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Abstract. Supervisory Control Theory (SCT) is a model-based framework for
automatically synthesizing a supervisor that minimally restricts the behavior of a
plant such that given specifications is fulfilled. The main obstacle which prevents
SCT from having a major industrial breakthrough is that the supervisory synthe-
sis, consisting of a series of reachability tasks, suffers from the state-space ex-
plosion problem. To alleviate this problem, a well-known strategy is to represent
and explore the state-space symbolically by using Binary Decision Diagrams.
Based on this principle, an alternative symbolic state-space traversal approach,
depending on the disjunctive partitioning technique, is presented in this paper. In
addition, the approach is adapted to the prior work, the guard generation proce-
dure, to extract compact propositional formulae from a symbolically represented
supervisor. These propositional formulae, referred to as guards, are then attached
to the original model, resulting in a modular and comprehensible representation
of the supervisor.

Keywords: Supervisory control theory, State-space exploration, Binary decision
diagrams, Partitioning techniques, Propositional formulae.

1 Introduction

The analysis of reactive systems has been paid much attention by researchers and scien-
tists in the computer science community. One of the classic methods to analyze reactive
systems is utilizing formal verification techniques, such as model checking, to verify
whether the considered system fulfills specifications. Nevertheless, from the control
engineering point of view, instead of verifying the correctness of the system, a con-
troller which guarantees that the system always behaves according to specifications is
preferred. Supervisory Control Theory (SCT) [1,2] provides such a control-theoretic
framework to design a device, called the supervisor, for reactive systems, referred to as
Discrete Event Systems (DESs). Given the model of a DES to be controlled, the plant,
and the intended behavior, the specification, the supervisor can be automatically syn-
thesized, guaranteeing that the closed-loop system fulfills given specifications. SCT has
been applied for various applications in different areas such as automated manufactur-
ing lines and embedded systems [3,4,5].

Generally, a supervisor is a function that, given a set of events, restricts the plant to
execute desired events according to the specification. A typical issue is how to realize
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such a control function efficiently and represent it appropriately. Since the synthesis
task involves a series of reachability computations, as DESs becoming more compli-
cated, the traditional explicit state-space traversal algorithm may be intractable due to
the state-space explosion problem. By using binary decision diagrams (BDD) [6,7], the
supervisor can be represented and computed symbolically such that the state-space ex-
plosion problem is alleviated to some extent. However, the symbolic computation is not
a silver bullet. Transforming from the traditional explicit state-space traversal algorithm
into a BDD-based computation scheme does not guarantee that the algorithm will be-
come remarkably efficient. Thus numerous researches have been performed to improve
the efficiency of symbolic computations. In this paper, we mainly focus on partitioning
techniques, which decompose the state-space into a set of structural components and
utilize these partitioned components to realize efficient reachability computations.

With BDD-based traversal algorithms, some larger DESs could be solved without
causing the state-space explosion. Meanwhile, another problem is arising from the
BDD representation of the resultant supervisor. Since the original models have been
reformulated and encoded, it is cumbersome for the users to relate each state with the
corresponding BDD variables. Therefore, it is more convenient and natural to represent
the supervisor in a form similar to the models. In [8], a promising approach is pre-
sented, where a set of minimal and tractable logic expressions, referred to as guards,
are extracted from the supervisor and attached to the original models of the closed-loop
system. However, this approach computes the supervisor symbolically based on the
conjunctive partitioning technique. This might lead to the state-space explosion, due to
the large number of intermediate BDD nodes.

The main contribution of this paper is adapting a symbolic supervisory synthesis
approach to the guard generation procedure, to make it applicable for industrially in-
teresting applications. The approach automatically synthesizes a supervisor by taking
the advantage of the disjunctive partitioning technique. The monolithic state-space is
then split into a set of simpler components and the reachability search is performed
structurally with a set of heuristic decisions. Moreover, the guard generation procedure
is tailored to use the partitioned structure to extract the simplified guards and attach
them to the original models. Finally, a comparison of algorithm efficiency between two
partitioning techniques is made by applying them to a set of benchmark examples.

The paper is organized as follows: For the readers who might be unfamiliar with Su-
pervisory Control Theory, Section 2 gives an informal and brief explanation. Section 3
provides some preliminaries that are used throughout the paper. The symbolic supervi-
sory synthesis and the guard generation procedure will be discussed in detail in Section
4 and 5. In Section 6, we apply what we have discussed and implemented to several real
case studies. Finally, we end up with some conclusions in Section 7.

