
Reactive Oxygen Species and Diabetic
Nephropathy 117
Shawn S. Badal and Farhad R. Danesh

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2660

Generation of Oxidative Stress in Diabetic Nephropathy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2661

Mitochondrial ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2662

NADPH Oxidase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2668

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2670

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2670

Abstract

Diabetic nephropathy remains a major microvascular complication of diabetes

and the most common cause of end-stage renal disease requiring dialysis in the

USA. Medical advances over the past century have substantially improved the

management of diabetes mellitus and thereby increased patient survival. How-

ever, current standards of care reduce but do not eliminate the risk of diabetic

nephropathy, and future studies are required to further understand the molecular

mechanisms involved in the pathogenesis of diabetic nephropathy. There is an

increasing body of evidence indicating that reactive oxygen species (ROS)

may play a major role in the development of diabetic nephropathy. Oxidative

stress is increased in diabetes, and the overproduction of ROS correlates with

complications of diabetes, including diabetic nephropathy. Both NADPH oxi-

dase and mitochondrial electron gradients seem to play critical roles in hyper-

glycemia-induced ROS generation. However, the key pathways by which

hyperglycemia leads to enhanced ROS and structural changes associated with
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diabetic nephropathy are not well established. It is known that in addition to their

ability to directly inflict macromolecular damage, ROS can function as signaling

molecules resulting in transcriptional activation of profibrotic genes in the

kidney. Here, we highlight the role of ROS in the development of the diabetic

kidney disease. In particular, we will discuss recent advances in our understand-

ing of the molecular mechanisms by which mitochondrial ROS might be impli-

cated in the pathogenesis and progression of diabetic nephropathy.
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Introduction

Diabetes is a worldwide pandemic affecting approximately 160 million individuals

as of the year 2000 and is expected to rise to 366 million individuals by 2030, an

estimated 50 % increase over 30 years in the number of individuals with diabetes

(Wild et al. 2004). Diabetic nephropathy is a major microvascular complication of

diabetes, affecting between 20 % and 40 % of diabetic patients (Hasslacher et al.

1989). Of note, in 1975, 3 years after the initiation of the end-stage renal disease

program, patients with diabetes mellitus comprised only � 5 % of dialysis patients.

However, in the intervening time, there has been an explosion in the incidence and

prevalence of type 2 diabetes that has resulted in diabetes mellitus becoming the

leading cause of end-stage renal disease (ESRD) in industrialized countries, includ-

ing the USA (http://www.cdc.gov/diabetes /pubs /factsheet11.htm).

Themechanisms underlying the development and progression of diabetic nephrop-

athy remain poorly understood; however, it is known that the level of hyperglycemia

correlates with progression of diabetic nephropathy and retinopathy (Remuzzi and

Ruggenenti 1993; Lewis et al. 1993), and improving glycemic control decreases the

rate of progression of diabetic nephropathy and loss of kidney function (Lewis et al.

1993; 2003). The differential effect of chronic hyperglycemia on different tissues

reflects the failure of cells to downregulate the uptake of glucose when extracellular

glucose concentrations are elevated. Consistent with this notion, hyperglycemic

damage is pronounced in cells and tissues which show no significant change in

glucose transport rate, resulting in intracellular hyperglycemia and cell damage.

Although multiple recent published reviews have provided an excellent sum-

mary of the most popular pathways underlying hyperglycemia-induced diabetic

cellular and kidney damage, the mechanisms leading to the development of diabetic

nephropathy remain largely unknown. In general, it is believed that prolonged

hyperglycemia leads to chronic metabolic and hemodynamic changes that modulate

various intracellular signaling pathways, transcription factors, cytokines,

chemokines, and growth factors (Soldatos and Cooper 2008; Remuzzi et al.

2002). These effects promote structural abnormalities in the kidney such as glo-

merular basement membrane thickening, podocyte injury, and mesangial matrix
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expansion with the later development of irreversible glomerular sclerosis and

tubulointerstitial fibrosis associated with declining GFR.

