
Collision Avoidance Using Partially Controlled
Markov Decision Processes�

Mykel J. Kochenderfer and James P. Chryssanthacopoulos

Lincoln Laboratory, Massachusetts Institute of Technology
244 Wood Street, MA 02420, Lexington, U.S.A

{mykelk,chryssanthacopoulos}@ll.mit.edu

Abstract. Optimal collision avoidance in stochastic environments requires ac-
counting for the likelihood and costs of future sequences of outcomes in response
to different sequences of actions. Prior work has investigated formulating the
problem as a Markov decision process, discretizing the state space, and solving
for the optimal strategy using dynamic programming. Experiments have shown
that such an approach can be very effective, but scaling to higher-dimensional
problems can be challenging due to the exponential growth of the discrete state
space. This paper presents an approach that can greatly reduce the complexity
of computing the optimal strategy in problems where only some of the dimen-
sions of the problem are controllable. The approach is applied to aircraft collision
avoidance where the system must recommend maneuvers to an imperfect pilot.

Keywords: Markov decision processes, Dynamic programming, Collision
avoidance.

1 Introduction

Manually constructing a robust collision avoidance system, whether it be for an au-
tonomous or human-controlled vehicle, is challenging because the future effects of the
system cannot be known exactly. Due to their safety-critical nature, collision avoidance
systems must maintain a high degree of reliability while minimizing unnecessary path
deviation. Recent work has investigated formulating the problem of collision avoid-
ance as a Markov decision process (MDP) and solving for the optimal strategy using
dynamic programming (DP) [14,15,25]. One limitation of this approach is that the com-
putation and memory requirements grow exponentially with the dimensionality of the
state space. Hence, these studies focused on MDP formulations that capture only a sub-
set of the relevant state variables at the expense of impaired performance.

This paper presents a new approach for significantly reducing the computation and
memory requirements for partially controlled Markov decision processes. The approach
involves decomposing the problem into two separate subproblems, one controlled and
one uncontrolled, that can be solved independently offline using dynamic programming.

� This work is sponsored by the Federal Aviation Administration under Air Force Contract
#FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those
of the authors and are not necessarily endorsed by the United States Government.

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 86–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Collision Avoidance Using Partially Controlled Markov Decision Processes 87

During execution, the results from offline computation are combined to determine the
approximately optimal action.

The approach is demonstrated on an airborne collision avoidance system that rec-
ommends vertical maneuvers to a pilot. Although the pilot may maneuver horizontally,
it is assumed that the system does not influence the horizontal motion. The problem
is naturally represented using seven state variables, which is impractical to solve with
a reasonable level of discretization. By carefully decomposing the problem into two
lower-dimensional problems, a solution can be obtained quickly and stored in primary
memory. The optimized system is compared with the Traffic Alert and Collision Avoid-
ance System (TCAS), currently mandated worldwide on all large transport aircraft [22].

The next section summarizes related work on collision avoidance. Section 3 reviews
Markov decision processes. Section 4 describes the solution method and outlines the
required assumptions. Section 5 applies the method to airborne collision avoidance.
Section 6 evaluates the method in simulation with TCAS as a baseline. Section 7 con-
cludes and outlines further work.

2 Related Work

A common technique for collision avoidance in autonomous and semi-autonomous ve-
hicles is to define conflict zones for each obstacle and then use a deterministic model,
such as linear extrapolation, to predict whether a conflict will occur [4,10,6]. If conflict
is anticipated, the system selects the maneuver that provides minimal path deviation
while preventing conflict. Such an approach requires little computation and can prevent
collision much of the time, but it lacks robustness because the deterministic model ig-
nores the stochastic nature of the environment. Although one may mitigate collision risk
to some extent by artificially enlarging the conflict zones to accommodate uncertainty
in the future behavior of the vehicles, this approach frequently results in unnecessary
path deviation. The TCAS collision avoidance logic adopts an approach along these
lines but incorporates many hand-crafted, heuristic rules to enhance robustness.

Several other approaches to collision avoidance can be found in the literature that
do not use a probabilistic model of vehicle behavior, including potential field methods
[13,11,12] and rapidly expanding random trees [19,18,23]. However, avoiding collision
with a high degree of reliability while keeping the rate of path deviation low requires the
use of a probabilistic model that accounts for future state uncertainty. Several methods
have been suggested that involve using a probabilistic model to estimate the probability
of conflict and to choose the maneuver that keeps the probability of conflict below some
set threshold [26,5,15]. One limitation of these threshold-based approaches is that they
do not model the effects of delaying the avoidance maneuver. In many cases, it can
be beneficial to observe how the encounter develops before committing to a particular
maneuver. The dynamic programming approach pursued in this work, in contrast, takes
into account every possible future sequence of actions taken by the collision avoidance
system and their outcomes when making a decision.