2 Motivating Example

For readers who might be unfamiliar with SCT, the following simple example gives a
brief overview and states what the exact problem this paper is about to solve.
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Example 1. Consider a resource booking problem where two industrial robots need to
book two resources in opposite order to carry out their tasks. To avoid collisions, a
constraint requires that two robots are not allowed to occupy two zones simultaneously.

Figure 1 shows one way to model the system as the state machines, or deterministic
finite automata. Figure 1a and 1b depict the robot (plant) models and Fig. 1c and 1d
depict the resource (specification) models. The states having an incoming arrow from
outside denote the beginning of the task, while the states having double circles, called
marked states, denote the accomplishment of the task. The event useAR1

means that
Robot A uses Resource 1. The other events can be interpreted similarly. The goal of
the SCT is to automatically synthesize a minimally restrictive supervisor from these
modular models. Traditionally, to do this, the algorithm starts with the composition
(formally described in Section 3.1) of all the automata as the initial candidate super-
visor S0 (Fig. 1e). Then the undesirable states will be removed iteratively. Generally,
undesirable states can either be blocking or uncontrollable. A state is blocking when no
marked state can be reached, while uncontrollable states are defined in Section 3.1. In
Fig. 1e, we have one blocking state 〈qA2 , qB2 , qC2 , q

D
2 〉, which depicts the situation where

Robot A has booked Resource 1 and is trying to book Resource 2, while Robot B has
booked Resource 2 and is trying to book Resource 1. In such case, none of the robots
can do other movements, which is a blocking situation. After removing the blocking
state together with the associated transitions, a non-blocking supervisor is produced.

It can be observed that for such a simple example, the composed automaton contains
9 states. With a DES getting more complicated, the composed automaton will become
significantly larger. To alleviate this problem, a well known strategy is to represent the
state space symbolically by using Binary Decision Diagrams (BDD). In [8], based on
this principle, an alternative approach is presented, where guards are generated to pre-
vent the controlled system to reach undesirable states. The advantage of this approach is
that it never constructs the composed automaton, which means that an incomprehensi-
ble BDD representation of the supervisor is avoided. Instead, the approach characterizes
a supervisor by a set of minimal guards that are attached to the original models to rep-
resent the supervisor behavior. Figure 2 shows the application of the guard generation
to the example, where the variables vA, vB , vC , vD are introduced to hold the current
states of the corresponding automata.

The intention of this paper is to improve the guard generation procedure by introduc-
ing an alternative symbolic approach. This approach, which is based on the disjunctive
partitioning technique, partitions the transition function into a set of simple but struc-
tural components. These components, having the disjunctive connection relation be-
tween each other, therefore can be used to search the state-space without constructing a
total transition function for the composed automaton. Besides, to keep the intermediate
number of BDD nodes as small as possible, the approach includes a set of selection
heuristics to search the state-space in a structural way.

3 Preliminaries

This section provides some preliminaries which are used throughout the rest of the
paper.
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Fig. 1. Example 1. 1a-1b) Robot automata A and B, 1c-1d) resource automata C and D, and (1e)
a supervisor candidate S0.
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Fig. 2. Guards representing the behavior of the supervisor for Example 1
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3.1 Supervisory Control Theory

Generally, a DES can either be described by textual expressions, such as regular expres-
sions or graphically by for instance Petri nets or automata. In this paper, we focus on
deterministic finite automata.

Definition 1. A deterministic finite automaton (DFA), is a five-tuple:

(Q,Σ, δ, qinit, Qm)

where:

– Q is a finite set of states;
– Σ is a non-empty finite set of events;
– δ:Q×Σ → Q is a partial transition function which expresses the state transitions;
– qinit ∈ Q is the initial state;
– Qm ⊆ Q is a set of marked or accepting states.

The composition of two or more automata is realized by the full synchronous composi-
tion [9].

Definition 2. Let Ai = (Qi, Σi, δi, qiinit, Q
i
m), i = 1, 2 be two DFAs. The full syn-

chronous composition of A1 and A2 is

A1 ‖ A2 = (Q1‖2, Σ1 ∪Σ2, δ1‖2, q1‖2init, Q
1
m ×Q2

m)

where:

– Q1‖2 ⊆ Q1 ×Q2;
– q

1‖2
init = 〈q1init, q2init〉;

– δ1‖2(〈q1, q2〉, σ) =

⎧
⎪⎪⎨

⎪⎪⎩

δ1(q1, σ)× δ2(q2, σ) if σ ∈ Σ1 ∩Σ2

δ1(q1, σ)× {q2} if σ ∈ Σ1\Σ2

{q1} × δ2(q2, σ) if σ ∈ Σ2\Σ1

undefined otherwise.

