
Model Driven Design of Multiagent Systems

Klaus Fischer, Stefan Warwas, and Ingo Zinnikus

German Research Center for Artificial Intelligence (DFKI) GmbH
Saarbrcken, Germany

{Klaus.Fischer,Stefan.Warwas,Ingo.Zinnikus}@dfki.de

Abstract. In general software engineering modelling of software sys-
tems had a significant impact on the manner in which complex systems
are designed. The Model Driven Architecture (MDA) proposed by the
Object Management Group (OMG) provides a formal framework that
allows to define dedicated modelling languages for different application
domains. Already in the model driven design of service-oriented archi-
tectures one can identify concepts that are common in the design of such
systems and what agent-based systems concerns. To directly use the
MDA framework for the design of multiagent system (MAS) is therefore
an obvious step. In this article we advocate the domain specific modelling
language DSML4MAS for modelling MAS. However, our aim is not to
just define the language, we propose a framework for DSML4MAS that
allows its adaptation and dynamic development in the future. Our vision
is that in the near future model repositories for model fragments that can
be flexibly combined will be established and propose basic concepts that
can support the development of MAS in this context. The interaction
aspect is especially important in MAS design and one of the most obvi-
ous aspects where model exchange and model re-use is highly desirable.
The article therefore presents the interaction aspect in more details and
discusses the features that are available in the DSML4MAS.

1 Motivation

With the success of service-oriented architectures and the ever-growing connec-
tivity of applications in the Internet, agent technologies are becoming even more
attractive than they were in the past. However, many times the system design
not only in agent-oriented applications is tightly bound to the execution envi-
ronment. Although we are far from a state where system engineers would not
care about the technologies deployed in the execution environment, it is clear
that it would be highly desirable to be able to separate system design from such
technologies and with this make it more sustainable regarding the evolution of
software concepts. The model driven architecture proposed by the Object Man-
agement Group (OMG1) provides the basic ideas that can significantly improve
the possibilities to maintain system designs while new technologies emerge or

1 www.omg.org

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 11–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.omg.org


12 K. Fischer, S. Warwas, and I. Zinnikus

already available technologies get adapted to new requirements. Agent technolo-
gies can contribute in this enterprise because they provide helpful abstractions
for the design of complex systems.

In the following we present the ingredients of our approach. Section 2 gives
an overview of the overall approach. In Section 3 we present details of the
PIM4Agents metamodel that forms the core of DSML4MAS. We zoom in on
the interaction aspect of PIM4Agents in Section 4 because this aspect is one of
the most obvious where exchange of models and model fragment among system
engineers is desirable. Section 5 presents uses cases in which we evaluate our
approach and an illustrative example of the use of a concrete interaction model.
Section 6 gives some pointers to related work and Section 7 draws conclusions
and directions for future research.

2 Framework for Model Driven Design of Multiagent
Systems

In this article we adopt a model driven approach to the design of agent-based
systems. The basic ideas of the approach were developed in the EC2 funded re-
search projects ATHENA3 and SHAPE4 and are now further developed in the
EC funded research project COIN5. The main achievement in this approach is
the definition of the domain specific modelling language DSML4MAS6 [7]. The
metamodel PIM4Agents forms the core of DSML4MAS. From PIM4Agents we
derive our modeling tool which is built on the Eclipse EMF/GMF technology
stack [19]. However, we do not only aim at just providing the modelling lan-
guage and tool support. What we want to come up with is a framework that
allows to extend and refine the core metamodel by additional or more special-
ized concepts. For this the metamodel is separated into different parts that deal
with specific concerns of the design of a multiagent system. We refer to these
parts of the metamodel that form separate meaningful entities with the term
aspect. The idea is to provide a framework that allows to specifically design and
flexibly adapt the different aspects. This approach allows to extend the core of
the metamodel by pluging in different realizations of the foreseen aspects. We
further distinguish between the aspects into which the metamodel is separated
and the different viewpoints that are supported by the modelling tool. A view-
point in the modelling tool is defined by a diagram that displays a collection of
concepts and how they relate to each other. Additionally, a tool box that allows
to manipulate the concepts in the diagram is provided, e.g. add or delete new
instances of a specific concept or introduce additional relations. The overall goal
is to allow both a flexible definition of the aspects in the metamodel as well as
a flexible definition of viewpoints in the modelling tool.

