
Developing Goal-Oriented Normative Agents:
The NBDI Architecture

Baldoino F. dos Santos Neto1, Viviane Torres da Silva2, and Carlos J.P. de Lucena1,�

1 Computer Science Department, PUC-Rio, Rio de Janeiro, Brazil
2 Computer Science Department, Fluminense Federal University (UFF)

Rio de Janeiro, Brazil
{bneto,lucena}@inf.puc-rio.br,

viviane.silva@ic.uff.br

Abstract. In open multi-agent systems norms are mechanisms used to restrict
the behaviour of agents by defining what they are obligated, permitted or prohib-
ited to do and by stating stimulus to their fulfillment such as rewards and dis-
couraging their violation by pointing out punishments. In this paper we propose
the NBDI architecture to develop goal-oriented normative agents whose priority
is the accomplishment of their own desires while evaluate the pros and cons as-
sociated with the fulfillment or violation of the norms. The BDI architecture is
extended by including norms related functions to check the incoming perceptions
(including norms), select the norms they intend to fulfill based on the benefits
they provide to the achievement of the agent‘s desires and intentions, and de-
cide to cope or not with the norms while dropping, retaining or adopting new
intentions. The applicability of our approach is demonstrated through an non-
combatant evacuation scenario implemented by using the Normative Jason plat-
form.

Keywords: Norms and BDI agents.

1 Introduction

Normative regulation is a mechanism that aims to cope with the heterogeneity, auton-
omy and diversity of interests among the different members of an open multi-agent
system establishing a set of norms that ensures a desirable social order [5].

Such norms regulate the behaviour of the agents by indicating that they are obligated
to accomplish something in the world (obligations) [6], permitted to act in a particular
way (permissions) and prohibited from acting in a particular way (prohibitions) [6].
Moreover, norms may define rewards to their fulfillment and may state punishments in
order to discourage their violation[6].

In this paper we consider that agents are goal-oriented entities that have the main pur-
pose of achieving their desires while trying to fulfill the system norms. In this context,
the paper presents an abstract architecture to build agents able to deal with the norms

� The present work has been partially funded by the Spanish project “Agreement Technolo-
gies” (CONSOLIDER CSD2007-0022,INGENIO 2010) and by the Brazilian research coun-
cils CNPq under grant 303531/2009-6 and FAPERJ under grant E-26/110.959/2009.

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 176–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Developing Goal-Oriented Normative Agents: The NBDI Architecture 177

of a society in an autonomous way. The NBDI (Norm-Belief-Desire-Intention) archi-
tecture extends the BDI (Belief-Desire-Intention) architecture [8] by including norms
related functions to support normative reasoning. The agents built according to the pro-
posed architecture have: (i) a review function of norms and beliefs used to check the
incoming perceptions (including norms), (ii) a norm selection function to select the
norms they intend to fulfill based on the benefits they provide to the achievement of the
agent’s desires and intentions, and to identify and solve conflicts among the selected
norms, and (iii) a norm filter where the agents decide to cope or not with the norms
while dropping, retaining or adopting new intentions.

We demonstrate the applicability of the NBDI architecture through a non-combatant
evacuation scenario where the tasks related to review, select and filter norms are im-
plemented by using the Normative Jason platform [7] that already provides support to
the implementation of BDI agents and a set of normative functions able to check if the
agent should adopt or not a norm, evaluate the pros and cons associated with the ful-
fillment or violation of the norm, check and solve conflicts among norms, and choose
desires and plans according to their decisions of fulfilling or not a norm.

The paper is structured as follows. In Section 2 we outline the background about
norms that is necessary to follow the paper. In Section 3 we present the non-combatant
evacuation scenario where norms are defined to regulate the behaviour of rescue agents.
In 4 the proposed NBDI normative agent architecture is explained and exemplified by
using the proposed scenario. Section 5 demonstrates the applicability of the NBDI ar-
chitecture. Section 6 summarizes relevant related work and, finally, Section 7 concludes
and presents some future work.

2 Norms

In this work, we adopt the representation for norms described in [7], as shown below:
norm (Addressee, Activation, Expiration, Rewards,Punishments, DeonticConcept,

State)
where Addressee is the agent or role responsible for fulfilling the norm, Activation

is the activation condition for the norm to become active, Expiration is the expiration
condition for the norm to become inactive, Rewards are the rewards to be given to the
agent for fulfilling a norm, Punishments are the punishments to be given to the agent
for violating a norm, DeonticConcept indicates if the norm states an obligation or a
prohibition, and State describes a set of states being regulated.

