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Abstract

From episodic crises and epidemiological studies of the past decades, air pollu-

tion is identified as the most important environmental determinant of human

health, and this is supported by experimental studies in animals. Findings of

these studies indicate that short- and long-term exposure to air pollution

increases the risk for lung cancer, pulmonary and cardiovascular diseases,

diabetes, and neurodegenerative disorders, all of which cause morbidity and

mortality in humans. Polluted air is a complex mixture of gases (e.g., carbon

monoxide and dioxide, ozone, nitric oxide, sulfur- and nitrogen dioxide),
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volatiles (e.g., hydrocarbons, aldehydes), and particulate matter, which affect

multiple organ systems and cell types, leading to a variety of negative health

consequences. The adverse health effects of air pollution appear to be, in part,

mechanistically driven by the induction of both pulmonary and systemic oxidative

stress. Many exposure studies using a variety of techniques have demonstrated

increased oxidative stress in pulmonary and cardiovascular compartments that

trigger lipid peroxidation and downstream inflammatory signaling. In this chapter,

we review the evidence linking air pollutant-induced oxidative stress with specific

pulmonary and cardiovascular outcomes of air pollution.

Introduction

It has been known for a long time that air pollution affects human health. Incidences

such as the “Belgium Killer Fog” in the Meuse Valley in 1930 and in Donora in

1948 and the “London Smog” in 1952 have shown us clearly that exposure to air

pollution could have adverse health effects. The “London Smog” caused an esti-

mated increase of 4,000 direct fatalities and 12,000 deaths over the time period

from December 1952 to February 1953 (Bell and Davis 2001). An increase in air

pollution of about 9–15-fold during the London episode (between December 3 and 9)

increased the mortality rates by 50–300 % in the following month (Bell and

Davis 2001). Since then many epidemiological studies have identified an important

role of air pollution in human health. These studies suggest that short-term and

long-term exposure to air pollution increases morbidity and mortality, hospital

admission, and the rates of lung cancer, pulmonary and cardiovascular disease,

diabetes, and neurodegenerative disorders (Brook et al. 2004; Dockery et al. 1993;

Pearson et al. 2010; Pope et al. 2004; Griffith and Levin 1989; Schneider et al. 2008;

Zanobetti et al. 2003). Results from these epidemiological studies indicate a strong

correlation between exposures to increased levels of air pollution and human health

and are supported by several animal studies (Sun et al. 2009; Pinkerton et al. 2008;

Nurkiewicz et al. 2011; Lei et al. 2005; Laskin et al. 2010; Kodavanti et al. 2003;

Ghio and Devlin 2001; Happo et al. 2013; Bhatnagar 2004; Bhatnagar 2006). The

adverse health effects of air pollution appear to be, in part, mechanistically driven

by the induction of both pulmonary and systemic oxidative stress. In this chapter,

we will discuss the evidence linking oxidative stress and specific pulmonary and

cardiovascular effects of air pollution.

Air Pollution

Air Pollution and Oxidative Stress

Oxidative stress results from an increased production of reactive oxygen

species causing an imbalance of the prooxidant-antioxidant equilibrium (Wellenius

et al. 2012). The overproduction of reactive oxygen species (ROS) such as
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superoxide (O2
•�), hydroxyl radicals (•HO), and hydrogen peroxide (H2O2) or

reactive nitrogen species (RNS) such as nitric oxide (NO•) and peroxynitrite

(OONO�) can lead to the oxidation of biological molecules such as nucleic acids,

proteins, and lipids and alter their function (Droge 2002; Sakamoto et al. 2007;

Ghio et al. 2012). Under conditions, when ROS production overwhelms the

biological antioxidant defense, cellular damage and impaired cell function as well

as an increase in inflammation can result in tissue injury triggering the development

of a variety of disorders such as cardiovascular and neurodegenerative diseases,

atherosclerosis, cancer, and diabetes (Valavanidis et al. 2008; Franchini and

Mannucci 2011; Griffith and Levin 1989; Brook et al. 2003).

Air pollution refers to a complex mixture of gases (e.g., carbon monoxide

and dioxide, ozone, nitric oxide, sulfur and nitrogen dioxide), volatiles (e.g., hydro-

carbons, aldehydes), and particulate matter. It is currently believed that particulate

matter (PM) can induce oxidative stress directly, mainly via its organic and metal

constituents, or indirectly by the activation of proinflammatory host defense mecha-

nisms (Ghio et al. 2012). PM contains organic components, such as highly redox-active

quinones that can generate ROS (Roberts and Martin 2007; Kumagai et al. 2002;

Valavanidis et al. 2005; Banerjee et al. 2009) or polycyclic aromatic hydrocarbons,

which can induce oxidative stress via cytochrome P450 (Bae et al. 2010; Pinkerton

et al. 2008). Furthermore, PM contains redox-active metals such as iron (Fe) and

nickel (Ni) that can induce the production of ROS and RNS by directly supporting

electron transport (Colburn and Johnson 2003; Shinyashiki et al. 2009; Xu et al.

2012). The induction of oxidative stress by PM consequently contributes to the

particle-induced inflammation by activating macrophages and neutrophils (Becker

et al. 2005; Cao et al. 2007). The activation of phagocytotic cells triggers particle

uptake what further accelerates ROS production (Goldsmith et al. 1997; Haberzettl

et al. 2007). Moreover activation of macrophages and neutrophils as well as particle

uptake triggers the release of proinflammatory mediators which in turn recruit more

proinflammatory cells (Larson and Rosen 2002). This fuels a vicious cycle, in which

increasing ROS/RNS generation and proinflammatory signaling lead to the acceler-

ation of oxidative stress that is thought to be involved in the development of particle-

induced pathology.