2 European Commission.
3 http://www.modelbased.net/aif/
4 http://www.shape-project.eu/
5 http://www.coin-ip.eu/
6 http://sourceforge.net/projects/dsml4mas/

http://www.modelbased.net/aif/
http://www.shape-project.eu/
http://www.coin-ip.eu/
http://sourceforge.net/projects/dsml4mas/


Model Driven Design of Multiagent Systems 13

Fig. 1. Framework overview

As already mentioned, the core of our model-driven framework for developing
multiagent systems is the PIM4Agents metamodel. PIM4Agents is independent
of a concrete execution platform but inherently possesses different degrees of ab-
straction (see Figure 1). The requirements layer is the most abstract degree and
covers abstract goals, roles, interactions, and organizations. The system design
degree contains (i) agent types, (ii) behavior templates, (iii) concrete goals, etc.
The lowest degree is the deployment layer which specifies concrete deployment
configurations (e.g. agent instances and resources).

Our aim is to define for DSML4MAS a plugin framework that allows to flex-
ibly extend or completely replace the different foreseen aspects. Additionally to
the idea that parts of the metamodel can be extended by plugins with differ-
ent realizations, we assume that there will be a landscape of metamodels which
share a common sub-set of concepts. It is a quite safe guess that it should be
possible to arrange these different metamodels in a hierarchy of specialization
with a common root. At least the concept of an agent is likely to be part of
any metamodel that people come up with when they want to do modelling of
agent-based or multiagent systems. With a landscape of metamodels in mind,
it is easy to foresee also a landscape of model repositories that hold models
or model fragments according to different metamodels. In this framework col-
laborative modelling can be supported in the sense that system engineers can
store and retrieve models or model fragments to and from model repositories.



14 K. Fischer, S. Warwas, and I. Zinnikus

Fig. 2. Overview of the development environment

Theoretical results (e.g. about the efficiency of a specific model for a specific
auction mechanism) can be directly linked to such models or model fragments.
Model transformations can be used to transform model instances from one meta-
model to another one or into different execution environments as well as to merge
together model fragments from different sources. Figure 2 shows the basic setup
for the DSML4MAS development environment.

3 The PIM4Agents Metamodel

The metamodel PIM4Agents forms the core of the domain specific modelling
language DSML4MAS. The metamodel is structured into different aspects. An
aspect contains a collection of concepts and definitions how these concepts relate
to each other. OCL constraints are used to express semantics. There are two
types of OCL constraints: (i) constraints to compute derived information, i.e.
the value of a specific attribute is derived from values of other concepts and (ii)
integrity constraints, e.g. the value of an integer attribute must be higher than
0 or below a given number.

PIM4Agents supports 12 aspects:

Multiagent System. Describes all basic components the MAS is composed of.
Agent. Describes single autonomous entities, the capabilities they have to solve

tasks and their roles they play within the MAS.
Organization. Describes how single autonomous entities cooperate within the

MAS and how complex organizational structures can be defined.
Role. Definines the requirements an agent should fulfull when it wants to engage

in an organizational structure.
Interaction. Describes how the interaction between autonomous entities or or-

ganizations takes place.
Behavior. Describes how plans are composed by complex control structures

and simple atomic tasks.
Information. Contains any kind of resource that is dynamically created, shared,

or used by agents or organizations.



Model Driven Design of Multiagent Systems 15

Deployment. Allows to define a MAS at instance level that can be used for
startup.

Goal. Explicit representation of a goal hierarchy in form of an and/or tree
representation.

Event. A stimulus the agents can react to.
Environment. Allows the agents to sense information from the outside envi-

ronment and to manipulate the outside environment with actuators.
Resource. Was introduced to connect agents with a service-oriented environ-

ment.