3 Scenario: Rescue Operation

The applicability of the architecture proposed in this paper is demonstrated by using the
simplified non-combatant evacuation scenario. In such scenario agents have the goals to
plan the evacuation of members of a Non-Governmental Organisation (NGO) that are in
hazardous location and, to do so, they can use different resources that help to evacuate
the members, such as: (i) helicopters, (ii) troops and (iii) land-based helicopters. Con-
sidering that such resources are limited, we have a Commander Agent that is responsible

178 B.F. dos Santos Neto, V.T. da Silva, and C.J.P. de Lucena

Fig. 1. NBDI Architecture

to control the use of the resources regulating the behaviour of the agents according to
the norms 1, 2 and 3:

Norm 1
Addressee. Rescue Entity.
Activation. NGO workers are stranded in a hazardous location.
Expiration. NGO workers are stranded in a safe location.
DeonticConcept. Obligation.
State. To evacuate NGO workers.
Rewards. The Commander Agent gives more troops to Rescue Entity.
Rewards. The Commander Agent gives land-based helicopters to Rescue Entity.
Punishments. (obligation) Rescue Entity is obligated to return to the Commander

Agent part of their troops.
Norm 2

Addressee. Rescue Entity.
Activation. The weather is bad.
Expiration. The weather is good.
DeonticConcept. Prohibition.
State. To evacuate NGO workers.
Punishments. (obligation) Rescue Entity is obligated to return to the Commander

Agent part of their helicopters or land-based helicopters.
Norm 3

Addressee. Rescue Entity.
Activation. The weather is bad.
Expiration. The weather is good.
DeonticConcept. Prohibition.
State. To use helicopters.
Rewards. The Commander Agent gives more troops or land-based helicopters to

Rescue Entity.
Punishments. (obligation) Rescue Entity is obligated to return to the Commander

Agent part of their troops.

Developing Goal-Oriented Normative Agents: The NBDI Architecture 179

4 NBDI Architecture

The NBDI (Norm-Belief-Desire-Intention) architecture extends the BDI architecture to
help agents on reasoning about the system norms. Norm is considered as a primary con-
cept that influences the agent while reasoning about its beliefs, desires and intentions.
The extensions we have made are represented in the NBDI architecture by the following
components, as illustrated in Figure 4: Belief+Norm Review Function, Norm Selection
Function, Norm Filter and Plans base1 (that stores the plans of the agent).

In a nutshell, the NBDI architecture (Figure 4) works as follows. The agent perceives
information about the world by using its sensors. The sensed information is the input of
the Belief+Norm Review Function, an extension of Belief Review Function [8] defined
in the BDI architecture that is responsible for reviewing the Beliefs base taking into
account the current perception and ones already stored in the base.

In this work, we consider that norms are also stored in the Beliefs base, so, besides
performing the original functionality of the Belief Review Function, the Belief+Norm
Review Function is also responsible for: (i) in case the current perception is a norm,
reviewing the sets of adopted norms by comparing the information loaded in the new
norm with the norms and beliefs already stored in the base; and (ii) updating the sets
of adopted and activated norms, considering that some may become active and others
inactive due to the incoming perceptions.

Next, the Option Generation Function updates the agent’s desires, and also their
priorities. Such adaptation must consider both agent’s current beliefs and intentions,
and must be opportunistic, i.e., it should recognize when environmental circumstances
change advantageously to offer the agent new ways of achieving intentions, or the
possibility of achieving intentions that were otherwise unachievable [8]. Note that this
function works exactly as the original function described in the BDI architecture. This
function does not consider the norms stored in the Beliefs base while updating the agent
desires because the agent must be able to generate new desires or adapt the existing ones
without the influence of the norms. Our architecture considers that the agent is an au-
tonomous goal-oriented entity that fulfils the system norms if it decides to do so.

After reviewing the beliefs, desires, activated and adopted norms, the Norm Selection
Function is executed in order to (i) evaluate the activated norms in order to select the
ones that the agent has the intention to fulfil; and (ii) identify and solve the conflicts
among these norms.

