the server and the server catches
the received distinguished elements. A DB organizer obtains the distinguished
elements from the server and establishes a DB of these distinguished elements.
One LSSS is dedicated to evaluate F (l)(G′

d), while another LSSS is to evaluate
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Fig. 3. Grand design of LSSS

Server

DB#1

Server

DB#2
DB

Matching
Tool

Fig. 4. Constitution of the solving system of a 160-bit DLPwAI by Cheon’s algorithm
with two LSSSs

F (l)(G′) for Step 1 of Cheon’s algorithm. These two DBs are compared by a DB
matching tool periodically. If a collision F (i)(G′

d) = F (j)(G′) is found in these
DBs, the tool output the collision. In LSSS, all functions work on Windows and
Linux (and perhaps other UNIX OSs) to utilize any platforms.

A calculating client has the common communication unit and the calculating
unit. Since the common communication unit is independent from the target
parameter, and APIs between the communication unit and the calculating unit is
very simple, a user has to change the calculating unit only for a new experiment.
Because of this construction, LSSS can be used not only for Cheon’s algorithm
but also for solving ECDLP with ρ-method and other similar problems.
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Abstract. Number-theoretic pseudorandom generators work by iterat-
ing an algebraic map F (public or private) over a residue ring ZN on a
secret random initial seed value v0 ∈ ZN to compute values vn+1 =
F (vn) mod N for n ∈ N. They output some consecutive bits of the
state value vn at each iteration and their efficiency and security are
thus strongly related to the number of output bits. In 2005, Blackburn,
Gomez-Perez, Gutierrez and Shparlinski proposed a deep analysis on
the security of such generators. In this paper, we revisit the security of
number-theoretic generators by proposing better attacks based on Cop-
persmith’s techniques for finding small roots on polynomial equations.
Using intricate constructions, we are able to significantly improve the
security bounds obtained by Blackburn et al..

Keywords: Nonlinear Pseudorandom number generators, Euclidean lat-
tice, LLL algorithm, Coppersmith’s techniques, Unravelled linearization.

1 Introduction

This paper aims to present new cryptanalytic results on some nonlinear number-
theoretic pseudorandom number generators. We show that several generators are
insecure if sufficiently many bits are output at each clocking cycle. In particular,
this provides an upper bound on the generators’ security. The attacks used the
well-known Coppersmith methods for finding small roots on polynomial equa-
tions and outperform previously known results [2,3,4,10,11].

Prior work. One of the most fundamental cryptographic primitives is the pseu-
dorandom bit generator. It is a deterministic algorithm that expands a few truly
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random bits to a longer sequence of bits that cannot be distinguished from uni-
formly random bits by a computationally bounded algorithm. It has numerous
uses in cryptography, e.g. in signature schemes or public-key encryption schemes.

Number-theoretic pseudorandom generators work by iterating an algebraic
map F (public or private) over a residue ring ZN on a secret random initial seed
value v0 ∈ ZN to compute the intermediate state values vi+1 = F (vi) mod N
for i ∈ N and outputting (some consecutive bits of) the state value vi at each
iteration. The input v0 of the generator (and possibly the description of F ) is
called the seed and the output is called the pseudorandom sequence. The case
where F is an affine function is known as the linear congruential generator.
This generator is efficient and has good statistical properties. Unfortunately, it
is cryptographically insecure: Boyar [7] proved that - with a sufficiently long run
of the pseudorandom sequence - one can recover the seed in time polynomial
in the bit-size of N and Stern [17] proved that this is also the case even if one
outputs only the most significant bits of each vi (see also [6,15]).

It was suggested to use a non-linear algebraic map F in order to avoid these
attacks but several works [2,3,4,10,11] showed that not too many bits can be
output at each stage. Blackburn, Gomez-Perez, Gutierrez and Shparlinski [3,4]
proved that some generators are polynomial time predictable if sufficiently many
bits of some consecutive values of the pseudorandom sequence are revealed (even
when F is kept private).

Blackburn et al.’s results are based on a lattice basis reduction attack, using a
certain linearization technique. A natural idea – already stated in [3] – is instead
of using only linear relations in the attack, to use also relations that are derived
by taking products of them. This technique was proposed by Coppersmith to find
small roots on polynomial equations [8,9]. In Coppersmith’s method, a family
of polynomials is first derived from the polynomial whose root is wanted. This
family naturally gives a lattice basis and short vectors of this lattice possibly
provide the wanted root. Blackburn et al. claimed that “this approach does not
seem to provide any advantages” and that “it may be very hard to give any
precise rigorous or even convincing heuristic analysis of this approach”. Our
goal in this paper is to investigate this issue.

Our contributions. We show that if a sufficient number of the most sig-
nificant bits of several consecutive values vi of non-linear algebraic pseudo-
random generator are given, one can recover the seed v0 (even in the case
where the coefficients of F are unknown). We tackle these issues with Cop-
permith’s lattice-based technique for calculating the small roots of multivari-
ate polynomials modulo an integer. This method is heuristic, which is also
the case of some arguments of Blackburn et al. showing that their basic re-
sults could be strengthened if the number of pseudorandom bits known to
the attacker is increased. If F is a polynomial of degree d known to the at-
tacker, Blackburn et al.’s result [4] proved that the generator can be predicted
if one outputs a proportion (d2 − 1)/d2 of the most significant bits of two
consecutive intermediate state values. We improve this result (cf. Section 3)
by showing that this is also the case if one outputs a proportion as large as
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d/(d+ 1) of the most significant bits of two consecutive intermediate state val-
ues (or (d− 1)/d for sufficiently many consecutive intermediate state values).

Blackburn et al. [2,3] then focused on the well-known following number-
theoretic pseudorandom generators (where p is a prime, a ∈ Z∗

p and b ∈ Zp):

– The Quadratic generator corresponding to the map F (x) = ax2 + b mod p
– The Pollard generator, a special case of the quadratic generator when a = 1
– The Inversive generator corresponding to the map F (x) = ax−1 + b mod p

Our generic results apply to these settings and improve the previous bounds. The
theoretical data complexity (i.e. the minimum keystream length) of our attack
is decreased compared to the attack from [2,3,4,10,11]. Therefore a secure use
of these generators requires the output of much fewer bits at each iteration and
the efficiency of the schemes is thus degraded.

The table below shows a comparison between our results and what is known
in the literature. It gives the proportion of most significant bits output from each
consecutive state values necessary to break the generator in (heuristic) polyno-
mial time. The basic proportion corresponds to the case where the adversary
knows bits coming from the minimum number of intermediate states leading to
a feasible attack; while the asymptotic proportion corresponds to the case when
the bits known by the adversary come from an infinite number of values.

Basic proportion Asymptotic proportion

Prior result Our result Prior result Our result

Quadratic a,b known 3/4 2/3 2/3 1/2
generator a,b unknown 18/19 11/12 11/12 2/3

Pollard b known 9/14 3/5 9/14 1/2
generator b unknown 3/4 5/7 2/3 3/5

Inversive a,b known 3/4 2/3 2/3 1/2
generator a,b unknown 14/15 11/12 11/12 2/3

The results on the quadratic generator (and the inversive generator) are de-
scribed in Section 3.3 (and Section 3.4) and are direct applications of our gen-
eral results. Those on the Pollard generator relies on the unravelled linearization
technique introduced by Hermann and May in 2009 [12] and are described in
Section 4.

2 Preliminaries

2.1 Lattices

Definition. If (b1, . . . , bd) are d linearly independent vectors over Zn, then the
lattice L = 〈b1, . . . , bd〉 generated by these vectors is defined as the set of all
integer linear combination of the bi’s. The set B = {b1, . . . , bd} is called a basis
of L and d is the dimension of L. We restrict ourselves to full-rank lattices
corresponding to the particular case d = n. The quantity | det(B)| is called the
determinant of the lattice L.
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LLL-reduced bases. In 1982, Lenstra, Lenstra and Lovász [16] defined LLL-
reduced bases of lattices and presented a deterministic polynomial-time algo-
rithm, called LLL to compute such a basis. If (b1, . . . , bn) is an LLL-reduced
basis of L, the first vector b1 is close to be the shortest non-zero vector of
the lattice. Moreover, if (b�1, . . . , b

�
n) are the corresponding vectors coming from

Gram-Schmidt’s orthogonalization, then:

‖b�n‖2 ≥ 2−(n−1)/4(detL)1/n (1)

2.2 Coppersmith’s Techniques

In 1996, Coppersmith introduced lattice-based techniques [8,9] for finding small
roots on univariate and bivariate polynomial equations. As these techniques had
a wide range of cryptanalytic applications, some reformulations and generaliza-
tions to more variables have been proposed [1,5,13,14].

All these methods have allowed to attack many instances of public-key cryp-
tosystems (e.g. [12,15]). In the following, we give more details explaining how
such techniques work in practice for the multivariate modular case.

Definition of the Problem. Let f(y1, . . . , yn) be an irreducible multivariate
polynomial defined over Z, having a root (x1, . . . , xn) modulo a known integer
N such that |x1| < X1, . . . , |xn| < Xn. The question is to determine the bounds
Xi allowing to recover the desired root in polynomial time.

Collection of Polynomials. One has to generate a collection of polynomials
f1, . . . , fr having (x1, . . . , xn) as a modular root. Usually, we consider multiples

and powers of the polynomial f , namely f� = y
α

(�)
1

1 . . . y
α(�)

n
n fk� , for � in {1, . . . , r}.

By definition, such polynomials satisfy the relation f�(x1, . . . , xn) ≡ 0 mod Nk� ,
i.e. there exists an integer c� such that f�(x1, . . . , xn) = c�N

k� . From now, let us
denote as M the set of monomials appearing in the collection {f1, . . . , fr}. We
then construct a matrixM by extracting the polynomial coefficients as follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

X−1
1

. . .

X
−a1
1 . . . X−an

n

0

f1 . . . fr
↓ ↓ ↓

Nk1

. . .

Nkr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
y1

.

.

.
y
a1
1 . . . yan

n

Every row of the upper part is related to one monomial of the set M . The
left-hand side contains the bounds corresponding to these monomials (e.g. the
coefficient X−1

1 X−2
2 is put in the row related to the monomial y1y

2
2). Each col-

umn of the right-hand side contains a vector coming from the initial collection
{f1, . . . , fr}. We define as L the lattice generated by M’s rows and we have:

| det(L)| = Nk1+···+kr∏
(y

a1
1 ...yan

n ∈M)X
a1
1 . . . Xan

n
.
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A Short Vector in the Lattice L. Let us consider the vectors r0 and s0
defined by r0 = (1, x1, . . . , x

a1
1 . . . xan

n ,−c1, . . . ,−cr) and s0 =M · v0 ∈ L, such
that

s0 = (1, (x1/X1) , . . . , (x1/X1)
a1 . . . (xn/Xn)

an , 0, . . . , 0) .

One has ‖s0‖2 ≤
√
#M and the knowledge of s0 is sufficient to compute the

root of f . Since in practice, we will not always recover s0, the method consists in
looking for a vector which is orthogonal to it. We compute an LLL-reduced basis
B = (b1, . . . , bt) of (a sublattice of) L and a Gram-Schmidt’s orthogonalization
on B. As s0 belongs to L, it can be expressed as a linear combination of the b�i ’s
and if its norm is smaller than those of b�t , then the dot product 〈s0, b�t 〉 = 0.

Extracting the coefficients in b�t leads to a polynomial p1 defined overM such
that p1(x1, . . . , xn) = 0 and iterating the process with b�t−1, . . . , b

�
t−n+1, one gets

a multivariate polynomial system {p1(x1, . . . , xn) = 0, . . . , pn(x1, . . . , xn) = 0}.
Under the (heuristic) assumption that these polynomials are algebraically inde-
pendent, the system can be solved in polynomial time.

Conditions on the Bounds Xi’s. Since s0 is small and we have an upper
bound on ‖b�t ‖2, (cf. (1)), the condition

√
#M < 2−(t−1)/4(det(L))1/t implies

〈s0, b�t 〉 = 0. Removing parameters that do not influence the asymptotic result,
this relation can be simplified to | det(L)| > 1, leading to the following final
condition: ∏

(y
a1
1 ...yan

n ∈M)

Xa1
1 . . . Xan

n < Nk1+···+kr (2)

The most complex step of the method is the choice of the collection of polyno-
mials, what could be a difficult task when working with multiple polynomials.

3 Attacking a Non-linear Generator

For N an integer of size π, we denote by ZN the residue ring of N elements. A
pseudorandom non-linear generator can be defined by the following recurrence
sequence:

vi+1 = F (vi) mod N (3)

where F (X) =
∑d

j=0 cjX
j is a polynomial of degree d in ZN [X ] and v0 is the

secret seed. We assume that this generator outputs the k most significant bits of
vi at each iteration (with k ∈ {1, . . . , π}), i.e. if vi = 2π−kwi+xi, wi is output by
the generator and xi < 2π−k = N δ stays unknown. We want to recover xi < N δ

for some i ∈ N from consecutive values of the pseudorandom sequence (with δ
as large as possible) knowing F or not.

3.1 Case F Known

Any non-linear pseudorandom generator defined by a known iteration function
F can be broken when sufficiently many bits are output at each iteration. In the
following, we determine that amount of output bits when two (Theorem 1) then
more (Theorem 2) consecutive outputs are known to the attacker.
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Theorem 1 (Two consecutive outputs). Let G be a non-linear pseudoran-
dom generator defined by a known iteration function F (X) of degree d. If an
adversary has access to two consecutive outputs of G then it will be able to pre-
dict the entire sequence that follows ; under the condition that at least d

d+1π most
significant bits are output at each iteration, that is:

δ <
1

d+ 1

Proof. Suppose the adversary is given two approximations w0 and w1 of two
consecutive values v0 and v1 that satisfy (3). By denoting v0 as 2π−kw0+x0 and
v1 = 2π−kw1 + x1, we obtain:

2π−kw1 + x1 −
d∑

j=0

cj(2
π−kw0 + x0)

j = 0 mod N

Let f(y0, y1) be the polynomial y1+a0+a1y0+· · ·+adyd0 defined by this equation,
where the values ai, that explicitly depend on w0, w1 and the coefficients ci, are
known to the adversary. The goal is to compute efficiently the (small) modular
root (x0, x1) of f(y0, y1). To do so, let us consider the following collection of
polynomials:

{yj0f i(y0, y1) | di+ j ≤ dm ∧ i > 0}
where m ≥ 1 is a fixed integer. Knowing the shape of f , the list of monomials
appearing within this collection can be described as:

{yi1y
j
0 | di+ j ≤ dm}

Using Coppersmith’s method, the right-hand side (resp. the left-hand side) of
(2) is then equal to:

m∏
i=1

d(m−i)∏
j=0

N i = N
1
6m(m+1)(dm−d+3)

⎛⎝resp.

m∏
i=0

d(m−i)∏
j=0

N iδN jδ

⎞⎠ .

Thus, the algorithm (heuristically) outputs the root of f in polynomial time as
soon as:

δ <
1
6m(m+ 1)(dm− d+ 3)

1
12m(m+ 1)(2d2m+ 2dm+ 6 + d2 + d)

−−−−−→
m→+∞

1

d+ 1
(4)

��

This bound is better than those previously obtained by Blackburn et al. [3].
Indeed, their result was approximately δ < 1/d2 when two consecutive outputs
are known to the attacker.

Theorem 2 (More consecutive outputs). Let G be a non-linear pseudoran-
dom generator defined by a known iteration function F (X) of degree d. If an
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adversary has access to n+ 2 (with n ≥ 1) consecutive outputs of G then it will
be able to predict the entire sequence that follows ; under the condition that at

least dn+2−dn+1

dn+2−1 π most significant bits are output at each iteration, that is:

δ <
dn+1 − 1

dn+2 − 1

Proof. Let us assume that the attacker knows n+ 2 consecutive outputs of the
generatorw0, . . . , wn+1. Writing vi as 2

π−kwi+xi (for i ∈ {0, . . . , n+1}), we want
to recover the solution (x0, . . . , xn+1) of the multivariate polynomial system:⎧⎪⎨⎪⎩

f0(y0, y1) = y1 + a00 + a01y0 + · · ·+ a0dy
d
0 mod N

...
fn(yn, yn+1) = yn+1 + an0 + an1yn + · · ·+ andy

d
n mod N

where each polynomial fi is constructed in the same way as for the “two consec-
utive outputs” case. From now, we use the following collection of polynomials:{
yj0f

i0
0 . . . f inn | d(i0 + di1 + · · ·+ dnin) + j ≤ dm ∧ i0 + · · ·+ in > 0

}
where m ≥ 1 is a fixed integer. As it seems to be a difficult task to describe the
set of monomials appearing in that collection for the general case, we first focus
on what happens with two polynomials f0 and f1. In that case, the set can be
described by the powers of these polynomials, that is{

(yj0y
i
1) · (yk1yl2) | di+ j ≤ dm ∧ dl + k ≤ dm− di− j

}
Another way of expressing this set is

{
yj0y

i
1y

l
2 | di+ j + dl ≤ dm

}
. From that

point, by induction on n, we can show that the monomials appearing in the
collection can be described as:{

yj0y
i0
1 . . . yinn+1 | d(i0 + di1 + · · ·+ dnin) + j ≤ dm

}
The right-hand side and the left-hand side of (2) is then equal to NA(m,n) and
NB(m,n) respectively, where:

A(m,n) =

m∑
i0=0

�m−i0
d �∑

i1=0

. . .

d(m−
∑n

p=0 d
pip)∑

j=0

i0 + · · ·+ in

B(m,n) =

m∑
i0=0

�m−i0
d �∑

i1=0

. . .

d(m−
∑n

p=0 d
pip)∑

j=0

i0 + · · ·+ in + j

Our goal is to obtain an asymptotic expression of the multiples sums A(m,n)
and B(m,n) which depends on the number of outputs n, when m goes to +∞.
It is quite clear that the floor function appearing in the upper bound of the sums
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can be omitted and we will use several times a trick from [12] which consists in
letting indices of a sum run over a larger range in order to obtain a symmetric
formula that is easier to evaluate. Basically, it relies on the following observation
which holds for any function f :

N∑
i=0

f(i) =
1

d

dN∑
i=0

f(� i
d
).

Applying this trick n times on A(m,n), one obtains:

A(m,n)  1

d
. . .

1

dn

m∑
i0=0

m−i0∑
i1=0

. . .

d(m−
∑n

p=0 ip)∑
j=0

i0 +
1

d
i1 + · · ·+

1

dn
in

 d · 1
d
. . .

1

dn

m∑
i0=0

m−i0∑
i1=0

. . .

m−
∑n

p=0 ip∑
j=0

i0 +
1

d
i1 + · · ·+

1

dn
in

and similarly

B(m,n) = d · 1
d
. . .

1

dn

m∑
i0=0

m−i0∑
i1=0

. . .

m−
∑n

p=0 ip∑
j=0

i0 +
1

d
i1 + · · ·+

1

dn
in + dj.

We get for A(m,n) and B(m,n):

A(m,n)  1

d2
. . .

1

dn

(
dn+1 − 1

dn(d− 1)

)
p1 and B(m,n)  1

d2
. . .

1

dn

(
dn+2 − 1

dn(d− 1)

)
p1

where

p1 =
m∑

i0=0

m−i0∑
i1=0

· · ·
m−

∑n
p=0 ip∑

j=0

i0.

We obtain in consequence the following bound:

δ <
A(m,n)

B(m,n)
 dn+1 − 1

dn+2 − 1

��

When the number of consecutive values known by the adversary tends to infinity,
this condition becomes δ < 1/d. Knowing that d is the degree of the iteration
function, this result seems to be the optimal one when using Coppersmith’s
technique.

3.2 Case F Unknown

We show that a non-linear pseudorandom generator defined by an unknown iter-
ation function F can also be broken. In order to apply Coppersmith’s technique,



Inferring Sequences Produced by Nonlinear PseudorandomNumberGenerators 617

one needs to construct a polynomial P (from the unknown iteration function
F ) with a root encoding the secret seed. We will see in the forthcoming sections
that one could use elimination techniques to find such a P . Let us denote D the
degree of P (depending on d = degF and on the elimination technique used)
and we consider a monomial order such that the leading coefficient1 of P is equal
to 1 modulo N . Since there are d + 1 unknown coefficients in F , one requires
d + 2 consecutive equations of the form vi+1 = F (vi) mod N , and thus d + 3
consecutive outputs of the generator.

Theorem 3 (d+ 3 consecutive outputs). Let G be a non-linear pseudoran-
dom generator defined by an unknown iteration function F (X) of degree d. We
consider an adversary that has access to d+ 3 consecutive outputs of G and can
compute a polynomial P of degree D and a monomial order as above.

It will be able to predict the entire sequence that follows ; under the condition

that at least D2(d+3)−1
D(d+3) π most significant bits are output at each iteration, that is

δ < 1
D2(d+3) . Moreover, if one assumes that the degree of the leading monomial

of P is equal to D, then this bound can be improved to:

δ <
1

D(d+ 3)
.

Proof. Let us assume that the adversary knows w0, . . . , wd+2. By manipulating
the system

(
vi+1 = F (vi) mod N, i ∈ {0, . . . , d+ 1}

)
one obtains a polynomial

P satisfying P (x0, . . . , xd+2) = 0 mod N . Since the shape of P and its degree D
both depend on the technique used to manipulate the initial system, describing
the monomials appearing in P and therefore in Pm is an impossible task. Con-
sequently, the only way to perform Coppersmith’s method is to choose a simpler
but larger set of monomials which necessarily contains those of Pm:{

yj00 . . . y
jd+2

d+2 | j0 + j1 + · · ·+ jd+2 ≤ Dm
}

The leading monomial of P , LM(P ), can be described as yα0
0 . . . y

αd+2

d+2 where at
least one of the αi is non negative. Without loss of generality, we can assume
for now that α0 > 0. In that case, one can apply Coppersmith’s method on the
following collection of polynomials:{

yj11 . . . y
jd+2

d+2 P
i | Di+ j1 + · · ·+ jd+2 ≤ Dm ∧ 1 ≤ i ≤ m

}
As y0 only comes from the powers of P , the prohibition of the multiplication by
y0 ensures that the collection of polynomials will be linearly independent. The
right-hand side (resp. the left-hand side) of (2) is then equal to N to the power:

∑
1≤i≤m

∑
j1+···+jd+2≤Dm−Di

i

⎛⎝resp.
∑

j0+···+jd+2≤Dm

δ(j0 + · · ·+ jd+2)

⎞⎠ .

1 In the general case, this condition is almost always satisfied and this is obviously
true when N is prime
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We can show that this formula leads to the following condition:

δ <
1

D2(d+ 3)

In fact, this result can be improved if one assumes that the degree of LM(P )
is equal to D. Indeed, this monomial can be described as yα0

0 . . . y
αd+2

d+2 with∑d+2
i=0 αi = D. In order to keep the linear independency between the polynomials,

one should only consider polynomials of the form Mon × P i such that Mon �=
LM(P ). This leads to the following collection:⎧⎨⎩yj00 y

j1
1 . . . y

jd+2

d+2 P
i

∣∣∣∣∣∣
Di+ j0 + j1 + · · ·+ jd+2 ≤ Dm

∧ 1 ≤ i ≤ m
∧ (j0 < α0) ∪ · · · ∪ (jd+2 < αd+2)

⎫⎬⎭
Using the same kind of tricks as in the proof of Theorem 2, the resulting asymp-
totic bound becomes:

δ < α0
1

D2(d+ 3)
+ · · ·+ αd+2

1

D2(d+ 3)
=

1

D(d+ 3)

��

More consecutive outputs. We want to generalize the previous attack when
the adversary is given access to more consecutive outputs. Let us assume, for
instance, that it has access to d+ n+ 2 consecutive values w0, . . . , wd+1+n ; its
goal is then to compute the (small) solution (x0, . . . , xn+d+1) of the multivari-
ate polynomial system (P1(y0, . . . , yd+2), . . . , Pn(yn−1, . . . , yn+d+1)) where the
polynomials Pi of degree D, are defined as in the previous section. As before,
finding a general description of the monomials appearing in these polynomials is
a challenging task. Thus we consider a larger set of monomials, easier to describe:{

yj00 . . . y
jd+1+n

d+1+n | j0 + j1 + · · ·+ jd+1+n ≤ Dm
}

Let us express the leading monomial of P1 as yα0
0 . . . y

αd+2

d+2 with at least one

of the αi ≥ 1, the leading monomial of P2 as yα0
1 . . . y

αd+2

d+3 and those of Pn as

yα0
n−1 . . . y

αd+2

n+d+1, using a monomial order such as lex or hlex with y0 < · · · <
yd+1+n. Without loss of generality, we can assume that α0 > 0. From that, one
can apply Coppersmith’s method on the following collection of polynomials:{
yj1n . . . y

jd+2

n+d+1P
i1
1 . . . P in

n

∣∣∣∣ D(i1 + · · ·+ in) + j1 + · · ·+ jd+2 ≤ Dm
∧ 1 ≤ i1 + · · ·+ in ≤ m

}
The prohibition of the multiplication by y0, . . . , yn−1 ensures that all the polyno-
mials of the collection are linearly independent. Thus, the right-hand side (resp.
the left-hand side) of (2) is equal to N to the power:

∑
1≤i1+···+in≤m

j1+···+jd+2≤Dm−D(i1+···+in)

i1+· · ·+in

⎛⎝resp.
∑

j0+···+jn+d+1≤Dm

δ(j0 + · · ·+ jn+d+1)

⎞⎠ .
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We can show that the resulting asymptotic bound is δ <
n

Dn+1(n+ d+ 2)
(details can be found in the full version).

Remark 1. This bound is not interesting as its value decreases when the ad-
versary is given access to more outputs. However, we are convinced that it can
significantly be improved. Indeed, using the same kind of techniques as in the
previous case, we might be able to gain a factor D for each involved polynomial
and get:

δ <
n

D(n+ d+ 2)
−−−−−→
m→+∞

δ <
1

D

In practice we notice that this conjecture seems to be true, see for instance the
analysis of the quadratic generator in Section 3.3.

3.3 Application: Attacking the Quadratic Generator

For p a prime of size π, the notation Zp refers to the field of p elements. The
quadratic generator is defined by the following recurrence sequence:

vi = av2i−1 + b mod p (5)

In that particular case, the iteration function F (x) is defined as F (x) = ax2 + b
where a ∈ Z∗

p and b ∈ Zp are constant values. Exactly as before, we denote the
secret seed as v0 ∈ Zp and we assume that the generator outputs the k most
significant bits of vi at each iteration (with k ∈ {1, . . . , π}). In other words, each
value vi can be written as 2π−kwi + xi where wi is output by the generator and
xi < 2π−k = pδ stays unknown. Our goal consists in recovering the value xi < pδ

for some i ∈ N by using some consecutive values output by the pseudorandom
sequence (with δ as large as possible).

Case F Known. If the adversary is given access to two consecutive outputs of
the generator, then it can break the scheme under the condition that sufficiently
many bits are output by the generator at each iteration. More precisely, for a
fixed value m (that will define the size of the corresponding lattice), the bound
on δ should respect the following condition, directly coming from Equation (4)
in Theorem 1:

δ <
1

6
· 2m+ 1

m+ 1

In particular, taking m = 1 leads to the bound δ < 1/4 previously reached by
Blackburn et al. [3]. This bound can be improved to δ < 1/3 when the quantity
m goes to infinity. This value is exactly the same as those previously obtained by
Blackburn et al. [3] when the authors assume that the adversary is given access
to an infinite number of outputs, whereas it only requires here two outputs of
the generator. Finally, when increasing the number of known outputs to infinity,
the condition becomes δ < 1/2 (see Theorem 2).
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Case F Unknown. Knowing that the coefficients a and b appearing in the
iteration function F (x) = ax2 + b are unknown to the attacker, the first step
consists in expressing the relations between the outputs of the generator exclu-
sively in terms of known quantities. More precisely, by using four consecutive
outputs, the adversary is able to eliminate the quantities a and b by considering
the following polynomial P of degree 3:

P = c+ c0y0 + c1y1 + c2y2 + c3y3 + d0(y
2
0 − y2

1) + d1(y2y0 − y0y3) + d2(y
2
1 − 3y2

2)
+2d2y1y2 + d3(y

2
2 − 3y2

1 + 2y1y3) + e(y2
2y1 − y3

1 + y2
1y3 − y3

2 − y2
0y3 + y2

0y2) mod p

As each coefficient in this polynomial is inversible modulo p, one can consider
that LM(P )) = 1. Thus, applying Theorem 3, one reaches the bound δ < 1/15,
knowing that the degree d of the iteration function F is equal to 2 and those
of the polynomial P is 3. In fact, this bound can be improved as the coefficient
related to x in the iteration function, is equal to zero. Indeed, the denominator
in the formula given by Theorem 3 can in fact be expressed as D.�(n) where
�(n) is the number of required outputs. In this particular case, as �(n) is equal
to four, the bound thus becomes δ < 1/12. In the same scenario, Blackburn et
al. [3] reached the value δ < 1/19.

We assume that the adversary is given access to more consecutive outputs and
generalize the previous construction using the fact that the iteration function F
contains one zero coefficient. In that case, if the set of monomials stays easy to
formulate, namely {yj00 . . . y

jn+2

n+2 | j0 + · · ·+ jn+2 ≤ 3m}, this is not the case for
the collection of polynomials which becomes:⎧⎪⎪⎪⎨⎪⎪⎪⎩yj00 y

j1
1 y

a2
2 . . . y

an+1

n+1 y
jn+2

n+2 P
i1
1 . . . P in

n

∣∣∣∣∣∣∣∣∣
0 < i1 + · · ·+ in ≤ m

0 ≤a� ≤min(2, 3m− 3
∑n

t=1 ip −
∑�−1

t=2 ap)
(for � ∈ {2, . . . , n+ 1})
j0 + j1 + jn+2 ≤ 3m− 3(i1 + · · ·+ in)

− (a2 + · · ·+ an+1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The estimation of the “weight” of these two sets allows to reach the asymptotic
bound δ < 1/3 when bothm (related to the dimension of the involved lattice) and
n go to infinity (cf. the full version of the paper). This value seems to confirm the
conjecture δ < 1/D discussed in Remark 1. Moreover, it significantly improves
the bound δ < 1/12 previously obtained by Blackburn et al. in [3] and it provides
interesting asymptotic bounds for small values of n (when m goes to infinity):

Number of outputs 4 5 6 7 8 9 10 11 12

Asymptotic bound 1/12 2/15 1/6 4/21 5/24 2/9 7/30 8/33 1/4

3.4 The Inversive Generator

The inversive generator is defined by the recurrence sequence vi = av−1
i−1 + b

mod p where p is a prime and a,b ∈ Zp. As usual, we assume that this generator
outputs the k most significant bits at each iteration. When a and b are known,
the polynomial h(y0, y1) = y0y1 + c0y0 + c1y1 + c can be constructed, using two
consecutive outputs, where c, c0, c1 are constant values.
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Let us now look at the link between the geometrical representation of the
polynomial h(y0, y1), namely a square, and those of f(y0, y1) = y1−c0y0−ay20+c
mod p, which corresponds to the polynomial defined for the quadratic generator
with two outputs when a and b are known, that can be represented as a triangle.
The denominator appearing in the value δ, coming from Equation (2), can be

m

h
x0

x1

m

f
x0

x1

Inversive generator

m

h
x0

x1
1 2 . . . m

1

2

...

m

Quadratic generator

m

f
x0

x1

1

2

...

m

Fig. 1. Geometrical link between f and h

seen as the sum of the coordinates of each point belonging to the form defined
by the polynomial. For the inversive generator, this sum can be expressed as:

m∑
x0=0

m∑
x1=0

x0 + x1 = m(m+ 1)2 =

m∑
x1=0

2m−x1∑
x0=0

x0 + x1

The collection of polynomials involved in the quadratic generator case, gives the
following formula, corresponding to the numerator:

m∑
x1=1

2(m−x1)∑
x0=0

x1 =
1

6
m(m+1)(2m+1) =

m∑
x1x0=1

m−x1x0∑
x1=0

x1x0+

m−1∑
x1x0=1

m−x1x0∑
x0=1

x1x0.

Figure 1 shows the geometrical link between these two generators (on the top,
the set of monomials ; on the bottom, the collection of polynomials). When
working with more polynomials, the situation is identical. Moreover, when a
and b are unknown, the polynomial used to build the collection in the inversive
generator case is similar to those used in the quadratic generator’s one. The
obtained bound is also 1/12 and with more consecutive outputs, it tends to 1/3,
similarly to the quadratic generator.
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Table 1. Some bounds for the inversive generator, a,b known

2 outputs 3 outputs 4 outputs 5 outputs 6 outputs 7 outputs

previous bound 0.25 0.286 0.3 0.308 0.313 0.316

new achievable bound 0.321 0.39 0.40 0.401 0.401 0.401
m = 13 m = 9 m = 8 m = 8 m = 8 m = 8

new asymptotic bound 1/3 3/7 7/15 15/31 31/63 63/127

4 The Pollard Generator

The recursive sequence of the Pollard generator is defined as vi = v2i−1+b mod p
with b ∈ Zp (i.e. it is a particular instance of the quadratic generator where the
constant a is equal to 1). As a consequence, the attack scenario is exactly the
same as in the previous section when b is known to the attacker. However, if
one takes advantage of the fact that a is fixed to 1, a specific analysis can be
made and a better bound can be obtained. To reach such a result, we use a novel
technique, called unravelled linearization whose description is provided below.

Unravelled linearization. In 2009, Hermann and May introduced a new tech-
nique called unravelled linearization [12] that allows to work with smaller lattices
by optimizing the way the initial polynomial is written. It consists in improving
the bounds, see Equation (2), by reducing the number of monomials in M while
keeping the same amount of powers of N in the right hand side of the equation.

Let us show what happens on a toy example, say f(x, y) = x2 + x+ y having
a root (x0, y0) modulo N where |x0| < X and |y0| < Y with X = Y . The idea
is to find the better way of linearizing f before proceeding to Coppersmith’s
construction. If we fix u = x2, the polynomial f becomes g(u, x, y) = u+x+y and
the bounds on the root can be determined by the following formula UXY < N .
Knowing that U = X2, this leads to X = N1/4. Now, let us take another smarter
linearization, say u = x2+y, leading to the polynomial g(u, x) = u+x. This time,
the formula becomes UX < N , what leads to the improved bound X = N1/3.
In this case, the “weight” of y is hidden in u by the weight of x2.

One need to use another tricky manipulation to conclude. Let us go back
to our toy example g(u, x) = u + x and construct the original matrix defined
by Coppersmith taking the collection {g, g2}. This leads to the matrix M that
follows, thus reaching the asymptotic bound U4X4 < N3, what gives X < N1/4.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/U
1/X

1/X2

1/UX
1/U2

0

1 0
1 0
0 1
0 2
0 1

N
N2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M

u
x
x2

ux
u2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/U
1/X

1/Y
1/UX

1/U2

0

1 1
1 0
0 −1
0 2
0 1
N

N2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M′

u
x
y
ux
u2

But here is the point: by definition of u, the monomial x2 can easily be written
as u − y, thus allowing to express the polynomial g2 as g2 = u2 + 2ux+ u − y.
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Such a manipulation leads to the matrix on the right hand side, sayM′. In this
case, the obtained bounds on the root can be reformulated as U4X2Y < N3

what gives the improved result X < N3/11. This benefit can be understood by
the fact that we have managed to decrease the weight of the monomials in the
setM by 1 while keeping the exact number of powers of N appearing in the right
hand side of Equation (2). Such manipulations are quite hard to proceed, they
strongly rely on the linearization chosen for the initial polynomial f (a more
detailed discussion on the importance of the choice of the linearization can be
found in the full version of the paper).

4.1 Case F Known

Attack with Two Consecutive Outputs. Let us first assume that the ad-
versary is given access to two consecutive outputs of the generator, namely w0

and w1. Knowing that v0 = 2π−kw0 + x0 and v1 = 2π−kw1 + x1, we reach the
same relation as those previously obtained for the quadratic case:

x1 − 2π−k+1w0x0 − x20−b+ 2π−kw1 − 4π−kw2
0 = 0 mod p

Let us denote by f(y0, y1) the polynomial y1−c0y0−y20+d0 where the coefficients
c0 = 2π−k+1w0 and d0 = −b+ 2π−kw1 − 4π−kw2

0 are known to the attacker. As
usual, its goal consists in recovering the small modular root (x0, x1) of f(y0, y1).

