
J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 240–254, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Web Service Composition Plans in OWL-S

Eva Ziaka, Dimitris Vrakas, and Nick Bassiliades

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
{evziaka,dvrakas,nbassili}@csd.auth.gr

Abstract. One of the main visions of Semantic Web has been the ability of
software agents to compose atomic web services in order to facilitate the auto-
mation of complex tasks. One of the approaches used in the past in order to
automatically construct composite web services has been AI planning. The most
important advantage of this approach is its dynamic character that reduces the
interference of the user. Although there have been various attempts to utilize
planning algorithms and systems in the composition process, there has been lit-
tle work in the field of converting web service composition plans in OWL-S.
This paper studies the use of two well established standards in expressing plans
and composite web services, namely the Planning Domain Definition Language
(PDDL) and the Ontology Web Language for Services (OWL-S) and suggests a
method for translating the produced PDDL plans of any planning system to
OWL-S descriptions of the final composite web services. The result is a totally
new web service that can later be discovered and invoked or even take part in a
new composition.

Keywords: Web services composition, AI planning, Semantic web services,
OWL-S, PDDL.

1 Introduction

Nowadays, many different systems all over the globe can communicate with each
other through the Internet. The need for supporting interoperability of web applica-
tions so that they can be used by all platforms, no matter their implementation, has led
to web services technology and a new, web-service-oriented way of programming.
This new technology is based on open protocols, such as the XML and the well
known HTTP transfer protocol.

There is often the need to execute more complex tasks that simple web services do
not have the potential to complete on their own. In such cases, simple web services
must cooperate so as to combine their functionalities to create a new complex web
service that will hold the desirable functionality. Semantic information about all the
available atomic web services is very important for their cooperation in web services
composition field, so as to be able to understand the meaning of their inputs and out-
puts and to match them to achieve cooperation.

During the past decade a large number of approaches for composing web services
have been proposed, some fully automated, other partially automated, whereas a lot of
them are even completely manual. A promising way that aims at fully automated web

 Web Service Composition Plans in OWL-S 241

services composition is the use of AI planning technology. Each web service is
represented as a planning operator and the desired composite service’s inputs and
outputs form the initial state and the goals respectively. The plans that arise are
encoded in languages such as PDDL [5] that describe the actions, that is the web ser-
vices, that must be executed and the order of their execution.

The contribution of this paper focuses on the automatic translation of the plans,
expressed in PDDL, to OWL-S descriptions [10] that take advantage of the OWL-S
control constructs and facilitate the automatic invocation of the composite service.
Specifically, information from the PDDL descriptions of the domain, the composition
problem, and the plan is used to create a functional representation of the composition.
This representation describes with a specific syntax the way each atomic web service
is connected to each other in order to produce the final output. In a second phase, this
functional representation is utilized to generate the OWL-S descriptions of the new
composite web service.

In terms of functionality, the method described in this paper is merely based on the
PDDL descriptions of the planning operators and does not explicitly deal with semantic
information of the initial atomic services. Therefore, it can be applied to compositions
arising from both syntactic and semantic matching of inputs and outputs of the atomic
services. However, since the final expression will be encoded in OWL-S language, we
will use the notion of semantic web service throughout the rest of the paper.

In the sections to follow, the relative research field is explored. The suggested
technique is analyzed in detail and some conclusions along with future directions are
given. Specifically, the rest of the paper is organized as follows:

In section 2, the field of automated web services composition using AI Planning
techniques is presented and some studies on the field are exposed. In section 3, the de-
veloped method for translating the PDDL plans to OWL-S descriptions is analyzed.
This section is divided into two sub-sections, reflecting the two phases of the method; in
the first sub-section, the algorithm that creates the functional representation describing
the composition is presented, whereas in the second sub-section, the method for con-
verting this representation to OWL-S description is described. Finally, in the last
section, conclusions of the research so far are given along with some ideas on how the
developed algorithms and the web services composition procedure could be enhanced.

2 Related Work

The process of automated web services composition by the point of view of planning
has been studied extensively. The most important advantage of this approach is the
dynamic character that is offered to the composition process, which reduces a lot the
interference of the user.

One of the most known systems in the field of web services composition via plan-
ning is SHOP2 (Simple Hierarchical Ordered Planner), [15]. It is based on HTN plan-
ning (Hierarchical Task Network) methods [14]. One basic difference between
SHOP2 and the other HTN systems is that it locates all the actions of the plan in the
same order that they will be later executed. In this way, the current state of the system
in every step of the planning procedure is known and inference mechanisms or heuris-
tic techniques can be used to augment the effectiveness and the efficiency of the
whole process.