88 M.J. Kochenderfer and J.P. Chryssanthacopoulos

3 Markov Decision Processes

An MDP is defined by a transition function T and cost function C. The probability of
transitioning from state s to state s′ after executing action a is given by T (s, a, s′). The
immediate cost when executing a from s is given by C(s, a). In this paper, the state
space S and action space A are finite [21,3].

A policy is a function π that maps states to actions. The expected sum of immediate
costs when following π for K steps starting from state s is denoted Jπ

K(s), often called
the cost-to-go function. The solution to an MDP with a horizon of K is a policy π∗

K

that minimizes the cost to go from every state.
One way to compute π∗

K is to first compute J∗
K , the cost-to-go function for the op-

timal policy, using a dynamic programming algorithm known as value iteration. The
function J∗

0 (s) is set to zero for all states s. If the state space includes terminal states
with immediate cost C(s), then J∗

0 (s) = C(s) for those terminal states. The function
J∗
k (s) is computed from J∗

k−1 as follows:

J∗
k (s) = min

a

[
C(s, a) +

∑
s′

T (s, a, s′)J∗
k−1(s

′)

]
. (1)

The iteration continues until horizon K .
The expected cost to go when executing a from s and then continuing with an optimal

policy for K − 1 steps is given by

J∗
K(s, a) = C(s, a) +

∑
s′

T (s, a, s′)J∗
K−1(s

′). (2)

An optimal policy may be obtained directly from J∗
K(s, a):

π∗
K(s) = argmin

a
J∗
K(s, a). (3)

If the state space contains continuous variables, which is common for collision avoid-
ance problems, the state space can be discretized using a multi-dimensional grid or
simplex scheme [9]. The transition function T (x, a,x′) in continuous space can be
translated into a discrete transition function T (s, a, s′) using a variety of sampling and
interpolation methods [15]. Once the state space, transition function, and cost function
have been discretized, J∗(s, a) may be computed for each discrete state s and action
a. For a continuous state x and action a, J∗(x, a) may be approximated using, for ex-
ample, multilinear interpolation. The best action to execute from continuous state x is
simply argmina J

∗(x, a).
Discretizing the full state space can result in a large number of discrete states, expo-

nential in the number of dimensions, which makes computing J∗ infeasible for many
problems. This “curse of dimensionality” [1] has led to a variety of different approxi-
mation methods [20].

4 Partial Control

This paper explores a new solution technique for partially controlled MDPs that is appli-
cable to certain collision avoidance problems. It may be applied to interception-seeking

Collision Avoidance Using Partially Controlled Markov Decision Processes 89

or goal-oriented problems as well by incorporating negative costs. So long as the prob-
lem satisfies a set of assumptions, this solution method will provide a finite-horizon
solution. The approach involves independently solving a controlled subproblem and an
uncontrolled subproblem and combining the results online to identify the approximately
optimal action.

4.1 Assumptions

It is assumed that the state is represented by a set of variables, some controlled and some
uncontrolled. The state space of the controlled variables is denoted Sc, and the state
space of the uncontrolled variables is denoted Su. The state of the controlled variables
at time t is denoted sc(t), and the state of the uncontrolled variables at time t is denoted
su(t). The solution technique may be applied when the following three assumptions
hold:

1. The state su(t+1) depends only upon su(t). The probability of transitioning from
su to s′u is given by T (su, s

′
u).

2. The episode terminates when su ∈ G ⊂ Su with immediate cost C(sc).
3. In nonterminal states, the immediate cost c(t + 1) depends only upon sc(t) and

a(t). If the controlled state is sc and action a is executed, the immediate cost is
denoted C(sc, a).

4.2 Controlled Subproblem

Solving the controlled subproblem involves computing the optimal policy for the con-
trolled variables under the assumption that the time until su enters G, denoted τ , is
known. In an airborne collision avoidance context, τ may be the number of steps until
another aircraft comes within 500 ft horizontally. Of course, τ cannot be determined
exactly from su(t) because it depends upon an event that occurs in the future, but this
will be addressed by the uncontrolled subproblem (Section 4.3).

