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Abstract

Pulmonary hypertension is a devastating condition, and currently available

treatment options have not provided satisfactory results with regard to the

prognosis of patients. Increased pulmonary arterial resistance stains the right

heart, ultimately leading to right heart failure and death. Thus, new therapeutic

strategies are needed. Evidence suggests that the mechanisms of the develop-

ment of pulmonary hypertension, in particular pulmonary vascular remodeling,

and the development of right heart remodeling involve reactive oxygen species.
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In animal models of pulmonary hypertension, various molecules with antioxi-

dant properties have been shown to attenuate pulmonary vascular as well as right

ventricular remodeling. Evidence for the benefit of antioxidant therapy in human

pulmonary hypertension patients is, however, lacking. This chapter compiles

information on cell, animal, and human studies that provide evidence for the

role of reactive oxygen species and the beneficial effects of antioxidants in

pulmonary hypertension and right heart failure.
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Abbreviations

Fe2+ Ferrous ion

Fe3+ Ferric ion

HO. Hydroxyl radical

H2O2 Hydrogen peroxide

O2 Molecular oxygen

O2
•� Superoxide anion radical

PAH Pulmonary arterial hypertension

ROS Reactive oxygen species

RV Right ventricle

SOD Superoxide dismutase

Pulmonary Hypertension

Pulmonary hypertension is a clinical condition defined by the elevation of mean

pulmonary arterial pressure �25 mmHg with normal pulmonary wedge pressure

(PWP � 15 mmHg). The term “pulmonary hypertension” represents a collection

of various diseases with this hemodynamic definition (Galiè et al. 2009a; Chemla

et al. 2002). Pulmonary arterial hypertension (PAH) (Group 1) includes idiopathic

PAH, heritable PAH, PAH induced by drugs and toxins, persistent pulmonary

hypertension of the newborn, and PAH associated with various diseases such as

connective tissue diseases, HIV infection, portal hypertension, congenital

heart disease, schistosomiasis, and chronic hemolytic anemia. Pulmonary hyperten-

sion is also associated with hypoxic lung diseases such as chronic obstructive

pulmonary disease and lung fibrosis (Group 3) and often worsens the prognosis of

these primary diseases. Other classes of pulmonary hypertension include pulmonary

hypertension due to left heart dysfunction (Group 2), chronic thromboembolic

pulmonary hypertension (Group 4), pulmonary veno-occlusive disease and/or

pulmonary capillary hemangiomatosis (Group 1), and diverse forms of pulmonary

hypertension with unclear and/or multifactorial mechanisms (associated

with myeloproliferative disorders, splenectomy, sarcoidosis, and other rare medical

conditions) (Group 5) (Simonneau et al. 2004; Galiè et al. 2009a).
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The increased pulmonary arterial pressure and resistance strain the right ventri-

cle (RV), initially causing compensatory concentric RV hypertrophy, which in turn

transitions to right-sided heart failure and death (Nauser and Stites 2003; Farber and

Loscalzo 2004). The median survival for patients with PAH has been reported to be

2.8 years from the time of diagnosis without treatment (Runo and Loyd 2003). Even

with currently available therapies, the prognosis remains poor, with a 3 year

survival of PAH patients reported to be 58–75 % (Benza et al. 2010; Humbert

et al. 2010; Thenappan et al. 2010).

Pulmonary hypertension is characterized by vasoconstriction within the pulmo-

nary vasculature and histological abnormalities of the vascular wall, including

medial hypertrophy, intimal proliferation, fibrosis, adventitial thickening, throm-

botic lesions, and inflammatory infiltrates (Morrell et al. 2009; Humbert et al. 2004;

Sweeney and Yuan 2000; Mandegar and Yuan 2002). In advanced stages of PAH,

all of these characteristics are present in complex plexiform lesions.