Experimental evidence suggests that the critical molecular pathways that may be

involved in the development of diabetic nephropathy include increased oxidant

stress, enhanced flux into the polyol and hexosamine pathways, activation of PKC

and transforming growth factor (TGF)-b-SMAD-MAPK signaling pathways, and

increased formation of advanced glycation end products (AGEs). In addition, high

glucose can activate the proinflammatory transcription factor NF-kB, resulting in

increased inflammatory gene expression in part through oxidant stress, AGEs, PKC,

and MAPKs (Schmid et al. 2006; Lee et al. 2004). Finally, hemodynamic changes,

in part through the probable activation of the renin-angiotensin system (RAS) and

VEGF signaling axis, also play critical roles in the pathobiology of diabetic

nephropathy (Anderson and Brenner 1988; Hostetter et al. 1982; Khamaisi et al.

2003; Cooper et al. 1999). Although all of these factors have been implicated in the

pathogenesis of diabetic nephropathy, here we focus on some of the new concepts

highlighting the role of ROS in the pathogenesis and progression of diabetic kidney

disease. This chapter will discuss a summary of the latest published data on the

molecular mechanisms associated with the role of ROS in pathological changes in

the kidney during the development of diabetic nephropathy.

Generation of Oxidative Stress in Diabetic Nephropathy

ROS include a number of molecular species derived from oxygen that arise

principally from superoxide (O2
•�) (Sena and Chandel 2012). ROS can be produced

enzymatically or nonenzymatically. Among several enzymes which have been

implicated in the generation of ROS, cytoplasmic NADPH oxidases located mainly

on the cell membrane of polymorphonuclear cells, macrophages and endothelial

cells (Vignais 2002), and cytochrome P450-dependent oxygenases are well-

characterized sources of enzymatic ROS (Coon et al. 1992). In contrast, the

nonenzymatic production of superoxide mainly involves mitochondrial electron

transport chain, which contains several redox centers that may leak electrons to

oxygen, constituting the primary source of superoxide in most tissues.

It is now clear that various types of cells including endothelial, vascular smooth

muscle, mesangial, and tubular epithelial cells are capable of producing ROS under

hyperglycemic condition (Remuzzi et al. 2002), and there is increasing evidence that

the overproduction of ROS is one major factor in the development of diabetic

complications, including diabetic nephropathy. But how enhanced ROS lead to

structural changes associated with diabetic kidney disease is less understood. Phys-

iological levels of ROS are important in diverse biological activities of the cell, and

small fluctuations in the steady-state concentration of ROS play a role in signal

transduction cascades. However, uncontrolled increases in the steady-state concen-

trations of these oxidants are regarded as toxic by-products of metabolism that cause

damage to cellular components, including proteins, lipids, carbohydrates, and DNA.

Furthermore, in addition to their ability to directly inflict macromolecular damage,
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ROS can activate a number of cellular stress-sensitive pathways that cause cellular

damage (Schmid et al. 2006). For instance, ROS mediate hyperglycemia-induced

activation of signal transduction cascades and transcription factors leading to tran-

scriptional activation of profibrotic genes (Lee et al. 2004). Protein kinase C (PKC),

transforming growth factor-b1 (TGF-b1), and angiotensin II (Ang II) stimulated by

hyperglycemia-induced ROS, in turn, generate and signal through ROS and thus ROS

act as a signal amplifier in diabetes (Lee et al. 2004).

The glucose auto-oxidation, polyol pathway, AGE, mitochondrial electron trans-

port chain (ETC), uncoupled eNOS, and NAD(P)H oxidases have been long

considered as main sources of ROS generation in diabetes. Among all these

potential sources of ROS generation in the diabetic kidney, we will, however,

mainly focus on the roles of mitochondria and activated NADPH oxidase.

