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Abstract. Data streams classification represents an important and challenging
task for a wide range of applications. The diffusion of new technologies, such as
smartphones and sensor networks, related to communication services introduces
new challenges in the analysis of streaming data. The latter requires the use of
approaches that require little time and space to process a single item, provid-
ing an accurate representation of only relevant data characteristics for keeping
track of concept drift. Based on these premises, this paper introduces a set of
requirements related to the data streams classification proposing a new adaptive
ensemble method. The outlined system employs two distinct structure, for man-
aging both data aggregation and mining features. The latter are represented by
a selective ensemble managed with an adaptive behavior. Our approach dynami-
cally updates the threshold value for enabling the models directly involved in the
classification step. The system is conceived to satisfy the proposed requirements
even in the presence of concept drifting events. Finally, our method is compared
with several existing systems employing both synthetic and real data.

1 Introduction

The constant and rapid diffusion of new technologies, such as smartphones, and sen-
sor networks, related to communication and web services, and safety applications, has
introduced new challenges in data management, analysis and mining. In these scenar-
ios data arrives on-line, at a time-varying rate creating the so-called data stream phe-
nomenon. Conventional knowledge discovery tools cannot manage this overwhelming
volume of data. The unpredictable nature of data streams requires the use of new ap-
proaches, which involve at most one pass over the data, and try to keep track of time-
evolving features, known as concept drift.

Ensemble approaches represent a valid solution for data streams classification [5].
In these methods, classification takes advantage of multiple classifiers, extracting new
models from scratch and deleting the out-of-date ones continuously. In [20,19], it was
stressed that the number of classifiers actually involved in the classification task can-
not be constant through time. The cited works demonstrate that a selective ensemble
which, based on current data distribution, dynamically calibrates the set of classifiers to
use, provides a better performance than systems using a fixed set of classifiers constant
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through time. In our former approach, the selection of the models involved in the classi-
fication step was chosen by a fixed activation threshold. This choice is the right solution
if it is possible to study a-priori what is the best value to assign to the threshold. In
many real environment, this information is unavailable, since the stream data behavior
cannot be modeled. In several domains, such as intrusion detection, data distribution
can remain stable for a long time, changing radically when an attack occurs.

This work presents an evolution of the system outlined in [20,19]. The new approach
introduces a complete adaptive behavior in the management of the threshold required
for the selection of the set of models actually involved in the classification. This work
describes the adaptive approach for varying the value of the model activation threshold
through time, influencing the overall behavior of the ensemble classifier, based on data
change reaction. Our approach is explicitly explained with the use of binary attributes.
This choice can be seen as a limitation, but it is worth observing that every nominal
attribute can be easily transformed into a set of binary ones. The only inability is the
direct treatment of numerical values. [14] represents a general approach to solve the on-
line discretization of numerical attributes. The proposed method is particularly suitable
in our context, since it proposes a discretization method based on two layers. The first
layer summarizes data, while the second one constructs the final binning. The process
of updating the first layer works on-line and requires a single scan over the data.

Paper Organization: Section 2 introduces our reference scenario, outlining some re-
quirements that a system working on streaming environments should satisfy. Section 3
describes our approach in details, highlighting how the requirements introduced in Sec-
tion 2.1 are verified by the proposed model. Furthermore, it present how our adaptive
selection is implemented. Section 4 presents a comparative study to understand how
the new adaptive approach guarantees a higher reliability of the system. In this section,
our approach is compared with other well-know approaches available in the literature.
Finally, Section 5 draws the conclusions and introduces some future works.

2 Data Streams Classification

Data streams represent a new challenge for the data mining community. In a stream
scenario, traditional mining methods are further constrained by the unpredictable be-
havior of a large volume of data. The latter arrives on-line at variable rates, and once an
element has been processed, it must be discarded or archived. In either cases, it cannot
be easily retrieved. Mining systems have no control over data generation, and they must
be capable of guaranteeing a near real-time response.

Definition 1. A data stream is an infinite set of elements X = X1, . . . ,Xj, . . . where each
Xi ∈ X has a+ 1 dimensions, (x1

i , . . .x
a
i ,y), and where y ∈ {⊥,1, . . . ,C}, and 1, . . . ,C

identify the possible values in a class.