Fig. 3. The Multiagent System Aspect in PIM4Agents

Fig. 3 shows the MAS aspect which includes all major concepts a MAS is
composed of. Out of these we want to briefly discuss the following: Agent, Or-
ganization, Role, Interaction, and Behavior.

Fig. 4. The Agent Aspect of PIM4Agents

An agent (see 4) has behaviors that may be grouped to capabilities which
together with the information in the information model allow the agent to achieve
its goals. The agent might perform roles in an organizational structure.

An organization (see 5) is in the first place composed of roles. The agents that
actually perform these roles are grouped together in concrete collaborations to
be able to achieve the organization’s goals. DomainRoles allow a renaming of role



16 K. Fischer, S. Warwas, and I. Zinnikus

Fig. 5. The Organization Aspect of PIM4Agents

Fig. 6. The Role Aspect of PIM4Agents

Fig. 7. The Behavior Aspect of PIM4Agents

types of the organization in collaborations. Actor bindings bind the DomainRoles
to the interactions which are used in the collaboration to prescribe how an
interaction has to be performed when the involved agents work towards a given
goal.



Model Driven Design of Multiagent Systems 17

Roles (see 6) are responsible for specific goals and require capabilities from
the agents performing the goals that allow the agents to actually successfully
achieve the goals the role is responsible for. Roles can be specialized and can
be in conflict with each other, meaning that an agent that performs one role
might not be allowed to perform a specific other role. DomainRoles and Actors
are specialization of the more general role concept.

Figure 7 displays the Behavior aspect of the PIM4Agents metamodel. A be-
havior for an agent is specified by a plan. Each plan is composed of a trigger
event, a pre-condition, a post-condition, and a set of activities. Activities can
be complex patterns like for examples loops or simple tasks. Flows provide a
sequencing among the activities. Special tasks (i.e. BeginTask and EndTask)
mark for a diagram where the execution of the plan starts and where it ends.
The intended semantics is that when an event arises within the agent’s body
that matches the trigger event, the preconditionObject is checked. If this Ob-
ject returns with true, the execution of the body (i.e. the set of activities) is
started at the BeginTask. Execution of the plan body ends when an EndTask is
encountered. It is assumed that the postconditionObject evaluates to true when
the execution of the plan body terminates.

4 Taking a Closer Look at Interactions

Regarding the design of agent interactions we take for the discussion in the
article a restricted point of view. We purely concentrate on what we call contract-
based interactions. This means that we assume that for the interactions which
we want to take into account a predefined contract exists which the agents
use when performing the interaction. The definition and analysis of interaction
protocols like the Contract Net Protocol (see below) is complex and therefore
it is beneficial if system engineers can flexibly adopt interaction protocols that
are well understood. The approach presented in this article allows to set up
repositories for model fragments (e.g. interaction protocols) and adopt them in
separate designs of multiagent systems by transforming the model fragments into
representations that can be directly included into the local design (e.g. capability
specifications of individual agents).

To make the discussion in this article not too complicate we assume that all
models are defined at design time of the system and then purely used at run time.
System dynamics is purely restricted to instance level and does not include type
level. However, this still allows dynamic assignment of agent instances to roles.
How this role assignment is actually done is out of the scope of this article. We
assume that an agent that was assigned to take a specific role on the one hand will
always try its best to fulfil the obligations the role is asking for and also provides
in principle all capabilities the role is asking for. At run time no explicit checks
are done on whether such requirements are actually met. We assume that if such
checks would be done they would be performed at type level at design time.



18 K. Fischer, S. Warwas, and I. Zinnikus

Fig. 8. The Interaction Aspect of PIM4Agents

Regarding the metamodel definitions the Interaction aspect (see Figure 8)
is one of the most complex in the PIM4Agents metamodel. However, the most
important concepts to understand are: Protocol, Actor, MessageFlow, and Mes-
sageScope. The protocol is actually the core concept that defines an interac-
tion. The reason to not directly replace the concept of interaction with the
concept protocol is that protocols are intuitively understood as message based
interactions and we want to be open to allow in future work other forms of
interaction, too.