242 E. Ziaka, D. Vrakas, and N. Bassiliades

The functionality of SHOP2 consists of three basic steps. In the first one, the do-
main is constructed by the process OWL-S files of the available web services. The
atomic services are represented by operators and methods for analyzing the complex
services to simpler ones are constructed. In the second step, the composition problem
is transformed to planning problem. This is realized by describing the problem as an
abstract composite process that need decomposition with the use of methods so as to
obtain simple processes that refer to web services. In the third step, the problem is
solved by decomposing the tasks and creating the plan, i.e. is the description of the
final composite service.

Another technique, analyzed in [12], is based on situation calculus, where the
states are not considered as instances of the environment but as sequences of actions
that were executed in the past and resulted to this state. This technique uses also the
language Golog (alGOL in LOGic), which is based on logic and the problems that are
encoded in it can be solved by methods that use logic. For the appropriate representa-
tion of the planning problem in Golog, the language was extended so as to be able to
contain constraints on the composition process defined by the user. These constraints
in essence reflect the desired outputs. The OWL-S descriptions are used as require-
ments of the processes that must be executed and also as descriptions of the actions
that are provided by the web services. The composition problem is transformed into
the problem of finding the appropriate Golog program that when executed, all the
defined constraints will be satisfied. In the solution process, intelligent agents are
used whom knowledge base contains the preconditions and the results of the services,
encoded in situation calculus terms. The available web services correspond to opera-
tors, primitive or composite. The role of the agents is the inference on the web servic-
es, in order to discover, execute and compose them.

A different and quite simple web services composition method is presented in [18].
It is based on regression in a state space. The algorithms belonging to this category
start from exploring the goals that must be succeeded and seek for the actions that
lead from the goals to the initial state. The method proposed introduces a new struc-
ture called SLM (Semantic Links Matrix) and is a table containing the values of
semantic relevance between the parameters of the web services. For the construction
of this table, the process models and the relative ontologies of the atomic services are
used. Generally, the SLM structure groups the candidate web services based on their
semantic relevance and in the same time provides information on their quality charac-
teristics so as to ease the choice among them. The algorithm begins from the goals,
but because of the SLM structure it does not need to calculate the previous states. In
the step of locating the actions that satisfy the current goals, all the services that have
a positive value in the relevance function are considered as candidates. The best
service is chosen based on the QoS characteristics. The process continues until it
reaches the initial state.

Another approach described in [17] uses model checking techniques for producing
the plan. The algorithm consists of four steps. In the first step, the goal and the initial
states are defined. In the second step, the model of the process on which the checks
will be running is extracted. The web services that could be used for the domain are
automatically detected and the state space where the solution is searched is
constructed. Information on the services is retrieved by the ontologies and is inserted
to the model. In the third step, the search algorithm in the plan space is executed and

 Web Service Composition Plans in OWL-S 243

some plans that satisfy the goals are collected. In the fourth and last step, the best plan
is chosen and is converted in a composite web service, encoded in BPEL.

A system which was developed recently and is analyzed in [6] is the system
PORSCE. The approach is based on transforming the web services composition prob-
lem to a planning problem. The straight forward mapping of these two fields is
exploited and the OWL-S descriptions of the available web services are used to con-
struct PDDL plan files. The initial state is derived by the data given as input to the
final web service by the user, whereas the goals are reflected by the desired outputs.
The operators of the problem correspond to the available atomic web services that can
be used. Their preconditions are mapped to the inputs of the services and theirs results
to the outputs. Simultaneously, the ontologies that are connected to the types of the
parameters of the available web services are used so as for the semantics of the
concepts to be provided. The system starts by representing the composition problem
with planning terms. Then, a solution to the problem is provided by an external plan-
ner, such as LPG-td [3], [4] or JPlan [8], according to the user’s selection. Finally, the
quality of the produced plan is measured based on some quality measures selected by
the user at the beginning of the process and the results are provided to the user. There
is also the possibility of replacing instantly some of the web services in the plan with
other relevant, as they are discovered during the planning process.

Another approach that exploits the similarities between the AI planning and
semantic web services composition research fields is the OWLS-Xplan [9]. This sys-
tem uses the OWL-S descriptions of the available web services, the relevant OWL
ontologies that define the types of the parameters in the descriptions and a planning
query as input. After some preprocessing of the above data and the execution of the
Xplan planning algorithm, the result is a plan describing the sequence of composed
services that satisfies the goals.

