
Chapter 9
Transportation Cost Inequalities for Diffusions
Under Uniform Distance

Ali Suleyman Üstünel

Abstract We prove the transportation inequality with the uniform norm for the
laws of diffusion processes with Lipschitz and/or dissipative coefficients and apply
them to some singular stochastic differential equations of interest.

Keywords Dissipative functions • Entropy • (Multi-valued) stochastic differential
equations • Transport inequality • Wasserstein distance

9.1 Introduction

Let .W; d/ be a separable Fréchet space, for two probability measures P and Q on
.W; B.W //, then the Wasserstein distance (cf. [11]) between P and Q, denoted as
dW .P; Q/, is defined as

d 2
W .P; Q/ D inf

�Z
W �W

d.x; y/2�.dx; dy/ W � 2 ˙.P; Q/

�
;

where ˙.P; Q/ denotes the set of probability measures on W � W whose first
marginal is P and the second one is Q; note that this is a compact set under
the weak topology, hence the infimum is always attained for any d (even lower
semi-continuous). It is quite useful to find an upper bound for this distance, if
possible dimension independent. There are a lot of works on this subject (cf. [11]),
beginning by the contributions of M. Talagrand, cf. [10], where it is shown that
the relative entropy is a fully satisfactory upper bound. In [5, 6], it is shown
that the relative entropy is again an upper bound when P is the Wiener measure
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and d is the singular Cameron–Martin distance using the Girsanov theorem
(cf. also [4]). The same method has also been employed in [12] and more recently
in [8] to obtain a transportation cost inequality w.r.t. Banach norm for diffusion
processes. The former assumes quite strong conditions on the coefficients which
govern the diffusion which are superfluous and make difficult the applicability of the
inequality, while the latter one treats essentially the one-dimensional case with an
extension to the case where the diffusion coefficients are independent and their slight
perturbations. Inspired with these works, we have attacked the general case: namely,
the case of fully dependent diffusion like processes and their extensions and infinite
dimensional diffusion processes governed with a cylindrical Brownian motion.
Besides, there is a special class of diffusion processes with singular (dissipative)
drifts which are constructed as weak limits of the Lipschitzian case where the
approximating diffusions have Lipschitz continuous drifts but the Lipschitz constant
explodes at the limit; this last class is particularly interesting because of their
applications to physics.

To achieve this program, we need the following result about the stability of the
transportation cost inequality under the weak limits of probability measures, which
is proved by Djellout et al. in [4]. Since we make an important use of it, we give it
with a (slightly different and more general) proof.

Lemma 9.1. Assume that .Pk; k � 1/ is a sequence of probability measures on a
separable Fréchet space .W; d/, converging weakly to a probability P . If

d 2
W .Q; Pk/ � ck

Z
W

dQ

dPk

log
dQ

dPk

dPk D ckH.QjPk/

for any k � 1, for any probability Q, where ck > 0 are bounded constants, then the
transportation inequality holds for P , namely

d 2
W .Q; P / � cH.QjP / ; (9.1)

where c D supk ck .

Proof. If f D dQ=dP is a bounded, continuous function, then the inequality (9.1)
follows from the lower semi-continuity of the transportation cost w.r.t. the weak
convergence and from the hypothesis since f log f is continuous and bounded.
Due to the dominated convergence theorem, to prove the general case, it suffices
to prove the case where f is P -essentially bounded and measurable. In this
case, there exists a sequence of bounded, upper semi-continuous functions, say
.fn; n � 1/, increasing to f P -almost surely. By the dominated convergence
theorem, the measures . QfndP; n � 1/ converge weakly to the measure fdP , where
Qfn D f =P.fn/. On the other hand, H. QfndP jdP / ! H.fdP jP / again by the

dominated convergence theorem. Hence, to prove the general case, it is sufficient to
prove the inequality with f upper semi-continuous and bounded. Since we are on a
Fréchet space, there exists a sequence of (positive) continuous functions decreasing
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to f which may be chosen uniformly bounded by taking the minimum of each with
the upper bound of f, and the inequality (9.1) follows again due to the dominated
convergence theorem. ut