Particulate Matter (PM)

Particle Size, Composition, and Distribution

Particle Size and Particle Deposition
Particulate matter (PM) is a mixture of different-sized particles defined by their size

into coarse (particles <10 mm in aerodynamic diameter, PM10), fine (particles

�2.5 mm, PM2.5), and ultrafine (particles<0.1 mm, PM0.1) particles. Coarse particles

are crustal materials derived from farming, mining, construction work, volcanic

ash, wood burning, and vehicular and industrial processes (e.g., tire erosion). Fine

and ultrafine particles are primarily products of combustion-derived processes
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(fossil fuels) used in mobile sources, e.g., vehicle traffic, and fixed industrial sources

such as coal-fired power plants (see Fig. 69.1). The size of particles >0.5 mm is

quantified by the aerodynamic diameter, determined by their transport in the gas phase

(Willeke and Baron 1990; Stahlhofen et al. 1980). Particles<0.5 mm are enumerated

by their thermodynamic diameter, because the transportation of these particles is

predominantly influenced by diffusion and defined by their thermodynamic behavior

in the gas phase (Heyder 1982). Because both aerodynamic and thermodynamic

behaviors are affected by particle shape, shape is another important particle param-

eter, which ranges from perfect spheres to elongated fibers (Hofmann et al. 2009;

Dai and Yu 1998).

Particle size and shape are important factors as they determine entry, penetra-

tion, body deposition, and clearance and consequently define the location in which

they could contribute to the induction of oxidative stress (Fig. 69.1). Coarse

particles (PM10) can only enter and deposit in the upper respiratory tract and are

cleared by mucociliary clearance. In contrast, fine (PM2.5) and ultrafine particulate

matter can reach the alveolar regions of the lungs. Moreover, ultrafine particles can

pass through the alveolar epithelium and accumulate in the lung interstitium or

Fig. 69.1 Source, size, and body distribution of particulate matter (PM). PM originates from

sources such as farming, wood fires, and traffic and industrial sources and depending upon its size

can reach the lower regions of the respiratory tract into alveolar regions
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reach the brain via the olfactory bulb (Oberdorster et al. 2005). Ultrafine PM might

even pass from the lung into the circulation (Bates 1995; Bhopal et al. 1994). The

distribution in the body is also dependent on the particle shape. For instance fibers

such as asbestos can be up to 10 mm long and can reach the deeper respiratory tract

as they can align perfectly in inhaled gas phase (Harris and Timbrell 1975).

Moreover, particle size and shape are important factors that determine particle

clearance, for example, particle uptake by macrophages is a function of size,

shape, and surface characteristics and, thus, important factors for lung clearance

(Semmler et al. 2004; Oberdorster et al. 1992; Albrecht et al. 2007). Particle size is

a determining factor of biological deposition during exposure, and thus, it is

a critical factor that contributes to the pathogenicity of respirable PM. Yet, because

of the complex composition of PM, size alone is insufficient to completely explain

PM-dependent toxicity.

Particle Concentration and Composition
Ambient particle concentrations are defined either as particle number concentration

(typical environmental range: 102–105 particles/m3), which is mainly controlled

by the ultrafine particle fraction, or as particle mass concentration (typical envi-

ronmental range 1–100 mg/m3), primarily dominated by the fine particle fraction

(Brauer et al. 2012). The 24 h USEPA National Ambient Air Quality Standards

(NAAQS) are 35 mg/m3 or 150 mg/m3 for PM2.5 or PM10, respectively (National

Ambient Air Quality Standards, http://www.epa.gov/air/criteria.html). Further-

more, the air quality index classifies PM2.5 and PM10 levels into categories reaching

from good (PM2.5, 0–15 mg/m3; PM10, 0–50 mg/m3; no protection needed), moder-

ate (PM2.5: 16–35 mg/m3, PM10: 51–154 mg/m3), unhealthy for sensitive groups

(PM2.5, 36–150 mg/m3; PM10, 155–354 mg/m3), and very unhealthy (PM2.5,

>150 mg/m3; PM10, >354 mg/m3; outdoor activities should be avoided, and sus-

ceptible groups should remain indoors) (Anderson et al. 2012). However, no

threshold can be set for the risks that accompany PM exposure; therefore in

2005 the WHO set air quality guidelines of 25 or 50 mg/m3 for 24 h mean and 10

or 20 mg/m3 annual mean for PM2.5 or PM10, respectively (http://www.who.int/

mediacenter/factsheet/fs313/en/index.html), to minimize effects on human health.

Although regulations have reduced PM levels, PM levels in many places around the

world still exceed the WHO guidelines. In the USA, the average range for PM2.5

is 5–50 mg/m3 and for PM10 is 10–100 mg/m3 with peak concentrations of

100 mg/m3 (PM2.5) or 300 mg/m3 (PM10) (Brook et al. 2010). In heavily polluted

cities such as Delhi and Beijing, the annual average PM10 concentrations are

198 mg/m3 and 121 mg/m3, respectively (see WHO, OAP database). Similarly,

annual PM2.5 reaches mean concentrations of 148.4 mg/m3 in Delhi (Dey et al.

2012) and 71.8–191.2 mg/m3 in Beijing, Tianjin, and Hebei (Zhao et al. 2013). In

comparison, PM2.5 concentrations during occupational exposures known to be

hazardous, e.g., of wildland firefighters or construction workers, range from 5.9

to 2,673 mg/m3 (Adetona et al. 2011) and 50 to 34,000 mg/m3 (Peters et al. 2009).

Collectively, these data indicate that urban levels of PM2.5 in the rapidly developing

countries are reaching levels deleterious to human health.
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PM is a complex mixture that varies in concentration and composition due to the

source as well as to season and meteorological conditions (e.g., temperature, wind,

humidity). Ambient PM consists of organic (OC) and elemental (EC) carbon,

sulfate, nitrate, and ammonium along with many elements such as sulfur, silica,

and metals (e.g., iron, nickel, aluminum) (Xu et al. 2012; Bell 2012; O’Toole et al.

