
Self-Organizing Logistics Process Control:
An Agent-Based Approach

Jan Ole Berndt

Center for Computing and Communication Technologies (TZI)
Universität Bremen, Am Fallturm 1, 28359 Bremen, Germany

joberndt@tzi.de

Abstract. Logistics networks face the contradictory requirements of achieving
high operational effectiveness and efficiency while retaining the ability to adapt to
a changing environment. Changing customer demands and network participants
entering or leaving the system cause these dynamics and hamper the
collection of information which is necessary for efficient process control. Decen-
tralized approaches representing logistics entities by autonomous artificial agents
help coping with these challenges. Coordination of these agents is a fundamental
task which has to be addressed in order to enable successful logistics operations.
This paper presents a novel approach to self-organization for multiagent system
coordination. The approach avoids a priori assumptions regarding agent charac-
teristics by generating expectations solely based on observable behavior. It is for-
malized, implemented, and applied to a logistics network scenario. An empirical
evaluation shows its ability to approximate optimal supply network configura-
tions in logistics agent coordination.

1 Introduction

Logistics plays a major role in globalized economy. Industrial production and trade
require efficient and reliable supply networks. Growing interrelations between these
networks and the inherent dynamics of the logistics domain result in a high complex-
ity of global supply processes [9]. The application of conventional centralized planning
and control approaches to these processes suffers from that complexity. Therefore, de-
centralized methods become necessary which employ autonomous actors representing
logistics entities and objects [10].

From the artificial intelligence point of view, these autonomous entities can be repre-
sented by intelligent software agents to model logistics networks as multiagent systems
(MAS). These systems enable simulations, evaluations, and actual implementations of
new approaches in autonomous logistics [17].

In order to develop the aforementioned approaches, coordination and cooperation of
autonomous entities is a challenging task. In the logistics domain, coordination faces the
contradictory requirements of achieving high operational efficiency while retaining the
system’s ability to adapt to a changing environment. On the one hand, supply networks
have to achieve high performance rates concerning asset utilization, cost reduction, and
customer satisfaction. On the other hand, they require flexible and robust structures in
order to react to unforeseen changes caused by the domain’s inherent dynamics.
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Fig. 1. Schematic diagram of a supply network showing all possible relationships between the
participants

This paper presents a novel approach for self-structuring multiagent systems. Sec-
tion 2 further explores the challenges in logistics network configuration and operation.
Section 3 examines agent coordination mechanisms for organizing decentralized be-
havior in logistics networks. Motivated by these considerations, Section 4 introduces
expectation-based self-organization as an adaptive structuring paradigm for multiagent
systems based on sociological theory. That approach is evaluated in Section 5 in a sim-
ulated supply network scenario with regard to coordination effort and logistics perfor-
mance. Finally, Section 6 recapitulates the achievements of this paper in a concluding
summary and gives an outlook on possible future work.

2 Self-Organizing Supply Networks

In order to efficiently solve repeatedly occurring coordination problems in decentralized
systems, organizational structures have to be established [8]. Yet, it is unclear which
kind of structure is applied best, given a particular coordination problem. Consider, for
instance, a logistics network as depicted in Figure 1. In this network, the participants
must choose which subset of the possible relationships between each two tiers (shown
as arrows in the direction of material flows) actually to establish. This decision has to
consider transaction costs (e.g., interaction effort and transportation costs) as well as the
responsiveness and reliability of possible business partners in order to enable efficient
operations within the network.

A supply network can be represented as a graph consisting of logistics entities as its
nodes and their possible business relationships as edges. Establishing an organizational
structure refers to the choice of a subgraph restricting the set of edges to a subset of
all possible ones. An efficient organizational structure furthermore minimizes the actu-
ally instantiated relationships while maximizing the achieved operations outcome with
regard to logistics performance measures.

However, due to the dynamics of logistics processes, conventional design time eval-
uation and optimization of these organizational structures is not sufficient in terms of
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flexibility and robustness. Increasing demands of the final consumers, for example, re-
quire structural modifications in the distribution part of the supply network in order to
fulfill those demands: Additional storage capacity has to be allocated and even com-
pletely new channels of product distribution must be established. Thus, the structures
in that part the supply network must be refined, i.e., additional or alternative options of
business relationships must be instantiated.