As described in Section 1, the goal of SCT is to automatically synthesize a minimally
restrictive supervisor S, which guarantees the behavior of the plant P always fulfills the
given specification Sp. Here if the plant is given as a number of sub-plants P1, . . . , Pn,
the plant can be obtained by performing the full synchronous composition operation on
these sub-plants. Thus P = P1 ‖ . . . ‖ Pn. Similarly, Sp = Sp1 ‖ . . . ‖ Spm.

In SCT, events in the alphabet Σ can either be controllable or uncontrollable. Hence,
Σ can be divided into two disjoint subsets, the controllable event set Σc and the un-
controllable event set Σu. The supervisor is only allowed to restrict controllable events
from occurring in the plant.

Additionally, given a plant P and a specification Sp, two properties [1,2] that the
supervisor ought to have are:

– Controllability: Let Σu be the set of uncontrollable event set. The supervisor S is
never allowed to disable any uncontrollable event that might be generated by the
plant P .

– Non-blocking: This is a progress property enforced by the supervisor S, which
guarantees that at least one marked state is always reachable in the closed-loop
system, S ‖ P .
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3.2 Binary Decision Diagrams (BDD)

Binary decision diagrams (BDD), used for representing Boolean functions, can be ex-
tended to symbolically represent states, events and transitions of automata. In contrast
to explicit representations, which might be computationally expensive in terms of time
and memory, BDDs often generate compact and operation-efficient representations.

A binary decision diagram is a directed acyclic graph (DAG) consisting of two kinds
of nodes: decision nodes and terminal nodes. Given a set of Boolean variables V , a
BDD is a Boolean function f : 2V → {0, 1} which can be recursively expressed using
Shannon’s decomposition [10]. Besides, a variable v1 has a lower (higher) order than
variable v2 if v1 is closer (further) to the root and is denoted by v1 ≺ v2. The variable
ordering will impact the number of BDD nodes. However, finding an optimal variable
ordering of a BDD is a NP-complete problem [11]. In this paper, a simple but powerful
heuristic based on Aloul’s Force algorithm [12] is used to compute a suitable static
variable ordering.

Symbolic Representation of Automata. The BDD data structure can be extended to
also represent models such as automata. The key point is to make use of characteristic
functions.

Given a finite state set U as universe, for every S ⊆ U , the characteristic function
can be defined as follows:

χS(α) =
{1 α∈S

0 α/∈S .
(1)

Set operations can be equivalently carried on corresponding characteristic functions.
For example, S1 ∪ S2, (S1, S2 ⊆ U) can be mapped equivalently to χS1 ∨ χS2 , since
S1 ∪ S2 = {α ∈ U | α ∈ S1 ∨ α ∈ S2}.

The elements of a finite set can be expressed as a Boolean vector. So a set with n
elements, requires a Boolean vector of length �log2 n
. Just like the case of coding the
states in a set, binary encoding of the transition function δ follows the same rule but with
the difference that the transition function distinguishes between source-states and target
states. Hence, we need two Boolean vectors with different sets of Boolean variables to
express the domain of source-states and target-states respectively.

4 BDD-Based Partitioning Computation

The safe-state algorithm, an efficient supervisor synthesis algorithm, formally defined
in [13], is used in this paper. The algorithm creates the supervisor by first building the
candidate S0 = P ‖ Sp, then removing states from QS0 until the remaining safe states
are both non-blocking and controllable.

As Algorithm 1 shows, given a set of forbidden states Qx, the algorithm computes the
set of safe states QS by iteratively removing the blocking states (RestrictedBackward
in line 5) and the uncontrollable states (UncontrollableBackward in line 6). Note that
after the termination of the algorithm, not all of the safe states are reachable from the
initial state. Therefore, a forward reachability search is needed to exclude the safe states
which are not reachable. The safe-state algorithm is discussed in more detail in [13].
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Algorithm 1. The safe-state synthesis algorithm.

