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Preface

The present book includes extended and revised versions of a set of selected
papers from the Third International Conference on Agents and Artificial In-
telligence (ICAART 2011), held in Rome, Italy, during January 28–30, 2011,
sponsored by the Institute for Systems and Technologies of Information Control
and Communication (INSTICC) and held in cooperation with the Portuguese
Association for Artificial Intelligence (APPIA), the Spanish Association for Arti-
ficial Intelligence (AEPIA) and the Association for the Advancement of Artificial
Intelligence (AAAI).

The purpose of the International Conference on Agents and Artificial Intel-
ligence (ICAART) is to bring together researchers, engineers and practitioners
interested in the theory and applications in these areas. The conference was
organized in two simultaneous tracks: Artificial Intelligence and Agents, cov-
ering both applications and current research work within the area of agents,
multi-agent systems and software platforms, distributed problem solving and
distributed AI in general, including Web applications, and within the area of
non-distributed AI, including the more traditional areas such as knowledge rep-
resentation, planning, learning, scheduling, perception and also not so traditional
areas such as reactive AI systems, evolutionary computing and other aspects of
computational intelligence and intelligent systems.

ICAART 2011 received 367 paper submissions from 55 countries in all conti-
nents. Only 32 papers were published and presented as full papers, i.e., completed
work (10 pages/30-minute oral presentation). In addition 81 papers reflecting
work-in-progress or position papers were accepted for short presentation and
another 64 contributions were accepted for poster presentation. These numbers,
leading to a “full-paper” acceptance ratio of about 9% and a total oral paper
presentations acceptance ratio close to 31%, show the intention of preserving a
high-quality forum for the next editions of this conference.

Furthermore, ICAART 2011 included five plenary keynote lectures given by
distinguished researchers: Cristiano Castelfranchi (Institute of Cognitive Sci-
ences and Technologies), Boi Faltings (Ecole Polytechnique Federale de Lau-
sanne), Didier Dubois (Institut de Recherche en Informatique de Toulouse), Mark
Klein (MIT Center for Collective Intelligence) and Klaus Fischer (Agents and
Simulated Reality, DFKI GmbH). We would like to express our appreciation to
all of them and in particular to those who took the time to contribute with a
paper to this book.



VI Preface

We thank firstly the authors, whose excellent research and development ef-
forts are recorded here. We also thank the keynote speakers for their invalu-
able contribution and for taking the time to synthesize and prepare their talks.
Finally, special thanks to all the members of the INSTICC team, whose collab-
oration was fundamental for the success of this conference.

October 2011 Joaquim Filipe
Ana Fred
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Matthias Klusch, Germany
Fernando Koch, Australia
Martin Kollingbaum, UK
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Using Incentives to Obtain Truthful Information

Boi Faltings

Artificial Intelligence Laboratory (LIA)
Swiss Federal Institute of Technology (EPFL), IN-Ecublens

CH-1015 Ecublens, Switzerland
boi.faltings@epfl.ch

Abstract. There are many scenarios where we would like agents to report their
observations or expertise in a truthful way. Game-theoretic principles can be used
to provide incentives to do so. I survey several approaches to eliciting truthful in-
formation, in particular scoring rules, peer prediction methods and opinion polls,
and discuss possible applications.

1 Introduction

The internet has opened many new possibilities for gathering information from large
numbers of individual agents. For example, people rate services in reputation forums,
they annotate maps with location information, and they answer questions in online fo-
rums. In the future, software agents will control networks of sensors and report mea-
surements such as air quality, radio spectrum, or traffic congestion.

An implicit assumption is that agents will make their best effort to report such in-
formation truthfully. However, when they are self-interested, this can not always be as-
sumed. For example, in online reputation forums, leaving a rating is a time-consuming
operation and most users will not do this unless they have a motive. Thus, one can of-
ten observe skewed distributions of ratings that indicate that most reviews were left by
users who either loved or hated the item they rated ([1]). It is not clear whether ranking
items by taking averages of such reviews is very helpful. Similar, sensors may save en-
ergy by providing inaccurate measurements or no measurements at all, or they may be
manipulated to provide skewed reports that are beneficial to the interests of their owner.

To obtain better quality information, it is important to reward agents who contribute
ratings and thus increase participation of agents even without ulterior motives. Such
reward schemes could be useful both as incentives to human agents as well as for soft-
ware agents operating sensors: rewards could finance the operation of the sensors and
direct their deployment towards the most useful measurements ([2]).

Furthermore, it is possible to scale the rewards so that they specifically reward truth-
ful reporting, and can even counter exterior incentives to report false information. These
mechanisms are based on scoring rules that reward correct prediction of a future out-
come once that outcome becomes known. In peer prediction methods, these rules are
extended to situations where the true outcome never becomes known. Instead, they take
the predictions of other agents as the ground truth to compare to. This makes truth-
fulness an equilibrium, i.e. the best response strategy when all other agents are also
truthful. Finally, I show how to design mechanisms that achieve this independently of

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 3–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



4 B. Faltings

agent beliefs and are thus easier to apply in practice, for example for encouraging truth-
fulness in opinion polls.

2 Truthful Reporting through Scoring Rules

In many cases, agents are asked to provide information about an outcome that will even-
tually become known with certainty. For example, experts may predict the weather, the
future of the economy, or the completion date of a project. When this is the case, in-
centives for reporting this information truthfully can be provided through proper scor-
ing rules ([3]). Agents provide information in the form of a probability distribution on
different possible outcomes. Once the true outcome becomes known, they get paid a
reward that depends on how well their prediction matched the observed outcome. This
reward is computed by a scoring rule that takes the report and the true outcome as argu-
ments. A scoring rule is called proper if it provides the highest expected reward exactly
when the agent reports its probability distribution truthfully.

Assume that the task is to predict which of k outcomes o1, ..,ok will actually occur,
and that an expert agent has a probability distribution p = (p(o1), .., p(ok)) for the true
outcome. The agent reports this distribution as q = (q1, ..,qk). We would like to provide
incentives so that it is optimal to report q = p.

This can be provided for example using the quadratic scoring rule:

pay(ot ,q) = a+ b

(
2qt−

k

∑
j=1

q2
j

)

where ot is the outcome that actually occured and a is a non-negative and b a positive
constant. It is straightforward to show that this scoring rule is proper in that the expected
payment:

E[pay](q) =
k

∑
i=1

p(oi)pay(oi,q)

= a+ b

[
2

k

∑
j=1

p(o j)q j−
(

k

∑
j=1

p(o j)

)(
k

∑
j=1

q2
j

)]
= a+ b(2p ·q−|q|)

is maximized by maximizing p ·q, which is the case exactly when the vectors p and q
are aligned. Thus, reporting truthfully is a dominant strategy for agents.

As an example, consider predicting whether the next day’s weather will be good (g)
or bad (b) as a vector of two probabilities (p(g),p(b)). Let the scoring rule be

pay(ot ,q) = 1+

(
2qt−

k

∑
j=1

q2
j

)
An expert’s true belief could be that the weather will be good with probability 0.8, and
bad with probability 0.2. Now consider the expected payoff for reporting this distribu-
tion truthfully. If the weather turns out to be good, the expert receives a payment of
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pay(g,(0.8,0.2)) = 1+ 2 · 0.8− 0.68 = 1.92; if it turns out to be bad, the payment is
pay(b,(0.8,0.2)) = 1+ 2 · 0.2− 0.68 = 0.72. Thus, the expected payoff for truthfully
reporting the probability distribution is:

0.8pay(g,(0.8,0.2))+ 0.2pay(b,(0.8,0.2))= 1.68

Now consider a false report, for example (0.5,0.5). Now the reward in case of good
and bad weather is identical and equal to pay(g/b,(0.5,0.5)) = 1+ 2 ·0.5− 0.5= 1.5,
and thus the expected payment is also equal to 1.5. This is significantly less than what
is expected for truthful reporting.

There are other proper scoring rules, such as the logarithmic scoring rule:

pay(ot ,q) = a+ b lnqt

where ot is the outcome that actually occured and a is a non-negative and b a positive
constant. These may lead to lower expected payments or wider margins for truth-telling,
but can have other drawbacks. For example, with the logarithmic scoring rule payments
can become negative.

Proper scoring rules can also be constructed for eliciting averages and other prop-
erties of distributions. Recently, [4] have characterized the questions to which truthful
answers can be elicited using scoring rules.

3 The Peer Prediction Method

Proper scoring rules can be applied whenever the ground truth that is being observed
can eventually be verified. However, there are many cases where this condition is not
satisfied. Consider for example ratings reported for products and services on the inter-
net: it is not possible to independently verify whether these ratings were given truthfully.
Similarly, measurements taken by sensors would often not be verifiable by other means.
A similar situation exists when reporting opinions about hypothetical scenarios, such as
what would happen if interest rates were raised by different degrees: since only one of
these scenarios will actually be implemented, predictions about the others cannot be
verified.

However, in such cases it is still possible to make truthful reporting an equilibrium
strategy for agents by applying a proper scoring rule based on the prediction of another
agent, called a reference report. Provided the other agent made a truthful prediction
and both have the same knowledge and observing the same signals, truthful reporting is
the best response. Thus, for a population of agents with the same knowledge, reporting
truthfully is a Nash equilibrium. This is called the peer prediction method in ([5]).

As an example, consider reporting the quality of service received by a plumber. Two
agents A and B both report on the quality of service they received. The key idea is
that the quality of service A received will influence its expectation of the quality that
B received: if A observed good service, then its belief for the probability p(g|g) that
B also received good service is higher than the value p(g|b) if A received bad service.
Assume for this example that p(g|g) = 0.8 and p(g|b) = 0.4.

Now we apply the same scoring rule mechanism we mentioned earlier, but consider
B’s report the ground truth. If A observed good service, its probability distribution
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for B’s report is (p(g|g), p(b|g)) = (0.8.0.2), and just like in the weather prediction
example it’s expected reward for the scoring rule:

pay(ot ,q) = 1+

(
2qt−

k

∑
j=1

q2
j

)

is 1.68, provided that A’s probability distribution for B’s experience is indeed (0.8.0.2).
If A did not experience good service, it would expect B’s observation to follow a

different probability distribution, in this case (0.4,0.6). If it nevertheless reports good
service, the expected reward is only 0.4 · 1.92+ 0.6 · 0.72 = 1.2. On the other hand,
when A truthfully reports bad service, the mechanism treats this as a prediction of
the probability distribution (0.4,0.6) for B’s experience. The payments for truthfully
reporting bad service are calculated using the probabilities (0.4,0.6) and would lead to
a higher expected reward for truthful reporting of 0.4 · (1+2 ·0.4−0.52)+0.6 · (1+2 ·
0.6− 0.52) = 1.52.

Note that, contrary to the weather prediction, we are not asking A to report this
probability distribution, but only whether it received good or bad service. Thus, the
designer of the reward scheme needs to know how an observation influences A’s beliefs
about the observations of another agent B with reasonable precision in order to compute
the payments. It can in part be deduced from the general expectations of the quality of
service, but also involves an assumption of how the individual agents would update their
beliefs in response to a positive or negative experience.

Furthermore, the original peer prediction method suffers from the weakness that
truthful reporting is not the only equilibrium strategy: any strategy where agents all
report the same is also a Nash equilibrium. In fact, since actual observations or predic-
tions are likely to be noisy, the highest-paying equilibrium is always one where agents
always report the same, independently of their true knowledge!

This problem can be overcome by constructing scoring rules that refer not to one,
but several reference reports. [6,7] show that when at least 3 reference reports are used,
truthful reporting can be made the highest-paying Nash equilibrium. Furthermore, they
show that truthful reporting can be made the only Nash equilibrium and thus completely
eliminate the problem of collusive reporting strategies.

It has recently been shown that peer prediction methods can be generalized to sce-
narios where agents report not on identical events, but events that are merely corre-
lated ([8]). This makes it applicable for example to measurements in sensor networks,
where different sensors measure quantities that are correlated by not equal.

4 Opinion Polls

A major weakness of the peer prediction method is that it requires all participating
agents to share the same probability distribution of the reported events. If this is not the
case, proper scoring rules can still be designed, but the rewards that must be paid to
agents quickly become very large ([9]).

To counter this effect, it is possible to design peer prediction schemes as opinion
polls that publish the current results of the poll. Agents whose probability distribution
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is sufficiently close to this published one will have truthful reporting as their best strat-
egy, while agents that consider the public distribution as grossly wrong may instead
be merely helpful by making reports that will drive the public poll closer to what they
consider to be the true distribution.

Such a mechanism was first shown in ([10]) for aggregating opinions about a hidden
signal that could be either good (g) or bad (b). At time t, the published polls shows the
average fraction Rt of good reports. An agent Ai has its own probability distribution
pi(r|s) that characterizes the conditional probability distribution of a reference report r
given its own observation s of the signal, where the reference report is filed by another
agent that observes the same signal and the same public poll. The mechanism compares
the report s filed by agent Ai to a reference report r filed by another agent B, and rewards
Ai if the two reports match:

– for matching a good report, the reward is c(1−Rt).
– for matching a bad report, the reward is cRt .

where c is a positive constant to scale the average reward, for example to ensure that it
compensates for the effort required to file it.

To analyze the incentives for agent Ai, we distinguish three cases:

a) Ai considers the current poll result reasonable, characterized by the fact that
pi(g|b)< Rt < pi(g|g).

b) Ai considers the poll result unreasonably high, characterized by the fact that Rt ≥
pi(g|g), which means that no matter what Ai observes, it would always expect other
agents to observe a bad signal with a higher probability than the current poll result.

c) Ai considers the poll result unreasonably low, characterized by the fact that pi(g|b)≥
Rt , symmetrically on the other side.

In the case where the poll result is reasonable, the agent is best off reporting truthfully.
Consider the case where it observes a good signal, then the expected rewards are:

– for reporting good (truthful):

pi(g|g)c(1−Rt)> Rtc(1−Rt)

– for reporting bad (non truthful):

pi(b|g)cRt = (1− p(g|g))cRt < (1−Rt)cRt

Thus, the expected reward for reporting truthfully is strictly greater than the expected
reward for a non-truthful report. A symmetric analysis can be made for the case of a
bad observation.

As an example, consider that agents A and B both hire a plumber that according
to the public reputation scheme provides good service 90% of the time, based on 10
previous reports. Suppose that A sees the plumber at work and he does a good job.
Then A might consider that the current poll value is accurate or slightly too low and
report good service, expecting a payment of 10/9 with a probability of higher than 0.9,
so above 1 in expectation.
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However, if the agent considers the poll unreasonably high, its best strategy is to
report bad, independently of its own observation. While this behavior is not truthful, it
can be considered helpful in that the agent drives the outcome of the poll closer to its
own opinion. For example, suppose A observes the plumber at work and realizes that
he is completely incompetent, but still by chance receives good service. Now, A might
have a private probability that B will receive bad service that is much higher than the
10% that would be expected from the poll, let’s say 50%. Now A would be better off
reporting poor service, as its expected reward would be 1/0.1 = 10 with probability
0.5, which is much higher than his expectation in case of truthful reporting. However,
the report could still be considered helpful in that it drives the value of the opinion poll
towards A’s true opinion.

The advantage of this mechanism is that agents can have different and unknown prior
distributions for the signal, whereas scoring rules require this distribution to be known
to the mechanism designer.

5 Applications

The techniques reported here have numerous applications. The most obvious ones are
forums such as reputation and review forums. Leaving such feedback is cumbersome
and thus often done by agents who have ulterior motives and thus do not leave honest
reports. Here is would be useful to reward raters for their effort, and it would be even
better to scale these payments to encourage honest feedback.

Another range of applications is in ensuring quality of crowdsourcing. For example,
consider an image labeling task as in the ESP game proposed in [11]: two people are
independently asked to give keywords that describe the content of an image. They get a
reward when they provide matching keywords. This game has the flaw that people will
tend to use very common words, and so these have to be explicitly excluded. A more
general strategy based on the opinion poll mechanism given above would be to scale
the rewards according to the frequency of the matching word: a less common word
would fetch a higher reward. One can imagine many other applications in crowdsourc-
ing where rewards depend on the agreement with other worker’s results.

Further applications can be found in sensor networks. The peer prediction method
can be generalized to settings where agents do not measure exactly the same signal. It is
sufficient that measurements are correlated in a known way ([8]). Thus, one can design
a reward scheme that rewards truthful operation of a network of sensors that sense
related values, for example air pollution ([2]). This could be applied in sensor networks,
in particular when sensors are operated by different entities who might save cost by
inaccurate measurements, or even maliciously want to manipulate measurements.

Services such as internet access, cloud computing, or wireless communications re-
quire monitoring of the quality of service. This would be most easily done by the cus-
tomers themselves, but the difficulty is that they often have an incentive to misreport
since they stand to gain refunds or other claims if service is deemed to be insufficient.
Somewhat surprisingly, it turns out that incentive mechanisms are entirely sufficient to
solve this problem, as shown in [12]. Provided that the entire user population is suffi-
ciently large, it would take a significant coalition of users to shift the average reported
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quality enough to obtain a refund for poor service. However, as long as such a large
coalition has not formed, a reward scheme based on peer prediction is sufficient to pun-
ish each individual user for deviating from truthful reporting, and can be realized at low
cost. Thus, a lying coalition would have to be created in a coordinated fashion, and such
coordinated action would be detectable by other means. This opens another wide range
of applications.

6 Conclusions

The internet has enabled wide distribution of user-contributed content whose correct-
ness cannot be verified. Much of this content is reported by agents with ulterior motives
and may often not reflect the truth. I have discussed ways of providing incentives to
agents to provide such content truthfully. I believe that such mechanisms are of fun-
damental importance for the future use of reputation forums, sensor nets and crowd-
sourcing applications on the internet. They also have other applications in multi-agent
systems, such as service monitoring.

While work so far has shown an interesting range of mechanisms to encourage truth-
ful reporting, many open questions remain. The biggest issue is clearly the dependence
on knowledge of prior probability distributions that are not always available. The opin-
ion poll mechanism we described is a first step but still has to be generalized to elicit
more complex information than just binary signals. Also, as it stands it has little protec-
tion against collusive behavior.

Another issue is how to provide rewards. Paying monetary rewards is often not prac-
tical, and one needs to experiment with other forms of rewards, such as reputation or
privileges that will be valued in similar ways as money.
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Abstract. In general software engineering modelling of software sys-
tems had a significant impact on the manner in which complex systems
are designed. The Model Driven Architecture (MDA) proposed by the
Object Management Group (OMG) provides a formal framework that
allows to define dedicated modelling languages for different application
domains. Already in the model driven design of service-oriented archi-
tectures one can identify concepts that are common in the design of such
systems and what agent-based systems concerns. To directly use the
MDA framework for the design of multiagent system (MAS) is therefore
an obvious step. In this article we advocate the domain specific modelling
language DSML4MAS for modelling MAS. However, our aim is not to
just define the language, we propose a framework for DSML4MAS that
allows its adaptation and dynamic development in the future. Our vision
is that in the near future model repositories for model fragments that can
be flexibly combined will be established and propose basic concepts that
can support the development of MAS in this context. The interaction
aspect is especially important in MAS design and one of the most obvi-
ous aspects where model exchange and model re-use is highly desirable.
The article therefore presents the interaction aspect in more details and
discusses the features that are available in the DSML4MAS.

1 Motivation

With the success of service-oriented architectures and the ever-growing connec-
tivity of applications in the Internet, agent technologies are becoming even more
attractive than they were in the past. However, many times the system design
not only in agent-oriented applications is tightly bound to the execution envi-
ronment. Although we are far from a state where system engineers would not
care about the technologies deployed in the execution environment, it is clear
that it would be highly desirable to be able to separate system design from such
technologies and with this make it more sustainable regarding the evolution of
software concepts. The model driven architecture proposed by the Object Man-
agement Group (OMG1) provides the basic ideas that can significantly improve
the possibilities to maintain system designs while new technologies emerge or

1 www.omg.org

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 11–27, 2013.
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already available technologies get adapted to new requirements. Agent technolo-
gies can contribute in this enterprise because they provide helpful abstractions
for the design of complex systems.

In the following we present the ingredients of our approach. Section 2 gives
an overview of the overall approach. In Section 3 we present details of the
PIM4Agents metamodel that forms the core of DSML4MAS. We zoom in on
the interaction aspect of PIM4Agents in Section 4 because this aspect is one of
the most obvious where exchange of models and model fragment among system
engineers is desirable. Section 5 presents uses cases in which we evaluate our
approach and an illustrative example of the use of a concrete interaction model.
Section 6 gives some pointers to related work and Section 7 draws conclusions
and directions for future research.

2 Framework for Model Driven Design of Multiagent
Systems

In this article we adopt a model driven approach to the design of agent-based
systems. The basic ideas of the approach were developed in the EC2 funded re-
search projects ATHENA3 and SHAPE4 and are now further developed in the
EC funded research project COIN5. The main achievement in this approach is
the definition of the domain specific modelling language DSML4MAS6 [7]. The
metamodel PIM4Agents forms the core of DSML4MAS. From PIM4Agents we
derive our modeling tool which is built on the Eclipse EMF/GMF technology
stack [19]. However, we do not only aim at just providing the modelling lan-
guage and tool support. What we want to come up with is a framework that
allows to extend and refine the core metamodel by additional or more special-
ized concepts. For this the metamodel is separated into different parts that deal
with specific concerns of the design of a multiagent system. We refer to these
parts of the metamodel that form separate meaningful entities with the term
aspect. The idea is to provide a framework that allows to specifically design and
flexibly adapt the different aspects. This approach allows to extend the core of
the metamodel by pluging in different realizations of the foreseen aspects. We
further distinguish between the aspects into which the metamodel is separated
and the different viewpoints that are supported by the modelling tool. A view-
point in the modelling tool is defined by a diagram that displays a collection of
concepts and how they relate to each other. Additionally, a tool box that allows
to manipulate the concepts in the diagram is provided, e.g. add or delete new
instances of a specific concept or introduce additional relations. The overall goal
is to allow both a flexible definition of the aspects in the metamodel as well as
a flexible definition of viewpoints in the modelling tool.

2 European Commission.
3 http://www.modelbased.net/aif/
4 http://www.shape-project.eu/
5 http://www.coin-ip.eu/
6 http://sourceforge.net/projects/dsml4mas/

http://www.modelbased.net/aif/
http://www.shape-project.eu/
http://www.coin-ip.eu/
http://sourceforge.net/projects/dsml4mas/
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Fig. 1. Framework overview

As already mentioned, the core of our model-driven framework for developing
multiagent systems is the PIM4Agents metamodel. PIM4Agents is independent
of a concrete execution platform but inherently possesses different degrees of ab-
straction (see Figure 1). The requirements layer is the most abstract degree and
covers abstract goals, roles, interactions, and organizations. The system design
degree contains (i) agent types, (ii) behavior templates, (iii) concrete goals, etc.
The lowest degree is the deployment layer which specifies concrete deployment
configurations (e.g. agent instances and resources).

Our aim is to define for DSML4MAS a plugin framework that allows to flex-
ibly extend or completely replace the different foreseen aspects. Additionally to
the idea that parts of the metamodel can be extended by plugins with differ-
ent realizations, we assume that there will be a landscape of metamodels which
share a common sub-set of concepts. It is a quite safe guess that it should be
possible to arrange these different metamodels in a hierarchy of specialization
with a common root. At least the concept of an agent is likely to be part of
any metamodel that people come up with when they want to do modelling of
agent-based or multiagent systems. With a landscape of metamodels in mind,
it is easy to foresee also a landscape of model repositories that hold models
or model fragments according to different metamodels. In this framework col-
laborative modelling can be supported in the sense that system engineers can
store and retrieve models or model fragments to and from model repositories.
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Fig. 2. Overview of the development environment

Theoretical results (e.g. about the efficiency of a specific model for a specific
auction mechanism) can be directly linked to such models or model fragments.
Model transformations can be used to transform model instances from one meta-
model to another one or into different execution environments as well as to merge
together model fragments from different sources. Figure 2 shows the basic setup
for the DSML4MAS development environment.

3 The PIM4Agents Metamodel

The metamodel PIM4Agents forms the core of the domain specific modelling
language DSML4MAS. The metamodel is structured into different aspects. An
aspect contains a collection of concepts and definitions how these concepts relate
to each other. OCL constraints are used to express semantics. There are two
types of OCL constraints: (i) constraints to compute derived information, i.e.
the value of a specific attribute is derived from values of other concepts and (ii)
integrity constraints, e.g. the value of an integer attribute must be higher than
0 or below a given number.

PIM4Agents supports 12 aspects:

Multiagent System. Describes all basic components the MAS is composed of.
Agent. Describes single autonomous entities, the capabilities they have to solve

tasks and their roles they play within the MAS.
Organization. Describes how single autonomous entities cooperate within the

MAS and how complex organizational structures can be defined.
Role. Definines the requirements an agent should fulfull when it wants to engage

in an organizational structure.
Interaction. Describes how the interaction between autonomous entities or or-

ganizations takes place.
Behavior. Describes how plans are composed by complex control structures

and simple atomic tasks.
Information. Contains any kind of resource that is dynamically created, shared,

or used by agents or organizations.
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Deployment. Allows to define a MAS at instance level that can be used for
startup.

Goal. Explicit representation of a goal hierarchy in form of an and/or tree
representation.

Event. A stimulus the agents can react to.
Environment. Allows the agents to sense information from the outside envi-

ronment and to manipulate the outside environment with actuators.
Resource. Was introduced to connect agents with a service-oriented environ-

ment.

Fig. 3. The Multiagent System Aspect in PIM4Agents

Fig. 3 shows the MAS aspect which includes all major concepts a MAS is
composed of. Out of these we want to briefly discuss the following: Agent, Or-
ganization, Role, Interaction, and Behavior.

Fig. 4. The Agent Aspect of PIM4Agents

An agent (see 4) has behaviors that may be grouped to capabilities which
together with the information in the information model allow the agent to achieve
its goals. The agent might perform roles in an organizational structure.

An organization (see 5) is in the first place composed of roles. The agents that
actually perform these roles are grouped together in concrete collaborations to
be able to achieve the organization’s goals. DomainRoles allow a renaming of role
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Fig. 5. The Organization Aspect of PIM4Agents

Fig. 6. The Role Aspect of PIM4Agents

Fig. 7. The Behavior Aspect of PIM4Agents

types of the organization in collaborations. Actor bindings bind the DomainRoles
to the interactions which are used in the collaboration to prescribe how an
interaction has to be performed when the involved agents work towards a given
goal.
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Roles (see 6) are responsible for specific goals and require capabilities from
the agents performing the goals that allow the agents to actually successfully
achieve the goals the role is responsible for. Roles can be specialized and can
be in conflict with each other, meaning that an agent that performs one role
might not be allowed to perform a specific other role. DomainRoles and Actors
are specialization of the more general role concept.

Figure 7 displays the Behavior aspect of the PIM4Agents metamodel. A be-
havior for an agent is specified by a plan. Each plan is composed of a trigger
event, a pre-condition, a post-condition, and a set of activities. Activities can
be complex patterns like for examples loops or simple tasks. Flows provide a
sequencing among the activities. Special tasks (i.e. BeginTask and EndTask)
mark for a diagram where the execution of the plan starts and where it ends.
The intended semantics is that when an event arises within the agent’s body
that matches the trigger event, the preconditionObject is checked. If this Ob-
ject returns with true, the execution of the body (i.e. the set of activities) is
started at the BeginTask. Execution of the plan body ends when an EndTask is
encountered. It is assumed that the postconditionObject evaluates to true when
the execution of the plan body terminates.

4 Taking a Closer Look at Interactions

Regarding the design of agent interactions we take for the discussion in the
article a restricted point of view. We purely concentrate on what we call contract-
based interactions. This means that we assume that for the interactions which
we want to take into account a predefined contract exists which the agents
use when performing the interaction. The definition and analysis of interaction
protocols like the Contract Net Protocol (see below) is complex and therefore
it is beneficial if system engineers can flexibly adopt interaction protocols that
are well understood. The approach presented in this article allows to set up
repositories for model fragments (e.g. interaction protocols) and adopt them in
separate designs of multiagent systems by transforming the model fragments into
representations that can be directly included into the local design (e.g. capability
specifications of individual agents).

To make the discussion in this article not too complicate we assume that all
models are defined at design time of the system and then purely used at run time.
System dynamics is purely restricted to instance level and does not include type
level. However, this still allows dynamic assignment of agent instances to roles.
How this role assignment is actually done is out of the scope of this article. We
assume that an agent that was assigned to take a specific role on the one hand will
always try its best to fulfil the obligations the role is asking for and also provides
in principle all capabilities the role is asking for. At run time no explicit checks
are done on whether such requirements are actually met. We assume that if such
checks would be done they would be performed at type level at design time.
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Fig. 8. The Interaction Aspect of PIM4Agents

Regarding the metamodel definitions the Interaction aspect (see Figure 8)
is one of the most complex in the PIM4Agents metamodel. However, the most
important concepts to understand are: Protocol, Actor, MessageFlow, and Mes-
sageScope. The protocol is actually the core concept that defines an interac-
tion. The reason to not directly replace the concept of interaction with the
concept protocol is that protocols are intuitively understood as message based
interactions and we want to be open to allow in future work other forms of
interaction, too.

A protocol is in the first place composed of a set of actors. For each actor a set
of message flows defines the different states in which the interaction could end up.
Message scopes connect two message flows of two different actors. An attribute
tells whether the message flow has a fork operator (i.e. it sends a message)
or a join operator which means that the message flow receives a message. The
message scope refers to the concrete message that is sent from the sender (actor)
to the receiver (actor). In each actor exactly one message flow is marked as initial
message flow which means that the protocol execution will start for this actor
in the state that is defined by this message flow. However, in the whole protocol
there is only one actor for which the initial message flow has a forkOperator
(i.e. the initial message flow sends a message). We call this message flow start
message flow of the protocol.
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Fig. 9. The Contract Net Protocol

The core part of the contract the agents use for interaction is given with a
protocol. Figure 9 shows the diagram for the Contract Net Protocol7 [5]. In this
protocol a manager agent tries to find an agent in a group of bidders that is
selected to provide a specific service for the manager. We present some more
details on the usefulness of this protocol in Section 5. The building blocks for
protocols are (i) actors, which might be separated into sub-actors, (ii) message
flows, and (ii) and messages. Actors refer to the participants of the protocols.
Role bindings are used to define the requirements to agent types that actually
could take the part of a specific actor in a protocol. Message flows mark specific
states in the protocol execution. If a message flow has more then one exiting arc
exactly one of these arcs can be chosen to continue protocol execution, which
means that the outgoing arcs have an xor semantics. An additional assumption
is that each message flow that receives a message spawns of an achieve goal
event, where the abstract goal’s name is derived from the name of the incoming
message which is by definition unique, i.e. a message flow can receive at most
one message. To achieve such an abstract goal might turn out to be a complex
process within the agent and might very well involve the interaction with other
agents which are then, behind the scenes, again organized by using contracts.
Messages are defined by message types.

With these conventions the behavior that an agent needs to comply to when it
engages in a specific interaction is defined in the protocol description. However,
the protocol specifies the communication behavior only. All capabilities that are
available from the agent’s body are addressed by spawning off achieve goal events
and the only direct body capability the protocol itself relies on is that the agent
is able to send the messages according to the specified message types. In this

7 Please do not confuse the name of the Contract Net Protocol with what we call
contract based communciation. The dual use of the term contract is basically pure
chance.
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Fig. 10. Basic Communication Pattern

sense the specification of the interaction among the agents is a choreography of
the capabilities of the agents that are involved in the interaction.

When it comes to executing the protocol at run time one has at least two
options to choose from. In the first option the interaction protocol would be di-
rectly interpreted by a protocol interpreter that is included in the agents’ bodies.
In the second option the protocol is transformed into local behaviors for each
of the participating agents which can be directly executed in some execution
environment. The first option is more flexible but the second option is easier to
implement. For this reason we use the second option. This has also the advantage
that the local behavior can be produced with a model-to-model transformation
at the PIM4Agents level which means that the resulting behaviors can be trans-
formed into all different execution environment for which a transformation of
PIM4Agents models is available. We therefore do not interpret the protocol
model directly but transform the protocol model at design time into capabili-
ties that provide the respective communication behavior that is required by the
contract to which the protocol belongs. To achieve this a separate capability is
generated from the protocol model for each of the given actors. We can iden-
tify a basic pattern which allows to already design a large number of different
protocols (at least regarding those which are explicitly represented by models
at design time). This basic pattern is displayed in Fig. 10. It always starts with
one actor sending a message to another actor and then waiting for all answers
to this message.

Behind all actors of a protocol any number of agent instances might be hiding
except for the actor that contains the start message flow. Only one individual
agent is allowed to play the role that is connected to this actor. Only the start
message flow actually sends multiple messages to all agent instances hiding be-
hind the actor that receives this message. All subsequent messages are exchanged
in a bilateral manner. However, this means that the start message flow spans
off a set of parallel interaction threads. For some protocols it is necessary to
synchronize (see Fig. 11) these interaction threads. For example in the Contract
Net Protocol ([5] see Fig. 9) the manager has to wait till all bidders have replied
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Fig. 11. Synchronization between parallel execution threads

to the call for proposals or some specified deadline has passed. Only then the
protocol can proceed and the best bidder be selected. To define this kind of
synchronization at the modelling level we provide the following concepts:

– For each protocol instance in each actor we maintain a context in which the
state of the ongoing protocol execution can be maintained.

– In the protocol context we maintain a table which allows us to find for each
message sent all replies that have been received so far.

– Message flows can be marked as synchronized. A condition specifies what
needs to happen before the synchronization is successfully achieved. Such a
condition can be that a specific number of replies has been received or that a
specific event (e.g. a timeout) has occurred. All replies to a sent message that
are received after the synchronization was successfully achieved are ignored.

– A special variable MaxMessages in the protocol context gives the number of
how many messages were actually sent in the start message flow.

With this basic machinery it is already possible to design a large number of
complex protocols. A limitation of the presented concepts is that it is not possible
to model protocols where messages are sent out to more than one actor while the
sender waits for the replies to these messages in a concurrent manner. However,
because several agent instances can hide behind an actor the only limitation
is that sending concurrent messages to more than one group of agents hiding
behind one of the actors in the protocol diagram is not possible in one model.
However, because each of the agent instances at any specific stage of the protocol
execution (i.e. a specific message flow), where it receives a message, spawns off
an achieve goal event to produce the message that should be sent next, in the
process of achieving this event can of course again initiate the execution of an
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interaction protocol. So although this interaction is not visible in the original
protocol diagram, any number of cascading protocol executions can result from
the execution of a specific interaction protocol. To restrict sending of concurrent
messages to the start message flow of an interaction protocol is therefore actually
not a real restriction but enforces structure that reduces complexity.

The interaction protocol describes the interaction among the actors (i.e. the
agents that perform the roles that are bound to the actors) from a centralized
point of view.

To actually describe the model to model transformations from interaction
protocols to local behaviors for individual agents we use operational QVT8.

helper pim4agents::interaction::Actor::collectMsfs () :

Set(pim4agents::interaction::MessageFlow) {

var res : Set(pim4agents::interaction::MessageFlow);

res := self.activeState;

self.subactor->forEach(a) {

res := res->union(a.collectMsfs());

};

return res

}

Fig. 12. Helper of a QVT Transformation

Operational QVT offers two types of procedural concepts. The first straight
forward concept are helpers. Helpers are very similar to methods of an object
oriented language. The helper can be typed and in this case it basically extends
the signature of the concept that is defined in the metamodel and allows compu-
tations that are useful for handling this concept. The definition of the helper also
shows how the concepts in the PIM4Agents metamodel are addressed: first the
metamodel is named, then the package in the metamodel, and last the concept.
In the body of the helper OCL expressions can be used which allow to express
complex computations in a compact manner. The helper in Figure 12 collects
all message flows that are included in an actor in a given interaction protocol.

mapping PIM4Agents::interaction::Actor::toDomainRole () :
PIM4Agents::role::DomainRole {

var msf : Set(pim4agents::interaction::MessageFlow) :=
self.collectMsfs();

var rmsf : Set(pim4agents::interaction::MessageFlow) :=
msf -> select(d|d.isInitialMessageFlow or
((d.forkOperator <> null) and (d.MsfSuccessors(msf)->size() > 0)));

name := ’Role’ + self.name;
providesCapability := rmsf.map toCapability(msf,rmsf);

}

Fig. 13. QVT Mapping Rule, Creation of a Domain Role from an Actor of a Protocol

8 Query view transformation.
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The second procedural concept that operational QVT offers are mappings
(see Figure 13). Mappings look quite similar to helpers, however, there is an
important difference. Mappings result in a link between the entity they are ap-
plied to and the entities they create. This means that a mapping can be called
several times but the structures it creates are only created once and that the
same structure can be mapped to different places (i.e. attributes of concepts)
in the model instance that is produced as a result of the QVT transformation.
In the mapping the variable msf holds all MessageFlows that are contained in
the actor and rmsf is the subset of MessageFlows in the set msf that are con-
sidered relevant. Relevant MessageFlows are those where a message is sent and
an answer is expected. The condition d.forkOperator <> null says that d sends
a message and the helper d.MsfSuccessor(msf) returns the set of message flows
that receive an answer for the message sent in d. This exactly corresponds to the
situation of the actor Sender in the communication pattern shown in Figure 10.
The MessageFlow sending the message would be considered relevant. The four
MessageFlows in the lower part would be returned by the helper MsfSuccessors.
If the communication pattern is only used once in the actors the sending Mes-
sageFlow in the actor Sender and the receiving MessageFlow in the Receiver
would be marked as initial message flows where the former is called the start
MessageFlow.

5 Use Cases

The presented approach for the design of multiagent systems is currently further
investigated and practically used in the research projects ISReal and COIN.

The COIN project investigates collaboration and interoperability for net-
worked enterprises. In this context we use the modelling approach presented in
this article for the design of negotiation processes in enterprise systems. Negoti-
ations occur prominently in business interactions between competing partners,
but also between cooperating partners, e.g. the participants in supply chains
or virtual enterprises. One scenario we are looking at in this work is the situa-
tion in which a production plan for collaborating partners in a supply chain has
already been scheduled. In this setting there are two scenarios for which addi-
tional negotiations could be necessary while a production plan is executed: (i)
for a specific step the service provider (e.g. a transportation service or a supplier
of raw material) has been left open or (ii) it turns out that a pre-negotiated
service provider cannot provide the agreed service. For both scenarios the Con-
tract Net Protocol (see Fig. 9) can be used to organize the negotiation. Services
the manager agent can chose from are registered and published in a general ser-
vice platform (GSP) which provides discovery and invocation support. Services
are semantically annotated using the WSMO/WSML language which facilitates
ad-hoc service provisioning and execution.

In COIN, service provision can be supported at design time and/or at run
time. In the first case, a process modeler can check for available services while
designing the interactions and agent plans. In the second case, when a service
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provider drops out or e.g. cannot fulfill the required quality of service, a new
service provider can be determined by retrieving a list of candidate services
from the GSP and selecting the best service using the Contract Net Protocol.

The focus of ISReal is the design of agents and multiagent systems in a virtual
reality settings where the agents represented by avatars that form their virtual
bodies. Digital factories are one of the application areas ISReal is aiming at.
The aim of the ISReal project is to develop an execution platform for semantic
3D simulations [8]. The basic idea of ISReal is to add semantic descriptions
to 3D objects and specify their functionality by semantic service descriptions.
Our approach is based on the semantic Web standards OWL9, OWL-S10, and
RDFA11. Agents perceive the annotated facts and service descriptions and use
them for reasoning and planning. The scene runs in a 3D-enabled Web browser
based on XML3D12. We use our model-driven development environment DDE
for engineering the agents that control the avatars (their virtual body) in the
3D scene. Figure 14 depicts the application of an agent interaction protocol in
a 3D simulation. Agent A1’s target is to buy ingredients for the production of
some pills on the pill filling machine shown in the background. The Contract
Net Protocol is used by agent A1 to negotiate with the pharmacy agents A3,
A4, and A5. In Figure 14, agent A5 won the auction.

Fig. 14. Contract Net example in the ISReal scenario

6 Related Work

Communication is an important aspect of agent-based and multiagent systems
and therefore has been intensively investigated. The FIPA13 initiative was origi-
nally founded to produce specifications for software standards for heterogeneous
and interacting agents and agent-based systems. One of the main achievements of

9 http://www.w3.org/2004/OWL/
10 http://www.daml.org/services/owl-s/1.2/
11 http://www.w3.org/TR/rdfa-syntax/
12 http://www.xml3d.org/
13 www.fipa.org

http://www.w3.org/2004/OWL/
http://www.daml.org/services/owl-s/1.2/
http://www.w3.org/TR/rdfa-syntax/
http://www.xml3d.org/
www.fipa.org
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FIPA was a standard proposal for an agent communication language (ACL). [10]
gives and overview of FIPA and related activities. Although FIPA also made pro-
posals for standards for communication protocols14, execution of such protocols
was rather neglected. In his seminal work [16] investigated formal approaches to
protocol design. Declarative methods to describe protocols have the charm that
the formalisms seem to be clean. However, at least in some cases it is a problem
to find out whether protocols can be enacted [6]. More pragmatic approaches do
not face this problems because protocol execution is directly foreseen, however,
conformance to prescribed behavior is a general problem.

While the areas of general software engineering and agent-oriented software
engineering lived for years without much interaction, in recent years the con-
cepts of the two areas have grown significantly together. A good example for
the common interest is the Agent Platform Special Interest Group of the Object
Management Group (OMG) which has the goal to foster OMG specifications
in the agent area. Other examples are the Agent Modelling Language (AML)
[18] a semi-formal visual modeling language for the definition, modeling, and
documentation of systems that adopt agent technologies. AML is defined as
an extension of the Unified Modeling Language (UML15) using the most im-
portant OMG frameworks. Agent UML (AUML) [2] extended UML sequence
diagrams with interaction protocols. Besides agent-based modeling approaches
several methodologies were proposed (e.g. Tropos [15], Prometheus [14,17]) that
provide mechanisms to support the specification, the analysis, and development
of agent-based systems. Additionally proposals for metamodels for agent-based
systems are on the table (e.g. Gaia [20], PASSi [4], and ADELFE [3]).

Protocol projections have been studied already early in the area of verification
of communication protocols (e.g. [11]). Recently, these techniques are also used
in the context of collaborations [12]. More specifically, projections are used for
generating executable business processes and orchestrations from choreography
descriptions (e.g. [13], [9]), restricted to languages for business process modeling.

7 Conclusions

This article presented a framework for the model driven design of MAS. The
framework is built around the domain specific modelling language DSML4MAS.
The core of DSML4MAS is defined by the metamodel PIM4Agents that includes
platform independent concepts for the design of MAS. PIM4Agents is separated
into 12 major aspects for MAS design. The general framework proposes a plugin
architecture where these different aspects can be replaced or refined in a flexible
manner. In the discussion of the PIM4Agents metamodel the article concentrates
on the Interaction aspect because it is an obvious choice when it comes to reuse of
model fragments in MAS design. The design of interaction protocols is complex
and tedious and therefore reuse of well-understood protocols is highly desirable.
The article presents a proposal how the Interaction aspect in DSML4MAS can

14 http://www.fipa.org/repository/ips.php3
15 www.uml.org

http://www.fipa.org/repository/ips.php3
www.uml.org
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be realized. This approach is pragmatic and procedural with the advantage to
define an operative semantics for the models in the transformation to a specific
execution environment. Further research needs to be done to link the presented
approach with proposals for declarative protocol specifications like for example
presented in [16,6,1].

The main contribution of the work presented in this article aims at the de-
sign of agent-based systems and multiagent systems from a software engineer-
ing perspective. In this work AI aspects are not directly obvious. However, in
matchmaking of queries on model repositories and in the internal reasoning of
the agents AI topics are of course relevant. At least regarding reasoning work on
agent technologies (e.g. the agent development tool JACK) it has been shown
that modelling and reasoning can be brought together. We plan to integrate
these AI aspects more deeply with our approach in future work.
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ul. Żolnierska 49, Szczecin, Poland
pklesk@wi.zut.edu.pl

Abstract. In the paper we analyze a connection between outcomes of the cross-
validation procedure and Vapnik bounds [1,2] on generalization of learning
machines. We do not focus on how well the measured cross-validation outcome
estimates the generalization error or how far it is from the training error; instead,
we want to make statements about the cross-validation result without actually
measuring it. In particular we want to state probabilistically what ε-difference one
can expect between the known Vapnik bound and the unknown cross-validation
result for given conditions of the experiment. In the consequence, we are able to
calculate the necessary size of the training sample, so that the ε is sufficiently
small; and so that the optimal complexity indicated via SRM is acceptable in
the sense that cross-validation, if performed, would probably indicate the same
complexity. We consider a non-stratified variant of cross-validation, which is con-
venient for the main theorem.

Keywords. Statistical learning theory, Bounds on generalization, Cross valida-
tion, Empirical risk minimization, Structural risk minimization, Vapnik–Chervon-
enkis dimension.

1 Introduction and Notation

One part of the Statistical Learning Theory developed by Vapnik [1,2,3] is the theory
of bounds. It provides probabilistic bounds on generalization of learning machines. The
key mathematical tools applied to derive the bounds in their additive versions are Cher-
noff and Hoeffding inequalities1 [2,4,5,6].

We use this theory to show a probabilistic relationship between two approaches for
complexity selection: n-fold cross-validation (popular among practioner modelers) and
Structural Risk Minimization proposed by Vapnik (rarely met in practice) [7,8,9,10]. We
remind that SRM is O(n) times faster than n-fold cross-validation (since SRM does not
perform any repetitions/folds per single fixed complexity, nor testing) but less accurate,

1 Chernoff inequality: P
(|νI − p| ≥ ε

) ≤ 2exp(−2ε2I), Hoeffding inequality: P
(|XI −EX | ≥

ε
) ≤ 2exp(− 2ε2I

B2−A2 ). Meaning (respectively): observed frequencies on a sample of size I
converge to the true probability as I grows large; analogically: means of a random variable
(bounded by A and B) converge to the expected value. It is a in-probability-convergence and
its rate is exponential.

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 31–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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since the selection of optimal complexity is based on the guaranteed generalization
risk. The bound for the guaranteed risk is expressed in terms of Vapnik-Chervonenkis
dimension, and is a pessimistic overestimation of the growth function, which in turn
is overestimation of the unknown Vapnik-Chervonenkis entropy. We formally remind
these notions later in the paper. All those overestimations contribute (unfortunately) to
the fact that for a fixed sample size, SRM usually underestimates the optimal complexity
and chooses too simple model.

Results presented in this paper may be regarded as conceptually akin to results
by Holden [11,12], where error bounds on cross-validation and so-called sanity-check
bounds are derived. The sanity-check bound is a proof, for large class of learning algo-
rithms, that the error of the leave-one-out estimate is not much worse — O(

√
h/I) —

than the worst-case behavior of the training error estimate, where h stands for Vapnik-
Chervonenkis dimension of given set of functions and I stands for the sample size. The
name sanity-check refers to the fact that although we believe that under many circum-
stances, the leave-one-out estimate will perform better than the training error (and thus
justify its computational expense) the goal of the sanity-check bound is to simply prove
that it is not much worse than the training error [13].

These results were further generalized by Kearns [13,14,15] using the notion of
(β1,β2)-error stability2 rather than (β1,β2)-hypothesis stability3 imposed on the learn-
ing algorithm.

For the sake of comparison and to set up the perspective for further reading of this pa-
per, we highlight some differences of meaning of our results and the results mentioned
above:

- we do not focus on how well the measured cross-validation result estimates the
generalization error or how far it is from the training error in the leave-one-out case
— sanity-check bounds [12,13]; instead, we want to make statements about the
cross-validation result without actually measuring it, thus, remaining in the setting
of the SRM framework.

- in particular we want to state probabilistically what ε-difference one can expect
between the known Vapnik bound and the unknown cross-validation result for given
conditions of the experiment,

- in the consequence, we want to be able to calculate the necessary size of the train-
ing sample, so that the ε is sufficiently small, and so that the optimal complexity
indicated via SRM is acceptable in the sense that cross-validation, if performed,
would probably indicate the same complexity; this statement may seem related to
the notion of sample complexity considered e.g. by Bartlett [16,17] or Ng [18], but
we do not find the sample size required for the algorithm to learn/generalize “well”

2 We say that a learning algorithm has a (β1,β2)-error stability, if generalization errors for two
models provided by this algorithm using respectively a training sample of size I and a sample
with size lowered to I−1 are β1-close to each other with probability at least 1−β2. Obviously
the smaller both β1,β2 are the more stable the algorithm.

3 We say that a learning algorithm has a (β1,β2)-hypothesis stability, if the two models provided
by this algorithm using respectively a training sample of size I and sample with size lowered
to I−1 are β1-close to each other with probability at least 1−β2, where closeness of models
is measured by some functional metrics, e.g. L1, L2, etc.
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but rather such a sample size so that complexity selection via SRM gives similar
results to complexity selection via cross-validation,

- we do not explicitly introduce the notion of error stability for the learning algo-
rithm, but this kind of stability is implicitly derived be means of Chernoff-Hoeffding-
like inequalities we write.

- we do not focus on the leave-one-out cross-validation; we consider a more general
n-fold non-stratified cross-validation (also: more convenient for our purposes); the
leave-one-out case can be read out from our results as a special case.

1.1 Notation Related to Statistical Learning Theory

We keep the notation similar to Vapnik’s [2,1].

– We denote the finite set of samples as:{
(x1,y1),(x2,y2), . . . ,(xI ,yI)

}
,

or more shortly by encapsulating pairs as

{z1,z2, . . . ,zI},

where xi ∈ R
d are input points, yi are output values corresponding to them, and I

is the set size. yi differ depending on the learning task: for classification (pattern-
recognition) yi ∈{1,2, . . . ,K}— finite discrete set, for regression estimation yi ∈R.

– We denote the set of approximating functions (models) in the sense of both classi-
fication or regression estimation as:

{ f (x,ω)}ω∈Ω,

where Ω is the domain of parameters of this set of functions, so a fixed ω can be
regarded as an index of a specific function in the set.

– The risk functional R : { f (x,ω)}ω∈Ω → R∪{+∞} is defined as

R(ω) =
∫

x∈X

∫
y∈Y

L
(

f (x,ω),y
)

p(x,y)︸ ︷︷ ︸
p(x)p(y|x)

dydx, (1)

where p(x) is the distribution density of input points, p(y|x) is the conditional
density of system/phenomenon outputs y given a fixed x. p(x,y) = p(x)p(y|x) is
the joint distribution density for pairs (x,y). In practice, p(x,y) is unknown but
fixed, and hence we assume the sample {z1,z2, . . . ,zI} to be i.i.d.4 L is the so called
loss function which measures the discrepancy between the output y and the model
f . For classification, L is an indicator function:

L
(

f (x,ω),y
)
=

{
0, for y = f (x,ω);
1, for y �= f (x,ω),

(2)

4 Independent, identically distributed.
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and the risk functional becomes R(ω) =
∫

x∈X ∑y∈Y L
(

f (x,ω),y
)

p(x,y)dx. For re-
gression estimation, L is usually chosen as the distance in L2 metric:

L
(

f (x,ω),y
)
=
(

f (x,ω)− y
)2
, (3)

and the risk functional becomes R(ω) =
∫

x∈X
∫

y∈Y

(
f (x,ω)− y

)2
p(x,y)dydx.

– By ω0 we denote the index of the best function f (x,ω0) in the set, such that:

R(ω0) = inf
ω∈Ω

R(ω). (4)

– Since only a finite set of samples {z1, . . . ,zI} is at disposal, we cannot count on
actually finding the best function f (x,ω0). In fact, we look for its estimate with
respect to the finite set of samples. We define the empirical risk:

Remp(ω) =
1
I

I

∑
i=1

L(yi, f (xi,ω)), (5)

and by ωI we denote the index of the function f (x,ωI) such that:

Remp(ωI) = inf
ω∈Ω

Remp(ω) (6)

— Empirical Risk Minimization principle [1,2,19,4].
– For simplification of notation and further considerations, we introduce replace-

ments:

(x,y) = z,

L
(

f (x,ω),y
)
= Q
(
z,ω).

In other words instead of considering the set of approximating functions5 { f (x,ω)}
ω∈Ω, we equivalently consider the set of error functions {Q(z,ω)}ω∈Ω. It is a 1:1
correspondence6. Now, we write the true risk as:

R(ω) =
∫

z∈X×Y
Q(z,ω) p(z)︸︷︷︸

p(x,y)

dz

=
∫

Z
Q(z,ω)dF(z), (7)

and the empirical risk as

Remp(ω) =
1
I

I

∑
i=1

Q(zi,ω)), (8)

5 In the sense of all learning tasks.
6 Q is identical with L in the sense of their values. They differ only in formal posing of their

domains. L works on f (x,ω) and y and maps them to error values, whereas Q works directly
on z and ω and maps them to error values.
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1.2 Notation Related to Cross-Validation

In the paper, we shall consider the non-stratified variant of the n-fold cross-validation
procedure [20]. In each single fold (iteration) we first permute the data set and then we
split it at the same fixed point into two disjoint subsets — a training set and a testing set.
Thus, we guarantee the randomness by permutation per each fold, and among folds we
do not care to make training sets disjoint pairwise. Since permutations are independent,
hence folds are independent as well.

Such an approach is somewhere in-between the classical n-fold cross-validation and
the bootstrapping [21]. In the classical cross-validation, all

(n
2

)
pairs of training sets

are mutually disjoint (and so are testing sets) and hence folds are dependent, whereas
in the bootstrapping instead of repeatedly analyzing subsets of data set, one repeat-
edly analyzes the subsamples (with replacement) of the data. For more information see
[22,23,24].

We introduce the following notation. I′ and I′′ stand for the size of training and
testing sets respectively.

I′ =
n− 1

n
I,

I′′ =
1
n

I.

Without loss of generality for theorems and proofs, let I be dividable by n, so that I′
and I′′ are integers.

In a single fold, let

{z′1,z′2, . . . ,z′I′ }, {z′′1,z′′2 , . . . ,z′′I′′ }

represent respectively the training set and the testing set, taken as a split of the whole
permuted data set {z1,z2, . . . , zI}. Similarly, empirical risks calculated as follows:

R′emp(ω) =
1
I′

I′

∑
i=1

Q(z′i,ω), (9)

R′′emp(ω) =
1
I′′

I′′

∑
i=1

Q(z′′i ,ω), (10)

represent respectively the training error and the testing error, calculated for any
function ω.

By ωI′ we define the function that minimizes the empirical training risk

R′emp(ωI′) = inf
ω∈Ω

R′emp(ω) (11)

when the context of discussion is constrained to single fold. When, we will need to
broaden the context onto all folds, k = 1,2, . . . ,n, we will write ωI′,k to denote the
function that minimizes the empirical training risk in the k-th fold. Therefore, the fi-
nal cross-validation result — an estimate of generalization error — is the mean from
empirical testing risks R′′emp using functions ωI′ ,k:
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C =
1
n

n

∑
k=1

R′′emp(ωI′ ,k). (12)

The independence of folds can be formally expressed in the following way. For any two
indices of folds k �= l and for any numbers A,B:

P(R′′emp(ωI′ ,k) = A,R′′emp(ωI′,l) = B)

= P(R′′emp(ωI′,k) = A) ·P(R′′emp(ωI′ ,l) = B).

We stress the independence once again, because later on we are going to sum up several
independent probabilistic inequalities into one inequality, and we would like the result
to be true with the effective probability being the product of component probabilities.

2 The Relationship for a Finite Set of Approximating Functions

2.1 Classification Learning Task

Similarly to Vapnik, let us start with the classification learning task and the simplest
case of a finite set of N indicator functions: {Q(z,ω j)}ω j∈Ω, j = 1,2, . . . ,N. Not to
complicate things, we will keep on writing ωI in the sense of the optimal function
minimizing the empirical risk on our finite sample of size I, instead of writing more
formally e.g. ω j(I)

7.
Vapnik shows [1,2] that with probability at least 1−η, the following bound on the

true risk is satisfied:

∫
Z

Q(z,ωI)dF(z)︸ ︷︷ ︸
R(ωI)

≤ 1
I

I

∑
i=1

Q(zi,ωI)︸ ︷︷ ︸
Remp(ωI)

+

√
lnN− lnη

2I
. (13)

The argument is the following:

P
(

sup
1≤ j≤N

R(ω j)−Remp(ω j)≥ ε
)
≤

N

∑
j=1

P
(

R(ω j)−Remp(ω j)≥ ε
)
≤ N · exp(−2ε2I).

The last pass is true, since for each term in the sum Chernoff inequality is satisfied. By
substituting the right-hand-side with small probability η and solving for ε, one obtains
the bound:

R(ω j)−Remp(ω j)≤
√

lnN− lnη
2I

,

7 In the sense that j(I) ∈ {1, . . . ,N} returns the index of the minimizer given our data set of size
I.
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which holds true with probability at least 1−η simultaneously for all functions in the
set, since it holds for the worst. Hence, in particular it holds true for the function ωI .
And one gets the bound (13).

For the theorems to follow, we denote the right-hand-side in the Vapnik bound by
V = Remp(ωI)+

√
(lnN− lnη)/(2I).

Theorem 1. Let {Q(z,ω j)}ω j∈Ω, j = 1,2, . . . ,N, be a finite set of indicator functions
(classification task) of size N. Then, for any η > 0, arbitrarily small, there is a small
number

α(η,n) = η−
n

∑
k=1

(
n
k

)
(−1)k(2η)k, (14)

and the number

ε(η, I,N,n) =

(
2

√
n

n− 1
+ 1

)√
lnN− lnη

2I

+
(√

n+

√
n

n− 1

)√− lnη
2I

, (15)

such that:

P

(
|V −C| ≤ ε(η, I,N,n)

)
≥ 1−α(η,n). (16)

Before we prove theorem 1, the following two remarks should be clear.

Remark 1. The value of α(η,n) is monotonous with η. I.e. the smaller η we choose,
the smaller α(η,n) becomes as well. Therefore the minimum probability measure 1−
α(η,n) is suitably large.

lim
η→0+

(
η−

n

∑
k=1

(
n
k

)
(−1)k(2η)k

)

= lim
η→0+

(
η+ 1−

n

∑
k=0

(
n
k

)
(−1)k(2η)k

)

= lim
η→0+

⎛⎝η+ 1− (1− 2η)n︸ ︷︷ ︸
→1

⎞⎠= 0.

Remark 2. For the fixed values of η, N, n, the value of ε(η, I,N,n) converges to zero as
the sample size I grows large.
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This is an important remark, because it means that both the cross-validation result C
and the Vapnik bound V converge in probability8 to the same value9 as the sample size
grows large. Moreover, the rate of this convergence is exponential.

Proof (Proof of Remark 2). Since N is fixed, we note that for η→ 0+√
lnN− lnη

2I
∼
√
− lnη

2I
.

Therefore, for fixed η, N, n there exists a constant, say D, such that

ε(η, I,N,n) = 2

(√
n

n− 1
+ 1

)√
lnN− lnη

2I

+
(√

n+

√
n

n− 1

)√− lnη
2I

≤ D

√
− lnη

2I
.

Solving the inequality for η we obtain η≤ exp(−2Iε2/D2).

Having in mind the inequality (16), we now give two theorems in which the absolute
value sign in |V −C| is omitted. They can be viewed as the upper and the lower proba-
bilistic bounds on C and they are derived as tighter bounds than (16). Proving these two
theorems immediately implies proving the theorem 1.

Theorem 2. With probability 1−α(η,n) or greater, the following inequality holds true:

C−V ≤
(√

n
n− 1

− 1

)√
lnN− lnη

2I

+
(√

n+

√
n

n− 1

)√− lnη
2I

. (17)

Theorem 3. With probability 1−α(η,n) or greater, the following inequality holds true:

V −C ≤
(

2

√
n

n− 1
+ 1

)√
lnN− lnη

2I
+
√

n

√
− lnη

2I
. (18)

The second result is more interesting, provided of course that the bound is positive for
given constants η, I, N, n. Otherwise, we get zero or negative bound, which is trivial.
The fig. 1 illustrates the sense of theorems 2 and 3.

8 We say that A(I) converges in probability to B, we write A(I)
P−→

I→∞
B, when for any numbers ε >

0, η > 0, there exists a treshold size of sample I(ε,η), such that for all I ≥ I(ε,η): P
(|A(I)−

B|> ε
)≤ η.

9 C and V can be viewed as random variables, due to random realizations of data set {z1, . . . ,zI}
with joint density p(z) (this affects C and V ) and due to random realizations of subsets in cross-
validation folds (this affects C). When the data set {z1, . . . ,zI} is fixed, V is fixed too.
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Fig. 1. Illustration of upper and lower bounds on the result of cross-validation with respect to
the size of sample I. Other constants are: η = 0.01 ⇒ 1−α(η) ≈ 0.93, N = 100, n = 3. With
probability 1−α(η) or greater, the result C of cross-validation falls between the bounds.

Proof (Proof of Theorem 2). We remind: I′ = n−1
n I, I′′ = 1

n I.
With probability at least 1−η, the following bound on true risk holds true:

R(ωI′)≤ R′emp(ωI′)+

√
lnN− lnη

2I′
. (19)

For the selected function ωI′ , fixed from now on, Chernoff inequality is satisfied on the
testing set (empirical testing risk) in either of its one-side-versions:

R′′emp(ωI′)−R(ωI′)≤
√
− lnη

2I′′
, (20)

R(ωI′)−R′′emp(ωI′)≤
√
− lnη

2I′′
, (21)

with probability at least 1−η each. By joining (19) and (20) we obtain, with probability
at least10 1− 2η the system of inequalities:

R′′emp(ωI′)−
√
− lnη

2I′′
≤ R(ωI′)≤ R′emp(ωI′)

+

√
lnN− lnη

2I′
. (22)

10 The minimum probability must be 1− 2η rather than (1− η)2 (probabilistic independence
case) due to correlations between inequalities. It can be also viewed as the consequence of
Bernoulli’s inequality.
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After n independent folds we obtain, with probability at least (1− 2η)n:

1
n

n

∑
k=1

R′′emp(ωI′,k)︸ ︷︷ ︸
C

≤ 1
n

n

∑
k=1

R′emp(ωI′,k)+

√
lnN− lnη

2I′

+

√
− lnη

2I′′
. (23)

To conclude the proof, we need to relate somehow R′emp(ωI′ ,k) from each fold to
Remp(ωI). We need the relation in the direction R′emp(ωI′ ,k) ≤ ·· · , so that we can plug
the right-hand-side of it into (23) and keep it true. Intuitively, one might expect that
choosing an optimal function on a larger sample leads to a greater empirical risk com-
paring to a smaller sample, i.e. Remp(ωI) ≥ R′emp(ωI′ ,k), because it is usually easier to
fit fewer data points using models of equally rich complexities. But we don’t know with
what probability that occurs. Contrarily, on may easily find a specific data subset for
which Remp(ωI)≤ R′emp(ωI′ ,k).

Lemma 1. With probability 1, true is the following inequality:

I′

∑
i=1

Q(z′i,ωI′)≤
I

∑
i=1

Q(zi,ωI). (24)

On the level of sums of errors, not means, the total error for a larger sample will always
surpass the total error for a smaller sample. This gives us I′R′emp(ωI′)≤ IRemp(ωI) and
further:

R′emp(ωI′)≤ n
n− 1

Remp(ωI). (25)

Unfortunately it is of no use, because of the coefficient n
n−1 . Thinking of C−V in the

theorem, we need a relation with coefficients 1 at both C and V .
In [2, pp. 124] we find the following helpful assertion:

Lemma 2. With probability at least 1− 2η:

∫
Z

Q(z,ωI)dF(z)− inf
1≤ j≤N

∫
Z

Q(z,ω j)dF(z)︸ ︷︷ ︸
R(ω0)

≤
√

lnN− lnη
2I

+

√
− lnη

2I
(26)

— the true risk for the selected function ωI is not farther from the minimal possible risk

for this set of functions than
√

lnN−lnη
2I +

√
− lnη

2I .

Proof of that statement given by Vapnik is based on two inequalities (each with prob-
ability at least 1−η), the first is (13) — we repeat it here, and the second is Chernoff
inequality for the best function ω0:
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R(ωI)−Remp(ωI)≤
√

lnN− lnη
2I

, (27)

Remp(ω0)−R(ω0)≤
√
− lnη

2I
. (28)

And since, by definition of ωI , Remp(ω0)≥ Remp(ωI), the (26) follows.
Going back to the cross-validation procedure, we notice that in each single fold

the measure Remp corresponds by analogy to the measure R in (26) and the measure
R′emp corresponds by analogy to Remp therein. Obviously R is defined on an infinite and
continuous space Z = X×Y , whereas Remp is defined on a discrete and finite sam-
ple {z1, . . . ,zI}, but still from the perspective of a single cross-validation fold we may
view Remp(ωI) as the “target” minimal probability of misclassification and R′emp(ωI′) as
the observed relative frequency of misclassification — an estimate of that probability,
remember that we take random subsets {z′1, . . . ,z′I′ } from the whole set {z1, . . . ,zI}.

We write

R′emp(ωI′)≤ R′emp(ωI)≤ Remp(ωI)+

√
− lnη

2I′
. (29)

The first inequality is true with probability 1 by definition of ωI′ . The second is a Cher-
noff inequality, true with probability at least 1−η.

Now, we plug (29) into (23) and obtain with probability 1−(−∑n
k=1

(n
k

)
(−1)k(2η)k)

−η or greater:

C ≤ 1
n

n

(
Remp(ωI)+

√
− lnη

2I′

)

+

√
lnN− lnη

2I′
+

√
− lnη

2I′′

= Remp(ωI)+

√
n

n− 1

√
lnN− lnη

2I

+
(√

n+

√
n

n− 1

)√− lnη
2I

= Remp(ωI)+

(√
n

n− 1
+ 1− 1

)√
lnN− lnη

2I

+
(√

n+

√
n

n− 1

)√− lnη
2I

=V +

(√
n

n− 1
− 1

)√
lnN− lnη

2I

+
(√

n+

√
n

n− 1

)√− lnη
2I

.

This concludes the proof of theorem 2.
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Proof (Proof of Theorem 3). The proof is analogous to the former proof, but we need
to write most of the probabilistic inequalities in the different direction.

With probability at least 1−η, the following bound on true risk holds true:

R′emp(ωI′)≤ R(ωI′)+

√
lnN− lnη

2I′
. (30)

By joining (30) and (21) we obtain, with probability at least 1− 2η the system of in-
equalities:

R′emp(ωI′)−
√

lnN− lnη
2I′

≤ R(ωI′)≤ R′′emp(ωI′)

+

√
− lnη

2I′′
. (31)

After n independent folds we obtain, with probability at least (1− 2η)n:

1
n

n

∑
k=1

R′emp(ωI′ ,k)−
√

lnN− lnη
2I′

−
√
− lnη

2I′′

≤ 1
n

n

∑
k=1

R′′emp(ωI′,k)︸ ︷︷ ︸
C

. (32)

Again as in the former proof, we need to relate R′emp(ωI′ ,k) from each fold to Remp(ωI),
but now we need the relation to be in the direction R′emp(ωI′ ,k) ≥ ·· · , so that we can
plug the right-hand-side of it into (32) and keep it true.

We write

Remp(ωI)−
√

lnN− lnη
2I′

≤ Remp(ω′I)−
√

lnN− lnη
2I′

≤ R′emp(ω
′
I). (33)

Reading it from the right-hand-side: the second is a (13)-like inequality but for discrete
measures, which is true with probability at least 1−η, and the first inequality is true
with probability 1 by definition of ωI .
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Now, we plug (33) into (32) and obtain with probability 1−(−∑n
k=1

(n
k

)
(−1)k(2η)k)

−η or greater:

C ≥ 1
n

n

(
Remp(ωI)−

√
lnN− lnη

2I′

)
−
√

lnN− lnη
2I′

−
√
− lnη

2I′′

= Remp(ωI)− 2

√
n

n− 1

√
lnN− lnη

2I
−√n

√
− lnη

2I

= Remp(ωI)−
(

2

√
n

n− 1
− 1+ 1

)√
lnN− lnη

2I

−√n

√
− lnη

2I

=V −
(

2

√
n

n− 1
+ 1

)√
lnN− lnη

2I
−√n

√
− lnη

2I
.

This concludes the proof of theorem 3.

Using theorems 2 and 3 we can also say what sample size I is necessary so that the the
difference C−V or V −C is less than or equal to an imposed epsilon ε∗.

Let us denote the right-hand-sides of upper and lower bounds (17) and (18) by εU

and εL respectively. Now, suppose we want to have εU(η, I,N,n) ≤ ε∗U. Solving it for I
we get

I ≥ 1

2ε∗U
2

((√
n

n− 1
− 1

)√
lnN− lnη

+
(√

n+

√
n

n− 1

)√
− lnη

)2

(34)

Similarly, if we want to have εL(η, I,N,n) ≤ ε∗L.

I ≥ 1

2ε∗L
2

((
2

√
n

n− 1
+ 1

)√
lnN− lnη+

√
n
√
− lnη

)2

(35)

To give an example: say we have a finite set of 100 functions, N = 100, we perform
a 5-fold cross-validation, n = 5, and we choose η = 0.1 and ε∗L = ε∗U = 0.05. Then it
follows that we need a sample of size I ≥ 5832 so that the cross-validation result is not
worse than V + 0.05, whereas we need I ≥ 28314 so that the cross-validation result is
not better than V − 0.05. And both results are true with probability 1−α(η,n) ≈ 0.73
or greater.

Remark 3. For the leave-one-out cross-validation, where n = I, both the lower and the

upper bound loosen to a constant of order O

(√
− lnη

2

)
.



44 P. Klęsk

Actually, one can easily see that as we take larger samples I → ∞ and we stick to the

leave-one-out cross-validation n = I, the coefficient
√

n
n−1 standing at

√
lnN−lnη

2I goes

to 1, whereas the coefficient
√

n standing at
√
− lnη

2I goes to infinity.
One might ask: for what choice of n each bound is the tightest given η, I, N? Treating

for a moment n as a continuous variable, we impose the conditions:

∂εU(η, I,N,n)
∂n

= 0,
∂εL(η, I,N,n)

∂n
= 0,

and we get optimal n values:

n∗U = 1+

(√
lnN− lnη+

√− lnη√− lnη

) 2
3

, (36)

n∗L = 1+

(
2
√

lnN− lnη√− lnη

) 2
3

. (37)

Note that these values do not depend on the sample size I.

2.2 Regression Estimation Learning Task

Now we consider the set of real-valued error functions but we still stay with the simplest
case when the set has a finite number of elements. We give theorems for the regression
estimation learning task, analogous to the ones for the classification. We skip proofs —
the only changes they would require is the assumption of the bounded functions, and
the use of Hoeffding inequality in the place of Chernoff inequality.

Theorem 4. Let {Q(z,ω j)}ω j∈Ω, j = 1,2, . . . ,N, be a finite set of real-valued bounded
functions (regression estimation task) of size N, 0≤Q(z,ω j)≤ B. Then, for any η > 0,
arbitrarily small, there is a small number

α(η,n) = η−
n

∑
k=1

(
n
k

)
(−1)k(2η)k, (38)

and the number

ε(η, I,N,n) =

(
2

√
n

n− 1
+ 1

)
B

√
lnN− lnη

2I

+
(√

n+

√
n

n− 1

)
B

√
− lnη

2I
, (39)

such that:

P

(
|V −C| ≤ ε(η, I,N,n)

)
≥ 1−α(η,n). (40)
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Theorem 5. With probability 1−α(η,n) or greater, the following inequality holds true:

C−V ≤
(√

n
n− 1

− 1

)
B

√
lnN− lnη

2I

+
(√

n+

√
n

n− 1

)
B

√
− lnη

2I
. (41)

Theorem 6. With probability 1−α(η,n) or greater, the following inequality holds true:

V −C ≤
(

2

√
n

n− 1
+ 1

)
B

√
lnN− lnη

2I
+B
√

n

√
− lnη

2I
. (42)

3 The Relationship for an Infinite Set of Approximating Functions

The simplest case with a finite number of functions in the set has been generalized
by Vapnik [2,19,25] onto infinite sets with continuum of elements by introducing sev-
eral notions of the capacity of the set of functions: entropy, annealed entropy, growth
function, Vapnik–Chervonenkis dimension. We remind them in brief.

First of all, Vapnik defines NΩ(z1, . . . ,zI) which is the number of all possible di-
chotmies that can be achieved on a fixed sample {z1, . . . ,zI} using functions from
{Q(z,ω)}ω∈Ω. Then, if we relax the sample the following notions of capacity can be
considered:

1. expected value of lnNΩ — Vapnik-Chervonenkis entropy:

HΩ(I) =
∫

z1∈Z
· · ·

∫
zI∈Z

lnNΩ(z1, . . . ,zI)

· p(z1) · · · p(zI)dz1 · · ·dzI ,

2. ln of expected value of NΩ — annealed entropy:

HΩ
ann(I) = ln

∫
z1∈Z

· · ·
∫

zI∈Z
NΩ(z1, . . . ,zI)

· p(z1) · · · p(zI)dz1 · · ·dzI ,

3. ln of supremum of NΩ — growth function

GΩ(I) = ln sup
z1,...,zI

NΩ(z1, . . . ,zI).

It has been proved that:

GΩ(I) =

{
= ln2I, dla I ≤ h;

≤ ln∑h
k=0

(I
k

)
, dla I > h,

(43)
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where h is the Vapnik–Chervonenkis dimension.
It has been shown [2] that

HΩ(I)
(Jensen)
≤ HΩ

ann(I)≤ GΩ(I)≤ ln
h

∑
k=0

(
I
k

)
≤ ln
(eI

h

)h
= h(1+ ln

I
h
). (44)

And the right-hand-side of (44) can be suitably inserted in the bounds to replace lnN.
We mention that appropriate generalizations from the set of indicator functions (clas-

sification) onto sets of real-valued functions (regression estimation) can be found in [2]
and are based on the notions of: ε-finite net, set of classifiers for a fixed real-valued f ,
complete set of classifiers for Ω.

3.1 Classification Learning Task (Infinite Set of Functions)

For shortness, we give only two theorems for bounds on V −C and C−V , the bound on
|V −C| is their straightforward consequence (analogically as in previous sections).

Theorem 7. Let {Q(z,ω)}ω∈Ω be an infinite set of indicator functions with finite
Vapnik–Chervonenkis dimension h. Then, with probability 1−α(η,n) or greater, the
following inequality holds true:

C−V ≤
(√

n
n− 1

− 1

)√
h(1+ 2I

h )− ln η
4

I

+
(√

n+

√
n

n− 1

)√− lnη
2I

. (45)

Theorem 8. With probability 1−α(η,n) or greater, the following inequality holds true:

V −C≤
(

2

√
n

n− 1
+ 1

)√
h(1+ 2I

h )− ln η
4

I

+
√

n

√
− lnη

2I
. (46)

3.2 Regression Estimation Learning Task (Infinite Set of Functions)

Again, for shortness, we give only two theorems for bounds on V −C and C−V , the
bound on |V −C| is their straightforward consequence (analogically as in previous sec-
tions).
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Theorem 9. Let {Q(z,ω)}ω∈Ω be an infinite set of real-valued bounded functions,
0≤ Q(ω,z)≤ B, with finite Vapnik–Chervonenkis dimension h. Then, with probabil-
ity 1−α(η,n) or greater, the following inequality holds true:

C−V ≤
(√

n
n− 1

− 1

)
B

√
h(1+ 2I

h )− ln η
4

I

+
(√

n+

√
n

n− 1

)√− lnη
2I

. (47)

Theorem 10. With probability 1−α(η,n) or greater, the following inequality holds
true:

V −C≤
(

2

√
n

n− 1
+ 1

)
B

√
h(1+ 2I

h )− ln η
4

I

+
√

n

√
− lnη

2I
. (48)

In practice, bounds (47) and (48) can be significantly tightened by using an estimate B̂
in the place of the most pessimistic B. The estimate B̂ can be found by performing just
one fold of cross-validation (instead of n folds) and bounding B̂ by: mean error on the
testing set plus a square root implied by the Chernoff inequality:

B̂≤ R′′emp(ω
′
I)+B

√
− lnηB

2I′′
, (49)

where ηB is an imposed small probability that (49) is not true. The reasoning behind this
remark is that in practice, typical learning algorithms rarely produce functions f (x,ωI),
in the process of ERM, having high maximal errors. Therefore, we can insert the right-
hand-side of (49) into (47) and (48) in the place of B. If this is done, then the minimal
overall probability on bounds (47) and (48) should be adjusted to 1−α(η,n)−ηB.

4 Experiments — Bounds Checks

Results of three experiments are shown in this section, for the following cases: (1) bi-
nary classification, finite set of functions, (2) binary classification, infinite set of func-
tions, (3) regression estimation, infinite set of functions.

4.1 Set of Functions

The form of f functions, f : [0,1]2 → [−1,1], was Gaussian-like:

f (x,w0,w1, . . . ,wK︸ ︷︷ ︸
ω

) =

max
{−1,min

{
1,w0 +

K

∑
k=1

wk exp
(
−‖x− µk‖2

2σk
2

)}}
(50)
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where centers µk and widths σk were generated on random11 and remained fixed. There-
fore we have a set of functions linear in parameters (w0,w1, . . . ,wK). As one can see
values of f where constrained by ±1. For the classification learning task, the decision
boundary was arising as the solution of f (x,w0,w1, . . . ,wK) = 0. For the regression es-
timation, we simply looked at the values of f (x,w0,w1, . . . ,wK). Examples of functions
from this set are shown in figures 2, 3
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Fig. 2. Illustration of the set of functions for classification
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Fig. 3. Illustration of the set of functions for regression estimation

4.2 System and Data Sets

As a system y(x) we picked on random a function from a similar class to (50) but
broader, in the sense that the number K was greater and the range of randomness on
σk was larger. Data sets for both classification and regression estimation were taken
by sampling the system according to the joint probability density p(x,y) = p(x)p(y|x)
where we set p(x) = 1 — uniform distribution on the domain [0,1]2 and p(y|x) =

1√
2πσ exp(− (y−y(x))2

2σ2 ) — normal noise with σ = 0.1.

4.3 Algorithm of the Learning Machine

In the case of finite sets of N functions, the learning machine was simply choosing
the best functions as f (ωI) = argmin j=1,2,...,NRemp(ω j) or in cross-validation folds
f (ωI′) = argmin j=1,2,...,NR′emp(ω j).

11 Random intervals: µk ∈ [0,1]2, σk ∈ [0.02,0.1].
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Fig. 4. System and data for classification (a, b), regression estimation (c, d)

In the case of infinite sets with continuum of elements, the learning machine was
trained by the least-squares criterion. We remark that obviously other learning ap-
proaches can be used in this place e.g. maximum likelihood, SVM criterion [2,1,26]. If

we denote the bases exp
(−‖x−µk‖2

2σk
2

)
by gk(x) and calculate the matrix of bases at data

points

G =

⎛⎜⎜⎜⎝
1 g1(x1) g2(x1) · · · gK(x1)
1 g1(x2) g2(x2) · · · gK(x2)
...

...
...

. . .
...

1 g1(xI) g2(xI) · · · gK(xI)

⎞⎟⎟⎟⎠ (51)

we can find the optimal vector of w coefficients by the pseudo-inverse operation as
follows:

(w0,w1, . . . ,wK)
T = (GT G)−1GTY, (52)

where Y = (y1,y2, . . . ,yI)
T is a vector of training target values.

4.4 Experiment Results and Comments

Experiments involved trying out different settings on all relevant constants such as:
number of terms in approximating functions (K), number of functions (N) in the case
of finite sets or VC dimension (h) in case of infinite sets, sample size (I), number of
cross-validation folds (n). For each fixed setting of the constants, an experiment with
repetitions was performed, during which we measured the cross-validation outcome C
after each repetition. The range of these outcomes was then compared to the interval
implied by the theorems we proved.
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Table 1. Details (folds, repetitions) of an exemplary experiment no. 1

no. of
expe-
riment repetition fold R′emp(ωI′)

is
ωI′ = ωI? R′′emp(ωI′′ )

1 1 1 0.397 false 0.444
1 1 2 0.418 true 0.369
1 1 3 0.400 false 0.468

C = 0.417
1 2 1 0.359 true 0.369
1 2 2 0.374 true 0.339
1 2 3 0.370 true 0.348

C = 0.352
...

...
...

...
...

...
1 10 1 0.403 true 0.384
1 10 2 0.395 true 0.399
1 10 3 0.394 true 0.399

C = 0.394

We show the results in two tables 1 and 2. The first one gives an insight on details of
a single exemplary experiment: results of its particular folds and repetitions. The second
one shows collective results, where each row encapsulates 10 repetitions12.

To comment on the results we first remark that before each single experiment (1-12)
the whole data set was drawn once from p(z) and remained fixed throughout repetitions.
However, in the repetitions due to the non-stratified cross-validation we parted the data
set (via permutations) into different training and testing subsets. That is why in the table
Remp(ωI) and V are constant per experiment, whereas the cross-validation varies within
some observed range. In the table 2 we also present the interval [V − εL,V + εU] which
is implied by the theorems.

Please note that for all experiments the observed range for C was contained inside
[V−εL,V +εU] — an empirical confirmation of theoretical results. Although the bounds
are true with probability at least 1−α(η,n), in this particular experiment they held with
frequency one.

In particular one can note in the table that the upper bounds V + εU are closer to
actual C outcomes, while lower bounds V + εL are more loose — a fact we already
indicated in theoretical sections. Only in the case of experiment no. 9 the lower bound
we obtained was trivial. In the results one can also observe the qualitative fact that both
intervals tighten with 1/

√
I approximately. Keep in mind that this result stops working

for the ‘leave-one-out’ cross-validation (or a close one) and we experimented on n = 3
and n = 5.

12 It was difficult to allow ourselves for more repetitions, say 100, due to large amount of results
and the time-consumption of each experiment. Yet, the observed ratio 1.0 of C falling inside
bounds shows that 10 repetitions was sufficient.
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Table 2. Collective results — each row encapsulates 10 repetitions. Tasks: c. — classification,
r.e. — regression estimation. We denote experiments on finite or infinite sets of functions by
setting either N or h. For regression estimation we use probabilistic B̂ calculated as R′′emp(ω′I)+
B
√− lnηB/(2I′′). In all experiments η = 0.2, hence for n = 3 the probability that bounds are

true is 1−α(η,n) = 0.496 or greater and for n = 5 it is 1−α(η,n) = 0.511 or greater.

no.
of

exp. task K N h I Remp(ωI) V n
bounds

[V − εL,V + εU]

observed
range of C

(10 repetitions)

ratio of
C inside
bounds

1 c. 50 10 - 103 0.412 0.456 3 [0.254,0.550] [0.351,0.445] 1.0
2 c. 200 10 - 103 0.345 0.389 3 [0.187,0.483] [0.352,0.385] 1.0
3 c. 200 10 - 104 0.369 0.383 3 [0.319,0.413] [0.371,0.383] 1.0
4 c. 200 10 - 104 0.396 0.410 5 [0.344,0.442] [0.386,0.401] 1.0
5 c. 50 100 - 104 0.408 0.426 3 [0.349,0.456] [0.392,0.418] 1.0
6 c. 200 100 - 104 0.336 0.354 3 [0.277,0.384] [0.332,0.338] 1.0
7 c. 50 100 - 105 0.401 0.407 3 [0.383,0.417] [0.398,0.403] 1.0
8 c. 50 - 51 105 0.181 0.250 3 [0.021,0.267] [0.181,0.184] 1.0
9 c. 200 - 201 105 0.035 0.161 3 [−0.25,0.185] [0.035,0.037] 1.0

9 r.e. 50 -
51

(B̂ = 0.193) 104 0.172 0.209 3 [0.078,0.223] [0.170,0.173] 1.0

10 r.e. 50 -
51

(B̂ = 0.194) 104 0.171 0.208 5 [0.085,0.212] [0.170,0.172] 1.0

11 r.e. 200 -
201

(B̂ = 0.020) 105 0.012 0.015 3 [0.006,0.016] [0.012,0.013] 1.0

12 r.e. 200 -
201

(B̂ = 0.020) 105 0.013 0.015 5 [0.007,0.016] [0.012,0.013] 1.0

5 Experiments — SRM

In this section we show results of the Structural Risk Minimization approach. We con-
sider a structure i.e. a sequence of nested subsets of functions: S1⊂ S2⊂ ·· · ⊂ SK , where
each successive Sk =

{
f (x,ω)

}
ω∈Ωk

is a set of functions with Vapnik-Chervonenkis di-
mension hk, and we have h1 < h2 < · · · < hK . As the best element of the structure
we choose S∗ (with VC dimension h∗) for which the bound on generalization V is the
smallest.

Along with observing the bound V , we observe: (1) the cross-validation result C,
(2) our bounds on C, (3) the actual true risk R calculated as an integral according to
its definition (1). We pay particular attention to how the minimum point of SRM at h∗
differs from the minimum suggested by the cross-validation and the minimum of true
risk (which normally in practice is unknown). We remind that obtaining the result C for
each hk is O(n) times more laborious than obtaining V for each hk. See fig. 5.



52 P. Klęsk
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Fig. 5. SRM experiments. With I = 300, optimum points reached at: h∗ = 91 (SRM), h = 91 (C),
h = 151 (true risk R). With I = 400, optimum points reached at: h∗ = 111 (SRM), h = 131 (C),
h = 151 (true risk R).

6 Summary

In the paper we take under consideration the probabilistic relationship between two
quantities: Vapnik generalization bound V and the result C of an n-fold non-stratified
cross-validation. In the literature on the subject of machine learning (and SLT) typically
the stated results have a different focus — namely, the relation between the true risk
(generalization error) and either of the two quantities V , C separately. The perspective
we chose was intended to:

- stay in the setting of Structural Risk Minimization approach based on Vapnik
bounds,

- not perform the cross-validation procedure,
- be able to make probabilistic statements about closeness of SRM results to cross-

validation results (if such was perfomed) for given conditions of learning experi-
ment.
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Fig. 6. Exemplary models for both regresssion estimation and classfication: under complex (h =
31), accurately complex — the best generalization (h = 151), over complex (h = 231).

Suitable theorems about this relationship are stated and proved. The theorems con-
cern two learning tasks: classification and regression estimation; and also two cases as
regards the capacity of the set of approximating functions: finite sets and infinite sets
(but with finite Vapnik-Chervonenkis dimension).

As the sample size grows large, both C and V converge in probability to the same
limit of true risk. The rate of convergence is exponential.

Using the theorems, one can find a threshold size of sample so that the difference
C−V or V −C is smaller than an imposed ε. Obviously, the smaller ε for given exper-
iment conditions, the more frequently one can expect to select the same optimal model
complexity via SRM and via cross-validation (again without actually performing it).

For the special case of leave-one-out cross-validation we observe in the consequence
of bounds we derived that at most a constant difference of order O(

√− lnη/2) between
C and V can be expected.

Additionally, we showed for what number n of folds, the bounds (lower and upper)
on the difference are the tightest. Interestingly, as it turns out these optimal n values do
not depend on the sample size.

Finally, shown are experiments confirming statistical correctness of the bounds.
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Abstract. A group of agents have to decide between two alternatives. At the
begining each actor have a preference and a conviction about this preference.
During the debate the conviction and the preference of each agent can change
under the involved social influences.

The theoretical model of this paper is presented in [7], and the influence model
is the one presented in [3]. The aims is to present a new dynamical model for
collective decisional problems. Moreover the presented model offers additional
perspectives for purposes of controlling the debate.

Keywords. Debate, Influence, Decisional power, Choquet integral, Control, Col-
lective decision, Social network.

1 Introduction

A group of agents is faced with a collective decision; in response, a debate has been
organized to identify which alternative appears to be the most relevant following a de-
liberation. This study will be limited to the binary, albeit common, situation involving
two options denoted +1 and −1. It is assumed that each agent has an inclination to
choose one of the alternatives +1 and −1 , though due to the influence of other agents
this inclination may differ from the agent’s actual decision [3]. In general terms, it can
be considered that each time a speaker intervenes in the debate, agents may change
their preference due to social influences taking place within the group. Once agents’
preferences reach a point of no longer changing, then the deliberation process ends and
a group decision is made. The aim of this debate is for every agent to hear the argu-
ments of all other agents by the end of the deliberation process and then to make a final
decision based on full knowledge of the facts.

This deliberation is viewed as a dynamic process with its own dynamics and where
agents’ beliefs and preferences evolve as arguments are exchanged. The deliberation
outcome thus depends both on the order in which agents intervene in the debate to
explain their opinion and on the influence a given agent may exert on a social network.

In this context, social influence is related to the statistical notion of the decisional
power held by an individual within a social network, as proposed in [5] and [3].

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 56–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Time-Varying Model to Simulate a Collective Decisional Problem 57

One of the conclusions drawn in [3] concerns the integration of dynamic aspects
into the influence model. The authors’ framework is indeed a decision-making process
activated after a single step of mutual influence. In reality, such mutual influence does
not necessarily stop after just one step but may actually become iterative. This paper
proposes a possible extension of the results presented in [3] for use in the dynamic
case. The evolution of agents’ beliefs throughout the debate either change or reinforce
the agents’ convictions relative to their initial preference. Intuitively, as well as from
other standpoints, an agent’s social influence depends on the relative strength of other
agents’ convictions. The idea for our model therefore is to define influence as a time-
dependent variable.

In [7], the concepts of influence and conviction during the simulation of a debate are
introduced. This article will follow up on the prior work proposed in [1]. Our main im-
provement here over previous efforts relates to the fact that in [7], coalitions of agents
were modeled using capacities, and the change in conviction during a debate was com-
puted with a symmetric Choquet integral, which is in fact an aggregation function typi-
cally introduced in multicriteria decision making [2]. The main drawback in [7] pertains
to a lack of semantic justifications.

Reference [3] provides a formal framework to define the notion of influence, while
[7] introduces the revision equations relative to agents’ convictions and preferences.
Moreover, [6] suggests a cybernetic interpretation to merge both of these models. The
present paper is intended as a continuation of [7], with [6] also used for guidance.
The main contribution of this paper is to propose the state equations of the cybernetic
interpretation in order to describe the way agents’ convictions may evolve over time.
To achieve this goal, a capacity will be introduced to model the relative importance of
agents in the debate; such a capacity is based on the decisional power of agents using
the generalized Hoede-Bakker index [3,5]. Consequently, a number of simulations will
be proposed to illustrate the collective decision-making process.

The paper will be organized as follows. Section 2 will briefly recall the main con-
cepts of the models presented in [7] and [3]. From this formal framework, Section 3
will establish the state equations that serve to model the dynamic relationships between
convictions and influences when a speaker-agent / listener-agent pair is isolated. Fol-
lowing a presentation of preference changes, Section 4 will offer a few illustrations.
Lastly, Section 5 will provide the conclusion and outlook for future research.

2 Concepts and Notations

2.1 Notion of Influence in a Debate

The assumption behind our model is that an agent’s influence is correlated with his
capacity to alter the group decision. It addresses the concept of the ”weight” of an
agent’s choice in a collective voting procedure. This ”weight” parameter cannot be static
since it needs to evolve with agent preferences, which in turn allow for the formation of
certain coalitions that are more likely than others.

It is common experience that during the discussion phase, some agents will change
their initial opinions. The reasons for this change, in assuming that it is not a random
occurrence, may be of different types. The most natural reason is that they have been
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swayed by the arguments of a particular agent or group (coalition) of agents, or that they
feel somewhat obliged, owing to a hierarchical, political or perhaps even more obscure
reason, to follow the opinion of that particular agent or coalition. Another reason may
be that they are acting in reaction against a given agent or coalition, by systematically
embracing the opposite opinion. We use the generic word ”influence” herein to refer to
all these types of phenomena [4].

Models have been introduced into game theory in order to represent influence in so-
cial networks. The point of departure is the concept of the Hoede-Bakker index, a notion
that computes the overall decisional power of an agent within a social network, which
in this case is a group of n agents. This index was developed in 1982 [5]; an extended
definition of decisional power was proposed in [3] and will now be summarized. The
reasons behind the existence of influence phenomena, i.e. why a given individual finally
changes his decision, is more a matter of the psychological sciences and lies beyond the
scope of such approaches.

Let’s start by considering a set of agents {a1, · · · , an}, denoted N = {1, · · · , n}
in order to simplify notations along with a power set denoted 2{a1,···,an}. Each agent
is inclined to choose either +1 or −1. An inclination vector, denoted i, is an n-vector
consisting of +1 and −1. The j-th coordinate of i is thus denoted iaj ∈ {−1,+1} and
represents the inclination of agent aj . Let I = {−1,+1}n be the set of all inclination
vectors.

It can then be assumed that agents influence one another; moreover, due to influ-
ences arising in the network, the final decision of an agent may differ from his original
inclination. In other words, each inclination vector i ∈ I is transformed into a decision
vector B(i), where B : I → I , i �→ B(i) is the influence function. The coordinates of
B(i) are expressed by (Bi)aj , j ∈ {1, · · · , n} and (Bi)aj is the decision of agent aj .
Lastly, gd : B(I) → {−1,+1} is a group decision function, assigned the value +1 if
the group decision is +1 and the value−1 for a group decision of −1.

An influence function B may correspond to a common collective behavior. For ex-
ample, in [3] a majority influence function Maj[t] parametrized by a real t has been
introduced. More precisely, for a given i ∈ I ,

Maj[t]i =

{
1N if |i+| ≥ t
−1N if |i+| < t

where i+ = {k ∈ N |ik = +1} and 1N (resp. −1N ) is the vector equal to 1 (resp. -1)
everywhere.

This set-up corresponds to the intuitive collective human behavior: when a majority
of players have an inclination of +1, then all players decide +1. Many classifications of
potential collective behavior (polarization, groupthink, mass psychology, etc.) can thus
be described mathematically.

An influence function may also be defined as a simple rule. For example, the follow-
ing rule may be associated with the Guru function: “when aGuru thinks +1, then all
agents decide +1“. Another example would be the opportunistic behavior, i.e.: “when
most of my supervisors decide +1, then I decide +1”.