This is but an example for the dynamics in logistics that is further aggravated by
the openness of those systems [1]: Not only consumer demand changes as well as un-
foreseen failures of scheduled operations may happen (leading to the need of dynamic
replanning and reallocation of resources), but the logistics market itself may alter. New
competitors as well as new customers may enter, causing further changes in demand,
prices, and requirements of products and services. These developments evoke the neces-
sity for each participant to constantly adapt his relationships to customers and suppliers
in order to secure market shares and to fulfill the customers’ demands. Such an adap-
tion, furthermore, affects other business relationships within the network, requiring an
extended refinement of supply partnerships therein.

Thus, modeling and operating supply networks with multiagent systems requires the
agents’ ability to establish organizational configurations that allow for efficient oper-
ation, while being flexible enough (i.e., alterable) to cope with the dynamics of lo-
gistics processes. Hence, self-organizing MAS become necessary which autonomously
arrange their structure in accordance with dynamically changing conditions. In this con-
text, self-organization is therefore considered as the emergent evolvement and modifica-
tion of organizational structures defining business relationships between supply network
partners.

3 Agent Coordination

In order to be able to autonomously coordinate their activities (e.g., to establish and
operate logistics networks), artificial agents have to interact with each other. For this
purpose, agent communication languages modeling speech acts between the agents are
commonly used [4,5]. Based on these speech acts, a range of interaction and negotia-
tion protocols have been developed which coordinate agent behavior. Patterns of inter-
action reflect relationships between the participants and, thus, express the structure of
the multiagent system. Vice versa, structuring a supply network, modeled as a MAS,
means defining channels and modes of agent communication.

A wide variety of different structuring paradigms for MAS has been proposed [7].
These structures range from strict hierarchies [12] to market-based methods [2]. The
former use centralized decision-making at the top and distributed processing of specific
tasks at the bottom; the latter are completely decentralized and rely on negotiations for
each single task rather than on any middle or long term relationships. These predefined
mechanisms differ in their ability to handle changing conditions as well as in their
necessary effort for coordinating the actions of a network’s members [16]. Therefore,
the expected dynamics of the application domain must be estimated in order to make
use of them.
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However, choosing a prototypical organization approach for a whole network may
not be sufficient. In fact, heterogenous relationships may be required between agents in
different parts of the supply network. Moreover, predetermining agent interaction pat-
terns will necessarily lead to a compromise between efficient operation and adaptive be-
havior: For example, negotiation based interaction paradigms are highly adaptive when
it comes to changing behavior of participating agents (as they allow for determining the
best result under any given conditions). Nevertheless, they lead to a large overhead of
communication and computation effort as every interaction task involves all possible
participants among the agents.

In order to confine the interaction effort [18], a MAS can be subdivided into teams
of agents with similar properties or joint objectives [21,22]. Team building and joint
action among autonomous agents for distributed problem solving includes determina-
tion of potentials for cooperative acts, formation of teams, distributed planning, and the
actual processing of plans [22]. In the logistics domain, team formation methods have
shown benefits in terms of increased resource utilization efficiency while reducing the
communication effort of agents performing similar tasks [17,19].

However, clustering agents in teams usually focuses on short term behavior and
tasks, rather than on middle and long term structures in agent interaction. Furthermore,
team formation processes rely on the exchange of information about agent properties
and goals among the potential team members. Hence, they assume any participating
agents to behave benevolently, i.e., to be trustworthy. In an open system, however,
agents may be confronted with deceitfully behaving participants [13] or others, sim-
ply not willing to share information.

Thus, potential interaction partners in open MAS cannot be assumed a priori to ex-
hibit particular behavioral characteristics. In fact, they appear as black boxes and there-
fore must be observed by the other agents or the system designer in order to determine
their characteristics during runtime of the system. Based on such observations, a struc-
turing approach for MAS has been proposed, using explicit modeling of expectations
concerning communication flows [1,14]. This approach, which is inspired by the soci-
ological theory of communication systems [11], establishes a notion of communicative
agent behavior that is reflected by the modeled expectations.