9.2 Diffusion Type Processes with Lipschitz Coefficients

Let .W; H; �/ be the classical Wiener space, i.e., W D C0.Œ0; 1�; IRd /; H D
H 1.Œ0; 1�; IRd / and � is the Wiener measure under which the evaluation map at
t 2 Œ0; 1� is a Brownian motion. Suppose that X D .Xt ; t 2 Œ0; 1�/ is the solution of
the following SDE (stochastic differential equation)

dXt D �.t; Xt /dWt C b.t; X/dt

X0 D z 2 IRd

where � W Œ0; 1� � IRd ! ˝IRd is uniformly Lipschitz w.r.t. x with a Lipschitz
constant being equal to K , b W Œ0; 1� � W ! IRd is adapted and such that

jb.t; �/ � b.t; �/j � K sup
s�t

j�.s/ � �.s/j D k� � �kt

for any �; � 2 W . We denote by dW the Wasserstein distance on the probability
measures on W defined by the uniform norm:

d 2
W .�; 	/ D inf

�Z
W �W

kx � yk2d
.x; y/ W 
 2 ˙.�; 	/

�

where ˙.�; 	/ the set of probabilities on W � W whose first marginals are � and
the second ones are 	. We have the following bound for dW :

Theorem 9.1. Let P be the law of the solution of the SDE described above; then
for any probability Q on .W; B.W //, we have

d 2
W .P; Q/ � 6 e15K2

H.QjP / (9.2)

where H.QjP / is the relative entropy of Q w.r.t. P .

Proof. Due to the rotation invariance of the Wiener measure, we can suppose
without loss of generality that � takes its values in the set of positive matrices.
Suppose first that � is strictly elliptic. From the general results about the SDE (cf.
[7, 9]), the coordinate process x under the probability P can be written as

dxt D �.t; xt /dˇt C b.t; x/dt
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with x0 D z P -a.s., where ˇ is an IRd -valued P -Brownian motion. At this point of
the proof we need the following result, which is probably well known (cf. [9] and
the references there), though we include its proof for the sake of completeness:

Lemma 9.2. Any bounded P -martingale can be written as a stochastic integral
w.r.t. ˇ of an adapted process .˛s; s 2 Œ0; 1�/, with EP

R 1

0
j˛sj2ds < 1.

Proof. Let us denote by P 0 the law of the solution of

dXt D �.t; Xt /dWt ;

then under P 0, the coordinate process x can be written as

dx D �.t; xt /dˇ0
t ;

where ˇ0 is a P 0-Brownian motion. Let Z be a bounded P -martingale with Z0 D 0,
assume that it is orthogonal to the Hilbert space of P -square integrable martingales
written as the stochastic integrals w.r.t. ˇ of the adapted processes. Let M be the
exponential martingale defined as

Mt D exp

�
�

Z t

0

.��1.s; xs/b.s; x/; dˇs/ � 1

2

Z t

0

j��1.s; xs/b.s; x/j2ds

�
:

Then, we know from the uniqueness and the Girsanov theorem that MdP D dP 0,
since M can be written as a stochastic integral w.r.t. ˇ, our hypothesis implies
that ZM is again a P -martingale, hence Z is a P 0-martingale, therefore, from the
classical Markov case it can be written as

Zt D
Z t

0

Hs:dˇ0
s

D
Z t

0

Hs:.dˇs � ��1.s; xs/b.s; x/ds/ :

This last expression implies that

hZ; Zit D hZ;

Z �

0

Hs:dˇsit

but Z is orthogonal to the stochastic integrals of the form
R

˛s:dˇs , hence
Zt D EP ŒZt � D 0, which proves the claim. ut
Let us complete now the proof of the theorem: If Q is singular w.r.t. P , then there is
nothing to prove due to the definition of the entropy. Let L be the Radon–Nikodym
derivative dQ=dP , we shall first suppose that L > 0 P -a.s. In this case we can
write

L D �.�ıv/;
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where v.t; x/ D R t

0
Pvs.x/ds, Pvs.x/ is a.s. adapted and

R 1

0
jPvs.x/j2ds < 1 a.s. and

ıv D R 1

0
Pvsdˇs . From the Girsanov theorem, zt D ˇt C R t

0
Pvsds is Q-Brownian

motion, hence by the uniqueness of the solution of SDE, if we denote by xv the
solution of the SDE given as

dxv
t D �.t; xv

t /d zt C bt .x
v/dt

the image of Q under the solution map xv is equal to P , consequently .xv � IW /

.Q/ 2 ˙.P; Q/, hence we have the following domination:

d 2
W .P; Q/ � EQŒkxv � xk2�

where k � k denotes the uniform norm on W . Using Doob and Hölder inequalities,
we get