The cost to go from sc given τ is denoted Jτ (sc). The series J0, . . . , JK is computed
recursively, starting with J0(sc) = C(sc) and iterating as follows:

Jk(sc) = min
a

⎡
⎣C(sc, a) +

∑
s′c

T (sc, a, s
′
c)Jk−1(s

′
c)

⎤
⎦ . (4)

The expected cost to go from sc when executing a for one step and then following the
optimal policy is given by

Jk(sc, a) = C(sc, a) +
∑
s′c

T (sc, a, s
′
c)Jk−1(s

′
c). (5)

The K-step expected cost to go when τ > K is denoted JK̄ . It is computed by ini-
tializing J0(sc) = 0 for all states and iterating equation 4 to horizon K . The series
J0, . . . , JK , JK̄ is saved in a table in memory, requiring O(K|A||Sc|) entries.

90 M.J. Kochenderfer and J.P. Chryssanthacopoulos

4.3 Uncontrolled Subproblem

Solving the uncontrolled subproblem involves using the probabilistic model of the un-
controlled dynamics to infer a distribution over τ for each uncontrolled state su. This
distribution is referred to as the entry time distribution because it represents the distri-
bution over the time for su to enter G. The probability that su enters G in τ steps is
denoted Dτ (su) and may be computed using dynamic programming. The probability
that τ = 0 is given by

D0(su) =

{
1 if su ∈ G,
0 otherwise.

(6)

The probability that τ = k, for k > 0, is computed from Dk−1 as follows:

Dk(su) =

{
0 if su ∈ G,∑

s′u
T (su, s

′
u)Dk−1(s

′
u) otherwise. (7)

Depending on su, there may be some probability that su does not enter G within K
steps. This probability is denoted DK̄(su) and may be computed from D0, . . . , DK :

DK̄(su) = 1−
K∑

k=0

Dk(su). (8)

The sequence D0, . . . , DK , DK̄ is stored in a table with O(K|Su|) entries. Multilin-
ear interpolation of the distributions may be used to determine Dτ (xu) at an arbitrary
continuous state xu.

4.4 Online Solution

After J0, . . . , JK , JK̄ and D0, . . . , DK , DK̄ have been computed offline, they are used
together online to determine the approximately optimal action to execute from the cur-
rent state. For any discrete state s in the original state space, J∗

K(s, a) may be computed
as follows:

J∗
K(s, a) = DK̄(su)JK̄(sc, a) +

K∑
k=0

Dk(su)Jk(sc, a), (9)

where su is the discrete uncontrolled state and sc is the discrete controlled state asso-
ciated with s. Combining the controlled and uncontrolled solutions online in this way
requires time linear in the size of the horizon. Multilinear interpolation can be used
to estimate J∗

K(x, a) for an arbitrary state x, and from this the optimal action may be
obtained.

The memory required to store J∗
K(s, a) is O(|A||Sc||Su|). However, the method in

this section allows the solution to be represented using O(K|A||Sc|+K|Su|) storage,
which can be a tremendous savings when |Sc| and |Su| are large. For the collision
avoidance problem discussed in the next section, this method allows the cost table to
be stored in 500 MB instead of over 1 TB. The offline computational savings are even
more significant.

Collision Avoidance Using Partially Controlled Markov Decision Processes 91

An alternative to using dynamic programming for computing the entry time distribu-
tion offline is to use Monte Carlo to estimate the entry time distribution online. A Monte
Carlo approach does not require the uncontrolled variables to be discretized and does
not require D0, . . . , DK , DK̄ to be stored in memory. However, using Monte Carlo in-
creases the amount of online computation. For problems where the conflict region is
small, the number of samples required to produce an adequate estimate of the distri-
bution may be large, though importance sampling can help improve this estimate with
fewer samples [8].

5 Airborne Collision Avoidance System

This section demonstrates the approach from the previous section on an MDP represent-
ing an airborne collision avoidance problem. In this problem, the collision avoidance
system issues resolution advisories to pilots who then adjust their vertical rate to avoid
coming within 500 ft horizontally and 100 ft vertically of an intruding aircraft. This
section considers a simplified version of the collision avoidance problem in which one
aircraft equipped with a collision avoidance system, called the own aircraft, encoun-
ters only one other unequipped aircraft, called the intruder aircraft. The remainder of
the section outlines the assumptions and decomposes the problem into controlled and
uncontrolled subproblems.

