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Abstract

In order to cope with an aerobic lifestyle, organisms must resist the damaging

effects of reactive oxygen species (ROS). This problem is exacerbated during

environmental stress, which promotes ROS formation in cells. Oxidative dam-

age exerted at the cellular level may ultimately be manifested at the macroscopic

or whole-organism level, emphasizing the importance of cellular events during

ROS stress. Extensive research has established a detailed picture of how cells

respond to oxidative stress. It is only relatively recently that attention has been

turning to identifying the key molecular targets of ROS. That is, what is the

actual cause of killing when ROS resistance mechanisms are overwhelmed?

The relative merits of experimental criteria used to establish such targets are

discussed. Essential targets on which life may pivot during ROS stress include
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the activities of ROS-labile proteins, such as proteins required for faithful

mRNA translation. Toxic protein aggregates may also arise from protein

oxidation events, as can initiation of apoptotic cell death pathways. Nonprotein

targets include membrane lipids, as lipid peroxidation is a prelude to loss of

membrane integrity and possible cell death. Thus, depending on the nature of

the stress, ROS cause loss of essential cellular functions or gain of toxic

functions. This evolving appreciation of the principal ROS targets will offer

new possibilities for therapy of ROS-related diseases.

Keywords

Actin • Iron–sulfur clusters • Lipid peroxidation • Mistranslation • Oxidative

damage • Oxidative stress • Protein aggregation • Protein oxidation • Yeast

Background

Reactive oxygen species (ROS) are a necessary evil of aerobic life, being generated

continuously during the process of respiration but with the potential to cause oxida-

tive deterioration of protein, lipid, and DNA. ROS generation is elevated by a range

of different stress conditions. The environments of most organisms are rarely con-

stant, so some resilience to environmental stress is essential in order for organisms to

persist. Chemical stressors such as organic and inorganic pollutants can have different

modes of action, but one effect common to many of these as well as certain natural

stressors, like radiation, is an association with oxidative damage in cells (Avery 2001;

Limon-Pacheco and Gonsebatt 2009). ROS damage is linked to serious degenerative

conditions in humans, including amyotrophic lateral sclerosis, Alzheimer’s disease,

Friedreich’s ataxia, and cancer (Roberts et al. 2009; Jomova et al. 2010).

Typical responses by organisms to ROS involve the upregulation of antioxidant

proteins, such as the ROS-scavenging peroxidases and superoxide dismutases, or

enzymes that reverse oxidative damage, such as methionine sulfoxide reductases. The

oxidative stress responses of a diverse range of organisms are now well characterized

(Imlay 2008). Despite this progress, one key unanswered question relates to the

principal cellular target(s) of ROS that accounts for their toxicity. It is well known

that ROS cause oxidative modification of each of the major cellular macromolecules

and that damage to each can be detected during oxidative stress. What is less well

known is which putative target first accumulates damage of a severity that precludes

cell recovery, i.e., what target accounts for loss of cell viability? There can be more

than one such target, the identity of which may depend on the nature of the oxidative

stress (Imlay 2008; Thorpe et al. 2004), the organism, its physiological status, and

possibly the viability end point in question, e.g., loss of cell integrity or capacity to

grow. Nevertheless, identification of such target(s) is now a priority for advancing

understanding of the critical events during oxidative stress and so, potentially, for

devising ways to combat these events in ROS-related disease.

Whereas ROS-mediated damage to cellular constituents is very widely described

in the literature, this chapter focuses on the particular studies where oxidative
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damage to specific types of target has been linked causally to loss of cell integrity

and/or viability. One emphasis is on protein targets, as this area has received the

most attention recently. Because of the nature of the question, the evidence

discussed is drawn mostly (but not exclusively) from laboratory studies with highly

tractable organisms. These models lend themselves to the types of manipulation

necessary to establish causal associations and tend to be single-celled organisms

such as bacteria or yeast. The nature of oxidative stress shares many common key

features across prokaryotes and lower and higher eukaryotes (Cabiscol et al. 2000;

Imlay 2008). Moreover, events at the single cell level ultimately may give rise to

tissue and organ damage and clinical consequences of oxidative damage in higher

organisms. Therefore, insights to ROS targets obtained at the cellular level feed our

understanding of the nature of ROS impact on animal health.

Identification of ROS Targets

A limited number of studies have generated the range of evidence necessary to

ascertain the pro-oxidant target(s) accounting for loss of viability. Under oxidative

stress, such a target should (1) show elevated oxidative damage and (2) decreased

function (which cannot be accounted for by decreased expression). Furthermore,

(3) knockdown of the relevant protein or a protein conferring a protective function

should produce a sensitive phenotype and, moreover, (4) overexpression should

confer resistance.

The latter point invokes a more general issue, concerning the extrapolation of

resistance/sensitivity phenotypes from deletion strains to infer primary targets of

stressors that are real to wild-type cells. The concern is that gene deletion can lower

the threshold of resistance to an agent by sensitizing a new principal cellular target

to that agent; the products of these same genes in wild-type cells may be entirely

effective in protecting that purported “target” (Fig. 4.1). In contrast, only genes that

help to preserve function of the normal toxicity target(s) can raise the lower

resistance threshold, e.g., when overexpressed (Avery et al. 2004; Sumner et al.