EQŒsup
r�t

jxv
r � xr j2� � .12 C 3t/K2EQ

Z t

0

jxv
s � xs j2ds

C3tEQ

Z t

0

jPvsj2ds :

It follows from the Gronwall lemma that

EQŒsup
r�t

jxv
r � xr j2� � 3t EQ

Z t

0

jPvsj2ds e3K2.4Ct /

since

EQ

Z 1

0

jPvsj2ds D 2H.QjP /

the claim follows in the case P � Q. For the case where Q � P let

L" D L C "

1 C "
;

then it is easy to see that .L" log L"; " � "0/ is P -uniformly integrable provided
EP ŒL log L� < 1. Hence the proof, in the strictly elliptic case, follows by the lower
semi-continuity of Q ! dW .P; Q/. The general case follows by replacing � by
"IIRd C� , then remarking that the corresponding probabilities .P"; " � "0/ converge
weakly and that

d 2
W .P"; Q/ � 6 e15."CK/2

H.QjP"/

and hence it follows from Lemma 9.1 that

d 2
W .P; Q/ � 6 e15K2

H.QjP / :

ut
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Since the inequality (9.2) is dimension independent, we can extend it easily to the
infinite dimensional case:

Corollary 9.1. Let M be a separable Hilbert space, suppose that B is a
M -cylindrical Wiener process. Assume that � W Œ0; 1� � M ! L2.M; KM D
M ˝2 M (space of Hilbert–Schmidt operators on M ) and b W Œ0; 1� � M ! M

are uniformly Lipschitz with Lipschitz constant K . Let P be the law of the
following SDE:

dXt D �.t; Xt /dBt C b.t; Xt/dt ; X0 D x 2 M :

Then the law of P satisfies the transportation cost inequality (9.2).

Proof. Let .�n; n � 1/ be an sequence of orthogonal projections of M increasing
to the identity, define �n D �n� ı �n, bn D �nb ı �n, Bn D �nB , and xn D �nx.
Let then P n be the law of the SDE

dXn
t D �n.t; Xn

t /dBn
t C bn.t; Xn

t /dt ; Xn
0 D xn :

From Theorem 9.1, P n satisfies the inequality (9.2) with a constant independent of
n, since .P n; n � 1/ converges weakly to P , the proof follows from Lemma 9.1.

ut

9.2.1 Transport Inequality with a Singular Cost Function

In the case of Wiener space, we can define a stronger Wasserstein metric using the
Cameron–Martin norm as we have already done in [5, 6] as follows:

d 2
H .P; Q/ D inf

�Z
W �W

jx � yj2H �.dx; dy/ W � 2 ˙.P; Q/

�
:

Note that this distance is strictly stronger than dW and it is still lower semi-
continuous with respect to the weak topology of measures on W . In the above cited
references, we have proved the following inequality:

d 2
H .�; �/ � 2H.�j�/

for any measure �, where � denotes the Wiener measure. This inequality can be
extended to the class of diffusions whose diffusion coefficients are constant (it
suffices to consider the case where it is equal to the identity matrix):

Theorem 9.2. Assume that b W Œ0; 1� � IRd ! IRd is a K-Lipschitz map w.r.t. x
uniformly in t 2 Œ0; 1�. Let P be the law of the solution of the following SDE:

dXt D b.t; Xt/dt C dWt ; X0 D x :
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Then the following transport inequality holds:

d 2
H .P; Q/ � 2.1 C 2K2e2K2

/H.QjP / :

Proof. Using the same reasoning as in the proof of Theorem 9.1 and supposing
first that dQ=dP is strictly positive a.s., we reduce the problem to calculate (in the
canonical space) the expectation of

jx � xvj2H.Œ0;t �/ D
Z t

0

jb.s; xs/ � b.s; xv
s / � Pvsj2ds

under the probability Q, the rest of the proof is the same and we get rid of the strict
positivity hypothesis again using the lower semi-continuity of the cost function on
the space of probabilities. ut

9.3 Transport Inequality for the Monotone Case

Assume that the Lipschitz property of the adapted drift coefficient is replaced by the
following dissipativity hypothesis

.b.t; x/ � b.t; y/; xt � yt / � 0

for any t 2 Œ0; 1� and x; y 2 W , where, as before .�; �/ denotes the scalar product
in IRd . The derivative of a proper concave function on IRd is a typical example of
such drift. We shall suppose first that

Z 1

0

jb.t; x/j2ds < 1

for any x 2 W .