To solve this problem, we use the unravelled linearization technique. As al-
ready stated, the first step consists in choosing a good linearization for f . In
this particular case, we set u = y1 − y20 , what leads to the following polynomial
g(y0, u) = u−c0y0+c mod p. In that case, the bound on u can thus be expressed
as U = X2

0 .
Let us now consider the collection of polynomials defined as yj0g

i(y0, u) with
i + j ≤ m and i > 0. The list of monomials appearing in that collection can be

described asM =
{
yj0u

i | i+ j ≤ m
}
. Initially, we use this set of polynomials

to construct the matrix defined by Coppersmith, as in Section 2.2. In that case,
the right-hand side (resp. the left-hand side of) of (2) can easily be expressed as
p to the power

m∑
i=1

m−i∑
j=0

i =
1

6
m3 + o(m3)

⎛⎝resp. δ

m∑
i=0

m−i∑
j=0

2i+ j =
δ

2
m3 + o(m3)

⎞⎠
The idea of the unravelled linearization technique is to improve the bound on δ
by decreasing the weight of the monomials. To do so, one should proceed to a
“back-substitution” in the constructed matrix, as explained in the previous sec-
tion. In that particular case, knowing that y20 = y1−u, the following replacement
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is done (for all monomials μ such that μ · y20 ∈ M): μ · y20 → μ · y1 − μ · u. It
is obvious that the presence of μ · y20 in the set M implies those of μ · u. As a
consequence, doing such a manipulation allows to replace the quantity μ · y20 by
μ · y1 thus decreasing by “1” the weight on the monomials. If we express the
collection M asM =

{
y2b+a
0 ui | a ∈ {0, 1} ∧ a+ 2b+ i ≤ m

}
, after the back-

substitution, we obtain the set M ′ =
{
yb1y

a
0u

i | a ∈ {0, 1} ∧ a+ 2b+ i ≤ m
}
.

In that case, the new left-hand side in Equation (2) becomes p raised to the
power:

δ

1∑
a=0

m−a∑
i=0

�m−i−a
2 �∑

b=0

(a+ b+ 2i) = δ
5

12
m3 + o(m3)

Thus, the corresponding asymptotic bound on δ becomes:

δ <
1/6m3 + o(m3)

5/12m3 + o(m3)
−−−−−→
m→+∞

2

5
.

This bound is better than δ < 5/14, previously obtained by Blackburn et al. [11]
when working with one polynomial. One can also notice that 2/5 is exactly the
bound obtained in [12] for attacking the Blum-Blum Shub generator.

More Consecutive Outputs. In that case, one can easily generalize the
method explained before in the same way as what has been done for the Blum-
Blum Shub generator, thus reaching the bound δ < 1/2. Details are left to the
reader.

4.2 Case F Unknown

Attack with three consecutive outputs. Let us now consider the case of an
adversary having access to three consecutive outputs of the generator. In that
case, writing two consecutive recurrence relations and subtracting both of them
leads to:

−x21 + x20 + x2 + 2π−k+1w0︸ ︷︷ ︸
c0

x0 − (2π−k+1w1 + 1)︸ ︷︷ ︸
c1

x1

+2π−kw2 − 2π−kw1 + 4π−kw2
0 − 4π−kw2

1︸ ︷︷ ︸
c

= 0 mod p.

The adversary wants to recover the small modular root (x0, x1, x2) of the poly-
nomial f(y0, y1, y2) = −y21 + y20 + y2 + c0y0 − c1y1 + c. To do so, we use
again the unravelled linearization technique. To linearize the polynomial f , we
set u = −y21 + y20 + y2, reaching the new following expression g(u, y0, y1) =
u + c0y0 − c1y1 + c. Let us now consider the collection of polynomials defined
as yk0y

j
1g

i with i+ j + k ≤ m and i > 0. In that case, the list of involved mono-

mials can easily be expressed as M =
{
uiyj1y

k
0 | i+ j + k ≤ m

}
. Thus, the

right-hand side of Coppersmith’s Equation (2) is given by p to the power:
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m∑
i=1

m−i∑
j=0

m−i−j∑
k=0

i =
1

24
m4 + o(m4).

Before evaluating the weight of the monomials in M , we perform some back-
substitutions. In this case, the rule given by the linearization is (for all monomials
μ such that μ · y21 ∈ M): μ · y21 → μ · y20 + μ · y2 − μ · u. One can notice that
the presence of the monomial μ · y21 in the set M automatically implies those of
μ · y20 and μ · u. Thus, each monomial of the form μ · y21 can be replaced by one
of those μ · y2 in the constructed matrix, again decreasing by “1” the weight on
the involved monomials. The shape of the new constructed set M is then:{

uiyb2y
a
1y

k
0 | a ∈ {0, 1} ∧ i+ k + a+ 2b ≤ m

}
In that case, the new left hand side of Equation (2) becomes:

δ

1∑
a=0

m−a∑
i=0

�m−i−a
2 �∑

b=0

m−i−a−2b∑
k=0

(a+ b + 2i+ k) =
7δ

48
m4 + o(m4)

which leads to the following bound on δ:

δ < (1/24m4 + o(m4))/(7/48m4 + o(m4)) −−−−−→
m→+∞

2/7.

More Consecutive Outputs. Let us assume that the attacker knows n + 2
consecutive outputs, for n ≥ 2. We denote fi the relation between two outputs:

fi = 2π−kwi + yi − (2π−kwi−1 + yi−1)
2 − b mod p i ∈ {1, . . . , n}

These polynomials have (xi, xi−1) as a root modulo p and denoting gi = fi+1−fi
for i ∈ {1, . . . , n}, we have gi = −y2i + y2i−1 + yi+1 + ciyi−1 − diyi + ei mod p
for some constants ci, di, ei known to the adversary.

Knowing the set of polynomials {g1, . . . , gn}, the attacker wants to recover the
unknown values xi. To do so, we use again the unravelled linearization technique
by choosing ui = −y2i +y2i−1+yi+1, what leads to: gi = ui+ciyi−1−diyi+ei. Such
polynomials allows us to reach the asymptotic following bound δ < 2

5 (details
will be given in the full version). In that particular case, we think this bound
could be improved to δ < 1/2, following the discussion from Remark 1.

Table 2. Theoretical and experimental bounds for the Pollard generator, b unknown

Number of outputs 3 4 5 6 7 8

Previous bound [3] 0.261 0.286 0.3 0.308 0.313 0.316

Our achievable bound 0.278 0.319 0.324 0.324 0.324 0.324

Our asymptotic bound 2/7 6/17 14/37 30/77 62/157 126/317
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Abstract. Lossy Trapdoor Functions (LTFs) were introduced by Peik-
ert and Waters in STOC ’08 and since then have found many applications
and have proven to be an extremely useful and versatile cryptographic
primitive. Lossy trapdoor functions were used to build the first injective
trapdoor functions based on DDH, the first IND-CCA cryptosystems
based on lattice assumptions, and they are known to imply determinis-
tic encryption, collision resistant hash-functions, oblivious transfer and
a host of other important primitives. While LTFs can be instantiated
under most known cryptographic hardness assumptions, no construc-
tions until today existed based on generic cryptographic primitives. In
this work, we show that any Homomorphic Smooth Hash Proof System,
introduced by Cramer and Shoup in EUROCRYPT ’02, can be used
to construct LTFs. In addition to providing a connection between two
important cryptographic primitives – our construction implies the first
construction of LTFs based on the QR assumption.

Smooth Hash Proof Systems (SHPs) can be seen as a generalization
of the DDH assumption, yet can be built on other cryptographic as-
sumptions, such as the DCR or QR assumptions. Yet, until today, a
“translation” of results proven secure under DDH to results under DCR
or QR has always been fraught with difficulties. Thus, as our second goal
of this paper, we ask the following question: is it possible to streamline
such translations from DDH to QR and other primitives? Our second
result formally provides this connection. More specifically, we define an
Extended Decisional Diffie Hellman (EDDH) assumption, which is a sim-
ple and natural generalization of DDH. We show that EDDH can be in-
stantiated under both the DCR and QR assumptions. This gives a much
simpler connection between the DDH and the DCR and QR assumptions
and provides an easy way to translate proofs from DDH to DCR or QR.
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That is, the advantage of the EDDH assumption is that most schemes
(including LTFs) proven secure under the DDH assumption can easily be
instantiated under the DCR and QR assumptions with almost no change
to their proofs of security.

1 Introduction

The first practical IND-CCA secure cryptosystem was built by Cramer and
Shoup under the Decisional Diffie-Hellman (DDH) assumption [CS98]. In a fol-
low up work, Cramer and Shoup introduced projective hash proofs as a means of
generalizing their original DDH-based construction [CS02]. This generalization
allowed them to create unified constructions of IND-CCA secure cryptosystems
based on Paillier’s Decisional Composite Residuosity (DCR) assumption and the
Quadratic Residuosity (QR) assumption.

Since their introduction, projective hash proof systems have proven to be an
effective tool for generalizing constructions that were originally proven secure
under the DDH assumption. Indeed, many important results use the framework
of projective hash proofs to take a system built using the DDH assumption and
instantiate it using the DCR or QR assumptions.

Cramer and Shoup [CS02] converted the DDH-based construction of IND-
CCA encryption [CS98] to one based on the DCR or QR assumptions. Kalai
and Halevi [Kal05, HK07] converted the DDH-based construction of OT given by
Naor and Pinkas [NP01] to one based on the DCR or QR assumptions. Brakerski
and Goldwasser [BG10] converted the DDH-based construction of circular secure
encryption given by Boneh, Halevi, Hamburg and Ostrovsky [BHHO08] to one
based on the DCR or QR assumptions1.

This series of works generalizing DDH-based constructions suggests the heuris-
tic that “anything that can be done with DDH can be done with DCR or QR.”
Like any heuristic it is not completely accurate, but it appears to provide the
right intuition.

While projective hash proof systems suggest a means for converting a
DDH-based scheme to a DCR or QR based scheme, the generality of pro-
jective hash proof systems framework often means that converting the actual
proofs of security can be fairly technical. This is evidenced in the works of
[CS02, Kal05, HK07, BG10] which provided significant technical contributions
beyond the original constructions of [CS98, NP01, BHHO08].

This work makes two contributions: First, we show that Lossy Trapdoor Func-
tions (LTFs) of Peikert and Waters [PW08] can be built under general assump-
tions, namely any homomorphic smooth hash proof system. This provides a
connection between two important cryptographic primitives. Second, we intro-
duce the Extended Decisional Diffie-Hellman (EDDH) assumption, and show
how it can be instantiated using the DCR and QR assumptions. This second
result provides a justification for the heuristic noted above that the DCR and

1 Brakerski and Goldwasser did not explicitly use the language of projective hash
proofs, but their construction fits the framework exactly.
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QR assumptions “imply” the DDH assumption. While the EDDH assumption
does not appear to be as general as the notion of projective hash proof systems,
its simplicity gives it some advantages. In particular, the EDDH assumption
provides a much simpler method for identifying which DDH-based constructions
can be instantiated under the DCR or QR assumptions, and proofs of security
under the EDDH assumption are almost identical to those under the DDH as-
sumption. Using the framework of EDDH, it becomes almost immediate that the
DDH constructions of [NP01, BHHO08, PW08] can be instantiated under the
DCR or QR assumptions with almost no modifications to the proofs of security.

As mentioned above, our first result is a construction of lossy trapdoor func-
tions (LTFs) from general assumptions. Lossy trapdoor functions were
introduced by Peikert and Waters [PW08]. LTFs provided the first injective
trapdoor functions based on the Decisional Diffie-Hellman (DDH) assumption,
and the first chosen ciphertext (IND-CCA) secure cryptosystem based on lattice
assumptions. In addition to providing natural constructions of injective trapdoor
functions and IND-CCA secure cryptosystems, Peikert and Waters went on to
show that LTFs provide very natural constructions of many cryptographic prim-
itives, including pseudo-random generators, collision-resistant hash functions,
and oblivious transfer. The extremely intuitive nature of these many construc-
tions provided early evidence of the value of LTFs as a cryptographic primitive.
Since the original work of Peikert and Waters, lossy trapdoor functions have been
shown to imply many other important cryptographic primitives. In [BFO08],
Boldyreva, Fehr and O’Neill showed that LTFs imply deterministic encryption.
Deterministic encryption was introduced in [BBO07], and captures the strongest
notion of security possible for a deterministic function. In contrast to one-way
functions, which do leak the parity of a random subset of the bits of its input
[GL89], deterministic encryption does not leak any fixed function2 of its input.
Deterministic encryption has applications to efficiently searchable encryption,
and securing legacy systems. Lossy trapdoor functions were then shown to im-
ply correlated product secure functions by Rosen and Segev in [RS09]. Roughly
a family of correlated product secure functions is a family of functions that re-
main one-way even when the output of multiple functions is given on the same
input. In [MY09], Mol and Yilek introduced a relaxation of lossy trapdoor func-
tions called slightly lossy trapdoor functions, and showed that even slightly lossy
trapdoor functions are sufficient to achieve correlated product secure functions.
Lossy functions, (without the need for a trapdoor) have been shown to imply
leaky pseudo-entropy functions [BHK11].

Lossy trapdoor functions have been constructed from a variety of concrete
hardness assumptions. In [PW08], Peikert andWaters constructed LTFs from the
DDH assumption and lattice assumptions, and an efficient construction of LTFs
from Paillier’s Decisional Composite Residuosity (DCR) assumption was given
independently in [BFO08] and [RS08]. In concurrent, independent work, Freeman
et al. [FGK+10] give constructions of LTFs from the D-Linear Assumption and
constructions of slightly lossy trapdoor functions from the QR assumption.

2 Independent of the choice of the key for the deterministic encryption.
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While we have seen a wide variety of important consequences of lossy trap-
door functions, there remains a lack of general constructions. This work provides
the first constructions of LTFs from generic primitives (in this case homomor-
phic smooth hash proof systems, and diverse group systems) as well as the first
construction of fully lossy trapdoor functions from the well-known Quadratic
Residuosity (QR) assumption.

This result has a number of other consequences. Applying our construction
to the results of [BFO08], we achieve the first construction of deterministic en-
cryption from smooth homomorphic hash proof systems. Applying our results
to those of [RS09], we give the only known construction of correlated product
secure functions from a generic primitive other than lossy trapdoor functions,3

and the first known construction of correlated product secure functions from
the QR assumption.4 Applying the separation of Rosen and Segev, we provide a
black-box separation of smooth homomorphic hash proof systems and one-way
trapdoor permutations.

The second contribution of this work is a development of the connection
between the DDH, DCR and QR assumptions. Projective hash proof systems
[CS02] showed that many properties of DDH-based protocols could be achieved
using the DCR or QR assumptions. In this work, we introduce the Extended
DDH (EDDH) assumption, and show how the EDDH assumption is implied by
the DDH, DCR and QR assumptions. One formulation of the DDH assump-
tion is that the distributions {g, ga, gb, gab}, {g, ga, gb, gc} are computationally
indistinguishable. Equivalently, {g, ga, gb, gab} ≈c {g, ga, gb, gabr} for some uni-
formly chosen element r in the group. The EDDH assumption is the same, except
that r is chosen from a subgroup instead of the entire group. Thus the EDDH
assumption states that {g, ga, gb, gab} and {g, ga, gb, gabr} are computationally
indistinguishable when r is chosen uniformly from a given subgroup of the uni-
verse group. See Definition 6 for the formal definition. The value of the EDDH
assumption is that it provides a very simple method for converting constructions
based on the DDH assumption into constructions which can be proven secure
under the DCR or QR assumptions. Since the semantics of the EDDH assump-
tion are very similar to those of the DDH assumption in many cases proofs of
security under the DDH assumption go through almost unchanged under the
EDDH assumption.

1.1 Previous Work

Lossy Trapdoor Functions (LTFs) were introduced by Peikert and Waters in
[PW08], simultaneously providing the first construction of one-way trapdoor

3 There are two concrete constructions of correlated product secure functions that
are not lossy trapdoor functions. A construction based on the Learning With Error
(LWE) problem given by Peikert in [Pei09], and a construction based on the hardness
of syndrome decoding given by Freeman et al. in [FGK+10].

4 A completely different construction of correlated product secure functions from the
QR assumption is given in the concurrent, independent work of Freeman et al.
[FGK+10].
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functions from the Decisional Diffie Hellman and the first IND-CCA secure cryp-
tosystem based on lattice assumptions.

Roughly, a family of lossy trapdoor functions is a family of functions with two
computationally indistinguishable branches. An injective branch with a trap-
door, and a lossy branch which statistically loses information about its input, in
particular the image size of the lossy branch is required to be much smaller than
its domain size. If the lossy branch is lossy enough, this immediately implies
that the injective branch is an injective one-way trapdoor function. Peikert and
Waters gave constructions of lossy trapdoor functions from the DDH assumption
and lattice-based assumptions. In [BFO08], [RS08], Boldyreva et al. and Rosen
and Segev gave efficient constructions of lossy trapdoor functions from Paillier’s
DCR assumption. A construction of lossy trapdoor functions from the D-Linear
assumption, and slightly lossy trapdoor functions from the QR assumption are
given in the concurrent, independent work of [FGK+10].

Lossy trapdoor functions are known to imply IND-CCA secure encryption. In
addition to IND-CCA secure encryption, LTFs were shown to imply collision-
resistant hash functions [PW08], deterministic encryption [BFO08], lossy en-
cryption [PVW08] and correlated product secure functions [RS09].

Projective Hash Proof Systems were introduced by Cramer and Shoup in
[CS02], generalizing their construction of IND-CCA encryption from the Deci-
sional Diffie-Hellman (DDH) assumption given in [CS98]. In [CS02], Cramer and
Shoup defined two types of hash proof systems, smooth projective hash fami-
lies, which immediately implied IND-CPA secure encryption, and universal hash
families, which could be used as a type of designated verifier proof system for
the specific class of language given by smooth projective hash families. They
went on to show that universal hash proof systems imply smooth projective
hash proof systems, so it was sufficient to construct only universal hash proof
systems. Their general construction, however, was fairly inefficient, and in all of
their constructions they were able to avoid the general construction of smooth
projective hash proof systems, and create efficient smooth projective hash proof
systems directly. In this work, we will deal only with smooth projective hash
proof systems.

In order to construct explicit hash proof systems, Cramer and Shoup defined
another primitive called a Diverse Group System. Diverse Group Systems seemed
to capture the essential part of the algebraic structure of a cyclic group, and they
gave a very natural construction of projective hash proof systems from Diverse
Group Systems. They went on to construct diverse group systems from the DDH
assumption, the Quadratic Residuosity (QR) assumption and the Decisional
Composite Residuosity (DCR) assumption.

The first result of this work is a proof that smooth homomorphic hash proof
systems imply lossy trapdoor functions. By providing a link between smooth
homomorphic hash proof systems, and lossy trapdoor functions, we provide a
number of new connections as well. This work provides the first construction
of lossy trapdoor functions from a generic primitive. Additionally, it provides
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the first construction of deterministic encryption from smooth homomorphic
projective hash proof systems.

Our first result uses the framework of smooth projective hashing to generalize
the DDH-based construction of LTFs from [PW08]. Smooth projective hash
proof systems have been used to generalize DDH-based constructions in the past.
Kalai and Halevi [Kal05, HK07] used them to generalize Naor and Pinkas’s OT
protocol [NP01], and Brakerski and Goldwasser [BG10] generalized the circular
secure encryption of Boneh, Halevi, Hamburg and Ostrovsky [BHHO08] using
the same framework. This series of results indicates a close relationship between
the DDH, DCR and QR assumptions.

The second result of this work is a development of the connection between the
DDH, DCR and QR assumptions. One of the most useful features of projective
hash proof systems is that they provide a framework for converting cryptographic
schemes designed under the DDH assumption into cryptographic schemes that
are provably secure under the DCR or QR assumptions. While projective hash
proof systems showed a close connection between the DDH, DCR and QR as-
sumptions, generality of projective hash proof systems makes this connection dif-
ficult to see. To make the connection between these three hardness assumptions
clearer, we introduce the EDDH assumption and show how it can be realized
under the DCR and QR assumptions. The benefit of the EDDH assumption is
that it is semantically very similar to the DDH assumption, so many existing
constructions whose security rests on the DDH assumption (including the con-
struction of LTFs by Peikert and Waters) can immediately be instantiated under
the DCR or QR assumptions. In particular, we note that the proof of [PW08]
can be instantiated using the EDDH assumption. This gives a novel construction
of LTFs from the DCR assumption and the first construction of LTFs from the
QR assumption.

1.2 Our Contributions

In this work, we show that smooth homomorphic hash proof systems imply
lossy trapdoor functions (LTFs). It was shown in [BFO08] that lossy trapdoor
functions imply deterministic encryption, so our results give the first construction
of deterministic encryption from smooth homomorphic hash proof systems.

In [RS09], Rosen and Segev introduced correlated product secure functions,
and showed that lossy trapdoor functions are correlated product secure. Apply-
ing their results to our construction, we have a construction of correlated product
secure functions from smooth homomorphic hash proof systems. Finally, com-
bining our results with the black-box separations of Rosen and Segev [RS09], we
find that there is a black-box separation between one-way trapdoor permutations
and smooth homomorphic hash proof systems.

Our primary results are summarized as follows:

Theorem. Smooth Homomorphic Projective Hash Proof Systems imply Lossy
Trapdoor Functions.
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This theorem has a number of immediate Corollaries. Since Boldyreva et
al. [BFO08] showed that LTFs imply deterministic encryption (as defined in
[BBO07]), we have

Corollary. Smooth Homomorphic Projective Hash Proof Systems imply deter-
ministic encryption.

Since Rosen and Segev [RS09] showed that LTFs imply correlated product
secure encryption, and a black-box separation between one-way trapdoor per-
mutations and lossy trapdoor functions, we have

Corollary. Smooth Homomorphic Projective Hash Proof Systems imply corre-
lated product secure functions.

Corollary. There is a black-box separation between Smooth Homomorphic Pro-
jective Hash Proof Systems and one-way trapdoor permutations, i.e. there exists
an oracle, relative to which the latter exists but the former does not.

In addition to the new constructions outlined above, in Section 4 we introduce
the Extended Decisional Diffie Hellman (EDDH) assumption, which provides a
simple way to achieve a DDH-like property under the DCR and QR assumptions.
This serves to unify many of the previous constructions (e.g. [NP01] and [Kal05,
HK07], [BHHO08] and [BG10]), and provides a more familiar alternative to
projective hash proof systems.

Applying these results yields lossy trapdoor functions from the DDH, DCR
and QR assumptions. When applied to DDH, the construction achieved in this
way is identical to the construction of LTFs given by Peikert and Waters in
[PW08], however the constructions from the DCR and QR assumptions are new.
While our construction of LTFs from the DCR assumption is less efficient than
that given by [BFO08] and [RS08], our results provide the first construction of
lossy trapdoor functions from the QR assumption.

2 Preliminaries

2.1 Notation

If A is a Probabilistic Polynomial Time (PPT) machine, then we use a
$← A to

denote running the machine A and obtaining an output, where a is distributed

according to the internal randomness of A. If R is a set, we use r
$← R to denote

sampling uniformly from R.
We use the notation

Pr[r
$← R;x

$← X : A(x, r) = c],

to denote the probability that A outputs c when x is sampled uniformly from X
and r is sampled uniformly from R. We define the statistical distance between
two distributions X,Y to be

Δ(X,Y ) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]|
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If X and Y are families of distributions indexed by a security parameter λ, we
use X ≈s Y to mean the distributions X and Y are statistically close, i.e.,
for all polynomials p and sufficiently large λ, we have Δ(X,Y ) < 1

p(λ) . We

use X ≈c Y to mean X and Y are computationally close, i.e., for all PPT
adversaries A, for all polynomials p, then for all sufficiently large λ, we have
|Pr[AX = 1]− Pr[AY = 1]| < 1/p(λ).

2.2 Lossy Trapdoor Functions

We briefly recall the definition of lossy trapdoor functions given in [PW08].
A tuple (Sltdf, Fltdf , F

−1
ltdf) of PPT algorithms is called a family of (n, k)-Lossy

Trapdoor Functions if the following properties hold:

– Sampling Injective Functions: Sltdf(1
λ, 1) outputs s, t where s is a func-

tion index, and t its trapdoor. We require that Fltdf(s, ·) is an injective
deterministic function on {0, 1}n, and F−1

ltdf(t, Fltdf(s, x)) = x for all x.
– Sampling Lossy Functions: Sltdf(1

λ, 0) outputs (s,⊥) where s is a func-
tion index and Fltdf(s, ·) is a function on {0, 1}n, where the image of Fltdf(s, ·)
has size at most 2n−k.

– Indistinguishability: The first outputs of Sltdf(1
λ, 0) and Sltdf(1

λ, 1) are
computationally indistinguishable.

2.3 Subset Membership Problems

In this section we recall the definition of of a subset membership problem as
formalized in [CS02]. Roughly, given sets L ⊂ X , we want L and X to be
computationally indistinguishable.

Formally, given a family of sets (X,L,W ) indexed by a security parameter
λ, we require L ⊂ X , and there is a binary relation R : X ×W → {0, 1}. If
R(x,w) = 1, we say that w is a witness for x. In this work, we will restrict our
attention to relations R such that for all x ∈ L, there exists a w ∈W such that
R(x,w) = 1, and for all x �∈ L, and all w ∈ W , R(x,w) = 0.

We also need the following efficient sampling algorithms.

– Instance Sampling:Given a security parameter λ, we can sample (X,L,W )
and R.

– SamplingWithoutWitness:Given (X,L,W ) we can sample (statistically-
close to) uniformly on X .

– Sampling With Witness: Given (X,L,W ) we can sample x (statistically-
close to) uniformly on L, along with a witness w such that R(x,w) = 1.

Definition 1. A subset membership problem is called hard if for all PPT dis-
tinguishers,

|Pr[x $← X : D(x) = 1]− Pr[x
$← L : D(x) = 1]| < ν(λ),

for some negligible function ν.
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As in [CS02], the security of all of our constructions will rely on the security
of some underlying hard subset membership problem. In fact, the hardness as-
sumptions DDH, DCR and QR all have natural formulations in terms of hard
subset membership problems [CS02].

2.4 Smooth Hash Proof Systems

We briefly recall the notion of smooth projective hash families as defined by
Cramer and Shoup in [CS02]. Let H be a function family indexed by keys in
the a keyspace K, i.e. for each k ∈ K, Hk : X → Π . Let L ⊂ X and a
“projection” α : K → S. We require efficient evaluation algorithms such that, for
any x ∈ X , Hk(x) is efficiently computable using k ∈ K. Using the terminology
of [CS02], this is called the private evaluation algorithm. Finally we require
efficient sampling algorithms to sample uniformly from X , uniformly from K,
and uniformly from L along with a witness. The security properties of the system
will follow from the indistinguishability of X and L.

Definition 2. The set HPS = (H,K,X,L,Π, S, α) is a projective hash family
if, for all k ∈ K, the action of Hk on the subset L is completely determined by
α(k).

For a projective hash family, α(k) determines the output of Hk on L. Addi-
tionally, if x ∈ L and a witness w for x ∈ L is known, then we require that Hk(x)
is efficiently computable given x,w, α(k). This is called the public evaluation al-
gorithm. A smooth projective hash family is one in which α does not encode any
information about the action of Hk on X \ L.

Definition 3. Let (H,K,X,L,Π, S, α) be a projective hash family, and define
two distributions Z1, Z2 taking values on the set X \ L × S × Π. For Z1, we

sample k
$← K, x

$← X \ L, and set s = α(k), π = Hk(x), for Z2 we sample

k
$← K, x

$← X \ L, and π
$← Π, and set s = α(k). The projective hash family

is called ν-smooth if Δ(Z1, Z2) < ν.

This means that, given α(k) and x ∈ X\L,Hk(x) is statistically close to uniform
on Π .

In [CS02], they showed that smooth projective hash families immediately
imply IND-CPA secure encryption by taking sk = k, pk = α(k), and to encrypt
a message m ∈ Π , we sample x ∈ L along with randomness and output E(m) =
(x,Hk(x) +m).

We extend the definition of smooth projective hash proof systems slightly

Definition 4. If HPS = (H,K,X,L,Π, S, α) is a projective hash family, we say
that HPS is a homomorphic projective hash family if X is a group, and for all
k ∈ K, and x1, x2 ∈ X, we have Hk(x1) +Hk(x2) = Hk(x1 + x2), that is to say
Hk is a homomorphism for each k.

In [CS02] Cramer and Shoup provide smooth homomorphic projective hash
families based on the DDH, DCR and QR assumptions.
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3 Lossy Trapdoor Functions from Smooth Homomorphic
Hash Proof Systems

Peikert and Waters [PW08] gave a construction of lossy trapdoor functions from
the Decisional Diffie-Hellman (DDH) assumption. In this section, we show that a
similar construction goes through with smooth homomorphic hash proof systems.
This extends the intuition given in [CS02] that projective hashing provides a
good generalization of the DDH assumption. We note, however, that although
our construction is very similar that of [PW08], the proofs of security are quite
different.

Let (X,L,W ) be a hard subset membership problem. For notational con-
venience, we suppress the dependence on the security parameter λ. Let H =
(H,K,X,L,Π, S, α) be an associated smooth homomorphic projective hash fam-
ily.

• Key Generation:
Pick x1, . . . , xn ∈ L.
Fix b ∈ Π \ {0}.
Generate the matrix B = (Bij) ⊂ Πn×n, where Bij = 0 if i �= j, and
In lossy mode Bii = 0 for all i.
In injective mode Bii = b.

Sample k1, . . . , kn ← K, and output

R =

⎛⎜⎝ x1
...
xn

⎞⎟⎠ A =

⎛⎜⎝Hk1(x1) +B11 · · · Hk1(xn) +B1n

...
. . .

...
Hkn(x1) +Bn1 · · · Hkn(xn) +Bnn

⎞⎟⎠
The trapdoor will be (k1, . . . , kn).

• Evaluation:
Given a message z = z1, . . . , zn ∈ {0, 1}n
Given a function index R,A, calculate

FR,A(z) = (Rz,Az) =

⎛⎜⎝ n∑
i=1

zixi,

⎛⎜⎝
∑n

i=1 zi(Hk1(xi) +B1i)
...∑n

i=1 zi(Hkn(xi) +Bni)

⎞⎟⎠
⎞⎟⎠ .

• Trapdoor:
Given a value (Rz,Az), and a trapdoor (k1, . . . , kn), we begin by noting that
the homomorphic property of Hk guarantees that

FR,A(z) = (Rz,Az) =

⎛⎜⎝ n∑
i=1

zixi,

⎛⎜⎝
∑n

i=1 zi(Hk1(xi) +B1i)
...∑n

i=1 zi(Hkn(xi) +Bni)

⎞⎟⎠
⎞⎟⎠
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=

⎛⎜⎝ n∑
i=1

zixi,

⎛⎜⎝Hk1 (
∑n

i=1 zixi) +
∑n

i=1 ziB1i)
...

Hkn (
∑n

i=1 zixi) +
∑n

i=1 ziBni)

⎞⎟⎠
⎞⎟⎠

Since
∑n

i=1 zixi, and ki is known, we can calculate Hki (
∑n

i=1 zixi) and sub-
tract it from each component to recover the vector(

n∑
i=1

ziB1i, · · · ,
n∑

i=1

ziBni

)t

.

Now, in injective mode, Bij = 0 ∈ Π for i �= j, and Bij = b for i = j, so(
n∑

i=1

ziB1i, · · · ,
n∑

i=1

ziBni

)t

= (z1b, · · · , znb) .

Since the zi ∈ {0, 1}, and since b is known, we can recover the zi by inspection.

Remark: Notice that we do not make use of the projection α in our construc-
tion, it will appear, however, in the proof of security. Unlike in [CS02], we do
not require that α be efficiently computable, merely that it exists.

We now examine the security of this construction.

Lemma 1. In Lossy Mode, the image of F has size at most |X |.

Proof. Notice that in Lossy Mode, since Bij = 0 for all i, j,

FR,A(z) =

⎛⎜⎝ n∑
i=1

zixi,

⎛⎜⎝Hk1 (
∑n

i=1 zixi))
...

Hkn (
∑n

i=1 zixi))

⎞⎟⎠
⎞⎟⎠

which depends only on the sum
∑n

i=1 zixi ∈ X . Thus the size of the image is
bounded by |X |.

Thus by taking n > log(|X |), we can make the lossy mode of F as lossy as
desired.

Lemma 2. The Injective and Lossy Modes are computationally indistinguish-
able.

The proof can be found in the full version of this work. We remark that this
construction does not make use of the projection α. The projective property is
used, however, since we condition on Hk(x) for x ∈ L, which leaves at least as
much entropy in k as conditioning on α(k), since α(k) determines Hk(x).

A similar construction and proof goes through for Diverse Group Systems (see
the full version of this work for details). Thus we arrive at

Theorem 1. Smooth Homomorphic Projective Hash Proof Systems imply Lossy
Trapdoor Functions, and Diverse Group Systems imply Lossy Trapdoor Func-
tions.



638 B. Hemenway and R. Ostrovsky

This theorem has a number of immediate Corollaries. Since Boldyreva et
al. [BFO08] showed that LTFs imply deterministic encryption (as defined in
[BBO07]), we have Corollary 1. Since Rosen and Segev [RS09] showed that LTFs
imply correlated product secure encryption, we have Corollary 2. Since Rosen
and Segev showed a black-box separation between one-way trapdoor permuta-
tions and lossy trapdoor functions, we have Corollary 3.

Corollary 1. Smooth Homomorphic Projective Hash Proof Systems imply de-
terministic encryption.

Corollary 2. Smooth Homomorphic Projective Hash Proof Systems imply cor-
related product secure functions.

Corollary 3. There is a black-box separation between Smooth Homomorphic
Projective Hash Proof Systems and one-way trapdoor permutations, i.e. there
exists an oracle, relative to which the latter exists but the former does not.

4 The Extended DDH Assumption

In this section, we introduce the Extended Decisional Diffie Hellman (EDDH)
assumption. Let G be commutative group (written multiplicatively). The DDH
assumption states that

Definition 5 (The DDH Assumption). Assume G is a group with an ef-
ficient sampling algorithm, and K = {1, . . . , |G|}. Then the DDH assumption
states that

{(g, ga, gb, gab) : g $← G, a, b
$← K} ≈c {(g, ga, gb, gc) : g $← G, a, b, c

$← K, }

When G is a cyclic group, this can be rephrased as

{(g, ga, gb, gab) :g $← G, a, b
$← K} ≈c {(g, ga, gb, gabh) :g $← G, a, b

$← K,h
$← G}

We introduce a slight modification of the DDH assumption, called the Ex-
tended Decisional Diffie Hellman (EDDH) assumption.

Definition 6 (The EDDH Assumption). For a group G, and a (samplable)
subgroup H $G, the extended decisional diffie hellman (EDDH) problem is said
to be hard if there exists a samplable set G ⊂ G and samplable sets K ⊂ Z such
that the following two distributions are computationally indistinguishable:

{(g, ga, gb, gab) :g $← G, a, b
$← K} ≈c {(g, ga, gb, gabh) :g

$← G, a, b
$← K,h

$← H}

It is not hard to see:

Lemma 3. If K = {1, . . . , |G|}, and H = G, then the EDDH assumption is just
the DDH assumption in the group G.
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The utility of this assumption is that it extracts the essential properties of
the DDH assumption, yet it can be instantiated under the QR assumption and
the DCR assumption. See the full version of this work for example applications
of the EDDH assumption.

We begin by showing that the DCR assumption [Pai99] implies the EDDH
assumption.

Theorem 2 (DCR implies EDDH). Let p, q be safe primes5 and define:

– N = pq,

– G = {x : x
$← Z∗

N2 ,
(
x
N

)
= 1},

– G = {g2N mod N2 : g
$← ZN2},

– K = {0, . . . ,
⌊
N2/4

⌋
} = {0, . . . , (N2 − 1)/4},

– H = {(1 + aN) : a ∈ ZN} = {(1 +N)a mod N2 : a ∈ ZN}.

Then under the DCR assumption the EDDH assumption is hard in the group G.

Proof. Define the following distributions Let Ĝ = {g2N(1 +N) mod N2 : g
$←

ZN2}.