A stream can be divided into two sets based on the availability of class label y. If value
y is available in the record (y �=⊥), it belongs to the training set. Otherwise the record
represents an element to classify, and the true label will only be available after an un-
predictable period of time.
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Given Definition 1, the notion of concept drift can be easily defined. As reported in
[23], a data stream can be divided into batches, namely b1,b2, ...,bn. For each batch
bi, data is independently distributed w.r.t. a distribution Pi(). Depending on the amount
and type of concept drift, Pi() will differ from Pi+1(). A typical example is customers’
buying preferences, which may change according to the day of the week, inflation
rate and/or availability of alternatives. Two main types of concept drift are usually
distinguished in the literature, i.e. abrupt and gradual. Abrupt changes imply a rad-
ical variation of data distribution from a given point in time, while gradual changes
are characterized by a constant variation during a period of time. The concept drifting
phenomenon involves data expiration directly, forcing stream mining systems to be con-
tinuously updated to keep track of changes. This implies making time-critical decisions
for huge volumes of high-speed streaming data.

2.1 Requirements

As introduced in Section 2, the stream features influence the development of a data
streams classifier radically. A set of requirements must be taken into account before
proposing a new approach. These needs highlight several implementation decisions in-
serted in our approach.

Since data streams can be potentially unbounded in size, and data arrives at unpre-
dictable rates, there are rigid constraints on time and memory required by a system
through time:

Req. 1: the time required for processing every single stream element must be constant,
which implies that every data sample can be analyzed almost only once.

Req. 2: the memory needed to store all the statistics required by the system must be
constant in time, and it cannot be related to the number of elements analyzed.

Req. 3: the system must be capable of updating their structures readily, working within
a limited time span, and guaranteeing an acceptable level of reliability.

Given Definition 1, the elements to classify can arrive in every moment during the data
flow.

Req. 4: the system must be able to classify unseen elements every time during its com-
putation.

Req. 5: the system should be able to manage a set of models that do not necessarily
include contiguous ones, i.e. classifiers extracted using adjacent parts of the stream.

2.2 Related Work

Mining data streams has rapidly become an important and challenging research field.
As proposed in [12], the available solutions can be classified into data-based and task-
based ones. In the former approaches a data stream is transformed into an approximate
smaller-size representation, while task-based techniques employ methods from com-
putational theory to achieve time and space efficient solutions. Aggregation [1,2,3],
sampling [10] or summarized data structure, such as histograms [21,17], are popular



Data Streams Classification: A Selective Ensemble 211

example of data-based solutions. On the contrary, approximation algorithms such as
those introduced in [15,10] are examples of task-based techniques.

In the context of data streams classification, two main approaches can be outlined,
namely instance selection and ensemble learning. Very Fast Decision Trees (VFDT) [9]
with its improvements [22,14,27] for concept drifting reaction and numerical attributes
managing represent examples of instance selection methods. In particular, the Hoeffd-
ing bound guarantees that the split attribute chosen using n examples, is the same with
high probability as the one that would be chosen using an infinite set of examples. Last
et al. [8] propose another strategy using an info-fuzzy technique to adjust the size of
a data window. Ensemble learning employs multiple classifiers, extracting new mod-
els from scratch and deleting the out-of-date ones continuously. On-line approaches
for bagging and boosting are available in [26,7,5]. Different methods are available in
[30,34,29,25,11], where an ensemble of weighted-classifiers, including an adaptive ge-
netic programming boosting, as in [11], is employed to cope with concept drifting.
None of the two techniques can be assumed to be more appropriate than the other.
[5] provides a comparison between different techniques not only in terms of accuracy,
but also including computational features, such as memory and time required by each
system. By contrast, our approach proposes an ensemble learning that differs from the
cited methods since it is designed to concurrently manage different sliding windows,
enabling the use of a set of classifiers not necessarily contiguous and constant in time.

3 Adaptive Selective Ensemble

A detailed description of our system is available in [19,18]. In the following subsections,
we introduce only the main concepts of our approach highlighting the relations between
the requirements outlined in Section 2.1 and the aggregate structures introduced. The
proposed structures are primarily conceived to capture evolving data features, and guar-
antee data reduction at the same time. Ensuring a good trade-off between data reduction,
and a powerful representation of all the evolving data factors is a non-trivial task.