Next, the Norm Filter, an extension of Filter [8] defined in the BDI architecture,
selects the desires that will become intentions taking into account the norms the agent
wants to fulfil. The plans that will achieve the intentions are also selected by following
the norms the agent wants to fulfil.

Finally, the Action Selection Function is responsible for performing the actions spec-
ified by the intention. The next subsections detail the components added to the original
BDI architecture, the one that was extended and a set of algorithms that demonstrate
how such components can be implemented.

1 Plans are composed by actions and states that the agent has the desire to achieve.

180 B.F. dos Santos Neto, V.T. da Silva, and C.J.P. de Lucena

Fig. 2. Belief+Norm Review Function

Algorithm 1. Adopting Norms

Require: Beliefs base N: norms stored in the beliefs base
Require: agent: informations about the agent, such as: name and role
Require: Beliefs base NA: adopted norms stored in the beliefs base
Require: NN: new norms
1: for all newNorm in NN do
2: x = true
3: for all n in N do
4: if (n == newNorm) then
5: x = false
6: end if
7: end for
8: if x ∩ ((agent.Name == newNorm.Addresse) ∪ ((agent.Role ==

newNorm.Addresse)) then
9: NA.add(newNorm)

10: end if
11: end for

Fig. 3. Norm Selection Function

4.1 Belief+Norm Review Function

Besides performing the original functionality of the Belief Review Function, which is
the revision of the beliefs (represented by Reviewing Beliefs task), the Belief+Norm
Review Function (Figure 2), helps the agent on recognizing its responsibilities towards

Developing Goal-Oriented Normative Agents: The NBDI Architecture 181

Algorithm 2. Updating Norms

Require: Beliefs base NAD: adopted norms stored in the beliefs base
Require: Beliefs base NAC: activated norms stored in the beliefs base
Require: P: new perceptions
1: for all n in (NAD ∪NAC) do
2: for all p in P do
3: if (n.Activation.unify(p)) then
4: NAD.remove(n)
5: NAC.add(n)
6: else
7: if (n.Expiration.unify(p)) then
8: NAC.remove(n)
9: NAD.add(n)

10: end if
11: end if
12: end for
13: end for

other agents by adopting new norms that specify such responsibilities (represented by
Adopting Norms task) and updates the sets of activated and adopted norms (represented
by Updating Norms task).

Adopting Norms (AN). This task recognizes from the set of receiving perceptions the
ones that describe norms. After recognizing the norms, such function reviews the set
of adopted norms applying the following verifications: (i) it checks if the new norm
unifies with one of the norms already adopted, i.e., if the incoming norm already exists
in the agent Belief Base (Algorithm 1 from line 2 to 7), and (ii) it verifies if the agent
is the addressee of the norm, i.e., if the field Addressee of the new norm unifies with
the agent role or agent name, also stored as a belief in the Belief Base (Algorithm 1 line
8). Finally, such function updates the set of adopted norms in the Belief Base if the new
norm does not already exist and the agent is the addressee of the norm (Algorithm 1
line 9).

With the aim to exemplify the use of this task, let’s consider the scenario presented
in Section 3 where two groups of agents are leaded by Agent A and Agent B playing
the role Rescue Entity. When these entities receive information about the three system
norms, the AN task is executed checking if the norms are not stored yet in the agent’s
belief base and comparing the addressee information with the role being played by the
agents.

Updating Norms (UN). UN task updates the set of activated and adopted norms check-
ing if the fields Activation and Expiration of the norm unifies with the beliefs of the
agent. If the activation conditions unify with the beliefs, the adopted norm is activated
(Algorithm 2 from line 3 to 6). If the expiration conditions unify with the beliefs, the
norm is deactivated and stored as an adopted norm (Algorithm 2 from line 7 to 10).

182 B.F. dos Santos Neto, V.T. da Silva, and C.J.P. de Lucena

Following the example above, if the weather of the area operated by one of the two
rescue entities is bad, both norms 2 and 3 are activated, since the activation condition of
both norms is “The weather is bad”. If the norms are activated, the rescue entity must
not rescue NGO members and must not use helicopters. Both norms are deactivated
when the expiration condition unifies with the information about a good weather stored
in the agent’s belief base.