2010; Haberzettl et al. 2012; Chen et al. 2003). Different-sized particles have a

different composition as PM10 particles are derived from crustal materials while

fine and ultrafine particles are primarily products of combustion-derived processes

(see Fig. 69.1). The composition of air pollution is mainly dependent on the source

such as in urban areas, for example, the combustion of fossil fuels by industry,

vehicles, or households, or in rural areas on processes like farming andmining. Other

important factors that determine the composition and concentration of air pollution

are geographical, seasonal, and meteorological factors as well as time (Becker et al.

2005; Junk et al. 2003; Wang and Lu 2006; Garcia-Suastegui et al. 2011; Forsberg

et al. 1993). The air quality in the Utah Valley region depends on the topology and

meteorological conditions; for example, during winter a low-pressure system can be

trapped on the valley floor by a rapidly moving high-pressure system, a condition

termed an inversion. During an inversion, emissions from vehicles, industry, and

houses are trapped in the valley leading to a rapid, overall increase in air pollution

including PM (Franchini and Mannucci 2009). At one time, a primary source of

metal-rich PM in the valley was a steel mill. When the steel mill temporarily closed,

it created conditions for a natural experiment because the PM levels increased by

2-fold in winter months when the mill was open compared with levels when the mill

was closed (Franchini and Mannucci 2009). Subsequent reopening of the

mill corresponded with a 2–3-fold increase in hospital admission of children

(Roman et al. 2009) indicating that PM from the mill was responsible for inducing

untoward health effects. This also suggested that PM toxicity depends in part upon

both the concentration and the composition of the ambient air particles.

Particle Composition and Toxicity
Particle concentration and size are important aspects of PM toxicity, because they

define number and surface area and determine deposition and elimination. Smaller

particles have a greater surface area and have therefore a higher capacity to bind

and transport toxic substances. For instance, a mass concentration of 10 mg/m3

consists of 1.2 million particles with a diameter of 2 mm comprising a surface area

of 24 mm2/mL, whereas the same mass concentration of 10 mg/m3 consists of 2.4

million particles with a diameter of 20 nm with a surface area of 3,016 mm2/mL

(Moghimi et al. 2005). Therefore, it has been suggested that particle surface area

rather than the particle mass be used as the primary metric for particle dose

(Oberdorster et al. 1994; Oberdorster et al. 2005; Brown et al. 2001). In addition

to size and concentration, composition is another important aspect of PM toxicity.

Different components are expected to trigger different biological responses, and

one component is likely to be more potent than another. Specific particle compo-

nents are associated with specific pathologies. One classic example is chronic
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exposure to silica, an element in coal mine dust leading to the development of

silicosis (Kuempel et al. 2003; Castranova and Vallyathan 2000). Organic com-

pounds such as poly-aromatic hydrocarbons (PAH) have been associated with

allergic airway disease (Diaz-Sanchez 1997), while particle-associated metals

such as vanadium induce airway fibrosis (Bonner et al. 2000). Carbon black, SO2,

NO2, and chlorine concentration in PM appear to increase the risk of cardiovascular

disease (Pereira Filho et al. 2008; Reis et al. 2009; Wheeler et al. 2011).

Epidemiological studies have demonstrated an association between an increase

in mortality and the particle content of metals including iron, nickel, zinc, and lead

(Laden et al. 2000; Burnett et al. 2000). PM samples in the Utah Valley collected

at times when the steel mill was closed had a lower metal content and a decrease in

PM-induced biological effects than PM collected at times when the steel mill was

active (Dye et al. 2001; Frampton et al. 1999), indicating that a higher metal content

increases the biological activity of this PM. Similarly, a study performed in

Germany showed that exposure to metal-rich PM increases airway inflammation

(Schaumann et al. 2004). Metals are also suggested to play a role in PM-induced

cardiovascular effects. Redox-active metals such as copper, zinc, vanadium, and

nickel have been associated with myocardial injury, arrhythmias, and decreases in

vasoconstriction and vasodilatation (Kodavanti et al. 2003; Campen et al. 2001;

Campen et al. 2002; Li et al. 2005; Bagate et al. 2006). Mechanistically, particle-

associated metals such as iron, copper, vanadium, and nickel are thought to

be directly involved in the particle-induced oxidative stress. Several studies

demonstrate an association between the concentration of redox-active metals in PM

with the formation of reactive oxygen species (ROS) and proinflammatory responses

(Kadiiska et al. 1997; Lewis et al. 2003; Valavanidis et al. 2005), while other studies

have been unsuccessful in demonstrating such dependency (Veranth et al. 2006;

Brown et al. 2000). Organic compounds such as PAH have been demonstrated to

have genotoxic and cytotoxic potential as well. Epidemiological and experimental

studies indicate the carcinogenic and allergic potential of organic compounds in

wood smoke and ambient and traffic-related PM (Hernandez-Garduno et al. 2004;

Binkova et al. 2003; Suzuki et al. 1993). The potential of organic compounds to

induce ROS-dependent cytotoxicity and proinflammatory responses has been dem-

onstrated for organic extract of diesel exhaust particles (DEP) (Hiura et al. 1999;

Ohtoshi et al. 1998; Boland et al. 2000). Similarly, endotoxins (e.g., lipopolysaccha-

ride, LPS) are another organic component found in fine and coarse particles that can

also induce oxidative stress and inflammation, e.g., via activation of macrophages

(Monn et al. 2002; Welty et al. 2009).

Air Pollution and Epidemiology

Since the observation of the adverse health effects of air pollution in the “London

Smog” episode, epidemiological studies over the past few decades have provided

additional evidence of a strong association between air pollution and all cause
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morbidity and mortality (Zanobetti et al. 2002; Dominici et al. 2007; Bhatnagar

2006). A study performed across 20 US cities demonstrated that an increase of

PM10 by 10 mg/m3 enhanced the daily mortality by 0.5 % (Samet et al. 2000). The

Harvard Six Cities Study demonstrated decreased life expectancy in populations

living in areas with higher levels of air pollution (Dockery et al. 1993). Further-

more, a positive correlation was found between the mortality due to lung cancer and

cardiopulmonary disease (Dockery et al. 1993). Similarly, other extensive epide-

miological studies indicate a strong, positive correlation between exposure to

airborne particulate matter (PM) and pulmonary and cardiovascular morbidity

and mortality (Zanobetti et al. 2000; Pope 2004; Braga et al. 2000; Pope et al.