The OWLS-Xplan approach consists of two basic parts. The first one is an
OWLS2PDDL converter which converts the OWL-S descriptions along with the
OWL ontologies to the equivalent PDDL domain and problem of the composition.
Specifically, the conversion results to descriptions of the domain and problem in a
XML dialect of PDDL (developed by the authors), referred to as PDDXML, that
simplifies parsing, reading and communicating the descriptions using SOAP. An
atomic operator is directly related to a service profile as they both provide a general
description of their instances, actions and web services, respectively. A complex
action can be linked to a service model that describes how simpler actions should
cooperate to result to the composite one. Finally, the methods used in HTN planning
are related to composite web services and may be used by the planner as a hierarchic-
al task network during the planning process.

The second part of OWLS-Xplan is the developed heuristic hybrid Xplan AI
planner that combines the benefits of the action-based FF-planner [7] with HTN plan-
ning. Xplan always finds a solution, if it exists in the state space, over the space of
possible plans, in contrast to HTN approaches. It combines guided local search with
graph planning and a simple form of hierarchical task networks to produce a plan.
Also, a re-planning component is included to improve flexibility is cases changes
happen in the world during planning, a property well needed in semantic web services
composition field.

244 E. Ziaka, D. Vrakas, and N. Bassiliades

The solution analyzed in [16] also translates the composition problem to PDDL
descriptions and suggests that in this way an appropriate planner could be found each
time according to the problem so as to provide an improved solution. The paper
presents a three step technique for the creation of a composite web service with the
first step being the translation of the OWL-S descriptions and OWL ontologies to
PDDL domain and problem descriptions; the second one is the creation of a plan that
solves the problem with the execution of a planner; the third one is the translation of
the plan to a new OWL-S description of the resulting composite web service. Howev-
er, the paper focuses only on the first step of the procedure. Some assumptions are
made to ease the translation function, such as considering that each atomic process
has either effects or outputs but not both simultaneously. Also, the authors of the
paper do not deal with OWL-S process models that have composite process using
Repeat-While and Repeat-Until or Any-Order and Split-Join constructs. The algo-
rithm proposed, deals separately with the OWL-S process model, the atomic and sim-
ple processes, the sequence, if-then-else, choice and split processes and with the
OWL-S target service description to create the domain and problem descriptions. The
process of choosing the appropriate planner for each problem and the translation of
the plan to OWL-S description of the new service are not elaborated in the paper.

The aforementioned methods tackle the problem of web services composition
using a variety of fully or partially automated techniques. However, they don’t deal
with the task of expressing the resulting composite service in OWL-S, taking advan-
tage of the supported control constructs.

3 Translating PDDL to OWL-S

This section analyzes the method for translating a composite web service expressed in
the PDDL language to the corresponding OWL-S description. The translation
completes in two phases. The first one concerns the extraction of all the required
information from the plan for the creation of a composite web service’s functional
representation. The second is about the conversion of this representation to an OWL-S
description of the resulting composite web service.

3.1 Constructing the Composite WS

The first step in the creation of an OWL-S description based on data derived from a
PDDL plan is the manipulation of these data and their conversion to a composite web
service functional representation. This representation refers to the available simple or
atomic web services and the order in which they should be executed and is structured
using the OWL-S control constructs sequence, split and split-join.

In the following algorithm the functional representation of a composite web service
C is represented as a predicate f(a0,a1,...,an), where f is the control construct used to
describe the composition structure and a0,a1,…,an stand for the simple web services
that participate in the composition. Each ai could be another composite service or, in a
simpler case, an atomic process, which is represented as atomic(ai).

The developed algorithm consists of three general steps, as shown in Fig. 1. The
first step concerns the parsing of the files associated with the composition planning
problem and the extraction of all the information needed in the next steps. In the

 Web Service Composition Plans in OWL-S 245

second step, a web service composition graph is created. The nodes of the graph are
the actions of the plan and the edges are the links that express the order constraints
among the actions. The creation of the graph is based on the information collected
from the previous step. Finally, in the last step, the composite web service functional
representation is formed using the ordering constraints that are extracted from the
composition graph. In the following paragraphs, these three steps are described in
more detail.

Fig. 1. Converting a PDDL plan to a composite web service functional representation

The initial available information is derived from the PDDL domain and problem
files of the composition problem. For the parsing of these files, an external library,
called PDDL4J, [13] is used. The types of information that are required by the transla-
tion process are the following: a) the name of the operator, b) the parameters list, c) the
preconditions list, d) the effects list, e) the initial state and f) the goals of the problem.
Finally, the resulting plan is parsed in order to extract information concerning the ac-
tions of the plan. Exploiting the syntax of this file, information on the actions used can
easily be extracted. The data that are needed in the later steps of the algorithm involve
the timestamp of each action, which is the time step when the action will be executed
and the name, parameters and duration of it. The actions are read in the order that they
are presented in the plan, so the procedure keeps track of this order.

