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Abstract

Cellular damage to renal tubular epithelial cells (TECs) is commonly seen in the

pathogenesis of renal pathologies, including various forms of acute kidney

injury (AKI) and kidney diseases; however, the mechanisms of TEC injury are

not fully understood. This chapter summarizes recent advances in understanding
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the impact of oxidative stress on these renal pathologies with a major focus on

renal TECs in the cortex, the site in the kidney of high oxidative metabolic

activity, and we also discuss the outcomes of antioxidant therapy in renal

pathologies. Recent literature indicates that oxidative stress, induced by the

excess levels of reactive oxygen species (ROS) from mitochondrial injury and/

or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mediates

cellular oxidative damage in AKI, nephrolithiasis, and diabetic nephropathy, and

that antioxidant therapy has varying degrees of success depending on the

bioavailability and activity specificity of the antioxidant agent. The hypothesis

is that the oxidative stress is a common feature for these renal pathologies, and

ROS-activated molecular pathways in TECs are potential targets for antioxidant

therapeutic approaches that can slow the progression of AKI and kidney

diseases.

Keywords

Acute kidney injury • Kidney disease • Mitochondria • NADPH oxidase •

Oxidative stress • Renal tubular epithelium

Introduction

The nephron is a functional unit of the kidney and is composed of a renal corpuscle

and a tubule; therefore, the homeostasis of renal tubular epithelial cells (TECs) is

essential for kidney function. Indeed, tubular atrophy is a fundamental part of

kidney transplant rejection (Ganji and Harririan 2012; Pascual et al. 2012), chronic

kidney diseases (Farris and Colvin 2012) including diabetic nephropathy (Najafian

et al. 2011), and nephrolithiasis (Evan et al. 2005), but the pathways for TEC death

in these pathophysiological conditions are not fully understood. It has been well

documented that under oxidative stress, reactive oxygen species (ROS) cause

cellular damage by reacting with and denaturing cellular macromolecules including

lipid, protein, and nucleic acids and/or even mediating or activating intracellular

death signaling pathways (Rhee 1999). Our hypothesis is that oxidative stress is

a common pathway mediating cell death of TECs that have a high oxidative

metabolic activity in the kidney. Hence, identification or dissection of this pathway

may be critical for understanding the susceptibility of the kidney to nephrotoxic

drugs/chemicals, infection/immune response, trauma, mineral crystal aggregation

(kidney stone), and hyperglycemia and for developing therapeutic solutions to these

renal disorders.

Cellular ROS Generation in TECs

During the course of normal metabolism in cells, superoxide (O2
��), the precursor of

ROS, can be produced as inevitable by-products from energy production within the

mitochondria. Such ROS production can be normally neutralized by natural
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antioxidant enzymes but causes oxidative stress under the condition of mitochondrial

injury (Rocha et al. 2010). In addition to mitochondria, there are many cytosolic

enzyme systems (e.g., cytochrome p450s, xanthine oxidase, 5-lipoxygenase) that

produce O2
��, but the major sources of this molecule production in response to

stimuli including inflammation (e.g., hypoxia, immunologic stimuli) are nicotin-

amide adenine dinucleotide phosphate (NADPH) oxidase in both professional

phagocytes and non-phagocytic cells (Babior 1999; Forman and Torres 2001;

Novo and Parola 2008).

NADPH oxidase transfers electrons from NADPH to molecular oxygen, which

results in generation of ROS. The classic phagocytic NADPH oxidase is a complex

of membrane-bound cytochrome b558, cytosolic factors p47phox, p67phox, and

p40phox, and a small GTPase Rac2. The heme-binding component of cytochrome

b558 is a complex of gp91phox (91 kDa subunit of the phagocyte oxidase or NOX2)

and glycosylated flavoprotein associated with p22phox (Babior 1999). NOX proteins

are the catalytic subunit of NADPH oxidase. In non-phagocytic NADPH oxidase,

several members of the NOX family (i.e., NOX1, NOX3, NOX4, NOX5, or

DUOX1/2) have been identified (Krause 2004; Novo and Parola 2008). Different

NOX proteins vary in tissue distribution in light of their varying functions (Bedard

and Krause 2007). The kidney, particularly its cortical substance, expresses a high

level of NOX4 (Chabrashvili et al. 2002; Geiszt et al. 2000; Shiose et al. 2001),

which has been confirmed in cultured proximal TECs (Geiszt et al. 2000; Reeves

et al. 2002). These studies suggest that NOX4-containing NADPH oxidase in TECs

plays a pivotal role in the generation of oxidative stress or ROS in the kidney in

response to inflammation and cellular stress.