4.2 Norm Selection Function

The main goal of the Norm Selection Function (Figure 3) is to select the norms that the
agent has the intention to fulfil. In order to do this, such function performs two tasks:
1) Evaluating Norms and 2) Identifying and Solving Conflicts. The first task helps the
agent on selecting, from the set of activated norms, the norms that it has the intention to
fulfil and the ones it has the intention to violate. The function evaluates the benefits of
fulfilling or violating the norms, i.e., it checks how close the agent gets of achieving its
desires if it decides to fulfil or if it decides to violate the norms. The function groups the
activated norms in two sub-sets: norms to be fulfilled and norms to be violated. Finally,
the second task of this function identifies and solves the conflicts among the norms that
the agent has the intention to fulfil and among the ones that the agent has the intention
to violate.

Evaluating the Norms (EN). In order to evaluate the benefits of the fulfilment or vio-
lation of a norm according to the agent’s desires and intentions, the steps below should
be followed: (Step 1) In case of obligations, it checks if the state described in the norm
is equal to one of the states that the agent has desire (or intention) to achieve. In affir-
mative cases, the contribution is positive and the function g(n.DeonticConcept, n.State)
returns a value indicating the level of norm’s contribution that is calculated according
to the priority of the desire that is similar to the state described by norm. The function
receives as parameters n.DeonticConcept representing the deontic concept type, i. e.,
obligation or prohibition, and n.State representing the state that is been regulated. In
any other case, the contribution is zero since it does not disturb the achievement of the
agent’s desires or intentions. Such step is represented in Algorithm 3 from line 2 to 8.
(Step 2) In case of prohibitions, it checks if the state described in the norm is equal to
one of the states that the agent has desire (or intention) to achieve. In affirmative cases,
the contribution is negative since it disturbs the achievement of the agent’s desires or in-
tentions and the function g(n.DeonticConcept, n.State) calculates the absolute value of
the contribution. In any other case, the prohibition will contribute neutrally. Such step is
represented in Algorithm 3 between lines 9 and 15. (Step 3) After analyzing the state be-
ing regulated, this step considers the influence that the rewards have to the achievement
of the agent’s desires. We consider that rewards can never influence the agent negatively
but always positively or neutrally since they give permissions to achieve a set of states.
Such step is represented in Algorithm 3 by line 16. Function r(n.Rewards) verifies the
desires (or intentions) that are equal to the rewards and returns a value indicating the
contribution that is the sum of the priorities of the agent’s desires benefited by the re-
wards. (Step 4) Finally, the punishments are evaluated in order to check if they will

Developing Goal-Oriented Normative Agents: The NBDI Architecture 183

influence the achievement of the agent’s desires and intentions negatively or positively.
(Step 4.1)In case the punishment states a prohibition and the state being prohibited is
one of the agent desires or intentions, the punishment will influence negatively since it
will disturb the agent of achieving one of its desires. If it is not the case, the punishment
will not influence. Such step is represented in Algorithm 4 from line 2 to 8. Function
g(n.punishments.DeonticConcept) returns a absolute value indicating the contribution
of the fulfilment of the prohibition to the achievement of the agent’s desires and inten-
tions. (Step 4.2) In case the punishment states an obligation and the state being obliged
is one of the agent desires or intentions, the punishment will influence positively (or
neutrally) since such state will already be achieved by the agent. If it is not the case,
the punishment will not influence. Such step is represented in Algorithm 4 from line 9
to 15. Function g(n.punishments.DeonticConcept) returns a value indicating the contri-
bution of the fulfilment of the obligation to the achievement of the agent’s desires and
intentions.

Algorithm 3. Evaluating the fulfilment

Require: Desires base D
Require: Intentions base I
Require: Beliefs base N: norms stored in the beliefs base
1: x = 0
2: if n.DeonticConcept == Obligation then
3: for all d in (D ∪ I) do
4: if n.State == d then
5: x = x + g (n.DeonticConcept, n.State)
6: end if
7: end for
8: end if
9: if n.DeonticConcept == Prohibition then

10: for all d in (D ∪ I) do
11: if n.State == d then
12: x = x - g (n.DeonticConcept, n.State)
13: end if
14: end for
15: end if
16: x = x + r (n.Rewards)
17: return x

Note that it is necessary to individually check the contribution of the fulfilment and
violation of each norm to the achievement of the agent desires (or intentions). Such step
is represented in Algorithm 5 in the lines 2 and 3.