A protocol is in the first place composed of a set of actors. For each actor a set
of message flows defines the different states in which the interaction could end up.
Message scopes connect two message flows of two different actors. An attribute
tells whether the message flow has a fork operator (i.e. it sends a message)
or a join operator which means that the message flow receives a message. The
message scope refers to the concrete message that is sent from the sender (actor)
to the receiver (actor). In each actor exactly one message flow is marked as initial
message flow which means that the protocol execution will start for this actor
in the state that is defined by this message flow. However, in the whole protocol
there is only one actor for which the initial message flow has a forkOperator
(i.e. the initial message flow sends a message). We call this message flow start
message flow of the protocol.



Model Driven Design of Multiagent Systems 19

Fig. 9. The Contract Net Protocol

The core part of the contract the agents use for interaction is given with a
protocol. Figure 9 shows the diagram for the Contract Net Protocol7 [5]. In this
protocol a manager agent tries to find an agent in a group of bidders that is
selected to provide a specific service for the manager. We present some more
details on the usefulness of this protocol in Section 5. The building blocks for
protocols are (i) actors, which might be separated into sub-actors, (ii) message
flows, and (ii) and messages. Actors refer to the participants of the protocols.
Role bindings are used to define the requirements to agent types that actually
could take the part of a specific actor in a protocol. Message flows mark specific
states in the protocol execution. If a message flow has more then one exiting arc
exactly one of these arcs can be chosen to continue protocol execution, which
means that the outgoing arcs have an xor semantics. An additional assumption
is that each message flow that receives a message spawns of an achieve goal
event, where the abstract goal’s name is derived from the name of the incoming
message which is by definition unique, i.e. a message flow can receive at most
one message. To achieve such an abstract goal might turn out to be a complex
process within the agent and might very well involve the interaction with other
agents which are then, behind the scenes, again organized by using contracts.
Messages are defined by message types.

With these conventions the behavior that an agent needs to comply to when it
engages in a specific interaction is defined in the protocol description. However,
the protocol specifies the communication behavior only. All capabilities that are
available from the agent’s body are addressed by spawning off achieve goal events
and the only direct body capability the protocol itself relies on is that the agent
is able to send the messages according to the specified message types. In this

7 Please do not confuse the name of the Contract Net Protocol with what we call
contract based communciation. The dual use of the term contract is basically pure
chance.



20 K. Fischer, S. Warwas, and I. Zinnikus

Fig. 10. Basic Communication Pattern

sense the specification of the interaction among the agents is a choreography of
the capabilities of the agents that are involved in the interaction.

When it comes to executing the protocol at run time one has at least two
options to choose from. In the first option the interaction protocol would be di-
rectly interpreted by a protocol interpreter that is included in the agents’ bodies.
In the second option the protocol is transformed into local behaviors for each
of the participating agents which can be directly executed in some execution
environment. The first option is more flexible but the second option is easier to
implement. For this reason we use the second option. This has also the advantage
that the local behavior can be produced with a model-to-model transformation
at the PIM4Agents level which means that the resulting behaviors can be trans-
formed into all different execution environment for which a transformation of
PIM4Agents models is available. We therefore do not interpret the protocol
model directly but transform the protocol model at design time into capabili-
ties that provide the respective communication behavior that is required by the
contract to which the protocol belongs. To achieve this a separate capability is
generated from the protocol model for each of the given actors. We can iden-
tify a basic pattern which allows to already design a large number of different
protocols (at least regarding those which are explicitly represented by models
at design time). This basic pattern is displayed in Fig. 10. It always starts with
one actor sending a message to another actor and then waiting for all answers
to this message.

Behind all actors of a protocol any number of agent instances might be hiding
except for the actor that contains the start message flow. Only one individual
agent is allowed to play the role that is connected to this actor. Only the start
message flow actually sends multiple messages to all agent instances hiding be-
hind the actor that receives this message. All subsequent messages are exchanged
in a bilateral manner. However, this means that the start message flow spans
off a set of parallel interaction threads. For some protocols it is necessary to
synchronize (see Fig. 11) these interaction threads. For example in the Contract
Net Protocol ([5] see Fig. 9) the manager has to wait till all bidders have replied



Model Driven Design of Multiagent Systems 21

Fig. 11. Synchronization between parallel execution threads

to the call for proposals or some specified deadline has passed. Only then the
protocol can proceed and the best bidder be selected. To define this kind of
synchronization at the modelling level we provide the following concepts:

– For each protocol instance in each actor we maintain a context in which the
state of the ongoing protocol execution can be maintained.