When all these data are retrieved, the procedure continues combining them so as
to create objects representing the steps of the plan. Every step contains the name of
the action that will be executed, the parameters with which the action is called, the
timestamp and duration of the action, the operator from which the action is derived,
the substitution imposed on the operation, the list of preconditions that must hold
for the action to be executed and the list of the effects, the facts that will change due
to the execution of the action.

The second step creates the web service composition graph. The nodes list is iden-
tical to the list of actions of the plan. In essence, the contribution of this step is the
computation of the edges, that is, the links between the actions. The general idea is to
traverse all the actions and locate cases where one precondition of an action matches
one effect of another. This ought to happen in theory because of the causal links that

246 E. Ziaka, D. Vrakas, and N. Bassiliades

are present among the actions of the plan, which imply that the preconditions of the
later actions will appear as effects of other previous actions. An order constraint link
is then created between the two actions.

Algorithm 1 (Graph): Computes the web services
composition graph
Inputs: P = {a0,a1,…,an}, the plan
Output: G = (P,E), web services composition graph

E = ∅

for i = n down to 1

 for each c ∈ prec(ai)
 for j = i-1 down to 0

 for each p∈ add(aj)
 if (c = p)

 E = E U {(aj,ai)}

return G = (P,E)

The algorithm that discovers such kinds of links is called Graph and starts from the

last elements of the action list. Each one of its preconditions is then examined so as to
discover a previous action in the plan that produces this fact. This means to discover
an action that contains this fact in its effect list. So, another loop is needed to access
all the previous possible producers of this imminent link. When such a previous
action is found, a link is created among the two actions. This link illustrates an order
constrain and ensures that the action that produces the fact will be executed before the
one that consumes it in its preconditions list.

A simple example of the above procedure is depicted in Fig. 2. In this example there
are two actions in the plan, the actions Drop Ball B with which a robot puts down the
ball B and the action Grab Ball A that results in a state where the robot is holding the
ball A. The algorithm examines first the action Grab Ball A and loops on its precondi-
tions. In this case there is only one precondition, declaring that for executing this action,
the robot’s gripper must be free. So, somewhere in the plan there should be an action
that realizes this fact. Exploring the previous actions of the plan, the algorithm confronts
the action Drop Ball B and matches the fact under consideration with the second result
of this action. Automatically, an order constraint link is created between the two actions
meaning that the robot should definitely perform first the action Drop Ball B so as to be
able then to perform the action Grab Ball A.

Fig. 2. Example on discovering links

 Web Service Composition Plans in OWL-S 247

When all the edges and the corresponding order constraints are discovered in the
plan, the procedure can continue and exploit these relationships in order to construct a
composite web service functional representation that illustrates in a more formal way
how the actions of the composite service relate to each other. This representation is
built upon the control constructs that OWL-S uses to describe the different possible
connections between web services. In the algorithm we use three basic control
constructs: sequence, split and split-join. The control sequence declares that all its
members should be executed in the exact order they appear. The control split is used
to describe cases of parallel execution of web services. The last control, split-join,
describes the case where a split occurs in the plan and the parallel executions connect
again in a next step in one web service. It is important that the web services that
happen to be last in the parallel executions, have to synchronize their outputs to
supply the web service following the connecting point with the sufficient inputs.

The general algorithm that constructs the composite web service’s functional
representation consists of 2 basic steps, presented in Algorithm 2 (Basic) and Algo-
rithm 3 (Join). Before the execution of these algorithms, a manipulation of the data
gathered so far is needed. First, the order constraints list is reduced by removing all
the constraints not needed. Then the algorithm Basic is called, locates the web servic-
es that will be invoked first and creates functional representations of the
sub-compositions that start from these services. All these representations are then
added to an empty split control. Up to this point, the first version of the requested
functional representation is ready. But some refinement steps should be performed in
order to provide a more concise representation. So, next in the developed algorithm, a
process named Join takes place and simplifies the functional representation by replac-
ing split controls with split-join where possible. The generated functional representa-
tion of algorithm Basic contains null expressions and unnecessary controls, such as a
split control with only one parameter. In the following paragraphs a more detailed
description of the translation procedure is provided.