3.1 The Snapshot

The snapshot definition implies the naı̈ve Bayes classifier directly. In our model, the
streaming training set is partitioned into chunks. Each data chunk is transformed into
an approximate more compact form, called snapshot.

Definition 2 (Snapshot). Given a data chunk of k elements, with A attributes and C
class values, a snapshot computes the distribution of the values of attribute a ∈ A with
class value c, considering the last k elements arrived:

Sk : C×A �→ f req
(
a,k,c

)
, ∀a ∈ A,c ∈C

The following properties are directly derived from Definition 2.

Property 1. Given a stream with C class values and A attributes, a snapshot is a set of
C×A tuples.
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x y z class value

0 1 1 no

0 1 0 yes

0 1 1 no

1 1 1 yes

1 0 0 yes

1 0 1 no

1 1 1 yes

0 0 0 ind

0 0 1 yes

0 0 0 ind

(a) A stream chunk of
10 elements.

⇒ S10 =

(x,2,3) (y,2,3) (z,3,2) yes

(x,2,1) (y,2,1) (z,0,3) no

(x,2,0) (y,2,0) (z,2,0) ind

(b) The resulting snapshot.

Fig. 1. From data stream (a) to snapshot (b)
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Fig. 2. Snapshots and their order

Property 2. Building a snapshot Sk requires k accesses to the data stream. Every ele-
ment is accessed only once. Computing a snapshot is linear to the k number of elements.

Figure 1 shows an example of snapshot creation. The latter implies only a single access
to every stream element. A snapshot is built incrementally accessing the data one by
one, and updating the respective counters. Properties 1 and 2 guarantee that a snapshot
requires a constant time and memory space, satisfying Requirements 1 and 2.

Snapshots of Higher Order. The only concept of snapshot is not sufficient to guaran-
tee all the features needed for data managing and drift reaction. The concept of high-
order snapshot is necessary to maximize data availability for the mining task guaran-
teeing only one data access.

Definition 3 (High-order Snapshot). Given an order value i > 0, a high-order snap-
shot, is obtained by summing h snapshots of i− 1 order:

Si
h×k =

h

∑
j=1

Si−1
k, j

h

∑
j=1

[
f req j

(
a,k,c

)]i−1
, ∀a ∈ A,c ∈C
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where, given a class value c and an attribute a,
[

f req j
(
a,k,c

)]i−1
refers to the distri-

bution of the values of attribute a with class value c of the j-th snapshot of order i− 1.

Figure 2 shows the relation between snapshots and their order. The aim is to employ
a set of snapshots created directly from the stream to build new ones, representing
increasingly larger data windows, simply by summing the frequencies of their elements.

A high-order snapshot satisfies Property 1, since it has the same structure of a basic
one. Moreover, it further verifies Requirements 3, since the creation of a new high-
order snapshot is linear in the number of attributes and class values. The creation of
high-order snapshots does not imply any loss of information. This aspect guarantees
that a set of different size sliding windows is simultaneously managed by accessing
data stream only once, enabling the approach to consider every window as computed
directly from the stream.

From a snapshot, or a high-order one, the system extracts an approximated decision
tree, or employs the snapshot as naı̈ve Bayes classifier directly.

3.2 The Frame

Snapshots are stored to maximize the number of elements for training classifiers. A
model mined from a small set of elements tends to be less accurate than the one ex-
tracted from a large data set. If this observation is obvious in “traditional” mining con-
texts, where training sets are accurately built to maximize the model reliability, in a
stream environment this is not necessarily true. Due to concept drifting, a model ex-
tracted from a large set of data can be less accurate than the one mined from a small
training set. The large data set can include mainly out-of-date concepts.

Snapshots are then stored and managed, based on their order, in a structure called
Frame. The order of a snapshot defines its level of time granularity. Conceptually sim-
ilar to Pyramidal Time Frame introduced by Aggarwal et al. in [1] and inherited by
logarithmic tilted-time window, our structure sorts snapshots based on the number of
elements from which a snapshot was created.