Λ1 = {(g, ga, gb, gab) : g $← G, a
$← K, b

$← K}

Λ2 = {(g, x, gb, xb) : g $← G, x
$← Ĝ, b

$← K}

Λ3 = {(g, x, gb, xbh) : g $← G, x
$← Ĝ, b

$← K,h
$← H}

Λ4 = {(g, ga, gb, gbh) : g $← G, a
$← K, b

$← K,h
$← H}

1. The DCR assumption says {g2 mod N2 : g
$← ZN2} ≈c {g2N mod N2 :

g
$← ZN2}. Thus

G = {g2N mod N2 : g
$← ZN2}

≈c {g2 mod N2 : g
$← ZN2}

= {g2(1 +N) mod N2 : g
$← ZN2}

≈c {g2N(1 +N) mod N2 : g
$← ZN2}

= Ĝ.

Now, notice that for a fixed generator g of G,

{ga mod N2 : a
$← K} ≈s {ga mod N2 : a

$← {0, 1, . . . , ϕ(N)/4}} ≈s G

5 Choosing p, q safe primes makes the analysis slightly simpler. See the full version of
this work for a complete discussion.
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(See the full version of this work for a rigorous proof of this fact). We also
know that with all but negligible probability a uniformly chosen element

g
$← G will be a generator for G, so this implies Λ1 ≈c Λ2.

2. If x = g2N1 (1 + N), then xb = g2Nb
1 (1 + N)b = g

2N(b mod Nϕ(N)/4)
1 (1 +

N)b mod N mod N2. Since the distribution of b is statistically close to uni-
form modulo Nϕ(N)/4, we have that b is statistically close to uniform mod-
ulo N even conditioned on any value of b modulo ϕ(N)/4. Since the order
of g is ϕ(N)/4, the distribution of b modulo N is statistically close to uni-
form conditioned on gb. Thus, even conditioned on gb, the distribution of

xb is statistically close to g1h where g1
$← G, and h

$← H, which shows
{(g, x, gb, xb)} ≈s {(g, x, gb, xbh)}. Thus Λ2 ≈s Λ3.

3. We have already observed that G ≈c Ĝ, so Λ3 ≈c Λ4.

It is standard to conserve randomness by sampling a
$← {0, . . . , (N − 1)/4}, and

b
$← {0, . . . , (N2 − 1)/4}. It is easy to see that security is preserved in this case

as well. Since the exposition is cleaner if they are sampled from the same space,
and a few DDH applications require it, our scheme samples them from the same
larger space.

Next, we show that the QR assumption implies the EDDH assumption.

Theorem 3 (QR Implies EDDH). Let p, q be safe primes with p = q = 3
mod 4, and define:

– N = pq,

– G = {x : x
$← Z∗

N ,
(
x
N

)
= 1},

– G = {g2 mod N : g
$← ZN},

– K = {0, . . . , �N/2},
– H = {±1}.

Then under the QR assumption the EDDH assumption is hard in the group G.

Proof. Since p = q = 3 mod 4, −1 is a quadratic non-residue modulo N with
jacobi symbol 1.

Define the following distributions

Λ1 = {(g, ga, gb, gab) : g $← G, a
$← K, b

$← K}

Λ2 = {(g, x, gb, xb) : g $← G, x
$← G, b $← K}

Λ3 = {(g, x, gb, xbh) : g $← G, x
$← G, b $← K,h

$← H}

Λ4 = {(g, ga, gb, gbh) : g $← G, a
$← K, b

$← K,h
$← H}

1. The QR assumption says

G = {x : x
$← Z∗

N ,
( x

N

)
= 1} ≈c {g2 mod N : g

$← ZN} = G
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Now, notice that for a fixed generator g of G,

{ga mod N : a
$← K} ≈s {ga mod N : a

$← {0, 1, . . . , ϕ(N)/4}} ≈s G

(See the full version for a rigorous proof of this fact.) We also know that

with all but negligible probability a uniformly chosen element g
$← G will be

a generator for G, so this implies Λ1 ≈c Λ2.

2. If x = −g21 , then xb = g2b1 (−1)b = g
2(b mod ϕ(N)/4)
1 (−1)b mod 2 mod N.

Since the distribution of b is statistically close to uniform modulo ϕ(N)/2, we
have that b is statistically close to uniform modulo 2 even conditioned on any
value of b modulo ϕ(N)/4. Since the order of g is ϕ(N)/4, the distribution
of b modulo 2 is statistically close to uniform conditioned on gb. Thus, even
conditioned on gb, the distribution of xb is statistically close to g1h where

g1
$← G, and h

$← {±1}, which shows {(g, x, gb, xb)} ≈s {(g, x, gb, xbh)}.
Thus Λ2 ≈s Λ3.

3. We have already observed that G ≈c G, so Λ3 ≈c Λ4.

As in the case of the DCR based schemes, it is standard to conserve randomness

by sampling a from a smaller space than b. In particular, we can sample a
$←

{0, . . . , (N − 1)/4}, and b $← {0, . . . , (N2− 1)/4}. For the reasons outlined above
we present this simpler (though slightly less efficient) variant.

It is not too hard to see that the construction of LTFs given by Peikert and
Waters in [PW08] carries through under the EDDH assumption. This imme-
diately gives new constructions of LTFs based on the QR assumption and the
DCR assumption. See the full version of this work for details.

This provides the first construction of full LTFs from the QR assumption, and
a novel construction of LTFs from the DCR assumption.

5 Conclusion

In this work, we showed that the intuition that hash proof systems are a natural
generalization of the Decisional Diffie-Hellman (DDH) assumption holds in the
case of lossy trapdoor functions as well. In particular, we showed that the con-
struction of lossy trapdoor functions from DDH given in [PW08] can be made
to work with any smooth homomorphic projective hash (or any diverse group
system). This shows an interesting connection between these two powerful prim-
itives and provides the first generic6 construction of lossy trapdoor functions
from any primitive.

When applied to the results of [BFO08], we obtain the first construction of
deterministic encryption from smooth homomorphic hash proof systems. Com-
bining our work with the negative results of [RS09], we obtain a black-box sepa-
ration between one-way trapdoor permutations and smooth homomorphic hash
proof systems.

6 i.e. not based on specific number theoretic assumptions
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To reinforce the intuition that the DCR and QR assumptions can be used
to replace the DDH assumption, we introduced the Extended Decisional Diffie
Hellman (EDDH) assumption and showed that the DCR and QR assumptions
imply the EDDH assumption. This provides a simple method for converting most
DDH-based protocols into protocols whose security can be based on either the
DCR or QR assumptions. In particular, this framework gives novel constructions
of LTFs from the DCR assumption, and the first known constructions of fully
lossy trapdoor functions from the QR assumption.
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Abstract. We introduce and study a new type of DDH-like assumptions
based on groups of prime order q. Whereas standard DDH is based on
encoding elements of Fq “in the exponent” of elements in the group,
we ask what happens if instead we put in the exponent elements of
the extension ring Rf = Fq[X]/(f) where f is a degree-d polynomial.
The decision problem that follows naturally reduces to the case where
f is irreducible. This variant is called the d-DDH problem, where 1-
DDH is standard DDH. We show in the generic group model that d-
DDH is harder than DDH for d > 1 and that we obtain, in fact, an
infinite hierarchy of progressively weaker assumptions whose complexities
lie “between” DDH and CDH. This leads to a large number of new
schemes because virtually all known DDH-based constructions can very
easily be upgraded to be based on d-DDH. We use the same construction
and security proof but get better security and moreover, the amortized
complexity (e.g, computation per encrypted bit) is the same as when
using DDH. We also show that d-DDH, just like DDH, is easy in bilinear
groups. We therefore suggest a different type of assumption, the d-vector
DDH problems (d-VDDH), which are based on f(X) = Xd, but with
a twist to avoid problems with reducible polynomials. We show in the
generic group model that d-VDDH is hard in bilinear groups and that
the problems become harder with increasing d. We show that hardness
of d-VDDH implies CCA-secure encryption, efficient Naor-Reingold style
pseudorandom functions, and auxiliary input secure encryption. This can
be seen as an alternative to the known family of k-LIN assumptions.

1 Introduction

The computational Diffie-Hellman assumption (CDH, proposed by Diffie and
Hellman in [DH76]), says that if one chooses random g in a finite group G and
random exponents a, b, then given g, ga, gb it is hard to compute gab. The assump-
tion was introduced as basis for the well-known Diffie-Hellman key exchange.
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However, to get efficient cryptographic constructions one needs the stronger
Decisional Diffie-Hellman assumption (DDH, studied by Naor and Reingold in
[NR97]). It says that given g, ga, gb, the group element gab is pseudorandom, i.e.,
cannot be efficiently distinguished from gc for a random c. In some groups, the
DDH assumption is clearly false, but it is widely conjectured to hold when G is,
for instance, a large prime order subgroup of F∗

p or an elliptic curve group.
DDH has been used as the basis for a very wide range of efficient crypto-

graphic primitives, such as pseudorandom functions (PRF) [NR97], hash-proof
systems and CCA-secure public-key encryption [CS98], leakage resilient cryp-
tography (in particular, auxiliary input security [DGK+10]), and circular secure
encryption [BHHO08].

Similar efficient constructions are not known under the weaker CDH assump-
tion (unless one assumes random oracles) and this has motivated a large body
of research studying weaker variants of DDH that would still enable crypto-
graphic constructions. A well-known example is a family of assumptions called
the k-LIN assumptions (where k = 1 is simply the standard DDH assump-
tion) [BBS04, HK07, Kil07, Sha07]. In the generic group model, these assump-
tions are known to become progressively weaker for increasing k.

In this paper we initiate a study of a new family of assumptions that form
natural extensions of DDH in prime order groups: if G has prime order q, and we
fix a generator h, then an element g ∈ G “encodes” an element a ∈ Fq namely
the a for which g = ha. Intuitively we can think of a copy of Fq sitting in the
exponent, and we can add field elements by multiplying in G, and multiply by
known constants by doing exponentiation. However, if CDH is hard, we cannot do
general multiplication, i.e., compute gab from ga, gb. If DDH is hard, we cannot
even distinguish the correct result from random. Now, let us instead consider the
extension ringRf = Fq[X ]/(f) where f is a degree-d polynomial. It is well-known
that an element w ∈ Rf can be represented as a vector (w0, ..., wd−1) ∈ Fd

q . We

can therefore represent w by a tuple of d group elements (hw0 , ..., hwd−1) ∈ Gd.
Addition in Rf now becomes multiplication in Gd, and multiplication by a known
constant a ∈ Rf can be done (as we shall see) by applying a linear function in
the exponent. This is simply because in Rf multiplication by a constant a acts as
a linear mapping on the vector (w0, ..., wd−1). More details will be given below,
but the essence is that if we set g = (hw0 , ..., hwd−1) ∈ Gd and take any a ∈ Rf ,
we can define ga in a completely natural way, namely as the d-tuple of elements
in G that represent wa. This leads to defining the f -DDH problem as follows:
given

(
g,ga,gb,gc

)
, where a,b,c ∈ Fqd ,g ∈ Gd, decide if c is random or c = ab.

It is not hard to see that f1-DDH and f2-DDH are equivalent whenever Rf1

is isomorphic to Rf2 , and also that f2-DDH is no harder than f1-DDH where f1
is an irreducible factor in f2. So it is natural to consider only the case where f is
irreducible of degree d, in which case Rf = Fqd . This variant is called d-DDH1.
We show that if d1 divides d2, so that Fqd1 is a subfield of Fqd2 , then d2-DDH is

1 The d-DDH assumption should not be confused with the previously known k-DDH
assumption which is completely different and is stronger than DDH (see, e.g., [BB04,
DY05, BMR10] for details on and applications of this assumption).
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at least as hard as d1-DDH. Conversely, we show in the generic group model that
d-DDH for d > 1 is harder than DDH, and that d2-DDH is harder than d1-DDH
if d1|d2 and d2 > 4(3d1 − 2). Thus we get an infinite hierarchy of progressively
weaker assumptions whose complexities lie “between” DDH and CDH.

From a basic research point of view, we believe this result is interesting because
it contributes to understanding a very natural class of assumptions. Moreover,
the proof is interesting from a technical point of view: proofs in the generic
group model usually work by arguing that the adversary fails because he cannot
compute expressions “in the exponent” of sufficiently high degree. This approach
completely fails in our case, instead we have to solve a much harder task, namely
we show that the ability to verify whether certain degree-2 equations are satisfied,
does not allow verification of a different class of degree-2 equations.

From a more practical point of view, d-DDH gives us a large number of new
schemes “for free” because virtually all known cryptographic constructions based
on DDH can very easily be upgraded to be based on d-DDH: exactly the same
construction and security proof applies but we get better security. Moreover,
the amortized complexity of resulting schemes (e.g., computation per encrypted
bit) is the same as when using DDH. We explain this in more detail in Sec-
tion 5. In contrast, using the family of k-LIN assumptions is less attractive:
The known DDH-based primitives have to be generalized to k-LIN and reproved
from scratch, and one suffers a loss of efficiency that increases with k (also in
the amortized sense).

How significant is the security advantage of using d-DDH? Given that in
appropriately chosen groups, we do not know how to attack even the weakest
variant, this can only be a matter of opinion. One may of course take the position
that extending DDH is not useful: one can choose to believe that if DDH turns
out to be easy, the algorithm will “probably” be so general that it can solve
d-DDH for any d. This, on the other hand, is an argument that can made in
exactly the same way against any known class of assumptions that generalize
DDH, such as the k-LIN assumptions. With current state of the art, there is no
way to settle this question. What our result does guarantee, however, is that if
someone finds an efficient algorithm for DDH, even a non-generic one, there is
no generic black-box reduction that turns it into an algorithm for 2-DDH, for
instance. To render the d-DDH assumptions useless, one needs to solve the entire
hierarchy using a non-generic reduction or a completely general algorithm.

We believe that in applications of cryptography, one should always minimize
the risk of ones assumption being broken. And if the risk can potentially be
made smaller at very little extra cost by modifying the application, there is
good reason to do this. We therefore believe that using, e.g, 2-DDH instead of
DDH is a ‘good deal” in practice.

Everything we said so far applies to groups where no bilinear map is available,
such as prime order subgroups of Z∗

p or compact elliptic curve based groups. In
bilinear groups, however, it turns out that d-DDH, just like DDH, is easy. This
fact motivates our suggestion of an alternative family of problems: we observe
that by omitting some group elements from an instance of f -DDH, one can
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obtain a problem that is hard, even if f is reducible. Based on this, we propose
the d-vector DDH (d-VDDH) assumptions, based on f(X) = Xd. We show in the
generic group model that the d-VDDH assumption holds even in bilinear groups.
In fact, it holds even given a d-linear map, which can be thought of as an oracle
allowing the adversary to compute expressions of degree d in the exponent. This
means that the d-VDDH assumptions become progressively weaker for increasing
d. We show that the d-VDDH assumption implies CCA-secure encryption and
efficient Naor-Reingold style pseudorandom functions. We also construct another
cryptosystem based on the d-VDDH assumption, very similar to the BHHO
scheme [BHHO08]. We show that this scheme is auxiliary input secure, a strong
form of leakage resilience where full information on the secret key can be leaked,
as long as the key remains hard to compute.

In bilinear groups, the family of d-VDDH assumptions can therefore be seen
as an alternative to the (incomparable) family of k-linear assumptions.

A final related work that should be mentioned is [HYZX08] in which an as-
sumption called EDDH is proposed, which is our 2-DDH assumption. This is
the only prior work we know of that mentions a DDH variant based on ring
extensions. It is claimed in [HYZX08] that DDH reduces to EDDH and that in
the generic group model EDDH is hard, even in bilinear groups. The first result
is correct, but we could not verify the proof. In this paper, we give a different
proof of a more general statement. The second claim is false, and is refuted by
our result that d-DDH for any d is easy in bilinear groups.

2 Preliminaries

2.1 Notation

If S is a set, we write x ← S meaning that x is sampled uniformly from S. If
x ∈ Fm

q is a vector, we write x[i] for the ith entry of x. We say that a function
f : N→ R is negligible if, for every polynomial p, there exists an integer np ∈ N
such that f(n) < 1/p(n) for every n > np. If X and Y are two random variables,

we say that X and Y are computationally indistinguishable (X
c≈ Y ) if their

computational distance is negligible. Furthermore, throughout the paper, vectors
are denoted by bold lowercase letters.

A d-linear map e : Gd → GT is an efficiently computable map such that
e(g, . . . , g) �= 1 and e(ga1

1 , . . . , gad

d ) = e(g1, . . . , gn)
∏

ai , for all gi in G and for all
ai in Fq. A d-linear group G is a group G together with a d-linear map.

3 Extension Rings and DDH

We consider here a finite field Fq of prime order q and its extension with a
polynomial f of degree d. By this we obtain the ring Rf = Fq[X ]/(f), where an
element v can be written as v0 + · · · + vd−1X

d−1 + (f). However, we can also
represent v by the matrix V = v0Id + v1Af + · · ·+ vd−1A

d−1
f , where Id is the d-

dimensional identity matrix and Af is the so-called companion matrix of f . The
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companion matrix of a monic polynomial f = Xd+αd−1X
d−1+ · · ·+α1X

1+α0

is given by the d× d matrix

Af =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

...
...

. . .
...

...
0 0 · · · 1 −αd−1

⎞⎟⎟⎟⎟⎟⎠ .

Action of Matrices on Gd. Given a group G of order q and a tuple of elements
g = (g0, . . . , gd−1) ∈ Gd, any matrix M = (mij) of dimension n × d defines a
mapping Gd → Gn as follows:

gM :=

⎛⎝ d∏
j

g
m1j

j , . . . ,

d∏
j

g
mnj

j

⎞⎠ . (1)

In particular this means that Rf can act on Gd: we write the element v ∈ Rf

in its matrix representation V and compute gv := gV as above. It is straight-
forward to verify that this map behaves according to the standard rules for
exponentiation:

(ga)b = gab, gagb = ga+b.

Note that this action can also be understood as implementing a product in Rf

in a slightly different way: if we choose a generator h of G, then we can write any
g as (g0, . . . , gd−1) = (hw0 , . . . , hwd−1). Once we fix h, we can therefore think of
g as representing an element w in Rf , namely w = wd−1X

d−1 + . . .+w0 + (f).
We will write this as g = h(w). It now turns out that we have

gv = h(w)v = h(wv).

This follows because we can think of Rf as a d-dimensional vector space over
Fq. In that interpretation, multiplication by v is a linear mapping which has a
matrix, namely V . Since the action gv is defined to be multiplication by V “in
the exponent”, it follows that by computing gv = (hw0 , . . . , hwd−1)v, we are in
fact multiplying w by v.

3.1 The f-DDH Problem

Given the above, we can now define an new variant of the DDH problem:

Definition 1 (The f-DDH Problem). Let f be a d-degree polynomial. Let G
be a PPT algorithm, which given the security parameter λ, outputs the descrip-
tion of a group G of order q = q(1λ). Let A be a probabilistic algorithm that
takes as input (a description of) G and a 4-tuple of elements in Gd, and outputs
0 or 1. We say that A solves the f -DDH problem with advantage εA(λ), where

εA(λ) = |Pr[A(G, (g, ga, gb, gc)) = 1]− Pr[A(G, (g, ga, gb, gab)) = 1]|
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where g←Gd and a← Rf , b← Rf , c← Rf . In other words, given
(
g, ga, gb, gc

)
,

the problem is to decide whether c = ab or c is a random element in Rf .

Equivalently, we can think of the problem instance as being given in the alter-
native representation (h(w), h(wa), h(wb), h(wc)). This makes no difference to
the adversary, as he would not be given w – but he knows that such a w exists.
From the above we construct the following assumption.

Definition 2 (The f-DDH Assumption). For any probabilistic polynomial
time algorithm A as in Definition 1, it holds that εA(λ) is negligible as a function
of λ.

Note that this is a generalization of the DDH problem: for a polynomial f of
degree 1, Rf = Fq and f -DDH is just the standard DDH problem in G.

Now we look a bit closer at the polynomial f . We can distinguish between
two different cases: one where f is reducible and one where f is irreducible. For
the first case we have the following theorem:

Theorem 1 (f-DDH for Reducible f). Let f be a d-degree reducible polyno-
mial and suppose f0 divides f , then solving f -DDH is polynomial time reducible
to solving f0-DDH.

Proof. Let d0 and d be the degrees of f0 and f respectively. Let us consider an
element w in Rf . We know that w can be written as wd−1x

d−1+ · · ·+w0+(f). If
we mapw toRf0 by reducing modulo f0 we get an element v = vd0−1x

d0−1+· · ·+
v0 + (f0). In fact, reduction modulo f0 is a ring homomorphism φ : Rf → Rf0 .
It particular, it is linear and therefore has a matrix M . By (1) we can let M
act on w, so we get h(w)M = h(φ(w)) = h(v). Hence, M can be used to
efficiently map an f -DDH instance (h(w), h(wa), h(wb), h(wc)) to an f0-DDH
instance (h(φ(w)), h(φ(wa)), h(φ(wb)), h(φ(wc))) = (h(v), h(vφ(a)), h(vφ(b)),
h(vφ(c))). If c = ab, then φ(c) = φ(a)φ(b), while if c is uniform in Rf , then
φ(c) is uniformly chosen in Rf0 . Thus, if we can solve f0-DDH, we can solve
f -DDH with the same advantage.

4 The d-DDH Problem

Theorem 1 implies that f -DDH is no harder than f0-DDH, where f0 is the
smallest irreducible factor in f . The natural conclusion is therefore that we
should only look at the irreducible polynomials. In this case we know that our
ring Rf is a field, namely the extension field Fqd where d is the degree of f .
In fact, since all fields with qd elements are isomorphic, f -DDH is equivalent
f ′-DDH for any f ′ which is also irreducible and of the same degree as f . This is
because the isomorphism can be implemented as a linear mapping in the same
fashion as in the proof of Theorem 1. We can thus efficiently map an f -DDH
instance to an f ′-DDH instance and hence the only thing that may matter to the
hardness of the problem is the degree of the extension. In the following, we will
talk about d-DDH. In this definition we do not fix f ; we can use any d-degree
irreducible polynomial and otherwise the game is the same as in Definition 1.
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Theorem 2. Let d1 divide d2, so Fqd1 is a subfield of Fqd2 , then d1-DDH is no
harder than d2-DDH.

The proof can be found in the full version [CDK+11]. We now show that d-DDH
for d > 1 is, in fact, harder than DDH in the generic group model. Moreover, we
show that if d1 divides d2 and d2 > 4(3d1−2), then d2-DDH is generically harder
than d1-DDH, giving in this way a hierarchy of progressively strictly weaker
assumptions. For this, we need two auxiliary results. The first is a standard
result, known as the Schwartz-Zippel lemma [Sch80, Zip79]:

Theorem 3. For a non-zero multivariate polynomial over a finite field K of
degree at most t, if uniformly random and independent values are assigned to
the variables, the probability that this produces a root is at most t/|K|.

The second is our main technical result supporting the hardness of d-DDH. In the
following, for a,b ∈ Fqd1 we will use Ck(a,b) ∈ F to denote the k-th component
of the product ab ∈ Fqd1 . Moreover, for ease of notation, whenever we have
P1, . . . , Pd affine functions from (Fqd2 )

3 to Fq, we will denote by P the vector
consisting of all the Pi’s. Namely P (X,Y, Z) = (P1(X,Y, Z), . . . , Pd(X,Y, Z)).
Note that here we think of Fqd2 as a d2-dimensional vector space over F. With this
notation, an expression like Ck(P, T )(X,Y, Z) can be understood in a natural
way as a degree-2 polynomial in the 3d2 coordinates of X,Y and Z.

Theorem 4. For i = 1, . . . , d1, let Pi, Ri, Si, Ti : (Fqd2 )
3 → Fq be affine func-

tions, with d2 > 4(3d1 − 2). Assume Fk(P,R, S, T )(X,Y,XY ) := (Ck(P, T ) −
Ck(R,S))(X,Y,XY ) is the zero polynomial. Then also Fk(P,R, S, T )(X,Y, Z)
is the zero polynomial. In particular, if d1 = 1, the above is true for any d2 > 1.

The point of this theorem is that X,Y, Z ∈ Fqd2 represent the input that the
adversary gets in the generic group model game. Once he receives these inputs,
the P,R, S, T represent new group elements he can compute. They are affine
functions since the adversary can only compute sums and scalar multiplications
“in the exponent”. The adversary is trying to decide whether Z = XY or if
Z is random. He can try to do this by submitting a tuple of group elements
(represented by P,R, S, T ) to the oracle which answers back whether this tuple
is an Fqd1 -DDH tuple or not. In the theorem, the functions Fk represent the
oracle’s answer, as for each component k = 1, . . . , d1, Fk tests if the tuple is
“good” or not. What the theorem says is that, no matter how the adversary
computes his oracle queries, if the tuple he is submitting is “good”, this was
already obvious without asking the oracle because the corresponding polynomials
Fk are identically zero.

The idea behind the proof is writing the functions Pi, Ri, Si, Ti from (Fqd2 )
3

to Fq as sums of affine functions mapping Fqd2 to Fq. Such affine functions can
be expressed via the trace function Tr : Fqd2 → Fq, leading to an expression
which is much easier to handle. We can then start looking at the implications
of Fk(P,R, S, T )(X,Y,XY ) being zero. We show that Fk(P,R, S, T )(X,Y,XY )
vanishing in (Fd2)

2 implies several terms of Fk(P,R, S, T )(X,Y, Z) vanish as
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well. Proceeding in this way, we simplify our expression further and obtain a
polynomial which is a sum of products of trace functions. We show that the
intersection of the kernels of these trace functions is not empty, and thus we
prove that the last term surviving in Fk(P,R, S, T )(X,Y, Z) actually does not
depend on Z and so must be zero as well.

The complete proof of the theorem can be found in the full version [CDK+11].

Theorem 5. In the generic group model, the d2-DDH assumption holds even
when the adversary is given an oracle allowing him to solve the d1-DDH problem,
for d2 > 4(3d1 − 2). In particular, if d1 = 1, we have that d2-DDH holds even
when an adversary has access to a DDH oracle, for any d2 > 1.

Proof. Recall that an instance to the d2-DDH problem can be written as (h(w),
h(wa), h(wb), h(wc)) for a fixed generator h of G and random w, a,b, c in Fqd2 .
We will show, in the generic group model, that the problem remains hard even
if the adversary is given w. From w, it is easy to compute w−1. So we can
equivalently think of the problem as being given instead as (h(x), h(y), h(z)),
where the adversary now has to decide whether z = xy.

We will assume that a random bit b is chosen by the simulator, and when b = 0
the adversary sees z = xy, while if b = 1, the adversary will see a uniform z.
The theorem is proved if we can show that a polynomial-time adversary cannot
guess b with non-negligible advantage over 1/2.

Let A be a polynomial-time generic group adversary. As usual, A has ac-
cess to an oracle computing the group operation and inversion. In our case,
we also give A access to an oracle solving d1-DDH problem. More formally, on
input gw0 , . . . , gwd1−1 , ga0 , . . . , gad1−1 , gb0 , . . . , gbd1−1 , gc0 , . . . , gcd1−1 , the oracle
outputs 1 if w2c = wawb in Fqd1 .

We consider an algorithm B playing the following game with A. Algorithm
B chooses 3d2 + 2 bit strings σ0, . . . , σ3d2+1 uniformly in {0, 1}m, for a suf-
ficiently large m. These strings represent the encoded elements which algo-
rithm A will work with. Internally, B keeps track of the encoded elements us-
ing polynomials in the ring Fq[X1, . . . , Xd2−1, Y0, . . . , Yd2−1, Z0, . . . , Zd2−1, T0].
Externally, the elements that B gives to A are just bit strings in {0, 1}m.
To maintain consistency, B creates a list L consisting of pairs (F, σ) where
F is a polynomial in the ring specified above and σ is a bit string. Initially,
L is set to {(1, σ0), (X1, σ1), . . . , (Xd2−1, σd2−1), (Y0, σd2), . . . , (Yd2−1, σ2d2−1),
(Z0, σ2d2), . . . , (Zd2−1, σ3d2−1)}.
Algorithm B starts the game providing A with σ0, . . . , σ3d2−1. The simulation
of the oracles goes as follows:

Group Action: Given two strings σi, σj , B recovers the corresponding polyno-
mials Fi and Fj and computes Fi+Fj . If Fi+Fj is already in L, B returns to A
the corresponding bit string; otherwise it returns a uniform element σ in {0, 1}m
and stores (Fi + Fj , σ) in L.
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Inversion: Given an element σ in G, B recovers its internal representation F and
computes −F . If the polynomial −F is already in L, B returns the corresponding
bit string; otherwise it returns a uniform string σ and stores (−F, σ) in L.

d1-DDH: Given 4d1 strings π1, . . . , πd1 , ρ1, . . . , ρd1 , σ1, . . . , σd1 , τ1, . . . , τd1 in
G, adversary B recovers the polynomials P1, . . . , Pd1 , R1, . . . , Rd1 , S1, . . . , Sd1 ,
T1, . . . , Td1 and returns 1 iff Ci(P1, . . . , Pd1 , T1, . . . , Td1) = Ci(R1, . . . , Rd1 ,
S1, . . . , Sd1) for every i = 1, . . . , d1, where Ci represents the i-th component
of the product in Fqd1 .

After A queried the oracles, it outputs a bit b′. At this point, B chooses uniform
values x = (x1, . . . , xd2−1), y = (y0, . . . , yd2−1), z = (z0, . . . , zd2−1) in Fq2d

and
sets X1 = x1, . . . , Xd2−1 = xd2−1, Y0 = y0, . . . , Yd2−1 = yd2−1. Finally B chooses
a bit b and, if b = 1 it sets Z0 = z0, . . . , Zd2−1 = zd2−1, otherwise it sets
Z0 = C0(x,y), ..., Zd2−1 = Cd2(x,y).

If the simulation provided by B is consistent, it reveals nothing about b. This
means that the probability of A guessing the correct value for b is 1/2. The only
way in which the simulation could be inconsistent is if, after we choose value for
x,y, z, either two different polynomials in L happen to produce the same value
or some query to the d1-DDH oracle is such that Ci(P1, . . . , Pd1 , T1, . . . , Td1) −
Ci(R1, . . . , Rd1 , S1, . . . , Sd1) is not the 0 polynomial, but produces 0 after assign-
ing values.

If b = 1, all values for x,y, z are chosen independently, so Theorem 3
applies to show that for a single oracle query Ci(P1, . . . , Pd1 , T1, . . . , Td1) −
Ci(R1, . . . , Rd1 , S1, . . . , Sd1) or a single difference Fi − Fj , the probability of
having 0 after assigning values is negligible because q is exponentially large and
all polynomials involved have degree at most 2. Further, by the union bound,
since we only have a polynomial number of polynomials to consider, the overall
probability of having 0 after assigning values is also negligible.

If b = 0, there are two extra possibilities for inconsistency between simulation
and real attack. The first is if some query to the d1-DDH oracle satisfies that

Ci(P1, . . . , Pd1 , T1, . . . , Td1)− Ci(R1, . . . , Rd1 , S1, . . . , Sd1)(X,Y, Z) �= 0,

but

Ci(P1, . . . , Pd1 , T1, . . . , Td1)− Ci(R1, . . . , Rd1 , S1, . . . , Sd1)(X,Y,XY )

is the 0-polynomial. This is ruled out by Theorem 4, since all the polynomials
involved have degree at most 1 and can therefore be thought of as affine func-
tions. The second potential inconsistency is if two distinct polynomials Fi, Fj in
L satisfy that (Fi − Fj)(X,Y,XY ) is the 0 polynomial. To see that this cannot
happen, note that since each Fi has degree at most 1, it can be decomposed
uniquely as as Fi(X,Y, Z) = F x

i (X) + F y
i (Y ) + F z

i (Z) + ci for a constant ci
and polynomials F x

i (X), F y
i (Y ), F z

i (Z) of degree at most 1 and constant term
0. A collision as described here can only happen if (F z

i − F z
j )(Z) �= 0, but

(F z
i −F z

j )(XY ) = 0. This leads to a contradiction: we can assign values Y0 = 1,
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Y1 = 0, ..., Yd−1 = 0, corresponding to the 1-element in Fqd . With this assign-
ment, we get that (F z

i − F z
j )(X) = 0, contradicting that (F z

i − F z
j )(Z) �= 0.

Having ruled out these two possibilities for inconsistency, the only remaining
possibility is that an unfortunate choice of values for the variables lead to col-
lisions, as in the b = 1 case. Again by Theorem 3, this happens with negligible
probability since the involved polynomials have degree at most 4.

We now look at what happens to d-DDH in a bilinear group. In such a group
it is well-known that DDH is easy, and we show that this is also the case for
d-DDH. The EDDH assumption presented in [HYZX08] is equivalent to d-DDH
for d = 2. It was claimed that EDDH is hard also in generic bilinear groups,
which is however refuted by the following result:

Theorem 6. d-DDH over any bilinear group can be solved in polynomial time.

Proof. We assume that the extension field Fqd has been constructed using some
fixed irreducible polynomial f . Consider any two elements x,y ∈ Fqd as vectors
x = (x0, ..., xd−1),y = (y0, ..., yd−1) and write the product as xy = (z0, ..., zd−1).
Now, multiplication of x and y takes place by multiplying the polynomials x0 +
... + xd−1X

d−1 and y0 + ... + yd−1X
d−1 and reducing modulo f(X). From this

it follows that we can write

zk =
∑

αk
ijxiyj

for coefficients αk
ij ∈ Fq that depend only on f(x). Now, if we are given d-

tuples h(x), h(y), it follows from the above that we can efficiently compute a
representation in the target group GT of xy. Namely, for every k, we have

e(h, h)zk =
∏
ij

(e(h, h)xiyj )α
k
ij =

∏
ij

e(hxi , hyj)α
k
ij

and hxi , hyj can be taken directly from h(x), h(y). So if we define

e(h, h)(xy) = (e(h, h)z0 , ..., e(h, h)zd−1)

what we have shown is that we can compute e(h, h)(xy) efficiently from h(x), h(y).
Now, consider an input instance of d-DDH, in the form h(w), h(wa), h(wb),

h(wc). Observe that we have c = ab if and only if wa wb = w wc = w2ab.
It now follows immediately from the above that we can decide if ab = c by
computing e(h, h)(wa wb) and e(h, h)(w wc) and comparing the two.

Although of course not all groups are bilinear, this result nevertheless mo-
tivates looking for alternative assumptions with similar properties that can be
assumed to be hard in bilinear groups. We do this in Section 6.

5 Applications of d-DDH

In this section we present a number of applications for the d-DDH assumption.
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5.1 Pseudorandom Functions

We construct pseudorandom functions (PRF) from d-DDH by taking the con-
struction from [NR97] and showing that the natural modification where we work
in the extension field also gives a PRF.

Definition 3. Let F = {Fk} be a family of keyed functions where Fk : Ak → Bk,
for every k in the key space K. We say that F is a family of pseudorandom
functions if for all PPT algorithms D, any polynomial p and large enough λ,

|Pr[DFk(·)(1λ) = 1]− Pr[Df(·)(1λ) = 1]| < 1/p(λ),

where k is chosen uniformly in K and f is chosen uniformly from the set of
functions mapping Ak to Bk.

PRF Construction. We construct a function family F = {fk} as follows. The
index k specifies a tuple (q,Gd,g, a0, . . . , an) where q is a prime number, G is
a group of order q, g is an element of Gd and a0, . . . , an are random in Fqd .

Finally, we define fk : {0, 1}n → Gd, fk(x1, . . . , xn) = g
a0

∏
xi=1 ai .

Theorem 7. Under the d-DDH assumption, the family F = {fk} defined above
is a family of pseudorandom functions.

The proof of the theorem follows the exact same line as in [NR97]. Essentially the
proof is done by a hybrid argument in which we define a sequence of functions
{hi} where h0 is fk and hn is a uniformly random function. An adversary that
distinguishes between h0 and hn will also distinguish between hi and hi+1, for
some i, which reduces to the d-DDH problem.

5.2 Public Key Encryption

We now apply d-DDH to public key encryption. If we modify in the natural
way the Elgamal [Gam84] scheme, we obtain CPA secure encryption based on
d-DDH.

– Gen(1λ): Let G ← G(1λ). Choose a random element g ← Gd and random
x ← Fqd . Compute h = gx. The secret key is then sk = x and the public
key is pk = (h), where G can be considered a public parameter.

– Enc(pk ,M): Let the message beM ∈ Gd. Choose randomly r← Fqd . Output
the ciphertext CT = (gr,hr ·M).