2005). Therefore, deletion strain phenotypes should be treated with caution in this

regard, unless accompanied by evidence at least of the inverse phenotype in an

overexpressing strain (Chan et al. 2010b; Ericson et al. 2010). As mentioned earlier,

few studies have sought to establish all of the above criteria for putative targets of

ROS, so many such targets remain to be validated.

Satisfying the above criteria experimentally requires prior knowledge of

candidate target proteins of ROS. Where that knowledge is lacking, recent

technologies are capitalizing on the abundance of genome sequence data now

available to help mine for targets. Tools such as the heterozygous yeast deletion

strain collection provide powerful resources, in this case exploiting the principle of

haploinsufficiency to elucidate essential targets of stressors (Holland et al. 2007;

Lum et al. 2004). Strategies for target identification continue to be refined, through

the deployment of newer technologies like deep sequencing (Smith et al. 2009) and

improved approaches for systematic alteration of gene expression level and gene
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dosage (Ericson et al. 2010; Hoon et al. 2008; Jones et al. 2008; Yan et al. 2009).

It seems inevitable that these chemical–genetic approaches will accelerate mark-

edly the identification of ROS targets during the coming years.

Protein Oxidation

Oxidation-Sensitive Proteins

The potential role of oxidative protein damage in ROS-mediated cell killing has

been less well covered than the mechanisms of protein oxidation and of its impact

on protein structure and function (Cecarini et al. 2007). Certain proteins are more

susceptible to oxidative targeting than others, according to their relative content of

oxidation-sensitive amino acid residues and metal-binding sites, molecular confor-

mation and rate of degradation, and protein localization in the cell. In some cases,

the specific amino acid residues whose modification affects function of oxidatively

modified proteins have been identified. For example, defects in protein secretion

have been traced to the oxidation of critical methionine residues in component

proteins of the signal recognition particle (SRP) complex (Ezraty et al. 2004).

Methionine is one of the most oxidation-prone amino acid residues, and nearly all

organisms express methionine sulfoxide reductase enzymes to reverse that modifi-

cation. Oxidized Cys and Trp residues are other useful markers of oxidatively

modified proteins.
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Fig. 4.1 Different types of genetic manipulation may yield different indications of the principal

ROS targets. The vertical positions of the lipid bilayer and DNA helix in the scheme indicate these

macromolecules’ relative ROS sensitivities in the different scenarios. In this example, lipid bilayer

function is a more ROS-sensitive target than DNA in wild-type cells (a) Consequently, the ROS
dose causing lipid dysfunction (the principal target) is the ROS dose that determines whole cell

toxicity (↔) in the wild type. The dashed line depicts the resistance level of wild-type cells.

(b) Manipulation of wild-type cells from (a) to sensitize these to lipid peroxidation will lower the

ROS dose that causes toxicity to cells (↔). Such a lowered toxic dose could also be achieved by

sensitizing cells to DNA oxidation, despite the fact that DNA is not the principal ROS target of

wild-type cells in this example. (c) Only manipulations that preserve function of the principal ROS

target of wild-type cells will raise cellular ROS resistance above the wild-type level (Reproduced

from Avery, 2011 with permission)
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A number of amino acid residues (e.g., Arg, Pro, His, Lys) form carbonyl

products during oxidation. Convenient assays have been developed for identifying

carbonylated proteins. Such techniques are used widely for characterizing oxidized

protein species. Carbonyl formation is irreversible, unlike thiol oxidation which

impacts protein function more transiently during signaling and similar processes.

The pattern of proteins that become carbonylated during oxidative stress appears to

be quite conserved across distantly related organisms. Protein carbonylation has

a biochemical consequence, as the modification provides an irreversible marker for

damaged proteins to be inactivated by proteasomal degradation. However, there is

a limit to the cells’ capacities to process carbonylated proteins, particularly as the

proteasome itself may be a target for oxidative inactivation (Wu et al. 2009).

Carbonylated proteins that are not degraded may form potentially toxic aggregated

species (see the section “Toxic Protein Aggregates Formed During Oxidative

Stress”). Thus, elevated levels of carbonylated proteins can be linked to loss of

cell viability (Desnues et al. 2003).

Several further proteins are known to be inactivated during oxidative stress

and/or by oxidative damage, including Crm1p which is required for nuclear export

in HeLa cells (Crampton et al. 2009), alcohol dehydrogenase (Matuszewska et al.

2008), and a number of Fe-binding proteins (Drake et al. 2002). Another abundant

protein, the Cu,Zn superoxide dismutase (Sod1p) is commonly reported to be

vulnerable to oxidative damage (Costa et al. 2002; Yin et al. 2010). This is

unfortunate for organisms, considering the antioxidant properties of Sod1 and,

therefore, the potential for a downward spiral of ROS sensitivity arising from

Sod1 inactivation. The function of certain peroxiredoxins is also susceptible to

hyper-oxidation (Woo et al. 2010).

Essential Protein Functions Targeted by ROS

Metabolic Enzymes
Proteins involved in metabolism are commonly reported to be oxidation sensitive.