It can also be anticipated that mapping B : I → I is learned from experiment. The
identification of B may be perceived as a data-mining step using knowledge bases in
which collective decisions have been recorded as minutes of company meetings.
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Definition 1. The Hoede-Bakker index of agent aj is defined for a given B and a given
gd by:

GHBaj =
1

2n−1

∑
{i|iaj

=+1}
gd(B(i)).

The main drawback with the Hoede-Bakker index is that it blurs the actual role of the
influence function, by analyzing the final decision only in terms of success and failure.
The decision is successful for an agent once his inclination matches the group decision.

In [3], the authors distinguish the influence component from the group decision
component and moreover propose a first modified index of decisional power, whereby
the agent’s decision must coincide with the group’s decision to constitute a success for
the agent. Lastly, these authors provided a second modified decisional power, allowing
the inclination vectors to be assigned unequal probabilities.

Definition 2. Let p : I → [0, 1] be a probability distribution, with p(i) being the prob-
ability of an i occurrence. The modified decisional power of agent aj for given B, gd
and p can then be expressed as:

φaj (B, gd, p) =
∑

{i|(Bi)aj
=+1}

p(i).gd(B(i))−
∑

{i|(Bi)aj
=−1}

p(i).gd(B(i)).

To conclude this summary section, for each agent aj the probabilities of success and
failure are recalled as follows:

SUCaj (B, gd, p) =
∑

{b∈I|(b)aj
=gd(b)} p ◦B−1(b)

FAILaj (B, gd, p) =
∑

{b∈I|(b)aj
=−gd(b)} p ◦B−1(b).

Note that: φaj (B, gd, p) = SUCaj (B, gd, p)− FAILaj (B, gd, p).

2.2 Convictions and Preferences During a Debate

This section will present the dynamic model of the debate proposed in [7]. The influence
an agent may exert on the others in the debate is modeled by a capacity over 2{a1,···,an}.

Definition 3. A capacity v over 2{a1,···,an} is a set function v : 2{a1,···,an} → [0, 1]
such that v(∅) = 0, v({a1, · · · , an}) = 1 and ∀A,A′ ⊆ {a1, · · · , an}, A ⊆ A′ ⇒
v(A) ≤ v(A′).

The profile of an agent aj includes his preference, importance (i.e. his capacity v(aj))
and preference intensity named conviction in the following (it is to be denoted caj ∈
[0, 1]).

It is an agreed rule of the debate that agents are to speak in turns. In the proposed
model set-up, the agent as (speaker-agent) who is currently speaking and any agent al
(listener-agent) who is listening are formally isolated from the remainder of the group.
More precisely, a capacity val,as , defined relative to the pair of agents (al, as), is intro-
duced as follows:
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val,as(al) =
v(al)

v({al,as}) , val,as(as) =
v(as)

v({al,as}) and val,as({al, as}) = 1.

The change of conviction can then be modeled using the symmetric Choquet integral,
which is also called the Sipos integral. The definition of the Choquet and Sipos integrals
will now be provided.

Definition 4. Let c = (ca1 , . . . , can) ∈ [0, 1]n be a vector of convictions, () be a per-
mutation on {1, . . . , n} such that ca(1)

≤ . . . ≤ ca(n)
and v a capacity on 2{a1,···,an}.

The Choquet integral of c with respect to v is expressed as:

Cv(c) =

n∑
i=1

[
ca(i)

− ca(i−1)

]
v({(i), · · · , (n)}) with ca(0)

= 0.

Definition 5. Let c = (ca1 , · · · , can) ∈ [−1, 1]n be a vector capable of assuming nega-
tive values, () be the permutation on {1, · · · , n} such that ca(1)

≤ ca(p)
< 0 ≤ ca(p+1)

≤
· · · ≤ ca(n)

and v a capacity on 2{a1,···,an}.
The symmetric Choquet Integral of c with respect to v is given by:

Čv(c) =

p−1∑
i=1

[ca(i)
− ca(i+1)

]v({(1), · · · , (i)}) + ca(p)
v({(i), · · · , (p)})

+ca(p+1)
v({(p+ 1), · · · , (n)}) +

n∑
i=p+2

[ca(i)
− ca(i−1)

]v({(i), · · · , (n)}).

In [7] the Sipos integral is defined on the set of agents {al, as} and denoted Čval,as
.

The changes of conviction proposed can then be summarized as follows:

If agents al and as have the same preference, then one of them is more convinced, and
this situation entails two possible cases.

– If cas > cal
then the new conviction of agent al becomes:

Čval,as
(cas , cal

) = cal
+ (cas − cal

)val,as(as).
– If cal

> cas then the new conviction of agent al becomes:
Čval,as

(cas , cal
) = cas + (cal

− cas)val,as(al).
If agents al and as have different preferences, then the new conviction of agent al is:

– Čval,as
(cas , cal

) = −casval,as(as) + cal
val,as(al).

The main drawback to this model is its lack of semantic justification with regard to
capacity v (i.e. influence is merely a normalized relative importance); in addition, the
concept of conviction has not been formally defined and the revision equations are
not provided in an appropriate formalism, in which time would appear explicitly (i.e.
dynamic aspects).

3 Presentation of Our Dynamic Model

This section presents our dynamic model for simulating a debate outcome. To begin,
let’s note that within the framework of this paper, the influence function used in [3] is
perceived as a disturbance function applied to the set of all possible inclination vectors.
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3.1 Decisional Power and Capacities

One of the new ideas presented in this paper is the ability to design a capacity based on
the decisional power included in the above model.

For any inclination vector i in I , Bi is the decision vector obtained from i whose
influence is modeled by B. gd(Bi) is the final decision of the group, whereby the group
decision function is modeled by gd . For any i ∈ I , gd(Bi) belongs to {−1,+1}, which
implies that the modified decisional power for any agent aj as denoted φaj (B, gd, p)
lies in the interval [−1, 1].

Note that if the decisional power of an agent is close to −1, this means that the agent
only rarely chooses the alternative to what the collective body ultimately chooses: he
fails most of the time (FAIL). On the other hand, when his decisional power is close
to 1, the agent is most often successful (SUCC); his decisional power therefore is
strong. Hence, for any agent aj , we can normalize φaj (B, gd, p) in order to obtain his
importance.

As an example, without any further information, the importance of agent aj , i.e. his
capacity v(aj), can be defined as follows:

Definition 6. The importance of agent aj for a given B, gd and p is vφ(aj) = 1
2φaj (B,

gd, p) + 1
2 .

Note that for any agent aj , v(aj) ∈ [0, 1] with v(aj) = 0 if and only if φaj (B, gd, p) =
−1 and v(aj) = 1 if and only if φaj (B, gd, p) = 1.

A capacity vφ can then be generated over 2{a1,···,an}, with constraints, ∀A,A′ ⊆
{a1, · · · , an}, A ⊆ A′ ⇒ v(A) ≤ v(A′). Without any further knowledge, it may be
stated: vφ(A) = max

aj∈A
v(aj), ∀A ⊂ {a1, · · · , an} and vφ({a1, · · · , an}) = 1. This last

condition is necessary because it is uncertain that an agent can be found whose capacity
is equal to 1.

Let’s conclude this section with the following remark. The decisional power of indi-
viduals aj on which vφ : 2{a1,···,an} → [0, 1] is based, measures those cases where the
final decision of aj matches the group decision. An agent with considerable decisional
power is expected to sway several other agents; thus, decisional power is construed as
an estimation of his influence within the group, although this is not an influence index
in the sense of [3].

3.2 Time-Varying Probabilities

This subsection focuses on the design of probability p as a time-varying function, to
be denoted p[k] at time k. Along with this time-varying probability, a time-varying
extended decisional power, as presented in [3], can be computed. The following method
proposes basing the probability computation on the convictions of agents with respect
to the available alternatives. In this part therefore, the conviction vectors are assumed
to be known. c(k) (resp. c′(k)) denotes the conviction vector of agents w.r.t. alternative
+1 (resp.−1) at time k:

c(k) = (ca1(k), · · · , caj (k), · · · , can(k)), where caj (k) is the conviction of agent aj
w.r.t alternative +1 at time k.
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c′(k) = (c′a1
(k), · · · , c′aj

(k), · · · , c′an
(k)), where c′aj

(k) is the conviction of agent
aj w.r.t alternative−1 at time k.

Their respective computations will be provided in the next section.
The conviction of an agent concerning a given alternative is correlated with the prob-

ability that this particular agent chooses this alternative, i.e. the probability of his incli-
nation as defined in [3].

Let i ∈ I be an inclination vector. Each coordinate iaj is the preference of agent aj
and constitutes one of the two alternatives.

Definition 7. Let i ∈ I be an inclination vector. The conviction vector of i at time k
is c(i, k) = (c̄a1(k), · · · , c̄an(k)), where for any j, c̄aj (k) is caj (k) if iaj = 1 and is
c′aj

(k) if iaj = −1.

Let i ∈ I be an inclination vector and let’s define ci(k) ∈ [0, 1] as an average conviction
at time k for i. This value summarizes the distributions of agents’ convictions in i at
time k. ci(k) is an ”aggregated conviction” of the group of agents for i. This aggrega-
tion should take into account the relative importance of agents and their interactions.
Consequently, it seems only natural to state the following definition.

Definition 8. Let i ∈ I be an inclination vector and v[k] be a capacity defined at time k
on 2{a1,···,an}, then ci(k+1) = Cv[k](c̄a1(k), · · · , c̄an(k)), where Cv[k] is the Choquet
integral with respect to v[k].

The time-varying probability is built by recurrence on k. We start at time k = 0 and
will proceed by presenting how to compute p[k + 1] using p[k].

At time k = 0:
Each agent assigns a score to each alternative in the interval [0, 1]. For each agent,
if we were to denote n+1 ( resp. n−1 ) as the score of +1 (resp. −1), then the
convictions could be computed by caj (0) =

n+1

n+1+n−1
and c′aj

(0) = n−1

n+1+n−1
. We

then have caj (0) + c′aj
(0) = 1. Initially, at time k = 0, if iaj is the preference

of aj then the probabilities of the agent aj regarding his preference and the other
alternative would be: paj (iaj )[k = 0] = caj (0) and paj (−iaj )[k = 0] = 1−caj (0).
We assume that before the debate starts, the inclination of each agent does not
depend on the social network. The probability distribution associated with a priori
probabilities is thus the product of the individual probabilities paj at k = 0, leading
to the following probability:

∀i ∈ I, p(i)[0] =

n∏
j=1

paj (iaj )[0].

It is thus possible to compute the following
– the decisional power for any agent aj at k = 0: φaj (B, gd, p[0]);
– the capacity vφ[0] over 2{a1,···,an}, for k = 0, as proposed in Subsection 3.1:
vφ[0](aj) =

1
2φaj (B, gd, p[0])+ 1

2 , and the capacity on a set A is the maximum
of the capacity of agents present in the considered coalition.
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How to compute p[k+1], φaj (B, gd, p[k+1]), vφ[k+1] using p[k], φaj (B, gd, p[k])
and vφ[k]
The capacity vφ[k] is used to compute ci(k+1), i.e. the aggregation conviction for
the inclination vector i at time k + 1: ci(k + 1) = Cvφ[k](c̄a1(k), · · · , c̄an(k)).
The time-varying probability p[k + 1] can then be defined as follows:

∀i ∈ I, p(i)[k + 1] =
ci(k + 1)∑
j∈I c

j(k + 1)
.

It then becomes possible to compute:
– the decisional power for any agent aj at k + 1: φaj (B, gd, p[k + 1]);
– the capacity vφ[k+1] over 2{a1,···,an}, at time k+1, as proposed in Subsection

3.1.

We have thus defined a time-varying probability. Note that the proposed method seems
to be rather intuitive since it corresponds to the notion that an agent’s social influence
depends on the degree of assurance in the convictions of the other agents when he
speaks.

3.3 Conviction State Equations

The aim of this section is to establish the state equations that serve to model the dynamic
relationship between convictions and influences. Let’s consider al to be any listener-
agent and as a speaker-agent. Their convictions at time k for the alternative +1 (resp.
−1) are then cal

(k) and cas(k) (resp. c′al
(k) and c′as

(k)).
Two variables are necessary to model the rhetorical quantity exchanged between

the two agents al and as, namely: the difference in their conviction and their relative
importance at time k, as modeled by the capacities vφ[k](as) and vφ[k](al).

Four rhetorical exchanges can be distinguished. These four situations are presented
in the case when the agent al prefers alternative +1. Two sub-cases can then be iden-
tified for agent as: his preferred alternative is either the same as al’s or the other one.
Each case can be divided once again into two sub-cases: as’s conviction is either greater
or less than al’s conviction. When agent al prefers alternative−1, convictions c′ replace
convictions c in the formula. More precisely, the equations appearing in the computa-
tion of cal

(k + 1) when both agents express the same preference are the same as those
used to compute c′al

(k + 1) in the case of opposite preferences and viceversa. Hence,
the rhetorical exchanges can be summarized by the following exchanges: synergistic
exchange, revisionist exchange, and antagonistic exchange. Let’s take a closer look at
each of them.

Synergistic Exchange. In this case, the preference of agent al is reinforced by the inter-
vention of agent as, who resolutely looks favorably upon the same alternative.

The conviction of agent al then increases, to an extent proportional to the difference
between both convictions as well as to the capacity of speaker-agent as.

This situation, as represented in figure 1, corresponds to the case when al and as
have the same preference and moreover cas > cal

. The intuitive difference equation is
then written:
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Fig. 1. Synergistic Exchange

cal
(k + 1)− cal

(k) = (cas(k)− cal
(k))vφ[k](as), which is equivalent to:

cal
(k + 1) = cal

(k) + (cas(k)− cal
(k))vφ[k](as).

Fig. 2. Revisionist Exchange

Revisionist Exchange. In this situation, agent al understands the argument of agent as,
who has the same preference but a more moderate support. Agent as appears to speak
with restraint relative to al’s point of view, and this exposes al’s doubt. al’s conviction
is thus mitigated by as’s intervention. This situation, which is depicted in figure 2,
corresponds to the case when al and as have the same preference with cal

> cas . The
intuitive difference equation is then written as:

cal
(k + 1) − cal

(k) = (cal
(k) − cas(k))(1 − vφ[k](al)) which is equivalent to:

cal
(k + 1) = cas(k) + (cal

(k)− cas(k))vφ[k](al).

Agent al observes the indecision on the part of agent as who nevertheless shares his
opinion: as contributes to al’s doubt. The level of conviction decreases due to as’s
intervention. which is proportional on the one hand to 1−vφ[k](al) (resulting from al’s
lack of assurance relative to his social position within the group) and on the other hand
to the difference between both agents’ convictions.

Fig. 3. Antagonistic Exchange
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Antagonistic Exchange. In this situation, the two agents do not share the same prefer-
ence: agent al nevertheless understands the advantages of as preference. A convincing
intervention from as may contribute to making al dubious, whereas an unpersuasive
intervention might on the contrary strengthen al’s preference.

(1− c′as
(k)) is a measure of as’s hesitation and provides al with an estimation of the

strength of as’s opposition. Depending on the strength of this hesitation, the previous
difference equations can again be used with (1 − c′as

(k)), yielding two situations to be
distinguished (see figure 3).

An overly weak preference expressed by as implies weak opposition from al’s point
of view and reinforces al’s opinion, resulting in a likely strengthening of al’s conviction.

The intuitive difference equation is then:

Case 1: 1− c′as
≥ cal

cal
(k + 1)− cal

(k) = ((1 − c′as
(k)) − cal

(k))(vφ[k](as)), which is equivalent to
cal

(k + 1) = cal
(k) + (1 − cas(k)− cal

(k))(vφ[k](as)).
Case 2: 1− c′as

< cal
.

In this case al’s conviction weakens following as’s intervention.
cal

(k+1)−cal
(k) = −(cal

(k)−(1−c′as
(k)))(1−vφ[k](al)), which is equivalent

to cal
(k + 1) = (1− c′as

(k)) + (cal
(k) + c′as

(k)− 1)(vφ[k](al)).

All these various types of exchanges can be synthesized using a Sipos integral.

Proposition 1. If agents as and al express the same preference, then:

cal
(k + 1) = Čvφ [k](cas(k), cal

(k));

If agents as and al do not share the same preference, then:

cal
(k + 1) = Čvφ [k](1− c′as

(k), cal
(k)).

As a conclusion to this section of the paper, the decisional power φ provides a semantic
interpretation for the capacity v in the recurrence equations presented in [7], with con-
viction here being related to the probability an agent will choose one alternative over
the other (i.e. probability distribution over inclination vectors). The model in [7] thus
becomes interpretable within a game theory framework [3]. The revision equations for
conviction appear as input-output balances according to the alternatives assessment. In-
troducing time into the equations in [7] implies that revision equations of conviction
are now seen as state equations of agents’ mental perception. This new interpretation
then provides a semantics for the debate model in [7]: it incorporates the notions of
influence and decisional power, as proposed in [3], with a formalism close to that of
dynamic models found in control theory, as suggested in [6].

4 Illustration

4.1 Preference Calculus

This section discusses how to compute preferences during the debate. Initially, each
agent aj assesses both alternatives +1 and −1 lying in the interval [0, 1]. These as-
sessments are denoted n+1

aj
and n−1

aj
, respectively. It is then possible to build initial

preferences and convictions as follows: Let a in {−1, 1}
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– aj prefers alternative a with the highest score,

– aj’s conviction relative to alternative a equals
na
aj

na
aj

+nā
aj

.

Preference changes depend on how convictions evolve over time. For any agent aj ,
it is assumed that a threshold εaj > 0 exists such that when the difference between
two convictions lies below this threshold, then agent aj cannot have a preference. This
threshold value may be characteristic of each agent. To summarize: if |caj −c′aj

| < εaj ,
then aj has no preference; if |caj − c′aj

| ≥ εaj , aj prefers the alternative with the
highest conviction.

An agent without a preference cannot intervene, which is stated as one of the debate
rules.

4.2 Simulations of Debates Outcome

Fig. 4. Identity

In order to illustrate the principle of the above dynamic representation of a debate, the
four following elementary models for influence function B have been implemented:

– B is the identity, i.e. for any inclination vector i, it can be stated that: Bi = i;
– B is the opposite of identity, i.e. for any inclination vector i, it is stated that: Bi =
−i;

– B is a mass psychology effect function. More precisely, let’s denote iε = {k ∈
N |ik = ε}, where B satisfies the following: for each i ∈ I: |iε| > t, then iε ⊆
(Bi)ε, where t ∈ [1, n] and ε = +1 or −1;

– B is a majority influence function that models behavior of the following types: if
a majority of agents have an inclination +1, then all agents decide +1; if not, all
agents decide−1.

For these four cases, the group decision function gd is, a mere majority and a basic
capacity is designated, as proposed in Section 1.3.
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Fig. 5. Opposite of identity

Let’s now consider a group of n = 8 agents. The initial convictions of agents relative
to both alternatives are considered as variates: 50 random drawings of these 8 initial
probabilities have been carried out. For each of these 50 initial conviction vectors, the
order of agents’ intervention in the debate can then be considered: 200 permutations are
randomly selected (among the 8! possible rankings) for each initial conviction vector.

Each of the four elementary illustrations has been plotted in the following figures
(i.e. one for each B function). For each of the 50 initial conviction vectors selected
randomly, a bar represents the number of +1 and −1 outcomes (light gray for +1 and
dark gray for −1).

Each figure is to be associated with the maximum number of rounds required to
achieve the ground decision for each initial conviction vector. In the proposed simula-
tions, this number does not exceed 8 rounds in any of the cases chosen for B.

The indifference threshold is ε = 0.01 for any agent. Agents speak in turn according
to the order generated by the 200 permutations, upon the condition that they are able to
express a clear opinion, specifically: agent aj can speak if |caj − c′aj

| ≥ ε.
For the same initial conviction vector, it can be observed that for each function B,

the outcome of the debate may depend on the order the agents intervene in the debate.
This type of situation can be interpreted as a weak expression of preferential contexts,
whereby any perturbation is able to change the debate outcome. From this point of view,
influence function B is a disturbance function for this dynamic model of a debate. As
a consequence, simulations allow verifying that the order the agents intervene in the
debate and their influence are both decisive variables with regard to the convergence of
conviction state equations.

The social influence of an agent may thus be considered as a disturbance in the de-
liberation process, except if it is relevantly used by the debate manager to guide the
discussion. In this latter case, social influence can be viewed as an actuator that enables
controlling the debate outcome or at least accelerating its convergence. For example,
when the debate outcome is practically certain (i.e. the bar is almost completely light
or dark gray), then the simplest control might consist of choosing the order of agents
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Fig. 6. Majority

Fig. 7. Mass Psychology Effect

intervention that minimizes the maximum number of rounds. More complex controls
could clearly be foreseen, yet the aim of this paper has merely been to propose a dy-
namic model of the debate within a framework close to control theory representations,
making for a natural implementation of control techniques in the future.

4.3 Debate as a Decision-Making Process

This part of the paper will present a potential application of the dynamic model dis-
cussed herein. The aim is to apply the model like a voting system. For this example
in particular, both alternatives −1 and +1 are not considered to be equivalent: +1 is
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the right decision, while −1 is associated with an erroneous decision. This situation
could occur in classification problems when the agents are competitive classification
algorithms.

The agents are expected to provide the correct answer most of the time, but they
typically disagree on individual cases. One common solution is to employ a voting
process in order to yield a group decision, i.e. let d1, d2 . . .dn be the respective decision
of the various agents, then the group decision is written as:

Fig. 8. Simulation-weighted vote and debate

⎧⎪⎨⎪⎩ 1 if
n∑

i=1

di > 0

−1 else

For example, let the agents be 7 different classification algorithms whose success rates
equal respectively: 0.6, 0.7, 0.8, 0.8, 0.6, 0.7, and 0.6. The group success rate according
to a normal vote would thus be 0.86. A better aggregation process will achieve a higher
success rate.

The first idea here is to use a weighted vote, i.e. let α1, . . . αn ∈ [0, 1]n:⎧⎪⎨⎪⎩ 1 if
n∑

i=1

αidi > 0

−1 else

One possible set of weights is the individual success rate of each agent; however, it is
possible to compute the Shapley-Shubik power index [9], and our example delivers a
value of 1

7 for each agent. This is exactly the same value achieved in a normal vote.
Since the weights do not differ considerably for a small number of agents, the sign of
the weighted sum is the same as that produced during the normal vote. This finding
indicates that even if some agents possess a more powerful vote, the final decision is
always shared by at least 4 agents.

If we were to use our debate model as the voting process, such an outcome would
not occur. The least agents also happen to be those who most readily change their point
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of view. More precisely, we can run the debate with identity as the B function and as
success rates for convictions. It is assumed that 7 competitive classification algorithms
are available and moreover that the correct solution is supposed to be alternative +1.

As said above, the initial probability of the 7 algorithms to choose alternative +1 are:
0.6, 0.7, 0.8, 0.8, 0.6, 0.7, and 0.6. The debate stops when all classification algorithms
are in agreement. We will assume then that their answers are independent random vari-
ables and that 10,000 cases are studied by each agent. For each case, the agent’s answer
is inferred according to his probability of being correct.

Next, for each of these 10,000 cases, we compute the group decision according to 3
methods:

– the choice with a majority vote procedure,
– the choice with a weighted majority vote procedure,
– the decision derived using our debate model.

While simple and weighted majorities yield the correct answer at a rate of 86 %, our
method produced a 94 % rate. Hence, the aggregation by a debate significantly increases
success rate.

In order to verify this good result, we tried using different situations of the same
model. For 7 agents, several values for the probability of making the right decision were
randomly generated, and the 3 corresponding rates computed (results are presented in
Figure 8). In this figure, both the weighted voting rate and our debate output vs. this
rate are plotted. Note that the same rate for the simple vote can be obtained with very
different sets of probabilities. The debate always yields a better rate, although its pref-
erences change according to the specific probability profile. The weighted vote success
rate is quite close to that of the simple vote, except for very unique probability sets
where several agents (algorithms) perform much better than the others.

5 Conclusions and Outlook

The state equations derived in this paper allow simulating macroscopically the outcome
of a debate according to the initial inclinations of agents and the social influences taking
place within the group (whereby the influence function is a priori known). The deliber-
ation outcome depends not only on the order in which the agents intervene in the debate
to explain their opinions, but also on the influence an agent is able to exert on a social
network.

The model formalism proposed in this paper is close to the one used in control theory
to model the dynamic behavior of technical systems. Guiding a debate might then be
seen as a control problem, whose aim could, for example, be how to reach a consensus
as quickly as possible or how to reinforce one alternative over the other, etc.

A debate is thus seen as a continuous dynamic system: a state equation representa-
tion has been preferred to the multicriteria decision-making framework in [7] given
that time explicitly appears in the revision of convictions. The model semantic has
also been inspired from the game theory concepts proposed in [3]: influence and deci-
sional power in a social network. In our dynamic extension, decisional power is a time-
varying variable itself and may be used as the actuator signal in the debate control loop.
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The system of state equations established in this paper allows stochastically simulating
the outcome of a debate and effects of a control strategy on this particular issue.

One possible application of this model would obviously be to simulate a debate out-
come in order to obtain certain indications regarding the final collective decision. When
simulations are performed for a large number of initial agent convictions and speaker
intervention rankings, the probability that outcome is ±1 can be estimated. Hence, the
dynamic influence model can be applied to either make the debate outcome more certain
(this may appear to be a dishonest method when agents are actual human beings, yet
remains a relevant technique when agents are artificial, such as sensors or classifiers) or
modify the convergence dynamics of the debate.
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Abstract. This work describes an approach for the computation of function fea-
tures out of optimization functions to train a decision tree. This decision tree
is used to identify adequate parameter settings for Particle Swarm Optimization
(PSO). The function features describe different characteristics of the fitness land-
scape of the underlying function. We distinguish between three types of features:
The first type provides a short overview of the whole search space, the second
describes a more detailed view on a specific range of the search space and the
remaining features test an artificial PSO behavior on the function. With these fea-
tures it is possible to classify fitness functions and to identify a parameter set
which leads to an equal or better optimization process compared to the standard
parameter set for Particle Swarm Optimization.

Keywords. Particle swarm optimization, Machine learning, Swarm intelligence,
Parameter configuration, Objective function feature computation.

1 Introduction

Metaheuristics in stochastic local search are used in numerical optimization problems
in high-dimensional spaces. For varying types of mathematical functions, different op-
timization techniques vary w.r.t. the optimization process [16]. A characteristic of these
metaheuristics is the configuration of the parameters [6]. These parameters are essential
for the efficient optimization behavior of the metaheuristic but depend on the objective
function, too. An efficient set of parameters influences the optimization in speed and
performance. If a good parameter set is selected, an adequate solution will be found
faster compared to a bad configuration of the metaheuristic. The choice of the param-
eters is based on the experience of the user and his knowledge about the domain or on
empirical research found in literature. This parameter settings, called standard configu-
rations, perform a not optimal but an adequate optimization behavior for most objective
functions. An example for metaheuristics is the Particle Swarm Optimization (PSO).
PSO is introduced by [5] and is a population-based optimization technique which is
used in continuous high dimensional search spaces. PSO consists of a swarm of par-
ticles which “fly" through the search space and update their position by taking into
account their own best position and depending on the topology, the best position found
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by other particles. PSO is an example for the parameter configuration problem. If the
parameters are well chosen, the whole swarm will find an adequate minimum and focus
on this solution. The swarm slows down the velocity trying to get better values in the
continuous search space around this found solution. This exploitation can be on a local
optimum especially if the wrong parameter set is chosen and the swarm cannot escape
from this local minimum. On the other hand the particles can never find the global op-
timum if they are too fast and never focus. This swarm behavior depends mainly on the
chosen parameter and leads to solutions of different quality.

One problem in choosing the right parameters without knowledge about the objec-
tive function is to identify relevant characteristics of the function which can be used
for a comparison among functions. The underlying assumption is that, e.g., a function
f1 = x2 and a function f2 = 3x2 + 2 exhibit similar optimization behavior if the same
parameter set for a Particle Swarm Optimization is used. In order to choose a promising
parameter set, functions must be comparable with respect to certain objective function
characteristics.

We describe an approach to computing features of the objective function by observ-
ing the swarm behavior. For each function we seek for a parameter set that performs
better than the standard configuration and provide this set as output class for supervised
learning. These data allow us to train a C4.5 decision tree [11] as classifier that com-
putes an adequate configuration for the Particle Swarm Optimization by using function
features. Experimental trials show that our decision tree classifies functions into the
correct classes in many cases. This classification can be used to select promising pa-
rameter sets for which the Particle Swarm Optimization is expected to perform better
in comparison to the standard configuration.

This work is structured as follows: In section 2 we describe other approaches point-
ing out the problem of computing good parameter sets for a metaheuristic and explain
the Particle Swarm Optimization. Section 3 describes how to compute the features of
a function and thereby make the functions comparable. After computing the features
we describe our experimental setup and the way to build up the decision tree. Section 4
contains our experimental results for building the parameter classes to select promising
parameter sets in PSO. The last section discusses our results and describes issues for
future work.

2 Parameter Settings in Metaheuristics

The main difference between solving a problem with exact methods or with metaheuris-
tics is the quality of the solution. Metaheuristics – for example, nature inspired meta-
heuristics [2] – have no guarantee of finding the global optimum. They focus on a point
in the multidimensional search space which results to the best fitness value depending
on the experience of the past optimization performance. This can be a local optimum,
too. But the advantage of the metaheuristic is to find an adequate solution of a multidi-
mensional continuous optimization problem in reasonable time [13]. This performance
depends on the configuration of the metaheuristics and is an important fact of using
metaheuristics. One group of metaheuristics are the population based metaheuristics.
[13] defines population-based metaheuristics as nature inspired heuristics which han-
dle more than one solution at a time. With every iteration all solutions are recomputed
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based on the experience of the whole population. Examples of population-based meta-
heuristics are Genetic Algorithms which are an instance of Evolutionary Algortihms,
Ant Colony Optimization and Particle Swarm Optimization. Different kinds of meta-
heuristics exhibit varying performance on a specific kinds of problem types. They differ
w.r.t. the optimization speed and the solution quality. A metaheuristic’s performance is
based on their configuration. Finding a good parameter set is a non-trivial task and often
based on a priori knowledge about the objective function and the problem. Setting up a
metaheuristic with standard parameter sets lets the optimization find a decent solution
but using a parameter set which is adapted to the specific objective function might even
lead to better results. In this paper we focus on PSO and try to find features character-
izing the objective function in order to select an adequate parameter configuration for
this metaheuristic. The optimization behavior of the particles is based on the objective
function and we try identify relevant information about the function. In the following
section we give a brief introduction to particle swarm optimization.

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is inspired by the social behavior of flocks of birds
and shoals of fish. A number of simple entities, the particles, are placed in the domain of
definition of some function or problem. The fitness (the value of the objective function)
of each particle is evaluated at its current location. The movement of each particle is de-
termined by its own fitness and the fitness of particles in its neighborhood in the swarm.
PSO was first introduced in [8]. The results of one decade of research and improve-
ments to the field of PSO were recently summarized in [3], recommending standards
for comparing different PSO methods. Our definition is based on [3]. We aim at contin-
uous optimization problems in a search space S defined over the finite set of continuous
decision variables X1, X2, . . . , Xn. Given the set Ω of conditions to the decision vari-
ables and the objective function f : S → � (also called fitness function) the goal is
to determine an element s∗ ∈ S that satisfies Ω and for which f(s∗) ≤ f(s), ∀s ∈ S
holds. f(s∗) is called a global optimum.

Given a fitness function f and a search space S the standard PSO initializes a set
of particles, the swarm. In a D-dimensional search space S each particle Pi consists of
three D-dimensional vectors: its position #»x i = (xi1, xi2, . . . , xiD), the best position
the particle visited in the past #»p i = (pi1, pi2, . . . , piD) (particle best) and a velocity
#»v i = (vi1, vi2, . . . , viD). Usually the position is initialized uniformly distributed over
S and the velocity is also uniformly distributed depending on the size of S. The move-
ment of each particle takes place in discrete steps using an update function. In order to
calculate the update of a particle we need a supplementary vector #»g = (g1, g2, . . . , gD)
(global best), the best position of a particle in its neighborhood. The update function,
called inertia weight, consists of two parts. The new velocity of a particle Pi is calcu-
lated for each dimension d = 1, 2, . . . , D:

vnewid = w · vid + c1ε1d (pid − xid) + c2ε2d (gd − xid) (1)

then the position is updated: xnew
id = xid + vnewid . The new velocity depends on the

global best (gd), particle best (pid) and the old velocity (vid) which is weighted by the
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inertia weight w. The parameters c1 and c2 provide the possibility to determine how
strong a particle is attracted by the global and the particle best. The random vectors #»ε 1

and #»ε 2 are uniformly distributed over [0, 1)D and produce the random movements of
the swarm.

2.2 Algorithm Configuration Problem

The general problem of configuring algorithms (algorithm configuration problem) is
defined by Hutter et al. [7] as finding the best tuple θ out of all possible configurations
Θ (θ ∈ Θ). θ represents a tuple with a concrete assignment of values for the parameter
of an algorithm. Applied to metaheurisitcs the configuration of the algorithm parame-
ters for a specific problem influences the behavior of the optimization process. Different
parameter settings exhibit different performances at solving a problem. The problem to
configure metaheuristics is a super ordinate problem and is analyzed for different kinds
of metaheuristics. In PSO the convergence of the optimization depending on different
parameter settings and different functions are analyzed by [14], [12] and [1]. But these
approaches focus only on the convergence of the PSO but not on function characteristics
and the relationship between the parameter configuration and the function landscape.

Different approaches to solve this algorithm configuration problem on metaheurisitcs
are introduced: One approach is to find sets of adequate parameters which performs a
good optimization on most different types of objective functions. This “standard param-
eters” are evaluated on a preset of functions to find a parameter set which leads to global
good behavior of the metaheuristic. In PSO standard parameter sets are presented by [4]
and [12]. Some approaches do not present a preset of parameters but change the values
of the parameters during the runtime to get a better performance [10].

Another approach is introduced by Leyton-Brown et al. They try to create features
which describe the underlying problem [9] and generate a model predicting the right
parameters depending on the classification. They introduce several features which are
grouped into nine groups. The features include, among others, problem size statistics,
e.g. number of clauses and variables, and measures based on different graphical rep-
resentations. This analysis is based on discrete search spaces because on continuous
search spaces it is not possible to set adequate discrete values for the parameter config-
uration which is needed by their approach.

Our problem is to configure an algorithm working on continuous search spaces and
offers infinite possibilities of parameter sets. To solve this challenge we try, similar to
Leyton-Brown et al., to train a classifier with features of the fitness function landscape
computed by observing swarm behavior. These features are computed and combined
with the best found parameter set on the function to a training instance (see figure 1).
With a trained classifier at hands we compute the features of the objective function
prior to the start of the optimization process. The classifier – in our case a decision
tree – classifies the function and selects the specific parameter set that is expected to
perform better in the optimization process than using the standard parameters. In our
first experiments, which we understand as proof of concept, we choose only a few func-
tions which do not represent any specific types of function. We want to show that our
technique is able to identify functions based on the swarm behavior provided features
and thereby, select the specific parameter configuration. In order to learn the classifier
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Fig. 1. Process of building a classifier

which suggests the parameter configuration, different function features are computed.
These features are the basis of our training instances.

3 Computation of Function Features

Our computed features can be divided into three groups. Each group implies a dis-
tinct way of collecting information about the fitness topology of the objective function
from particles. The first group Random Probing describes features which are calculated
based on a random selection of fitness values and provides a general overview of the
fitness topology. Distance-based features are calculated for the second group Incremen-
tal Probing. They reflect the distribution of surrounding fitness values of some pivot
particles. The third group of features utilizes the dynamics of PSO to create features by
using the changes of the global best fitness within a small PSO instance. The features
are scale independent, i.e., that scaling the objective function by constants will not af-
fect the feature values. By this we imply that a configuration for PSO leads to the same
behavior on a function f as it shows for its scaled function f ′ = αf + β, α > 0. These
three groups are based on each other which means that the pivot particle for the second
group is taken from a particle of the first group to reduce the computing time. Important
for all these features are the number of evaluations of the objective function. The feature
computation should be only a small part of the whole optimization computation time.

3.1 Random Probing

Random Probing defines features that are calculated based on a set of k = 100 random
particle positions which are within the initialization range of the objective function (100
particles to get a short but adequate description about the function window). Probing
the objective function results in a distribution of fitness values which is used to extract
three features. Trivial characteristics like mean and standard deviation cannot be used as
features since they are not scale independent. That means, they will change their value
if the function is scaled by constants. In order to create reliable features, the fitness
values of all points are evaluated and three sets of particles (including their evaluation
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Fig. 2. Example of a random probing with the comutation of μRP.Max

values) are created based upon these values. The first set is denoted MX and contains
all fitness values of the randomly selected points. The quartiles for the distribution of
the fitness values are computed and the values between the upper or lower quartile
are joined into the second set. This set is denoted Miqr. The third set MLU consists
of the fitness values which are between a lower and upper boundary L and U . These
boundaries are defined by L = Q1+

1
2 (QM −Q1) and U = QM + 1

2 (Q3−QM ) where
QM denotes the median and Q1, Q3 denote the lower and upper quartile of MX . For
each set MX ⊃Miqr ⊃MLU the number of elements is determined.

The feature Random Probing Min μRP.Min is calculated based on the linear
model that fits the relationship between the number of values and the minimum fitness
values in each set. The straight line of the model is divided by the interquartile range
of MX . Similar to this the feature Random Probing Max is based on the slope
of the straight line that describes the relationship of the number of elements and the
maximum value of each set MX ⊃ Miqr ⊃ MLU (see figure 2). The slope divided
by the interquartile range of MX denoted by μRP.Max is the second feature of this
group. Finally, for the feature Random Probing Range denoted by μRP.Range the
spread, that is the difference between the maximum and the minimum value, in each set
is computed. As for the other features the slope is divided by the interquartile range of
MX . All features of this group are computed based on the fitness values of the randomly
selected points. For each point the objective function is evaluated once, hence, k = 100
evaluations are necessary for Random Probing.

3.2 Incremental Probing

In contrast to the features of the previous group, Incremental Probing is computed by
the fitness values of the particle positions which are located in a defined distance to
a pivotal element which we choose from the feature group above. In order to calcu-
late the relevant fitness values, the position of a randomly selected pivot element is
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Fig. 3. Example of an incremental group in a 2 dimensional space

consecutively shifted into one dimension. The distance is given by an increment ε > 0
which shifts the position of the pivot element in both directions of the dimension. In
each dimension i Incremental Probing considers two points (see figure 3 for a 2 dimen-
sonal example). For a given pivot element x = (x1, . . . xn) and a given increment ε > 0
these positions are determined by

|xi − x′
i| =
{
ε |i = j
0 |i �= j

(2)

where j, i ≤ n. The increment ε is defined relatively to the domain. For instance, in a
restricted n-dimensional domain A = I1 × . . . × In, where the interval Ii = [ai, bi]
defines the valid subspace, the increment is applied as ε · bi−ai

100 . For each dimension the
position of the pivot element is shifted into two directions. This leads to a set of 2n+1
points including the pivot element. The fitness value of each valid point is calculated
and these fitness values are used for the extraction of objective features1. In this group
of features, nine features are created with the use of three increments of ε1 = 1, ε2 = 2
and ε5 = 5. Let n be the dimension of the domain, then 2n+1 evaluations are required
to calculate the fitness values of the relevant points. Since three increments are used
there are (3 × 2n) + 1 evaluations required to calculate the features of Incremental
Probing.

The features Incremental Min, Incremental Max and Incremental
Range are computed similar to the features of Random Probing. For each increment the
minimum, maximum and the spread of the fitness values are computed.Incremental

1 In case that the point is invalid, that is it lies outside the valid domain, the evaluation of the
fitness value is skipped and the fitness value of the pivot element is used instead.
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Fig. 4. Example of an incremental swarming slope where g describes the best fitness of the actual
evaluation step i

Min describes the relationship of the minimum and the corresponding increment. There
are two subtypes for this feature. μIP.Min is divided by the slope of the model’s straight
line by the spread of the first increment whereas the second subtype μIP.MinQ divides
the slope by the interquartile range of the first increment. The features Incremental
Max and Incremental Range are handled accordingly. Three additional features
are created by separately looking at the fitness values of the individual increments. The
fitness values of each increment is sorted in ascending order and normalized into the
interval [0, 1]. This results in a sequence 〈xk〉 = x1, . . . , xk and we calculate a measure
of linearity by

μIP.F it =

k∑
i=1

(
xi − i− 1

k − 1

)2

(3)

where ∀i < j : xi < xj .

3.3 Incremental Swarming

The features of Incremental Swarming use the dynamic behavior of PSO to extract fea-
tures of the objective function. Therefore, we construct a small swarm of two particles
and initiate an optimization run. The particles are initialized with a defined distance
to each other. We use a inertia PSO with parameter θ = (0.6221, 0.5902, 0.5902) and
record the best solution found in the first t = 20 iterations. To get the parameter set θ
we evaluated a few parameter sets empirically to find good values which lead to a fast
convergence of the small swarm. The spread of the global best fitness is the difference
between the first and the last fitness value. The development of the global best fitness
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depends on the initial positions of the particles. Consider a swarm which is initialized at
a local optimum. Once a better fitness value is found, global best fitness will change. But
this may not happen in the few iterations that are observed. Therefore the swarm is ini-
tialized by a pivot element chosen from a set of evaluated points. Incremental Swarming
considers a set of k = 100 evaluated solutions and the position which evaluates to the
worst fitness value is chosen as pivot element. This is important because if we choose
a pivot element randomly, it is possible to find a local optimum and the behavior of the
swarm results in no movement. The other particle is initialized in a defined distance to
the pivot element. Similarly to Incremental Probing we use increments to define the dis-
tance between the particles. The increment values ε1 = 1, ε2 = 2, ε5 = 5 and ε10 = 10
are used to create 20 features. For each increment the feature Swarming Slope de-
scribes the development of the global best fitness as a linear model that fits the relation-
ship between the iteration and the global best fitness value (see figure 4). For the feature
μIS.Slope the slope of the straight line is divided by the spread of the global best fitness.
Swarming Max Slope describes the greatest change of the global best fitness value
between two successive iterations. For normalization the value of μIS.Max is divided
by the spread of the global best fitness. The other three features, which are computed
for each increment, are Swarming Delta Lin μIS.Lin, Swarming Delta Phi
μIS.Phi, and Swarming Delta Sgm μIS.Sgm. They describe to what degree the ob-
served development of the global best fitness value differs from sequences that represent
idealistic developments. Swarming Delta Lin implies a measure of linearity, thus
quantifies how much the observed development differs from a linear decrease of the
global best fitness. Let 〈xt〉 = x0, . . . , xt denote the observed sequence of the global
best fitness value. We compute this feature with equation 4.

μIS.Lin =

k∑
i=0

(
xi − t− i+ 1

t− 1

)2

(4)

Similarly we create two additional ideal sequences and compute the features μIS.Phi

and μIS.Sgm by the equations 5–6:

μIS.Phi =
k∑

i=0

(
xi − φi−1

)2
(5)

μIS.Sgm =

k∑
i=0

(
xi − 1

1 + exp(i−1)φ

)2

(6)

where φ = 2
1+

√
5

. The factor φ was selected in order to mediate between a linear and an
exponential developing. The development of the global best fitness is used to calculate
the features of Incremental Swarming. The pivot element for the initialization of the
swarm is chosen from a set of k solutions and since the swarm of m = 2 particles is
applied for t = 20 iterations, overall there are k +m+mt evaluations of the objective
function. We choose the pivot element from the set MX which was created for the
features of Random Probing. By this we reduce the number of additional evaluation to
m+mt = 42.
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4 Evaluation

In this section we evaluate our features and build a classifier which computes specific
parameter sets for the Particle Swarm Optimization on a specific function. This opti-
mization should have a better performance compared to the PSO on the same function
with standard parameter set.

Table 1. Overview of the function pool and the initialization areas

Function Optimum Domain Initialization

Ackley xi = 0 [−32, 32]n [16, 32]n

Gen. Schwefel xi = 420.9687 [−500, 500]n [−500,−250]n

Griewank xi = 0 [−600, 600]n [300, 600]n

Rastrigin xi = 0 [−5.12, 5.12]n [2.56, 5.12]n

Rosenbrock xi = 1 [−30, 30]n [15, 30]n

Schwefel xi = 0 [−100, 100]n [50, 100]n

Sphere xi = 0 [−100, 100]n [50, 100]n

4.1 Experimental Setup

We choose 7 test functions out of the suggested test function pool from [3] and stop
computing the fitness function after 300000 times. With our swarm size of 30 the num-
ber of epochs is consequently set to 10000. We define a run as a parameter set which
is tested 90 times with a finite set of different seed values in order to get meaningful
results. As topology of the swarm gbest is used. The initialization of the particle is in
a defined square of the search space (see table 1). Before we start to train our classifier
with the features we have to create the classes that represent specific parameter sets
with a high quality of the optimization performance.

4.2 Finding the Best Parameter

In order to find the best parameter set for each function (see table 1), we start an
extensive search with respect to the continuous values. We try to focus on real val-
ues with a precision of four decimal places. The standard parameter set for PSO is
ω = (W,C1, C2) with W = 0.72984 and C1 = C2 = 1.4962. For the extensive exami-
nation of parameters we take into account the intervalsW ∈ [0, 1] andC1, C2 ∈ [0, 2.5].
We create a sequence between this interval values based on the standard value with
a exponential factor of ( 2

1+
√
5
)x where x indicates the sequence number. We calcu-

late 13 and 23 sequence values around the standard value and obtain a sequence of
values between the intervals. Depending on the exponential factor the values close
by the standard values have a lower distance to each other than the values closer to
the borders of the interval. In figure 5 our configuration space of the extensive search
is plotted. With all possible combinations of the single parameter values we examine
13× 23× 23 = 6877 different parameter sets and test each of them for every function
90 times. As described above, we analyze the data of the extensive search by comparing
the results of each configuration’s optimization process on a function. We choose the
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Fig. 5. Parameter sets in the configuration space

Fig. 6. Sorted Set the Mean Value of all Parameterset Results

best parameter sets for every function with respect to the best performance. The best
performance is determined by the best fitness value, the mean fitness value of all 90
optimization processes and the distance to the nine other best performances within this
90 processes. This is essential because a good solution and a high distance to the other
run results let this one run be an outlier. Figure 6 shows an example of a sorted se-
quence of the mean value of all parameter sets we tested on the “Ackley”-function. We
compare the results of the specific parameter sets with the standard parameter set of [3]
using our PSO implementation, and get a significantly better result (or the same if we
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Table 2. Comparison of the standard parameter set against the specific best parameter set;
∗denotes the optimization with 9900 iterations, i.e., 297000 function evaluations

Tests Reference in [3] Best parameter set
Function specificspecific∗standard gbest lbest (W,C1, C2)

Ackley 2.58 2.62 18.34 17.6628 17.5891 (0.7893,0.3647, 2.3541)
Gen. Schwefel 2154 2155 3794 3508 3360 (0.7893,2.4098, 0.3647)
Griewank 0.0135 0.0135 0.0395 0.0308 0.0009 (0.6778, 2.1142, 1.3503)
Rastrigin 6.12 6.12 169.9 140.4876 144.8155 (0.7893,2.4098, 0.3647)
Rosenbrock 0.851 0.86 4.298 8.1579 12.6648 (0.7123,1.8782, 0.5902)
Schwefel 0 0 0 0 0.1259 more than one set
Sphere 0 0 0 0 0 more than one set

found the global optimum) on gbest for all functions with the selected parameter sets.
Table 2 shows our results for the specific parameters for the different functions (300000
evaluations + 30000 evaluations for feature computation; denoted as “specific”), the
same parameter set subtracting one percent evaluations for the feature computation (to
demonstrate if we used this one percent of computation time to extract the features, i.e.,
a total of 300000 evaluations; “specific∗”) and the comparison to the standard parame-
ter set included in our code. Additionally, the comparison to the results of the original
paper of Bratton and Kennedy is included in the table.

The extensive search shows that the best specific parameter sets for the functions
Gen. Schwefel and Rastrigin is comparable. The same effect is also supported by the
features of both objective functions. This denotes that both functions are assigned the
same class in our classifier. All the specific parameter sets are the base of our classes
for each function. With the identified classes and the computed set of features for each
function we can train the classifier.

4.3 Learning and Classification

As classifier we use a C4.5 decision tree. In our implementation we use WEKA’s J4.8
implementation [15]. As learning input we compute 300 independent instances for each
function. Each instance consists of 32 function features. The decision tree is created
based upon the training data and evaluated by stratified 10-fold cross-validation (re-
peated 100 times). Based on the results of the extensive search we merge the classes
for the objectives Gen. Schwefel and Rastrigin into one class. These functions share
the same specific parameter set, i.e., the same parameter configuration performs best
for both functions. Upon these six distinct classes we evaluate the model with cross
validation. The mean accuracy of the 100 repetitions is 84.32% with a standard devi-
ation of 0.29. Table 3 shows the confusion matrix of a sample classification. As it can
be seen, there are 1769 of 2100 instances classified correctly (this means 15.76 percent
of the instances are misclassified). The instances of the functions Ackley and Schwefel
are classified correctly with an accuracy of 99.7 percent, that is only one instance of
these classes is misclassified. The class for Gen. Schwefel and Rastrigin has an accu-
racy of 97.2 percent. The class Rosenbrock has a slightly lower accuracy, but still only
5.7 percent of its members are misclassified. The high number of incorrect instances
is essentially due to the inability of the model to separate the functions Sphere and
Griewank. The majority of the misclassified instances, 306 of 331, are instances of the
Griewank or Sphere class that are classified as the other class.
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Table 3. Confusion matrix of the cross validation

classified as Accuracy Precision
class Ack. Grie. G.S./R. Rosen. Schwe. Sphe. percent percent

Ackley 299 1 99.7 99.7
Griewank 116 1 183 38.7 48.1
Gen.Schwe./Rast. 1 1 583 13 2 97.2 97.2
Rosenbrock 15 283 1 1 94.3 95.3
Schwefel 1 299 99.7 99.0
Sphere 123 1 176 58.7 48.9

4.4 Computing Effort

Computing the features is based on the evaluated fitness value of specific positions
in the search space. We restrict this calculation to 3000 which means one percent of
the whole optimization process in our setting. To be comparable to the benchmark of
Bratton and Kennedy we run the optimization for the specific parameter configuration
for 9900 iterations leading to only 297000 fitness computations. We compare our results
of the optimization with 10000 iterations to the optimization with 9900 iterations and
get quite the same results as shown in table 2 (specific vs. specific∗). The comparison
shows minor differences in the magnitude of one percent.

5 Discussion and Future Work

In this paper we describe an approach to training a classifier which uses function fea-
tures in order to select a better parameter configuration for Particle Swarm Optimiza-
tion. We show how we compute the features for specific functions and describe how
we get the classes of parameter sets. We include the trained classifier and evaluate the
parameter configuration against a Particle Swarm Optimization with standard configu-
ration. Our experiments demonstrate that we are able to classify different functions on
basis of a few fitness evaluations and get a parameter set which leads the PSO to a sig-
nificantly better optimization performance in comparison to a standard parameter set.
Statistical tests (t-Tests with α = 0.05) indicate better results for the functions where
the global optimum has not been found in both settings.

The next steps are to involve all possible configurations of the PSO for example the
swarm size or the neighborhood topology. These parameters are not involved in our
approach because we based this work on the benchmark approach of [3]. The behavior
of the swarm changes significantly if another neighborhood is chosen. To increase the
size of the swarm is another task we will focus in future. Depending on the swarm size
different parameter sets leads to the best optimization process. An idea is to create an
abstract class of parameter sets which include different sets of predefined swarm sizes.

In order to get more information about the performance of our approach it would be
interesting to allocate a fixed percentage of the whole evaluations for feature computa-
tion (e.g., 1%). In this case it would be interesting to examine the quality of the result
if not all feature or features of minor quality were computed.
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Another extension is to define typical mathematical function types to integrate not
only one function as class but a few functions combined under a similar type of func-
tions to get a general set of parameters. This might lead to a better generalization for
the learned classifier. The problem of this task is to find a general problem class which
defines typical kinds of mathematical functions.
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Abstract. Optimal collision avoidance in stochastic environments requires ac-
counting for the likelihood and costs of future sequences of outcomes in response
to different sequences of actions. Prior work has investigated formulating the
problem as a Markov decision process, discretizing the state space, and solving
for the optimal strategy using dynamic programming. Experiments have shown
that such an approach can be very effective, but scaling to higher-dimensional
problems can be challenging due to the exponential growth of the discrete state
space. This paper presents an approach that can greatly reduce the complexity
of computing the optimal strategy in problems where only some of the dimen-
sions of the problem are controllable. The approach is applied to aircraft collision
avoidance where the system must recommend maneuvers to an imperfect pilot.

Keywords: Markov decision processes, Dynamic programming, Collision
avoidance.

1 Introduction

Manually constructing a robust collision avoidance system, whether it be for an au-
tonomous or human-controlled vehicle, is challenging because the future effects of the
system cannot be known exactly. Due to their safety-critical nature, collision avoidance
systems must maintain a high degree of reliability while minimizing unnecessary path
deviation. Recent work has investigated formulating the problem of collision avoid-
ance as a Markov decision process (MDP) and solving for the optimal strategy using
dynamic programming (DP) [14,15,25]. One limitation of this approach is that the com-
putation and memory requirements grow exponentially with the dimensionality of the
state space. Hence, these studies focused on MDP formulations that capture only a sub-
set of the relevant state variables at the expense of impaired performance.

This paper presents a new approach for significantly reducing the computation and
memory requirements for partially controlled Markov decision processes. The approach
involves decomposing the problem into two separate subproblems, one controlled and
one uncontrolled, that can be solved independently offline using dynamic programming.
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During execution, the results from offline computation are combined to determine the
approximately optimal action.

The approach is demonstrated on an airborne collision avoidance system that rec-
ommends vertical maneuvers to a pilot. Although the pilot may maneuver horizontally,
it is assumed that the system does not influence the horizontal motion. The problem
is naturally represented using seven state variables, which is impractical to solve with
a reasonable level of discretization. By carefully decomposing the problem into two
lower-dimensional problems, a solution can be obtained quickly and stored in primary
memory. The optimized system is compared with the Traffic Alert and Collision Avoid-
ance System (TCAS), currently mandated worldwide on all large transport aircraft [22].

The next section summarizes related work on collision avoidance. Section 3 reviews
Markov decision processes. Section 4 describes the solution method and outlines the
required assumptions. Section 5 applies the method to airborne collision avoidance.
Section 6 evaluates the method in simulation with TCAS as a baseline. Section 7 con-
cludes and outlines further work.

2 Related Work

A common technique for collision avoidance in autonomous and semi-autonomous ve-
hicles is to define conflict zones for each obstacle and then use a deterministic model,
such as linear extrapolation, to predict whether a conflict will occur [4,10,6]. If conflict
is anticipated, the system selects the maneuver that provides minimal path deviation
while preventing conflict. Such an approach requires little computation and can prevent
collision much of the time, but it lacks robustness because the deterministic model ig-
nores the stochastic nature of the environment. Although one may mitigate collision risk
to some extent by artificially enlarging the conflict zones to accommodate uncertainty
in the future behavior of the vehicles, this approach frequently results in unnecessary
path deviation. The TCAS collision avoidance logic adopts an approach along these
lines but incorporates many hand-crafted, heuristic rules to enhance robustness.

Several other approaches to collision avoidance can be found in the literature that
do not use a probabilistic model of vehicle behavior, including potential field methods
[13,11,12] and rapidly expanding random trees [19,18,23]. However, avoiding collision
with a high degree of reliability while keeping the rate of path deviation low requires the
use of a probabilistic model that accounts for future state uncertainty. Several methods
have been suggested that involve using a probabilistic model to estimate the probability
of conflict and to choose the maneuver that keeps the probability of conflict below some
set threshold [26,5,15]. One limitation of these threshold-based approaches is that they
do not model the effects of delaying the avoidance maneuver. In many cases, it can
be beneficial to observe how the encounter develops before committing to a particular
maneuver. The dynamic programming approach pursued in this work, in contrast, takes
into account every possible future sequence of actions taken by the collision avoidance
system and their outcomes when making a decision.
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3 Markov Decision Processes

An MDP is defined by a transition function T and cost function C. The probability of
transitioning from state s to state s′ after executing action a is given by T (s, a, s′). The
immediate cost when executing a from s is given by C(s, a). In this paper, the state
space S and action space A are finite [21,3].

A policy is a function π that maps states to actions. The expected sum of immediate
costs when following π for K steps starting from state s is denoted Jπ

K(s), often called
the cost-to-go function. The solution to an MDP with a horizon of K is a policy π∗

K

that minimizes the cost to go from every state.
One way to compute π∗

K is to first compute J∗
K , the cost-to-go function for the op-

timal policy, using a dynamic programming algorithm known as value iteration. The
function J∗

0 (s) is set to zero for all states s. If the state space includes terminal states
with immediate cost C(s), then J∗

0 (s) = C(s) for those terminal states. The function
J∗
k (s) is computed from J∗

k−1 as follows:

J∗
k (s) = min

a

[
C(s, a) +

∑
s′

T (s, a, s′)J∗
k−1(s

′)

]
. (1)

The iteration continues until horizon K .
The expected cost to go when executing a from s and then continuing with an optimal

policy for K − 1 steps is given by

J∗
K(s, a) = C(s, a) +

∑
s′

T (s, a, s′)J∗
K−1(s

′). (2)

An optimal policy may be obtained directly from J∗
K(s, a):

π∗
K(s) = argmin

a
J∗
K(s, a). (3)

If the state space contains continuous variables, which is common for collision avoid-
ance problems, the state space can be discretized using a multi-dimensional grid or
simplex scheme [9]. The transition function T (x, a,x′) in continuous space can be
translated into a discrete transition function T (s, a, s′) using a variety of sampling and
interpolation methods [15]. Once the state space, transition function, and cost function
have been discretized, J∗(s, a) may be computed for each discrete state s and action
a. For a continuous state x and action a, J∗(x, a) may be approximated using, for ex-
ample, multilinear interpolation. The best action to execute from continuous state x is
simply argmina J

∗(x, a).
Discretizing the full state space can result in a large number of discrete states, expo-

nential in the number of dimensions, which makes computing J∗ infeasible for many
problems. This “curse of dimensionality” [1] has led to a variety of different approxi-
mation methods [20].

4 Partial Control

This paper explores a new solution technique for partially controlled MDPs that is appli-
cable to certain collision avoidance problems. It may be applied to interception-seeking
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or goal-oriented problems as well by incorporating negative costs. So long as the prob-
lem satisfies a set of assumptions, this solution method will provide a finite-horizon
solution. The approach involves independently solving a controlled subproblem and an
uncontrolled subproblem and combining the results online to identify the approximately
optimal action.

4.1 Assumptions

It is assumed that the state is represented by a set of variables, some controlled and some
uncontrolled. The state space of the controlled variables is denoted Sc, and the state
space of the uncontrolled variables is denoted Su. The state of the controlled variables
at time t is denoted sc(t), and the state of the uncontrolled variables at time t is denoted
su(t). The solution technique may be applied when the following three assumptions
hold:

1. The state su(t+1) depends only upon su(t). The probability of transitioning from
su to s′u is given by T (su, s

′
u).

2. The episode terminates when su ∈ G ⊂ Su with immediate cost C(sc).
3. In nonterminal states, the immediate cost c(t + 1) depends only upon sc(t) and

a(t). If the controlled state is sc and action a is executed, the immediate cost is
denoted C(sc, a).

4.2 Controlled Subproblem

Solving the controlled subproblem involves computing the optimal policy for the con-
trolled variables under the assumption that the time until su enters G, denoted τ , is
known. In an airborne collision avoidance context, τ may be the number of steps until
another aircraft comes within 500 ft horizontally. Of course, τ cannot be determined
exactly from su(t) because it depends upon an event that occurs in the future, but this
will be addressed by the uncontrolled subproblem (Section 4.3).

The cost to go from sc given τ is denoted Jτ (sc). The series J0, . . . , JK is computed
recursively, starting with J0(sc) = C(sc) and iterating as follows:

Jk(sc) = min
a

⎡⎣C(sc, a) +
∑
s′c

T (sc, a, s
′
c)Jk−1(s

′
c)

⎤⎦ . (4)

The expected cost to go from sc when executing a for one step and then following the
optimal policy is given by

Jk(sc, a) = C(sc, a) +
∑
s′c

T (sc, a, s
′
c)Jk−1(s

′
c). (5)

The K-step expected cost to go when τ > K is denoted JK̄ . It is computed by ini-
tializing J0(sc) = 0 for all states and iterating equation 4 to horizon K . The series
J0, . . . , JK , JK̄ is saved in a table in memory, requiring O(K|A||Sc|) entries.
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4.3 Uncontrolled Subproblem

Solving the uncontrolled subproblem involves using the probabilistic model of the un-
controlled dynamics to infer a distribution over τ for each uncontrolled state su. This
distribution is referred to as the entry time distribution because it represents the distri-
bution over the time for su to enter G. The probability that su enters G in τ steps is
denoted Dτ (su) and may be computed using dynamic programming. The probability
that τ = 0 is given by

D0(su) =

{
1 if su ∈ G,
0 otherwise.

(6)

The probability that τ = k, for k > 0, is computed from Dk−1 as follows:

Dk(su) =

{
0 if su ∈ G,∑

s′u
T (su, s

′
u)Dk−1(s

′
u) otherwise. (7)

Depending on su, there may be some probability that su does not enter G within K
steps. This probability is denoted DK̄(su) and may be computed from D0, . . . , DK :

DK̄(su) = 1−
K∑

k=0

Dk(su). (8)

The sequence D0, . . . , DK , DK̄ is stored in a table with O(K|Su|) entries. Multilin-
ear interpolation of the distributions may be used to determine Dτ (xu) at an arbitrary
continuous state xu.

4.4 Online Solution

After J0, . . . , JK , JK̄ and D0, . . . , DK , DK̄ have been computed offline, they are used
together online to determine the approximately optimal action to execute from the cur-
rent state. For any discrete state s in the original state space, J∗

K(s, a) may be computed
as follows:

J∗
K(s, a) = DK̄(su)JK̄(sc, a) +

K∑
k=0

Dk(su)Jk(sc, a), (9)

where su is the discrete uncontrolled state and sc is the discrete controlled state asso-
ciated with s. Combining the controlled and uncontrolled solutions online in this way
requires time linear in the size of the horizon. Multilinear interpolation can be used
to estimate J∗

K(x, a) for an arbitrary state x, and from this the optimal action may be
obtained.

The memory required to store J∗
K(s, a) is O(|A||Sc||Su|). However, the method in

this section allows the solution to be represented using O(K|A||Sc|+K|Su|) storage,
which can be a tremendous savings when |Sc| and |Su| are large. For the collision
avoidance problem discussed in the next section, this method allows the cost table to
be stored in 500 MB instead of over 1 TB. The offline computational savings are even
more significant.
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An alternative to using dynamic programming for computing the entry time distribu-
tion offline is to use Monte Carlo to estimate the entry time distribution online. A Monte
Carlo approach does not require the uncontrolled variables to be discretized and does
not require D0, . . . , DK , DK̄ to be stored in memory. However, using Monte Carlo in-
creases the amount of online computation. For problems where the conflict region is
small, the number of samples required to produce an adequate estimate of the distri-
bution may be large, though importance sampling can help improve this estimate with
fewer samples [8].

5 Airborne Collision Avoidance System

This section demonstrates the approach from the previous section on an MDP represent-
ing an airborne collision avoidance problem. In this problem, the collision avoidance
system issues resolution advisories to pilots who then adjust their vertical rate to avoid
coming within 500 ft horizontally and 100 ft vertically of an intruding aircraft. This
section considers a simplified version of the collision avoidance problem in which one
aircraft equipped with a collision avoidance system, called the own aircraft, encoun-
ters only one other unequipped aircraft, called the intruder aircraft. The remainder of
the section outlines the assumptions and decomposes the problem into controlled and
uncontrolled subproblems.

5.1 Assumptions

In this problem, sc represents the state of the vertical motion variables, and su represents
the state of the horizontal motion variables. This problem defines coming within 500 ft
horizontally and 100 ft vertically of an intruder as a conflict.

The first assumption in Section 4.1 requires that su(t+1) depend only upon su(t). In
this collision avoidance problem, it is assumed that pilots randomly maneuver horizon-
tally, and that the advisories issued by the collision avoidance system do not influence
the horizontal motion.

The second assumption requires the episode to terminate when su enters G. In this
problem,G is the set of states where there is a horizontal conflict, defined to be when an
intruder comes within 500 ft horizontally. The immediate cost when this occurs is given
by C(sc), which is one when the intruder is within 100 ft vertically and zero otherwise.
In simulation, the episode does not terminate when su enters G, since entering G does
not necessarily imply that there has been a conflict (e.g., the two aircraft may have
safely missed each other by 1000 ft vertically). However, it is generally sufficient to
plan up to the moment where su enters G because adequate separation at that moment
usually indicates that the encounter is resolved.

The third assumption requires that for states where su �∈ G the immediate cost func-
tion depends on the controlled state variables and the action. As outlined in Section 5.2,
the nonterminal cost function only depends on the advisory state and the advisory being
issued.
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5.2 Controlled Subproblem

The controlled subproblem, formulated as an MDP, is defined by the available actions,
the dynamics, and the cost function. The dynamics are determined by the pilot response
model and aircraft dynamic model. The cost function takes into account both safety and
operational considerations. In addition to describing these components of the MDP, this
section discusses the resulting optimal policy.

Resolution Advisories. The airborne collision avoidance system may choose to issue
one of two different initial advisories: climb at least 1500 ft/min or descend at least
1500 ft/min. Following the initial advisory, the system may choose to either terminate,
reverse, or strengthen the advisory. An advisory that has been reversed requires a ver-
tical rate of 1500 ft/min in the opposite direction of the original advisory. An advisory
that has been strengthened requires a vertical rate of 2500 ft/min in the direction of the
original advisory. After an advisory has been strengthened, it can then be weakened to
reduce the required vertical rate to 1500 ft/min in the direction of the original advisory.

Dynamic Model. The state is represented using four variables:

– h: altitude of the intruder relative to the own aircraft,
– ḣ0: vertical rate of the own aircraft,
– ḣ1: vertical rate of the intruder aircraft, and
– sRA: the state of the resolution advisory.

The discrete variable sRA contains the necessary information to model the pilot re-
sponse, which includes the active advisory and the time to execution by the pilot.
Five seconds are required for the pilot to begin responding to an initial advisory. The
pilot then applies a 1/4 g acceleration to comply with the advisory. Subsequent ad-
visories are followed with a 1/3 g acceleration after a three second delay. When an
advisory is not active, the pilot applies an acceleration selected at every step from a
zero-mean Gaussian with 3 ft/s2 standard deviation. At each step, the intruder pilot
independently applies a random acceleration from a zero-mean Gaussian with 3 ft/s2

standard deviation.
The continuous state variables are discretized according to the scheme in Table 1.

The discrete state transition probabilities were computed using sigma-point sampling
and multilinear interpolation [15]. This discretization scheme produces a discrete model
with 213 thousand discrete states.

Table 1. Controlled Variable Discretization

Variable Grid Edges

h −1000,−900, . . . , 1000 ft
ḣ0 −2500,−2250, . . . , 2500 ft/min
ḣ1 −2500,−2250, . . . , 2500 ft/min
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Cost Function. An effective collision avoidance system must satisfy competing objec-
tives, including maximizing safety and minimizing the rate of unnecessary alerts. These
objectives are encoded in the cost function. In addition to incurring a cost for conflict,
it is desirable to incur a cost for other events such as alerting or changing an advisory,
as shown in Table 2. A small negative cost is awarded at every step the system is not
alerting to provide an incentive to discontinue alerting after resolution of the encounter.

Table 2. Event Costs

Conflict Alert Strengthening Reversal Clear of Conflict

1 0.001 0.009 0.01 −1 · 10−4

Optimal Policy. The optimal cost-to-go tables J0, . . . , JK , JK̄ were computed offline
in less than two minutes on a single 3 GHz Intel Xeon core using a horizon of K = 39
steps. Storing only the values for the valid state-action pairs requires 263 MB using a
64-bit floating point representation. Figure 1 shows a plot of the optimal policy through
a slice of the state space where the own aircraft is initially climbing at 1500 ft/min, the
intruder is level, and no alert has been issued. The blue region indicates where the logic
will issue a descend advisory, and the green region indicates where the logic will issue a
climb advisory. The optimal policy will sometimes issue a climb even when the intruder
is above. This occurs when the aircraft are closely separated in altitude and little time
remains until potential conflict. Because the own aircraft is already climbing, there is
insufficient time to accelerate downward to avoid conflict. Climbing above the intruder
is more effective. Another notable feature of the plot is that no advisory is issued when
τ ≤ 5 s. Because an advisory has no effect until five seconds after it is issued, alerting
less than five seconds prior to conflict is ineffective.
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−500
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Fig. 1. Optimal action plot for ḣ0 = 1500 ft/min, ḣ1 = 0 ft/min, sRA = “no advisory”
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5.3 Uncontrolled Subproblem

The uncontrolled subproblem involves estimating the distribution over τ (i.e., the time
until the aircraft are separated less than 500 ft horizontally) given the current state. This
section describes the horizontal dynamics and three methods for estimating the entry
time distribution.

Dynamic Model. The aircraft move in the horizontal plane in response to independent
random accelerations generated from a zero-mean Gaussian with a standard deviation of
3 ft/s2. The motion can be described by a three-dimensional model, instead of the typical
four-dimensional (relative positions and velocities) model, due to rotational symmetry
in the dynamics. The three state variables are as follows:

– r: horizontal range to the intruder,
– rv: relative horizontal speed, and
– θv: difference in the direction of the relative horizontal velocity and the bearing of

the intruder.

These variables are illustrated in Figure 2.

rv

Relative
velocity vector

r

Own

Intruder

θv

Fig. 2. Three-variable model of horizontal dynamics

Dynamic Programming Entry Time Distribution. The entry time distribution can
be estimated offline using dynamic programming as discussed in Section 4.3. The state
space was discretized using the scheme in Table 3, resulting in 730 thousand discrete
states. The offline computation required 92 seconds on a single 3 GHz Intel Xeon core.
Storing D0, . . . , D39 in memory using a 64-bit floating point representation requires
222 MB.

Table 3. Uncontrolled Variable Discretization

Variable Grid Edges

r 0, 50, . . . , 1000, 1500, . . . , 40000 ft
rv 0, 10, . . . , 1000 ft/s
θv −180◦,−175◦, . . . , 180◦
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Monte Carlo Entry Time Distribution. Monte Carlo estimation can be used online
to estimate the entry time distribution as explained at the end of Section 4.3. The exper-
iments in this paper use 100 Monte Carlo samples to estimate τ .

Simple Entry Time Distribution. A point estimate of τ can be obtained online as
follows. The range rate is given by

ṙ = rv cos(θv). (10)

If the aircraft are converging in range, then τ can be approximated by r/|ṙ|. Otherwise,
τ is set beyond the horizon.

6 Results

This section evaluates the performance of the collision avoidance system using simu-
lated encounters and compares it against the current version of TCAS, Version 7.1.

6.1 Encounter Initialization

Encounters are initialized in the horizontal plane by randomly and independently gen-
erating the initial ground speeds of both aircraft, s0 and s1, from a uniform distribution
between 100 and 500 ft/s. The horizontal range between the aircraft is initialized to
r = ttarget(s0 + s1) + ur, where ur is a zero-mean Gaussian with 500 ft standard de-
viation. The parameter ttarget, nominally set to 40 s, controls how long until the aircraft
come into conflict.

The bearing of the intruder aircraft with respect to the own aircraft, χ, is sampled
from a zero-mean Gaussian distribution with a standard deviation of 2◦. The heading
of the intruder with respect to the heading of the own aircraft, β, is sampled from a
Gaussian distribution with a mean of 180◦ and a standard deviation of 2◦. When β =
180◦, the intruder is heading directly toward the own aircraft.

The initial vertical rates ḣ0 and ḣ1 are drawn independently from a uniform distribu-
tion spanning −1000 and 1000 ft/min. The initial altitude of the own aircraft, h0, is set
to 43,000 ft. The initial altitude of the intruder is h0 + ttarget(ḣ0 − ḣ1) + uh, where uh

is a zero-mean Gaussian with 25 ft standard deviation.

6.2 Example Encounter

Figure 3 shows an example encounter comparing the behavior of the system using the
DP entry time distribution against the TCAS logic. Figure 4 shows the entry time dis-
tribution computed using the three methods of Section 5.3 at the first alerting point
(t = 17 s) of the DP logic in the example encounter.

Seventeen seconds into the encounter, the DP logic issues a descend to pass below
the intruder. The expected cost to go for issuing a descend advisory is approximately
0.00928, lower than the expected cost to go for issuing a climb advisory (0.0113) or
for not issuing an advisory (0.00972). The DP entry time distribution at this time has
a conditional mean E[τ | τ < 40 s] of approximately 12.01 s, and a considerable por-
tion of the probability mass (∼40%) is assigned to τ ≥ 40 s. The Monte Carlo entry
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time distribution, in comparison, has less support but a comparable conditional mean
of 17.12 s. Only 15% of the probability mass is concentrated on τ ≥ 40 s. The point
estimate of τ using the simple method is 21.65 s.

After the descend advisory is issued, the intruder begins to increase its descent, caus-
ing the DP logic to reverse the descend to a climb 20 seconds into the encounter. The
pilot begins the climb maneuver three seconds later. Once the aircraft are safely sep-
arated, the DP logic discontinues the advisory at t = 31 s. The minimum horizontal
separation is 342 ft, at which time the vertical separation is 595 ft. No conflict occurs.

TCAS initially issues a climb advisory four seconds into the encounter because it an-
ticipates, using straight-line projection, that by climbing it can safely pass above the in-
truder. Nine seconds later, when the own aircraft is executing its climb advisory, TCAS
reverses the climb to a descend because it projects that maintaining the climb will not
provide the required separation. TCAS strengthens the advisory three seconds later, but
fails to resolve the conflict. The aircraft miss each other by 342 ft horizontally and 44 ft
vertically. Although the TCAS logic alerts earlier and more often, the DP logic still
outperforms it in this example encounter.
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Fig. 3. Example encounter comparing the system with the DP entry time distribution against
TCAS

6.3 Performance Evaluation

Table 4 summarizes the results of simulating the DP logic and the TCAS logic on one
million encounters generated by the model of Section 5. The table summarizes the
number of conflicts, alerts, strengthenings, and reversals.

As the table shows, the DP logic can provide a much lower conflict rate while sig-
nificantly reducing the alert rate. The Monte Carlo entry time distribution results in a
greater number of conflicts, but it alerts less frequently than the other methods. Increas-
ing the number of samples used generally improves performance but increases online
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Fig. 4. Entry time distribution computed using dynamic programming (DP), Monte Carlo (MC),
and the simple (Simple) methods at t = 17 s

computation time. The DP logic using the simple point estimate of τ resolves all but one
conflict while rarely reversing or strengthening the advisory, but alerts more frequently
than Monte Carlo.

Table 4. Performance Evaluation

DP Logic (DP Entry) DP Logic (MC Entry)

Conflicts 2 11
Alerts 540,113 400,457
Strengthenings 39,549 37,975
Reversals 1242 747

DP Logic (Simple Entry) TCAS Logic

Conflicts 1 101
Alerts 939,745 994,640
Strengthenings 26,485 45,969
Reversals 129 193,582

6.4 Safety Curve

The results of Section 6.3 considered the performance of the system optimized using
the fixed event costs of Table 2. Figure 5 shows the safety curves for the DP logic and
TCAS when different parameters are varied.

The DP logic safety curves were produced by varying the cost of alerting from zero
to one while keeping the other event costs fixed. Separate curves were produced for the
three methods for estimating the entry time distribution. The upper-right region of the
plot corresponds to costs of alerting near zero and the lower-left region corresponds to
costs near one.
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The safety curve for TCAS was generated by varying the sensitivity level of TCAS.
The sensitivity level of TCAS is a system parameter of the logic that increases with
altitude. At higher sensitivity levels, TCAS will generally alert earlier and more aggres-
sively to prevent conflict.

The safety curves show that the DP logic can exceed or meet the level of safety pro-
vided by TCAS while alerting far less frequently. The safety curves can aid in choosing
an appropriate value for the cost of alerting that satisfies a required safety threshold.

Figure 5 also reveals that the DP and Monte Carlo methods for estimating τ offer
similar performance and that they both outperform the simple method, especially when
the cost of alerting is high and the logic can only alert sparingly to prevent conflict. In
the upper-right region of the plot, the three methods are nearly indistinguishable.
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Fig. 5. Safety curves. Each point on the curves was estimated from 10,000 simulations.

7 Conclusions and Further Work

This paper presented a method for solving large MDPs that satisfy certain assumptions
by decomposing the problem into controlled and uncontrolled subproblems that can
be solved independently offline and recombined online. The method was applied to
airborne collision avoidance and was compared against TCAS, a system that was under
development for several decades and has a proven safety record.

The experiments demonstrate that the collision avoidance logic that results from
solving the MDP using the method presented in this paper reduces the risk of collision
by a factor of 50 while issuing fewer alerts than TCAS in the simulated encounters. The
system reverses less than 1% of the time that TCAS reverses, and the system strength-
ens less frequently as well. It should be emphasized that further simulation studies using
more realistic encounter models are required to quantify the expected performance of
the DP logic [16].
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Real collision avoidance systems have imperfect sensors, which results in state
uncertainty. TCAS currently relies on radar beacon surveillance, which results in some-
what significant uncertainty in the intruder bearing. When state uncertainty is signifi-
cant, the uncertainty must be taken into account when choosing actions. With a sensor
model, the problem may be transformed into a partially observable Markov decision
process (POMDP) and solved approximately using various methods [7,24,17].

Another area of further research involves introducing coordination between aircraft.
If both aircraft have a collision avoidance system on board, then safety can be enhanced
by coordinating their maneuvers. If either the sensor measurements are perfect or the
communication between aircraft is perfect and unlimited, then the problem can be mod-
eled as a larger MDP. Otherwise, the problem turns into a Decentralized POMDP (Dec-
POMDP), which are, in general, impractical to solve exactly [2]. Further research will
investigate the performance of MDP-derived policies and strategies for leveraging the
structure of the problem to reduce the complexity of finding an acceptable solution.
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Abstract. Epistasis or the interaction between loci on a genome that controls
a quantitative trait is of great interest to geneticists. This work presents a pow-
erful Bayesian method utilizing Markov chain Monte Carlo model composition
approach using restricted spaces is developed for identifying epistatic effects in
Recombinant Inbred Lines (RIL) in plant studies. This method produces both pos-
terior activation probabilities and posterior conditional activation probabilities.
The method is verified through a simulation study and applied to an Arabidopsis
thaliana data set with cotyledon as the quantitative trait.

Keywords. Quantitative trait loci, Epistasis, Bayesian statistics, Markov chain
Monte Carlo model composition.

1 Introduction

Quantitative Trait Loci (QTL) analysis determines which region(s) on a genome ex-
plains or controls a quantitative trait. However, in many instances an iteraction between
regions or loci may provide a better explanation for a trait than regions having a strictly
additive influence. This interaction between loci on a genome is known as epistasis. To
study QTL in plant species, organisms generated by recombinant inbreeding are often
used. Recombinant Inbred Lines (RIL) are plants that have been repeatedly mated with
siblings and themselves in order to create an inbred line whose genetic structure is a
combination of the original parent lines. These RILs provide a mechanism to reduce
environmental and individual effects. Furthermore, by utilizing RILs, the alleles at each
loci are homozygous and help simplify the search for QTL. For a complete review of
RILs see Broman [1].

Several methods have been developed to detect and evaluate epistatic effects for con-
tinuous traits. Multiple Interval Mapping (MIM) proposed by [10] is based on fitting a
multiple regression model that has both main effect terms as well as interactions and
employs a non-Bayesian search method. Carlborg et al. [5] use a genetic algorithm to
search for the loci and epistatic effects. Hensen et al. [9] propose a theoretical frame-
work for higher order interactions. Kao et al. [11] use the framework of [6] to partition
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the variance for known main and epistatic effects in order to understand the contribution
of each with no search method. Zeng et al. [18] and [12] use [6] partition the variance
when epistatic effects with multiple alleles are present however no search method is
presented in this work. Hanlon and Lorenz [8] use a optimization approach to find com-
binations of epistatic effects that best represent the trait of interest based on squared
error distance.

To avoid the issue of model selection, Broman and Speed [2] use Markov Chain
Monte Carlo Model Composition (MC3) to search for the main effects (additive mod-
els) that contribute to the trait. This procedure is a variant of reversible jump Markov
chain Monte Carlo by [7]. Boone et al. [4] extend this to restricted model spaces to al-
low for situations where a genome contains more loci than plant lines. Yi et al. in [14],
[15], [16], [17] use the MC3 framework with various restrictions on the model space to
search for main and epistatic effects. However, [14], [15], [16], [17] and the R/qtlbim
software of [13] do not require that the main effect terms corresponding to the epistatic
effects be present in the model. Furthermore, [2], [14], [15], [16], [17] and [13] employ
information criteria such as AIC or BIC as the basis for the MC3 search. Boone et al.
[3] show that while BIC is an asymptotically correct approximation for posterior model
probabilities, in the low to moderate sample size cases, BIC performs poorly.

This work uses activation probabilities, defined in Section 2.2 for each of the main
and epistatic effects to determine the marginal posterior probability of each effect re-
gardless of which model is chosen. Figure 1 shows an example heatmap of the activation
probabilities that may occur when epistasis is present. Activation probabilities along the
diagonal correspond to the main effects of the loci. The off diagonal activation prob-
abilities correspond to epistatic effects. Notice that by looking along the diagonal the
main effects appear to be at locus 12, locus 26 and locus 35 as the (12, 12), (26, 26)
and (35, 35) regions have high probability. Furthermore one can look at the off diag-
onal regions and see that loci 12 and 26 appear to have an epistatic effect denoted by
high probability in the (12, 26) region. However, loci 12 and 35 and loci 26 and 35 do
not appear to have an epistatic effect due to low probability in the regions common to
(12, 35) and (26, 35) on the heatmap.

Section 2 defines the model, basic search strategy, activation probabilities and con-
ditional activation probabilities. Section 2.3 explains the neighborhood definition and
search strategy under restricted model spaces. Section 3 gives a simulation study show-
ing the efficacy of the method for detecting both main effects and two-way interaction
effects. Section 4 considers the Arabidopsis Thaliana as an example. The dataset for
this model organism has 158 lines of RIL and 38 markers (loci) and cotelydon opening
angle is the quantitative trait of interest.

2 Bayesian Model Search

2.1 Model Definition

Let yi be the quantitative trait value for the ith observation. For each of the p loci
l1, l2, ..., lp the parentage of the allele is recorded as A if the allele came from parent
A and B if the allele came from parent B. However, in some instances the allele is not
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Fig. 1. Simulated heatmap of activation probabilities for main effect and epistatic effects. Activa-
tion probabilities along the diagonal correspond to main effects and off diagonal correspond to
epistatic effects.

determined which needed to be reflected in the analysis. For the ith observation and
locus lj this information can be coded into Xij as:

Xij =

⎧⎨⎩
1, allele lj is from parent A
−1, allele lj is from parent B
0, allele lj is undetermined

(1)

Here the Xij correspond to the main effects. For the epistatic effects (two-way interac-
tion) this produces the interaction between loci lj and lk as:

XijXik =

⎧⎨⎩
1, alleles lj and lk from same parent
−1, alleles lj and lk from different parents
0, allele lj or lk is undetermined

(2)

Using a traditional first order model with a two-way multiplicative interaction terms the
model is defined as:

yi = μ+

p∑
j=1

βjXijIPc(lj) +
∑
k<j

βjkXijXikIPc(lj)IPc(lk) + εi. (3)

where εi ∼ N(0, σ2
c ), Pc is the set of loci lj in model Mc, and IPc is an indicator

function that takes the value 1 if lj ∈ Pc and 0 otherwise. Here βj corresponds to the
main effect of locus lj and βjk is the epistatic effect between loci lj and lk.
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2.2 Bayesian Model Averaging

In a model spaceM with |M| models, the posterior probability of model Mc given the
data D can be computed via Bayes’ Theorem:

P (Mc|D) =
P (Mr)P (D|Mc)∑|M|
t=1 P (Mt)P (D|Mt)

. (4)

The marginal probability of the data D given model Mc, P (D|Mc) is involved in com-
puting (4) and can be calculated using:

P (D|Mc) =

∫
P (θc|Mc)P (D|θc,Mc)dθc, (5)

where θc is the parameter vector corresponding to model Mc. Evaluating the integral
in (5) can be complicated. Approximations such as the Laplace approximation and the
approximation based on Schwarz Bayesian Information Criterion (BIC) could be em-
ployed. However, in the linear model case, as in equation (3), where the coefficient
vector for model Mc, βc ∼ N(μc, Vc) and σ2

c ∼ Inv − χ2(ν, λ) prior is used, an
analytic expression for (5) is:

P (D|μc, Vc, ν,Xc,Mc) =
Γ
(
ν+n
2

)
(νλ)

ν
2

π
n
2 Γ
(
ν
2

) |I +XcVcX
′
c|1/2

× [λν + (Y −Xcμc)
′

× (I +XcVcX
′
c)

−1

× (Y −Xcμc)]
− ν+n

2 , (6)

where μc and Vc are the mean vector and variance-covariance matrix, respectively, and
ν and λ are the degrees of freedom, and scale parameter, respectively. This work will
employ (6) for computing (5) versus any information criterion based on approximations.

In cases where the model space is sufficiently large, calculating (5) for each model
is computationally infeasible. A stochastic search through the model space can be
performed using a metropolis-hastings approach. This can be accomplished by con-
structing neighborhoods around the current model Mc. Typically, the neighborhoods
nbd(Mc) consist of all models with one additional term than model Mc and all models
with one less term than model Mc. For a candidate model Mt ∈ nbd(Mc) the probabil-
ity, α, of acceptance of model Mt is given by.

α = min

{
1,

P (Mt)P (D|Mt)

P (Mc)P (D|Mc)

q(Mt|Mc)

q(Mc|Mt)

}
, (7)

where q(Mt|Mc) is the probability that the candidate model is Mt is selected for con-
sideration given the current state is model Mc. Note the neighborhood structure men-
tioned above is not appropriate when the main effect terms are required to be in the
model whenever an epistatic term is in the model. [14], [15], [16], [17] and [13] allow
the neighborhood to be all models with one main effect term more or less than Mc and
all models with one epistatic effect more or less than Mc. These previously proposed
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models do not require a main effect to be present in the model when its interaction term
is included. This may induce alaising, and therefore the proposed methodology herein
ensures main effects are in the model prior to any interaction effects. A further restric-
tion on previous methods is that candidate models can only include loci that are near to
loci in the current model. Our methodology does not require this restrriction and allows
more flexibility.

Once the posterior model probabilities have been computed activation probabilities
can be used to assess the impact of loci Xj and can be computed via:

P (βj �= 0|D) =

|M|∑
c=1

P (βj �= 0|D,Mc)P (Mc|D). (8)

Activation probabilities are different from the traditional p-value in that large values
indicate significance versus small values. In addition, activation probabilities do not
depend on a specific model as do p-values. The activation probabilities can be calculated
via MC3 as defined in section 2.3.

Activation probabilities will have a problem detecting two-way interactions when the
main effect terms are required to be in the model in order for the two-way interaction
term to be present. This induces the following inequalities:

P (βjk|D) ≤ P (βj |D) (9)

P (βjk|D) ≤ P (βk|D).

Hence, using the standard activation probabilities for two-way interaction effects will
produce probabilities that are damped. In order to amplify the activation probabilities
of the two-way interaction effects one can use conditional activation probabilities. Con-
ditional activation probabilities can also be obtained by:

P (βjk �= 0|βj �= 0, βk �= 0,D) (10)

=
P (βjk �= 0, βj �= 0, βk �= 0|D)

P (βj �= 0, βk �= 0|D)
,

provided that P (βj �= 0, βk �= 0|D) > 0. In practice one should only consider condi-
tional activation probabilities when both P (βj |D) and P (βk|D) are considerably large.
In cases where P (βj |D) or P (βk|D) are small then unreasonably large inflations to the
conditional activation probabilities will occur and hence the result in incorrect infer-
ences.

2.3 Restricted Model Space

A simple approach to defining the neighborhoods of a model Mc is to include all mod-
els that add an additional term or drop an existing term. However, this violates a model
that require both main effect terms need to be present in the model in order for the cor-
responding two-way interaction to be added. Furthermore, the model need not contain
all interaction terms possible. Notice this creates a large model space. For the first order
models with p predictors the size of the model space is 2p. However with the addition
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of interaction terms, the size grows considerably more. In a dataset with 30 loci, a full
model with all first order terms and two-way interaction terms will have 465 terms.
This can be prohibitively large for most datasets and algorithms. If the model space
is restricted to r < p predictors and the corresponding epistasis terms, then any model
considered will not have nearly as many terms. If r is chosen wisely, then the researcher
can ensure that each model under consideration has sufficient degrees of freedom for
parameter estimation.

Furthermore, cases where linear dependencies exist among the predictors estimation
can be complicated. One approach to address this issue is to assign P (Mc) = 0 to
all models where linear dependencies exist among the predictors. Hence removing all
multicollinear models from consideration. Any time there are multicollinear terms an
index will need to be created in order to keep track of any aliased terms. This aliasing
can cause problems when there is a large effect size for the aliased terms.

The use of restricted model spaces allows for the assessment of all candidate vari-
ables, however it restricts the number of candidate variables that may be simultaneously
considered in a single model. [14], [15], [16], [17] and [13] use two restrictions one for
the number of main effect terms and one for the number of epistatic terms allowed in
the model simultaneously. They also give a simple guideline to determine the size of
each restriciton. They suggest to choose the restriction r = m + 2

√
m where m is the

a priori expected number of main effects. Similarly the same formula can be employed
where m is the expected number of epistatic effect. While this is an easily determined
guideline, in practice and is shown, anecdotally, in Section 4.1 that the restriction size
does not seem to have a great impact on the resulting inferences from the proposed
method. However, one should note that if the restriction is set very small the stochastic
search will have a difficult time moving around the model space and hence the algo-
rithm will take a long time to converge.

To search through the restricted model space, MC3 can be employed using equa-
tion (7). Note that q(Mt|Mc) must be determined to move through the sample space.
Let nbd(Mc) be all models with one main effect term more, one valid interaction term
more, one main effect term less and one interaction term less than model Ml. Denote
adding a main effect term as AMT, adding an interaction effect term as AIT, drop-
ping a main effect term as DMT and dropping an interaction effct term as DIT. The
probability of each of these actions depends on the attributes of the current model Mc.
Let γc and φc be the number of main effect terms and number of interaction terms
in Mc, respectively. In order to ensure that all models in nbd(Mc) are equally likely,
the probability of each action, AMT, AIT, DMT and DIT need to be determined. Let
Ω = {AMT,AIT,DMT,DIT } be an action space. Once these probabilities have
been calculated, the following procedure allows for each of the models in nbd(Mc) to
be candidate models. First determine, P (AMT ), P (AIT ), P (DMT ) and P (DIT ),
and choose an action with the corresponding probability. Then select with equal prob-
ability a model that is in nbd(Mc) and corresponds to the action chosen. This proce-
dure ensures that all models in nbd(Mc) have equal probability. Having all models in
nbd(Mc) equally likely will be necessary in computing q(Mc|Mt).
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For γc = 0, only a main effect term may be added since no interaction terms are in
the model. Hence the probability distribution for Ω is:

P (AMT ) = 1, P (DMT ) = 0,

P (AIT ) = 0, P (DIT ) = 0. (11)

For γc = 1, one of the p − 1 main effect terms not in the model may be added or the
one main effect term in the model may be dropped and no interaction terms are allowed
in this model. Hence the probability distribution for Ω is:

P (AMT ) =
p− 1

p
, P (DMT ) =

1

p
,

P (AIT ) = 0, P (DIT ) = 0. (12)

For 2 ≤ γc < r, no restrictions are involved. Hence, all actions in Ω are allowed.
Hence, the probability distribution for Ω is:

P (AMT ) = p−γc

p+

(
γc
2

) , P (AIT ) =

(
γc
2

)
−φc

p+

(
γc
2

) ,

P (DMT ) = γc

p+

(
γc
2

) , P (DIT ) = φc

p+

(
γc
2

) .
(13)

For γc = r, due to the restriction that no more than r main effect terms may be in a
model at a single time, no main effect terms may be added. However, main effect terms
may be dropped and interaction terms may be added or dropped. Hence, the probability
distribution for Ω is:

P (AMT ) = 0, P (AIT ) =

(
r
2

)
− φr(

r
2

)
+ k

,

P (DMT ) =
r(

r
2

)
+ r

, P (DIT ) =
φc(

r
2

)
+ r

. (14)

Since each model in nbd(Mc) is equally likely to be sampled, q(Mt|Mc) can easily
be calculated. For example, let Mt and Mc be such that γt = γc + 1 where γt < r
and γc > 2. Then this corresponds to the action AMT and the probability of candi-
date model Mt given that the current model is Mc is one out of the number of models

in nbd(Mc), specifically, q(Mt|Mc) =

(
p+

(
γc
2

))−1

and similarly q(Mc|Mt) =(
p+

(
γt
2

))−1

. Hence the ratio of the probability of candidate models for this case

is:
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q(Mt|Mc)

q(Mc|Mt)
=

p+

(
γt
2

)
p+

(
γc
2

) . (15)

3 Simulation Study

To validate this approach, loci information from Arabidopsis thaliana Bay-0 × Shah-
dara was used. Figure 2 illustrates the genetic map of the Arabidopsis thaliana Bay-0
× Shahdara,which has five chromosomes and a total of 38 markers. For this simulation
study, 158 lines were used.
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Fig. 2. Genetic map of the Arabidopsis Thaliana Bay-0 by Shahdara

Using the loci matrix from the Arabidopsis thaliana dataset two loci XA and XB

were randomly selected from the possible loci and the following model was used to
generate the data:

yi = δXAi + δXBi + δXAiXBi + εi, (16)

where δ is the effect size, εi ∼ N(0, 1). Each dataset contained a sample size of 158
observations. Effect sizes of 0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2 and 5 were generated.
Each of these effect sizes was repeated 10 times.