Definition 4 (Frame). Given a level value i, and a level capacity j, a frame is a func-
tion that, given a pair of indexes (x,y) returns a snapshot of order x and position y:

Fi, j : (x,y) �→ Snapshotx,y

where: x ∈ {0, . . . , i− 1} and y ∈ {0, . . . , j− 1}.
As shown in Figure 3, level 1 contains snapshots created directly from the stream. Up-
per levels use the snapshots of the layer immediately lower to create a new one. The
maximum number of snapshots available in the frame is constant in time and is defined
by the number of levels and the level capacity. For each layer, the snapshot are stored
with FIFO policy. The frame memory occupation is constant in time and is linear with
the number of snapshots storable in the structure.
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3.3 Ensemble Management

The concepts introduced in Section 3.1 and 3.2 are employed to define and manage
an ensemble of classifiers. The selective ensemble management is defined by as a four
phase approach:

1. For each snapshot S j
i , a triple (Ci,wi,bi) representing the classifier, its weight and

the classifier enabling variable bi is extracted from S j
i .

2. Since data distribution can change through time, the models currently in the struc-
ture are re-weighed with the new data distribution, using a test set of complete data
taken from the last portion of the stream directly.

3. Given a level i, every time a new classifier is generated, the system decides if the
new model must be inserted in the ensemble based on new data distribution. Apart
from the lowest level, where the new one is inserted in any case, the system se-
lects the ki most promising models, based on the current weight associated to the
classifiers, to classify the new data distribution from ki + 1 models correctly.

4. Finally, a set of active models is selected, setting the boolean value bi associated
with a Ci as true. The set of active models is selected based on the value of an
activation threshold θ. All the classifiers that differ at most θ to the best classifier
with the highest weight are enabled.

The defined approach satisfies Requirements 4 and 5, since it can classify a new instance
every time it is required, and can employ a set of not necessarily contiguous classifiers,
since it is not necessarily true that every classifier generated through time enters the
ensemble, but even in that case it can be disabled.

Figure 4 shows the overall organization of our system. For each level in the frame
structure we have a corresponding level in the ensemble. The subdivision of the data
aggregation task from the mining aspects makes our approach suitable in distributed/
parallel environments as well. One or more components can be employed to manage
the concepts of snapshot and frame, while another can manage the ensemble classifier.

level

1 Sk, j+2 Sk, j+1 Sk, j

2 S2
2k,l+2 S2

2k,l+1 S2
2k,l

3 S3
4k,g+2 S3

4k,g+1 S3
4k,g

4 . . .
...

i Si
2i−1k,n+2 Si

2i−1k,n+1 Si
2i−1k,n

Fig. 3. The frame structure

3.4 Adaptive Behavior

As proposed in Section 3.3 our approach has two key factors influencing its behavior,
the weight measure to employ and the selection of the θ value. If in the literature, several
weight measures, mainly related to classifier accuracy, are available and guarantee a
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Fig. 4. The overall system architecture

Activation Threshold Algorithm.

1: if (oneModel() = true) then
2: θ← 0.00; activation threshold initialized
3: oldActModels← 1
4: return
5: end if
6: actModels← getActiveModel(θ)
7: if (actModels > oldActModels) then
8: θ← θ + 0.01; increment threshold value
9: else if (actModels < oldActModels) then

10: θ← θ div 2; decrement threshold value
11: end if
12: oldActModels← actModels
13: return

Fig. 5. Pseudo-code of the activation threshold algorithm

good reliability of the system, the θ threshold represents the real key factor for the
quality of our approach.

In our experiments [18], we noticed that the reliability of the system is heavily influ-
enced by the θ value. As we shall present in Section 4.3, independently from the data
set employed, activation values which are too high (or too small) decrease the predictive
power of the ensemble. On the one hand, in case of relatively stable data, small acti-
vation threshold values limit the use of large sets of classifiers. On the contrary, large
threshold values damage the selective ensemble in the case of concept drifts. In the cited
experiments, the θ value was fixed by the user and it did not change through time. Only
our experience and the experimental results drove the selection of the right value.