Association of Oxidative Stress with Renal Pathologies

Drug/Chemical-Induced Acute Kidney Injury

Drugs are one of common factors causing damage to the kidney, which contributes

to approximately 20 % of acute kidney injury (AKI) episodes (Bellomo 2006;

Kaufman et al. 1991; Nash et al. 2002). Many of these drugs, such as

aminoglycoside, pentamidine, cisplatin, and antiretrovirals, directly induce renal

TEC necrosis, or others, such as penicillin vancomycin, lansoprazole, and thiazides,

cause renal interstitial inflammation or immune-mediated tubular injury (Naughton

2008). Renal proximal TECs are a primary target of these nephrotoxic drugs

because of their role in concentrating and absorbing glomerular filtrates including

these nephrotoxic drugs (Perazella 2005). Oxidative stress is a common result of

nephrotoxicant exposure in TECs (Baliga et al. 1997) and is induced by either

mitochondrial injury or activation of NADPH oxidase. For example, the nephro-

toxicity of gentamicin, cephalosporin, and aristolochic acid is associated with

tubular cell death and oxidative stress (Kiyomiya et al. 2002; Pozdzik et al. 2008;

Randjelovic et al. 2012), which is due to the mitochondrial injury (Pozdzik et al.

2008; Zorov 2010) or, in particular, depletion of cytochrome c in the respiratory
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chain of the mitochondria (Kiyomiya et al. 2002; Morales et al. 2010), whereas

cisplatin-induced TEC injury is associated with oxidative stress via activation of

NADPH oxidase (Kawai et al. 2006) or upregulation of NOX4 expression (Pan

et al. 2009), suggesting that potential antioxidative approaches to preventing drug/

chemical-induced AKI should be designed differently depending on the sources of

oxidative stress, mitochondrial injury, or NADPH oxidase.

Ischemic AKI or Renal Ischemia-Reperfusion Injury

Ischemia is the leading cause of AKI, as see in many clinical settings including renal

transplantation, shock, and vascular surgery (Gueler et al. 2004). Clinical and exper-

imental studies show that renal tissue damage that occurs following ischemia-reper-

fusion, especially during reperfusion, is due in part to excessive production of ROS

(Kaminski et al. 2002; Kim et al. 2006; McCord 1985), evidenced by the increased

formation of lipid hydroperoxides and other toxic products after such an injury

(Beckman et al. 1991) and by the beneficial effects of antioxidant treatment on

reducing ischemia-reperfusion injury (IRI) in both in vitro and in vivo systems

(Nitescu et al. 2006). The molecular pathways of inducing oxidative stress in the

kidney following ischemia-reperfusion are complicated as many enzymes, including

oxidases and antioxidant enzymes, are involved; early studies have shown that during

ischemia the content of the antioxidants glutathione (GSH), superoxide dismutase

(SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) are decreased (Dobashi

et al. 2000; Gonzalez-Flecha et al. 1993; Scaduto et al. 1988), while there is increased

activation of xanthine oxidase (Sanhueza et al. 1992). The contribution of loss of

antioxidant enzyme SOD to oxidative stress is further supported by the fact of

worsening renal IRI in CuZnSOD (SOD1)- or extracellular SOD (SOD3)-deficient

mice (Schneider et al. 2010; Yamanobe et al. 2007). The contribution ofmitochondrial

injury to the increase in renal oxidative stress during renal IRI has been reported in

many studies (Cruthirds et al. 2003; Plotnikov et al. 2007; Sun et al. 2008) and also

seen in a model of cold IRI (Saba et al. 2008), which is further supported by the

beneficial effect of mitochondria-targeted antioxidants on the reduction of oxidative

stress and renal IRI (Plotnikov et al. 2011; Szeto et al. 2011). On the other hand, there

are not many studies in the literature showing the contribution of NADPH oxidase to

oxidative stress in renal IRI. A recent study reports that NADPH oxidase (NOX4)

interacts with Toll-like receptor (TLR) 4 and is required for hypoxia-induced produc-

tion of ROS and cell death in renal IRI (Ben Mkaddem et al. 2010).