Mitochondrial ROS

Mitochondria are the main source of ROS within most mammalian cells, and it is

generally believed that the majority of ROS in the mitochondria are by-products of

mitochondrial respiration. The mitochondrial electron transport chain (ETC) contains

several redox centers that may leak electrons to molecular oxygen, serving as the

primary source of endogenous superoxide production (Andreyev et al. 2005; Turrens

2003a; Balaban et al. 2005). Indeed, two of the respiratory chain complexes (I and III)

have been long recognized as important sources of superoxide production.

The mitochondria generate energy by oxidizing hydrogen derived from our

dietary carbohydrates (TCA cycle) and fats (b-oxidation) with oxygen to generate

heat and ATP. The production of ATP occurs in the mitochondrial inner membrane,

in the ETC. Electron flow is carried out by four membrane-associated enzyme

complexes (complexes I to IV), plus cytochrome c and the mobile carrier ubiqui-

none (QH2). In the mitochondrial matrix, two electrons donated from NADH to

complex I (NADH dehydrogenase) or from succinate to complex II (succinate

dehydrogenase, SDH) are passed sequentially to ubiquinone (coenzyme Q or

CoQ) to give ubisemiquinone (CoQH•) and then ubiquinol (CoQH2). Ubiquinol

transfers its electrons to complex III (ubiquinol:cytochrome c oxidoreductase),

which transfers them to cytochrome c. From cytochrome c, the electrons flow to

complex IV (cytochrome c oxidase or COX) and finally to 1/2 O2 to give H2O. Each

of these ETC complexes incorporates multiple electron carriers. Complexes I, II,

and III encompass several iron-sulfur (Fe-S) centers, whereas complexes III and IV

encompass the b + c1 and a + a3 cytochromes, respectively.

The energy released by the flow of electrons through the ETC is used to pump

protons out of the mitochondrial inner membrane through complexes I, III, and IV.

This creates an electrochemical gradient (�0.32 V to + 0.39 V) across the mito-

chondrial inner membrane, which is used for ATP synthesis by complex V (ATP

synthase). As protons flow back into the matrix through a proton channel in

complex V, ADP and Pi are bound, condensed, and released as ATP. Thus, the

mitochondria generate most of the endogenous ROS as a by-product of OXPHOS.
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ROS production is increased when excess electrons are provided to ETC. The

excess electrons are transferred to oxygen, which is converted to superoxide and

subsequently to hydrogen peroxide. The highest rate of ROS production occurs

when the proton gradient is high and oxygen consumption (ATP demand) is low.

Superoxide O2
•� is converted to H2O2 by mitochondrial matrix enzyme Mn super-

oxide dismutase (MnSOD, Sod2) or by the Cu/ZnSOD (Sod1), which is located in

both the mitochondrial intermembrane space and the cytosol.

Complex I and III of the ETC are important sources of ROS due to the formation

of semistable radicals during electron transfer (FMN• in complex I and QH• in

complex III) from which an electron may be transferred to molecular O2, generating

O2
•�. Approximately 0.1–0.2 % of the total mitochondrial oxygen consumption is

due to O2
•� production under normal physiological conditions (St-Pierre et al.

2002). Although it was initially assumed that the production of superoxide under

normal conditions did not have any beneficial function, more recent studies have

implicated ROS as an important cellular signaling molecule. For example, mito-

chondrial superoxide is a key component of angiogenesis and hypoxia-inducible

factor (HIF) signaling cascades (Connor et al. 2005; Guzy et al. 2005).