The output of Graph algorithm may contain some unnecessary ordering
constraints, so the first step is about locating such constraints and removing them
from the set. Unnecessary constraints are the ones that can be implied by others, so
there is no need for their existence in the set. One order constraint A can be inferred
by others if there exists another constraint B with the same left part as A and a
constraint C whose left part is identical to the right part of constraint B and its right
part is identical to the right part of constraint A. An example will clarify more the
above situation. Let the set {A<C, A<B, B<C} be the set of constraints of the compo-
sition problem. Examining the need of existence of the first order constraint, which is
interpreted as ‘the web service A must be executed before the execution of the service
C’, the constraint Α<Β has the same web service at the left part. The process contin-
ues by exploring the set for constraints that have service B in the left part, because this
is the right part of the constraint A<B. Such a constraint exists and is the third of the
set. Also, this constraint has identical right part with the first constraint that is
examined in the process. This means that the constraint A<C is unnecessary because
it can be inferred by the constraints A<B and B<C, so it is removed from the set.

The next procedure that takes place is the Basic procedure, shown in Algorithm 2.
The first step of this algorithm is the location of the so called ‘clear’ services, the web
services that are executed first in the plan. The main characteristic of these services is
that they are not consumers in any causal link, which means that there is no need for

248 E. Ziaka, D. Vrakas, and N. Bassiliades

another web service to be executed before them. Such services can be located by
searching for the existence of each web service in the plan as a right part of an order
constraint. If this search returns no results, then the service can be marked as “clear”.
For example, having the set of web services {A, B, C} and the order constraints
{A<B, B<C} it can be easily inferred that only the service A is clear, because it does
not appear as a right member of any order constraint. For each clear web service, the
construction of sub-representations of the desired composition takes place. In essence,
the relationship among a clear web service and all its children, all the services that can
be executed after the completion of the clear service, is revealed.

Algorithm 2 (Basic): Computes an initial composite
service with Sequence and Split constructs
Inputs: G = (V,E), the web service graph
Output: C, a composite service

// R is the set of root nodes in G

set R ← {r∈V: ∀x ∈ V, (x→r)∉E }
if R = 0 then return NULL
if R = 1 then
 set G’← the tree in G with r∈R
 as the root

 return sequence(r, Basic(G’-{r}))

set c ← {}

for each r in R

 set G’ ← the tree in G with r∈R
 as the root

 set c ← c ∪ Basic(G’-{r})
return Join(split(c))

In the next steps of the algorithm Basic, the number of clear services is examined. In
the trivial case, where there are no such services, a null value is returned. If there is
only one clear service, then the only representation that can be constructed is a simple
sequence of the clear service and the composition of the child. So in this point, the
algorithm calls recursively itself with the rest of the graph as a parameter. This is
because the expression beginning from the clear service must contain all the informa-
tion about the expressions that can be built from the children of this service.

If there are more than one clear services, then an empty composite web service is
created and for every clear service the Basic procedure is invoked having as parameter
the Graph without the service in question. All the returned functional representations
are then added to a split control. The resulting split expression is simplified by an algo-
rithm that will be analyzed later in the paper. A short example is given to clarify the
procedure. Suppose there are a clear service A and two children B and C. The function-
al representation returned from the algorithm, in terms of control constructs, will be
seq(A,split(Basic(B),Basic(C))). Supposing that there are no other web services in the
plan, the final result will be seq(A,split(B,C)).

 Web Service Composition Plans in OWL-S 249

Next, the composition representation that resulted from the clear services (algo-
rithm Basic) is simplified by the algorithm Join (Algorithm 3). The main function of
this algorithm is to replace the split controls with split-join, wherever this is possible.
In every step, two parameters of the functional representation are examined for the
existence of a common part. If one such part is found, it is removed from both the
parameters and the results are added to a new split-join relationship. Finally, a new
sequence control is created, the split-join is added as the first parameter and the
common part is added as a second parameter.

Algorithm 3 (Join): Replaces split with split-join where
possible in a composite service
Inputs: C=f(a0,a1,…,an), a composite service with sequence
and split constructs
Output: C, a composite service with sequence, split and
split-join constructs

do
 for each (ai,aj): i,j in [0,n]
 Set L(ai,aj) = 0
 if ai = ai’∪k, aj = aj’∪k then
 L(ai,aj) = |k|

)),(max(arg

),(

),(jiaa aaL
ji aa

yx =

 Lxy = max(Lij)
 if Lxy > 0 then
 Let fax(ax0,ax1,...,axn) the
 construct containing k in ax
 Let fay(ay0,ay1,...,ayn) the
 construct containing k in ay
 k1=k2=k
 if fax = split then
 k1 = fax(ax0,ax1,...,axn)
 if fay = split then
 k2 = fay(ay0,ay1,...,ayn)
 C= C–{ax,ay}
 C=C∪seq(s+j(ax’,ay’),s(k1,k2))
while Lxy > 0
return C

For each pair (ai,aj) of parameters, the size of their common part is stored in the
structure L(ai,aj). The size of x is expressed as |x| and refers to the number of simple
web services that take part in the functional representation of x. When all the pairs are
traversed, the one with the largest common part is selected, that is the pair (ax,ay). If
the size is a positive number, then the next step checks whether the common part is in
a split control in the two parameters of the selected pair. If so, the split expression
must not be divided instead it should be completely removed.