Feeding those expectations back into the decision-making process of interacting
agents offers a promising foundation for self-structuring MAS, as they reflect other
agents’ characteristics inferred from their observable behavior. Customer demands, for
instance, can be observed from the incoming orders on the supplier’s side. The supplier
can establish expectations regarding the customers’ behavior and subsequently adapt
his own behavior with regard to these expectations. Hence, the system as a whole is
enabled to adapt to implicit characteristics and external impacts by the agents refining
their communication patterns in terms of business relationships, i.e., the system orga-
nizes itself.

To summarize, agent coordination refers to communication processes between these
agents. Prototypical coordination mechanisms lead to a compromise between opera-
tional efficiency and flexibility while dynamic team formation requires additional
behavioral assumptions to overcome this problem. However, the systems-theoretical
perspective of expectations structuring agent interaction (rather than assumptions and
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Fig. 2. Agent decision-making in a feedback loop of behavior observation, expectation, action
selection, and operation

commitments) provides a promising foundation for self-organization as a paradigm for
multiagent coordination.

Nevertheless, in the aforementioned approach [1,14], expectations reflecting and
guiding agent behavior are modeled by the system designer as an external observer.
However, self-organization requires organizational structures to emerge from the sys-
tem’s operations without external intervention; i.e., the mentioned feedback loop must
be closed within the multiagent system. Thus, the next section introduces the notion
of double contingency which describes the emergence of mutual expectations structur-
ing communication flows between agents appearing as black boxes. In the following,
this concept is operationalized in order to demonstrate its ability to enable autonomous
coordination of agent communication systems.

4 Expectation-Based Self-Organization

According to the sociologist Niklas Luhmann, double contingency denotes both the
fundamental problem of social order generation as well as its own solution leading to
the emergence of social order [11, pp. 103–136]. Referring to Parsons and Shils [15], he
points out: Given two entities alter and ego, mutually appearing as black boxes to each
other, ”if alter makes his action dependent on how ego acts, and ego wants to connect
his action to alter’s“ [11, p. 103], they reciprocally block their ability to act at all.

However, the solution to that problem lies in the interdependency of actions, as well.
As soon as alter or ego behave in whatever way, action becomes not only possible, but
social structures emerge from the self-referential circle of mutually dependent activi-
ties. Those structures consist of expectations evolving from, e.g., ego’s observation of
his own actions as well as of alter’s behavior. These expectations, in turn, guide ego’s
selection of subsequent actions. Hence, a feedback loop of observation, expectation,
selection, and operation (action) emerges as depicted in Figure 2.

In the context of multiagent systems, double contingency can be viewed analogically
as the problem of determining interaction opportunities. It also denotes its own solution
through the emergence of expectations guiding agent communication as the fundamen-
tal operation in MAS. As a starting point serves the simulation model by Dittrich et
al. [3]: They simulate and analyze Luhmann’s concept of double contingency in a sce-
nario of two agents interacting with each other by exchanging messages with varying
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content. The agents memorize a certain number of these messages and select their re-
sponse according to expectations calculated from the entries in their memories. That
approach shows the evolvement of stable interaction patterns from the agents’ behavior
under a wide range of parameter conditions [3, sec. 3 and 5].

In an extension of their own model, Dittrich et al. furthermore examine the emer-
gence of social order among an arbitrary number of agents [3, sec. 6]. To this end, they
introduce a random choice of two agents in each simulation step, letting them interact
in the same way as in the basic dyadic setting. Their results show that, for growing
numbers of agents, stable interaction patterns only evolve if alter’s behavior reflects the
average agent behavior within the system and if the agents are able to observe more
pairwise encounters than they are involved in themselves [3].

However, those requirements as well as their abstract model of message contents pre-
vent an application of that approach for self-organization in MAS following
particular purposes. Choosing agent pairs for interaction at random contradicts the ob-
jective of emerging agent relationships which define interaction channels. In fact, self-
organization refers to the systematic choice of interaction partners among the set of all
agents in a MAS in its very core. Thus, that selection must be based on expectations
regarding interaction outcomes. In applied self-organizing MAS (e.g., for modeling
supply networks), the semantics of message contents depending on the respective ap-
plication domain is a crucial factor for the determination of such outcomes. Hence, it
has to be considered when generating agent expectations.