After checking how each norm can contribute to the achievement of the agent’s de-
sires and intentions, the function helps the agent on deciding which are the norms that
it should fulfil, i.e., the norms whose contribution coming from its fulfilment is greater
than the contribution coming from its violation. Steps 1, 2 and 3 return the contribution
of the norm if the agent chooses to fulfil it (Algorithm 3 line 17) and 4.1 and 4.2 return

184 B.F. dos Santos Neto, V.T. da Silva, and C.J.P. de Lucena

Algorithm 4. Evaluating the violation

Require: Desires base D
Require: Intentions base I
Require: Beliefs base N: norms stored in the beliefs base
1: x = 0
2: if n.punishment == Prohibition then
3: for all d in (D ∪ I) do
4: if n.punishment.state == d then
5: x = x - g (n.punishments.DeonticConcept, n.punishments.State)
6: end if
7: end for
8: end if
9: if n.punishment == Obligation then

10: for all d in (D ∪ I) do
11: if n.punishment.state == d then
12: x = x + g (n.punishments.DeonticConcept, n.punishments.State)
13: end if
14: end for
15: end if
16: return x

Algorithm 5. Reasoning about norms (Main)

Require: fulfilSet NF: norms stored in the fulfil set
Require: vilateSet NV: norms stored in the violate set
Require: Norms base N
1: for all Norm n in N do
2: fulfil = Execute Algorithm 3 using n
3: violate = Execute Algorithm 4 using n
4: if fulfil >= violate then
5: NF.add(n)
6: else
7: NV.add(n)
8: end if
9: end for

its contribution if the agent chooses to violate the norm (Algorithm 4 line 16). There-
fore, Algorithm 3 should be used to evaluate the contribution of the fulfilment of the
norm to the agents’ desires/intentions and Algorithm 4 should be used to calculate the
contribution of the violation of the norm to the agents’ desires/intentions.

If the contribution for fulfilling the norm is greater than or equal to the contribution
for violating the norm, the norm is selected to be fulfilled and added to the sub-set
Fulfill of the activated norms. Such step is represented in Algorithm 5 from line 4 to 6.
Otherwise, it is selected to be violated and added to the sub-set Violate of the activated
norms. Such step is represented in Algorithm 5 from line 6 to 8.

In order to exemplify the applicability of the EN task, let’s consider the rescue oper-
ation scenario. The evaluation of the benefits of fulfilling and violating the three norms

Developing Goal-Oriented Normative Agents: The NBDI Architecture 185

Algorithm 6. Detecting Conflicts

Require: fulfilSet NF: norms stored in the fulfil set
Require: vilateSet NV: norms stored in the violate set
1: for all Norm n1 in NF do
2: for all Norm n2 in NF do
3: if n1.State == n2.State and (n1.DeonticConcept == Obligation and n2.DeonticConcept

== Prohibition) or (n2.DeonticConcept == Obligation and n1.DeonticConcept == Pro-
hibition) then

4: Execute Algorithm 7 using n1 and n2
5: end if
6: end for
7: end for
8: for all Norm n1 in NV do
9: for all Norm n2 in NV do

10: if n1.State == n2.State and (n1.DeonticConcept == Obligation and n2.DeonticConcept
== Prohibition) or (n2.DeonticConcept == Obligation and n1.DeonticConcept == Pro-
hibition) then

11: Execute Algorithm 7 using n1 and n2
12: end if
13: end for
14: end for

Algorithm 7. Solving Conflicts

Require: fulfilSet NF: norms stored in the fulfil set
Require: vilateSet NV: norms stored in the violate set
1: fulfiln1 = Execute Algorithm 3 using n1
2: violaten2 = Execute Algorithm 4 using n2
3: fulfiln2 = Execute Algorithm 3 using n2
4: violaten1 = Execute Algorithm 4 using n1
5: if fulfiln1 + violaten2 >= fulfiln2 + violaten1 then
6: NF.remove(n2)
7: NV.remove(n1)
8: else
9: NF.remove(n1)

10: NV.remove(n2)
11: end if

are shown in Tables 1, 3 and 2 that indicates the contribution of each norm element to
the achievement of the agent goals. We consider that any norm element generates the
same contribution that is 1.