In this work we introduce an adaptive approach for varying the value of the activa-
tion threshold through time, thus influencing the overall behavior of the entire system,
based on data change reaction. The basic idea of the adaptive method is similar to the
additive-increase / multiplicative-decrease algorithm adopted by TCP Internet protocol
for managing the transfer rate value used in TCP congestion avoidance.

The pseudo-code of the method for managing the activation threshold is proposed in
Figure 5. The algorithm is quite simple. When the first model is inserted in the structure,
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the activation threshold and the number of active models are initialized (Steps 1-5).
Successively, every time a new model is inserted in the ensemble, the procedure at Step
6 computes how many models will be activated with the current θ value. If the number
of models potentially activatable is higher than the old one (Step 7), the threshold is
increased. This situation happens when the data distribution remains stable and the new
inserted model is immediately enabled (Step 7-8). Increasing the threshold value, we
can obtain a better exploitation of the ensemble. On the contrary, if the number of active
models decreases from the previous invocation, the threshold has to be decreased. It is
useless and dangerous to maintain the current value, since a data change might be in
progress (Step 9-10). It is worth observing that, if the number of models does not change
between the two invocations, the threshold does not change, since there is no evidence
of model improving or data change.

From a computational point of view the algorithm does not introduce appreciable
overhead. Only the getActiveModel() procedure requires to access the ensemble struc-
ture. If we consider n as the number of classifiers storable in the ensemble, the com-
plexity of the algorithm is linear in O(n).

The experimental section demonstrates that our system is no more heavily influenced
by θ value, since it changes automatically, adapting it to data distribution.

4 Comparative Experimental Evaluation

4.1 Data Sets

Several synthetic data sets and a real one were introduced in our experiments. This
kind of data enables an exhaustive investigation about the reliability of the systems
involving different scenarios. The data behavior can be described exactly, characterizing
the number of concept drifts, the rate between a change to another and the number of
irrelevant attributes, or the percentage of noisy data.

LED24: Proposed by Breiman et al. in [6], this generator creates data for a display with
7 LEDs. In addition to the 7 necessary attributes, 17 irrelevant boolean attributes
with random values are added, and 10 percent of noise is introduced, to make the
solution of the problem harder. This type of data generates only stable data sets.

Stagger: Introduced by Schlimmer and Granger in [28], this problem consists of
three attributes, namely colour ∈ {green, blue, red}, shape ∈ {triangle, circle,
rectangle}, and size ∈ {small, medium, large}, and a class y ∈ {0,1}. In its
original formulation, the training set includes 120 instances and consists of three
target concepts occurring every 40 instances. The first set of data is labeled accord-
ing to the concept color = red ∧ size = small, while the others include color
= green∨ shape= circle and size= medium∨ size= large. For each training
instance, a test set of 100 elements is randomly generated according to the current
concept.

cHyper: Introduced in [7], a data set is generated by using a n-dimensional unit hy-
percube, and an example x is a vector of n-dimensions xi ∈ [0,1]. The class bound-
ary is a hyper-sphere of radius r and center c. Concept drifting is simulated by
changing the c position by a value Δ in a random direction. This data set generator
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Table 1. Description of data sets

dataSet #inst #attrs #irrAttrs #classes %noise #drifts

LED24a/b/test 10k / 100k / 25k 24 17 10 10% none

Hypera/b/test 10k / 100k / 25k 15 0 2 0 none

Staggera/test 1200 / 120k 9 0 2 0 3 (every 400) / (every 40k)
Staggerb/test 12k / 1200k 9 0 2 0 3 (every 4k) / (every 400k)

cHypera/b/c 10k / 100k / 1000k 15 0 2 10% 20 (every 500) / (every 5k) / (every 50k)
cHypertest 250k 15 0 2 10% 20 (every 12.5k)

Cyclic 600k 25 0 2 5% 15×4 (every 10k)
Cyclictest 150k 25 0 2 5% 15×4 (every 2.5k)

introduces noise by randomly flipping the label of a tuple with a given probability.
Two additional data sets, namely Hyper and Cyclic are generated using this ap-
proach. Hyper does not consider any drifts, while Cyclic proposes the problem of
periodic recurring concepts.