Therefore, in the following, a model of double contingency is developed, based on
the basic approach by Dittrich et al. [3], allowing for the application of self-organizing
coordination of an arbitrary number of agents (Section 4.1). Moreover, the original
model using meaningless messages is enriched with semantics derived from the logis-
tics domain, being compatible with a standard agent interaction protocol (Section 4.2).

4.1 Modeling Double Contingency

In this model, agent operations consist of sending FIPA-ACL compliant messages [5].
Observing them refers to their storage in an agent’s memory which is used to calcu-
late expectations for possible further communicative acts. The observing agent subse-
quently selects its next message to be sent according to these expectations. Thus, an
agent’s communicative behavior exclusively depends on its memorized observations
of other agents’ behavior, avoiding any further assumptions of their internal properties
and characteristics. Hence, the basic steps enabling the agents to self-organize are as
follows.

1. The observation of incoming messages sent by other agents.
2. The selection of messages to be sent to other agents.

An agent’s memory is a vector MEM = (mem1, . . . ,memn) with a fixed length n, where
each entry memi denotes a tuple of messages m ∈ M (M being the set of all possi-
ble messages). The second message is the observed response to the first one: memi =

〈mreceived,i,msent,i〉. An agent possesses two of those memories, MEMego and MEMalter,
storing its own reactions to perceived messages and observed others’ reactions to its
own messages, respectively. Thus, observation takes place when sending a message
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msent by adding it to MEMego together with the last received message mreceived as well
as when receiving a message mreceived by adding it to MEMalter together with the last
message msent the agent sent itself. Each time, a tuple of messages is memorized, if this
would lead to a memory size > n the oldest entry is removed from the memory.

This way to model an agent’s memory is an important modification of that by Dittrich
et al. [3], differing in alter not only being considered one single agent, but the whole
community of agents other than ego. This reflects Luhmann’s understanding of double
contingency as a phenomenon not restricted to an encounter of two individuals, but oc-
curring between systems in a generalized manner [11, pp. 105–106]. Thus, expectations
may well be established regarding the behavior of the whole MAS, considering it as a
social system. The entries in its memory, therefore, reflect an agent’s observations of its
interactions with any of its fellow agents.

Moreover, this interpretation of double contingency between an agent and the whole
agent community allows not only for the content of a message to be selected according
to memorized experience from former agent interactions. In fact, it also enables the
agent to determine a message’s receivers (i.e., the interaction partners) in the selection
process. Hence, the advantages of the dyadic model by Dittrich et al. [3] regarding
structural emergence are retained while avoiding the aforementioned drawbacks of its
extension for an arbitrary number of agents.

In order to calculate expectations from an agent’s memory MEM, the memory access
function lookup : MEM∗ ×M×M −→ [0,1] (with MEM∗ denoting the set of all possible
agent memories MEM) estimates the probability of one message being observed as the
response to another:

lookup(MEM,mreceived ,msent) =
lmreceived ,msent
∑

mj∈M
lmreceived ,mj

(1)

where

lmreceived ,msent =
cM

|M| +
n∑

i=1

n+1− i
n

·
⎧
⎪⎪⎨
⎪⎪⎩

1 if 〈mreceived ,msent〉 ≡ memi ∈MEM

0 else
(2)

Here, ≡ is an equivalence relation on the message tuples 〈M,M〉 × 〈M,M〉. Therefore,
〈mreceived ,msent〉 ≡ memi denotes the pairwise equality of the received and sent mes-
sages, compared to those in memory entry memi, with regard to their performatives,
sets of receivers, and contents. This is the second major modification of the original
model, allowing for considering advanced message semantics (in contrast to the very
abstract message representation by Dittrich et al. [3]). Especially the content of mes-
sages depends on the application domain. Thus, domain dependent equality measures
(e.g., the distinction of orders for different product types) are required. The constant cM

is used to avoid message combinations to be regarded completely impossible in case of
missing observations [3, sec. 9.4]. With mem1 ∈MEM being the most recent observa-
tion, this function uses a linear discount model to reflect the agent gradually forgetting
past observations.