Some of the potential mechanisms related to diabetes-induced mitochondrial

ROS production are depicted in Fig. 117.1. Intracellular glucose oxidation begins

with glycolysis in the cytoplasm, which generates NADH and pyruvate. Pyruvate

can be transported into the mitochondria, where it is oxidized by the TCA cycle to

produce four molecules of NADH and one molecule of FADH2. In the diabetic

milieu, there is an increased flow of the key substrates NADH and FADH2 to the
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Fig. 117.1 Mitochondrial ETC and ROS production. The mitochondrial matrix contains the

components of the TCA cycle and the b-oxidative pathway, which provide reduced NADH and

FADH2 to the ETC, leading to generation of a proton gradient across the inner mitochondrial

membrane
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respiratory chain, which overdrives the electron transport system in the mitochon-

dria, resulting in increased superoxide anion production (Haidara et al. 2009; Palm

et al. 2003; Nishikawa et al. 2000b).

Diabetes is associated with alterations in mitochondrial metabolism that result in

both increased formation of ROS and failure of bioenergetics (Nishikawa et al.

2000a, b; Turrens 2003b). Mitochondrial dysfunction is a hallmark of diabetic

nephropathy, and a central role for mitochondrial ROS in microvascular complica-

tions of diabetes has been proposed by several groups with multiple studies

suggesting perturbations in mitochondria in both insulin-deficient and insulin-

resistant states and in the related condition of obesity (Haidara et al. 2009; Palm

et al. 2003; Brownlee 2001, 2003; Green et al. 2004; DeRubertis et al. 2004;

Vincent et al. 2002; Kristal et al. 1997; Yamagishi et al. 2001; Giardino et al.

1996). It must be noted that the term “mitochondrial dysfunction” is poorly defined

in the literature and evidence exists for a wide range of alterations in mitochondria,

including changes in biogenesis, number, morphology, and dynamics, including

fusion and fission.

Brownlee was the first to suggest that ROS produced by the mitochondrial ETC

are the driving force in the pathogenesis of diabetic nephropathy. He proposed

a “unifying mechanism” where several seemingly independent pathways, including

protein kinase Cb, aldose reductase, advanced glycation end products, and the

hexosamine biosynthetic pathway, are activated by a single upstream event: mito-

chondrial overproduction of ROS (Nishikawa et al. 2000b; Brownlee 2001, 2003;

Green et al. 2004; Vincent et al. 2002; Ishii et al. 1996; Inoguchi et al. 2003; Koya

et al. 1997; Lee et al. 2003; Watts et al. 2002). Consistent with this hypothesis and

with the critical role of ROS in microvascular complications of diabetes, normal-

ization of the mitochondrial superoxide levels blocked three major pathways of

hyperglycemia-induced injury (Palm et al. 2003; Brownlee 2001). The evidence for

this model, however, comes mainly from experiments on cultured endothelial cells,

where raising the glucose concentration from 5 to 30 mmol/l increased ROS

production, as measured by the rate of oxidation of dichlorodihydrofluorescein

(DCFH) to dichlorofluorescein (DCF) (Haidara et al. 2009; Palm et al. 2003;

Green et al. 2004). DCF oxidation was blocked by inhibitors of mitochondrial

pyruvate uptake and succinate dehydrogenase, but not by rotenone, a complex

I inhibitor, suggesting that ROS generation at complex II may be important. One

puzzling question in this observation is how the overexpression of mitochondrial

manganese superoxide dismutase (MnSOD) prevented high glucose-induced

DCFH oxidation (Green et al. 2004). DCFH is primarily sensitive to hydrogen

peroxide, nitric oxide, or hydroxyl radicals, and it is not directly oxidized by

superoxide. The overexpression of MnSOD should have converted the superoxide

generated in the mitochondrial matrix to hydrogen peroxide (Fig. 117.1). Thus,

MnSOD overexpression should have enhanced the DCF signal rather than

abolishing it. A potential explanation for the effect of MnSOD overexpression is

that MnSOD detoxifies superoxide into hydrogen peroxide within the mitochon-

drial matrix, preventing its escape into the cytosol. The hydrogen peroxide is then

converted to water by glutathione peroxidase in the mitochondria. This finding
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suggests that the nature of the ROS being measured in these experiments remains

uncertain. DCF oxidation was also blocked by inhibitors of mitochondrial pyruvate

uptake and of succinate dehydrogenase, but not by rotenone, suggesting that reverse

electron transport was not involved.