This includes proteins involved in energy metabolism, mitochondrial proteins,

chaperones, and members of the ubiquitin–proteasome system (Table 4.1). Vital

pathways of energy metabolism are perturbed by protein oxidation at very early

stages of several human degenerative diseases (Martinez et al. 2010). Oxidized

proteins accumulate in patients with supranuclear palsy (Martinez et al. 2008) and

age-related disorders (Levine 2002), among other conditions. Despite such insights,

few studies have linked protein targeting to oxidative cell killing. Furthermore, few

if any of the proteins discussed above have been shown to be essential, so it is likely

that their oxidative inactivation modifies particular metabolic pathways without

necessarily resulting in cell death. Nonetheless, the importance of a metabolic

pathway for cell vitality can of course depend strongly on environmental situation.

Some oxidation-sensitive proteins may be dispensible under some conditions while

necessary under others. This is illustrated by examples of metabolic enzymes such

as dehydratases, which require iron–sulfur clusters for activity. The extreme
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Table 4.1 Protein targets of ROS

General functions Specific proteinsa

Consequences of

oxidation/other

comments References

Energy

metabolism,

including

mitochondrial

and FeS proteins

Glyceraldehyde-3-

phosphate dehydrogenase

(GAPDH)

Potential inhibition

of glycolysis and

growth arrest

(Costa et al. 2002; Grant

et al. 1999; Weber et al.

2004)

Alcohol dehydrogenase

(AdhE)

Chaperone defects

accentuate ROS-

dependent AdhE

inactivation

(Matuszewska et al. 2008;

Tamarit et al. 1998)

Ribulose-5-phosphate 3-

epimerase (Rpe)

Impacts the pentose

phosphate pathway,

due to oxidation of

Fe in Rpe

(Sobota and Imlay 2011)

FeS proteins of amino acid

biosynthesis:

dihydroxyacid

dehydratase,

homoaconitase,

isopropylmalate isomerase

Causes

requirements for

exogenous amino

acids

(Carlioz and Touati 1986;

Jang and Imlay 2007;

Wallace et al. 2004)

Citric acid cycle enzymes:

a-ketoglutarate
dehydrogenase, isocitrate

dehydrogenase, succinate

dehydrogenase (FeS),

aconitase (FeS)

Growth defects with

particular C sources

(Cabiscol et al. 2000;

Cecarini et al. 2007;

Gardner and Fridovich

1991; Jang and Imlay

2007; Tamarit et al. 1998)

Translation Threonyl-tRNA synthetase Errors in translation

and growth

impairment

(Ling and Soll 2010)

Translation initiation

factor eIF4E

Essential target,

potentially ROS

mediated

(Othumpangat et al. 2005)

Rli1/ABCE1 (FeS) Essential,

conserved target of

ROS action

(Alhebshi et al. 2012)

Protein

degradation

Proteasome function Defects in protein

degradation

(Zhang et al. 2008)

Chaperones Hsp104 Sir2 defects

accentuate Hsp104

damage and loss of

function

(Erjavec et al. 2007)

Stress resistance Sod1 Exacerbation of

oxidative stress

(Costa et al. 2002; Yin

et al. 2010)

Cytoskeleton Actin Modification of

actin structure and

function

(Lassing et al. 2007)

Cofilin (actin-binding

protein)

Triggers apoptosis (Klamt et al. 2009)

(continued)
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oxygen lability of FeS clusters predisposes these enzymes to oxidative inactivation

as well as the metabolic pathways that they occupy (Imlay 2006). Certain amino

acid biosynthetic pathways in bacteria and yeasts require FeS enzymes, and their

influence on cell vitality during oxidative stress becomes detectable in media that

do not provide an alternative, exogenous supply of the amino acids that are

susceptible (Carlioz and Touati 1986; Wallace et al. 2004).

A metabolic enzyme that has received particular attention because it is

inactivated by mild H2O2 stress in eukaryotic cells is glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) (Costa et al. 2002; Grant et al. 1999). Interestingly,

oxidative modification of GAPDH could help to regulate entry to apoptosis; pro-

as well as anti-apoptotic roles have been ascribed to the enzyme (Cecarini et al.

2007). Similarly, cadmium-induced apoptosis in neuronal cells has been assigned to

inhibition of serine/threonine protein phosphatases 2A and 5 by Cd-induced ROS,

although it was not distinguished whether the mechanism involved direct oxidative

damage or ROS-mediated downregulation of these proteins (Chen et al. 2008).

Regarding the targeting of metabolic pathways, GAPDH and several enzymes of

the citric acid cycle have been identified as the major oxidized protein species

during oxidative stress in lower (yeast, bacteria) as well as higher organisms.

Oxidatively targeted proteins of the citric acid cycle include a-ketoglutarate
dehydrogenase, isocitrate dehydrogenase, succinate dehydrogenase, and aconitase,

the latter two being FeS enzymes (Cabiscol et al. 2000; Cecarini et al. 2007;

Jang and Imlay 2007; Tamarit et al. 1998). If respiration is defective, organisms

such as yeast and certain bacteria can fall back on fermentative pathways. Potential

oxidative inactivation of respiratory function will of course be most detrimental to

those organisms that rely exclusively on respiration for energy generation.

Chaperone Function and the Actin Cytoskeleton
It is the assay of protein carbonyl groups that has led to the identification of

several of the citric acid cycle enzymes discussed above as oxidation targets.