Two kinds of expectations are subsequently calculated for selecting an agent’s next
message. On the one hand, the expectation certainty (EC) denotes an agent’s assured-
ness about which reaction to expect from the MAS following its own message. On the
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other hand, the anticipated expectation (AE)1 reflects an agent’s estimation of other
agents’ expectations towards its own behavior.

The EC is calculated based on a modified version of the standard deviation, estimat-
ing an agent’s certainty over the possible reactions to its next message msent [3, sec. 2.1
and 9.5]:

ECmsent =

√√√ |M|
|M| −1

∑

mj∈M

(
1
|M| − lookup(MEMalter,msent,m j)

)2

(3)

This linear function returns a value of 0 for uniformly distributed probability estima-
tions over the others’ possible reactions to an agent’s message. Contrastingly, the most
inhomogenous distribution of those estimated probabilities leads to a value of 1. Thus,
the function reflects the certainty of the agent expecting a particular response to its mes-
sage. However, note that the lookup of each value for the possible reactions of the MAS
is used with the sent message as its first argument. This is because MEMalter contains
ego’s observations of himself from alter’s perspective. Thus, as ego’s msent is what alter
receives from him, it is treated as the received message in MEMalter.

On the other hand, the AE is calculated directly using the lookup-function as the
estimated probability of the agent’s next message msent in response to the last received
message mreceived [3, sec. 2.1]:

AEmsent = lookup(MEMego,mreceived ,msent) (4)

As MEMego stores all observations of ego’s responses to received messages, Equation 4
reflects ego’s anticipation of alter’s perception of his behavior. Hence, the AE denotes
an agent’s estimation of what is expected from itself by the community of its fellow
agents.

Finally, a weighted sum combines both types of expectations to a selection value V
for each possible next message msent ∈ M. This value represents the potential of a given
message to stabilize the interaction flows within the MAS. High selection values repro-
duce themselves when an agent chooses a corresponding message and thereby feeds it
back into the control loop. This leads to an emergence of interaction patterns (repeat-
edly occurring communication flows between the agents) which represent the social
structures in a MAS. However, differing from Luhmann’s theory and the model by
Dittrich et al. [3], goal-directed agent interaction requires social structures which facil-
itate the fulfillment of the agents’ objectives. Therefore, at this stage, a utility function
utility : M −→�+ is additionally introduced. This function enables V not only to reflect
communicative stability within the system, but also directs the agent’s behavior towards
domain dependent performance criteria. Thus, Vmsent is given by the following equation.

Vmsent = (αECmsent + (1−α)AEmsent ) ·utility(msent)+
c f

|M| (5)

1 Dittrich et al. [3] call this expectation-expectation (EE), literally translating Luhmann’s orig-
inal German term. Luhmann, however, uses anticipated expectation in the English edition of
his main work [11].
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Fig. 3. A simple supply network depicting agent roles and relationships in the logistics domain

The parameter α ∈ [0,1] weights the balance between EC and AE. The constant c f

avoids marginal differences in the weighted sum to cause overly high effects on the
message selection in order to retain an agent’s ability to try out alternative messages,
i.e., to occasionally explore the possibility space [3, sec. 9.1].

Calculating Vmsent for all possible message options msent ∈ M enables an agent to
select its operations (i.e., the messages to be sent) according to its expectations which
are based on observations of its interaction with other agents. As the selection of an
operation leads to further observations, the aforementioned feedback loop is closed.
However, the method of actually choosing an operation in accordance with the calcu-
lated selection values remains to be determined. That method depends on an agent’s
role in the MAS and is introduced in the next subsection.

4.2 Representing the Logistics Domain

When modeling supply network participants as autonomous agents, these agents may
have different capabilities. As shown in Figure 3, they can be classified in primary
producers that produce raw materials without consuming anything, final consumers that
only consume products, and manufacturers that consume materials and semi-finished
parts in order to transform them into new parts and products. Concerning the business
relationships between the entities, it is sufficient to distinguish the agents by their roles
as producers and/or consumers of certain goods (manufacturers acting both as producers
and consumers). Their respective possible relationships as suppliers and customers are
depicted by the edges between the entities in Figure 3 (with the left hand side of an edge
being attached to a supplier and its right hand side being connected to the respective
customer).