Using the data set and the method proposed the following probabilties were cal-
culated: P (XA|D), P (XB |D), P (XAB|D) and P (XAB|XA, XB, D). These were
calculated for 110 simulated data sets. Using the following prior distributions βj ∼
N(0, 200) and σ2 ∼ χ2(1) for the model parameters and P (Mi) is uniform over the
all models subject to the restriction of r = 10. For each simulated data set 5 chains of
16,000 samples were taken from the posterior distribution of the models, with the first
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1,000 samples discarded as burn-in samples. The activation probabilities were calcu-
lated using the remaining 75,000 samples.

Figure 3 shows boxplots for the main effect activation probabilities versus the effect
size from the simulated datasets. Notice that for effect sizes of 0 and 1/2 the activa-
tion probabilities are low indicating that not much evidence exists for the main effect at
that locus. However, for effect sizes at and above 1 the activation probabilites are quite
high, typically above 0.8. It should be noted that activation probabilities are not associ-
ated with the idea of a p-value and hence cannot be interpreted as such. Furthermore,
the choice of cutoff values for activation probabilities and what is deemed statistically
significant, in the Type I and Type II error sense, has not been studied. However, we
should notice that the activation probabilities for effect sizes at and above 1 are much
larger than those when the effect size is 0. Hence, one could feel confident that the locus
is important for influencing the observed trait.
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Fig. 3. Boxplots of main effect activation probabilities for effect sizes 0, 1/2, 1, 3/2, 2, 5/2, 3,
7/2, 4, 9/2 and 5 using simulated data sets

Figure 4 shows boxplots for activation probabilities of the epistatic effects and the
conditional activation probabilities for epistatic effects versus the effect sizes of 0, 1/2,
1, 2 and 4. Notice that in both plots that both the activation probabilities and the con-
ditional activation probabilities are low for effect sizes 0 and 1/2 indicating that the
epistatic effect of the two loci have no minimal effect on the observed trait. However,
notice that for effect sizes larger than 1 the conditional activation probabilities are con-
siderably higher than the standard activation probabilities. Again there has been no
studies of cutoff values for activation probabilities nor conditional activation probabili-
ties. Looking at both the activation probabilities and conditional activation probabilities
with reference to effect size 0 one could feel confident that the two loci work in combi-
nation to influence the observed trait.
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Fig. 4. Boxplots of epistatic effect activation probabilities (left) and conditional activation proba-
bilities for epistatic effects (right) for effect sizes 0, 1/2, 1, 2 and 4 using 100 simulated data sets
per effect size. Dashed line at 1/2 is for reference.

4 Example

The Arabidopsis thaliana is a model plant for genetic experiments in that it is easily
genetically manipulated. The response of interest is the angle of the cotyledon opening
that ranges from 0 degrees (no opening) to 180 degrees (fully opened). The cotyledon
is the is the first embryonic leaves on a seedling plant. The wider the opening angle the
more viable the mature plant.For each of the 158 lines at each of the 38 loci (markers) a
value of 1 or -1 corresponding to whether the marker at that location came from parent
A or parent B, respectively (unknown loci information is coded with a 0). With this data
and using an unrestricted model space the largest model would have 741 terms. Hence,
many models can not be fit. By restricting the model space to r = 10 the largest model
would have 55 terms and thus, all models have enough observations to be estimated.

To determine if any aliasing between the main effects and interaction terms occured
the data was screened. This screening showed that no interaction terms are aliased with
any main effect term. Hence, conclusions about the main effect terms will not be con-
founded with any epistatic effects. An additional screen of the data was performed to
determine if there is aliasing between any interaction effects. Aliased interaction effects
were noted for consideration during posterior inferences.

For this example, the exact marginal posterior probability of the data given modelMc

was computed using equation (6) and the proposed MC3 method with restricted model
space was utilized. For each model under consideration the prior distributions for the
model parameters were defined as: βj ∼ N(0, 200) for all j and βjk ∼ N(0, 200) for
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Fig. 5. Heatmap of activation probabilities for main effect and epistatic effects for the Arabidopsis
thaliana Bay-0 × Shahdara at the 38 loci. Activation probabilities along the diagonal correspond
to main effects and off diagonal correspond to epistatic effects.

all interaction terms jk in model i; for σ2, λ = 1 and ν = 1 are used. Note that when
ν = 1 and lambda = 1 the Inv − χ2

ν,λ has infinite mean and variance. Hence, should
be relatively uninformative. For each model Mc where multicollinearity does not occur,
the prior probability P (Mc) is chosen uniformly across this space. Thus, a priori, no
model is preferred over another.

Using the restriction r = 10, 25 chains of 11,000 were run with a burn in of 1,000
samples using overdispersed starting models resulting in 250,000 samples.
The number of visits to model Mc was recorded and the probability of model given
the data P (Mc|D) was estimated as the number of visits to model Mc divided by the
length of the chain. The probabilities appeared to converge after 15 chains, indicating
convergence. Using these probabilities the activation probabilities P (βj �= 0|D) and
P (βjk �= 0|D) are computed for each main and epistatic effect, respectively. Figure 5
shows a heat map of the epistatic probabilities. Notice that the highest activation prob-
ability locus on the heat map is at locus 18 (ATHCHIB2) and no epistatic, off diagonal,
effects have high activation probability.

The activation probabilities for the 3 highest loci, ATHCHIB2, MSAT5-9 and MSAT5-
22 are as follows: P (ATHCHIB2|D) = 0.741, P (MSAT 5 − 9|D) = 0.481 and
P (MSAT 5− 22|D) = 0.445. This suggests that the following epistatic effects should
be considered: ATHCHIB2 ×MSAT 5 − 9, ATHCHIB2 ×MSAT 5 − 22 and
MSAT 5− 9×MSAT 5− 22. The marginal epistatic activation probabilities and the
conditional epistatic activation probabilities of these interactions are shown in Table
1. Previous studies have shown ATHCHIB2 to be a locus associated with cotelydon
opening [4]. Hence the results agree with biological expectations. In order to more ac-
curately locate the locus associated with cotelydon opening a dense map of genes near
ATHCHIB2 should be undertaken.
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Table 1. Activation probabilities and conditional activation probabilities of epistatic effects be-
tween locus lj and locus lk

li lj P (lij |D) P (lij |li, lj ,D)

ATHCHIB2 MSAT5-9 0.070 0.243
ATHCHIB2 MSAT5-22 0.061 0.191
MSAT5-9 MSAT5-22 0.062 0.135

4.1 Sensitivity Study

To assess the impact of the restriction on the resulting inferences a simulation study
was conducted. Using the same data set and prior distributions, different analyzes were
performed by varying the restriction paramter r. Four choices of r were chosen: r = 8,
r = 10, r = 12 and r = 14. This corresponds to the following maximum model sizes,
max|Mi| = 36, max|Mi| = 55, max|Mi| = 78 and max|Mi| = 105, respectively.
Since the data set only has 158 observations, if r > 14 then, the degrees of freedom
associated with the maximum model would be less than 50.

Table 2 shows the results of the sensitivity study. The marginal posterior probabil-
ity for locus i, li and P (li|D) is given for the five loci with the highest probability.
Notice that regardless of the restriction setting, locus ATHCHIB2 is deemed most
probable. This agrees with previous studies using this data set. In addition, the second
and third most probable loci agree across restriction settings. However, these loci have
low probability. One other trait to notice is that no epistatic terms appear in the highest
marginal loci. The fact that no epistatic effects appear significant is not a result of the
restriction set.

Table 2. Activation probabilities of locus i, li for restriction parameter r = 8, 10, 12 and 14

r = 8 r = 10
max|Mi| = 36 max|Mi| = 55

li P (li|D) li P (li|D)

ATHCHIB2 0.699 ATHCHIB2 0.751
MSAT5-9 0.415 MSAT5-9 0.481

MSAT5-22 0.402 MSAT5-22 0.445
MSAT5-12 0.291 MSAT5-12 0.331
MSAT1-5 0.271 MSAT2-36 0.327

r = 12 r = 14
max|Mi| = 78 max|Mi| = 105
li P (li|D) li P (li|D)

ATHCHIB2 0.735 ATHCHIB2 0.733
MSAT5-9 0.509 MSAT5-9 0.516

MSAT5-22 0.473 MSAT5-22 0.511
MSAT2-36 0.380 MSAT2-36 0.441
MSAT1-5 0.373 MSAT1-5 0.434
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5 Discussion

The proposed method for detecting epistasis has the ability to determine which main
effects as well as which two-way interaction effects are present in a dataset as evidenced
by the simulation study. The method was applied to the Arabidopsis thaliana data and
no epistatic effects were found with respect to cotyledon opening angle. However, the
known locus for controlling cotyledon opening was detected, ATHCHIB2. The search
method was employed in a situation where the number of parameters in the full model
far exceeded the number of observations, but by placing restrictions on the parameter
space each model under consideration had sufficient degrees of freedom for estimating
parameters.

A study of epistatic models which do not require the first order terms to be present
should be considered as well. This may allow for better detection of epistatic effects as
the model search does not need to first add a main effect in order to later include the
epistatic term. In this case the model space would be reduced by 2p models. However,
if all other interaction terms are equally likely to be added to the model, the Metropolis-
Hastings step may have low acceptance probability and convergence of the MC3 algo-
rithm may be slow. In addition, any loci that have effects that are not in interaction with
other loci may not be detected. Hence, reducing the utility of the method.

Caution should be used when using restricted model spaces. The method works best
when it is believed that only a few loci control the trait of interest. In cases where it
is believed that a large number of loci control the trait of interest, especially when this
exceeds the restriction on the model space, then the search method maybe come very
ineffective at assessing both the main effect as well as the epstatic effects. Since the
models at the restriction boundary will have high posterior model probabilites it may
be difficult to move through regions of lower probability towards even more probable
models. In most cases in genetics it is believed that only a few loci control the trait of
interest.
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Abstract. In decision making, negotiation, and other kinds of practical reason-
ing, it is necessary to model preferences over possible outcomes. Such prefer-
ences usually depend on multiple criteria. We argue that the criteria by which
outcomes are evaluated should be the satisfaction of a person’s underlying inter-
ests: the more an outcome satisfies his interests, the more preferred it is. Underly-
ing interests can explain and eliminate conditional preferences. Also, modelling
interests will create a better model of human preferences, and can lead to better,
more creative deals in negotiation. We present an argumentation framework for
reasoning about interest-based preferences. We take a qualitative approach and
provide the means to derive both ceteris paribus and lexicographic preferences.

1 Introduction

We present an approach to qualitative, multi-criteria preferences that takes underlying
interests explicitly into account. Reasoning about interest-based preferences is rele-
vant in decision making, negotiation, and other types of practical reasoning. Since our
long-term goal is the development of a negotiation support system, the motivations and
examples in this paper are mainly taken from the context of negotiation, but the main
ideas apply equally well in other contexts.

The goal of a negotiation support system is to help a human negotiator reach a better
deal in negotiation. The quality of a deal is determined for a large part by the user’s
personal preferences. A deal generally consists of multiple issues. For example, when
applying for a new job, some issues are the position, the salary, and the possibility
to work part-time. For a complete deal, negotiators have to agree on the value for
every issue. The satisfaction of a negotiator with a possible outcome depends on his
preferences.

Since the number of possible outcomes is typically very large (exponential in the
number of issues), it is not feasible to have the user express his preferences over all
possible outcomes directly. It is common to compute or derive preferences over pos-
sible outcomes from preferences over the possible values of issues and a weighing or
importance ordering of the issues. One of the best-known approaches is multi-criteria
utility theory [1], a quantitative approach where preferences are expressed by numeric
utilities. Since such quantities are hard for humans to provide, qualitative approaches
have been proposed too, e.g. [2]. Our approach is also of a qualitative nature.

In this paper we argue that issues alone are not enough to derive outcome preferences.
Instead, we will focus on modelling underlying interests and their relation to issues.

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 115–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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There are several reasons for taking interests into account. First, underlying interests
can explain and eliminate conditional preferences. Consider the following example. If
it rains, I prefer to take my umbrella, but if it doesn’t, I prefer not to take it. This
is a conditional preference; my preference over taking my umbrella depends on the
circumstance of rain. Underlying interests can explain such conditional preferences: I
prefer to take my umbrella when it rains because I do not want to get wet, and I prefer
not to take it when it’s dry because I don’t want to carry things unnecessarily. If we
take such interests as criteria on which to base preference, we can eliminate conditional
preferences entirely. We will get back to this in more detail later. Second, interest-based
negotiation is said to lead to better outcomes than position-based negotiation [3,4]. By
understanding one’s own and the other party’s reasons behind a position and discussing
these interests, people are more likely to find more creative options in a negotiation and
by that reach a mutually acceptable agreement more easily. A well-known example is
that of the two sisters negotiating about the division of an orange. They both want the
orange, and end up splitting it in half. Had they known each other’s underlying interests,
they would have reached a better deal: one sister only needed the peel to make a cake
and would gladly have let the other sister have all of the flesh for her juice. Third,
thinking about underlying interests is a very natural, human thing to do. Interests are
what really matters to people, they are what drive them in their decisions and opinions.
Taking underlying interests explicitly into account will result in a better model of human
preferences. Such a model is also suited for explanation of the reasoning and advice of
a support system.

This last point brings us to the motivation for using argumentation to reason about
interest-based preferences. Reasoning by means of arguments is a very human type of
reasoning. People often base their decisions on (mental) lists of arguments in favour
of and against certain decisions. Therefore argumentation is suitable for explanation of
a system’s reasoning to a human user. Another advantage of argumentation is that it
is a kind of defeasible reasoning. It is able to reason with incomplete, uncertain and
contradictory information. Finally, argumentation can be used to (try to) persuade the
opponent during negotiation (but this is outside the scope of this paper).

The paper is organised as follows. In Section 2 we introduce and discuss the most
important concepts that we will use throughout the paper. Then, in Section 3, we give
an overview of existing approaches to preferences and underlying interests. We give
some more details about qualitative multi-criteria preferences in Section 4. In Section
5 we motivate the explicit modelling of underlying interests, illustrated with examples.
Our own approach is presented in Section 6. Finally, Section 7 concludes the paper.

2 Concepts

Before we go on, we will clarify some important concepts that we will use. In ne-
gotiation, issues are the matters which are under negotiation. An issue is a concrete,
negotiable aspect such as monthly salary or number of holidays. Every issue has a set
or range of possible values. The value of an issue in a given instance can be objectively
determined (e.g. e2400, 30 days). Issues and their possible values typically depend on
the domain. Besides the issues under negotiation, there may be other properties of a
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deal that influence preferences. For example, the location of the company that you are
applying to work for can be very important, because it determines the duration of your
daily commute, but it is hardly negotiable. Still, such properties are important in negoti-
ation. If, for example, you already got an offer from another company near your home,
you will only consider offers that are better taking the location into account.

A possible outcome or possible deal has a specified value for every issue. All bids
made during a negotiation are possible outcomes. For example, a possible outcome
could be a job contract for the position of programmer, with a salary ofe3000 gross per
month, with 25 holidays, for the duration of one year with the possibility of extension.
Any other assignment to the issues would constitute a different outcome. It is the user’s
preferences over such possible outcomes that we are interested in.

With criteria we mean the features on which a preference between outcomes is
based. It is common to base preferences directly on the negotiated issues; in that case
the issues are the criteria. In this paper we argue that not issues, but underlying interests
should be used as criteria.

Many terms are used for what we consider to be underlying interests, such as fun-
damental objectives, values, concerns, goals and desires. In our view, an interest can
be any kind of motivation that leads to a preference. Essentially, a preference depends
on how well your interests are met in the outcomes to be compared. The degree to
which interests are met is influenced by the issues, but there is not necessarily a one-
to-one relation between issues and interests. For example, an applicant with childcare
responsibilities will have the interest that the children are taken care of after school.
This interest can be met by various different issues, for example part-time work, the
possibility to work from home, a salary that will cover childcare expenses, etc. One
issue may also contribute to multiple interests. Many issues that deal with money do so,
because the interests different people have for using the money will be diverse.

3 Related Work

Existing literature about preferences is abundant and very diverse. In this section we
briefly discuss the approaches that are most closely related to our interests.

Interest-based negotiation is discussed in [4]. However, this approach has a particular
view on negotiation as an allocation of indivisible and non-sharable resources. The
resources are needed to carry out plans to reach certain goals. Even though the goals
can be seen as underlying interests, it is hard to model e.g. negotiation about a job
contract as an allocation of resources. Salary might be an allocation of money, but other
issues, like position or start date, cannot be translated as easily into resources.

Argumentation about preferences has been studied extensively in the context of de-
cision making [5,6,7,8]. The aim of decision making is to choose an action to perform.
The quality of an action is determined by how well its consequences satisfy certain
criteria. For example, [5] present an approach in which arguments of various strengths
in favour of and against a decision are compared. However, it is a two-step process in
which argumentation is used only for epistemic reasoning. In our approach, we combine
reasoning about preferences and knowledge in a single argumentation framework.
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Within the context of argumentation, an approach that is related to underlying inter-
ests is value-based argumentation [9,10]. Values are used in the sense of ‘fundamental
social or personal goods that are desirable in themselves’ [10], and are used as the
basis for persuasive argument in practical reasoning. In value-based argumentation, ar-
guments are associated with values that they promote. Values are ordered according to
importance to a particular audience. An argument only defeats another argument if it
attacks it and the value promoted by the attacked argument is not more important than
the value promoted by the attacker. We will illustrate this with a little example. Con-
sider two job offers a and b. a offers a higher salary, but b offers a better position. We
can construct two mutually attacking preference arguments, A: ‘I prefer job offer a over
job offer b because it has a higher salary’, and B: ‘I prefer job offer b over job offer a
because it has a better position’. In Dung-style argumentation frameworks [11], there is
no way to choose between two mutually attacking arguments (unless one is defended
and the other is not). In value-based argumentation, we could say that preferring a over
b promotes the value of wealth (w), and preferring b over a promotes the value of status
(s), and e.g. wealth is considered more important than status. In this case A defeats B,
but not the other way around.

In this framework, every argument is associated with only one value, while in
many cases there are multiple values or interests at stake. [12] define so-called value-
specification argumentation frameworks, in which arguments can support multiple
values, and preference statements about values can be given. However, the preference
between arguments is not derived from the preference between the values promoted by
the arguments. Besides, there is no guarantee that a value-specification argumentation
framework is consistent, i.e., some sets of preference statements do not correspond to a
preference ordering on arguments.

In value-based argumentation, we cannot argue about what values are promoted by
the arguments or the ordering of values; this mapping and ordering are supposed to
be given. But these might well be the conclusion of reasoning, and might be defeasi-
ble. Therefore, it would be natural to include this information at the object level. [13]
describe some argument schemes regarding the influence of certain perspectives on val-
ues. However, for the aggregation of multiple values, they assume a given order on sets
of values, whereas we want to derive such an order from an order on individual values.

4 Qualitative Multi-criteria Preferences

Regardless of whether we take issues or interests as criteria, we need to be able to
model multiple criteria. In any realistic setting, preferences are determined by multiple
criteria and the interplay between them. Therefore we shortly introduce two well-known
approaches to multi-criteria preferences which we will use in our framework.

One approach is ceteris paribus (‘all else being equal’) comparison. One outcome is
preferred to another ceteris paribus, if it is better on some criteria and the same on all
other criteria. This approach has been widely used since [14]. Also [15] derive prefer-
ences from sets of goals in a ceteris paribus way. In [16], ceteris paribus comparison is
combined with conditional preferences in a graphical preference language called CP-
nets. The preference order resulting from ceteris paribus comparison is not complete; an
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Table 1. Satisfaction of issues and interests

a. Issues b. Interests
high high full-

salary position time
a ✓ ✓ ✓

b ✓ ✓ ✗

c ✓ ✗ ✓

d ✓ ✗ ✗

e ✗ ✓ ✓

f ✗ ✓ ✗

g ✗ ✗ ✓

h ✗ ✗ ✗

family
wealth status time

a ✓ ✓ ✗

b ✓ ✓ ✓

c ✓ ✓ ✗

d ✓ ✓ ✓

e ✗ ✓ ✗

f ✗ ✓ ✓

g ✗ ✗ ✗

h ✗ ✗ ✓

outcome satisfying criterion G but not H cannot be compared to an outcome satisfying
H but not G.

Another well-known approach is the lexicographic preference ordering (see e.g. [2],
where it is denoted #). Here, preferences over outcomes are based on a set of relevant
criteria, which are ranked according to their importance. The importance ranking of
criteria is defined by a total preorder �, which yields a stratification of the set of cri-
teria into importance levels. Each importance level consists of criteria that are equally
important. The lexicographic preference ordering first considers the highest importance
level. If some outcome satisfies more criteria on that level than another, then the first
is preferred over the second. If two outcomes satisfy the same number of criteria on
this level, the next importance level is considered, and so on. Two outcomes are equally
preferred if they satisfy the same number of criteria on every level.

We use a slightly more abstract definition of preference that covers both ceteris
paribus and lexicographic preferences. Let C be a set of binary criteria, ordered ac-
cording to importance by a preorder�. If P�Q and not Q� P, we say that P is strictly
more important than Q and write P� Q. If P� Q and Q� P, we say that P is equally
important as Q and write P≈ Q. C can be divided into equivalence classes induced by
≈, which we call importance levels. An importance level L is said to be more important
than L′ iff the criteria in L are more important than the criteria in L′. Let O be a set of
outcomes, and sat a function that maps outcomes a ∈ O to sets of criteria Ca ∈ 2C. If
P ∈ sat(a), we say that a satisfies P.

Definition 1. (Preference). An outcome a is strictly preferred to another outcome b if
it satisfies more criteria on some importance level L, and for any importance level L′
on which b satisfies more criteria than a, there is a more important level on which a
satisfies more criteria than b. An outcome a is equally preferred as another outcome b
if both satisfy the same number of criteria on every importance level.

The least specific importance order possible is the identity relation, in which case the
importance levels are all singletons and no importance level is more important than any
other. In this case, the preference definition is equivalent to ceteris paribus preference
(if a is preferred to b ceteris paribus, there are no criteria that b satisfies but a does not).
If the importance order is a total preorder, the definition is equivalent to lexicographic
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e,f

c,d

g,ha,b

(a) For Mark. (b) For Jones.

Fig. 1. Ceteris paribus preference orderings (arrows point towards more preferred outcomes)

preference. In general, the more information about the relative importance of interests
is known, the more preferences can be derived. We note that lexicographic preferences
subsume ceteris paribus preferences in the sense that if one outcome is preferred to an-
other ceteris paribus, it is also preferred lexicographically, regardless of the importance
ordering on criteria.

5 Modelling Interests

We will illustrate the ideas presented in this paper by means of an example. Mark has
applied for a job at a company called Jones. After the first interview, they are ready
to discuss the terms of employment. There are three issues on the table: the salary, the
position, and whether the job is full-time or part-time. All possible outcomes are listed
in Table 1a. After some thought, Mark has determined that the interests that are at stake
for him are wealth, status, and time with his family. A high position will give status. A
high salary will provide both wealth and status. A part-time job will give him time to
spend with his family. Table 1b shows which interests each of the outcomes satisfies.

All information is encoded in a knowledge base, which consists of three parts.
• Facts about the properties of the outcomes to be compared. When comparing offers
in negotiation, these may be the values for each issue, or any other relevant properties.
Facts are supposed to be objectively determined.
• A set of interests of a negotiator. Underlying interests are personal and subjective,
although they can sometimes be assumed by default. Interests may vary according to
importance. If no importance ordering is given, the ceteris paribus principle can be used
to derive preferences. The more information about the relative importance of interests
is known, the more preferences can be derived. If there is a total preorder of interests
according to importance, a complete preference ordering over possible outcomes can
be derived using the lexicographic principle.
• Rules relating issues and other outcome properties to interests. These rules can
be very subjective, e.g. some people consider themselves very wealthy if they earn
e3000 gross salary per month, while for others this may be a pittance. Even so, there
can still be default rules that apply in general, e.g. that a high salary promotes wealth for
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Table 2. Outcomes in the evening dress example

a. Issues b. Interests

jacket pants shirt
i b b w
j b b r
k b w w
l b w r
m w b w
n w b r
o w w w
p w w r

good
combi-
nation

i ✗

j ✓

k ✓

l ✗

m ✓

n ✗

o ✗

p ✓

i

p

nl

mk

j

o

i

pnl

mk

j

o

p

i

nl

mk

j

o

(a) Preference graph induced by
CP-net.

(b.) Ceteris paribus ordering with
interests.

(c) Ceteris paribus ordering with
interests, good combination most
important.

Fig. 2. Preference orderings (arrows point towards more preferred outcomes)

the employee. The relation between issues and interests does not have to be one-to-
one. There may be multiple issues that can satisfy an interest, some issues may satisfy
multiple interests at once, or a combination of issues may be needed to fulfill an interest.
As is common in defeasible reasoning, there may be exceptions to rules. For example,
one might say that a high position ensures status in general, but this effect is cancelled
out if the job is badly paid.

With the inference scheme of defeasible modus ponens (see scheme 1 in Table 4),
arguments can be constructed that derive statements about what interests are satisfied by
possible outcomes, based on their issue values and the rules relating issues to interests.
The conclusions from these arguments are summarized in Table 1b. If we compare the
possible outcomes ceteris paribus, we can construct a partial preference order for Mark,
with b and d being the most preferred options, and g the least preferred (see Figure 1a).
This preference order is not complete. To determine Mark’s preference between a and
c on the one hand and f on the other hand, we need to know whether wealth or family
time is more important to him. If wealth is more important, Mark will prefer a or c.
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If family time is more important, he will prefer f . Similarly, to determine a preference
between e and h, we need to know whether status or family time is more important.

The company Jones has two major interests: it needs a manager and it has to cut back
on expenses. These interests relate directly (one-to-one) to high position and low salary.
The ceteris paribus preference ordering for Jones is displayed in Figure 1b.

The Added Value of Interests. It may seem that using interests next to issues just in-
troduces an extra layer in reasoning. From the issues and the relations between issues
and interests, we derive the interests that are met by outcomes, and from that we derive
preferences. Would it not be easier to derive the preferences directly from the issues?
We could just state that Jones has the interests of high position and low salary, option-
ally with an ordering between them, and we would be able to derive Jones’ preferences
from that. This is because in this case there is a one-to-one relation between interests
and issues: every interest is met by exactly one issue, and every (relevant) issue meets
exactly one interest.

There are good reasons, however, why this approach is not always a good solution.
Consider for example Mark’s preferences. A high salary satisfies both wealth and sta-
tus, and status can be satisfied by either a high salary or a high position. Because of
this, the (partial) preference ordering we determined for Mark cannot be defined as a
ceteris paribus ordering if the issues are taken as criteria. This is because high position
as criterion is dependent on high salary: if the salary is not high, then high position is a
distinguishing criterion, but if the salary is high, high position is not relevant anymore,
since the only interest that it serves, status, is already satisfied by high salary. So with a
fixed set of issues as criteria, ceteris paribus or lexicographic models cannot represent
every preference order. In many cases, this can be solved intuitively by taking underly-
ing interests into account.

There are other approaches to deal with this matter. Instead of assuming indepen-
dence of the criteria, one can also model conditional preferences, where criteria may
be dependent on other criteria. A well-known approach to represent conditional pref-
erences is CP-nets [16], which is short for conditional ceteris paribus preference net-
works. A CP-net is a graph where the nodes are variables (comparable to our notion of
issues). Every node is annotated with a conditional preference table, which lists a user’s
preferences over the possible values of that variable. If such preferences are conditional
(dependent on other variables), each condition has a separate entry in the table, and the
variables that influence the preference are parent nodes of this variable in the graph. In
[16], an example of conditional preference is given regarding an evening dress. A man
unconditionally prefers black to white as a colour for both the jacket and the pants. His
preference between a white and a red shirt is conditioned on the combination of jacket
and pants. If they have the same colour, he prefers a red shirt (for a white shirt will make
his outfit too colourless). If they are of different colours, he prefers a white shirt (be-
cause a red shirt will make his outfit too flashy). The complete assignments (outcomes
in our terminology) are listed in Table 2a. The preference graph induced by the CP-net
for this example is displayed in Figure 2a.

We propose to replace the variables the preferences over which are conditional
with underlying interests – the reason for the dependency. In the evening dress ex-
ample, the underlying interest is that the colours of jacket, pants and shirt make a good
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Table 3. The knowledge base for the example

highsal(c) IM(wealth) highsal(x)⇒ wealth(x)
¬highpos(c) IM(status) highsal(x)⇒ status(x)
full-time(c) IM(family) highpos(x)⇒ status(x)
¬highsal( f ) ¬full-time(x)⇒ family(x)
highpos( f ) IJ(manager) highpos(x)⇒ manager(x)
¬full-time( f ) IJ(cutback) ¬highsal(x)⇒ cutback(x)

combination, which in this case is defined by being neither too colourless nor too flashy.
The satisfaction of this interest by the different outcomes is listed in Table 2b. The vari-
ables jacket and pants are unconditional, so they can remain as criteria. If we take jacket,
pants, and good combination as criteria, we can construct the preference graph in Figure
2b, using the ceteris paribus principle. The difference with the preferences induced by
the CP-net is that in the CP-net case, outcome i is more preferred than k and m, and p is
less preferred than l and n, while in the interest-based case they are incomparable. This
is due to the fact that in CP-nets, conditional preferences are implicitly considered less
important than the preferences on the variables they depend on ([16], p. 145). In fact,
if we would specify that both jacket and pants are more important than a good com-
bination, our preference ordering would be the same as in Figure 2a. But the interest
approach is more flexible; it is possible to specify any (partial) importance ordering on
interests. For example, we could also state that a good combination is more important
than either the jacket or the pants, which results in the preference ordering in Figure 2c.
In our opinion, there is no a priori reason to attach more importance to unconditional
variables as is done in the CP-net approach.

6 Argumentation Framework

In this section, we present an argumentation framework (AF) for reasoning about qual-
itative, interest-based preferences. An abstract AF in the sense of Dung [11] is a pair
〈A,→〉 where A is a set of arguments and → is a defeat relation (informally, a coun-
terargument relation) among those arguments. To define which arguments are justified,
we use Dung’s [11] preferred semantics.

Definition 2. (Preferred Semantics) . A preferred extension of an AF 〈A,→〉 is a
maximal (w.r.t.⊆) set S⊆A such that: ∀A,B∈ S : A �→B and ∀A∈ S: if B→A then ∃C∈
S : C → B. An argument is credulously (sceptically) justified w.r.t. preferred semantics
if it is in some (all) preferred extension(s).

Informally, a preferred extension is a coherent point of view that can be defended
against all its attackers. In case of contradictory information, there will be multiple
preferred extensions, each advocating one point of view. The contradictory conclusions
will be credulously, but not sceptically justified.

We instantiate an abstract AF by specifying the structure of arguments and the defeat
relation.
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Table 4. Inference schemes

1
L1, . . . ,Lk,∼ Ll, . . . ,∼ Lm ⇒ Ln L1 . . . Lk ∼ Ll . . . ∼ Lm

Ln
DMP

2 ∼ L
asm(∼ L)

3
L

asm(∼ L) is inapplicable
asm(∼ L)uc

4 sat(a, [P]α ,0)
count(a, [P]α ,∅)

5

P1(a) . . . Pn(a) P1 ≈α . . .≈α Pn Iα(P1) . . . Iα (Pn)

sat(a, [P1]α ,n)
count(a, [P1]α ,{P1, . . . ,Pn})

6

P1(a) . . . Pn(a) P1 ≈α . . .≈α Pn Iα(P1) . . . Iα (Pn)

count(a, [P1]α ,S ⊂ {P1, . . . ,Pn}) is inapplicable
count(a, [P1]α ,S)uc

7

sat(a, [P]α ,n) sat(b, [P′]α ,m) P≈α P′ n > m

prefα (a,b)
prefinf(a,b, [P]α)

8

sat(a, [Q]α ,n) sat(b, [Q′]α ,m) Q≈α Q′ �α P n < m

prefinf(a,b, [P]α ) is inapplicable
prefinf(a,b, [P]α )uc

9

sat(a, [P]α ,n) sat(b, [P′]α ,m) P≈α P′ n = m

eqprefα(a,b)
eqprefinf(a,b, [P]α)

10

sat(a, [Q]α ,n) sat(b, [Q′]α ,m) Q≈α Q′ n �= m

eqprefinf(a,b, [P]α ) is inapplicable
eqprefinf(a,b, [P]α )uc

Arguments. Arguments are built from formulas of a logical language, that are chained
together using inference steps. Every inference step consists of premises and a con-
clusion. Inferences can be chained by using the conclusion of one inference step as a
premise in the following step. Thus a tree of chained inferences is created, which we
use as the formal definition of an argument (cf. e.g. [17]).

Definition 3. (Argument). An argument is a tree, where the nodes are inferences, and
an inference can be connected to a parent node if its conclusion is a premise of that
node. Leaf nodes only have a conclusion (a formula from the knowledge base), and
no premises. A subtree of an argument is also called a subargument. inf returns the
last inference of an argument (the root node), and conc returns the conclusion of an
argument, which is the same as the conclusion of the last inference.

Definition 4. (Language) . Let P be a set of predicate names with typical elements
P,Q; O a set of outcome names with typical elements a,b; α an audience; and n a non-
negative integer. The input language LKB and full language L are defined as follows.
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Table 5. Example arguments

A :highsal(c) highsal(x)⇒ wealth(x)
wealth(c) IM(wealth)

sat(c, [wealth]M ,1) sat( f , [wealth]M ,0) wealth≈M wealth 1 > 0
prefM(c, f )

α
B ¬full-time( f ) ¬full-time(x)⇒ family(x)

family( f ) IM(family)
sat( f , [family]M ,1) sat(c, [family]M ,0) family≈M family 1 > 0

prefM( f ,c)
β

C highsal(c) highsal(x)⇒ wealth(x)
wealth(c) IM(wealth)

sat(c, [wealth]M ,1) sat( f , [wealth]M ,0) wealth�M family 1 �= 0
β is inapplicableD ¬full-time( f ) ¬full-time(x)⇒ family(x)

family( f ) IM(family)
sat( f , [family]M ,1) sat(c, [family]M ,0) family�M wealth 1 �= 0

αisinapplicable

ϕ ∈ LKB ::= L | Iα(P) | P�α Q | P≈α Q |
L1, . . . ,Lk,∼ Ll , . . . ,∼ Lm ⇒ Ln

where Li = P(a) or ¬P(a).

ψ ∈ L ::= ϕ ∈ LKB | ∼ L | sat(a, [P]α ,n) |
prefα(a,b) | eqprefα(a,b)

We make a distinction between an input and full language. A knowledge base, which is
the input for an argumentation framework, is specified in the input language. The input
language allows us to express facts about the criteria that outcomes (do not) satisfy,
statements about interests of an audience and their importance ordering, and defeasible
rules. The knowledge base for the job contract example (the facts restricted to outcomes
c and f ) is displayed in Table 3. Other formulas of the language that are not part of the
input language, e.g. expressing a preference between two outcomes, can be derived
from a knowledge base using inference steps that build up an argument (such formulas
are not allowed in a knowledge base because they might contradict derived statements).

Inferences. Table 4 shows the inference schemes that are used. The first inference
scheme is called defeasible modus ponens. It allows to infer conclusions from defea-
sible rules. The next two inference rules define the meaning of the weak negation ∼.
According to inference rule 2, a formula ∼ ϕ can always be inferred, but such an ar-
gument will be defeated by an undercutter built with inference rule 3 if ϕ is the case.
Inference schemes 4 and 5 are used to count the number of interests of equal importance
(according to audience α) as some interest P1 that outcome a satisfies. This type of in-
ference is inspired by accrual [18], which combines multiple arguments with the same
conclusion into one accrued argument for the same conclusion. Although our applica-
tion is different, we use a similar mechanism. Inference scheme 4 can be used when an
outcome satisfies no interests. It is possible to construct an argument that does not count
all interests that are satisfied, a so-called non-maximal count. But we want all interests
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to be counted, otherwise we would conclude incorrect preferences. To ensure that only
maximal counts are used, we provide an inference scheme to construct arguments that
undercut non-maximal counts (inference scheme 6). An argument of this type says that
any count which is not maximal is not applicable. Inference scheme 7 says that an out-
come a is preferred over an outcome b if the number of interests of a certain importance
level that a satisfies is higher than the number of interests on that same level that b satis-
fies. Inference scheme 8 undercuts scheme 7 if there is a more important level than that
of P on which a and b do not satisfy the same number of interests. Finally, inference
schemes 9 and 10 do the same as 7 and 8, but for equal preference.

Defeat. The most common type of defeat is rebuttal. An argument rebuts another argu-
ment if its conclusion contradicts conclusion of the other argument. Conclusions con-
tradict each other if one is the negation of the other, or if they are preference or impor-
tance statements that are incompatible (e.g. prefα(a,b) and prefα(b,a), or prefα(a,b)
and eqprefα(a,b)). Defeat by rebuttal is mutual. Another type of defeat is undercut. An
undercutter is an argument for the inapplicability of an inference used in another argu-
ment. Undercut works only one way. Defeat is defined recursively, which means that
rebuttal can attack an argument on all its premises and (intermediate) conclusions, and
undercut can attack it on all its inferences.

Definition 5. (Defeat) An argument A defeats an argument B (A→ B) if conc(A) and
conc(B) are contradictory (rebuttal), or conc(A) =‘inf(B) is inapplicable’ (under-
cut), or A defeats a subargument of B.

Let us return to the example. With the information from the knowledge base, the argu-
ments A and B in Table 5 can be formed. A advocates a preference for c, based on the
interest wealth. B advocates a preference for f , based on the interest family. Without
an ordering on these interests, no decision between these arguments can be made. But
if wealth �M family is known, argument C can be made, which undercuts B. Similarly,
with family�M wealth, argument D can be made, which undercuts A.

Validity. If some conditions in the input knowledge base (KB) hold, it can be
shown that the proposed argumentation framework models ceteris paribus and lexi-
cographic preference. In the following, we consider a single audience and leave out the
subscript α .

Condition 1. Let C be a set of interests to be used as criteria, with importance order�.
(1) For all P, ‘I(P)’ is in KB iff P ∈ C.
(2) For all P ∈ C, a, ‘P(a)’ is a conclusion of a sceptically justified argument iff a
satisfies P.
(3) The relative importance among interests is

(a) a total preorder,
(b) the identity relation,

and for all P, Q ∈ C, ‘P� Q’ is in KB iff P� Q, and ‘P≈ Q’ is in KB iff P≈ Q.
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Theorem 1. (i) If conditions 1.1, 1.2 and 1.3a hold, then pref(a,b) (resp. eqpref(a,b))
is a sceptically justified conclusion of the argumentation framework iff a is strictly
(resp. equally) preferred over b according to the lexicographic preference ordering.
(ii) If conditions 1.1, 1.2 and 1.3b hold, then pref(a,b) (resp. eqpref(a,b)) is a scepti-
cally justified conclusion of the argumentation framework iff a is strictly (resp. equally)
preferred over b according to the ceteris paribus preference ordering.

Proof. We prove the theorem for strict preference. The same line of argument can be
followed for equal preference.
(i) ⇐: Suppose a is strictly lexicographically preferred over b. This means that there
is an importance level on which a satisfies more interests (say, P1, . . . ,Pn) than b (say,
P′1, . . . ,P

′
m, n > m), and on all more important levels, a and b satisfy an equal number

of interests. In this case, we can construct the following arguments, where the first two
arguments are subarguments of the third (note that these arguments can also be built if
m is equal to 0, by using the empty set count).

P1(a) . . . Pn(a) I(P1) . . . I(Pn) P1 ≈ . . .≈ Pn

sat(a, [P1],n)

P′1(b) . . . P′m(b) I(P′1) . . . I(P′m) P′1 ≈ . . .≈ P′m
sat(b, [P′1],m)

sat(a, [P1],n) sat(b, [P′1],m) P1 ≈ P′1 n > m

pref(a,b)

We will now try to defeat this argument. Premises of the type P(a) are justified by
condition 1.2. Premises of the type I(P) and P1 ≈ P2 cannot be defeated (conditions
1.1 and 1.3a). There are three inferences we can try to undercut (the last inference of
the argument and the last inferences of two subarguments). For the first count, this can
only be done if there is another Pj such that I(Pj) and Pj ≈ P and Pj �∈ {P1, . . . ,Pn} and
Pj(a) is the case. However, P1 . . .Pn encompass all interests that a satisfies on this level,
so count undercut is not possible. The same argument holds for the other count. At this
point it is useful to note that these two counts are the only ones that are undefeated. Any
lesser count will be undercut by the count undercutter that takes all of P1 . . .Pn (resp.
P′1 . . .P

′
m) into account. Such an undercutter has no defeaters, so any non-maximal count

is not justified. The undercutter of prefinf(a,b, [P1]) is based on two counts. We have
seen that any non-maximal count will be undercut. If the maximal counts are used,
we have n = m for undercutter arguments that use Q � P, since we have that on all
more important levels than [P1], a and b satisfy an equal number of interests. So the
undercutter inference rule cannot be applied since n �= m is not true. For that reason,
a rebutting argument with conclusion pref(b,a) will not be justified. This means that
for every possible type of defeat, either the defeat is inapplicable or the defeater is itself
defeated by undefeated arguments. This means that the argument is sceptically justified.
⇒: Suppose that a is not strictly lexicographically preferred over b. This means that
for all importance levels [P], either a does not satisfy more interests than b on that
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level, or there exists a more important level where b satisfies more interests than a.
This means that any argument with conclusion pref(a,b) (which has to be of the form
above) is either undercut by count(b, [P],S)uc because it uses a non-maximal count, or
by prefinf(a,b, [P])uc because there is a more important level where a preference for
b over a can be derived. This means that any such argument will not be sceptically
justified.
(ii)⇐: Suppose a is strictly ceteris paribus preferred over b. This means that there is (at
least) one interest, let us say P, that a satisfies and b does not, and there are no interests
that b satisfies and a does not. In this case, we can construct the following argument.

P(a) I(P)

sat(a, [P],1) sat(b, [P],0) P≈ P 1 > 0

pref(a,b)

Premise P(a) is justified by condition 1.2. Premise I(P) cannot be defeated (condition
1.1). Note that, since there is no importance ordering specified, counts can only include
0 or 1 interest(s). So the first count cannot be undercut, because there are no other
interests that are equally important as P (condition 1.3b). The second count cannot be
undercut because b does not satisfy P. Since there are no interests that b satisfies but
a does not, the last inference can only be undercut by an undercutter that uses a non-
maximal count and so will be undercut itself.
⇒: Suppose a is not strictly ceteris paribus preferred over b. This means that either there
is no interest that a satisfies but b does not, or there is some interest that b satisfies and a
does not. In the first case, the only arguments that derive a preference for a over b have
to use non-maximal counts and hence are undercut. In the second case, any argument
that derives a preference for a over b is rebut by the following argument,

Q(b) I(Q)

sat(b, [Q],1) sat(a, [Q],0) Q≈Q 1 > 0

pref(b,a)

and is not sceptically justified. ��

7 Conclusions

In this paper we have made a case for explicitly modelling underlying interests when
reasoning about preferences in the context of practical reasoning. We have presented
an argumentation framework for reasoning about qualitative interest-based preferences
that models ceteris paribus and lexicographic preference.

In the current framework, we have only considered Boolean issues and interests.
While this suffices to illustrate the main points discussed in this paper, multi-valued
scales would be more realistic. Such an approach would open the way to modelling dif-
ferent degrees of (dis)satisfaction of an interest. For example, [5] take into account the
level of satisfaction of goals on a bipolar scale. In the Boolean case, the lexicographic
preference ordering is based on counting the number of interests that are satisfied by
outcomes. This is no longer possible if multi-valued scales are used. In that case, we



Reasoning about Interest-Based Preferences 129

could count interests that are satisfied to a certain degree (like e.g. [5]), or compare out-
comes in a pairwise fashion and count the number of interests that one outcome satisfies
to a higher degree than another (like e.g. [7,13]).

Currently, we suppose that the interests and importance ordering among them are
given in a knowledge base. We can make our framework more flexible by allowing
such statements to be derived in a way that is similar to the derivation of statements
about the satisfaction of interests.

We would also like to look into the interplay between different issues promoting or
demoting the same interest. For example, a high salary and a high position both lead
to status, but together they may lead to even more status. Or a low salary may promote
cutback, but providing a lease car will demote it. Do these effects cancel each other out?
The principles that play a role here are related to the questions posed in the context of
accrual of arguments [18].

Since our long-term goal is the development of an automated negotiation support
system, we plan to look into negotiation strategies that are based on qualitative, interest-
based preferences as described here, as opposed to utility-based approaches currently
in use. For the same reason, we plan to implement the argumentation framework for
reasoning about interest-based preferences that we have presented here. Another inter-
esting question in this context is how interest-based preferences can be elicited from a
human user.
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Abstract. Clustering is a part of data mining domain. Its task is to identify
groups consisting of similar data objects according to defined similarity crite-
rion. One of the most common problems in this field is the time complexity of
algorithms. Reducing the time of processing is particularly important due to con-
stantly growing size of present databases. Granular computing (GrC) techniques
create and/or process data portions, called granules, identified with regard to simi-
lar description, functionality or behavior. An interesting characteristic of granular
computation is the ability to create multi-perspective view of data depending on
the resolution level required. Data granules identified on different levels of res-
olution form a hierarchical structure expressing relations between the objects of
data. Granular computing includes methods from various areas with the aim of
supporting human in better understanding of analyzed problems and generated
results.

The proposed solution of clustering is based on processing granulated data in
the form of hyperboxes. The results are compared with the clustering of point-
type data with regard to complexity, quality and interpretability.

Keywords: Knowledge discovery, Data mining, Information granulation, Gran-
ular computing, Clustering, Hyperboxes.

1 Introduction

Cluster analysis is organizing a collection of patterns (usually represented as a vector
of measurements, or a point in a multi-dimensional space) into clusters based on their
similarity [5]. The points within one cluster are more similar to one another than to
any other points from the remaining clusters. The term ”similar” can be different for
various clustering algorithms and the type of data used, but usually means a reverse of a
distance between the points, Euclidean for continuous attributes. Partitioning methods
have had wide applications, among others, in pattern recognition, image processing,
statistical data analysis and knowledge discovery.

There are many challenges met by clustering methods such as: differences in cluster
size or density, arbitrary shapes of clusters, presence of noise or outliers and detecting
data of no clusters present [4]. Another issue when discussing clustering algorithms is
time complexity. This is particularly important when dealing with large databases.

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 131–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.wi.pb.edu.pl


132 U. Kużelewska

Granular computing is a new multidisciplinary theory rapidly developing in recent
years. The most common definitions of GrC [10], [14] include an assumption of com-
puting with information granules, that is collections of objects, which exhibit similarity
in terms of their properties or functional appearance. Although the term is new, the
ideas and concepts of GrC have been used in many fields under different names: infor-
mation hiding in programming, granularity in artificial intelligence, divide and conquer
in theoretical computer science, interval computing, cluster analysis, fuzzy and rough
set theories, neutrosophic computing, quotient space theory, belief functions, machine
learning, databases, and many others. According to the more universal definition, gran-
ular computing may be considered a label of a new field of multi-disciplinary study
dealing with theories, methodologies, techniques and tools which make use of granules
in the process of problem solving [2].

Distinguishable aspect of GrC is a multi-perspective standpoint on data. Multi-
perspective means diverse levels of resolution depending on saliency features or grade
of details of a studied problem. Data granules, which are identified on different levels
of resolution form a hierarchical structure expressing relations between data objects.
This structure can be used to facilitate investigation and helps to understand complex
systems. Understanding of analyzed problem and attained results is the main aspect of
human-oriented systems. In addition, there are also definitions of granular computing
focused on systems supporting human beings [2]. According to definitions mentioned
above, such methodology allows to ignore irrelevant details and concentrate on the es-
sential features of the systems to make them more understandable.

There have been many attempts to solve problems with data granulation. To give a
few examples: knowledge exploration in spatio-temporal databases [8], intelligent fault
detection system [7], image segmentation [13], data mining [11]. In [1] the approach to
data granulation based on approximating data by multi-dimensional hyperboxes is pre-
sented. The hyperboxes represent data granules formed from the data points focusing
on maximizing density of information present in the data. It benefits from the improve-
ment of computational performance, among others. The algorithm is described in the
following sections.

This article examines an approach to data clustering based on processing granules
of data in the form of hyperboxes. This solution is characterized by reduced time in
contrary to processing point-type data. Experiments have been performed on several
multi-dimensional data sets containing different numbers of clusters. They have been
examined both the time of data clustering and the quality of results measured by quality
indices. The article also discusses the way of creating hierarchical structure of data
containing levels of point-type object clusters as well as groups of hyperboxes.

This paper is organized as follows: next section, Section 2, describes the method of
hyperboxes creation, Section 3 contains description of clustering methods: traditional -
partitioning (Section 3.1) and hierarchical (Section 3.2) and one of recently proposed
- SOSIG (Section 3.3). The following part, Section 4, describes indices for assessment
clustering results. Section 5 reports on collected data sets and executed experiments.
The last section concludes the article.
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2 Data Granulation

The method of granulation is based on maximization of information density from point-
type data. There are hyperboxes created, which cover areas densely populated by data
objects. The hyperboxes (referred as I) are multi-dimensional structures described by
a pair of values a and b for every dimension. The point ai and bi represent minimal
and maximal value of the granule in i-th dimension respectively, thus, width of i-th
dimensional edge equals |bi − ai|.

Fig. 1. Algorithm of hyperboxes construction

The main steps of the algorithm are presented in Figure 1. Information density can
be expressed by Equation 1:

σ =
card(I)

φ(width(I))
, (1)

where card(I) denotes the number of data points belonging to hyperbox I and φ(width
(I)) is a function of hyperboxes width described by Equation 2. Belonging to a hyper-
box means, that the values of point attributes are between or equal the minimal and
maximal values of the hyperbox attributes. For that reason there is a necessity to re-
calculate cardinality in every case of forming a new larger granule from a combination
of two granules. Maximization of σ is a problem of balancing the possible shortest
dimensions against the greatest cardinality of formed granule I .

In case of multi-dimensional granules as a function of hyperboxes width the function
from Equation 2 is applied:

φ(u) = exp(K ·max
i

(ui)−min
j

(uj)), i, j = 1, . . . , k (2)

where k represents a number of dimensions, u = (u1, u2, . . . , uk) and ui = width([ai,
bi]) for i, j = 1, . . . , k. The points ai and bi denote minimal and maximal value in i-th
dimension respectively. Constant K originally equals 2, however, in the experiments
different values of a given as parameter K have been used used.
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This algorithm assumes processing of both hyperboxes and point-type data. To make
it possible, new data are characterized by 2 · n values in comparison to original data.
The first n attributes describe minimal, whereas the following n maximal values for
every dimension. To assure topological ”compatibility” point-type data and hyperboxes
dimensionality of the data is doubled initially. Computational complexity of this algo-
rithm is O(N3). However, in every step of the method, the size of data is decreased by
1, which in practice reduces the general complexity significantly.

3 Clustering Algorithms

Clustering methods can be divided into two main categories: partitioning and hierar-
chical [5]. It is connected with the form of results achieved. There are also algorithms
proposed in recent 20 years creating a new category - density-based techniques, where
groups are areas of high data density [4]. The main advantages of them are: automatic
evaluation of the number of groups and ability to detect their arbitrary shapes. One
of such techniques is SOSIG [11], which has all the merits mentioned before, but is
characterized by high computational complexity.

3.1 Partitioning Algorithms

Partitioning algorithms determine cluster centers to optimize a criterion function, which
is the most common the sum-squared-error function (see Equation 3).

E =
nc∑
i=1

∑
x∈Ci

|x− ci|2, (3)

where ci denotes the center of cluster Ci. Partitioning methods are based on iterative
process relocating objects among the groups to minimize the value of the criterion func-
tion. The most popular partitioning method is k-means [5], dividing data into required
k groups.

All partitioning methods suffer from some difficulties. Among other things, the num-
ber of clusters is required a priori. The form of criterion function limits the shapes of
detected groups to spherical shapes. Additionally, there are problems when clusters are
varied in size. However, time complexity of partitioning algorithms is very low - O(n),
which makes them the most often used methods in exploration of large databases.

3.2 Hierarchical Algorithms

Hierarchical clustering algorithms [4] create a kind of cluster tree, called dendrogram,
showing relationship among the objects. Grouping into the desired number of clusters is
achieved by cutting the dendrogram at an appropriate level. On account of the method
of distance calculation between clusters they can be divided mainly into single-link
(hsl) and complete-link (hcl) approaches. In hsl method dissimilarity between groups is
calculated as distance between two nearest points from the groups. On the contrary, in
hcl approach the dissimilarity is measured as the longest distance between points from
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different groups. Although computationally expensive, this is a very popular technique,
overcoming limitations such as differences in size or shape of clusters. In this technique
time complexity is about O(n2).

3.3 Self-Organizing System for Information Granulation

SOSIG (Self-Organizing System for Information Granulation) algorithm is a system
designed for detecting granules (groups) present in data. It takes a parameter rg ∈ [0, 1]
denoting required level of details (resolution) of generated result. Originally it has been
designed to deal with point-type data, but in order to reduce its high time complexity it
has been adapted to hyperboxes processing.

Using partitioning of both hyperboxes and data objects, it is possible to create a three-
level structure, which can be helpful to understand relations between data objects. The
main level of the hierarchy is defined by clusters of hyperboxes and the third lowest
level consists of point-type data clusters. The middle level is composed of granules
containing these third level clusters, which are entirely located in one of the hyperboxes.

SOSIG creates a network structure of connected objects (according to a chosen ap-
proach: points or hyperboxes) forming clusters. The organization of the system, includ-
ing the objects as well as the connections, is constructed on the basis of relationships
between input data without any external supervision. The structure elements are repre-
sentatives of input data, that is, an individual object from the structure stands for one
or more object from the input set. As a result, the number of representatives is much
smaller than input data without losing information.

To have convenient and compact notation, let us assume input data are defined as
an information system IS = (U,A) [9], where U = {x1, . . . , xn} is a set of objects
and A = {a1, . . . , ak} is a set of attributes. The result generated by SOSIG is also
described by an information system IS′ = (Y,A∪{agr}), where the last attribute agr :
Y → {1, . . . , nc} denotes the label of generated cluster and card(Y ) ≤ card(U) and
∀x ∈ U∃y ∈ Y (δ(x, y) < NR). Parameter NR in general defines the area of objects
interactions and is re-calculated in every iteration according to current connections in
the network. The steps of the main (learning) part of SOSIG are shown in Algorithm 1.
For a detailed description of the method see [11] and [6].

A measure of usefulness of objects is the similarity level expressed by Equation 4,
which defines a degree of closeness between the examined representative point y and the
most similar point x from the training data. Only training points from the neighborhood
of y (defined by NR) are considered.

sl(y) = NR−min({δ(y, x) : x ∈ U}) (4)

To calculate the distance between hyperboxes measure expressed by Equation 5 was
used:

d(IA, IB) = (‖aB − aA‖+ ‖bB − bA‖)/2 (5)

where ‖aB − aA‖ and ‖aB − aA‖ denote the sum of subtractions of minimal (a) and
maximal (b) values of granules IA and IB respectively in every dimension. The equation
has been introduced in [1].
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Algorithm 1. Main steps of SOSIG algorithm
Data:

– IS = (U,A) - an information system, where U = {x1, . . . , xn} is a set of objects and
A = {a1, . . . , ak} is a set of attributes,

– {δa : a ∈ A} - a set of distance function of form δa : Va × Va → [0,∞), where Va is
a set of values for attribute a ∈ A and a global distance function δ : U × U → [0,∞)
defined by δ(x, y) = fusion(δa1(a1(x), a1(y)), . . . , δak(ak(x), ak(y)))

– sizenet ∈ {0, 1, . . . , card(U)} - initial size of the network, rg ∈ [0, 1] - resolution of
granulation,

Result: IS′ = (Y,A ∪ {agr}) - an information system, where the last attribute
agr : Y → {1, . . . , nc} denotes label of generated granule and
card(Y ) ≤ card(U) and ∀x ∈ U∃y ∈ Y δ(x, y) < NR

begin
[NRinit, Y ] ←− initialize(U,A, sizenet);
for yi, yj ∈ Y, i 
= j do /*form clusters*/

if δ(yi, yj) < NRinit then connect(yi, yj);

NR ←− NRinit;
while ¬stopIterations(Y ) do

for y ∈ Y do
Δ(y) = (δ(y, x))x∈U ; /*calculate distances between input data*/;
sl(y) = NR−minΔ(y);/*similarity level of the object from the network*/;

delete(U,A, Y ); /*remove redundant network objects*/;
for yi, yj ∈ Y, i 
= j do /* reconnect objects*/

if δ(yi, yj) < NR then connect(yi, yj);
agr(yi) ←− 0; agr(yj) ←− 0;

grLabel ←− 1;
for yi ∈ Y do /*label objects*/

if agr = 0 then agr(yi) ←− grLabel;
for yj ∈ Y, j 
= i do

if connected(yi, yj) then agr(yj) ←− grLabel;

grLabel ←− grLabel+ 1;

for yi ∈ Y do
/*calculate the nearest neighbor for every objects*/;
δNN (yi) = min({δ(yi, yj) : yj ∈ Y & j 
= i});

NR ←− rg ·
∑

y∈Y δNN (y)

card(Y )
;/*new value of NR*/;

if ¬stopIterations(Y )/*test the stopping condition */ then
joinNotRepresented(U,Y,NR,Δ);
adjust(Y,U,A,NR);

To control the size of the network there is a removal step, where useless objects are
removed. It affects redundant objects from the network representatives. The term redun-
dant applies to the points with the same input object (from U ) in their neighborhood.
The best points stay in the network and also the ones which are not redundant for other
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input data. The remaining objects are re-connected and labeled. A granule is determined
by the edges between the objects in the structure. The components of the same granule
(group) have equal labels.

The last step is to apply a procedure of adjusting of all network objects, where values
of attributes of some objects are slightly modified (depending on a similarity level of
objects and the type of attributes). This procedure allows to adjust network objects in
the attained solution to the examined problem.

It must be emphasized, that algorithm SOSIG does not require a number of clusters
to be given. On contrary to partitioning and hierarchical methods groups are identified
automatically, which eliminates the inconvenient step of assessing and selecting the best
result from a set of potential clusterings.

4 Clustering Validation

Together with specification of elementary granules it is necessary to define measures of
granule quality [12]. The aim of clustering techniques is detecting of granules, which
are possibly the most compact and separable. To evaluate compactness and separability
of discovered clusters there are proposed statistics, so-called internal validity indices.
Validity indices are designed to estimate the quality of obtained partitioning. Assess-
ment of the most optimal result requires calculation of validity indices for different
values of algorithm parameters, which usually is a number of clusters. The most com-
monly used indices are Dunn and Dunn-like statistics and Davies-Bouldin (DB) index
[3]. Their advantage is indicating no trends with respect to the number of clusters.
Therefore, the minimum (DB) or maximum (Dunn) value indicates the most optimal
partition. The Dunn’s value for specified number of granules nc is defined by Equation
6. Let U be a set of objects and let Ci be a cluster, where i = 1, . . . , nc.

Dnc = min
i=1,...,nc

{
min

j=i+1,...,nc

(
d(Ci, Cj)

maxk=1,...,nc diam(Ck)

)}
(6)

where d (Ci, Cj) is the dissimilarity function between two clusters Ci and Cj defined
as

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (7)

and diam(C) is a diameter of a cluster defined as follows:

diam(C) = max
x,y∈C

d(x, y) (8)

Following the above definition the index value is large for compact clusters situated
significantly far from one another. DB index is expressed by Equation 9. It is defined
for the number of clusters, which equals nc.

DBnc =
1

nc

nc∑
i=1

(
max

j=1,...,nc,j 	=i
Rij

)
(9)
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where

Rij =
stdev (Ci) + stdev (Cj)

d(Ci, Cj)
(10)

where stdev (Ci) (stdev (Cj)) denotes standard deviation of a cluster Ci (Cj , respec-
tively). The standard deviation of a cluster i is given by Equation 11.

stdev (Ci) =
1

|Ci|
√∑

x∈Ci

(d (x, x))
2 (11)

where x is a centroid of the cluster and d (x, x) is an Euclidean distance between the
point x and the centroid x.

DB index measures the average similarity between each cluster and its most similar
one, thus it is desirable to minimize this value.

When there is appropriate partitioning available, external validity measures can be
used. External indices take into account a membership of points belonging to the gen-
erated (C) and compared (P ) structure [3]. One example is Rand statistic (R), which
has values between 0 and 1. High values of this index indicate great similarity between
C and P .

Let U be a set of objects U = {x1, . . . , xn} and original C and compared partition-
ing P are composed of r clusters - C = {c1, . . . , cr} and P = {p1, . . . , pr}. Rand
index is defined by Equation 12:

R =
a+ b

a+ b+ c+ d
(12)

where a, b, c and d are defined as follows:

– a is the number of pairs of elements in U which are in the same set in C and in the
same set in P ,

– b - the number of pairs of elements in U which are in different sets in P and in
different sets in C,

– c - the number of pairs of elements in U which are in the same set in P and in
different sets in C,

– d is the number of pairs of elements in U which are in different sets in P and in the
same set in C.

5 Experiments

The experiments focus on comparing results of detecting groups in two approaches:
when data are points and hyperboxes. There are the following algorithms used: k-
means, hcl, hsl and SOSIG. For methods, which require a number of groups as a pa-
rameter there are given original values from Table 1. In every case the following are
compared: time of clustering (Table 3) and values of validity indices (Tables 4 and 5).
In case of SOSIG algorithm, because of its ability to detect a number of clusters, the
numbers of detected groups are also examined (Table 2). The interpretability of clus-
terings created on the basis of SOSIG results has also been taken into consideration
(Tables 6 and 7).
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5.1 Description of Datasets

There are several data sets in the experiments, shown in Table 1. There are synthetically
generated (norm2D2gr, sph2D6gr, sph10D4gr) and real data (irises). The sets are
various with regard to the number of objects, dimensionality and the existed number of
groups. Column number of groups contains the number of clusters present in the data
according to the subjective human perception based on the separation and compactness
of the groups. However, the irises data set contains real data delivered with a priori
class attribute. For this reason the value of group number for this data is related to the
number from the decision attribute.

Table 1. Data sets used in the experiments

data number of number of number of number of
set dimensions points hyperboxes groups

norm2D2gr 2 200 51 2
sph2D6gr 2 300 70 6

irises 4 150 94 3
sph10D4gr 10 200 13 4

5.2 Results of Experiments

Algorithm SOSIG detects a number of clusters automatically. The number of groups
identified this way in described above data sets is presented in Table 2. When the result
consists of groups of highly variable sizes, only a number of main groups is presented
there. Partitioning of irises set contains two levels (low and high resolution), which is
visible in all the following tables. In the result there are 2 clusters when granulation is
performed on low resolution level, whereas in high resolution level one large cluster is
split in two smaller ones and additionally, there are 5 significantly smaller groups. The
results considering both levels of granulation are shown in the same cell of the tables
where the first value corresponds to low and the second to high level of resolution. Clus-
tering of irises hyperboxes is composed of only one level with 4 main and 6 additional
smaller groups. In clustering results of the remaining data sets the number of groups
corresponds to each other for both types of processed data.

Table 2. Results of clustering of point-type and granulated data with respect to the number of
identified groups

number of groups
data point-type granulated
set data data

norm2D2gr 2 2
sph2D6gr 6 6

irises 2, 3 4
sph10D4gr 4 4
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The results presented in Table 3 consider the run time (in seconds) of the algorithms
examined on a one-off basis. This is the average time of 50 runs of the methods cal-
culated for clustering original data as well as hyperboxes. The last column of the table
contains the quotient of the values. It can be seen, that the processing of granulated
data is significantly (up to about 40 times in case of SOSIG and 14 times in case of
the remaining algorithms) faster than processing original point-type objects. The most
acceleration is visible when the number of objects in data is great and considerably
predominate the number of attributes.

Table 3. Average time (in seconds) of clustering hyperboxes and point-type data

data algorithm point-type data granulated data tpd/tgd
set tpd tgd

SOSIG 0.360 0.040 9
k-means 0.062 0.047 1.32

norm2D2gr hcl 0.110 0.032 3.44
hsl 0.125 0.031 4.03

SOSIG 0.930 0.080 11.63
k-means 0.187 0.094 2.0

sph2D6gr hcl 0.266 0.047 5.66
hsl 0.250 0.032 7.81

SOSIG 0.870, 0.800 0.790 1.01
k-means 0.141 0.125 1.13

irises hcl 0.078 0.046 1.70
hsl 0.094 0.047 2.0

SOSIG 0.270 0.010 38.57
k-means 0.156 0.047 3.32

sph10D4gr hcl 0.141 0.016 8.81
hsl 0.219 0.015 14.6

Comparing the results of clustering algorithms one can notice the most increased
speed for hierarchical algorithms and SOSIG. As it has been mentioned, hierarchical
algorithms arouse scientists’ interest due to their better clustering ability in comparison
to less complex partitioning methods. However, their time complexity is greater. The
same applies to SOSIG. Processing granulated data in advance can be a way of enabling
them to cluster large size databases in reasonable time.

Obviously, the total time of clustering is influenced by the time of data preprocess-
ing, particularly when the algorithm of data preparation is complex. However, in the
experiments described in this paper this time is not taken into consideration for two rea-
sons. First of all, the number of objects in preparing a set is decreasing by one in every
iteration, which practically reduces the time complexity of pre-processing procedure. In
addition, in case of algorithms, which take a number of groups as an input parameter,
data should be clustered at least several times to evaluate the number of clusters present
in this data. In this case single preparation of data has significantly less importance in
comparison to multiple data clustering.

To compare results of clustering regarding the most compact and separable parti-
tioning two internal indices: DB and Dunn′s have been chosen. In addition, external



Advantages of Information Granulation in Clustering Algorithms 141

measure R has been selected since there were a priori group labels available. This in-
dex is convenient to assess clusters quality as well as differences between partitioning
results as its range is in interval [0,1]. In general, validity indices are not universal.
However, this is the most popular tool for assessing clustering results [3]. Simultane-
ous comparison of several of them can give a quite objective result. The evaluation of
grouping results is shown in Tables 4 and 5.

Table 4. Results of clustering of norm2D2gr and sph2D6gr set in form of point-type and
hyperboxes

norm2D2gr set sph2D6gr set
algorithm index point-type granulated point-type granulated

data data data data
R 0.96 0.98 0.99 0.99

SOSIG DB 0.06 0.08 0.03 0.01
Dunn’s 0.16 0.74 0.51 1.38

R 0.98 1.0 0.76 0.99
k-means DB 0.07 0.09 0.05 0.01

Dunn’s 0.26 0.50 0.06 1.33
R 0.98 1.0 0.87 0.99

hcl DB 0.07 0.09 0.03 0.01
Dunn’s 0.26 0.50 0.51 1.33

R 0.50 1.0 0.50 1.0
hsl DB 0.07 0.09 0.03 0.01

Dunn’s 0.26 0.50 0.51 1.33

When studying values of the indices it can be noticed, that in the most cases data
granulation did not influence negatively the condition of clustering. Clusterings of norm
2D2gr, sph2D6gr and sph10D4gr in form of hyperboxes performed by all of the al-
gorithms are characterized by comparable or better values of the internal indices. In
case of R index there can be also noticed increase of quality (up to 50%) for hyper-
box results. For irises set the values of the internal indices are better for point-type
clustering. However, for this type of input data R index is smaller for hcl and k-means
algorithms.

Table 6 contains detailed description of groups detected in clustering of irises hy-
perbox data. The final result is composed of 10 clusters. However, due to considerable
differences in their size the result focuses on the main 3 granules. The apriori de-
cision attribute is composed of 3 classes: Iris-setosa (I-S), Iris-versicolor (I-Ve) and
Iris-virginica (I-Vi). The set is described by 4 attributes: sepal-length (SL), sepal-width
(SW), petal-length (PL) and petal-width (PW). The granule gr1 contains 13 smaller
granules (hyperboxes) and all of them belong to class Iris-setosa. The other granule
(gr3) has comparable size (15 objects) and contains only objects from Iris-versicolor
class. The largest granule gr2 consists of 36 hyperboxes. It is not homogenous with
respect of class attribute due to 31% of the objects come from Iris-versicolor class and
69% from Iris-virginica.

Attention has to be focused on the attributes resulted from doubling of dimensions.
These features are related to minimal and maximal values of the original attributes. As
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Table 5. Results of clustering of irises and sph10D4gr set in form of point-type and hyperboxes

irises set sph10D4gr set
algorithm index point-type granulated point-type granulated

data data data data
R 0.91 0.72 1.0 1.0

SOSIG DB 0.14, 0.12 0.2 0.01 0.0001
Dunn’s 0.39, 0.19 0.25 7.83 9.29

R 0.79 0.82 1.0 1.0
k-means DB 0.18 0.29 0.01 0.0001

Dunn’s 0.06 0.09 7.83 9.29
R 0.77 0.81 1.0 1.0

hcl DB 0.18 0.28 0.01 0.0001
Dunn’s 0.11 0.15 7.83 9.29

R 0.78 0.70 1.0 1.0
hsl DB 0.13 0.21 0.01 0.0001

Dunn’s 0.20 0.22 7.83 9.29

Table 6. Main level of irises data hierarchy composed of clustering result of hyperboxes set.
Table contains 3 main granules.

granule id/ class attributes minimal maximal diffAvg

granule size distribution values values
100% I-S SL 4.4-5.4 4.8-5.5 0.25

gr1/13 SW 3.0-3.7 3.1-3.9 0.15
PL 1.0-1.5 1.5-1.9 0.29
PW 0.1-0.4 0.1-0.5 0.12

31% I-Ve SL 5.6-7.1 5.6-7.1 0.04

gr2/36 69% I-Vi SW 2.5-3.4 2.5-3.4 0.03
PL 4.3-6.0 4.4-6.0 0.07
PW 1.4-2.5 1.4-2.5 0.02

100% I-Ve SL 5.2-6.1 5.2-6.2 0.11
SL 5.2-6.1 5.2-6.2 0.11

gr3/15 SW 2.3-2.9 2.3-3.0 0.08
PL 3.5-4.7 3.6-4.7 0.17
PW 1.0-1.4 1.1-0.5 0.08

a consequence there appears an additional feature - the difference between the maximal
and minimal value of particular variables. Average differences are presented in Table 6
in column diffAvg. Granule gr1 is characterized by the widest range of all attributes,
granule gr2 contains flowers with the smallest size of petals and sepals. Finally, granule
gr3 is composed of irises with narrow and long petals and sepals.

Table 7 presents granules from the second level of data relationship hierarchy. The
granules are hyperboxes identified in the first phase of the granulation. In the table the
greatest 3 hyperboxes (denoted as grij) from every granule of the main level were se-
lected. The second-level granules from the top-level granules gr1 and gr3 have larger
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Table 7. Second level of irises data hierarchy composed of hyperboxes (only selected objects
are presented)

main granule size class minimal values diffAvg

granule id distribution of attributes
SL 5.0 0.5

gr11 15 100% I-S SW 3.4 0.3
PL 1.3 0.4
PW 0.2 0.2
SL 4.6 0.5

gr1 gr12 15 100% I-S SW 3.3 0.3
PL 1.0 0.7
PW 0.2 0.3
SL 4.8 0.2

gr13 9 100% I-S SW 3.0 0.2
PL 1.2 0.4
PW 0.1 0.2
SL 6.4 0.3

gr21 5 100% I-Ve SW 2.9 0.2
PL 4.3 0.4
PW 1.3 0.2
SL 6.4 0.1

gr2 gr22 4 100% I-Vi SW 3.0 0.2
PL 5.1 0.4
PW 1.8 0.2
SL 5.9 0.3

gr23 4 100% I-Vi SW 2.8 0.2
PL 4.8 0.3
PW 1.8 0.0
SL 5.6 0.5

gr31 14 100% I-Ve SW 2.7 0.3
PL 3.9 0.8
PW 1.2 0.3
SL 5.7 0.5

gr3 gr32 8 100% I-Ve SW 2.6 0.3
PL 3.5 0.8
PW 1.0 0.3
SL 5.4 0.3

gr33 6 100% I-Vi SW 2.8 0.2
PL 4.1 0.4
PW 1.3 0.2

size and the range of their attributes values is greater in contrast to the granules belong-
ing to gr2. It shows that granules gr1 and gr3 are more compact and have greater regions
of even information density. It can be noticed that the hyperboxes are homogenous with
regard to the class attribute.
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6 Conclusions

The article presents an approach to time complexity reduction in the process of cluster-
ing data. The idea is based on preparation of point-type input data to multidimensional
granules in the form of hyperboxes. Formation of the granules maximizes information
density transferred by the hyperboxes. The experiments showed the advantage of the
presented approach: significant time reduction of granulated data clustering in compar-
ison to point-type partitioning. It is particularly visible when data contain large number
of objects. Additionally, the quality of clustering result has not deteriorated when cop-
ing with granulated data, on the contrary - in most of the cases the quality has increased.
This is connected with the generalization ability of the presented method.

In case of SOSIG algorithm, clustering process can be performed on different res-
olution of data. Clustering of hyperboxes has been executed without changing the res-
olution. A three-level structure of data has been constructed by joining original point
(third down level) in hyperboxes (second level), whereas the top level contains divid-
ing of hyperboxes into clusters. Partitioning at the top level of hyperboxes granulation
(clustering) is composed of the same number of groups as partitioning point-type data.
The quality of created clusters is also comparable due to the similar values of quality
indices are similar.

The process of hyperbox creation is a type of aggregation operation, therefore the
major benefit of the presented method is shortening the time of cluster creation in com-
parison to the processing point-type data. It is particularly effective when data contain
large number of objects. Hyperboxes also determine additional level of relationship ex-
isting within data. Finally, the description of granules is more comprehensible since the
hyperboxes contain minimal and maximal values of attributes.
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Abstract. There is a wide variety of applications that require modeling the be-
haviour of virtual agents. Some of these applications aim at human interaction,
such as virtual assistants, and others aim at simulation of human behavior, such
as games or robotics. Most of these applications require not only some level of
intelligent behavior, but also a display of realistic human behavior. This has led
to the definition and use of models that integrate features like emotions, personal-
ity traits, preferences and motivations. Most of this work has been carried out in
the context of reactive architectures. Thus, the reasoning on the emotional state
of agents is only performed for the very next future, generating behavior that is
myopic for middle or long term goals. In this paper, we propose instead a delib-
erative model based on automated planning that integrates all these features for
long term reasoning.

Keywords: Planning, Agent, Emotion, Personality, Motivation, Preference,
Decision making.

1 Introduction

In many domains, the behaviour of any agent can be seen as a sequential decision-
making process, i.e. the cognitive process results in the selection of a course of actions
to fulfill some goals. The decision making process is a continuous process integrated
with the interaction with the environment where individual decisions must be examined
in the context of a set of needs and preferences that the agent has. Recent theories state
that human decision-making is also influenced by marker signals that arise in bioregu-
latory processes, including those that express themselves in emotions and feelings [11].
Probably, this is one of the reasons why the work on reasoning about emotions is be-
coming increasingly relevant, specially in contexts such as assistive technology, user
interfaces, or virtual agents [4,14].

In spite of the wide variety of points of view that have been used to study emotions,
it seems there is some agreement to consider emotion as an inborn and subjective reac-
tion to the environment, with an adaptive function, and accompanied of several organic,
physiological and endocrine changes [17]. Another point of agreement is that emotions
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are an outstanding factor in humans, because they modify and adapt their usual be-
havior. In the development of systems that interact with persons, as human behavior
simulators, emotions can not be ignored, because, on one hand, they may help on this
interaction and, on the other hand, they constitute a decisive part of human reasoning
and behavior. This is specially true when reasoning about sequential decision-making,
as in medium-long term planning, where the sequence of decisions can be influenced
by the emotional state of agents.

Emotions are also very related to characteristics of human personality. In contem-
porary psychology, there are five factors or dimensions of personality, called the Big
Five factors [19], which have been scientifically defined to describe human personality
at the highest level of organization. The Big Five traits are also referred to as a purely
descriptive model of personality called the Five Factor Model [10,24]. The Big Five
factors are: openness to experience, conscientiousness, extraversion, agreeableness and
neuroticism (opposite to emotional stability). Each of these factors has a more specific
set of features among which there is a correlation.

In the present work, a model of long term reasoning based on emotions and factors
of personality has been designed. It follows some ideas introduced in [1] using concepts
that already appeared in other works, like motivations and the use of drives to represent
basic needs [7,8]. The main novelty of our model is the use of automated planning for
providing long term deliberation on effects of actions taking into account not only the
agents goals, but also the impact of those actions in the emotional state of the agent.

We have defined a planning domain model that constitutes the reasoning core of an
agent in a virtual and multi-agent world [15]. It is a game oriented towards the use
of Artificial Intelligence controlled Bots, and it was designed as a test environment of
several Artificial Intelligence techniques. The game borrows the idea from the popular
video game THE SIMS. Each agent controls a character that has autonomy, with its
own drives, goals, and strategies for satisfying those goals. In this implementation, we
introduce the concept of how an agent prefers some actions and objects depending on
its preferences, its personality traits and its emotional state, and the influence of those
actions on long term achievement of goals. Thus, agents solve problems improving the
quality of the solution, achieving better emotional states.

The remainder of the paper describes the model design, the description of the domain
that implements the model, the empirical results that validate the model, the related
work and the conclusions derived from the work, together with future research lines.

2 Model Design

Our aim in this work is to include emotions and human personality traits in a delibera-
tive system, that uses automated planning in order to obtain more realistic and complex
behavior of agents. These behaviors are necessary to implement a wide variety of appli-
cations such as agents that help users to change their way of life, systems related with
marketing and advertising, educational programs, systems that play video games or au-
tomatically generate text. The goal is to show that the use of emotional features, with
the establishment of preferences about certain actions and objects in its environment,
improves the performance of a deliberative agent by generating better plans.
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In the virtual world, an agent tries to cater for its needs, its motivations, through spe-
cific actions and interacting with different objects. Five basic needs have been identified
for the agent, which are easily identifiable in human beings: hunger, thirst, tiredness,
boredom and dirtiness. Along with the first three, widely used in many systems, we
have added dirtiness and boredom, which are more domain-specific to add a wider va-
riety of actions and get richer behaviors. These basic needs increase over time, so their
values increase as time goes by. Thus, the agent always needs to carry out actions to
maintain its basic needs values within reasonable limits.

To cater for each of these basic needs, the agent must perform actions. For example,
it can drink to satisfy its thirst or sleep to recover from fatigue. There are different
actions to cater for the same need, and the agent prefers some actions over others. Thus,
the agent may choose to read a book or play a game to reduce boredom. Besides, the
effects of those actions can be different depending on its emotional state. It will receive
more benefit from applying more active actions when its emotional state is more aroused
and more passive or relaxed actions when it is calm.

To carry out each of these actions, the agent needs to use objects of specific types.
Thus, it will need food to eat, a ball to play or a book to read. There are different objects
of each type in its environment and the agent has preferences over them. When an agent
executes an action with an object, its emotional state is modified depending on the agent
personality, and preferences and activations for this object.

We have chosen to implement a model widely-accepted in psychology that represents
the emotional state of an agent as a two-dimensional space of two qualities: valence and
arousal [13]. Valence ranges from highly positive to highly negative, whereas arousal
ranges from calming or soothing to exciting or agitating. The first one is a measure of
the pleasantness or hedonic value, and the second one represents the bodily activation.
Other models use a set of independent emotions, which requires defining a group of
basic emotions. However, not all combinations of values for these emotions are a valid
emotional state (e.g. the combination of maximum values in the emotions of joy and
anger is not a realistic emotional state). In general, the valence and arousal model can
be shown to be equivalent to the explicit representation of the usual set of emotions of
other computational cognitive simulations, though it requires a simpler representation
and reasoning. For instance, an emotion such as happiness can be represented as high
valence and high arousal. Both models are recognized and defended by experts in psy-
chology, but we prefer the second alternative because it makes processing easier and
prevent invalid states. In our model, the valence and the arousal are modified by the
execution of actions, so both values are modified when an agent executes an action with
an object, depending on the agent preference and activation for this object, the person-
ality traits and the emotional state. Our goal is that the agent generates plans to satisfy
its needs and to achieve the most positive value of valence.

3 Domain Description

In order to use domain-independent planning techniques, we have to define a domain
model described in the standard language PDDL [16]. This domain should contain all
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the actions that the agent can perform in order to achieve the goals. Automated plan-
ning can be described as a search for a solution on a problem space where, the states
are represented using a set of predicates, functions and types, and the actions are de-
scribed with a set of preconditions and effects that model the state transitions. An ac-
tion is applicable only if all its preconditions hold in the current state and executing
the action changes the current state by adding and deleting the action effects. A prob-
lem is specified as an initial state (true literals in the starting state) and a set of goals.
Also, an optimization metric (as in our case valence, arousal and/or total time) can be
defined. Our domain has been designed based on the previous concepts of drive, emo-
tion, preference, activation and personality traits to represent each agent of the virtual
world. Now, we will define the different concepts composing the model, in automated
planning terms.

3.1 Drives

As already said, we use five drives: hunger, thirst, tiredness, dirtiness and boredom.
Drives are represented in the domain through functions. The ideal value for all drives is
established at zero. So, when a drive has a value of zero, its need is totally satisfied. Any
other value means the intensity of the need and the distance to the ideal value. The value
of each drive is increased as time goes by to represent the need rise. To reduce it, the
agent has to carry out some action. For instance, the agent must eat to reduce the drive
hunger. Given that the drives increase with time, every time an action is executed, one
or more drives will be decreased, but the rest will be increased. Thus, the planning task
becomes hard if we want all drives to be fulfilled (below a given threshold).

3.2 Objects

Objects describe the different elements of the virtual world. Objects may be of two
kinds: resources (or physical objects) and rooms. Resources represent objects needed
to carry out the actions to cater for needs; for instance, food, balls, books, etc. Rooms
describe physical spaces, where the agents may move and where resources are placed.
Both kinds of objects are represented as planning types and several instances of them
will be present in each problem. Also resources may be of two kinds: fungible resources
and non-fungible resources.

3.3 Personality Traits

Personality traits describe the agents personality and are based on the Big Five fac-
tors model (openness to experience, conscientiousness, extraversion, agreeableness and
neuroticism). Openness to experience involves active imagination, aesthetic sensitivity,
preference for variety and intellectual curiosity. Openness is modeled as a higher prefer-
ence for new experiences, i.e., an agent with high openness (open-minded) tends to use
and prefer new objects to known objects, while an agent with low openness will tend
to prefer known objects to new objects. Neuroticism represents the degree of emotional
stability of the agent. The bigger the neuroticism is, the smaller the emotional stability
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is. So, neuroticism is implemented as the variation factor of the emotional state. Thus,
the emotional state of a neurotic agent will vary more suddenly than a stable one when
actions are applied, as described later.

Conscientiousness includes elements such as self-discipline, carefulness, thorough-
ness, organization, deliberation and need for recognition. We implement conscientious-
ness as a factor in the decrements of the drives due to action executions, representing
how meticulous the agent is in carrying out the action. Thus, an agent with a high value
of conscientiousness gets a bigger effect when applying actions (a bigger decrease of
the involved drive). But, similarly, the other drives will also increase proportionately to
the conscientiousness value as time passes. The conscientiousness value also influences
the duration of the actions performed by agents. For instance, the actions performed by
a meticulous agent take more time than the ones performed by a careless agent.

The last two factors, extraversion and agreeableness, are related to social interaction.
Thus, they will be used in future versions of the system that include multiple agents
and interactions among them. Personality traits are represented in the domain through
functions.

3.4 Emotional State

The agents emotional state is determined by two components: valence and arousal.
Valence represents whether the emotional state of the individual is positive or negative
and to which degree. Arousal represents the bodily activation or agitation. We represent
them in the domain as PDDL functions. Since we want to obtain plans that maximize
the valence, we have to define the planning problems metric accordingly. Even if PDDL
allows generic functions to be defined as metrics, most current planners can only deal
with metrics that are defined over minimizing an increasingly monotonous function (no
action can have an effect that decreases its value), since metrics are considered in PDDL
as costs and each action has an associated cost.

In our model, objects used in the actions can cause valence both to increase (when
the agent likes the object) or decrease (when it does not like it). Therefore, it is not
possible to use the valence directly as the problem metric. Instead, we define an in-
creasingly monotonous function, v-valence, that the planner tries to minimize. Each
action increases v-valence, with positives values between 0 and 10 depending on the
preference for the object used, in the following amount:

Δv = (
n

nmax
)× (pmax − (pa + po)

2
)

where v is the value of v-valence, n the agent neuroticism, nmax the maximum
possible value for neuroticism, pmax the maximum possible value for a preference, pa
the agent preference for the executed action and po the agent preference for the used
object. In case the object is new to the agent, po=-1 and we replace po for the value of
the agent openness. Thus, this value can be used as a metric alone or combined with
others such as the duration of the plan.
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3.5 Preferences

Preferences describe the agent personal likes for each physical object of its environ-
ment. They are represented as PDDL functions of the form:

(= (preference apple) 5)

These values are not modified during the planning process and they are between zero,
for the detested objects, and ten, for the favourite ones. Preferences can also describe
the agent personal likes for each action. They are represented as PDDL functions of the
form:

(= (read-preference) 5)

Again, these values are not modified during the planning process and they are between
zero, for the detested actions, and ten, for the favourite ones. Preferences affect the
direction and degree of changes on the value of the valence, produced by the effects of
actions.

3.6 Activations

Activations describe the effect over the agent arousal for each physical object of its
environment. They are represented as PDDL functions of the form:

(= (activation apple) 5)

These values are not modified during the planning process and they are between zero,
for the objects that relax, and ten, for the objects that agitate. Activations can also de-
scribe the effect over the agent arousal for each action. They are represented as PDDL
functions of the form:

(= (read-activation) 5)

Again, these values are not modified during the planning process and they are between
zero, for the actions that relax, and ten, for the actions that agitate.

3.7 Actions

Actions defined in the domain describe activities that the agent may carry out. Each
action has a simulated duration (time spent in the virtual world). This duration is de-
termined from a standard time that takes to execute the corresponding action and the
agent’s value of conscientiousness. There are five types of actions:

– Actions to cater for its needs: Each one of these actions needs one
object of a specific type to decrease in one unit its corresponding drive value. In this
group of actions, we have defined: eat, drink, sleep, bath, shower, play,
read, watch and listen. Some of these actions require that the agent has taken
the object used, like eat, drink or read. Others, however, only require that the
object is located in the same room of the agent, like bath or sleep. In addition,
some actions such as eat and drink decrease the available amount of the object
used.
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In Figures 1 and 2, we show two examples of this action type. In each of these
actions, the agent needs to have the appropriate objects in order to carry out the
respective action; e.g. it needs food to eat and a readable object (a book or news-
paper) to read. We can see that the related drive decreases a quantity, depending on
the agent conscientiousness. On the other hand, the changes in the agent emotional
state (valence and arousal) depend on the agent preferences and activations over
the action to perform and the used object, and its personality traits. Thus, we have
an integrated model of these concepts, that can affect how actions are combined in
order to solve the agents problems.

(:action READ
:parameters (?reading-object - reading-object)
:precondition (and (in ?room)(taken ?reading-object)(not (time-goes-by)))
:effect

(and
(time-goes-by)
(assign (action-time) (* (conscientiousness) (read-duration)))
(decrease (boredom) (conscientiousness))
(when (and (< (boredom) 0))

(and (assign (boredom) 0)))
(when (and (< (preference ?reading-object) 0))

(and
(increase (valence)
(* (/ (neuroticism) (max-neuroticism))

(- (/ (+ (preference ?reading-object) (read-preference)) (max-preference)) 1)))
(increase (v-valence)
(* (/ (neuroticism) (max-neuroticism))

(- (max-preference) (/ (+ (preference ?reading-object) (read-preference)) 2))))))
(when (and (> (preference ?reading-object) 0))

(and
(increase (valence)
(* (/ (neuroticism) (max-neuroticism))

(- (/ (+ (openness) (read-preference)) (max-preference)) 1)))
(increase (v-valence)
(* (/ (neuroticism) (max-neuroticism))

(- (max-preference) (/ (+ (openness) (read-preference)) 2))))))
(increase (arousal)

(* (/ (neuroticism) (max-neuroticism))
(- (/ (+ (activation ?reading-object) (read-activation)) (max-activation)) 1)))

(increase (v-arousal)
(* (/ (neuroticism) (max-neuroticism))

(- (max-activation) (/ (+ (activation ?reading-object) (read-activation)) 2))))))

Fig. 1. Example of action (READ) to cater for the boredom need

– TAKE and LEAVE actions: the agent uses them to take and leave objects
required to perform some actions, like eat or drink.

– BUY action: the agent uses it to purchase new resources. Agents must be in a
shop and the resource must be available to be bought.

– GO action: allows the agents to move as Figure 3 shows.
– TIME-GOES-BY action: It is a fictitious action (Figure 4) that represents the

influence of the course of time over the value of the drives. Its execution produces
an increase on all drives, so that it simulates the passing of time. The increment
depends on the last action duration (action-time function added in action ef-
fects). We also force the planner to be executed after every other action application
(through the time-goes-by predicate).

All actions (except for TIME-GOES-BY) modify (in their effects) the emotional state
that depend on the agent preferences, activations and personality traits. Along with the
metric of the problem, this allows us to model the agents behaviour. So, there are no
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(:action EAT
:parameters (?food - food ?room - room)
:precondition (and (in ?room)(taken ?food)(> (quantity ?food) 0)(not (time-goes-by)))
:effect

(and
(time-goes-by)
(assign (action-time) (* (conscientiousness) (go-duration)))
(decrease (hunger) (conscientiousness))
(decrease (quantity ?food) (conscientiousness))
(when (and (< (hunger) 0))

(and (assign (hunger) 0)))
(when (and (< (preference ?food) 0))

(and
(increase (valence)
(* (/ (neuroticism) (max-neuroticism))

(- (/ (+ (preference ?food) (eat-preference)) (max-preference)) 1)))
(increase (v-valence)
(* (/ (neuroticism) (max-neuroticism))

(- (max-preference) (/ (+ (preference ?food) (eat-preference)) 2))))))
(when (and (> (preference ?food) 0))

(and
(increase (valence)
(* (/ (neuroticism) (max-neuroticism))

(- (/ (+ (openness) (eat-preference)) (max-preference)) 1)))
(increase (v-valence)
(* (/ (neuroticism) (max-neuroticism))

(- (max-preference) (/ (+ (openness) (eat-preference)) 2))))))
(increase (arousal)

(* (/ (neuroticism) (max-neuroticism))
(- (/ (+ (activation ?food) (eat-activation)) (max-activation)) 1)))

(increase (v-arousal)
(* (/ (neuroticism) (max-neuroticism))

(- (max-activation) (/ (+ (activation ?food) (eat-activation)) 2))))))

Fig. 2. Example of an action (EAT) to cater for a need (hunger)

hard constraints on our model. All agents can perform all actions, but they prefer (soft
constraints) the ones that better suit their preferences, personality and current emotional
state.

3.8 Goals

The agent motivation is to satisfy its basic needs, so goals consist of a set of drives val-
ues that the agent has to achieve. As an example, goals may consist of the achievement
of need values (and emotional variables) that are under a given threshold. They could
be very easily combined with other kinds of standard planning goals, creating other
kinds of domains. For instance, we could define strategy games where agents should
accomplish some tasks, taking into account also their needs.

4 Experiments

We report here the results obtained with the proposed model comparing its performance
to a reactive model. In the case of the deliberative model, we have used an A∗ search
technique with the well-known domain-independent heuristic of FF [22]. This heuristic
is not admissible, but even if it does not ensure optimality, it is good enough for our
current experimentation. In the case of the reactive model, we have used a function to
choose the best action at each step (to cover the drive with the higher value, i.e. the
worse drive). These search techniques have been implemented in an FF-like planner,
SAYPHI [12].
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(:action GO
:parameters (?place-from - place ?place-to - place)
:precondition (and (in ?place-from)(not (time-goes-by)))
:effect

(and
(time-goes-by)
(assign (action-time) (* (conscientiousness) (go-duration)))
(increase (valence) (* (/ (neuroticism) (max-neuroticism))

(- (/ (* (go-preference) 2) (max-preference)) 1)))
(increase (arousal) (* (/ (neuroticism) (max-neuroticism))

(- (/ (* (go-activation) 2) (max-activation)) 1)))
(increase (v-valence) (* (/ (neuroticism) (max-neuroticism))

(- (max-preference) (go-preference))))
(increase (v-arousal) (* (/ (neuroticism) (max-neuroticism))

(- (max-activation) (go-activation))))
(not (in ?place-from))
(in ?place-to)))

Fig. 3. GO action

(:action TIME-GOES-BY
:parameters ()
:precondition (and (time-goes-by))
:effect (and

(increase (boredom) (* 0.1 (action-time)))
(assign (boredom) (min (max-drive) (boredom)))
(increase (dirtiness) (* 0.1 (action-time)))
(assign (dirtiness) (min (max-drive) (dirtiness)))
(increase (hunger) (* 0.1 (action-time)))
(assign (hunger) (min (max-drive) (hunger)))
(increase (thirst) (* 0.1 (action-time)))
(assign (thirst) (min (max-drive) (thirst)))
(increase (tiredness) (* 0.1 (action-time)))
(assign (tiredness) (min (max-drive) (tiredness)))
(increase (total-time) (action-time))
(assign (action-time) 0)
(not (time-goes-by))))

Fig. 4. TIME-GOES-BY action

4.1 Experimental Setup

In the first experiment, we have defined several kinds of problems for this domain. In
each problem, we have established a specific initial need in one of the drives, which are
called dominant drives. Each of these dominant drives will have a initial value higher
than the rest of drives. Also, we have defined a problem where all five drives are dom-
inant drives. The goal is to fulfill all the agent needs, so we have defined it as having a
value below a threshold for all drives. Furthermore, for each action, the agent has three
objects to choose from, with varying degrees of preference: preferred, indifferent and
hated, and a new object (the agents do not have an “a priori” preference for this object)
for testing openness. In this experiment, all actions have the same standard duration.