Septic AKI

In the intensive care unit, sepsis often leads to AKI that occurs in about 19 % of

patients with moderate sepsis, 23 % with severe sepsis, and 51 % with septic
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shock (Rangel-Frausto et al. 1995) and is associated with oxidative stress, such as

decreased total antioxidative capacity and/or increased lipid peroxidation (Roth

et al. 2004; Ware et al. 2011). In animal models of sepsis-induced AKI, the

tubular epithelium is the major injury target in the kidney that loses renal

function as sepsis progresses (Guo et al. 2004; Wu et al. 2007; Yasuda et al.

2006). It has been proposed that ROS in combination with reactive nitrogen

species (RNS) contribute to TEC injury during sepsis (Heyman et al. 2011; Wu

et al. 2007; Wu and Mayeux 2007). This notion is supported by both clinical and

experimental studies: the presence of nitrated plasma proteins is correlated with

chronic renal failure in patients with septic shock (Fukuyama et al. 1997),

nitrated proteins and oxidation products are seen in the kidney during lipopoly-

saccharide-induced renal injury in rats (Bian et al. 1999; Zhang et al. 2000), and,

more importantly, septic AKI is prevented with antioxidant therapies, such as

N-acetylcysteine (NAC) treatment (Campos et al. 2012). Fluorescence micro-

scopic analysis analysis demonstrates that endotoxin is internalized by S1

proximal tubules through local TLR4 receptors and fluid-phase endocytosis but

only induces oxidative stress in neighboring S2 tubules (Kalakeche et al. 2011).

The molecular mechanisms by which sepsis induces oxidative stress in the

kidney includes decreased antioxidant capacity, such as loss of SOD3 expression

(Wang et al. 2003) or CAT (Perianayagam et al. 2007), mitochondrial dysfunc-

tion (Pathak et al. 2012), and/or activation of NADPH oxidase (Ben Mkaddem

et al. 2010; Lanone et al. 2005; Perianayagam et al. 2007).

Nephrolithiasis

Nephrolithiasis, also known as kidney stones, is characterized by the formation

of solid crystal aggregates in the kidney. Many clinical studies have reported that

the incidence of nephrolithiasis is associated with many chronic inflammatory

diseases (e.g., cardiovascular disease and type 2 diabetes) and systemic oxidative

stress (Khan 2012; Lange et al. 2012; Tsao et al. 2007). Oxalate is a primary

element most common in kidney stones. In a mouse model, the early stages of

calcium oxalate crystal formation in the tubular lumen is associated with TEC

injury, especially mitochondrial damage, and oxidative stress (Hirose et al.

2010). Similar data were reported in a rat model, where oxidative injury in the

kidney correlated with hyperplasia of mitochondria in TECs as well as with

decreased activities of SOD and GSH-Px in the mitochondria, but not with

expression of NADPH oxidase subunits p47phox and NOX4 (Li et al. 2009).

These studies suggest that mitochondrial injury may account for oxidative stress

in the kidney with nephrolithiasis, which is further supported by an in vitro study

in cultures of proximal (LLC-PK1) and distal (MDCK) tubular epithelial cells,

where the intracellular O2
�� from mitochondrial sources is significantly elevated
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following treatment with calcium oxalate monohydrate (Khand et al. 2002).

However, in cell cultures of NRK52E, a TEC line, calcium oxalate monohydrate

upregulates p47phox expression and inhibition of NADPH oxidase activity

reduces induction of ROS (Umekawa et al. 2009). The translocation of protein

kinase C (PKC)-alpha and (PKC)-delta from the cytosol to the cell membrane,

following Rac1 GTPase signaling, mediates oxalate-induced generation of ROS

along with NADPH oxidase activity, lipid hydroperoxide formation, and cell

death in LLC-PK1 cells (Thamilselvan et al. 2009, 2012). These studies suggest

that both mitochondrial injury and NADPH oxidase may induce oxidative stress

in the kidney in response to calcium oxalate crystal formation.