Various biochemical pathways lead to vasoconstriction of pulmonary arteries

and increased pulmonary vascular resistance, in part due to the abnormal produc-

tion of vasoactive compounds. Increased vasoconstriction could also be due to

abnormal expression and function of the potassium channels in pulmonary vascular

smooth muscles cells (SMCs) (Burg et al. 2008). Endothelial dysfunction causes

overexpression of vasoconstrictive and proliferative substances such as

endothelin-1 and thromboxane A2 (Humbert et al. 2008). In addition, the levels

of vasodilators and antiproliferative agents such as nitric oxide and prostacyclin are

decreased. These abnormalities elevate the vascular tone and promote vascular

thickening through the proliferation and hypertrophy of endothelial cells, SMCs,

and fibroblasts. Inflammatory cells may also play an important role, since

perivascular inflammatory infiltrates are present in lungs with pulmonary hyper-

tension (Hassoun et al. 2009). However, the exact pathogenetic pathways that lead

to these features are unknown.

Currently Available Therapy for Pulmonary Hypertension

Despite significant progress in treatment options in the last decade, pulmonary

hypertension remains a serious lethal condition. Currently used drugs

reduce symptoms, but mortality due to pulmonary hypertension remains high

(Galiè et al. 2009b). Several groups of vasodilators are used as treatment strategies

for pulmonary hypertension. Calcium channel blockers are the first group used in

the therapy; however, only a small number of patients respond to this treatment

(Sitbon et al. 2005). Three classes of drugs have been specifically approved to treat

PAH (Group I). Among them, prostanoids are the most potent drugs in the treatment

of PAH (Galiè et al. 2003; Safdar 2011). This class of agents, however, is not stable,

and therefore, they often need to be applied continuously through an intravenous

route. Prostanoids have also been used clinically and can be administered subcuta-

neously and through inhalation as well. However, the oral prostanoid,

beraprost, does not provide a significant hemodynamic benefit (Galiè et al. 2002;
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Barst et al. 2003). Endothelin-1 receptor antagonists and phosphodiesterase-5

inhibitors are oral vasodilators used in PAH (Galiè et al. 2004; Ghofrani et al.

2004). There is still a need for new efficient therapies that reverse the features

associated with advanced stages of this disease and decrease the mortality associ-

ated with PAH. Therapies to prevent and/or treat other forms of pulmonary hyper-

tension are also needed. In addition, there are currently no specific therapies

available to prevent and/or treat right heart failure.

In this chapter, evidence for the role of free radicals and the beneficial effects of

antioxidants in pulmonary hypertension and right heart failure is presented.

Reactive Oxygen Species (ROS) and Antioxidants

Sequential electron reduction of molecular oxygen (O2) produces ROS.

One-electron reduction produces superoxide anion radical (O2
•�), two-electron

reduction produces hydrogen peroxide (H2O2), and three-electron reduction results

in the formation of hydroxyl radical (HO.). O2
•� is formed through various means in

the biological system including enzymes such as xanthine oxidase and NADPH

oxidase, which perform one-electron reduction of O2 to form O2
•�. H2O2 is often

formed through the dismutation reaction, in which two molecules of O2
•� interact

with each other to donate/accept an electron. In this reaction, the O2
•� molecule,

which receives an electron, becomes H2O2. In the biological system, the source of

the electron that reduces H2O2 to HO
. includes reduced metal irons and in particular

iron ions in the Fenton reaction. Iron ions are normally present in the cytosol in

oxidized form as ferric ion (Fe3+). Thus, reduction of ferric to ferrous ion (Fe2+) is

required to elicit the Fenton reaction and HO. formation (Freeman and Crapo 1982;

Halliwell and Gutteridge 1985; Suzuki and Ford 1994).