2008). The strongest correlation between mortality and PM was found for fine

particulate matter (PM2.5) derived from combustion (Dockery et al. 1993; Laden

et al. 2000; Pope et al. 2002). Short-term exposure to PM is associated with an

increase in the risk of myocardial infarction, arrhythmias, endothelial dysfunction,

stroke, and thrombosis, whereas chronic exposures increase atherogenesis, the

risk of mortality due to ischemic heart disease, arrhythmias, and heart failure

(Bhatnagar 2006; Riles and Brook 2011; Brook and Brook 2011; Brook et al.

2010). Data from both human and animal studies indicate that changes in endothelial

cell function are early and sensitive outcomes of PM exposure (Brook et al. 2009;

Courtois et al. 2008). Recent epidemiological studies also suggest that exposure to air

pollutants enhances the prevalence for type 2 diabetes (T2D) (Kramer et al. 2010;

Puett et al. 2011; Coogan et al. 2012; Rajagopalan and Brook 2012).

Air Pollution and Mechanism(s) of Action

Although epidemiological studies have found strong evidence for the effects of PM

on human health and many experimental studies suggest the involvement of pulmo-

nary as well as systemic oxidative stress, no specific mechanism(s) has been iden-

tified. So far, it has been suggested that the adverse health outcomes after exposure to

ambient particulate matter are attributable to three major pathways: (1) inhaled

particulate matter induces oxidative stress and in turn inflammation in the lungs

that then extends to systemic oxidative stress causing cardiovascular effects; (2) the

ultrafine/nanosized particles (PM0.1) may enter the bloodstream and affect vascular

health by direct interactions with the blood cells and the endothelium; and (3) par-

ticulate matter stimulates sensory receptors in the lung and induce cardiovascular

effects via the central nervous system; however, these postulated mechanisms

should not be considered to be mutually exclusive (Fig. 69.2). Furthermore, soluble

compounds of particles are important for the biological action of PM and can have

widespread peripheral (whole-body) distribution. For example, inhaled particles

come in contact with the lung lining fluid (e.g., mucus, surfactant) dissolving the

soluble particle fractions such as metals or organic components (e.g., poly-aromatic

hydrocarbons, PAH). Thus, the leaching of soluble components can then induce

effects in the lung or potentially distribute throughout the body causing toxic effects

in many other organs besides the lung (Patton et al. 2004).
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Air Pollution, Oxidative Stress, and Lung Disease

Particle-Induced Lung Disease

Exposure to particulate matter (PM) is associated with an increase in hospital

admission for lung disease (Zanobetti et al. 2000), and exposure to air pollution

stimulates oxidative stress and inflammation in the lung. The induction of pulmo-

nary oxidative stress and inflammation is described for the exposure to ozone, NOx,

and PM (Yang and Omaye 2009; Happo et al. 2013; Triantaphyllopoulos et al.

2011). PM induces the activation of alveolar macrophages and neutrophils that

release reactive oxygen species (ROS) and cytokines inducing an inflammatory

response in the lung (Danielsen et al. 2010; Seagrave et al. 2008; Becker et al.

2005). PM can also contain fungi spores and endotoxins that may further trigger

lung inflammation and the generation of ROS (Schins et al. 2004). Inhalation of

coal and silica mine dust induces oxidative stress that can lead to the development

of fibrotic lung diseases (Castranova and Vallyathan 2000). Furthermore, exposure

to air pollution increases the risk for chronic obstructive pulmonary disease

(COPD), chronic bronchitis, asthma, and pneumonia infection (Grievink et al.

2000; Zanobetti et al. 2008; Lindgren et al. 2009; Peel et al. 2005). Allergic disease

and asthma are increasing with rising traffic-related air pollution, and epidemio-

logical studies have demonstrated that the rate of childhood asthma is significantly

Translocation
(ultra-fine PM)

Blood capillary

cardiovascular effects

Alveolus

fine PM

Macrophages

uptake
redox-active conmponents e.g.
quinones, PAH’s, metals

Inflammation

ROS

Stimulation of
sensory receptors

Fig. 69.2 Hypothetical mechanism(s) of particle-induced cardiovascular injury. PM-induced

oxidative stress and inflammation, PM-triggered stimulation of sensory nerves in the lung, and

translocation of ultrafine PM are all viable hypotheses to explain the increased disease risk after

exposure to environmental particulate air pollution
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associated with PM10 exposure (Peters et al. 1997). A possible mechanism is that

the exposure to air pollution causes oxidative damage of the bronchial epithelium

and cilia (see Section on “Oxidative Stress in the Lung”) resulting in a longer

retention time of allergens on the epithelial surface. Although smoking is the

strongest risk factor, exposure to PM also correlates with an increased risk for the

development of lung cancer (Dockery et al. 1993; Pope et al. 1995; de Groot and

Munden 2012). However, a clear mechanism for the carcinogenic effect of PM has

remained elusive. One possible mechanism could be increased ROS formation.

In vitro experiments have shown that the exposure to environmental particles

induces the formation of hydroxyl radicals (•HO) and 8-hydroxydeoxyguanine

(8-OHdG) in a lung epithelial cell line (Knaapen et al. 2002). The formation of

the DNA modification 8-OHdG, an indicator of oxidative DNA damage, is found to

be increased in mice exposed to diesel exhaust particles (DEP), and 8-OHdG levels

correlate with the formation of lung tumors in exposed mice (Sato et al. 2000).