5.1 Assumptions

In this problem, sc represents the state of the vertical motion variables, and su represents
the state of the horizontal motion variables. This problem defines coming within 500 ft
horizontally and 100 ft vertically of an intruder as a conflict.

The first assumption in Section 4.1 requires that su(t+1) depend only upon su(t). In
this collision avoidance problem, it is assumed that pilots randomly maneuver horizon-
tally, and that the advisories issued by the collision avoidance system do not influence
the horizontal motion.

The second assumption requires the episode to terminate when su enters G. In this
problem,G is the set of states where there is a horizontal conflict, defined to be when an
intruder comes within 500 ft horizontally. The immediate cost when this occurs is given
by C(sc), which is one when the intruder is within 100 ft vertically and zero otherwise.
In simulation, the episode does not terminate when su enters G, since entering G does
not necessarily imply that there has been a conflict (e.g., the two aircraft may have
safely missed each other by 1000 ft vertically). However, it is generally sufficient to
plan up to the moment where su enters G because adequate separation at that moment
usually indicates that the encounter is resolved.

The third assumption requires that for states where su �∈ G the immediate cost func-
tion depends on the controlled state variables and the action. As outlined in Section 5.2,
the nonterminal cost function only depends on the advisory state and the advisory being
issued.

92 M.J. Kochenderfer and J.P. Chryssanthacopoulos

5.2 Controlled Subproblem

The controlled subproblem, formulated as an MDP, is defined by the available actions,
the dynamics, and the cost function. The dynamics are determined by the pilot response
model and aircraft dynamic model. The cost function takes into account both safety and
operational considerations. In addition to describing these components of the MDP, this
section discusses the resulting optimal policy.

Resolution Advisories. The airborne collision avoidance system may choose to issue
one of two different initial advisories: climb at least 1500 ft/min or descend at least
1500 ft/min. Following the initial advisory, the system may choose to either terminate,
reverse, or strengthen the advisory. An advisory that has been reversed requires a ver-
tical rate of 1500 ft/min in the opposite direction of the original advisory. An advisory
that has been strengthened requires a vertical rate of 2500 ft/min in the direction of the
original advisory. After an advisory has been strengthened, it can then be weakened to
reduce the required vertical rate to 1500 ft/min in the direction of the original advisory.

Dynamic Model. The state is represented using four variables:

– h: altitude of the intruder relative to the own aircraft,
– ḣ0: vertical rate of the own aircraft,
– ḣ1: vertical rate of the intruder aircraft, and
– sRA: the state of the resolution advisory.

The discrete variable sRA contains the necessary information to model the pilot re-
sponse, which includes the active advisory and the time to execution by the pilot.
Five seconds are required for the pilot to begin responding to an initial advisory. The
pilot then applies a 1/4 g acceleration to comply with the advisory. Subsequent ad-
visories are followed with a 1/3 g acceleration after a three second delay. When an
advisory is not active, the pilot applies an acceleration selected at every step from a
zero-mean Gaussian with 3 ft/s2 standard deviation. At each step, the intruder pilot
independently applies a random acceleration from a zero-mean Gaussian with 3 ft/s2

standard deviation.
The continuous state variables are discretized according to the scheme in Table 1.

The discrete state transition probabilities were computed using sigma-point sampling
and multilinear interpolation [15]. This discretization scheme produces a discrete model
with 213 thousand discrete states.

Table 1. Controlled Variable Discretization

Variable Grid Edges

h −1000,−900, . . . , 1000 ft
ḣ0 −2500,−2250, . . . , 2500 ft/min
ḣ1 −2500,−2250, . . . , 2500 ft/min

Collision Avoidance Using Partially Controlled Markov Decision Processes 93

Cost Function. An effective collision avoidance system must satisfy competing objec-
tives, including maximizing safety and minimizing the rate of unnecessary alerts. These
objectives are encoded in the cost function. In addition to incurring a cost for conflict,
it is desirable to incur a cost for other events such as alerting or changing an advisory,
as shown in Table 2. A small negative cost is awarded at every step the system is not
alerting to provide an incentive to discontinue alerting after resolution of the encounter.