These relationships denote possible occurrences of order/delivery processes, that
form the fundamental operations of a logistics system. They are modeled using the
FIPA-REQUEST interaction protocol [6]: An order is placed by sending a REQUEST
message containing a product type and the requested amount of that good to any subset
of the possible suppliers for this product. An answer with the REFUSE or FAILURE
performative is considered a failure to deliver while an INFORM leads to the supplier
agent removing the specified amount of products from its inventory and the customer
adding it to its own one.
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For selecting their messages based on their expectations, the agents have different
objectives, according to their respective roles. These are represented in:

1. An agent’s utility function.
2. The selection method used by an agent.

From a customer’s point of view, there are two objectives. On the one hand, a customer
strives to maximize the number of fulfilled orders to enable continuous product con-
sumption. On the other hand, this role is also responsible for the amount of messages
occurring in the MAS which depends on the number of receivers per message. In order
to ensure a low communication effort, the second objective is to minimize the num-
ber of order receivers. Thus, for calculating the selection values for each message, the
following utility function is employed.

utility(msent) =
1

|rec(msent)| · eor(msent) (6)

In this function, rec(msent) denotes the set of receivers of message msent and eor(msent)
is the estimated order fulfillment rate, calculated as follows.

eor(msent) =
∑

mj∈M

lookup(MEMalter,msent,m j) ·
⎧
⎪⎪⎨
⎪⎪⎩

1 if perf (m j) = INFORM

0 else
(7)

As perf (m j) indicates the performative of message m j, the eor represents the estimated
probability of a positive answer to the given order. Hence, this utility function favors
those orders that have a small number of receivers while having a high estimated prob-
ability to be fulfilled.

Finally, a message msent is randomly chosen out of the set of all possible messages
with a probability based on its selection value. In order to be able to adjust the level of
randomness in this selection, the selection value is further modified by an exponent γ,
allowing for choosing from a range between completely random selection (γ = 0) and
deterministically selecting the maximum value (γ=∞). Therefore, following Dittrich et
al. [3, sec. 2.1] again, selection is done using a probability distribution over all possible
messages msent, calculated as follows.

p(msent) =
Vγmsent
∑

mj∈M
Vγmj

(8)

From a supplier’s point of view, on the other hand, the objectives are easier to represent.
A supplier is assumed to be generally interested in fulfilling an order, if possible. If it
is not possible to fulfill all orders, a supplier prefers to maximize the system’s stability
in terms of predictability of further incoming orders and anticipated expectations of the
customers. In other words, a supplier favors orders by his regular customers as he can
expect them to place further orders in the future and he can anticipate the expectation
of their orders being fulfilled. This setting is directly represented in the weighted sum
of EC and AE. Thus, the supplier’s utility function remains unused (utility(msent) = 1).
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For the choice of a message, the selection value Vmsent is calculated for each answer
msent ∈ M with perf (msent) = INFORM. Starting with the highest selection value, the
messages are processed in descending order. As long as the supplier’s inventory stock
level allows for fulfilling the processed order, an INFORM message is sent. If that is no
longer possible, all subsequent orders are refused.

5 Empirical Evaluation

In order to validate the ability of expectation-based self-organization to efficiently struc-
ture and operate multiagent systems modeling supply networks, that approach will be
compared to the performance of a system with a previously defined communication
structure. For this purpose, the approach is implemented and applied to an example
scenario using the multiagent-based simulation system PlaSMA [20].

5.1 Experimental Setup

In this evaluation, a network with three tiers and three parallel operating entities is
modeled as depicted in Figure 3. Each agent produces and/or consumes an amount of
two units of the product types A and/or B (two A being transformed into two B by the
agents at the manufacturing tier). Furthermore, every agent has an outbound inventory
capacity of four units per product type, restricting the amount of goods that can be
produced and stored by a single logistics entity. The agents acting as customers pursue
a policy of ordering an amount of four units if the respective inventory stock level
reaches six or less.

In the simulation, a message sent by an agent can be received and processed in the
next time slice at the earliest. Therefore, sending an order and receiving the response
takes two simulation cycles. In that time, four units of the required type of products can
be consumed. Thus, the chosen order batch size enables maximal utilization of produc-
tion and consumption processes while requiring minimal outbound storage capacity on
the suppliers’ side. However, the threshold of six units for placing an order enables the
agents at the manufacturing tier to build up inbound safety stocks, allowing for contin-
ued production in case of supply shortfalls and thus compensating disturbances at the
early network tiers.