– In the protocol context we maintain a table which allows us to find for each
message sent all replies that have been received so far.

– Message flows can be marked as synchronized. A condition specifies what
needs to happen before the synchronization is successfully achieved. Such a
condition can be that a specific number of replies has been received or that a
specific event (e.g. a timeout) has occurred. All replies to a sent message that
are received after the synchronization was successfully achieved are ignored.

– A special variable MaxMessages in the protocol context gives the number of
how many messages were actually sent in the start message flow.

With this basic machinery it is already possible to design a large number of
complex protocols. A limitation of the presented concepts is that it is not possible
to model protocols where messages are sent out to more than one actor while the
sender waits for the replies to these messages in a concurrent manner. However,
because several agent instances can hide behind an actor the only limitation
is that sending concurrent messages to more than one group of agents hiding
behind one of the actors in the protocol diagram is not possible in one model.
However, because each of the agent instances at any specific stage of the protocol
execution (i.e. a specific message flow), where it receives a message, spawns off
an achieve goal event to produce the message that should be sent next, in the
process of achieving this event can of course again initiate the execution of an



22 K. Fischer, S. Warwas, and I. Zinnikus

interaction protocol. So although this interaction is not visible in the original
protocol diagram, any number of cascading protocol executions can result from
the execution of a specific interaction protocol. To restrict sending of concurrent
messages to the start message flow of an interaction protocol is therefore actually
not a real restriction but enforces structure that reduces complexity.

The interaction protocol describes the interaction among the actors (i.e. the
agents that perform the roles that are bound to the actors) from a centralized
point of view.

To actually describe the model to model transformations from interaction
protocols to local behaviors for individual agents we use operational QVT8.

helper pim4agents::interaction::Actor::collectMsfs () :

Set(pim4agents::interaction::MessageFlow) {

var res : Set(pim4agents::interaction::MessageFlow);

res := self.activeState;

self.subactor->forEach(a) {

res := res->union(a.collectMsfs());

};

return res

}

Fig. 12. Helper of a QVT Transformation

Operational QVT offers two types of procedural concepts. The first straight
forward concept are helpers. Helpers are very similar to methods of an object
oriented language. The helper can be typed and in this case it basically extends
the signature of the concept that is defined in the metamodel and allows compu-
tations that are useful for handling this concept. The definition of the helper also
shows how the concepts in the PIM4Agents metamodel are addressed: first the
metamodel is named, then the package in the metamodel, and last the concept.
In the body of the helper OCL expressions can be used which allow to express
complex computations in a compact manner. The helper in Figure 12 collects
all message flows that are included in an actor in a given interaction protocol.

mapping PIM4Agents::interaction::Actor::toDomainRole () :
PIM4Agents::role::DomainRole {

var msf : Set(pim4agents::interaction::MessageFlow) :=
self.collectMsfs();

var rmsf : Set(pim4agents::interaction::MessageFlow) :=
msf -> select(d|d.isInitialMessageFlow or
((d.forkOperator <> null) and (d.MsfSuccessors(msf)->size() > 0)));

name := ’Role’ + self.name;
providesCapability := rmsf.map toCapability(msf,rmsf);