Traditionally, ROS have been thought to nonspecifically and indiscriminately

react with biological molecules and cause damage to biologic events (Halliwell

and Gutteridge 1985). However, during the early 1990s, it was observed

that (1) ligand-receptor interactions produce ROS, (2) antioxidants block signal

transduction, and (3) ROS can stimulate signaling events; therefore, ROS have been

proposed to serve as second messengers (Schreck et al. 1991; Suzuki and Ford

1992; Sen and Packer 1996; Wolin 1996; Suzuki et al. 1997). Notably, Schreck

et al. (1991) proposed that H2O2 was a second messenger for the activation of NF-k
B transcription factor in T cells. In vascular smooth muscle cells of systemic

circulation, Rao and Berk (1992) demonstrated that ROS promote cell growth.

Subsequently, ROS were reported to mediate signal transduction induced by angio-

tensin II in these cells (Griendling et al. 1994) and platelet-derived growth factor

(Sundaresan et al. 1995) through NADPH oxidase. The concept of the role of ROS

in cell signal transduction has been supported by a large number of studies and is

now widely accepted (Sen and Packer 1996; Wolin 1996; Suzuki et al. 1997; Rhee

et al. 2000; Forman et al. 2010).

The term “antioxidant” can be broadly defined as any molecule that can inhibit

the formation and actions of ROS. These molecules could (1) inhibit the production
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of ROS (e.g., inhibitors of oxidases), (2) directly scavenge ROS, (3) scavenge other

reactive substances that may be produced in response to the actions and reactions of

ROS, (4) chelate metal ions such as iron to inhibit Fenton reaction, and (5) promote

the expression of antioxidant proteins.

Oxidative Stress and Antioxidant Status in Human Pulmonary
Hypertension

In humans, several reports have provided evidence for increased oxidation in

pulmonary hypertension. Patients with pulmonary hypertension were found to

have increased lipid peroxidation compared to healthy control subjects as indicated

by the gas chromatography/mass spectrometry measurements of urine isoprostane

levels (Cracowski et al. 2001) and plasma malondialdehyde (Irodova et al. 2002).

Bowers et al. (2004) reported that lungs from idiopathic PAH patients had increased

DNA oxidation levels based on measurements of 8-hydroxyl guanosine levels as

well as increased nitrotyrosine levels. Our laboratory has shown that plasma from

patients with idiopathic PAH has increased protein carbonyl content (Wong et al.

2012) and reduced levels of lipophilic antioxidants, including alpha-tocopherol and

beta-carotene (Preston et al. 2005), compared to control subjects. Plasma from

idiopathic PAH patients was also found to contain malondialdehyde-modified

albumin (Odhiambo et al. 2007). In lung tissues, superoxide dismutase 2 expression

is lower in patients with PAH compared to control subjects (Bowers et al. 2004;

Archer et al. 2010).

Role of ROS and the Effects of Antioxidants in Animal Models of
Pulmonary Hypertension

Gillespie and coworkers in piglets provided early evidence for the role of ROS and

the effectiveness of antioxidant molecules in pulmonary hypertension. Pulmonary

hypertension induced by group B streptococcus was attenuated by a HO. scavenger

dimethylthiourea (Pauly et al. 1988; Bowdy et al. 1990) and bilirubin (Pauly et al.

1991). Dimethylthiourea also reversed sepsis-induced pulmonary hypertension

(Shook et al. 1990). In rats, pulmonary hypertension was found to be inhibited by

compounds thought to have reactive oxygen scavenging activities including

dimethylthiourea (Langleben et al. 1989; Lai et al. 1998), probucol (Irukayama-

Tomobe et al. 2000), N-acetylcysteine (Hoshikawa et al. 2001; Lachmanová

et al. 2005), tempol (Elmedal et al. 2004; Jankov et al. 2008), erdosteine

(Uzun et al. 2006), allicin (Sun and Ku 2006), pyrrolidine dithiocarbamate (Sawada

et al. 2007; Huang et al. 2008), sulfur dioxide (Jin et al. 2008), resveratrol (Csiszar

et al. 2009; Yang et al. 2010), and EUK-134 (Redout et al. 2010). However, many

of these antioxidants are weak and nonspecific.