Since this procedure is performed twice, once for every parameter of the couple,
the results are two new common parts that should be removed respectively from the
parameters. This is realized in parameters ax’ and ay’. The resulting expressions are
added as members of the split-join control, symbolized as ‘s+j’, which in turn is
added as a parameter of the sequence control. Then, the common parts are combined
in a split control, symbolized as ‘s’ and the result becomes the second parameter of
the sequence control. Finally, this new sequence representation replaces the two

250 E. Ziaka, D. Vrakas, and N. Bassiliades

parameters in the initial composite web service, ax,ay. All the previous steps are
repeated for the altered composite web service C until no common part exists between
its’ parameters. Then, C is returned, as was formed from the procedure and represents
a composition having sequence, split and split-join control constructs that functionally
represents the data flow among the participating simple web services.

After the completion of Join, the null parameters of the functional representation
created so far are cleared and the pointless control constructs are removed, e.g. the
expression split(A) becomes A. Finally, the duplicate references to control constructs
are eliminated This means, that the expression seq(seq(A,B),C) is transformed to the
equivalent one seq(A,B,C).

Fig. 3. Composition example

A short example of the whole procedure is given to clarify its workings. In Fig. 3 a
web services composition plan is depicted in a graphical way. The clear service is
only the service A, so the result of the Basic algorithm, before calling the algorithm
Join, will be seq(A,split(seq(B,D),seq(C,D))). The Join algorithm will notice that the
parameters seq(B,D) and seq(C,D) have the service D as a common part, so the split
control construct can be replaced by a split-join one. By removing the common part
from each parameter, the results are the representations seq(B,null) and seq(C,null)
and they are added as parameters in a new split-join control. Since the common part is
not in a split expression in none of the two parameters, the resulting common part is
just the service D and the new sequence representation is constructed as follows:
seq(split-join(seq(B,null),seq(C,null)),D). This representation replaces the split of the
initial expression and the result is the representation seq(A,seq(split-
join(seq(B,null),seq(C,null)),D)).

After the completion of the clearing algorithm the functional representation is
transformed to seq(A,seq(split-join(B,C),D)) which finally becomes seq(A,split-
join(B,C),D) at the last step, which is an accurate functional representation of the
composition.

3.2 Creating OWL-S Descriptions

Up to this point, a functional representation has been constructed that supplies suffi-
cient information on the data flow of the composition. But, for the procedure to be
complete so as to provide the user with a new semantic web service ready for execu-
tion, the OWL-S description has to be constructed. This is done based on this repre-
sentation. The descriptions that are constructed by the algorithm are the process and
the profile descriptions. The OWL-S API, which can be found at [11], was used for
their creation. This OWL-S API is a JAVA library providing functions that facilitate
the creation of OWL-S descriptions.

First, the process file is created by the algorithm 4, OWLSProcess. The algorithm
takes as input parameter the composite web service representation C, as formed by the

 Web Service Composition Plans in OWL-S 251

previous algorithms and discerns two cases. If C is an atomic service, then the appropri-
ate parts of the OWL-S process description are created that describe the service along
with its inputs and outputs. Specifically, for every input of the atomic service, an input
element is created by calling the InputElement function of the OWL-S API. All the
input elements are gathered in a list which is then set as the value of the hasInput field
of the OWL-S process description. The same steps are followed for the creation of the
output list which is the value of the hasOutput field in the description.

Algorithm 4 (OWLSProcess): Creates the OWL-S process
description
Inputs: C = f(a0,a1,..an)
Output: The OWL-S process description of C

if f = atomic then
 A = OWLSAPI.AtomicProcessElement
 LI = LO = {}
 for each pi ∈ prec(a0)
 ki = OWLSAPI.InputElement(pi)
 LI = LI + {ki}
 OWLSAPI.hasInput(LI)
 for each oi ∈ add(a0)
 mi = OWLSAPI.OutputElement(oi)
 LO = LO + {mi}
 OWLSAPI.hasOutput(LO)
 PE = OWLSAPI.PerformElement
 return PE.add(A)
else
 CC = OWLSAPI.ControlContruct(f)
 CC.add(CLO(C))
 return CC

If C is not just an atomic service, but instead a composite one, then the appropriate
control construct element is created (seq, split, split-join) according to f and the algo-
rithm CLO is called to create the list of the services that takes part in this element.
Then, this list is added to the control construct element and this is the object that the
OWLSProcess algorithm returns. In fact, this object contains all the information about
the OWL-S process description of C.