1: input :Qx, Q
S0

2: let X0 := Qx, k := 0;
3: repeat
4: k := k + 1;
5: Q′ := RestrictedBackward(Qm, Xk−1);
6: Q′′ := UncontrollableBackward(QS0\Q′);
7: Xk := Xk−1 ∪ (Q′′);
8: until Xk = Xk−1

9: return QS0\Xk

4.1 Efficient State Space Search

Not surprisingly, the backward and forward reachability searches turn out to be the
bottle-neck of the algorithm presented above. The problem with the intuitive reachabil-
ity is that for a large and complicated modular DES, the BDD representation of the total
transition function δS0 is often too large to be constructed. The natural way to tackle
the complexity of the transfer function is to split it into a set of less complex partial
functions with a connection between them. Such methods are based on conjunctive and
disjunctive partitioning techniques.

Conjunctive Representation. Conjunctive partitioning, introduced in [14,15], is an
approach to represent synchronous digital circuits where all transitions happen simul-
taneously. In the context of DES, the conjunctive partitioning of the full synchronous
composition can be achieved by adding self-loops to the automata for events that are not
included in their original alphabets. This leads to a situation where all automata have
equal alphabet. Therefore, the conjunctive transition function δ̂i for the automaton Ai

and the total transition function can be defined as follows:

δ̂i(qi, σ) =

⎧
⎨

⎩

δi(qi, σ) if δi(qi, σ) is defined
qi if σ /∈ Σi

undefined otherwise .
(2)

δ =
∧

1≤i≤n

δ̂i . (3)

By making use of (2) and (3), we can search the state-space without constructing the
total transition function. Algorithm 2 applies this technique for the forward reach-
ability search. Assuming that the automaton set A = {A1, . . . , An} and the state
q = 〈q1, q2, . . . , qn〉, the algorithm explores the target state q́ by performing each con-
junctive transition function δ̂i with arguments (the local state qi and the event σ ∈ Σ)
to get each local target state q́i.

Disjunctive Representation. The conjunctive partitioning of the transition relation
works well for formal verification of synchronous digital circuits. However, because of
the asynchronous feature of the full synchronous composition, the intermediate states
(Qk−1) can still cause the explosion problem when performing the reachability search,
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Algorithm 2. Conjunctive forward reachability algorithm.

1: input :Qinit, {δ̂1, . . . , δ̂n}, Σ
2: let Q0 := Qinit, k := 0;
3: repeat
4: k := k + 1;
5: Qk := Qk−1 ∪ {q́ | ∃q ∈ Qk−1,∃σ ∈ Σ,∀i ∈ {1, . . . , n} such that δ̂i(qi, σ) = q́i};
6: until Qk = Qk−1

7: return Qk

which prevents the conjunctive partitioning technique from being applied to large sys-
tems. The disjunctive partitioning, explained subsequently, on the other hand, is then
shown to be an appropriate partitioning technique for SCT.

Assuming A = {A1, . . . , An} and q = 〈q1, . . . , qn〉, the disjunctive transition func-
tion δ̌i of Ai, is defined based on the event σ ∈ Σi and the dependency set D(Ai):

D(Ai) = {Aj ∈ A | ∃Ai ∈ A where Σi ∩Σj �= ∅} . (4)

δ̌i(q, σ) =

⎛

⎝
∧

Aj∈D(Ai)

ζi,j(qj , σ)

⎞

⎠ ∧
⎛

⎝
∧

Ak /∈D(Ai)

qk
σ↔ qk

⎞

⎠ . (5)

ζi,j(qj , σ) =

{
δj(qj , σ) if σ ∈ Σi ∩Σj

qj otherwise .
(6)

Additionally, the total transition function is defined as:

δ =
∨

1≤i≤n

δ̌i . (7)

The construction of the dependency set for each automaton can be obtained through
calculating which automaton shares any event with it. Taking Example 1 as an example,
for the automaton A, since it shares the events useAR1

, useAR2
with the automaton C and

the event useAR2
with the automaton D, D(A) can be constructed as follows:

D(A) = {A,C,D}.

Besides, the total transition function defined for the state 〈qA1 , qB1 , qC1 , q
D
1 〉 and the event

useAR1
can be obtained by computing δ̌A and δ̌C , since useAR1

only belongs to ΣA and
ΣC . By using (5) and (6), it can be inferred that

δ(〈qA1 , qB1 , qC1 , q
D
1 〉, useAR1

) = δ̌A(〈qA1 , qB1 , qC1 , q
D
1 〉, useAR1

)

= δ̌C(〈qA1 , qB1 , qC1 , q
D
1 〉, useAR1

) = 〈qA2 , qB1 , qC2 , q
D
1 〉.