}

Fig. 13. QVT Mapping Rule, Creation of a Domain Role from an Actor of a Protocol

8 Query view transformation.



Model Driven Design of Multiagent Systems 23

The second procedural concept that operational QVT offers are mappings
(see Figure 13). Mappings look quite similar to helpers, however, there is an
important difference. Mappings result in a link between the entity they are ap-
plied to and the entities they create. This means that a mapping can be called
several times but the structures it creates are only created once and that the
same structure can be mapped to different places (i.e. attributes of concepts)
in the model instance that is produced as a result of the QVT transformation.
In the mapping the variable msf holds all MessageFlows that are contained in
the actor and rmsf is the subset of MessageFlows in the set msf that are con-
sidered relevant. Relevant MessageFlows are those where a message is sent and
an answer is expected. The condition d.forkOperator <> null says that d sends
a message and the helper d.MsfSuccessor(msf) returns the set of message flows
that receive an answer for the message sent in d. This exactly corresponds to the
situation of the actor Sender in the communication pattern shown in Figure 10.
The MessageFlow sending the message would be considered relevant. The four
MessageFlows in the lower part would be returned by the helper MsfSuccessors.
If the communication pattern is only used once in the actors the sending Mes-
sageFlow in the actor Sender and the receiving MessageFlow in the Receiver
would be marked as initial message flows where the former is called the start
MessageFlow.

5 Use Cases

The presented approach for the design of multiagent systems is currently further
investigated and practically used in the research projects ISReal and COIN.

The COIN project investigates collaboration and interoperability for net-
worked enterprises. In this context we use the modelling approach presented in
this article for the design of negotiation processes in enterprise systems. Negoti-
ations occur prominently in business interactions between competing partners,
but also between cooperating partners, e.g. the participants in supply chains
or virtual enterprises. One scenario we are looking at in this work is the situa-
tion in which a production plan for collaborating partners in a supply chain has
already been scheduled. In this setting there are two scenarios for which addi-
tional negotiations could be necessary while a production plan is executed: (i)
for a specific step the service provider (e.g. a transportation service or a supplier
of raw material) has been left open or (ii) it turns out that a pre-negotiated
service provider cannot provide the agreed service. For both scenarios the Con-
tract Net Protocol (see Fig. 9) can be used to organize the negotiation. Services
the manager agent can chose from are registered and published in a general ser-
vice platform (GSP) which provides discovery and invocation support. Services
are semantically annotated using the WSMO/WSML language which facilitates
ad-hoc service provisioning and execution.

In COIN, service provision can be supported at design time and/or at run
time. In the first case, a process modeler can check for available services while
designing the interactions and agent plans. In the second case, when a service



24 K. Fischer, S. Warwas, and I. Zinnikus

provider drops out or e.g. cannot fulfill the required quality of service, a new
service provider can be determined by retrieving a list of candidate services
from the GSP and selecting the best service using the Contract Net Protocol.

The focus of ISReal is the design of agents and multiagent systems in a virtual
reality settings where the agents represented by avatars that form their virtual
bodies. Digital factories are one of the application areas ISReal is aiming at.
The aim of the ISReal project is to develop an execution platform for semantic
3D simulations [8]. The basic idea of ISReal is to add semantic descriptions
to 3D objects and specify their functionality by semantic service descriptions.
Our approach is based on the semantic Web standards OWL9, OWL-S10, and
RDFA11. Agents perceive the annotated facts and service descriptions and use
them for reasoning and planning. The scene runs in a 3D-enabled Web browser
based on XML3D12. We use our model-driven development environment DDE
for engineering the agents that control the avatars (their virtual body) in the
3D scene. Figure 14 depicts the application of an agent interaction protocol in
a 3D simulation. Agent A1’s target is to buy ingredients for the production of
some pills on the pill filling machine shown in the background. The Contract
Net Protocol is used by agent A1 to negotiate with the pharmacy agents A3,
A4, and A5. In Figure 14, agent A5 won the auction.