More specific antioxidant enzymes, particularly superoxide dismutase (SOD),

have also been shown to be effective as well. Abman and coworkers
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(Kinsella et al. 2005) demonstrated that SOD improves hemodynamics. Steinhorn and

coworkers reported that SOD improves oxygenation and reduces oxidation

(Lakshminrusimha et al. 2006), restores eNOS expression and function (Farrow

et al. 2008), and normalizes phosphodiesterase 5 (Farrow et al. 2010) in neonatal

lambs with persistent pulmonary hypertension. Gene transfer of extracellular SOD

has also been shown to reduce pulmonary hypertension in rats (Kamezaki et al. 2008).

The inhibitors of the production of ROS are also effective in ameliorating

pulmonary hypertension. Jankov et al. (2008) showed that a xanthine oxidase

inhibitor, allopurinol, inhibits chronic hypoxic pulmonary hypertension in neonatal

rats. In fetal lambs, the roles of uncoupled nitric oxide synthase-generated ROS in

pulmonary hypertension were also documented (Konduri et al. 2007;

Lakshminrusimha et al. 2007).

Accumulating evidence suggests that NADPH oxidase has a role in the devel-

opment of pulmonary hypertension, and thus the inhibitors of NADPH oxidase may

be promising as therapeutic agents. Black and coworkers (Brennan et al. 2003;

Grobe et al. 2006) first proposed the role of NADPH oxidase in fetal lambs with

pulmonary hypertension. Foltz and coworkers (Liu et al. 2006) reported that

chronic hypoxia-induced pulmonary hypertension was inhibited in gp91phox knock-

out mice. The involvement of NADPH oxidase in pulmonary hypertension was also

observed in newborn piglets (Dennis et al. 2009) and mice (Nisbet et al. 2009).

More recently, NOX4 has specifically emerged as an important mediator of ROS

generation and the development of various forms of pulmonary hypertension

(Sturrock et al. 2006; Mittal et al. 2007; Gosemann et al. 2013; Wedgwood et al.

2013). In cultured pulmonary vascular cells, the NOX4 inhibitor GKT137831

attenuated hypoxia-induced cell proliferation (Green et al. 2012).

ROS in Endothelin-1 Signaling

Endothelin-1, a peptide composed of 21 amino acids, is a potent vasoconstrictor

originally identified in vascular endothelial cells (Yanagisawa et al. 1988). Plasma

endothelin-1 is elevated in patients with idiopathic PAH (Stewart et al. 1991; Giaid

et al. 1993). Histological studies of lung tissues from patients with pulmonary

hypertension demonstrated excess endothelin-1 production and increased expression

of prepro-endothelin-1 (Giaid et al. 1993). Similarly, increased endothelin-1 expres-

sion was found in the lungs of fawn-hooded rats with pulmonary hypertension

(Zamora et al. 1996). In secondary pulmonary hypertension, plasma levels of

endothelin-1 are positively correlated with the severity of the disease and negatively

correlated with prognosis (Yoshibayashi et al. 1991; Cody et al. 1992). In various

animal models of secondary pulmonary hypertension, endothelin-receptor antago-

nists have been shown to block the progression of the disease (Miyauchi et al. 1993;

Bonvallet et al. 1994; Okada et al. 1995; Eddahibi et al. 1995; Sakai et al. 1996;

Ueno et al. 2000). Human studies have shown that an endothelin-receptor antagonist

bosentan increased exercise capacity and improved hemodynamics in patients

with pulmonary hypertension (Channick et al. 2001; Rubin et al. 2002).
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Bosentan has been approved for the treatment of human PAH, indicating the

importance of understanding endothelin-1 signaling to develop better therapeutic

agents to treat pulmonary hypertension. Other endothelin-receptor antagonists with

different receptor specificities were also approved later and show similar treatment

efficacy (Barst et al. 2004, 2006; Galiè et al. 2005).

Endothelin-1 is a mitogen of pulmonary artery SMCs (Hirata et al. 1989;

Hassoun et al. 1992; Janakidevi et al. 1992). Activation of either ETA or ETB

receptor can induce proliferation of human pulmonary artery SMCs (Davie et al.