Table 2. Event Costs

Conflict Alert Strengthening Reversal Clear of Conflict

1 0.001 0.009 0.01 −1 · 10−4

Optimal Policy. The optimal cost-to-go tables J0, . . . , JK , JK̄ were computed offline
in less than two minutes on a single 3 GHz Intel Xeon core using a horizon of K = 39
steps. Storing only the values for the valid state-action pairs requires 263 MB using a
64-bit floating point representation. Figure 1 shows a plot of the optimal policy through
a slice of the state space where the own aircraft is initially climbing at 1500 ft/min, the
intruder is level, and no alert has been issued. The blue region indicates where the logic
will issue a descend advisory, and the green region indicates where the logic will issue a
climb advisory. The optimal policy will sometimes issue a climb even when the intruder
is above. This occurs when the aircraft are closely separated in altitude and little time
remains until potential conflict. Because the own aircraft is already climbing, there is
insufficient time to accelerate downward to avoid conflict. Climbing above the intruder
is more effective. Another notable feature of the plot is that no advisory is issued when
τ ≤ 5 s. Because an advisory has no effect until five seconds after it is issued, alerting
less than five seconds prior to conflict is ineffective.

Climb

Descend

No advisory

0 10 20 30 40
−1000

−500

0

500

1000

τ (s)

h
(f

t)

Fig. 1. Optimal action plot for ḣ0 = 1500 ft/min, ḣ1 = 0 ft/min, sRA = “no advisory”

94 M.J. Kochenderfer and J.P. Chryssanthacopoulos

5.3 Uncontrolled Subproblem

The uncontrolled subproblem involves estimating the distribution over τ (i.e., the time
until the aircraft are separated less than 500 ft horizontally) given the current state. This
section describes the horizontal dynamics and three methods for estimating the entry
time distribution.

Dynamic Model. The aircraft move in the horizontal plane in response to independent
random accelerations generated from a zero-mean Gaussian with a standard deviation of
3 ft/s2. The motion can be described by a three-dimensional model, instead of the typical
four-dimensional (relative positions and velocities) model, due to rotational symmetry
in the dynamics. The three state variables are as follows:

– r: horizontal range to the intruder,
– rv: relative horizontal speed, and
– θv: difference in the direction of the relative horizontal velocity and the bearing of

the intruder.

These variables are illustrated in Figure 2.

rv

Relative
velocity vector

r

Own

Intruder

θv

Fig. 2. Three-variable model of horizontal dynamics

Dynamic Programming Entry Time Distribution. The entry time distribution can
be estimated offline using dynamic programming as discussed in Section 4.3. The state
space was discretized using the scheme in Table 3, resulting in 730 thousand discrete
states. The offline computation required 92 seconds on a single 3 GHz Intel Xeon core.
Storing D0, . . . , D39 in memory using a 64-bit floating point representation requires
222 MB.

Table 3. Uncontrolled Variable Discretization

Variable Grid Edges

r 0, 50, . . . , 1000, 1500, . . . , 40000 ft
rv 0, 10, . . . , 1000 ft/s
θv −180◦,−175◦, . . . , 180◦

Collision Avoidance Using Partially Controlled Markov Decision Processes 95

Monte Carlo Entry Time Distribution. Monte Carlo estimation can be used online
to estimate the entry time distribution as explained at the end of Section 4.3. The exper-
iments in this paper use 100 Monte Carlo samples to estimate τ .

Simple Entry Time Distribution. A point estimate of τ can be obtained online as
follows. The range rate is given by

ṙ = rv cos(θv). (10)

If the aircraft are converging in range, then τ can be approximated by r/|ṙ|. Otherwise,
τ is set beyond the horizon.

6 Results

This section evaluates the performance of the collision avoidance system using simu-
lated encounters and compares it against the current version of TCAS, Version 7.1.

6.1 Encounter Initialization

Encounters are initialized in the horizontal plane by randomly and independently gen-
erating the initial ground speeds of both aircraft, s0 and s1, from a uniform distribution
between 100 and 500 ft/s. The horizontal range between the aircraft is initialized to
r = ttarget(s0 + s1) + ur, where ur is a zero-mean Gaussian with 500 ft standard de-
viation. The parameter ttarget, nominally set to 40 s, controls how long until the aircraft
come into conflict.

The bearing of the intruder aircraft with respect to the own aircraft, χ, is sampled
from a zero-mean Gaussian distribution with a standard deviation of 2◦. The heading
of the intruder with respect to the heading of the own aircraft, β, is sampled from a
Gaussian distribution with a mean of 180◦ and a standard deviation of 2◦. When β =
180◦, the intruder is heading directly toward the own aircraft.

The initial vertical rates ḣ0 and ḣ1 are drawn independently from a uniform distribu-
tion spanning −1000 and 1000 ft/min. The initial altitude of the own aircraft, h0, is set
to 43,000 ft. The initial altitude of the intruder is h0 + ttarget(ḣ0 − ḣ1) + uh, where uh

is a zero-mean Gaussian with 25 ft standard deviation.