Knowing these mentioned capabilities of the participating agents, it is easy to pre-
structure this network by choosing an arbitrary bijection out of the possible relationships
between each two tiers. For each order following the mentioned policy, this ensures the
number of receivers being one (the possible minimum) and the supplier to be able to
fulfill that order as soon as enough raw material has been produced in an initialization
phase (as the amount of consumed goods equals that of produced ones). Thus, such
an arrangement of relationships necessarily leads to a maximized operation efficiency
of the modeled supply network using a minimal number of sent messages. Regarding
these objectives, it therefore guarantees optimal results making it especially suitable as
a reference for the self-organizing approach.

However, without prior knowledge of other agents’ capabilities and relationships,
the choice of interaction partners leading to an efficient and reliable network structure
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is not an obvious one. As the possible configurations of message receivers for each
order correspond to the power set of the set of available suppliers (without the empty
set), in a network with n tiers and m parallel actors at each tier, the total number of
potential relationships is (m ·(2m−1))n−1 (the possible communication paths through the
network)2. Thus, in the chosen scenario the self-organizing agents can choose between
441 possible interaction patterns leading to different performance rates. Therefore, in
this simple scenario, agent coordination is already complex enough to make it suitable
for evaluating the emergence of communication structures.

For this purpose, the expectation-based agents are configured as follows. The set
of possible orders to be sent by a customer is given by the possible combinations of
their receivers, their performatives, and their content. As there is only one type and a
fixed amount of units to order per customer, there is only one possible content. The
same holds for the performative, as an order is always a REQUEST message. Thus,
the set of possible orders is determined by the possible combinations of a message’s
receivers (the power set of the set of possible suppliers). For the replies, on the other
hand, the receiver as well as their contents are preassigned by the incoming orders.
Hence, a supplier’s only choice is between the message performatives according to the
FIPA-REQUEST interaction protocol.

For generating the results presented in the following subsection, the constant values
are based on those used by Dittrich et al. [3]: cM = 2 and c f = 0.02. The agent memory
size is set to n = 25 for both MEMego and MEMalter, the balance between EC and AE
to α = 0.5, and the customers’ selection value gain to γ = 3. All agent memories are
initially populated with randomly chosen messages in order to reflect the agents not
having any specific prior information about promising interaction channels.

In order to validate the approach to expectation-based self-organization, it is com-
pared with an optimal configuration as outlined above. The performance is measured
with regard to the number of receivers per order, the final consumers’ customer satisfac-
tion rate (i.e., the number of fulfilled orders), and the utilization of the final consumers’
product consumption. The first two criteria directly reflect the customers’ utility func-
tion. They give information about the communication effort needed to operate the net-
work (message receivers) as well as about the reliability of the emerging relationships
between the agents (customer satisfaction). Thus, these measures reflect the extend of
stability of the evolving network structures. The consumers’ utilization, on the other
hand, is an additional logistics performance measure that allows for validating the sup-
ply network’s overall operating efficiency in terms of product throughput rates.

5.2 Results and Discussion

The results depicted in Figures 4–6 show the number of receivers, the customer satisfac-
tion, and the consumer utilization as average values over 200 simulation runs. Each run
consists of 1000 production and/or consumption operations. For the calculation of the
order fulfillment rate, the last ten messages received are considered for each time slice

2 There are m agents at a tier with 2m−1 possible interaction partners, each. The potential paths
through the network are given by the combination of those options over all n−1 links between
two tiers.
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Fig. 4. Number of message receivers (orders of final consumers)

Fig. 5. Customer satisfaction among the final consumers

Fig. 6. Consumption rate (utilization) among the final consumers

while the utilization is measured over the last ten attempts to consume the respective
amount of products.

For the prestructured reference configuration, Figures 5 and 6 show that there is a
short initialization phase until the inventories of the suppliers are filled high enough to
be able to fulfill the customers’ orders. After that phase, the optimal values are reached
for the order fulfillment rate and the customers’ utilization while the number of receivers
per order is always one by definition (Figure 4).