KddCup99: this real data set concerns the significant problem of automatic and
real-time detection of cyber attacks [31]. The data includes a series of network
connections collected from two weeks of LAN network traffic. Each record can
either correspond to a normal connection or an intrusive one. Each connection is
represented by 42 attributes (34 numerical), such as the duration of the connection,
the number of bytes transmitted, and the type of protocol used, e.g. tcp, udp. The
data contains 23 training attack types, that can be further aggregated into four cate-
gories, namely DOS, R2L,U2R, and Probing. Due to its instable nature, KddCup99
is largely employed to evaluate several data streams classification systems, includ-
ing [3,16]

The features of the data sets actually employed are reported in Table 1. The stable
LED24 and Hyper are useful for testing whether the mechanism for change reaction has
implications for the reliability of the systems. The evolving data sets test different fea-
tures of a stream classification system. The Stagger problem verifies, if all the systems
can cope with concept drift, without considering any problem dimensionality. Then, the
problem of learning in the presence of concept drifting is evaluated with the other data
sets, also considering a huge quantity of data with cHyper.

4.2 Systems

Different popular stream ensemble methods are introduced in our experiments. All the
systems expect the data streams to be divided into chunks based on a well-defined value.
All the approaches are implemented in Java 1.6 with MOA [32] and WEKA libraries
[33] for the implementation of the basic learners and employ complete non-approximate
data for the mining task.

Fix: This approach is the simplest one. It considers a fixed set of classifiers, managed
as a FIFO queue. Every classifier is unconditionally inserted in the ensemble, re-
moving the oldest one, when the ensemble is full.
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SEA: A complete description and evaluation of this system can be found in [30]. In
this case classifiers are not deleted indiscriminately. Their management is based on
a weight measure related to model reliability. This method represents a special case
of our selective ensemble, where only one level is defined.

DWM: This system is introduced in [24,25]. The approach implemented here considers
a set of data as input to the algorithm, and a batch classifier as the basic one. A
weight management is introduced, but differently from SEA, every classifier has
a weight associated with it, when it is created. Every time the classifier makes a
mistake, its weight decreases.

Oza: This system implements the online bagging method of Oza and Russell [26] with
the addition of the ADWIN technique [5] as a change detector and as estimator of the
weight of the boosting method.

Single: This approach employs an incremental single model with EDDM [13,4] tech-
niques for drift detection. Both Oza and Single were tested using ASHoeffdingTree
and naı̈ve Bayes models available in MOA.

4.3 Results

All the experiments were run on a PC with Intel E8200 DualCore with 4Gb of RAM,
employing Linux Fedora 10 (kernel 2.6.27) as operating system. Our experiments con-
sider a frame with 8 levels of capacity 3. Every high-order snapshot is built by adding
2 snapshots. This frame size is large enough to consider snapshots that represent big
portions of data at higher-levels. For each level, an ensemble of 8 classifiers was used.
The tests were conducted comparing the use of the naı̈ve Bayes (NB), and the deci-
sion tree (DT) as base classifiers. In all the cases, we compare our Selective Ensemble
(SE) (with fixed model activation threshold set to 0.1 and 0.25) with our Adaptive Se-
lection Ensemble ASE. For each data generator, a collection of 100 training sets (and
corresponding test sets) are randomly generated with respect to the features outlined in
Table 1. Every system is run, and the average accuracy and 95% of interval confidence
are reported. Each test consists of a set of 100 observations. All the statistics reported
are computed according to the results obtained.

Results with Stable Data Sets. The results obtained with stable data sets confirm
that the drift detection approach provided by each system does not heavily influence
its overall accuracy. With LED24 and Hyper problems, all the systems reach a quite
accurate result. Table 2 reports the results obtained with Hyper data sets using the naı̈ve
Bayes approach. These results can be compared with the ones provided in Table 3 in
Section 4.3, where the concept drifting problem is added to the same type of data.

It is worth observing that there are no significant differences between the results ob-
tained by SE approach, varying the model activation threshold. The new ASE approach
provides a result in line with the best ones. The adaptive behavior mechanism does not
negatively influence the reliability of the system in the case of stable data streams. On
the contrary, the new approach enables a better ensemble exploitation.