Algorithm 5 (CLO): Creates the List Object containing
the atomic services of the composite one
Inputs: C = f(a0,a1,..an)
Output: LO: the List Object

if n = 0 then
 return null
LO = OWLSAPI.ListObjectElement
LO.First = OWLSProcess(a0)
LO.Rest = CLO(f(a1,a2,…,an))
return LO

The algorithm CLO has as input a composite web service functional representation,
which is in essence a functional representation with OWL-S control construct
connecting the participants services, and creates using the OWL-S API a List Object

252 E. Ziaka, D. Vrakas, and N. Bassiliades

element with the atomic services as parameters. The list object is a structure with
First and Rest parts and could be described by an expression like:
First(a0,Rest(First(a1),Rest(…))).

In CLO algorithm, the first parameter of the expression is examined and the
OWLSProcess algorithm is called for this. The result becomes the head of the
constructing list, because it is the service or the composition of services that will be
executed first. Then, the CLO algorithm is called recursively for C’, the composite
web service C with a0 omitted. The result of this call is set as the Rest part. Finally,
the constructed list object is returned.

The last step in converting the composite web service functional representation to
OWL-S description is the creation of the profile description. Here, the composite web
service is treated as an atomic service with specific inputs and outputs. The construc-
tion of this description is merely based on the methods provided by the OWL-S API’s
functions.

4 Conclusions and Future Work

Web services are playing an important role in the web applications development field,
with which many different systems through the globe can communicate and exchange
data using the World Wide Web. Users that need a specific functionality can retrieve
the desired web services from the UDDI registries and use them to create the output
they are looking for.

SOA architecture has contributed to the rapid and easy web applications develop-
ment, using as units the web services and combining them to create new, complex
services of advanced functionality that can serve even as complete business models.
The composition methods studied in this paper differ on user’s involvement level.
Some initial solutions, of limited autonomy, use workflows and leave the details
regarding the location the appropriate services execution and their order to the user. In
some more creative solutions, the user doesn’t have to find the exact services that will
be used, but just provides a description of them. The discovering of services that
match with the descriptions and the execution of the resulting workflow are automati-
cally performed without the intervention of the user.

In later studies, the autonomy of the composition procedure is increased. Semantic
information concerning the web services is used to describe in a semantic level their
functionality. Languages such as OWL-S are used for this purpose. In this way, concept
matching becomes possible and so is the check whether two or more services can
cooperate. The semantic information is used also by automatic web services composi-
tion via planning methods, which are examined in this paper. The composition problem
is treated as a planning problem and solved by algorithms of the field.

The result is a plan encoded in planning languages, such as PDDL+ that describes
the services that will be used for the composition and the way in which they will be
combined to create the desired composite web service. But, for this final service to be
available to other users too and to be published in a UDDI registry as an atomic web
service and take part to possible future compositions, semantic description of the
service have to be created.

 Web Service Composition Plans in OWL-S 253

The contribution of this paper focuses on converting the PDDL+ plans that consti-
tute the composite web service to OWL-S descriptions of the new web service.
Information extracted from the domain of the composition problem is used to
construct a composite web service functional representation that describes sufficiently
the composition. Then, this representation is used to create the OWL-S profile
description of the composite web service, containing information on its inputs and
outputs. Also, the OWL-S process description is constructed, that analyzes the way
the atomic services are used for the production of the final composite web service.

As for future plans, a complete system could be developed as an extension to the
already existing automatic web services composition systems, taking advantage of the
algorithms proposed by this paper to construct new semantic web services and publish
them in UDDI registries so as to be available to everyone who could be seeking such
functionality. In this way, an integrated solution to the composition problem would be
provided. Already developed solutions could be used to this direction, such as the
system SiTra described in [2], which transforms the OWL-S description of a web
service to BPEL, the execution language for web services.

Also, the possibility of creating the grounding OWL-S descriptions of the compo-
site web service could be explored. In this description, the exact data flow among the
atomic services will be described and the result will be an even more automated solu-
tion. So far, our approach provides the order and the way of the execution of the
services taking part in the composition. However, the information of which output is
offered as input to the next service is not provided from the OWL-S descriptions of
the composite service. This procedure is left to the system that tries to execute the
resulting service. It is obvious that by providing this kind of information through the
grounding description, the development of systems that execute complex services is
greatly simplified.