Another hypothesis is that PM induces lung cancer by the induction of an inflam-

matory response independent of carcinogenic particle components (Borm et al.

2004; Harrison et al. 2004).

Oxidative Stress in the Lung

Combined in vitro and in vivo studies support the idea that respirable particles can

induce pulmonary oxidative stress (Sagai et al. 1993; Li et al. 1996). The primary

function of the lungs is gas exchange, which requires the inhalation of large amounts

of ambient air. Consequently, the lung is exposed to large amounts of respirable

airborne particulate matter entering the lung, which needs to be removed. For this,

the lung is equipped with specialized host defense machinery, which depends on the

interaction between particles and cells (e.g., alveolarmacrophages) or fluids. Particle

size and composition are determining factors for the interaction with the extracellu-

lar and intracellular lung defense mechanisms and, consequently, the induction of

oxidative stress in the respiratory system.

The respiratory lining fluid completely covers the respiratory tract epithelium

from the nasal mucosa to the alveoli. This inhomogeneous fluid layer covers the

sensitive respiratory epithelial cells and is the first line of protection against

oxidative stress. Particles larger than 10 mm diameter (PM10) are removed mechan-

ically by sneezing, coughing, or swallowing and are eliminated by the mucociliary

escalator in the conducting airways. Respirable particles are trapped in the upper

viscous mucus, a layer of highly glycosylated proteins – mucins – which are

produced by airway epithelial, goblet, and mucus cells. The trapped particles are

removed from the airways by movement of the ciliated epithelium supported by the

resistance reducing watery sub-layer. The NO-dependent (Stout et al. 2007) cilia

movement (or beating) can be upregulated by products of inflammatory cells such

as cytokines (e.g., TNF-a). On the other hand, oxidants such as hydrogen peroxide

(H2O2) and superoxide (O2
•�) can damage the cilia decreasing ciliary function.
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Hydrogen peroxide at relatively low concentration significantly impairs cilia beat-

ing and can result in cilia denudation (Feldman et al. 1994; Al-Shmgani et al. 2012),

and likewise exposure to air pollution could damage the ciliated epithelium and

alter cilia function (Pedersen 1990). Furthermore, oxidative stress causes mucus

hypersecretion (Yoshida and Tuder 2007). Hypersecretion of mucus and impaired

mucociliary clearance stimulated by oxidants can lead to airway mucus accumula-

tion and reduced airflow (Nadel 2001; Rogers 2001).

The composition of the lining fluid changes in the deeper regions of the lungs.

In the distal region and the alveoli, the mucus in the respiratory lining fluid is

replaced by surfactant. Surfactant is a lipoprotein complex, which plays an impor-

tant role in the stabilization of the alveoli as well as in the pulmonary host defense.

In vitro experiments using synthetic lung epithelial lining fluid (sELF) demon-

strated that residual oil fly ash (ROFA), a component of ambient PM, can initiate

the oxidation of sELF (Sun et al. 2001). Surfactant proteins are important in the

recognition and opsonization of pathogen, and their antioxidant capacity prevents

lipid peroxidation and oxidative damage (McNeely and Coonrod 1994; Bridges

et al. 2000), and binding of surfactant proteins to the particle surface not only alters

the redox state of the lung milieu but also modifies the particle properties and their

toxicity (Rehn et al. 2003; Kendall et al. 2004).

Furthermore, airway epithelial cells release other substances such as antioxi-

dants and iron-binding proteins to protect against oxidative damage. Estimates

based on the analysis of human bronchoalveolar lavage fluid (BALF) show that

the respiratory lining fluid contains 40–370 mM urate, 45–170 mM GSH, approxi-

mately 50 mM ascorbate, and 1 mM a-tocopherol (van der Vliet et al. 1999). These

molecules are excellent radical scavengers, i.e., these react with most radicals and

oxidants. Moreover, the respiratory lining fluid contains antioxidant enzymes

such as extracellular superoxide dismutase (ecSOD), catalase, and glutathione

peroxidase (GPx) that protect against oxidative damage (Avissar et al. 1996;

Oury et al. 1994; Hassing et al. 2009). Effects of ambient particles on these

antioxidant proteins have been shown for instance by the instillation of respirable

environmental PM which resulted in an increase in lipid peroxidation and a

decrease in the antioxidant enzymes, SOD and catalase, in rats (Pradhan et al.

2005). Furthermore, overexpression of ecSOD protects against ROFA-induced

injury (Ghio et al. 2002), further emphasizing the importance of the lung

antioxidant system against PM toxicity.

Alveolar macrophages, which reside in the alveoli of the lung, are the first line

of cellular host defense. Alveolar macrophages have two functions: (1) phagocy-

tosis of invading pathogens and respirable particles and (2) synthesis and secre-

tion of anti- and proinflammatory mediators. The uptake of particles by

macrophages leads to the generation of ROS, cytokines, chemokines, and growth

factors. Several studies demonstrate a connection between macrophage uptake of

different environmental particles and the generation of ROS, ultimately leading to

the production of TNF-a (Imrich et al. 1999; Nemmar et al. 2006; Albrecht et al.