Notice that the disjunctive transition function represented in BDDs, is shown explicitly
here to easily understand.
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4.2 Workset Based Strategies

In Section 4.1, we suggested the use of partitioning techniques to deal with the large
number of intermediate BDD nodes. However, using partitioning techniques alone is
not enough to yield efficient BDD-based reachability algorithms. In [16], it has been
shown that random structural reachability search yields poor compression of intermedi-
ate BDD nodes. In order to improve these algorithms to substantially reduce the num-
ber of intermediate BDD nodes, it is vital to search the state space in a structural and
efficient way. Here we introduce a simple algorithm, Algorithm 3, which is formally
defined in [13]. The workset algorithm maintains a set of active disjunctive transition
functions Wk. These active transition functions are selected one at a time for the local
reachability search. If there is any new state found for the currently selected transition
relation, then all of its dependent transition functions (8) will be added in Wk . Notice
that in Algorithm 3, ”·” can be any event, since we don’t care about the specific events
as long as it is defined in δ̌i.

E(δ̌i) = {δ̌j | Aj ∈ D(Ai)\{Ai}} . (8)

Algorithm 3. Workset forward reachbility algorithm.

1: input :Qinit, {δ̌1, . . . , δ̌n}
2: let W0 := {δ̌1, . . . , δ̌n}, Q0 := Qinit, k := 0;
3: repeat
4: H: Pick and remove a transition δ̌i ∈ Wk;
5: k := k + 1;
6: Qk := Qk−1 ∪ {q́ | ∃q ∈ Qk−1, δ̌

i(q, ·) = q́};
7: if Qk �= Qk−1 then
8: Wk := Wk−1 ∪ E(δ̌i);
9: end if

10: until W = ∅
11: return Qk

Selection Heuristics. In Algorithm 3, H denotes the heuristics of selecting the next
disjunctive transition function for the reachability search such that the number of in-
termediate BDD nodes is computed as small as possible. How a disjunctive transition
function δ̌i is chosen among those in the working set has great influence on the perfor-
mance of the algorithm. Here we suggest a series of simple heuristics that have been im-
plemented and seem to work well for real-world problems. In Section 6, those heuristics
will be applied to a benchmark example to compare how they influence the performance
of the workset algorithm.

To find a good heuristic, a two-stage selection rule was implemented, as Fig. 3 shows.
Using this method, a complex selection procedure can be described as a combination
of two selection rules. In the current implementation, the first stage H1 selects a subset
W′ ⊂ W to be sent to H2 using one of the following rules:
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– MaxF: Choose the automata with the largest dependency set cardinality.
– MinF: The opposite of above.

In case W′ is not a singleton, the second stage H2 is used to choose a single disjunctive
transition function δ̌i among W′. In the experiment, the following shown heuristics can
significantly reduce the number of intermediate BDD nodes for some relatively large
problems.

– Reinforcement learning (R) [17]: Choose the best transition relation based on the
previous activity record.

– Reinforcement learning + Tabu (RT) [18]: Same as the reinforcement learning with
the difference that using tabu search for the selection policy.

Fig. 3. The two stage selection heuristics for the workset algorithm

5 Supervisor as Guards

As mentioned in Section 1, given a supervisor represented as a BDD, it is cumber-
some for the users to relate each state to the corresponding BDD variables. Therefore,
it is more convenient and natural to represent the supervisor in a form similar to the
original models. In this section, the guard generation procedure, originating from [8],
is discussed and combined with the BDD-based disjunctive partitioning approach in
Section 4.1.

The guard generation procedure, being dependent on three kinds of state sets, ex-
tracts a set of compact guards indicating under which conditions the event can be exe-
cuted without violating the specifications. These guards are then attached to the original
model to represent the supervisor.

5.1 Computation of the Basic State Sets

Concerning the states that are retained or removed after the synthesis process, the states
that enable an arbitrary event σ can be divided into three basic state sets: forbidden
state set, allowed state set and don’t care state set.

The forbidden state set, denoted by Qσ
f , is the set of states in the supervisor where

the execution of σ is defined for S0, but not for the supervisor. The allowed state set,
denoted by Qσ

a , is the set of states in the supervisor where the execution of σ is defined
for the supervisor. In other word, for each event σ, Qσ

a represents the set of states where
event σ must be allowed to be executed in order to end up in states belonging to the
supervisor.