– Dec(sk ,CT ): Write the ciphertext as CT = (e, c). Output M ′ = c · (ex)−1

The proof of correctness and security follows immediately as for standard Elga-
mal.
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5.3 Applications in General

Having seen the two examples above, it should not be surprising that all DDH-
based cryptographic schemes we are aware of can be based on d-DDH instead.
This is basically because all involved algorithms (such as key generation, encryp-
tion, and security reduction) will work given only black-box access to a group
G and a finite field K. We just need that for g ∈ G and x ∈ K, gx ∈ G is well-
defined and standard “axioms” such as gx+y = gxgy and (gx)y = gxy hold. The
exact same scheme and security proof can be run, based on (G,K) = (G,Fq)
or based on (G,K) = (Gd,Fqd). The only difference is that we need the d-DDH
assumption in the latter case. Thus, for instance, CCA secure encryption [CS98]
and circular secure or auxiliary input secure encryption [BHHO08] follow imme-
diately from d-DDH.

5.4 Efficiency

For all constructions mentioned here, we can define a notion of amortized com-
plexity. For a PRF, this is the computation time needed to produce a single
pseudorandom group element; for an encryption scheme it is the computation
time needed to encrypt a group element.

An important point is that in all applications we are aware of, the amortized
complexity is essentially the same for constructions based on DDH and on d-
DDH. This is because for g ∈ Gd and a ∈ Fqd , g

a corresponds to a tuple of
length d where each entry is an expression of the form

∏
gαi

i . By a well-known
algorithm (see [Pip76]) such a value can be computed in time roughly what you
need for a single exponentiation in G.

As a concrete example, computing the PRF defined above requires essentially

a single exponentiation: g(a0
∏

xi=1 ai). This produces d pseudorandom elements
at amortized cost roughly 1 exponentiation in G, which is the same cost as the
DDH based version.

Various optimizations are known that save computation in the constructions
we consider here. However, all the optimizations we are aware of can be applied
to both variants based on DDH and d-DDH, and therefore do not affect our
conclusion on the amortized complexities.

6 The Vector DDH Problem

The main observation in this section is that we can construct a problem that is
generically harder than DDH by revealing only the last entry of the final vector
in an f -DDH instance. In the following, we study in detail what happens if we
choose f to be xd. It turns out that there is a simple way of expressing products
in Rd = Fq[X ]/(xd). If we take x = (x0, . . . , xd−1) and y = (y0, . . . , yd−1) in Rd,
we have:

xy =

(
x0y0, . . . ,

i−1∑
k=0

xkyi−1−k, . . . ,

d−1∑
k=0

xkyd−1−k

)
. (2)
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We define the d-VDDH problem just like d-DDH, except that the problem in-
stance is now of the form (h(w), h(wa), h(wb), h(wc)[d]), where we recall that
x[d] is the dth entry of the vector x, that is xd−1 if we start numbering from 0.

Definition 4 (The d-VDDH Problem). Let d be an integer. Let G be a PPT
algorithm, which given the security parameter λ, outputs the description of a
group G of order q = q(1λ). Let A be a probabilistic algorithm that takes as input
(a description of) G and a 3-tuple in Gd plus an element in G, and outputs 0
or 1.

We say that A solves the d-VDDH problem with advantage εA(λ), where

εA(λ) = |Pr[A(G, (g, ga, gb, gc[d])) = 1]− Pr[A(G, (g, ga, gb, gab[d])) = 1]|

where g← Gd and a← Rd, b← Rd, c← Rd.

Definition 5 (The d-VDDH Assumption). For any probabilistic polynomial
time algorithm A as in Definition 4, it holds that εA(λ) is negligible as a function
of λ.

Recall the notation from Section 3: g = (g0. . . . , gd−1) = (hw0 , . . . , hwd−1). Note
that we WLOG can choose w0 = 1, so h(w) = (g0, g

w1
0 . . . , g

wd−1

0 ). To prove
that d-VDDH is generically hard, even in d-linear groups, it is useful to do the
following parameter substitution: set x = wa, y = wb. The d-VDDH problem
now becomes deciding whether the last element is the dth coordinate of xyw−1

or is random.
Now, set w−1 = (z0, z1, ..., zd−1) and consider the zi as unknowns. Since

ww−1 = 1 = (1, 0, ..., 0) we get d − 1 equations involving the zi’s, using the
product introduced in (2):

z0 = 1, z1 = −w1, . . . , zi = −wi−
∑
j+l=i

zlwj , . . . , zd−1 = −wd−1−
∑

j+l=d−1

zlwj

In particular, zi = −w1zi−1−· · ·−wi−1z1−wi. Hence, it can be proved by simple
induction that zi has degree i as a function of the wj ’s. Now, let pi(w,x,y) be
the ith entry of w−1xy. Then pd(w,x,y) has degree d+ 1 in w,x, and y.
We are now ready to prove the generic hardness of d-VDDH.

Theorem 8. Even given a d-linear mapping, the d-VDDH holds in the generic
group model.

The proof can be found in the full paper [CDK+11].
Later, we will need a lemma stating that a generalization of the d-VDDH

which considers several generators is equivalent to the original assumption.

Lemma 1. If d-VDDH is hard for G, then for any positive integer m{
(g1, . . . , gm, g

r
1[d], . . . , g

r
m[d]) | gi ← Gd, r← Rd

} c≈ (3){
(g1, . . . , gm, g

r1
1 [d], . . . , grmm [d]) | gi ← Gd, ri ← Rd

}
. (4)

The proof can be found in the full paper [CDK+11].
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7 Applications of d-VDDH

In this section we discuss a number of natural application of our d-VDDH as-
sumption. Throughout this section we will use the ring Rd = Fq[X ]/(f) for
f = Xd.

7.1 Public Key Encryption

It is immediate how to construct a CPA-secure encryption schemes from the
d-VDDH assumption family. We now show how to extend them to chosen-
ciphertext (CCA) secure schemes. Let us first recall the definition of chosen-
ciphertext security for encryption schemes.

Definition 6. A scheme PKE is CCA secure if for any PPT adversary A =
(A1,A2), any polynomial p and large enough λ,

AdvA,h :=
∣∣Pr[CCA0(PKE,A, 1λ)]− Pr[CCA1(PKE,A, 1λ)]

∣∣ < 1/p(λ),

where CCAb(PKE,A, 1λ) is output from the following experiment:

(pk , sk)←G(1λ)

(m0,m1, state)←ADec(sk ,·)
1 (1λ, pk) with |m0| = |m1|

CT ∗ ←Encpk (mb),

Output b′ ←ADec(sk ,·)
2 (1λ, state, CT ∗)

In the second phase the decryption oracle Dec(sk , ·) returns ⊥ when queried on
the challenge ciphertext CT ∗.

We now give the construction of our CCA secure encryption scheme. Let (E,D)
be a symmetric encryption scheme with key-space K ∈ G. Let T : Gd → Fq be
a target collision resistant hash function (see [HK07] for a definition) and define

T̂(x) := (T(x), 0, . . . , 0) ∈ Rd. (Note that for two elements x �= y we have that

T̂(x)− T̂(y) is invertible in Rd unless T(x) = T(y)).

– Gen(1λ): Let G← G(1λ). Choose a random generator g1 ← Gd and random
indices w,x,y ← Rd. Compute g2 = gw,u = gx,v = gy. The secret key is
then sk = w,x,y and the public key is pk = (G,g1,g2,u,v).

– Enc(pk ,M): Choose randomly r ← Rd. Compute c1 = gr and c2 = (utv)r,

where t = T̂(c1) ∈ Rd. Compute the symmetric part as C = EK(m), where
K = gr2[d]. Output the ciphertext CT = (c1, c2, C).

– Dec(sk ,CT ): Write the ciphertext as CT = (c1, c2, C). If cx·t+y
1 �= c2 then

return ⊥. Otherwise return DK(C), where K = cw1 [d].

It is easy to see that correctness follows by the definition of the public/secret key
and by the correctness of the symmetric scheme. To prove the theorem we need
that symmetric scheme is secure in the sense of authenticated encryption. That
is, it acts as a one-time pad plus any decryption query (with respect to a uniform
random key) is rejected. We refer again to [HK07] for a formal definition.
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Theorem 9. If (E,D) is a symmetric encryption scheme secure in the sense of
authenticated encryption, T is a target collision resistant hash function and the
d-VDDH holds in G, then the encryption scheme is IND-CCA secure.

The proof is exactly the same as Theorem 2 in [HK07] where an encryption
scheme is proved CCA secure from the DDH assumption. We give some intuition
about the proof.

The difficulty in the security reduction is that an adversary against the d-
VDDH assumption has to answer the decryption queries and hence has to dis-
tinguish between consistent ciphertexts (i.e., ciphertexts for that cxt+y

1 = c2
holds) and inconsistent ones, without knowing w = logg1

g2. The simulator in-

puts (g1,g2, c
∗
1 = gr1,K

∗) and wants to distinguish K∗ = gr
∗

2 [d] from a uniform
element in G. In the simulation the values u,v from the public-key are set-up
such that the tuple c∗1, c

∗
2 can be used as the challenge ciphertext for some effi-

ciently computable c∗2 and the value K∗ as the symmetric key. More precisely,

we define u = gx1
1 g

x2
2 ,v = g

y1
1 g

−t∗·x2
2 for uniform x1,y1 ∈ Rd, x2 ∈ R∗

d and

t∗ = T̂(c∗1). By construction, the corresponding real session key is gr
∗

2 [d] so break-
ing the indistinguishability of the scheme is equivalent to solving the d-VDDH
problem. It leaves to deal with the decryption queries for CT = (c1, c2, C).
The simulator is not able to distinguish consistent from inconsistent ciphertexts.
However, for ciphertexts with t = T̂(c1) �= t∗ (these are the interesting cases)
the simulator implements an alternative decryption algorithm by computing the
symmetric key as K = (c1c

−x1t+y1
2 )(x2(t−t∗))−1

[d]. (Note that by the proper-

ties of T̂, x2(t − t∗) ∈ R∗ so its inverse is well-defined.) This has the following
consequences.

It is easy to verify that if the queried ciphertext is consistent then the alter-
native decryption algorithm yields the correct symmetric key K = cw1 . If the
queried ciphertext is inconsistent then the alternative decapsulation algorithm
yields one single symmetric key K that is uniformly distributed over G. (The
probability space is taken over all possible x1,x2,y1 that yield u,v from the
public-key given to the adversary.) Returning this key K to the adversary would
completely determine the simulator’s secret key and hence also the virtual sym-
metric key K ′ for the next decapsulation query. However, this key K is used to
decrypt the symmetric part C of the decryption query and by the authenticity
property of the latter this will always lead to a rejection. Hence the decryption
query is answered correctly and no information about the secret key is leaked
which makes it possible to apply the same argument again.

7.2 Generalized BHHO Encryption

In this section we define a public-key encryption scheme which is heavily inspired
by the scheme in [BHHO08]. Here, however, the cryptosystem is based on d-
VDDH, instead of DDH.

Let λ be the security parameter and m = m(λ) be a parameter of the scheme.
The encryption scheme is PKE = (Gen,Enc,Dec).
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– Gen(1λ): Let G ← G(1λ). Choose a vector of uniformly random genera-
tors g = (g1, . . . ,gm),gi ← Gd and random bit string s = (s1, . . . , sm) ←
{0, 1}m. Compute y =

∏m
i=1 g

(si,0,...,0)
i , where (s1, 0, . . . , 0) is viewed as

an element in Rd. The secret key is then sk = s and the public key is
pk = (G,g,y), where G and g can be considered public parameters.

– Enc(pk ,M): Let the message beM ∈ G. Choose randomly r← Rd. Compute
fi = g

r
i [d] and output the ciphertext CT = (f1, . . . , fm,y

r[d] ·M).
– Dec(sk ,CT ): Write the ciphertext as CT = (f1, . . . , fm, c). Output M ′ =

c · (
∏m

i=1 f
si
i )

−1

Correctness of decryption follows since

m∏
i=1

f sii =

m∏
i=1

(gri [d])
si =

m∏
i=1

(
grdi1 · g

rd−1

i2 · · · gr1id
)si

=

m∏
i=1

(
grdsii1 · grd−1si

i2 · · · gr1siid

)
=

m∏
i=1

(gsii1 , . . . , g
si
id)

(r1,...,rd) [d] =

m∏
i=1

(gi1, . . . , gid)
(si,0...,0)(r1,...,rd) [d]

=

m∏
i=1

g
(si,0,...,0)r
i [d] = yr[d]

CPA security in the usual sense follows immediately from Lemma 1. We will,
however, argue that the scheme is also leakage resilient in the auxiliary input
model.

Auxiliary Input Security The definition of security w.r.t auxiliary inputs is
exactly as in [DGK+10].

Definition 7. A scheme PKE is CPA secure w.r.t. auxiliary inputs from a func-
tion class H if for any function h ∈ H, any PPT adversary A = (A1,A2), any
polynomial p and large enough λ,

AdvA,h :=
∣∣Pr[CPA0(PKE,A, 1λ, h)]− Pr[CPA1(PKE,A, 1λ, h)]

∣∣ < 1/p(λ),

where CPAb(PKE,A, 1λ, h) is output from the following experiment:

(pk, sk)←Gen(1λ)

(m0,m1, state)←A1(1
λ, pk, h(sk , pk )) with |m0| = |m1|

CT ∗ ←Encpk (mb),

Output b′ ←A2(1
λ, state,CT ∗)

The functions we will consider are those where the secret key is hard to compute
even given the leakage. More precisely, How(f(k)) consists of all PT functions
h : {0, 1}|sk|+|pk| → {0, 1}∗ s.t. given h(sk , pk ) (for (sk , pk )← Gen(1λ)), no PPT
algorithm can find sk with probability greater that f(k). A scheme secure w.r.t
auxiliary inputs from How(f(k)) is called f(k)-AI-CPA secure.

We are now ready to state the theorem about the security of our scheme.
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Theorem 10. Let m = (4 log qd)1/ε, for some ε > 0. Assuming that d-VDDH
is hard for G, the scheme above is

(
2−mε)

-AI-CPA secure.

The complete details of the proof of Theorem 10 are given in the appendix of
the full version [CDK+11]. Based on Lemma 1, it follows the exact same lines
as in the proof in [DGK+10].

There is a trade-off between the ciphertext size and the hardness of the
leakage functions that we can protect against. Obtaining security against func-
tions that are 2−mε

-hard to invert, requires that m = (4 log qd)1/ε instead of
m = (4 log q)1/ε, which is a polynomial overhead in the ciphertext size.

We point out that, even though this generalized version of BHHO schemes is
auxiliary input secure, KDM security does not follow using our implementation
with d-VDDH assumption.

7.3 Pseudorandom Functions

In this section we present a construction for pseudorandom functions (see Defi-
nition 3) based on the d-VDDH assumption. This construction is a modification
of the DDH-based one in [NR97].

PRF Construction. We construct a function family F = {fk} as follows. The
index k specifies a tuple (q,G, g1, g2, e, a0, . . . , an) where q is a prime number,
G is a group of order q, g1, g2 are two generators of G, e : G2 → GT is a
bilinear map and a0, . . . , an are random in R2. For any such index k we denote
t1 = e(g1, g1), t2 = e(g2, g1) and t = (t1, t2). Finally, we define fk : {0, 1}n → GT ,

fk(x1, . . . , xn) = t
a0

∏
xi=1 ai [2].

Theorem 11. Under the 2-VDH assumption, the family F = {fk} defined above
is a family of pseudorandom functions.

We refer to the full version [CDK+11] for the proof of this theorem.
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Abstract. We revisit the definition of unforgeability of blind signatures as pro-
posed by Pointcheval and Stern (Journal of Cryptology 2000). Surprisingly, we
show that this established definition falls short in two ways of what one would
intuitively expect from a secure blind signature scheme: It is not excluded that
an adversary submits the same message m twice for signing, and then pro-
duces a signature for m′ �= m. The reason is that the forger only succeeds if all
messages are distinct. Moreover, it is not excluded that an adversary performs
k signing queries and produces signatures on k + 1 messages as long as each
of these signatures does not pass verification with probability 1.

Finally, we propose a new definition, honest-user unforgeability, that covers

these attacks. We give a simple and efficient transformation that transforms

any unforgeable blind signature scheme (with deterministic verification) into

an honest-user unforgeable one.

1 Introduction

Blind signature schemes have been suggested by Chaum [12,13]. Roughly speak-
ing, this widely-studied primitive allows a signer to interactively issue signatures
for a user such that the signer learns nothing about the message being signed
(blindness) while the user cannot compute any additional signature without the
help of the signer (unforgeability). Typical applications of blind signatures in-
clude e-cash, where a bank signs coins withdrawn by users, and e-voting, where
an authority signs public keys that voters later use to cast their votes. Another
application of blind signature schemes are anonymous credentials, where the is-
suing authority blindly signs a key [9,10]. Very recently, Microsoft introduced
a new technology called U-Prove to “overcome the long standing dilemma be-
tween identity assurance and privacy” [6,29]. Their technology uses as a central
building block blind signatures [6,8].

There are two main security requirements for blind signature schemes. First,
the scheme should be blind. That is, a malicious signer should not be able to link
the final signatures output by the user to the individual interactions with the
user. In other words, the signer cannot tell which session of the signing protocol
corresponds to which message. Second, the scheme should be unforgeable. That
is, an adversary, even if he can impersonate the user and interact freely with the
signer, should not be able to produce signatures on messages except for those

� Supported in part by a DAAD postdoctoral fellowship.

M. Fischlin, J. Buchmann, and M. Manulis (Eds.): PKC 2012, LNCS 7293, pp. 662–679, 2012.
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that the signer signed. It is the notion of unforgeability we are concerned with
in this paper.

A formal definition of the unforgeability of blind signatures schemes (or gen-
erally interactive signature schemes) has been proposed by [25]. Roughly, their
definition states that an adversary that interacts k times with the adversary can-
not produce valid signatures on more than k different messages.1 At this point,
one may wonder why the definition of unforgeability does not just require that
the adversary cannot output a signature for m unless there was an interaction
with the signer in which m was queried. The reason is that in general, it is
not well-defined which message is queried in a given interaction. The message
is not sent in clear, and it might be even information-theoretically impossible
to tell from an interaction which message is being signed.2 Thus, in order to be
able to tell which message is signed in a given interaction, we would have to add
some kind of extractability to the security definition; this would be an additional
requirement on the protocols and make them more complex.

Insecurity of Unforgeable Blind Signatures Schemes. Unfortunately, however, the
definition of unforgeability might not cover all cases in which one would intu-
itively expect unforgeability to be sufficient. We illustrate this by the following
toy protocol:

σ

Fig. 1. Setting of an online video
store

Consider the setting of an online video
store such as Netflix. In our setting, we as-
sume that the store is implemented via two
entities, the content provider and the reseller.
We assume that the contract between client
and reseller is a flatrate that allows the client
to download a fixed number of movies. For
privacy reasons, we do not wish the reseller
to know which movies the client actually
watches. On the other hand, we wish to en-
sure that underage clients can only down-
load movies suitable for their age. To achieve
this, we introduce another (trusted) entity,
the parental control server whose job it is to
work as a proxy between reseller and client
and to ensure that the client only obtains ap-
propriate movies. Then, to download a movie X , the client first sends her name
and X to the parental control server. If X is appropriate for the client, the

1 There is also a variant called strong unforgeability which requires that the adver-
sary cannot produce more than k different message/signature pairs. In particu-
lar, this means that the adversary wins even if he produces additional signatures
for an already signed message. Since most known blind signature schemes (e.g.,
[20,15,3,26,19,18]) do not satisfy strong unforgeability, in this work we focus on
the weaker notion.

2 This might be the case when signing a message m is implemented by signing an
information-theoretically hiding commitment on m.
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parental control server then runs a blind signature scheme with the reseller to
obtain a signature σ on (X, name) (the blind signature is used to protect the
privacy of the client, there is no need for the reseller to know which movies the
client watches). Then σ is sent to the client, and the client uses σ to download
X from the content provider. (We assume that all communication is suitably
authenticated.)

At a first glance, it seems that this protocol is secure. In particular, the client
will not be able to download a movie that is not approved by the parental control
server. It turns out, however, that the client can cheat the parental control server:
Assume the client twice requests a signature on some harmless movie X . He will
then obtain two signatures σ1, σ2 on X from the parental control server. Then,
given σ1 and σ2, the client might be able to compute a signature on an adult
movie Y that has not been approved by the parental control server.

It seems that unforgeability should forbid the possibility of such an attack.
But it does not. From the point of view of the signer, two signing queries have
been performed, and finally signatures on two different messages X and Y have
been produced. This does not violate the definition of unforgeability. In fact, we
show in Section 4.2 that blind signature schemes exist that allow such attacks
but that are still unforgeable.

What went wrong? The definition of unforgeability covers only partially the
case that the user of the scheme is honest. It only ensures that the number of
signed messages is not greater than the number of interactions with the signer.
Only considering the number of messages but not their content is fine from the
signer’s point of view who is not allowed to know the messages anyway. It is
not, however, fine from the user’s point of view. If the user signs some messages
m1, . . . ,mk (by interacting with the signer), he expects that no signature on
some different messagem′ can be computed from his signatures. We believe that
settings in which the user is honest are natural, and that the definition of un-
forgeability should cover this case. We thus propose a new game-based definition,
honest-user unforgeability, which is a strengthening of unforgeability. Alterna-
tively, one could also define an ideal functionality (see [14,4]) that covers these
attacks, but schemes that achieve such strong security properties are usually less
efficient.

Definition 1 (Honest-User Unforgeability – Informal). If an adversary
performs k direct interactions with the signer, and requests signatures for the
message m1, . . . ,mn from the user (which produces these signatures by interact-
ing with the signer), then the adversary cannot produce signatures for pairwise
distinct messages m∗

1, . . . ,m
∗
k+1 with {m∗

1, . . . ,m
∗
k+1} ∩ {m1, . . . ,mn} = ∅.

Notice that this definition also covers the hybrid case in which the adversary
interacts with an honest user and the signer simultaneously. Alternatively, one
could also require that security in each of the setting individually: Security when
there is no honest user (that is, the normal definition of unforgeability), and
security when the adversary may not query the signer directly (we call this S+U-
unforgeability). We show in the full version of this paper [28] that requiring these
variants of security individually leads to a strictly weaker security notion. Notice
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that S + U-unforgeability would be sufficient to solve the problem in our video
store example. It seems, however, restrictive to assume that in all protocols, there
will always be only either queries from honest users or only from dishonest users
but never from both in the same execution.

Achieving Honest-User Unforgeability. We show that any unforgeable blind sig-
nature scheme can be converted into an honest-user unforgeable blind signature
scheme. The transformation is very simple and efficient: Instead of signing a
message m, in the transformed scheme the user signs the message (m, r) where r
is some randomness. Furthermore, we show that if a scheme is already strongly
unforgeable, then it is strongly honest-user unforgeable (as long as the original
scheme is randomized which holds for most signature schemes).
Insecurity with Probabilistic Verification. Most interactive and non-interactive
signature schemes have a deterministic verification algorithm. In general, how-
ever, having a deterministic verification is not a necessity. Yet, when we allow
a probabilistic verification algorithm (and this is usually not excluded), both
the definition of unforgeability as well as the definition of honest-user unforge-
ability are subject to an attack: Consider again our video store example. Let
λ denote the security parameter. Fix a polynomial p = p(λ) > λ. Assume
that the parental control server and the client are malicious and collude. The
parental control server interacts with the reseller λ times, and produces p “half-
signatures”on movie namesX1, . . . , Xp. Here, a half-signature means a signature
that passes verification with probability 1

2 . Then the client can download the
movies X1, . . . , Xn from the content provider. (If in some download request, a
half-signature does not pass verification, the client just retries his request.) Thus
the client got p movies, even if his flatrate only allows for downloading λ movies.

Can this happen? It seems that unforgeability would exclude this because p > λ
signatures were produced using λ queries to the signer. In the definition of unforge-
ability, however, the adversary succeeds if it outputs p > λ signatures such that
all signatures pass verification.However, the signatures that are produced are half-
signatures: That is, the probability that all p > λ signatures pass the verification
simultaneously is negligible! Thus, producing more than λ half-signatures using λ
queries would not be considered an attack by the definition of unforgeability. In
Section 5, we show that blind signature schemes exist that allow such attacks but
that satisfy the definition of unforgeability. The same applies to honest-user un-
forgeability as described so far; we thus need to augment the definition further.

There are two solutions to this problem. One is to explicitly require that the
verification algorithm is deterministic. Since most schemes have deterministic ver-
ification, this is not a strong restriction. To cover the case of probabilistic verifica-
tion, we propose an augmented definition of honest-user unforgeability in Section 5:
This definition considers a list of signatures as a successful forgery if each of them
would pass verification with noticeable probability (roughly speaking).

We do not propose a generic transformation that makes schemes with prob-
abilistic verification secure according to our definition. Yet, since most schemes
have a deterministic verification anyway; these schemes will automatically satisfy
our augmented definition.
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Related Work. Many blind signature schemes have been proposed in the litera-
ture, these schemes differ in their round complexity, their underlying computa-
tional assumptions, and the model in which the proof of security is given. For
example, some schemes rely on the random oracle heuristic [25,2,5,7,4], some
constructions are secure in the standard model [11,24,21,23,17,3,27] ([17,3] as-
sume the existence of a common reference string), and some constructions are
based on general assumptions [22,14,20,18,27]. Only a few works consider the
security of blind signatures [22,25,15] or their round complexity [16].

Notations. Before presenting our results we briefly recall some basic definitions.
In what follows we denote by λ ∈ N the security parameter. Informally, we
say that a function is negligible if it vanishes faster than the inverse of any
polynomial. We call a function non-negligible if it is not negligible. If S is a set,

then x
$← S indicates that x is chosen uniformly at random over S (which in

particular assumes that S can be sampled efficiently).

2 Blind Signatures

To define blind signatures formally we introduce the following notation for in-
teractive executions between algorithms X and Y. By (a, b)← 〈X (x),Y(y)〉 we
denote the joint execution of X and Y, where x is the private input of X and y
defines the private input of Y. The private output of X equals a and the private
output of Y is b. We write Y〈X (x),·〉∞(y) if Y can invoke an unbounded number of
executions of the interactive protocol with X in arbitrarily interleaved order. Ac-
cordingly, X 〈·,Y(y0)〉1,〈·,Y(y1)〉1(x) can invoke arbitrarily ordered executions with
Y(y0) and Y(y1), but interact with each algorithm only once.

The invoking oracle machine does not see the private output of the invoked
machine. In the above definition this means that Y does not learn a and X does
not learn b0 (resp. b1).

Definition 2 (Interactive Signature Scheme).We define an interactive sig-
nature scheme as a tuple of efficient3 algorithms BS = (KG, 〈S,U〉 ,Vf) (the key-
generation algorithm KG, the signer S, the user U , and the verification algorithm
Vf) where

Key Generation. KG(1λ) for parameter λ generates a key pair (sk, pk).

3 More precisely, KG and Vf run in polynomial-time in the total length of their inputs.
The total running time of S is polynomial in the total length of its input (sk) plus
the total length of its incoming messages. The total running time of U is polynomial
in the total length of its input (pk, m). (But the running time of U may not depend
on its incoming messages.) The asymmetry between the running time of S and
U is necessary to ensure that (a) an interaction between U and S always runs in
polynomial-time, and (b) that the running-time of S may depend on the length of
the message m that only U has in its input.
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Signature Issuing. The execution of algorithm S(sk) and algorithm U(pk,m)
for message m ∈ {0, 1}∗ generates an output σ of the user (and some possi-
bly empty output out for the signer.), (out , σ)← 〈S(sk),U(pk,m)〉.

Verification. Vf(pk,m, σ) outputs a bit.

It is assumed that the scheme is complete, i.e., for any function f , with over-
whelming probability in λ ∈ N the following holds: when executing (sk, pk) ←
KG(1λ), setting m := f(λ, pk, sk), and letting σ be the output by U in the joint
execution of S(sk) and U(pk,m), then we have Vf(pk,m, σ) = 1.

3 Security of Blind Signatures

Security of blind signature schemes is defined by unforgeability and blindness
[22,25].

Unforgeability. An adversary U∗ against unforgeability tries to generate k + 1
valid message/signatures pairs with different messages after at most k completed
interactions with the honest signer, where the number of executions is adaptively
determined by U∗ during the attack. To identify completed sessions we assume
that the honest signer returns a special symbol ok when having sent the final
protocol message in order to indicate a completed execution (from its point
of view). We remark that this output is “atomically” connected to the final
transmission to the user.

Definition 3 (Unforgeability). An interactive signature scheme BS = (KG,
〈S,U〉 ,Vf) is called unforgeable if for any efficient algorithm A(the malicious
user) the probability that experiment UnforgeBSA (λ) evaluates to 1 is negligible (as
a function of λ) where

Experiment UnforgeBSA (λ)
(sk, pk)← KG(1λ)
((m∗

1, σ
∗
1), . . . , (m

∗
k+1, σ

∗
k+1))← A〈S(sk),·〉∞(pk)

Return 1 iff
m∗

i �= m∗
j for i, j with i �= j, and

Vf(pk,m∗
i , σ

∗
i ) = 1 for all i, and

S has returned ok in at most k interactions.

An interactive signature scheme is strongly unforgeable if the condition“m∗
i �= m∗

j

for i, j with i �= j” in the above definition is substituted by “(m∗
i , σ

∗
i ) �= (m∗

j , σ
∗
j )

for i, j with i �= j”.
Observe that the adversary A does not learn the private output out of the

signer S(sk). We assume schemes in which it can be efficiently determined from
the interaction between signer and adversary whether the signer outputs ok. If
this is not the case, we need to augment the definition and explicitly give the
adversary access to the output out since out might leak information that the
adversary could use to produce forgeries.
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Blindness. The blindness condition says that it should be infeasible for a mali-
cious signer S∗ to decide which of two messages m0 and m1 has been signed first
in two executions with an honest user U . This condition must hold, even if S∗

is allowed to choose the public key maliciously [1]. If one of these executions has
returned ⊥ then the signer is not informed about the other signature either.

Definition 4 (Blindness). A blind signature scheme BS = (KG, 〈S,U〉 ,Vf) is
called blind if for any efficient algorithm S∗ (working in modes find, issue and
guess) the probability that the following experiment BlindBSS∗(λ) evaluates to 1 is
negligibly close to 1/2, where

Experiment BlindBSS∗(λ)
(pk,m0,m1, stfind)← S∗(find, 1λ)

b
$← {0, 1}

stissue ← S∗〈·,U(pk,mb)〉1,〈·,U(pk,m1−b)〉1(issue, stfind)
and let σb, σ1−b denote the (possibly undefined) local outputs
of U(pk,mb) resp. U(pk,m1−b).

set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

4 Honest-User Unforgeability

In this section we introduce a stronger notion of unforgeability that we call
honest-user unforgeability. In the traditional definition of unforgeability due to
[22,25], the adversary fulfills the role of the user. This means that the attacker
may choose all messages that are exchanged during the signature issue protocol
at will. In particular, the attacker may sample random message without fixing
a specific message and a certain randomness for the user algorithm. Even if the
adversary runs the honest user algorithm, due to the blindness, it is impossible to
tell which message has been used. Thus, from a definitional perspective, one has
to count the number of executions and produced signatures in order to determine
the success condition for the attacker.

This, however, might not be sufficient. Consider an attacker that queries twice
the same message m (through, say, some third party honestly implementing the
user’s algorithm) and is then able to compute a valid signature on some message
m′ �= m. Since this adversary queried twice the same message, it still has to
output three distinct messages in order to succeed in the unforgeability game.

In this section we show that giving the attacker, in addition to controlling the
user, access to a protocol oracle (that takes as input a message and returns the
signature and the user’s transcript) yields a strictly stronger definition.

4.1 Defining Honest-User Unforgeability

Before proposing the new definition, we fix some notation. Let P(sk, pk, ·) be
an oracle that on input a message m executes the signature issue protocol
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〈S(sk),U(pk,m)〉 obtaining a signature σ. Let trans denote the transcript of the
messages exchanges in that interaction. We assume that the transcript consists of
all messages exchanged between the parties.4 This oracle then returns (σ, trans).

Definition 5 (Honest-User Unforgeability). An interactive signature scheme
BS = (KG, 〈S,U〉 ,Vf) is honest-user unforgeable if Vf is deterministic and the
following holds: For any efficient algorithm A the probability that experiment
HUnforgeBSA (λ) evaluates to 1 is negligible (as a function of λ) where

Experiment HUnforgeBSA (λ)
(sk, pk)← KG(1λ)
((m∗

1, σ
∗
1), . . . , (m

∗
k+1, σ

∗
k+1))← A〈S(sk),·〉∞,P(sk,pk,·)(pk)

Let m1, . . . ,mn be the messages queried to P(sk, pk, ·).
Return 1 iff

m∗
i �= mj for all i, j

m∗
i �= m∗

j for i, j with i �= j, and
Vf(pk,m∗

i , σ
∗
i ) = 1 for all i, and

S has returned ok in at most k interactions.

(When counting the interactions in which S returns ok, we do not count the
interactions simulated by P.)

An interactive signature scheme is strongly honest-user unforgeable if the condi-
tion “m∗

i �= mj for all i, j” in the above definition is substituted by “(m∗
i , σ

∗
i ) �=

(mj , σj) for all i, j” and if we change the condition “m∗
i �= m∗

j for i, j with i �= j”
to “(m∗

i , σ
∗
i ) �= (m∗

j , σ
∗
j ) for i, j with i �= j”.

Notice that we require Vf to be deterministic. When we drop this requirement,
the definition does not behave as one would intuitively expect. We explain this
problem in detail in Section 5. Note further that this definition can be further
strengthened by giving the adversary also the randomness of the honest user.
Notice that all our results and proofs also hold for this stronger definition.

4.2 Unforgeability Does Not Imply Honest-User Unforgeability

We show that unforgeability does not imply honest-user unforgeability. The high-
level idea of our counterexample is to change the verification algorithm of an
interactive signature scheme such that it accepts a message m′ if it obtains as
input two distinct and valid signatures on some message m �= m′ (in addition
to accepting honestly generated signatures). More precisely, fix an unforgeable
and blind signature scheme BS = (KG, 〈S,U〉 ,Vf) that is strongly unforgeable.
Fix some efficiently computable injective function f �= id on bitstrings (e.g.,
f(m) := 0‖m). We construct a blind signature scheme BS1 = (KG1, 〈S1,U1〉 ,
Vf1) as follows:

4 The definition of honest-user unforgeability could be easily strengthened by including
the randomness of U in trans. Our results also hold with respect to that strengthened
definition. However, it is not clear that giving the honest-user’s randomness to the
adversary models any realistic attacks.
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– KG1 := KG, S1 := S, and U1 := U .
– Vf1(pk,m, σ) executes the following steps:

• Invoke v := Vf(pk,m, σ). If v = 1, return 1.
• Otherwise, parse σ as (σ1, σ2). If parsing fails or σ1 = σ2, return 0.
• Invoke vi := Vf(pk, f(m), σi) for i = 1, 2. If v1 = v2 = 1, return 1.
Otherwise return 0.

Lemma 6. If BS is complete, strongly unforgeable, and blind, then BS1 is com-
plete, unforgeable, and blind.

We omit both the proof of blindness and completeness of BS1 since they follow
directly from the blindness and completeness of BS. The unforgeability follows
directly from the unforgeability of the underlying scheme. The main idea behind
unforgeability is the following: The only possibility for the adversary to forge a
signature is to obtain two different signatures σ1, σ2 on the same message f(m).
Then (σ1, σ2) is a valid signature on m. However, since the underlying scheme
BS is strongly unforgeable, the adversary can only get σ1, σ2 by performing two
signing queries. Thus, using two queries, the adversary gets two signatures on the
message f(m) and one on m. This is not sufficient to break the unforgeability of
BS1 since the adversary would need to get signatures on three different messages
for that. The full proof is given in [28].

Before proving the next lemma, we need to define what a randomized (inter-
active) signature is. Roughly speaking, schemes that have this property output
the same signature in two independent executions with same message only with
negligible probability.