In addition, several carbonylated chaperones have been identified in E. coli
(Dukan and Nystrom 1999; Tamarit et al. 1998) and yeast (Irazusta et al. 2008).

Table 4.1 (continued)

General functions Specific proteinsa

Consequences of

oxidation/other

comments References

Other Ffh Defects in SRP

function due to

Met-residue

oxidation

(Ezraty et al. 2004)

Crm1 Nuclear export

defect

(Crampton et al. 2009)

Serine/threonine protein

phosphatases

Linked to apoptosis (Chen et al. 2008)

aThis list is not intended to be comprehensive, but highlights some of the key proteins known to

have ROS-sensitive function
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This vulnerability to oxidation could be part and parcel of these proteins’ protective

functions against ROS. Protein chaperones are also required for the retention of

oxidatively damaged proteins by yeast mother cells, an activity that may become

undermined by the carbonylation of chaperones themselves during aging (Erjavec

et al. 2007). Preservation of chaperone function for this asymmetric inheritance of

damaged proteins requires the histone deacetylase, Sir2p (Erjavec et al. 2007).

Interestingly, copper stress inhibits histone acetylation by a mechanism that at least

partially involves oxidative stress (Lin et al. 2005). Specifically, copper inhibits

histone acyltransferase (HAT) activity and this action appears to contribute to Cu

toxicity, as rescue of histone acetylation rescues Cu toxicity.

Actin is also a commonly reported target of oxidative carbonyl damage

(Butterfield et al. 2006; Dalle-Donne et al. 2001; Shanmuganathan et al. 2004).

It has been suggested that this could merely reflect the high abundance of actin

in cells, making it a more easily detectable substrate. Nevertheless, like

chaperone function, the actin cytoskeleton is also required for normal retention of

carbonylated and aggregated proteins in mother cells (Aguilaniu et al. 2003;

Liu et al. 2010) and segregation of catalase to daughter cells (Erjavec and Nystrom

2007) during replicative aging of yeast. Therefore, oxidative actin damage could

perturb the imbalance in oxidative burden between mother and daughter cells.

Protein Synthesis
Mounting evidence shows that newly synthesized proteins are the most prone to

oxidative damage, indicating that complete folding and incorporation into protein

complexes confers protection from oxidation-driven degradation (Holland et al.

2007; Medicherla and Goldberg 2008). In addition to directly damaging proteins

post synthesis, certain pro-oxidants cause defects in protein function by targeting the

process of mRNA translation. Decreased translation initiation and protein synthesis

occur anyway as part of the response to mild oxidative stress. In yeast, this is

achieved partly through phosphorylation of the translation initiation factor eIF2 by

the Gcn2 kinase (Mascarenhas et al. 2008; Shenton et al. 2006). This response is

thought to help preclude the potentially deleterious effects of continued mRNA

translation under the error-prone conditions of oxidative stress, while allowing time

for a reprogramming of the proteins being expressed by the cell after stress is sensed

(Shenton et al. 2006). The strategy appears to work in the case of mild H2O2 stress,

which was not associated with mistranslation (Holland et al. 2007). In contrast, the

redox active metal chromate caused mRNA mistranslation in an oxygen-dependent

manner, and this was a primary mechanism of Cr(VI) toxicity (Fig. 4.2). This action

was correlated with Cr-induced protein carbonylation and the formation of toxic

protein aggregates (Holland et al. 2007; Sumner et al. 2005). Chromate is known

to compete with sulfate for uptake into cells, and a resultant depletion of the

S-containing amino acids cysteine and methionine is a cause of Cr-induced

mistranslation (Holland et al. 2010). There is currently no evidence that Cr directly

targets a component of the translational machinery. However, the essential translation

initiation factor eIF4E in human cell lines is a key target for another toxic metal,

cadmium, via a mechanism suggested to be ROSmediated (Othumpangat et al. 2005).
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A specific protein target responsible for H2O2-induced proteinmistranslation has been

identified in E. coli (Ling and Soll 2010). The Cys182 residue of threonyl-tRNA

synthetase was oxidized by H2O2, this residue being essential for the protein’s

translation editing function. Resultant mistranslation was associated with protein

misfolding and caused impaired growth. Further research should reveal whether

other examples of ROS-mediated mRNA translation are caused by the same mecha-

nism. Recently, the essential FeS protein Rli1 was found to be a key target accounting

for ROS inhibition of yeast growth (Alhebshi et al. 2012). Rli1p has roles in translation

initiation and ribosome recycling, as well as maintaining translation fidelity. It is one

of the most conserved proteins known in biology.

Fig. 4.2 Oxygen-dependent mRNA mistranslation causes Cr toxicity. (a, b) mRNA

mistranslation causes Cr toxicity. (a) Synergistic action of Cr with the ribosome-targeting drug

paromomycin: growth of S. cerevisiae in standard medium (○), or with 0.1 mM Cr (●), or 100 mg
ml�1 paromomycin (□), or 0.1 mM Cr + 100 mg ml�1 paromomycin (■). (b) Dependence of

Cr resistance on translational fidelity: growth of S. cerevisiae L1583 (error-prone translation)

(□, ■) or L1597 (high translational fidelity) (D, ~) in the absence (open symbols) or presence

(closed symbols) of 0.1 mM CrO3. (c) Oxygen is required for Cr-induced mistranslation.