In order to obtain compact and simplified guards, inspired from the Boolean mini-
mization techniques, another set of states, denoted by Qσ

dc, which describes a situation
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where executing σ will not impact the result of the synthesis, is utilized to minimize the
guards.

Algorithms 4 and 5 presented below show how to compute the forbidden states Qσ
f

and the allowed states Qσ
a by making use of the disjunctive transition functions. Note

thatQS andQx denote the resultant supervisor states and all the forbidden states yielded
from Algorithm 1. The don’t care state set, Qσ

dc can be defined as the complement of
the union of Qσ

a and Qσ
f . The proof can be found in [8].

5.2 Guard Generation

Based on the basic state sets, guards can be extracted. For every automaton in the DES,
a new variable v is introduced to hold the current state of the automaton. For each event
σ, the following propositional function, Gσ:QA1 ×QA2 × . . .×QAn → B is defined
as:

Gσ〈vA1 , vA2 , . . . vAn〉 =
⎧
⎨

⎩

true 〈vA1 , vA2 , . . . vAn〉 ∈ Qσ
a

false 〈vA1 , vA2 , . . . vAn〉 ∈ Qσ
f

don′t care otherwise .
(9)

where B is the set of Boolean values and vAi represents the current state of automaton
Ai. In particular, σ is allowed to be executed from the state 〈vA1 , vA2 , . . . vAn〉 if the
guard is true.

By applying minimization methods of Boolean functions (utilizing the don’t care
state set) and certain heuristics, the generated guards can be simplified. The procedure
is discussed in details in [8].

Algorithm 4. Computation of Qσ
f .

1: input :σ,Qx, Q
S, {δ̌1, . . . , δ̌n}

2: let Qσ
f := ∅;

3: for all Ai if σ ∈ Σi do
4: Qσ

f := Qσ
f ∪ {q | ∃q́ ∈ Qx, δ̌

i(q, σ) = q́};
5: end for
6: let Qσ

f := Qσ
f ∩QS;

7: return Qσ
f

Algorithm 5. Computation of Qσ
a .

1: input :σ,QS, {δ̌1, . . . , δ̌n}
2: let Qσ

a := ∅;
3: for all Ai if σ ∈ Σi do
4: Qσ

a := Qσ
a ∪ {q | ∃q́ ∈ QS, δ̌i(q, σ) = q́};

5: end for
6: let Qσ

a := Qσ
a ∩QS;

7: return Qσ
a
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6 Case Studies

What we have discussed in the previous sections has been implemented and integrated
in the supervisory control tool Supremica [19] which uses JavaBDD [20] as BDD pack-
age. In this section, the implemented program will be applied to a set of relatively
complicated examples1.

6.1 Benchmark Examples

A set of benchmark examples is briefly described as follows.

Automated Guided Vehicles. An AGV system, described in [21], is a simple manu-
facturing system where five automated guided vehicles transport material between sta-
tions. As the routes of the vehicles cross each other, single-access zones are introduced
to avoid collisions.

Parallel Manufacturing Example. The Parallel Manufacturing Example, introduced
in [22], consists of three manufacturing units running in parallel. The system is modeled
in three layers in a hierarchical interface-based manner.

The Transfer Line. The Transfer Line TL(n,m), introduced as a tutorial example
in [23], defines a very simple factory consisting of a series of identical cells. Each
cell contains two machines and two buffers, one between the machines and one before
a testing unit which decides whether the work piece should be sent back to the first
machine for further processing, or if it should be passed to the next cell. The capacity
of each buffer is m, which is usually chosen to be either 1 or 3.

The Extended Cat and Mouse. An extended cat and mouse problem [8], which is
more complicated than the transfer line model, generalizes the classic one presented in
[1]. The extended version makes it possible to generate problem instances of arbitrary
size, where n and k denote the number of levels and cats respectively.

6.2 Approach Evaluation

In this section, we evaluate the approach from two aspects. First, a comparison between
two partitioning techniques is made by analyzing the statistical data from Fig. 1. In
addition, the extended cat and mouse example with multiple instances is utilized to
investigate how the choice of heuristics in the workset algorithm influences the time
efficiency.