Definition 7 (Randomized Signature Scheme). An interactive signature
scheme BS = (KG, 〈S,U〉 ,Vf) is randomized if with overwhelming probability
in λ ∈ N the following holds: for any (sk, pk) in the range of KG(1λ), any
message m ∈ {0, 1}∗, we have σ1 �= σ2 where σ1 ← 〈S(sk),U(pk,m)〉 and
σ2 ← 〈S(sk),U(pk,m)〉.
Note that any scheme can easily be modified such that is satisfies this definition
by letting the user algorithm pick some random value r, setting m′ ← m‖r, and
by including r in the signature. It is easy to see that, given any randomized
interactive signature scheme, we can construct an adversary that queries the
oracle P twice on some message m with f(m) �= m, receives two signatures,
σ1, �= σ2 and outputs the pair (m, (σ1, σ2)). This pair is a valid forgery for the
message f(m) because our adversary has never queried this message to P and
never invoked S directly. Thus, we immediate get the following lemma (the full
proof can be found in [28]).

Lemma 8. If BS is complete and randomized, then BS1 is not honest-user un-
forgeable.

By Lemmas 6 and 8 we immediately get:

Theorem 9. If complete, blind, and strongly unforgeable interactive signature
schemes exist, then there are complete, blind, and unforgeable interactive signa-
ture schemes that are not honest-user unforgeable.
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Strong Honest-User Unforgeability. The following lemma shows that strong un-
forgeability implies strong honest-user unforgeability.

Lemma 10. Assume that BS is complete,5 randomized, and strongly unforge-
able. Then BS is strongly honest-user unforgeable.

The full proof is delegated to [28]. This lemma shows that for strongly un-
forgeable schemes, the traditional (non-honest-user) definition of unforgeabil-
ity is sufficient. Note, however, that most known blind signature schemes (e.g.,
[20,15,3,26,19,18]) are not strongly unforgeable. It can also easily be shown that
strong unforgeability is strictly stronger than honest-user unforgeability. The
separating example appends a bit b to the signature that is ignored by the veri-
fication algorithm. Then the signature can easily be changed by flipping the bit.
Thus honest-user unforgeability lies strictly between unforgeability and strong
unforgeability.

5 Probabilistic Verification

In this section we show that, if we allow for a probabilistic verification algorithm,
both the definition of honest-user unforgeability, as well as the usual definition of
unforgeability will consider schemes to be secure that do not meet the intuitive
notion of unforgeability.

One may argue that discussing problems in the definition of blind signature
schemes in the case of probabilistic verification is not necessary because one can
always just use schemes with deterministic verification. We disagree with this
point of view: Without understanding why the definition is problematic in the
case of probabilistic verification, there is no reason to restrict oneself to schemes
with deterministic verification. Only the awareness of the problem allows us to
circumvent it. We additionally give a definition that works in the case of proba-
bilistic verification. This is less important than pointing out the flaws, since in
most cases one can indeed use schemes with deterministic verification. But there
might be (rare) cases where this is not possible (note that no generic transfor-
mation outside the random oracle model is known that makes the verification
deterministic).

First, we give some intuition for our counterexample and formalize it after-
wards. Assume an interactive signature scheme BS3 that can distinguishes two
kinds of signatures: A full-signature that will pass verification with probability 1,
and a half-signature that passes verification with probability 1

2 . An honest inter-
action between the signer S3 and the user U3 will always produce a full-signature.

5 Completeness is actually necessary to show this lemma: For example, let BS′ be a
scheme derived from a complete and strongly unforgeable scheme BS in the following
way: All machines except for the user are the same in BS and BS′. When the user U ′

should sign a message m, he signs m+1 instead. Since the user does not occur in the
definition of strong unforgeability, the strong unforgeability of BS implies the strong
unforgeability of BS′. Yet BS′ is not strongly honest-user unforgeable: By performing
a signature query for m from the user U ′, the adversary can get a valid signature for
m+ 1.
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A malicious user, however, may interact with the signer to get a half-signature
for arbitrary messages. Furthermore, the malicious user may, by sending λ half-
signatures to the signer (λ is the security parameter) and executing a special
command, get two half-signatures instead of one. (“Buy λ + 1 signatures, get
one free.”) At the first glance, one would expect that such a scheme cannot be
honest-user unforgeable or even unforgeable. But in fact, the adversary has es-
sentially two options: First, he does not request λ half-signatures. Then he will
not get a signature for free and thus will not win in the honest-user unforge-
ability game. Second, he does request λ half-signatures and then performs the
extra query and thus gets λ + 2 half-signatures using λ + 1 queries. Then, to
win, he needs that all λ + 2 signatures pass verification (since the definition of
unforgeability/honest-user unforgeability requires that Vf3(pk,m

∗
i , σ

∗
i ) evaluates

to 1 for all signatures (m∗
i , σ

∗
i ) output by the adversary) However, since each

half-signature passes verification with probability 1
2 , the probability that all sig-

natures pass verification is negligible (≤ 2−λ). Thus, the adversary does not win,
and the scheme is honest-user unforgeable. Clearly, this is not what one would
expect; so Definition 5 should not be applied to the case where the verification
is probabilistic (and similarly the normal definition of unforgeability should not
be applied either in that case).

More precisely, let BS = (KG, 〈S,U〉 ,Vf) be a randomized, complete, blind,
and honest-user unforgeable interactive signature scheme. Let Q be an efficiently
decidable set such that the computation of arbitrarily many bitstrings m ∈ Q
and m′ /∈ Q is efficiently feasible.

We define the scheme BS3 = (KG3, 〈S3,U3〉 ,Vf3) as follows:
– KG3 := KG.
– S3(sk) behaves like S(sk), except when the first message from the user is

of the form (extrasig,m◦
1, . . . ,m

◦
λ, σ

◦
1 , . . . , σ

◦
λ,m

′
1, . . . ,m

′
q) where λ is the

security parameter. Then S3 executes the following steps:
• Check whether m◦

1, . . . ,m
◦
λ ∈ Q are pairwise distinct messages, and

for all i = 1, . . . , q we have m′
i /∈ Q, and for all i = 1, . . . , λ we have

Vf(pk, 1‖m◦
i , σ

◦
i ) = 1.6 If not, ignore the message.

• If the check passes, run 〈S(sk),U(pk, 1‖m′
i)〉 for each i = 1, . . . , q, result-

ing in signatures σ̃i, and set σ′
i := 1‖σ̃i.

• Then S3 sends (σ′
1, . . . , σ

′
n) to the user, outputs ok and does not react to

any further messages in this session.
– U3(pk,m) runs σ ← U(pk, 0‖m) and returns 0‖σ.
– Vf3(pk,m, σ) performs the following steps:

• If σ = 0‖σ′ and Vf(pk, 0‖m,σ′) = 1, Vf3 returns 1.
• If σ = 1‖σ′ and Vf(pk, 1‖m,σ) = 1, Vf3 returns 1 with probability p := 1

2
and 0 with probability 1− p.

• Otherwise, Vf3 returns 0.

Lemma 11. If BS is blind and complete, so is BS3.

6 Without loss of generality, we assume that the public key pk can efficiently be com-
puted from the secret key sk.



Security of Blind Signatures Revisited 673

Proof. Blindness and completeness of BS3 follow directly from that of BS. The
only difference between the schemes is that instead of a message m, a message
0‖m is signed and 0 is prepended to the signatures (as long as the user is honest
as is the case in the definitions of blindness and completeness).

Lemma 12. If BS is honest-user unforgeable, so is BS3.

The proof idea was already explained at the beginning of this section. The com-
plete proof is given in [28].
The following lemma shows that, although BS3 is honest-user unforgeable (and
thus also unforgeable), it should not be considered secure! Namely, an adversary
can, given λ queries, produce λ+1 message/signature pairs, each of which passes
verification with probability 1

2 . In particular in a setting where the machine
which verifies the signatures is stateless and where the adversary may thus just
resubmit a rejected signature, such signatures are as good as signatures that
pass verification with probability 1. Thus, the adversary has essentially forged
one signature.

An adversary that queries the signer λ times on distinct messages (from Q) is
able to execute the special command that allows to produce an arbitrary number
of half-signatures. Thus, we immediate get (see [28] for the full proof):

Lemma 13. We call (m,σ) a half-signature (with respect to some implicit public-
key pk) if the probability that Vf(pk,m, σ) = 1 is 1/2. If BS is complete, then for
any polynomial p, there is an adversary A that performs λ+1 interactions with
S3 and does not query P and that, with overwhelming probability, outputs p(λ)
half-signatures (m∗

1, σ
∗
1), . . . , (m

∗
p(λ), σ

∗
p(λ)) such that all m∗

i are distinct.

5.1 Adapting the Definition

We have shown that, if we allow for a probabilistic verification algorithm in
the definition of honest-user unforgeability (and similarly in the definition of
unforgeability), schemes that are intuitively insecure will be considered secure
by the definition. There are two possible ways to cope with this problem.

The simplest solution is to require that the verification algorithm is determin-
istic. This is what we did in Section 4.1 (Definition 5). This choice is justified
since almost all known blind signature schemes have a deterministic verification
algorithm anyway. Thus restricting the verification algorithm to be deterministic
may be preferable to getting a more complicated definition.7

In some cases, however, it might not be possible to make the verification
deterministic. In such cases, it is necessary to strengthen the definition of honest-
user unforgeability. Looking back at our counterexample, the problem was the
following: If the adversary produces many signatures that each pass verification

7 Notice that one could weaken the requirement and only require that two invocations
of the verification algorithm output the same value with overwhelming probability.
This would allow for verification algorithms that essentially compute a deterministic
function but have to solve problems in BPP during that computation.
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with non-negligible but not overwhelming probability, this is not considered an
attack: The probability that all signatures pass verification simultaneously is
negligible. In order to fix this problem, we thus need to change the definition
in such a way that a signature that is accepted with non-negligible probability
is always considered a successful forgery. More precisely, if a signature passes
verification at least once when running the verification algorithm a polynomial
number of times, then the signature is considered valid. This idea leads to the
following definition:

Definition 14 (Honest-User Unforgeability with Probabilistic Verifi-
cation). Given a probabilistic algorithm Vf and an integer t, we define Vft as
follows: Vft(pk,m, σ) runs Vf(pk,m, σ) t-times. If one of the invocations of Vf
returns 1, Vft returns 1. If all invocations of Vf return 0, Vft returns 0.

A blind signature scheme BS = (KG, 〈S,U〉 ,Vf) is called honest-user unforge-
able (with probabilistic verification) if the following holds: For any efficient al-
gorithm A and any polynomial p, the probability that experiment HUnforgeBSA (λ)
evaluates to 1 is negligible (as a function of λ) where

Experiment HUnforgeBSA (λ)
(sk, pk)← KG(1λ)
((m∗

1, σ
∗
1), . . . , (m

∗
k+1, σ

∗
k+1))← A〈S(sk),·〉∞,P(sk,pk,·)(pk)

Let m1, . . . ,mn be the messages queried to P(sk, pk, ·).
Return 1 iff

m∗
i �= mj for all i, j

m∗
i �= m∗

j for i, j with i �= j, and

Vfp(λ)(pk,m∗
i , σ

∗
i ) = 1 for all i, and

S has returned ok in at most k interactions.

(When counting the interactions in which S returns ok, we do not count the
interactions simulated by P.)

Notice that the only difference to Definition 5 is that we additionally quantify
over a polynomial p, and use Vfp(λ) instead of Vf. If a signature is accepted with
non-negligible probability, then there is a polynomial p such that Vfp(λ) will ac-
cept that signature with overwhelming probability. (For our counterexample BS3,
one can choose p(λ) := λ to show that it does not satisfy Definition 14.)

Notice that there is no obvious transformation for taking a signature scheme
satisfying the regular unforgeability definition and constructing a scheme secure
with respect to Definition 14 out of it. One obvious approach would be to include
the randomness for verification in the message and thus to make the scheme de-
terministic. This might, however, make the scheme totally insecure because in
this case a forger might include just the right randomness to get a signature
accepted (if that signature would be accepted with negligible but non-zero prob-
ability otherwise). Another obvious approach would be to change the verification
algorithm such that it verifies each signature p times (for a suitable polynomial
p) and only accepts when all verifications succeed. This would make, e.g., half-
signatures into signatures with negligible acceptance probability. But also this
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Signer S(sk) User U(pk,m)

r
$← {0, 1}λ

m′ ← m‖r

S ′(sk) U ′(pk, m′)
msg1←−−−−−−−−−−−−−−
...

msgn−−−−−−−−−−−−−−→ compute σ = σ(m′)

output m,σ′ = (σ, r)

Fig. 2. Issue protocol of the blind signature scheme

approach does not work in general: For any p, the adversary might be able to
produce signatures that fails each individual verification with probability 1/2p
and thus passes the overall verification with constant probability.

6 From Unforgeability to Honest-User Unforgeability

In this section we show how to turn any unforgeable interactive signature scheme
into an honest-user unforgeable one. Our transformation is extremely efficient
as it only adds some randomness to the message. Therefore, it not only adds
a negligible overhead to original scheme, but it also preserves all underlying as-
sumptions. The construction is formally defined in Construction 1 and depicted
in Figure 2.

Construction 1. Let BS′ = (KG′, 〈S ′,U ′〉 ,Vf′) be an interactive signature
scheme and define the signature scheme BS through the following three proce-
dures:

Key Generation. The algorithm KG(1λ) runs (sk′, pk′)← KG′(1λ) and returns
this key-pair.

Signature Issue Protocol. The interactive signature issue protocol for mes-
sage m ∈ {0, 1}∗ is described in Figure 2.

Signature Verification. The input of the verification algorithm Vf is a public
key pk, a message m, and a signature σ′ = (σ, r). It sets m′ ← (m‖r) and
returns the result of Vf′(pk,m‖r, σ).

We first show that our transformation preserves completeness and blindness.

Lemma 15. If BS′ is a complete and blind interactive signature scheme, so
is BS.

Since the proof follows easily, we omit it here.
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Now, we prove that our construction turns any unforgeable scheme into an
honest-user unforgeable one.

Lemma 16. If BS′ is an unforgeable interactive signature scheme, then BS is
secure with respect to Definition 5.

Proof. Assume for the sake of contradiction that BS is not honest-user unforge-
able. Then there exists an efficient adversary A that wins the honest-user un-
forgeability game with non-negligible probability. We then show how to build an
attacker B that breaks the unforgeability of BS′.

The input of the algorithm B is a public pk. It runs a black-box simulation
of A and simulates the oracles as follows. Whenever A engages in an interactive
signature issue protocol with the signer, i.e., when the algorithm A plays the
role of the user, then B relays all messages between A and the signer. If A
invokes the oracle P on a message m, then B picks a random r

$← {0, 1}λ, sets
m′ ← m‖r, and engages in an interactive signature issue protocol where B runs
the honest user algorithm U ′. At the end of this protocol, the algorithm B obtains
a signature σ on the message m′. It sets σ′ ← (σ, r), stores the pair (m′, σ′) in
a list L and returns σ′ together with the corresponding transcript trans to the
attacker A.

Eventually, the algorithmA stops, outputting a sequence of message/signature
pairs (m∗

1, σ
∗
1), . . . , (m

∗
k+1, σ

∗
k+1). In this case, B recovers all message/signature

pairs (m′
1, σ

′
1), . . . , (m

′
n, σ

′
n) stored in L, it parses σ∗

i as (σ′
i, r

′
i), it sets m̃i ←

m∗
i ‖r∗i and σ̃ ← σ′

i for all i = 1, . . . , k + 1 and outputs (m′
1, σ

′
1), . . . , (m

′
n, σ

′
n),

(m̃1, σ̃1), . . . , (m̃k+1, σ̃k+1).

Analysis. For the analysis first observe that B runs in polynomial time because
A is efficient and because the handling of all queries can be done efficiently. Sup-
pose thatA succeeds with non-negligible probability. Then it outputs (k+1) mes-
sage/signature pairs that verify under Vf. Since B runs the honest user algorithm
to compute the signatures σ′

1, . . . , σ
′
n it follows (from the completeness) that all

message/signature pairs that B returns, verify with overwhelming probability.
It is left to show that a) the algorithm B output one more message/signature
pair (than queries to the signing oracle with output ok took place) and b) all
messages are distinct.

The distinctness property follows immediately from the definition of the suc-
cess probability in the honest-user unforgeability game and from the construction.
More precisely, consider the messages (m′

1, . . . ,m
′
n) and (m̃1, . . . , m̃k+1), where

m′
i = mi‖ri and m̃j = m∗

j‖r∗j . According to our assumption that A succeeds, it
follows that all message pairs m∗

r and m∗
s (for all r �= s) differ from each other.

But then it follows easily that m̃∗
r and m̃∗

s are also distinct (for all r �= s). Since
the ri are chosen randomly, the messages (m′

1, . . . ,m
′
n) also differ from each

other with overwhelming probability. Now, consider the messages (m1, . . . ,mn)
that A sends to the oracle P . Note that all these messages must differ from the
messages (m∗

1, . . . ,m
∗
k+1) returned by A by definition. This means, however, that

m̃∗
r differs from m′

i for all i, r.



Security of Blind Signatures Revisited 677

Finally we have to show that B returns one more message/signature pair
(property (a)) than protocol executions with the signer S ′ took place (and that
produced output ok). Since A wins the game, it follows that in at most k of
the protocol executions that B forwarded between A and its external signer, the
signer returned ok. B itself has executed n user instances to simulate the oracle
P . Since A outputs k + 1 message signature pair (s.t. mi �= m∗

j for all i, j) it
follows that B has asked at most n + k queries in which the signer S′ returned
ok, but B returned n+k+1 message/signature pairs. This, however, contradicts
the assumption that BS is unforgeable.

Putting together the above results, we get the following theorem.

Theorem 17. If complete, blind, and unforgeable interactive signature schemes
exist, then there are complete, blind, unforgeable, and honest-user unforgeable
interactive signature schemes (with respect to Definition 5).

The proof of this theorem follows directly from Lemmas 15 and 16.
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Abstract. Network Coding is a routing technique where each node may
actively modify the received packets before transmitting them.While this
departure from passive networks improves throughput and resilience to
packet loss it renders transmission susceptible to pollution attacks where
nodes can misbehave and change in a malicious way the messages trans-
mitted. Nodes cannot use standard signature schemes to authenticate the
modified packets: this would require knowledge of the original sender’s
signing key. Network coding signature schemes offer a cryptographic so-
lution to this problem. Very roughly, such signatures allow signing vector
spaces (or rather bases of such spaces), and these signatures are homo-
morphic: given signatures on a set of vectors it is possible to create
signatures for any linear combination of these vectors. Designing such
schemes is a difficult task, and the few existent constructions either rely
on random oracles or are rather inefficient. In this paper we introduce two
new network coding signature schemes. Both of our schemes are provably
secure in the standard model, rely on standard assumptions, and are in
the same efficiency class as previous solutions based on random oracles.

1 Introduction

Network Coding [1,23] is an elegant and novel routing approach that is alter-
native to traditional routing where each node simply stores and forwards the
incoming packets. The main difference is that in Network Coding intermediate
nodes can modify data packets in transit, still allowing the final recipients to
obtain the original information.

More specifically, we consider a network setting where a source node wants
to transmit a piece of information (a file) to a set of target nodes. The source
node splits the file into m network packets and sends them to its neighboring
nodes. An intermediate node who receives a set of packets from its incoming
links, modifies them and sends the resulting packets into the network through
its outgoing edges. In Linear Network Coding packets are seen as vectors in a
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linear space over some field and the modifications by the intermediate nodes are
linear combinations of these vectors. Such linear combinations can be performed
by using ad-hoc coefficients (e.g., fixed by the application or defined by a central
authority), or random coefficients chosen by the intermediate nodes in a suitable
domain. The latter case is referred to as Random (Linear) Network Coding. In
addition to offering a more decentralized approach, random network coding has
been shown to perform almost as well as network coding with ad-hoc coefficients
[12,16,18]. One important aspect of linear network coding is that it enables
target nodes to recover the original information with high probability if they
receive sufficiently many correct packets. Interestingly, the target nodes can do
so without knowledge of the coefficients chosen by the intermediate nodes. We
give a more detailed description of these techniques in Section 2.2.

The original motivation for network coding was to increase throughput in
decentralized networks and indeed, the technique performs well in wireless/ad-
hoc network topologies where a centralized control may not be available. For
example, it has been suggested as a good means to improve file sharing in peer-
to-peer networks [22], and digital content distribution over the Internet [15].

The main issue of (random) linear network coding is its susceptibility to pol-
lution attacks in which malicious nodes (or simple network error transmission)
may inject into the network invalid packets to prevent the target nodes from
reconstructing the original information. In the specific setting of linear network
coding, an invalid packet is simply a vector outside the space spanned by the
initial m vectors sent by the source node. In turn, intermediary nodes can later
use the invalid incoming vectors thus generating even more invalid packets. This
means that errors may dramatically propagate through the network, and ad-
versaries might easily mount a Denial of Service attack to prevent the file from
being reconstructed by only injecting a few invalid packets.

Two main approaches have been proposed to deal with this problem. One is
information-theoretic and uses error-correction techniques [17,18,20]. Unfortu-
nately, this introduces redundant information that badly affects the communi-
cation efficiency. The other approach (the one considered in our work) relies on
computational assumptions and uses cryptographic techniques. Here, the main
idea is to provide a way to authenticate valid vectors. However, standard au-
thentication techniques, such as MACs or digital signatures, do not solve the
problem as we want to grant the intermediate nodes some malleability on the
received vectors.

The main tool that has been proposed to achieve this goal employs network
coding signature schemes [7]. In a few words, a network coding signature allows
to sign a linear subspace W ⊂ FN in such a way that a signature σ on W is
verified only by those vectors w ∈ W .

These schemes can be constructed either from homomorphic hash functions, or
from homomorphic signatures. Very briefly, a homomorphic hash function H sat-
isfies the property that for any vectors a, b and scalar coefficients α and β, it holds
that H(αa + βb) = H(a)αH(b)β . Constructions based on homomorphic hash-
ing [22,16,7,14] are less recent and their security can be based on well-established
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assumptions in the standard model, such as solving discrete log or factoring. The
main drawback of this approach is that the public key and the authentication in-
formation that has to be sent along with the packets are linear in the sizem of the
vector space and thus defeats the purpose of increasing the throughput. Further-
more, the sender has to know the entire file before sending the first packet (which
is undesirable for example in the ubiquitous streaming applications).

In contrast, solutions based on homomorphic signatures [7,14,3,11] are more
communication-efficient, even though they are computationally somewhat more
expensive than those built from homomorphic hashing. In a nutshell, a homo-
morphic signature is a special type of signature scheme that enjoys a linear
homomorphic property: for any vectors a, b and scalar coefficients α and β, it
holds that Sign(αa+βb) = Sign(a)αSign(b)β . More formally, this means that the
scheme is equipped with a Combine algorithm that given μ signatures σ1, . . . , σμ
on vectors w1, . . . , wμ respectively, and scalar coefficients α1, . . . , αμ, it can com-
pute a signature σ which is valid with respect to the vector w =

∑μ
i=1 αi · wi.

Importantly, the combination operation does not require the secret key. The
security notion for this primitive requires that an adversary who receives signa-
tures on a set of vectors w1, . . . , wm should be able to generate only signatures
on vectors that lie in the linear span of (w1, . . . , wm). It should be clear at this
point how this primitive can be used to secure the network coding-based appli-
cation (see Section 2.4 for a detailed description) and, more generally, enable
authenticated computation of linear functions of signed data [2].

Related Work. Since our work focuses on homomorphic network coding sig-
natures, in this section we describe the most significant works in this topic. The
notion of homomorphic signature was first introduced by Johnson, Molnar, Song
and Wagner in a more general setting [21] and only recently adapted to the par-
ticular application for network coding by Boneh, Freeman, Katz and Waters [7].
In their work, Boneh et al. propose an efficient construction over bilinear groups
and prove its security from the CDH assumption in the random oracle model.
One year later, Gennaro, Katz, Krawkzyk and Rabin [14] proposed another im-
plementation of homomorphic network coding signatures based on RSA in the
random oracle model. Moreover, as an additional contribution, they showed that
even if the homomorphic signature works over a large finite field (or over the
integers), it is possible to use small coefficients in the linear combinations, and
this significantly improves the efficiency at the intermediate nodes in the net-
work coding application. In [9] Boneh and Freeman give the construction of a
homomorphic network coding signature based on lattices. As a new property,
their scheme allows to authenticate vectors defined over binary fields, and is
based on the problem of finding short vectors in integer lattices. The security
of this construction relies on the random oracle heuristic. In addition, the same
paper shows a scheme in the standard model, but this scheme is only k-time
secure (a signing key can be used to issue only k signatures, where k is fixed
in advance). In a subsequent work [8], Boneh and Freeman proposed the notion
of homomorphic signatures for polynomial functions. While all previous works
considered schemes whose homomorphic property allows to compute only linear
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functions on the signed data, the scheme in [8] is capable to evaluate multivariate
polynomials. Their construction uses ideal lattices and its security is proven in
the random oracle model.

The problems associated to the use of the random oracles are well-known and
significant research effort is invested in devising implementations that do not
rely on this heuristic. For network coding such constructions proved elusive –
and we are only aware of two such proposals [3,11]1.

In [3] Attrapadung and Libert give an implementation over bilinear groups
of composite order, using the dual system techniques of Waters [24] to carry on
the security proof. Unfortunately the scheme relies on the setting of composite
order groups and is thus highly inefficient. Furthermore, even if the scheme were
to be converted to gropus of prime order (as suggested, but not fully described
in [3]), the efficiency gap between the resulting construction and those in the
random oracle solutions is still significant.

The most recent proposal is by Catalano, Fiore and Warinschi who propose
a homomorphic network coding signature as an application of the notion of
Adaptive Pseudo-Free groups [11]. In particular, the concrete implementation is
secure in the standard model under the Strong RSA assumption. While from the
point of view of computation the efficiency of this scheme is not far from that of
the random oracle construction of Gennaro et al. which also works in the RSA
group, the signature’s size in [11] is much worse than that in [14], as it is very
affected by the large random exponent s (that is 1346 bits long if one considers
80 bits of security).

Our Contribution. In this work we design two new homomorphic network
coding signatures with security proofs in the standard model. Our realizations
outperform in efficiency the two currently known constructions in the standard
model [3,11] and achieve computational and communication efficiency compara-
ble to those of the random oracle implementations [7,14].

Our first scheme works over asymmetric bilinear groups of prime order p,
and is secure under the q-Strong Diffie Hellman assumption (q-SDH for short)
introduced by Boneh and Boyen [6]. The construction adapts ideas from the
signature by Hofheinz and Kiltz [19] which in turn is based on the concept of
Programmable Hash Functions. There, a signature is a random r ∈ Zp and a
group element X that is a solution of Xz+r = H(M), where z is the secret
key, and H is the programmable hash function. To obtain a solution for signing
vector spaces along the same lines, we developed some non-trivial extensions
which roughly speaking deal with the fact that in our case the same random
exponent has to be reused for several signatures. In our construction, a signature
on a vector w = (u, v) ∈ Fm+n

p consists of a random element s ∈ Zp and the

1 We mention that the random oracle based solution given in [7] might be turned into
a scheme secure in the standard model if one is willing to give up the homomorphic
property. This makes the resulting solution much less interesting in practice as the
signer would need to sign all the vectors in the given subspace at once.
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solution X to the following equation:

Xz+fid = hshu1
1 · · ·hum

m gv11 · · · gvnn

where fid ∈ Zp represents the random file identifier and z is the secret key. We
can therefore achieve rather short signatures: one group element plus an element
of Zp, that is, about 512 bits for 128 bits of security.

Our second realization works over Z∗
N where N is the product of two safe

primes pq. The scheme can be seen as an optimization of the construction by
Catalano-Fiore-Warinschi where the random exponent s can now be taken as
small as 2k bits (where k denotes the desired bit security). The signature on a
vector w = (u, v) ∈ Fm+n is a random integer s ∈ Ze and the solution x to the
equation

xe = gshu1
1 · · ·hum

m gv11 · · · gvnn mod N

where e is a random prime representing the file identifier, and g, h1, . . . , hm,
g1, . . . , gn ∈ Z∗

N are in the public key. As an additional improvement, we show
how to do linear combinations (mod e), allowing for the signature scheme to be
used in networks with paths of any lengths. This was not the case in [11] and [14]
where the parameters have to be set according to a bound L on the maximum
length of a path between the source and the target nodes in the network.

A more detailed efficiency analysis of our schemes as well as comparisons with
previous solutions, are given in Section 5.

Concurrent Work. In concurrent and independent work Freeman has proposed
a semi-generic transformation for building linearly-homomorphic signatures from
standard signature schemes [13]. This transformation yields new linearly homo-
morphic signature schemes that are secure in the standard model under a new
security notion (introduced in [13]) which is slightly stronger than the one con-
sidered in our work. Our schemes are different from the ones obtained in [13]
enjoy better efficiency. It is of future interest to check whether they also satisfy
the stronger notion of security proposed in [13].

2 Background and Definitions

In what follows we will denote with k ∈ N a security parameter. We say that
a function ε : N → R+ is negligible if and only if for every positive polynomial
p(k) there exists a k0 ∈ N such that for all k > k0: ε(k) < 1/p(k). If S is a set,

we denote with x
$← S the process of selecting x uniformly at random in S. Let

A be a probabilistic algorithm. We denote with x
$← A(·) the process of running

A on some appropriate input and assigning its output to x.

2.1 Computational Assumptions

An integer N is called RSA modulus if it is the product of two distinct prime
numbers pq. The Strong RSA Assumption was introduced by Baric and Pfitz-
mann in [4]. Informally, the assumption states that given a public RSA modulus
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N , and a random value z ∈ ZN , any PPT adversary cannot compute an e-th
root of z for an e �= 1 of its choice.

Definition 1 (Strong RSA Assumption). Let N be a random RSA modulus
of length k where k ∈ N is the security parameter, and z be a random element
in ZN . Then we say that the Strong RSA assumption holds if for any PPT
adversary A the probability

Pr[(y, e)←A(N, z) : ye = z mod N ∧ e �= 1]

is negligible in k.

Let G,G′ and GT be bilinear groups of prime order p such that e : G×G′ → GT

is a bilinear map. The q-Strong Diffie-Hellman Assumption (q-SDH for short)
was introduced by Boneh and Boyen in [5] and it is defined as follows.

Definition 2 (q-SDH Assumption). Let k ∈ N be the security parameter,
p > 2k be a prime, and G,G′,GT be bilinear groups of the same order p such
that g and g′ are the generators of G and G′ respectively. Then we say that
the q-SDH Assumption holds in G,G′,GT if for any PPT algorithm A and any
q = poly(k), the following probability (taken over the random choice of x and
the random coins of A) is negligible in k

Pr[A(g, gx, gx2

, · · · , gxq

, g′, (g′)x) = (c, g1/(x+c))]

2.2 Background on Linear Network Coding

In linear network coding [1,23] a file to be transmitted is viewed as a set of
n-dimensional vectors (v(1), . . . , v(m)) defined over the integers or over some
finite field. To transmit a file V = (v(1), . . . , v(m)) the source node creates m
augmented vectors (w(1), . . . , w(m)) where each w(i) is obtained by prepending
to v(i) a vector u(i) of length m, i.e., w(i) = (u(i), v(i)). Precisely, (u(1), . . . , u(m))
represents the canonical basis of Zm, that is u(i) is the i-th unitary vector, with
1 in position i and 0 elsewhere. This way, the vectors w(1), . . . , w(m) form a basis
of a subspace W ⊂ Fm+n. Vectors w(i) of the above form are called properly
augmented vectors while (w(1), . . . , w(m)) is a properly augmented basis.

In this setting, the source node sends these vectors as packets in the network.
Whenever a node in the network receives (w(1), . . . , w(μ)) on its μ incoming
edges, it computes a linear combination ŵ of the received vectors and transmits
ŵ in the network through its outgoing edges. The coefficients used in the linear
combination can be fixed by the application, established by a central authority,
or they can be randomly chosen by each node. The latter is the case considered
in our work and it is called “random network coding”. As shown in [12,16,18],
random network coding performs almost as well as linear network coding with
ad-hoc coefficients. To recover the original file a node must receive m (valid)
vectors ŵ(1), . . . , ŵ(m) of the form described before, i.e., ŵ(i) = (û(i), v̂(i)). In
particular, in order for the file to be reconstructed, the vectors (û(1), . . . , û(m))
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need to be linearly independent. Let denote with Û the matrix whose rows are
the vectors (û(1), . . . , û(m)) and with V̂ the matrix whose rows are the vectors
(v̂(1), . . . , v̂(m)). Then, the original file can be retrieved by computing

V = Û−1 · V̂ .

Although the above described approach solves the problem of recovering the
information in network coding, as we mentioned in the introduction, the main
issue in this approach is that it is susceptible to pollution attacks where malicious
nodes may inject invalid packets in the network so that the reconstruction of
the original file becomes impossible. This is particularly sensitive also because
a single error introduced by a (malicious) node can be propagated by honest
nodes.

Before describing solutions, we observe how two trivial approaches do not
solve the problem. First, the source node cannot simply sign the transmitted
packets as the receivers are likely to get modified versions of them (by the effect
of the linear combinations). Second, the source could sign the entire file. This
would prevent the receivers to accept incorrect files, but it does not provide an
efficient way for the receivers to recover the correct file as malicious nodes can
still inject invalid packets to mount a DoS attack.

To mitigate the effect of pollution attacks two main approaches have been
proposed. They can be divided into two categories: information-theoretic and
computational.

Information theoretic approaches [17,18,20] use error-correction techniques
to introduce redundancy in the transmitted vectors so that it is possible to
reconstruct the original file as long as the number of compromised vectors is
not too big. These methods have the advantage of not relying on computational
assumptions, but, unfortunately, they introduce a significant overhead in the
communication.

On the other hand, approaches based on computational assumptions use cryp-
tographic techniques to provide a way for honest nodes to verify that the received
packets are correct. The main tool to achieve this goal are network coding signa-
ture schemes. Roughly speaking, the basic requirement of such schemes is that
they allow to efficiently check if a given vector is valid, i.e., it has been gener-
ated as linear combination of initial (valid) vectors w(1), . . . , w(m). Two classes
of network coding signatures are known: those based on homomorphic hashing
[22,16,7], and those using homomorphic signatures [21,7,14,11].

In our work, we focus on the second class of schemes, that is homomorphic
network coding signatures. We give relevant definitions in the following section.

2.3 Network Coding Signatures

In this section we give the definition of a network coding signature scheme and
its security notion, as done by Boneh et al. in [7]. As we mentioned before, a
network coding signature scheme allows to sign a subspaceW ⊂ FN so that any
vector w ∈ W is accepted, whereas vectors w /∈ W are rejected. In particular, in
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our work we focus on subspaces W that are described by a properly augmented
basis.

We assume that a file is associated with a file identifier fid that is chosen by
the source node before the transmission. In general, such fid can be the filename.
Though, in our systems we need such file identifiers to be randomly chosen by
the source node. Thus we think of fid as an element of an efficiently samplable
set I.

Definition 3 (Network Coding Signatures). A network coding signature is
defined by a triple of algorithms (NetKG,NetSign,NetVer) such that:

NetKG(1k,m, n) On input the security parameter k and two integers m,n, this
algorithm outputs (vk, sk) where sk is the secret signing key and vk is the
public verification key. m defines the dimension of the vector spaces while n
is an upper bound to the size of the signed vectors. We assume that the public
key implicitly defines the field F over which vectors and linear combinations
are defined.

NetSign(sk, fid,W) The signing algorithm takes as input the secret key sk, a ran-
dom file identifier fid and a properly augmented basis of a m-dimensional
subspace W ⊂ Fm+� (with 1 ≤ � ≤ n), and it outputs a signature σ.

NetVer(vk, fid, w, σ) Given the public key vk, a file identifier fid, a vector w ∈
Fm+� (for 1 ≤ � ≤ n) and a signature σ, the algorithm outputs 0 (reject) or
1 (accept).

For correctness, we require that for all honestly generated key pairs (vk, sk), all
identifiers fid ∈ I, all 1 ≤ � ≤ n, and all W ⊂ Fm+�, if σ←Sign(sk, fid,W) then
Ver(vk, fid, w, σ) = 1 ∀w ∈ W .

Security of Network Coding Signatures. The security notion of network
coding signatures is defined by the following game between a challenger and an
adversary A:

Setup. The adversary chooses positive integers m,n and gives them to the

challenger. The challenger runs (vk, sk)
$← NetKG(1k,m, n) and gives vk to

A.
Signing queries. The adversary can ask signatures on vector spaces Wi ⊂

Fm+� (with � ≤ n) of its choice, specified by giving to the challenger a
properly augmented basis describing Wi. The challenger chooses a random

file identifier fidi, runs σi
$← NetSign(sk, fidi,Wi) and returns σi to A.