2005; Haberzettl et al. 2007). The enzyme nicotinamide adenine dinucleotide
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phosphate (NADPH) oxidase is responsible for the “respiratory burst” (an

increase of oxygen consumption of phagocytes exposed to pathogens) (Babior

1999; Park 2003). The activation of the enzyme is triggered by the activation of

different surface receptors (e.g., CR3, FcgR) and depends on a functional

actin cytoskeleton (Babior 1999; Park 2003). After stimulation, the cytosolic

p40phox/p47phox/p67phox unit forms a membrane-bound complex with the

membranous p22phox/gp91phox unit of the enzyme leading to the activation of

the NADPH oxidase and the generation of ROS. Prevention of the uptake of silica

particles by inhibition or depletion of the actin cytoskeleton, scavenger receptor,

or FcgRII reduces ROS production and the induction of an inflammatory response

and protects against lung injury (Kobzik 1995; Beamer and Holian 2005;

Haberzettl et al. 2008). Recent studies indicate that pulmonary ROS initiates

lipid peroxidation and accumulation of lipid aldehydes, e.g., POVPC, that can

activate TLR4 receptor, and thus, lipid-derived aldehydes act as triggers of the

inflammatory response (Kampfrath et al. 2011). Following TLR4 activation,

NADPH oxidase assembles and promotes an increasing level of ROS, then

more lipid peroxidation and more POVPC, and a positive feedback cycle ensues

leading ultimately to cytokine/chemokine transcription, translation, and secretion

(Conklin 2011) (Fig. 69.3).
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Fig. 69.3 Induction of oxidative stress and lipid peroxidation in the lungs triggers particle-

induced vascular injury (Adapted with permission from Conklin 2011 from an illustration by

Cosmocyte/Ikumi Kayama)
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Air Pollution and Cardiovascular Effects

Evidence for Vascular Oxidative Stress in Environmental Exposures

Blood Space
Plasma/Serum
Antioxidants and lipoproteins represent major acellular components readily

oxidized by lung-generated oxidants, and thus, several studies have focused on

these as markers of oxidative stress. Moreover, many studies have demonstrated

significant oxidative changes in these components after pollutant exposure in

animal models and in human panel studies (Araujo et al. 2008; Liu et al. 2007;

Liu et al. 2009; Lund et al. 2011; Possamai et al. 2010). Total antioxidant capacity

(TAC) and thiobarbituric acid-reactive substances (TBARS) are convenient to

measure and serve as indices of the collective acellular antioxidant and oxidized

pool, which includes lipoproteins in the plasma or serum. The TAC assay can be

performed using cuvette-based spectrophotometer, plate reader, or clinical chem-

istry autoanalyzer; however, the general nature of this assay has been criticized for

its lack of specificity. Studies identifying alterations in plasma/serum TAC mea-

sured with this approach are met with skepticism, and often more specific assays are

required to verify what specific antioxidant (e.g., ascorbate/Vitamin C; tocopherol/

Vitamin E; uric acid) is altered by the exposure. In fact, a decrease in ascorbic acid

(Vit. C) is thought to reflect oxidative stress yet no change in TBARS is found in

active or passive smokers (Ayaori et al. 2000). Thus, general measures of oxidant

stress, such as stable lipid peroxidation (LPO) products, malondialdehyde (MDA),

and TBARS (MDA equivalents), are also viewed as nonspecific measures of

oxidative stress, although these could be reflective of a change in the redox status.

These markers, however, are unlikely to represent the reactive or causative agents

in injury by virtue of their relative stability and accrual. Yet, studies relate plasma

TBARS levels with air pollution or PM2.5 exposures indicating overall oxidative

stress (Liu et al. 2007; Liu et al. 2009; Possamai et al. 2010). Recent studies using

more selective and specific measures of antioxidant/oxidant changes in the plasma

as effects of PM exposures, such as HDL antioxidant capacity (Araujo et al. 2008)

or oxLDL (Lund et al. 2011), may be revealing more direct and perhaps causal

changes that actually contribute to cardiovascular disease.

Circulating Blood Cells
Leukocytes: Circulating cells are also expected to encounter elevated levels of

oxidants or at minimum an oxidative environment as these cells pass through the

lung roughly once a minute (CO ¼ HR * SV). Transit time and oxidative gradient

provide a motive force for oxidation to directly and significantly impact

cellular antioxidant capacity. One measure of the overall cellular oxidative stress

is depletion of intracellular reduced glutathione (GSH), which can be conveniently

measured by several methods, including the assay in which a change in fluorescence

intensity of monochlorobimane (MCB) is measured. When MCB is bound to GSH,

it emits fluorescence at 580 nm (excitation 515 nm). This can be measured using
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a fluorescent plate reader, fluorometer, or preferably a flow cytometer wherein

a selective cell population or the cell status (e.g., CD45+, apoptotic) can be identified

and the median fluorescence measured. For example, a 10 min inhalation exposure

of mice to 50 ppm acrolein followed by a 4 h recovery significantly decreased MCB

median fluorescence in circulating stem (e.g., Sca-1+) cells by nearly 50 %

(Fig. 69.4a). Although high-level oxidant exposure could be expected to deplete

cellular GSH, especially an ab-unsaturated aldehyde such as acrolein, exposure to

concentrated ambient particulate matter of PM2.5 (CAP) can also depress blood

cellular GSH. For example, nine consecutive days (6 h/day) of CAP exposure led to

a significantly lower median MCB fluorescence (decreased 30 %) in circulating

endothelial progenitor cells (EPCs; Flk-1+/Sca-1+) (Fig. 69.4b and c). Although the

mechanism(s) that leads to this drop in [GSH] in EPCs is not clear, it is evident that

either CAP or acrolein exposure alone in healthy mice suppresses EPC mobilization

from bone marrow via systemic VEGF resistance (Fig. 69.5) (Haberzettl et al. 2012;

Wheat et al. 2011). The role of oxidative stress in these responses has not been

delineated, and it is unclear whether CAP-induced VEGF resistance in mice is

related to a similarly observed EPC suppression in healthy human adults acutely

exposed to elevated ambient PM2.5 (O’Toole et al. 2010).

Red Blood Cells (RBC): The RBCs represent an abundant pool of circulating

cells that could be monitored to gauge changes in the nature of the blood milieux.

In diabetes, the hemoglobin A1c (HbA1c) level provides an integrated measure of

hyperglycemia. Similarly, RBC can and are routinely used to index the level of

oxidative stress induced by PM or CAP exposure by measuring their GSH or

TBARS levels or their antioxidant capacity (e.g., Vit. C, catalase, GST, GPx).