Fig. 14. Contract Net example in the ISReal scenario

6 Related Work

Communication is an important aspect of agent-based and multiagent systems
and therefore has been intensively investigated. The FIPA13 initiative was origi-
nally founded to produce specifications for software standards for heterogeneous
and interacting agents and agent-based systems. One of the main achievements of

9 http://www.w3.org/2004/OWL/
10 http://www.daml.org/services/owl-s/1.2/
11 http://www.w3.org/TR/rdfa-syntax/
12 http://www.xml3d.org/
13 www.fipa.org

http://www.w3.org/2004/OWL/
http://www.daml.org/services/owl-s/1.2/
http://www.w3.org/TR/rdfa-syntax/
http://www.xml3d.org/
www.fipa.org


Model Driven Design of Multiagent Systems 25

FIPA was a standard proposal for an agent communication language (ACL). [10]
gives and overview of FIPA and related activities. Although FIPA also made pro-
posals for standards for communication protocols14, execution of such protocols
was rather neglected. In his seminal work [16] investigated formal approaches to
protocol design. Declarative methods to describe protocols have the charm that
the formalisms seem to be clean. However, at least in some cases it is a problem
to find out whether protocols can be enacted [6]. More pragmatic approaches do
not face this problems because protocol execution is directly foreseen, however,
conformance to prescribed behavior is a general problem.

While the areas of general software engineering and agent-oriented software
engineering lived for years without much interaction, in recent years the con-
cepts of the two areas have grown significantly together. A good example for
the common interest is the Agent Platform Special Interest Group of the Object
Management Group (OMG) which has the goal to foster OMG specifications
in the agent area. Other examples are the Agent Modelling Language (AML)
[18] a semi-formal visual modeling language for the definition, modeling, and
documentation of systems that adopt agent technologies. AML is defined as
an extension of the Unified Modeling Language (UML15) using the most im-
portant OMG frameworks. Agent UML (AUML) [2] extended UML sequence
diagrams with interaction protocols. Besides agent-based modeling approaches
several methodologies were proposed (e.g. Tropos [15], Prometheus [14,17]) that
provide mechanisms to support the specification, the analysis, and development
of agent-based systems. Additionally proposals for metamodels for agent-based
systems are on the table (e.g. Gaia [20], PASSi [4], and ADELFE [3]).

Protocol projections have been studied already early in the area of verification
of communication protocols (e.g. [11]). Recently, these techniques are also used
in the context of collaborations [12]. More specifically, projections are used for
generating executable business processes and orchestrations from choreography
descriptions (e.g. [13], [9]), restricted to languages for business process modeling.

7 Conclusions

This article presented a framework for the model driven design of MAS. The
framework is built around the domain specific modelling language DSML4MAS.
The core of DSML4MAS is defined by the metamodel PIM4Agents that includes
platform independent concepts for the design of MAS. PIM4Agents is separated
into 12 major aspects for MAS design. The general framework proposes a plugin
architecture where these different aspects can be replaced or refined in a flexible
manner. In the discussion of the PIM4Agents metamodel the article concentrates
on the Interaction aspect because it is an obvious choice when it comes to reuse of
model fragments in MAS design. The design of interaction protocols is complex
and tedious and therefore reuse of well-understood protocols is highly desirable.
The article presents a proposal how the Interaction aspect in DSML4MAS can

14 http://www.fipa.org/repository/ips.php3
15 www.uml.org

http://www.fipa.org/repository/ips.php3
www.uml.org


26 K. Fischer, S. Warwas, and I. Zinnikus

be realized. This approach is pragmatic and procedural with the advantage to
define an operative semantics for the models in the transformation to a specific
execution environment. Further research needs to be done to link the presented
approach with proposals for declarative protocol specifications like for example
presented in [16,6,1].

The main contribution of the work presented in this article aims at the de-
sign of agent-based systems and multiagent systems from a software engineer-
ing perspective. In this work AI aspects are not directly obvious. However, in
matchmaking of queries on model repositories and in the internal reasoning of
the agents AI topics are of course relevant. At least regarding reasoning work on
agent technologies (e.g. the agent development tool JACK) it has been shown
that modelling and reasoning can be brought together. We plan to integrate
these AI aspects more deeply with our approach in future work.

Acknowledgements. The paper is based on work performed in the project
COIN (EU FP7 Project 216256; www.coin-ip.eu) funded by the European Com-
munity within the IST-Programme of the 7th Framework Research Programme.
The authors also thank the contribution from other partners in the COIN con-
sortium.