S. cerevisiae L1494 (ade1-14) cells were spotted (two dilutions) on to agar supplemented or not

with 150 mg ml�1 paromomycin (“Paro”) or 0.15 mM CrO3. Read through of the ade1-14 UGA

codon suppresses the red pigmentation associated with this allele, yielding pale colonies to

indicate mistranslation. Plates were incubated as indicated (Adapted from Holland et al. 2007)
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Toxic Protein Aggregates Formed During Oxidative Stress

Besides inactivation of the essential functions addressed above, an alternative cause

of ROS toxicity is where oxidative modification of a cellular target triggers a toxic

reaction in the cell. These two general modes of ROS action are clearly distinct,

albeit underpinned by similar redox reactions. Affected targets that may acquire

a toxic action during oxidative stress include carbonylated and other oxidatively

damaged proteins. These are usually marked for proteasomal degradation. Accord-

ingly, ubiquitin-dependent protein catabolism via the multivesicular body pathway

was identified as a key function from screens for genes conferring ROS resistance

(Doostzadeh et al. 2007). However, degradation of oxidized proteins is not

completely efficient, and damaged proteins which escape degradation can form

high molecular weight aggregates which accumulate with age (Doostzadeh et al.

2007; Dunlop et al. 2009; Grune et al. 1997; Seifert et al. 2010). Autophagic

destruction of protein aggregates provides a last line of defense against these

toxic species, but also evidently is not wholly efficient (Madeo et al. 2009;

Pan et al. 2008). Oxidative stress itself may impair the proteolytic systems

responsible for removal of oxidized macromolecules, thus accelerating the

accumulation of damaged and aggregating proteins (Cecarini et al. 2007).

Increased levels of carbonylated aggregates are observed in patients with

age-related disorders such as Parkinson’s and Alzheimer’s diseases and cancer.

Oxidative aggregation of mutant versions of the Sod1 superoxide dismutase protein

can occur in amyotrophic lateral sclerosis (ALS) (Banci et al. 2008; Furukawa

and O’Halloran 2005; Rakhit et al. 2004). Even wild-type Sod1p is prone

to oxidative destabilization and aggregation in vitro (Rakhit et al. 2004;

Yin et al. 2010), consistent with this protein’s susceptibility to carbonylation (see

section “Oxidation-Sensitive Proteins”). The clinical evidence ties in with the fact

that protein aggregates can be highly cytotoxic (Campioni et al. 2010). Specific

oxidative modifications that cause protein aggregation have also been identified.

Methionine oxidation was reported to contribute to neuronal cell death and protein

aggregation induced by a mutant a-synuclein protein associated with Parkinson’s

(Liu et al. 2008) and to the formation of amyloid fibrils by apolipoprotein A-1

(Wong et al. 2010).

Oxidative chromate toxicity has also been attributed to protein aggregates

formed during Cr-induced mistranslation under aerobic conditions, as mentioned

above. Aggregated proteins isolated from Cr-treated cells had growth-inhibitory

effects (Holland et al. 2007). The formation of abnormal proteins is also involved in

the toxicity of cadmium, another metal that provokes oxidative stress (Jungmann

et al. 1993). Copper provokes aggregation into toxic species of the amyloid-b
peptide associated with Alzheimer’s disease (Smith et al. 2007). In this case,

however, ROS generation appeared to be a consequence rather than cause of

aggregation. Similarly, antibiotic-induced mistranslation and protein misfolding

lie upstream of ROS formation and ROS-dependent killing during antibiotic stress

(Kohanski et al. 2008). It is apparent that there is a condition specificity to the ROS

dependency of aggregation-mediated toxicity.
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Some forms of protein aggregation may in fact be beneficial. Hydrogen peroxide

and certain other stressors provoke the aggregation of the Sup35 translation

termination factor in yeast, forming the [PSI+] prion (Tyedmers et al. 2008). Certain

peroxiredoxins determine the level of ROS stress required to induce this transition

(Sideri et al. 2010). [PSI+] formation causes translational read through of stop

codons. This loss of fidelity uncovers genetic variation which promotes phenotypic

diversity. Under conditions of stress, such diversity can confer an adaptive

advantage (Sideri et al. 2010; True et al. 2004).

Apoptosis During Oxidative Stress

Hydrogen peroxide, among other pro-oxidant stressors, can induce apoptosis,

a form of programmed cell death. Apoptotic cell death is usually activated at

stressor doses lower than those leading to necrotic cell killing. Pro-oxidant stress

induces the intrinsic (also termed “mitochondrial”) apoptosis pathway, involving

release of pro-apoptotic factors from damaged mitochondria (Circu and Aw 2010;

Mates et al. 2008). Moreover, a role for ROS in apoptosis is not limited to the ROS

derived from environmental pro-oxidants, as increased ROS production resulting

from respiratory dysfunction is a hallmark common to many types of apoptosis.