The experiments were performed with four different personality models: (1) a stan-
dard personality (average values in all traits), (2) a neurotic personality (high value of
neuroticism and average values for the rest), (3) an open-minded personality (high value
of openness and average values for the rest) and (4) a meticulous personality (high value
of conscientiousness and average values for the rest).
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In the second experiment, we have also established a dominant drive in each prob-
lem and the agent has three objects of each type. In this case, the targets are again
getting a value below a threshold. But, we added another goal: to achieve a valence
value above a threshold, so that we can consider that the agent is in a good state af-
ter the execution of the plan. We have established different standard durations for ac-
tions: instantaneous (as take and leave objects), short duration (as drink, go and
shower), medium duration (as eat, bath, play, watch, read, listen and buy)
and long duration (sleep). The metric was minimizing the total duration of the plan.
The experiments were performed with two different personalities according to the con-
scientiousness value: careless and meticulous, because conscientiousness weights the
standard duration of the actions.

Fig. 5. Quality of the plans for the stable agent

Fig. 6. Quality of the plans for the neurotic agent
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Fig. 7. Quality of the plans for the open-minded agent

Fig. 8. Quality of the plans for the meticulous agent

4.2 Results

Figures 5 to 8 show the end value of the (valence) for each problem. In all cases,
the value obtained by the proposed deliberative model is significantly better than the
reactive one. This is due to a better employment of the buy action and the reduction
on go actions of the deliberative model. The reactive model always tries to satisfy the
need associated to the most dominant drive at each time. So, for instance, if reducing
the current dominant drive requires drinking, and there is no drink in the current agent
room, then the agent will move to another room where the drinking action can be ac-
complished. However, the deliberative model reasons on a medium-long term, so if the
need in another drive, not being the dominant one, can be satisfied in the current room,
the plan will prefer to reduce it now, even if the dominant drive increases a bit. Most
previous work on emotional agents would mimic the reactive model, while our model
is able to take into account future recompenses in an integrated way with other agents
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Fig. 9. Simulated time of the plans for the careless agent

Fig. 10. Simulated time of the plans for the meticulous agent

goals. We also see that if the personality tends to be more neurotic, then the deliberative
model is even better than the reactive one, since actions effects are increased, and drives
increase more acutely. When the agent is open minded, it is more likely to choose using
new objects to satisfy its curiosity, so that the resulting valence values are higher than in
the other cases. When it has a meticulous personality, we can see that actions decrease
drives values faster. Therefore, the agent needs less actions for its needs, and we can
see that the resulting values are lower.

Figures 9 and 10 show the end value of the (total-time) for each problem. In all
cases, the value obtained by the proposed deliberative model is significantly lower than
the reactive one. This is because, once again, the deliberative agent quickly reaches the
goals to meet its other needs. For instance, it saves repeated travels to buy items in the
store by buying several items in the store when it goes there. So, it buys extra items,
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when it knows that in the future it will need those items, even if in the state, it does not
need those items to fulfill the immediate drives. This is especially true for a meticulous
personality, because it tends to spend more time to carry out actions. Thus, meticulous
agents take less time to execute plans than careless agents.

5 Related Work

During the last years, several emotion-oriented systems have been developed, that nor-
mally follow Frijda’s theory about emotions [18]. This theory is based on the hypothesis
that emotions are the tendency of an individual to adopt a specific behavior according
to its needs. Emotions also cover the interaction of the individual with the environment.
For instance, individuals try to move away objects that put in danger their survival,
while they approach objects that cater for their needs [6].

Examples of previous work on computational models of emotions is the work of
Cañamero [7,8] that proposes a homeostatic approach to the motivations model. She
creates a self-regulatory system, very close to natural homeostasis, that connects each
motivation to a physiological variable, which is controlled within a given range. When
the value of that variable differs from the ideal one, an error signal proportional to
the deviation, called drive, is sent, and activates some control mechanism that adjusts
the value in the right direction. There are other architectures based on drives, as the
Dorner’s PSI architecture used by Bach and Vuine [3] and also by Lim [23], that offer
a set of drives of different type, as certainty, competence or affiliation.

Most of these works on emotional agents are based on reactive behaviors. When a
drive is detected, it triggers a reactive component that tries to compensate its deviation,
taking into account only the following one or two actions. Thus, there is no inference
being done on medium-long term goals and the influence of emotions on how to achieve
those goals. Our model borrows the concepts of motivations and drives to represent
basic needs, but it uses automated planning for providing long term deliberation.

Regarding deliberative models, there are some works on emotions based on plan-
ning, but mainly oriented to storytelling. Examples are emergent narrative in
FEARNOT! [2] and the interactive storytelling of Madame Bovary on the Holodeck [9].
The work of Gratch and coauthors [20,21] shows a relevant application of emotional
models to different research areas in artificial intelligence and autonomous agents de-
sign, endowing them with an ability to think and engage in socio-emotional interactions
with human users. Other models, as Rizzo’s works [25], combine the use of emotions
and personality to assign preferences to the goals of a planning domain model, but the
changes in the emotional state happen in another module. Thus, they are not really used
in the reasoning process. A similar integration of a deliberative and a reactive model is
the one in [5] where the emotions reasoning is performed again by the reactive compo-
nent. Opposite to all these approaches, there are no hard constraints on our model. All
our agents can perform all actions, but they prefer (soft constraints) the ones that better
suit their preferences, personality and current emotional state.
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6 Conclusions and Future Work

This work proposes a model of long term reasoning integrating emotions, drives, prefer-
ences and personality traits in autonomous agents, based on AI planning. The emotional
state is modeled as two functions: valence and arousal. This two-dimensional model has
been chosen because it is simpler and offers the same representation capabilities as the
rest of emotional models. Anyhow, it is not difficult now to integrate any other emo-
tional model. Thus, actions produce variations in the valence depending on the agent
personality and agent preferences. The goal is to generate plans that maximize the va-
lence, while satisfying the agent needs or drives. Given that current planners only deal
with monotonous functions as metric functions, we converted the non-monotonous va-
lence into a monotonous one, v-valence. The results of the experiments show that
the quality of the solutions (measured as the value of the valence) improves when
the deliberative model is used compared to the reactive one. Thus, the increase in the
quality of the solutions implies a more realistic behavior of the agent.

The proposed model is the first step in the development of a richer and more com-
plex architecture. In the next future, we would like to include new actions in the domain,
especially those related to the processes of social interaction, by including some compo-
nent that reasons about multi-agent interaction and collaboration. Another future work
is to model the idea of well-being, which will focus the agent to keep all its needs below
a certain level along time. The physiological well-being of the agent will influence its
emotional state altering the value of valence. This idea is very related to the idea of
continuous planning to control the behaviour of virtual agents [1].
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Abstract. Supervisory Control Theory (SCT) is a model-based framework for
automatically synthesizing a supervisor that minimally restricts the behavior of a
plant such that given specifications is fulfilled. The main obstacle which prevents
SCT from having a major industrial breakthrough is that the supervisory synthe-
sis, consisting of a series of reachability tasks, suffers from the state-space ex-
plosion problem. To alleviate this problem, a well-known strategy is to represent
and explore the state-space symbolically by using Binary Decision Diagrams.
Based on this principle, an alternative symbolic state-space traversal approach,
depending on the disjunctive partitioning technique, is presented in this paper. In
addition, the approach is adapted to the prior work, the guard generation proce-
dure, to extract compact propositional formulae from a symbolically represented
supervisor. These propositional formulae, referred to as guards, are then attached
to the original model, resulting in a modular and comprehensible representation
of the supervisor.

Keywords: Supervisory control theory, State-space exploration, Binary decision
diagrams, Partitioning techniques, Propositional formulae.

1 Introduction

The analysis of reactive systems has been paid much attention by researchers and scien-
tists in the computer science community. One of the classic methods to analyze reactive
systems is utilizing formal verification techniques, such as model checking, to verify
whether the considered system fulfills specifications. Nevertheless, from the control
engineering point of view, instead of verifying the correctness of the system, a con-
troller which guarantees that the system always behaves according to specifications is
preferred. Supervisory Control Theory (SCT) [1,2] provides such a control-theoretic
framework to design a device, called the supervisor, for reactive systems, referred to as
Discrete Event Systems (DESs). Given the model of a DES to be controlled, the plant,
and the intended behavior, the specification, the supervisor can be automatically syn-
thesized, guaranteeing that the closed-loop system fulfills given specifications. SCT has
been applied for various applications in different areas such as automated manufactur-
ing lines and embedded systems [3,4,5].

Generally, a supervisor is a function that, given a set of events, restricts the plant to
execute desired events according to the specification. A typical issue is how to realize
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such a control function efficiently and represent it appropriately. Since the synthesis
task involves a series of reachability computations, as DESs becoming more compli-
cated, the traditional explicit state-space traversal algorithm may be intractable due to
the state-space explosion problem. By using binary decision diagrams (BDD) [6,7], the
supervisor can be represented and computed symbolically such that the state-space ex-
plosion problem is alleviated to some extent. However, the symbolic computation is not
a silver bullet. Transforming from the traditional explicit state-space traversal algorithm
into a BDD-based computation scheme does not guarantee that the algorithm will be-
come remarkably efficient. Thus numerous researches have been performed to improve
the efficiency of symbolic computations. In this paper, we mainly focus on partitioning
techniques, which decompose the state-space into a set of structural components and
utilize these partitioned components to realize efficient reachability computations.

With BDD-based traversal algorithms, some larger DESs could be solved without
causing the state-space explosion. Meanwhile, another problem is arising from the
BDD representation of the resultant supervisor. Since the original models have been
reformulated and encoded, it is cumbersome for the users to relate each state with the
corresponding BDD variables. Therefore, it is more convenient and natural to represent
the supervisor in a form similar to the models. In [8], a promising approach is pre-
sented, where a set of minimal and tractable logic expressions, referred to as guards,
are extracted from the supervisor and attached to the original models of the closed-loop
system. However, this approach computes the supervisor symbolically based on the
conjunctive partitioning technique. This might lead to the state-space explosion, due to
the large number of intermediate BDD nodes.

The main contribution of this paper is adapting a symbolic supervisory synthesis
approach to the guard generation procedure, to make it applicable for industrially in-
teresting applications. The approach automatically synthesizes a supervisor by taking
the advantage of the disjunctive partitioning technique. The monolithic state-space is
then split into a set of simpler components and the reachability search is performed
structurally with a set of heuristic decisions. Moreover, the guard generation procedure
is tailored to use the partitioned structure to extract the simplified guards and attach
them to the original models. Finally, a comparison of algorithm efficiency between two
partitioning techniques is made by applying them to a set of benchmark examples.

The paper is organized as follows: For the readers who might be unfamiliar with Su-
pervisory Control Theory, Section 2 gives an informal and brief explanation. Section 3
provides some preliminaries that are used throughout the paper. The symbolic supervi-
sory synthesis and the guard generation procedure will be discussed in detail in Section
4 and 5. In Section 6, we apply what we have discussed and implemented to several real
case studies. Finally, we end up with some conclusions in Section 7.

2 Motivating Example

For readers who might be unfamiliar with SCT, the following simple example gives a
brief overview and states what the exact problem this paper is about to solve.
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Example 1. Consider a resource booking problem where two industrial robots need to
book two resources in opposite order to carry out their tasks. To avoid collisions, a
constraint requires that two robots are not allowed to occupy two zones simultaneously.

Figure 1 shows one way to model the system as the state machines, or deterministic
finite automata. Figure 1a and 1b depict the robot (plant) models and Fig. 1c and 1d
depict the resource (specification) models. The states having an incoming arrow from
outside denote the beginning of the task, while the states having double circles, called
marked states, denote the accomplishment of the task. The event useAR1

means that
Robot A uses Resource 1. The other events can be interpreted similarly. The goal of
the SCT is to automatically synthesize a minimally restrictive supervisor from these
modular models. Traditionally, to do this, the algorithm starts with the composition
(formally described in Section 3.1) of all the automata as the initial candidate super-
visor S0 (Fig. 1e). Then the undesirable states will be removed iteratively. Generally,
undesirable states can either be blocking or uncontrollable. A state is blocking when no
marked state can be reached, while uncontrollable states are defined in Section 3.1. In
Fig. 1e, we have one blocking state 〈qA2 , qB2 , qC2 , q

D
2 〉, which depicts the situation where

Robot A has booked Resource 1 and is trying to book Resource 2, while Robot B has
booked Resource 2 and is trying to book Resource 1. In such case, none of the robots
can do other movements, which is a blocking situation. After removing the blocking
state together with the associated transitions, a non-blocking supervisor is produced.

It can be observed that for such a simple example, the composed automaton contains
9 states. With a DES getting more complicated, the composed automaton will become
significantly larger. To alleviate this problem, a well known strategy is to represent the
state space symbolically by using Binary Decision Diagrams (BDD). In [8], based on
this principle, an alternative approach is presented, where guards are generated to pre-
vent the controlled system to reach undesirable states. The advantage of this approach is
that it never constructs the composed automaton, which means that an incomprehensi-
ble BDD representation of the supervisor is avoided. Instead, the approach characterizes
a supervisor by a set of minimal guards that are attached to the original models to rep-
resent the supervisor behavior. Figure 2 shows the application of the guard generation
to the example, where the variables vA, vB , vC , vD are introduced to hold the current
states of the corresponding automata.

The intention of this paper is to improve the guard generation procedure by introduc-
ing an alternative symbolic approach. This approach, which is based on the disjunctive
partitioning technique, partitions the transition function into a set of simple but struc-
tural components. These components, having the disjunctive connection relation be-
tween each other, therefore can be used to search the state-space without constructing a
total transition function for the composed automaton. Besides, to keep the intermediate
number of BDD nodes as small as possible, the approach includes a set of selection
heuristics to search the state-space in a structural way.

3 Preliminaries

This section provides some preliminaries which are used throughout the rest of the
paper.
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Fig. 1. Example 1. 1a-1b) Robot automata A and B, 1c-1d) resource automata C and D, and (1e)
a supervisor candidate S0.
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Fig. 2. Guards representing the behavior of the supervisor for Example 1
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3.1 Supervisory Control Theory

Generally, a DES can either be described by textual expressions, such as regular expres-
sions or graphically by for instance Petri nets or automata. In this paper, we focus on
deterministic finite automata.

Definition 1. A deterministic finite automaton (DFA), is a five-tuple:

(Q,Σ, δ, qinit, Qm)

where:

– Q is a finite set of states;
– Σ is a non-empty finite set of events;
– δ:Q×Σ → Q is a partial transition function which expresses the state transitions;
– qinit ∈ Q is the initial state;
– Qm ⊆ Q is a set of marked or accepting states.

The composition of two or more automata is realized by the full synchronous composi-
tion [9].

Definition 2. Let Ai = (Qi, Σi, δi, qiinit, Q
i
m), i = 1, 2 be two DFAs. The full syn-

chronous composition of A1 and A2 is

A1 ‖ A2 = (Q1‖2, Σ1 ∪Σ2, δ1‖2, q1‖2init, Q
1
m ×Q2

m)

where:

– Q1‖2 ⊆ Q1 ×Q2;
– q

1‖2
init = 〈q1init, q2init〉;

– δ1‖2(〈q1, q2〉, σ) =

⎧⎪⎪⎨⎪⎪⎩
δ1(q1, σ)× δ2(q2, σ) if σ ∈ Σ1 ∩Σ2

δ1(q1, σ)× {q2} if σ ∈ Σ1\Σ2

{q1} × δ2(q2, σ) if σ ∈ Σ2\Σ1

undefined otherwise.

As described in Section 1, the goal of SCT is to automatically synthesize a minimally
restrictive supervisor S, which guarantees the behavior of the plant P always fulfills the
given specification Sp. Here if the plant is given as a number of sub-plants P1, . . . , Pn,
the plant can be obtained by performing the full synchronous composition operation on
these sub-plants. Thus P = P1 ‖ . . . ‖ Pn. Similarly, Sp = Sp1 ‖ . . . ‖ Spm.

In SCT, events in the alphabet Σ can either be controllable or uncontrollable. Hence,
Σ can be divided into two disjoint subsets, the controllable event set Σc and the un-
controllable event set Σu. The supervisor is only allowed to restrict controllable events
from occurring in the plant.

Additionally, given a plant P and a specification Sp, two properties [1,2] that the
supervisor ought to have are:

– Controllability: Let Σu be the set of uncontrollable event set. The supervisor S is
never allowed to disable any uncontrollable event that might be generated by the
plant P .

– Non-blocking: This is a progress property enforced by the supervisor S, which
guarantees that at least one marked state is always reachable in the closed-loop
system, S ‖ P .
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3.2 Binary Decision Diagrams (BDD)

Binary decision diagrams (BDD), used for representing Boolean functions, can be ex-
tended to symbolically represent states, events and transitions of automata. In contrast
to explicit representations, which might be computationally expensive in terms of time
and memory, BDDs often generate compact and operation-efficient representations.

A binary decision diagram is a directed acyclic graph (DAG) consisting of two kinds
of nodes: decision nodes and terminal nodes. Given a set of Boolean variables V , a
BDD is a Boolean function f : 2V → {0, 1} which can be recursively expressed using
Shannon’s decomposition [10]. Besides, a variable v1 has a lower (higher) order than
variable v2 if v1 is closer (further) to the root and is denoted by v1 ≺ v2. The variable
ordering will impact the number of BDD nodes. However, finding an optimal variable
ordering of a BDD is a NP-complete problem [11]. In this paper, a simple but powerful
heuristic based on Aloul’s Force algorithm [12] is used to compute a suitable static
variable ordering.

Symbolic Representation of Automata. The BDD data structure can be extended to
also represent models such as automata. The key point is to make use of characteristic
functions.

Given a finite state set U as universe, for every S ⊆ U , the characteristic function
can be defined as follows:

χS(α) =
{1 α∈S

0 α/∈S .
(1)

Set operations can be equivalently carried on corresponding characteristic functions.
For example, S1 ∪ S2, (S1, S2 ⊆ U) can be mapped equivalently to χS1 ∨ χS2 , since
S1 ∪ S2 = {α ∈ U | α ∈ S1 ∨ α ∈ S2}.

The elements of a finite set can be expressed as a Boolean vector. So a set with n
elements, requires a Boolean vector of length "log2 n#. Just like the case of coding the
states in a set, binary encoding of the transition function δ follows the same rule but with
the difference that the transition function distinguishes between source-states and target
states. Hence, we need two Boolean vectors with different sets of Boolean variables to
express the domain of source-states and target-states respectively.

4 BDD-Based Partitioning Computation

The safe-state algorithm, an efficient supervisor synthesis algorithm, formally defined
in [13], is used in this paper. The algorithm creates the supervisor by first building the
candidate S0 = P ‖ Sp, then removing states from QS0 until the remaining safe states
are both non-blocking and controllable.

As Algorithm 1 shows, given a set of forbidden states Qx, the algorithm computes the
set of safe states QS by iteratively removing the blocking states (RestrictedBackward
in line 5) and the uncontrollable states (UncontrollableBackward in line 6). Note that
after the termination of the algorithm, not all of the safe states are reachable from the
initial state. Therefore, a forward reachability search is needed to exclude the safe states
which are not reachable. The safe-state algorithm is discussed in more detail in [13].
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Algorithm 1. The safe-state synthesis algorithm.

1: input :Qx, Q
S0

2: let X0 := Qx, k := 0;
3: repeat
4: k := k + 1;
5: Q′ := RestrictedBackward(Qm, Xk−1);
6: Q′′ := UncontrollableBackward(QS0\Q′);
7: Xk := Xk−1 ∪ (Q′′);
8: until Xk = Xk−1

9: return QS0\Xk

4.1 Efficient State Space Search

Not surprisingly, the backward and forward reachability searches turn out to be the
bottle-neck of the algorithm presented above. The problem with the intuitive reachabil-
ity is that for a large and complicated modular DES, the BDD representation of the total
transition function δS0 is often too large to be constructed. The natural way to tackle
the complexity of the transfer function is to split it into a set of less complex partial
functions with a connection between them. Such methods are based on conjunctive and
disjunctive partitioning techniques.

Conjunctive Representation. Conjunctive partitioning, introduced in [14,15], is an
approach to represent synchronous digital circuits where all transitions happen simul-
taneously. In the context of DES, the conjunctive partitioning of the full synchronous
composition can be achieved by adding self-loops to the automata for events that are not
included in their original alphabets. This leads to a situation where all automata have
equal alphabet. Therefore, the conjunctive transition function δ̂i for the automaton Ai

and the total transition function can be defined as follows:

δ̂i(qi, σ) =

⎧⎨⎩
δi(qi, σ) if δi(qi, σ) is defined
qi if σ /∈ Σi

undefined otherwise .
(2)

δ =
∧

1≤i≤n

δ̂i . (3)

By making use of (2) and (3), we can search the state-space without constructing the
total transition function. Algorithm 2 applies this technique for the forward reach-
ability search. Assuming that the automaton set A = {A1, . . . , An} and the state
q = 〈q1, q2, . . . , qn〉, the algorithm explores the target state q́ by performing each con-
junctive transition function δ̂i with arguments (the local state qi and the event σ ∈ Σ)
to get each local target state q́i.

Disjunctive Representation. The conjunctive partitioning of the transition relation
works well for formal verification of synchronous digital circuits. However, because of
the asynchronous feature of the full synchronous composition, the intermediate states
(Qk−1) can still cause the explosion problem when performing the reachability search,
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Algorithm 2. Conjunctive forward reachability algorithm.

1: input :Qinit, {δ̂1, . . . , δ̂n}, Σ
2: let Q0 := Qinit, k := 0;
3: repeat
4: k := k + 1;
5: Qk := Qk−1 ∪ {q́ | ∃q ∈ Qk−1,∃σ ∈ Σ,∀i ∈ {1, . . . , n} such that δ̂i(qi, σ) = q́i};
6: until Qk = Qk−1

7: return Qk

which prevents the conjunctive partitioning technique from being applied to large sys-
tems. The disjunctive partitioning, explained subsequently, on the other hand, is then
shown to be an appropriate partitioning technique for SCT.

Assuming A = {A1, . . . , An} and q = 〈q1, . . . , qn〉, the disjunctive transition func-
tion δ̌i of Ai, is defined based on the event σ ∈ Σi and the dependency set D(Ai):

D(Ai) = {Aj ∈ A | ∃Ai ∈ A where Σi ∩Σj �= ∅} . (4)

δ̌i(q, σ) =

⎛⎝ ∧
Aj∈D(Ai)

ζi,j(qj , σ)

⎞⎠ ∧
⎛⎝ ∧

Ak /∈D(Ai)

qk
σ↔ qk

⎞⎠ . (5)

ζi,j(qj , σ) =

{
δj(qj , σ) if σ ∈ Σi ∩Σj

qj otherwise .
(6)

Additionally, the total transition function is defined as:

δ =
∨

1≤i≤n

δ̌i . (7)

The construction of the dependency set for each automaton can be obtained through
calculating which automaton shares any event with it. Taking Example 1 as an example,
for the automaton A, since it shares the events useAR1

, useAR2
with the automaton C and

the event useAR2
with the automaton D, D(A) can be constructed as follows:

D(A) = {A,C,D}.

Besides, the total transition function defined for the state 〈qA1 , qB1 , qC1 , q
D
1 〉 and the event

useAR1
can be obtained by computing δ̌A and δ̌C , since useAR1

only belongs to ΣA and
ΣC . By using (5) and (6), it can be inferred that

δ(〈qA1 , qB1 , qC1 , q
D
1 〉, useAR1

) = δ̌A(〈qA1 , qB1 , qC1 , q
D
1 〉, useAR1

)

= δ̌C(〈qA1 , qB1 , qC1 , q
D
1 〉, useAR1

) = 〈qA2 , qB1 , qC2 , q
D
1 〉.

Notice that the disjunctive transition function represented in BDDs, is shown explicitly
here to easily understand.
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4.2 Workset Based Strategies

In Section 4.1, we suggested the use of partitioning techniques to deal with the large
number of intermediate BDD nodes. However, using partitioning techniques alone is
not enough to yield efficient BDD-based reachability algorithms. In [16], it has been
shown that random structural reachability search yields poor compression of intermedi-
ate BDD nodes. In order to improve these algorithms to substantially reduce the num-
ber of intermediate BDD nodes, it is vital to search the state space in a structural and
efficient way. Here we introduce a simple algorithm, Algorithm 3, which is formally
defined in [13]. The workset algorithm maintains a set of active disjunctive transition
functions Wk. These active transition functions are selected one at a time for the local
reachability search. If there is any new state found for the currently selected transition
relation, then all of its dependent transition functions (8) will be added in Wk . Notice
that in Algorithm 3, ”·” can be any event, since we don’t care about the specific events
as long as it is defined in δ̌i.

E(δ̌i) = {δ̌j | Aj ∈ D(Ai)\{Ai}} . (8)

Algorithm 3. Workset forward reachbility algorithm.

1: input :Qinit, {δ̌1, . . . , δ̌n}
2: let W0 := {δ̌1, . . . , δ̌n}, Q0 := Qinit, k := 0;
3: repeat
4: H: Pick and remove a transition δ̌i ∈ Wk;
5: k := k + 1;
6: Qk := Qk−1 ∪ {q́ | ∃q ∈ Qk−1, δ̌

i(q, ·) = q́};
7: if Qk 
= Qk−1 then
8: Wk := Wk−1 ∪ E(δ̌i);
9: end if

10: until W = ∅
11: return Qk

Selection Heuristics. In Algorithm 3, H denotes the heuristics of selecting the next
disjunctive transition function for the reachability search such that the number of in-
termediate BDD nodes is computed as small as possible. How a disjunctive transition
function δ̌i is chosen among those in the working set has great influence on the perfor-
mance of the algorithm. Here we suggest a series of simple heuristics that have been im-
plemented and seem to work well for real-world problems. In Section 6, those heuristics
will be applied to a benchmark example to compare how they influence the performance
of the workset algorithm.

To find a good heuristic, a two-stage selection rule was implemented, as Fig. 3 shows.
Using this method, a complex selection procedure can be described as a combination
of two selection rules. In the current implementation, the first stage H1 selects a subset
W′ ⊂W to be sent to H2 using one of the following rules:
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– MaxF: Choose the automata with the largest dependency set cardinality.
– MinF: The opposite of above.

In case W′ is not a singleton, the second stage H2 is used to choose a single disjunctive
transition function δ̌i among W′. In the experiment, the following shown heuristics can
significantly reduce the number of intermediate BDD nodes for some relatively large
problems.

– Reinforcement learning (R) [17]: Choose the best transition relation based on the
previous activity record.

– Reinforcement learning + Tabu (RT) [18]: Same as the reinforcement learning with
the difference that using tabu search for the selection policy.

Fig. 3. The two stage selection heuristics for the workset algorithm

5 Supervisor as Guards

As mentioned in Section 1, given a supervisor represented as a BDD, it is cumber-
some for the users to relate each state to the corresponding BDD variables. Therefore,
it is more convenient and natural to represent the supervisor in a form similar to the
original models. In this section, the guard generation procedure, originating from [8],
is discussed and combined with the BDD-based disjunctive partitioning approach in
Section 4.1.

The guard generation procedure, being dependent on three kinds of state sets, ex-
tracts a set of compact guards indicating under which conditions the event can be exe-
cuted without violating the specifications. These guards are then attached to the original
model to represent the supervisor.

5.1 Computation of the Basic State Sets

Concerning the states that are retained or removed after the synthesis process, the states
that enable an arbitrary event σ can be divided into three basic state sets: forbidden
state set, allowed state set and don’t care state set.

The forbidden state set, denoted by Qσ
f , is the set of states in the supervisor where

the execution of σ is defined for S0, but not for the supervisor. The allowed state set,
denoted by Qσ

a , is the set of states in the supervisor where the execution of σ is defined
for the supervisor. In other word, for each event σ, Qσ

a represents the set of states where
event σ must be allowed to be executed in order to end up in states belonging to the
supervisor.

In order to obtain compact and simplified guards, inspired from the Boolean mini-
mization techniques, another set of states, denoted by Qσ

dc, which describes a situation
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where executing σ will not impact the result of the synthesis, is utilized to minimize the
guards.

Algorithms 4 and 5 presented below show how to compute the forbidden states Qσ
f

and the allowed states Qσ
a by making use of the disjunctive transition functions. Note

thatQS andQx denote the resultant supervisor states and all the forbidden states yielded
from Algorithm 1. The don’t care state set, Qσ

dc can be defined as the complement of
the union of Qσ

a and Qσ
f . The proof can be found in [8].

5.2 Guard Generation

Based on the basic state sets, guards can be extracted. For every automaton in the DES,
a new variable v is introduced to hold the current state of the automaton. For each event
σ, the following propositional function, Gσ:QA1 ×QA2 × . . .×QAn → B is defined
as:

Gσ〈vA1 , vA2 , . . . vAn〉 =
⎧⎨⎩

true 〈vA1 , vA2 , . . . vAn〉 ∈ Qσ
a

false 〈vA1 , vA2 , . . . vAn〉 ∈ Qσ
f

don′t care otherwise .
(9)

where B is the set of Boolean values and vAi represents the current state of automaton
Ai. In particular, σ is allowed to be executed from the state 〈vA1 , vA2 , . . . vAn〉 if the
guard is true.

By applying minimization methods of Boolean functions (utilizing the don’t care
state set) and certain heuristics, the generated guards can be simplified. The procedure
is discussed in details in [8].

Algorithm 4. Computation of Qσ
f .

1: input :σ,Qx, Q
S, {δ̌1, . . . , δ̌n}

2: let Qσ
f := ∅;

3: for all Ai if σ ∈ Σi do
4: Qσ

f := Qσ
f ∪ {q | ∃q́ ∈ Qx, δ̌

i(q, σ) = q́};
5: end for
6: let Qσ

f := Qσ
f ∩QS;

7: return Qσ
f

Algorithm 5. Computation of Qσ
a .

1: input :σ,QS, {δ̌1, . . . , δ̌n}
2: let Qσ

a := ∅;
3: for all Ai if σ ∈ Σi do
4: Qσ

a := Qσ
a ∪ {q | ∃q́ ∈ QS, δ̌i(q, σ) = q́};

5: end for
6: let Qσ

a := Qσ
a ∩QS;

7: return Qσ
a



172 Z. Fei et al.

6 Case Studies

What we have discussed in the previous sections has been implemented and integrated
in the supervisory control tool Supremica [19] which uses JavaBDD [20] as BDD pack-
age. In this section, the implemented program will be applied to a set of relatively
complicated examples1.

6.1 Benchmark Examples

A set of benchmark examples is briefly described as follows.

Automated Guided Vehicles. An AGV system, described in [21], is a simple manu-
facturing system where five automated guided vehicles transport material between sta-
tions. As the routes of the vehicles cross each other, single-access zones are introduced
to avoid collisions.

Parallel Manufacturing Example. The Parallel Manufacturing Example, introduced
in [22], consists of three manufacturing units running in parallel. The system is modeled
in three layers in a hierarchical interface-based manner.

The Transfer Line. The Transfer Line TL(n,m), introduced as a tutorial example
in [23], defines a very simple factory consisting of a series of identical cells. Each
cell contains two machines and two buffers, one between the machines and one before
a testing unit which decides whether the work piece should be sent back to the first
machine for further processing, or if it should be passed to the next cell. The capacity
of each buffer is m, which is usually chosen to be either 1 or 3.

The Extended Cat and Mouse. An extended cat and mouse problem [8], which is
more complicated than the transfer line model, generalizes the classic one presented in
[1]. The extended version makes it possible to generate problem instances of arbitrary
size, where n and k denote the number of levels and cats respectively.

6.2 Approach Evaluation

In this section, we evaluate the approach from two aspects. First, a comparison between
two partitioning techniques is made by analyzing the statistical data from Fig. 1. In
addition, the extended cat and mouse example with multiple instances is utilized to
investigate how the choice of heuristics in the workset algorithm influences the time
efficiency.

Conjunctive vs. Disjunctive. Figure 1 shows the result of applying two partitioning
techniques for the examples explained above. The supervisors synthesized for these
examples are both non-blocking and controllable and the safe states are reachable. It
is observed that both of the partitioning based algorithms can handle the AGV and the
Parallel Manufacturing example, for which the number of reachable states is up to 107.

1 The experiment was carried out on a standard Laptop (Core 2 Duo processor, 2.4 GHz, 2GB
RAM) running Ubuntu 10.04.
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Table 1. Non-blocking and controllability synthesis

Conjunctive Synthesis Workset Algorithm

Model Reachable States Supervisor states BDD Peak Computation Time (s) BDD Peak Computation Time (s)

AGV 22929408 1148928 9890 6.50 2850 0.87

Parallel Man 5702550 5702550 12363 2.47 2334 1.57

Transfer line (1,3) 64 28 17 0.05 13 0.10

Transfer line (5,3) 1.07× 109 8.49 × 104 2352 1.69 299 0.59

Transfer line (10,3) 1.15 × 1018 6.13 × 1013 31022 48.36 1257 3.89

Transfer line (15,3) 1.23 × 1027 4.42 × 1020 − − 3032 12.80

Cat and mouse (1,1) 20 6 43 0.02 31 0.05

Cat and mouse (1,5) 605 579 2343 0.08 273 0.09

Cat and mouse (5,1) 1056 76 848 0.30 305 0.30

Cat and mouse (5,5) 6.91× 109 3.15 × 109 − − 15964 20.86

∗ - denotes memory out.

However, with DESs getting larger and more complicated, the conjunctive partition-
ing technique is not capable of synthesizing non-blocking and controllable supervisors
any more. The disjunctive partitioning, on the other hand, could successfully explore the
state space within acceptable time. In addition, the column ”BDD Peak”, the maximal
number of BDD nodes during the reachability computation shows that the disjunctive
partitioning together with heuristic decisions can effectively reduce the number of in-
termediate BDD nodes.

Heuristics. Table 2 shows the computation time for synthesizing non-blocking super-
visors of the extended cat and mouse with different instances. Different combinations
of heuristics, presented in Section 4.2, are chosen to test the performance of the workset
algorithm. Empirically, for the models with relatively large dependency sets, the heuris-
tic pair (MaxF,RT) seems to be a good choice, although it hasn’t been formally proved.
Observing the results from Table 2, the workset algorithm can handle problem instances
with either a large number of levels n or cats k rather well. However, with both num-
bers increasing, the computation time increases rapidly no matter which heuristic pair
is chosen.

Table 2. Computation time for non-blocking supervisors with different heuristics

Computation Time (s)

Cat and mouse (n, k) Workset(MaxF,R) Workset(MaxF,RT) Workset(MinF,R) Workset(MinF,RT)

(1, 1) 0.04 0.06 0.05 0.05

(1, 5) 0.30 0.27 0.33 0.36

(5, 1) 0.08 0.08 0.09 0.08

(5, 5) 3.15 2.90 3.85 3.42

(1, 10) 0.67 0.66 0.75 0.73

(7, 7) 21.4 17.6 25.5 22.9

(10, 1) 0.23 0.20 0.24 0.23

(10, 7) 100.3 88.5 136.4 138.0



174 Z. Fei et al.

7 Conclusions

In this paper, we improved and extended our previous work, the guard generation pro-
cedure to make it applicable for industrially interesting applications. More specifically,
the content of the paper can be summarized as follows:

– Introduce the partitioning techniques to split the BDD representation of δSp‖P into
a set of smaller but structural components.

– To alleviate the problem that the intermediate number of BDD nodes might still
be huge during the reachability exploration, we introduce the workset algorithm
together with a set of simple heuristics to search the state-space in a structured and
efficient way.

– The guard generation procedure is tailored to make use of the partitioned transition
functions and the synthesized supervisor to compute the basic state sets for an event.

– The presented approach is applied to a set of benchmark examples to be evaluated.

It is concluded that the disjunctive partitioning, with appropriate heuristics, is suitable
for solving large modular supervisory control problems. There are several directions
towards which we could extend our approach. For instance, additional heuristics could
be applied to the workset algorithm, to further decrease the number of intermediate
BDD nodes. Moreover, it is possible to combine with more sophisticated synthesis
techniques, such as compositional techniques, to substantially improve the algorithm
efficiency.
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Abstract. In open multi-agent systems norms are mechanisms used to restrict
the behaviour of agents by defining what they are obligated, permitted or prohib-
ited to do and by stating stimulus to their fulfillment such as rewards and dis-
couraging their violation by pointing out punishments. In this paper we propose
the NBDI architecture to develop goal-oriented normative agents whose priority
is the accomplishment of their own desires while evaluate the pros and cons as-
sociated with the fulfillment or violation of the norms. The BDI architecture is
extended by including norms related functions to check the incoming perceptions
(including norms), select the norms they intend to fulfill based on the benefits
they provide to the achievement of the agent‘s desires and intentions, and de-
cide to cope or not with the norms while dropping, retaining or adopting new
intentions. The applicability of our approach is demonstrated through an non-
combatant evacuation scenario implemented by using the Normative Jason plat-
form.

Keywords: Norms and BDI agents.

1 Introduction

Normative regulation is a mechanism that aims to cope with the heterogeneity, auton-
omy and diversity of interests among the different members of an open multi-agent
system establishing a set of norms that ensures a desirable social order [5].

Such norms regulate the behaviour of the agents by indicating that they are obligated
to accomplish something in the world (obligations) [6], permitted to act in a particular
way (permissions) and prohibited from acting in a particular way (prohibitions) [6].
Moreover, norms may define rewards to their fulfillment and may state punishments in
order to discourage their violation[6].

In this paper we consider that agents are goal-oriented entities that have the main pur-
pose of achieving their desires while trying to fulfill the system norms. In this context,
the paper presents an abstract architecture to build agents able to deal with the norms
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of a society in an autonomous way. The NBDI (Norm-Belief-Desire-Intention) archi-
tecture extends the BDI (Belief-Desire-Intention) architecture [8] by including norms
related functions to support normative reasoning. The agents built according to the pro-
posed architecture have: (i) a review function of norms and beliefs used to check the
incoming perceptions (including norms), (ii) a norm selection function to select the
norms they intend to fulfill based on the benefits they provide to the achievement of the
agent’s desires and intentions, and to identify and solve conflicts among the selected
norms, and (iii) a norm filter where the agents decide to cope or not with the norms
while dropping, retaining or adopting new intentions.

We demonstrate the applicability of the NBDI architecture through a non-combatant
evacuation scenario where the tasks related to review, select and filter norms are im-
plemented by using the Normative Jason platform [7] that already provides support to
the implementation of BDI agents and a set of normative functions able to check if the
agent should adopt or not a norm, evaluate the pros and cons associated with the ful-
fillment or violation of the norm, check and solve conflicts among norms, and choose
desires and plans according to their decisions of fulfilling or not a norm.

The paper is structured as follows. In Section 2 we outline the background about
norms that is necessary to follow the paper. In Section 3 we present the non-combatant
evacuation scenario where norms are defined to regulate the behaviour of rescue agents.
In 4 the proposed NBDI normative agent architecture is explained and exemplified by
using the proposed scenario. Section 5 demonstrates the applicability of the NBDI ar-
chitecture. Section 6 summarizes relevant related work and, finally, Section 7 concludes
and presents some future work.

2 Norms

In this work, we adopt the representation for norms described in [7], as shown below:
norm (Addressee, Activation, Expiration, Rewards,Punishments, DeonticConcept,

State)
where Addressee is the agent or role responsible for fulfilling the norm, Activation

is the activation condition for the norm to become active, Expiration is the expiration
condition for the norm to become inactive, Rewards are the rewards to be given to the
agent for fulfilling a norm, Punishments are the punishments to be given to the agent
for violating a norm, DeonticConcept indicates if the norm states an obligation or a
prohibition, and State describes a set of states being regulated.

3 Scenario: Rescue Operation

The applicability of the architecture proposed in this paper is demonstrated by using the
simplified non-combatant evacuation scenario. In such scenario agents have the goals to
plan the evacuation of members of a Non-Governmental Organisation (NGO) that are in
hazardous location and, to do so, they can use different resources that help to evacuate
the members, such as: (i) helicopters, (ii) troops and (iii) land-based helicopters. Con-
sidering that such resources are limited, we have a Commander Agent that is responsible
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Fig. 1. NBDI Architecture

to control the use of the resources regulating the behaviour of the agents according to
the norms 1, 2 and 3:

Norm 1
Addressee. Rescue Entity.
Activation. NGO workers are stranded in a hazardous location.
Expiration. NGO workers are stranded in a safe location.
DeonticConcept. Obligation.
State. To evacuate NGO workers.
Rewards. The Commander Agent gives more troops to Rescue Entity.
Rewards. The Commander Agent gives land-based helicopters to Rescue Entity.
Punishments. (obligation) Rescue Entity is obligated to return to the Commander

Agent part of their troops.
Norm 2

Addressee. Rescue Entity.
Activation. The weather is bad.
Expiration. The weather is good.
DeonticConcept. Prohibition.
State. To evacuate NGO workers.
Punishments. (obligation) Rescue Entity is obligated to return to the Commander

Agent part of their helicopters or land-based helicopters.
Norm 3

Addressee. Rescue Entity.
Activation. The weather is bad.
Expiration. The weather is good.
DeonticConcept. Prohibition.
State. To use helicopters.
Rewards. The Commander Agent gives more troops or land-based helicopters to

Rescue Entity.
Punishments. (obligation) Rescue Entity is obligated to return to the Commander

Agent part of their troops.
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4 NBDI Architecture

The NBDI (Norm-Belief-Desire-Intention) architecture extends the BDI architecture to
help agents on reasoning about the system norms. Norm is considered as a primary con-
cept that influences the agent while reasoning about its beliefs, desires and intentions.
The extensions we have made are represented in the NBDI architecture by the following
components, as illustrated in Figure 4: Belief+Norm Review Function, Norm Selection
Function, Norm Filter and Plans base1 (that stores the plans of the agent).

In a nutshell, the NBDI architecture (Figure 4) works as follows. The agent perceives
information about the world by using its sensors. The sensed information is the input of
the Belief+Norm Review Function, an extension of Belief Review Function [8] defined
in the BDI architecture that is responsible for reviewing the Beliefs base taking into
account the current perception and ones already stored in the base.

In this work, we consider that norms are also stored in the Beliefs base, so, besides
performing the original functionality of the Belief Review Function, the Belief+Norm
Review Function is also responsible for: (i) in case the current perception is a norm,
reviewing the sets of adopted norms by comparing the information loaded in the new
norm with the norms and beliefs already stored in the base; and (ii) updating the sets
of adopted and activated norms, considering that some may become active and others
inactive due to the incoming perceptions.

Next, the Option Generation Function updates the agent’s desires, and also their
priorities. Such adaptation must consider both agent’s current beliefs and intentions,
and must be opportunistic, i.e., it should recognize when environmental circumstances
change advantageously to offer the agent new ways of achieving intentions, or the
possibility of achieving intentions that were otherwise unachievable [8]. Note that this
function works exactly as the original function described in the BDI architecture. This
function does not consider the norms stored in the Beliefs base while updating the agent
desires because the agent must be able to generate new desires or adapt the existing ones
without the influence of the norms. Our architecture considers that the agent is an au-
tonomous goal-oriented entity that fulfils the system norms if it decides to do so.

After reviewing the beliefs, desires, activated and adopted norms, the Norm Selection
Function is executed in order to (i) evaluate the activated norms in order to select the
ones that the agent has the intention to fulfil; and (ii) identify and solve the conflicts
among these norms.

Next, the Norm Filter, an extension of Filter [8] defined in the BDI architecture,
selects the desires that will become intentions taking into account the norms the agent
wants to fulfil. The plans that will achieve the intentions are also selected by following
the norms the agent wants to fulfil.

Finally, the Action Selection Function is responsible for performing the actions spec-
ified by the intention. The next subsections detail the components added to the original
BDI architecture, the one that was extended and a set of algorithms that demonstrate
how such components can be implemented.

1 Plans are composed by actions and states that the agent has the desire to achieve.
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Fig. 2. Belief+Norm Review Function

Algorithm 1. Adopting Norms

Require: Beliefs base N: norms stored in the beliefs base
Require: agent: informations about the agent, such as: name and role
Require: Beliefs base NA: adopted norms stored in the beliefs base
Require: NN: new norms
1: for all newNorm in NN do
2: x = true
3: for all n in N do
4: if (n == newNorm) then
5: x = false
6: end if
7: end for
8: if x ∩ ((agent.Name == newNorm.Addresse) ∪ ((agent.Role ==

newNorm.Addresse)) then
9: NA.add(newNorm)

10: end if
11: end for

Fig. 3. Norm Selection Function

4.1 Belief+Norm Review Function

Besides performing the original functionality of the Belief Review Function, which is
the revision of the beliefs (represented by Reviewing Beliefs task), the Belief+Norm
Review Function (Figure 2), helps the agent on recognizing its responsibilities towards
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Algorithm 2. Updating Norms

Require: Beliefs base NAD: adopted norms stored in the beliefs base
Require: Beliefs base NAC: activated norms stored in the beliefs base
Require: P: new perceptions
1: for all n in (NAD ∪NAC) do
2: for all p in P do
3: if (n.Activation.unify(p)) then
4: NAD.remove(n)
5: NAC.add(n)
6: else
7: if (n.Expiration.unify(p)) then
8: NAC.remove(n)
9: NAD.add(n)

10: end if
11: end if
12: end for
13: end for

other agents by adopting new norms that specify such responsibilities (represented by
Adopting Norms task) and updates the sets of activated and adopted norms (represented
by Updating Norms task).

Adopting Norms (AN). This task recognizes from the set of receiving perceptions the
ones that describe norms. After recognizing the norms, such function reviews the set
of adopted norms applying the following verifications: (i) it checks if the new norm
unifies with one of the norms already adopted, i.e., if the incoming norm already exists
in the agent Belief Base (Algorithm 1 from line 2 to 7), and (ii) it verifies if the agent
is the addressee of the norm, i.e., if the field Addressee of the new norm unifies with
the agent role or agent name, also stored as a belief in the Belief Base (Algorithm 1 line
8). Finally, such function updates the set of adopted norms in the Belief Base if the new
norm does not already exist and the agent is the addressee of the norm (Algorithm 1
line 9).

With the aim to exemplify the use of this task, let’s consider the scenario presented
in Section 3 where two groups of agents are leaded by Agent A and Agent B playing
the role Rescue Entity. When these entities receive information about the three system
norms, the AN task is executed checking if the norms are not stored yet in the agent’s
belief base and comparing the addressee information with the role being played by the
agents.

Updating Norms (UN). UN task updates the set of activated and adopted norms check-
ing if the fields Activation and Expiration of the norm unifies with the beliefs of the
agent. If the activation conditions unify with the beliefs, the adopted norm is activated
(Algorithm 2 from line 3 to 6). If the expiration conditions unify with the beliefs, the
norm is deactivated and stored as an adopted norm (Algorithm 2 from line 7 to 10).
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Following the example above, if the weather of the area operated by one of the two
rescue entities is bad, both norms 2 and 3 are activated, since the activation condition of
both norms is “The weather is bad”. If the norms are activated, the rescue entity must
not rescue NGO members and must not use helicopters. Both norms are deactivated
when the expiration condition unifies with the information about a good weather stored
in the agent’s belief base.

4.2 Norm Selection Function

The main goal of the Norm Selection Function (Figure 3) is to select the norms that the
agent has the intention to fulfil. In order to do this, such function performs two tasks:
1) Evaluating Norms and 2) Identifying and Solving Conflicts. The first task helps the
agent on selecting, from the set of activated norms, the norms that it has the intention to
fulfil and the ones it has the intention to violate. The function evaluates the benefits of
fulfilling or violating the norms, i.e., it checks how close the agent gets of achieving its
desires if it decides to fulfil or if it decides to violate the norms. The function groups the
activated norms in two sub-sets: norms to be fulfilled and norms to be violated. Finally,
the second task of this function identifies and solves the conflicts among the norms that
the agent has the intention to fulfil and among the ones that the agent has the intention
to violate.

Evaluating the Norms (EN). In order to evaluate the benefits of the fulfilment or vio-
lation of a norm according to the agent’s desires and intentions, the steps below should
be followed: (Step 1) In case of obligations, it checks if the state described in the norm
is equal to one of the states that the agent has desire (or intention) to achieve. In affir-
mative cases, the contribution is positive and the function g(n.DeonticConcept, n.State)
returns a value indicating the level of norm’s contribution that is calculated according
to the priority of the desire that is similar to the state described by norm. The function
receives as parameters n.DeonticConcept representing the deontic concept type, i. e.,
obligation or prohibition, and n.State representing the state that is been regulated. In
any other case, the contribution is zero since it does not disturb the achievement of the
agent’s desires or intentions. Such step is represented in Algorithm 3 from line 2 to 8.
(Step 2) In case of prohibitions, it checks if the state described in the norm is equal to
one of the states that the agent has desire ( or intention) to achieve. In affirmative cases,
the contribution is negative since it disturbs the achievement of the agent’s desires or in-
tentions and the function g(n.DeonticConcept, n.State) calculates the absolute value of
the contribution. In any other case, the prohibition will contribute neutrally. Such step is
represented in Algorithm 3 between lines 9 and 15. (Step 3) After analyzing the state be-
ing regulated, this step considers the influence that the rewards have to the achievement
of the agent’s desires. We consider that rewards can never influence the agent negatively
but always positively or neutrally since they give permissions to achieve a set of states.
Such step is represented in Algorithm 3 by line 16. Function r(n.Rewards) verifies the
desires (or intentions) that are equal to the rewards and returns a value indicating the
contribution that is the sum of the priorities of the agent’s desires benefited by the re-
wards. (Step 4) Finally, the punishments are evaluated in order to check if they will
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influence the achievement of the agent’s desires and intentions negatively or positively.
(Step 4.1)In case the punishment states a prohibition and the state being prohibited is
one of the agent desires or intentions, the punishment will influence negatively since it
will disturb the agent of achieving one of its desires. If it is not the case, the punishment
will not influence. Such step is represented in Algorithm 4 from line 2 to 8. Function
g(n.punishments.DeonticConcept) returns a absolute value indicating the contribution
of the fulfilment of the prohibition to the achievement of the agent’s desires and inten-
tions. (Step 4.2) In case the punishment states an obligation and the state being obliged
is one of the agent desires or intentions, the punishment will influence positively (or
neutrally) since such state will already be achieved by the agent. If it is not the case,
the punishment will not influence. Such step is represented in Algorithm 4 from line 9
to 15. Function g(n.punishments.DeonticConcept) returns a value indicating the contri-
bution of the fulfilment of the obligation to the achievement of the agent’s desires and
intentions.

Algorithm 3. Evaluating the fulfilment

Require: Desires base D
Require: Intentions base I
Require: Beliefs base N: norms stored in the beliefs base
1: x = 0
2: if n.DeonticConcept == Obligation then
3: for all d in (D ∪ I) do
4: if n.State == d then
5: x = x + g (n.DeonticConcept, n.State)
6: end if
7: end for
8: end if
9: if n.DeonticConcept == Prohibition then

10: for all d in (D ∪ I) do
11: if n.State == d then
12: x = x - g (n.DeonticConcept, n.State)
13: end if
14: end for
15: end if
16: x = x + r (n.Rewards)
17: return x

Note that it is necessary to individually check the contribution of the fulfilment and
violation of each norm to the achievement of the agent desires (or intentions). Such step
is represented in Algorithm 5 in the lines 2 and 3.

After checking how each norm can contribute to the achievement of the agent’s de-
sires and intentions, the function helps the agent on deciding which are the norms that
it should fulfil, i.e., the norms whose contribution coming from its fulfilment is greater
than the contribution coming from its violation. Steps 1, 2 and 3 return the contribution
of the norm if the agent chooses to fulfil it (Algorithm 3 line 17) and 4.1 and 4.2 return
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Algorithm 4. Evaluating the violation

Require: Desires base D
Require: Intentions base I
Require: Beliefs base N: norms stored in the beliefs base
1: x = 0
2: if n.punishment == Prohibition then
3: for all d in (D ∪ I) do
4: if n.punishment.state == d then
5: x = x - g (n.punishments.DeonticConcept, n.punishments.State)
6: end if
7: end for
8: end if
9: if n.punishment == Obligation then

10: for all d in (D ∪ I) do
11: if n.punishment.state == d then
12: x = x + g (n.punishments.DeonticConcept, n.punishments.State)
13: end if
14: end for
15: end if
16: return x

Algorithm 5. Reasoning about norms (Main)

Require: fulfilSet NF: norms stored in the fulfil set
Require: vilateSet NV: norms stored in the violate set
Require: Norms base N
1: for all Norm n in N do
2: fulfil = Execute Algorithm 3 using n
3: violate = Execute Algorithm 4 using n
4: if fulfil >= violate then
5: NF.add(n)
6: else
7: NV.add(n)
8: end if
9: end for

its contribution if the agent chooses to violate the norm (Algorithm 4 line 16). There-
fore, Algorithm 3 should be used to evaluate the contribution of the fulfilment of the
norm to the agents’ desires/intentions and Algorithm 4 should be used to calculate the
contribution of the violation of the norm to the agents’ desires/intentions.

If the contribution for fulfilling the norm is greater than or equal to the contribution
for violating the norm, the norm is selected to be fulfilled and added to the sub-set
Fulfill of the activated norms. Such step is represented in Algorithm 5 from line 4 to 6.
Otherwise, it is selected to be violated and added to the sub-set Violate of the activated
norms. Such step is represented in Algorithm 5 from line 6 to 8.

In order to exemplify the applicability of the EN task, let’s consider the rescue oper-
ation scenario. The evaluation of the benefits of fulfilling and violating the three norms
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Algorithm 6. Detecting Conflicts

Require: fulfilSet NF: norms stored in the fulfil set
Require: vilateSet NV: norms stored in the violate set
1: for all Norm n1 in NF do
2: for all Norm n2 in NF do
3: if n1.State == n2.State and (n1.DeonticConcept == Obligation and n2.DeonticConcept

== Prohibition) or (n2.DeonticConcept == Obligation and n1.DeonticConcept == Pro-
hibition) then

4: Execute Algorithm 7 using n1 and n2
5: end if
6: end for
7: end for
8: for all Norm n1 in NV do
9: for all Norm n2 in NV do

10: if n1.State == n2.State and (n1.DeonticConcept == Obligation and n2.DeonticConcept
== Prohibition) or (n2.DeonticConcept == Obligation and n1.DeonticConcept == Pro-
hibition) then

11: Execute Algorithm 7 using n1 and n2
12: end if
13: end for
14: end for

Algorithm 7. Solving Conflicts

Require: fulfilSet NF: norms stored in the fulfil set
Require: vilateSet NV: norms stored in the violate set
1: fulfiln1 = Execute Algorithm 3 using n1
2: violaten2 = Execute Algorithm 4 using n2
3: fulfiln2 = Execute Algorithm 3 using n2
4: violaten1 = Execute Algorithm 4 using n1
5: if fulfiln1 + violaten2 >= fulfiln2 + violaten1 then
6: NF.remove(n2)
7: NV.remove(n1)
8: else
9: NF.remove(n1)

10: NV.remove(n2)
11: end if

are shown in Tables 1, 3 and 2 that indicates the contribution of each norm element to
the achievement of the agent goals. We consider that any norm element generates the
same contribution that is 1.

After analysing the contribution of the norms shown in Tables 1, 3 and 2, Norm 1 is
included in the set of norms to be fulfilled since the contribution for fulfilling it is equal
to “+3” and greater than the contribution for violating it that is equal to “-1”. Norm 2 is
also included in the fulfil set since the contribution for fulfilling it is equal to “-1” and
greater than the contribution for violating it that is equal to “-2”. And, finally, Norm 3
is included in the fulfil set since the contribution for fulfilling it is equal to “+1” and
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Table 1. Evaluating norm 1

Norm Contribution
positive neutral negative

Obligation 1 0 0
Reward 1 0 0
Reward 1 0 0

Punishments
Obligation 0 0 1

Table 2. Evaluating norm 3

Norm Contribution
positive neutral negative

Prohibition 0 0 1
Reward 1 0 0
Reward 1 0 0

Punishments
Obligation 0 0 1

Table 3. Evaluating norm 2

Norm Contribution
positive neutral negative

Prohibition 0 0 1
Punishments
Obligation 0 0 1
Obligation 0 0 1

greater than the contribution for violating it that is equal to “-1”. It indicates that the
agent has the intention to fulfil the three norms.

Detecting and Solving Conflicts (DSC). If two different norms (one being an obliga-
tion and the other one a prohibition) specify the same state, it is important to check their
status, i.e., to check if they are in the set of norms that will be violated or fulfilled since
they may be in conflict. If the agent intends to fulfil the obligation but does not intend to
fulfil the prohibition, these norms are not in conflict. The same can be said if the agent
intends to fulfil the prohibition and to violate the obligation. On the other hand, if the
agent intends to fulfil both norms or to violate both norms, they are in conflict and it
must be solved. Such step is represented in Algorithm 6.

For instance, in case of conflicts between two norms that the agent intends to fulfil
or violate, the one with highest contribution to the achievement of the agent’s desires
(and intentions) can be selected. If the contributions have equal values we can choose
anyone. That is, if the contribution coming from the fulfilment of the first norm (Steps
1, 2 and 3) plus the contribution coming from the violation of the second norm (Steps
4.1 and 4.2) is greater to or equal than the contribution coming from the fulfilment of
the second norm plus the contribution coming from the violation of the first norm, the
first norm is selected to be fulfilled and the second one to be violated. It is represented in
Algorithm 7 from line 5 to 8. In case the opposite happens, the second norm is selected
to be fulfilled and the first to be violated, as described in Algorithm 7 from line 8 to 11.

Considering the norms evaluated in the EN function, a conflict between Norm 1 and
2 is detected and should be solved. The conflict is solved by selecting Norm 1 to be
fulfilled and Norm 2 to be violated since the contribution coming from the fulfilment of
the first norm (+3) plus the contribution coming from the violation of the second norm
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(-2) is greater than the contribution coming from the fulfilment of the second norm (-1)
plus the contribution coming from the violation of the first norm (-1).

4.3 Norm Filter

The Norm Filter (Figure 4) is executed in order to drop any intention that does not bring
benefits to the agent, retains intentions that are still expected to have a positive overall
benefit and adopt new intentions, either to achieve existing intentions, or exploit new
opportunities. In order to accomplish theses tasks and besides performing the original
functionality of the Filter function, such function performs two additional steps.

Selecting Desires (SD). In this step the filter selects the desires that will become in-
tentions taking into account the norms the agent wants to fulfil. The desires are selected
according to their priorities and the norms may increase or decrease such priorities. If
the agent has a desire to achieve a state and there is a norm that obliges the agent of
achieving such state, the desire priority is increased according to the importance of the
norm (represented in Algorithm 8 from line 3 to 5). If the agent has a desire to achieve
a state and there is a norm that prohibits the agent of achieving such state, the desire
priority is decreased according to the importance of the norm (represented in Algorithm
8 from line 5 to 9). If there is not any norm related to the desires, its priority is not
modified. Finally, the function getDesireHighestPriority() (Algorithm 8 line 12) returns
the desire with highest priority.

By applying this function to our example, the goal “Evacuating the members of a
NGO to a safe location” is selected because such goal has highest priority since it re-
ceives a positive influence of Norm 1.

Selecting Plans (SP). After selecting the desires with highest priorities, i.e., after gen-
erating the agent intentions, the agent needs to select the plans that will achieve such
intentions. Like in the selection of desires, the selection of plans will also be influenced
by the norms.

While selecting a plan it is important to make sure that such plan will achieve the
state described in the obligation norm and that will not achieve an state being prohibited.
Therefore, the plans that achieve a given intention are ordered according to their priori-
ties. If the state described by an obligation norm is equal to one of the states included in
the plan, the norm increases the priority of such plan (represented in Algorithm 9 from
line 4 to 6). Otherwise, if the state described by an prohibition norm is equal to one of
the states included in the plan, the norm decreases the priority of such plan (represented
in Algorithm 9 from line 6 to 10).

Let’s consider that the desires of the agents in our example with highest priority is
“Evacuating the members of a NGO to a safe location”, that the agent has the intention
to fulfil Norm 3, and that the priority of plans that uses helicopters has decrease. When
SP step is executed it selects the plan with highest priority that tries to rescue the NGO
workers and that will not use helicopters to do so.
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Fig. 4. Norm Filter

Algorithm 8. Selecting Desires

Require: fulfilSet NF: norms stored in the fulfil set
Require: Desires base D
Require: Intentions base I
1: for all Norm n in NF do
2: for all d in (D ∪ I) do
3: if (n.State == d) ∩ (n.DeonticConcept == Obligation) then
4: d.annotatePriority(+1)
5: else
6: if (n.State == d) ∩ (n.DeonticConcept == Prohibition) then
7: d.annotatePriority(-1)
8: end if
9: end if

10: end for
11: end for
12: return getDesireHighestPriority()

5 Implementing the NBDI Architecture

The NBDI architecture proposed in section 4 was implemented by translating the func-
tions related to review, select and filter norms proposed in such architecture to the
Normative Jason platform, described in [7]. The platform provides a set of normative
functions, as follows: (i) the Norm Review function helps the agent on recognizing its
responsibilities towards other agents by incorporating the norms that specify such re-
sponsibilities. Such function implements the Algorithm 1 described in the (AN) step;
(ii) the main task of the Updating Norm function is to update the set of activated and
adopted norms. It implements the algorithm Algorithm 2 described in the (UN) step;
(iii) the Evaluating Norm function helps the agent on selecting the norms that it has the
intention to fulfil and the ones it has the intention to violate by executing the Algorithm
5 and, consequently, Algorithms 3 and 4 described in the (EN) step; (iv) the Detecting
and Solving Conflicts function checks and solves the conflicts among the norms. It exe-
cutes Algorithms 6 and 7 described in the (ISC) step; (v) the Selecting Desires function
selects the desires that will become intentions taking into account their priorities and
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executes Algorithm 8 described in the (SD) step; and, finally, (vi) the Selecting Plans
function chooses a single applicable plan from the set of options based on their pri-
orities and executes Algorithm 9 described in the (SP) step. The applicability of the
NBDI architecture and its implementation was demonstrated by the developing of the
non-combatant evacuation scenario, presented in section 3.

Algorithm 9. Selecting Plan

Require: fulfilSet NF: norms stored in the fulfil set
Require: P: all plans that achieve the selected desire
1: for all Norm n in NF do
2: for all p in P do
3: for all state in p do
4: if (n.State == state)∩ (n.DeonticConcept == Obligation) then
5: p.annotatePriority(+1)
6: else
7: if (n.State == state) ∩ (n.DeonticConcept == Prohibition) then
8: p.annotatePriority(-1)
9: end if

10: end if
11: end for
12: end for
13: end for
14: return getPlanHighestPriority()

6 Related Work

Our work was influenced by the architecture proposed in [2]. Such architecture to build
normative agents also contemplates functions to deal with the adoption of norms and
the influence of norms on the selection of desires and plans. However, our work presents
details about the verifications that must be satisfied in order to agents adopt norms, the
evaluations that must be made to select the norms the agents intend to fulfil and vi-
olate and a guidelines to help agents on selecting plans according to the norms they
want to fulfil and violate. The BOID (Belief-Obligation-Intention-Desire) architecture
proposed in [1] is an extension of the BDI architecture that considers the influence of
beliefs, obligations, intentions and desires on the generation of the agent desires. The
BOID architecture applies the notion of agent types to help on the generation of the
desires. Thus, their approach could have been used in the (SD) function being proposed
in our paper since this function is the one responsible to select the desires. Instead of
basing the selection of desires on the agent type, we have used the norm contribution
and the priority of the desires (and intentions) to provide a quantifiable solution to the
selection of the agent desire. The approach described in [4] proposes an architecture
to build norm-driven agents whose main purpose is the fulfilment of norms and not
the achievement of their goals. In contrast, our agents are desire-driven that take into
account the norms but are not driven by them. In [6] the authors provide a technique
to extend BDI agent languages by enabling them to enact behaviour modification at
runtime in response to newly accepted norms, i.e., it consists of creating new plans to
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comply with obligations and suppressing the execution of existing plans that violate
prohibitions. However, they have not considered the desires and plans priorities. In our
work we consider that obligations and prohibitions may increase or decrease the priority
of a desire or a plan, and that the selection of desires and plans are based on their prior-
ities. The agents built according to the architecture presented in [5] are able to evaluate
the effects of norms on their desires helping then on deciding to comply or not with the
norms. This architecture is based on the BDI architecture whose properties have been
expanded to include normative reasoning. In the Norm Review process being proposed,
we extend some of the verifications defined in [5], such as: our architecture checks (i)
if the norm was not adopted already and (ii) if the agent is the addressee of the norm.
Besides, in the Norm selection process, although the approach proposed in [5] evalu-
ates the positive and negative effects of norms on the agent desires, it does not consider
the influence of rewards in such evaluation. The authors in [3] present concepts, and
their relations, that are used for modelling autonomous agents in an environment that is
governed by some (social) norms. Although such approach considers that the selection
of desires and plans should be based on their priorities and that such priorities can be
influenced by norms, it does not present a complete strategy with a set of verification in
the norm review process, and strategies to evaluate, identify and solve conflicts between
norms such as our work does.

7 Conclusions

This paper proposes an extension to the BDI architecture called NBDI to build goal-
oriented agents able to: (i) check if the agent should adopt or not a norm, (ii) evaluate
the pros and cons associated with the fulfilment or violation of the norm, (iii) check
and solve conflicts among norms, and (iv) choose desires and plans according to their
decisions of fulfilling or not a norm.

By implementing the algorithms from 1 to 9 and using the Normative Jason plat-
form, the applicability of NBDI architecture could be verified in the example presented
in Section 3. Such agents are responsible to plan the evacuation of people that are in
hazardous location, check the incoming perceptions (including norms), select the norms
they intend to fulfil based on the benefits they provide to the achievement of the agent’s
desires and intentions, identify and solve conflicts among the selected norms, and decide
to cope or not with the norms while dropping, retaining or adopting new intentions. We
are investigating the need for extenting the AgentSpeak language with new predicates
that better represent the norms.
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Abstract. The environment is a powerful first-order abstraction in Multi-Agent
Systems (MAS), as well as a critical building block. The agents interact in their
environment and the effects of their actions are observed and evaluated through
this environment. The local complexity of the agents depends on its management
of the interaction and action processes. If the environment carries out a part of
this processes, the complexity of the agents is reduced. This delegating process
implies a centralization of a part of the MAS computations inside the environment
and therefore a flexible way to exchange information and to coordinate the agents.

In this paper, we present the modeling of an environment which supports
both communication services and simulation services: multi-party communica-
tions (communication) and contextual activation (simulation). We evaluate the
cost of these environment services and compare it to the execution of the same
tasks inside the agents. The evaluation and comparison are done theoretically and
empirically for communication and simulation. We also investigate the clustering
of the agents in several environments.

Keywords: Environment, Evaluation, Communication, Activation.

1 Introduction

In [16], the authors give the following definition of a multi-agent system (MAS) en-
vironment: “The environment is a first-class abstraction that provides the surrounding
conditions for agents to exist and that mediates both the interaction among agents and
the access to resources”. The environment is a critical building block in the multi-
agent systems that encapsulates its own responsibilities. The agents interact in their en-
vironment and the effects of their actions are observed and evaluated through
this environment. Thus, the environment provides observability and accessibility
services.

The relation between the environment and the agents is traditionally based on a per-
ception - decision - action cycle [15] which is repeated by the agents during their life
time. The three phases of the cycle are executed in each agent. The perception being
the agent ability to observe its environment, its result is the computation of what can be
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called contexts. A context is defined as a set of information that can be used to character-
ize a situation. This set of information includes percepts and messages that are obtained
by the agent and its own state. Thanks to the context computation, the agent decides to
execute the suitable action. The relation between the environment and the agents based
on this perception - decision - action cycle does not exploit the potential of the envi-
ronment that remains a static entity. This relation can be enhanced by delegating the
perception process to the environment [1,8,13,17]. The objective is to support advanced
features that are difficult to obtain without the environment.

We have proposed an environment modeling and an environment framework that are
based on the delegation of the perception process to the environment. Our proposition
supports two advanced features: 1) Multi-Party Communications (MPC) [3] takes into
account dyadic interaction (one to one), group interaction (one to many) and overhear-
ing (many to one/many) within the same interaction process; 2) Contextual activation
[9] applied to the simulation process consists in activating the agents directly according
to their context. In our proposition, despite the delegation process to the environment,
the agents keep their autonomy because the decision process and the action process re-
main in the agents. The perception phase of the cycle is modified to take into account
the relation with the environment. That means that the environment computes the con-
texts for the agents, and that the agents can modify this computation process to suit their
needs: the agents decide which contexts are important for them and act by modifying in
consequence the computation process that is executed by the environment. In the MPC
case, the environment mediates the communication: the context is the information about
the agent receiver, the message and any other environment information which is rele-
vant to this communication. if the context is validated, the environment addresses the
messages to the related agents. In the simulation case, the environment is the scheduler
that manages the agent activation: the context is the subset of information accessible to
the agents. The environment activates an agent in a specific context and according to
this context, the agent performs the suitable action.

To adapt the perception process to each agent, the environment needs ‘tools‘ to com-
pute their contexts. In our proposition, these tools are filters that reify the relation be-
tween an agent (described in the environment) and its contexts. A filter contains the
constraints on the context related to an action of an agent. This action is the reception
of a message for communication filters and a specific agent action to perform after val-
idation for activation filters. The agents modify their relation to the environment thanks
to the addition and removal of their filters in the environment. This process is dynamic
and the environment activates only its current filters. These choices (addition/removal)
belong to the decision process that is managed by each agent.

The externalization of the computation of the perception process improves qualita-
tively the design of a MAS. The dynamic filter management by the agents gives more
flexibility to the MAS design. More details on qualitative improvement are given in
[13] for communication and in [1] for simulation. The counterpart is a centralization of
a part of the MAS processes inside the environment. In this paper, we evaluate the cost
of this centralization for computing agent contexts, in comparison to the execution of
equivalent solutions for communication and simulation.
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Section 2 motivates the delegating process of tasks to the environment for commu-
nication and simulation and introduces an illustrative example with different examples
issued of a crisis management application. Section 3 presents the environment model.
Section 4 provides a theoretical evaluation. In section 5, we provide an empirical eval-
uation, and we conclude in section 6.

2 Motivations

2.1 Communication

Recent research on multi-party communications [3,13] shows how multi-agent commu-
nications can take advantage of the complexity of the human communication process.
The main issue in supporting MPC is to take into account dyadic interaction (one to
one), group interaction (one to many) and overhearing (many to one/many) within the
same interaction process. The sender does not know all the agents that might be inter-
ested in its messages. For example, an agent can listen to messages without the agree-
ment/knowledge of the sender through overhearing. For a recipient, the usefulness of a
message may depend on the context of the sender, the context of the message, and the
context of the recipient itself.

These challenges are related to the way the recipients are chosen. MPC requires
knowledge of the needs of both the sender and the recipients. From the sender viewpoint
(direct interaction), it is a connection problem: which agents are related to my message?
The problem is to map the senders needs (information, capabilities, resources, ...) to the
address of related agents. From the recipient viewpoint (indirect interaction), it is a data
extraction problem: which messages are related to me? The problem is to map the re-
cipients needs to the content of the messages. For each message, these problems have
to be simultaneously solved by the communication infrastructure. The environment is
able to solve these problems by mediating the communication in order to find all the
receivers of each message. Nevertheless, in the cognitive agents community, few works
explicitly present the environment as an interaction support. For direct interaction, the
environment is often associated to an infrastructure that supports point to point commu-
nication. For indirect interaction, cognitive agents use specific services that are based
on the management of a shared collection of data (e.g. [11]) that may be understood as a
part of the environment. There is therefore a separation between the solutions to realize
direct and indirect interaction although the environment provides a suitable framework
to unify them [12].

If the computation of the context does not take into account ambient conditions, it
can classically be done inside the agents. This solution implies that the agents receive
all messages and filter them. An evaluation of the environment support consists in the
cost comparison of the context filtering either in each agent after the reception or in the
environment during the transmission process.

2.2 Agent-Based Simulation

In a simulation, the scheduling policy defines the activation order of the agents. Once
activated, the agents behave according to their context. How the agents are activated and
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what information is available to compute the agent context depend on the agent-based
simulation (ABS) framework.

In most ABS frameworks, at each simulation step, a scheduler activates sequentially
all the agents and each activated agent computes its local context to choose one action to
execute. The classical ABS frameworks are designed to support this activation process.
For example, in the platforms CORMAS [2] and MASON [10], the scheduler activates
a standard method for each agent. This method is specialized by the designer to adapt
the agent behavior. In the Logo-based multi-agent platforms such as TurtleKit [7] or
the STARLOGO system1, an agent has an automaton that determines the next action to
perform.

The choice of these platforms to be agent-oriented, with a light environment support,
implies that the computation of the context is repetitive because it is computed in each
agent at each time cycle during the simulation execution. This computation is done in
each agent even if the agent context does not change between two time cycles and/or if
several agents share the same context during a time cycle. Here, the evaluation consists
in the cost comparison of the context filtering either in each agent after the activation or
in the environment during the scheduling process.

Example. In this paper, we consider a crisis management application where several
emergency services must be coordinated in order to reduce the crisis effects. A crisis
situation is a dynamic phenomenon defined by the initial situation, which depends on
place and time, and by the impact on population and infrastructure. We focus our exam-
ple on a specific point which is the victim evacuation. This task consists in coordinating
two agents playing the role medical porter. The goal of the medical porters is to shift a
victim to an emergency vehicle. This action requires one medical porter with the skill
medical monitoring and one medical porter with the skill victim handling. The first
skill allows the medical porter to monitor the victim and to inform the hospital of the
evolution of the victim health. The second skill is necessary to handle the victim.

Each simulation component (agents, messages and objects) is situated on a grid. In
this example, we consider that the victims belong to the set of the objects because they
are not autonomous. The agents (medical porter) act in this environment and cooperate
in order to evacuate victims. A medical porter can move randomly or towards a given
direction, and it possesses only one skill. It can either monitor or handle a victim, but
the two skills are required to evacuate the victim. The agents can communicate in order
to find a partner with the complementary skill. Each agent has a field of perception
that limits its perception of the environment. A medical porter is able to perform one
of the following actions in a time cycle of simulation: 1) the action move randomly,
2) the action move towards a location, 3) the action wait, and 4) the action evacuate
a victim.

We use this application along the paper to illustrate our study of the cost of the
environment supporting interaction and simulation.

1 http://education.mit.edu/starlogo/
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3 Environment Modeling

To support multi-party communications and contextual activation, we propose to use the
environment as a privileged intermediary to manage interaction (EASI, Environment as
Active Support for Interaction) and simulation (EASS, Environment as Active Support
for Simulation) process. The EASS model [1] embeds the EASI model [13]. The envi-
ronment manages meta-informations on the MAS (agents, messages, context) and uses
them to compute the agent context(s). In this section, we give the background elements
to understand the assessment of the cost of the environment. More details about the
models can be found in [13].

The environment model EASI is thus defined by 〈Ω,D, P,F〉 with:

– Ω = {A∪MSG ∪O} = {ω1, ..., ωm} the set of entities (withA the set of agents,
MSG the set of messages and O the set of objects, i.e. all entities that are not
agents or messages),

– D = {d1, ..., dm} the set of domain descriptions of the properties,
– P = {p1, ..., pn} the set of properties,
– F = {f1, ..., fk} the set of filters.

Entity. An entity ωi ∈ Ω is defined by 〈er, ed〉 where er is a reference to an element
of the MAS and ed is the description of that element. An element of the MAS can be
an agent, a message or an object. A reference is its physical address on the platform
or other objects (such as URL, mailbox, etc.). The description ed is a set of couples
〈pi, vj〉 where pi ∈ P and vj is the value of the property for the entity. Any agent of the
MAS has its own processing and knowledge settings. It is connected to the environment
thanks to its description that the environment stores and updates. This description ed is
used for the routing of the informations to the agent with the reference er (EASI) or its
activation (EASS). The agents can modify their description dynamically.

Property. A property pi ∈ P : Ω → dj ∪ {unknown, null} is a function whose
description domain dj ∈ D can be quantitative, qualitative or a finite set of data. The
unknown value is used when the value of the property cannot be set, and null is used
to state that the property is undefined in the given description. In order to simplify the
notation, only the value of the description domain dj is given to specify a property.

Filter. A filter identifies the entities according to their description (ed) and realizes
the interaction between the concrete objects (er). A filter fj ∈ F is a tuple fj =

〈fa, [fm], [fC ], nf 〉 with nf the filter name. The assertion fa : A → {true, false} iden-
tifies the related agents, the assertion fm : MSG → {true, false} identifies the related
messages, and fC : P(Ω) → {true, false} is an optional set of assertions identifying
other entities of the context. A filter is considered valid for any tuple 〈agent, [message], [

context]〉 such as:

fa(agent)[∧fm(message)][∧fC(context)] is true.

The choice of the action specializes the filter. Every agent a whose description validates
fa is activated if there exists a set of entities in the context such that fC is true. After its
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activation, the agent validates the action related to this context and executes it (or not).
It is a communication filter if the action is to add the message m that satisfies fm in
the message box of the agent a. The agents can add and remove dynamically the filters.
Thus, they adapt their relation with the environment according to their needs.

In a crisis simulation, the agents have observable properties: their identifier, which
is unique, their location, their availability (true/false values) which specifies if an agent
rescues a victim, their skill (position/monitoring), their field of vision, and their internal
time. The messages have the following properties: their identifier that is unique, their
sender identifier, the sending time, the message type (’request’/’accept’), their location
which is the location of the sender when the message is put in the environment, the
identifier of the victim to rescue and the skill required by the sender in the case of com-
munication. The victims have four properties: their identifier, their location, their status
(stretcher/vehicle) and ”diagnosed”. The victims to be evacuated must be diagnosed;
this is expressed by the property diagnosed (true/false values).

In the simulation example, let fe be a communication filter related to the following
context: an agent is interested by a message if it is available (fa), if the request message
is close to the agent a and a has the requested skill (fm) and if the victim has been
diagnosed (fc). In this example, fc contains one entity which is a victim identified
by the property idv of the message. The request messages have information about the
victim location and the skill of the medical porter.

The processing of the context is traditionally done by the agents, but in EASI and
its extension EASS it is done by the environment. In this way, the computation can be
done with information that is shared by the agents (the entities descriptions) and with a
degree of mutualization. However, it implies the centralization of the computation and
the management of the information update. Now, we propose to evaluate the cost of this
centralization.

4 Theoretical Assessment

The theoretical assessment is the comparison between the processing by the environ-
ment of a communication filter for na agents and the processing by na agents of all the
messages. In order to take into account the context dynamics, this theoretical assess-
ment also studies the update process of the MAS. The theoretical assessment is based
on two criteria. The first, noted CostT , is the number of tests performed during the fil-
tering process and the second, noted CostM , is the number of resulting messages. The
objective is to identify in which cases it is better to mediate the communication through
the environment than to manage it in the agents.

Following the definition given in section 3, a filter f has tests related to one agent
description (fa), one message description (fm) and a subset of entities (fc). To simplify
the explanation, we assume there is only one entity to match fc and this entity cannot
be an agent. This last assumption implies that there is no additional cost for the update
process if the message processing is executed by the agents. The following generic filter
illustrates our assessment, it is shown in a classical “if” structure:
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Tests N

if ∧i=1..n Tm
i (?m) (1)

and ∧i=1..n T a
i (?a) (2)

and ∧i=1..n T a,m
i (?a, ?m) (3)

and ∧i=1..n T c
i (?c) (4)

and ∧i=1..n Tm,c
i (?m, ?c) (5)

and ∧i=1..n T a,c
i (?a, ?c) (6)

For the filter example fe: an agent (?a) is interested by a request message (?m)
(1) if it is available (2), if this request message is close to the agent and the agent ?a
has the skill specified in the message (3) and if the victim to evacuate (?c) (5) is diag-
nosed (4). T a

1 (?a) is the result of the first test on an agent related to its availability and
∧i=1..nT

a
i (?a) are all the tests on the agent receiver. T a,m

1 (?a, ?m) is the result of the
first test on an agent and a message related to the requested skill and∧i=1..nT

a
i (?a, ?m)

are all the tests on the receiver and the message.

Evaluation of the Number of Tests. A filter is composed of two types of tests. The first
type is a comparison between the value of a property and a constant: the tests (1)(2)(4).
The second type of test implies a matching process: the tests (3)(5)(6). For each of
these types the cost in number of tests is related to the number of entities that have to
be tested and on the result of the previous tests on the same set of entities. For example,
the number of agents that is tested by T a

2 (?a) is related to the number of agents that
have validated the test T a

1 (?a). Let ti be the percentage of entities that validates the test
i. Let |Ci| be the number of tests and Ci be the number of evaluated tests of (i), the
value of Ci is:

Ci =

⎧⎪⎪⎨⎪⎪⎩
1 +

|Ci|∑
j=1

j∏
k=1

tk if |Ci| > 1

1 if |Ci| = 1
0 if |Ci| = 0

The cost of a filter is the sum of the costs of its tests (sequentially validated). The fol-
lowing table gives the cost of the generic filter if one message has to be processed by
the environment (column E) or by the na agents (column A). There are two differences
between these two processing: 1) the factorization of the tests if the processing is ex-
ecuted by E; 2) the implicit elimination of the agents if the processing is executed by
the agents. If the processing is executed by E the tests are factorized, for example (1)
is executed only once and is repeated for na agents. Each test (i) that is false implies
an elimination of the agent that executes the processing. For example in (5) only the
subset of agents where the test (4) is validated continue the processing. Following the
hypothesis that the filtering and the shared information are the same, the matching done
by the agents is more costly than by the environment for the tests (1)(4)(5) and are
the same for (2)(3)(6). We conclude that the mediation by environment is always better
than the broadcast when at least one agent is interested in the message. Nevertheless the
implicit agent elimination implies that if the agents do not share all information some
part of the filter evaluation can be less costly for the agents than for the environment.
This parameter will be empirically tested in section 5.
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N E A tested entities

(1) C1 na ∗ C1 nm = 1

(2) na ∗ C2 na ∗ C2 all the agents in E and each agent individually (A)
(3) p2 ∗ na ∗ C3 p2 ∗ na ∗ C3 p2 : percentage of agents that have the requested state
(4) nc ∗ C4 (p2∗p3∗na)∗nc∗C4 nc : number of entities that are tested in (4). p3 :

percentage of agents that are related to the message.
(5) p4 ∗ nc ∗ C5 (p2 ∗p3 ∗na)∗ (p4 ∗

nc) ∗ C5

p4 : percentage of entities related to the context (4)

(6) (p2 ∗ p3 ∗ na)
∗(p5 ∗p4∗nc)∗
C5

(p2 ∗p3 ∗na)∗ (p5 ∗
p4 ∗ nc) ∗ C5

p5 : percentage of entities validating (5)

Moreover, the environment and the agents need the same information to process the
filters and the result has to be balanced by the cost of the access to this information.

Evaluation of the Number of Messages. If the exchange of information is done via
messages, there are two types of messages to take into account: 1) the messages related
to the interaction in the MAS such as the request messages in our example fe; 2) the
messages related to the update process.

Firstly we evaluate the number of messages that are the result of the interaction in
the MAS. Let nm be the number of messages sent by the agents, let pr be the aver-
age percentage of agents that have to receive the messages. If the matching process is
executed by the environment then each message is sent to the environment, and the en-
vironment transmits it to the pr∗na receivers. The total number of messages is therefore
nm(1 + pr ∗ na). If the matching process is executed by the agents, then each message
is sent to all the agents which locally execute the matching process. The total number
of messages is therefore nm ∗ na. Except if pr is close to 1 which means that the mes-
sage is related to all the agents, the environment mediation is less costly. The more the
selection is important, the more the mediation by the environment is beneficial.

Secondly we evaluate the number of messages that are the result of the update pro-
cess of the MAS. To simplify, we consider only the update process of the descriptions
of the agents and not of the context, although the principle is the same. In our example,
it implies that the state of the victims is not updated (or that its cost is the same if it is
computed by the environment or by the agents). When an agent is updated all its proper-
ties are updated in the environment. Remember that the filter example does not contain
tests on the state of the agents to compute the context (fc). Hence, the computation by
the agents does not imply additional costs because we suppose the agents do not need
to access updated information about the other agents, which is an underestimation of
the cost of the local agent solution.

When the communication is mediated by the environment, the agents update their
descriptions by putting in the environment new descriptions that replace the old ones.
This action is associated to the sending of a message. One agent can make between 0
and n updates during a time period. Let freqa be the average frequency of the descrip-
tion update during a time period. There is therefore freqa ∗ na update messages if the
interaction is mediated by the environment during the reference time period.



200 F. Balbo, J. Saunier, and F. Badeig

Fig. 1. Comparison of the cost (left) and comparison of the number of messages in function of
the agent update frequency (right), with pr = 0.6 and na = 100

To have the total cost according to the number of messages criteria we have to sum
these costs. Let CostEM = nm(1 + prna) + freqana be the total environment cost and
CostAM = nmna be the total agents cost.

To compare these two costs, we study the sign of the subtraction of the two costs
CostM = CostEM − CostAM in order to find when the environment mediation is more
costly than the local computation in function of the number of messages and of the
frequency of the update process. The resulting formula is CostM = nm(1 + na(pr −
1)) + freqana. Figure 1 (left) gives the plan corresponding to this function in the
three dimensional space (message, agent update, cost) if the number of agents (na)
and the average proportion of receiver (pr) are respectively fixed to 100 and 0.6. These
assessment parameters are unfavourable to the mediation by the environment: 1) the
cost of the update process is not taken into account when the context is computed by
the agents; 2) the agents are interested by more than half the messages. Nevertheless
we can see that there are few cases in which the use of the environment is more costly
than the local matching according to the number of messages criteria.

The function CostM (nm, freqa) = 0 enables to find the number of messages ded-
icated to the interaction in the MAS (m) that have to be mediated by the environment
to compensate the cost of the update process (freqa). The relation between these two
parameters is nm = −(na/(1 + na(1 − pr))) ∗ freqa, the value of nm is therefore
inversely proportional to the proportion of the agents interested in the messages. Figure
1 (right) illustrates this proposition. The environment area represents the cases where it
is better to use the environment than to mediate the messages in function of the number
of messages. For instance, with freqa = 2, if there is more than 5 messages related
to the interaction in the MAS, then it is better to use the environment to mediate the
communication even if that means that there are freqana = 200 messages related to
the update process.

This study has been done in the worst case for the environment because the agents are
not taken into account to evaluate the interaction context (fc). If it were the case, there
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would be no modification of the update cost of the environment. However, when the
matching is executed by agents, the number of messages in the update process would
be increased by freqa (na − 1) (the cost of broadcasting the description updates), thus
improving the comparative environment performance.

In this section the assessment has been done with the hypothesis that the agents have
the same information to evaluate a filter. In the next section, we depict how these results
relate to real experimentation where this hypothesis is not valid.

5 Empirical Assessment

In section 4, we have shown that using the environment to compute the contexts is less
costly than computing them locally in the agents when the agents update frequency is
not too high. In other words, the entities dynamics is the parameter that determines
which solution is the best for a multi-agent system. This section consists in evaluating
the cost of the context computing on a real example that is a simulation of the victim
evacuation in the crisis situation.

A prototype of our ABS framework has been implemented as a plugin for the multi-
agent platform Madkit [7]. This plugin is composed of an environment component with
an API that enables the agents to add/retract/modify their descriptions and filters. We
have chosen to implement the matching process within a Rules-Based System (RBS).
The instantiation of the model into a RBS is straightforward: the descriptions are the
facts of the rule engine, and the filters are its rules. Rule firing is based on the efficient
RETE algorithm [6]. It is a network-based algorithm designed to speed the matching
of patterns with data. RETE uses a static discrimination network, generated by the lan-
guage compiler, that represents data dependencies between rule conditions.

We compare our model which encompasses contextual activation by the environment
with a model which encompasses a classical activation process to evaluate the cost
of supporting the simulation process through the environment. We have tested four
simulation scenarios, using ten filters: seven filters for contextual activation (f1 to f7),
two filters for communication (frecept and faccept). The filter fclassicalActivation is
used in the scenarios S1 and S3 in order to simulate a classical activation process. It
activates each agent once by simulation cycle without taking into account the context.
The other activation filter allows to activate an agent medical porter in a specific context
to perform an action.

The scenarios are defined below. S1 and S2 are scenarios without agent communica-
tion, and S3 and S4 are scenarios with agent communication:

– –S1– {fclassical activation} + Local Agent Context Analysis (LACA),
– –S2– {f1, f2, f3, f4, f5},
– –S3– {fclassical activation} + LACA + Broadcast,
– –S4– {f1, f2, f3, f4, f5, f6, f7} + {frecept, faccept}

S1 illustrates a classical scenario with an activation phase and a local agent context
analysis; S2 is a scenario with a contextual activation inside the environment. We de-
scribe the filters of S2. The filter f1 allows to activate the action move randomly that is
triggered when a medical porter has no victim close to it (context victim seeking). The
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filters f2 and f3 correspond to the association of the action move towards a location
with the contexts closest victim discovery (f2) and handled victim discovery (f3). The
context closest victim discovery happens when an agent perceives the closest victim to
evacuate in its perception field. The context closest victim discovery depicts the situa-
tion where an agent medical porter perceives a victim that is handled by another medical
porter. The filter f4 activates the action wait and triggers when a medical porter is alone
close to a victim to evacuate (context victim proximity). The filter f5 corresponds to
the association between the action evacuate victim and the context rescue victim. This
context appears when two medical porters with the complementary skill are close to a
victim ready to be evacuated. This context is related to the following information: the
availability of the porters, the location of the porter and the victim. The comparison
between S1 and S2 enables to study the cost of the activation process.

S3 and S4 are the extensions of respectively the scenarios S1 and S2 with the com-
munication filters frecept and faccept, and the associated activation filters f6 and f7. The
filters frecept and faccept provide the support for the communication process: frecept
enables the reception of the request messages and faccept enables the reception of their
answer(s). When the agents communicate, the simulation has to manage two new agent
actions that are activated by the filters f6 and f7. The filter f6 is related to the action
contact: an agent puts a request message in the environment and waits for an answer.
The filter is activated when the agent is close to a victim to evacuate but does not have
another agent nearby to evacuate this victim. The filter f7 is related to the action coor-
dination: an agent answers to the contact agent and moves towards the victim location.
The context of this filter is the reception of a request message containing the location of
the victim. The comparison between S3 and S4 enables to study the cost of the activa-
tion when the medical porters use communication protocol to contact another medical
porter with the skill required.

Activation. We have run three series of simulations characterized by two parameters:
number of agents medical porters and field of vision. For each series of simulations,
we evaluate our model using the average run-time over 50 simulations with similar
parameters. In the first group, we have experimented with 5 medical porters with the
skill “medical monitoring”, 5 medical porters with the skill “victim handling” and 5
victims, in the second group with 15 of each, and in the third group with 20 of each.

Figure 2 shows the result for the third experiment. As we can see, the scenario S2 is
faster than the classical scenario S1, except for the lowest field of vision. For a field of
vision from 8 to 30, S2 run-time curves (dotted curves) are below S1 run-time curves
(solid curves). The increase of the field of vision improves the knowledge of the agents
on the environment and should improve their efficiency: the probability for an agent to
perceive victims and other agents increases. This is true with the use of the environment
in the scenario S2, a larger field improves the efficiency of the agents: as the field of
vision increases from 5 to 30, run-time decreases from around 4000s to 800s. But with
the classical activation process in the scenario S1, the improvement of victim perception
barely offsets the cost of local context analysis. We can observe that in most cases, the
cost of the context computing in each agent is more expensive in terms of simulation
run-time than the cost of computing the context inside the environment. The results are
similar for the first and second series of experimentations.
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Fig. 2. Simulation run-time with the strategies S1 and S2 for the third group

Communication. In the following experimentation, we compare the use of broadcast
and the use of the environment for the communication. In these tests, only the commu-
nication filters frecept and faccept of the scenario S4 are evaluated and compared to the
broadcast. We call Broadcast the experimentation with a matching process executed
by the agents, Environment the experimentation with a matching process executed by
the environment.

The agents send “request” messages. The agents interested in these messages are
those which are close to the sender and have a different skill, if the victim can be moved.
In Broadcast, the message is broadcasted to all the agents, while in Environment
they are managed by frecept. Those agents answer with either an accept or a reject mes-
sage through an addressed message. In Broadcast, the message is sent to the agent via
point-to-point communication, while in Environment, they are managed by faccept.

Each data is an average on 50 simulations. Each simulation is composed of 2000
steps. We have run two series of simulations characterized by two parameters: number
of agents and number of updates during the simulation.

Firstly, we have tried to use the RETE algorithm to implement the communication
filter, and compared it to the broadcast and addressed messaging capabilities of MadKit.
The following table sums up the simulation run-time in function of the messaging im-
plementation: EASI with a RETE tree, MadKit Messaging support, ad hoc Environment
and Broadcast.

Agent RETE Madkit Environment Broadcast
10 4624 1096 125 173
20 15215 4050 394 596
50 83785 26306 2377 4755

These results show that the cost of a RETE tree offsets the gains in the message
treatment. This discrepancy with the previous results for activation can be explained by
the cost of the addition and removal of the messages. In the activation part, the entities
are the same all along the simulation, and only rule firing and description modifications
take place.

This has lead us to use an ad hoc implementation of the environment for communi-
cation, which treats the calculations in the same way as described in section 4. How-
ever, the comparative results show that the MadKit implementation of the broadcast
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and addressed messaging is not efficient because of its genericity. Therefore, we also
re-implemented the broadcast and point-to-point communications using the same data
structures as the environment, in order to have a fair comparison between the environ-
ment and the broadcast solutions.

In the following, we compare the two last solutions. Firstly, we study the impact of a
variation in the number of agents. The results shown in Fig. 3 feature 10 to 100 agents.
The curve shows a clear advantage of the environment over the broadcast, and that the
more agents there are, the more EASI is comparatively interesting (from 27.8% for 10
agents to 53.9% for 100 agents).