A recent publication examined whether mitochondria-targeted antioxidant

would prevent progression of diabetic nephropathy in the Ins2(+/)(AkitaJ) mouse

model (Akita mice) of type 1 diabetes (Chacko et al. 2010). To test this hypothesis,

the authors administered a mitochondria-targeted ubiquinone (MitoQ) over

a 12-week period and assessed tubular and glomerular function. MitoQ treatment

improved tubular and glomerular function in the Ins2(+/)�(AkitaJ) mice. However,

it did not have a significant effect on plasma creatinine levels, although it decreased

urinary albumin levels to the same level as nondiabetic controls. Importantly,

interstitial fibrosis and glomerular damage were significantly reduced in the treated

animals. These results support the hypothesis that mitochondrial-targeted therapies

may be beneficial in the treatment of diabetic nephropathy. Moreover,

overexpression of catalytic antioxidants was shown to protect against diabetic

injury. Craven et al. (2001a) demonstrated that diabetic mice transgenic for

Cu/Zn SOD had significantly lower urinary albumin excretion, glomerular hyper-

trophy, and glomerular expression of TGF-b1 and collagen IV protein compared to

non-transgenic mice. The same group also showed that overexpression of MnSOD

suppresses increases in collagen accumulation induced by culture of mesangial

cells in high glucose media (Craven et al. 2001b). Similarly, Du et al. showed that

overexpression of MnSOD in bovine aortic endothelial cells prevented high glu-

cose-induced activation of PKC, NK-kB, hexosamine, and advanced glycation end

product (AGE) pathways (Du et al. 2003). Finally, Brezniceanu et al. demonstrated

that renal catalase overexpression in db/db mice attenuated ROS generation,

angiotensinogen, proapoptotic gene expression, and apoptosis in the kidneys of

diabetic mice in vivo (Brezniceanu et al. 2007).

In a recent study, Wang et al. have convincingly shown that changes in the

mitochondrial dynamics contribute to increased mitochondrial ROS and progres-

sion of diabetic nephropathy (Wang et al. 2012). Mitochondria are dynamic organ-

elles, which are able to interchange their morphology between elongated

interconnected mitochondrial networks and a fragmented disconnected arrange-

ment. The dynamic nature of mitochondrial networks is due to two opposing

processes, mitochondrial fission and fusion, that operate concurrently (Chan

2006). Mitochondrial fission and fusion are crucial for maintaining mitochondrial

function and are thought to be important for rapid repair of damaged mitochondria

and for intermixing of DNA and proteins between mitochondria (Fig. 117.2).

A growing number of studies have begun to investigate changes in mitochon-

drial morphology and dynamics as important parameters for many disease-related

processes. Importantly, changes in mitochondrial morphology and increased mito-

chondrial fission have been recently implicated in the progression of Huntington’s

and Alzheimer’s disease (Chen and Chan 2009). Our group has recently investi-

gated the role of mitochondrial dynamics and specifically mitochondrial fission in

the context of diabetic nephropathy (Wang et al. 2012). Condensed fragmented
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mitochondria were observed in the podocytes in kidneys from diabetic mice, which

were associated with changes in phosphorylation status of the mitochondrial fission

protein Drp1 (dyanmin-related protein-1).

So how does hyperglycemia trigger mitochondrial fission and fragmentation

leading to increased ROS and apoptosis in podocytes? Drp1 (dyanmin-related

protein-1) is one of the most relevant genes identified to date that directly mediate

mitochondrial fission. Drp1 is a soluble dynamin-related GTPase which is localized

predominantly in the cytosol and must be recruited to mitochondria for fission to

occur (Chan 2006; Chen and Chan 2009; De Vos et al. 2005). Current evidence

suggests that Drp1 promotes fission by tethering to mitochondria at specific posi-

tions known as constriction sites. Drp1 then forms multimeric spirals around

mitochondria further constricting mitochondrial tubules leading to mitochondrial

fission (Smirnova et al. 2001).