After analysing the contribution of the norms shown in Tables 1, 3 and 2, Norm 1 is
included in the set of norms to be fulfilled since the contribution for fulfilling it is equal
to “+3” and greater than the contribution for violating it that is equal to “-1”. Norm 2 is
also included in the fulfil set since the contribution for fulfilling it is equal to “-1” and
greater than the contribution for violating it that is equal to “-2”. And, finally, Norm 3
is included in the fulfil set since the contribution for fulfilling it is equal to “+1” and

186 B.F. dos Santos Neto, V.T. da Silva, and C.J.P. de Lucena

Table 1. Evaluating norm 1

Norm Contribution
positive neutral negative

Obligation 1 0 0
Reward 1 0 0
Reward 1 0 0

Punishments
Obligation 0 0 1

Table 2. Evaluating norm 3

Norm Contribution
positive neutral negative

Prohibition 0 0 1
Reward 1 0 0
Reward 1 0 0

Punishments
Obligation 0 0 1

Table 3. Evaluating norm 2

Norm Contribution
positive neutral negative

Prohibition 0 0 1
Punishments
Obligation 0 0 1
Obligation 0 0 1

greater than the contribution for violating it that is equal to “-1”. It indicates that the
agent has the intention to fulfil the three norms.

Detecting and Solving Conflicts (DSC). If two different norms (one being an obliga-
tion and the other one a prohibition) specify the same state, it is important to check their
status, i.e., to check if they are in the set of norms that will be violated or fulfilled since
they may be in conflict. If the agent intends to fulfil the obligation but does not intend to
fulfil the prohibition, these norms are not in conflict. The same can be said if the agent
intends to fulfil the prohibition and to violate the obligation. On the other hand, if the
agent intends to fulfil both norms or to violate both norms, they are in conflict and it
must be solved. Such step is represented in Algorithm 6.

For instance, in case of conflicts between two norms that the agent intends to fulfil
or violate, the one with highest contribution to the achievement of the agent’s desires
(and intentions) can be selected. If the contributions have equal values we can choose
anyone. That is, if the contribution coming from the fulfilment of the first norm (Steps
1, 2 and 3) plus the contribution coming from the violation of the second norm (Steps
4.1 and 4.2) is greater to or equal than the contribution coming from the fulfilment of
the second norm plus the contribution coming from the violation of the first norm, the
first norm is selected to be fulfilled and the second one to be violated. It is represented in
Algorithm 7 from line 5 to 8. In case the opposite happens, the second norm is selected
to be fulfilled and the first to be violated, as described in Algorithm 7 from line 8 to 11.

Considering the norms evaluated in the EN function, a conflict between Norm 1 and
2 is detected and should be solved. The conflict is solved by selecting Norm 1 to be
fulfilled and Norm 2 to be violated since the contribution coming from the fulfilment of
the first norm (+3) plus the contribution coming from the violation of the second norm

Developing Goal-Oriented Normative Agents: The NBDI Architecture 187

(-2) is greater than the contribution coming from the fulfilment of the second norm (-1)
plus the contribution coming from the violation of the first norm (-1).

4.3 Norm Filter

The Norm Filter (Figure 4) is executed in order to drop any intention that does not bring
benefits to the agent, retains intentions that are still expected to have a positive overall
benefit and adopt new intentions, either to achieve existing intentions, or exploit new
opportunities. In order to accomplish theses tasks and besides performing the original
functionality of the Filter function, such function performs two additional steps.

Selecting Desires (SD). In this step the filter selects the desires that will become in-
tentions taking into account the norms the agent wants to fulfil. The desires are selected
according to their priorities and the norms may increase or decrease such priorities. If
the agent has a desire to achieve a state and there is a norm that obliges the agent of
achieving such state, the desire priority is increased according to the importance of the
norm (represented in Algorithm 8 from line 3 to 5). If the agent has a desire to achieve
a state and there is a norm that prohibits the agent of achieving such state, the desire
priority is decreased according to the importance of the norm (represented in Algorithm
8 from line 5 to 9). If there is not any norm related to the desires, its priority is not
modified. Finally, the function getDesireHighestPriority() (Algorithm 8 line 12) returns
the desire with highest priority.

By applying this function to our example, the goal “Evacuating the members of a
NGO to a safe location” is selected because such goal has highest priority since it re-
ceives a positive influence of Norm 1.

Selecting Plans (SP). After selecting the desires with highest priorities, i.e., after gen-
erating the agent intentions, the agent needs to select the plans that will achieve such
intentions. Like in the selection of desires, the selection of plans will also be influenced
by the norms.