It has not been resolved in every case whether such ROS accumulation is a cause or

effect of the apoptotic cell death, but there is good evidence for the former in many

apoptotic scenarios (Circu and Aw 2010; Perrone et al. 2008). Thus, antioxidant

molecules and enzymes modulate progression of diverse apoptotic pathways, and

specific ROS such as H2O2 or superoxide have been implicated as crucial mediators

of apoptotic cell death (Carmona-Gutierrez et al. 2010; Circu and Aw 2010; Madeo

et al. 1999). Several apoptotic signaling pathways are modulated by cellular redox

status, primarily via ROS-responsive protein kinases (Chan et al. 2010a; Noguchi

et al. 2005). Intracellular glutathione (GSH) is a major buffer of cellular redox

status and elevated ROS during apoptosis can deplete mitochondrial GSH, leading

to mitochondrial membrane permeabilization and release of cytochrome c during

the prelude to cell death (Franco and Cidlowski 2009).

Induction of apoptosis during oxidative stress does not appear to rest on a single

ROS target. Protein targets can be important for propagation of the apoptotic

signal. As mentioned earlier, GAPDH oxidation has been implicated in the

regulation of apoptosis in lower and higher eukaryotes. GAPDH expression and

aggregation have been reported to increase during apoptosis, while treatment of

cells with antisense GAPDH blocked apoptosis (Nakajima et al. 2009; Sirover

1997). GAPDH is also a target of nitric oxide, another molecule linked to apoptosis

(Almeida et al. 2007; Ortiz-Ortiz et al. 2010). Alteration of GSH redox status via

oxidation of glutamine, a precursor for GSH biosynthesis, is also reported to

activate apoptosis (Obrador et al. 2001). Additional modifications that have been

suggested to regulate apoptosis include those of the caspase cysteine proteases that

are central to execution of the apoptotic response and which can be modified

by ROS (Marnett et al. 2003).
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The actin-binding protein cofilin has also been revealed to be a key oxidation

target required for oxidant-induced apoptosis (Klamt et al. 2009). Oxidation of Cys

residues in the protein causes cofilin to lose its affinity for actin and translocate to

mitochondria, where the oxidized protein exerts damage. Besides cofilin, specific

cysteine residues in the actin polypeptide itself are prone to oxidation, acting as

potential sensors of oxidative stress (Leadsham et al. 2010). Actin oxidation

certainly impacts actin structure and function (Lassing et al. 2007). Studies

with yeast have revealed further links between ROS, the actin cytoskeleton, and

apoptosis. Stabilization or aggregation of F-actin through the use of drugs or

specific mutants is accompanied by the accumulation of apoptotic markers in

yeast and higher cells (Gourlay et al. 2004; Posey and Bierer 1999). Such evidence

has led to a model of actin-mediated apoptosis, in which actin stabilization

triggers an apoptotic signal involving the Ras–cAMP–PKA pathway. cAMP

signaling is thought to be linked to actin organization by the cyclase-associated

protein Svr2/CAP, and this leads to mitochondrial dysfunction, ROS accumulation,

and apoptosis (Gourlay and Ayscough 2005, 2006; Gourlay et al. 2004; Leadsham

and Gourlay 2010). The involvement of ROS at this apparently late stage

of actin-mediated apoptosis pathway does not, in itself, suggest an action of ROS

any different to that described above in other apoptotic pathways. However, an

additional potential consequence of ROS production is further actin stabilization,

caused by the formation of disulfide linkages between the Cys residues in actin

(Franklin-Tong and Gourlay 2008). Such targeting of actin structure by ROS would

accelerate apoptotic cell death.

Cells sustain progressive lipid peroxidation during apoptosis, which could

aggravate mitochondrial membrane permeabilization. Lipid peroxidation products

such as 4-oxo-2-nonenal have also been shown to trigger apoptosis in a variety of

systems (Cerbone et al. 2007; Tang et al. 2009). Lipids may be the primary target

of some forms of ROS-mediated apoptosis. By increasing the proportion of

oxidation-sensitive unsaturated fatty acids (UFAs) in mitochondrial lipids, cells

were sensitized to Bax-induced death, while lipid peroxidation inhibitors blocked

the effect (Priault et al. 2002). However, interpretation of such data in the context of

lipid peroxidation is complicated by lipotoxicity: cell death due to lipid imbalance.

Both saturated and unsaturated fatty acids may provoke apoptotic lipotoxicity,

in the latter case via activation of serine/threonine protein phosphatases such

as PP2Ca/b (Schwarz et al. 2006). These same proteins in neuronal cells have

been identified as mediators of ROS-dependent apoptosis induced by cadmium

(Chen et al. 2008), a metal whose necrotic toxicity is tied closely to the process of

lipid peroxidation (see section “Lipid Peroxidation”).

ROS Stress and Iron Release from FeS Clusters

Proteins whose function depends on iron–sulfur (FeS) clusters can be highly ROS

sensitive. Loss of FeS protein function was discussed earlier. In addition, oxidative

denaturation of FeS clusters can elicit a gain of toxic function, as labile Fe is
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released from the clusters into the cellular environment. Such an ROS-induced

increase in cellular Fe availability can accelerate catalysis of the Fenton reaction,

provoking additional oxidative damage and killing (Gardner and Fridovich 1991;

Jang and Imlay 2007; Kell 2010; Tavares et al. 2011). Antibiotics also stimulate Fe

release from FeS clusters (Kohanski et al. 2007), with Fenton catalysis exacerbating

antibiotic action (Kohanski et al. 2007; Yeom et al. 2010). The relative contribution

to cell killing made by Fe from denatured FeS clusters during oxidative stress is

difficult to establish. This is particularly so as simultaneous loss of FeS protein

function can itself have phenotypic consequences.