The study by Wang et al. demonstrated that Drp1 is phosphorylated by high

glucose-induced Rho kinase (ROCK1) activation, where this modification

Cytochrome C ROS/O2
•−

Active
ROCK1

Drp1

P

Drp1

Caspase 3 Activation

Apoptosis

Hyperglycemia

Mitochondrion

Fig. 117.2 High glucose treatment leads to mitochondrial fission. Mitochondrial fission is

driven by Drp1, which resides primarily in the cytoplasm. Hyperglycemic conditions drive the

activation of Rho kinase (ROCK1) which regulates a number of downstream substrates, including

Drp1. Drp1 is recruited to mitochondria upon phosphorylation by activated ROCK1 at Ser613.

Drp1 then forms multimeric spirals around mitochondria at fission sites, which promote the

constriction of mitochondria followed by fission. Mitochondrial fragmentation is associated with

release of mitochondrial cytochrome C which facilitates cleavage of caspase-3 and initiation of

apoptosis
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promotes the activity of Drp1, triggering its translocation from the cytosol to

mitochondria, thus increasing fission. Whether inhibiting mitochondrial fission

and Drp1 phosphorylation in the setting of DN would be beneficial is still unclear.

However, consistent with these preclinical data, biopsies of skeletal muscle from

subjects with type 2 diabetes reveal mitochondria of smaller size and number

compared with control subjects (Kelley et al. 2002). Moreover, mitochondria of

offspring of diabetic subjects are lower in density compared with those of controls

(Morino et al. 2005).

Further evidence on the role of ROS in the development of diabetic nephropathy

comes from studies on the potential role of uncoupling proteins on diabetic com-

plications. Friederich et al. (2008) showed that diabetic rats express increased

mitochondrial uncoupling protein-2 (UCP2) in proximal tubular cells associated

with increased oxygen use and suggested that the increase in UCP2 was protective

against oxidative stress. Manabe et al. (2008) reported that high glucose increased

ROS fluorescence in human mesangial cells associated with potentially harmful

cytokine expression, an effect that was blocked by astaxanthin, a carotenoid that

accumulated in mitochondria. High glucose also reportedly increased H2O2 pro-

duction by dichlorodihydrofluorescein fluorescence in human mesangial cells

(Kiritoshi et al. 2003). This was suppressed by reduction in membrane potential

by chemical inhibition or by UCP1 overexpression. Coughlan et al. (2007) demon-

strated renal mitochondrial oxidative damage in streptozotocin-induced diabetic

rats manifest as lucigenin luminescence in kidney slices, an effect that was reduced

by alagebrium, a cross-link inhibitor of advanced glycosylation end product (AGE)

accumulation. In another report, methylglyoxal formation (a precursor to AGEs)

accompanied an increase in superoxide production by renal cortical mitochondria

of 12-month STZ-diabetic rats (Rosca et al. 2005). Mitochondrial ROS also were

implicated in renal pathology in the Goto-Kakizaki rat, a rodent model of type 2

diabetes (Rosen and Wiernsperger 2006). This study showed a reduction in tissue

aconitase activity, a mitochondrial enzyme susceptible to inactivation by reactive

oxygen, along with an increase in lipid peroxides.