While selecting a plan it is important to make sure that such plan will achieve the
state described in the obligation norm and that will not achieve an state being prohibited.
Therefore, the plans that achieve a given intention are ordered according to their priori-
ties. If the state described by an obligation norm is equal to one of the states included in
the plan, the norm increases the priority of such plan (represented in Algorithm 9 from
line 4 to 6). Otherwise, if the state described by an prohibition norm is equal to one of
the states included in the plan, the norm decreases the priority of such plan (represented
in Algorithm 9 from line 6 to 10).

Let’s consider that the desires of the agents in our example with highest priority is
“Evacuating the members of a NGO to a safe location”, that the agent has the intention
to fulfil Norm 3, and that the priority of plans that uses helicopters has decrease. When
SP step is executed it selects the plan with highest priority that tries to rescue the NGO
workers and that will not use helicopters to do so.

188 B.F. dos Santos Neto, V.T. da Silva, and C.J.P. de Lucena

Fig. 4. Norm Filter

Algorithm 8. Selecting Desires

Require: fulfilSet NF: norms stored in the fulfil set
Require: Desires base D
Require: Intentions base I
1: for all Norm n in NF do
2: for all d in (D ∪ I) do
3: if (n.State == d) ∩ (n.DeonticConcept == Obligation) then
4: d.annotatePriority(+1)
5: else
6: if (n.State == d) ∩ (n.DeonticConcept == Prohibition) then
7: d.annotatePriority(-1)
8: end if
9: end if

10: end for
11: end for
12: return getDesireHighestPriority()

5 Implementing the NBDI Architecture

The NBDI architecture proposed in section 4 was implemented by translating the func-
tions related to review, select and filter norms proposed in such architecture to the
Normative Jason platform, described in [7]. The platform provides a set of normative
functions, as follows: (i) the Norm Review function helps the agent on recognizing its
responsibilities towards other agents by incorporating the norms that specify such re-
sponsibilities. Such function implements the Algorithm 1 described in the (AN) step;
(ii) the main task of the Updating Norm function is to update the set of activated and
adopted norms. It implements the algorithm Algorithm 2 described in the (UN) step;
(iii) the Evaluating Norm function helps the agent on selecting the norms that it has the
intention to fulfil and the ones it has the intention to violate by executing the Algorithm
5 and, consequently, Algorithms 3 and 4 described in the (EN) step; (iv) the Detecting
and Solving Conflicts function checks and solves the conflicts among the norms. It exe-
cutes Algorithms 6 and 7 described in the (ISC) step; (v) the Selecting Desires function
selects the desires that will become intentions taking into account their priorities and

Developing Goal-Oriented Normative Agents: The NBDI Architecture 189

executes Algorithm 8 described in the (SD) step; and, finally, (vi) the Selecting Plans
function chooses a single applicable plan from the set of options based on their pri-
orities and executes Algorithm 9 described in the (SP) step. The applicability of the
NBDI architecture and its implementation was demonstrated by the developing of the
non-combatant evacuation scenario, presented in section 3.

Algorithm 9. Selecting Plan

Require: fulfilSet NF: norms stored in the fulfil set
Require: P: all plans that achieve the selected desire
1: for all Norm n in NF do
2: for all p in P do
3: for all state in p do
4: if (n.State == state)∩ (n.DeonticConcept == Obligation) then
5: p.annotatePriority(+1)
6: else
7: if (n.State == state) ∩ (n.DeonticConcept == Prohibition) then
8: p.annotatePriority(-1)
9: end if

10: end if
11: end for
12: end for
13: end for
14: return getPlanHighestPriority()

6 Related Work

Our work was influenced by the architecture proposed in [2]. Such architecture to build
normative agents also contemplates functions to deal with the adoption of norms and
the influence of norms on the selection of desires and plans. However, our work presents
details about the verifications that must be satisfied in order to agents adopt norms, the
evaluations that must be made to select the norms the agents intend to fulfil and vi-
olate and a guidelines to help agents on selecting plans according to the norms they
want to fulfil and violate. The BOID (Belief-Obligation-Intention-Desire) architecture
proposed in [1] is an extension of the BDI architecture that considers the influence of
beliefs, obligations, intentions and desires on the generation of the agent desires. The
BOID architecture applies the notion of agent types to help on the generation of the
desires. Thus, their approach could have been used in the (SD) function being proposed
in our paper since this function is the one responsible to select the desires. Instead of
basing the selection of desires on the agent type, we have used the norm contribution
and the priority of the desires (and intentions) to provide a quantifiable solution to the
selection of the agent desire. The approach described in [4] proposes an architecture
to build norm-driven agents whose main purpose is the fulfilment of norms and not
the achievement of their goals. In contrast, our agents are desire-driven that take into
account the norms but are not driven by them. In [6] the authors provide a technique
to extend BDI agent languages by enabling them to enact behaviour modification at
runtime in response to newly accepted norms, i.e., it consists of creating new plans to