6.2 Example Encounter

Figure 3 shows an example encounter comparing the behavior of the system using the
DP entry time distribution against the TCAS logic. Figure 4 shows the entry time dis-
tribution computed using the three methods of Section 5.3 at the first alerting point
(t = 17 s) of the DP logic in the example encounter.

Seventeen seconds into the encounter, the DP logic issues a descend to pass below
the intruder. The expected cost to go for issuing a descend advisory is approximately
0.00928, lower than the expected cost to go for issuing a climb advisory (0.0113) or
for not issuing an advisory (0.00972). The DP entry time distribution at this time has
a conditional mean E[τ | τ < 40 s] of approximately 12.01 s, and a considerable por-
tion of the probability mass (∼40%) is assigned to τ ≥ 40 s. The Monte Carlo entry

96 M.J. Kochenderfer and J.P. Chryssanthacopoulos

time distribution, in comparison, has less support but a comparable conditional mean
of 17.12 s. Only 15% of the probability mass is concentrated on τ ≥ 40 s. The point
estimate of τ using the simple method is 21.65 s.

After the descend advisory is issued, the intruder begins to increase its descent, caus-
ing the DP logic to reverse the descend to a climb 20 seconds into the encounter. The
pilot begins the climb maneuver three seconds later. Once the aircraft are safely sep-
arated, the DP logic discontinues the advisory at t = 31 s. The minimum horizontal
separation is 342 ft, at which time the vertical separation is 595 ft. No conflict occurs.

TCAS initially issues a climb advisory four seconds into the encounter because it an-
ticipates, using straight-line projection, that by climbing it can safely pass above the in-
truder. Nine seconds later, when the own aircraft is executing its climb advisory, TCAS
reverses the climb to a descend because it projects that maintaining the climb will not
provide the required separation. TCAS strengthens the advisory three seconds later, but
fails to resolve the conflict. The aircraft miss each other by 342 ft horizontally and 44 ft
vertically. Although the TCAS logic alerts earlier and more often, the DP logic still
outperforms it in this example encounter.

C
lim

b

D
es

ce
nd

In
cr

ea
se

de
sc

en
t

D
es

ce
nd

C
lim

b

−40 −20 0 20 40

4.2

4.4

·104

Time (s)

A
lti

tu
de

(f
t)

DP logic
TCAS logic
No logic
Intruder

Fig. 3. Example encounter comparing the system with the DP entry time distribution against
TCAS

6.3 Performance Evaluation

Table 4 summarizes the results of simulating the DP logic and the TCAS logic on one
million encounters generated by the model of Section 5. The table summarizes the
number of conflicts, alerts, strengthenings, and reversals.

As the table shows, the DP logic can provide a much lower conflict rate while sig-
nificantly reducing the alert rate. The Monte Carlo entry time distribution results in a
greater number of conflicts, but it alerts less frequently than the other methods. Increas-
ing the number of samples used generally improves performance but increases online

Collision Avoidance Using Partially Controlled Markov Decision Processes 97

0 10 20 30 ≥ 40
0

0.2

0.4

0.6

0.8

1

τ (s)

Pr
ob

ab
ili

ty

DP
MC
Simple

Fig. 4. Entry time distribution computed using dynamic programming (DP), Monte Carlo (MC),
and the simple (Simple) methods at t = 17 s

computation time. The DP logic using the simple point estimate of τ resolves all but one
conflict while rarely reversing or strengthening the advisory, but alerts more frequently
than Monte Carlo.

Table 4. Performance Evaluation

DP Logic (DP Entry) DP Logic (MC Entry)

Conflicts 2 11
Alerts 540,113 400,457
Strengthenings 39,549 37,975
Reversals 1242 747

DP Logic (Simple Entry) TCAS Logic

Conflicts 1 101
Alerts 939,745 994,640
Strengthenings 26,485 45,969
Reversals 129 193,582

6.4 Safety Curve

The results of Section 6.3 considered the performance of the system optimized using
the fixed event costs of Table 2. Figure 5 shows the safety curves for the DP logic and
TCAS when different parameters are varied.

The DP logic safety curves were produced by varying the cost of alerting from zero
to one while keeping the other event costs fixed. Separate curves were produced for the
three methods for estimating the entry time distribution. The upper-right region of the
plot corresponds to costs of alerting near zero and the lower-left region corresponds to
costs near one.