In summary, the mitochondrial respiratory chain constitutes the main intracel-

lular source of ROS in most tissues. Mitochondria, by virtue of numbers or

functional properties or both, are critically involved in the pathophysiology of

diabetes. The steady-state concentrations of ROS are maintained at nontoxic levels

by a variety of antioxidant defenses and repair enzymes. This delicate balance

between antioxidant defenses and ROS production may play a critical role in

diabetic nephropathy in which the resulting oxidative insult could eventually

cause kidney damage. New diabetes-treatment strategies are needed to address

both mitochondrial function and ROS production. Pharmacologic interventions

must focus on mechanisms regulating mitochondrial biogenesis, ROS, and respi-

ration. Future examination of the members of the fission and fusion machinery may

also enhance our understanding of the role of the mitochondrial dynamics in

diabetic nephropathy. At the functional level, effective pharmacologic agents are

needed that can be safely delivered to targeted sites within cells and within

mitochondria.
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NADPH Oxidase

NADPH oxidase is a multiprotein cytosolic enzyme complex initially identified in

phagocytes, which generate ROS in response to bacterial infections. It catalyzes the

transfer of electrons from NADPH to molecular oxygen via their catalytic subunits

to generate superoxide. NADPH oxidase in phagocytic cells releases ROS as

a defense against pathogens, whereas in endothelial cells (ECs), NADPH oxidase

isoforms expressed in the endoplasmic reticulum (ER) and perinuclear membranes

generate ROS as modulators of redox-sensitive signaling pathways.

How does NADPH oxidase generate ROS? NADPH oxidase is a heme-

containing protein complex whose backbone is a Nox protein (also known as

gp91phox). The Nox family is composed of 7 catalytic subunits termed Nox1-5

and Duox1 and Duox2 (for Dual Oxidase), regulatory subunits p22phox, p47phox,

Noxo1, p67phox, Noxa1, p40phox, and the major binding partner Rac (Lambeth

et al. 2000; Lambeth 2004). The enzyme is normally dormant in resting state but is

rapidly activated upon appropriate stimulation in a process involving the translo-

cation and association of cytoplasmic subunits. The activated cytoplasmic complex

then associates with subunits in the membrane to form a functional enzyme with

very specific regulatory mechanisms, tissue and subcellular patterns of expression,

downstream targets, and functions.

The Nox isoforms are the catalytic subunits for ROS generation that are differ-

entially expressed and regulated in various cell types but remain to be fully

characterized. The reduced substrate NADPH binds to Nox isoforms on the cyto-

plasmic side of the membrane and releases two electrons, which are passed initially

to FAD, then to the first and second heme groups, and finally accepted by two

successive molecules of oxygen on the opposite side of the membrane, to produce

two molecules of superoxide radical (Griendling and FitzGerald 2003a, b; Shiose

et al. 2001; Jones et al. 1995; Radeke et al. 1991). In the kidney, all components of

the NADPH oxidase complex, including p22phox, p47phox, and p67phox, as well

as Nox isoforms 1, 2, and 4, are expressed, in a variety of cell types including

fibroblasts, endothelial cells, vascular smooth muscle cells, mesangial cells, tubular

cells, and podocytes.

An emerging body of evidence suggests that NADPH oxidase may play

a pathogenic role in diabetic nephropathy. For instance, the mRNA expression of

essential subunits of NADPH oxidase, NOX4 and p22phox, in the kidneys of

streptozotocin-induced diabetic rats were markedly increased as compared with

control rats (Etoh et al. 2003). Immunohistochemical analysis showed that the

expression of Nox4 and p22phox were increased in both distal tubular cells and

glomeruli. Insulin treatment for 2 weeks completely restored the levels of these

components in the diabetic kidney to control levels. Moreover, pharmacological

inhibition of NADPH oxidase with apocynin prevented upregulation of p47phox

and gp91phox overexpression and retarded the mesangial matrix expansion seen in

experimental diabetic nephropathy (Asaba et al. 2005; Thallas-Bonke et al. 2008).

And finally, using antisense oligonucleotides for Nox4, Gorin et al. reported
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a significant improvement in renal hypertrophy and fibronectin accumulation in

STZ rats (Gorin et al. 2005). These results suggest that the expression of NADPH

oxidase subunits Nox4 and p22phox are upregulated in diabetic kidneys and that

Nox4 may play a significant role in the pathogenesis of DN.