Numerous studies in humans and animals document changes in RBC antioxidant

status as reflective of oxidative stress due to PM exposure although the causal

relationship between changes in RBCs and cardiovascular disease, e.g., endothelial

function or atherosclerosis, remains unclear (Araujo et al. 2008; Araujo and Nel

2009; Delfino et al. 2008; Possamai et al. 2010).

Vasculature
Endothelium
Because endothelial cells line the vessel lumen, it is likely that these cells are a prime

target of ROS generated in the blood by inhaled pollutants. However, because of the

limited, single squamous cell layer morphology of the endothelium and the suscep-

tibility of histological analysis on the endothelium to artifactual problems (e.g.,

“edge effect,” denudation), few studies have unambiguously demonstrated endothe-

lium-derived ROS levels following environmental PM2.5 exposures in vivo. The

literature contains numerous publications demonstrating the effects of particulate

matter or emissions exposures on endothelial function (Brook et al. 2002; Knuckles

et al. 2008; Mills et al. 2005; Nurkiewicz et al. 2006, 2009), but very few reports

provide evidence of increased endothelial cell ROS production as a causative event

that induces functional deficits. This could be due in part to a limitation of specific

probes and technical concerns as mentioned above or it could be due to greater ROS

generation in other parts of the vascular wall or in the blood that impacts the
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endothelium. Yet oxidation of endothelial-specific targets such as tetrahydro-

biopterin (BH4), required for NO synthesis by eNOS, is thought to be onemechanism

leading to endothelial dysfunction through diminished NO production (Campen

2009). Plasma levels of the cleaved form of the LOX-1 receptor, soluble LOX-1,

is elevated after exposure to DEP in mice and humans (Lund et al. 2011) indicating

that the LOX-1 receptor could be an additional target. For example, oxLDL is

a potent agonist of endothelial cell LOX-1 receptor activation and subsequent

endothelin-1 (ET-1) transcription. This mechanism has been well described in

vehicular emission exposures in mice and appears to be dependent on the particulate

matter fraction being present and inducing LDL oxidation (Lund et al. 2011).

Because LOX-1 is localized to the endothelium, it follows that LOX activation

may be an important feature of the overall constellation of changes that comprise

endothelium dysfunction. Moreover, expression and secretion of ET-1 is implicated

in vascular dysfunction and atherosclerosis associated with particulate matter

exposures via the LOX-1 pathway (Cherng et al. 2009; Lund et al. 2009, 2011).

Numerous studies implicate a role of ROS as causative in pollutant exposure-

induced endothelium dysfunction. In animalmodels, absence/ablation of an important

antioxidant enzyme (e.g., gene deletion/deficiency) is a typical approach used to

demonstrate the contribution of the antioxidant pathway to endothelium protection

and, by proxy, a causative role of oxidative stress. For example, exposure to environ-

mental tobacco smoke (ETS) is a robust inducer of endothelium dysfunction in

humans (Puranik and Celermajer 2003) and in several animal models, yet the
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Fig. 69.5 Hypothetical
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underlying mechanism(s) remains unclear. Our previous work has shown that whole-

body deletion of the antioxidant enzyme, glutathione S-transferase P (GSTP), leads to

aortic endothelium dysfunction after a 3-day ETS exposure (Conklin et al. 2009).

Interestingly, this effect was recapitulated by inhalation exposure of GSTP-null mice

to acrolein (1 ppm; 5 h/d *3 days) or by exposure of isolated aorta to acrolein (10 mM),

an effect that was blocked by co-incubation with N-acetylcysteine (NAC; 10 mM),

implicating endothelial cell GSH depletion in the mechanism of acrolein-induced

dysfunction (Conklin et al. 2009). Similarly, treatment with NAC (200 mg/kg, i.p.),

each day prior to ETS exposure for 3 days resulted in a similar level of protection

against endothelium dysfunction. These data lend further support to the idea that GSH

preservation protects against oxidant exposure in vivo (Fig. 69.6).

Smooth Muscle/Vascular Media
Although endothelium dysfunction (as described above) is considered to be mech-

anistically linked to the hypertensive effects of PM2.5 exposure (Brook and

Rajagopalan 2009), the endothelium may not be the only PM2.5 target in the

blood vessel. The smooth muscle cell layer, aka tunica media, can also be affected

independent of the endothelium, and thus, changes in blood pressure with PM2.5
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exposure could be due to activated vascular smooth muscle as well as endothelium

dysfunction (decreased NO bioavailability). As mentioned above, PM exposure

could lead to activation of the central nervous system (CNS) and alterations in

vascular smooth muscle cell tone via innervation of the blood vessel wall. Several

studies have demonstrated in animals and humans an increase in blood pressure

following PM exposure (Serinelli et al. 2010; Bartoli et al. 2009). In animals, the

increase in blood pressure in dogs is prevented by a-adrenergic antagonist treat-

ment (Bartoli et al. 2009). As described above, Mills and colleagues found altered

endothelium-dependent responses to acetylcholine in humans exposed to PM, but

this change was not accompanied by any change in vascular dilatation in response

to the calcium channel blocker, verapamil, which acts primarily as a smooth muscle

relaxant (Mills et al. 2008). It is unclear, however, whether oxidative stress in

vascular smooth muscle cells (VSMC) is generated during PM exposure and/or is

necessary for subsequent changes in blood pressure, but this is of high interest and

deserves additional investigation. This effect could be especially important in

studies that examine the vascular effects associated with nanoparticle exposures

wherein<100 nm particles may gain access to the bloodstream and the blood vessel

wall. However, the results of studies investigating the translocation of nanosized

particles after instillation or inhalation are controversial. Although several studies

show the entry of small fractions of nanosized TiO2, DEP, and carbonous particles

in animals and humans (Geiser et al. 2005; Muhlfeld et al. 2007; Nemmar et al.