Moreover, Table 2 highlights that Single model requires a large quantity of data to
provide a good performance. Finally, Fix64 and SEA64 provide good results that, com-
pared with the ones obtained by the same systems analyzing the cHyper and Cyclic
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Table 2. Results using naı̈ve Bayes with the Hyper problem

Hypera / Hyperb

avg std dev conf

ASE 92.74 / 93.93 1.92 / 2.88 0.38 / 0.49
SE0.1 92.72 / 93.92 2.20 / 2.52 0.43 / 0.50

SE0.25 92.70 / 93.91 2.22 / 2.53 0.43 / 0.50
Fix64 91.82 / 92.35 2.54 / 2.98 0.50 / 0.58

SEA64 92.97 / 94.44 1.80 / 1.64 0.50 / 0.32
DWM64 91.82 / 92.76 2.12 / 2.74 0.42 / 0.54

Oza64 92.39 / 93.73 2.30 / 0.40 0.45 / 0.08
Single 90.04 / 92.68 3.25 / 2.82 0.64 / 0.55

problems, demonstrate that these kinds of approaches guarantee appreciable results only
with a quite stable phenomenon. They do not provide a fast reaction to concept drift,
since the number of models involved in the classification task is constant in time, and
when a drift occurs, they have to change a large part of the models, before classifying
new concepts correctly.

Table 3. Overall results with the cHyper problem

cHypera / cHyperb / cHyperc - decision tree
avg std dev conf

ASE 83.58 / 88.72 / 93.19 0.51 / 0.40 / 0.28 0.10 / 0.08 / 0.06
SE0.1 84.05 / 89.43 / 93.09 0.49 / 0.40 / 0.32 0.10 / 0.08 / 0.06

SE0.25 78.42 / 86.10 / 91.86 0.86 / 0.35 / 0.23 0.17 / 0.07 / 0.23
Fix64 70.26 / 82.02 / 90.62 2.58 / 1.23 / 0.13 0.51 / 0.24 / 0.13

SEA64 70.26 / 82.14 / 90.04 2.58 / 1.10 / 0.14 0.51 / 0.22 / 0.14
DWM64 77.75 / 85.18 / 92.65 1.94 / 0.60 / 0.14 0.38 / 0.04 / 0.14

Oza64 81.99 / 89.60 / 92.40 0.97 / 0.37 / 0.25 0.19 / 0.07 / 0.25
Single 81.50 / 87.85 / 89.99 1.60 / 0.70 / 0.34 0.31 / 0.14 / 0.34

cHypera / cHyperb / cHyperc - naı̈ve Bayes
avg std dev conf

ASE 87.52 / 92.23 / 95.94 0.38 / 0.43 / 0.33 0.09 / 0.08 / 0.06
SE0.1 87.62 / 92.62 / 95.98 0.42 / 0.43 / 0.47 0.08 / 0.09 / 0.09

SE0.25 79.90 / 86.80 / 92.14 0.83 / 0.40 / 0.22 0.16 / 0.08 / 0.22
Fix64 73.72 / 83.69 / 94.16 2.60 / 1.35 / 0.40 0.51 / 0.26 / 0.40

SEA64 73.72 / 84.23 / 94.78 2.60 / 1.27 / 0.31 0.51 / 0.25 / 0.31
DWM64 85.93 / 92.18 / 95.63 1.76 / 0.18 / 0.38 0.35 / 0.04 / 0.38

Oza64 80.01 / 87.31 / 89.78 1.23 / 0.54 / 0.56 0.24 / 0.11 / 0.56
Single 81.25 / 89.47 / 93.34 2.02 / 0.87 / 0.84 0.40 / 0.17 / 0.84

Results with Evolving Data Sets. Table 3 reports the overall results obtained ana-
lyzing the cHyper problem, considering both decision tree and naı̈ve Bayes models.
Differently from the results obtained with stable data sets, the active model threshold
influences the overall results. Varying the value from 0.1 to 0.25, and especially con-
sidering cHypera and cHyperb , SE system presents a difference even larger than 6%
between the two values. On the contrary, our ASE approach provides an accuracy in line
with the best one, even considering standard deviation. This demostrates that, without
knowing the ideal threshold value for model activation, our ASE approach represents
the right solution to the different situations involved in a stream scenario, and simulated
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by the three cases of the cHyper problem. As stated in the previous section, it is worth
observing the poor performances of Fix and SEA in the case of evolving data. These
obsevations are further validated by the results obtained with the Stagger problem,
that essentially follow the ones proposed in Table 3.