Proposition 9.1. Assume that b is of linear growth, i.e., jb.t; x/j � N.1 C kxk/

and let P be the law of the solution of the following SDE

dXt D �.t; Xt /dWt C b.t; X/dt C m.t; Xt/dt (9.3)

with X0 D x 2 IRd and that � and m W Œ0; 1��IRd ! IRd are uniformly K-Lipschitz
w.r.t. the space variable. Then for any Q � P , we have

d 2
W .P; Q/ �

�
c23=2k�k3=21 e

1
2 .K2C2KC1/

� p
H.QjP /

C2k�k1e
1
2 .K2C2KC1/

�
1 C K.K C 2//e

1
2 .K2C2KC1/

�
H.QjP / ;

(9.4)
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where k�k1 is a uniform bound for � , K is the Lipschitz constant, and c is the
universal constant of Davis’ inequality for p D 1.

Proof. Recall that under P , the coordinate process satisfies dx D �.t; xt /dˇ C
.b.t; x/ C m.t; xt //dt, where ˇ is a P -Brownian motion. Assume that Q is another
probability on W such that Q � P , let L be dQ=dP . Suppose first that L > 0

P -almost surely. As explained in the first section, we can write L as an exponential
martingale L D �.�ıv/, then xv.Q/ D P , where xv is defined as before: dxv D
�.t; xv

t /.dˇt C Pvt dt/ C b.t; xv/dt C m.t; xv
t /dt. Again by the uniqueness of the

solutions, we have .xv � IW /.Q/ 2 ˙.P; Q/, hence

d 2
W .P; Q/ � EQŒkxv � xk2� :

It follows from the Itô formula, letting d z D dˇ C Pvdt, that

jxv
t � xt j2 D 2

Z t

0

.xv
s � xs; dxv

s � dxs/ C
Z t

0

j�.s; xv
s / � �.s; xs/j2ds

D 2

Z t

0

.xv
s � xs; b.s; xv/ � b.s; x//ds

C 2

Z t

0

.xv
s � xs; .�.s; xv

s / � �.s; xs//d zs C .m.s; xv
s / � m.s; xs//ds/

C
Z t

0

j�.s; xv
s / � �.s; xs/j2ds � 2

Z t

0

.xv
s � xs; �.s; xv

s /Pvs/ds :

By the dissipative character of b, we get

jxv
t � xt j2 � 2

Z t

0

.xv
s � xs; .�.s; xv

s / � �.s; xs//d zs C .m.s; xv
s / � m.s; xs//ds/

C
Z t

0

j�.s; xv
s / � �.s; xs/j2ds � 2

Z t

0

.xv
s � xs; �.s; xv

s /Pvs//ds :

Using, the usual stopping techniques, we can suppose that the stochastic integral has
zero expectation and taking the Q-expectation of both sides, we obtain

EQŒjxv
t � xt j2� � .2K C K2/E

Z t

0

jxv
s � xs j2ds

C2k�k1E

Z t

0

jxv
s � xs jjPvsjds

using the inequality xy � ı.x2=2/ C .y2=2ı/, we get

EQŒjxv
t � xt j2� � .2K C K2 C ık�k21/E

Z t

0

jxv
s � xs j2ds C C2

ı
Ht .QjP / ;
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where ı > 0 is arbitrary and Ht .QjP / D R
log dQ

dP
jFt dQ is the entropy for the

horizon Œ0; t �, which is an increasing function of t . It follows from the Gronwall
lemma that

EQŒjxv
t � xt j2� � 2

ı
Ht .QjP / exp

�
t.2K C K2 C ık�k21/

	
: (9.5)

Using now the Davis’ inequality, the Lipschitz property, and the boundedness of � ,
we get

EŒsup
r�t

jxv
r � xr j2� � .2ck�k1 C p

2Ht .QjP /1=2/E


Z t

0

jxv
s � xs j2ds

�1=2

CK.K C 2/E

Z t

0

jxv
s � xs j2ds ;

where c is the universal constant of Davis’ inequality. Note that the right-hand
side of the inequality (9.5) is monotone increasing in t , we insert it to the above
inequality and minimize it w.r.t. ı for t D 1 and the proof is completed. ut
In fact we have another version of the inequality (9.5) in the case where � is not
bounded but still K-Lipschitz:

Proposition 9.2. Assume that all the hypothesis of Proposition 9.1 are satisfied
except the boundedness of � which appears in the SDE (9.3), then we have the
following transportation cost inequality:

d2
W .P; Q/ � H.QjP /

2

.1 � acK/2
exp

�
1

1 � acK

�
cK

a
C 1 � acK C 2K C K2

��

(9.6)

where P is the law of the SDE (9.3), Q is any other probability, and a > 0 is
arbitrary provided that acK < 1.