Lipid Peroxidation

The protonated form of the superoxide anion and the hydroxyl radical commonly

initiate the process of autocatalytic lipid peroxidation (Halliwell and Gutteridge 1999).

Transition metals also catalyze lipid peroxidation. The net result of lipid peroxidation

is conversion of unsaturated lipids to polar lipid hydroperoxides, which can cause

increased membrane fluidity, efflux of cytosolic solutes, and loss of membrane-protein

activities. Extensive lipid peroxidation has been correlated with the ultimate

disintegration of membrane integrity and cell death. However, it has rarely been

resolved whether lipid peroxidation is a cause or effect of death. The use of lipid

peroxidation inhibitors such as a-tocopherol (vitamin E) has provided evidence for

a role of lipid peroxidation in ROS-mediated killing (Bansal and Bilaspuri 2009;

Mattie and Freedman 2001), although the specificity of such inhibitors can be

questioned. Nonetheless, work with a-tocopherol that implicated a specific role for

lipid peroxidation in killing by cadmium- (but not copper-) generated intracellular

ROS (Mattie and Freedman 2001) has been borne out by other incisive approaches.

Among the species of lipid molecules, polyunsaturated fatty acids (PUFAs) are

particularly ROS sensitive. PUFAs can be readily enriched in membranes of yeast

and certain other organisms by culturing in PUFA-supplemented medium.

This approach was exploited to show that lipid peroxidation-susceptible

(PUFA-rich) cells are sensitized to the toxic effects of cadmium, measured as

lipid peroxidation, loss of membrane integrity, and loss of viability (Howlett and

Avery 1997a, b). Damage mediated by ROS to membrane lipids of bacteria is

comparatively unlikely, as most bacteria lack PUFAs (Imlay 2003). The pathogenic

bacterium Borrelia burgdorferi is unusual in that it incorporates exogenous PUFAs.
Consequently, lipid peroxidation (but not DNA oxidation) is readily detected in

this organism, although a causal association with lethality was not tested

(Boylan et al. 2008).Helicobacter pylori can also incorporate PUFAs and expresses
a thiol peroxidase (BCP) which preferentially reduces lipid hydroperoxides. A bcp
mutant was sensitive to pro-oxidants and exhibited decreased host colonization,

implicating membrane lipids as major ROS targets in thiol peroxidase-defective

cells of this pathogen (Wang et al. 2005).

The subcellular sites of respiratory activity in eukaryotes, the mitochondria,

are expected to be particularly prone to attack from ROS. Cadmium-induced
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dissipation of the mitochondrial membrane potential in a mammalian cell line was

correlated with ROS production. However, the hydroxyl-radical scavenger manni-

tol suppressed detectable ROS but not membrane disruption, indicating that the

latter did not result from oxidative damage (Bolduc et al. 2004). Instead, ROS

formation and associated lipid peroxidation in such cases could reflect the proposed

role for lipid oxidation, especially in mitochondria, as a trigger for signaling

pathways responsive to oxidative damage, including those leading to programmed

cell death (see section “Apoptosis During Oxidative Stress”).

While lipid peroxidation evidently may not contribute directly to killing in

all instances of oxidative stress, products of oxidized lipids may themselves

initiate further oxidative damage which could prove fatal. Thus, reactive products

such as malondialdehyde and 4-hydroxynonenal may attack amino acid side

chains in proteins (Requena et al. 2003) and cause fragmentation of DNA (Wang

et al. 2006).

To address the problem of probing lipid peroxidation as a toxicity mechanism, a

genetic tool was developed (Avery et al. 2004). This exploits different constructs of

phospholipid hydroperoxide glutathione peroxidase (PHGPx) enzymes, the

principal enzymatic repair mechanisms available to cells for countering

lipid peroxidation. The main yeast PHGPx protein, Gpx3, is a member of the

peroxiredoxin family and has diverse antioxidant activities. However, genetic

dissection of these activities revealed that it was the lipid peroxidation repair

activity, specifically, which determined Cd resistance. This involved exclusion

of the enzyme’s non-phospholipid peroxidase and signaling activities. A similar

conclusion was reached for the toxicity of an exogenous PUFA (linolenic acid).

In contrast, membrane lipids were not a primary target of H2O2 or Cr(VI) action

(Avery et al. 2004; Delaunay et al. 2002; Sumner et al. 2005).

DNA Oxidation

While DNA damage is commonly detectable during oxidative stress, it is not

necessarily clear that such damage is a major contributor to ROS-induced killing,

especially in eukaryotic cells. (Note that this section concentrates primarily on the

situation of toxicity in single cells, but it must not be overlooked that mutation in

single cells within a higher animal can give rise to reduced fertility (Aitken and

Curry 2011) or a dominant cell population which ultimately causes whole-organism

toxicity via cancer.) The hydroxyl radical (•OH) and singlet oxygen (1O2)

are considered to be among the principal ROS effecting DNA damage directly,

so different pro-oxidants may damage DNA via generation of these species

(Dawes 1999). DNA may be particularly prone to iron-catalyzed oxidation, as Fe

binds directly to the phosphodiester backbone where •OH radicals are subsequently

generated. Most oxidative DNA damage in Escherichia coli appears to be Fe

catalyzed (Macomber et al. 2007).
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Genome-wide screens for functions important in yeast resistance to five different

pro-oxidants did not yield a large number of DNA repair functions, suggesting

that DNA is not the primary target (Thorpe et al. 2004). Furthermore, analysis

of the mutant phenotypes of yeast and other organisms defective for the major

N-glycosylases involved in base excision repair (BER) of oxidized DNA has

yielded mixed effects on resistance to ROS stress (Chan et al. 2009; Melo et al.