Conjunctive vs. Disjunctive. Figure 1 shows the result of applying two partitioning
techniques for the examples explained above. The supervisors synthesized for these
examples are both non-blocking and controllable and the safe states are reachable. It
is observed that both of the partitioning based algorithms can handle the AGV and the
Parallel Manufacturing example, for which the number of reachable states is up to 107.

1 The experiment was carried out on a standard Laptop (Core 2 Duo processor, 2.4 GHz, 2GB
RAM) running Ubuntu 10.04.



Symbolic State-Space Exploration and Guard Generation 173

Table 1. Non-blocking and controllability synthesis

Conjunctive Synthesis Workset Algorithm

Model Reachable States Supervisor states BDD Peak Computation Time (s) BDD Peak Computation Time (s)

AGV 22929408 1148928 9890 6.50 2850 0.87

Parallel Man 5702550 5702550 12363 2.47 2334 1.57

Transfer line (1,3) 64 28 17 0.05 13 0.10

Transfer line (5,3) 1.07× 109 8.49 × 104 2352 1.69 299 0.59

Transfer line (10,3) 1.15 × 1018 6.13 × 1013 31022 48.36 1257 3.89

Transfer line (15,3) 1.23 × 1027 4.42 × 1020 − − 3032 12.80

Cat and mouse (1,1) 20 6 43 0.02 31 0.05

Cat and mouse (1,5) 605 579 2343 0.08 273 0.09

Cat and mouse (5,1) 1056 76 848 0.30 305 0.30

Cat and mouse (5,5) 6.91× 109 3.15 × 109 − − 15964 20.86

∗ - denotes memory out.

However, with DESs getting larger and more complicated, the conjunctive partition-
ing technique is not capable of synthesizing non-blocking and controllable supervisors
any more. The disjunctive partitioning, on the other hand, could successfully explore the
state space within acceptable time. In addition, the column ”BDD Peak”, the maximal
number of BDD nodes during the reachability computation shows that the disjunctive
partitioning together with heuristic decisions can effectively reduce the number of in-
termediate BDD nodes.

Heuristics. Table 2 shows the computation time for synthesizing non-blocking super-
visors of the extended cat and mouse with different instances. Different combinations
of heuristics, presented in Section 4.2, are chosen to test the performance of the workset
algorithm. Empirically, for the models with relatively large dependency sets, the heuris-
tic pair (MaxF,RT) seems to be a good choice, although it hasn’t been formally proved.
Observing the results from Table 2, the workset algorithm can handle problem instances
with either a large number of levels n or cats k rather well. However, with both num-
bers increasing, the computation time increases rapidly no matter which heuristic pair
is chosen.

Table 2. Computation time for non-blocking supervisors with different heuristics

Computation Time (s)

Cat and mouse (n, k) Workset(MaxF,R) Workset(MaxF,RT) Workset(MinF,R) Workset(MinF,RT)

(1, 1) 0.04 0.06 0.05 0.05

(1, 5) 0.30 0.27 0.33 0.36

(5, 1) 0.08 0.08 0.09 0.08

(5, 5) 3.15 2.90 3.85 3.42

(1, 10) 0.67 0.66 0.75 0.73

(7, 7) 21.4 17.6 25.5 22.9

(10, 1) 0.23 0.20 0.24 0.23

(10, 7) 100.3 88.5 136.4 138.0
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7 Conclusions

In this paper, we improved and extended our previous work, the guard generation pro-
cedure to make it applicable for industrially interesting applications. More specifically,
the content of the paper can be summarized as follows:

– Introduce the partitioning techniques to split the BDD representation of δSp‖P into
a set of smaller but structural components.

– To alleviate the problem that the intermediate number of BDD nodes might still
be huge during the reachability exploration, we introduce the workset algorithm
together with a set of simple heuristics to search the state-space in a structured and
efficient way.

– The guard generation procedure is tailored to make use of the partitioned transition
functions and the synthesized supervisor to compute the basic state sets for an event.

– The presented approach is applied to a set of benchmark examples to be evaluated.

It is concluded that the disjunctive partitioning, with appropriate heuristics, is suitable
for solving large modular supervisory control problems. There are several directions
towards which we could extend our approach. For instance, additional heuristics could
be applied to the workset algorithm, to further decrease the number of intermediate
BDD nodes. Moreover, it is possible to combine with more sophisticated synthesis
techniques, such as compositional techniques, to substantially improve the algorithm
efficiency.
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