Proof. The proof is somewhat similar to the proof of Proposition 9.1: in fact we
control uniformly the stochastic integral term in the Itô development of jxv

t � xt j2
as follows:

E



sup
r�t

ˇ̌
ˇ̌Z r

0

.xv
s � xs; .�.s; xv

s / � �.s; xs/d zs/

ˇ̌
ˇ̌�

� cE

"�Z t

0

jxv
s � xs j2j�.s; xv

s / � �.s; xs/j2ds

�1=2
#

� cKE

"�Z t

0

jxv
s � xsj4ds

�1=2
#
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� cKE

"�
sup
s�t

jxv
s � xs j2

Z t

0

jxv
s � xs j2

�1=2
#

� caK

2
E



sup
s�t

jxv
s � xs j2

�
C cK

2a
E

Z t

0

jxv
s � xs j2ds :

Hence we get

E



sup
s�t

jxv
s � xs j2

�
� acKE



sup
s�t

jxv
s � xs j2

�
C cK

a
E

Z t

0

jxv
s � xs j2ds

C.2K C K2 C ı/E

Z t

0

jxv
s � xsj2ds C 1

ı
E

Z t

0

jPvsj2ds ;

where a; ı > 0 are arbitrary, c is the constant of Davis’ inequality. From above, we
obtain

.1 � acK/E



sup
s�t

jxv
s � xs j2

�
�

�
cK

a
C 2K C K2 C ı

�
E

Z t

0

jxv
s � xs j2ds

C2

ı
Ht .QjP /

and Gronwall lemma implies that

E



sup
s�t

jxv
s � xsj2

�
� 2

ı.1 � acK/
Ht .QjP /

� exp



t

1 � acK

�
cK

a
C ı C 2K C K2

��
:

Taking t D 1 and minimizing the r.h.s. of the last inequality w.r.t. ı completes the
proof. ut
It is important to notice that we did not use any regularity property about b except
that the integrability of t ! b.t; x/ for almost all x in an intermediate step. This
observation means that we can deal with very singular drifts provided that they
are dissipative. Let us give an application of Proposition 9.1 to multi-valued SDE
(cf. [1]) from this point of view

Theorem 9.3. Let P be the law of the process which is the solution of the following
multi-valued stochastic differential equation:

m.Xt/dt C �.t; Xt /dWt 2 dXt C A.Xt/dt ; X0 D x 2 D.A/ ;

where A is a maximal, monotone set-valued function (hence �A is dissipative), such
that Int.D.A// ¤ ;. Assume that � and m are uniformly K-Lipschitz and that �
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is bounded. Then P satisfies the transportation cost inequality (9.4). If � is only
Lipschitz, but not necessarily bounded, then P satisfies the inequality (9.6).

Proof. Let bn be the Yosida approximation of A, i.e., Jn D .IIRd C 1
n
A/�1 and

�bn D n.I � Jn/ then bn is dissipative and Lipschitz, hence the law of the solution
of the SDE

dXn
t D �.t; Xt /dWt C bn.Xn

t /dt C m.Xn
t /dt

satisfies the inequality (9.4) with the constants independent of n, moreover the law
of .Xn; n 2 IN/ converges weakly to P (cf. [1]), hence P satisfies also the inequality
(9.4) due to Lemma 9.1. ut
As an example of application of this theorem, let us give

Theorem 9.4. Let P be the law of the solution of the following SDE:

dXi
t D m.Xi

t /dt C �.Xi
t /dWi

t C 

X

1�j ¤i�d

1

Xi
t � X

j
t

dt ; i D 1; : : : ; d ;

with � bounded and Lipschitz, 
 > 0. Then P satisfies the transportation cost
inequality (9.4) and if � is not bounded but only Lipschitz, then P satisfies the
inequality (9.6).

Proof. It suffices to remark that the drift term following 
 is the subdifferential of
the concave function defined by

F.x/ D 

X
i<j

log.xj � xi /

if x1 < x2 < : : : < xd and it is equal to �1 otherwise. ut
Remark 9.1. For details about the equation of Theorem 9.4 cf. [2]. Moreover
Theorem 9.3 is applicable to all the models given in [3].
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