References

1. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice,
interoperability, and conformance in interaction protocols and service choreogra-
phies. In: AAMAS (2), pp. 843–850 (2009)

2. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying Multi-
agent Interaction. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 91–103. Springer, Heidelberg (2001)

3. Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE: A Methodology
for Adaptive Multi-Agent Systems Engineering. In: Petta, P., Tolksdorf, R., Zam-
bonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer,
Heidelberg (2003)

4. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: From passi to agile
passi: Tailoring a design process to meet new needs. In: Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT
2004, pp. 471–474. IEEE Computer Society, Washington, DC, USA (2004),
http://dx.doi.org/10.1109/IAT.2004.59

5. Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving.
Artificial Intelligence 20(1) (1983)

6. Desai, N., Singh, M.P.: On the enactability of business protocols. In: Fox, D.,
Gomes, C.P. (eds.) AAAI, pp. 1126–1131. AAAI Press (2008)

7. Hahn, C., et al.: A platform-independent metamodel for multiagent systems. Au-
tonomous Agents and Multi-Agent Systems 18, 239–266 (2009)

8. Kapahnke, P., Liedtke, P., Nesbigall, S., Warwas, S., Klusch, M.: ISReal: An
Open Platform for Semantic-Based 3D Simulations in the 3D Internet. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I.,
Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 161–176. Springer,
Heidelberg (2010)

http://dx.doi.org/10.1109/IAT.2004.59


Model Driven Design of Multiagent Systems 27

9. Khadka, R., Sapkota, B., Ferreira Pires, L., van Sinderen, M., Jansen, S.: Model-
Driven Development of Service Compositions for Enterprise Interoperability. In:
van Sinderen, M., Johnson, P. (eds.) IWEI 2011. LNBIP, vol. 76, pp. 177–190.
Springer, Heidelberg (2011)

10. Kone, M.T., Shimazu, A., Nakajima, T.: The state of the art in agent commu-
nication languages. Knowledge and Information Systems 2(3), 259–284 (2000),
http://dx.doi.org/10.1007/PL00013712

11. Lam, S.S., Shankar, A.U.: Protocol verification via projections. IEEE Trans. Soft-
ware Eng. 10(4), 325–342 (1984)

12. McNeile, A.T.: Protocol contracts with application to choreographed multiparty
collaborations. Service Oriented Computing and Applications 4(2), 109–136 (2010)

13. Mendling, J., Hafner, M.: From WS-CDL choreography to BPEL process orches-
tration. Journal of Enterprise Information Management 21, 525–542 (2005)

14. Padgham, L., Thangarajah, J., Winikoff, M.: Tool support for agent development
using the prometheus methodology. In: Proceedings of the Fifth International Con-
ference on Quality Software, QSIC 2005, pp. 383–388. IEEE Computer Society,
Washington, DC, USA (2005), http://dx.doi.org/10.1109/QSIC.2005.66

15. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder intentions to
software agent implementations. In: Conference on Advanced Information Systems
Engineering, pp. 465–479 (2006)

16. Singh, M.P.: Multiagent Systems: A Theoretical Framework for Intentions,
Know-How, and Communications. LNCS, vol. 799. Springer, Heidelberg (1994),
http://www.csc.ncsu.edu/faculty/mpsingh/books/MAS/

17. Thangarajah, J., Padgham, L.: Prometheus design tool. In: The 4th International
Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 127–128
(2005)

18. Trencansky, I., Cervenka, R.: Agent modeling language (aml): A comprehensive
approach to modelling mas. Informatica 29(4), 391–400 (2005)

19. Warwas, S., Hahn, C.: The DSML4MAS development environment. In: Proc. of the
8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
pp. 1379–1380. IFAAMAS (2009)

20. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12(3), 317–370 (2003)

http://dx.doi.org/10.1007/PL00013712
http://dx.doi.org/10.1109/QSIC.2005.66
http://www.csc.ncsu.edu/faculty/mpsingh/books/MAS/

	Model Driven Design of Multiagent Systems

	Motivation
	Framework for Model Driven Design of Multiagent Systems
	The PIM4Agents Metamodel
	Taking a Closer Look at Interactions
	Use Cases
	Related Work
	Conclusions
	References