Diabetic Nephropathy

Diabetic nephropathy is the leading cause of end-stage renal disease in the devel-

oped world, but the mechanisms underlying hyperglycemia-induced renal injury

are not fully understood. It has been suggested that the kidney normally filters

�180g of glucose daily, most of which is reabsorbed by means of sodium-glucose

cotransporter 2 (SGLT2), expressed in proximal tubules (Mitrakou 2011). How-

ever, the capacity of the SGLT1 to reabsorb glucose from renal tubules is finite, and

when plasma glucose concentrations exceed a threshold, glucose appears in the

urine (Mitrakou 2011). Hyperglycemia induces oxidative stress by increasing ROS

generation in diabetic kidneys (Baynes and Thorpe 1999; Matsuoka et al. 2005;

Nishikawa et al. 2000). In streptozotocin (STZ)-induced or db/db diabetic mice,

overexpression of SOD1 attenuates diabetic nephropathy (Craven et al. 2001;

DeRubertis et al. 2004), and moderate exercise suppresses the progression of

early diabetic nephropathy via upregulation of SOD expression independent of

hyperglycemia (Ghosh et al. 2009). In vitro high-glucose levels significantly

enhance generation of ROS, reduce levels of GSH and SOD, and increase produc-

tion of malondialdehyde in TECs, glomerular mesangial cells, and glomerular

epithelial cells (Jiao et al. 2011; Ogawa et al. 2011), which are in line with high

glucose-induced apoptosis (Allen et al. 2003; Kitamura et al. 2009; Yoo et al.

2011). These studies suggest that hyperglycemia induces oxidative stress in the

kidney, which may be a key mediator of renal tubular hypertrophy in diabetic

nephropathy, and protection from ROS represents a valuable therapeutic strategy

to treat diabetic nephropathy. The published data also suggest that both mitochon-

drial injury and NADPH oxidase activity contribute to hyperglycemia-induced

ROS generation in the diabetic nephropathy; normalizing mitochondrial O2
��

production prevents hyperglycemic damage (Nishikawa et al. 2000), while in

both distal tubular cells and glomeruli of the kidney in STZ-induced diabetic rats,

or cultured TECs treated with high glucose, the expression of NOX4 and p22phox is

significantly increased (Etoh et al. 2003; Takao et al. 2011), indicating that

NADPH-dependent overproduction of ROS could cause renal tissue damage in

diabetes.
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Pathways Activated by Oxidative Stress in the Kidney

The mitogen-activated protein kinase (MAPK) pathway is a signaling cascade of

a group of serine/threonine kinases, including Ras, Raf-1, MAPK kinase (MEK)1/2,

extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and c-Jun N-terminal

kinase (JNK) (Kim and Choi 2010; Seger and Krebs 1995), and has been reported to

be activated by oxidative stress in the kidney; direct exposure to H2O2, Tert-butyl
hydroperoxide, or O2

�� production from the catabolism of hypoxanthine by xan-

thine oxidase induces apoptosis in cultured TECs, which is regulated by either JNK

(Wang et al. 2002) or MEK1-ERK1/2 signaling pathway (di Mari et al. 1999; Lee

et al. 2006; Nowak et al. 2006). Similar results were reported in TEC cultures

treated with the nephrotoxic chemical arachidonic acid that stimulates ROS gener-

ation by activation of NADPH oxidase, which subsequently activates JNK (Cui and

Douglas 1997), or with high glucose that induces Raf-1 and ERK1/2 (Huang et al.

2007). In renal ischemia-reperfusion, oxidative stress-induced cell death may also

be mediated by the activation of this pathway because inhibition of Ras-ERK1/2 or

apoptosis signal-regulated kinase (ASK)1-MAPK kinase (MKK)3-p38 MAPK

signal pathway reduces renal ischemia-reperfusion injury (Sabbatini et al. 2006;

Wang et al. 2009). However, the activation of ERK1/2 signaling is not sustained

under conditions of severe oxidative stress (Arany et al. 2006), suggesting that the

role of MAPK pathway in ROS-mediated renal injury may depend on the severity

of local oxidative stress.