In the self-organizing network, these levels are not reached completely. However,
the values converge near the optimum, showing that the agents autonomously establish
one to one interaction relationships (Figure 4) that still lead to a near optimal order
fulfillment rate of more than 97% (Figure 5). The process utilization (Figure 6) as a
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logistics performance indicator corresponds to these values. However, it shows slightly
higher fluctuations, which are caused by the agents always ordering the minimal amount
of products. This can lead to supply shortfalls even in the case of only partially refused
orders3.

These results reflect the capability of generating social order as it is observed by Dit-
trich et al. [3] in their original model. Thus, changing their interpretation of a dyadic
encounter between individuals to a more general understanding of double contingency
regarding alter a whole community of entities allows for transferring the properties of
their basic approach to a multiagent scenario. Therefore, an application of expectation-
based self-organization in MAS based on Luhmann’s notion of double contingency is
possible without the requirement for a reduction of interaction to pairwise communica-
tion processes or the need for extended agent observation activities.

Concerning the logistics application, the results demonstrate that the expectation-
based approach to self-organizing agent interaction is not only capable of efficiently
structuring and operating the modeled supply network. In fact, it is even able to estab-
lish an optimal configuration of agent communication channels (one to one relation-
ships), leading to similar performance rates compared to the benchmark arrangement
in the course of the simulation. As the agents occasionally explore alternative inter-
action options, delivery failures occur from time to time, leading to slightly less than
optimal customer satisfaction and utilization rates due to the minimal order size and
inventory capacities. Regarding these measures, safety stocks and increased order sizes
may compensate the disturbances to further improve logistics performance.

To summarize, the feedback loop of agent observation and expectation-based selec-
tion of operations shows the ability to reach near optimal results without the require-
ment for a priori assumptions about agent characteristics4 or repetitive negotiations
between several agents. Due to the dynamics of the logistics domain and the black box
nature of agents in open MAS, it is not generally possible to optimally prestructure a lo-
gistics network. In order to overcome this problem, expectation-based self-organization
provides a promising coordination method for supply systems, being adaptive as well
as operating efficiently.

6 Conclusions

This paper has identified the requirement for both adaptive and efficient supply net-
works. As multiagent systems provide a means for decentralized modeling of logistics
networks, possible coordination techniques have been investigated in terms of their ap-
plicability to address the challenges in supply network organization. In this context,

3 When exploring alternative sets of suppliers, an agent may split its orders over, e.g., two sup-
pliers. If one of the suppliers refuses that order and the other one sends a delivery message,
the production process utilization suffers from a supply shortage. The customer satisfaction,
however, is less affected by this partially refused order. Therefore, the product consumption
varies to a higher extend than the customer satisfaction.

4 In contrast to that, e.g., determining the benchmark configuration requires knowledge of the
agents’ production and consumption rates.
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expectations regarding observable behavior have been presented as a means for dynam-
ically structuring agent relationships, avoiding the necessity of a priori assumptions
regarding agent properties and behavior.

Based on theoretical foundations from sociology [11], a simulation approach to
emerging interaction patterns using expectations has been adapted and generalized to be
applicable in multiagent systems. That method has been evaluated in a supply network
scenario according to coordination efficiency and reliability as well as logistics per-
formance. The results illustrate that self-organized agent coordination based on mutual
expectations is able to establish organizational structures which allow for near opti-
mal performance rates regarding the evaluation criteria. Hence, the approach has been
shown to enable efficient interaction of autonomous entities to emerge solely based on
locally observable agent behavior.

However, there are still questions open for future examination. While the presented
approach performs very well in a stable agent community with repeating interaction
contents (i.e., a static supply network setup), it remains to be analyzed in a setting
with dynamically changing agent memberships and activities. In such a scenario, a
self-organizing network can be assumed to actually outperform a predefined structure
as the latter is not able to adapt to changing conditions. Furthermore, in that context,
an examination of the different parameters’ impact on the predictability and speed
of convergence (learning rate) and the limits of overall performance of the emerging
system structure will give further insights into the capabilities of expectation-based
self-organization. This may motivate further refinements of that approach to agent
coordination.
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