2002). Endothelin-1 has also been shown to promote cell survival (antiapoptotic)

signaling in pulmonary artery SMCs (Suzuki et al. 2007).

Wedgwood et al. (2001) reported that endothelin-1 induces the production of

ROS in pulmonary artery SMCs of fetal sheep through NADPH oxidase and

antioxidants block endothelin-1-induced cell proliferation. Our laboratory found

that, in bovine and human pulmonary artery SMCs, endothelin-1, serotonin,

and PDGF promote protein carbonylation, which may mediate oxidant signaling

(Wong et al. 2008; Wong et al. 2012). Proteomic analysis revealed that one protein

that is carbonylated in response to endothelin-1 is annexin A1 (Wong et al. 2008).

This protein possesses antiproliferative and apoptotic activities and, upon oxidative

modifications, is degraded by proteasomes. The loss of annexin A1 results in

increased cell growth and survival (Fig. 74.1).

ROS in Serotonin Signaling

Serotonin (5-hydroxytryptamine) is a potent vasoconstrictor and a mitogen of

pulmonary artery SMCs. Evidence for the role of serotonin in the development of

pulmonary hypertension was first recognized in fawn-hooded rats, in which

a genetic deficit in serotonin platelet storage and high plasma levels of serotonin

were associated with the development of pulmonary hypertension (Sato et al.

1992). Further studies showed that a continuous intravenous infusion of serotonin

during the exposure of rats to hypoxia potentiated pulmonary hypertension

(Eddahibi et al. 1997). Serotonin transporter-deficient mice also have been shown

to develop less hypoxic pulmonary hypertension and vascular remodeling due to

the inability of serotonin to promote SMC growth (Eddahibi et al. 2000). In patients

with idiopathic PAH, high levels of plasma serotonin were detected (Herve et al.

1995). Eddahibi et al. (2001) reported that pulmonary artery SMCs from patients

with pulmonary hypertension grow faster than cells from control subjects in

response to serotonin. The mechanism of pulmonary artery SMC growth has been

reported to involve both serotonin transporter (Lee et al. 1994) and serotonin

receptors (Liu et al. 2004).

In bovine pulmonary artery SMCs, Fanburg and coworkers reported that sero-

tonin uptake by serotonin transporter activates NADPH oxidase and the production

of O2
•� (Lee et al. 1998, 1999) and H2O2 (Lee et al. 2001). They proposed that ROS

are involved in serotonin-induced growth of pulmonary artery smooth muscle cells

by activating the MEK/ERK pathway (Fig. 74.2). We have shown that the GATA4
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transcription factor plays an important role in pulmonary artery SMC growth

regulation and antioxidants inhibit serotonin-induced GATA4 activation (Suzuki

et al. 2003). In human pulmonary artery SMCs, Lawrie et al. (2005) found that

serotonin activates GATA4 through ROS produced by monoamine oxidase A.

ROS and Right Heart Failure

In addition to the role of ROS in the pulmonary vasculature, these species may also

mediate the development of RV hypertrophy and right heart failure. Thus, antiox-

idant-based therapies to prevent and/or treat pulmonary hypertension-induced heart

carbonylated
annexin A1

= O

annexin A1

Inhibition of cell growth
Promotion of apoptosis

reactive 
oxygen 
species

proteasome

degraded 
annexin A1

Cell growth 
/survival

endothelin-1
serotonin
PDGF, etc

metal 
catalyzed 
oxidation

Fig. 74.1 Protein carbonylation-dependent mechanism of ROS signaling in pulmonary artery

smooth muscle cells proposed by Suzuki and coworkers. Mediators of pulmonary vascular

remodeling such as endothelin-1, serotonin, and PDGF promote the production of reactive oxygen

species. Metal-catalyzed production of hydroxyl radicals results in carbonylation of annexin A1,

which normally functions as an antiproliferative and apoptotic protein. Carbonylated annexin A1

gets degraded by the proteasome, resulting in increased cell growth and survival
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failure may be possible. During the transition to heart failure, ROS are produced but