Forgery. The adversary outputs a tuple (fid∗, w∗, σ∗).

We say that the adversary wins this game if NetVer(vk, fid∗, v∗, σ∗) = 1 and
either one of the following cases holds: (1) fid∗ �= fidi for all i (type-I forgery);
(2) fid∗ = fidi for some i, but w∗ /∈ Wi (type-II forgery).

We define the advantage of A into breaking a network coding signature
scheme,AdvNC(A), as the probability thatA wins the above security game, and
we say that a network coding signature is secure if for any PPT A, AdvNC(A)
is at most negligible in the security parameter.
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Finally, we give the formal definition of homomorphic network coding signa-
ture.

Definition 4 (Homomorphic Network Coding Signatures). A homomor-
phic network coding signature scheme is defined by a 4-tuple of algorithms
(NetKG,NetSign,NetVer,Combine) such that:

NetKG(1k,m, n). On input the security parameter k and two integers m,n ≥ 1,
this algorithm outputs (vk, sk) where sk is the secret signing key and vk is the
public verification key. Here, m defines the dimension of the vector spaces
and n +m is an upper bound to the size of the signed vectors. We assume
that the public key implicitly defines the field F over which vectors and linear
combinations are defined, and that it contains the description of an efficiently
samplable distribution for fid.

NetSign(sk, fid, w). The signing algorithm takes as input the secret key sk, a file
identifier in the support of fid and a vector w ∈ F�+m (with 1 ≤ � ≤ n) and
outputs a signature σ.

NetVer(vk, fid, w, σ). Given the public key vk, a file identifier fid, a vector w ∈ F�

and a signature σ, the algorithm outputs 0 (reject) or 1 (accept).
Combine(vk, fid, {(w(i), αi, σi)}μi=1). This algorithm takes as input the public key

vk, a file identifier fid, and a set of tuples (w(i), αi, σi) where σi is a signature,
w(i) ∈ F� is a vector and αi ∈ F is a scalar. This algorithm outputs a new
signature σ such that: if each σi is a valid signature on vector w(i), then σ is
a valid signature for w obtained from the linear combination

∑μ
i=1 αi · w(i).

For correctness, we require that for all m,n ≥ 1, all honestly generated pairs of

keys (vk, sk)
$← NetKG(1k,m, n) the following hold:

– For all fid ∈ I and all w ∈ Fm+�, if σ
$← NetSign(sk, fid, w), then

NetVer(vk, fid, w, σ) = 1.
– For all fid ∈ I, any μ > 0, and all sets of triples {(w(i), αi, σi)}μi=1, if

NetVer(vk, fid, w(i), σi) = 1 for all i, then it must be the case that

NetVer(vk, fid,
∑

αiw
(i),Combine(vk, fid, {(w(i), αi, σi)}μi=1) = 1.

As noticed by Boneh et al. [7], homomorphic network coding signatures are a
special case of network coding signatures.

2.4 An Efficient Linear Network Coding Scheme

In this section we specify the linear network coding scheme considered in our
work. Basically, it is the random network coding solution described in the pre-
vious section except that we consider some optimizations recently proposed by
Gennaro et al. in [14]. The scheme works as follows.

The application specifies four global parameters m,n,M, p′ ∈ N such that
m,n ≥ 1, and p′ is a prime. In this setting, a file V to be transmitted is always
encoded as a set of m vectors (v(1), . . . , v(m)) where each v(i) takes values in F�

M
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whereM is a bound on the initial magnitude of each coordinate and � ≤ n. Since
m is fixed in advance by the application, at the time of the transmission, once the
size of the file V is known, the total length of information in every vector v(i) is
determined. Thus, � can be chosen accordingly as any number between 1 and n.
The freedom in choosing � is important as different choices have different impact
on the efficiency of the scheme: a smaller � saves bandwidth, while a larger � saves
computation (see [14] for more details). The parameter p′ specifies the domain
P = {0, . . . , p′− 1} from which the network nodes sample the coefficients for the
linear combination. Linear combinations can then be performed either over the
integers, or modulo some large prime p (which is specified by the application
or by the signature scheme). Gennaro et al. show that taking a small p′ (e.g.,
p′ = 257) allows to improve the performances of the network coding scheme as
well as to keep a good decoding probability. In particular, they show that this
holds in both cases when the linear combinations are done over the integers, or
over some large prime p > M . Precisely, in the latter case, the performances
remain better (than the case when coefficients are chosen in Fp) as long as the
bit-size of p′ is negligible compared to the bit-size k of the prime p.

Global application parameters: m,n,M, p′ ∈ N as specified above.
Key Generation: Each source node generates a pair of keys

(vk, sk)
$← NetKG(1k,m, n) of a homomorphic network coding signature

scheme.
File transmission: On input a file V represented by m vectors v(1), . . . , v(m) ∈

F�
M (with � ≤ n), the source node generates augmented vectorsw(1), . . . , w(m),

i.e., w(i) = (u(i), v(i)) where u(i) is the i-th unity vector. Next, it chooses a

random file identifier fid
$← I (recall that I is specified by vk), and for i = 1

to m, it generates σi
$← NetSign(sk, fid, w(i)). Finally, it sends the tuples

(fid, w(i), σi) on its outgoing edges.
Intermediate nodes: When a node receives μ vectors w(1), . . . , w(μ) and sig-

natures σ1, . . . , σμ, all corresponding to file fid, it proceeds as follows. First, it
checks that NetVer(vk, fid, w(i), σi) = 1, for i = 1 to μ. It discards all the vec-
tors (and signatures) that did not pass the check. For the remaining vectors

(for simplicity, let they be w(1), . . . , w(μ)), the node chooses α1, . . . , αμ
$← P ,

and computes: w =
∑μ

i=1 αi · w(i), σ←Combine(vk, fid, {(w(i), αi, σi)}μi=1).
Finally, the node sends (fid, w, σ) on its outgoing edges.

Target node: Once a node obtains linearly independent vectors w(1), . . . , w(m)

together with the respective signatures and the same file identifier fid, it first
checks that they are all valid, i.e., it verifies that NetVer(vk, fid, w(i), σi) = 1,
∀i = 1, . . . ,m. Given m valid vectors, the node can reconstruct the original
file (v(1), . . . , vm) as described in Section 2.2.

3 A Construction Based on SDH

In this section we propose the construction of a network coding homomorphic
signature based on the Strong Diffie-Hellman assumption.
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Recall that we are in the setting of the linear network coding application
described in the previous section. A file V is represented as a set of m vectors
(v(1), . . . , v(m)) such that each v(i) ∈ F�

p where p is a (publicly known) prime
specified by the key generation algorithm and � ≤ n. Notice that all the oper-
ations with the vectors are thus defined over the finite field Fp, i.e., mod p.
Moreover, the space for file identifiers is the set Z∗

p where p is the same prime
specified in the key generation.

Below we give a precise description of the scheme’s algorithms2:

NetKG(1k, n,m): Let G,G′,GT be bilinear groups of prime order p such that
e : G × G′ → GT is a bilinear map and g ∈ G, g′ ∈ G′ are two gen-

erators. Pick a random z
$← Zp and set Z = (g′)z . Choose random el-

ements h, h1, . . . , hm, g1, . . . , gn
$← G. Output the public verification key

vk = (p, g, g′, Z, h, h1, . . . , hm, g1, . . . , gn) and the secret key sk = z.
NetSign(sk, fid, w): Let w = (u, v) ∈ Fm+n

p be a properly augmented vector, and
let fid be randomly chosen in Z∗

p. The signing algorithm proceeds as follows.

Pick a random s
$← Zp and compute

X =

(
hs

m∏
i=1

hui

i

n∏
i=1

gvii

) 1
z+fid

Finally, output σ = (X, s).
NetVer(vk, fid, w, σ): Let σ = (X, s) ∈ G×Zp. This algorithm checks whether σ

is a valid signature on a vector w = (u, v) w.r.t. the file identifier fid.
If the following equation holds, then output 1, otherwise output 0:

e(X,Z · (g′)fid) = e(hs
m∏
i=1

hui

i

n∏
i=1

gvii , g
′).

Combine(vk, fid, {w(i), αi, σi}μi=1): Recall that w
(i) = (u(i), v(i)) where u(i) ∈ Fm

p

and v(i) ∈ Fn
p , and that αi ∈ Fp is a randomly chosen coefficient, for all

i ∈ {1, . . . , μ}. Moreover, recall that in our application this algorithm is run
when every σi has been verified as a valid signature on w(i) w.r.t. fid.
The algorithm computes

X =

μ∏
i=1

(Xi)
αi , s =

μ∑
i=1

αi · si mod p

and outputs σ = (X, s).

Efficiency. A signature consists of one element of G and one element of Zp.
Signing costs a multi-exponentiation in G, whereas verification needs to compute
two pairings, one exponentiation in G′, i.e., (g′)fid, and one multi-exponentiation.

2 For ease of exposition, in our description we assume that the vectors w have the
maximum length m+n. In fact, in our scheme any shorter vector with � < n can be
augmented by appending n− � zeros.
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We state the following theorem (for lack of space its proof appears in the full
version of this paper [10])

Theorem 1. If the q-SDH assumption holds in (p,G,G′,GT ) for any polyno-
mial q, then the scheme described above is a secure network coding signature.

4 A (Strong) RSA Based Realization

In this section we describe our strong-RSA based implementation. We stress
that the file to be signed is encoded as a set of vectors (v(1), . . . , v(m)) of �
components each where � ≤ n for some pre-specified bound n. Before being
signed and transmitted, such vectors will be prepended with m unitary vectors
u(i) (each havingm components). We denote with w(i) the resulting vectors. Our
implementation uses a parameter λ to specify the space I for the file identifiers.
If M is the bound on the initial magnitude of each vector component, then
2λ > M and I is the set of prime numbers of (exactly) λ + 1 bits, greater than
2λ.

Finally, we notice that in this scheme the exact finite field over which are done
the linear combinations is different for each file. In particular, it will be Fe where
e = fid (e is a prime number) is the file identifier chosen by the sender. More
precisely, this means that whenever a vector space W has to be signed, a file
identifier fid = e is chosen (as a sufficiently large prime) and it is associated to
W . Thus, linear combinations are done mod e and w �∈ W implies that w cannot
be written as a linear combination mod e of vectors of W .

A precise description of our network coding scheme NetPFSig = (NetKG,
NetSign,NetVer,Combine) follows.

NetKG(1k, λ,m, n). The NetKG algorithm chooses two random (safe) primes p, q
of length k/2 each. It sets N = pq and proceeds by choosing g, g1, . . . , gn,
h1, . . . , hm at random (in Z∗

N ). In addition to k, here we assume an additional
security parameter λ which specifies the space I of file identifiers as described
before. The public key is set as (N, g, g1, . . . , gn, h1, . . . , hm), while the secret
key is (p, q).

NetSign(sk, fid, w). The signing algorithm proceeds as follows. Let w = (u, v) ∈
Fm+n
M and let fid be a random file identifier, which is a prime number of the

form specified before. For ease of exposition, let e = fid. The signer chooses
a random element s ∈ Ze and uses its knowledge of p and q to solve the
following equation

xe = gs
m∏
j=1

h
uj

j

n∏
j=1

g
vj
j mod N

Finally, it outputs the signature σ = (s, x).
NetVer(vk, fid, w, σ). To verify a signature σ = (s, x) on a vector w, the verifica-

tion algorithm proceeds as follows. Let e = fid.
– Check that e is an odd number of the right size (i.e. λ+ 1 bits).
– Check that all the u’s, v’s and s are in Ze.
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– Check that the equation xe = gs
∏m

j=1 h
uj

j

∏n
j=1 g

vj
j mod N is satisfied

by the given x.
– If all the checks above are satisfied, output 1, otherwise 0.

Combine(vk, fid, {w(i), αi, σi}μi=1. To combine signatures σi, corresponding to vec-
tors w(i) sharing the same fid, the algorithm proceeds as follows.
– It computes

w =

μ∑
i=1

αi · w(i) mod e, w′ = (

μ∑
i=1

αi · w(i) − w)/e

s =

μ∑
i=1

αisi mod e, s′ = (

μ∑
i=1

αisi − s)/e

Let w′ = (u′, v′). It outputs σ = (s, x) where x is obtained by computing:

x =

∏μ
i=1 x

αi

i

gs′
∏m

j=1 h
u′
j

j

∏n
j=1 g

v′
j

j

mod N

To complete the description of the scheme we show its correctness. In partic-
ular, while the correctness of the signatures returned by the signing algorithm
can be easily checked by inspection, we pause to show that also the signatures
obtained from the Combine algorithm are correct. Assume that for i = 1 to μ,
σi = (xi, si) is a valid signature on the vector w(i) = (u(i), v(i)), and let αi be
the integer coefficients of the linear combination. Let σ = (x, s) be the signature
as computed by Combine(vk, fid, {w(i), αi, σi}μi=1. We have that:

xe =

∏μ
i=1(x

e
i )

αi

(gs′
∏m

j=1 h
u′
j

j

∏n
j=1 g

v′
j

j )e
(1)

=
g
∑μ

i=1 siαi
∏m

j=1 h
∑μ

i=1 u
(i)
j αi

j

∏n
j=1 g

∑μ
i=1 v

(i)
j αi

j

(gs′
∏m

j=1 h
u′
j

j

∏n
j=1 g

v′
j

j )e
(2)

= g(
∑μ

i=1 siαi−s′e)
m∏
j=1

h
(
∑μ

i=1 u
(i)
j αi−u′

je)

j

n∏
j=1

g
(
∑μ

i=1 v
(i)
j αi−v′

je)

j (3)

= gs
m∏
j=1

h
uj

j

n∏
j=1

g
vj
j (4)

which shows correctness as desired. Above, equation (2) is justified by that each
σi is valid, and equation (4) follows from the definition of s′ and w′ = (u′, v′) as
computed in the Combine algorithm.

Efficiency. Each signature consists of an element of ZN and one integer of λ bits.
Signing costs one full exponentiation and one multi-exponentiation in ZN with



Efficient Network Coding Signatures in the Standard Model 693

λ-bits exponents, plus the sampling of a random prime number (which is dom-
inated by the cost of prime verification). The verification needs an exponenti-
ation with a (λ + 1)-bits prime, xe, and one multi-exponentiation with λ-bits
exponents.

Here we state the following theorem (again for lack of space the proof appears
in [10]).

Theorem 2. Under the Strong-RSA assumption, the scheme described above is
a secure homomorphic network coding signature.

5 Efficiency and Comparisons

In this section we discuss the efficiency of our two constructions and compare
it to that of other known homomorphic network coding signatures. As we al-
ready mentioned, there are not that many schemes in the literature realizing
this primitive: a few constructions [7,14,9,8] rely on random oracles, and a cou-
ple of more recent schemes [3,11,13] are proven secure in the standard model. We
should also mention that there are other schemes in the standard model based
on homomorphic hashing. However these are less appealing in practice mainly
because the basis vectors have to be signed all at once, which means that in
the network coding application the source node must know the entire file be-
fore sending the first packet. This is not desirable in several applications, e.g. a
source node which is a sensor collecting data in some time interval, or streaming
applications. Moreover, the authentication information to be sent along with the
packets is quite long.

Therefore, we compare our constructions with the schemes in the standard
model, and later in this section we will briefly discuss a comparison with the
random oracle based ones.

In the scheme by Attrapadung and Libert [3] a signature consists of three
group elements where the bilinear groups have composite order N , with N prod-
uct of three primes. To compute a signature, the scheme needs to perform two
multi-exponentiations and one exponentiation, whereas the verification time is
dominated by the computation of four pairings in such composite order groups.
Even if one applies standard techniques to convert the scheme in prime order
groups (as suggested in [3]), the overhead would still remain significant.

In [13] Freeman proposes a general framework, that can be seen as a gener-
alization of the Attrapadung and Libert methodology, for converting signature
schemes with certain properties into linearly homomorphic ones. There are two
appealing features in Freeman’s work. First, his model allows for a stronger
adversary than the one we consider. Second, the proposed approach is general
enough to work with several currently known signature schemes. However, all the
resulting (linearly homomorphic) signatures are less efficient than those given in
this paper.
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In the scheme by Catalano, Fiore and Warinschi [11] each signature consists
of an element of Z∗

N and an integer s of λs = 3k+|N | bits, where k is the security
parameter and |N | is the bit size of the RSA modulus N (which is related to k).
Signing and verifying both need one multi-exponentiation (where all exponents
have size λ, except one of size λs) and one exponentiation. Since in this scheme
the linear combinations are done over the integers, it can support only a limited
number of linear combinations, that in the network coding application trans-
lates to supporting only networks with paths of predetermined bounded length.
Technically, the reason of such bound is that the vector coordinates cannot be
let grow more than the size of the prime e.

In this scenario, our solution based on q-SDH seems the most efficient in terms
of both bandwidth and computation. In fact, recall that in our case a signature
is one group element plus one element of Zp: 512 bits in total, if one considers
k = 128 bits of security and asymmetric pairings. The operations for signing
and verifying are similar in all the schemes, but our SDH construction has the
advantage that such operations can be performed over prime order groups. Our
RSA realization, can be seen as a significant optimization of the Catalano-Fiore-
Warinschi’s scheme [11]. There are two main improvements. First, our scheme
allows for a much smaller exponent s. In fact, in our case s can be of λ bits,
that is even more than 10 times shorter than in [11], if one considers 128 bits of
security. Intuitively, the reason of using a large s in [11] is that in the real scheme
s is truly random, while in the simulation it is used to hide some information of
2k + |N | bits, which decreases its entropy down to k bits. So, there s is taken
sufficiently large to keep it within negligible statistical distance from a uniform
value of λs bits. In our case, s is in Ze, and we take advantage of modular
reduction to obtain a uniformly distributed s also in the simulation. Notice that
having such a short s saves in both bandwidth and computation. Second, our
idea of computing all the linear combinations (mod e) avoids the problem that
the vector coordinates may grow beyond e. In this way we can support networks
with paths of any lengths, which was not the case in the previous RSA-based
schemes [11] and [14].

Finally, we consider the schemes in the random oracle model that work over
similar algebraic settings, i.e., bilinear groups [7] and RSA [14]. Compared to
them, our solutions are (not surprisingly) slightly worse. The main difference is
the size of the public key that in our case is linear in m+n, whereas in [7,14] it is
constant (because O(m+m) group elements are generated on-the-fly using the
random oracle). On the other hand, the size of a signature and the time needed
to sign and verify are somewhat comparable. In this sense, we believe that our
solutions offer a good compromise if one does not want to rely on the random
oracle heuristic.
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Abstract. We propose a general framework that converts (ordinary) signature
schemes having certain properties into linearly homomorphic signature schemes,
i.e., schemes that allow authentication of linear functions on signed data. The
security of the homomorphic scheme follows from the same computational as-
sumption as is used to prove security of the underlying signature scheme. We
show that the following signature schemes have the required properties and thus
give rise to secure homomorphic signatures in the standard model:

– The scheme of Waters (Eurocrypt 2005), secure under the computational
Diffie-Hellman asumption in bilinear groups.

– The scheme of Boneh and Boyen (Eurocrypt 2004, J. Cryptology 2008),
secure under the q-strong Diffie-Hellman assumption in bilinear groups.

– The scheme of Gennaro, Halevi, and Rabin (Eurocrypt 1999), secure under
the strong RSA assumption.

– The scheme of Hohenberger and Waters (Crypto 2009), secure under the
RSA assumption.

Our systems not only allow weaker security assumptions than were previously
available for homomorphic signatures in the standard model, but also are secure
in a model that allows a stronger adversary than in other proposed schemes.

Our framework also leads to efficient linearly homomorphic signatures that are
secure against our stronger adversary under weak assumptions (CDH or RSA) in
the random oracle model; all previous proofs of security in the random oracle
model break down completely when faced with our stronger adversary.

Keywords: Homomorphic signatures, standard model, bilinear groups, CDH,
RSA.

1 Introduction

Suppose Alice has some set of data m1, . . . ,mk that she signs with a digital signature
and stores in a database. At some later point in time Bob queries the database for the
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mean m of the data. Since Bob suspects the database might be malicious, he also wants
Alice’s signature onm to prove that the mean was computed correctly. Bob’s bandwidth
is limited, so he can’t simply download the whole database, verify the signature, and
compute the mean himself. Or maybe he has the bandwidth but Alice has requested that
the data be kept private, with only the mean to be made public. What is Bob to do?

Homomorphic signatures [19,5,14,7,2,6] are a cryptographic primitive that addresses
this problem. In a homomorphic signature scheme, a user signs messages m1, . . . ,mk

in some message space M, producing signatures σ1, . . . , σk; verification is performed
as usual for a signature scheme. The “homomorphic” property is as follows: given this
set of signatures and a function f :Mk →M from a set of “admissible” functions F ,
anyone can produce a signature on the pair (f, f(m1, . . . ,mk)) ∈ F ×M. Validation
of the signature asserts that the claimed value is indeed the result of applying f to the
underlying data; if the system is secure, then a malicious adversary cannot compute a
valid signature on (f,m∗) for any m∗ �= f(m1, . . . ,mk).

Homomorphic signatures were originally proposed by Johnson, Molnar, Song, and
Wagner [19] and were adapted for the above application by Boneh, Freeman, Katz,
and Waters [5], whose motivation was to authenticate packets in network coding proto-
cols [1,23]. Other applications of homomorphic signatures include computing statistics,
Fourier transforms, or least-squares fits on authenticated data, all of which can be done
using “linearly homomorphic” signatures; i.e., those that authenticate linear functions.

The construction of Boneh et al. uses bilinear groups and authenticates linear func-
tions on vectors over large prime fields. Follow-up work by Gennaro, Katz, Krawczyk,
and Rabin [14] is based on RSA and authenticates linear functions on vectors over the
integers, while the system of Boneh and Freeman [7] is based on lattice assumptions
and authenticates linear functions on vectors over small fields. In a recent breakthrough,
Boneh and Freeman [6] showed how to use “ideal lattices” to authenticate polynomial
functions on data; this system is currently the only one that goes beyond linear functions.

In all of the above systems security is proven only in the random oracle model. At
present there are only two homomorphic signature schemes proven secure in the stan-
dard model. The first is a scheme of Attrapadung and Libert [2], which is based on
the Lewko-Waters identity-based encryption scheme [22] and uses bilinear groups of
composite order. Signatures consist of three group elements of size at least 1024 bits,
and security is proven using three nonstandard (fixed-size) assumptions, two of which
are decisional and one of which is computational. The second is a scheme of Cata-
lano, Fiore, and Warinschi [8], which is based on the general framework of “adaptive
pseudo-free groups.” In the instantiation based on the strong RSA assumption, signa-
tures consist of two integers of size at least 1024 bits.

1.1 Our Contributions

A General Framework for Homomorphic Signatures. Motivated by a desire to con-
struct efficient systems with stronger security, we propose a general framework that
converts (ordinary) signature schemes having certain properties into linearly homomor-
phic signature schemes. The security of the homomorphic scheme follows from the
same computational assumption as is used to prove security of the underlying signature
scheme. We show that the schemes of Waters [24], Boneh and Boyen [4]; Gennaro,
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Halevi, and Rabin [13]; and Hohenberger and Waters [18] all have the required proper-
ties and thus give rise to secure homomorphic signatures. The resulting homomorphic
constructions are all secure under a computational (as opposed to a decisional) assump-
tion in the standard model, and the pairing-based constructions offer shorter signatures
than those of [2] or [8]. Our framework also leads to a variant of the construction of At-
trapadung and Libert, as the signature scheme derived from Lewko-Waters IBE has the
required properties; the security proof, however, still requires decisional assumptions.

A Stronger Security Model. Not only do our systems allow weaker security assump-
tions than were previously available for homomorphic signatures, but our schemes
are proven secure in a model that allows a stronger adversary than in other proposed
schemes. Specifically, in all previous schemes the adversary could adaptively query
signatures on many data sets but was required to submit all messages belonging to a
given data set at the same time, after which he would receive signatures on all of the
messages at once. In our security model the adversary is allowed to adaptively query
one message at a time, and even to intersperse queries from different data sets. It was
not previously known how to construct a homomorphic signature scheme that is secure
against such an adversary.

We also observe that certain of our constructions are also secure in the random ora-
cle model under weak assumptions: the Waters-based scheme (actually the same as that
of Gentry and Silverberg [15]) under (co-)CDH in bilinear groups, and the Gennaro-
Halevi-Rabin scheme under RSA. While these random-oracle schemes are less efficient
than current homomorphic schemes that use the same assumptions [5,14], they are se-
cure against our stronger adversary. All previous proofs of security in the random oracle
model break down completely when faced with our stronger adversary.

It is possible to modify the proofs of the standard-model schemes of Attrapadung-
Libert [2] and Catalano-Fiore-Warinschi [8] to work against our stronger adversary; in
the full version of this paper [12] we address a variant of the former.

Many Schemes. Our framework gives users a wide range of options when choosing
a homomorphic signature scheme, including variability of the underlying vector space
(vectors over Fp for pairing-based systems, vectors over Z for RSA-based ones) and
tradeoffs between security and efficiency (the most efficient systems require stronger as-
sumptions). We also expect our framework to be applicable to other signature schemes,
both existing and not yet proposed.

1.2 Overview of Our Construction

We consider linearly homomorphic signature schemes, in which messages are vectors
v with coordinates in some ring R and functions are R-linear combinations of mes-
sages. Using network coding terminology, we call a set of vectors that can be linearly
combined with each other a “file.”

The impetus for our framework comes from comparing the Attrapadung-Libert homo-
morphic signatures [2] to the Lewko-Waters signatures on which they are based [22]. The
Lewko-Waters system uses a cyclic group G whose orderN = pqr is a product of three
distinct primes, along with a nondegenerate, symmetric bilinear map ê on G. A signa-
ture on a message m consists of two group elements (σ1, σ2) =

(
grhs, gαH(m)rhs

′)
,
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where g, h are public group elements of prime order p, q, respectively; gα is the secret
key; H is a hash function; and r, s, s′ are random in ZN . Verification can be carried out
by testing whether ê(σ2, g)/ê(σ1, H(m)) is equal to e(g, g)α, where this last value is
also public. (Here g and h are constructed so that ê(g, h) = 1.)

Attrapadung and Libert convert this scheme to a homomorphic scheme that signs
n-dimensional vectors defined over ZN . The main idea is that to sign a vector v =
(v1, . . . , vn) belonging to a file F , we use the underlying scheme to sign the filename
F (or more precisely, a “tag” chosen at random to identify F ) and then add on a signed
“homomorphic hash” of the vector v using the same randomness on the g part. Specif-
ically, the signature has the form

(σ1, σ2, σ3) =
(
grhs, gαH(F )rhs

′
, (hv11 · · ·hvnn )rhs

′′)
where h1, . . . , hn are additional public group elements in 〈g〉 and s′′ is random. To
verify, we check whether the first two components form a valid signature on F , and
whether ê(σ1,

∏
hvii ) = ê(σ3, g).

To make signatures on different vectors within a file compatible, we need to use the
same randomness r in the underlying signature each time, so the σ1 and σ2 components
are the same for each vector in the file. Attrapadung and Libert achieve this property
by applying a pseudorandom function to the filename F to produce r. Once the ran-
domness is the same across all vectors within a file, the homomorphic property follows:
given two vectors v,w in the same file F and two signatures σv = (σ1, σ2, σ3) and
σw = (σ1, σ2, σ

′
3) produced with the same value of r, the triple (σ1, σ2, σ3σ

′
3) is a

valid signature on the vector v +w. Specifically, we have

ê(σ1,
∏
hvi+wi

i ) = ê(σ1,
∏
hvii ) · ê(σ1,

∏
hwi

i ) = ê(σ3, g) · ê(σ′
3, g) = ê(σ3σ

′
3, g).

This property generalizes in the obvious way to authenticate ZN -linear combinations
of arbitrary numbers of vectors in (ZN )n.

Pre-homomorphic Signatures. The idea of using a homomorphic hash to authenticate
linear combinations of vectors goes back to Krohn, Freedman, and Mazières [21], and
the idea of signing such a hash is used in several previous constructions [5,14,6]. The
key idea here — and the one that we can generalize to other systems — is signing the
filename and the hash separately and tying them together with the signing function.

Specifically, the abstract properties of the Lewko-Waters scheme that make the ho-
momorphic scheme work are as follows:

– The signature contains a component σ1 = gf(m,r) for some fixed group element g
and some function f of the message m and randomness r. (In Lewko-Waters we
take f(m, r) = r, modulo h components.)

– Given σ1, m, and two group elements x and y, there is an efficient algorithm to test
whether y = xf(m,r). (In Lewko-Waters we use the pairing.)

In Section 3 we formalize these properties in the notion of a pre-homomorphic signa-
ture.

Our main construction is as follows: given a pre-homomorphic signature, we form a
homomorphic signature on a vector v in a file F by generating signing randomness r
using a PRF, signing the tag τ identifying F to produce the component σ1 = gf(m,r)
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(and perhaps some other component σ2), and then forming the component σ3 =
(
∏
hvii )f(m,r). The signature on v is (σ1, σ2, σ3). As in the Attrapadung-Libert scheme,

homomorphic operations within the same file can be carried out by multiplying σ3 com-
ponents, and verification can be carried out using the testing algorithm. As stated this
system is “weakly” secure, and we must add some kind of “chameleon hash” to obtain
full security; details are in Section 3.

Examples. Surveying the literature, we see that many pairing-based schemes have the
“pre-homomorphic” structure we define. These include the CDH-based schemes of
Gentry-Silverberg [15], Boneh-Boyen [3], and Waters [24], where signatures have the
same general form as in the Lewko-Waters system, as well as that of Boneh-Boyen [4],
where signatures have the form g1/(x+m+yr) and security is based on the q-strong
Diffie-Hellman problem. In all cases we can use the pairing to determine whether two
pairs of elements have the same discrete log relationship.

Expanding into the RSA space, we see that the signatures of Gennaro, Halevi,
and Rabin [13] also have our “pre-homomorphic” form: signatures are of the form
g1/H(m) mod N , and we can easily test whether y = x1/H(m) by raising both sides
to the power H(m). GHR signatures are secure under the strong RSA assumption; Ho-
henberger and Waters [18] demonstrate a hash function H that allows for a proof of
security of the same construction under the (standard) RSA assumption.

Security. As formalized by Boneh et al. [5] for network coding and adapted to the more
general homomorphic setting by Boneh and Freeman [6], an attacker tries to break a
homomorphic signature scheme by adaptively submitting signature queries to a chal-
lenger and outputting a forgery. The forgery is a tuple (τ∗,w∗, σ∗, f∗) consisting of
a “tag” τ∗ that identifies a file, a vector w∗, a signature σ∗, and a function f∗. There
are two winning conditions: either τ∗ does not identify one of the files queried to the
challenger (a Type 1 forgery), or τ∗ does identify such a file F , but w∗ is not equal to
f(v1, . . . ,vk), where v1, . . . ,vk are the vectors in F (a Type 2 forgery).

For our general construction, we give a direct reduction that shows that a Type 1
forgery leads to a break of the underlying signature scheme. Furthermore we show that
if the underlying signature scheme is strongly unforgeable, then certain Type 2 forgeries
also break the underlying scheme. We also observe that since the identifying tags are
chosen by the challenger, the underlying scheme need only be unforgeable against a
weak adversary, i.e., one that submits all of its message queries before receiving the
public key. This relaxation allows for improved efficiency in our construction.

For the remaining Type 2 forgeries we do not have a black-box reduction to the un-
derlying signature scheme. However, we can do the next best thing: we can abstract
out properties of the scheme’s security proof that allow us to use a forgery in the ho-
momorphic system to solve the computational problem used to prove the underlying
scheme secure. Specifically, suppose we have a simulator that takes an instance of a
computational problem and mimics the underlying signature scheme. Let f be the “pre-
homomorphic” signing function discussed above, and suppose that the simulator can
produce two group elements x, y with the following properties:

– The simulator can compute xf(m,r) for all message queries.
– The simulator can compute yf(m,r) for all but one message query m∗.
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– If r∗ is the randomness used to sign m∗, then the value of yf(m
∗,r∗) can be used to

solve the computational problem.

A typical example of such a simulator is the kind used in security proofs of (strong-
)RSA signatures [13,11,16,17,18]: if {ei} is the set of integers that need to be inverted
mod ϕ(N) to answer signature queries, we computeE =

∏
ei and E∗ =

∏
i�=� ei for a

random � and set x = gE mod N , y = gE
∗
mod N . Using Shamir’s trick, given y1/e�

we can recover g1/e� and in many cases solve the computational problem.
Given such a simulator, we “program” the homomorphic hash function so that for all

vectors queried by the adversary, Hhom(v) consists of x factors only and therefore all
signatures can be computed. However, if the adversary produces a linear function f∗

described by coefficients (c1, . . . , ck) and a vectorw∗ such thatw∗ �=
∑

civi, then we
can show that with noticeable probability the hash of w∗ has a nontrivial y factor, and
therefore a forged signature can be used to solve the computational problem.

Our general security theorem appears in Section 5. An example instantiation, based
on Boneh-Boyen signatures, appears in Section 6. In the full version of this paper [12]
we show how to modify our schemes in bilinear groups to achieve privacy; specifically,
a derived signature on m′ = f(m1, . . . ,mk) reveals nothing about the values of the mi

that cannot be obtained from the value of m′ and the knowledge of f . (We also show
that our RSA schemes do not have this property.)

1.3 Concurrent Work

In concurrent and independent work, Catalano, Fiore, and Warinschi [9] have proposed
two new linearly homomorphic signature schemes that are secure in the standard model:
one based on Boneh-Boyen signatures and secure under the q-SDH assumption, and one
based on Gennaro-Halevi-Rabin signatures and secure under the strong-RSA assump-
tion. Signatures in these schemes consist only of the σ3 component of our corresponding
schemes, and thus signatures are shorter than those arising from our construction. The
strong-RSA construction also has the feature that the length of integer vectors to be
signed is unbounded. (Our RSA constructions as well as that of [14] require an upper
bound on vector length.)

While the constructions in [9] are proved secure only against an adversary that queries
entire files at once, it is possible to modify the proofs to work against our stronger ad-
versary. We also expect that if the hash function from [18] is used in the strong-RSA
scheme, the resulting scheme is secure under the (standard) RSA assumption. However,
it does not appear that the techniques of [9] can be used to produce linearly homomor-
phic signatures based on Waters signatures and the co-CDH assumption.

2 Homomorphic Signatures

In a homomorphic signature scheme we can sign messages m in some message space
M and apply functions f to signed messages for f in some set of “admissible” functions
F . Each set of messages is grouped together into a “data set” or “file,” and each file is
equipped with a “tag” τ that serves to bind together the messages in that file. Formally,
we have the following.
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Definition 2.1 ([6]). A homomorphic signature scheme is a tuple of probabilistic,
polynomial-time algorithms (Setup, Sign,Verify,Eval) as follows:

– Setup(1λ, k). Takes a security parameter λ and a maximum data set size k. Outputs
a public key pk and a secret key sk. The public key pk defines a message spaceM,
a signature space Σ, and a set F of “admissible” functions f : Mk →M.

– Sign(sk, τ,m, i). Takes a secret key sk, a tag τ ∈ {0, 1}λ, a message m ∈ M and
an index i ∈ {1, . . . , k}, and outputs a signature σ ∈ Σ. (The index i indicates that
this is the ith message in the file.)

– Verify(pk, τ,m, σ, f). Takes a public key pk, a tag τ ∈ {0, 1}λ, a messagem ∈M,
a signature σ ∈ Σ, and a function f ∈ F , and outputs either 0 (reject) or 1 (accept).

– Eval(pk, τ, f, &σ). Takes a public key pk, a tag τ ∈ {0, 1}λ, a function f ∈ F , and a
tuple of signatures &σ ∈ Σk, and outputs a signature σ′ ∈ Σ.

Let πi : Mk → M be the function πi(m1, . . . ,mk) = mi that projects onto the ith
component. We require that π1, . . . , πk ∈ F for all pk output by Setup(1λ, k).