Fig. 3. Comparative results of Broadcast and EASI in function of the number of agents

In the second phase (Fig. 4), we study the impact of a variation in the number of
updates, for 50 agents. During each update, all the agents move and in the case of the
Environment implementation, they modify their description accordingly. The run-time
gain of EASI over broadcast gets from 50.7% for 20 updates to 48.8% for 1000 updates.
Therefore, the cost of the update mechanism is not significant in comparison with the
difference in efficiency.

Another solution to reduce the cost of the matching process is to reduce the number
of entities that are tested for each message. For example, if the reception of messages is
conditioned by the skill of the agents, then we can cluster the agents in several commu-
nication environments according to this property value. This clustering should decrease
the cost of the matching for two reasons: the number of agents in each environment de-
creases, and the filter can be simplified by removing the test on the skill property. To test
this hypothesis, we have run experiments using several communication environments.

In these experimentation the following hypothesis have been done:

– We call Environment3 interaction through three environments, and the agents are
grouped in function of their skill. The skill driver has been added in order to have
three skills.

– The agents send “request” messages. The agents interested in these messages are
those which are close to the sender and have the same skill. In experimentation
Broadcast, the messages are broadcasted to all the agents, while inEnvironment3
they are managed by frecept2 . This filter is designed after the filter frecept, without
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Fig. 4. Comparative results of Broadcast and EASI in function of the update process

the condition on the skill that becomes implicit : all the agents in a given environ-
ment share the same skill.

– An agent which has received a ”request” answers with either an accept or a re-
ject message through an addressed message in the same way than in the previous
experimentation.

Fig. 5. Comparative results of Broadcast, Environment and Environment3

The results shown in Fig. 5 feature 60 agents, and each test was done 15 times. The
number of steps of the simulation varies between 8000 and 25000. The receivers of re-
quest messages are selected over the position and skill properties. The results are con-
sistent with the previous findings, the Environment being significantly better than the
Broadcast. Furthermore, Environment3 shows a 50% to 68% gain over
Environment. This highlights the importance of the number of agents and of the filter
complexity on the performance of the system. However, separating the agent descrip-
tions can only be done when they are not used in the same filters.

These experimentations show a clear advantage to the environment over the broad-
cast, and this result is backed up by the theoretical results. It shows the efficiency of the
context computing inside the environment in comparison with the classical approach
where the context is computed locally in each agent.
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6 Discussion and Conclusions

In the EASI/EASS models, the environment offers a technical support for the commu-
nication and the activation in the simulation. Its processing is the result of the filters
triggering according to the MAS descriptions. In that way, the agents add or remove
dynamically filters and update their description. Thanks to the filter triggering, an agent
receives a message or is activated in a specific context. The processing of the messages
and the action execution remain to the agents responsibility.

This paper is focused on the cost of the centralization, which is closely related to
the cost of the update process. Organizations, such as the agent-group-role model [5]
enable to decrease the cost but do not take into account ambient criteria like the location
of the agents (e.g. in the simulation). Let us note that our modeling enables to reproduce
a selection of percepts according to the organisation. Institutions (see e.g. [4]) gener-
ally do not share the same objective. The focus is on control and not on the filtering /
matching process. However, the technical solutions may be close to ours.

The use of a shared knowledge has already been done within agents (for example
Sycara’s work, e.g. [14]) but in that case the update of the properties is not considered.
In this paper, we focus on the cost of the update process that could limit the interest to
centralize specific information. Furthermore, middle-agents are generally used only as
a first step to find contacts, and not to manage all the communications. In our view, the
environment is a facility, which can be used to facilitate the interaction, apply norms,
or verify some rules related to the application design. These roles do not belong to the
same design level as the agents.

Theoretically, we have shown that if the communication takes the context into ac-
count, there is no strictly dominant solution. It depends on the dynamicity of the multi-
agent system, the number of agents and the average percentage of agents interested in
each message. According to the number of tests criteria, we have shown that the envi-
ronment is always better than the local context computation. According to the number
of messages criteria, the result has to take into account the number of messages related
to the MAS activity and the number of messages related to the update process. We have
shown that the environment solution is generally better to mediate the communication
of the MAS activity and that few messages to mediate are needed to compensate the
cost of the update process.

To propose an empirical assessment of the cost of the environment, we have studied
the run-time criterion in the crisis simulation example. We compare the cost of the local
context analysis for each agent to a central and global control ensured by the environ-
ment, and the cost of communication. The main conclusion is that the environment cost
is significantly lower than the local agent calculation of the context perception, except
when there are very few agents.

In the future, we intend to investigate different ways to improve the environment
performance. An ongoing effort concerns the theoretical evaluation of a RETE-based
instantiation of the model. We also study how to take advantage of the filter and entity
structures to speed up the matching process.The clustering of the agents in several envi-
ronments is a perspective to improve the matching process. However, moving the agents
from one environment to another dynamically according to their interaction needs is
costly and therefore has to be taken into account.
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Abstract. Data streams classification represents an important and challenging
task for a wide range of applications. The diffusion of new technologies, such as
smartphones and sensor networks, related to communication services introduces
new challenges in the analysis of streaming data. The latter requires the use of
approaches that require little time and space to process a single item, provid-
ing an accurate representation of only relevant data characteristics for keeping
track of concept drift. Based on these premises, this paper introduces a set of
requirements related to the data streams classification proposing a new adaptive
ensemble method. The outlined system employs two distinct structure, for man-
aging both data aggregation and mining features. The latter are represented by
a selective ensemble managed with an adaptive behavior. Our approach dynami-
cally updates the threshold value for enabling the models directly involved in the
classification step. The system is conceived to satisfy the proposed requirements
even in the presence of concept drifting events. Finally, our method is compared
with several existing systems employing both synthetic and real data.

1 Introduction

The constant and rapid diffusion of new technologies, such as smartphones, and sen-
sor networks, related to communication and web services, and safety applications, has
introduced new challenges in data management, analysis and mining. In these scenar-
ios data arrives on-line, at a time-varying rate creating the so-called data stream phe-
nomenon. Conventional knowledge discovery tools cannot manage this overwhelming
volume of data. The unpredictable nature of data streams requires the use of new ap-
proaches, which involve at most one pass over the data, and try to keep track of time-
evolving features, known as concept drift.

Ensemble approaches represent a valid solution for data streams classification [5].
In these methods, classification takes advantage of multiple classifiers, extracting new
models from scratch and deleting the out-of-date ones continuously. In [20,19], it was
stressed that the number of classifiers actually involved in the classification task can-
not be constant through time. The cited works demonstrate that a selective ensemble
which, based on current data distribution, dynamically calibrates the set of classifiers to
use, provides a better performance than systems using a fixed set of classifiers constant
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through time. In our former approach, the selection of the models involved in the classi-
fication step was chosen by a fixed activation threshold. This choice is the right solution
if it is possible to study a-priori what is the best value to assign to the threshold. In
many real environment, this information is unavailable, since the stream data behavior
cannot be modeled. In several domains, such as intrusion detection, data distribution
can remain stable for a long time, changing radically when an attack occurs.

This work presents an evolution of the system outlined in [20,19]. The new approach
introduces a complete adaptive behavior in the management of the threshold required
for the selection of the set of models actually involved in the classification. This work
describes the adaptive approach for varying the value of the model activation threshold
through time, influencing the overall behavior of the ensemble classifier, based on data
change reaction. Our approach is explicitly explained with the use of binary attributes.
This choice can be seen as a limitation, but it is worth observing that every nominal
attribute can be easily transformed into a set of binary ones. The only inability is the
direct treatment of numerical values. [14] represents a general approach to solve the on-
line discretization of numerical attributes. The proposed method is particularly suitable
in our context, since it proposes a discretization method based on two layers. The first
layer summarizes data, while the second one constructs the final binning. The process
of updating the first layer works on-line and requires a single scan over the data.

Paper Organization: Section 2 introduces our reference scenario, outlining some re-
quirements that a system working on streaming environments should satisfy. Section 3
describes our approach in details, highlighting how the requirements introduced in Sec-
tion 2.1 are verified by the proposed model. Furthermore, it present how our adaptive
selection is implemented. Section 4 presents a comparative study to understand how
the new adaptive approach guarantees a higher reliability of the system. In this section,
our approach is compared with other well-know approaches available in the literature.
Finally, Section 5 draws the conclusions and introduces some future works.

2 Data Streams Classification

Data streams represent a new challenge for the data mining community. In a stream
scenario, traditional mining methods are further constrained by the unpredictable be-
havior of a large volume of data. The latter arrives on-line at variable rates, and once an
element has been processed, it must be discarded or archived. In either cases, it cannot
be easily retrieved. Mining systems have no control over data generation, and they must
be capable of guaranteeing a near real-time response.

Definition 1. A data stream is an infinite set of elements X = X1, . . . ,Xj, . . . where each
Xi ∈ X has a+ 1 dimensions, (x1

i , . . .x
a
i ,y), and where y ∈ {⊥,1, . . . ,C}, and 1, . . . ,C

identify the possible values in a class.

A stream can be divided into two sets based on the availability of class label y. If value
y is available in the record (y �=⊥), it belongs to the training set. Otherwise the record
represents an element to classify, and the true label will only be available after an un-
predictable period of time.
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Given Definition 1, the notion of concept drift can be easily defined. As reported in
[23], a data stream can be divided into batches, namely b1,b2, ...,bn. For each batch
bi, data is independently distributed w.r.t. a distribution Pi(). Depending on the amount
and type of concept drift, Pi() will differ from Pi+1(). A typical example is customers’
buying preferences, which may change according to the day of the week, inflation
rate and/or availability of alternatives. Two main types of concept drift are usually
distinguished in the literature, i.e. abrupt and gradual. Abrupt changes imply a rad-
ical variation of data distribution from a given point in time, while gradual changes
are characterized by a constant variation during a period of time. The concept drifting
phenomenon involves data expiration directly, forcing stream mining systems to be con-
tinuously updated to keep track of changes. This implies making time-critical decisions
for huge volumes of high-speed streaming data.

2.1 Requirements

As introduced in Section 2, the stream features influence the development of a data
streams classifier radically. A set of requirements must be taken into account before
proposing a new approach. These needs highlight several implementation decisions in-
serted in our approach.

Since data streams can be potentially unbounded in size, and data arrives at unpre-
dictable rates, there are rigid constraints on time and memory required by a system
through time:

Req. 1: the time required for processing every single stream element must be constant,
which implies that every data sample can be analyzed almost only once.

Req. 2: the memory needed to store all the statistics required by the system must be
constant in time, and it cannot be related to the number of elements analyzed.

Req. 3: the system must be capable of updating their structures readily, working within
a limited time span, and guaranteeing an acceptable level of reliability.

Given Definition 1, the elements to classify can arrive in every moment during the data
flow.

Req. 4: the system must be able to classify unseen elements every time during its com-
putation.

Req. 5: the system should be able to manage a set of models that do not necessarily
include contiguous ones, i.e. classifiers extracted using adjacent parts of the stream.

2.2 Related Work

Mining data streams has rapidly become an important and challenging research field.
As proposed in [12], the available solutions can be classified into data-based and task-
based ones. In the former approaches a data stream is transformed into an approximate
smaller-size representation, while task-based techniques employ methods from com-
putational theory to achieve time and space efficient solutions. Aggregation [1,2,3],
sampling [10] or summarized data structure, such as histograms [21,17], are popular
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example of data-based solutions. On the contrary, approximation algorithms such as
those introduced in [15,10] are examples of task-based techniques.

In the context of data streams classification, two main approaches can be outlined,
namely instance selection and ensemble learning. Very Fast Decision Trees (VFDT) [9]
with its improvements [22,14,27] for concept drifting reaction and numerical attributes
managing represent examples of instance selection methods. In particular, the Hoeffd-
ing bound guarantees that the split attribute chosen using n examples, is the same with
high probability as the one that would be chosen using an infinite set of examples. Last
et al. [8] propose another strategy using an info-fuzzy technique to adjust the size of
a data window. Ensemble learning employs multiple classifiers, extracting new mod-
els from scratch and deleting the out-of-date ones continuously. On-line approaches
for bagging and boosting are available in [26,7,5]. Different methods are available in
[30,34,29,25,11], where an ensemble of weighted-classifiers, including an adaptive ge-
netic programming boosting, as in [11], is employed to cope with concept drifting.
None of the two techniques can be assumed to be more appropriate than the other.
[5] provides a comparison between different techniques not only in terms of accuracy,
but also including computational features, such as memory and time required by each
system. By contrast, our approach proposes an ensemble learning that differs from the
cited methods since it is designed to concurrently manage different sliding windows,
enabling the use of a set of classifiers not necessarily contiguous and constant in time.

3 Adaptive Selective Ensemble

A detailed description of our system is available in [19,18]. In the following subsections,
we introduce only the main concepts of our approach highlighting the relations between
the requirements outlined in Section 2.1 and the aggregate structures introduced. The
proposed structures are primarily conceived to capture evolving data features, and guar-
antee data reduction at the same time. Ensuring a good trade-off between data reduction,
and a powerful representation of all the evolving data factors is a non-trivial task.

3.1 The Snapshot

The snapshot definition implies the naı̈ve Bayes classifier directly. In our model, the
streaming training set is partitioned into chunks. Each data chunk is transformed into
an approximate more compact form, called snapshot.

Definition 2 (Snapshot). Given a data chunk of k elements, with A attributes and C
class values, a snapshot computes the distribution of the values of attribute a ∈ A with
class value c, considering the last k elements arrived:

Sk : C×A �→ f req
(
a,k,c

)
, ∀a ∈ A,c ∈C

The following properties are directly derived from Definition 2.

Property 1. Given a stream with C class values and A attributes, a snapshot is a set of
C×A tuples.
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x y z class value

0 1 1 no

0 1 0 yes

0 1 1 no

1 1 1 yes

1 0 0 yes

1 0 1 no

1 1 1 yes

0 0 0 ind

0 0 1 yes

0 0 0 ind

(a) A stream chunk of
10 elements.

⇒ S10 =

(x,2,3) (y,2,3) (z,3,2) yes

(x,2,1) (y,2,1) (z,0,3) no

(x,2,0) (y,2,0) (z,2,0) ind

(b) The resulting snapshot.

Fig. 1. From data stream (a) to snapshot (b)
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Fig. 2. Snapshots and their order

Property 2. Building a snapshot Sk requires k accesses to the data stream. Every ele-
ment is accessed only once. Computing a snapshot is linear to the k number of elements.

Figure 1 shows an example of snapshot creation. The latter implies only a single access
to every stream element. A snapshot is built incrementally accessing the data one by
one, and updating the respective counters. Properties 1 and 2 guarantee that a snapshot
requires a constant time and memory space, satisfying Requirements 1 and 2.

Snapshots of Higher Order. The only concept of snapshot is not sufficient to guaran-
tee all the features needed for data managing and drift reaction. The concept of high-
order snapshot is necessary to maximize data availability for the mining task guaran-
teeing only one data access.

Definition 3 (High-order Snapshot). Given an order value i > 0, a high-order snap-
shot, is obtained by summing h snapshots of i− 1 order:

Si
h×k =

h

∑
j=1

Si−1
k, j

h

∑
j=1

[
f req j

(
a,k,c

)]i−1
, ∀a ∈ A,c ∈C
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where, given a class value c and an attribute a,
[

f req j
(
a,k,c

)]i−1
refers to the distri-

bution of the values of attribute a with class value c of the j-th snapshot of order i− 1.

Figure 2 shows the relation between snapshots and their order. The aim is to employ
a set of snapshots created directly from the stream to build new ones, representing
increasingly larger data windows, simply by summing the frequencies of their elements.

A high-order snapshot satisfies Property 1, since it has the same structure of a basic
one. Moreover, it further verifies Requirements 3, since the creation of a new high-
order snapshot is linear in the number of attributes and class values. The creation of
high-order snapshots does not imply any loss of information. This aspect guarantees
that a set of different size sliding windows is simultaneously managed by accessing
data stream only once, enabling the approach to consider every window as computed
directly from the stream.

From a snapshot, or a high-order one, the system extracts an approximated decision
tree, or employs the snapshot as naı̈ve Bayes classifier directly.

3.2 The Frame

Snapshots are stored to maximize the number of elements for training classifiers. A
model mined from a small set of elements tends to be less accurate than the one ex-
tracted from a large data set. If this observation is obvious in “traditional” mining con-
texts, where training sets are accurately built to maximize the model reliability, in a
stream environment this is not necessarily true. Due to concept drifting, a model ex-
tracted from a large set of data can be less accurate than the one mined from a small
training set. The large data set can include mainly out-of-date concepts.

Snapshots are then stored and managed, based on their order, in a structure called
Frame. The order of a snapshot defines its level of time granularity. Conceptually sim-
ilar to Pyramidal Time Frame introduced by Aggarwal et al. in [1] and inherited by
logarithmic tilted-time window, our structure sorts snapshots based on the number of
elements from which a snapshot was created.

Definition 4 (Frame). Given a level value i, and a level capacity j, a frame is a func-
tion that, given a pair of indexes (x,y) returns a snapshot of order x and position y:

Fi, j : (x,y) �→ Snapshotx,y

where: x ∈ {0, . . . , i− 1} and y ∈ {0, . . . , j− 1}.
As shown in Figure 3, level 1 contains snapshots created directly from the stream. Up-
per levels use the snapshots of the layer immediately lower to create a new one. The
maximum number of snapshots available in the frame is constant in time and is defined
by the number of levels and the level capacity. For each layer, the snapshot are stored
with FIFO policy. The frame memory occupation is constant in time and is linear with
the number of snapshots storable in the structure.
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3.3 Ensemble Management

The concepts introduced in Section 3.1 and 3.2 are employed to define and manage
an ensemble of classifiers. The selective ensemble management is defined by as a four
phase approach:

1. For each snapshot S j
i , a triple (Ci,wi,bi) representing the classifier, its weight and

the classifier enabling variable bi is extracted from S j
i .

2. Since data distribution can change through time, the models currently in the struc-
ture are re-weighed with the new data distribution, using a test set of complete data
taken from the last portion of the stream directly.

3. Given a level i, every time a new classifier is generated, the system decides if the
new model must be inserted in the ensemble based on new data distribution. Apart
from the lowest level, where the new one is inserted in any case, the system se-
lects the ki most promising models, based on the current weight associated to the
classifiers, to classify the new data distribution from ki + 1 models correctly.

4. Finally, a set of active models is selected, setting the boolean value bi associated
with a Ci as true. The set of active models is selected based on the value of an
activation threshold θ. All the classifiers that differ at most θ to the best classifier
with the highest weight are enabled.

The defined approach satisfies Requirements 4 and 5, since it can classify a new instance
every time it is required, and can employ a set of not necessarily contiguous classifiers,
since it is not necessarily true that every classifier generated through time enters the
ensemble, but even in that case it can be disabled.

Figure 4 shows the overall organization of our system. For each level in the frame
structure we have a corresponding level in the ensemble. The subdivision of the data
aggregation task from the mining aspects makes our approach suitable in distributed/
parallel environments as well. One or more components can be employed to manage
the concepts of snapshot and frame, while another can manage the ensemble classifier.

level

1 Sk, j+2 Sk, j+1 Sk, j

2 S2
2k,l+2 S2

2k,l+1 S2
2k,l

3 S3
4k,g+2 S3

4k,g+1 S3
4k,g

4 . . .
...

i Si
2i−1k,n+2 Si

2i−1k,n+1 Si
2i−1k,n

Fig. 3. The frame structure

3.4 Adaptive Behavior

As proposed in Section 3.3 our approach has two key factors influencing its behavior,
the weight measure to employ and the selection of the θ value. If in the literature, several
weight measures, mainly related to classifier accuracy, are available and guarantee a
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Fig. 4. The overall system architecture

Activation Threshold Algorithm.

1: if (oneModel() = true) then
2: θ← 0.00; activation threshold initialized
3: oldActModels← 1
4: return
5: end if
6: actModels← getActiveModel(θ)
7: if (actModels > oldActModels) then
8: θ← θ + 0.01; increment threshold value
9: else if (actModels < oldActModels) then

10: θ← θ div 2; decrement threshold value
11: end if
12: oldActModels← actModels
13: return

Fig. 5. Pseudo-code of the activation threshold algorithm

good reliability of the system, the θ threshold represents the real key factor for the
quality of our approach.

In our experiments [18], we noticed that the reliability of the system is heavily influ-
enced by the θ value. As we shall present in Section 4.3, independently from the data
set employed, activation values which are too high (or too small) decrease the predictive
power of the ensemble. On the one hand, in case of relatively stable data, small acti-
vation threshold values limit the use of large sets of classifiers. On the contrary, large
threshold values damage the selective ensemble in the case of concept drifts. In the cited
experiments, the θ value was fixed by the user and it did not change through time. Only
our experience and the experimental results drove the selection of the right value.

In this work we introduce an adaptive approach for varying the value of the activa-
tion threshold through time, thus influencing the overall behavior of the entire system,
based on data change reaction. The basic idea of the adaptive method is similar to the
additive-increase / multiplicative-decrease algorithm adopted by TCP Internet protocol
for managing the transfer rate value used in TCP congestion avoidance.

The pseudo-code of the method for managing the activation threshold is proposed in
Figure 5. The algorithm is quite simple. When the first model is inserted in the structure,



216 V. Grossi and F. Turini

the activation threshold and the number of active models are initialized (Steps 1-5).
Successively, every time a new model is inserted in the ensemble, the procedure at Step
6 computes how many models will be activated with the current θ value. If the number
of models potentially activatable is higher than the old one (Step 7), the threshold is
increased. This situation happens when the data distribution remains stable and the new
inserted model is immediately enabled (Step 7-8). Increasing the threshold value, we
can obtain a better exploitation of the ensemble. On the contrary, if the number of active
models decreases from the previous invocation, the threshold has to be decreased. It is
useless and dangerous to maintain the current value, since a data change might be in
progress (Step 9-10). It is worth observing that, if the number of models does not change
between the two invocations, the threshold does not change, since there is no evidence
of model improving or data change.

From a computational point of view the algorithm does not introduce appreciable
overhead. Only the getActiveModel() procedure requires to access the ensemble struc-
ture. If we consider n as the number of classifiers storable in the ensemble, the com-
plexity of the algorithm is linear in O(n).

The experimental section demonstrates that our system is no more heavily influenced
by θ value, since it changes automatically, adapting it to data distribution.

4 Comparative Experimental Evaluation

4.1 Data Sets

Several synthetic data sets and a real one were introduced in our experiments. This
kind of data enables an exhaustive investigation about the reliability of the systems
involving different scenarios. The data behavior can be described exactly, characterizing
the number of concept drifts, the rate between a change to another and the number of
irrelevant attributes, or the percentage of noisy data.

LED24: Proposed by Breiman et al. in [6], this generator creates data for a display with
7 LEDs. In addition to the 7 necessary attributes, 17 irrelevant boolean attributes
with random values are added, and 10 percent of noise is introduced, to make the
solution of the problem harder. This type of data generates only stable data sets.

Stagger: Introduced by Schlimmer and Granger in [28], this problem consists of
three attributes, namely colour ∈ {green, blue, red}, shape ∈ {triangle, circle,
rectangle}, and size ∈ {small, medium, large}, and a class y ∈ {0,1}. In its
original formulation, the training set includes 120 instances and consists of three
target concepts occurring every 40 instances. The first set of data is labeled accord-
ing to the concept color = red ∧ size = small, while the others include color
= green∨ shape= circle and size= medium∨ size= large. For each training
instance, a test set of 100 elements is randomly generated according to the current
concept.

cHyper: Introduced in [7], a data set is generated by using a n-dimensional unit hy-
percube, and an example x is a vector of n-dimensions xi ∈ [0,1]. The class bound-
ary is a hyper-sphere of radius r and center c. Concept drifting is simulated by
changing the c position by a value Δ in a random direction. This data set generator
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Table 1. Description of data sets

dataSet #inst #attrs #irrAttrs #classes %noise #drifts

LED24a/b/test 10k / 100k / 25k 24 17 10 10% none

Hypera/b/test 10k / 100k / 25k 15 0 2 0 none

Staggera/test 1200 / 120k 9 0 2 0 3 (every 400) / (every 40k)
Staggerb/test 12k / 1200k 9 0 2 0 3 (every 4k) / (every 400k)

cHypera/b/c 10k / 100k / 1000k 15 0 2 10% 20 (every 500) / (every 5k) / (every 50k)
cHypertest 250k 15 0 2 10% 20 (every 12.5k)

Cyclic 600k 25 0 2 5% 15×4 (every 10k)
Cyclictest 150k 25 0 2 5% 15×4 (every 2.5k)

introduces noise by randomly flipping the label of a tuple with a given probability.
Two additional data sets, namely Hyper and Cyclic are generated using this ap-
proach. Hyper does not consider any drifts, while Cyclic proposes the problem of
periodic recurring concepts.

KddCup99: this real data set concerns the significant problem of automatic and
real-time detection of cyber attacks [31]. The data includes a series of network
connections collected from two weeks of LAN network traffic. Each record can
either correspond to a normal connection or an intrusive one. Each connection is
represented by 42 attributes (34 numerical), such as the duration of the connection,
the number of bytes transmitted, and the type of protocol used, e.g. tcp, udp. The
data contains 23 training attack types, that can be further aggregated into four cate-
gories, namely DOS, R2L,U2R, and Probing. Due to its instable nature, KddCup99
is largely employed to evaluate several data streams classification systems, includ-
ing [3,16]

The features of the data sets actually employed are reported in Table 1. The stable
LED24 and Hyper are useful for testing whether the mechanism for change reaction has
implications for the reliability of the systems. The evolving data sets test different fea-
tures of a stream classification system. The Stagger problem verifies, if all the systems
can cope with concept drift, without considering any problem dimensionality. Then, the
problem of learning in the presence of concept drifting is evaluated with the other data
sets, also considering a huge quantity of data with cHyper.

4.2 Systems

Different popular stream ensemble methods are introduced in our experiments. All the
systems expect the data streams to be divided into chunks based on a well-defined value.
All the approaches are implemented in Java 1.6 with MOA [32] and WEKA libraries
[33] for the implementation of the basic learners and employ complete non-approximate
data for the mining task.

Fix: This approach is the simplest one. It considers a fixed set of classifiers, managed
as a FIFO queue. Every classifier is unconditionally inserted in the ensemble, re-
moving the oldest one, when the ensemble is full.
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SEA: A complete description and evaluation of this system can be found in [30]. In
this case classifiers are not deleted indiscriminately. Their management is based on
a weight measure related to model reliability. This method represents a special case
of our selective ensemble, where only one level is defined.

DWM: This system is introduced in [24,25]. The approach implemented here considers
a set of data as input to the algorithm, and a batch classifier as the basic one. A
weight management is introduced, but differently from SEA, every classifier has
a weight associated with it, when it is created. Every time the classifier makes a
mistake, its weight decreases.

Oza: This system implements the online bagging method of Oza and Russell [26] with
the addition of the ADWIN technique [5] as a change detector and as estimator of the
weight of the boosting method.

Single: This approach employs an incremental single model with EDDM [13,4] tech-
niques for drift detection. Both Oza and Single were tested using ASHoeffdingTree
and naı̈ve Bayes models available in MOA.

4.3 Results

All the experiments were run on a PC with Intel E8200 DualCore with 4Gb of RAM,
employing Linux Fedora 10 (kernel 2.6.27) as operating system. Our experiments con-
sider a frame with 8 levels of capacity 3. Every high-order snapshot is built by adding
2 snapshots. This frame size is large enough to consider snapshots that represent big
portions of data at higher-levels. For each level, an ensemble of 8 classifiers was used.
The tests were conducted comparing the use of the naı̈ve Bayes (NB), and the deci-
sion tree (DT) as base classifiers. In all the cases, we compare our Selective Ensemble
(SE) (with fixed model activation threshold set to 0.1 and 0.25) with our Adaptive Se-
lection Ensemble ASE. For each data generator, a collection of 100 training sets (and
corresponding test sets) are randomly generated with respect to the features outlined in
Table 1. Every system is run, and the average accuracy and 95% of interval confidence
are reported. Each test consists of a set of 100 observations. All the statistics reported
are computed according to the results obtained.

Results with Stable Data Sets. The results obtained with stable data sets confirm
that the drift detection approach provided by each system does not heavily influence
its overall accuracy. With LED24 and Hyper problems, all the systems reach a quite
accurate result. Table 2 reports the results obtained with Hyper data sets using the naı̈ve
Bayes approach. These results can be compared with the ones provided in Table 3 in
Section 4.3, where the concept drifting problem is added to the same type of data.

It is worth observing that there are no significant differences between the results ob-
tained by SE approach, varying the model activation threshold. The new ASE approach
provides a result in line with the best ones. The adaptive behavior mechanism does not
negatively influence the reliability of the system in the case of stable data streams. On
the contrary, the new approach enables a better ensemble exploitation.

Moreover, Table 2 highlights that Single model requires a large quantity of data to
provide a good performance. Finally, Fix64 and SEA64 provide good results that, com-
pared with the ones obtained by the same systems analyzing the cHyper and Cyclic
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Table 2. Results using naı̈ve Bayes with the Hyper problem

Hypera / Hyperb

avg std dev conf

ASE 92.74 / 93.93 1.92 / 2.88 0.38 / 0.49
SE0.1 92.72 / 93.92 2.20 / 2.52 0.43 / 0.50

SE0.25 92.70 / 93.91 2.22 / 2.53 0.43 / 0.50
Fix64 91.82 / 92.35 2.54 / 2.98 0.50 / 0.58

SEA64 92.97 / 94.44 1.80 / 1.64 0.50 / 0.32
DWM64 91.82 / 92.76 2.12 / 2.74 0.42 / 0.54

Oza64 92.39 / 93.73 2.30 / 0.40 0.45 / 0.08
Single 90.04 / 92.68 3.25 / 2.82 0.64 / 0.55

problems, demonstrate that these kinds of approaches guarantee appreciable results only
with a quite stable phenomenon. They do not provide a fast reaction to concept drift,
since the number of models involved in the classification task is constant in time, and
when a drift occurs, they have to change a large part of the models, before classifying
new concepts correctly.

Table 3. Overall results with the cHyper problem

cHypera / cHyperb / cHyperc - decision tree
avg std dev conf

ASE 83.58 / 88.72 / 93.19 0.51 / 0.40 / 0.28 0.10 / 0.08 / 0.06
SE0.1 84.05 / 89.43 / 93.09 0.49 / 0.40 / 0.32 0.10 / 0.08 / 0.06

SE0.25 78.42 / 86.10 / 91.86 0.86 / 0.35 / 0.23 0.17 / 0.07 / 0.23
Fix64 70.26 / 82.02 / 90.62 2.58 / 1.23 / 0.13 0.51 / 0.24 / 0.13

SEA64 70.26 / 82.14 / 90.04 2.58 / 1.10 / 0.14 0.51 / 0.22 / 0.14
DWM64 77.75 / 85.18 / 92.65 1.94 / 0.60 / 0.14 0.38 / 0.04 / 0.14

Oza64 81.99 / 89.60 / 92.40 0.97 / 0.37 / 0.25 0.19 / 0.07 / 0.25
Single 81.50 / 87.85 / 89.99 1.60 / 0.70 / 0.34 0.31 / 0.14 / 0.34

cHypera / cHyperb / cHyperc - naı̈ve Bayes
avg std dev conf

ASE 87.52 / 92.23 / 95.94 0.38 / 0.43 / 0.33 0.09 / 0.08 / 0.06
SE0.1 87.62 / 92.62 / 95.98 0.42 / 0.43 / 0.47 0.08 / 0.09 / 0.09

SE0.25 79.90 / 86.80 / 92.14 0.83 / 0.40 / 0.22 0.16 / 0.08 / 0.22
Fix64 73.72 / 83.69 / 94.16 2.60 / 1.35 / 0.40 0.51 / 0.26 / 0.40

SEA64 73.72 / 84.23 / 94.78 2.60 / 1.27 / 0.31 0.51 / 0.25 / 0.31
DWM64 85.93 / 92.18 / 95.63 1.76 / 0.18 / 0.38 0.35 / 0.04 / 0.38

Oza64 80.01 / 87.31 / 89.78 1.23 / 0.54 / 0.56 0.24 / 0.11 / 0.56
Single 81.25 / 89.47 / 93.34 2.02 / 0.87 / 0.84 0.40 / 0.17 / 0.84

Results with Evolving Data Sets. Table 3 reports the overall results obtained ana-
lyzing the cHyper problem, considering both decision tree and naı̈ve Bayes models.
Differently from the results obtained with stable data sets, the active model threshold
influences the overall results. Varying the value from 0.1 to 0.25, and especially con-
sidering cHypera and cHyperb , SE system presents a difference even larger than 6%
between the two values. On the contrary, our ASE approach provides an accuracy in line
with the best one, even considering standard deviation. This demostrates that, without
knowing the ideal threshold value for model activation, our ASE approach represents
the right solution to the different situations involved in a stream scenario, and simulated
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by the three cases of the cHyper problem. As stated in the previous section, it is worth
observing the poor performances of Fix and SEA in the case of evolving data. These
obsevations are further validated by the results obtained with the Stagger problem,
that essentially follow the ones proposed in Table 3.

Finally, Table 4 outlines the resources required by the systems. The memory require-
ments were tested using NetBeans 6.8 Profiler. We can state that Single requires less
memory than ensemble methods, which need a quantity of memory that is essentially
linear with respect to the number of classifiers stored in the ensemble. The different na-
ture of the two classes of systems influences this value. The average memory required
by our system is slightly higher than the others, since our system manages two differ-
ent structures, as suggested at the end of Section 3.3. The run time behavior confirms
this trend. In this case the drift detection approach influences the execution time of
a method. Let us compare the bagging method Oza with respect to DWM, SEA64 and
ASE. These tests highlight that incremental single model systems are faster than ensem-
ble ones, since they have to update only one model. On the contrary, considering the
accuracy, single model systems rarely provide best average values. Finally, Oza guar-
antees an appreciable reliability with every data set, but its execution time is definitely
higher than the others.

Table 4. cHyperc time and memory required

decision tree naı̈ve Bayes
avg used run time avg used run time

heap (KB) (sec.) heap (KB) (sec.)

ASE 9276 82.40 7572 27.42
SE 9233 80.80 7894 27.45

Fix64 8507 47.54 5317 23.82
SEA64 7980 152.07 5371 97.76

DWM64 5111 77.56 5137 21.21
Oza64 10047 393.93 6664 290.24
Single 5683 11.54 5399 8.26

Figure 6a shows the results obtained considering the Cyclic problem. The latter are
presented considering the naı̈ve Bayes approach and analyzing different rates between
the chunk size and the elements to classify. As shown in Figure 6a, even in this case, our
ASE approach is in-line with the SE0.1 and better than the others. Since this problem
presents recurring concepts, our approach can exploit the selective ensemble better than
the others, since some models which are currently out of context are not deleted by
the system, but simply disabled. If a concept becomes newly valid, the model can be
reactivated. This behavior is still valid, even in the case of the adaptive approach.

We conclude this section, proposing the results obtained analyzing the KddCup99
problem, and considering the decision tree approach. In this case, only an execution is
run considering the whole data set. As shown is Figure 6b, the approaches employing
an advanced method to keep track of concept drift propose an accuracy in line with the
ones obtained by Aggarwal et al. in [3]. Even in this case, ASE proposes a performance
comparable with SE0.1, showing that the adaptive behavior guarantees a good level of
reliability. The run time requirements needed for analysing KddCup99 dataset are in line
with the ones proposed in Table 4.
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(a) Cyclic and naı̈ve Bayes model. (b) KddCup99 and decision tree model.

Fig. 6. Average accuracy with Cyclic ans KddCup99 problems

5 Conclusions

Starting from the requirements constrained by the unpredictable nature of streaming
data, this paper proposed an adaptive selective ensemble approach for data streams
classification. The aim of this work is represented by a new adaptive behavior for an
ensemble model selection approach. The new feature enables the system to automat-
ically adapt the active model threshold to the current stream status. The idea is not
providing a fixed value of the threshold set up experimentally, but letting its value auto-
matically adapt to the data flow changes. When data are quite stable, the system can use
a large part of the ensemble. On the contrary, when data changes the threshold, it has
to be reduced to disable the not up-to-date models. The preliminary results show that,
with respect to the use of a fixed threshold, our adaptive algorithm provides a slightly
worse performance than the ones using the best value of the threshold. Unfortunately,
the choice of the best value is not always feasible, and if a wrong selection is made,
the system loses its precision. Our adaptive approach does not require any assumption
about active model values and displays good adaptation to the different scenarios. This
work represents a first step to guarantee a system completely adaptable to the different
streaming factors. As future works, our aims are to test our adaptive model in a real
stream application with real data. Moreover, we are currently studying the introduc-
tion of runtime monitoring tools for automatically adapting our system, e.g varying the
number of frame levels, or the models available for each layer, dynamically considering
memory consumption and time response constraints.
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evolving data streams. In: Proceedings of the 15th International Conference on Knowledge
Discovery and Data Mining, pp. 139–148 (2009)

6. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees.
Wadsworth International Group, Belmont (1984)

7. Chu, F., Zaniolo, C.: Fast and Light Boosting for Adaptive Mining of Data Streams. In:
Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 282–292.
Springer, Heidelberg (2004)

8. Cohen, L., Avrahami, G., Last, M., Kandel, A.: Info-fuzzy algorithms for mining dynamic
data streams. Applied Soft Computing 8(4), 1283–1294 (2008)

9. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the 6th Inter-
national Conference on Knowledge Discovery and Data Mining (KDD 2000), Boston, MA,
pp. 71–80 (2000)

10. Domingos, P., Hulten, G.: A general method for scaling up machine learning algorithms and
its application to clustering. In: Proceedings of the 18th International Conference on Machine
Learning (ICML 2001), Williamstown, MA, pp. 106–113 (2001)

11. Folino, G., Pizzuti, C., Spezzano, G.: Mining Distributed Evolving Data Streams using Frac-
tal GP Ensembles. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar,
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Abstract. In this paper we consider the problem of image content recognition
and we address it by using local features and kNN based classification strategies.
Specifically, we define a number of image similarity functions relying on local
features comparing their performance when used with a kNN classifier. Further-
more, we compare the whole image similarity approach with a novel two steps
kNN based classification strategy that first assigns a label to each local feature
in the document to be classified and then uses this information to assign a label
to the whole image. We perform our experiments solving the task of recognizing
landmarks in photos.

Keywords: Image classification, Recognition, Landmarks, Pattern recognition,
Machine learning, Local features.

1 Introduction

Image content recognition is a very important issue that is being studied by many sci-
entists worldwide. In fact, with the explosion of the digital photography, during the
last decade, the amount of digital pictures available on-line and off-line has extremely
increased. However, many of these pictures remain unannotated and are stored with
generic names on personal computers and on on-line services. Currently, there are no
tools and effective technologies to help users in searching for pictures by real content,
when they are not explicitly annotated. Therefore, it is becoming more and more diffi-
cult for users to retrieve even their own pictures.

A picture contains a lot of implicit conceptual information that is not yet possible to
exploit entirely and effectively. Automatically content based image recognition opens
up opportunities for new advanced applications. For instance, pictures themselves might
be used as queries on the web. An example in this direction is the service “Google
Goggles” [11] recently launched by Google, that allows you to obtain information about
a monument through your smartphone using this paradigm.

Note that, even if many smartphones and cameras are equipped with a GPS and a
compass, the geo-reference obtained with this is not enough to infer what the user is
actually aiming at. Content analysis of the picture is still needed to determine more
precisely the user query or the annotation to be associated with a picture. A promising
approach toward image content recognition is the use of classification techniques to
associate images with classes (labels) according to their content. For instance, if an
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image contains a car, it might be automatically associated with the class car (labelled
with the label car).

In this paper we study the problem of image content recognition by using SIFT [14]
and SURF [5] local features, to represent image visual content, and kNN based classi-
fiers to decide about the presence of conceptual content. In more details we will define
20 different functions that measure similarity between images. These functions are de-
fined using various options and combinations of local feature matching and similarities.
Some of them also take into consideration geometric properties of the matching local
features. These functions are used in combination of a standard Single-label Distance-
Weighted kNN algorithm. In addition we also propose a new classification algorithm
that extend the traditional kNN classifiers by making direct use of similarity between
local features, rather than similarity between entire images. We will see that the similar-
ity functions that also make use of geometric considerations offer a better performance
than the others. However, the new kNN based classifier that exploit directly the simi-
larity between local features has an higher performance even without using geometric
information.

The paper is organized as follows. In Section 3 we briefly introduce local features.
In Section 4 we present various iamge similarity features relying on local features to
be used with a kNN classification algorithm. Section 5 propose a novel classification
approach. Finally, Sections 6 and 7 presents the experimental results. An earlier version
of this paper has been presented at the Third International Conference on Agents and
Artificial Intelligence [1].

2 Related Work

The first approach to recognizing location from mobile devices using image-based web
search was presented in [17]. Two image matching metrics were used: energy spec-
trum and wavelet decompositions. Local features were not tested. In the last few years
the problem of recognizing landmarks have received growing attention by the research
community. In [16] methods for placing photos uploaded to Flickr on the World map
was presented. In the proposed approach the images were represented by vectors of
features of the tags, and visual keywords derived from a vector quantization of the
SIFT descriptors. In [13] a combination of context- and content-based tools were used
to generate representative sets of images for location-driven features and landmarks.
Visual information is combined with the textual metadata while we are only consider-
ing content-based classification. In [19], Google presented its approach to building a
web-scale landmark recognition engine. Most of the work reported was used to imple-
ment the Google Goggles service [11]. The approach makes use of the SIFT feature.
The recognition is based on best matching image searching, while our novel approach
is based on local features classification. In [7] a survey on mobile landmark recog-
nition for information retrieval is given. Classification methods reported as previously
presented in the literature include SVM, Adaboost, Bayesian model, HMM, GMM. The
kNN based approach which is the main focus of this paper is not reported in that survey.
In [9], various MPEG-7 descriptors have been used to build kNN classifier committees.
However local features were not considered.
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In [6] the effectiveness of NN image classifiers has been proved and an innovative
approach based on Image-to-Class distance that is similar in spirit to our approach has
been proposed.

3 Local Features

The approach described in this paper focuses on the use of image local features. Specif-
ically, we performed our tests using the SIFT [14] and SURF [5] local features. In this
section, we briefly describe both of them.

The Scale Invariant Feature Transformation (SIFT) [14] is a representation of the
low level image content that is based on a transformation of the image data into scale-
invariant coordinates relative to local features. Local feature are low level descriptions
of keypoints in an image. Keypoints are interest points in an image that are invariant to
scale and orientation. Keypoints are selected by choosing the most stable points from a
set of candidate location. Each keypoint in an image is associated with one or more ori-
entations, based on local image gradients. Image matching is performed by comparing
the description of the keypoints in images. For both detecting keypoints and extracting
the SIFT features we used the public available software developed by David Lowe1.

The basic idea of Speeded Up Robust Features (SURF) [5] is quite similar to SIFT.
SURF detects some keypoints in an image and describes these keypoints using orienta-
tion information. However, the SURF definition uses a new method for both detection
of keypoints and their description that is much faster still guaranteeing a performance
comparable or even better than SIFT. Specifically, keypoint detection relies on a tech-
nique based on a approximation of the Hessian Matrix. The descriptor of a keypoint
is built considering the distortion of Haar-wavelet responses around the keypoint itself.
For both, detecting keypoints and extracting the SURF features, we used the public
available noncommercial software developed by the authors 2.

4 Image Similarity Based Classifier

In this section we discuss how traditional kNN classification algorithms can be applied
to the task of classifying images described by local features, as for instance SIFT or
SURF. In particular, we define 20 image similarity measures based on local features
description. These will be later on compared to the new classification strategy that we
propose in Section 5.

4.1 Single-Label Distance-Weighted kNN

Given a set of documents D and a predefined set of classes (also known as labels, or
categories) C = {c1, . . . , cm}, single-label document classification (SLC) [8] is the
task of automatically approximating, or estimating, an unknown target function Φ :
D → C, that describes how documents ought to be classified, by means of a function
Φ̂ : D → C, called the classifier, such that Φ̂ is an approximation of Φ.

1 http://people.cs.ubc.ca/˜lowe/
2 http://www.vision.ee.ethz.ch/˜surf

http://people.cs.ubc.ca/~lowe/
http://www.vision.ee.ethz.ch/~surf
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A popular SLC classification technique is the Single-label distance-weighted kNN.
Given a training set Tr containing various examples for each class ci, it assigns a label
to a document in two steps. Given a document dx (an image for example) to be clas-
sified, it first executes a kNN search between the objects of the training set. The result
of such operation is a list χk(dx) of labelled documents di belonging to the training
set ordered with respect to the decreasing values of the similarity s(dx, di) between dx
and di. The label assigned to the document dx by the classifier is the class cj ∈ C that
maximizes the sum of the similarity between dx and the documents di, labelled cj , in
the kNN results list χk(dx)

Therefore, first a score z(dx, ci) for each label is computed for any label ci ∈ C:

z(dx, cj) =
∑

di∈χk(dx) : Φ(di)=cj

s(dx, di) .

Then, the class that obtains the maximum score is chosen:

Φ̂s(dx) = argmax
cj∈C

z(dx, cj) .

It is also convenient to express a degree of confidence on the answer of the classifier.
For the Single-label distance-weighted kNN classifier described here we defined the
confidence as 1 minus the ratio between the score obtained by the second-best label and
the best label, i.e,

νdoc(Φ̂
s, dx) = 1−

arg max
cj∈C−Φ̂s(dx)

z(dx, cj)

argmax
cj∈C

z(dx, cj)
.

This classification confidence can be used to decide whether or not the predicted label
has an high probability to be correct.

4.2 Image Similarity

In order the kNN search step to be executed, a similarity function between images
should be defined. Global features, generally, are defined along with a similarity (or a
distance) function. Therefore, similarity between images, is computed as the similarity
between the corresponding global features. On the other hand, a single image has sev-
eral local features. Therefore, computing the similarity between two images requires
combining somehow the similarities between their numerous local features.

In the following we define a function for computing similarity between images on
the basis of their local features that is derived from the work presented in [14]. In the
experiments, at the end of this paper, we will compare the performance of the similarity
function, when used with the single-label distance-weighted kNN classification tech-
nique, against the local feature based classification algorithm proposed in Section 5.
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Local Feature Similarity. The Computer Vision literature related to local features,
generally uses the notion of distance, rather than that of similarity. However in most
cases a similarity function s() can be easily derived from a distance function d(). For
both SIFT and SURF the Euclidean distance is typically used as measure of dissimilar-
ity between two features [14,5].

Let d(p1, p2) ∈ [0, 1] be the normalized distance between two local features p1 and
p2. We can define the similarity as:

s(p1, p2) = 1− d(p1, p2)

Obviously 0 ≤ s(p1, p2) ≤ 1 for any p1 and p2.

Local Features Matching. A useful aspect that is often used when dealing with local
features is the concept of local feature matching. In [14], a distance ratio matching
scheme was proposed that has also been adopted by [5] and many others. Let’s consider
a local feature px belonging to an image dx (i.e. px ∈ dx) and an image dy . First, the
point py ∈ dy closest to px (in the remainder NN1(px, dy)) is selected as candidate
match. Then, the distance ratio σ(px, dy) ∈ [0, 1] of closest to second-closest neighbors
of px in dy is considered. The distance ratio is defined as:

σ(px, dy) =
d(px, NN1(px, dy))

d(px, NN2(px, dy))

Finally, px and NN1(px, dy) are considered matching if the distance ratio σ(px, dy) is
smaller than a given threshold. Thus, a function of matching between px ∈ dx and an
image dy is defined as:

m(px, dy) =

{
1 if σ(px, dy) < c
0 otherwise

In [14], c = 0.8 was proposed reporting that this threshold allows to eliminate 90% of
the false matches while discarding less than 5% of the correct matches. In Section 7 we
report an experimental evaluation of classification effectiveness varying c that confirms
the results obtained by Lowe. Please note, that this parameter will be used in defining
the image similarity measure used as a baseline and in one of our proposed local feature
based classifiers.

For Computer Vision applications, the distance ratio described above is used for se-
lecting good candidate matches. More sophisticated algorithms are then used to select
actual matches from the selected ones considering geometric information as scale, ori-
entation and coordinates of the interest points. In most of the cases a Hough transform
[3] is used to search for keys that agree upon a particular model pose. To avoid the prob-
lem of boundary effects in hashing, each match is hashed into the 2 closest bins giving a
total of 16 entries for each hypothesis in the hash table. This method has been proposed
for SIFT [14] and is very similar to the weak geometry consistency check used in [12].

Thus, we define the set Mh(dx, dy) as the matching points in the most populated
entry in the Hash table containing the Hough transform of the matches in dy obtained
using the distance ratio criteria.
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4.3 Similarity Measures

In this section, we define 5 different image similarity measures approaches and 4 dif-
ferent versions of each of them for a total of 20 measures.

1-NN Similarity Average – s1. The simplest similarity measure only consider the
closest neighbor for each px ∈ dx and its distance from the query point px. The similar-
ity between two documents dx and dy can be defined as the average similarity between
the local features in dx and their closest neighbors in dy . Thus, we define the 1-NN Sim-
ilarity Average as (for simplicity, we indicate the number of local features in an image
dx as |dx|):

s1(dx, dy) =
1

|dx|
∑

px∈dx

max
py∈dy

(s(px, py))

Percentage of Matches – sm. A reasonable measure of similarity between two image
dx and dy is the percentage of local features in dx that have a match in dy . Using
the distance ratio criterion described in 4.2 for individuating matches, we define the
Percentage of Matches similarity function sm as follows:

sm(dx, dy) =
1

|dx|
∑

px∈dx

m(px, dy)

where m(px, dy) is 1 if px has a match in dy and 0 otherwise (see Sec. 4.2).

Distance Ratio Average – sσ. The matching function m(px, dy) used in the Percent-
age of Matches similarity function is based on the ratio between closest to second-
closest neighbors for filtering candidate matches as proposed in [14] and reported in
Section 4.2. However, this distance ratio value can be used directly to define a Distance
Ratio Average function between two images dx and dy as follows:

sσ(dx, dy) =
1

|dx|
∑

px∈dx

σ(px, dy)

Please note that function does not require a distance ratio c threshold.

Hough Transform Matches Percentage – sh. As mentioned in Section 4.2, an Hough
transform is often used to search for keys that agree upon a particular model pose. The
Hough transform can be used to define a Hough Transform Matches Percentage:

sh(dx, dy) =
|Mh(dx, dy)|

|dx|
where Mh(dx, dy) is the subset of matches voting for the most voted pose. For the
experiments, we used the same parameters proposed in [14], i.e. bin size of 30 degrees
for orientation, a factor of 2 for scale, and 0.25 times the maximum model dimension
for location.
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Managing the Asymmetry. All the proposed similarity functions are not symmetric,
i.e., s(dx, dy) = s(dy , dx) does not hold. Consider the case in which the set of local fea-
tures belonging to dx is a subset of the ones belonging to dy . In this case the similarity
s(dx, dy) is 1 while the same does not hold for s(dy, dx).

In searching for images similar to dx, it is not clear in advance whether s(dx, dy) or
s(dy, dx) would be a better similarity measure for the recognition task. Thus, we tested
various combinations.

Given an image dTe belonging to Te (i.e., an image that we want to automatically
classify), and an image dTr belonging to Tr (i.e., an image for which the class label is
known in advance) we define various versions of the similarities defined before:

– sTe(dTe, dTr) = s(dTe, dTr) – is the canonical approach which tries to find points
in the test image that are similar to the ones in the training one.

– sTr(dTe, dTr) = s(dTr , dTe) – is the inverse approach which uses the points in
training documents as queries.

– sor(dTe, dTr) = max(s(dTe, dTr), s(dTr, dTe)) – is the fuzzy or of sTe and sTr.
This considers equivalent two images if any of the two is a crop of the other.

– sand(dTe, dTr) = min(s(dTe, dTr), s(dTr, dTe)) – is the fuzzy and of sTe and
sTr. This never considers equivalent two images if any of the two is a crop of the
other.

– savg(dTe, dTr) = (s(dTe, dTr) + s(dTr , dTe))/2 – is the mean of sTe and sTr.

Thus, we have defined 5 versions of our 4 similarity measures for a total of 20 similarity
measures that will be denoted as sm,Te, sm,Tr, sm,or, ..., sh,Te, etc.

5 Local Feature Based Image Classifier

In the previous section, we considered the classification of an image dx as a process
of retrieving the most similar ones in the training set Tr and then applying a kNN
classification technique in order to predict the class of dx.

In this section, we propose a new approach that first assigns a label to each local
feature of an image. The label of the image is then assigned by analyzing the labels
and confidences of its local features. This approach has the advantage that any access
method for similarity search in metric spaces [18] can be used to speed-up classification.
The proposed Local Feature Based Image Classifiers classify an image dx in two steps:

1. first each local feature px belonging to dx is classified considering the local features
of the images in Tr;

2. second the whole image is classified considering the class assigned to each local
feature and the confidence of the classification.

Note that classifying individually the local features, before assigning the label to an
image, we might loose the implicit dependency between interest points of an image.
However, surprisingly, we will see that this method offers better effectiveness than the
baseline approach. In other words we are able to improve at the same time both effi-
ciency and effectiveness.
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In the following, we assume that the label of each local feature px, belonging to
images in the training set Tr, is the label assigned to the image it belongs to (i.e., dx).
Following the notation used in Section 4,

∀px ∈ dx, ∀dx ∈ Tr , Φ(px) = Φ(dx).

In other words, we assume that the local features generated over interest points of the
images in the training set can be labeled as the image they belong to. Note that the noise
introduced by this label propagation from the whole image to the local features can be
managed by the local features classifier. In fact, we will see that when very similar
training local features are assigned to different classes, a local feature close to them is
classified with a low confidence. The experimental results reported in Section 7 confirm
the validity of this assumption.

As we said before, given px ∈ dx, a classifier Φ̂ returns both a class Φ̂(px) = ci ∈ C
to which it believes px to belong and a numerical value ν(Φ̂, px) that represents the
confidence that Φ̂ has in its decision. High values of ν correspond to high confidence.

5.1 Local Feature Classifier

Among all the possible approach for assigning a label to a interest point, the simplest is
to consider the label of its closest neighbor in Tr. The confidence value can be evaluated
using the idea of the distance ratio discussed in Section 4.2.

We thus define a local feature based classifier Φ̂m(px) that assign a candidate label
Φ̂m(px) as the one of the nearest neighbor in Tr closest to px (i.e., NN1(px, T r)):

Φ̂m(px) = Φ(NN1(px, T r))

The confidence here plays the role of a matching function, where the idea of the distance
ratio is used to decide if the candidate label is a good match:

ν(Φ̂m, px) =

{
1 if σ̇(px, tr) < c
0 otherwise

The distance ratio σ̇ here is computed considering the nearest local feature to px and
the closest local feature that has a label different than the nearest local feature. This idea
follows the suggestion given by Lowe in [14], that whenever there are multiple training
images of the same object, then the second-closest neighbor to consider for the distance
ratio evaluation should be the closest neighbor that is known to come from a different
object than the first. Following this intuition, we define the distance ratio σ̇ as:

σ̇(px, Tr) =
d(px, NN1(px, T r))

d(px, NN∗
2 (px, T r))

where NN∗
2 (px, T r) is the closest neighbor that is known to be labeled differently than

the first as suggested in [14].
The parameter c used in the definition of the confidence is the equivalent of the one

used in [14] and [5]. We will see in Section 7 that c = 0.8 proposed in [14] by Lowe is
able to guarantee good effectiveness. It is worth to note that c is the only parameter to
be set for this classifier considering that the similarity search performed over the local
features in Tr does not require a parameter k to be set.
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5.2 Whole Image Classification

As we said before, the local feature based feature classification is composed of two
steps (see Section 5). In previous section we have dealt with the issue of classifying the
local feature of an image. Now, in this section, we discuss the second phase of the local
feature based classification of images. In particular we consider the classification of the
whole image given the label Φ̂(px) and the confidence ν(Φ̂, px) assigned to its local
features px ∈ dx during the first phase.

To this aim, we use a confidence-rated majority vote approach. We first compute a
score z(px, ci) for each label ci ∈ C. The score is the sum of the confidence obtained
for the local features predicted as ci. Formally,

z(dx, ci) =
∑

px∈dx,Φ̂(px)=ci

ν(Φ̂, px) .

Then, the label that obtains the maximum score is chosen:

Φ̂(dx) = argmax
cj∈C

z(dx, cj) .

As measure of confidence for the classification of the whole image we use ratio between
the predicted and the second best class:

νimg(Φ̂, dx) = 1−
arg max

cj∈C−Φ̂(px)
z(dx, cj)

argmax
ci∈C

z(dx, ci)
.

This whole image classification confidence can be used to decide whether or not the pre-
dicted label has an high probability to be correct. In the experimental results Section 7
we will show that the proposed confidence is reasonable.

6 Evaluation Settings

For evaluating the various classifiers we need at least: a data set, an interest points
detector, a local feature extractor, some performance measures. In the following, we
present all the evaluation setting we used for the experimentation.

6.1 The Dataset

The dataset that we used for our tests is composed of 1,227 photos of landmarks lo-
cated in Pisa and was used also in [2]. The photos have been crawled from Flickr, the
well known on-line photo service. The dataset we built is publicly available. The IDs
of the photos used for these experiments together with the assigned label and extracted
features can be downloaded from [10]. In the following we list the classes that we used
and the number of photos belonging to each class. In Figure 1 we reported an example
for each class that are: Leaning Tower (119 photos); Duomo (130 photos); Battistero
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Fig. 1. Example images taken from the dataset

(104 photos); Camposanto Monumentale (exterior) (46 photos); Camposanto Monu-
mentale (field) (113 photos); Camposanto Monumentale (portico) (138 photos); Chiesa
della Spina (112 photos); Palazzo della Carovana (101 photos); Palazzo dell’Orologio
(92 photos); Guelph tower (71 photos); Basilica of San Piero (48 photos); Certosa (53
photos).

In order to build and evaluating a classifier for these classes, we divided the dataset
in a training set (Tr) consisting of 226 photos (approximately 20% of the dataset) and
a test set (Te) consisting of 921 (approximately 80% of the dataset). The image resolu-
tion used for feature extraction is the standard resolution used by Flickr i.e., maximum
between width and height equal to 500 pixels.

The total number of local features extracted by the SIFT and SURF detectors were
about 1,000,000 and 500,000 respectively.

6.2 Performance Measures

For evaluating the effectiveness of the classifiers in classifying the documents of the
test set we use the micro-averaged accuracy and micro- and macro-averaged precision,
recall and F1.

Micro-averaged values are calculated by constructing a global contingency table and
then calculating the measures using these sums. In contrast macro-averaged scores are
calculated by first calculating each measure for each category and then taking the av-
erage of these. In most of the cases we reported the micro-averaged values for each
measure.

Precision is defined as the ratio between correctly predicted and the overall predicted
documents for a specific class. Recall is the ratio between correctly predicted and the
overall actual documents for a specific class. F1 is the harmonic mean of precision and
recall.

Note that for the single-label classification task, micro-averaged accuracy is defined
as the number of documents correctly classified divided by the total number of docu-
ments in the test set and it is equivalent to the micro-averaged precision, recall and F1

scores.
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7 Experimental Results

In this section we report the experimental results obtained for all the 20 image simi-
larity based and local feature based classifiers. For the image similarity based classifier
results are reported for each similarity measure defined in Section 4.3. We also show
that the proposed measure of confidence can be used to improve effectiveness on clas-
sified images accepting a small percentage of not classified objects.

7.1 Image Similarity Based Classifiers

In Table 1, Accuracy and macro averaged F1 of the image similarity based classifiers
for the 20 similarity functions defined in Section 4 are reported. Note that the single-
label distance-weighted kNN technique has a parameter k that determines the number
of closest neighbors retrieved in order to classify a given image (see Section 4). This
parameter should be set during the training phase and is kept fixed during the test phase.
However, in our experiments we decided to report the result obtained ranging k between
1 and 100. For simplicity, in Table 1, we report the best performance obtained and the
k for which it was obtained. Moreover, we report the performance obtained for k = 1
which is a particular case in which the kNN classifier simply consider the closest image.

Let’s first consider the approach used for managing the asymmetry of the distance
functions discussed in Section 4.3. The best approach for all the similarity functions
using both SIFT and SURF features is the fuzzy and, i.e., s∗,and. The more traditional
approach s∗,Te is the second best in most of the cases. On the contrary, s∗,Tr always
offers the worst performance. In other words, the best results were obtained when the
similarity between two images is computed as the minimum of the similarity obtained
considering as query in turn the test image local features and the training images. The
result is the same both when using SIFT and SURF.

The Hough Transform Matches Percentage (sh) similarity function is the best choice
for both SIFT and SURF for all the 5 versions for managing the asymmetry. The ge-
ometric information considered by this function allows to obtain significantly better
performance in particular for SURF.

The second best is Distance Ratio Average (sσ) which only considers the distance
ratio as matching criterion. Please note that sσ does not require a distance ratio threshold
(c) because it weights every match considering the distance ratio value. Moreover, sσ

performs sightly better than Percentage of Matches (sm) which requires the threshold c
to be set.

The results obtained by the 1-NN Similarity Average (s1) function show that con-
sidering just the distance between a local features and its closest neighbors gives worst
performance than considering the distance ratio sσ . In other words, the similarity be-
tween a local feature and its closest neighbor is meaningful only if compared to the
other nearest neighbors, which is exactly what the distance ratio does.

Regarding the parameter k it is interesting to note that the k value for which the
best performance was obtained for each similarity measure is typically much higher for
SURF than SIFT. In other words, the test image closest neighbors in the training set are
more relevant using SIFT than using SURF.
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Table 1. Image similarity based classifier (Φ̂s) performance obtained using various image simi-
larity functions

Te Tr or and avg Te Tr or and avg Te Tr or and avg Te Tr or and avg

SIFT .75 .52 .55 .85 .82 .88 .80 .81 .90 .88 .89 .80 .81 .91 .89 .92 .88 .88 .93 .91

SURF .79 .70 .73 .80 .82 .85 .73 .76 .88 .86 .82 .73 .75 .87 .84 .89 .76 .79 .92 .86

SIFT .72 .55 .56 .84 .84 .86 .80 .80 .89 .86 .87 .80 .81 .91 .88 .90 .87 .86 .93 .90

SURF .76 .67 .70 .78 .80 .83 .70 .74 .87 .84 .81 .68 .73 .86 .82 .87 .74 .77 .89 .85

SIFT .73 .52 .55 .85 .82 .88 .78 .80 .90 .88 .89 .78 .80 .91 .88 .91 .87 .87 .93 .91

SURF .79 .63 .67 .80 .82 .81 .60 .62 .86 .79 .81 .63 .64 .84 .76 .87 .66 .68 .90 .81

SIFT .72 .55 .53 .84 .84 .86 .78 .80 .89 .86 .87 .79 .80 .90 .87 .90 .86 .86 .92 .90

SURF .76 .63 .67 .78 .80 .79 .65 .65 .84 .78 .80 .67 .67 .83 .77 .85 .68 .70 .89 .81

SIFT 9 1 1 1 1 1 7 4 2 3 1 5 5 3 5 2 3 9 2 1

SURF 3 6 8 1 1 20 28 42 14 20 8 23 17 11 14 21 35 39 11 18

SIFT 1 1 1 1 1 1 7 4 3 3 1 5 5 3 5 2 8 5 9 9

SURF 1 6 3 1 1 18 28 19 23 20 8 5 17 11 14 21 14 30 3 28

Best
k

Acc

F1

Acc

F1

Best

k =1

F1

sm - Perc. of Matches s  - Avg Sim. Ratio s1 - Avg 1-NNsimilarity function  

Acc

sh - Hough Transform

version  

Fig. 2. Accuracy obtained by both SIFT and
SURF for various k using the sm,Te similarity
function with the image similarity based clas-
sifier

Fig. 3. Accuracy and Macro F1 for various
matching thresholds c, obtained by the image
similarity based classifier (Φ̂s) using the sm,Tr

similarity and SIFT

This is more evident in Figure 2 where we report the accuracy obtained for k between
1 and 100 by both SIFT and SURF using the sm,Te similarity function. SIFT obtains
the best performance for smaller values of k with respect to SURF. Moreover, SIFT
performance is generally higher than SURF. It is interesting to note that performance
obtained for k = 1 is typically just slightly worst than that of the best k. Thus, k = 1
gives very good performance even if a better k could be selected during a learning
phase.

Two of the similarity measures proposed in Section 4.3 require a parameter to be set.
In particular, the similarity measures Percentage of Matches (sm) and Hough Transform
Matches Percentage (sh) use the matching function defined in Section 4.2 that requires
a threshold for the distance ratio threshold (c) to be fixed in advance.
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Table 2. Accuracy and Macro F1 for the local feature based classifiers Φ̂m and for the kNN
classifiers based on the various image similarity measures proposed for best k and related to the
and version

classifier        m

similarity s1, and sm, and s , and sh, and

SIFT .94 .85 .90 .91 .93

SURF .93 .80 .88 .87 .92

SIFT .94 .84 .89 .91 .93

SURF .91 .78 .87 .86 .89

Accuracy

F1 Macro

        s 

In Figure 3 we report the performance obtained by using the Percentage of Matches
classifier, i.e., the image similarity based classifier Φ̂s using the similarity measure sm.
For each distance ratio threshold c we report the best result obtained for k between 0
and 100. As mentioned in Section 4.2, in the paper where SIFT [14] was presented,
Lowe suggested to use 0.8 as distance ratio threshold (c). The results confirm that the
threshold proposed in [14] is the best for both SIFT and SURF and that the algorithm is
stable around this values. In Table 1, results were reported for sm and sh with c = 0.8
for both SIFT and SURF.

Let us now consider the confidence νdoc assigned to the predicted label of each image
(see Section 4.1). This confidence can be used to obtain greater accuracy at the price
of a certain number of false dismissals. In fact, a confidence threshold can be used to
filter all the label assigned to an image with a confidence νdoc less than the threshold.
In Figure 4 we report the accuracy obtained by the sh,and measure using SIFT, varying
the confidence threshold between 0 and 1. We also report the percentage of images in
Te that were not classified together with the percentage of images that where actually
correctly classified but that were filtered because of the threshold. Note that for νdoc =
0.3 the accuracy of classified objects rise from 0.93 to 0.99 obtained for νdoc = 0. At
the same time the percentage of correctly predicted images that are filtered (i.e., the
classifier does not assign a label because of the low confidence threshold νdoc) is less
than 10%.

This prove that the measure of confidence defined is meaningful. However, the best
confidence threshold to be used depends on the task. Sometimes it could be better to try
to guess the class of an image even if we are not sure, while in other cases it might be
better to assign a label only if the classification has an high confidence.

7.2 Local Feature Based Classifier

In this section we compare the performance of the image similarity based classifiers
using the 20 similarity measures defined in Section 4.3 with the local feature based
classifier defined in 5.

In Table 2, we report accuracy and macro-averaged F1 obtained by the Local Fea-
ture Based Image Classifier (Φ̂m) using both SIFT and SURF together with the results
obtained by the image similarity based approach (Φ̂s) for the various similarity mea-
sures. Considering that in the previous section we showed that the fuzzy and approach
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Fig. 4. Results obtained by the image similarity based classifier for similarity sh,and using SIFT,
for various classification confidence thresholds (νimg)

performs better than the other, we only report the result obtained for the and version of
each measures and for the best k.

The first observation is that the Local Feature Based Image Classifier (Φ̂m) per-
forms significantly better then any Image Similarity Based Classifier. In particular Φ̂m

performs better then sh,and, even if no geometric consistency checks are performed by
Φ̂m while matches in sh,and are filtered making use of the Hough transform.

Even if in this paper we did not consider the computational cost of classification,
we can make some simple observations. In fact, it is worth saying that the local feature
based classifier is less critical from this point of view. First, because closest neighbors
of local features in the test image are searched once for all in the Tr and not every time
for each image of Tr. Second, because it is possible to leverage on global spatial index
for all the features in Tr, to support efficient k nearest neighbors searching. In fact,
the similarity function between two local features is the Euclidean distance, which is a
metric. Thus, it could be efficiently indexed by using a metric data structures [18,15,4].

Regarding the local features used and the computational cost, we underline that the
number of local features detected by the SIFT extractor is twice that detected by SURF.
Thus, on one hand SIFT has better performance while on the other hand SURF is more
efficient.

8 Conclusions

In this paper we addressed the problem of image content recognition using local features
and kNN based classification techniques. We defined 20 similarity functions and com-
pared their performance on a image content landmarks recognition task. We found that
a two-way comparison of two images based on fuzzy and allows better performance
than the standard approach that compares a query image with the ones in a training set.
Moreover, we showed that the similarity functions relying on matching of local features
that makes use of geometric constrains perform slightly better than the others.

Finally, we defined a novel kNN classifier that first assigns a label to each local
feature of an image and then labels the whole image by considering the labels and the
confidences assigned to its local features.
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The experiments showed that our proposed local features based classification ap-
proach outperforms the standard image similarity kNN approach in combination with
any of the defined image similarity functions, even the ones considering geometric con-
strains.
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Abstract. One of the main visions of Semantic Web has been the ability of 
software agents to compose atomic web services in order to facilitate the auto-
mation of complex tasks. One of the approaches used in the past in order to  
automatically construct composite web services has been AI planning. The most 
important advantage of this approach is its dynamic character that reduces the 
interference of the user. Although there have been various attempts to utilize 
planning algorithms and systems in the composition process, there has been lit-
tle work in the field of converting web service composition plans in OWL-S. 
This paper studies the use of two well established standards in expressing plans 
and composite web services, namely the Planning Domain Definition Language 
(PDDL) and the Ontology Web Language for Services (OWL-S) and suggests a 
method for translating the produced PDDL plans of any planning system to 
OWL-S descriptions of the final composite web services. The result is a totally 
new web service that can later be discovered and invoked or even take part in a 
new composition. 

Keywords: Web services composition, AI planning, Semantic web services, 
OWL-S, PDDL. 

1 Introduction 

Nowadays, many different systems all over the globe can communicate with each 
other through the Internet. The need for supporting interoperability of web applica-
tions so that they can be used by all platforms, no matter their implementation, has led 
to web services technology and a new, web-service-oriented way of programming. 
This new technology is based on open protocols, such as the XML and the well 
known HTTP transfer protocol. 

There is often the need to execute more complex tasks that simple web services do 
not have the potential to complete on their own. In such cases, simple web services 
must cooperate so as to combine their functionalities to create a new complex web 
service that will hold the desirable functionality. Semantic information about all the 
available atomic web services is very important for their cooperation in web services 
composition field, so as to be able to understand the meaning of their inputs and out-
puts and to match them to achieve cooperation. 

During the past decade a large number of approaches for composing web services 
have been proposed, some fully automated, other partially automated, whereas a lot of 
them are even completely manual. A promising way that aims at fully automated web 
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services composition is the use of AI planning technology. Each web service is 
represented as a planning operator and the desired composite service’s inputs and 
outputs form the initial state and the goals respectively. The plans that arise are  
encoded in languages such as PDDL [5] that describe the actions, that is the web ser-
vices, that must be executed and the order of their execution. 

The contribution of this paper focuses on the automatic translation of the plans,  
expressed in PDDL, to OWL-S descriptions [10] that take advantage of the OWL-S 
control constructs and facilitate the automatic invocation of the composite service. 
Specifically, information from the PDDL descriptions of the domain, the composition 
problem, and the plan is used to create a functional representation of the composition. 
This representation describes with a specific syntax the way each atomic web service 
is connected to each other in order to produce the final output. In a second phase, this 
functional representation is utilized to generate the OWL-S descriptions of the new 
composite web service. 

In terms of functionality, the method described in this paper is merely based on the 
PDDL descriptions of the planning operators and does not explicitly deal with semantic 
information of the initial atomic services. Therefore, it can be applied to compositions 
arising from both syntactic and semantic matching of inputs and outputs of the atomic 
services. However, since the final expression will be encoded in OWL-S language, we 
will use the notion of semantic web service throughout the rest of the paper.  

In the sections to follow, the relative research field is explored. The suggested 
technique is analyzed in detail and some conclusions along with future directions are 
given. Specifically, the rest of the paper is organized as follows: 

In section 2, the field of automated web services composition using AI Planning 
techniques is presented and some studies on the field are exposed. In section 3, the de-
veloped method for translating the PDDL plans to OWL-S descriptions is analyzed. 
This section is divided into two sub-sections, reflecting the two phases of the method; in 
the first sub-section, the algorithm that creates the functional representation describing 
the composition is presented, whereas in the second sub-section, the method for con-
verting this representation to OWL-S description is described. Finally, in the last 
section, conclusions of the research so far are given along with some ideas on how the 
developed algorithms and the web services composition procedure could be enhanced. 

2 Related Work 

The process of automated web services composition by the point of view of planning 
has been studied extensively. The most important advantage of this approach is the 
dynamic character that is offered to the composition process, which reduces a lot the 
interference of the user. 

One of the most known systems in the field of web services composition via plan-
ning is SHOP2 (Simple Hierarchical Ordered Planner), [15]. It is based on HTN plan-
ning (Hierarchical Task Network) methods [14]. One basic difference between 
SHOP2 and the other HTN systems is that it locates all the actions of the plan in the 
same order that they will be later executed. In this way, the current state of the system 
in every step of the planning procedure is known and inference mechanisms or heuris-
tic techniques can be used to augment the effectiveness and the efficiency of the 
whole process.  
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The functionality of SHOP2 consists of three basic steps. In the first one, the do-
main is constructed by the process OWL-S files of the available web services. The 
atomic services are represented by operators and methods for analyzing the complex 
services to simpler ones are constructed. In the second step, the composition problem 
is transformed to planning problem. This is realized by describing the problem as an 
abstract composite process that need decomposition with the use of methods so as to 
obtain simple processes that refer to web services. In the third step, the problem is 
solved by decomposing the tasks and creating the plan, i.e. is the description of the 
final composite service. 

Another technique, analyzed in [12], is based on situation calculus, where the 
states are not considered as instances of the environment but as sequences of actions 
that were executed in the past and resulted to this state. This technique uses also the 
language Golog (alGOL in LOGic), which is based on logic and the problems that are 
encoded in it can be solved by methods that use logic. For the appropriate representa-
tion of the planning problem in Golog, the language was extended so as to be able to 
contain constraints on the composition process defined by the user. These constraints 
in essence reflect the desired outputs. The OWL-S descriptions are used as require-
ments of the processes that must be executed and also as descriptions of the actions 
that are provided by the web services. The composition problem is transformed into 
the problem of finding the appropriate Golog program that when executed, all the 
defined constraints will be satisfied. In the solution process, intelligent agents are 
used whom knowledge base contains the preconditions and the results of the services, 
encoded in situation calculus terms. The available web services correspond to opera-
tors, primitive or composite. The role of the agents is the inference on the web servic-
es, in order to discover, execute and compose them. 

A different and quite simple web services composition method is presented in [18]. 
It is based on regression in a state space. The algorithms belonging to this category 
start from exploring the goals that must be succeeded and seek for the actions that 
lead from the goals to the initial state. The method proposed introduces a new struc-
ture called SLM (Semantic Links Matrix) and is a table containing the values of  
semantic relevance between the parameters of the web services. For the construction 
of this table, the process models and the relative ontologies of the atomic services are 
used. Generally, the SLM structure groups the candidate web services based on their 
semantic relevance and in the same time provides information on their quality charac-
teristics so as to ease the choice among them. The algorithm begins from the goals, 
but because of the SLM structure it does not need to calculate the previous states. In 
the step of locating the actions that satisfy the current goals, all the services that have 
a positive value in the relevance function are considered as candidates. The best  
service is chosen based on the QoS characteristics. The process continues until it 
reaches the initial state.  

Another approach described in [17] uses model checking techniques for producing 
the plan. The algorithm consists of four steps. In the first step, the goal and the initial 
states are defined. In the second step, the model of the process on which the checks 
will be running is extracted. The web services that could be used for the domain are 
automatically detected and the state space where the solution is searched is  
constructed. Information on the services is retrieved by the ontologies and is inserted 
to the model. In the third step, the search algorithm in the plan space is executed and 
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some plans that satisfy the goals are collected. In the fourth and last step, the best plan 
is chosen and is converted in a composite web service, encoded in BPEL. 

A system which was developed recently and is analyzed in [6] is the system 
PORSCE. The approach is based on transforming the web services composition prob-
lem to a planning problem. The straight forward mapping of these two fields is  
exploited and the OWL-S descriptions of the available web services are used to con-
struct PDDL plan files. The initial state is derived by the data given as input to the 
final web service by the user, whereas the goals are reflected by the desired outputs. 
The operators of the problem correspond to the available atomic web services that can 
be used. Their preconditions are mapped to the inputs of the services and theirs results 
to the outputs. Simultaneously, the ontologies that are connected to the types of the 
parameters of the available web services are used so as for the semantics of the  
concepts to be provided. The system starts by representing the composition problem 
with planning terms. Then, a solution to the problem is provided by an external plan-
ner, such as LPG-td [3], [4] or JPlan [8], according to the user’s selection. Finally, the 
quality of the produced plan is measured based on some quality measures selected by 
the user at the beginning of the process and the results are provided to the user. There 
is also the possibility of replacing instantly some of the web services in the plan with 
other relevant, as they are discovered during the planning process. 

Another approach that exploits the similarities between the AI planning and  
semantic web services composition research fields is the OWLS-Xplan [9]. This sys-
tem uses the OWL-S descriptions of the available web services, the relevant OWL 
ontologies that define the types of the parameters in the descriptions and a planning 
query as input. After some preprocessing of the above data and the execution of the 
Xplan planning algorithm, the result is a plan describing the sequence of composed 
services that satisfies the goals.  

The OWLS-Xplan approach consists of two basic parts. The first one is an 
OWLS2PDDL converter which converts the OWL-S descriptions along with the 
OWL ontologies to the equivalent PDDL domain and problem of the composition. 
Specifically, the conversion results to descriptions of the domain and problem in a 
XML dialect of PDDL (developed by the authors), referred to as PDDXML, that  
simplifies parsing, reading and communicating the descriptions using SOAP. An 
atomic operator is directly related to a service profile as they both provide a general 
description of their instances, actions and web services, respectively. A complex  
action can be linked to a service model that describes how simpler actions should 
cooperate to result to the composite one. Finally, the methods used in HTN planning 
are related to composite web services and may be used by the planner as a hierarchic-
al task network during the planning process.  

The second part of OWLS-Xplan is the developed heuristic hybrid Xplan AI  
planner that combines the benefits of the action-based FF-planner [7] with HTN plan-
ning. Xplan always finds a solution, if it exists in the state space, over the space of 
possible plans, in contrast to HTN approaches. It combines guided local search with 
graph planning and a simple form of hierarchical task networks to produce a plan. 
Also, a re-planning component is included to improve flexibility is cases changes 
happen in the world during planning, a property well needed in semantic web services 
composition field. 
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The solution analyzed in [16] also translates the composition problem to PDDL  
descriptions and suggests that in this way an appropriate planner could be found each 
time according to the problem so as to provide an improved solution. The paper 
presents a three step technique for the creation of a composite web service with the 
first step being the translation of the OWL-S descriptions and OWL ontologies to 
PDDL domain and problem descriptions; the second one is the creation of a plan that 
solves the problem with the execution of a planner; the third one is the translation of 
the plan to a new OWL-S description of the resulting composite web service. Howev-
er, the paper focuses only on the first step of the procedure. Some assumptions are 
made to ease the translation function, such as considering that each atomic process 
has either effects or outputs but not both simultaneously. Also, the authors of the  
paper do not deal with OWL-S process models that have composite process using 
Repeat-While and Repeat-Until or Any-Order and Split-Join constructs. The algo-
rithm proposed, deals separately with the OWL-S process model, the atomic and sim-
ple processes, the sequence, if-then-else, choice and split processes and with the 
OWL-S target service description to create the domain and problem descriptions. The 
process of choosing the appropriate planner for each problem and the translation of 
the plan to OWL-S description of the new service are not elaborated in the paper. 

The aforementioned methods tackle the problem of web services composition  
using a variety of fully or partially automated techniques. However, they don’t deal 
with the task of expressing the resulting composite service in OWL-S, taking advan-
tage of the supported control constructs. 

3 Translating PDDL to OWL-S 

This section analyzes the method for translating a composite web service expressed in 
the PDDL language to the corresponding OWL-S description. The translation  
completes in two phases. The first one concerns the extraction of all the required  
information from the plan for the creation of a composite web service’s functional 
representation. The second is about the conversion of this representation to an OWL-S 
description of the resulting composite web service. 

3.1 Constructing the Composite WS 

The first step in the creation of an OWL-S description based on data derived from a 
PDDL plan is the manipulation of these data and their conversion to a composite web 
service functional representation. This representation refers to the available simple or 
atomic web services and the order in which they should be executed and is structured 
using the OWL-S control constructs sequence, split and split-join. 

In the following algorithm the functional representation of a composite web service 
C is represented as a predicate f(a0,a1,...,an), where f is the control construct used to 
describe the composition structure and a0,a1,…,an stand for the simple web services 
that participate in the composition. Each ai could be another composite service or, in a 
simpler case, an atomic process, which is represented as atomic(ai). 

The developed algorithm consists of three general steps, as shown in Fig. 1. The 
first step concerns the parsing of the files associated with the composition planning 
problem and the extraction of all the information needed in the next steps. In the 
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second step, a web service composition graph is created. The nodes of the graph are 
the actions of the plan and the edges are the links that express the order constraints 
among the actions. The creation of the graph is based on the information collected 
from the previous step. Finally, in the last step, the composite web service functional 
representation is formed using the ordering constraints that are extracted from the 
composition graph. In the following paragraphs, these three steps are described in 
more detail. 

 

Fig. 1. Converting a PDDL plan to a composite web service functional representation 

The initial available information is derived from the PDDL domain and problem 
files of the composition problem. For the parsing of these files, an external library, 
called PDDL4J, [13] is used. The types of information that are required by the transla-
tion process are the following: a) the name of the operator, b) the parameters list, c) the 
preconditions list, d) the effects list, e) the initial state and f) the goals of the problem. 
Finally, the resulting plan is parsed in order to extract information concerning the ac-
tions of the plan. Exploiting the syntax of this file, information on the actions used can 
easily be extracted. The data that are needed in the later steps of the algorithm involve 
the timestamp of each action, which is the time step when the action will be executed 
and the name, parameters and duration of it. The actions are read in the order that they 
are presented in the plan, so the procedure keeps track of this order. 

When all these data are retrieved, the procedure continues combining them so as 
to create objects representing the steps of the plan. Every step contains the name of 
the action that will be executed, the parameters with which the action is called, the 
timestamp and duration of the action, the operator from which the action is derived, 
the substitution imposed on the operation, the list of preconditions that must hold  
for the action to be executed and the list of the effects, the facts that will change due 
to the execution of the action. 

The second step creates the web service composition graph. The nodes list is iden-
tical to the list of actions of the plan. In essence, the contribution of this step is the 
computation of the edges, that is, the links between the actions. The general idea is to 
traverse all the actions and locate cases where one precondition of an action matches 
one effect of another. This ought to happen in theory because of the causal links that  
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are present among the actions of the plan, which imply that the preconditions of the 
later actions will appear as effects of other previous actions. An order constraint link 
is then created between the two actions. 

Algorithm 1 (Graph): Computes the web services  
composition graph 
Inputs: P = {a0,a1,…,an}, the plan 
Output: G = (P,E),  web services composition graph 
 
E = ∅ 

for i = n down to 1 

   for each c ∈ prec(ai) 
      for j = i-1 down to 0 

         for each p∈ add(aj) 
            if (c = p) 

               E = E U {(aj,ai)} 

return G = (P,E) 

 
The algorithm that discovers such kinds of links is called Graph and starts from the 

last elements of the action list. Each one of its preconditions is then examined so as to 
discover a previous action in the plan that produces this fact. This means to discover 
an action that contains this fact in its effect list. So, another loop is needed to access 
all the previous possible producers of this imminent link. When such a previous  
action is found, a link is created among the two actions. This link illustrates an order 
constrain and ensures that the action that produces the fact will be executed before the 
one that consumes it in its preconditions list. 

A simple example of the above procedure is depicted in Fig. 2. In this example there 
are two actions in the plan, the actions Drop Ball B with which a robot puts down the 
ball B and the action Grab Ball A that results in a state where the robot is holding the 
ball A. The algorithm examines first the action Grab Ball A and loops on its precondi-
tions. In this case there is only one precondition, declaring that for executing this action, 
the robot’s gripper must be free. So, somewhere in the plan there should be an action 
that realizes this fact. Exploring the previous actions of the plan, the algorithm confronts 
the action Drop Ball B and matches the fact under consideration with the second result 
of this action. Automatically, an order constraint link is created between the two actions 
meaning that the robot should definitely perform first the action Drop Ball B so as to be 
able then to perform the action Grab Ball A. 

 

Fig. 2. Example on discovering links 
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When all the edges and the corresponding order constraints are discovered in the 
plan, the procedure can continue and exploit these relationships in order to construct a 
composite web service functional representation that illustrates in a more formal way 
how the actions of the composite service relate to each other. This representation is 
built upon the control constructs that OWL-S uses to describe the different possible 
connections between web services. In the algorithm we use three basic control  
constructs: sequence, split and split-join. The control sequence declares that all its 
members should be executed in the exact order they appear. The control split is used 
to describe cases of parallel execution of web services. The last control, split-join, 
describes the case where a split occurs in the plan and the parallel executions connect 
again in a next step in one web service. It is important that the web services that  
happen to be last in the parallel executions, have to synchronize their outputs to 
supply the web service following the connecting point with the sufficient inputs.  

The general algorithm that constructs the composite web service’s functional  
representation consists of 2 basic steps, presented in Algorithm 2 (Basic) and Algo-
rithm 3 (Join). Before the execution of these algorithms, a manipulation of the data 
gathered so far is needed. First, the order constraints list is reduced by removing all 
the constraints not needed. Then the algorithm Basic is called, locates the web servic-
es that will be invoked first and creates functional representations of the  
sub-compositions that start from these services. All these representations are then 
added to an empty split control. Up to this point, the first version of the requested 
functional representation is ready. But some refinement steps should be performed in 
order to provide a more concise representation. So, next in the developed algorithm, a 
process named Join takes place and simplifies the functional representation by replac-
ing split controls with split-join where possible. The generated functional representa-
tion of algorithm Basic contains null expressions and unnecessary controls, such as a 
split control with only one parameter. In the following paragraphs a more detailed 
description of the translation procedure is provided.  

The output of Graph algorithm may contain some unnecessary ordering  
constraints, so the first step is about locating such constraints and removing them 
from the set. Unnecessary constraints are the ones that can be implied by others, so 
there is no need for their existence in the set. One order constraint A can be inferred 
by others if there exists another constraint B with the same left part as A and a  
constraint C whose left part is identical to the right part of constraint B and its right 
part is identical to the right part of constraint A. An example will clarify more the 
above situation. Let the set {A<C, A<B, B<C} be the set of constraints of the compo-
sition problem. Examining the need of existence of the first order constraint, which is 
interpreted as ‘the web service A must be executed before the execution of the service 
C’, the constraint Α<Β has the same web service at the left part. The process contin-
ues by exploring the set for constraints that have service B in the left part, because this 
is the right part of the constraint A<B. Such a constraint exists and is the third of the 
set. Also, this constraint has identical right part with the first constraint that is  
examined in the process. This means that the constraint A<C is unnecessary because 
it can be inferred by the constraints A<B and B<C, so it is removed from the set.  

The next procedure that takes place is the Basic procedure, shown in Algorithm 2.  
The first step of this algorithm is the location of the so called ‘clear’ services, the web 
services that are executed first in the plan. The main characteristic of these services is 
that they are not consumers in any causal link, which means that there is no need for 
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another web service to be executed before them. Such services can be located by 
searching for the existence of each web service in the plan as a right part of an order 
constraint. If this search returns no results, then the service can be marked as “clear”. 
For example, having the set of web services {A, B, C} and the order constraints 
{A<B, B<C} it can be easily inferred that only the service A is clear, because it does 
not appear as a right member of any order constraint. For each clear web service, the 
construction of sub-representations of the desired composition takes place. In essence, 
the relationship among a clear web service and all its children, all the services that can 
be executed after the completion of the clear service, is revealed. 
 

Algorithm 2 (Basic): Computes an initial composite  
service with Sequence and Split constructs 
Inputs: G = (V,E), the web service graph 
Output: C, a composite service 
 
// R is the set of root nodes in G 

set R ← {r∈V: ∀x ∈ V, (x→r)∉E } 
if R = 0 then return NULL 
if R = 1 then 
   set G’← the tree in G with r∈R 
            as the root 

 return sequence(r, Basic(G’-{r})) 

set c ← {} 

for each r in R 

   set G’ ← the tree in G with r∈R 
             as the root 

   set c ← c ∪ Basic(G’-{r}) 
return Join(split(c)) 

In the next steps of the algorithm Basic, the number of clear services is examined. In 
the trivial case, where there are no such services, a null value is returned. If there is 
only one clear service, then the only representation that can be constructed is a simple 
sequence of the clear service and the composition of the child. So in this point, the 
algorithm calls recursively itself with the rest of the graph as a parameter. This is 
because the expression beginning from the clear service must contain all the informa-
tion about the expressions that can be built from the children of this service. 

If there are more than one clear services, then an empty composite web service is 
created and for every clear service the Basic procedure is invoked having as parameter 
the Graph without the service in question. All the returned functional representations 
are then added to a split control. The resulting split expression is simplified by an algo-
rithm that will be analyzed later in the paper. A short example is given to clarify the 
procedure. Suppose there are a clear service A and two children B and C. The function-
al representation returned from the algorithm, in terms of control constructs, will be 
seq(A,split(Basic(B),Basic(C))). Supposing that there are no other web services in the 
plan, the final result will be seq(A,split(B,C)). 
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Next, the composition representation that resulted from the clear services (algo-
rithm Basic) is simplified by the algorithm Join (Algorithm 3). The main function of 
this algorithm is to replace the split controls with split-join, wherever this is possible. 
In every step, two parameters of the functional representation are examined for the 
existence of a common part. If one such part is found, it is removed from both the 
parameters and the results are added to a new split-join relationship. Finally, a new 
sequence control is created, the split-join is added as the first parameter and the  
common part is added as a second parameter. 
 
Algorithm 3 (Join): Replaces split with split-join where 
possible in a composite service 
Inputs: C=f(a0,a1,…,an), a composite service with sequence 
and split constructs 
Output: C, a composite service with sequence, split and 
split-join constructs 
 
do 
   for each (ai,aj): i,j in [0,n] 
      Set L(ai,aj) = 0 
      if ai = ai’∪k, aj = aj’∪k then 
         L(ai,aj) = |k| 

   
)),(max(arg

),(

),( jiaa aaL
ji aa

yx =
 

   Lxy = max(Lij) 
   if Lxy > 0 then  
      Let fax(ax0,ax1,...,axn) the 
         construct containing k in ax  
      Let fay(ay0,ay1,...,ayn) the  
         construct containing k in ay 
      k1=k2=k 
      if fax = split then  
         k1 = fax(ax0,ax1,...,axn) 
      if fay = split then  
         k2 = fay(ay0,ay1,...,ayn) 
         C= C–{ax,ay} 
         C=C∪seq(s+j(ax’,ay’),s(k1,k2)) 
while Lxy > 0 
return C 

For each pair (ai,aj) of parameters, the size of their common part is stored in the 
structure L(ai,aj). The size of x is expressed as |x| and refers to the number of simple 
web services that take part in the functional representation of x. When all the pairs are 
traversed, the one with the largest common part is selected, that is the pair (ax,ay). If 
the size is a positive number, then the next step checks whether the common part is in 
a split control in the two parameters of the selected pair. If so, the split expression 
must not be divided instead it should be completely removed.  

Since this procedure is performed twice, once for every parameter of the couple, 
the results are two new common parts that should be removed respectively from the 
parameters. This is realized in parameters ax’ and ay’. The resulting expressions are 
added as members of the split-join control, symbolized as ‘s+j’, which in turn is  
added as a parameter of the sequence control. Then, the common parts are combined 
in a split control, symbolized as ‘s’ and the result becomes the second parameter of 
the sequence control. Finally, this new sequence representation replaces the two  
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parameters in the initial composite web service, ax,ay. All the previous steps are  
repeated for the altered composite web service C until no common part exists between 
its’ parameters. Then, C is returned, as was formed from the procedure and represents 
a composition having sequence, split and split-join control constructs that functionally 
represents the data flow among the participating simple web services. 

After the completion of Join, the null parameters of the functional representation 
created so far are cleared and the pointless control constructs are removed, e.g. the 
expression split(A) becomes A. Finally, the duplicate references to control constructs 
are eliminated This means, that the expression seq(seq(A,B),C) is transformed to the 
equivalent one seq(A,B,C). 

 

Fig. 3. Composition example 

A short example of the whole procedure is given to clarify its workings. In Fig. 3 a 
web services composition plan is depicted in a graphical way. The clear service is 
only the service A, so the result of the Basic algorithm, before calling the algorithm 
Join, will be seq(A,split(seq(B,D),seq(C,D))). The Join algorithm will notice that the 
parameters seq(B,D) and seq(C,D) have the service D as a common part, so the split 
control construct can be replaced by a split-join one. By removing the common part 
from each parameter, the results are the representations seq(B,null) and seq(C,null) 
and they are added as parameters in a new split-join control. Since the common part is 
not in a split expression in none of the two parameters, the resulting common part is 
just the service D and the new sequence representation is constructed as follows: 
seq(split-join(seq(B,null),seq(C,null)),D). This representation replaces the split of the 
initial expression and the result is the representation seq(A,seq(split-
join(seq(B,null),seq(C,null)),D)). 

After the completion of the clearing algorithm the functional representation is 
transformed to seq(A,seq(split-join(B,C),D)) which finally becomes seq(A,split-
join(B,C),D) at the last step, which is an accurate functional representation of the 
composition. 

3.2 Creating OWL-S Descriptions 

Up to this point, a functional representation has been constructed that supplies suffi-
cient information on the data flow of the composition. But, for the procedure to be 
complete so as to provide the user with a new semantic web service ready for execu-
tion, the OWL-S description has to be constructed. This is done based on this repre-
sentation. The descriptions that are constructed by the algorithm are the process and 
the profile descriptions. The OWL-S API, which can be found at [11], was used for 
their creation. This OWL-S API is a JAVA library providing functions that facilitate 
the creation of OWL-S descriptions. 