190 B.F. dos Santos Neto, V.T. da Silva, and C.J.P. de Lucena

comply with obligations and suppressing the execution of existing plans that violate
prohibitions. However, they have not considered the desires and plans priorities. In our
work we consider that obligations and prohibitions may increase or decrease the priority
of a desire or a plan, and that the selection of desires and plans are based on their prior-
ities. The agents built according to the architecture presented in [5] are able to evaluate
the effects of norms on their desires helping then on deciding to comply or not with the
norms. This architecture is based on the BDI architecture whose properties have been
expanded to include normative reasoning. In the Norm Review process being proposed,
we extend some of the verifications defined in [5], such as: our architecture checks (i)
if the norm was not adopted already and (ii) if the agent is the addressee of the norm.
Besides, in the Norm selection process, although the approach proposed in [5] evalu-
ates the positive and negative effects of norms on the agent desires, it does not consider
the influence of rewards in such evaluation. The authors in [3] present concepts, and
their relations, that are used for modelling autonomous agents in an environment that is
governed by some (social) norms. Although such approach considers that the selection
of desires and plans should be based on their priorities and that such priorities can be
influenced by norms, it does not present a complete strategy with a set of verification in
the norm review process, and strategies to evaluate, identify and solve conflicts between
norms such as our work does.

7 Conclusions

This paper proposes an extension to the BDI architecture called NBDI to build goal-
oriented agents able to: (i) check if the agent should adopt or not a norm, (ii) evaluate
the pros and cons associated with the fulfilment or violation of the norm, (iii) check
and solve conflicts among norms, and (iv) choose desires and plans according to their
decisions of fulfilling or not a norm.

By implementing the algorithms from 1 to 9 and using the Normative Jason plat-
form, the applicability of NBDI architecture could be verified in the example presented
in Section 3. Such agents are responsible to plan the evacuation of people that are in
hazardous location, check the incoming perceptions (including norms), select the norms
they intend to fulfil based on the benefits they provide to the achievement of the agent’s
desires and intentions, identify and solve conflicts among the selected norms, and decide
to cope or not with the norms while dropping, retaining or adopting new intentions. We
are investigating the need for extenting the AgentSpeak language with new predicates
that better represent the norms.

References

1. Beavers, G., Hexmoor, H.: Obligations in a bdi agent architecture. In: IC-AI (2002)
2. Castelfranchi, C., Dignum, F., Jonker, C., Treur, J.: Deliberative normative agents: Principles

and architecture. In: Proc. of the 6th Int. Workshop on Agent Theories, Architectures, and
Languages (1999)

3. Dignum, F.: Autonomous agents and social norms. In: Proc. of the Workshop on Norms, Obli-
gations and Conventions, pp. 56–71 (1996)

Developing Goal-Oriented Normative Agents: The NBDI Architecture 191

4. Kollingbaum, M.: Norm-Governed Practical Reasoning Agents. PhD thesis, University of Ab-
erdeen (2005)

5. Lopez-Lopez, F., Marquez, A.: An architecture for autonomous normative agents. In: Proc. of
the 5th Int. Conf. in Computer Science (2004)

6. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in bdi agents. In: Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems (2009)

7. Neto, B.F.S., da Silva, V.T., de Lucena, C.J.P.: Using jason to develop normative agents. In:
Proc. of the XX Brazilian Symposium on Artificial Intelligence (2010)

8. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Modern Approach to Ar-
tificial Intelligence. Massachusetts Institute of Technology (1999)

	Developing Goal-Oriented Normative Agents:The NBDI Architecture
	Introduction
	Norms
	Scenario: Rescue Operation
	NBDI Architecture
	Belief+Norm Review Function
	Norm Selection Function
	Norm Filter

	Implementing the NBDI Architecture
	Related Work
	Conclusions
	References