In addition to the MAPK pathway, renal oxidative stress also activates

JAK-STAT signaling that mainly consists of a receptor, Janus kinase (JAK) and

signal transducer and activator of transcription (STAT) (Aaronson and Horvath

2002). In vitro high glucose activation of the JAK2-STAT1/STAT3 pathway is

associated with cell death and is blocked by cytoprotective NAC or taurine in

cultured TECs (Huang et al. 2007), while inactivation of JAK2 protects TECs from

H2O2 or nephrotoxic cyclosporin A (CsA)-induced cell death (Neria et al. 2009).

In mouse models of renal IRI, severe oxidative stress increases tyrosine

phosphorylation of STAT3 (Arany et al. 2006), and pharmacological interference

of JAK2 signaling prevents renal IRI and CsA nephrotoxicity (Arany et al. 2006;

Neria et al. 2009).

Several other signaling pathways have also recently been reported to mediate

oxidative stress-induced TEC death. H2O2 increases prostate apoptosis response

factor (Par)-4 expression in human TECs, and Par-4 silencing significantly protects

TECs from apoptosis via activating the PI3K/Akt signaling pathway (Sun et al.

2011). Studies of nephrotoxic drug/chemical-induced nephrotoxic pathways using

whole genome DNA microarray demonstrates that the nuclear factor erythroid

2-related factor (Nrf2) pathway is the most significant signaling response for

oxidative stress in a proximal TEC cell line (HK-2) following challenges with

nephrotoxins (cadmium, diquat dibromide) but not with cyclosporine A (Wilmes

et al. 2011). The anticancer drug carboplatin-mediated ROS stimulation of

calcineurin-NFAT3 (nuclear factor of activated T-cell 3) activation that is essential

for carboplatin-mediated TEC apoptosis (Lin et al. 2010).
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Antioxidant Therapies for Oxidative Stress in the Kidney

Antioxidants consist of enzymes, such as SOD, CAT, and GSH-Px, and small

molecular antioxidant scavengers, such as vitamin E, N-acetylcysteine (NAC), and

a-lipoic acid. These antioxidants neutralize the activity of free radicals in the body by
donating electrons, suggesting their therapeutic potential for mitigating oxidative

stress-mediated kidney diseases. Several antioxidant therapies for reducing oxidative

stress in the kidney have been recently reported (Table 114.1), but many antioxidant

agents, such as NAC and vitamins, have not successfully passed the scrutiny of

Table 114.1 Efficacy of antioxidants in preventing or treating oxidative stress in the kidney

Antioxidant

therapy Subjects Outcome References

NAC CIN Not effective Aslanger et al. 2012; Hafiz et al. 2012;

Jaffery et al. 2012; Kitzler et al. 2012;

Thiele et al. 2010

Postoperative

AKI

Not effective Adabag et al. 2009; Hilmi et al. 2010

CKD Not effective Moist et al. 2010; Renke et al. 2008

NAC and

losartan

DN Not effective Rasi Hashemi et al. 2012

Vitamin E CIN Not effective Kitzler et al. 2012

Vitamin

E and

allopurinol

Postoperative

AKI

Not effective Nouri-Majalan et al. 2009

Vitamins

E and

a-lipoic acid

CKD Not effective Ramos et al. 2011

Ascorbic

acid

(vitamin C)

CIN Not effective Boscheri et al. 2007; Zhou and Chen 2012

Vitamin

supplements

ESRD Not effective Kamgar et al. 2009

GSH CIN Effective in preventing

the oxidative stress and

CIN

Saitoh et al. 2011

BARD DN Improvement of eGFR

up to 52 weeks

Pergola et al. 2011a, b

Allopurinol Renal

impairment,

chronic gout

Reduction in serum

urate concentration

Stamp et al. 2011

Improvement of eGFR Goicoechea et al. 2010

DN Reduction in

proteinuria

Momeni et al. 2010

NAC N-acetylcysteine, CKD chronic kidney disease, CIN contrast-induced AKI/nephropathy, DN
diabetic nephropathy, ESRD end-stage renal disease, GSH glutathione, BARD bardoxolone methyl
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clinical trials for prevention and treatment of renal pathologies, while others, such as

allopurinol, have varying degrees of success (Table 114.1). We discuss possible

reasons for the failure or the success of these antioxidant therapies.