First, the process file is created by the algorithm 4, OWLSProcess. The algorithm 
takes as input parameter the composite web service representation C, as formed by the 
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previous algorithms and discerns two cases. If C is an atomic service, then the appropri-
ate parts of the OWL-S process description are created that describe the service along 
with its inputs and outputs. Specifically, for every input of the atomic service, an input 
element is created by calling the InputElement function of the OWL-S API. All the 
input elements are gathered in a list which is then set as the value of the hasInput field 
of the OWL-S process description. The same steps are followed for the creation of the 
output list which is the value of the hasOutput field in the description. 

 

Algorithm 4 (OWLSProcess): Creates the OWL-S process  
description 
Inputs: C = f(a0,a1,..an) 
Output: The OWL-S process description of C 
 
if f = atomic then 
   A = OWLSAPI.AtomicProcessElement 
   LI = LO = {}  
   for each pi ∈ prec(a0) 
      ki = OWLSAPI.InputElement(pi) 
      LI = LI + {ki} 
   OWLSAPI.hasInput(LI) 
   for each oi ∈ add(a0)  
      mi = OWLSAPI.OutputElement(oi) 
      LO = LO + {mi} 
   OWLSAPI.hasOutput(LO) 
   PE = OWLSAPI.PerformElement 
   return PE.add(A) 
else 
   CC = OWLSAPI.ControlContruct(f) 
   CC.add(CLO(C)) 
   return CC 

If C is not just an atomic service, but instead a composite one, then the appropriate 
control construct element is created (seq, split, split-join) according to f and the algo-
rithm CLO is called to create the list of the services that takes part in this element. 
Then, this list is added to the control construct element and this is the object that the 
OWLSProcess algorithm returns. In fact, this object contains all the information about 
the OWL-S process description of C. 
 
Algorithm 5 (CLO): Creates the List Object containing  
the atomic services of the composite one  
Inputs: C = f(a0,a1,..an) 
Output: LO: the List Object 
 
if n = 0 then  
   return null 
LO = OWLSAPI.ListObjectElement 
LO.First = OWLSProcess(a0) 
LO.Rest = CLO(f(a1,a2,…,an)) 
return LO 

The algorithm CLO has as input a composite web service functional representation, 
which is in essence a functional representation with OWL-S control construct  
connecting the participants services, and creates using the OWL-S API a List Object 
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element with the atomic services as parameters. The list object is a structure with 
First and Rest parts and could be described by an expression like: 
First(a0,Rest(First(a1),Rest(…))). 

In CLO algorithm, the first parameter of the expression is examined and the 
OWLSProcess algorithm is called for this. The result becomes the head of the  
constructing list, because it is the service or the composition of services that will be 
executed first. Then, the CLO algorithm is called recursively for C’, the composite 
web service C with a0 omitted. The result of this call is set as the Rest part. Finally, 
the constructed list object is returned.  

The last step in converting the composite web service functional representation to 
OWL-S description is the creation of the profile description. Here, the composite web 
service is treated as an atomic service with specific inputs and outputs. The construc-
tion of this description is merely based on the methods provided by the OWL-S API’s 
functions. 

4 Conclusions and Future Work 

Web services are playing an important role in the web applications development field, 
with which many different systems through the globe can communicate and exchange 
data using the World Wide Web. Users that need a specific functionality can retrieve 
the desired web services from the UDDI registries and use them to create the output 
they are looking for.  

SOA architecture has contributed to the rapid and easy web applications develop-
ment, using as units the web services and combining them to create new, complex 
services of advanced functionality that can serve even as complete business models. 
The composition methods studied in this paper differ on user’s involvement level. 
Some initial solutions, of limited autonomy, use workflows and leave the details  
regarding the location the appropriate services execution and their order to the user. In 
some more creative solutions, the user doesn’t have to find the exact services that will 
be used, but just provides a description of them. The discovering of services that 
match with the descriptions and the execution of the resulting workflow are automati-
cally performed without the intervention of the user.  

In later studies, the autonomy of the composition procedure is increased. Semantic 
information concerning the web services is used to describe in a semantic level their 
functionality. Languages such as OWL-S are used for this purpose. In this way, concept 
matching becomes possible and so is the check whether two or more services can  
cooperate. The semantic information is used also by automatic web services composi-
tion via planning methods, which are examined in this paper. The composition problem 
is treated as a planning problem and solved by algorithms of the field. 

The result is a plan encoded in planning languages, such as PDDL+ that describes 
the services that will be used for the composition and the way in which they will be 
combined to create the desired composite web service. But, for this final service to be 
available to other users too and to be published in a UDDI registry as an atomic web 
service and take part to possible future compositions, semantic description of the  
service have to be created. 



 Web Service Composition Plans in OWL-S 253 

The contribution of this paper focuses on converting the PDDL+ plans that consti-
tute the composite web service to OWL-S descriptions of the new web service.  
Information extracted from the domain of the composition problem is used to  
construct a composite web service functional representation that describes sufficiently 
the composition. Then, this representation is used to create the OWL-S profile  
description of the composite web service, containing information on its inputs and 
outputs. Also, the OWL-S process description is constructed, that analyzes the way 
the atomic services are used for the production of the final composite web service.  

As for future plans, a complete system could be developed as an extension to the 
already existing automatic web services composition systems, taking advantage of the 
algorithms proposed by this paper to construct new semantic web services and publish 
them in UDDI registries so as to be available to everyone who could be seeking such 
functionality. In this way, an integrated solution to the composition problem would be 
provided. Already developed solutions could be used to this direction, such as the 
system SiTra described in [2], which transforms the OWL-S description of a web 
service to BPEL, the execution language for web services. 

Also, the possibility of creating the grounding OWL-S descriptions of the compo-
site web service could be explored. In this description, the exact data flow among the 
atomic services will be described and the result will be an even more automated solu-
tion. So far, our approach provides the order and the way of the execution of the  
services taking part in the composition. However, the information of which output is 
offered as input to the next service is not provided from the OWL-S descriptions of 
the composite service. This procedure is left to the system that tries to execute the 
resulting service. It is obvious that by providing this kind of information through the 
grounding description, the development of systems that execute complex services is 
greatly simplified.  

Moreover, characteristics concerning the quality could be considered for the  
composite web service. In case there is such data in the semantic descriptions of the 
atomic web services, procedures that take advantage of them could be developed to 
construct the quality characteristics of the resulting composite service. 

Finally, we aim at integrating web service composition via planning into a decision 
support system for industrial risk reduction, which represents risk case studies via 
domain dependent ontologies including the mechanism for building up the risk as a 
composition of simple physical processes [1]. 
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Abstract. Providing assistance systems for simulation studies can support the
user by performing monotonous tasks and keeping track of relevant results. In
this paper we present approaches to estimate, if – and when – statistically sig-
nificant results are expected for certain investigations. This information can be
used to control simulation runs or to provide information to the user for interac-
tion. The first approach is used to classify if significance is expected to occur for
given samples and the second approach estimates the needed replications until
significance is expected be reached. For an initial evaluation of the approaches,
experiments are performed on samples drawn from normal distributions.

Keywords: Significance estimation, Simulation control, Statistical tests,
Machine learning.

1 Introduction

Nowadays, simulation is widely used in order to evaluate system changes, to perform
parameter optimization of systems, or to compare existing alternatives. A clear advan-
tage of simulation is that costs or damages on real systems can be avoided while in-
vestigating effects of changes or testing newly planned systems. Simulation is used in
various domains, e.g., for marine container terminal planning (Berth Planning and Quay
Resources Assignment Problem; [10]), multi-location transshipment problems [3], and
clinical resource planning [15].

If complex systems with many parameters are modeled, simulation studies can con-
sist of a large number of single simulation runs and a rather structured and disciplined
evaluation has to be performed in order to avoid getting lost in the vast of result data. A
support for the non-creative, monotonous tasks in simulation is desirable.

In this work, we present one aspect of the current research project AssistSim address-
ing a support for the performance of simulation studies. The project aims at supporting
planning and execution of simulation studies including simulation system control and
an automated analysis of intermediate simulation results. In this paper we present an
approach to significance estimation in order to estimate, if – and when – statistically
significant results are expected for certain investigations. The approach itself can also
be applied in other situations, i.e., beyond simulation – for any task where two samples
should be compared and where preliminary samples should be used for estimation how
many further examples might be needed in order to satisfy certain statistical properties.

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 255–268, 2013.
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The paper is structured as follows: In Section 2, we discuss some approaches related
to ours. The context of the work and the framework of automated operation and control
of simulation experiments is presented in Section 3. In Section 4 we introduce our
approach to significance estimation. Experimental results are presented in Section 5. A
conclusion as well as ideas for further works are discussed in Section 6.

2 Related Work

The automation of (simulation) experiments as well as the application of data
mining approaches to experimental settings and results has been addressed by vari-
ous researchers. Explora is a knowledge discovery assistant system for multipattern
and multistrategy discovery (e.g., [8,9]). Klösgen lists four analysis tasks that can be
aimed at in such a setting [8]: single-variant analysis (e.g., influence of predefined fac-
tors on output variables), comparison of variants, analysis of whole space of variants,
and optimization. Klösgen reports that the discovery approach “can constitute a valu-
able approach also in an area where the analyst has already a lot of knowledge on
the domain”. Referring to Klösgen three paradigms are fundamental in order to sup-
port data exploration: search, visualization, and navigation, and KDD should combine
these three paradigms in a semi-automatic process [9]. The Explora system “constructs
hierarchical spaces of hypotheses, organizes and controls the search for interesting in-
stances in these spaces, verifies and evaluates the instances in data, and supports the
presentation and management of the discovery findings” [9, p. 250]. Different facets of
interestingness are also discussed in this paper: evidence, redundancy, usefulness, nov-
elty, simplicity, and generality. The application of Explora to simulation experiments in
practical political planning is presented in [8].

King et al. [6] address the “automation of science”; they present the development of
the robot scientist “Adam” who autonomously generates functional genomics hypothe-
ses and tests these hypotheses using laboratory automation. An ontology and logical
language has been developed to describe the research performed by the robot. The au-
tomated conclusions have been confirmed through manually performed experiments.
In earlier work, King et al. present genomic hypothesis generation with their “robot
scientist” [7]. Experiments and hypothesis generation are performed in a loop where
experimental results are evaluated and machine learning (with access to background
knowledge) is applied. The output of this step is used in order to select experiments for
the next cycle.

Huber et al. apply decision tree learning (ID3) in order to extract knowledge from
simulation runs in model optimization [5]. They set up a classification task where the
relation between input and output of simulation runs is learned. The result of the learn-
ing phase is a decision tree indicating which attributes are important and what attribute
values lead to “good” or “bad” behavior. In their paper, they apply the approach to find
the range of configuration and workload parameters to optimize the performance for
a multiprocessor system. Referring to Huber et al. this qualitative information of the
system behavior can be helpful for interpretation of the optimization results.

Burl et al. [2] present an approach to automated knowledge discovery from simu-
lators. They address the “landscape characterization problem” with the aim to identify
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regions in the parameter space which lead to a certain output behavior. Their approach
is based on support vector machines (SVM) and active learning, i.e., they aim at an
intelligent selection of new points in the parameter space in order to maximize “the
amount of new information obtained” [2, p. 83]. As applications they use asteroid col-
lision simulation and simulation of the Earth’s magnetosphere. They report an increase
of the efficiency over standard gridding (2× to 6×).

Hoad et al. [4] introduce an algorithm for the automated selection of the number
of replications for discrete-event simulation in order to achieve a certain accuracy for
simulation output measures taking into account confidence intervals. They apply the
approach to different statistical distributions and to a set of simulation models. The
authors report that the algorithm is effective in selecting the needed number replications
in order to cover the expected mean at a given level of precision.

Similar to some of the related approaches, we apply machine learning in combination
with simulation. In this work, machine learning is not used to discover knowledge from
simulation results but to learn a classifier for the estimation of statistical properties. In
our approach, we take into account statistical tests and the development of their results
for the control of simulation runs.

3 Control of Simulation Experiments

In this section, we briefly describe the project context of the approach presented in this
paper. The goal of the associated project AssistSim is the provision of support function-
alities for the performance of simulation studies. Assistance is intended for planning,
execution, and analysis of simulation studies. The first aspect – planning assistance –
aims at capturing relevant information for a simulation study, e.g., identification of the
objects of investigation including parameters as well as their domains, and selection of
measurements and target functions. Details about this aspect are planned to be published
in a separate paper by our project partners.

The aim of the second aspect – the execution assistance – is the automated opera-
tion and control of the simulation system, i.e., the automated execution of simulation
runs. This phase is partially connected with the analysis assistance as simulation con-
trol depends on intermediate results of simulation runs. However, in the current project,
we restrict the analysis assistance to a relevant set of functions for simulation control.
A thoroughly designed analysis assistance for the investigation of a large result set of
simulation studies is planned to be part of a follow-up project.

The essential task of the simulation execution assistance is the systematic execution
of the different settings of the planned experiments. It is distinguished between three
different kinds of simulation studies:

1. Exploration: The parameter space has to be explored and interesting findings should
be captured.

2. Optimization: Parameter configurations which are expected to lead to good results
w.r.t. a target functions should be identified.

3. Comparison: Two or more parameter configurations of a simulation model (or dif-
ferent simulation models) should be compared identifying the best one or ranking
the variants w.r.t. a target function.
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Using a straight-forward approach, exploration studies can be performed by testing all
possible parameter configurations. In the case of continuous variables, a step size for
discretization or a selection of parameter values to be investigated has to be performed.
Optimization studies can be performed by coupling optimization methods (e.g., meta-
heuristics for stochastic combinatorial optimization [1]). For comparison studies, differ-
ent approaches in the fields of ranking, selection, and multiple comparisons have been
introduced (e.g., [16]).

In our work, we focus on discrete-event simulation where various random variables
can influence simulation runs. In production scenarios, for instance, randomness can
affect the delivery times of parts, duration of processes, and breakdowns of machines.
Thus, multiple runs of the same simulation model with identical parameter configu-
rations but different seed values for the random number generators usually leads to
varying simulation runs and consequently, to different results of the corresponding ob-
served measurements (e.g., manufacturing output). Technically, this situation can be
described as a stochastic process with a (usually unknown) probability distribution and
expected value for the target function. Having this situation in mind, a meaningful simu-
lation study has to perform multiple runs of the same simulation setting (i.e., model and
parameter configuration) with different random number seed values in order to draw
conclusions about configurations’ qualities. This multiple runs of the same parameter
settings are called replications.

The number of replications and their results are highly relevant for computation of
statistical evidence. Depending on these results, mean values and confidence intervals
of measurement variables can be computed or statistical tests can be applied in order to
check if experimental data supports the hypothesis that one variant leads to better results
than another. Obviously, if more replications are performed, a higher confidence w.r.t.
the statistical results will be received. However, complex simulation models can lead
to costly execution times for single simulation runs and a large parameter space might
prohibit performing a large number of replications for each parameter configuration.

The approach presented here aims at the estimation if certain statistical results are
expected to be generated and when this could be the case, i.e., how many replications are
expected to be needed in order to satisfy certain statistical properties. In this work, we
focus on situations where two different variants should be compared by a statistical test.
A similar approach could be developed for an estimation when a confidence interval of a
measurement is expected to be accurate enough for the expert performing the simulation
study.

4 Significance Estimation

In this section, we present our approaches to significance estimation. For initial studies,
we have abstracted from simulation runs and use probability distributions and randomly
drawn samples of these distributions for a first investigation how data can look like. We
assume that observed measurement variables of different simulation runs also underly
certain distributions. Using well-known probability distributions allows for structured
investigations of our approaches where we can easily generate samples from distribu-
tions with known properties. Evaluations with data generated by simulation models can
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Fig. 1. Two examples for confidence interval development for growing number of samples (nor-
mal distribution with mean 20 and standard deviation 2)

be more difficult as the real underlying distribution is not known and if two simula-
tion model variants are compared, it is not clear from the beginning if the distributions
of their results differ. In the next subsection we present an analysis of statistical prop-
erties before we actually introduce our approaches to significance estimation, namely
convergence classification and replication prediction.

4.1 Analysis of Statistical Properties

If we take a look at different successively drawn samples of distributions, we can see
an interesting development of values. Figure 1 shows two developments of values from
the same distribution (normal distribution with mean 20 and standard deviation 2). The
solid blue line shows the estimated mean value using a specific number of sample val-
ues. The dashed light blue line shows the confidence interval. It is known that we need
four times as many samples in order to halve the size of the confidence interval (e.g.,
[11]). It can be seen that in one case the mean of the sample is below the actual expected
value of the distribution (left part of Figure 1) while in the other case, the line comes
close to the actual expected value rather quickly (right part of Figure 1).

Figure 2 shows the development curves of p values of performed t-tests on varying
sample sizes. In these graphs, we can see two curves: One where the compared samples
are actually drawn from different distributions (blue line; mean 20, stdev 2 vs. mean
21, stdev 3) and another where both compared samples are drawn from the same distri-
bution (dashed red line; mean 20, stdev 2). The two distributions have been selected to
have a good overlap in the values on purpose in order to take a look at samples where
the difference is not obvious after drawing a few examples. Interestingly, it can be seen
(e.g., in the right part of Figure 2) that for these distributions in some cases the graphs
can be hardly distinguished (for less than 100 samples for each distribution).

Additionally to the graphs comparing two single samples, the average p values of
100 runs are plotted in Figure 3. As it can be seen, the p values of identical distributions
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Fig. 2. Two examples for p values of t-test development for growing number of samples (normal
distributions with mean 20, stdev 2 vs. mean 21, stdev 3)

Fig. 3. p value of t-test development for growing number of samples (normal distributions with
mean 20, stdev 2 vs. mean 21, stdev 3 - Average of 100 runs

(dashed red line) are close by 0.5 while the p values of the different distributions (solid
blue line) move towards the x-axis.

In this study, we focus on the comparisons of two different distributions and leave out
the single sample case where only one measurement variable of one variant is taken into
account. The following two sections describe two approaches to significance estimation.
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4.2 Convergence Classification

Convergence classification aims at estimating if it can be shown that samples from one
distribution are better on average (e.g., if it can be shown by a statistical test that the
mean is greater than the mean of another distribution). The basic idea is to observe the
development of p values while the number of samples is increasing. We have set up
the convergence estimation as a classification task. A classifier is trained using a set
of positive and negative examples (different distribution vs. identical distribution). This
classifier can later be used in order to classify unseen p value series.

In our current implementation, we extract five straight-forward features which are
used for classification and have a target attribute with two possible outcomes:

– pmin: The minimal p value observed so far.
– pman: The maximal p value observed so far.
– pavg: The average of all observed p values.
– plast: The last known p value (taking into account the whole samples).
– pgrad: The “gradient” of the p value development, taking into account first and last

known p value in relation to the number of samples.
– class: Different or same distribution (diff/same).

In order to train the classifier, we apply the C4.5 algorithm for decision tree learning
[13]. In our work, we have integrated the WEKA machine learning program and have
used the J4.8 implementation of C4.5 [17].

4.3 Replication Prediction

While significance estimation only aims at the classification if a significant statistical
result is expected, the replication prediction task has the goal to estimate the number of
needed replications in order to reach the significant result with a statistical test. Thus,
in this case we are facing a numeric prediction task.

Various prediction methods could be applied to the data, e.g., from the field of time
series prediction. For our initial experiments we decided to apply regression to the
known series of p values in order to estimate the subsequent development. Therefore,
we use the R project implementation of the nonlinear least squares method (NLS) [14].

In order to fit a function to the provided data, we let the regression identify the
coefficients a and b of the following formula: f(x) = 1

a+bx .
The prediction of the number of necessary replications is done by computing the

interception point of the curve with the desired significance level α. Equalizing the
function with α and solving it for x leads to the predicted number of replications: x =
1
αb − a

b .
Figure 4 shows the development of p values as well as the regression curve which

has been generated from the first 30 p values.
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Fig. 4. Replication prediction using nonlinear regression

5 Evaluation

The evaluation consists of three parts. In the first part, the significance classification is
applied to distributions with fixed mean and standard deviation. The second part applies
the significance classification to randomly generated distributions. In the third part, we
apply the replication prediction to fixed distributions.

5.1 Significance Classification for Fixed Distributions

In the first experiment series, we apply the significance classification approach to sam-
ples drawn from different distributions with fixed mean and standard deviation. Alto-
gether, we set up three different distribution pairs which are evaluated. In our evaluation,
we investigate the classifier accuracy for varying numbers of p values (5, 10, . . . , 95)
taken into account for training and classification. For each distribution pair, ten inde-
pendent runs are performed where 500 training and 500 testing examples (50% same,
50% different distributions) are generated.

Table 1 shows a summary of the results indicating the average accuracy of the ap-
proach as well as the accuracy if simple comparison of the last p value with the α
threshold is performed, i.e., if plast < α, it will be classified to diff, otherwise to same.
Additionally, for each number of p values we perform a statistical significance test com-
paring the accuracies of the classifier vs. the α-threshold approach (ten accuracy values
each) and capture the corresponding p values of the test. Significant results are em-
phasized with bold letters. The accuracies for the second distribution pair (μ1 = 20,
sd1 = 2 vs. μ2 = 22, sd2 = 2) is shown in Figure 5.
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Fig. 5. Accuracies of significance classifier and p-threshold (normal distributions with mean 20,
stdev 2 vs. mean 22, stdev 2)

The following tree is an example for a trained classifier with 30 provided p values:

currP <= 0.129937
| currP <= 0.033323: diff (158.0/6.0)
| currP > 0.033323
| | avg <= 0.099929: diff (16.0)
| | avg > 0.099929
| | | totgrad <= 0.000215: diff (63.0/21.0)
| | | totgrad > 0.000215: same (4.0)
currP > 0.129937: same (259.0/40.0)

The results of these experiments indicate an advantage of the trained classifier in com-
parison to the threshold-based method in many cases. Significant (α = 0.05) differences
in the accuracies can be observed for 5-40 p values in the first setting. In the second set-
ting (where the mean difference is greater), for 5 and 10 as well as from 40 - 95 better
results can be achieved using the classifier. In the third setting (even greater difference
between means), the classifier is better for 5 and the settings with 20 or more p values.

5.2 Significance Classification for Random Distributions

In a second test, we do not use distributions with fixed mean and standard deviation val-
ues, but randomly generated distributions. The generation of the random distributions
works as follows:

– Select a random mean value for the first distribution: μ1 ∈ [50, 500].
– Randomly select a standard deviation value for the first distribution sd1 ∈ [0, 0.3μ1].
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Table 1. Accuracies of the significance classifier for different fixed distributions (0∗ indicates p
values < 0.001)

μ1 = 20, sd1 = 2, μ2 = 21, sd2 = 2
Appr. 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Sign.Cl..655 .698 .751 .770 .810 .825 .836 .855 .865 .895 .898 .909 .915 .928 .929 .935 .944 .940 .952
p
thresh.

.570 .628 .660 .716 .763 .783 .810 .839 .857 .887 .891 .903 .922 .930 .933 .940 .947 .946 .955

p
(t-test)

0∗ 0∗ 0∗ 0∗ 0∗ 0∗ .001 .004 .151 .171 .129 .185 .845 .636 .783 .914 .688 .908 .755

μ1 = 20, sd1 = 2, μ2 = 22, sd2 = 2
Appr. 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Sign.Cl..784 .865 .910 .942 .957 .972 .975 .984 .989 .991 .989 .995 .996 .996 .998 .999 .998 .998 .997
p
thresh.

.708 .836 .911 .947 .960 .970 .974 .976 .974 .974 .976 .975 .974 .976 .973 .980 .973 .976 .975

p
(t-test)

0∗ 0∗ .561 .825 .807 .341 .408 .0210∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

μ1 = 20, sd1 = 2, μ2 = 23, sd2 = 2
Appr. 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Sign.Cl..893 .958 .972 .986 .994 .997 .997 .997 .997 .999 .999 .999 1.0 1.0 1.0 1.0 1.0 1.0 1.0
p
thresh.

.865 .959 .970 .970 .97 .975 .977 .976 .973 .974 .980 .975 .975 .976 .975 .972 .974 .976 .974

p
(t-test)

0∗ .653 .418 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

Table 2. Accuracies of the significance classifier for randomly generated distributions (0∗ indi-
cates p values < 0.001)

Appr. 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Sign.Cl..563 .601 .655 .680 .701 .717 .733 .730 .745 .761 .775 .780 .778 .777 .793 .808 .801 .790 .806
p
thresh.

.539 .564 .580 .599 .612 .615 .626 .627 .635 .634 .646 .642 .649 .652 .653 .666 .654 .654 .658

p
(t-test)

.014 .0020∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

– Generate random mean value for the second distribution within the standard devia-
tion of the first one: μ2 ∈ [μ1 − sd1, μ1 + sd1].

– Randomly select a standard deviation value for the second distribution: sd2 ∈
[0, 2sd1]

Instead of drawing random samples from the same distribution, in this experiment series
for each training and testing example, the distributions are generated randomly. Thus,
more general classifiers are trained taking into account various different distributions.
Once again, ten independent runs with 500 training and 500 testing examples are per-
formed. The results (average accuracies and p value of t-tests) of these experiments are
presented in Table 2. A graph comparing the significance classifier with the p-threshold
method is shown in Figure 6. The results indicate better results of the classifier for all
tested numbers of p values. In some cases an accuracy difference with approximately
15 percent points occurs in these experiments.

5.3 Replication Prediction for Fixed Distributions

The third part of the evaluation addresses the replication prediction. Additionally to
the approach presented in Section 4.3, we use a statistical power analysis in order to
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Fig. 6. Accuracies of significance classifier and p-threshold for different number of used p values
for randomly generated distributions

Fig. 7. Root mean squared error for replication prediction (normal distributions with mean 20,
stdev 2 vs. mean 22, stdev 2)

estimate the needed sample size (e.g., [12]). We use the implementation of R Project
(power.t.test) with the estimated mean difference of the corresponding number of
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Table 3. Root mean squared errors of the replication prediction methods for different fixed dis-
tributions (mean values of 100 runs)

μ1 = 20, sd1 = 2, μ2 = 21, sd2 = 2
Approach 5 10 15 20 25 30 35 40 45 50
NLS 179.7 157.1 192.1 77.7 153.5 55.3 102.6 62.0 145.2 149.1
Power 282.1 223.5 166.9 125.2 102.4 167.8 155.6 103.6 97.9 27.6

#invalid 25 13 9 9 7 6 5 6 6 5

Approach 55 60 65 70 75 80 85 90 95
NLS 153.1 101.9 129.3 100.0 80.7 70.9 65.0 60.6 57.1
Power 96.1 38.3 26.8 24.9 25.5 25.3 24.8 25.7 26.3

#invalid 3 3 2 2 1 1 1 1 1

μ1 = 20, sd1 = 2, μ2 = 22, sd2 = 2
Approach 5 10 15 20 25 30 35 40 45 50
NLS 160.1 91.1 74.8 134.5 38.5 22.0 18.0 15.9 14.7 13.8
Power 237.4 145.0 13.8 11.3 9.2 8.0 8.5 8.5 8.8 9.1

#invalid 13 8 3 2 2 2 1 1 1 0

Approach 55 60 65 70 75 80 85 90 95
NLS 13.3 12.8 12.5 12.2 12.0 11.8 11.7 11.5 11.4
Power 9.2 9.2 9.2 9.3 9.2 9.3 9.3 9.4 9.4

#invalid 0 0 0 0 0 0 0 0 0

μ1 = 20, sd1 = 2, μ2 = 23, sd2 = 2
Approach 5 10 15 20 25 30 35 40 45 50
NLS 115.4 103.3 8.1 6.3 5.6 5.2 4.9 4.8 4.6 4.6
Power 42.5 4.1 3.1 3.1 3.3 3.5 3.5 3.6 3.6 3.6

#invalid 6 5 5 5 5 4 4 4 4 4

Approach 55 60 65 70 75 80 85 90 95
NLS 4.5 4.4 4.4 4.4 4.3 4.3 4.3 4.2 4.2
Power 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7

#invalid 4 4 4 4 4 4 4 4 4

sample sizes, α = 0.05, a fixed power value of 0.8, and the one-sided test setting.
The result is an estimation how many samples are needed.

We apply the both prediction methods to the same fixed distributions as in Section 5.1
and capture the root mean squared error (RMSE). As both methods generate unrealistic
high replication estimations in some cases, we have introduced a maximal threshold.
Whenever this threshold (1000 in our experiments) is exceeded, the corresponding value
is set to the threshold value. Additionally, we count how many times no interception
point could be computed for the NLS method (marked with “#invalid”). The results of
these experiments are shown in Table 3. One graph of the second setting (μ1 = 20,
sd1 = 2 vs. μ2 = 22, sd2 = 2) is shown in Figure 7.

The experimental results do not identify one of the methods as better. Depending on
the number of p values taken into account and depending on the different distributions,
one or the other method leads to a lower RMSE. A direct comparison is not really
possible, as the NLS method leads to invalid values in some cases. Especially, if only
few values are used, the regression does not lead to a valid interception point (25 out
100 for the first setting and 5 p values). For the first two distribution pairs (those with a
higher overlap) and low numbers of p values (5 and 10), the NLS method leads to better
mean error of the 100 performed runs. Early prediction results are of special interest as
it allows for an early intervention (of the system or user).
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6 Conclusions

In this paper, we have addressed the estimation of statistical properties. We have pre-
sented two approaches: one for classification if a development of observed p values is
expected to lead to a statistical significant result and another one for the prediction of
needed sample sizes, also by taking into account previous samples.

The comparison of the significance classifier with a threshold-based classification
leads to significantly better results in most cases. Especially in the experiments with
randomly generated distributions, a better performance could be observed. For sam-
ples where the mean values of the distributions are not too close, high classification
accuracies (almost 90%) can be reached even if only five p values are used.

The experiments with the replication prediction do not exhibit that clear results. The
power-based predictor leads to lower average error rates for the setting with a greater
difference of the mean values as well as in the cases where many p values are used. In
some settings, the regression-based approach leads to better results, e.g., if only 5 or 10
p values are used for the closer distribution pairs.

It should be at least mentioned that the approaches presented here – multiple sta-
tistical tests with increasing sample sizes – are violating regular statistical procedures
where the setting should be clear before experiments are performed and multiple tests
with the same data should be avoided or at least taken into account by using adapted
significance levels. For exploration-based studies such approaches might be acceptable
in order to filter out certain variants or if one is aware of the statistical statement.

The current significance classifier uses a rather small set of straight-forward features.
It would be interesting to investigate if further features can lead to an improvement of
the classifier’s accuracy. The prediction of the needed number of replications has not
been addressed deeply within this study. In this case, an investigation of further sta-
tistical or time series prediction methods should be performed. Further experiments are
needed in order to make statements in what situations adequate results are expected. An-
other topic for future work is the application of the approaches to simulation systems.
In this context, relevant research questions are how the approaches perform if other dis-
tributions (than normal distributions) are present and what the underlying distributions
of certain observation variables of simulation models are.
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Abstract. Based on the premise that conceptual agreement (i.e., feeling that we 
share an idea with others) is always inferential, we develop an ABM that 
models the conditions under which a concept will gain or loose strength in the 
minds of individuals. The ABM is based on simple assumptions, generally 
consistent with psychological and philosophical analyses on the subject. We 
assume that different members of a population have slightly different versions 
of one similar conceptualization, that inferred agreement may be true or 
illusory, and that a concept that promotes agreement (true or illusory) increases 
its strength. Our analyses (simulated experiments and probability models) test 
the influence of several variables on the fate of a concept (i.e., whether it 
strengthens or weakens in the minds of individuals), and support the conclusion 
that the most important parameters are the probabilities of true and illusory 
agreement afforded by the concept. 

Keywords: Agent-based modelling, Shared meaning, Conceptual content, 
Markov chain. 

1 Introduction 

Concepts appear to have a life-cycle in the cultures in which they exist. Concepts are 
born at a certain point in time, spread or not through culture, and die out. Our view 
here is that the fate of concepts in culture depends on their usefulness, and that a 
concept is useful when it generates episodes of shared meaning, thus allowing social 
cohesion and the coordination of behaviour. Given that meaning is something that 
happens in individual minds, how is it possible that people agree about a meaning? 
Psychological inquiry often assumes that meaning is shared by resorting to direct 
reference, i.e., by pointing to the referred object, rather than by describing it [1], [2], 
[3], [4], [5], [6], [7], [8] and [9]. Though this approach may work for concrete objects, 
it does not solve the problem of how people agree about the meaning of diffuse 
objects (abstract entities like, e.g., democracy, womanhood, happiness). Direct 



272 E. Canessa, S. Chaigneau, and A. Quezada 

reference does not apply for these objects because they lack clear spatio-temporal 
limits, thus preventing the use of direct reference in interactions. Furthermore, 
everyday concepts like those illustrated above are notoriously ill-defined; making 
shared meaning even more mysterious [10]. In our current work, we hold the view 
that shared meaning is possible because meaning is conventional, i.e., there is a 
limited set of meanings that apply to a given situation [11], [12], [13]. Constraining 
the number of concepts that apply on a given occasion, makes agreement a tractable 
problem. However, even if a group of people has developed conceptual conventions, 
the likely case is that each person instantiates a somewhat different version of those 
concepts (e.g., people may conceptualize “leadership” in slightly different ways). 
Furthermore, even if a group of people has conventions about more or less 
dichotomous concepts (e.g., “cowardice” and “courage”), a person could still be 
wrong about which one is being deployed by someone else at a given moment (e.g., if 
someone says “suicide”, she may be thinking of “cowardice” while I may be thinking 
of “courage”). Consequently, an individual can never know for sure whether someone 
else agrees or not with his conceptualization of a given event (even when being 
explicit). Agreement is a probabilistic inference [14]. 

The ABM we report here focuses on two probabilities that represent the above 
mentioned inference. First, the probability of true agreement (symbolized by p(a1)), 
which stands for the probability that two agents (an observer and an actor) agree on 
something given that they instantiate different versions of the same concept (i.e., the 
“leadership” example above). Second, the probability of illusory agreement 
(symbolized by p(a2)), which stands for the probability that observer and actor agree, 
given that they instantiate different concepts altogether (i.e., the “courage” or 
“cowardice” example above). 

2 Conceptual Description of the ABM 

Our current ABM represents a social group which has a set of conventional 
conceptual states that, for ease of exposition, we will call the focal set. These states 
can represent different versions of the same concept (e.g., different versions of 
“leadership”; or a set of closely related concepts, such as “miserly”, “stingy”, 
“scrooge”). Our p(a1) probability reflects the degree of overlap between the different 
versions in the focal set (greater overlap implies greater probability of true 
agreement). Our p(a2) probability reflects the degree of contrast against alternative 
conceptualizations (lower contrast implies greater probability of illusory agreement). 
The system models the dynamical trajectories of concepts as they become 
increasingly or decreasingly relevant for agents depending on their capacity to 
generate agreement of any type. 

In each simulation run, agents act as observers and actors. Observers seek evidence 
that actors share their concept. Actors have a certain probability that they will or will 
not act according to the focal set concept. If they act according to the focal set 
concept, that specific interaction has a probability p(a1) of providing observers 
evidence of a shared concept. If actors don’t act according to the focal set concept 
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(i.e., they act according to the contrast concept), that specific interaction has a 
probability p(a2) of providing observers evidence of a shared concept. 

We make some very simple and quite generally accepted assumptions about our 
agents’ psychology. If the observer witnesses evidence (blind to whether it is true or 
illusory agreement), then his own conceptual state increases its relevance in his mind 
(i.e., our cognitive assumption; c.f., [15], [16], [17]), will be more likely to guide his 
behaviour in the future (i.e., our motivational assumption; c.f., [18]), and the observer 
will want to interact with that particular agent again in the future (i.e., our social 
assumption; c.f., [19]). 

3 ABM Implementation 

The theory presented in section 2 is implemented in an agent-based model (ABM). In 
summary, the ABM represents how concepts spread and get stronger (or weaker) in a 
social group, by observing the behaviour of other members. In the ABM, each 
individual is an agent (actor, A), which acts according to its concept with probability 
equal to the strength of the concept. That behaviour is observed by another agent 
(observer, O), and that changes the strength of its concept. In general, if the observed 
behaviour agrees with the behaviour expected from O’s concept, then O’s concept 
strengthens. Conversely, if the observed behaviour differs from what is expected from 
that concept, then O’s concept weakens. Concurrently, the agents begin to interact 
more frequently with those that have strengthened their concepts. In the following 
paragraphs we describe the details of the ABM. 

In the social group that the ABM represents, one can set the number of members 
that belong to the group. Each agent can have one of five different related concepts or 
versions of the same concept and each of the concepts or versions is represented by a 
number in the [0, 1] interval, labelled the coefficient of the concept. This coefficient 
determines the probability that an agent behaves according to the given concept. The 
initial values of the coefficients are sampled from a normal distribution with a mean 
and standard deviation, which can be set. The model checks that the assigned 
coefficients will always remain in the [0, 1] interval. 

Agents modify the strength of their concept’s coefficients by observing the 
behaviour of other agents. Every time they see behaviour consistent with their 
concepts, the corresponding coefficients are incremented by 0.02. On the other hand, 
if the observed behaviour is not consistent with their concepts, the corresponding 
coefficients are decremented by 0.02. The model makes sure that the coefficients 
always remain inside the [0, 1] interval. Thus, when an agent sees that another agent 
acts according to its concept, it is more probable that the agent will act according to 
its own concept in the future. These actions spread concepts throughout the group. 

Agents develop interaction preferences as they observe each other. Specifically, 
agents will tend to interact more frequently with agents who have confirmed their 
concepts in previous interactions, and indirectly, they will be less likely to interact 
with those that have not confirmed their concepts. This aspect of the ABM limits the 
diffusion of concepts, given that it imposes certain heterogeneity to the diffusion 
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speed of the concepts. It could even cause the weakening of some concepts among 
certain members of the group. To simulate this aspect of our theory, each agent has an 
interaction probability with the rest of the agents. Taking into account computational 
restrictions, those probabilities take only discrete values (0.08, 0.11, 0.17, 0.26 and 
0.38, probabilities which increase by approximately 50% between successive values). 
At the start of a simulation run, all the agents are assigned a probability equal to 0.08, 
which means that an agent will randomly interact with any other agent. Then, as the 
run advances, if agent A confirms O’s concept, agent O will increase its interaction 
probability with A to the immediately larger value. For example, if agent A’s 
interaction probability was 0.08, then agent A will increase that probability to 0.11. 

A last aspect incorporated in the ABM is that in a social group, it might exist more 
than one version of a concept. Thus, the model allows setting the number of versions 
that will be present in a group between 1 and 5. Each version will be assigned to a 
number of agents equal to the total number of agents in a group divided by the 
number of versions. 

Each agent O determines whether its concept will strengthen or weaken according 
to the following rules: 

a) If A acts according to its own concept in the focal set, and A’s conceptual content 
completely coincides with O’s conceptual content, then O’s concept will strengthen 
with probability equal to 1. 

b) If A acts according to its own concept in the focal set, and that concept is a version 
of the same concept in O’s focal set (but not identical), then O’s concept will 
strengthen with probability equal to p(a1)and will weaken with probability equal to 1 
- p(a1). 

c) If A does not act according to its concept in the focal set (i.e., acts according to a 
contrasting concept), and the contrasting concept overlaps somewhat with the O’s 
concept in the focal set, then O’s concept will strengthen with probability equal to 
p(a2) and will weaken with probability equal to 1 - p(a2). 

d) If A does not act according to its concept in the focal set (i.e., acts according to a 
contrasting concept), and A’s conceptual content completely coincides with O’s 
conceptual content, then O’s concept will weaken with probability equal to 1. 

Finally, each simulation cycle or step of the ABM is composed of the following 
actions: 

i) From the set of all agents, randomly select without replacement an observer agent 
(O). 

ii) O selects one actor agent (A), according to the interaction probabilities that O has 
for the rest of the agents. 

iii) A behaves according to its concept with probability equal to the value of the 
coefficient of the concept that it has. 

iv) O observes that behaviour and modifies its coefficient of the concept, according to 
the rules that were previously described. 

v) Repeat steps i) through iv) until all agents have been observers. 
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We acknowledge that this description may not provide the reader with a complete 
understanding of our ABM. Space restrictions preclude providing greater detail. In lieu, 
the ABM is available as a zip file. The interested reader can download it from 
http://www.uai.cl/images/stories/CentrosInvetigacion/CINCO/CAT_1_English.zip. To run it, you 
will need first to install Netlogo version 4.0.4 (http://ccl.northwestern.edu/netlogo/). Once 
on the ABM interface, do the following steps to run a simulation: (1) Input the simulation 
parameters, be it with the slider controls or typing the desired p(a1) and p(a2) values in the 
appropriate windows. (2) Press SETUP. (3) Press SIMULATE. (4) If you want to pause a 
run, simply press SIMULATE (you will need to press it again to resume). 

4 Preliminary Results 

Once the ABM was implemented and verified, we carried out several runs to assess 
the dynamics of the coefficients of the concepts that emerged. After gaining some 
insights into the dynamics of those coefficients and how different combination of 
parameters changed those dynamics, we performed experiments fixing the value of 
some parameters as follows: number of agents = 100; number of versions of a concept 
(or number of related concepts) = 5; initial value of coefficients of concepts = 0.5; and 
changing the value of p(a1) and p(a2) between 0.1 and 0.95. According to the 
combination of values for p(a1) and p(a2), three different dynamics emerged. 

4.1 Convergence to Zero 

When we set small values for p(a1) and p(a2), for example p(a1) = 0.1 and p(a2) = 
0.2, then the coefficients rapidly decrease and get close to zero, remaining at that 
value. This can be seen in Figure 1, where we plotted the mean value of the 
coefficient of each version of the concept (c1 through c5) over simulation steps. The 
mean value of each coefficient is calculated by averaging the individual value of  
the coefficient of the agents that have each version of the concept. 

 

Fig. 1. Mean of coefficients of concepts (c1 through c5), for p(a1) = 0.1 and p(a2)= 0.2 
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That happens because the probability that O observes a behaviour consistent with 
its concept is very low, since p(a1) and p(a2) are small. Thus, in general, concepts 
tend to weaken, which in turn makes it more probable that the coefficients will keep 
decreasing throughout the run. Conceptually, this is equivalent to concepts that are 
not useful to generate agreement in a social group, and rapidly die out. 

4.2 Convergence to One 

When both p(a1) and p(a2) are set to large values, for example p(a1) = 0.8 and p(a2) 
= 0.9, then the coefficients quickly increase and take values close to 1.0. This can be 
seen in Figure 2. 

 

Fig. 2. Mean of coefficients of concepts (c1 through c5), for p(a1) = 0.8 and p(a2) = 0.9 

Contrary to what happened in 4.1, in this situation p(a1) and p(a2) are large, thus 
favouring that O observes a behaviour consistent with its concept, which will 
strengthen the coefficient. In turn, this makes more probable that in successive cycles, 
all the coefficients of the concepts will increase. Conceptually, this is equivalent to a 
group of related concepts synergistically increasing their relevance by promoting 
agreement in culture. 

4.3 Bifurcation 

Using different combinations for p(a1) and p(a2), such as (0.20, 0.80), (0.60, 0.40), 
(0.80, 0.16), we saw that some concepts tended to strengthen and others to weaken. 
We labelled this type of dynamic a “bifurcation”, which is shown in Figure 3. 

Under this condition, a relatively large value of p(a1) or p(a2), but not of both of 
them, will promote that on each run some O’s observe behaviours consistent with 
their concepts. However, since p(a1) or p(a2) will have a small value, it will also 
happen that on each run some O’s will not observe behaviours consistent with their 
concepts. Thus, some versions of the concept will strengthen and others weaken in  
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Fig. 3. Mean of coefficients of concepts (c1 through c5), for p(a1) = 0.2 and p(a2)= 0.8 

agents’ minds. Conceptually, this is equivalent to a group of related concepts that 
have a weakly contrasting (i.e., somewhat overlapping) conceptual alternative, such 
as might be the case of concepts of male versus female gender, and concepts of liberal 
versus conservative political views. Concepts like these tend to become polarized in 
large social groups, just as occurs in our model’s bifurcations. 

4.4 Map of Dynamics 

Since we realized the significant influence of p(a1) and p(a2) on the type of dynamics 
that emerged, we ran simulations using more combinations for these two variables. 
The types of dynamics of the coefficients that emerged are presented in Figure 4. 
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Fig. 4. Dynamics that emerge for coefficients of concepts, according to values set to p(a1) and 
p(a2)(bifurcation, 1 = convergence to 1, 0 = convergence to 0) 

We confirmed that for small values of p(a1) and p(a2), we obtained convergence to 
zero; for large values of p(a1) and p(a2), we saw convergence to one; and for other 
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combinations of those parameters, we observed a bifurcation. Interestingly, note that 
the combinations for p(a1) and p(a2), for which we obtain a bifurcation, 
approximately lie on a line connecting the lower right corner of the graph with the 
upper left one. Moreover, see that the zone where we get the bifurcation gets wider at 
the upper left corner. That means that at the lower right corner (p(a1) >> p(a2)), the 
dynamics of the ABM gets more sensitive to the combination of p(a1) and p(a2) than 
at the opposite corner (p(a1) << p(a2)). Since that behaviour of the ABM was quite 
intriguing, we developed another model to try to explain such behaviour. 

5 Probabilistic and Markov Chain Model 

To begin to validate the ABM results, and more formally explain the conditions under 
which the three dynamics appeared, we developed a simple probabilistic model. This 
initial model justified why the bifurcation emerged when the values for p(a1) and 
p(a2) roughly lie on a line connecting the lower right corner of the graph with the 
upper left one, as shown in Figure 4. 

5.1 Simple Conditional Probability Model 

To explain the three different types of dynamics that emerge from the ABM, we use a 
simple conditional probability model to calculate an initial probability that a concept 
will strengthen (pif). If pif is small, then most probably, the coefficient, which 
represents the concept, will decrease. On the other hand, if pif is large, the coefficient 
will increase. If pif is about 0.5, then we obtain the ideal situation under which a 
bifurcation might occur, i.e. each coefficient will have a 50% chance of decreasing 
and a 50% chance of increasing, thus making it possible that about half of them will 
diminish and half of them will augment. Figure 5 shows a conditional probability tree 
that helps calculate pif. 

 

Fig. 5. Conditional probability tree for calculating pif 
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In this model, pif depends on whether an agent A (actor) behaves according to its 
concept (event BC), which has probability equal to the initial value of the coefficient 
that we set (c0), or not (event NBC, with probability 1 - c0). Then, if A acts according 
to its concept, then there is a pi probability that A and O share all their conceptual 
content (event SACC), and a 1- pi probability that they don’t share it all (i.e., each has 
a different version of the same concept, event NSAAC). If they share all their 
conceptual content (with probability pi), then it is certain that O will strengthen its 
concept’s coefficient. If they share versions of the same concept (with probability 1-
pi), then it is less than certain (p(a1)) that O will strengthen its concept. 

On the other hand, if A does not behave according to its concept (event NBC), and 
A and O share all their conceptual content (event SAAC, with probability pi), then 
O’s concept will certainly weaken. Alternatively, if A and O do not share all their 
conceptual content (event NSAAC), then it might happen that A provides O with 
some portion of the conceptual content, and thus O’s concept might strengthen with 
probability p(a2).  

Solving the probability tree of Figure 5 for pif, we obtain: 
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In (1), remember that pi corresponds to the probability that agents share all their 
conceptual content, i.e. that they have the same version of a concept. Thus, we can 
calculate pi for the beginning of a run. In such initial condition, we will have N/V 
agents with the same version of a concept, where N equals the total number of agents 
and V is the number of different versions of a concept. Then, the initial probability 
that agent O will interact with an agent A that has the same version of the concept will 
be equal to the number of other agents that have the same version as O has (without 
counting O), divided by the total number of agents (without counting O): 
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For the value of the parameters used in the runs, N = 100 and V = 5, so that pi = 19/99 
= 0.1919. 

Now, if we set pif = 0.5 in (1), i.e. the ideal condition for obtaining a bifurcation, 
and establish c0 = 0.5 (the value we used in our simulation runs), we can get equation 
(3), which states the ideal condition for p(a1) and p(a2) for getting a bifurcation. 
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Note that (3) does not contain pi, which means that that condition applies for any 
value of pi. Equation (3) corresponds to a line with an intercept with the y axis (p(a2) 
axis) equal to 1.0 and slope equal to -1.0, which coincides with the line depicted in 
Figure 4 that represents the combinations of p(a1) and p(a2) where we obtained a 
bifurcation. Now, if the sum of p(a1) and p(a2) is bigger than 1.0, we obtain a parallel 
line to (3), but located above (3). In that case, pif is larger than 0.5, and thus most 
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probably the coefficients will converge to one. This coincides with the region of 
combinations for p(a1) and p(a2), shown on Figure 4, where the coefficients converge 
to one. To see that, we can rewrite (1), replacing c0 = 0.5: 
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(4)

If we replace in (4) pi for its value 0.1919 and, for example, set pif = 0.6, we obtain 
p(a1) + p(a2) = 1.248. On the other hand, if the sum of p(a1) and p(a2) is smaller 
than 1.0, we also obtain a parallel line to (3) but located below (3). In this case, pif will 
be smaller than 0.5, and thus we will get a convergence to zero of the coefficients. For 
example, if we put pif = 0.4 in (4), we get the line p(a1) + p(a2) = 0.753. That line is 
located within the region of combinations of p(a1) and p(a2) shown in Figure 4, 
where we obtain that dynamic.  

However, from Figure 4, we can also see that on the upper left corner of the graph, 
the line p(a1) + p(a2) = 1.0 does not represent all the combinations of p(a1) and 
p(a2) where the ABM exhibits the bifurcation. Thus, the simple probability model 
only partially explains the empirical results. 

5.2 Markov Chain Model 

Since the model in 5.1 calculates pif only for the initial state of a simulation run, it 
cannot fully capture the dynamical nature of the ABM. Remember that the concepts’ 
coefficients change during a run, as well as the interaction probabilities among agents. 
In the ABM, that means that c0 and pi will change as the simulation run advances. 
Thus, we need to build a model that captures that dynamical aspect of the ABM. To 
do so, we use a simple Markov chain, with four states, as described in Table 1. 

Table 1. State transition probability matrix of the Markov chain 

 St+1 (j = 0) Wt+1 (j = 1) 

St (i = 0) pif
+ 1 - pif

+ 

Wt (i = 1) pif
- 1- pif

- 

 
Table 1 indicates that if a concept strengthens (state St (i = 0)), then the 

probability that it will increase in the next step (state St+1 (j = 0)) is pif
+, and that it 

will weaken is 1 - pif
+ (state Wt+1 (j = 1)). On the other hand, if a concept weakens 

(state Wt (i = 1)), then the probability that it will strengthen in the next step (state St+1 
(j = 0)) is pif

- and that it will weaken (state Wt+1 (j = 1)) is 1- pif
-. In the ABM, each of 

those pif has a meaning. From expression (1), we know that pif depends on c and pi, 
which change during a simulation run. The description of the ABM states that if a 
concept strengthens, then its coefficient will increase by a certain Δc, and the same 
will happen with pi, which will increase by Δpi. If the concept weakens, then the 
coefficient c will decrease by Δc, but pi will remain the same. Therefore, using those 
facts, we can write the following expressions for pif

+ and pif
-: 
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Then, replacing (5) and (6) in (1), we can write the explicit equations for pif
+ and pif

-: 
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Now, if we apply the properties of an ergodic Markov chain (c.f. [20]), we can 
compute a long-run probability that a concept will strengthen (Π0): 
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Since (9) is written in terms of pif
+ and pif

-, which in turn are given by (7) and (8), it 
would be rather cumbersome to write an explicit equation for (9) in terms of c, Δc, pi, 
Δpi, p(a1) and p(a2). Thus, we prefer to use the following definitions and write a 
simpler expression for Π0: 
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Then, using (10), we can write: 
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Expression (11) can be rearranged so that it looks similar to equation (4), i.e. 
represents a line that states the relationship that must exist between p(a1) and p(a2) 
for a given Π0: 
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Note that (12) is an equation of a line with a slope equal to the expression located to 
the left of p(a1) and an intercept with the y axis (p(a2) axis) equal to the far right 
hand expression. If we compare (12) with (4), we can see that the slope in (4) does not 
change, depending on the values that p(a1), p(a2) and pif take; but in (12) the slope 
changes (remember that pif in (4) is equivalent to Π0 in (12)). Moreover, if we set in 
(10), c0 = 0.5, pi = 0.1919, Δc = 0.45 and Δpi = 0.05; and put the values a through g, 
defined in (10), in (12), we can get a family of lines that represents the condition that  
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Fig. 6. Dynamics that emerge for coefficients of concepts, according to values set to p(a1) and 
p(a2)(bifurcation, 1 = convergence to 1, 0 = convergence to 0) and lines for different values of 
Π0 according to the Markov chain model 

must meet p(a1) and p(a2) for obtaining different values of Π0. Figure 6 shows the 
same graph presented in Figure 4, but displaying lines for Π0 = 0.3 to 0.7 according to 
the Markov chain model that corresponds to expression (12). 

From Figure 6, we can see that the line for Π0 = 0.5 (the ideal condition for getting 
a bifurcation) approximately coincides with a line equal to the one we calculated for 
the simple probabilistic model (see expression (3) and Figure 4). The other lines for 
Π0 = 0.6 and 0.7 are located in the region where the ABM exhibits the convergence to 
one dynamic and the lines for Π0 = 0.3 and 0.4 lie in the region where the 
convergence to zero dynamic emerges. Thus, we can see that the Markov chain model 
represents fairly well the conditions under which the ABM exhibits the three different 
dynamics. Moreover, note that the lines tend to converge toward the lower right 
corner of the graph, where p(a1) >> p(a2) and tend to diverge toward the upper left 
corner, where p(a1) << p(a2). This means, that the region where we get the 
bifurcation and which separates the areas where we obtain the convergence to one and 
zero, gets narrower when p(a1) >> p(a2) and wider when p(a1) << p(a2). That 
characteristic was the one that the probabilistic model described in 5.1 was not able to 
capture. 

5.3 Sensitivity of Models to Changes in Values of Some Parameters 

By analyzing the ABM’s and its associated probabilistic models’ sensitivity to 
different parameters, we are able to derive predictions for “real world” situations. 
Although the Markov chain model presented in 5.2 better explains the dynamical 
properties of the ABM than the probabilistic model described in 5.1, the latter model 
is easier to analyze from a substantive point of view. Thus, based on expression (1),  
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we will compute the sensitivity of that model to changes in values of some 
parameters. Here, we will present only two results of such analyses. To do so, we use 
(1) and take the partial derivatives of pif  with respect to p(a1) and p(a2): 
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Additionally, since pi appears in (13) and (14) and that variable depends on the 
number of agents and concepts (N, V see (2)), we can express (13) and (14) in terms 
of N and V. Moreover, given that for reasonably large values of N, pi tends to 1/V, we 
will analyze (13) and (14) taking into consideration that pi  ≈1/V. 

From (13) and (14) we can see that the sensitivity of pif with respect to p(a1) and 
p(a2) is always positive (remember that 0 ≤ c0, pi ≤ 1), i.e. the larger p(a1) and p(a2), 
the larger pif. Now, the larger the number of concepts a group has (V), the smaller pi 
will be and the more influential p(a1) and p(a2) will be on the value that takes pif. 
That means that for groups with a large set of related concepts (or many different 
versions of the same concept), the probability of true and illusory agreement (p(a1) 
and p(a2)) will greatly influence pif. The significance of that influence will also be 
determined by the value of c0. Note that for large values of c0, p(a1) will have a larger 
influence on pif than p(a2) and vice-versa. Thus, for groups with many concepts, the 
degree of agreement, either true or illusory, and the initial strength of each concept 
will dictate whether each concept strengthens or weakens, and eventually disappears. 

Several “real world” situations could conform to the dynamics described above. As 
an illustration, imagine a social group that has an abstract concept, such as 
conservative. Presumably, people would have many different versions of such 
concept (i.e., a small pi), with some people, e.g., considering that conservative is a 
view about economics, while others considering that it is a view about values, and so 
on. Imagine, furthermore, that this concept’s relevance in that society is moderate, in 
the sense that it does not persistently determine people’s actions (i.e., c0 ≠ 1). For 
concepts like this, our sensitivity analyses predict that their fate as a cultural 
phenomenon will depend mainly on their capacity to generate agreement. 

Imagine, furthermore, that conservative has liberal as a weakly contrasting 
alternative concept (liberal is weakly contrasting to conservative because it does not 
clearly divide political opinion in two sharply contrasting clusters). Our sensitivity 
analyses predict that the fate of this pair will depend on agreement, regardless of 
whether it is true (p(a1)) or illusory (p(a2)). Additionally, as discussed in 4.3 above, 
these conditions promote bifurcations akin to social polarization. 

Perhaps, an even more interesting situation arises in groups that have a small 
number of concepts or versions of them. In that case, pi will be large, and thus p(a1) 
and p(a2) will not have a large influence on pif (i.e., the degree of true and illusory 
agreement will not have a large influence on the fate of the concepts). Examining 
Figure 5, we can see that in the above mentioned situation, the fate of each concept 
will be predominantly dictated by its initial strength c0, i.e., an initially rather strong 
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concept will disseminate throughout the group and become stronger, and an initially 
quite weak concept will die out. Note that since in this situation, agreement of any 
type is almost irrelevant, that implies that a concept may spread even if people do not 
share the same meaning of it. 

Again, a “real world” situation that could conform to these conditions is the 
following. Imagine a social group in which an authority (moral, political, or other) 
pushes an oversimplified concept (e.g., a slogan), and creates the conditions to make 
it relevant (e.g., punishes dissent). As occurs with commands, slogans may leave little 
room for alternative interpretations (i.e., pi is large), which, by equations (13) and (14) 
implies that agreement ceases to be the predominant force that drives that concept’s 
path. In other words, if an authority presents a very simple idea that allows little room 
for alternative interpretations, and succeeds in making it relevant in people’s minds 
(i.e., makes c0 sufficiently large), that condition will be sufficient to strengthen the 
concept and disseminate it throughout the social group, regardless of whether its 
meaning is shared or not. 

6 Conclusions 

In the work we report here, we use our ABM to develop a complex theory about the 
dynamics of shared meaning in social groups. This use of ABMs is not new, and has 
been advocated by [21]. Our ABM embodies some very simple rules of interaction, in 
keeping with Axelrod’s KISS principle [22]. However, the ABM’s dynamics are not 
simple, as attested by the expanded region of combinations of p(a1) and p(a2) in 
Figure 4, where bifurcations emerge. 

Our theory development approach  to Agent Based  Modeling led  us to formalize 
the dynamics through increasingly refined probabilistic models. Not only is this 
currently allowing us to recursively improve our ABM, but it also allowed us to 
clearly link the conceptual and mathematical formulations of our theory (respectively, 
sections 1 and 2, and section 5), and to gain a more general and clear understanding of 
the ABM’s dynamics. 

It is true that our model is, at this point, purely theoretical, and that it requires data 
to support it. However, we incorporated into the ABM generally accepted 
psychological theory, and as our sensitivity analyses in 5.3 show, the ABM makes 
intuitively correct predictions that were not built into it in an ad hoc fashion. These 
two aspects, we think, are at least evidence of the ABM’s face validity. Currently, we 
are working on designing experiments to gather data from subjects to validate our 
model. Pilot tests of one of the designed experiments suggest that the concepts of true 
and illusory agreement, as developed in our theory and included in the ABM, indeed 
hold. Thus, we would be very disappointed if future work shows that the validity of 
our model is only illusory. 

Regarding the application of the ABM and related theory about concepts, we will 
use it to explain and understand psychological and sociological phenomena, such as 
the ones we already discussed in section 5.3. (e.g., how can culture be defined in 
relation to concepts, what happens with minorities that hold certain conceptual views, 
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can group agreement/disagreement be predicted). Additionally, we think that for 
Computer Science, our work could be applied to enhance the capability of search 
engines. In particular, note that the user of an engine needs to communicate his/her 
needs for specific information to the engine. Thus, user and engine have to create a 
shared conceptual meaning of the search terms and information needs. The stronger 
the shared conceptual meaning created, the more appropriate the information that the 
search engine will provide to the user. Hence, our inquiry into conceptual and shared 
meaning could give insights to the development of better communication tools 
between users and search engines. 
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Abstract. The natural selfish behavior of P2P system users, has given rise to the
appearance of freeriding. These users download but don’t contribute to the sys-
tem, leading to a degradation of the system, and the user experiences. It becomes
mandatory to find proper mechanisms to incentive cooperation among users in
these systems. In this paper we provide an incentive based coalitions to improve
the system welfare and users experiences. A peer that participates in a coalition
lends “bandwidth” to other peers of the coalition, in exchange for utility and con-
sequently a far better experience. Taking concepts from game theory we provide a
solid ground upon which we build our mechanism . Simulated experiments sup-
port the approach, showing how encouraging participation stops freeriding and
therefore improve the system performance and the user experience.

Keywords. P2P, Coalition, Game theory, File sharing, Free-riding, Incentive
mechanisms.

1 Introduction

In general, a P2P content distribution system creates a distributed storage medium that
allows the publishing, searching and retrieval of files by members of the network [11].
Traditionally, the main problem of the P2P systems is limited to file search. However,
the efficient download of content and the fairness in the bandwidth contribution is also
an important aim in the design goal of these kind of systems. The early P2P systems
(Gnutella, Kazaa,...) lack mechanisms for fairness in bandwidth usage. For this reason,
these systems suffer from free-loaders, peers that consume many more resources or con-
tents (bandwidth) than they contribute. In [6] and [17] empirical studies have observed
this behaviour in Napster, Gnutella or even eDonkey.

One of the reasons for this problem is that the mechanisms used for downloading and
sharing in the P2P systems, do not take the selfish behaviour of the peers into account
at the design stage. P2P system users act rationally trying to maximise the benefits
obtained from using the system’s shared resources [3]. Therefore, it is important to find
mechanisms that provide incentives and encourage cooperation. One possible solution
could be to use an economic framework that provides incentives. In this sense game
theory may be a good tool on which to model the interactions between peers in a P2P
file sharing system. The idea is to define “the rules of the game” so that the system

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 287–301, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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as a whole exhibits good behaviour when self-interested nodes pursue self-interested
strategies ([7]).

Our approach proposes the application of a coalition formation scheme based on
game theory to P2P file sharing systems (in [1] we presented an early version of this
work). The main idea of the coalition formation scheme is the fact that peers which
contribute more get a better experience. We define a “responsiveness bonus” that reflects
the peer’s overall contribution to the system, and we use the game theory utility concept
to calculate it. It is possible to form a coalition among peers with a re-distribution
of the number of bytes to be transferred. A peer that participates in a coalition lends
“bandwidth” to other peers of the coalition, in exchange for utility; and this utility
will increase its responsiveness bonus. The coalition formation scheme rewards the
peers with a higher responsiveness bonus (therefore giving them greater bandwidth to
download files), and penalises the ones that only consume resources, decreasing their
responsiveness bonus and consequently their bandwidth.

The proposed incentive mechanism encourages cooperative behaviour between the
peers preventing the free-riding problem. Using the game theory concept of “core”,
the peers forming the coalition get in return a fair utility in relation to the bandwidth
they supply (achieving fairness in bandwidth sharing); And in addition, it allows the
formation of coalitions of peers that help each other in downloading files, increasing
the performance of the P2P network.

2 Downloading with Coalitions

In this section, we describe the model of the environment in which the system is de-
ployed and the mechanism of coalition formation among peers. We firstly describe a
simplified situation, illustrating the advantages of forming coalitions for P2P down-
loads and the way of computing and dividing the utility or profit obtained by peer that
participates in the coalition. Secondly, and in more general terms, we describe the coali-
tion formation process and how the data and the bandwidth are distributed among the
coalition members.

2.1 P2P Network Type

For our work, we have selected a P2P system with a partially centralised architecture
and an unstructured network. The first characteristic is related to the degree of central-
isation of the peer’s network, and the second with the fact that the network is created
in a non-deterministic way.When a peer wants to download a file, it directs its request
to a supernode and this searches the file in its index (a supernode is a peer that acts
as a central index for files shared for a subpart of the peer network). When the file is
located, supernode sends to the “requester” peer an indexed result with the set of nodes
that store the requested file. Then, the requester peer opens a direct connection with one
or more peers that hold the requested file, and proceeds to download it.
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Fig. 1. The coalition formation model

2.2 Coalition Formation Model

Coalition formation is an important mechanism for cooperation in Multi-Agent Sys-
tems (MAS). In order to be used by autonomous agents, a coalition formation mecha-
nism must solve the following issues: i) maximise the agents’ profit or utility. For every
coalition S, coalitional value V (S) must be computed, i.e., the total utility obtained by
S as a whole ii) divide the total utility among agents in a fair and stable way, so that
the agents in the coalition are not motivated to abandon it. For every coalition S and
every agent i ∈ S, payment configuration x(i) must be computed, i.e., the share of
V (S) that is assigned to the agent i. iii) do this within a reasonable amount of time and
using a reasonable amount of computational efforts. Our coalition formation model al-
lows cooperation to take place between autonomous, rational and self-interested agents
in a class of superadditive task oriented domains [15]. Each agent has the necessary
resources to carry out its own task, however it is possible to form a coalition between
agents with a new re-distribution of the task that may allow them to obtain benefits. The
proposed model guarantees an optimum task allocation and a stable payoff division.
Furthermore, computational complexity problems are solved.

In this section the coalition formation scheme is applied with the goal of improving
the performance of P2P file exchange systems. In this case, the central idea is based on
sharing the task of downloading a file among a set of peers forming a coalition. From
the point of view of the peer that wants to download the file there is a clear advantage,
since the total download time is reduced. From the point of view of uploading peers,
for each one the task of transferring the file is alleviated, since it is divided between the
members of the coalition.

Let us consider the simplified situation illustrated in figure 1. In this scenario, peer
pb, asks pa for a file Z . This peer pa forms a coalition S with three other peers ph, pl and
pm to transfer that file. In P2P file sharing systems, every node pm has an upload bini
and download bouti bandwidth dedicated to file sharing. Usually these bandwidths are
user defined and indicate maximum values, and bini is much lower than bouti . This sim-
plified scenario can be generalised, we can consider that the downloader peer splits its
bandwidth in order to perform simultaneous downloads, determining the bouti dedicated
for each download. The model is valid for both scenarios.
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In general, there will be an initial uploading agent p0 (in the figure pa) and a set of n
additional uploading agents, p1, . . . , pn (in the figure ph, pl and pm), all of which have
the file that has to be downloaded and they dedicate their upload capacity bini to this
transfer. Let us call size(Z) = T the size of the file to download. Let us also assume
that
∑n

0 b
in
i ≤ boutb .

Then an estimation of the time necessary for the transfer is given by the ratio between
the size of the file and the coalition bandwidth(1):

tS =
T

bin0 +
∑n

1 b
in
i

(1)

On the other hand, if the coalition is not formed, the time for just an uploading agent p0
is given by (2):

t0 =
T

bin0
(2)

Therefore the value obtained by the coalition S can be defined as Δt, the difference
between (2) and (1), as shown in (3):

Δt =
T

bin0
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bin0 +
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1 b
in
i

=
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bin0

∑n
1 b

in
i∑n

0 b
in
i

= t0

∑n
1 b

in
i∑n

0 b
in
i

(3)

Of course, if p0 /∈ S, V (S) = 0. To sum up, the coalitional value for every coalition is
given by (4):

V (S) =

{
t0
∑n

1 bini∑
n
0 bini

if p0 ∈ S

0 if p0 /∈ S
(4)

Now we address the following problem, to define a stable payoff division of V (S)
between agents, i. e., given a partition of the set of all agents into different coalitions,
to assign an amount x(i) to every agent i. The problem is to distribute the utility in
a fair and stable way, so that the agents in the coalition are not motivated to abandon
it. Game theory provides different concepts (core, kernel, Shapley value, etc.) for the
stability of coalitions [4]. The core is the simplest to define. A payment configuration
belongs to the core if there is no other coalition that can improve on the payoffs of all
of its members.

Formally, let N be the set of all agents, and let us denote x(S) =
∑

i∈S x(i). The
payoff division lies inside the core iff the following holds: i) for all sets of agents S ⊆
N , V (S) ≤ x(S) (group rationality); and ii) V (N) = x(N) (global rationality). The
existence of the core is not guaranteed in the general case, in a given situation the core
may be empty. However, we will show for our case a payoff division that lies inside the
core. We will expand on the ideas presented in [15].

The proposed payoff division scheme is calculated by means of the marginal profit
concept. Thus, the payment to each agent is given by the marginal profit according to the
resources that describe that agent, and multiplied by the value of the resources. Since
the concept of marginal profit is really that of partial derivative, the payment vector x
will be computed as follows: for the original uploading agent, p0, there are 2 parameters
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(t0 and bin0 ), hence its payment is be given by t0
∂V
∂t0

+bin0
∂V
∂bin0

. For the remaining agents,

there is only one parameter (bini ), hence their payments are bini
∂V
∂bini

. Finally, we obtain

the expressions shown in equations (5):

xi =

⎧⎨⎩ t0
(
∑n

1 bini )2

(
∑

n
0 bini )2

if i = 0

t0
bout
0 bini

(
∑

n
0 bini )2

if i �= 0
(5)

In appendix A we prove that the equations (5) define a payoff division that lies inside
the core.

Finally, we will show that the computations can be done within a reasonable amount
of time and using a reasonable amount of computational efforts. It is obvious that the
above schema provides a set of explicit formulae that compute payments in time linear
with the number of peers.

2.3 Data and Bandwidth Distribution Model

Following on from the example, let us suppose that the peer pb asks p0 (pa in the figure)
to download the file Z, and p0 decides to initiate a coalition to download the file (figure
1) Then, p0 carries out the following steps:

1. To set the coalition size. If the sum of the upload bandwidth, bini , of all the interested
peers (let us suppose this value is equal to n) joined with p0, is lower than the
download bandwidth of pb, boutb , we are in the trivial case (equation 6). In this case,
all the interested peers joined with p0 will form the coalition. So, | S |= N :

(
∑
i∈N

bini ) ≤ boutb (6)

Conversely if the expression (6) is false, we must distribute the bandwidth of pb,
boutb between all the interested peers1.

For this, it is necessary to distribute the boutb of pb among all of them. This can be
done by “the progressive filling algorithm” [10]. Let us suppose wi is the assigned
bandwidth for the interested peers. The algorithm initialises the bandwidth of all
the interested peers to 0, wi = 0, ∀i ∈ S. Then, it increases all the bandwidths at
the same rate, until one or several peers hit their limits, wi = bini , ∀i ∈ S. Once the
bandwidth assigned to one peer, pi, reaches its limit, it is taken out of the process.
The algorithm will continue to increase the bandwidth of the remaining peers at the
same rate. The algorithm will finish when all the peers reach their limits, or when
the bandwidth of pb, boutb is wasted.

This algorithm provides the max-min fairness [9]. A bandwidth allocation is
max-min fair if and only if an increase of binx within its domain of feasible allocation
is at the cost of decreasing some other biny . So, it gives the peer with the smallest
bidding value the largest feasible bandwidth.

1 If there are many interested peers, a maximum size of coalition is established in order to avoid
an undue partitioning of bout. This value depends on the bout and the file size.
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2. To split the file size Z , size(Z) = T , between the coalition members, pi ∈ S.
(a) We estimate the minimum amount of time needed to transfer Z as a function

of the known bandwidth limits. Following this, the minimum amount of time
can be estimated as follows:

ti = T/
∑
i∈S

min(bini , bouti ) (7)

This estimated time is the same initially for all the peers in the coalition S2.
(b) Once we know the estimation of the time for each peer, we can carry out a

partitioning of the file taking into account the capacities of each peer. Every
peer will have to transfer a number of bytes bini ∗ ti. The file is divided into
blocks of this size that are assigned to the peers.

3. To inform each coalition member of the size of the block to be transferred. p0
communicates to each peer member of S the number of bytes to be transferred.

3 The Incentive Mechanism

As we have already mentioned our incentive mechanism is based on providing a better
quality of service to the peers that participate in the coalitions. In order to achieve
this, we define a Responsiveness Bonus, Rb, for every peer. This value reflects the
peer’s overall contribution to the system (i.e. how much work it has carried out for the
other peers in the system). In accordance with the above model, in the proposed payoff
division each peer obtains a utility which is proportional to the resources that it supplies.
Therefore, the peer pi that supplies a greater bandwidth (uploading peers) will obtain a
greater utility, and this utility will increase its Rb. Conversely, the value of Rbi should
be reduced when pi acts as a downloading peer and does not contribute.We consider
that an auditing authority is responsible for storing and updating the Rb, using proper
methods to control the concurrency.

So the value of Rbi will be calculated as a heuristic function of xi that can be adjusted
with data from the real system behaviour or from simulation results. This uses the xi

values obtained by the uploading peers of the coalition as uploading points, Upi. For
the downloading peer of the coalition its downloading points, Dpi, are calculated as
the average of the utility obtained by the uploading peers of the coalition. Each peer
pi accumulates Dpi and Upi points by adding the points obtained in each coalition
formation process in which it participates3.

Upi = Upi + xi (8)

2 bouti will be used to download files from the P2P sharing file system, in the case pi does not
have the file previously and it works for another node in the coalition (it will be 0 if the peer
had the file).

3 Since a new peer that joins the coalition formation system will have its uploading and down-
loading points set to 0, we allow the peers to download a minimum amount set to a parameter
MinDownload.
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Dpi = Dpi +
∑
s∈S

xs/ | S | (9)

Rbi is a value included in the interval [0..1]. The correction of the bandwidth is only ap-
plied to the download bandwidthRbib

out
i (it makes no sense to correct the upload band-

width, because we would be decreasing the upload capacity of the collaborative peers).
Initially the Rbi of the peers (uploading/downloading) is 14. A higher responsiveness
bonus (Rbi closer to 1) will mean that pi will be able to fill all its reserved bandwidth,
since it can add more peers to the coalition in order to complete its bandwidth, reducing
the download time. Otherwise, an Rbi closer to 0 will limit the possibility of adding
peers to the coalition (in fact, in some cases it will avoid creating any coalition for
the download). In this way, our incentive mechanism promotes cooperation taking into
account the selfish behaviour of the peers.

Rbi(Upi, Dpi, F si) =⎧⎪⎪⎨⎪⎪⎩
1 if (Upi −Dpi) ≥ 0
0 if (Upi −Dpi) < 0 ∧ Upi = 0 ∧ Fsi = 0
1 if (Upi −Dpi) < 0 ∧ Upi = 0 ∧ Fsi > 0
Upi·γ
Dpi

if (Upi −Dpi) < 0 ∧ Upi > 0

(10)

The equation 10 computes Rbi in relation to Dpi , Upi , γ and Fsi (the number of files
shared by peer i).

If Upi-Dpi ≥ 0, it means that the peer is contributing to the system more than it is
consuming from it, and so Rbi = 1. If, Upi = 0, the peer has not contributed anything
to the system and, if, in addition, the number of shared files is 0 obviously the peer
is a free-rider and its Rbi must be 0. Conversely, if the peer has not contributed to the
system, but the number of shared files is not 0, it means that the peer wants to contribute
to the system but its shared files have still not been downloaded by other peers; So its
Rbi must stay at 1. Finally, if the peer has contributed to the system, but less than what
it has been consuming from it, its Rbi will be proportional to Upi/Dpi

5. The variable
γ allows us to regulate this formula in order to increase or decrease the proportional
relation between the benefit, Upi, and the penalty, Dpi.

4 Performance Evaluation

In this section we describe the simulations we performed and the corresponding results.
In order to simulate our coalition formation model for P2P file sharing, we have defined
and implemented a generic P2P simulator for service oriented networks. The simulation
tool is presented in detail in [16]. Additionally, it should be noted that we are dealing
with situations which are different from traditional system simulators, since, we are also
trying to model the user behaviour. For this reason, and in order to model the user as
close to reality as possible, the peers are classified in three categories according to their

4 Otherwise their bandwidths would be reduced from the beginning, and the download times of
the files would be higher (compared to the scheme without coalitions).

5 This value is always < 1.
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behaviour: free-rider, adaptive and collaborative. We will first describe how the user
behaviour has been modeled, and then the simulation results.

4.1 Modelling the User Behaviour

Free-riding is a consequence of selfish user behaviour in file sharing systems. In the
case that we want to study actions to take in order to improve cooperation, modify-
ing user’s behaviour, a key step would be the modelling of users that are going to
take part in the simulation. A realistic simulation should include at least three kinds
of users(behaviours):

1. Free-Rider. Represents the selfish peer which only downloads files and rejects all
the incoming file requests.

2. Collaborative. Represents collaborative behaviour. These peers always try to max-
imise the system’s performance, so they offer all their available bini and accept all
incoming file requests until their bandwidth is full.

3. Adaptive. Represents intelligent behaviour, and so, is adapted to the evolution of
peer welfare. These users accept download requests as long as they are interested
in downloading a file, that is as long as they benefit. When the number of target
files is 0 the bini will be 0. Otherwise, all the entire available bini will be offered
so that a high Rb is maintained and all the target files can be downloaded. In case
of multiple requests, the bini will be divided between all the requests, taking into
account the Rb of the requester peers.

Finally, all of them have a limit of download tries to avoid them repeatedly asking for
the same file.

4.2 Experimental Results

We have run simulations of a P2P network of 1000 peers for 2000 units of simulated
time (steps). All peers have the same bandwidth capabilities, 1024 kbs for downloads
and 512 kbs for uploads. We have defined a collection of files of different sizes, a
random number of copies of these files are delivered through the peers at the start of
the simulation. The minimum number of copies for a file is 5 and the maximum is
the half part of the number of peers that forms the network (500 for our experiments).
This means that peers have a random number of initially stored files, between 0 and the
whole collection of files. The objective of the simulation is that every peer manages to
get the whole file collection, by this we mean, to download the files that are not initially
stored. Depending on the peer’s behaviour it will face this objective in different ways.
File sizes range from 10000KB to 90000 KB.

To measure the impact of the Adaptive users on the system the experiments have
been run with two different populations. The first one without Adaptive users, and the
same population for Free Riders and Collaborative users (50% Free Riders, 50% Col-
laborative and 0% Adaptive users), we will hereafter refer to this as Population 1. And
the second one with the same population for Adaptive and Collaborative users (40%
Free Riders, 30% Collaborative and 30% Adaptive users), hereafter refer to as Popula-
tion 2. In addition, the simulations have been run with two different incentive policies:
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Table 1. No Coalition Mechanism Downloaded Bytes

No Coalition Population 1 Population 2
Free Rider 157 Gb 123 Gb
Collaborative 156 Gb 92 Gb
Adaptive 91Gb
total 313Gb 306 Gb

No Coalitions (NC), where no incentive mechanism is considered and Coalitions (C),
which implements our proposal. After repeating the simulation experiments 100 times
we take the average to give the results. To compare how the incentive mechanisms and
the user behaviours affect the P2P system, two main metrics have been considered:
Downloaded Bytes and Average Time. In addition, we analyse the Work Progress; This
measure shows how the simulations evolve towards the final target.

Number of Downloaded Bytes. Figure 2 shows the evolution of the downloaded bytes
distribution for No Coalitions mechanism for experiments run with Population 1 on the
left and Population 2 on the right. Similar figures for Coalitions in Figure 3. Down-
loaded bytes can be interpreted as the benefit obtained from the system. Next, we anal-
yse these results for each of the different populations.

In Population 1 all work is done by the collaborative users, since free-riders do not
collaborate. Figure 2 left shows the evolution of the distribution of the downloaded
bytes is round 50 % for both users during the simulation. This means, the collaborative
users do all the work, and the benefits are shared equally with the free riders. However,
when we run the Coalition mechanism, Figure 3 left, free riders are stopped, the per-
centage of bytes downloaded by free riders drastically decreases after the first 100 steps
of simulation. This demonstrates how the coalition formation prevents free-riders from
obtaining more bytes as simulation time advances, and so from fully using the system’s
resources.

When Adaptive users are simulated, this is Population 2, distribution of downloaded
bytes are affected as shown in figures 2 right and 3 right. With respect to collaborative
and adaptive users, both are 30 % of the population, they do all the work and share
more or less equally the benefits with free riders. In figure 3 right the evolution of the
distribution of the downloaded bytes shows how free riders are again stopped, as in
Population 1, and this means that the benefit is shared between the collaborative and
adaptive users, these are those that are uploading files. In addition, collaborative users
increase the percentage of downloaded bytes during the simulation; However, adaptive
users first increase and after decrease the percentage. This is due to the behaviour of
adaptive users, which are penalised when they are not sharing enough.

Tables 1 and 4.2 summarise the downloaded bytes per populations and per behaviour.
In both tables it can be observed that the bytes downloaded by free riders are slightly
reduced in Population 2 with respect to Population 1, this is because there are 10% less
users in this population, the average bytes per user is very similar. With Population 1 it
can also be observed that the coalition mechanism reduces the total bytes downloaded
to 50,54%, with respect to No Coalitions, but 83,61% of this reduction is due to the
Free Riders detection. This shows again how the algorithm prevents free-riders from
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Table 2. Coalition Mechanism Downloaded Bytes

Coalitions Population 1 Population 2
Free Rider 24 Gb 20 Gb
Collaborative 130 Gb 82 Gb
Adaptive 84 Gb
total 154 Gb 186 Gb

abusing as simulation time advances, and from stressing the system resources; and this
leads to a more healthy system.

The Coalition Algorithm () reacts to the inclusion of Adaptive users by increasing by
20% the total amount of downloaded bytes compared to Population 1, this means that
they benefit the whole system. In addition, comparing Coalitions and No Coalitions
with Population 2 (when Adaptive users are simulated), the results are better than with
the Population 1. In this case, the total amount is reduced by 38,78% where 83,15% is
due to the Free Rider’s detection.

Note that when using the second population there are fewer Free Riders and Col-
laborative users in the simulation. This affects the data shared and demanded in the
system,and it justifies the smaller amount of downloaded bytes.

Fig. 2. Evolution of the Downloaded Bytes Distribution (% Bytes vs Time) for No Coalitions
Mechanism , Population 1 (left) and Population 2 (right). Free Rider in red, Adaptive in blue and
green for Collaborative users.

Fig. 3. Evolution of the Downloaded Bytes Distribution (% Bytes vs Time) for Coalitions Mech-
anism, Population 1 (left) and Population 2 (right). Free Rider in red, Adaptive in blue and green
for Collaborative users.
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Fig. 4. Average Download Time (Time vs Bytes), Population 1 (left) and Population 2 (right)

Average Time. In addition to the total amount of bytes downloaded during the sim-
ulation, the time spent on each download is also a significant measure of the system
performance. In Figure 4 the average time for each file for both algorithms is compared
(squares for No coalitions and diamonds for Coalitions).

Population 1: When Adaptive users are not considered, Figure 4 left, the best down-
load times are the ones obtained with Coalitions. For the smallest files, the times for No
Coalitions and Coalitions are quite similar then, the higher the file size is, the greater
the time difference. As expected, the benefit of using Coalition is increased as the file
sizes grows.

Population 2: When Adaptive users are introduced average download time is in-
creased, this is because the system is more stressed. Adaptive users implement a selfish
behaviour, but they have to share in order to obtain benefits and they are capable of
simultaneous downloads. All of this increases the download time. In Figure 4 right No
Coalitions and Coalitions show a very similar slope and smaller values for Coalition
mechanism, which also stops Free Riders. In this way, the system benefits without pe-
nalizing user’s downloading times.

Work Progress. Our simulations have been modelled with a final objective, this is, that
every node stores the whole file collection available in the system. Work progress allows
us to study how the different configurations satisfy this final objective. In addition, it
helps us to analyse the difference between the two different populations used in the ex-
periment. To study the evolution of the Work Progress we have monitored the evolution
of the bytes shared and the bytes demanded. As in economic equilibrium these lines are
crossed, meaning that the supply and the demand are balanced. This is an indication of
the System’s health.

Figure 5 shows the sharing and demand for Coalitions in the two studied populations.
The offer, initial stored files in the system is slightly bigger for the second population,
this is observed where the offer (solid line) crosses the Y axis. This is due to the decrease
in the number of Free Riders in Population 2,which justifies what was introduced in
section 4.2, the experiments run with Population 2 get a smaller number of downloaded
bytes.

Note that the evolution of the offer and the demand are significantly different when
Adaptive users are introduced (population 2). On one hand, the slope of the offer is
much smaller on Population 2, this is because of the sharing policy of Adaptive users,
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Fig. 5. System’s Sharing vs Demand, Population 1 (left) and Population 2 (right). Coalitions.
Bytes vs Time, solid line represents the offer and dotted-dashed the demand.

Fig. 6. System’s Sharing vs Demand, Population 1 (left) and Population 2 (right). No Coalitions.
Bytes vs Time, solid line represents the offer and dotted-dashed the demand.

which only share if they have outstanding downloads. On the other hand, the demand
is not negatively affected by the decrease of the offer in Population 2, it is even better.
The initial demand is similar, but the result is 10% better (demand is 10% lower) in
Population 2. Once again it is shown that Adaptive users benefit the whole System
when using the Coalition algorithm.

When analysing the sharing and demand in No Coalitions, Figure 6, we found that
the offer behaves similarly to Coalitions; adaptive users cause a reduction of the slope
of the offer. This is common to all the algorithms, and it justifies that some of them
decrease the total amount of downloaded bytes. However, the demand seems not to be
affected by adaptive users, that is to say, the introduction of adaptive users does not
benefit the system when using this algorithm.

Comparing algorithms, seems that No Coalitions manage to get a better results. How-
ever, the reason for the fall of the demand on Coalitions is because the detection of Free
Riders. Numerically, The Coalitions algorithm in Population 1 reaches 54% of Work
Progress and in Population 2 44%, considering that Free Riders are 50% in Population
1 and 40% in Population 2, and subtracting their demands, the work progress is near
to 4% to finishing in both populations. There is a proportional relationship between
population size and demand.
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5 Related Work

Reviewing the bibliography, several approaches have been proposed to combat the free
riding problem. Karakaya [2] et al. have categorised them into three main types: firstly,
incentive mechanisms based on monetary payments: one party offering a service to an-
other is remunerated and inversely, resources consumed must be remunerated or paid
for. Secondly, mechanisms based on reputation: it keeps information about the peer rep-
utation, and peers with a good reputation are offered better services. Thirdly, incentive
mechanisms based on differential services or reciprocity-based: peers that contribute
more get a better quality of service [14] [5] [8] [12] [13]. Our approach could be in-
cluded in this category, although its foundation is different and innovative.

Although some of the above approaches [5] [8] [13] are based on differential ser-
vices, they do not promote a cooperative behaviour between peers that improves the
download performance in the P2P System. And, in addition they do not achieve fair
service differentiation between peers.

Those remaining, more similar to our approach, propose incentive mechanisms that
encourage collaboration among peers. For example, 2Fast [12] is based on creating
groups of peers that collaborate in downloading a file. However, compared to our pro-
posal, it does not enforce fairness among the collector and helper peers, and in addition
it is not specified how the helper may reclaim its contributed bandwidth in the future.
Bit torrent [14] is also based on collaboration between peers. Its “tit-for-tat” policy of
data sharing works right when the peers show a reciprocal interest in a particular file.
However, in bit-torrent, the peers’ download bandwidth is limited to their upload capac-
ity, thereby reducing the achievable download performance. However, in our approach,
the system’s download capacity is not reduced to its upload capacity; And, using the
Rb does not force a “mutual reciprocity” mechanism (like “tit-for-tat”); and thus the
bandwidth contributed by a peer can be used in later downloads.

EMule [18] also promotes cooperation between peers. It uses a credit system to re-
ward frequent uploaders and alleviates the free-riding problem. However, credits are
exchanged between two specific peers, so content trading can happen only between
peers that have mutual interests, and in addition it does not enforce fairness in band-
width sharing.

Finally, the work of Ma et al. [10], also provides service differentiation based on
the amount of services that each node has provided to a P2P community, and it uses a
game theoretic framework. However, while we use a cooperative approach that proposes
coalition formation, they propose a mechanism that makes different requesting users bid
for resources, creating a dynamic competitive game.

6 Conclusions

In this paper we have presented a coalition formation based incentive mechanism for
P2P file sharing systems. It is based on game theory and takes into account the rational
and self-interested behaviour of the peers. In [1], the initial idea of applying this model
to this problem was presented. Now, we have formally demonstrated the fairness of
the model using game theory and, more concretely, the concept of “core”. In addition,
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we have modelled user behaviour and defined the coalition formation model in order
to perform simulations, using the simulator presented in [16]. The paper also includes
some analysis of simulations.

Our approach allows any peer with idle bandwidth to participate in a coalition, up-
loading files for other peers in exchange for utility, and consequently greater down-
load bandwidth; And in addition, it provides, using the “core”, a fair utility to the
peers forming the coalition in relation to the bandwidth they supply. To achieve this,
a Responsiveness Bonus that reflects the peer’s overall contribution to the system is
defined, and the game theory utility concept is used to calculate it.

The simulation results have shown that in relation to downloaded bytes, the coali-
tion mechanism prevents free-riders from obtaining more bytes as simulation time in-
creases. In addition, it reacts to the inclusion of adaptive users increasing by 20% the
total amount of downloaded bytes, so they benefit the system. In relation to download
time, coalitions are capable of getting the best average download times and stopping
free riders at the same time. Finally, we the analysis of Work Progress have shown that
equilibrium between offer and demand is better when using our mechanism. This helps
to keep the systems healthy.

Finally, we are working on the simulation of other approaches in order to be able to
compare our results with existing proposals. And we plan to generalise the proposed
coalition formation algorithm in order to include Quality of Service information. Our
idea is to form coalitions in such a way that they are able to provide or guarantee QoS
in different aspects depending on the service or application, i.e. real time constraints or
fault tolerance.

References

1. Belmonte, M.V., Conejo, R., Pérez-de-la-Cruz, J.L., Triguero, F.: Coalitions among Intelli-
gent Agents: A Tractable Case. Computational Intelligence. An International Journal 22(1),
52–68 (2006)

2. Karakaya, M., Korpooglu, I., Ulusoy, O.: Free Riding in Peer-to-Peer Networks. In: IEEE
Internet Computing, pp. 92–98. IEEE Press (2009)

3. Golle, P., Leyton-Brown, K., Mironov, I., Lillibridge, M.: FIncentives for Sharing in Peer-to-
Peer Networks. In: ACM Conference on Electronic Commerce. ACM Press (2001)

4. Kahan, J. Rapaport, A.: Theories of Coalition Formation. Lawrence Erlbaum Associates Pub-
lishers (1984)

5. Ramaswamy, L., Liu, L.: A New Challenge to Peer-to-Peer File Sharing Systems. In: 6th
Hawaii International Conference on System Sciences (2003)

6. Sariou, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer file sharing
systems. In: Proceedings of Multimedia Computing and Networking (2002)

7. Shneidman, J., Parkes, D.: Rationality and Self-Interest in Peer to Peer Networks. In:
Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 139–148. Springer, Hei-
delberg (2003)

8. Karakaya, M., Korpooglu, I., Ulusoy, O.: Countrecting free riding in Peer-to-Peer networks.
Computer Networks 52, 675–694 (2008)

9. Bertsekas, D. Gallager, R.: Data Networks. Prentice-Hall (1992)
10. Ma, R.T.B., Lee, S.C.M., Luis, J.C.S., Yau, D.K.Y.: Ncentive and Service Differentiation in

P2P Networks: A Game Theoretic Approach. IEEE/ACM Transactions on Networking 14(5),
978–991 (2006)



Improving File Sharing Experience with Incentive Based Coalitions 301

11. Androutsellis-Theotokis, S., Spinellis, D.: A survey of Peer-to-Peer Content Distributing
Technologies. ACM Computing Surveys 36(4), 335–371 (2004)

12. Garbacki, P., Iosuo, A., Epema, D., Van Steen, M.: 2Fast:Collaboartive Downloads in P2P
Networks. In: Sixth International Conference on Peer-to-Peer Computing, P2P 2006 (2006)

13. Mekouar, L. Iraqi, Y. Boutaba, R.: Handling Free Riders in Peer-to-Peer Systems. In: Sixth
International Conference on Peer-to-Peer Computing, P2P 2006 (2006)

14. Cohen, B.: Incentives build robutness in Bit Torrent. In: Proceedings of the First Workshop
on Economics of Peer-to-Peer Systems (2003)
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Appendix

We must prove that equations (5) define a payoff division that lies inside the core.

Group Rationality. First note that always xi ≥ 0. Moreover, a coalition S such that
p0 /∈ S has V (S) = 0. So the only thing to prove is that, for every P ⊆ N − {p0}, the
coalition S = {p0} ∪ P has a coalitional value V (S) such that x(0) +

∑
i∈P x(i) ≥

V (S). Let us define Q = N − P − {b0}, p =
∑

bi∈P bini , q =
∑

bi∈Q bini . Then∑
i∈P

x(i) = t0
(p+ q)2 + bin0 p

(bin0 + p+ q)2
(11)

and

V (S) = t0
p

bin0 + p
(12)

The difference between (11) and (12) is

t0b
in
0 q ≥ 0 (13)

Therefore we have proved group rationality.

Global Rationality. Note that the coalitional value as a function V = v(t0, b
in
0 , bin1 ,

. . . , binn ) (equation 4) is homogeneous of degree 1. Therefore,

n∑
0

x(i) = t0
∂V

∂t0
+ bin0

∂V

∂bin0
+ . . .+ binn

∂V

∂binn
= V (14)

http://www.emule.net
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Abstract. Since Condon’s annotations of videotaped interactions in 1966, an in-
creasing amount of studies points the crucial role of non-verbal behaviours in
communication. Among others, synchrony between interactants is claimed to be
an evidence of the interaction quality: to give to humans a feeling of natural dia-
logue, agents must be able to react on appropriate time. Recent dynamical models
propose that synchrony emerges from the coupling between interactants. We pro-
pose here, and test in simulation, a model of verbal communication which links
the mutual understanding of dialogue partners to the emergence of synchrony
between their non-verbal behaviours: if interactants understand each other, syn-
chrony emerges; if they do not understand, synchrony is disrupted. In addition
to propose and test a model explaining the link between synchrony and inter-
action quality (synchrony accounts for mutual understanding and good interac-
tion, di-synchrony accounts for misunderstanding) our tests point the fact that
synchronisation and di-synchronisation emerging from mutual understanding are
fast phenomenons: agents have a quick answer to whether they understand each
other or not.