Several other reports have suggested that the expression of p22phox, p47phox, or

p67phox are upregulated in the aorta from animal models of diabetes (Kim et al.

2002; Hink et al. 2001) and in the saphenous vein and internal mammary artery

from patients with diabetes and coronary artery disease (Guzik et al. 2002).

Furthermore, NADPH oxidase-driven superoxide production was reported to be

involved in vascular dysfunction in a type 2 diabetes animal model (Kim et al.

2002). In addition, at least one report showed that the activity of NADPH oxidase

was increased in the retina of diabetic rats, suggesting that NADPH might be

involved in the development of diabetic retinopathy (Ellis et al. 2000).

One major gap in our current understanding of the role of NADPH oxidase in

diabetic nephropathy is to identify the mechanisms underlying activation of

NADPH oxidase. In this regard, it has been shown that NADPH oxidase is triggered

by AGE (Soro-Paavonen et al. 2008; Wautier et al. 2001). Importantly, incubation

of human endothelial cells with AGE (carboxymethyl lysine-modified adducts)

promotes intracellular generation of ROS, which is suppressed by DPI and an

AGE inhibitor but not by L-NAME. Furthermore, a soluble form of receptor for

advanced glycation end products (sRAGE) significantly inhibits expression of

NADPH oxidase in diabetic mice (Soro-Paavonen et al. 2008; Wautier et al. 2001).

Finally, activation of NADPH oxidase is abolished in diabetic PKCb�/� mice,

suggesting that NADPH oxidase is also activated via a PKC-dependent pathway

(Ohshiro et al. 2006). Lack of PKCb can protect against diabetes-induced renal

dysfunction, fibrosis, and Nox-derived ROS production. Other PKC isoforms have

also been implicated in NADPH oxidase activation in diabetes, e.g., PKCa is

downstream of AGE-RAGE and mediates ROS generation by NADPH oxidase in

the kidney of diabetic rats (Thallas-Bonke et al. 2008); PKCd is responsible for high
glucose-induced intracellular ROS production by NADPH oxidase in the adipo-

cytes of diabetic mice (Taylor et al. 2005), while PKCz is required for ROS

generation from NADPH oxidase in mesangial cells treated with high glucose

(Kwan et al. 2005). Angiotensin II is a potent stimulator of NADPH oxidase O2
•�

production in the vasculature. Accordingly, inhibitors of angiotensin II signaling

slow the progression of diabetic complications such as nephropathy, retinopathy,

and atherosclerosis, independent of their ability to lower blood pressure in both type

1 and type 2 diabetes (Wei et al. 2007).

Taken together, multiple studies have shown that activation of NADPH oxidase

affects both cellular redox signaling and oxidative stress in diabetes. Recent

advances in the identification of vascular NADPH oxidase subunits, their subcel-

lular localization/regulation, and feedback inhibition of NADPH oxidase via the

Nrf2/ARE pathway provide novel therapeutic targets to combat oxidative stress in

diabetes. Therefore, strategies to restore basal NADPH oxidase activity offer

a potential scope of treatment.
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Conclusions

While progression to diabetic nephropathy cannot yet be prevented, multiple

observations suggest that increased oxidative stress in the kidney may have

a fundamental role in the development of microvascular complications of diabetes.

However, these observations need to be evaluated cautiously since the evidence on

the potential role of ROS in the development of diabetic kidney disease is mainly

supported in experimental models. This is of particular interest since experimental

rodent models of diabetes may not recapitulate many key aspects of phenotypes

observed in patients with diabetic nephropathy. Indeed, conventional antioxidants

such as vitamin E have shown little benefit on progression of diabetic kidney

disease. Future studies are needed to translate into therapeutics the potential role

of ROS in the pathogenesis and development of diabetic nephropathy in patients

with this devastating disease.
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