Moreover, characteristics concerning the quality could be considered for the
composite web service. In case there is such data in the semantic descriptions of the
atomic web services, procedures that take advantage of them could be developed to
construct the quality characteristics of the resulting composite service.

Finally, we aim at integrating web service composition via planning into a decision
support system for industrial risk reduction, which represents risk case studies via
domain dependent ontologies including the mechanism for building up the risk as a
composition of simple physical processes [1].

Acknowledgements. This work has been supported by the Project “Integrated Euro-
pean Industrial Risk Reduction System (IRIS)” (7th Framework Programme, Theme:
4 – NMP, FP7-NMP-2007-LARGE-1, CP-IP 213968-2).

References

1. Angelides, D., Xenidis, Y.: Fuzzy vs. Probabilistic Methods for Risk Assessment of
Coastal Areas. In: Linkov, I., Kiker, G.A., Wenning, R.J. (eds.) Environmental Security in
Harbors and Coastal Areas: Management using Comparative Risk Assessment and Multi-
Criteria Decision Analysis. NATO Security through Science Series (Series C: Environ-
mental Security), pp. 251–266. Springer, Heidelberg (2007) ISBN: 978-1-4020-5801-1

254 E. Ziaka, D. Vrakas, and N. Bassiliades

2. Bordbar, B., Howells, G., Evans, M., Staikopoulos, A.: Model Transformation from OWL-
S to BPEL Via SiTra. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA.
LNCS, vol. 4530, pp. 43–58. Springer, Heidelberg (2007)

3. Gerevini, A., Saetti, A., Serina, I.: LPG-TD: a Fully Automated Planner for PDDL2.2
Domains (short paper). In: 14th Int. Conference on Automated Planning and Scheduling
(ICAPS 2004), booklet of the system demo section, Whistler, Canada (2004)

4. Gerevini, A., Saetti, A., Serina, I.: LPG-td a planning system (2005),
http://zeus.ing.unibs.it/lpg/

5. Ghalab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: PDDL – the Planning Domain Definition Language. Technical report. Yale
University, New Haven, CT (1998)

6. Hatzi, O., Meditskos, G., Vrakas, D., Bassiliades, N., Anagnostopoulos, D., Vlahavas,
I.: Semantic Web Service Composition using Planning and Ontology Concept Relevance
with PORSCE II. In: Proceeding of the 2009 Web Intelligence and Intelligent Agent Tech-
nology, Milan, Italy, pp. 418–421 (2009)

7. Hoffman, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research 14, 253–301 (2001)

8. JPlan: Java Graphplan Implementation,
http://sourceforge.net/projects/jplan

9. Klusch, M., Gerber, A., Schmidt, M.: Semantic Web Service Composition Planning with
OWLS-XPlan. In: Proceedings of the AAAI Fall Symposium on Semantic Web and
Agents. AAAI Press, Arlington (2005)

10. Martin, D., Burstein, M., Lassila, O., McIlraith, S., Narayanan, S., Paolucci M., Parsia,
B., Payne, T., Sirin, E., Srinivasan,N., Sycara, K.: OWL-S: Semantic Markup for Web
Services (2004), http://www.daml.org/services/owl-s/1.1/

11. OWL-S API, http://www.daml.ri.cmu.edu/owlsapi/
12. Peer, J.: Web Service Composition as AI Planning – a Survey. Technical report. University

of St. Gallen (2005)
13. Pellier, D.: PDDL4J (2008), http://sourceforge.net/projects/pddl4j
14. Sacerdoti, E.: The nonlinear nature of plans. In: Proc. of the International Joint Conference

on AI, pp. 206–214 (1975)
15. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composi-

tion using SHOP. Journal of Web Semantics 1(4), 377–396 (2004)
16. Yang, B., Qin, Z.: Composing semantic web services with PDDL. Inform. Technol. J. 9,

48–54 (2009)
17. Yu, H.Q., Reiff-Marganiec, S.: Semantic Web Services Composition via Planning as

Model Checking. Technical Report. CS-06-003, University of Leicester (2006)
18. Zhang, P., Huang, B., Sun, Y.: Automatic Web services composition based on SLM. In:

Workshop on Semantic Web and Ontology, SWON 2008 (2008)

	Web Service Composition Plans in OWL-S
	Introduction
	Related Work
	Translating PDDL to OWL-S
	Constructing the Composite WS
	Creating OWL-S Descriptions

	Conclusions and Future Work
	References