Finally, Table 4 outlines the resources required by the systems. The memory require-
ments were tested using NetBeans 6.8 Profiler. We can state that Single requires less
memory than ensemble methods, which need a quantity of memory that is essentially
linear with respect to the number of classifiers stored in the ensemble. The different na-
ture of the two classes of systems influences this value. The average memory required
by our system is slightly higher than the others, since our system manages two differ-
ent structures, as suggested at the end of Section 3.3. The run time behavior confirms
this trend. In this case the drift detection approach influences the execution time of
a method. Let us compare the bagging method Oza with respect to DWM, SEA64 and
ASE. These tests highlight that incremental single model systems are faster than ensem-
ble ones, since they have to update only one model. On the contrary, considering the
accuracy, single model systems rarely provide best average values. Finally, Oza guar-
antees an appreciable reliability with every data set, but its execution time is definitely
higher than the others.

Table 4. cHyperc time and memory required

decision tree naı̈ve Bayes
avg used run time avg used run time

heap (KB) (sec.) heap (KB) (sec.)

ASE 9276 82.40 7572 27.42
SE 9233 80.80 7894 27.45

Fix64 8507 47.54 5317 23.82
SEA64 7980 152.07 5371 97.76

DWM64 5111 77.56 5137 21.21
Oza64 10047 393.93 6664 290.24
Single 5683 11.54 5399 8.26

Figure 6a shows the results obtained considering the Cyclic problem. The latter are
presented considering the naı̈ve Bayes approach and analyzing different rates between
the chunk size and the elements to classify. As shown in Figure 6a, even in this case, our
ASE approach is in-line with the SE0.1 and better than the others. Since this problem
presents recurring concepts, our approach can exploit the selective ensemble better than
the others, since some models which are currently out of context are not deleted by
the system, but simply disabled. If a concept becomes newly valid, the model can be
reactivated. This behavior is still valid, even in the case of the adaptive approach.

We conclude this section, proposing the results obtained analyzing the KddCup99
problem, and considering the decision tree approach. In this case, only an execution is
run considering the whole data set. As shown is Figure 6b, the approaches employing
an advanced method to keep track of concept drift propose an accuracy in line with the
ones obtained by Aggarwal et al. in [3]. Even in this case, ASE proposes a performance
comparable with SE0.1, showing that the adaptive behavior guarantees a good level of
reliability. The run time requirements needed for analysing KddCup99 dataset are in line
with the ones proposed in Table 4.



Data Streams Classification: A Selective Ensemble 221

(a) Cyclic and naı̈ve Bayes model. (b) KddCup99 and decision tree model.

Fig. 6. Average accuracy with Cyclic ans KddCup99 problems

5 Conclusions

Starting from the requirements constrained by the unpredictable nature of streaming
data, this paper proposed an adaptive selective ensemble approach for data streams
classification. The aim of this work is represented by a new adaptive behavior for an
ensemble model selection approach. The new feature enables the system to automat-
ically adapt the active model threshold to the current stream status. The idea is not
providing a fixed value of the threshold set up experimentally, but letting its value auto-
matically adapt to the data flow changes. When data are quite stable, the system can use
a large part of the ensemble. On the contrary, when data changes the threshold, it has
to be reduced to disable the not up-to-date models. The preliminary results show that,
with respect to the use of a fixed threshold, our adaptive algorithm provides a slightly
worse performance than the ones using the best value of the threshold. Unfortunately,
the choice of the best value is not always feasible, and if a wrong selection is made,
the system loses its precision. Our adaptive approach does not require any assumption
about active model values and displays good adaptation to the different scenarios. This
work represents a first step to guarantee a system completely adaptable to the different
streaming factors. As future works, our aims are to test our adaptive model in a real
stream application with real data. Moreover, we are currently studying the introduc-
tion of runtime monitoring tools for automatically adapting our system, e.g varying the
number of frame levels, or the models available for each layer, dynamically considering
memory consumption and time response constraints.
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