1 Introduction

When we design agents capable of being involved in verbal exchange, with humans or
with other agents, it is clear that the interaction cannot be reduced to speech. When an
interaction takes place between two partners, it comes with many non-verbal behaviours
that are often described by their type such as smiles, gaze at the other, speech pauses,
head nod, head shake, raise eyebrows, mimicry of posture and so on [12,27]. But an-
other aspect of these non-verbal behaviours is their timing according to the partner’s
behaviours.

In 1966, Condon and Ogston’s annotations of interactions have suggested that there
are temporal correlations between the behaviours of two person engaged in a discussion
[4]: micro analysis of discussion videotaped conduces Condon to define in 1976 the no-
tions of auto-synchrony (synchrony between the different modalities of an individual)
and hetero-synchrony (synchrony between partners).

Since Condon et al.’s findings, synchronisation between interactants has been in-
vestigated in both behavioural studies and cerebral activity studies. These studies tend
to show that when people interact together, their synchronisation is tightly linked to

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 302–318, 2013.
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the quality of their communication: they synchronise if they managed to exchange and
share information; synchronisation is directly linked to their friendship, affiliation and
mutual satisfaction of expectations.
- In developmental psychology, generations of protocols have been created, from the
“still face” [26] to the “double video” [16,18], in order to stress the crucial role of syn-
chronisation during mother-infant interactions.
- Behavioural and cerebral imaging studies show that oblivious synchrony and mimics
of facial expressions [2,5] are involved in the emergence of a shared emotion as in emo-
tion contagion [11].
- In social psychology, in teacher-student interaction or in group interactions, synchrony
between behaviours occurring during verbal communication has been shown to reflect
the rapports (relationship and intersubjectivity) within the groups or the dyads [8,13].
- The very same results have been found for human-machine interactions: on one hand
synchrony of non-verbal behaviour improves the comfort of the human and her/his feel-
ing of sharing with the machine (either a robot or a virtual agent) [22] and on the other
hand, the human spontaneously synchronises during interaction with a machine when
her/his expectations are satisfied by the machine [24].

In the case of non-verbal interactions, the phenomenon of synchronisation between
two partners has recently been investigated as a phenomenon emerging from the dy-
namical coupling of interactants: that is to say a phenomenon whose description and
dynamics are not explicited in each of the partners but appear when the interactants are
put together and when the new dynamical system they form is more complex and richer
than the simple sum of partners dynamics.

In mother-infant interactions via the “double-video” design cited above, synchrony
is shown to emerge from the mutual engagement of mother and infant in the interaction
[15,18]. In adult-adult interactions mediated by a technological device, synchrony and
coupling between partners has been shown to emerge from the mutual attempt to inter-
act with the other in both behavioral studies [1] and cerebral activity studies [7].

These descriptions of synchrony as emerging from the coupling between interactants,
are consistent with the fact cited before, that synchrony reflects the quality of the inter-
action. Given interactants, both the quality of their interaction and the degree of their
coupling are tightly linked to the amount of information they exchange and share: high
coupling involves both synchrony and good quality interaction; synchrony and quality
of the interaction are covarying indices of the interaction. That makes the synchrony pa-
rameter particularly crucial: on one hand it carries dyadic information, concerning the
quality of the ongoing interaction; on the other hand it can be retrieved by each partner
of the interaction, comparing its own actions to its perceptions of the other [24].

The emergence of synchrony during non-verbal interaction has been modelled by
both robotics implementation [23] and virtual agent coupling [19].
- In the robotic experiment, two robots controlled by neural oscillators are coupled to-
gether by the way of their mutual influence: turn-taking and synchrony emerge [23].
- In the virtual agent experiment, Evolutionary Robotics was used to design a dyad of
agents able to favour cross-perception situation; the result obtained is a dyad of agents
with oscillatory behaviours which share a stable state of both cross perception and
synchrony [19].
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The stability of these states of cross-perception and synchrony is a direct conse-
quence of the reciprocal influence between the agents.

We have seen there that literature stresses two main results concerning synchrony.
First, synchrony of non-verbal behaviours during verbal-interactions is a necessary ele-
ment for a good interaction to take place: synchrony reflects the quality of the interac-
tion. Second, synchrony has been described and modelled as a phenomenon emerging
from the dynamical coupling between agents during non-verbal interactions. In this
paper, we propose to conciliate these two results in a model of synchrony emergence
during verbal interactions.

We propose and test in simulation a model of verbal communication which links
the emergence of synchrony of non-verbal behaviours to the level of shared informa-
tion between interactants: if partners understand each other, synchrony will arise, and
conversely if they do not understand each other enough, synchrony could not arise. By
constructing this model of agents able to interact as humans do, on the basis of psychol-
ogy, neuro-imaging and modelisation results, that are both the understanding of humans
and the believability of artifacts (e.g. virtual humans) which are assessed.

In Sect.2 we describe the architecture principle and show how a level of understand-
ing can be linked to non-verbal behaviours. In Sect.3, we test this architecture, i.e. we
test in simulation a dyad of architectures which interact together. We characterise the
conditions of emergence of coupling and synchrony between the two virtual agents.
Finally, in Sect.4, we discuss these results and their outcomes.

2 Model Principle

We propose a model accounting for the emergence of synchrony depending directly on
a shared level of understanding between agents. This model is based on the four next
properties of humans’ interactions:

P1. To emit or receive a discourse modify the internal state of the agent [25].
P2. Non-verbal behaviours reflect the internal states [14].
P3. Humans are particularly sensitive to synchrony, as a cue of the interaction quality

and and the mutual understanding between participants [6,22,24].
P4. Synchrony can be modelled as a phenomenon emerging from the dynamical cou-

pling of agents [23,19,1]

The model of agent we propose in the present section is implemented in Sect.3 as a
Neural Network (NN). Groups of neurons are vectors of variables represented by capital
letters (e.g. VInput ∈ [−1, 1]n and S ∈ [−1, 1]m) and the weights matrices which
modulate the links between these groups are represented by lower case letters (e.g.
u ∈ [−1, 1]m×n): we obtain equations such as u ·VInput = S. For sake of simplicity, in
both the description of the model principle (this section) and in its implementation and
tests (Sect.3) groups of neurons and weights matrices are reduced to single numerical
variables (∈ [−1, 1]).

In the next two subsections, we model the two first properties, P1 and P2. We de-
scribe how the non-verbal behaviour can be linked to a level of mutual understanding.
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Then, in the subsections 2.3 and 2.4, we describe how this will give to a dyad of agents
coupling capabilities. That constitute the modelling of the third and fourth properties,
P3 and P4.

2.1 Speak and Listen Modifies Internal State

Let us consider a dyad of agents, Agent1 and Agent2. Each agent’s state is represented
by one single variable, S1 for Agent1 and S2 for Agent2 (∈ [−1, 1]). Now, let us con-
sider the speech produced by each agent, the verbal signal VAct i (∈ {0, 1}), and the
speech heard by each agent, the perceived signal VPer i (∈ {0, 1}).

P1 claims that each agent, either listener or speaker, has its internal state Si modi-
fied by verbal signals: the listener’s internal state is modified by what it hears, and the
speaker’s internal state is modified by what it says. Two “level of understanding”, the
weights ui and u′

i, are defined for each agent of the dyad. ui modulates the perceived
verbal signal VPer i, and u′

i modulates the produced verbal signal VAct i (see fig.1). To

Agent2

Agent1VPer1 VAct1

S1

u1
u′
1

VPer2 VAct2

S2

u2
u′
2

Fig. 1. Verbal perception, VPer i, and verbal action, VAct i, both influence the internal state Si.
These influences depend respectively on the level of understanding ui and u′

i.

model interaction in more natural settings these ui parameters should be influenced by
many variables, such as the context of the interaction (discussion topic, relation-ship be-
tween interactants), the agents moods and personalities. However in the present model
we combine all these parameters in the single variable ui (∈ [−1, 1]). The choice of the
values of u1 and u2 is arbitrary near 0.01: it enables a well balanced sampling of the
oscillators’ activations, the period last around 100 time steps; the other parameters of
the architecture are chosen depending on this one so as not to modify the whole systems
dynamics.

If t is the time we have the following equations:{
S1(t+ 1) = S1(t) + u1VPer1(t+ 1) + u′

1VAct1(t+ 1)
S2(t+ 1) = S2(t) + u2VPer2(t+ 1) + u′

2VAct2(t+ 1)
(1)

Assuming that communication is ideal, i.e. VPeri = VActj , and that Agent1 is the only
one to speak, i.e. VAct2 = VPer1 = 0,the system of equations 1 gives:{

S1(t+ 1) = S1(t) + u′
1VAct1(t+ 1)

S2(t+ 1) = S2(t) + u2VAct1(t+ 1)
(2)
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This first property P1 is crucial in our model, as it links together the agents’ internal
states: each one is modified by speech depending on its own parameter ui. In the present
model, we assume that for a given agent, understanding of its productions and of its
perceptions are similar: for Agent i, ui = u′

i.

2.2 Non-verbal Behaviours Reflect Internal State

The second property P2, claims that “non-verbal behaviours reflect internal state”. That
is to say, agent’s arousal, mood, satisfaction, awareness, are made visible thanks to
facial expressions, gaze, phatics, backchannel, prosody, gestures, speech pauses. To
make visible the internal properties of Agent i, a non-verbal signal,NVAct i, is triggered
depending on its internal state, Si. When Si reaches the threshold β, the agent produces
non-verbal behaviours with thβ the threshold function (see Fig.2):

NVAct i(t) = thβ(Si(t)) (3)

Agent2

Agent1

thβ

thβ

VPer1 VAct1

S1 NVAct1

u1
u′
1

VPer2 VAct2

S2 NVAct2

u2
u′
2

Fig. 2. Each agent produces non-verbal behaviours NVAct i when Si reaches the threshold β.
NVAct i depends on how much the internal state Si has been influenced by what has been said.

We suggest here that pitch accents, pauses, head nods, changes of facial expressions
and other non-verbal cues are, for a certain part, produced by agents when a particu-
larly important idea arises, when the explanation reach a certain point, when an idea or a
concept starts to be outlined. We assume that the phenomenon is similar in both speaker
and listener, it is driven by the evolution of what is wanted to be expressed in one case
and it is driven by what is heard in the other case. If speaker and listener understand
each other, these peaks of arousal and understanding should co-occur: they appear to
be temporally linked. These peaks will be the bases of entrainment for intentional co-
ordination between partners. And then this coordination could be seen as a marker of
interaction quality.

Considering these two first points, that is to say, equations 2 and 3 we have the fol-
lowing system of equations :{

NVAct1(t1) = thβ(
∑t1

t0
u1VAct1(t))

NVAct2(t1) = thβ(
∑t1

t0
u2VAct1(t))

(4)
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If an agent is enough influenced by what is said, it produces non-verbal signals. And if
u1 = u2 then NVAct1 = NVAct2, agents’ non-verbal behaviours may be synchronised,
where as if u1 and u2 are too different, agents will not be able to synchronise.

2.3 Sensitivity to Synchrony

To account for the property P3, “sensitivity of human to synchrony”, we use the fact that
sensitivity to synchrony can be modelled by simple model of mutual reinforcement of
the perception-action coupling [1,19]. In addition to the influence from speech (either
during its perception or its production), each agent’s internal state Si is influenced by
the non-verbal behaviour it perceives from the other NVAct j , modulated by sensitivity
to non-verbal signal σ (see fig.3).

The internal state of each agent is modified by both what it understand of the speech

Agent2

Agent1

thβ

thβ

VAct1

σ
S1NVPer1 NVAct1

u1

VPer2

σ
S2NVPer2 NVAct2

u2

Fig. 3. Agent1’s internal state, S1, is influenced by both its own understanding of what it is saying
u1 · VAct1 and the non-verbal behaviour of Agent2, σ · NVAct2. Agent2’s internal state, 2, is
influenced by its own understanding of what Agent1 says u2 ·VAct1 and the non-verbal behaviour
of Agent1, σ ·NVAct1.

and what it sees from the non-verbal behaviour of the other:{
S1(t+ 1) = S1(t) + u1VAct1(t+ 1) + σNVAct2(t)
S2(t+ 1) = S2(t) + u2VAct1(t+ 1) + σNVAct1(t)

(5)

This last equation will favour the synchronisation by increasing the reciprocal influence
when agents’ internal state reach together a high level.

2.4 Coupling between Dynamical Systems

How to enable agents involved in a verbal interaction, to be as much synchronised as
they share information? To enable synchrony to emerge between the two agents, we
used the fact that synchronisation can be modelled as a phenomenon emerging from
the dynamical coupling within the dyad [23]: on one hand agents must have internal
dynamics which control their behaviour; on the other hand, they must be influenced by
the other’s behaviours.
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In the previous subsections, we proposed a dyad of agent which mutually influence.
If we replace the non-verbal behaviours of agents by their internal states in the system
of equations 5, it gives:{

S1(t+ 1) = S1(t) + u1VAct1(t+ 1) + σthβ(S2(t))
S2(t+ 1) = S2(t) + u2VAct1(t+ 1) + σthβ(S1(t))

(6)

To enable coupling to occur, the agents should also be dynamical systems: systems
which state evolves along time by themselves. The internal state of the agents Si pro-
duces behaviours and is influenced by the other agent’s behaviour. To ensure internal
dynamics, we made this internal state a relaxation oscillator, which increases linearly
and decreases rapidly when it reaches the threshold 0.95 (Fig.5 shows an example of
the signals obtained). By oscillating , the internal states agents will not only influence
each other but also be able to correlate one with the other [23].

Here, two cases are interesting.
When the internal states of both agents are under the threshold triggering non-verbal

behaviours, β, the system of equation 6 becomes:{
S1(t+ 1) = S1(t) + u1VAct1(t+ 1)
S2(t+ 1) = S2(t) + u2VAct1(t+ 1)

(7)

The two agents are almost independent, they are only influenced by the speech of
Agent1 and each one produces its own oscillating dynamic. That could be the case
if two tired people (high β) speak about a not so interesting subject (ui are low): they
are made apathic by the conversation, they do not express anything.

The second interesting case is when both agents’ internal states are above the thresh-
old β. The system of equation 6 becomes:{

S1(t+ 1) = S1(t) + u1VAct1(t+ 1) + σS2(t)
S2(t+ 1) = S2(t) + u2VAct1(t+ 1) + σS1(t)

(8)

In this case agents are not anymore independent, they influence each other depending
on the way they understand speech. If we push the recursivity of these equations one
step further we obtain:{

S1(t+ 1) = S1(t) + u1VAct1(t+ 1) + σ(S2(t− 1) + u2VAct1(t) + σS1(t− 1))

S2(t+ 1) = S2(t) + u1VAct1(t+ 1) + σ(S1(t− 1) + u1VAct1(t) + σS2(t− 1))
(9)

And now we see the effect of coupling, that is to say that agents are not only influenced
by the state of the other but they are influenced by their own state, mediated by the other:
the non-verbal behaviours of the other becomes their own biofeedback [17]. When the
threshold β is overtaken, the reciprocal influence is recursive and becomes exponential:
the dynamics of S1 and S2 are not any more independent, they are influenced in their
phases and frequencies [21,23].

3 Test of the Model

We tested this model by implementing a dyad of agent as a neuronal network in the
neuronal network simulator Leto/Prometheus (developed in the ETIS lab. by Gaussier
et al. [9,10]), and by studying its emerging dynamics with different sets of parameters.
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3.1 Implementation

We implemented the model on the neural networks simulator Leto/Prometheus. Leto/Pr-
ometheus simulates the dynamics of neural networks by an update of the whole network
at each time step. We use groups of neurons with one neuron, and non-modifiable links
between groups. The schema of Fig.4 show this implementation.

The internal states of agents, Si, are relaxation oscillators: the re-entering link of

Agent2

Agent1

thβ

thβ

VAct1

S1

NVAct1

u1

σ

σ

S2

NVAct2

u2

−1000

−1000

th0.95

th0.95

1

1

Δφini

Recording

Relax1

Relax2

−1000

Fig. 4. Implementation of the two agents. The couples (S1;Relax1) and (S2;Relax2) are relax-
ation oscillators. The parameters which will be tested are the following: β, the threshold which
controls the non-verbal production; u1 and u2 which control the agents’ level of sharing; Δφini,
the initial phase-shift between agents.

weight 1 makes the neuron behave as a capacity, and the Relax neuron which fires when
a 0.95 threshold is reached, inhibits Si and makes it relax (see Fig.5 for an example of
the activation obtained).

VAct1, Agent1’s verbal production, is a neuron of constant activity 1. This neuron
feeds the oscillators of both agents, weighted by their level of understanding u1 and
u2. The values of u1 and u2 are near 0.01: it enables a well balanced sampling of the
oscillators’ activations, the period last around 100 time steps.

In addition to agent understanding u1 and u2, three other parameters are modifiable
in this implementation:

- The threshold β which controls the triggering of non-verbal signal.
- The sensitivity of agent’s internal state to non-verbal signal σ which weights NVAct i.

Fig. 5. Activations of the internal state S1(t) for u1 = 0.01



310 K. Prepin and C. Pelachaud

These two parameters β and σ directly control the amount of non-verbal influence be-
tween the agents: they must be high enough to enable coupling, for instance reducing
initial phase-shift between oscillators or compensating phase deviation when u1 �= u2.
- The initial phase shift Δφini, which makes agents start with a phase shift between
S1(tini) and S2(tini) at the beginning of each test of the architecture.

Finally, the variables recorded during these tests are the internal states of both agents,
S1(t) and S2(t) (see Fig.6 for an example).

Fig. 6. Activations recorded for u1 = 0.01, u2 = 0.011, β = 0.85, σ = 0.05 and Δφini = 0.4.
Despite the initial phase shift and the phase deviation, the two agents synchronise. This is a stable
state of the dyad, it remains until the end of the experiment (5000 time steps).

3.2 Test of Synchrony Emergence

For a given set of parameters, to determine if in-phase synchronisation occurred be-
tween agents, we used a procedure described by Pikovsky, Rosenblum and Kurths in
their reference book “Synchronisation” [21]. This procedure consists in comparing the
phases of two signals to determine if they are synchronous or not.

First we used the fact that relaxation oscillators can be characterised by their peaks.
There is a peak at time tk when Si(tk) ≥ 0.9β and Si(tk + 1) = 0 . Then, we used the
fact that phase can be rebuilt from these peaks [21]. We assign to the time tk the values
of the phase φ(tk) = 2πk, and for every instants of time tk < t < tk +1 determine the
phase as a linear interpolation between these values (see fig.7):

φ(t) = 2πk + 2π
t− tk

tk+1 − tk
(10)

After that, when the phases of signals are obtained, we consider their difference modulo
2π (see fig.8). Horizontal plateaus in this graph reflect periods of constant phase-shift

Fig. 7. Signal, Peaks and Phase. In the upper part of the graph, there is the original signal S1

(shown in fig.6) and the associated re-built phase (we can notice the change of phase slope when
synchronisation occurs). In the lower part of the graph, there are the peaks extracted from S1 in
order to re-build the phase.
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Fig. 8. Signals of two agents and their associated phase-shift Δφ1,φ2(t). When agents synchro-
nise with each other, their phase-shift remains constant and near zero.

between signals, i.e. synchronisation. Horizontal plate aux near zero reflect periods of
synchronisation and co-occurrence of non-verbal signals.
Finally, for each 5000 time steps simulation, we define that in-phase synchronisation

occurs if the phase-shift becomes near zero at a time tsynch, smaller than 3000, and re-
mains constant until the end. We defined the synchronisation speed as SynchSpeed =
(3000− tsynch)/3000. If in-phase synchronisation is immediate SynchSpeed = 1; if
in-phase synchronisation occurs at time step 3000 SynchSpeed = 0; and if in-phase
synchronisation do not occurs SynchSpeed < 0.

3.3 Test of Architecture Parameters

We tested different parameters of this model, first to show the direct link existing be-
tween emergence of synchrony and level of sharing between interactants, and second to
characterise the different properties of this model.

To show the direct link existing between emergence of synchrony and level of shar-
ing between interactants, we fixed u1 to 0.01 and made u2 vary between 0 and 0.02,
that is to say the shared understanding of the two agents differs between 0 and 100%.
Notice here the importance to test synchronisation when u2 = 0: if synchronisation
occurs when u2 = 0, i.e. when Agent2 does not perceived the speech of Agent1, that
means that agents synchronise every time just thank to non-verbal signal of Agent1; in
that case, synchrony is not any more an in dice of the interaction quality, the influence
of non-verbal signals (linked to β and σ) is too high.

To evaluate the influence of the amount of non-verbal signal exchanged, we made
the threshold β vary between 0 and 0.95.

To evaluate the influence of the sensitivity to non-verbal signal, we made the sensi-
tivity σ vary between 0 and 0.09.

Finally, to evaluate the abilities of such a dyad of agents to re-synchronise after an
induced phase-shift or after a misunderstanding, we made the initial phase shift Δφini

vary between 0 and π.

Shared Understanding Influence. When the two agents are synchronous in phase
(Δφini = 0), we tested which of the u2 values keep agents synchronised or make
them disynchronise. For fixed β = 0.7, σ = 0.05 and Δφini = 0, u2 varies between 0
and 0.02. The following graph of Fig.9 shows the associated disynchronisation speed.

When the difference between u1 and u2 is to high, no synchronisation can oc-
cur since even when synchrony is forced at the beginning of the experiment, agent
disynchronise.
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Fig. 9. Di-synchronisation speed of the dyad, depending on the Agent2 understanding u2. u2

varies from left to right between 0 and 0.02. A null disynchronisation speed means that synchro-
nisation has been maintained until the end of the experiment. A disynchronisation speed 1 is for
a dis-synchronisation occurring at the very beginning of the experiment.

Influence of Amount of Non-verbal Signals. The coupling and synchronisation capabil-
ities of the dyad of agents, may directly depend on the amount of non-verbal signals
they exchange: among other, the ability to compensate a difference of understanding
may be improved by an increase of non-verbal signals exchanged. We tested this effect
by calculating disynchronisation speeds as just above, making u2 vary between 0 and
0.02 and the threshold β varying between 0 and 0.9 (σ = 0.05). We obtained the 3D
graph of Fig.10.

When β = 0.9, that is to say when very few non-verbal signals are exchanged,
synchrony maintains only when the two agents have equal level of understanding,
u1 = u2 = 0.01. For other values, the influence of the threshold β is not so clear: the
dyad does not resist better to disynchronisation when β < 0.5 than when 6 ≤ β ≤ 8.
This effect, or this absence of effect, may be due to the fact that the more β decreases,
the less accurate in time the non-verbal signals are: if β is low, non-verbal signals are
emit earlier before the peaks of Si activation and on a larger time window, they are not
enough precise in time to maintain synchrony. We chosen β = 0.7, i.e. the mean of its
best performances values.

Fig. 10. Di-synchronisation speed of the dyad, depending on the Agent2 understanding u2 and
the threshold β (σ = 0.5). u2 varies between 0 and 0.02. β varies from 0.9 to 0, in the sens
of non-verbal signals increase. When the d i-synchronisation speed value is null, synchronisa-
tion has been maintained until the end of the experiment. A disynchronisation speed 1 is for a
disynchronisation occurring at very beginning of the experiment.
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Fig. 11. Di-synchronisation speed of the dyad, depending on the Agent2 understanding u2 and
the sensitivity σ (β = 0.7). u2 varies between 0 and 0.02. σ varies from 0 to 0.09. When
the d i-synchronisation speed value is null, synchronisation has been maintained until the end
of the experiment. A disynchronisation speed 1 is for a disynchronisation occurring at the very
beginning of the experiment.

Sensitivity to Non-verbal Signals. Another way to modify the influence of non-verbal
signals on coupling and synchronisation properties of the dyad, is to modify the sensitiv-
ity to the perceived non-verbal signal, σ. We tested this effect by calculating disynchro-
nisation speeds as previously, making u2 vary between 0 and 0.02 and the sensitivity σ
varying between 0 and 0.09 (β = 0.07). We obtained the 3D graph of Fig.11.

Sensitivity to non-verbal signal σ have a direct effect on agents to stay synchronous
even with different understandings: the higher is sensitivity σ, the more resistant to
difference between ui the synchronisation capability of the dyad is. The effect of σ is
important despite its low value (σ < 0.1) due to the high number of non-verbal signal
exchanged: when Agent i’s internal state Si reaches the threshold β, it produces the
non-verbal signals NVAct i at every time step until Si relaxes. That can last between
0 and 20 time steps for each oscillation period. The effect of σ is multiplied by this
number of steps.

It is important to notice here that the σ effect on the dyad resistance to ui differences,
has a counter-part. This counter-part is the fact that when σ increase and make the dyad
more resistant to disynchronisation, it also makes the synchronisation of the dyad less
related to mutual understanding. For instance, when σ ≥ 0.7, agents stay synchronous
even when Agent2 do not understand anything, u2 = 0. To balance these two effects,
facilitation of synchronisation and decrease of synchrony significance, we chosen a
default value of σ = 0.05.

Re-synchronisation Capability. Given a value of Agent2 understanding u2, we tested
the ability of the dyad Agent1-Agent2 to re-synchronise after a phase shift. We
made the initial phase-shift Δφini vary between 0 and π for every values of u2 and
calculated the speed of synchronisation if any. The 3D graph of Fig.12 shows the syn-
chronisation speed for each couple (u2;Δφini).

The initial phase-shift between S1 and S2 does not appear to affect the synchronisa-
tion capacities of the dyad. With the chosen σ = 0.05 and β = 0.7, when the agents’
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Fig. 12. Synchronisation speed of the dyad, depending on the Agent2 understanding u2 and initial
phase-shift Δφini (σ = 0.05 and β = 0.7). u2 varies between 0 and 0.02. Δφini varies from
0 to π. When the synchronisation speed value is null, the dyad did not synchronised until the
end of the experiment. A synchronisation speed 1 is for a synchronisation occurring at the very
beginning of the experiment.

levels of understanding u1 and u2 do not differ more than 15% of each other, they
synchronise systematically and very quickly: for instance they synchronise even when
they start in anti-phase (Δφini = π). And conversely, when the levels of understanding
u1 and u2 are more than 15% different, synchronisation is no more immediate.

4 Discussion

We proposed and tested a model which links emergence of synchrony between dialogue
partners to their level of shared understanding. This model assesses both the understand-
ing of humans and the believability of artifacts (e.g. virtual humans). When two interac-
tants have similar understanding of what the speaker says, their non-verbal behaviours
appear synchronous. Conversely, when the two partners have different understanding of
what is being said, they disynchronise. This model is implemented as a dynamical cou-
pling between two talking agents: on one hand, each agent proposes its own dynamics;
on the other hand, each agent is influenced by its perception of the other. These are the
two minimal conditions enabling coupling. What makes this model particular is that the
internal dynamics of agents are generated by the meaning exchanged through speech. It
links the dynamical side of interaction to the formal side of speech.

We tested this model in simulation, and showed that synchrony effectively emerges
between agents when they have close level of understanding. We noticed a clear effect
of the level of understanding on the capacity of the agents to both remain synchronous
and re-synchronise: agents disynchronise if the level of shared understanding is lower
than 85% (with our parameters) and conversely agents synchronise if the level of shared
understanding is higher than 85%. These results tend to prove that, considering that syn-
chrony between agents is an indice of good interaction and shared understanding, the
reciprocal property is true too; that is disynchrony accounts for misunderstanding.

We have shown that agents remain synchronous depends on both their shared un-
derstanding (the ratio between u1 and u2) and their sensitivity to non-verbal behaviour
(σ in our implementation). The more sensitive to non-verbal behaviours are the agents,
the more resistant to disynchronisation is the dyad and the easier is the synchronisation.
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An important counter-part of this easier synchronisation is that it makes synchrony less
representative of shared understanding: agents or people with very different levels of
understanding will be able to synchronise; if sensitivity to non-verbal behaviour is too
high, the dyadic parameter of synchrony is not a cue of shared understanding. By con-
trast, the facility agents trigger non-verbal behaviours when their internal states are high
(threshold β) does not appear to change the synchronisation properties of the dyad: the
higher number of exchanged non-verbal signals seems to be compensated by their as-
sociated decrease of precision.

In addition to the effect of shared understanding on the stability of synchrony be-
tween agents, we have tested the effect of shared understanding on the capacity of the
dyad to re-synchronise. For instance, during a dialogue, synchrony can be broken by
the use of new concept by the speaker. That may result in lowering the level of shared
understanding below the 85% necessary for remaining synchronous. Synchrony can
also be disrupted by an external event which can introduce a phase-shift between in-
teractants. Given fixed sensitivity to non-verbal behaviour (σ) and facility to trigger
non-verbal behaviours (β), we tested how quickly the dyad can re-synchronise after a
phase-shift. The shared level of understanding necessary to enable re-synchronisation
appeared to be the same as the one under which agents disynchronise.

Two crucial points must be noticed here. First, when agents’ understanding do not
differ more than 15% (shared understanding higher than 85%), agents synchronise sys-
tematically whatever the phase-shift is, and when agent’s understanding differ more
than 15% they disynchronise. Second, both synchronisation and disynchronisation of
agents are very quick, lasting about one oscillation of the agents’ internal states. Syn-
chronisation and disynchronisation are very quick effects of respectively misunder-
standing and shared understanding: agents involved in an interaction do not have to
wait to see synchrony appears when they understand each other, they have a fast answer
to whether they understand each other or not.

The 5000 time steps length of our tests allowed us to test the stability of synchrony
or disynchrony after their occurrence; however it is clearly not a natural situation. Syn-
chrony in natural interaction is a varying phenomenon involving multiple synchronisa-
tion and disynchronisation phases: the level of shared understanding varies along the
interaction. In fact disynchrony may be quite informative for the dyad as its detection
enables agents to adapt one another. In natural interactions, synchrony occurring after
disynchrony shows that agents share understanding whereas they did not before: they
have benefited from the interaction and exchanged information.

As a consequence, the mean level of shared understanding necessary for good inter-
action to take place between persons in natural context would be much more reasonable:
the 85% of shared understanding occurs in phases of particularly good interaction and
its is not a hard constraint on the whole dialogue; this very high level necessary for syn-
chronisation should be divided by the ratio of synchrony vs disynchrony phases present
in natural interaction. For instance we can imagine that a level of shared understanding
higher than 85% would occur when people involved in a discussion have just reached an
agreement. By contrast, when the level of shared understanding stays all along the dia-
logue far under 85%, the dyad would be more like two strangers trying to talk together,
or a professional talking with technical words to a naive listener.
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Fig. 13. Greta, Obadia, Poppy and Prudence. They are four agents implemented on the open
source system Greta. Each one has its own personality and level of understanding. When inter-
acting together, different levels of non-verbal synchrony should appear between the agents of this
group.

Our model has been tested and its principle has been validated in agent-agent con-
text. To go a step farther, in “wild world” situations involving humans, two elements
must be added: Understanding of language during interaction with human; Recognition
of non-verbal behaviours of human users. In the near future, we will adapt the present
neural architecture to the open source virtual agent Greta [20]. The system Greta en-
ables one to generate multi-modal (verbal and non-verbal) behaviours online and with
accurate timing. The verbal signals will be modelled as elements of “small-talk” and the
non-verbal signal will be modelled as, pitch accents, pauses, head nods, head shakes and
facial expressions. To test the real impact of such a model on human perception of in-
teraction, we will perform perceptive evaluation: we aim to simulate a group of virtual
agents dialoguing with each other (see fig.4). Each agent will have its own personality
and level of understanding of what being said. This will lead to pattern of synchroni-
sation and disynchronisation. Among other, agents which share understanding should
display inter-synchrony pattern [3]. Finally, human observers should clearly fill which
agent is sharing understanding with which other agent.

In conclusion, we can notice that, in addition to the two main results of this study
−“disynchrony accounts for misunderstanding” and “synchronisation and disynchroni-
sation are very quick phenomenons”− another result is the model itself. It proposes a
link between synchrony and inter-subjectivity by the use of dynamical system coupling:
synchrony and dynamical coupling emerge together when agents mutually understand
each other; as a consequence synchrony account for good interaction.

We believe, this model is a start to answer the issues of what is the part of dynamical
coupling between agents involved in verbal interaction? What is the part of emerging
dynamics in the communication of meanings and intentions? And moreover, how these
two parts can co-exist and feed each other?
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Abstract. The stable marriage problem is a well-known problem of matching
men to women so that no man and woman, who are not married to each other,
both prefer each other. Such a problem has a wide variety of practical applica-
tions, ranging from matching resident doctors to hospitals, to matching students
to schools or more generally to any two-sided market. In the classical stable mar-
riage problem, both men and women express a strict preference order over the
members of the other sex, in a qualitative way. Here we consider stable marriage
problems with weighted preferences: each man (resp., woman) provides a score
for each woman (resp., man). Such problems are more expressive than the clas-
sical stable marriage problems. Moreover, in some real-life situations it is more
natural to express scores (to model, for example, profits or costs) rather than a
qualitative preference ordering. In this context, we define new notions of stabil-
ity and optimality, and we provide algorithms to find marriages which are stable
and/or optimal according to these notions. While expressivity greatly increases by
adopting weighted preferences, we show that in most cases the desired solutions
can be found by adapting existing algorithms for the classical stable marriage
problem. We also investigate manipulation issues in our framework. More pre-
cisely, we adapt the classical notion of manipulation to our context and we study
if the procedures which return the new kinds of stable marriages are manipulable.

Keywords: Stable marriages, Weighted preferences.

1 Introduction

The stable marriage problem (SM) [9] is a well-known problem of matching the ele-
ments of two sets. It is called the stable marriage problem since the standard formula-
tion is in terms of men and women, and the matching is interpreted in terms of a set of
marriages. Given n men and n women, where each person expresses a strict ordering
over the members of the opposite sex, the problem is to match the men to the women
so that there are no two people of opposite sex who would both rather be matched
with each other than their current partners. If there are no such people, all the mar-
riages are said to be stable. In [4] Gale and Shapley proved that it is always possible
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to find a matching that makes all marriages stable, and provided a polynomial time al-
gorithm which can be used to find one of two extreme stable marriages, the so-called
male-optimal or female-optimal solutions. The Gale-Shapley algorithm has been used
in many real-life scenarios [20], such as in matching hospitals to resident doctors [19],
medical students to hospitals, sailors to ships [13], primary school students to secondary
schools [21], as well as in market trading.

In the classical stable marriage problem, both men and women express a strict pref-
erence order over the members of the other sex in a qualitative way. Here we consider
stable marriage problems with weighted preferences. In such problems each man (resp.,
woman) provides a score for each woman (resp., man). Stable marriage problems with
weighted preferences are interesting since they are more expressive than the classical
stable marriage problems, since in classical stable marriage problem a man (resp., a
woman) cannot express how much he (resp., she) prefers a certain woman (resp., man).
Moreover, they are useful in some real-life situations where it is more natural to express
scores, that can model notions such as profit or cost, rather than a qualitative preference
ordering. In this context, we define new notions of stability and optimality, we compare
such notions with the classical ones, and we show algorithms to find marriages which
are stable and/or optimal according to these notions. While expressivity increases by
adopting weighted preferences, we show that in most cases the desired solutions can
be found by adapting existing algorithms for the classical stable marriage problem. We
also investigate manipulation issues in our framework. More precisely, we adapt the
classical notion of manipulation to our context and we show that in some cases the pro-
cedures which return the new kinds of stable marriage are manipulable.

Stable marriage problems with weighted preferences have been studied also in [8,12].
However, they solve these problems by looking at the stable marriages that maximize
the sum of the weights of the married pairs, where the weights depend on the spe-
cific criteria used to find an optimal solution, that can be minimum regret criterion [8],
the egalitarian criterion [12] or the Lex criteria [12]. Therefore, they consider as stable
the same marriages that are stable when we don’t consider the weights. We instead use
the weights to define new notions of stability that may lead to stable marriages that
are different from the classical case. They may rely on the difference of weights that
a person gives to two different people of the other sex, or by the strength of the link
of the pairs (man,woman), i.e., how much a person of the pair wants to be married
with the other person of the pair. The classical definition of stability for stable marriage
problems with weighted preferences has been considered also in [2] that has used a
semiring-based soft constraint approach [3] to model and solve these problems.

The paper is organized as follows. In Section 2 we give the basic notions of classical
stable marriage problems, stable marriage problems with partially ordered preferences
and stable marriage problems with weighted preferences (SMWs). In Section 3 we in-
troduce a new notion of stability, called α-stability for SMWs, which depends on the
difference of scores that every person gives to two different people of the other sex, and
we compare it with the classical notion of stability. Moreover, we give a new notion
of optimality, called lex-optimality, to discriminate among the new stable marriages,
which depends on a voting rule. We show that there is a unique optimal stable marriage
and we give an algorithm to find it. In Section 4 we introduce other notions of stability
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for SMWs that are based on the strength of the link of the pairs (man,woman), we com-
pare them with the classical stability notion, and we show how to find marriages that are
stable according to these notions with the highest global link. In Section 5 we analyze
manipulation issues in our context. In Section 6 we summarize the results contained in
the paper, and we give some hints for future work.

A preliminary version of this paper has been presented in [16].

2 Background

We now give some basic notions on classical stable marriage problems, stable marriage
problems with partial orders, and stable marriage problems with weighted preferences.

2.1 Stable Marriage Problems

A stable marriage problem (SM) [9] of size n is the problem of finding a stable marriage
between n men and n women. Such men and women each have a preference ordering
over the members of the other sex. A marriage is a one-to-one correspondence between
men and women. Given a marriage M , a man m, and a woman w, the pair (m,w) is a
blocking pair for M if m prefers w to his partner in M and w prefers m to her partner
in M . A marriage is said to be stable if it does not contain blocking pairs.

The sequence of all preference orderings of men and women is usually called a
profile. In the case of classical stable marriage problem (SM), a profile is a sequence of
strict total orders.

Given a SM P , there may be many stable marriages for P . However, it is interesting
to know that there is always at least one stable marriage.

Given an SM P , a feasible partner for a man m (resp., a woman w) is a woman w
(resp., a man m) such that there is a stable marriage for P where m and w are married.

The set of all stable marriages for an SM forms a lattice, where a stable marriage
M1 dominates another stable marriage M2 if men are happier (that is, are married to
more or equally preferred women) in M1 w.r.t. M2. The top of this lattice is the stable
marriage where men are most satisfied, and it is usually called the male-optimal stable
marriage. Conversely, the bottom is the stable marriage where men’s preferences are
least satisfied (and women are happiest, so it is usually called the female-optimal stable
marriage). Thus, a stable marriage is male-optimal iff every man is paired with his
highest ranked feasible partner.

The Gale-Shapley (GS) algorithm [4] is a well-known algorithm to solve the SM
problem. At the start of the algorithm, each person is free and becomes engaged during
the execution of the algorithm. Once a woman is engaged, she never becomes free again
(although to whom she is engaged may change), but men can alternate between being
free and being engaged. The following step is iterated until all men are engaged: choose
a free man m, and let m propose to the most preferred woman w on his preference list,
such that w has not already rejected m. If w is free, then w and m become engaged. If
w is engaged to man m’, then she rejects the man (m or m’) that she least prefers, and
becomes, or remains, engaged to the other man. The rejected man becomes, or remains,
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free. When all men are engaged, the engaged pairs form the male optimal stable match-
ing. It is female optimal, of course, if the roles of male and female participants in the
algorithm were interchanged.

This algorithm needs a number of steps that, in the worst case, is quadratic in n
(that is, the number of men), and it guarantees that, if the number of men and women
coincide, and all participants express a strict order over all the members of the other
group, everyone gets married, and the returned matching is stable.

Example 1. Assume n = 2. Let {w1, w2} and {m1,m2} be respectively the set of
women and men. The following sequence of strict total orders defines a profile:

– m1 : w1 > w2 (i.e., man m1 prefers woman w1 to woman w2),
– m2 : w1 > w2,
– w1 : m2 > m1,
– w2 : m1 > m2.

For this profile, the male-optimal solution is {(m1, w2), (m2, w1)}. For this specific
profile the female-optimal stable marriage coincides with the male-optimal one. �

2.2 Stable Marriage Problems with Partially Ordered Preferences

In SMs, each preference ordering is a strict total order over the members of the other sex.
More general notions of SMs allow preference orderings to be partial [14,11,10,7,6].
This allows for the modelling of both indifference (via ties) and incomparability (via
absence of ordering) between members of the other sex. In this context, a stable mar-
riage problem is defined by a sequence of 2n partial orders, n over the men and n over
the women. We will denote with SMP a stable marriage problem with such partially
ordered preferences.

Given an SMP, we will sometimes use the notion of a linearization of such a problem,
which is obtained by linearizing the preference orderings of the profile in a way that is
compatible with the given partial orders.

A marriage M for an SMP is said to be weakly-stable if it does not contain blocking
pairs. Given a man m and a woman w, the pair (m,w) is a blocking pair if m and w are
not married to each other in M and each one strictly prefers the other to his/her current
partner.

A weakly stable marriage M dominates a weakly stable marriage M ′ iff for every
man m, M(m) ≥M ′(m) or M(m) �� M ′(m) (�� means incomparable) and there is a
man m′ s.t. M(m′) > M ′(m′). Notice that there may be more than one undominated
weakly stable marriage for an SMP.

Example 2. Let {w1, w2} and {m1,m2} be respectively the set of women and men. An
instance of an SMP is the following:

– m1 : w1 >�� w2,
– m2 : w1 > w2,
– w1 : m1 �� m2,
– w2 : m1 > m2.

For this instance, both M1 = {(m1, w2), (m2, w1)} and M2 = {(m1, w1), (m2, w2)}
are weakly stable marriages and M1 dominates M2. �
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2.3 Stable Marriage Problems with Weighted Preferences

In classical stable marriage problems, men and women express only qualitative prefer-
ences over the members of the other sex. For every pair of women (resp., men), every
man (resp., woman) states only that he (resp., she) prefers a woman (resp., a man) more
than another one. However, he (resp., she) cannot express how much he (resp., she)
prefers such a woman (resp., a man). This is nonetheless possible in stable marriage
problems with weighted preferences.

A stable marriage problem with weighted preferences (SMW) [12] is a classical SM
where every man/woman gives also a numerical preference value for every member of
the other sex, that represents how much he/she prefers such a person. Such preference
values are natural numbers and higher preference values denote a more preferred item.
Given a man m and a woman w, the preference value for man m (resp., woman w) of
woman w (resp., man m) will be denoted by p(m,w) (resp., p(w,m)).

Example 3. Let {w1, w2} and {m1,m2} be respectively the set of women and men. An
instance of an SMW is the following:

– m1 : w
[9]
1 > w

[1]
2 (i.e., man m1 prefers woman w1 to woman w2, and he prefers w1

with value 9 and w2 with value 1),
– m2 : w

[3]
1 > w

[2]
2 ,

– w1 : m
[2]
2 > m

[1]
1 ,

– w2 : m
[3]
1 > m

[1]
2 .

The numbers written into the round brackets identify the preference values. �

In [12] they consider stable marriage problems with weighted preferences by looking
at the stable marriage that maximizes the sum of the preference values. Therefore, they
use the classical definition of stability and they use preference values only when they
have to look for the optimal solution. We want, instead, to use preference values also to
define new notions of stability and optimality.

We will introduce new notions of stability and optimality that are based on the
weighted preferences expressed by the agents and we will show how to find them by
adapting the classical Gale-Shapley algorithm [4] for SMs described in Section 2.

3 α-Stability

A simple generalization of the classical notion of stability requires that there are not two
people that prefer with at least degree α (where α is a natural number) to be married to
each other rather than to their current partners.

Definition 1 (α-stability). Let us consider a natural number α with α ≥ 1. Given a
marriage M , a man m, and a woman w, the pair (m,w) is an α-blocking pair for M
if the following conditions hold:

– m prefers w to his partner in M , say w′, by at least α (i.e., p(m,w)− p(m,w′) ≥
α),
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– w prefers m to her partner in M , say m′, by at least α (i.e., p(w,m)− p(w,m′) ≥
α).

A marriage is α-stable if it does not contain α-blocking pairs. A man m (resp., woman
w) is α-feasible for woman w (resp., man m) if m is married with w in some α-stable
marriage.

3.1 Relations with Classical Stability Notions

Given an SMW P , let us denote with c(P ), the classical SM problem obtained from P
by considering only the preference orderings induced by the preference values of P .

Example 4. Let us consider the SMW, P , shown in Example 3. The stable marriage
problem c(P ) is shown in Example 1. �.

If α is equal to 1, then the α-stable marriages of P coincide with the stable marriages of
c(P ). However, in general, α-stability allows us to have more marriages that are stable
according to this definition, since we have a more relaxed notion of blocking pair. In
fact, a pair (m,w) is an α-blocking if both m and w prefer each other to their current
partner by at least α and thus pairs (m′, w′) where m′ and w′ prefer each other to their
current partner of less than α are not considered α-blocking pairs.

The fact that α-stability leads to a larger number of stable marriages w.r.t. the clas-
sical case is important to allow new stable marriages where some men, for example the
most popular ones or the least popular ones, may be married with partners better than
all the feasible ones according to the classical notion of stability.

Given an SMW P , let us denote with Iα(P ) the set of the α-stable marriages of P
and with I(c(P )) the set of the stable marriages of c(P ). We have the following results.

Proposition 1. Given an SMW P , and a natural number α with α ≥ 1,

– if α = 1, Iα(P ) = I(c(P ));
– if α > 1, Iα(P ) ⊇ I(c(P )).

Given an SMP P , the set of α-stable marriages of P contains the set of stable marriages
of c(P ), since the α-blocking pairs of P are a subset of the blocking pairs of c(P ).

Let us denote with α(P ) the stable marriage with incomparable pairs obtained from
an SMW P by setting as incomparable every pair of people that don’t differ for at least
α, and with Iw(α(P )) the set of the weakly stable marriages of α(P ). It is possible to
show that the set of the weakly stable marriages of α(P ) coincides with the set of the
α-stable marriages of P .

Theorem 1. Given an SMW P , Iα(P ) = Iw(α(P )).

Proof. We first show that Iα(P ) ⊆ Iw(α(P )). Assume that a marriageM �∈ Iw(α(P )),
we now show that M �∈ Iα(P ). If M �∈ Iw(α(P )), then there is a pair (man,woman),
say (m,w), in α(P ) such that m prefers w to his partner in M , say w′, and w prefers m
to her partner in M , say m′. By definition of α(P ), this means that m prefers w to w′ by
at least degree α and w prefers m to m′ by at least degree α in P , and so M �∈ Iα(P ).
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Similarly, we can show that Iα(P ) ⊇ Iw(α(P )). In fact, if M �∈ Iα(P ), then there is a
pair (man,woman), say (m,w), in P such that m prefers w to w′ by at least degree α
and w prefers m to m′ by at least degree α. By definition of α(P ), this means that m
prefers w to w′ and w prefers m to m′ in α(P ) and so M �∈ Iw(α(P )), i.e., M is not a
weakly stable marriage for α(P ). �

This means that, given an SMW P , every algorithm that is able to find a weakly stable
marriage for α(P ) provides an α-stable marriage for P .

Example 5. Assume that α is 2. Let us consider the following instance of an SMW, say
P .

– m1 : w
[3]
1 > w

[2]
2

– m2 : w
[4]
1 > w

[2]
2 ,

– w1 : m
[8]
1 > m

[5]
2 ,

– w2 : m
[3]
1 > m

[1]
2 .

The SMP α(P ) is the following:

– m1 : w1 �� w2,
– m2 : w1 > w2,
– w1 : m1 > m2,
– w2 : m1 > m2.

The set of the α-stable marriages of P , that coincides with the set of the weakly
stable marriages of α(P ), by Theorem 1, contains the following marriages: M1 =
{(m1, w1), (m2, w2)} and M2 = {(m1, w2), (m2, w1)}. �

On the other hand, not all stable marriage problems with partially ordered preferences
can be expressed as stable marriage problems with weighted preferences such that the
stable marriages in the two problems coincide. More precisely, given any SMP problem
P , we would like to be able to generate a corresponding SMW problem P ′ and a value
α such that, in P ′, the weights of elements ordered in P differ more than α, while those
of elements that are incomparable in P differ less than α. Consider for example the case
of a partial order over six elements, defined as follows: x1 > x2 > x3 > x4 > x5 and
x1 > y > x5. Then there is no way to choose a value α and a linearization of the partial
order such that the weights of xi and xj differ for at least α, for any i,j between 1 and
5, while at the same time the weight of y and each of the xi’s differ for less than α.

3.2 Dominance and Lex-Male-Optimality

We recall that in SMPs a weakly-stable marriage dominates another weakly-stable mar-
riage if men are happier (or equally happy) and there is at least a man that is strictly
happier. The same holds for α-stable marriages. As in SMPs there may be more than
one undominated weakly-stable marriage, in SMWs there may be more than one un-
dominated α-stable marriage.
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Definition 2 (Dominance). Given two α-stable marriages, say M and M ′, M domi-
nates M ′ if every man is married in M to more or equally preferred woman than in M ′

and there is at least one man in M married to a more preferred woman than in M ′.

Example 6. Let us consider the SMW shown in Example 5. We recall that α is 2 and
that the α-stable marriages of this problem are M1 = {(m1, w1), (m2, w2)} and M2 =
{(m1, w2), (m2, w1)}. It is possible to see that:

– M2 does not dominate M1 since, for m1, M1(m1) > M2(m1) and
– M1 does not dominate M2 since, for m2, M2(m2) > M1(m2). �

We now discriminate among the α-stable marriages of an SMW, by considering the
preference values given by women and men to order pairs that differ for less than α.

In this paper we will consider a marriage optimal when the most popular men are as
happy as possible and they are married with their most popular best α-feasible women.
However, we could also consider a marriage optimal when the least popular men are as
happy as possible and they are married with their most popular best α-feasible women.

To compute a strict ordering on the men where the most popular men (resp., the most
popular women) are ranked first, we follow a reasoning similar to the one considered in
[15,17], that is, we apply a voting rule [1] to the preferences given by the women (resp.,
by the men). More precisely, such a voting rule takes in input the preference values
given by the women over the men (resp., given by the men over the women) and returns
a strict total order over the men (resp., women).

Definition 3 (Lex-male-Optimal). Consider an SMW P , a natural number α, and a
voting rule r. Let us denote with om (resp., ow) the strict total order over the men
(resp., over the women) computed by applying r to the preference values that the women
give to the men (resp., the men give to the women). An α-stable marriage M is lex-
male-optimal w.r.t. om and ow, if, for every other α-stable marriage M ′, the following
conditions hold:

– there is a man mi such that M(mi) �ow M ′(mi),
– for every man mj ≺om mi, M(mj) ≤M ′(mj).

Proposition 2. Given an SMW P , a strict total ordering om (resp., ow) over the men
(resp., women),

– there is a unique lex-male-optimal α-stable marriage w.r.t. om and ow, say L.
– L may be different from the male-optimal stable marriage of c(P );
– if α(P ) has a unique undominated weakly stable marriage, say L′, thenL coincides

with L′, otherwise L is one of the undominated weakly stable marriages of α(P ).

Example 7. Let us consider the SMW, P , shown in Example 5. We have shown previ-
ously that this problem has two α-weakly stable marriages that are undominated. We
now want to discriminate among them by considering the lex-male-optimality notion.
Let us consider as voting rule the rule that takes in input the preference values given by
the women over the men (resp., by the men over the women) and returns a strict prefer-
ence ordering over the men (resp., women). This preference ordering is induced by the
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overall score that each man (resp., woman) receives: men (women) that receive higher
overall scores are more preferred. The overall score of a man m (resp., woman w), say
s(m) (resp., s(w)), is computed by summing all the preference values that the women
give to him (the men give to her). If two candidates receive the same overall score,
we use a tie-breaking rule to order them. If we apply this voting rule to the preference
values given by the women in P , then we obtain

– s(m1) = 8 + 3 = 11,
– s(m2) = 5 + 1 = 6,

and thus the ordering om is such that m1 �om m2. If we apply the same voting rule to
the preference values given by the men in P ,

– s(w1) = 3 + 4 = 7,
– s(w2) = 2 + 2 = 4,

and thus the ordering ow is such that w1 �ow w2. The lex-male-optimal α-stable mar-
riage w.r.t. om and ow is the marriage M1 = {(m1, w1), (m2, w2)}. �

3.3 Finding the Lex-Male-Optimal α-Stable Marriage

It is possible to find optimal α-stable marriages by adapting the GS-algorithm for clas-
sical stable marriage problems [4].

Given an SMW P and a natural number α, by Theorem 1, to find an α-stable mar-
riage it is sufficient to find a weakly stable marriage of α(P ). This can be done by
applying the GS algorithm to any linearization of α(P ).

Given an SMW P , a natural number α, and two orderings om and ow over men
and women computed by applying a voting rule to P as described in Definition 3, it
is possible to find the α-stable marriage that is lex-male-optimal w.r.t om and ow by
applying the GS algorithm to the linearization of α(P ) where we order incomparable
pairs, i.e., the pairs that differ for less than α in P , in accordance with the orderings om
and ow.

Algorithm 1. Lex-male-α-stable-GS

Input: P : an SMW, α: a natural number, r: a voting rule
Output: μ: a marriage
om ← the strict total order over the men obtained by applying r to the preference values
given by the women over the men
ow ←: the strict total order over the women obtained by applying r to the preference
values given by the men over the women
P ′ ← the linearization of α(P ) obtained by ordering incomparable pairs of α(P ) in
accordance with om and ow;
μ ← the marriage obtained by applying the GS algorithm to P ′;
return μ

Proposition 3. Given an SMW P , a natural number α, om (resp., ow) an ordering over
the men (resp., women), algorithm Lex-male-α-stable-GS returns the lex-male-optimal
α-stable marriage of P w.r.t. om and ow.
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4 Stability Notions Relying on Links

Until now we have generalized the classical notion of stability by considering separately
the preferences of the men and the preferences of the women. We now intend to define
new notions of stability that take into account simultaneously the preferences of the
men and the women. Such a new notion will depend on the strength of the link of the
married people, i.e., how much a man and a woman want to be married with each other.
This is useful to obtain a new notion of stable marriage, that looks at the happiness of
the pairs (man,woman) rather than at the happiness of the members of a single sex.

A way to define the strength of the link of two people is the following.

Definition 4 (Link Additive-strength). Given a man m and a woman w, the link
additive-strength of the pair (m,w), denoted by la(m,w), is the value obtained by
summing the preference value that m gives to w and the preference value that w gives
to m, i.e., la(m,w) = p(m,w)+p(w,m). Given a marriage M , the additive-link of M ,
denoted by la(M), is the sum of the links of all its pairs, i.e.,

∑
{(m,w)∈M} la(m,w).

Notice that we can use other operators beside the sum to define the link strength, such
as, for example, the maximum or the product.

We now give a notion of stability that exploit the definition of the link additive-
strength given above.

Definition 5 (Link-additive-Stability). Given a marriage M , a man m, and a woman
w, the pair (m,w) is a link-additive-blocking pair for M if the following conditions
hold:

– la(m,w) > la(m′, w),
– la(m,w) > la(m,w′),

where m′ is the partner of w in M and w′ is the partner of m in M . A marriage is
link-additive-stable if it does not contain link-additive-blocking pairs.

Example 8. Let {w1, w2} and {m1,m2} be, respectively, the set of women and men.
Consider the following instance of an SMW, P :

– m1 : w
[30]
1 > w

[3]
2 ,

– m2 : w
[4]
1 > w

[3]
2 ,

– w1 : m
[6]
2 > m

[5]
1 ,

– w2 : m
[10]
1 > m

[2]
2 .

In this example there is a unique link-additive-stable marriage, that is M1 = {(m1, w1),
(m2, w2)}, which has additive-link la(M1) = 35+5 = 40. Notice that such a marriage
has an additive-link higher than the male-optimal stable marriage of c(P ) that is M2 =
{(m1, w2), (m2, w1)} which has additive-link la(M2) = 13 + 10 = 23. �

The strength of the link of a pair (man,woman), and thus the notion of link stability, can
be also defined by considering the maximum operator instead of the sum operator.
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Definition 6 (Link Maximal-strength). Given a man m and a woman w, the link
maximal-strength of the pair (m,w), denoted by lm(m,w), is the value obtained by
taking the maximum between the preference value that m gives to w and the preference
value that w gives to m, i.e., lm(m,w) = max(p(m,w), p(w,m)). Given a marriage
M , the maximal-link of M , denoted by lm(M), is the maximum of the links of all its
pairs, i.e., max{(m,w)∈M}lm(m,w).

Definition 7 (Link-maximal-Stability). Given a marriage M , a man m, and a woman
w, the pair (m,w) is a link-maximal-blocking pair for M if the following conditions
hold:

– lm(m,w) > lm(m′, w),
– lm(m,w) > lm(m,w′),

where m′ is the partner of w in M and w′ is the partner of m in M . A marriage is
link-maximal-stable if it does not contain link-maximal-blocking pairs.

4.1 Relations with Other Stability Notions

Given an SMW P , let us denote with Linka(P ) (resp., Linkm(P )) the stable marriage
problem with ties obtained from P by changing every preference value that a person x
gives to a person y with the value la(x, y) (resp., lm(x, y)), by changing the preference
rankings accordingly, and by considering only these new preference rankings.

Let us denote with Ila(P ) (resp., Ilm(P )) the set of the link-additive-stable mar-
riages (resp., link-maximal-stable marriages) of P and with Iw(Linka(P )) (resp., Iw(L
inkm(P ))) the set of the weakly stable marriages of Linka(P ) (resp., Linkm(P )). It
is possible to show that these two sets coincide.

Theorem 2. Given an SMWP , Ila(P ) = Iw(Linka(P )) and Ilm(P ) = Iw(Linkm(P )).

Proof. Let us consider a marriage M . We first show that if M ∈ Iw(Linka(P )) then
M ∈ Ila(P ). If M �∈ Ila(P ), there is a pair (m,w) that is a link-additive-blocking
pair, i.e., la(m,w) > la(m,w′) and la(m,w) > la(m′, w), where w′ (resp., m′) is
the partner of m (resp., w) in M . Since la(m,w) > la(m,w′), m prefers w to w′

in the problem Linka(P ), and, since la(m,w) > la(m′, w), w prefers m to m′ in
the problem Linka(P ). Hence (m,w) is a blocking pair for the problem Linka(P ).
Therefore, M �∈ Iw(Linka(P )).

We now show that ifM ∈ Ila(P ) thenM ∈ Iw(Linka(P )). IfM �∈ Iw(Linka(P )),
there is a pair (m,w) that is a blocking pair for Iw(Linka(P )), i.e., m prefersw to w′ in
the problem Linka(P ), and w prefers m to m′ in the problem Linka(P ). By definition
of the problem Linka(P ), la(m,w) > la(m,w′) and la(m,w) > la(m′, w). There-
fore, (m,w) is a link-additive-blocking pair for the problem P . Hence, M �∈ Ila(P ).

It is possible to show similarly that Ilm(P ) = Iw(Linkm(P )). �

When no preference ordering changes in Linka(P ) (resp., Linkm(P )) w.r.t. P , then
the link-additive-stable (resp., link-maximal-stable) marriages of P coincide with the
stable marriages of c(P ).
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Proposition 4. Given an SMW P , if Linka(P ) = c(P ) (Linkm(P ) = c(P )) , then
Ila(P ) = I(c(P )) (resp., Ilm(P ) = I(c(P ))).

If there are no ties in Linka(P ) (resp.,Linkm(P )), then there is a unique link-additive-
stable marriage (resp., link-maximal-stable marriage) with the highest link.

Proposition 5. Given an SMW P , if Linka(P ) (resp., Linkm(P )) has no ties, then
there is a unique link-additive-stable (resp., link-maximal-stable) marriage with the
highest link.

If we consider the definition of link-maximal-stability, it is possible to define a class of
SMWs where there is a unique link-maximal-stable marriage with the highest link.

Proposition 6. In an SMW P where the preference values are all different, there is a
unique link-maximal-stable marriage with the highest link.

4.2 Finding Link-Additive-Stable and Link-Maximal-Stable Marriages with the
Highest Link

We now show that for some classes of preferences it is possible to find optimal link-
additive-stable marriages and link-maximal-stable marriages of an SMW by adapting
algorithm GS, which is usually used to find the male-optimal stable marriage in classical
stable marriage problems.

By Proposition 2, we know that the set of the link-additive-stable (resp., link-maximal-
stable) marriages of an SMW P coincides with the set of the weakly stable marriages of
the SMP Linka(P ) (resp., Linkm(P )). Therefore, to find a link-additive-stable (resp.,
link-maximal-stable) marriage, we can simply apply algorithm GS to a linearization of
Linka(P ) (resp., Linkm(P )).

Proposition 7. Given an SMW P , the marriage returned by algorithm link-additive-
stable-GS (link-maximal-stable-GS) over P , say M , is link-additive-stable (resp., link-
maximal-stable). Moreover, if there are not ties in Linka(P ) (resp., Linkm(P )), M is
link-additive-stable (resp., link-maximal-stable) and it has the highest link.

Algorithm 2. Link-additive-stable-GS (resp., link-maximal-stable-GS)

Input: P : an SMW
Output: μ: a marriage
P ′ ← Linka(P ) (resp., Linkm(P ));
P ′′ ← a linearization of P ′;
μ ← the marriage obtained by applying GS algorithm to P ′′;
return μ

When there are no ties in Linka(P ) (resp., Linkm(P )), the marriage returned by al-
gorithm link-additive-stable-GS (resp., link-maximal-stable-GS) is male-optimal w.r.t.
the profile with links. Such a marriage may be different from the classical male-optimal
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stable marriage of c(P ), since it considers the happiness of the men reordered according
to their links with the women, rather than according their single preferences.

This holds, for example, when we assume to have an SMW with preference values
that are all different and we consider the notion of link-maximal-stability.

Proposition 8. Given an SMW P where the preference values are all different, the mar-
riage returned by algorithm link-maximal-stable-GS algorithm over P is link-maximal-
stable and it has the highest link.

5 Manipulation

In [18] Roth has shown that, when there are at least three men and three women, every
stable marriage procedure is manipulable, i.e., there is a profile where an agent, mis-
reporting his preferences, obtains a stable marriage which is better than or equal to the
one obtained by telling the truth. In stable marriage problems, agents can manipulate in
two ways: by changing the preference ordering [18], or by truncating the preference list
[5].

We now would like to check if agents have additional ways of manipulating in our
context, by changing only the preference weights, while preserving the preference or-
dering and not truncating the preference list.

In the following, we will call a w-manipulation attempt by an agent a the mis-
reporting of the weights in a’s preferences which preserves the true preference ordering.
Also, we will say that a w-manipulation attempt of an agent a is successful if the re-
sulting marriage for a is better than or equal to the marriage obtained by using the true
preference weights of a, and that a stable marriage procedure is w-manipulable if there
is a profile with a successful w-manipulation attempt for an agent.

We will show that every stable marriage procedure which returns an α-stable mar-
riage, a link-additive, or a link-maximal stable marriage, is w-manipulable.

Theorem 3. Let α be any natural number > 1. Every procedure which returns an α-
stable marriage is w-manipulable.

Proof. Let {w1, w2, w3} and {m1,m2,m3} be, respectively, the set of women and
men. Consider the following instance of an SMW, say P , {m1 : w

[x+2α]
2 > w

[x+α]
1 >

w
[x]
3 ,m2 : w

[x+2α]
1 > w

[x+α]
2 > w

[x]
3 ,m3 : w

[x+2α]
1 > w

[x+α]
2 > w

[x]
3 , w1 : m

[x+α+1]
1

> m
[x+α]
2 > m

[x]
3 , w2 : m

[x+2α]
3 > m

[x+α]
1 > m

[x]
2 , w3 : m

[x+2α]
1 > m

[x+α]
2 > m

[x]
3 }.

P has two α-stable marriages: M1 = {(m1, w1), (m2, w3), (m3, w2)} and M2 =
{(m1, w3), (m2, w1), (m3, w2)}. Assume that w1 mis-reports her preferences as fol-

lows: w1 : m
[x+2α]
1 > m

[x+α]
2 > m

[x]
3 , i.e., assume that she changes the weight given

to m1 from x + α + 1 to x + 2α. Let us denote with P ′ the resulting problem. P ′

has a unique α-stable marriage, that is M1, which is the best α-stable marriage for w1

in P . Therefore, it is convenient for w1 to change her weights to get a better or equal
result w.r.t the one obtained by telling the truth. Also, since P ′ has a unique α-stable
marriage, every procedure which returns an α-stable marriage returns such a marriage.
Thus, every procedure is w-manipulable. �
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Theorem 4. Every stable marriage procedure that returns a link-additive stable mar-
riage is w-manipulable.

Proof. Let {w1, w2} and {m1,m2} be, respectively, the set of women and men. Con-

sider the following instance of an SMW, say P : {m1 : w
[6]
2 > w

[4]
1 ,m2 : w

[5]
2 >

w
[2]
1 , w1 : m

[3]
1 > m

[2]
2 , w2 : m

[5]
1 > m

[2]
2 }. P has a unique link-additive stable mar-

riage, which is M1 = {(m1, w2), (m2, w1)}. Assume that w1 mis-reports her prefer-

ences as follows: w1 : m
[100]
1 > m

[2]
2 , i.e., she changes the weight given to m1 from 3

to 100. Then, in the new problem, that we call P ′, there is a unique link-additive stable
marriage, i.e., M2 = {(m1, w1), (m2, w2)}, which is better for w1 in P . Since in P ′

there is a unique link-additive-stable marriage, every procedure which returns a link-
additive stable marriage will return it. Thus, every procedure is w-manipulable. �

A similar result can be shown also for stable marriage procedures that return a link-
maximal stable marriage.

Summarizing, even if we don’t allow the agents to modify their preference ordering
or to truncate their preference list, they can manipulate simply by changing the values
of their weights. Moreover, it is possible to see that some ideas to prevent manipula-
tion, such as to assign equal weight to all top alternatives and to put a bound over the
relative weights of two consecutive elements in every ordering, are ineffective to avoid
w-manipulation.

6 Conclusions and Future Work

In this paper we have considered stable marriage problems with weighted preferences,
where both men and women can express a score over the members of the other sex. In
particular, we have introduced new stability and optimality notions for such problems
and we have compared them with the classical ones for stable marriage problems with
totally or partially ordered preferences. Also, we have provided algorithms to find mar-
riages that are optimal and stable according to these new notions by adapting the Gale-
Shapley algorithm. Moreover, we have investigated manipulation issues in our context.

We have also considered an optimality notion (that is, lex-male-optimality) that ex-
ploits a voting rule to linearize the partial orders. We intend to study if this use of voting
rules within stable marriage problems may have other benefits. In particular, we want to
investigate if the procedure defined to find such an optimality notion inherits the prop-
erties of the voting rule with respect to manipulation: we intend to check whether, if
the voting rule is NP-hard to manipulate, then also the procedure on SMW that exploits
such a rule is NP-hard to manipulate. This would allow us to transfer several existing
results on manipulation complexity, which have been obtained for voting rules, to the
context of procedures to solve stable marriage problems with weighted preferences.
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Abstract. Neoclassical game theory focuses exclusively on individual prefer-
ences, which are more naturally attuned to competitive, rather than cooperative,
decision scenarios. Conditional game theory differs from classical theory in two
fundamental ways. First, it involves a utility structure that permits agents to de-
fine their preferences conditioned on the preferences of other agents, and second,
it accommodates a notion of group rationality as well as individual rationality.
The resulting framework permits a notion of group preferences to be defined, and
permits solution concepts that account for both individual and group interests.

Keywords: Group Rationality, Cooperation, Negotiation.

1 Introduction

Game theory provides a mathematical framework within which to model decisions by
multiple entities where the outcome for each depends on the choices of all. Game the-
ory is increasingly invoked by engineering and computer science as a framework for
multiagent systems [11,12,15,17,18].

A finite, noncooperative, single-stage, strategic-form game consists of (i) a set of
autonomous decision makers, or players, denoted XXX n = {X1, . . . , Xn} where n ≥ 2,
(ii) a finite action set Ai for each Xi, and (iii) a utility uXi

: AAA → R for each Xi,
i = 1, . . . , n, where AAA = A1 × · · · × An is the product action space. For any action
profile a = (a1, . . . , an) ∈ AAA, the utility uXi

(a), defines the benefit to Xi as a conse-
quence of the instantiation of a. These utilities are categorical in the sense that uXi

(a)
unconditionally defines the benefit to Xi of the group instantiating the action profile a.

Xi also must possess a logical structure that defines how it should play the game. The
most widely used logical structure is the doctrine of individual rationality:
each Xi should act in a way that maximizes is own utility. Under the assumption that
each player subscribes to this notion and assumes that all others do so as well, they each
will solve their corresponding constrained optimization problem, resulting in a Nash
equilibrium.

These mathematical and logical structures may provide an appropriate vehicle with
which to model behavior in an environment of competition and market driven expec-
tations since, in that environment, the dominant notion of rational behavior clearly is
self-interest. It is less clear, however, that self-interest is the dominant (and certainly not
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the only) relevant rationality notion in mixed-motive environments, such as those that
contain opportunities for cooperation, compromise, and unselfishness. Arrow clearly
delimits the context in which individual rationality applies: “[R]ationality in application
is not merely a property of the individual. Its useful and powerful implications derive
from the conjunction of individual rationality and other basic concepts of neoclassical
theory — equilibrium, competition, and completeness of markets . . . When these as-
sumptions fail, the very concept of rationality becomes threatened, because perceptions
of others and, in particular, their rationality become part of one’s own rationality” [2,
p. 203].

Despite Arrow’s caution, the mathematical and logical structures of game theory
are routinely applied to mixed-motive situations, often producing results that are at
variance with observed behavior. Behavioral economics (e.g., see [3]) seeks to mitigate
this problem by inserting parameters to model fairness, loss aversion, and other such
issues into the utilities to provide more psychological realism. Once included, however,
the game is still solved according to conventional individual rationality and categorical
utilities.

What is missing with conventional game theory is a notion of group benefit. Co-
operative multiagent systems are designed such that the individuals work together to
accomplish some task, but, unfortunately, group rationality does not derive from indi-
vidual rationality. As observed by Luce and Raiffa, “the notion of group rationality is
neither a postulate of the model nor does it appear to follow as a logical consequence
of individual rationality . . . general game theory seems to be in part a sociological the-
ory which does not include any sociological assumptions . . . it may be too much to ask
that any sociology be derived from the single assumption of individual rationality” [10,
p. 193, 196]. Consequently, game theory has proceeded by making assumptions about
individual preferences only and then using those preferences to deduce information
about the choices (but not the values) of a group.

It might be expected that cooperative game theory possesses some notion of group
rationality. This version of game theory permits a subset of players to enter into a coali-
tion such that each receives a payoff that is greater than it would receive if it acted
alone. However, cooperative game theory employs categorical utilities and its solutions
concepts are based squarely upon the assumption of individual rationality. Each player
enters into a coalition solely on the basis of benefit to itself and, even though each may
be better off for having joined, a notion of group rationality is not an issue when forming
the coalition.

Reliance on categorical utilities and individual rationality limits the application of
conventional game theory for the design and synthesis of multiagent systems that are
intended to be cooperative. The contributions of this paper are (i) to present a new
utility structure that overcomes the limitations of categorical utilities as a model of
complex social relationships, (ii) to offer a more general concept of rational behavior
that simultaneously accounts for both group an individual welfare, and (iii) to address
and control the computational complexity of the resulting model.



336 W. Stirling

2 Preference Models

2.1 Neoclassical Preference Models

The most prevalent assumption employed by game theory when considering preference
orderings is also the most simple: a preference ordering over alternatives is defined for
each individual agent. Arrow put it succinctly: “It is assumed that each individual in
the community has a definite ordering of all conceivable social states, in terms of their
desirability to him . . . It is simply assumed that the individual orders all social states by
whatever standards he deems relevant” [1, p. 17]. According to this view, each agent’s
preference ordering is completely defined and immutable before the game begins — it
is categorical. Thus, from the conventional point of view, the starting point of a game is
the definition of categorical utilities for each player. Furthermore, as Friedman argues,
it is not necessary to consider the process by which the agents arrive at their preference
orderings. “The economist has little to say about the formation of wants; this is the
province of the psychologist. The economist’s task is to trace the consequences of any
given set of wants” [7, p. 13].

If we take the Arrow/Friedman division of labor as the starting point when defining a
game, we must assume that the individual is able to reconcile all internal conflicts to the
point that a unique categorical preference ordering can be defined that corresponds to its
own self interest and which is not susceptible to change as a result of social interaction.
This is a tall order, but nothing less will do if we are restricted to categorical preference
orderings.

2.2 Social Influence Preference Models

When complex social relationships exist for which categorical preferences are not ade-
quate or appropriate, a natural way for a player to take them into account is by the no-
tion of influence. There are many ways to account for social influence, but the approach
presented in this paper is to apply a set of principles to define a systematic and logi-
cally defensible mathematical model that leads to the definition and implementation of
a multiagent decision methodology that accounts for influence relationships when they
exist and treats conventional game theory as a special case when such relationships are
absent.

Principle 1 (Conditioning). Agents’ preferences may be influenced by the preferences
of other agents.

Xj influences Xi if Xi’s preferences are affected by Xj’s preferences. Without knowl-
edge of Xj’s preferences, Xi is in a state of suspense with respect to its own prefer-
ences. Essentially, Xj’s preferences propagate through the group to affect Xi’s pref-
erences, thereby generating a social bond between the two agents. Once such a bond
exists, it is possible to define a notion of joint preference for the two agents viewed
simultaneously, and it is possible to extract individual preference orderings from this
joint preference ordering since, once Xj’s preferences are revealed, Xi need no longer
remain in suspense. It is thus be possible for both group and individual preferences to
co-exist.
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Principle 1 represents an important shift in perspective from conventional game theory.
With the conventional approach, the utility of an individual defines its self-interest with
respect to the instantiation of actions taken by all players. By contrast, we view the util-
ity of an individual as the consequent of a hypothetical proposition whose antecedent
is the assumption that those who influence it have identified their most preferred out-
comes.

Definition 1. A conjecture for Xj is an action profile, denoted aj , that is hypothesized
as Xj’s most preferred outcome. Let XXXm = {Xj1 , . . . , Xjm} be a subgroup of XXX n.
A joint conjecture for XXXm, denoted αααm = {aj1 , · · · , ajm}, is a collection of action
profiles inAAAm =AAA×· · ·×AAA (m times), where ajl is a conjecture for Xjl , l = 1, . . . ,m.

Now suppose Xi is influenced by a subgroup XXXm. Given a joint conjecture αααm, the
consequent of the hypothetical proposition is a conditional preference ordering for Xi.

Definition 2. Let XXXm = {Xj1 , . . . , Xjm} be a subgroup of XXX n that influences Xi

and let αααm = {aj1 , · · · , ajm} be a joint conjecture for XXXm. A conditional utility
uXi|Xm

(·|αααm) is a real-valued function defined overAAA that specifies the preference or-
dering for Xi given the joint conjectureαααm. That is, uXi|Xm

(a|αααm) > uXi|Xm
(a′|αααm)

means that Xi prefers a to a′, given that Xjl conjectures ajl , l = 1, . . . ,m.

Each Xi must define a conditional utility for the joint conjectures of the subgroup that
influences it. This requirement increases the complexity of a problem statement over
the conventional requirement of specifying only one categorical utility for each Xi.
However, as we shall explore in Section 5, there often will be ways to simplify the
specification that keeps the complexity under control. Nevertheless, the inclusion of
social influence will generally result in increased complexity.

2.3 Group Preference

Once we extend beyond self-interest via social bonds induced by conditional prefer-
ences, it becomes possible to consider a more general notion of group preference. It
may happen that the social bonds are so strong that unanimity will result, but that situ-
ation will not generally obtain. If agents disagree regarding what outcome is best, then
some degree of conflict, or discord, will exist within the group. Thus, when designing
a system whose members must coordinate, a critical issue is the concordance, or the
degree of harmony, among its members. Accordingly, a meaningful notion of group
preference is for its members to function concordantly.

Definition 3. Let XXX k = {Xi1 , . . . , Xik} be a subgroup of XXXn. A concordant utility
UXk

is a real-valued function defined overAAAk such that, for each joint conjectureαααk =
(ai1 , . . . , aik) ∈ AAAk, UXk

(αααk) defines the concordance of αααk. When k = 1, the con-
cordant utility becomes a conventional categorical utility for Xk, that is, UXk

≡ uXk
.

When k > 1, the concordant utility is a generalization of individual utility which,
rather than providing a preference ordering for a single agent overAAA, provides a con-
cordant ordering for a k-member subgroup over the product space AAAk of joint conjec-
tures. When ai1 = · · · = aik , the concordant utility measures the degree of harmony
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if all members conjecture the same action profile. When the conjectures are different,
UXk

(ai1 , . . . , aik) measures the degree of concordance that exists among the members
of the subgroup if each Xil were to view ail as its most-preferred outcome. The expres-
sion UXk

(αααk) > UXk
(ααα′

k) means that ααα′
k causes a more severe conflict for the group

than does αααk.

Definition 4. Let XXX k = {Xi1 , . . . , Xik} andXXXm = {Xj1 , . . . , Xjm} be disjoint sub-
groups of XXXn. For each αααm ∈ AAAm, a conditional concordant utility given αααm is a
real-valued function UXk|Xm

(·|αααm) defined over AAAk that defines a concordant utility
for XXX k given that XXXm jointly conjectures αααm. When k = 1, the concordant utility
becomes a conditional utility for Xk, that is, UXk|Xm

≡ uXk|Xm
(see Definition 2).

Example 1. Suppose the group {X1, X2, X3} is to purchase an automobile. X1 is to
choose the model, either a convertible (C) or a sedan (S), X2 is to choose the manufac-
turer, either domestic (D) or foreign (F ), and X3 is to choose the color, either red (R)
or green (G). The action spaces are A1 = {C, S}, A2 = {D,F}, A3 = {R,G}.

UX1X2
[(C,F,R), (S,D,G)] ≥ UX1X2

[(S,D,G), (C,F,R)] means that concordance
is higher (i.e., it is less conflictive) for the subgroup {X1, X2} if X1 were to most-prefer
a foreign made red convertible and, simultaneously,X2 were to most-prefer a domestic-
made green sedan, than if X1 were to most-prefer a domestic green sedan and, simul-
taneously, X2 were to most-prefer a foreign-made red convertible. Thus, even though
the two stakeholders do not have the same preferences in either case, the severity of
the differences in opinion is less for the (C,F,R), (S,D,G) combination than for the
(S,D,G), (C,F,R) combination.

UX1|X2
(C,F,R|C,F,R) ≥ UX1|X2

(S,D,G|C,F,R) means that X1 prefers a forei-
gn made red convertible to a domestic-made green sedan, given the hypothesis that X2

most-prefers a foreign-made red convertible. Notice that, since the consequent involves
only one stakeholder, the conditional joint conjecture ordering becomes a conditional
ordering, and we may more properly rewrite this expression as uX1|X2

(C,F,R|C,F,R)
≥ uX1|X2

(S,D,G)|C,F,R).
uX1|X2X3

[S,D,G|(C,F,R), (S,D,G)] ≥ uX1|X2X3
[C,F,R|(C,F,R), (S,D,G)]

means that X1 prefers a domestic-made green sedan to a foreign-made red convert-
ible, given the hypothesis that X2 most-prefers a foreign-made red convertible and that
X3 most-prefers a domestic-made green sedan.

UX2X3|X1
[(C,F,R), (S, F,R)|S,D,G] ≥ UX2X3|X1

[(S,D,G), (C,D,G)|S,D,G]
means that the subgroup {X2, X3} is less conflicted, given that X1 most-prefers (S,D,
G), for X2 and X3 to prefer (C,F,R) and (S, F,R), respectively, than respectively to
most-prefer (S,D,G) and (C,D,G).

Computing the concordant utility of a groupXXXn = {X1, . . . , Xn} is a key component
of our approach, since that function captures all social relationships that exist in the
group. Using this function, we can define notions of rational behavior both for the group
as a whole and for each of its members. Rather than define such a function from first
principles, however, we propose to synthesize it from more elementary relationships.
We begin by imposing the following principle.



Conditional Games 339

Principle 2 (Endogeny). If a concordant ordering for a group of agents exists, it must
be determined by the social interactions among the subsets of the group.

This principle precludes the exogenous imposition of aggregation structures. For ex-
ample, a common conventional aggregation procedure is to form the weighted sum of
individual utilities. Such a structure, however, is appropriate only under conditions of
preferential independence (e.g., see [6,9]). When preferential dependencies exist, we
seek an aggregation structure that naturally emerges from within the group.

Given the existence of a concordant utility UXm and a conditional concordant utility
UXk|Xm

, our goal is to compute the concordant utility of the union of the two subgroups;
i.e., to form UXmXk

, the concordant utility forXXXm ∪XXX k.

Definition 5. Let XXX k = {Xi1 , . . . , Xik} andXXXm = {Xj1 , . . . , Xjm} be disjoint sub-
groups ofXXXn such that UXm and UXk|Xm

are defined. These utilities are endogenously
aggregated if there exists a function F such that

UXmXk
(αααm,αααk) = F [UXm(αααm), UXk|Xm

(αααk|αααm)] , (1)

When social relationships exist among the members of a group, there may not be a
unique way to represent them mathematically. Consider the following example.

Example 2. Consider the two-agent system {X1, X2} and let us suppose that X1 pos-
sesses a categorical utility uX1

overAAA, but that X2 possesses a conditional utility of the
form uX2|X1

; that is, X2 conditions its preferences on the preferences of X1. Our desire
is to define a function F such that

UX1X2
(a1, a2) = F [uX1

(a1), uX2|X1
(a2|a1)] . (2)

Now let us suppose that there is a well-defined social relationship between X1 and X2

such that, when defining their preferences, they both take into consideration that, ulti-
mately, they will be operating in a group environment, and not in isolation. Under these
conditions, it is possible to re-frame the scenario by X2 defining a categorical utility
uX2

and X1 defining a conditional utility uX1|X2
. Under this framing, the aggregation

problem requires

UX2X1
(a2, a1) = F [uX2

(a2), uX1|X2
(a1|a2)] . (3)

Principle 3 (Consistency). If a multiagent decision problem can be framed in more
than one way using exactly the same information, all such framings should yield the
same aggregated concordant ordering.

Definition 6. LetXXX k andXXXm be disjoint subgroups ofXXXn and suppose there exist two
framings of the preferences and relationships between the two subgroups of the forms
{UXk

, UXm|Xk
} and {UXm, UXk|Xm

}. The endogenous aggregation is consistent if

F [UXk
(αααk), UXm|Xk

(αααm|αααk)] = F [UXm(αααm), UXk|Xm
(αααk|αααm)] . (4)
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3 Aggregation of Preferences

Our aim is to define an aggregation mechanism by which a notion of group prefer-
ence ordering can emerge from the aggregation of conditional individual preference
orderings. An essential characteristic of any such mechanism is that it must possess the
following property.

Principle 4 (Monotonicity). If a subgroup prefers one alternative to another and the
complementary subgroup is indifferent with respect to the two alternatives, then the
group as a whole must not prefer the latter alternative to the former one.

Principle 4 invokes the common sense concept that, in the absence of opposition, the
group must not arbitrarily override the wishes of individuals. Thus, if X1 prefers a to
a′ and X2 is indifferent between the two profiles, the group {X1, X2} should not prefer
a′ to a. In terms of utilities, this condition means that F must be nondecreasing in both
arguments.

When modeling influence relationships, it is critical that we delimit generality to
ensure computational tractability. We thus propose the following principle.

Principle 5 (Acyclicity). No cycles occur in the influence relationships among the
agents.

Given two disjoint subgroupsXXX k and XXXm of XXX n, acyclicity means that it cannot hap-
pen that, simultaneously, XXXm directly influences XXX k and XXX k directly influences XXXm.
The fact that cycles are not permitted does reduce the generality of the model. Never-
theless, restricting to one-way influence relationships is a significant generalization of
the neoclassical approach, which assumes that all utilities are categorical and, hence,
are trivially acyclical.

3.1 The Aggregation Theorem

It remains to define a function F that complies with the above-mentioned principles.
Since positive affine transformations preserve the mathematical integrity of von
Neumann-Morgenstern utilities, we may assume, without loss of generality, that all
utilities are non-negative and normalized to sum to unity; that is,

UXk
(αααk) ≥ 0 ∀αααk, UXm|Xk

(αααm|αααk) ≥ 0 ∀αααm,αααk, (5)

∑
αααk

UXk
(αααk) = 1,

∑
αααm

UXm|Xk
(αααm|αααk) = 1 ∀αααk . (6)

Theorem 1 (The Aggregation Theorem.). LetXXX n = {X1, . . . , Xn} be an n-member
multiagent system and let Bm denote the set of all m-element subgroups ofXXX n. That is,
XXXm ∈ Bm if XXXm = {Xi1 , . . . , Xim} with 1 ≤ i1 < · · · < im ≤ n. Let {UXm :XXXm ∈
Bm,m = 1, . . . , n} be a family of normalized non-negative concordant utilities and let

{UXm|Xk
: XXXm ∩XXX k = ∅,XXXm ∈ Bm,XXX k ∈ Bk, m+ k ≤ n} (7)
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be a family of normalized non-negative conditional concordant utilities associated with
all pairs of disjoint subgroups of XXX n. These utilities are endogenously aggregated if
and only if, for every pair of disjoint subgroupsXXXm andXXX k,

UXmXk
(αααm,αααk) = F [UXk

(αααk), UXmXk
(αααm|αααk)] (8)

= UXmXk
(αααm|αααk)UXk

(αααk) . (9)

This theorem was originally introduced by [5] as an alternative development of the
mathematical syntax of probability theory. The proof below follows [8].
Proof of the Aggregation Theorem. Let XXX i, XXX j , and XXX k be arbitrary pairwise dis-
joint subgroups ofXXX n, and let UXiXjXk

, UXi|XjXk
, UXiXj |Xk

, UXiXj
, UXi|Xj

, and UXi
be

endogenously aggregated concordant utilities. That is,

UXiXjXk
(αααi,αααj ,αααk) = F

[
UXjXk

(αααj ,αααk), UXi|XjXk
(αααi|αααj ,αααk)

]
(10)

= F
[
UXk

(αααk), UXiXj |Xk
(αααi,αααj |αααk)

]
. (11)

But
UXjXk

(αααj ,αααk) = F
[
UXk

(αααk), UXj |Xk
(αααj |αααk)

]
(12)

and
UXiXj |Xk

(αααi,αααj |αααk) = F
[
UXj |Xk

(αααj |αααk), UXi|XjXk
(αααi|αααj ,αααk)

]
. (13)

Substituting (12) into (10) and (13) into (11) yields

F

[
F
[
UXk

(αααk), UXj |Xk
(αααj |αααk)

]
, UXi|XjXk

(αααi|αααj ,αααk)

]
=

F

[
UXk

(αααk), F
[
UXj |Xk

(αααj |αααk), UXi|XjXk
(αααi|αααj ,αααk)

]]
. (14)

In terms of general arguments, this equation becomes

F [F (x, y), z] = F [x, F (y, z)] , (15)

called the associativity equation. By direct substitution it is easy to see that (15) is
satisfied if

f [F (x, y)] = f(x)f(y) (16)

for any function f . It has been shown by [5] that if F is differentiable in both arguments,
then (16) is the general solution to (15). Taking f as the identity function,F (x, y) = xy,
and

UXiXj
(αααi,αααj) = F

[
UXi

(αααi), UXj |Xi
(αααj|αααi)

]
= UXi

(αααi)UXj |Xi
(αααj |αααi) . (17)

To prove the converse, we note that F given by (9) is nondecreasing in both arguments
since UXk

and UXm|Xk
are nonnegative. Also, since the subgroups XXXm and XXX k are

arbitrary, (9) holds if we reverse the roles of m and k. Thus, consistency is satisfied and
the aggregation is endogenous. �
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The aggregation theorem establishes that, upon compliance with the aforementioned
principles, utility aggregation conforms to the same mathematical syntax as does prob-
ability. Consequently, the various epistemological properties of probability theory can
be accorded analogous interpretations in the praxeological context. Key concepts in this
regard are marginalization, independence, and the chain rule.
Marginalization. Let XXXm = {Xj1 , . . . , Xjm} and XXX k = {Xi1 , . . . , Xik} be disjoint
subgroups ofXXXn. Then the marginal concordant utility ofXXXm is obtained by summing
overAAAk, yielding

UXm(αααm) =
∑
αααk

UXmXk
(αααm,αααk) . (18)

Independence. Let XXXm and XXX k be disjoint subgroups of XXXn. These subgroups are
praxeologically independent if neither subgroup influences the other; that is,

UXmXk
(αααm,αααk) = UXm(αααm)UXk

(αααk) . (19)

The Chain Rule. LetXXXm,XXX k, andXXX l be pairwise disjoint subgroups ofXXXn. Then

UXmXkXl
(αααm,αααk,αααl) = UXm|XkXl

(αααm|αααk,αααl)UXk|Xl
(αααk|αααl)UXl

(αααl) . (20)

The chain rule is the mechanism by which individual conditional utilities can be aggre-
gated to form the concordant utility. To see, let us first recall that the acyclicity principle
ensures that at least one agent possesses a categorical utility. Without loss of general-
ity, let us assume this condition holds for X1. Successively applying the chain rule, we
obtain

UX1···Xn(a1, . . . ,an) = uXn(an|an−1, . . . ,a1)uXn−1
(an−1|an−2, . . . , a1) · · ·uX1(a1) .

(21)

3.2 Utility Networks

Since the influence flows are acyclic, we may represent the multiagent system as a
directed acyclic graph (DAG). Furthermore, since the utilities that comply with the
aggregation theorem possess the mathematical syntax of probability mass functions,
the edges of the DAG are conditional utilities. We shall term such a graph a utility
network, and note that it possesses all of the properties of a Bayesian network, albeit
with different semantics (e.g., see [13,4]).

Definition 7. The parent set for Xi, denoted pa (Xi), is the subgroup of agents whose
preferences directly influence Xi. The child set of Xi, denoted ch (Xi), is the subgroup
that is directly influenced by XI .

Without loss of generality, we may assume that the vertices of the network are enumer-
ated such that all children of any given node have a higher-numbered index, otherwise
the indexing is arbitrary. We may then rewrite (21) as

UX1···Xn(a1, . . . , an) =

n∏
i=1

uXi| pa (Xi)[ai| pa (ai)] . (22)
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where pa (ai) = {ai1 , . . . , aipi } is the joint conjecture corresponding to pa (Xi) =
{Xi1 , . . . , Xipi

}. If pi = 0, then uXi| pa (Xi) = uXi
, a categorical utility.

To illustrate, consider the network illustrated in Figure 1. X1 is a root vertex, and
possesses a categorical utility uX1

, pa (X2) = {X1}, and pa (X3) = {X1, X2}. The
concordant utility is

UX1X2X3
(a1, a2, a3) = uX1

(a1)uX2|X1
(a2|a1)uX3|X1X2

(a3|a1, a2) . (23)

X1

uX2|X1

X2

uX3|X1X2
X3

Fig. 1. The DAG for a three-agent system

If the utilities of all agents are categorical, then no social influence exists, the corre-
sponding DAG has no edges, and, hence, no social bonds are generated. The aggrega-
tion formula defined by (22) becomes analogous to the creation of the joint distribution
of independent random variables as the product of the marginal distributions, and ag-
gregation sheds no additional light on group behavior.

4 Conditional Games

A conditional game is a triple {XXXn,AAA, UXn} where XXX n = {X1, . . . , Xn} is a group
of n agents with product action space AAA = A1 × · · · × An and UXn = UX1···Xn is
a concordant utility. Equivalently, by application of (22), a conditional game can be
defined in terms of the conditional utilities uXi| pa (Xi), i = 1, . . . , n. If all utilities are
categorical, a conditional game becomes a conventional game.

With a conditional game, the possibility exists for an expanded notion of rational
behavior. To proceed, we observe that, since each agent can control only its own actions,
what is of interest is the utility for the group if all agents make conjectures over, and
only over, their own action spaces.

Definition 8. Consider the concordant utility UX1···Xn(a1, . . . , an). Let aij denote the
jth element of ai; that is, ai = (ai1, . . . , ain) is Xi’s conjecture. Next, form the action
profile (a11, . . . , ann) by taking the ith element of each Xi’s conjecture, i = 1, . . . , n.
Now let us sum the concordant utility over all elements of each ai except the ii-th
elements to form the group welfare function for {X1, . . . , Xn}, yielding

wX1···Xn(a11, . . . , ann) =
∑
∼a11

· · ·
∑
∼ann

UX1···Xn(a1, . . . , an) , (24)

where
∑

∼aii
means the sum is taken over all aij except aii. The individual welfare

function of Xi is the i-th marginal of wX1···Xn , that is,

wXi
(aii) =

∑
∼aii

wX1···Xn(a11, . . . , ann) . (25)
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Fig. 2. Flow of social influence

The group welfare function provides a complete ex post description of the relation-
ships between the members of a multiagent system as characterized by their ex ante
conditional utilities. Unless the members of the system are praxeologically indepen-
dent, the ex post utility is not simply an aggregation of individual utilities, as is the
case with classical social choice theory. Rather, it constitutes a meso to macro to micro
propagation of preferences: from the intermediate, or meso, level, derived from local
influences between the agents in the form of conditional preferences, up to the global,
or macro, level and down to the individual, or micro, level, as illustrated in Figure 2.

We define the maximum group welfare solution as

(a∗1, . . . , a
∗
n) = argmax

a∈A
wX1···Xn(a1, . . . , an) . (26)

Also, the maximum individual welfare solution is

a†i = arg max
ai∈Ai

wXi
(ai) . (27)

If a†i = a∗i for all i ∈ {1, . . . , n}, the action profile is a consensus choice. In gen-
eral, however, a consensus will not obtain, and negotiation may be required to reach a
compromise solution.