Informally, the correctness conditions of our scheme are that (a) a signature produced
by Sign on messagemwith index i verifies for the projection function πi, and (b) if Eval
is given a function g and signatures that verify for messages mi and functions fi, then
the signature output by Eval verifies for the message g(&m) and the function obtained by
composing g with the fi.

Formally, we require that for each (pk, sk) output by Setup(1λ, k), we have:

1. Let τ ∈ {0, 1}λ be any tag, let m ∈ M be any message, and let i ∈ {1, . . . , k} be
any index. If σ ← Sign(sk, τ,m, i), then Verify(pk, τ,m, σ, πi) = 1.

2. Let τ ∈ {0, 1}λ be any tag, let &μ = (μ1, . . . , μk) ∈ Mk be any tuple of messages,
let &σ = (σ1, . . . , σk) ∈ Σk be signatures produced by zero or more iterative appli-
cations of Eval on the outputs of Sign(sk, τ, μi, i), and let (f1, . . . , fk, g) ∈ Fk+1

be any tuple of admissible functions. Let g ◦ &f denote the function that sends
&x = (x1, . . . , xk) to g(f1(&x), . . . , fk(&x)). If Verify(pk, τ,mi, fi) = 1 for some
m1, . . . ,mk ∈ M, the message g(m1, . . . ,mk) is in M, and the function g ◦ &f is

admissible, then Verify
(
pk, τ, g(&m), Eval

(
pk, τ, g, &σ

)
, g ◦ &f

)
= 1.

Note that if fi = πi is the ith projection function, then the function g ◦ &f in condition
(2) is equal to g. Thus condition (2) says that if we apply Eval to the function g and
signatures σi = Sign(pk, τ, μi, i) for i = 1, . . . , k, then the resulting signature verifies
for the message g(&μ) and the function g.

A linearly homomorphic signature scheme is a homomorphic signature scheme
where the message space M consists of n-dimensional vectors over a ring R, and the
set of admissible functionsF consists of R-linear functions from (Rn)k to R. We iden-
tify F with a subset of Rk by representing the function f(v1, . . . ,vk) =

∑
ckvi as the

vector (c1, . . . , ck) ∈ Rk.

Relationship to Network Coding. Definition 2.1 generalizes the definition of Boneh,
Freeman, Katz and Waters for signatures in network coding systems [5, Definition 1].
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In network coding, a file is parsed as a set of vectors v′1, . . . ,v
′
k ∈ Fn

p . Each vector
v′i is then “augmented” by appending the ith unit vector ei, creating k “augmented
vectors” v1, . . . ,vk ∈ Fn+k

p . It is these augmented vectors that are transmitted through
the network.

In the network coding protocol, each router in the network creates random linear
combinations of its incoming vectors and passes the resulting vectors downstream. The
vectors’ augmentation carries information about the function that has been applied.
Specifically, the ith unit vector that we append to the ith data vector represents the
projection function πi. If we apply the linear function f : (Fn+k

p )k → Fn+k
p given by

f(x1, . . . , xk) =
∑

i cixi, then the “augmentation component” of w = f(v1, . . . ,vk)
(i.e., the last k entries) is exactly (c1, . . . , ck). Thus there are two equivalent ways of
viewing a signature on a derived vectorw: as a signature on the entire vectorw, or as a
signature on the pair (w′, f) where w′ =

∑
i civ

′
i is the first n components of w. Our

definition takes the latter view, as it is the one that generalizes more readily to nonlinear
functions (see e.g. [6]).

Security. The goal of an adversary attacking a homomorphic signature scheme is to
produce a signature on a message-function pair that cannot be derived from previously
seen data and signatures. This can be done in two ways: the adversary can produce a
signature on a function-message pair that doesn’t correspond to a previously seen data
set (a Type 1 forgery), or the adversary can authenticate an incorrect value of a function
on a previously seen data set (a Type 2 forgery).

In our model, the adversary is allowed to make adaptive queries on data sets of his
choice. Our adversary is allowed to query one message at a time and proceed adaptively
within each data set, or even to intersperse queries from different data sets. In contrast,
in previous works the adversary was required to submit all messages in a given data set
at once. This new flexibility implies a third type of forgery: the adversary might output
a function-message pair that corresponds to a previously seen data set, but for which the
adversary has not queried enough messages for the function’s output to be well-defined
on the input data set. We call this forgery a Type 3 forgery.

In our model (and in our constructions) we must avoid collisions between tags τ , so
we have the challenger choose them uniformly from {0, 1}λ. Since the adversary can
intersperse queries from different files, the signer must maintain a state to ensure that
each query is signed with the correct tag and index.

Definition 2.2 (Adapted from [6]). A homomorphic signature scheme S =
(Setup, Sign,Verify,Eval) is unforgeable against an adaptive per-message attack (or
simply unforgeable) if for all k the advantage of any probabilistic, polynomial-time
adversaryA in the following game is negligible in the security parameter n:

Setup: The challenger runs Setup(1λ, k) to obtain (pk, sk) and gives pk to A. The
public key defines a message space M, a signature space Σ, and a set F of admissible
functions f : Mk →M.

Queries: A specifies a filename F ∈ {0, 1}∗ and a message v ∈ M. If v is the first
query for F , the challenger chooses a tag τF uniformly from {0, 1}λ, gives it to A, and
sets a counter iF = 1. Otherwise, the challenger looks up the value of τF previously
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chosen and increments the counter iF by 1. The challenger then gives toA the signature
σ(F,iF ) ← Sign(sk, τF ,v, iF ).
The above interaction is repeated a polynomial number of times, subject to the restric-
tion that at most k messages can be queried for any given filename F . We letVF denote
the tuple of elements v queried for filename F , listed in the order they were queried.

Output:A outputs a tag τ∗ ∈ {0, 1}λ, a messagew∗ ∈M, a signature σ∗ ∈ Σ, and a
function f∗ ∈ F .

We say a function f is well-defined on F if either iF = k or iF <
k and f(VF ,viF+1, . . . ,vk) takes the same value for all possible choices of
(viF+1, . . . ,vk) ∈ Mk−iF . The adversary wins if Verify(pk, τ∗,w∗, σ∗, f∗) = 1 and
one of the following hold:

(1) τ∗ �= τF for all filenames F queried byA (a Type 1 forgery),
(2) τ∗ = τF for filename F , f∗ is well-defined on F , and w∗ �= f∗(VF ) (a Type 2

forgery), or
(3) τ∗ = τF for filename F and f∗ is not well-defined on F (a Type 3 forgery).

The advantage HomSig-Adv[A,S] of A is the probability that A wins the game.

For t ∈ {1, 2, 3}, we say that the scheme is secure against type t forgeries if the
winning condition in Definition 2.2 is restricted to type t forgeries only. The proof of
the following result can be found in the full version of this paper [12].

Proposition 2.3. Let H be a linearly homomorphic signature scheme with message
space M ⊂ Rn for some ring R. If H is secure against Type 2 forgeries, then H is
secure against Type 3 forgeries.

Privacy. In addition to the unforgeability property described above, one may wish ho-
momorphic signatures to be private, in the sense that a derived signature on m′ =
f(m1, . . . ,mk) reveals nothing about the values of the mi beyond what can be ascer-
tained from the values of m′ and f . We discuss this property in the full version of this
paper [12].

3 Building Blocks

Pre-homomorphic Signatures. Our generic conversion applies to “hash-and-sign” sig-
natures with a specific form. Namely, a signature on a message m with randomness r
must have a component gf(m,r), where g is some fixed generator of a cyclic group
G and f is some function that may depend on the secret key. Furthermore, if we are
given a valid signature on m with randomness r, then given x and y there is an efficient
algorithm that tests whether y = xf(m,r).

Definition 3.1. Let S = (KeyGen, Sign,Verify) be a signature scheme. Let M be the
space of messages andR be the space of randomness sampled by the signing algorithm.
We say that S is pre-homomorphic if the following three conditions hold for each key
pair (pk, sk) output by KeyGen:
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1. There is a finite cyclic group G such that Sign defines a map Signsk : M×R →
G×{0, 1}∗, whereM is the message space andR is the space of randomness used
by Sign. We decompose a signature σ as (σ1, σ2) with σ1 ∈ G, and we allow the
σ2 component to be empty.

2. The public key pk contains a generator g of the group G in (1), and there is an
efficiently computable function fsk : M × R → Z such that for each signature
(σ1, σ2)← Signsk(m, r), we have σ1 = gfsk(m,r)

3. There is an efficient algorithm Test(pk,m, σ, x, y) that takes input the public key
pk, a message m ∈ M, a signature σ = (σ1, σ2), and group elements x, y ∈ G′

for some group G′ of the same order as G. Suppose Verify(pk,m, σ) = 1. Then
the algorithm outputs 1 if and only if logg(σ1) = logx(y); otherwise, the algorithm
outputs 0. (If Verify(pk,m, σ) �= 1 then the algorithm’s output is unspecified.)

Homomorphic Hashing. A homomorphic hash is a linear function that maps vectors
defined over some ring R to elements of some finite group G. The ring R is interpreted
as “exponents” of the group G; the following definition makes this concept precise.

Definition 3.2. Let G be a finite cyclic group, R be a ring, and φ : R → Z be an
injective function. We say (R, φ) is a ring of exponents for G if φ(r) mod |G| defines
a ring homomorphism from R to Z|G|.

We shall assume from now on that the map φ is understood, in which case we say R
itself is a ring of exponents forG and we identifyRwith its image underφ. In particular,
for g ∈ G and r ∈ R, we interpret gr to mean gφ(r).

While Definition 3.2 is abstract, it is very concrete in our two principal examples:

– If G is a cyclic group of order p and φ is the map that lifts elements of Fp to integer
representatives in [0, p− 1], then (Fp, φ) is a ring of exponents for G.

– If G is any finite cyclic group and φ is the identity map on Z, then (Z, φ) is a ring
of exponents for G. (In our constructions G will be a cyclic subgroup of Z∗

N .)

In both cases our interpretation of gr for r ∈ R agrees with standard usage.
We now define the homomorphic hash used in our conversion. Our definition incor-

porates, in a single abstract framework, the homomorphic hash from previous linearly
homomorphic signatures using discrete log groups [21,10,5,2] as well as the RSA-based
construction of Gennaro et al. [14].

Definition 3.3. Let G be a finite cyclic group and let R be a ring of exponents for G.
For any positive integer n, define the following algorithms:

HomHash.Setup(G, n): Choose random elements h1, . . . , hn
R← G and output hk =

(h1, . . . , hn).

HomHash.Eval(hk,v): Given a key hk = (h1, . . . , hn) and a vector v =
(v1, . . . , vn) ∈ Rn, output

∏n
j=1 h

vj
j .

For a fixed value of hk, we define Hhom : Rn → G by Hhom(v) =
HomHash.Eval(hk,v).
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As the name implies, the key property of HomHash is that it is homomorphic: for
v,w ∈ Rn and a, b ∈ R,

Hhom(v)
a ·Hhom(w)b =

(∏n
j=1 h

vj
j

)a
·
(∏n

j=1 h
wj

j

)b
=
∏n

j=1 h
avj+bwj

j = Hhom(av+bw).

(In the middle equality we have used the homomorphic property of Definition 3.2.)

Uniform Sampling. To sample uniformly random elements of G, we raise a generator
to a random exponent. The following definition captures the property this exponent
needs to have.

Definition 3.4. Let G be a finite cyclic group and (R, φ) be a ring of exponents for G.
We say a distribution χ on R is G-uniform if:

1. For x
R← χ, the distribution of gφ(x) is statistically closeto the uniform distribution

on G; and
2. If the order of G is not efficiently computable, then for x

R← χ, the distribution
of φ(x) mod e is statistically close to the uniform distribution on Ze for all e ∈
[|G|/16, |G|].

If R = Zp and G is a group of (known) order p, we can take χ to be the uniform
distribution on R. If R = Z and G is the multiplicative group of nonzero squares mod
N = pq, we can take χ to be the uniform distribution on [0, a] for any a � |G|. To
obtain a statistical distance of at most 2−m, it suffices to take a = N · 2m.

Chameleon Hashing. As defined by Krawczyk and Rabin [20], a chameleon hash func-
tion is a functionC that takes two inputs: a messagem and randomness s. It is collision-
resistant and has the additional property that there is a “trapdoor” that allows collisions
to be computed.

To show unforgeability of our homomorphic signature scheme (as opposed to weak
unforgeability) we will embed a “homomorphic” chameleon hash function C.Since the
underlying messages are vectors, the randomness will be an additional vector compo-
nent s, and we define C(v, s) = Hhom(v) ·us for some fixed (public) u ∈ G. Note that
(up to relabeling) this is simply Hhom applied to the (n+ 1)-dimensional vector (v, s).

Let us a try a first attempt at embedding a “trapdoor” in the homomorphic hash. We
can generate hk and u such that we know discrete logs of the hi and u to some base
g; e.g., hi = gβi , u = gη. When G has prime order p, to evaluate C we can choose a
uniformly random s ∈ Zp, and to hit a fixed target C(v, s) = ga we simply compute s
in Zp such that 〈&β,v〉+ ηs = a. Since this s is unique, the distribution of s conditioned
on (v, C(v, s) = ga) is the same in both cases.

However, if G is a group of unknown order then this attempt fails. To begin, we
cannot sample s from the uniform distribution on Z|G|; in addition, we can’t invert
in the exponent to compute s. To get around these obstacles, we choose s from the
distribution that the simulator in our security proof needs to sample (see Section 5)
and we set η = 1. Specifically, the trapdoor information is β1, . . . , βn and δ1, . . . , δk
sampled from a G-uniform distribution χ (Definition 3.4). To produce a signature on
the ith file vector v, the simulator uses the trapdoor to set s = δi + 〈&β,v〉. Thus in
the “forward” direction we compute a random s by sampling δi and βj from the same
distribution χ.
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More precisely, s is chosen from the following distribution:

Definition 3.5. Let χ be a G-uniform distribution onR and v ∈ Rn be a vector. Let F :
K×{0, 1}λ×Z→ R be a pseudorandom function whose outputs are indistinguishable
from samples from χ. For a fixed key μ ∈ K, define the distribution Ξτ,v on R as
follows:

1. Compute βj ← Fμ(τ, j) for j = 1, . . . , n.
2. Sample δ ← χ.
3. Output δ + 〈&β,v〉.

(The distribution Ξτ,v depends on μ, but we suppress this in the notation for
readability.)

Since our simulator only needs to evaluate the chameleon hash for one file, it does not
need to reuse the values of δ, so we can choose a new uniform δ each time. Note that if
R is finite and χ is the uniform distribution on R, then Ξτ,v is the uniform distribution
onR. In particular, the distribution does not depend on the PRF F , so we have recovered
our “first attempt” above.

4 A Generic Conversion

Let S = (S.KeyGen,S.Sign,S.Verify) be a pre-homomorphic signature scheme. De-
fine a homomorphic signature scheme HomSig(S) as follows:

HomSig(S).Setup(1λ, k, n): On input a security parameter λ, a maximum data set
size k, and a dimension n, do the following:
1. Compute (pkS , skS) ← S.KeyGen(1λ). Let G,G′ be the groups in Defini-

tion 3.1 and let R be a ring of exponents for G.
(In our instantitaions, we useR = Fp if G has order p, andR = Z if G ⊂ Z∗

N .)
2. If the order of G is efficiently computable from pkS , set B1 = B2 = |G|.

Otherwise, choose B1, B2 such that kB1B2 < |G|/32. (We assume that a
lower bound on |G| can be efficiently computed.)

3. Compute hk← HomHash.Setup(G′, n).

4. Choose random t1, . . . , tk, u
R← G′.

5. Choose a pseudorandom function Ψ : K×{0, 1}λ → R, whereR is the space

of randomness sampled by S.Sign, and choose a random key κ
R← K.1

6. Choose a pseudorandom function F : K′ × {0, 1}λ × Z → R, and choose a

random key μ
R← K′.

7. Output the public key pk = (pkS , hk, {ti}ki=1, u, R,B1, B2) and the secret
key sk = (skS , Ψ, κ, F, μ, pk).

– The message space is M = {v ∈ Rn : ‖v‖ ≤ B1}, where we define ‖v‖ =
maxj{|vj |}. (Recall that we are identifying R with a subset of Z as remarked after
Definition 3.2. If |G| is efficiently computable, thenM is all of Rn.)

1 If S .Sign is deterministic, then we do not need the PRF Ψ .



Improved Security for Linearly Homomorphic Signatures: A Generic Framework 709

– We represent an R-linear function f : Rn → R as a k-tuple of elements of R;
specifically, the function f(v1, . . . ,vk) =

∑
civi is represented by the vector

(c1, . . . , ck) ∈ Rk. We define ‖f‖ = maxi{|ci|}.
– The set of admissible functionsF is all R-linear functions on k-tuples of vectors in
Rn with ‖f‖ ≤ B2. (Note that when R = Z|G| this is all R-linear functions from
(Rn)k to R.)

– We use Hhom(v) to denote HomHash.Eval(hk,v).

HomSig(S).Sign(sk, τ,v, i): On input a secret key sk, a tag τ ∈ {0, 1}λ, a vector
v ∈ Rn, and an index i ∈ {1, . . . , k}, do the following:
1. Compute r ← Ψκ(τ).

2. Compute (σ1, σ2)← S.Sign(skS , τ, r).
3. Using the PRF F , choose s← Ξτ,v (Definition 3.5).

If |G| is known, this is equivalent to choosing s
R← Z|G|.

4. Compute σ3 ←
(
ti ·Hhom(v) · us

)fsk(τ,r), where fsk is the function in Defini-
tion 3.1 (2).

5. Output σ = (σ1, σ2, σ3, s).
HomSig(S).Verify(pk, τ,w, σ, f): On input a public key pk, a tag τ ∈ {0, 1}λ, a vector

w ∈ Rn, a signature σ = (σ1, σ2, σ3, s), and a function f = (c1, . . . , ck), do the
following:
1. Compute ζ1 ← S.Verify(pkS , τ, (σ1, σ2)).
2. Let x ← (

∏k
i=1 t

ci
i ) · Hhom(w) · us and compute ζ2 ←

Test
(
pkS , τ, (σ1, σ2), x, σ3

)
, where Test is the algorithm from Defi-

nition 3.1 (3).
3. If ‖w‖ ≤ kB1B2, set ζ3 = 1; otherwise set ζ3 = 0.
4. If ζ1 = ζ2 = ζ3 = 1, output 1; otherwise output 0.

HomSig(S).Eval(pk, τ, f, &σ): On input a public key pk, a tag τ ∈ {0, 1}λ, a function
f = (c1, . . . , ck), and a vector of signatures &σ = (σ(1), . . . , σ(k)) where σ(i) =

(σ
(i)
1 , σ

(i)
2 , σ

(i)
3 , s(i)), do the following:

1. Compute σ′
3 ←

∏k
i=1

(
σ
(i)
3

)ci , s′ ←
∑k

i=1 cis
(i).

2. Output σ′ = (σ
(1)
1 , σ

(1)
2 , σ′

3, s
′).

Lemma 4.1 (Proof in full version [12].). The homomorphic signature scheme
HomSig(S) satisfies the correctness properties of Definition 2.1.

5 Security

Recall that an adversary can break a homomorphic signature scheme by computing
any of three types of forgeries in Definition 2.2. By Proposition 2.3, a Type 3 forgery
in a linearly homomorphic scheme implies a Type 2 forgery. In our security analysis
we consider the remaining two types separately. We further split Type 2 into two sub-
types. In a Type 2 forgery for HomSig(S), the adversary outputs a forged signature
(σ∗

1 , σ
∗
2 , σ

∗
3 , s

∗) and a tag τ∗ equal to one of the tags τ� returned from a previous query.
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By our construction of Eval, any signature derived from the queried signatures corre-
sponding to τ� will have the same σ1 and σ2 components as in the queried signatures.
This motivates the following definition:

– Type 2a: The pair (σ∗
1 , σ

∗
2) output by the adversary is not equal to (σ1, σ2) ←

S.Sign(skS , τ∗, r∗) computed by the challenger. (Here r∗ = Ψκ(τ
∗).)

– Type 2b: The pair (σ∗
1 , σ

∗
2) output by the adversary is equal to (σ1, σ2) ←

S.Sign(skS , τ∗, r∗) computed by the challenger.

Type 1, 2a Forgeries. We show that Type 1 forgery in our homomorphic scheme
HomSig(S) leads to a forgery of the underlying signature scheme S; i.e., a valid sig-
nature on a previously unseen message. In addition, a Type 2a forgery leads to a strong
forgery of the underlying signature scheme, i.e., a new valid signature on a previously
queried message. Since the underlying scheme S is used to sign random messages cho-
sen by the challenger, we only require that S be unforgeable against a weak adversary.

Theorem 5.1. If S is strongly unforgeable against a weak adversary and Ψ is a secure
PRF, then HomSig(S) is secure against Type 1 and Type 2a forgeries.

Sketch of Proof. We simulate the public key for HomSig(S) using the public key for
S and elements ti = gγi , hj = gαj , and u = gδ with known discrete logarithms.
To sign vector vi, we query τ to the S challenger to obtain (σ1, σ2), and we compute

σ3 = σ
γi+〈!α,vi〉+δs
1 for s

R← Ξτ,vi . Given a Type 1 or Type 2a forgery (τ∗,w∗, f∗, σ∗,
the (σ1, σ2) component of σ∗ is a valid forgery for S on the message τ∗. ��

Type 2b Forgeries. In this case we do not have a black-box reduction to the underlying
signature scheme. However, we do not have to prove each instance separately, as we can
abstract out properties of the underlying scheme’s security proof — or more specifically,
of the simulator used in the reduction — that allow our reduction to go through. These
properties are captured in the following definition:

Definition 5.2. Let S be a pre-homomorphic signature scheme and P be a computa-
tional problem. We say that S is δ-simulatable and γ-extractable for P if there is a
simulator Sim that takes an instance I of P , interacts with a signature adversaryA that
makes at most q message queries, and has the following properties:

1. The probability that Sim aborts is at most 1− δ.
2. Conditioned on Sim not aborting, the public key pkS produced by Sim is statisti-

cally indistinguishable from a real public key for S.
3. Conditioned on Sim not aborting and for any public key pkS , the signatures pro-

duced by Sim are statistically indistinguishable from real signatures produced by S.
4. Let (σ(�)

1 , σ
(�)
2 ) be the signature produced by Sim on the �th message query, and let

ω� = logg(σ
(�)
1 ). (If Sim simulates signatures perfectly, then ω� = fsk(m�, r�) for

implicit randomness r�.) Then Sim can efficiently compute generators x and y of
G′ such that
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– Sim can efficiently compute xω� for all �;
– Sim can efficiently compute yω� for all � �= �∗, where �∗ is a value in 1, . . . , q

randomly chosen by Sim.
5. For y and �∗ as above, there is an efficient algorithm Extract that given an integer

b, a value z = yb·ω�∗ , and the internal state of Sim, outputs either ⊥ or a solution
to the instance I of P . Furthermore, if the distribution of b is G-uniform, then the
probability (over the instances of P and the random coins of Sim) that Extract
outputs⊥ is at most 1− γ.

Theorem 5.3. SupposeS is a δ-simulatable, γ-extractable pre-homomorphic signature
scheme for δ, γ ≥ 1/ poly(λ). If there is no efficient algorithm to solve problem P in
the group G and Ψ and F are secure PRFs, then HomSig(S) is secure against Type 2b
forgeries.

Proof. We describe an algorithm B that takes an instance I of problem P and interacts
with an adversaryA in the unforgeability game for HomSig(S). B runs as follows:

Setup: B does the following:
1. Run Sim on instance I to generate a (simulated) public key pkS and elements

x, y ∈ G′ and �∗ ∈ {1, . . . , q} as in Definition 5.2; abort if Sim aborts.
2. Let R,B1, B2 be as in HomSig(S).Setup and let χ be a G′-uniform distribu-

tion on R.
3. For j = 1, . . . , n, choose αj , βj

R← χ and set hj ← xαjy−βj . Let &α, &β be the
vectors of αj and βj , respectively, and let hk = (h1, . . . , hn).

4. For i = 1, . . . , k, choose γi, δi
R← χ and set ti ← xγiy−δi . Let &γ,&δ be the

vectors of γi, δi, respectively.

5. Choose η
R← χ and set u = xηy.

6. Choose random tags τ1, . . . , τ�
R← {0, 1}λ, and abort if τi = τj for i �= j.

Initialize an empty array A and counters c� = 1 for � = 1, . . . , q.
7. Send A the public key pk = (pkS , hk, {ti}ki=1, u, R,B1, B2).

Queries: When A makes a query for filename F ∈ {0, 1}∗ and a vector v ∈ Rn, B
does the following:
1. If F is not in the array A, append F to A. Let � be the index of F in A and let

i = c�. If c� = 1, send the tag τ� to the adversary.

2. Run Sim to produce (simulated) S signatures (σ(�)
1 , σ

(�)
2 ) on the message τ�,

using (perhaps implicit) randomness r�; abort if Sim aborts.

3. If � �= �∗, choose s(�,i)
R← Ξ�,v (Definition 3.5).

If � = �∗, set s(�,i) = δi + 〈&β,v〉
4. Compute the third component of Sign(sk, τ�,v, i) as

σ
(�,i)
3 ← (ti ·Hhom(vi) · us)ω� =

(
xγi+〈!α,vi〉+ηs(�,i)ys

(�,i)−δi−〈!β,vi〉
)ω�

Property 4 of Definition 5.2 implies that we can efficiently compute this value
for all �. (Note that when � = �∗, there is no y term due to our choice of s.)

5. Send the signature σ(�,i) = (σ
(�)
1 , σ

(�)
2 , σ

(�,i)
3 , s(�,i)) to the adversary.

6. Set c� ← c� + 1.
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Forgery: When A outputs a Type 2b forgery (τ∗,w∗, σ∗, f∗) with f∗ represented by
c = (c1, . . . , ck) and σ∗ = (σ∗

1 , σ
∗
2 , σ

∗
3 , s

∗), B does the following:
1. If τ∗ �= τ�∗ , abort.

2. Let v1, . . . ,vk be the vectors queried with tag τ∗. Compute

a = 〈&γ, c〉+ 〈&α,w∗〉+ ηs∗, b = −〈&δ, c〉− 〈&β,w∗〉+ s∗, z = σ∗
3/x

a·ω�∗ .

Property 4 of Definition 5.2 implies that we can efficiently compute z.

3. Run Extract(b, z, Sim) and output the result.

In the full version of this paper [12], we analyze the simulation using a series of games;
here we give a sketch of the analysis.

Let W0 be the event that A wins the unforgeability game when interacting with a
real challenger for HomSig(S) and W1 be the event that A wins when interacting with
our simulator. Then we can show that under the hypotheses of the theorem statement,
Pr[W1] ≥ δ

q · Pr[W0] − ε for some negligible ε. (The δ factor represents the simulator
not aborting, and the 1/q factor reflects the simulator guessing the correct �∗.)

If W1 occurs, then the fact that the forgery is a valid signature for the tag τ�∗ implies
that the element z computed in the forgery is equal to yb·ω�∗ . Under the assumption that
b is G′-uniform, property (5) of Definition 5.2 implies that B outputs a solution to the
instance I of problem P with probability at least γ, which completes the proof.

It remains only to show that b is G′-uniform. Let y =
∑

civi−w∗ ∈ Rn and let ŝ =∑k
i=1 cis

(�∗,i). It follows from our construction of the s(�
∗,i) that b = 〈&β,y〉 + s∗ − ŝ.

Since the property of being G′-uniform is invariant under translation by a scalar, it
suffices to show that (1) y �= 0 mod |G|, and (2) the vector &β comes from a distribution
statistically close to χn even when conditioned on the adversary’s view. Property (1)
follows from the fact thatA outputs a Type 2b forgery, while property (2) can be verified
by looking at the information about &α, &β,&γ, &δ available to the adversary. ��

6 Example Instantiation: Boneh-Boyen Signatures

We now describe how our construction can be instantiated using the signatures of
Boneh and Boyen [4]; we describe additional instantiations in the full version of this
paper [12].

Let G,GT be group of prime order p with an efficiently computable, nondegenerate
bilinear map ê : G × G → GT . (For simplicity we assume here that the pairing is
symmetric; in the full version we consider a general pairing ê : G1 × G2 → GT .) The
signature scheme BB consists of the following algorithms:

BB.Setup: Choose random α
R← Zp and g

R← G. The public key is pk = (g, gα), and
the secret key is sk = α.

BB.Sign: Given a message m ∈ Zp, output σ = g1/(α+m).

BB.Verify: Output 1 if ê(σ, gm · gα) = ê(g, g); otherwise output 0.

An instance of the q-strong Diffie-Hellman problem is a tuple (g, gα, gα
2

, . . . , gα
q

)

for randomly chosen g
R← G and α

R← Zp. A solution is a pair (r, g1/(α+r)) ∈ Zp×G.
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Boneh and Boyen [4, Lemma 9] show that if the q-SDH assumption holds for G, then
BB is strongly unforgeable against a weak adversary making at most q signature queries.

The BB scheme is pre-homomorphic (Definition 3.1): the (deterministic) signing
function is fsk(m) = 1/(α + m) (mod p), and we define BB.Test(pk,m, σ, x, y) to
output 1 if and only if ê(σ, x) = ê(g1, y) (regardless of the output of Verify(pk,m, σ)).

We now describe the Boneh-Boyen simulator SimBB that takes an instance
(g, gα, gα

2

, . . . , gα
q

) of the q-SDH problem and interacts with a weak signature ad-
versary.

Setup: Given distinct messages m1, . . . ,mq ∈ Zp queried by the adversary, form the
polynomial P (t) =

∏q
i=1(t + mi) ∈ Zp[t]. Since P (t) has degree at most q,

we can use the q-SDH instance to compute x = gP (α). Output the public key
pk = (x, gα); the (implicit) secret key is α.

Signatures: Let P�(t) =
∏

i�=�(t +mi). The signature on m� is σ(�) = x1/(α+m�) =

gP�(α), which can be computed from the q-SDH challenge.

Proposition 6.1. SimBB is 1-simulatable & (1− 1
p )-extractable for the q-SDH problem.

Proof. Conditions 1–3 of Definition 5.2 are obviously satisfied. To verify condition 4,
let P (t) and P�(t) be as above. Let x = gP (α) and y = gP�∗ (α). We have σ(�) =
x1/α+m� , so ω� = 1/(α+m�) and the simulator can compute xω� for all � and yω� for
all � �= �∗.

To verify the last condition, write P�∗(t)/(t+m�∗) = Q(t) + c/(t+m�∗) for some
polynomial Q ∈ Zp[t] of degree at most q − 2 and c ∈ Zp. Since the messages mi are
distinct, we have c �= 0. Given an integer b and the element

z = yb·ω�∗ = gb·P
∗(α)/(α+m�∗) = gb·(Q(α)+c/(α+m�∗)),

we let Extract output
(
m�∗ , (z

1/b/gQ(α))1/c
)
, or ⊥ if b = 0 mod p. Thus for uniform

b in Zp, Extract outputs a solution to the q-SDH problem with probability 1− 1/p. ��

Corollary 6.2. If the q-SDH assumption holds for G, then HomSig(BB) is unforgeable.
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Abstract. We identify a potential weakness in the standard security
model for dynamic group signatures which appears to have been over-
looked previously. More specifically, we highlight that even if a scheme
provably meets the security requirements of the model, a malicious group
member can potentially claim ownership of a group signature produced
by an honest group member by forging a proof of ownership. This prop-
erty leads to a number of vulnerabilities in scenarios in which dynamic
group signatures are likely to be used. We furthermore show that the cur-
rently most efficient dynamic group signature scheme does not provide
protection against this type of malicious behavior.

To address this, we introduce the notion of opening soundness for
group signatures which essentially requires that it is infeasible to produce
a proof of ownership of a valid group signature for any user except the
original signer. We then show a relatively simple modification of the
scheme by Groth (ASIACRYPT 2007, full version) which allows us to
prove opening soundness for the modified scheme without introducing
any additional assumptions.

We believe that opening soundness is an important and natural secu-
rity requirement for group signatures, and hope that future schemes will
adopt this type of security.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [11], allow a group mem-
ber to anonymously sign a message on behalf of the group. More specifically,
anyone will be able to verify that a signature originates from a group member,
but the signature does not reveal the identity of the signer, not even to other
members of the group. Group membership is controlled by an authority called
the issuer, who handles enrollment of users through an interactive join protocol.
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To prevent misuse of the signing capabilities obtained by group members, an-
other authority called the opener can revoke the anonymity of a signature and
identify the signer of the message.

Following the introduction of group signatures, a series of different security
requirements were proposed for this primitive, each of which aims at addressing
a specific security concern by augmenting or refining previous notions, e.g. un-
forgeability, exculpability, traceability, coalition resistance, framing resistance,
anonymity and unlinkability. These security notions were later consolidated in
the security model proposed by Bellare, Micciancio, and Warinschi [2] who in-
troduce two strong security requirements, full-anonymity and full-traceability,
which imply all of the previously proposed notions of security.

However, a drawback of the model by Bellare, Micciancio, and Warinschi [2]
is that only static group signature schemes are considered i.e. the set of group
members is fixed, and the private key material of each group member is gener-
ated in the setup phase of the scheme. Furthermore, the authority controlling
the group (which acts as both the issuer and opener) is considered to be fully
trusted. To address this, Bellare, Shi, and Zhang [3] extended the model of [2]
to capture dynamic group signature schemes in which a user can dynamically
join the group by engaging in a join protocol with the issuer. Furthermore, to
reduce trust in the opener, the model adopts the approach by Camenisch and
Michels [10], and requires that the opener produces a non-interactive and pub-
licly verifiable proof that a given signature was produced by a given signer. The
model introduces three formal security notions: anonymity, traceability, and non-
frameability. The former two notions are adaptations of the full-anonymity and
full-traceability notions to the dynamic group signature setting. The latter no-
tion, non-frameability, requires that even if a malicious opener and issuer collude,
they cannot frame an honest user by producing a signature and corresponding
opening which identify the honest user as the signer, when the honest user did
not produce the signature in question.

Limitations of Non-frameability. While non-frameability is a strong security
notion, it only partly covers the security properties one would intuitively expect
to gain when the opener is required to produce a non-interactive and publicly
verifiable proof of an opening. More specifically, the non-frameability notion
only ensures that the opener cannot frame an uncorrupted user by constructing
a proof that the user is the signer of a signature he did not produce. However, no
guarantee is given regarding an opening involving a corrupted user. This leaves
open the possibility that an opening showing that a malicious or corrupted user
is the signer of a signature produced by an honest user, can be constructed.
Furthermore, this might not require the opener to be corrupted or malicious, in
which case a malicious user might be able to independently forge a proof showing
that he is the signer of any signature of his choice.

Depending on the concrete scenario in which a dynamic group signature
scheme is used, the ability to forge an opening proof might become a real security
concern. We highlight several potential threats that this ability gives rise to:
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– Signer impersonation. The most obvious threat is signer impersonation.
This is a problem if a group signature scheme is used for an anonymous
auction as suggested in [1]. In this scenario, the bidders correspond to group
members, and when submitting a bid, a group member will attach a group
signature on his bid. The opener serves as the auctioneer, and will make the
opening of the signature on the highest bid public. This will enable anyone
to verify who the winner of the auction is. However, a malicious bidder may
forge a proof of ownership of the signature on the highest bid and may insist
that he/she is the winner.
A similar situation occurs if a dynamic group signature scheme is used to
implement an authentication scheme with identity escrow [23]. In this case, a
malicious group member can claim to be the user who authenticated himself
to a server (and provide a proof thereof) when this is not the case.

– Proxy confession. The ability to open a group signature is introduced to
keep the group members accountable of the messages signed on behalf of the
group. However, assume that a signature on some message causes a dispute,
but the real signer wants to avoid being blamed for this. Then the real signer
asks (or intimidates) another group member to forge a proof of ownership of
the signature and take the blame.

– Key exposure. Consider the case in which a group member’s private key
is exposed and falls into the hands of a malicious user. This will not only
allow the malicious user to construct future signatures on any message of
this choice, but will furthermore allow him to claim (and prove) that the
original user is the signer of any previously generated signature.

Our Contribution. We highlight the above described potential weakness of the
security guarantee provided by the formal model of Bellare, Shi, and Zhang [3].
Furthermore, we show that this is not only a property of the security model,
but that the most efficient dynamic group signature schemes enable a malicious
group member to forge a proof of ownership of a signature.