98 M.J. Kochenderfer and J.P. Chryssanthacopoulos

The safety curve for TCAS was generated by varying the sensitivity level of TCAS.
The sensitivity level of TCAS is a system parameter of the logic that increases with
altitude. At higher sensitivity levels, TCAS will generally alert earlier and more aggres-
sively to prevent conflict.

The safety curves show that the DP logic can exceed or meet the level of safety pro-
vided by TCAS while alerting far less frequently. The safety curves can aid in choosing
an appropriate value for the cost of alerting that satisfies a required safety threshold.

Figure 5 also reveals that the DP and Monte Carlo methods for estimating τ offer
similar performance and that they both outperform the simple method, especially when
the cost of alerting is high and the logic can only alert sparingly to prevent conflict. In
the upper-right region of the plot, the three methods are nearly indistinguishable.

0 0.2 0.4 0.6 0.8 1

0.96

0.98

1

Pr(alert)

P
r(

sa
fe
)

DP
MC
Simple
TCAS

Fig. 5. Safety curves. Each point on the curves was estimated from 10,000 simulations.

7 Conclusions and Further Work

This paper presented a method for solving large MDPs that satisfy certain assumptions
by decomposing the problem into controlled and uncontrolled subproblems that can
be solved independently offline and recombined online. The method was applied to
airborne collision avoidance and was compared against TCAS, a system that was under
development for several decades and has a proven safety record.

The experiments demonstrate that the collision avoidance logic that results from
solving the MDP using the method presented in this paper reduces the risk of collision
by a factor of 50 while issuing fewer alerts than TCAS in the simulated encounters. The
system reverses less than 1% of the time that TCAS reverses, and the system strength-
ens less frequently as well. It should be emphasized that further simulation studies using
more realistic encounter models are required to quantify the expected performance of
the DP logic [16].

Collision Avoidance Using Partially Controlled Markov Decision Processes 99

Real collision avoidance systems have imperfect sensors, which results in state
uncertainty. TCAS currently relies on radar beacon surveillance, which results in some-
what significant uncertainty in the intruder bearing. When state uncertainty is signifi-
cant, the uncertainty must be taken into account when choosing actions. With a sensor
model, the problem may be transformed into a partially observable Markov decision
process (POMDP) and solved approximately using various methods [7,24,17].

Another area of further research involves introducing coordination between aircraft.
If both aircraft have a collision avoidance system on board, then safety can be enhanced
by coordinating their maneuvers. If either the sensor measurements are perfect or the
communication between aircraft is perfect and unlimited, then the problem can be mod-
eled as a larger MDP. Otherwise, the problem turns into a Decentralized POMDP (Dec-
POMDP), which are, in general, impractical to solve exactly [2]. Further research will
investigate the performance of MDP-derived policies and strategies for leveraging the
structure of the problem to reduce the complexity of finding an acceptable solution.

Acknowledgements. This work is the result of research sponsored by the TCAS Pro-
gram Office at the Federal Aviation Administration. The authors appreciate the support
provided by the TCAS Program Manager, Neal Suchy. This work has benefited from
discussions with Leslie Kaelbling and Tomas Lozano-Perez from the MIT Computer
Science and Artificial Intelligence Laboratory.

References

1. Bellman, R.E.: Adaptive control processes: A guided tour. Princeton University Press (1961)
2. Bernstein, D.S., Zilberstein, S., Immerman, N.: The complexity of decentralized control of

Markov decision processes. In: Conference on Uncertainty in Artificial Intelligence, pp. 32–
37. Morgan Kaufmann (2000)

3. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. 1. Athena Sci-
entific, Belmont (2005)

4. Bilimoria, K.D.: A geometric optimization approach to aircraft conflict resolution. In: AIAA
Guidance, Navigation, and Control Conference and Exhibit, Denver, Colo. (2000)

5. Carpenter, B.D., Kuchar, J.K.: Probability-based collision alerting logic for closely-spaced
parallel approach. In: AIAA 35th Aerospace Sciences Meeting, Reno, NV (January 1997)

6. Chamlou, R.: Future airborne collision avoidance—design principles, analysis plan and al-
gorithm development. In: Digital Avionics Systems Conference (2009)

7. Chryssanthacopoulos, J.P., Kochenderfer, M.J.: Accounting for state uncertainty in collision
avoidance. Journal of Guidance, Control, and Dynamics 34(4), 951–960 (2011)