RV is not able to activate antioxidant defenses (Ecarnot-Laubriet et al. 2003). RV

antioxidant enzymes are increased during hypertrophy and decreased during right

heart failure in rats (Farahmand et al. 2004). Redout et al. (2007, 2010) have shown

MEK

H2O2ERK

ERK P

ERK P

5-HT

O2
•–

NADPH
oxidase

SERT

5-HT

cell proliferation

Fig. 74.2 The mechanism of

serotonin signaling for the

proliferation of pulmonary

artery smooth muscle cells

proposed by Fanburg and

coworkers. Serotonin (5-HT)
uptake by the serotonin

transporter (SERT) activates
NADPH oxidase and

produces reactive oxygen

species, which activate the

MEK/ERK pathway for cell

proliferation

Various triggers

Pulmonary vascular
remodeling/Pulmonary 

hypertension

RV 
remodeling/Right 

heart failure

ROS Antioxidants

ROS Antioxidants

Fig. 74.3 A simplistic view

of the proposed roles of ROS

and the effects of

antioxidants. Various triggers

promote the pathogenesis of

pulmonary hypertension.

These triggers activate the

generation of ROS, which in

turn contribute to the

development of pulmonary

vascular remodeling and

pulmonary hypertension.

Increased pulmonary vascular

pressure also promotes the

production of ROS, which

contribute to RV remodeling

and subsequent right heart

failure
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that right heart failure due to monocrotaline-induced pulmonary hypertension

increased the ROS production in rats and treatment with the antioxidant

EUK-134 attenuated right heart failure. In the SU5416/hypoxia model of pulmo-

nary hypertension and right heart failure in rats, Protandim, which is a plant extract

that induces Nrf2-dependent promotion of endogenous antioxidant defenses, has

been shown to prevent fibrosis and capillary loss in the RV and preserved RV

function (Bogaard et al. 2009).

Our laboratory reported that ROS activate the CBF/NF-Y transcription factor,

thereby triggering a right heart-specific activation of hypertrophic responses

(Park et al. 2010). In addition, treating perfused isolated rat hearts with serotonin

promoted protein carbonylation, specifically in the RV, but not in the left ventricle

(Liu et al. 2008). These differential responses to serotonin between RV and

left ventricle may be defined by the low expression of monoamine oxidase

A in the RV compared to the left ventricle, which may preserve the cytosolic

level of serotonin and the ability of serotonin to produce O2
•� through NADPH

oxidase (Liu et al. 2008). These results suggest that ROS signaling

regulates pulmonary hypertension-induced RV hypertrophy and right heart

failure.

Conclusions

Evidence suggests that the production of ROS plays an important role in the

pathogenesis of pulmonary hypertension as well as right heart failure. As described

above, studies using various animal models have shown that compounds with

antioxidant properties are effective in inhibiting pulmonary hypertension. Evidence

for the benefit of antioxidant therapy in human pulmonary hypertension is, how-

ever, lacking. Since currently available treatment options for pulmonary hyperten-

sion do not bring satisfactory results on the prognosis of patients, new therapeutic

strategies are needed. Many antioxidants have been proven to be safe in humans.

Based on results from animal studies, effects of antioxidants in the treatment of

pulmonary hypertension should be explored in humans. Since animal data show

that antioxidants have antiproliferative actions on remodeled pulmonary arteries,

the antioxidant therapy may inhibit the progression of the disease and possibly

reverse pulmonary vascular remodeling. In addition, antioxidants may prevent the

transition from compensatory RV hypertrophy to heart failure. Thus, the use of

antioxidants may be a new reinforcement in the complex therapy for pulmonary

hypertension that could improve the prognosis of patients (Fig. 74.3). Thus, further

understanding of the mechanisms of ROS involvement in the pulmonary circulation

and the right heart should guide more effective human clinical trials.
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