To address this, we propose a new security notion for dynamic group sig-
natures which we denote opening soundness. We consider two variants of this
notion, weak opening soundness and (ordinary) opening soundness. The former
is intended to address the above highlighted security threats in an intuitive and
straightforward manner, and will rule out the possibility that a malicious group
member can produce a proof of ownership of a signature generated by an honest
user. The latter considers a stronger adversary who has access to the private key
of the opener, and who is only required to produce two different openings of a
maliciously constructed signature. The notion of opening soundness implies the
notion of weak opening soundness.

As a positive result, we prove that the generic construction of a dynamic group
signature scheme by Bellare, Shi, and Zhang [3] achieves opening soundness. We
furthermore propose a modification of the scheme by Groth [19] which allows
us to prove opening soundness of the modified scheme. In contrast, we show that
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the original scheme does not provide weak opening soundness. In addition, we
briefly discuss opening soundness of the random oracle scheme [14,4]. A summary
of our results regarding opening soundness of the above mentioned schemes can
be seen in Table 1.

Table 1. Summary of the results. The mark “?” means it is an open question whether
the scheme has the given property or not. The rightmost column denotes the section
in which the security of the corresponding scheme is discussed.

Opening Soundness Weak Opening Soundness

Our Variant of [19] Yes Yes (§5.1)
Bellare-Shi-Zhang [3] Yes Yes (§4)
Furukawa-Imai [14] No ? (§4)
Bichsel et al. [4] No ? (§4)
Groth (full version) [19] No No (§4)

Related Work. Since the first proposal of group signature by Chaum and van
Heyst, many efficient constructions have been proposed, most of which are re-
lying on the random oracle model [1,6,9,22,14,12,4]. Many initial schemes were
based on the strong-RSA assumption. The first group signature schemes based
on assumptions of the discrete-logarithm type were achieved independently by
Camenisch and Lysyanskaya [9], and Boneh, Boyen, and Shacham [6]. The for-
mer scheme is based on the LRSW assumption, while the latter is based on
the q-strong Diffie-Hellman assumption. Kiayias, Tsiounis, and Yung proposed
the notion of traceable signature [21], which can be seen as an extension of
group signature with additional anonymity-revocation functionalities. One of
these functionalities is that of allowing a group member to claim the authorship
of a signature, however, its security requirement does not care about the possi-
bility in which a malicious member falsely claims the authorship of an honestly
generated signature by another.

Constructions which are provably secure without random oracles were only re-
cently achieved. Besides the generic construction relying on NIZK proofs for gen-
eral NP languages, Groth constructed the first concrete group signature scheme
with constant signature size by exploiting the properties of bilinear groups [17],
though signatures are extremely large. Boyen and Waters proposed group sig-
nature schemes [7,8] whose signature sizes are quite compact. In particular the
latter scheme has signatures consisting only of six group elements of a com-
posite order group. The drawback of these schemes is that they only achieve
weaker security guarantees, that is, they only provide so called CPA-anonymity
in the security model of Bellare, Micciancio, and Warinschi [2]. Groth pro-
posed another group signature scheme [18,19] which has constant signature size
(roughly one or two kilobytes) and which is provably secure in the dynamic
group signature model of Bellare, Shi, and Zhang [3] without relying on random
oracles.
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2 Preliminaries

2.1 Group Signatures

In this section, we briefly review the model and the security notions of group
signatures, presented by Bellare, Shi, and Zhang [3]. A group signature scheme
consists of the following seven algorithms:

GKg: This is a group key generation algorithm which, on input 1k, returns the
keys (gpk , ik , ok), where gpk is a group public key, ik is an issuing key, and
ok is an opening key.

UKg: This is a user key generation algorithm which, on input gpk , returns a
personal public and private key pair (upk , usk). Each user i will generate a
personal key pair (upk i, usk i) before engaging in the joining protocol which
is described below.

Join/Issue: This is a pair of interactive algorithms which implement the joining
protocol run by a user i and the issuer. The algorithm Join, which is run
by the user, takes (gpk , upk , usk) as input, whereas Issue, which is run by
the issuer, takes (gpk , upk , ik ) as input. Upon successful completion of the
protocol, Join outputs a private signing key gsk i for user i, and Issue outputs
the registration information of user i which is stored in reg [i], where reg is a
registration table maintained by the issuer.

GSig: This is the group signing algorithm run by a user i, which, on input gpk ,
a signing key gsk i, and a message m, returns a group signature Σ.

GVf: This is the group signature verification algorithm which, on input (gpk ,m,
Σ), returns 1 to indicate that Σ is a valid signature on m, or 0 otherwise.

Open: This is the opening algorithm run by the opener, which, on input (gpk , ok ,
reg,m,Σ), returns (i, τ), where i specifies that the originator of the signature
Σ is the user i, and τ is a non-interactive proof of this. In case the algorithm
fails to identify the originator of the signature, it outputs i = 0. Note that
Open requires access to the registration table reg.

Judge: This is the judge algorithm which, on input (gpk , i, upk i,m,Σ, τ), out-
puts either 1 or 0 indicating that the proof τ is accepted as valid or invalid,
respectively.

The model in [3] introduces four requirements for a group signature scheme,
namely, correctness, anonymity, non-frameability, and traceability. The correct-
ness notion requires that honestly generated signatures will be accepted as valid
by the verification algorithm, can be opened by the opening algorithm, and that
the judging algorithm will accept the resulting proof as valid. The anonymity
notion requires that no information about the identity of a signer is leaked from
a group signature, even if the signing keys of all group members and the issuer
are exposed. The non-frameability notion requires that no adversary corrupting
both the opener and the issuer, can produce a signature and an opening proof
that identify an uncorrupted group member as the signer, when the uncorrupted
group member did not produce the signature in question. The traceability no-
tion requires that an adversary corrupting the opener and controlling a group
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of malicious group members, cannot produce a valid signature that cannot be
opened correctly.

The formal definitions of the four notions are given as follows. We first define
several oracles needed for security notions:

AddU(i): The add-user oracle runs UKg(gpk ) and Join/Issue protocol to add an
honest user. It returns the user public key upk of the user. The oracle add i
to the set HU.

RReg(i): The read-registration-table oracle reveals the content of the registra-
tion table reg[i].

SndToU(i,M) The send-to-user oracle at first sets up a user public/secret key
pair by (upk i, usk i) ← UKg(gpk ) and add i to the set HU. The oracle then
allows the adversary to engage a group-joining protocol of the user i on
the behalf of the corrupted issuer. The message M is sent to the user i
who follows the protocol Join(gpk , upk i, usk i). The response of the user is
returned to the adversary.

WReg(i,M) The write-registration-table oracle updates reg[i] to M .
USK(i): The user-secret-keys oracle reveals the secret keys (usk i, gsk i) of the

user i to the adversary.
CrptU(i,M): The corrupt-user oracle sets the user public key of the user i to M

and add i to the set CU.
Open(m,Σ): The open oracle returns the opening (i, τ)← Open(gpk , ok ,m,Σ)

of the signature Σ under the message m.
Chb(m, i0, i1): The challenge oracle returns a challenge Σ∗ ← GSig(gpk , gsk ib ,

m). The users i0 and i1 needs to be in the set HU.
GSig(i,m): The signing oracle returns a signature Σ ← GSig(gpk , gsk i,m) on

the message m of the user i, who needs to be in the set HU.
SndToI(i,M): The send-to-issuer oracle allows the adversary to engage a group-

joining protocol on behalf of the corrupted user i. The message M is sent to
the issuer who follows the protocol Issue(gpk , upk i, ik). The response of the
issuer is returned to the adversary. The user i needs to be in the set CU.

The correctness and security requirements for a group signature scheme are as
follows:

Definition 1. A group signature scheme is said to have correctness if

Pr[(gpk , ik , ok )← GKg(1k); (i,m)← AAddU,RReg(gpk );

Σ ← GSig(gpk , gsk i,m); (j, τ)← Open(gpk , ok , reg,m,Σ)

: GVf(gpk ,m,Σ) = 0 ∨ i �= j ∨ Judge(gpk , i, upk i,m,Σ, τ) = 0]

is negligible for any probabilistic polynomial-time adversary A.
Definition 2. A group signature scheme is said to have anonymity if

Pr[b← {0, 1}; (gpk, ik , ok)← GKg(1k);

b′ ← ASndToU,WReg,USK,CrptU,Open,Chb(gpk , ik) : b = b′]− 1

2

is negligible for any probabilistic polynomial-time adversary A.
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Definition 3. A group signature scheme is said to have non-frameability if

Pr[(gpk , ik , ok )← GKg(1k);

(m,Σ, i, τ)← ASndToU,WReg,USK,CrptU,GSig(gpk , ok , ik );

: GVf(gpk ,m,Σ) = 1 ∧ Judge(gpk , i, upk i,m,Σ, τ) = 1

∧A queried neither USK(i) nor GSig(i,m)]

is negligible for any probabilistic polynomial-time adversary A.

Definition 4. A group signature scheme is said to have traceability if

Pr[(gpk , ik , ok )← GKg(1k); (m,Σ)← ACrptU,SndToI,AddU,USK,RReg(gpk , ok );

(i, τ)← Open(gpk , ok , reg,m,Σ)

: GVf(gpk ,m,Σ) = 1 ∧ (i = 0 ∨ Judge(gpk , i, upk i,m,Σ, τ) = 0)]

is negligible for any probabilistic polynomial-time adversary A.

2.2 Other Primitives

Public-Key Encryption. A public key encryption scheme consists of three
algorithms (EKg,Enc,Dec), which satisfy the following correctness condition: For
any security parameter � ∈ N, any plaintext m ∈ {0, 1}∗, any random tape r for
EKg, and any random tape s for Enc, the condition Dec(dk ,Enc(pk ,m; s)) = m
holds, where pk and dk are output from EKg as (pk , dk ) ← EKg(1�; r). In this
paper we require a public key encryption scheme to satisfy the security notion
of indistinguishability under chosen-ciphertext attack (IND-CCA) [25].

Digital Signature. A digital signature scheme consists of three algorithms
(SKg, Sign,Ver), which satisfy the following correctness condition: For any secu-
rity parameter � ∈ N, any message m ∈ {0, 1}∗, any random tape r for SKg, and
any random tape s for Sign, the condition Ver(vk ,m, Sign(sk ,m; s)) = ( holds,
where vk and sk are output from SKg as (vk , sk)← SKg(1�; r). In this paper we
use two types of security for digital signature schemes. One is the standard secu-
rity notion of unforgeability under adaptive chosen message attack (EUF-CMA),
and the other is strong one-time signatures. See [16] for exact definitions.

Target Collision-Resistant Hash Functions. A family of functions is called
target collision-resistant if no algorithms, which firstly chooses an input and then
is given a description of a function in the family, can find another input that
produces the same output to the first input. The formal definition we need is as
follows: A function generator HashGen(1�) takes as input a security parameter
and outputs a function H. The family of functions is said to be target collision-
resistant when Pr[(x, s)← A;H ← HashGen(1�);x′ ← A(H, s) : H(x) = H(x′)∧
x �= x′] is negligible for any polynomial-time algorithm A.
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Non-interactive Proofs. A non-interactive proof system for an NP-relation
R ∈ {0, 1}∗ × {0, 1}∗ defining L = {x|(x,w) ∈ R for some w} consists of three
algorithms (K,P, V ), which satisfy the following correctness and soundness con-
ditions: For correctness, it is required that for any security parameter � ∈ N,
any common reference string crs ← K(1�), and any pair (x,w) ∈ R, it holds
that V (1�, crs , x, P (1�, crs , x, w)) = (; for soundness, it is required that for
any � ∈ N and any probabilistic polynomial-time algorithm A, the probabil-
ity Pr[crs ← K(1�); (x, π) ← A(1�, crs) : V (1�, crs, x, π) = ( ∧ x �∈ L] is
negligible. In fact we will later use two types of proof systems, one which is
zero-knowledge [5,13] and one which is simulation-sound [26] in addition to zero-
knowledge.

Bilinear Maps and Groth-Sahai Proofs. Bilinear groups are groups G and
GT with the same order that have an efficiently computable bilinear map e :
G× G→ GT . Let G be a probabilistic polynomial-time algorithm that outputs
a group parameter gk = (p,G,GT , e, g) where p is the order of G and GT , e is a
non-degenerates bilinear map e : G×G→ GT , and g is a generator of G.

Groth and Sahai [20] introduced a framework for very efficient non-interactive
proof for the satisfiability of some algebraic equations they called quadratic equa-
tions. The proof system consists of algorithms (KNI, P, V,X). The algorithm
KNI(gk) takes a group parameter gk as input and outputs (crs , xk), where crs
is a common reference string and xk is a trapdoor extraction key for extracting
a witness from a proof. The algorithm P (crs , x, w) outputs a proof π for an
equation described by x whose witness is w. A proof π is verified by running
V (crs , x, π). The algorithm Xxk(x, π) extracts a witness from the proof π which
passes the verification algorithm. In fact there are two types of proof systems
(KNI, PNIWI, VNIWI, X) and (KNI, PNIZK, VNIZK, X), which respectively provide
witness-indistinguishability and zero-knowledge properties. The two proof sys-
tems have the identical common reference string generation algorithm. Moreover
they share single string for different sets of equations in the Groth group signa-
ture scheme.

The common reference string consists of eight group elements as crs =
(F,H,U, V,W,U ′, V ′,W ′). A notable property on this is that F and H essen-
tially serve as a public key of the linear encryption [6]. This property is exploited
in the Groth group signature scheme (and so in our modification of that scheme).
For further details see [20].

Tag-Based Encryption. Tag-based encryption is an extension of public key
encryption, which associates an additional “tag” with a ciphertext. The exact
syntax is as follows: A key generation algorithm G(1�) generates a public key pk
and a secret key dk ; an encryption algorithm Epk (t,m) takes as input a public
key pk , a tag t, and a plaintext m, and outputs a ciphertext c; a decryption
algorithm Ddk (t, c) takes as input a decryption key dk , a tag t, and a ciphertext
c and outputs a plaintext m or a special symbol ⊥ indicating the decryption
failed. The correctness condition only ensures that the plaintext is recovered
when the tags used in the encryption and the decryption are identical.
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In this paper we use Kiltz’s construction of tag-based encryption [24], which
is explained below. The scheme can be built on bilinear groups. Let gk =
(p,G,GT , e, g) be a group description. The key generation algorithm chooses
random integers φ, η ← Zp and random elements K,L ← G, and sets pk =
(F,H,K,L) where F = gφ and H = gη and dk = (φ, η). A ciphertext of a plain-
text m under a tag t is computed as y = (y1, y2, y3, y4, y5) = (F r, Hs,mgr+s,
(gtK)r, (gtL)s). The decryption algorithm decrypts a ciphertext (y1, y2, y3, y4,
y5) under a tag t by checking e(F, y4) = e(y1, g

tK) and e(H, y5) = e(y2, g
tL)

and outputs y3/y
φ
1 y

η
2 if the two equations hold, otherwise outputs ⊥. This en-

cryption scheme is secure against selective-tag weak chosen-ciphertext attacks if
the decisional linear assumption holds [24]. Another interesting property is that
the scheme has public verifiability in the sense that it can be efficiently checked
whether a given five-tuple (y1, y2, y3, y4, y5) lies in the range of the encryption
algorithm under a given public key pk and a given tag t by checking the two
equations e(F, y4) = e(y1, g

tK) and e(H, y5) = e(y2, g
tL).

3 Opening Soundness

In this section we give a formal definition of opening soundness. Specifically, we
introduce two variants of opening soundness, weaker and stronger definitions.

The weaker definition, named weak opening soundness, is intended to address
the security concerns discussed in the introduction in a straightforward manner,
and will rule out the possibility that a malicious user can claim ownership of a
signature produced by an honest user by forging an opening proof. The definition
is as follows:

Definition 5. A group signature scheme is said to have weak opening soundness
if

Pr[(gpk , ik , ok )← GKg(1k); (m, i, i∗, s)← AAddU(·)(gpk );

Σ ← GSig(gpk , gsk i,m); τ∗ ← AAddU(·)(s,Σ, gsk i∗)

: i �= i∗ ∧ i, i∗ ∈ HU ∧ Judge(gpk , upk i∗ ,m,Σ, τ
∗) = 1]

is negligible for all polynomial time adversaries A, where the oracle AddU is
defined as follows:

AddU: On a query i ∈ N, the oracle runs (upk i, usk i)← UKg(gpk ), then executes
the protocol (gsk i, regi) ← 〈Join(gpk , upk i, usk i), Issue(gpk , ik )〉, adds i to a
set HU , and lastly returns upk i.

Note that the adversary is only allowed to receive the secret signing key of a single
user i∗. Hence, this definition will not rule out attacks involving a corrupted
opener, and therefore cannot contribute towards reducing trust in this entity.

In contrast, the stronger definition, named opening soundness, is intended to
rule out the possibility that an adversary can produce two different openings
of a signature, even if he is allowed to corrupt the opener and all the users in
the system, and furthermore generate the signature in question maliciously. The
definition is as follows:
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Definition 6. A group signature scheme is said to have opening soundness if

Pr[(gpk , ik , ok )← GKg(1k); (m,Σ, i1, τ1, i2, τ2)← ACrptU,WReg(gpk , ok , ik )

: GVf(gpk ,m,Σ) = 1 ∧ i1 �= i2 ∧ Judge(gpk , upk i1 ,m,Σ, τ1) = 1

∧ Judge(gpk , upk i2 ,m,Σ, τ2) = 1]

is negligible for all polynomial time adversaries A, where the oracle CrptU(i,M)
sets the user public key of the user i to be M , and the oracle WReg(i,M) sets
reg[i] to M .

While the weaker definition provides a minimum level of protection against
the type of attacks described in the introduction, we believe that, when applied
to the scenarios mentioned in the introduction, any dynamic group signature
scheme should provide (ordinary) opening soundness to prevent any type of
attack which exploits ambiguity of openings, or involves a corrupted opener.
Furthermore, we will show that this level of security can be achieved efficiently
by showing that our modified version of the scheme by Groth provides opening
soundness (See Sect. 5 for details).

4 Opening Soundness of Existing Schemes

We will now take a closer look at some of the existing dynamic group signature
schemes, and highlight the level of opening soundness (ordinary, weak or none)
achieved by these. Note that since the Bellare-Shi-Zhang security model for
dynamic group signatures does not considers opening soundness, a security proof
in this model will not allow us to make any conclusions regarding the opening
soundness of existing schemes.

In this section, we will focus on the standard model scheme by Groth described
in [19] (note that the updated scheme in [19] is slightly different from the scheme
described in [18]) and the generic construction of a dynamic group signature
scheme by Bellare, Shi, and Zhang [3]. More specifically, we will show that the
scheme by Groth does not have weak opening soundness whereas the generic
construction by Bellare, Shi and Zhang has opening soundness. We further show
that the random oracle model schemes by Furukawa and Imai [14] and Bichsel
et al. [4] do not have opening soundness. Interestingly, while these schemes do
not provide opening soundness, there seems to be no obvious attack against the
weak opening soundness of these.

The Groth Scheme. Figure 1 shows a description of the Groth scheme. Below,
we will expand on the description given in the figure.

In the group key generation algorithm GKg, the elements f, h, T correspond to
a verification key of the Zhou-Lin signature scheme [27], whereas z corresponds
to a signing key. Furthermore, pk is a public key of Kiltz’s tag-based encryption
scheme. Note that the first two elements of pk and the common reference string
crs for the non-interactive Groth-Sahai proofs are identical.
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GKg(1k):
gk ← G(1k); H ← HashGen(1k)
(f, h, z)← G; T = e(f, z)
(crs , xk)← KNI(gk);
(F,H,U, V,W,U ′, V ′,W ′)← crs ;
K,L← G; pk ← (F,H,K,L)
(gpk , ik , ok)
← ((gk ,H, f, h, T, crs , pk), z, xk)

Join/Issue(User i: gpk ; Issuer: gpk , ik):
Run the coin-flipping protocol in [19]

The user obtains vi = gxi and xi

and the issuer obtains vi
Issuer: r ← Zp;

(ai, bi)← (f−r, (vih)
rz);

set reg [i]← vi
send (ai, bi) to the user

User: If e(ai, hvi)e(f, bi) = T
set upk i ← vi, gsk i ← (xi, ai, bi)

Open(gpk , ok , reg ,m,Σ):
(b, v, σ)
← Xxk (crs , (gpk , a,H(vk sots)), π)

Return (i, σ) if there is i so v = reg [i],
else return (0, σ)

GSig(gpk , gsk i,m):
(vk sots, sk sots)← KeyGensots(1

k)
(Repeat until H(vk sots) �= −xi)

ρ← Zp; a← aif
−ρ; b← bi(hvi)

ρ

σ ← g1/(xi+H(vksots))

π ← PNIWI(crs , (gpk , a,H(vk sots)), (b, vi, σ))
y ← Epk(H(vk sots), σ)
ψ ← PNIZK(crs, (gpk , y, π), (r, s, t))
σsots ← Signsksots

(vk sots,m, a, π, y, ψ)
Return Σ = (vk sots, a, π, y, ψ, σsots)

GVf(gpk ,m,Σ):
Return 1 if the following holds:
1 = Vervksots ((vk sots,m, a, π, y, ψ), σsots),
1 = VNIWI(crs, (gpk , a,H(vk sots)), π),
1 = VNIZK(crs , (gpk , π, y), ψ), and
1 = ValidCiphertext(pk ,H(vk sots), y),
else return 0

Judge(gpk , i, upk i,m,Σ, σ):
Return 1 if

i �= 0 ∧ e(σ, vig
H(vksots)) = e(g, g),

else return 0

Fig. 1. The Groth group signature scheme [19]

In the group signing algorithm GSig, a group member constructs two non-
interactive Groth-Sahai proofs. The first proof π, constructed via PNIWI, shows
knowledge of a signature σ, a verification key v and a part b of a (re-randomized)
certificate (a, b) which satisfy e(a, hv)e(f, b) = T ∧e(σ, vgH(vk sots)) = e(g, g). The
first part a of the certificate can safely be revealed as part of the group signature
since it does not leak any information about the identity of the member due
to the re-randomization. The second proof ψ, constructed via PNIZK, demon-
strates that the plaintext of y is the same as the witness σ used in π. Let us
explain in detailed. The tag-based encryption y has the form (y1, y2, y3, y4, y5) =
(F ry , Hsy , gry+syσ, (gH(vksots)K)ry , (gH(vksots)L)sy ), while the Groth-Sahai proof
π contains a commitment c = (c1, c2, c3) = (F rcU t, HscV t, grc+scW tσ). The
proof demonstrates that there exists (r, s, t) such that (c1y

−1
1 , c2y

−1
2 , c3y

−1
3 ) =

(F rU t, HsV t, gr+sW t). When y and c encrypt the same message, there exists
(r, s, t) that satisfies above equation, but if y and c encrypt different messages,
no such tuple (r, s, t) exists.

The verification algorithm GVf will, in addition to the verification of the two
non-interactive proofs and the one-time signature, verify that the ciphertext y
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is a valid ciphertext, using the algorithm ValidCiphertext. This algorithm is
easily implemented for the tag-based encryption scheme by Kiltz (see the last
paragraph of Sect. 2 for details).

We will now show how a malicious group member can forge a opening proof
which shows that he is the signer of any signatureΣ produced by user i. As shown
above, an opening proof consists of a certified signature σ on vksots which is part
of Σ. To verify the opening proof, it is only verified that σ is a valid signature
on vksots under the verification key vi of the user in question.

Hence, a malicious user i′ who wants to impersonate the signer of the group
signature Σ on m, simply uses his own private signing xi′ key to construct a new
signature σ′ on vksots, and publicizes this as an opening proof together with his
own identity i′. This proof will be accepted by the Judge algorithm since σ′ is a
valid signature in vksots.

We formally state this as a theorem:

Theorem 1. The Groth group signature scheme does not provide weak opening
soundness.

Proof. We describe an algorithm for producing a forged proof: When the ad-
versary receives the security parameter 1� and a group public key gpk , it firstly
issues two queries AddU(1) and AddU(2) in order to add two members 1 and 2
the group. The adversary then requests the challenge by outputting (i, i∗,m) =
(1, 2, 0�), and receives a tuple (Σ, gsk2), where Σ = (vk sots, a, π, y, ψ, σsots) and
gsk2 = (x2, a2, b2). The adversary forges a proof of ownership by computing
σ∗ = g1/(x2+H(vksots)) and outputs σ∗ (Notice that vk sots is taken from the group
signature Σ).

One can easily verify that Judge(gpk , 2, reg[2],m,Σ, σ∗) actually outputs 1,
which means that the algorithm successfully breaks the opening soundness. ��

The Bellare-Shi-Zhang Scheme. Below, we will give an intuitive description
of the generic construction of a dynamic group signature scheme by Bellare, Shi,
and Zhang.

In the Bellare-Shi-Zhang construction, each group member i has a key pair
(vk i, sk i) of an EUF-CMA secure signature scheme. The issuer also possesses
his own key pair (ak , ck) of the signature scheme. The issuer signs the message
〈i, vk i〉 to obtain the signature cert i, and sends cert i to the user i. A group
signature on a messagem by the user i is a pair (C, π): here C is an encryption of
〈i, vk i, cert i, s〉, s is a signature onm under the key pair (vk i, sk i), and the NIZK
proof π proves that the plaintext encrypted in C is of the form 〈i, vk , cert , s〉.
The opener attributes a group signature Σ = (C, π) to the user i by providing
an NIZK proof τ for another statement (i.e. different from that of π), which
claims the existence of a decryption key that corresponds to the opener’s public
key and that under that key C is decrypted to 〈i, vk i, cert i, s〉.

This simple scheme provides opening soundness. Intuitively, this is due to the
correctness of the public key encryption used to encrypt the signature and the
certificate, and the soundness of the NIZK proof system for τ . The correctness
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condition of public key encryption ensures that given a public key pk and a ci-
phertext C, the decryption of C is determined uniquely. Now, let us assume that
an adversary of the opening soundness game outputs a tuple (m,Σ, i1, τ1, i2, τ2)
where Σ = (C, π) and wins the game. The proof τ1 proves that C decrypts to
〈i1, vk , cert , s〉 for some vk , cert , and s, whereas τ2 proves that C decrypts to
a different plaintext 〈i2, vk ′, cert ′, s′〉 for some vk ′, cert ′, and s′. However, this
should not be possible since the decryption of C under a fixed public key is
unique. Hence, the adversary breaks the soundness of the NIZK proof system.

A formal statement and its proof are deferred to the full version.

The Furukawa-Imai Scheme. The Furukawa-Imai group signature scheme
does not have opening soundness, which we will show in the following.

The scheme exploits a group G on which the decisional Diffie-Hellman as-
sumption holds, in addition to bilinear groups (G1,G2,GT ) with an asymmetric
bilinear map e : G1 × G2 → GT . In this scheme, each group member i has a
public key Qi = gxi and its corresponding secret key xi. The public key Qi

is encrypted in a group signature with (a kind of) ElGamal encryption. Let
(R, V ) = (Qig

r, Sr) be the ciphertext that appears in a group signature, where
S = gs is the public key of the ElGamal encryption. The opener possesses the
decryption key s, and identifies the signer by decrypting the ciphertext. An open-
ing contains a proof of knowledge of w such that Qi = R/V 1/w, where Qi is the
public key of the specified member (The opener uses s as the witness for the
above equation).

If the adversary corrupts the opener and two different members i and j, the
adversary can construct two different openings of a single signature, each of which
attributes the signature to the user i or the user j, respectively. The adversary
proceeds as follows: At first the signature is honestly generated by the user i.
Let (R, V ) = (gxi+r, Sr) be the ciphertext contained in this signature. The first
opening is also honestly generated by the opener to attribute the signature to i.
The second proof is generated by computing a proof of knowledge w that satisfies
Qj = R/V 1/w with the witness w = sr/(xi + r − xj). This proof attributes the
signature to the user j. Note that the randomness r for the encryption is reused
to forge the second proof. This is the reason why the adversary needs to corrupt
the user i, not only the user j and the opener.

The Bichsel et al. Scheme. In the Bichsel et al. scheme, a group member
receives a Camenisch-Lysyanskaya signature on a random message ξ from the
issuer. To generate a group signature, the member rerandomizes the certificate
and computes a “signature of knowledge” of ξ. This rerandomized certificate and
the signature of knowledge constitute the group signature.

The issuer should not know the random message ξ, because otherwise non-
frameability is compromised. For this reason, in a group-joining protocol, the
ξ is jointly generated by the user and the issuer as follows: The user i chooses
a random exponent τi and sends r̃ = x̃τi to the issuer, while the issuer also
chooses a random κi and computes w̃ = r̃ · x̃κi = x̃τi+κi . This τi+κi will be used
as the random message ξ mentioned above. To establish a publicly verifiable
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connection between this ξ and the user i, the user i generates an (ordinary)
signature on ki = e(g, r̃) with a key pair which is previously registered in a
public key infrastructure.

To open a signature, the opener uses w̃ to identify which ξ is the message of the
Camenisch-Lysyanskaya signature. Since w̃ makes the Camenisch-Lysyanskaya
signature publicly verifiable, it cannot be used as an opening. Instead, the opener
produces a non-interactive zero-knowledge proof of w̃ and κi such that ki =
e(g, w̃)/e(g, x̃)κi and provides the signature on ki. To verify this opening, a third
party simply verifies the non-interactive zero-knowledge proof and the signature.

Unfortunately this scheme does not satisfy opening soundness. Assume a ma-
licious signer obtains a group signature by an honest user, and further obtains
an honestly generated opening of the signature. The proof of ownership contains
ki and a signature on this by the honest user. The malicious signer replaces the
signature on ki with his own signature on ki. This forged opening passes the
verification.

5 Achieving Opening Soundness

In this section we present a variant of the Groth scheme, which provides opening
soundness (besides anonymity, non-frameability, and traceability).

5.1 The Modified Groth Scheme

The High-Level Idea. Let us first consider a general approach for achieving
opening soundness.

The opener, who has the secret opening key, will always be able to determine
the correct opening. To provide opening soundness, the opener needs to convince
others that a given opening is correct. The easiest way to do that is to make
the opening key public, but this will compromise the anonymity of the scheme.
Instead, the opener can provide an NIZK proof of the correctness of an opening,
to convince any third party. This is, in fact, the approach used in the Bellare-
Shi-Zhang construction.

If the opening algorithm essentially corresponds to a “decryption” of a ci-
phertext contained in the group signature (this is the case for many existing
schemes), we might be able to take a different and more efficient approach. If
the encryption scheme provides randomness recovering, the opener can simply
release the randomness used for the ciphertext in question instead of an expensive
zero-knowledge proof. Any third party will then be able to verify the correctness
of an opening by re-encrypting the relevant information with the randomness
provided by the opener, and then confirm that the resulting ciphertext is the
same as the one contained in the signature.

In the Groth scheme, an opening essentially corresponds to the decryption of a
linear encryption scheme. While linear encryption is not randomness-recovering,
the opener is able to release related values which, together with an algebraic
trick using a bilinear map, allow a third party to confirm that the decryption
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was done correctly. This property will allow us to add opening soundness to
the original scheme. More specifically, in our variant of the Groth scheme, the
opener, given a ciphertext (c1, c2, c3) = (F r, Hs, vgr+s), reveals gr and gs as
a part of an opening. Using the properties of the bilinear map, these values
can replace the exact randomness r and s when checking the correspondence
between a ciphertext and a decryption: If a third party, given gr and gs, wants
to check the correspondence between a ciphertext (c1, c2, c3) and a decryption
v, he simply checks whether the equations e(F, gr) = e(c1, g), (H, g

s) = e(c2, g),
and v = c3/(g

rgs) hold. If this is the case, he accepts the decryption as valid.
This idea is essentially the same as that used by Galindo et al. [15] in the

context of public key encryption with non-interactive opening (PKENO). In
[15], the application of PKENO schemes to group signature is briefly discussed
as a mechanism for simplifying the construction of an opening. We will show that
this technique is also able to ensure the opening soundness of group signature
schemes.

Description of Our Variant. The Groth scheme can achieve opening sound-
ness with the small modification shown in Fig. 2.

Open(gpk , ok ,m,Σ):
If GVf(gpk ,m,Σ) = 0, return (0,⊥)
(b, v, σ)← Xxk (crs , (gpk , a,H(vk sots)), π)
(dF , dH)← xk ; (y1, . . . , y5)← y

τF := y
1/dF
1 ; τH := y

1/dH
2

Return (i, (σ, τF , τH))
if there is i so v = reg [i],

else (0,⊥)

Judge(gpk , i, reg[i],m,Σ, (σ, τF , τH)):
Return 1 if the following holds:
GVf(gpk ,m,Σ) = 1,

i �= 0, e(σ, vig
H(vksots)) = e(g, g),

e(F, τF ) = e(y1, g), e(H, τH) = e(y2, g),
and στF τH = y3,
else return 0

Fig. 2. The proposed modification of the Groth group signature scheme. The algo-
rithms that do not appear in the figure are exactly the same as in Fig. 1.

Theorem 2. The modified Groth scheme shown in Fig. 2 provides opening
soundness.

Proof. Let us consider the game in Definition 6, and let gpk be the group public
key in the game, where the key is parsed to (F,H, · · · ), and (m,Σ, i, τ, i′, τ ′)
be the output of the adversary. Let Σ, τ , and τ ′ be parsed as follows: Σ =
(vk sots, a, π, y, ψ, σsots) in which y = (y1, y2, y3, y4, y5), τ = (σ, τF , τH) and τ ′ =
(σ′, τ ′F , τ

′
H).

We hereafter show that given a fixed Σ, it must hold that i = i′: Given a
fixed Σ (in particular y1, y2, and y3), the verification equations

e(F, τF )
?
= e(y1, g) ∧ e(H, τH)

?
= e(y2, g) ∧ στF τH ?

= y3

uniquely determine τF , τH , and σ. Since both τ = (σ, τF , τH) and τ ′ = (σ′, τ ′F , τ
′
H)

pass the Judge verification, we must have that (σ, τF , τH) = (σ′, τ ′F , τ
′
H). Now
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vi satisfies e(σ, vig
H(vksots)) = e(g, g) and vi′ satisfies e(σ, vi′g

H(vksots)) = e(g, g),
but because σ = σ′, and the equation e(σ, vgH(vksots)) = e(g, g) uniquely deter-
mines v given fixed σ and H(vk sots), we have that vi = vi′ , which implies that
i = i′. ��

The changes shown in Fig. 2 yields a scheme which is secure in the BSZ model i.e.
the anonymity, the non-frameability, and the traceability of the original Groth
scheme are maintained. This will be shown in the following.

Theorem 3. The modified Groth scheme provides anonymity if the decision
linear assumption holds on G, the one-time signature scheme is strongly un-
forgeable, and the hash function is target collision-resistant.

Proof (Sketch). The proof proceeds almost as in the original Groth scheme. The
biggest difference from the original proof is that the simulator for the modi-
fied scheme needs to simulate two additional group elements (τF , τH) = (gr, gs)
when receiving an Open query. Note that in the simulation of Kiltz’s tag-based
encryption, when the simulator receives a decryption query (y1, y2, y3, y4, y5) =
(F r, Hs,mgr+s, (gtK)r, (gtL)s), the simulator at first extracts gr and gs with-
out the knowledge of the decryption key and then simulates the decryption by
computing y3/g

rgs. In a similar way, it is possible to simulate the two extra
components required in our scheme. ��

Non-frameability and traceability can be proven more easily since these secu-
rity notions do not require simulation of the Open oracle. For non-frameability,
once an opening of the modified scheme that compromises the non-frameability
notion is produced, one can obtain an opening for the original scheme (by sim-
ply dropping the extra components of τF and τH) which will compromise the
non-frameability of the original scheme.

Theorem 4. The modified Groth scheme provides non-frameability.

Theorem 5. The modified Groth scheme provides traceability.

6 Conclusion

We have identified an overlooked security concern for dynamic group signatures,
namely, the possibility that a false opening proof can be produced by a corrupt
user. To address this concern, we defined (two variants of) a new security notion
denoted opening soundness, and furthermore discussed the opening soundness of
several existing schemes. As a result, we have shown that the Bellare-Shi-Zhang
construction [3] provides opening soundness as it is, and that small modifications
to the Groth scheme (of the full version) [19] allow this scheme to provide opening
soundness as well. We have also briefly discussed the opening soundness of some
of the random oracle schemes [14,4], but leave further investigation of these
schemes as future work.
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