NAC, the N-acetyl derivative of L-cysteine, is the best studied antioxidant for

preventing contrast medium-induced nephropathy (CIN) and other renal patholo-

gies in patients, but the outcomes are not satisfactory (Table 114.1). NAC is

metabolized in the gut wall and liver and is converted to L-cysteine and, ultimately,

from the cysteine to the antioxidant glutathione (GSH). The antioxidant activity of

NAC requires prior conversion to GSH in a study using human platelets (Gibson

et al. 2009). Thus, the efficacy of antioxidant therapy using NAC is dependent on

the conversion or metabolism of NAC to GSH. Recently, Nolin et al. reported that

the conversion of NAC to GSH is largely limited in patients with end-stage renal

disease (ESRD) as compared with that in healthy control subjects (Nolin et al.

2010), which may explain the reason why NAC is not effective in patients with

renal pathologies.

Vitamin E is the term for a group of tocopherols and tocotrienols, of which

a-tocopherol has the highest biological activity. As an antioxidant, vitamin E is

a peroxyl radical scavenger, preventing the propagation of free radicals by lipid

peroxidation by reacting with them to form a tocopherol radical that will then be

reduced by a hydrogen donor (such as ascorbic acid) and thus return to its reduced

state (Traber and Stevens 2011). However, in addition to antioxidant/radical

scavenging, vitamin E also has other biological functions, such as inhibition of

protein kinase C activity, resulting in suppressing smooth muscle growth

(Schneider 2005; Zingg and Azzi 2004), upregulation of connective tissue growth

factor in tumor necrosis factor-treated smooth muscle cells (Villacorta et al.

2003), and inhibition of platelet aggregation (Zingg and Azzi 2004). Therefore,

the outcome of antioxidant therapy using vitamin E not only is determined by its

bioavailability and antioxidant activity that can be affected by the levels of

ascorbic acid or other reducing agents but also is complicated by its non-

antioxidant activities in the body. This concept is supported by the clinical

observations of vitamin E against kidney injury as listed in Table 114.1 and

many other studies demonstrating that vitamin E is not able, at physiological

concentrations, to protect against oxidant-induced damage or prevent disease

allegedly caused by oxidative damage (Azzi 2007).

Ascorbic acid (vitamin C) is another antioxidant that has no benefit in the

prevention and treatment of kidney injury in patients (Table 114.1). This compound

does not directly reduce oxidative stress. Instead, its antioxidant activity is via the

interaction with vitamins E – the vitamin E redox cycle (Halliwell and Gutteridge

1999; Liebler et al. 1989). In addition to this antioxidant activity, ascorbic acid

primarily acts as an essential cofactor for a number of enzymes – a-ketoglutarate-
dependent dioxygenases, particularly prolyl hydroxylases that play a role in the

biosynthesis of collagen and in downregulation of hypoxia-inducible factor (HIF)-1,

a transcription factor that regulates many genes responsible for tumor growth, energy

metabolism, and neutrophil function and apoptosis (Traber and Stevens 2011). There-

fore, like vitamin E, ascorbic acid is a nonspecific antioxidant agent.
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Allopurinol is a purine-like drug that reduces uric acid production from xanthine

and hypoxanthine by inhibition of xanthine oxidase (XO) activity and has been used

for the clinical management of gout and conditions associated with hyperuricemia for

several decades (Pacher et al. 2006). Allopurinol is metabolized by XO to an active

metabolite, oxypurinol, which inhibits the production of uric acid and ROS (i.e.,

H2O2) from XO. Because oxypurinol is eliminated in urine via the kidneys, patients

with impaired renal function are prone to prolonged excretion and elevated levels of

circulating oxypurinol (Elion et al. 1968), which has been reported to be closely

involved with the occurrence of allopurinol hypersensitivity syndrome (Hande et al.