2004; Thomas et al. 1997). For example, yeast ogg1D mutants defective for repair

of a major oxidatively modified base, 7,8-dihydro-8-oxoguanine, have a mutator

phenotype but do not exhibit increased lethality when exposed to DNA damaging

agents, including H2O2 and Cr(VI) (Kozmin et al. 2005; Sumner et al. 2005;

Thomas et al. 1997). Even mutator phenotypes associated with deletion of

antioxidant genes may not be ROS driven; the mutability and genetic instability

resulting from the absence of Tsa1p, a major yeast peroxiredoxin, has been assigned

primarily to elevated dNTP levels rather than elevated ROS in this mutant

(Tang et al. 2009). Elsewhere, simultaneous inactivation of functions involved in

BER and in nucleotide excision repair (NER) did yield strains that were sensitive to

lethal mutagens, presumably via oxidative DNA lesions (Gellon et al. 2001).

Many other studies have demonstrated that DNA repair-related mutants are ROS

sensitive, linking this lethality to oxidative DNA damage including gross

chromosomal rearrangements and instability (Ananthaswamy and Eisenstark

1977; Chan et al. 2009; Degtyareva et al. 2008; Demple and DeMott 2002; Imlay

and Linn 1988; Jiang et al. 1997; Kohanski et al. 2007; Leroy et al. 2001; Park et al.

2005; Swartzlander et al. 2010; Liu et al. 2011). Many of these results were

obtained with bacteria, especially E. coli, suggesting that DNA may be a more

important ROS target in organisms where membrane lipid oxidation is less likely

(see preceding section). A diverse range of cooperative functions help to prevent

oxidative DNA damage in yeast (O’Rourke et al. 2002).

Regarding the earlier discussion under “Identification of ROS Targets,” it may

be telling that there are few reports of increased resistance to pro-oxidant lethality

resulting from elevated DNA repair activity, including among the bacteria. Indeed,

even strains defective for the repair of oxidative DNA damage and which are

hypermutable can persist in the wild (Guelfo et al. 2010).

Where certain experiments have indicated that DNA damage is linked to

pro-oxidant-mediated cell killing, the primary target can in fact be a protein(s)

required for preserving DNA integrity. Here, elevated DNA damage is a secondary

outcome of direct protein inactivation (Jin et al. 2003; Serero et al. 2008; Youn et al.

2005). From the genome-wide study of pro-oxidant-sensitive yeast deletion strains,

it was concluded that damage to proteins was probably the more important factor in

the ROS-induced lethality than DNA damage (Thorpe et al. 2004). A similar

conclusion was reached in explaining the different radiation resistances of bacteria

(Daly 2009; Krisko and Radman 2010). Finally, DNA damage itself can result in

elevated ROS generation (Salmon et al. 2004), with the potential to attack other

targets which may be more pivotal for cell viability.
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Conclusions

A wide range of degenerative conditions in humans are linked to oxidative stress.

Identification of the principal ROS targets in cells will open important new possibil-

ities for therapy of ROS-related diseases in the future. The studies discussed above

highlight that the molecular targets of pro-oxidant-mediated killing are varied

(Fig. 4.3) and condition dependent, reflecting the nature of the stressor and physio-

logical parameters such as cellular PUFA content, cellular antioxidant status, and

growth conditions (e.g., Fe availability, oxygen concentration). Lipid peroxidation

tends to be more important than DNA oxidation for oxidative cell death in eukaryotes,

whereas the reverse appears to be true for most prokaryotes. Protein oxidation is

a growing theme in the most recent studies (Holland et al. 2007; Krisko and Radman

2010; Ling and Soll 2010), and identification of ROS-labile essential proteins that

determine loss of cell viability remains a crucial goal (Alhebshi et al. 2012). Oxidized

proteins may also gain a toxic function, through the formation of cytotoxic aggregates.

Protein oxidation additionally modulates induction of apoptotic pathways, alongside

other oxidative mechanisms. Progress in the field of this review should continue to

accelerate, as increasing numbers of studies are embracing the need to establish

causality between specific oxidative events and loss of cell function. This typically

requires appropriate genetic manipulations and/or genome-wide screens in conjunc-

tion with biochemical and toxicological assays in any particular study. As consensus
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Fig. 4.3 The major routes of ROS action in cells. The most important routes are indicated by solid

lines. See the main text for full accounts (Reproduced from Avery 2011 with permission)
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is approached on the most appropriate criteria for establishing the identity of a stressor

target, and the experimental tools available to do this become increasingly powerful,

progress in characterizing these targets is catching up with our understanding of the

attendant cellular responses.
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