8. Chryssanthacopoulos, J.P., Kochenderfer, M.J., Williams, R.E.: Improved Monte Carlo sam-
pling for conflict probability estimation. In: AIAA Non-Deterministic Approaches Confer-
ence, Orlando, Florida (2010)

9. Davies, S.: Multidimensional triangulation and interpolation for reinforcement learning. In:
Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing
Systems, vol. 9, pp. 1005–1011. MIT Press, Cambridge (1997)

10. Dowek, G., Geser, A., Muñoz, C.: Tactical conflict detection and resolution in a 3-D airspace.
In: 4th USA/Europe Air Traffic Management R&D Seminar, Santa Fe, New Mexico (2001)

11. Duong, V.N., Zeghal, K.: Conflict resolution advisory for autonomous airborne separation in
low-density airspace. In: IEEE Conference on Decision and Control, December 10-12, vol. 3,
pp. 2429–2434 (1997)

100 M.J. Kochenderfer and J.P. Chryssanthacopoulos

12. Eby, M.S., Kelly, W.E.: Free flight separation assurance using distributed algorithms. In:
IEEE Aerospace Conference, March 6-13, vol. 2, pp. 429–441 (1999)

13. Khatib, O., Maitre, J.F.L.: Dynamic control of manipulators operating in a complex envi-
ronment. In: Symposium on Theory and Practice of Robots and Manipulators, pp. 267–282.
Elsevier, Udine (1978)

14. Kochenderfer, M.J., Chryssanthacopoulos, J.P.: A decision-theoretic approach to developing
robust collision avoidance logic. In: IEEE International Conference on Intelligent Trans-
portation Systems, Madeira Island, Portugal (2010)

15. Kochenderfer, M.J., Chryssanthacopoulos, J.P., Kaelbling, L.P., Lozano-Perez, T.: Model-
based optimization of airborne collision avoidance logic. Project Report ATC-360, Mas-
sachusetts Institute of Technology, Lincoln Laboratory (2010)

16. Kochenderfer, M.J., Edwards, M.W.M., Espindle, L.P., Kuchar, J.K., Griffith, J.D.: Airspace
encounter models for estimating collision risk. Journal of Guidance, Control, and Dynam-
ics 33(2), 487–499 (2010)

17. Kurniawati, H., Hsu, D., Lee, W.: SARSOP: Efficient point-based POMDP planning by ap-
proximating optimally reachable belief spaces. In: Robotics: Science and Systems (2008)

18. Kuwata, Y., Fiore, G.A., Teo, J., Frazzoli, E., How, J.P.: Motion planning for urban driv-
ing using RRT. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sepember 22-26, pp. 1681–1686 (2008)

19. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Tech. Rep.
98-11, Computer Science Department, Iowa State University (October 1998)

20. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality.
Wiley, Hoboken (2007)

21. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley series in probability and mathematical statistics. Wiley, New York (1994)

22. RTCA: Minimum operational performance standards for Traffic Alert and Collision Avoid-
ance System II (TCAS II), DO-185b. RTCA, Inc., Washington, D.C. (June 2008)

23. Saunders, J., Beard, R., Byrne, J.: Vision-based reactive multiple obstacle avoidance for mi-
cro air vehicles. In: American Control Conference, June 10-12, pp. 5253–5258 (2009)

24. Smith, T., Simmons, R.G.: Point-based POMDP algorithms: Improved analysis and imple-
mentation. In: Uncertainty in Artificial Intelligence (2005)

25. Temizer, S., Kochenderfer, M.J., Kaelbling, L.P., Lozano-Pérez, T., Kuchar, J.K.: Collision
avoidance for unmanned aircraft using Markov decision processes. In: AIAA Guidance, Nav-
igation, and Control Conference, Toronto, Canada (2010)

26. Yang, L.C., Kuchar, J.K.: Prototype conflict alerting system for free flight. Journal of Guid-
ance, Control, and Dynamics 20(4), 768–773 (1997)

	Collision Avoidance Using Partially Controlled Markov Decision Processes

	Introduction
	Related Work
	Markov Decision Processes
	Partial Control
	Assumptions
	Controlled Subproblem
	Uncontrolled Subproblem
	Online Solution

	Airborne Collision Avoidance System
	Assumptions
	Controlled Subproblem
	Uncontrolled Subproblem

	Results
	Encounter Initialization
	Example Encounter
	Performance Evaluation
	Safety Curve

	Conclusions and Further Work
	References