1984). Therefore, although allopurinol has a protective effect on renal function in

patients but not in AKI (Table 114.1), as antioxidant therapy for renal pathologies, it

can be limited by its high risk for allopurinol hypersensitivity syndrome and its XO

target specificity – not attenuating other sources of oxidative stress. Recently, a new

generation of XO inhibitor, a non-purine-selective febuxostat, has been tested in

preclinical models for preventing ischemic AKI (Tsuda et al. 2012) and unilateral

ureteral obstructive nephropathy (Omori et al. 2012). This new XO inhibitor may be

safe for patients with mild to moderate renal impairment without dose adjustment

(Tatsuo and Iwao 2011), but its antioxidant activity in patients with renal pathologies

remains under investigation.

Similar to cyclopentenone prostaglandins – endogenous activators of Nrf2

pathway and inhibitors of NF-kB (Surh et al. 2011) – bardoxolone methyl

(BARD) has been demonstrated to activate the Nrf2 pathway (Liby et al. 2005;

Sporn et al. 2011; Yates et al. 2007) that plays a central role in the maintenance of

redox balance and protection against oxidative stress. It has been recently

documented that impaired Nrf2 activity is associated with renal oxidative stress

and inflammation in animals with chronic kidney disease (Kim et al. 2011; Kim

and Vaziri 2010; Kim et al. 2010; Yoh et al. 2001). BARD activates the Nrf2

pathway in the kidney (Reisman et al. 2012), so that treatment with BARD

ameliorates ischemic AKI in experimental studies (Wu et al. 2011) and improves

eGFR in patients with diabetic nephropathy (Table 114.1). However, a phase III

clinical trial to evaluate safety and efficacy of BARD (20 mg/day) in patients

with CKD and type 2 diabetes has been discontinued due to safety concerns

related to the many adverse side effects and high mortality rates in patients

receiving BARD (October 18, 2012, www.marketwatch.com). Although the

mechanism of BARD toxicity in these patients is currently unknown, it is

possible that BARD may not only reverse the impaired Nrf2 pathway in

diseased kidneys but could also activate Nrf2 pathways in healthy organs,

�

Fig. 114.1 A simple scheme of oxidative stress in renal tubular epithelium in renal pathologies.

Accumulation of superoxide (O2
��), the precursor of ROS, results from mitochondrial dysfunc-

tion, upregulation of oxidases, and/or downregulation of antioxidant enzymes in renal tubular

epithelium in the response to inflammatory stimuli, ischemia, and exposure to toxic chemicals.

ROS activates or disrupts intracellular signaling pathways (e.g., MAPK), resulting in cell death.

TEC tubular epithelial cells, XO xanthine oxidase, ER endoplasmic reticulum, M mitochondria
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whereby the expression of antioxidant enzymes (e.g., NADPH quinone oxido-

reductase, glutamate-cysteine ligase, heme oxygenase) could be upregulated to

increase oxidative stress instead.

Taken together, evidence from these studies indicates that the efficacy of antiox-

idant therapy using different agents is dependent on their bioavailability and target/

disease specificity. It is likely that new avenues that are have more specific targeting as

antioxidants and which possess better pharmacokinetic profiles will lead the way for

future treatment strategies of patients with renal diseases. This requires a great focus

on designing procedures to reduce renal mitochondrial injury and the use of specific

inhibitors of Nox-4-NADPH oxidase that have better improved bioavailabilities in

patients with renal pathologies.

Conclusion

Over the past several years, both clinical and experimental studies have advanced

our understanding of the pathological role of oxidative stress in the development

of various renal pathologies. This review discusses the pathways that lead to the

generation of ROS in the kidneys or cultured TECs following a variety of

nephrotoxic insults and the pathways activated by ROS in their nephrotoxicity

(Fig. 114.1). In these renal pathologies, both mitochondrial injury and NADPH

oxidase are considered the main sources of ROS that activate MAPK, JAK-STAT,

or other pathways. However it remains unclear whether each renal disorder has its

own unique source of ROS generation. Despite the large number of studies testing

antioxidant reagents in the prevention of oxidative stress-mediated renal injury,

there is as yet no drug available that directly targets renal ROS activity; it is clear

that this would be a valuable strategy for drug discovery to protect against drug

nephrotoxicity, AKI, kidney stone or diabetes-associated kidney damage.
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