2002, 2004), other studies using iridium or carbon have been unsuccessful

(Kreyling et al. 2002; Wiebert et al. 2006; Mills et al. 2006). This has important

implications because nanoparticles are an essential part of an emerging field of

nanomedicine and imaging (Janib et al. 2010). For example, Nurkiewicz and

colleagues observe microvascular dysfunction in spinotrapezius arteries of rats

acutely exposed to nanoparticles (Knuckles et al. 2012; Nurkiewicz et al. 2006,

2011). These investigations are important because these studies focused on the

microvasculature, i.e., arteries/arterioles, that regulates vascular resistance and,

thus, regulate blood pressure. Recent studies have shown that nanoparticle-induced

microvascular endothelial dysfunction is accompanied by changes in vascular

contractility that are also dependent on ROS, MPO, COX, and sympathetic nerve

stimulation in an increasingly complex manner (Knuckles et al. 2012). Enhanced

arteriolar tone (and increased blood pressure) would also be an expected outcome

from observed increases in ET-1 blood levels resulting from oxLDL/LOX-1

changes with PM exposure as described above (Lund et al. 2011).

Chronic CAP exposure has been found to be associated with decreased

aortic contractility, an effect that is independent of changes in ACh-induced

endothelium-dependent relaxation and is reversed by guanylyl cyclase inhibitor

(ODQ) (Ying et al. 2009). Supportive data show an increase in the levels of medial

nitration, ROS, iNOS, and NADPH oxidase subunit expression, suggesting long-

term upregulation of inflammatory signaling and non-phagocytic iNOS and

NADPH oxidase in the vessel wall. These changes could likely alter smooth muscle

function and likely promote smooth muscle phenotype change, migration, and

proliferation (Ginnan et al. 2008), which in turn may enhance neointimal formation
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and atherosclerosis. In agreement with this view, several studies have shown that

chronic CAP (PM2.5, UFP) exposure enhances atherosclerotic lesion formation in

atherosclerosis-prone mice models (e.g., apoE-null mice) (Ying et al. 2009;

Campen et al. 2010; Sun et al. 2005; Araujo and Nel 2009).

Adventitia/Perivascular Adipose Tissue (PVAT)
Several studies have implicated the outside of the vascular wall as an important

entry point for inflammatory cells that can influence vascular structure and function.

It has been recently suggested that PM exposure leads to the mobilization and the

recruitment of proinflammatory monocytes identified as Ly6Chigh+ cells to PVAT

measured by flow cytometry (Kampfrath et al. 2011). This suggestion is based on

the observation that 6 months of CAP exposure increased the levels of Ly6Chigh+

cells in the lungs (perhaps, expected) of mice and to a greater extent accumulation

in the PVAT of the aorta. This accumulation of Ly6Chigh+ cells is associated with

increased NADPH oxidase and endothelial dysfunction, an effect ameliorated in

NADPH oxidase-deficient mice (p47phox�/�), indicating dependence on NADPH

oxidase and its specific localization to PVAT. These findings suggest a complicated

mechanistic scenario in which oxidative stress in the lungs initiates peripheral

signals that ultimately increase vascular oxidative stress to a level that becomes

deleterious to the endothelium resulting in endothelium dysfunction (Conklin 2011)

(Fig. 69.3).

Air Pollution and Metabolic Disorders: Is Oxidative Stress
a Common Mechanism?

Epidemiological studies provide ample evidence that exposure to ambient air

pollution is associated with the incidence, prevalence, and severity of diabetes.

For instance, diabetics are more vulnerable to cardiovascular and allergic diseases

after exposure to elevated ambient PM2.5 levels (Pereira Filho et al. 2008;

Schneider et al. 2010; Hampel et al. 2012; Brook et al. 2010). Moreover, the

vascular effects associated with coarse, fine, and ultrafine particles were more

pronounced in subjects with diabetes (Chen and Schwartz 2008; Stewart et al.

2010). Epidemiological studies in diabetic patients (O’Neill et al. 2007) and studies

in streptozotocin-diabetic rats (Lei et al. 2005) suggest that an inflammatory

mechanism is responsible for the increased susceptibility. Moreover, recent studies

also suggest that PM2.5 exposure enhances the prevalence of type 2 diabetes (T2D)

(Kramer et al. 2010; Pearson et al. 2010; Coogan et al. 2012). In children, PM2.5

levels are significantly associated with markers of inflammation, oxidative stress,

and insulin resistance (Kelishadi et al. 2009). In mice, chronic exposure to PM2.5

increases adiposity as well as inflammation and insulin resistance (Sun et al. 2009),

and early life exposure to PM2.5 for 10 weeks led to a significant elevation of

insulin resistance, adiposity, and vascular dysfunction in mice (Xu et al. 2010).

These effects were mitigated by the genetic ablation of NADPH oxidase p47phox

(Xu et al. 2010) indicating dependency on oxidative stress. The role of specific sites
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of ROS generation in causing the overall effects of PM2.5 is unclear. In summary,

investigations in human and animals suggest that the induction of oxidative stress

might also play a role in the development of PM2.5-induced insulin resistance and

the progression to T2D.

Summary and Conclusions

Air pollution affects multiple organ systems and has an effect on an array of different

cell types thereby leading to a variety of negative health consequences. Although the

specific mechanism(s) has not been identified in all cases, several studies indicate

that the induction of oxidative stress plays a major role in the development of PM-

induced lung, cardiovascular, and metabolic disease. In the lungs, the

overproduction of ROS/RNS seems to be due to a direct interaction between PM

and surface lining fluids such as mucus and with cells such as alveolar macrophages.

Moreover, cardiovascular effects are most likely also driven by oxidative stress

regardless whether the underlying mechanism is the induction of oxidative stress

and inflammation in the lungs due to central nervous system-mediated oxidative

stress or due to the translocation of ultrafine/nanosized particles (PM0.1) into the

bloodstream that directly affect vascular health via interactions with the endothe-

lium and cause cardiovascular injury. Additional studies are required to

distinguish between these (and other) possibilities and to clearly define the role of

reactive oxygen species in mediating the toxicity of ambient air particles.
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