The existence of group and individual welfare functions provides a rational basis for
meaningful negotiations; namely, that any compromise solution must at least provide
each agent with its security level; that is, the maximum guaranteed benefit it could
receive regardless of the decisions that others might make. The security level for Xi is

sXi
= max

ai

min
∼ai

∑
∼ai

UX1···Xn(a1, . . . , an) . (28)

In addition to individual benefit, we must also consider benefit to the group. Although
a security level, per se, for the group cannot be defined in terms of a guaranteed bene-
fit (after all, the group, as a single entity, does not actually make a choice), a possible
rationale is that the benefit to the group it should never be less than the smallest guaran-
teed benefit to the individuals. This approach is consistent with the principles of justice
espoused by [14], who argues, essentially, that a society as a whole cannot be better
off than its least advantaged member. Accordingly, let us define a security level for the
group as sX1···Xn = mini{sXi

}/n, where we divide by the number of agents since the
utility for the group involves n players.
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Now define the group negotiation set

NX1···Xn = {a ∈ AAA: wX1···Xn(a) ≥ sX1···Xn} , (29)

the individual negotiation sets

NXi
= {ai ∈ Ai: wXi

(ai) ≥ sXi
}, i = 1, . . . , n , (30)

and the negotiation rectangle

RX1···Xn = NX1
× · · · × NXn . (31)

Finally, define the compromise set

CX1···Xn = NX1···Xn ∩RX1···Xn . (32)

If CX1···Xn = ∅, then no rational compromise is possible at the stated security levels.
One way to overcome this impasse is to decrement the security level of the group iter-
atively by a small amount, thereby gradually enlargingNX1···Xn until CX1···Xn �= ∅. If
CX1···Xn = ∅ after the maximum reduction in group security has been reached, then
no rational compromise is possible, and the system may be considered dysfunctional.
Another way to negotiate is for individual members to decrement their security levels
iteratively, thereby enlarging the negotiation rectangle.

Once CX1···Xn �= ∅, any element of this set provides each member, as well as the
group, with at least its security level. One possible tie-breaker is

ac = arg max
a∈CX1···Xn

wX1···Xn(a) , (33)

which provides the maximum benefit to the group such that each of its members achieves
at least its security level.

5 Partial Sociation

Our development thus far has assumed the full generality of conditioning; namely, that
(i) a conditional utility depends on the entire conjecture profiles of all of the parents,
and (ii) an agent’s conditional utility is a function of all elements of the action profile. If
maximum complexity is required to define social relationships properly, the full power
of conditional game theory may be necessary. It is often the case, however, that the
influence relationships are sparse, in that an agent does not condition its preferences
on the entire conjecture profiles of its parents. It can also be the case that an agent’s
utility does not depend upon the entire action profile. To account for such situations, we
introduce the notion of sociation.

Suppose Xi has pi > 0 parents, denoted pa (Xi) = {Xi1 , . . . , Xipi
}, with condi-

tional utility uXi| pa (Xi)(pa (ai)), where pa (ai) = {ai1 , . . . , aipi } is the joint conjec-
ture for pa (Xi).
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Definition 9. A conjecture subprofile, for Xik , denoted âik , is the subprofile compris-
ing the elements of of aik that influence Xi. We then have

uXi| pa (Xi)[ai| pa (ai)] = uXi| pa (Xi)[ai| pa (âi)] , (34)

where pa (âi) = (âi1 , . . . , âipi ). {X1, . . . , Xn} is completely conjecture sociated if
âik = aik for k = 1, . . . , pi and i = 1, . . . , n. It is completely conjecture dissociated if
âik = aik for k = 1, . . . , pi and i = 1, . . . , n, in which case, pa (âi) = (ai1 , . . . , aipi ).
Otherwise, the group is partially conjecture sociated.

Definition 10. A utility subprofile, denoted ãi, comprises the subprofile of ai that af-
fects Xi’s utility. We then have

uXi| pa (Xi)[ai| pa (ai)] = ũXi| pa (Xi)[ãi| pa (âi)] , (35)

where ũ denotes u with the dissociated arguments removed. {X1, . . . , Xn} is com-
pletely utility sociated if ãj = aj for i = 1, . . . , n. It is completely utility dissociated if
ãi = ai for i = 1, . . . , n, in which case

uXi| pa (Xi)[ai| pa (ai)] = ũXi| pa (Xi)[(ai| pa (âi)] . (36)

Otherwise, the group is partially utility sociated.

Definition 11. A group {X1, . . . , Xn} is completely dissociated if it is both completely
conjecture dissociated and completely utility dissociated, in which case, pa (ai) =
pa (ai) = (ai1 , . . . , aipi ), the profile of conjecture actions of the members of pa (Xi).

For a partially sociated system, the concordant utility assumes the form

UX1···Xn(a1, . . . , an) = ŨX1···Xn(ã1, . . . , ãn) (37)

=

n∏
i=1

ũXi| pa (Xi)[ãi| pa (âi)] , (38)

where Ũ is U with the dissociated arguments removed. For a completely dissociated
group, the concordant utility coincides with the group welfare function and assumes the
form

wX1···Xn(a1, . . . , an) =

n∏
i=1

ũXi| pa (Xi)
[ai| pa (ai)] . (39)

Example 3. Let us now reconsider the automobile buying example introduced in Ex-
ample 1. We shall assume that the influence flows are as depicted in Figure 1, with the
corresponding concordant utility of the form expressed by (23), yielding

UX1X2X3 [(a11, a12, a13), (a21, a22, a23), (a31, a32, a33)] =

uX1(a11, a12, a13)uX2|X1
(a21, a22, a23|a11, a12, a13)

uX3|X1X2
[a31, a32, a33|(a11, a12, a13), (a21, a22, a23)]. (40)
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If all agents have opinions about the model, manufacturer, and color attributes, then
each agent must specify utility valuations for each of the eight possible outcomes. Thus,
X1 would specify eight utility values. X2, however, would need to define eight condi-
tional utilities, each with eight valuations, and thus would make 64 utility specifications.
Finally, X3 would define 64 conditional utilities, each with eight valuations, and thus
would make 512 utility specifications — a formidable task.

Now let us suppose that X1 is concerned only about the model and manufacturer,
but has no opinion about the color. Also, we assume that X2 is concerned only about
the manufacturer given X1’s conjecture about the model and manufacturer. Finally, let
us assume that X3 is concerned only about the color given X1’s conjecture about the
model and X2’s conjecture about the manufacturer.

As a result of these simplifications, we see that X1 is partially utility sociated, thus
ã1 = (a11, a12). We also see that X2 is completely utility dissociated and partially
conjecture sociated, hence ã2 = a22 and pa (a22) = (a11, a12). Finally, X3 is also
completely utility dissociated and partially conjecture sociated, thus ã3 = a33 and
pa (a33) = (a11, a22). The concordant utility simplifies to

ŨX1X2X3
(a11, a12, a22, a33) = ũX1

(a11, a12)

ũX2|X1
(a22|a11, a12)ũX3|X1X2

(a33|a11, a22). (41)

Under these simplifications, we see that X1 need only make four specifications when
defining ũX1

, X2 need make two specifications for each of X1’s four specifications,
resulting in eight specifications when defining ũX2|X1

, and X3 need make two specifi-
cations for each of the four joint specifications of X1 and X2, resulting in eight spec-
ifications when defining ũX3|X1X2

, yielding a grand total of 20 utility specifications
— a considerable reduction in complexity from the 584 specifications required under
the condition of complete sociation (and even less than the 24 specifications needed to
define categorical utilities).

Tables 1(a), (b), and (c) respectively tabulate X1’s categorical utility, X2’s condi-
tional utilities given X1’s conjectures, and X3’s conditional utilities given the conjec-
tures for X1 and X2.

Table 1. (a) The categorical utility ũX1(a11, a12), (b) the conditional utility
ũX2|X1

(a22|a11, a12), and (c) he conditional utility ũX3|X1X2
(a33|a11, a22)

(a)
a12

a11 D F

C 0.1 0.4
S 0.3 0.2

(b)
(a11, a12)

a22 (C,D) (C,F ) (S,D) (S, F )

D 0.3 0.5 0.6 0.4
F 0.7 0.5 0.4 0.6

(c)
(a11, a22)

a33 (C,D) (C,F ) (S,D) (S, F )

R 0.1 0.3 0.5 0.8
G 0.9 0.7 0.5 0.2

The individual and group welfare functions are illustrated in Tables 2 (a) and (b).
The group negotiation set is NX1X2X3

= {(C,D,G), (C,F,G), (S, F,R)} and the
negotiation rectangle is RX1X2X3

= {(C,F,G), (S, F,G)}, yielding the compromise
set CX1X2X3

= {(C,F,G)}: a green foreign-made convertible.
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Table 2. (a) The individual welfare function,wXi
, i = 1, 2, 3, and (b) the group welfare function

wX1X2X3(a11, a22, a33)

(a)
wX1(C) = 05 wX1(S) = 0.5

wX2(D) = 0.49 wX2(F ) = 0.51

wX3(R) = 0426 wX3(G) = 0.574

(b)
(a22, a33)

a11 (D,R) (D,G) (F,R) (F,G)

C 0.023 0.207 0.081 0.189
S 0.130 0.130 0.192 0.048

6 Conclusions

As acknowledged by many decision theorists [2,10,16], neoclassical game theory is an
appropriate model for competitive and market-driven scenarios, but it offers limited ca-
pacity for the design and synthesis of multiagent systems that are intended to cooperate,
compromise, and negotiate.

This paper (i) presents a principle-based extension to neoclassical game theory that
replaces categorical utilities with conditional utilities that encode the social influence
relationships that exist among the agents; (ii) develops notions of rational multiagent
decision making to define rational behavior simultaneously for groups and for individ-
uals; and (iii) addresses computational complexity by maximally exploiting influence
sparseness among the agents. Conditional game theory provides a powerful framework
within which to design and synthesize cooperative multiagent systems.
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Abstract. The purpose of this paper is to define software engineering abstrac-
tions that provide a generic framework for stock market simulations. We demon-
strate a series of key points and principles that has governed the development
of an Agent-Based financial market application programming interface (API).
The simulator architecture is presented. During artificial market construction we
have faced the whole variety of agent-based modelling issues : local interaction,
distributed knowledge and resources, heterogeneous environments, agents auton-
omy, artificial intelligence, speech acts, discrete or continuous scheduling and
simulation. Our study demonstrates that the choices made for agent-based mod-
elling in this context deeply impact the resulting market dynamics and proposes a
series of advances regarding the main limits the existing platforms actually meet.

Keywords. Multi-agent systems, Artificial market, Market microstructure,
Agents behaviour.

1 Introduction

Multi-agent modelling is nowadays actively applied to financial markets simulation.
This is partly due to its ability at reflecting a wide range of complexities arising in these
markets, and to its flexibility for exploring the impact of automation in trading. Thus,
agent-based computational simulations [1] may contribute to several scientific debates
in Finance. One example at the crossroads of multi-agent modelling and machine learn-
ing is Bayesian learning : this technique can be used by agents to incorporate all avail-
able information into the decision making process [2]. It can also be employed to track
a moving parameter [3] such as the fundamental value of a given stock. On the other
hand, financial markets offer an important field of application for agent-based modelling
and machine learning, since agent objectives and interactions are clearly defined. For
this reason, financial market environments can help to answer some modelling issues
related to agent engineering, or test robustness of existing behavioural models.

At the present, there is a large number of agent-based frameworks, with varying func-
tionalities and architectures, addressing different problems. Generally speaking, there
are two major approaches to agent-based financial market simulations. The first one is
leads to the realization of a specific market structure, with specific agents’ behaviours,

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 350–364, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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trading instruments and rules. The second one is geared at designing a general envi-
ronment with flexible settings and functionalities that can accept heterogeneous agents
populations.

We first list a limited set of these models belonging to these philosophies and that
point out some design questions. – Altreva Adaptive Modeler is a tool for creating
agent-based market simulations for a specific problem: stock price forecasting [4]. The
author, among other questions, describes a problem of a memory limitation during the
framework processing.

– JLM market simulator is another tool that investors can use to create a market
model using their own inputs. The authors (Jacobs Levy Equity Management, Inc.)
conclude that it is not an easy task to build a complex asynchronous simulation with
reasonably realistic properties. The first highlighted source of potential problems is the
diversity of agents’ behaviours (for instance, there are only mean-variance investors in
JLM); a second one is the specification of user’s trading strategies, that does not require
the user’s programming skills [5].
– Ascape is a general agent-based framework, developed at Brookings Institute in the
90’s [6], that is actively used in financial market modelling. Its developers discuss de-
sign possibilities to express the same basic modelling ideas in one way and have them
tested in many different environments and configurations.

Most of present artificial market platforms suffer from a lack of flexibility and must be
viewed as softwares rather than APIs, because they are mainly oriented for solving a
given problem and, most of the time, cannot easily be used to explore a wide range of
financial issues. This is due to some structural choices that are made by the developers
during the coding phase.

In this paper we present the ArTificial Open Market API (here-after ATOM, see
http://atom.univ-lille1.fr) and focus our attention on some important issues of agent-
based stock market design we have faced during its development. Among others, we
make a specific point on the ability of this new, generic architecture to overcome some
issues mentioned previously. After a general exposure of our main choices in terms of
software engineering, we propose our solution for several problems : i) how should we
manage information to reprocess real market order-flows (necessity of a unique order
identity?), ii) how should the scheduling system be organized, iii) how can we integrate
a human agent in the simulation process, with his own strategy, (”human in the loop”)
...? In addition, we tackle an important design question in the representation and struc-
ture of the trading agents, from zero-intelligence agents to sophisticated intelligence
ones, like technical traders. We emphasize the importance of calibration and validation
aspects of agent-based market and run several series of validation tests in order to show
the ability of ATOM at replicating real market price motions.

2 The Artificial Trading Open Market API

ATOM is an environment for Agent-Based simulations of stock markets. At the present
moment, it is realized based on the architecture close to the Euronext-NYSE Stock Ex-
change one. Agent-Based artificial stock markets aim at matching orders sent by virtual
traders to fix quotation prices. Price formation is ruled by a negotiation system between
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Fig. 1. Double auction market with human and artificial traders

sellers and buyers based on an asynchronous, double auction mechanism structured in
an order book (see Figure 1). ATOM is developed as large scale experimental platform
with heterogeneous agents populations. It is a concrete implementation of MAS ab-
stract design issues: agent autonomy and its behaviour (strategy), each agent asses her
position and makes decisions individually; price history and orders sets are emergent
phenomenon of market activities; allowance of distributed simulations with many com-
puters interacting through a network as well as local-host, extremely fast simulations;
possibility to design experiments mixing human beings and artificial traders.

2.1 Distinctive Features

Following distinctive aspects of ATOM can be highlighted:

1. ATOM can use various kind of sophisticated agents with their own behaviours and
intelligence (see section 4), including portfolio optimizers as this platform provides
the multi-assets (multi-orderbook) organisation. In addition, ATOM contains all
variety of the Euronext-Nyse orders: limit, market, stop-limit,iceberg, etc.

2. Thousands of agents can evolve simultaneously, creating a truly heterogeneous
population. Once designed, agents evolve by themselves, learning and adapting to
their (financial) environment. 100,000 agents have been employed simultaneously
for technical analysis evaluation research [7].

3. ATOM can combine human-beings and artificial traders on a single market using
its network capabilities. This feature support a wide variety of configurations: from
”experimental finance” classrooms with students, to competing strategies run inde-
pendently and distantly by several banks or research labs. The scheduler can be set
so to allow human agents to freeze the market during their decision process or not
(see above, section 3.4).

4. ATOM serves as a ”replay-engine”, meaning that it is possible to re-execute whole
trading log file with following information: identification of order book, that corre-
sponds to stock identity, agents identification, the platform time stamp fixed at the
very moment orders arrive to a given order-book, prices resulting from the orders.
ATOM takes less than 5 seconds to replay an entire day of trading, that contains
400,000 activities. This tool is extremely important for policy-oriented experiments
focusing on the technical features of the market microstructure (tick size, price fix-
ing protocol) and its influence on the price dynamic.
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5. Agents can be viewed as simple nutshells in certain cases: they only execute actions
predefined by third party, meaning that their behaviour is defined (controlled) by
experimenter. These agents are called ”Hollow Agents”. For example, a human
trader can act through such agents. By definition, ”Hollow Agents” do not have any
artificial intelligence and can be assimilated to human-machine wrappers.

6. Today, there are only few artificial stock markets presenting multi-assets order book
([8], [5], [9]). ATOM is one of them, that allows us to simulate more advanced
agents behaviour with risk-return management and wealth optimisation utility func-
tions (see section 4).

7. We overcome a weak point of most existing simulators, that include only limit and
market order types (for instance [8], [10]), ATOM contains all spectrum of orders
present in Euronext Stock Exchange.

3 Artificial Market Design Issues

Artificial Stock Markets (here-after ASM) are environments that allow to express all
classical notions used in multi-agent systems. ASM, like any other MAS, are suited
for the study of various emergents phenomena. Using the so-called ”vowels” approach
[11], the definition of AEIO1 is straightforward : for example, the environment in
which agents evolve is the market microstructure, agents behaviours mimic those of
real traders with their own and interaction occurs through orders and prices. Neverthe-
less, if one wants to build an efficient platform, several issues can be identified and must
be precisely and strictly regulated.

3.1 Entities Organization

During an artificial stock market modelling many MAS design principles are employed,
for example, modularity and encapsulation, that suggest dividing the system into differ-
ent sub-organizations. There are different attempts to organize artificial stock markets.
For example, Agents – Rules and Securities in [12] or Autonomous engine (platform
core) – Simulation User Interface and Agents separate binary modules in [13].

The choice of ATOM organisation is resulting from intention to introduce fairly
tractable markets, to be close to NYSE-EURONEXT stock exchange organisation and
to ground modelling on MAS design main concepts. ATOM architecture can be viewed
as a system with interacting components: i) Agents, and their behaviours, ii) Market is
defined in terms of microstructure and iii) Bank reflects intermediaries and monetary
financial institutions iv) the Artificial Economic World provides economical indicators.
Depending upon the researcher’s targets, the Artificial Economic World can be plugged
or not in the simulations.

We link each system entity with the sets of Responsibilities in order to cover all
functionality and complexity of real world market. Thus, Market is responsible for the
generating of market scenarios and price path, it presents set of constraints, rules, regu-
lations, leading participants to activities. Agents may play roles of buyer or seller with

1 A Agents, E Environment, I Interactions, O Organization, U Users.

AEIO
A
E
I
O
U
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different trading objectives. The agents directly initialize transactions. Bank compo-
nent represents all intermediaries, that maintain information exchange between buyers
and sellers. At the same time, Bank can be considered as the special type of buyer
or seller, that has unlimited wealth, hence take active part in stock trading. We pro-
pose to consider Bank as trading and intermediary agent. Artificial Economic World
provides external information about perspective corporates development, dividends and
coupons changes, tax police modification. This information influences agent decisions.
Artificial market architecture (system elements and interaction between them) is pre-
sented on the Figure 2. Thanks to its high modularity and its ability to mimic real-world

Fig. 2. Market organizations and interactions

environments, it can also serve as a research tool in Portfolio Management, Algorithmic
Trading or Risk Management among others.

It is hardly possible to describe the complex algorithmic structures that are necessary
for the realization of such multi-agent platforms; therefore we have chosen to introduce
three of difficulties one must face while developing an ASM: i) the management of
orders’ ID, ii) the scheduling system, and iii) the introduction of a human-being in the
simulation loop (here-after ”human-in-the-loop” problem).

3.2 A Unique Identity for Orders

In its simplest form, an order is a triplet of direction (purchase or sale), a quantity and
a price. Usually this type of order is called a ”Limit Order”. In the Euronext-NYSE sys-
tem, several other orders are used (see ”EURONEXT” Rule Book at http://www.euronext.
com). Once constructed by an agent, the order is sent to the order-book. It is then ranked
in the corresponding auction-queue (”Bid” or ”Ask” if it is an order to ”Buy”, respec-
tively to ”Sell”) where are stacked the other pending orders using a ”price-then-time”
priority rule. As soon as two pending orders can be matched, they are processed as a
”deal”, which delivers a new price. Notice that the clearing mechanism implies that
cash is transferred from the buyer to the seller and stocks from the seller to the buyer.
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For various reasons, financial institutions need to proceed again an historical record
of orders (for example, for the optimization of algorithmic trading methods). Such his-
torical records collect the expression of human behaviours in specific circumstances.
The first difficulty of order-flow replaying is exact interpretation of the order flow as it
is expressed in the real-world. If order set consists of only ”Limit Orders”, it could be
perfectly reproducible. Unfortunately, issued orders can be modified or deleted. It im-
plies one must be able to identify clearly reference between an ”Update” or a ”Delete”
and previously issued orders. Thus, a generic platform has to use a unique ID for orders.
To our knowledge, this is neither the case for the Genoa Artificial Stock Market (see
[14]) nor in the Santa-Fe ASM for example (see [15]). How should an ASM deal with
this issue?

In ATOM, each order is sent by an agent. Each agent has a unique name. The Id
is then constituted by the agent’s name, owner of this order, plus a unique number
managed by the agent itself. It is the responsibility of the agent to be able to retrieve
its own orders. If she does not do that, she will not be able to send a Cancel or an
Update order. Two other solutions exist : the first option could use the system time-
stamp, however, with classical systems and languages, it is perfectly possible to process
several orders during the same tick time; the second option could consist in making the
market managing these ID’s, but this would imply to use a corresponding table between
external and internal Ids. This latter complication is useless.

3.3 Time Handling and Scheduling System

A crucial question for distributed system design is the way one deals with time. There
are two aspects for this problem: the modelling choice (sequential/parallel evaluation
of agents) and the architecture choice (single stream or multiple streams processes). In
ATOM the scheduling system is parametric, thus one can choose between four possible
configurations (see figure 3). In each case, one can also decide if the talking possibilities
for agents will be balanced among them or not. These possibilities give the designer a
real power for answering a wide range of problems and experiments.

Fig. 3. Modelling and architecture choices in time handling problem



356 O. Brandouy, P. Mathieu, and I. Veryzhenko

The main difference between the sequential and parallel simulation principle is about
the tick time. In MAS philosophy, one considers that time changes along environments
changes. In the sequential mechanism, the tick time changes after each order sent by
an agent. This means that an agent is always able to see other agents’ decisions before
making its own decision. In the parallel mechanism, the tick time changes after one
decision round processed over all agents. It is a way to simulate parallelism between
the agents. This is the principle followed by the Conway’s game of Life [16].

However choosing one of these arrangements is just a modelling choice. Any of
them can be obtained in a single stream architecture as well as in a multiple stream
architecture.

In a single stream architecture, one needs a specific software engineering pattern to
code the parallelism. The easiest way is to let the Market collect all the orders before
their execution. It is a way to simulate simultaneity in agents decisions. If one needs to
ensure fairness among agents, ATOM uses a loop to give the talk to all agents – ”equi-
table round table”. An agent is allowed to act only once in each talk round. Of course,
if one wants to depart from this fairness, it is sufficient to pick randomly an agent and
to offer him the possibility to decide.

Note that an agent can decline the possibility to speak, hence, even if we have a
single stream, we can easily simulate different talking frequencies. A possibility to ex-
press an intention does not necessarily imply that a new order is issued. Since agents
are autonomous, they can evaluate their positions every round, modify trading rules ac-
cording to new market conditions. Developing an agent that sends twice less orders than
the others can be made by programming her behaviour such as she will decline word
on odd turns (keep unchanged position), while others accept to talk each time they have
the possibility to do so.

The main advantage of the single stream architecture is that the designer can repro-
duce perfectly all the experiments. He keeps the control on agent’s talk. We consider
that it is the best way to build and test experiments.

In a multiple stream architecture, parallelism is obvious, but the designer does not
have the control about the talking order of agents. This order is defined by the Operating
System, and of course, it can produce biases in simulations. Nevertheless, one partic-
ularity of this approach is that the time is given in seconds – real time. It is also easy
to express the different trading frequencies for different agents, similarly with what is
described above. If there is no synchronization mechanism between the streams, the
simulation is unfair, an agent can talk twice more than another one. In a fair simulation,
one just has to put a synchronization pattern like a Cyclic Barrier to grant this property.
This architecture is preferable if one wants to include humans in the loop.

As ATOM is a multi-asset artificial market platform, we have implemented a ”one
order for one book” rule: during a talk round, agents are just allowed to send at most
one single order to a given order book (i.e. one order at most per stock) within the
same ”round table discussion”. This principle helps to keep the equity in agents ac-
tions. However, notice that agents have the possibility to send several orders within the
same ”round table discussion” to several order books: this ability is simply constrained
by the ”one order for one book” rule. If the ASM is settled such as it runs a multi-stock
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experiment, an agent can therefore rebalance her portfolio using one order per category
of stocks she holds. The proper system scheduler provides this possibility.

It is necessary to stress that ATOM can govern all combinations between sequential
and parallel mechanisms, equity or unfairness in agents’ actions, one stream or multi-
ple streams processes. The combination of single stream, parallel mechanism, equity
in actions is used for most of the experiments concerning financial problems. Parallel
mechanism, multiple streams processes are used to allow the human investor to trade in
equitable conditions with artificial agents within the platform.

3.4 Human in the Loop

ATOM can include human-beings in the simulation loop. This is an important feature
that is seldom offered in multi-agent artificial stock markets, if simply possible with
respect to the algorithmic choices made in other platforms. Human agents do not differ
from artificial agents in their philosophy: they share the same general characteristics as
other agents. The so-called ”vowels” approach is respected, even if U (for ”Users”) is
subsumed by A – Agents. A human agent is an interface allowing for human-machine
interaction. Through this interface one can create and send orders. Notice that human
agents do not have any artificial intelligence: they just embed human intelligence in a
formalism that is accepted by the system.

To allow the introduction of human in the loop, ATOM has been designed to deal
with communications over the network. Human agents can be run on different machines
and the system allows client-server configurations. This approach is particularly fruitful
for a pedagogic use of the platform during Finance class for example. In this latter case,
several students have their own trading interface on their computers. In other terms,
each of them runs a human agent linked to the ATOM server through the network.
However, the presence of human agents does not alter the way the scheduler operates.

Two kinds of human agents can co-exist in ATOM: Modal Human Agents (MHA)
and Non Modal Human agent (NMH).

– MHA can stop the scheduling system. As long as human-entity does not express her
intentions (to issue a new order or to stay unchanged), the simulation is temporary
frozen. In a classroom, this aspect is particularly important and leaves time for
students to estimate current position and to make decision.

– NMH cannot freeze the simulation, which means that human agents compete in
real time with artificial traders. Even if human agents can have a hard time in this
situation, it remains realistic in a financial world where algorithmic trading is more
and more frequent.

In this section we have presented three major technical points that characterize ATOM
and should also concern many ASM. Even if other important technical issues could not
be mentioned in this article, we have stressed that the development of artificial stock
market platforms put forward a series of complex issues in terms of computer science.
In the next section, we introduce some additional elements relative to the artificial in-
telligence of virtual agents that can be run in our platform. This question is of main
concern for computer scientists and for financial researchers alike.

U
A
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4 Artificial Traders: From Basic Reactive Agents to Highly
Sophisticated Entities

Artificial agents, market participants, comply with basic agent-based modelling con-
cepts [17].

– Autonomy means that an agent is not passive subject to a global, external flow of
control in its actions. An agent has own objectives, abilities to accept information,
then to analyze it and based on these results to make decision about further actions.

– Proactivity means that the agents act in order to achieve its objectives or goals. In
terms of artificial financial market, agents trade (set up the buy and sell orders) to
maximize their wealth.

Many ASM can run large populations of homogeneous, respectively heterogeneous ar-
tificial traders. This is also the case for ATOM, moreover it allows facilities which are
not available in other platforms. Generally speaking, artificial traders are characterized
by their a) available set of actions (buy, sell) and possibility to switch between these
activities (from buyer to seller) b) decision making rules, for instance, buyers cannot
buy at a price higher than their buyer value and sellers cannot sell for a price below
their seller cost c) scheduling of action: how often agent is able to send the orders
in respond to market request, some agent participate one time per hour, while others
trade every minute d) information consideration, in the mean which information agent
requires from market or external word in order to make decision and what kind of in-
formation she shares for others e) possibility to describe status in mean of number of
assets and available cash or current budget. Agents heterogeneity is driven by different
combinations of these properties. For example, the following types of agents can be
implemented:

Zero Intelligence Traders (ZIT). This behaviour is merely based on stochastic choices:
there are equal possibilities to send ask or bid order, ZIT do not observe and do not ask
any information to set up prices and quantities, that are random variable. Concerning
scheduling, such traders respond to every market request. This kind of behaviour has
been popularized in economics by [18]. Despite their extreme simplicity, these agents
are widely used because more sophisticated forms of rationality appear to be useless to
explain the emergence of the main financial stylized facts at the intraday level.

Technical Traders. ”Chartists” are a specific population of technical traders. These
agents try to identify patterns in past prices (using charts or statistical signals) that could
be used to predict future prices and henceforth send appropriate orders. One can find
an example of such behaviour in [19]. From a software engineering perspective, these
agents need to have some feedback from the market and some kind of learning process
as well (reinforcement learning for large sets of rules is generally used). At the same
time, technical traders ignore the actual nature of the company, currency or commodity.
This lead to some complex algorithmic issues. For example, if one considers a popula-
tion of a few thousand Technical Traders, it is highly desirable to avoid that each agent
compute the same indicators, or simply store themselves the whole price series.
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Sophisticated Intelligence Traders (SIT). Several kinds of SIT can evolve in ATOM:

i) Cognitive Agents generally have a full artificial intelligence, although it can be
designed to be rather minimal (usual features to develop such agents are memory, infor-
mation analysis processes, expectations, strategies and learning capacities). For exam-
ple, an agent buying at a specific price and sending immediately a ”stop order” to short
her position if the price drops under θ% times the current price, will fall in this category.
Agents using strategic order splitting (see for example [20]) or exploiting sophisticated
strategies (for instance, [21]) can also be considered as Cognitive Agents.

ii) Evolutionary Agents are the ultimate form of SIT; they outperform Cognitive
Agents in terms of complexity since they are able to evolve with their environment.
These agents can also generate new rules or strategies (this can require genetic algo-
rithms for example).

iii) Risk Averse Agents set up portfolio models in which the individual chooses a set
of assets in order to maximise some function of wealth. For each investment possibility
I from the set of alternatives F , the agent will undertake one Iopt, that will maximize
resulting wealth W (I) or E[W (Iopt)] = maxI∈FE[W (I)]. Utility function provides
relative measure of investor’s preferences for wealth and the amount of risk they are
willing to undertake in order to maximize their wealth. In ATOM, the agents have a
choice between different utility functions: Constant Absolute Risk Aversion (CARA),
Constant Relative Risk Aversion (CRRA), logarithmic and quadratic.

iv) Mean-variance Agents are investors trading over several order books, hence refer
to portfolio optimisation aspects. When an investor wants to reoptimize her portfolio,
she chooses and ”ideal” portfolio from a mean-variance efficient frontier [22], that is
based on analysis of internal and external information. The choice of portfolio depends
on the trader’s risk aversion. These agents send buy and sell orders in order to get closer
to ”ideal” portfolio. Such population of the agents is heterogeneous due to their initial
cash available, reoptimization (trading) frequency and risk aversion.

We introduce environment-based interactions, where market restricts agents behaviour
and at the same time it evolves in response to agents activities. Thus, the environment
has its own state and rules of changes [23]. Traders submit orders depending on the state
of the order book or best quotes (environment). These orders may result in a change in
the best prices. The state of the market changes over time. A feedback loop is formed: a
trader submits orders which affect the state of the market which affects the decisions of
the trader on what order to submit. This aspect relies to Interaction Movement Compu-
tation (MIC∗) [24], where the environment defines actions sets of autonomous agents
to achieve their goals. Agents interact with one another in order to achieve either a com-
mon or individual objectives through environment. The agents can also interact through
the common variable of the past price history, but they are not directly affected by the
actions of others. In order to keep agents equality and to avoid the biases in the internal
information access, agents should be informed about book order changes simultane-
ously. Notification method is realized in ATOM in accordance with Influence Reaction
Model for Simulation (IRM4S)[25], [26]: all orders, as influences, are collected in the
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order book, once, all agents have sent their orders, price is fixed as reaction. This method
is used only for synchronous trading mechanism.

5 Validation Tests

As mentioned previously (see section 2), every ASM should succeed in processing per-
fectly a given order flow collected from a real-world stock market at a specific date. The
result is obtained confronting prices delivered by the market at this date and the prices
generated by the ASM using the same set of orders. It should also generate relevant
”stylized facts” with regard to their real-world counterpart: these stylized facts are sta-
tistical characteristics of financial time series that prove to be systematically observed
in various contexts (different assets, periods of time, countries).

This section presents how ATOM fulfill this requirements, moreover, performance
tests are considered.

5.1 Performance Test

We ran several experiments to demonstrate running time for realistic price series gen-
eration and existing order-flow execution.

To demonstrate ATOM price fixing ability, we use a group of heterogeneous agents.
The population consists of Zero Intelligence Traders (ZIT) and Technical Simple Mov-
ing Average Traders (in the equal proportions), described in the section 4. Number of
fixing prices is 1052. Number of agents varies from 10 to 105. Results are introduced in
the Figure 4(a). It takes about 12 minutes to run 105 agents for price fixing.

To test running time of replaying engine, we use real market order flow. The same
agents population is used to read all variety of orders (limit, market, stop-limit, iceberg,
etc.) and send them to order book. It is up to the market to fix price in a proper way
(according to a fixing protocol). Number of orders vary from 100 to 105. It takes 2
minutes to replay 105 orders (see figure 4(b)).
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(b) Orders flow execution time.

Fig. 4. Results of the performance testing

2 On the Euronext Stock Exchange the number of fixed prices for different stocks varies from
1000 to 5000 per day.
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5.2 ATOM Reality-Check

In this section, we report a series of tests conducted to check whether ATOM can gen-
erate financial dynamics in line with the ones of the Euronext-NYSE stock-exchange
or not. The first series of test is devoted to the ability of ATOM at generating unbiased
prices when it deals with a real-world order-flow.

Figure 5(a) and Figure 5(b) reports results of the first reality-check (top Figures
report results produced with the ATOM data, bottom Figures being those based on
Euronext-NYSE data). We ran ATOM with a Hollow Agent reading the entire set
of 83616 orders concerning the French blue-chip France-Telecom (FTE) recorded on
June 26th 2008 between H9.02’.14”.813”’ and H17.24’.59”.917”’. As mentioned previ-
ously, handling time in simulations is particularly complex and may lead to unsolvable
dilemma. We cannot guarantee an exact matching of waiting times but rather a coher-
ent distribution of these values delivered by the simulator engine with regard to the
observed waiting times.
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Fig. 5. Results of the ”Reality Check” procedure

Notice that ATOM performs rather decently in satisfying the first reality check
procedure.

5.3 Stylized Facts

The second subset of tests focuses on ATOM ability to generate realistic artificial prices
when populated with artificial agents. We ran a series of simulations to verify if ATOM
can generate major stylized facts that are usually reported in the literature (see for exam-
ple [27]). For the sake of simplicity and space-saving, we only report in a pictorial form
of the classical departure from Normality of asset returns at the intraday level (Figures
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Fig. 6. Stylized fact, departure from Normality

6(a) and 6(b)). Notice again that these statistics are reported on the left-hand Figures
when based on ATOM prices and on the right hand when based on Euronext-Nyse data.

ATOM produces stylized facts, quantitative as well as qualitative, that is quite dif-
ficult task for most of artificial market platforms. Even if some artificial markets are
able to reproduce the main stylized facts such as the non Gaussian return distribution or
volatility clustering, the corresponding quantitative characteristics (basic statistics) do
not fit real ones. ATOM can be easily calibrated to match specific quantitative market
features (moments). This calibration facility is described in detail in the paper [28].

6 Conclusions

The recent financial crisis has stressed the need for new research tools that can deal
with the high level of complexity of the economic world. Agent based methods propose
a powerful alternative to traditional approaches developed in finance. Among others,
Artificial Stock Markets offer a completely controlled environment to test new regula-
tions, new exchange structures or new investment strategies.

We showed that building a realistic artificial stock market platform can be efficiently
done using the main MAS concepts: agents’ behaviours, environment etc. We also dis-
cussed a series of software engineering and architecture design issues to implement
such systems. We illustrate these points with the ATOM application programming in-
terface (API). The latter can be used to provide a polymorphic platform for a wide range
of large scale experiments, including or not artificial agents, sophisticated behaviours,
communication over the network...

Along this article, we have tried to show how Finance can benefit from Agent-Based
Modelling in tackling complex phenomena emerging in the market. For example, a wide
range of heterogeneity in agents’ behaviours can be settled, that opens new perspectives
in this field where a representative agent is traditionally used. Nevertheless, our main
point is to show how the power of Agent-Based modelling can be challenged with this
field of Economics that necessitates to mobilize the most advanced techniques of the
domain.
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Abstract. One of the main approaches to define a Virtual Organization, which
is a concrete type of Organization Centered Multi-Agent System, is to follow a
formal approach. Using a formalization involves introducing mathematical and
logical concepts. In this paper, we present a formalization for Virtual Organi-
zations, named Virtual Organization Formalization, which allows defining this
kind of systems organized by means of the Organizational Dimensions, extracted
after studying the human organization theory, where entities are distributed by
the functionality they are providing to the Virtual Organization. Additionally, this
work studies different proposals that are aimed to formally define an Organization
Centered Multi-Agent System, comparing them with our own proposal.

Keywords: Virtual organizations, Formalization, Multi-agent systems.

1 Introduction

During the last years, different trends to develop Multi-Agent Systems (MAS) have
been appeared. One of the most important approaches is the organizational approach.
Organizations describe system functionality, structure, environment and dynamics. In
Organization Centered MAS (OCMAS), the organization exists as an explicit entity of
the system [1], defined by its designers following a top-down approach. In OCMAS,
agents are aware of the organization in which they are participating and they are pro-
vided with a representation of it. Agents can use this knowledge to reason about it and
to establish relationships and interactions to reach their objectives.

OCMAS can be defined and described by means of a formal approach. To formalize
them it is necessary to introduce concepts taken from mathematical and logic theories,
such as LAO [2], whose syntax to define a system follows the temporal logic language
CTL [3]. Other proposals not only provide a formal way to define an OCMAS, but
also a language to describe it, such as the proposal by Grossi et al. [4], which em-
ploys a multimodal propositional logic language to model agent organizations, based
on Kripke models. Formal approaches are very useful in order to obtain a clear defi-
nition of OCMAS, improving the study and analysis of the different issues regarding
them. Additionally, these formalizations are commonly used to check the correctness
and integrity of an OCMAS, by means of techniques like model checking [5].
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However, formal approaches are not always able to represent all concepts that com-
pose an agent organization. Using the current proposals it is not possible to completely
define a paradigm for developing agent systems such as Virtual Organizations (VO)
[6], which are sets of individuals and institutions that need to coordinate resources and
services. Thus, they are open systems [7] formed by the grouping and collaboration
of heterogeneous entities, and allowing model systems at a high level of abstraction.
They include the integration of organizational and individual perspectives and also the
dynamic adaptation of models to organizational and environmental changes.

OCMAS can be structured by splitting them in different dimensions [8]. Concretely,
VOs can be structured by means of the Organizational Dimensions [9], which should be
considered when modeling an organization. These dimensions describe all the entities
that compose the organization, distributed by the functionality of the entities that they
are providing to it. These dimensions are: structural, functional, dynamical, environ-
ment and normative. Current formal proposals only define a subset of the dimensions
and concepts presented in the Organizational Dimensions. Thus, it seems necessary to
be provided with a formalization that clearly models the Organizational Dimensions,
making a clear difference between them.

The objective of this work is to present a formal framework to define a VO, tak-
ing the Organizational Dimensions as a basis. Using this representation, we are able to
verify the correctness and completeness of the defined VOs, by means of techniques
based on logical and mathematical approaches like model checking. Additionally, this
formalization will be useful when dealing with self-adaptive and self-organization con-
cepts, since it will be established how the system changes through time. The rest of
this work is structured as follows: Section 2 describes the Organizational Dimensions.
Section 3 describes formal frameworks related with our work. Section 4 presents the
Virtual Organization Formalization (VOF), a formal framework to define VOs. Section
5 presents a discussion between our proposal and the analyzed frameworks. Finally,
section 6 gives our conclusions and future work on this work.

2 Organizational Dimensions

When modeling an organization, the following dimensions should be taken into account
[9]: (i) structural, describing the entities that structure the system; (ii) functional, which
details the functions, goals and services of the organization; (iii) dynamical, which con-
siders the interactions between elements, and their effects; (iv) environment, describing
the elements that surround the system; and (v) normative, which defines the mecha-
nisms used by the society to influence the behavior of its members.

The Structural Dimension comprises all the elements of the organization that are
independent from the agents that are part of it. Thus, it is based on roles, groups and
their patterns of interrelationship (inheritance, compatibility, communication, and so
on). Additionally, the topology of the system is established.

The Functional Dimension specifies the global goals of the organization, its offered
functions and services, the goals followed by different components of the organization
and the tasks and plans that must be executed to reach these goals.
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The Dynamical Dimension specifies how the organization evolves through time, de-
tailing the way in which agents enter and leave it, how they adopt certain roles according
to their capabilities and abilities, and how they can participate in the units or groups of
the organization where they are admitted. This dimension also details the interactions
that take place between internal and external entities.

The Environment Dimension describes how agents are connected with other types
of entities such as artifacts, applications or resources; and how agents can perceive and
act on the environment.

Finally, the Normative Dimension determines the set of defined actions and rules
to manage the behavior of the members of the organization. Norms are widely used to
limit the autonomy inside societies and to solve coordination problems, especially when
it is not possible to exercise a total social control.

3 Related Work

Based on different logics and formal methods, some proposals to model OCMAS have
been defined, each giving its particular vision and adapting its formalization to the spe-
cific kind of system that they are looking to build. In this section, a set of relevant
proposals on this field has been reviewed: OperA [10], LAO [2], Process-Oriented Mod-
eling Framework (POMF) [11], MOISEInst [12], MACODO [13], PopOrg [14] and the
proposals by Grossi et al. [4] and Jonker et al. [15]. All these proposals are analyzed fol-
lowing the Organizational Dimensions described in section 2, in order to check whether
they are taking into account the entities and concepts from each dimension.

Table 1 compares these proposals, analyzing the organizational elements that they
take into account. Next, we will depict in detail the contents of this table, describing
each studied proposal.

OperA proposes an Organizational Model to describe organizations that defines the
social, normative, interaction and communicative structures of the society. The Social
Structure of OperA is related to the Structural Dimension, since it contains roles, groups
and dependency relations between roles. Also, its Social Structure is related to the Func-
tional Dimension since it takes into account the objectives associated with roles. The
Normative Structure is obviously related to the Normative Dimension, as both consider
norms. The Interaction Structure models the activity of the system, which is considered
as the dynamics taken from the Dynamical Dimension. Finally, the Communicative
Structure manages communication between agents, like interactions in the Dynamical
Dimension. Nevertheless, OperA does not model the environment.

MOISEInst is composed of four specifications, distributed in a similar way that the
Organizational Dimensions are. The Structural Specification (SS) defines the roles that
agents will play, including the relations between them, and an additional structural level
named group, where roles belong to and interactions are carried out. The SS contains el-
ements from the Structural Dimension, but it does not model the topology of the system.
The Functional Specification (FS), related to the Functional Dimension, only defines the
goals that the system must achieve. The Contextual Specification (CS) defines the dif-
ferent contexts that influence the organizational dynamics and the transitions between
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Table 1. Comparison between different formal representations

Organizational concepts
OperA MOISE PopOrg LAO POMF MACODO Grossi Jonker

Structural Dimension
Roles � � � � � � � �

Groups � � � �
Agents � � � � � � �

Relations � � � � � �
Topology � �

Functional Dimension
Capabilities � � � �

Abilities � �
Services � �

Objectives � � � � �
Dynamical Dimension

Interactions � � � � �
Dynamics � � � � � �

Environment Dimension
Environment � � � �

Resources �
Normative Dimension

Norms � � � �
Syntax CTL LPR Z Org T T L

Semantics LCR CTL* TPR Org

them. This specification defines the environment, taken from the Environment Dimen-
sion, and its dynamics, just like the Dynamical Dimension does. The CS does not model
the resources populating the environment or the interactions between agents. Finally, the
N ormative Specification (NS) defines the rights and duties of roles and groups inside
the organization, which are known as norms in the Normative Dimension. All agents
that have adopted a role from the SS compose the Organizational Entity (OE), which
is the element of the system that controls the dynamic elements of the organization,
including agents and all events that they generate, such as their interactions.

In order to manage the structural dynamics of a MAS, PopOrg is a model based on
two basic concepts: the population of an organization and its structure. The population
of a MAS is its set of agents, as well as the behaviors and actions, which represent the
capabilities and abilities from the Functional Dimension; and the exchange processes
(services from the Functional Dimension) that agents are able to carry out. Therefore,
the population of a PopOrg organization mainly takes concepts from the Functional
Dimension plus agents from the Structural Dimension. Moreover, the structure of the
organization is composed of roles and the links between them, which are elements that
belong to the Structural Dimension. To relate the population and the structure, PopOrg
has a third element called implementation that relates roles with agents, and links with
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exchange processes. Also, PopOrg stores the different states that the system goes through
during its execution. Unfortunately, PopOrg does not model any of the entities from the
Environment or Normative Dimensions.

The logic for agent organizations (LAO) is an extension of CTL logic. The Func-
tional Dimension is completely represented in LAO, including agents, objectives, groups,
topology (establishing links between agents), and roles, which are represented by means
of capabilities and abilities, elements taken from this dimension. LAO additionally de-
fines different states of the world where the system is located (related to the Environ-
ment Dimension) and its transitions (related to the Dynamical Dimension). LAO is a
very complete proposal, since it takes into account a large subset of the elements of the
Organizational Dimensions, but it does not formalize the Normative Dimension.

The Process Oriented Modeling Framework (POMF) is structured by means of four
views. The main one is the process oriented view, where tasks, processes and workflows
are defined. This view includes the concept of service from the Functional Dimension,
being a workflow divided into processes that are split into tasks. It also includes the
resources of the Environment Dimension. The organization oriented view includes the
role entity, which describes the set of capabilities of the organizational processes in a
concrete workflow that are then assigned to agent entities, defined in the agent view,
where groups of agents are not able to be modeled. Therefore, the organization oriented
view is related with both Structural and Functional Dimensions and the agent view is
related to the Structural Dimension. Finally, the performance oriented view describes
the organizational goals, such as the Functional Dimension does. However, POMF does
not provide a formalization for neither Dynamical nor Normative Dimensions.

The MACODO framework is centered on the dynamics of organizations with self-
organization concepts, offering a model with concepts related to the Functional Dimen-
sion, such as roles (establishing the concept of position, similar to a job offer), contracts
of roles (an agreement between an agent and an organization for a concrete position to
control the access to an available role), agents (including their context and local envi-
ronment, which is related to the Environment Dimension), and organizations (groups of
agents defined by a set of open role positions and current role contracts). Relations of
hierarchy and communication between roles are not considered. A role is described as
a set of capabilities, which is the only entity from the Functional Dimension that MA-
CODO takes into account. Since MACODO is focused on self-organization, dynamics
of the system from the Dynamical Dimension, including changes in its context or in its
set of agents, are formalized. To control the activities that the organization carries out,
MACODO is enhanced with a set of laws, similar to norms from the Normative Dimen-
sion. Although MACODO does not model other relevant organizational concepts such
as objectives, it deals with elements from all the Organizational Dimensions.

The organizational formalization proposed by Grossi et al. pursues to represent the
organizational structure. This formal method takes the concepts of role, establishing
relations between them; and agent from the Structural Dimension. The roles of the or-
ganization are conceived around three basic notions: objectives, norms and information.
Objectives are the only elements related to the Functional Dimension that are presented
in this proposal; and the Normative Dimension is taken into account using norms. Re-
garding information, knowledge about the current state of the organization can be given
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to agents by other agents, so this is a type of interaction from the Dynamical Dimen-
sion. Since this proposal is focused on modeling the organization structure, it does not
take into account the Environment Dimension.

Finally, Jonker et al. defined a framework for modeling and providing a formal anal-
ysis of organizations, based on a generic representation of them by means of a set of
roles. Apart from the roles, this proposal also formalizes two concepts from the Struc-
tural Dimension: agents and relations between roles. These relations enable the inter-
actions from the Dynamical Dimension, which is completed by taking into account the
dynamics of the organization. One of the main advantages of this work is that it is able
to explicitly model the environment of the Environment Dimension, although it does
not model environmental resources. The main lack of this formalization is that it does
not formalize any concept from the Functional and Normative Dimensions, so designers
are not able to model concepts such as objectives and norms.

Generally, all the analyzed formalizations present a good approach to define an orga-
nization in a formal way. Nevertheless, none of the proposals take into account all enti-
ties taken from Organizational Dimensions, but these formalizations propose different
ways to structure an OCMAS. Thus, it seems interesting to be provided with an explicit
description of the Organizational Dimensions, which are useful for representing orga-
nizational elements. Therefore, in section 4 our proposal to model organizations will be
presented, which models an organization clearly defining its dimensions. This proposal
also integrates some features taken from some proposals presented in this section.

4 Formal Description of a Virtual Organization

In this section the concept of Virtual Organization (VO) will be defined in a formal
way, taking into account its organizational dimensions. This formalization, named VOF
(Virtual Organization Formalization), will be focused on three elements: (i) the Orga-
nizational Specification (OS), which details the set of elements that specify the orga-
nization; (ii) the Organizational Entity (OE), which represents the instantiation of the
elements in OS; and (iii) the Organizational Dynamics (φ), which relates elements from
OS with elements from OE .

Definition 1 . A Virtual Organization is defined, at a given time t, as a tuple Ot =
〈OSt ,OEt ,φt〉 where:

– OS refers to the Organizational Specification. It is defined as OS =
〈SD,FD,ED,ND〉 where:
• SD is the Structural Dimension.
• FD is the Functional Dimension.
• ED is the Environment Dimension.
• ND is the Normative Dimension.

– OE refers to the Organizational Entity, which represents the dynamic elements of
the system.

– φ allows to relate OS with OE, thus defining the Dynamic Dimension, together with
the OE.
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The VO will change through time by modifying its states, occurred after a change in
the environment, and it will change from one state to another by means of a transition.
The following subsections will describe in detail these three elements.

4.1 Organizational Specification

The Organizational Specification details the set of elements that specify the organiza-
tion, containing organizational units, roles, norms, and the rest of elements that build
the dimensions of a Virtual Organization. The Organizational Structure is composed
of: (i) the Structural Dimension, which contains roles, organizational units and their
relationships; (ii) the Functional Dimension, describing objectives, functionalities and
services of an organization; (iii) the Environment Dimension, which describes the arti-
facts and workspaces from the environment of the organization; and (iv) the Normative
Dimension, which defines the norms that rule the system.

Structural Dimension. The Structural Dimension describes the components of the
system and their relations. It allows defining the structural components of an organiza-
tion, i.e. all the elements that are independent from the entities that are finally executed.
In a more specific way, it defines the organizational units and the structural elements,
roles and relationships between roles.

Definition 2 . The Structural Dimension (SD) of a Virtual Organization is defined as
SD = 〈R,OU,Relations〉 where:

– R refers to the roles of the organization.
– OU is the set of organizational units.
– Relations is a set of relationships, defined as Relations = 〈SocialRelations,

StructRelations,DimRelations〉where:
• SocialRelations refers to the social relationships between roles, which can be

formalized as:

SocialRelations=

⎧⎪⎪⎨⎪⎪⎩
in f : R→ R
col : R→ R
sup : R→ R
comp : R→ R

where: inf (information) refers to the information relation, which allows com-
munication between roles; col (collaboration) allows a role to monitor the ac-
tivities of other roles; sup (supervision) defines that an agent playing a specific
role can transfer or delegate one or some of his objectives to a subordinate
role; and comp (compatibility) depicts that an agent playing a specific role can
also play another compatible role in the organization at the same time.

• StructRelations refers to the structural relationships defined by the structure
of the organization, which can be formalized as:

StructRelations=

⎧⎨⎩
RoleHier : R→ R
Contains : OU → 2OU

Roles : OU → 2R
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where: RoleHier represents the hierarchy between roles of the organization;
Contains defines the topology of the organization by means of relations be-
tween organizational units; and Roles defines the roles that are located inside
an organizational unit.

• DimRelations allows relating this dimension with others, through the element
OU, and can be formalized as:

DimRelations =

⎧⎪⎪⎨⎪⎪⎩
Norms : OU → 2N

Services : OU → 2S

Goals : OU → 2G

Workspaces : OU → 2WS

where: Norms defines the norms, described in the normative dimension, which
rule an OU; Services relates an OU with the services that it contains; Goals
describe the objectives that are necessary to be reached inside an OU; and
Workspaces details the workspaces (see Definition 4) where an OU can be
located.

Properties of the Relations. The social relation in f is symmetrical, since a role can
provide information to a second role, and viceversa; transitive, since agents can build
an information chain, and reflexive as an agent can send information to himself. The
relations col and sup are both asymmetrical, since an agent cannot monitor or super-
vise the agent which is monitoring or supervising him; reflexive, because an agent can
collaborate or supervise himself; and transitive, allowing to create a command chain
inside the organization.

The compatibility relation (comp) has reflexive and transitive properties, because a
role is compatible with itself and a role is compatible with the roles that have a compat-
ibility relation with its compatible roles. It is interesting to notice that the comp relation
is not symmetrical (e.g. comp(r1,r2) not always implies comp(r2,r1)). For example, the
relation comp(Pro f essor,Teacher) is correct, because a professor can work as a teacher
in every moment, but a teacher might not be capable of playing the role of professor.
Finally, relations RoleHier and comp are related, since an agent playing a specialized
role is capable of playing its generalized role. Formally:

∀r1,r2 ∈ R : RoleHier(r1,r2)→ comp(r2,r1) (1)

Let r1,r2 ∈ R be two roles belonging to OS. The information, collaboration and super-
vision relations define the following relations in an implicit way:

sup(r1,r2)→ col(r2,r1) (2)

col(r1,r2)→ in f (r1,r2)∧ comp(r2,r1) (3)

This means that a supervision relation between two agents implies that a supervised
agent will collaborate with a supervisor agent to help him to reach his objectives. Also,
a collaboration relation between two roles implies that an information link between
them exists and the second role of the relation is compatible with the first one.
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The relation Contains from the StructRelations set has the following properties: (i)
asymmetrical, since an OU cannot be contained in another OU that contains it; (ii)
transitive, because it is considered that an OU contained inside another OU is also
contained inside the predecessors of the OU that contains it; and (iii) irreflexive, since an
OU cannot contain itself. In a similar way, the RoleHier relation has the same properties
of the Contains relation, because a role cannot have an inheritance relation with itself,
the relations between roles are transitive to allow defining a complete role hierarchy
and a subordinated role cannot be the supervisor of its supervisor.

Properties of the Entities. Firstly, an organizational unit is contained inside another
OU, this implies that the roles from this OU are compatible with those of its predecessor
OU. Formally:

∀OU1,OU2 ∈OU : Contains(OU1,OU2)|∀r1 ∈ (4)

Roles(OU1)∧∀r2 ∈ Roles(OU2)→ comp(r2,r1)

It should be noted that the Roles relation is recursive: the roles that an OU offers are not
only its own roles, but also those from its predecessor OUs. Formally:

∀o ∈ OU : ∀r ∈ Roles(o)→ r ∈ Roles(o)∨ r ∈ Roles(o1) : o ∈Contains(o1) (5)

Properties of the OU. The relations between organizational units allow defining three
different types of structures of an organization:

– ’hierarchy’. A hierarchy implies that there is a supervisor role, with supervision
relations to all the other members of its same organizational unit (OU). Formally,
∃r ∈ Roles(OU) : ∀ri �= r ∈ Roles(OU)→ sup(r,r). If a designer wants to make his
system tighter, he can also prohibit communications between subordinated roles.

– ’team’. In this kind of structure, all roles have coordination relations between them.
Formally, it is defined as ∀r1,r2 ∈ Roles(OU) : col(r1,r2).

– ’plain’. This structure establishes information relationships between roles. For-
mally, ∃r1,r2 ∈ Roles(OU) : in f (r1,r2).

Functional Dimension. The Functional Dimension details the specific functionality
of the system, based on services, tasks and objectives, as well as the interactions of
the system, activated by means of objectives or service usage. It allows defining the
functionality of organizational units, roles and agents of the MAS, including services
and objectives that these entities offer or consume.

Definition 3 . The Functional Dimension (FD) from the Organizational Structure of a
Virtual Organization is defined as FD = 〈G,S,Ta,FuncRel〉 where:

– G represents the goals followed by the organization.
– S is the set of services that the system offers or requires.
– Ta are the tasks that compose the services.
– FuncRel = 〈GT,Client,Provider,Obtains,Achieves,Task, Invoke,Plan〉 is the set

of relations of this dimension, where:
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• GT : G→ 2G is the Goal Tree of the organization, describing the dependencies
between different goals of the organization.

• Client : S→ 2R relates a service with the set of roles that use it.
• Provider : S→ 2R relates a services with the set of roles that offer it.
• Obtains : S→ 2G describes the set of goals that can be achieved by a service,

thus defining the functionality of the system.
• Achieves : Ta → 2G defines the set of goals that are reached when a task is

executed.
• Task : S→ 2Ta shows how services are split in different tasks.
• Invoke : S → 2S describes the dependencies between services, showing which

services need to be invoked by other services to complete their functionality,
thus allowing the composition of services.

• Plan : G → 2S represents the sequence of services that must be followed in
order to achieve a goal.

Properties of the Relations. The Goal Tree relation is irreflexive, asymmetrical and
transitive, since a goal cannot be related with itself, neither with its predecessor but it
can be related with the successors of its successors.

It must be assured that the provider of a service must be a role contained in the same
OU as the service. Formally:

∀o ∈OU ∧∀s ∈ Services(o)→ Provider(s)⊆ Roles(o) (6)

This restriction assures that the services of an OU will be provided only inside it, but
they can be accessed by agents from other OUs (e.g. using the Invoke relation).

As pointed out in this section, the Invoke relation allows services to invoke other
services to reach their goals. In order to execute this operation, it must be assured that
the provider of the invoker service must be a client of the invoked service. Formally:

∀s1,s2 ∈ S,s2 ∈ Invokes(s1) : ∀r1 ∈ Provider(s1)→∃r2 ∈Client(s2)∧ r1 = r2 (7)

A key issue for the system designer is to assure that the services located in an organiza-
tional unit must help to reach its goals. Formally, it is described as:

∀o ∈ OU,∀s ∈ Services(o)∧∀g1 ∈ Pursues(s) : ∃g2 ∈ Goals(o)→ g2 ∈ GT (g1) (8)

It is is possible that a specific goal of a service could not be reached by any of the tasks
that compose it, so then this service must invoke another which should include at least
a task that achieves this desired goal. Formally, it is expressed as:

∀g ∈ Obtains(s1)→ (∃t ∈ Task(s1)∧g ∈ Achieves(t))

∨(∃s2 ∈ S∧g ∈ Obtains(s2)∧ s2 ∈ Invokes(s1)) (9)
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Environment Dimension. The Environment Dimension describes the artifacts, i.e.
entities that populate the environment of a MAS. This dimension uses the concept
of artifact [16], an element introduced by the Agents & Artifacts (A&A) conceptual
framework. These elements are employed by agents in order to reach their goals, since
artifacts have no associated goals. Additionally, the A&A framework presents the con-
cept of workspace, used to define the topology of the environment of a MAS.

Definition 4 . The Environment Dimension of a Virtual Organization is defined as ED=
〈WS,AR,EnvFunc〉 where:

– WS is the set of workspaces that build the environment of a MAS, where ws ∈W S
is defined as ws = 〈Loc〉 and Loc is referred to the location of the workspace inside
the environment.

– AR is the set of artifacts, where an artifact ar∈AR is defined as ar = 〈PR,OP,LO,St〉,
where:
• PR are the observable properties of an artifact that agents can check without

executing any operation on it.
• OP is the set of operations that agents can execute when interacting with the

artifact.
• LO refers to the link operations, which allows the composition and distribution

of artifacts.
• St is the internal state of an artifact.

– EnvFunc = 〈Located,Composition〉 is the set of functions that act on the environ-
mental elements, where:
• Located : AR→ 2WS describes the set of workspaces where an artifact is lo-

cated.
• Composition : WS → 2WS allows defining intersection and nesting relations

between workspaces that build the environment.

Properties of the Relations. The Composition relation is reflexive and symmetrical,
since a workspace can intersect with itself. Additionally, it is necessary for an artifact
to be contained, at least, in a workspace. Formally:

∀ar ∈ Ar : ∃ws ∈WS→ ws ⊆ Located(ar) (10)

Normative Dimension. The Normative Dimension describes normative restrictions on
the behavior of the entities of the system, including sanctions and rewards, based on the
work by Criado et al. [17].

Definition 5 . The Normative Dimension of a Virtual Organization is defined as ND =
〈N,>n〉 where:

– N is the set of norms of the system.
– >n is an order relationship between norms, defining the priority between them. This

relation establishes a total relation order between the norms governing the system,
avoiding the priority confusion when a norm is executed.

Formally, a norm is defined as:
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Definition 6 . A norm n ∈ N is defined as n = 〈D,CO,AC,EX ,SA,RE〉 where:

– D = {O,F} is the deontic operator, i.e. obligations (O) and prohibitions (F) that
impose restrictions on the behavior of the agents.

– CO is a logical formula that represents the action that must be carried out in case
of obligations, or has to be avoided in case of prohibitions.

– AC, EX are well-formed formulas that determine the conditions of norm activation
and expiration, respectively.

– SA,RE ∈ S are expressions that describe the actions (sanctions, SA; and rewards,
RE) that will be carried out in case of violation or fulfilment of norms, respectively.

Properties of the Relations. The priority function >n is asymmetrical and transitive,
defining an univocal relation between the norms governing the system.

The topology of the system will also define new order relationships between norms.
If an OU called ou2 is contained in an OU named ou1, its norms must have higher
priority than the norms of ou1. Formally,

∀ou1,ou2 : n1 ∈ Norms(ou1)∧n2 ∈ Norms(ou2)∧Contains(ou1,ou2)→ n2 >n n1

(11)

4.2 Organizational Entity

The Organizational Entity of a Virtual Organization is the set of active elements of
the organization. These elements can change through time. They are considered as the
dynamic elements of the system.

Definition 7 . The Organizational Entity of a Virtual Organization is defined as OE =
〈A,GR,AN,AS〉 where:

– A is the set of agents that populate the VO.
– GR is the set of groups that are currently in the system. A group is an instantiation

of an organizational unit.
– AN⊆N is the set of active norms of the system, i.e. all those norms whose activation

condition is true but its expiration condition has not been reached yet (AC∧¬EX).
– AS ⊆ S is the set of services that the agents of the organization are currently pro-

viding.

The agents (A) populating the system are playing roles, they are located into groups
(GR) and provide services (S), as described in the next subsection. An OU defines an
organizational pattern for the agents that are inside it, but this does not define the con-
crete agents that must populate it. On the contrary, a group is a concrete instantiation
of an OU, defining a set of agents that populate it. Thus, an OU can be instantiated by
different groups.
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4.3 Organizational Dynamics

The Organizational Dynamics presents the relations between the elements of the Orga-
nizational Structure and the Organizational Entity.

Definition 8 . The Organizational Dynamics of a Virtual Organization is defined as φ =
〈plays, inUnit, provides, perceives, isUnit〉 where:

– plays : A → 2R is a function that relates an agent with the set of roles that he is
playing inside the organization.

– inUnit : A→ 2GR is the function that describes the groups where an agent is located.
– provides : A→ 2S represents the set of services that an agent provides.
– perceives : A→ 2WS represents the set of workspaces that an agent is able to per-

ceive.
– isUnit : GR→ OU defines the type of organizational unit instantiated by a group.

Properties of the Relations. The plays, inUnit, provides and perceives relations allow
agents to play different roles, be located in different groups, provide different services
and perceive different workspaces in the organization, respectively. The isUnit relation-
ship allows knowing the type of organizational unit that a group is instantiating.

The situation where an agent plays a role inside a unit and a scenario where an agent
is inside an organizational unit playing a role can be checked in equations 12 and 13. It
must be noted that the Roles function is recursive, as explained in subsection 4.1.

∀r ∈ plays(a)→∃o ∈ OU ∧∃g ∈ inUnit(a) : isUnit(g) = o∧ r ∈ Roles(o) (12)

∀g ∈ inUnit(a)→∃o ∈ OU ∧ isUnit(g) = o∧∃r ∈ Roles(o) : r ∈ plays(a) (13)

Equation 12 establishes that an agent can only play the roles provided by the groups
where he is located. These roles are the ones provided by the organizational units in-
stantiated by these groups. Equation 13 defines that an agent must play at least one role
from each group where he is located.

In addition, using the provides relationship from φ, it is possible to define the set of
active services (AS) from OE . Formally,

AS =
⋃
a∈A

s ∈ provides(a) (14)

4.4 Multi-Agent Systems Based on Virtual Organizations

In previous sections, the different dimensions and entities that compose the state of a VO
at a given time were defined in a formal way. Nevertheless, a VO changes through time,
passing from one state of the organization to another. Thus, it is necessary to define
all the possible states of the organization as well as the allowed transitions between
these states. For this issue, we based our work in the proposal by da Rocha Costa and
Dimuro [14].
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To model the states of a VO and their transitions, let VO be the universe of all the pos-
sible organizations O. A multi-agent system based on virtual organizations is a structure
MAS = (VO,D) where, for every time t ∈ T,Dt ⊆VO×VO defines transitions between
different states of the system. In every state of the organization O ∈VO, in a given time
t ∈ T , there is a set of possible next states of the organization, denoted by Dt(O)⊆VO.
Thus, for every t ∈ T , it holds that Ot+1 ∈ Dt(Ot), so an organization will only change
to another state when it is allowed to reach from the initial state.

Since the organization is composed by three elements (OS, OE and φ), before exe-
cuting a change of state it is necessary to check that these elements are able to change
from the initial state to the possible destination state. Formally:

((OSt+1,OEt+1,φt+1) ∈ Dt(OSt ,OEt ,φt))↔

((OSt+1 ∈ Dt
OS(OSt))∧ (OEt+1 ∈Dt

OE(OEt))∧ (φt+1 ∈Dt
φ(φ

t ))) (15)

However, in order to swap from one state to another, it is not necessary to produce a
change in all three elements that compose the VO. A change ranges from a very small
variation in one or few of the elements building the organization to a big amount of
changes in a large amount of entities from the VO. Formally:

(Ot ∧©Ot+1)→�(¬((OSt ∧©OSt)∧ (OEt ∧©OEt)∧ (φt ∧©φt))) (16)

The above formula (that uses LTL [18]) helps us to formalize how Dt is build.

Dt =
⋃

(Ot ,Ot+1)|Ot+1 �= Ot (17)

Dt is composed by the set of all possible transitions of the MAS, where each new
transition is generated every time that in OS, OE or φ (or in a combination of these
elements) an atomic change is produced.

5 Discussion

In section 3 an analysis of the most relevant formalization proposals was presented. The
Virtual Organization Formalization (VOF) takes inspiration from features taken from
some of the analyzed proposals. In this section, we depict a comparison between VOF
and these background proposals.

Firstly, the organizational temporal evolution proposed by VOF is mainly based on
PopOrg, which models the dynamics of the population (similar to our OE) and the
organization (similar to our OS).

Regarding the structure of an organization, OperA offers relations between roles that
are similar to those included in VOF. The supervision relation of VOF is similar to the
combination of the power and authorization relations of OperA, expressing that an agent
is able to delegate its objectives to a subordinated agent, like the power relation does
(the authorization relation expresses the power relation, but as a temporal situation).
Also, in OperA, the objective that a subordinated agent can take from a superior agent
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is determined by the type of existing relation between roles, which establishes their
hierarchy. However, VOF defines this hierarchy using the RoleHier relation.

In MOISEInst , the structural levels of the organization are split into: (i) individual
level, built by organizational roles, and presents hierarchy relations between roles (sim-
ilar to our RoleHier relation); (ii) social level, which is built from link relationships
between roles, classified as acq (acquaintance), i.e. having a representation of other
agents, com (similar to our in f relation), in which agents are able to communicate be-
tween them, and aut expressing authority over other agents, thus combining col and sup
relations from VOF; and (iii) collective level, which defines groups of agents, establish-
ing the compatibility between roles and their cardinalities. VOF adds the comp relation,
in order to express whether an agent can take a given role if he is taking another one.

LAO models the topology of the system by means of dependency chains between
agents. The topology can be a hierarchy, if there is a chain of command, or a network,
if every agent is responsible for an organizational goal and has a delegation relation-
ship to another agent. VOF models the topology of the system using Contains relations
between OUs. These relations allow defining three types of organizations: hierarchy,
similar to the structure defined by LAO; team, when all agents collaborate with each
other; and plain, which assumes information relationships between roles.

Regarding the Functional Dimension, although PopOrg and POMF model concepts
that are similar to services (by means of exchange processes or workflows, respec-
tively), they are better described in VOF. PopOrg focuses on the actions developed by
the process and the agents that are carrying them out, while POMF is focused on de-
scribing the tasks that compose a given workflow. VOF goes beyond, (as it follows a
Service Oriented Approach) and formalizes a service by means of the roles that it can
provide and consume, the goals that can be achieved with this service, the invoke re-
lationships between services, and the tasks that compose each service (as well as the
goals that these tasks help to reach).

The environment used in VOF is based on the Agents & Artifacts conceptual frame-
work, which was included in the SODA metamodel [19].

VOF model norms in a very similar way to the proposal of MOISEInst , although they
use different languages to describe them. VOF is able to relate a norm to a set of OUs,
using the Norms relation from DimRelations, limiting its effect only to this set.

The Organizational Entity from VOF can be also compared with other proposals. For
example, a specified group is defined in MOISEInst as a ’group specification’, while
VOF defines it as an Organizational Unit. On the other hand, a group instantiation is
named ’group’ in both MOISEInst and VOF. In addition, the OE from VOF defines the
set of norms and services that are currently active in the organization.

Finally, VOF clearly divides the elements that specify the system (i.e. elements that
will produce a structural change if they are modified) and the more dynamic elements
of the MAS, represented in the OE . Our specification gives agents the possibility to
belong to a specific group and provide or use a service.

6 Conclusions and Future Work

This work presented a formal specification for Virtual Organizations, named VOF (Vir-
tual Organization Formalization), which is composed of: (i) the Organizational
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Specification (OS), which details the components that specify the system and divides
them by means of the organizational dimensions; (ii) the Organizational Entity (OE),
which defines the active elements of the system; and (iii) the Organizational Dynamics
(φ), which details the relationships between elements from OS and OE.

Additionally, we have analyzed a set of different formalizations, focusing on orga-
nizational concepts taken from the Organizational Dimensions. After this analysis, we
noticed that the analyzed formalizations do not take into account all concepts from Or-
ganizational Dimensions. Therefore, our proposal is aimed to cover all these concepts
and to provide a formalization as much complete as possible.

As a future work, this formalization will help us when dealing with concepts re-
lated to adaptation in Organization Centered Multi-Agent Systems, being easier for us
to identify the entities of the system that would change through time. VOF will be in-
tegrated into the reasoning process of the BDI agents from the THOMAS framework
[20], in order to develop agents that are able to know whether an organization is work-
ing in a correct way, or they need to execute an adaptation process. Moreover, using this
formalization we will be able to check the correctness of a defined OCMAS.
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Abstract. Wake-up scheduling is a challenging problem in wireless sensor net-
works. It was recently shown that a promising approach for solving this problem
is to rely on reinforcement learning (RL). The RL approach is particularly at-
tractive since it allows the sensor nodes to coordinate through local interactions
alone, without the need of central mediator or any form of explicit coordination.
This article extends previous work by experimentally studying the behavior of RL
wake-up scheduling on a set of three different network topologies, namely line,
mesh and grid topologies. The experiments are run using OMNET++, a the state-
of-the-art network simulator. The obtained results show how simple and compu-
tationally bounded sensor nodes are able to coordinate their wake-up cycles in
a distributed way in order to improve the global system performance. The main
insight of these experiments is to show that sensor nodes learn to synchronize if
they have to cooperate for forwarding data, and learn to desynchronize in order
to avoid interferences. This synchronization/desynchronization behavior, referred
to for short as (de)synchronicity, allows to improve the message throughput even
for very low duty cycles.

Keywords: Reinforcement learning, Synchronicity and desynchronicity, Wire-
less sensor networks, Wake-up scheduling.

1 Introduction

A Wireless Sensor Network is a collection of densely deployed autonomous devices,
called sensor nodes, which gather data with the help of sensors [4]. The untethered
nodes use radio communication to transmit sensor measurements to a terminal node,
called the sink. The sink is the access point of the observer, who is able to process
the distributed measurements and obtain useful information about the monitored en-
vironment. Sensor nodes communicate over a wireless medium, by using a multi-hop
communication protocol that allows data packets to be forwarded by neighboring nodes
to the sink. A typical multi-hop communication protocol is to rely on a shortest path
tree with respect to the hop distance [4]. Such a tree is obtained by letting nodes broad-
cast packets after deployment, in order identify their neighbors. The nodes then deter-
mine the neighbor node which is the closest (in terms of hops) to the sink, and use it
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Fig. 1. Sensor nodes connected to a base station by means of a multi-hop routing tree. Grayed
circles indicate overlapping communication regions.

as the relaying node for the multi-hop routing. An example of multi-hop shortest path
routing structure is given in Fig. 1, together with the radio communication ranges of
sensor nodes.

Since communication is the most energy expensive action, it is clear that in order
to save energy, a node should turn off its antenna (or go to sleep) [5]. However, when
sleeping, the node is not able to send or receive any messages, therefore it increases
the latency of the network, i.e., the time it takes for messages to reach the sink. High
latency is undesirable in any real-time applications. On the other hand, a node does not
need to listen to the channel when no messages are being sent, since it loses energy
in vain. As a result, nodes should determine on their own when they should be awake
within a frame. This behavior is called wake-up scheduling. Once a node wakes up, it
remains active for a predefined amount of time, called duty cycle.

Wake-up scheduling in wireless sensor networks is an active research do-
main [7,12,8,2]. A good survey on wake-up strategies in WSNs is presented in [14].
The standard approach is S-MAC, a synchronized medium access control (MAC) pro-
tocol for WSN [17]. In S-MAC, the duty-cycle is fixed by the user, and all sensor nodes
synchronize in such a way that their active periods take place at the same time. This syn-
chronized active period enables neighboring nodes to communicate with one another.
The use of routing then allows any pair of nodes to exchange messages. By tuning the
duty-cycle, wake-up scheduling therefore allows to adapt the use of sensor resources to
the application requirements in terms of latency, data rate and lifetime [14].

Recently, we showed that the wake-up scheduling problem could be efficiently tack-
led in the framework of multi-agent systems and reinforcement learning. In wireless
sensor networks, the sensor nodes can be seen as agents, which have to logically self-
organize in groups (or coalitions). The actions of agents within a group need to be
synchronized (e.g., for data forwarding), while at the same time being desynchronized
with the actions of agents in other groups (e.g., to avoid radio interferences). We refer
to this concept for short as (de)synchronicity.

Coordinating the actions of agents (i.e., sensor nodes) can successfully be done us-
ing the reinforcement learning framework by rewarding successful interactions (e.g.,
transmission of a message in a sensor network) and penalizing the ones with a negative
outcome (e.g., overhearing or packet collisions) [10]. This behavior drives the nodes
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to repeat actions that result in positive feedback more often and to decrease the proba-
bility of unsuccessful interactions. Coalitions are formed when agents select the same
successful actions. A key feature of our approach is that no explicit notion of coalition is
necessary. Rather, these coalitions emerge from the global objective of the system, and
agents learn by themselves with whom they have to (de)synchronize (e.g. to maximize
throughput in a routing problem). Here desynchronization refers to the situation where
one agent’s actions (e.g. waking up the radio transmitter of a wireless node) are shifted
in time, relative to another, such that the (same) actions of both agents do not happen at
the same time.

In this article, we extend our previous results by illustrating the benefits of our self-
adapting RL approach in three wireless sensor networks of different topologies, namely
line, mesh and grid. We show that nodes form coalitions which allow to reduce packet
collisions and end-to-end latency, even for very low duty cycles. This (de)synchronicity
is achieved in a decentralized manner, without any explicit communication, and with-
out any prior knowledge of the environment. Our simulations are implemented using
OMNET++, a state-of-the-art simulator [11].

The paper is organized as follows. Section 2 presents the reinforcement learning ap-
proach for solving the wake-up scheduling problem in WSN. Section 3 analyzes and
discusses the performances of the RL approach on three different topologies, namely
line, mesh and grid topologies. We also compare it to the standard S-MAC protocol and
briefly discusses future work. Section 4 concludes this paper.

2 (De)synchronicity with Reinforcement Learning

This section presents our decentralized approach to (de)synchronicity using the rein-
forcement learning framework. The proposed approach requires very few assumptions
on the underlying networking protocols, which we discuss in Section 2.1. The subse-
quent sections detail the different components of the reinforcement learning mecha-
nism.

2.1 Motivations and Network Model

Communication in WSNs is achieved by means of networking protocols, and in partic-
ular by means of the Medium Access Control (MAC) and the routing protocols [4]. The
MAC protocol is the data communication protocol concerned with sharing the wire-
less transmission medium among the network nodes. The routing protocol allows to
determine where sensor nodes have to transmit their data so that they eventually reach
the sink. A vast amount of literature exists on these two topics [4], and we sketch in the
following the key requirements for the MAC and routing protocols so that our reinforce-
ment learning mechanism presented in Section 2.2 can be implemented. We emphasize
that these requirements are very loose.

We use a simple MAC protocol, inspired from S-MAC [17], that divides the time
into small discrete units, called frames. We further divide each frame into time slots.
The frame and slot duration are application dependent and in our case they are fixed by
the user prior to network deployment. The sensor nodes then rely on a standard duty cy-
cle mechanism, in which the node is awake for a predetermined number of slots during
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each period. The duration of the awake period is fixed by the user, while its position is
initialized randomly within the frame for each node. These active slots will be shifted
as a result of the learning, which will coordinate nodes’ wake-up schedules in order to
ensure high data throughput and longer battery life. Each node will learn to be in ac-
tive mode when its parents and children are awake, so that it forwards messages faster
(synchronization), and stay asleep when neighboring nodes on the same hop are com-
municating, so that it avoids collisions and overhearing (desynchronization).

The routing protocol is not explicitly part of the learning algorithm and therefore
any multi-hop routing scheme can be applied without losing the properties of our ap-
proach. In the experimental results, presented in Section 3, the routing is achieved using
a standard shortest path multi-hop routing mechanism. The forwarding nodes need not
be explicitly known, as long as they ensure that their distance to the sink is lower than
the sender. Communication is done using a Carrier Sense Multiple Access (CSMA)
protocol. Successful data reception is acknowledged with an ACK packet. We would
like to note that the acknowledgment packet is necessary for the proper and reliable
forwarding of messages. Our algorithm does use this packet to indicate a “correct re-
ception” in order to formulate one of its reward signals (see Subsection 3.1). However,
this signal is not crucial for the RL algorithm and thus the latter can easily function
without acknowledgment packets. Subsection 2.3 will further elaborate on the use of
reward signals.

It is noteworthy that the communication partners of a node (and thus the formation
of coalitions) are influenced by the communication and routing protocols that are in use
and not by our algorithm itself. These protocols only implicitly determine the direction
of the message flow and not who will forward those messages, since nodes should find
out the latter by themselves.

Fig. 2. Examples of routing and coalition formation

Depending on the routing protocol, coalitions (e.g., synchronized groups of nodes)
logically emerge across the different hops, such that there is, if possible, only one agent
from a certain hop within a coalition. Figure 2 illustrates this concept in three differ-
ent topologies. It shows as an example how coalitions form as a result of the routing
protocol. Intuitively, nodes from one coalition need to synchronize their wake-up sched-
ules. As defined by the routing protocol, messages are not sent between nodes from the
same hop, hence these nodes should desynchronize (or belong to separate coalitions) to
avoid communication interference. The emergence of coalitions will be experimentally
illustrated for different topologies in Section 3.
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2.2 Reinforcement Learning Approach: Methodology

Each agent in the WSN uses a reinforcement learning (RL) [15] algorithm to learn
an efficient wake-up schedule (i.e. when to remain active within the frame) that will
improve throughput and lifetime in a distributed manner. It is clear that learning in
multi-agent systems of this type requires careful exploration in order to make the action-
values of agents converge. We use a value iteration approach similar to single-state
Q-learning [16] with an implicit exploration strategy, as subsection 2.5 will further
elaborate on. However, our update scheme differs from that of traditional Q-learning
(cf. subsection 2.4). The battery power required to run the algorithm is marginal to the
communication costs and thus it is neglected. The main challenge in such a decentral-
ized approach is to define a suitable reward function for the individual agents that will
lead to an effective emergent behavior as a group. To tackle this challenge, we proceed
with the definition of the basic components of the reinforcement learning algorithm
described in this section.

2.3 Actions and Rewards

The actions of each agent are restricted to selecting a time window (or a wake period)
within a frame for staying awake. Since the size of these frames remains unchanged
and they constantly repeat throughout the network lifetime, our agents use no notion
of states, i.e. we say that our learning system is stateless (or single-state). The duration
of this wake period is defined by the duty cycle, fixed by the user of the system. In
other words, each node selects a slot within the frame when its radio will be switched
on for the duration of the duty cycle. Thus, the size of the action space of each agent is
determined by the number of slots within a frame. In general, the more actions agents
have, the slower the reinforcement learning algorithm will converge [6]. On the other
hand, a small action space might lead to suboptimal solutions and will impose an energy
burden on the system. Setting the right amount of time slots within a frame requires a
study on itself, that we shall not undertake in this paper due to space restrictions (see
subsection 3.1 for exact values).

Every node stores a “quality value” (or Q-value) for each slot within its frame. This
value for each slot indicates how beneficial it is for the node to stay awake during these
slots for every frame, i.e. what is an efficient wake-up pattern, given its duty cycle
and considering its communication history. When a communication event occurs at a
node (overheard, sent or received a packet) or if no event occurred during the wake
period (idle listening), that node updates the quality-value of the slot(s) when this event
happened. The motivation behind this scheme is presented in subsection 2.5.

2.4 Updates and Action Selection

The slots of agents are initiated with Q-values drawn from a uniform random distribu-
tion between 0 and 1. Whenever events occur during node’s active period, that node
updates the quality values of the slots, at which the corresponding events occurred,
using the following update rule:

Qi
s ← (1 − α) · Q̂i

s + α · ris,e
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where Qi
s ∈ [0, 1] is the quality of slot s within the frame of agent i. Intuitively, a

high Qi
s value indicates that it is beneficial for agent i to stay awake during slot s. This

quality value is updated using the previous Q-value (Q̂i
s) for that slot, the learning rate

α ∈ [0, 1], and the newly obtained reward ris,e ∈ [0, 1] for the event e that (just) occurred
in slot s. Thus, nodes will update as many Q-values as there are events during its active
period. In other words, agent i will update the value Qi

s for each slot s where an event
e occurred. The latter update scheme differs from that of traditional Q-learning [16],
where only the Q-value of the selected action is updated. The motivation behind this
update scheme is presented in subsection 2.5. In addition, we set here the future discount
parameter γ to 0, since our agents are stateless (or single-state).

Nodes will stay awake for those consecutive time slots that have the highest sum of
Q-values. Put differently, each agent selects the action as′ (i.e., wake up at slot s′) that
maximizes the sum of the Q-values for the D consecutive time slots, where D is the
duty cycle, fixed by the user. Formally, agent i will wake up at slot s′, where

s′ = argmax
s∈S

D∑
j=0

Qi
s+j

For example, if the required duty cycle of the nodes is set to 10% (D = 10 for a frame
of S = 100 slots), each node will stay active for those 10 consecutive slots within its
frame that have the highest sum of Q-values. Conversely, for all other slots the agent will
remain asleep, since its Q-values indicate that it is less beneficial to stay active during
that time. Nodes will update the Q-value of each slot for which an event occurrs within
its duty cycle. Thus, when forwarding messages to the sink, over time, nodes acquire
sufficient information on “slot quality” to determine the best period within the frame
to stay awake. This behavior makes neighboring nodes (de)synchronize their actions,
resulting in faster message delivery and thus lower end-to-end latency.

2.5 Exploration

As explained in the above two subsections, active time slots are updated individually,
regardless of when the node wakes up. The reason for this choice is threefold. Firstly,
this allows each slot to be explored and updated more frequently. For example, slot s
will be updated when the node wakes up anywhere between slots s− 1 and s−D+ 1,
i.e. in D out of S possible actions. Secondly, updating individual Q-values makes it pos-
sible to alter the duty cycle of nodes at run time (as suggest some preliminary results,
not displayed in this paper) without invalidating the Q-values of slots. In contrast, if a
Q-value was computed for each start slot s, i.e. the reward was accumulated over the
wake duration and stored at slot s only, changing the duty cycle at run-time will render
the computed Q-values useless, since the reward was accumulated over a different du-
ration. In addition, slot s will be updated only when the agent wakes up at that slot. A
separate exploration strategy is therefore required to ensure that this action is explored
sufficiently. Thirdly, our exploration scheme will continuously explore and update not
only the wake-up slot, but all slots within the awake period. Treating slots individually
results in an implicit exploration scheme that requires no additional tuning.
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Even though agents employ a greedy policy (selecting the action that gives the high-
est sum of Q-values), this “smooth” exploration strategy ensures that all slots are ex-
plored and updated regularly at the start of the application (since values are initiated
randomly), until the sum of Q-values of one group of slots becomes strictly larger than
the rest. In that case we say that the policy has converged and thus exploration has
stopped. The speed of convergence is influenced by the duty cycle, fixed by the user,
and the learning rate, which we empirically chose to be 0.1. A constant learning rate
is in fact desirable in a non-stationary environment to ensure that policies will change
with respect to the most recently received rewards [15].

3 Results

We proceed with the experimental comparison between our (de)synchronization ap-
proach and a fully synchronized state-of-the-art MAC protocol, viz. S-MAC [17]. All
components of the compared networks, such as the routing and CSMA communication
protocols, remain the same. The S-MAC protocol illustrates network performance un-
der synchronized behavior, where all nodes are active at the same time. In other words,
we compare our RL technique to networks with no coordination mechanism, but which
employ some means of time synchronization, the small overhead of which will be ne-
glected for the sake of a clearer exposition. This synchronized approach ensures high
network throughput, but as we will demonstrate in subsection 3.2, it fails at short duty
cycles.

3.1 Experimental Setup

We applied our approach on three networks of different size and topology. In particu-
lar, we investigate two extreme cases where nodes are arranged in a 4-node line (Fig-
ure 3(a)) and a 6-node single-hop mesh topology (Figure 4(a)). The former one requires
nodes to synchronize in order to successfully forward messages to the sink. Intuitively,
if any one node is awake while the others are asleep, that node would not be able to for-
warded its messages to the sink. Conversely, in the mesh topology it is most beneficial
for nodes to fully desynchronize to avoid communication interference with neighboring
nodes. Moreover, the sink is able to communicate with only one node at a time. The
third topology is a 4 by 4 grid (Figure 5(a)) where sensing agents need to both syn-
chronize with some nodes and at the same time desynchronize with others to maximize
throughput and network lifetime. The latter topology clearly illustrates the importance
of combining synchronicity and desynchronicity, as neither one of the two behaviors
alone achieves the global system objectives. Subsection 3.2 will confirm these claims
and will elaborate on the obtained results.

Each of the three networks was run for 3600 seconds in the OMNeT++ simula-
tor [11] and results were averaged over 30 runs. This network runtime was sufficiently
long to eliminate any initial transient effects. To illustrate the performance of the net-
work at high data rates, we set the sampling period of nodes to one message every 10
seconds. For each node the start of this period is at a uniformly random time within
the first frame of the simulation and thereafter messages in that node are periodically
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generated at the same slot every frame. Frames have the same length as the sampling
period and were divided in S = 2000 slots of 5 milliseconds each. The duration of the
slot was chosen such that only one DATA packet can be sent and acknowledged within
that time. All hardware-specific parameters, such as transmission power, bit rate, etc.,
were set according to the data sheet of our radio chip — CC2420 [1]. In addition, we
chose the protocol-specific parameters, such as packet header length and number of
retransmission retries as specified in the IEEE 802.15.4 communication protocol [3].

Since collisions constitute the biggest obstacle in the pursuit of low latency, each
node contends for the channel for a small random duration within a fixed contention
window of 5 slots. To facilitate the throughput of messages at high data rates, we de-
viated from the contention policy of S-MAC that uses the entire active time as a con-
tention window. Instead, in our simulations we fixed the maximum contention window
of S-MAC to 5 slots for a more fair comparison.

We modeled five different events, namely overhearing (r = 0), idle listening (r = 0
for each idle slot), successful transmission (r = 1 if ACK received), unsuccessful trans-
mission (r = 0 if no ACK received) and successful reception (r = 1). Maximizing the
throughput requires both proper transmission as well as proper reception. Therefore,
we treat the two corresponding rewards equally. Furthermore, most radio chips require
nearly the same energy for sending, receiving (or overhearing) and (idle) listening [5],
making the three rewards equal. We consider these five events to be the most energy
expensive or latency crucial in wireless communication. Additional events were also
modeled, but they were either statistically insignificant (such as busy channel) or al-
ready covered (such as unsuccessful transmissions instead of collisions).

Due to the exponential smoothing nature of the reward update function (cf. subsec-
tion 2.4) the Q-values of slots will be shifted towards the latest reward they receive.
We would expect that the “goodness” of slots will decrease for negative events (e.g.
transmission was not acknowledged), and will increase for successful communication.
Therefore, the feedback agents receive is binary, i.e. ris,e ∈ {0, 1}, since it carries the
necessary information. Other reward signals were also evaluated, resulting in similar
performance.

3.2 Evaluation

We would like to point out that both S-MAC and our approach are controlled by the
same parameter — the duty cycle, which is fixed by the user of the system. Since the
active time of nodes in both approaches is the same, the energy consumption of the two
protocols is nearly identical. The only difference to S-MAC is that with our approach
nodes learn when to hold their duty cycle within the frame, as opposed to S-MAC,
where all nodes are awake at the beginning of the frame. Therefore, in the following
evaluation we vary the duty cycle of the nodes and monitor the average end-to-end
latency across the different simulation runs.

Figure 3(b) displays an example of the resulting schedule of the line topology (Fig-
ure 3(a)) after the action of each agent converges for 5% duty cycle. The results indicate
that all four nodes have successfully learned to stay awake at the same time in order for
messages to be properly forwarded to the sink. In other words, we observe that all
nodes belong to the same coalition, as suggested in Figure 2. If any one node in the
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(a) Line topology.

(b) Example of a learned wake-up schedule for duty cycle

of 5%.

(c) Average end-to-end latency for different duty cycles.

Fig. 3. Experimental results for the line topology

line topology had remained active during the sleep period of its immediate neighbors,
its messages, together with those of its higher hop neighbors would not have been de-
livered to the sink. Even though neighboring nodes are awake at the same time (or have
synchronized), one can see that schedules are slightly shifted in time. The reason for
this desynchronicity is to reduce the overhearing of higher hop communication and to
increase throughput by compensating for propagation delays — a behavior that nodes
have learned by themselves.

Figure 3(c) displays the average end-to-end latency of the learning and the synchro-
nized nodes respectively, where error bars signify one standard deviation across 30 runs.
Since the learned wake-up schedules of our approach closely resemble the prescribed
behavior of S-MAC, the latency improvement over different duty cycles is marginal.
Nevertheless, the end-to-end latency of our learning agents is on average 2 seconds
less than under the S-MAC protocol. The reason for this improvement lies in the fact
that with S-MAC all nodes wake up at the beginning of the frame, while with our ap-
proach agents learn when it is best to wake up. Since each node periodically generates
messages at a different time within the 10-seconds frame, the latency of S-MAC is on
average 5 seconds. Learning, however, allows flexibility in the wake-up times, such that
a node could wake up immediately after generating its messages (and all other nodes
will learn to wake nearly at the same time) and therefore reduce the queuing time of
messages for at least one node.

As evident in Figure 3(c), both approaches are inefficient at very low duty cycles.
The reason for this high latency is the fact that the active period of nodes is too short
compared to the propagation delay. Therefore, messages need to be queued for more
than one frame on average, which results in traffic congestion.

In contrast to the previous topology, our second set of experiments investigate the
performance of the network where all nodes lie on the same hop from the sink. This
setup presents agents with the opposite challenge, namely to find an active period where
no other node is awake. The latter behavior will eliminate communication interference
with neighboring nodes and will ensure proper reception of messages at the sink. Fig-
ure 4(b) displays an example of the wake-up schedule of the learning nodes for a duty
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(a) Mesh topology.

(b) An example of a learned wake-up schedule for duty

cycle of 5%.

(c) Average end-to-end latency for different duty cycles.

Fig. 4. Experimental results for the mesh topology

cycle of 5% after the actions of agents converge. One can observe that the state of
desynchronicity has been successfully achieved where each node is active at a different
time within a frame. Put differently, each node has chosen a different wake-up slot and
therefore belongs to different coalition. The benefit of this desynchronized pattern is
clearly evident in Figure 4(c) where we compare it to the average end-to-end latency
of the synchronized system. Error bars represent one standard deviation across 30 runs.
Since all nodes lie within one hop of the sink, the performance of the learning agents
is not dependent on the duty cycle for this topology. Each node independently learns to
hold its active period immediately after it generates a message, as long as no neighbor is
awake at the same time. Therefore, the average end-to-end latency is slightly more than
the duration of one transmission. Similarly to the line topology, when nodes use the
S-MAC protocol, the end-to-end latency of the system is on average half the sampling
period, for reasons outlined above. Moreover, for duty cycle of 0.5%, the S-MAC nodes
are unable to deliver their messages to the sink, since all nodes try to transmit during
the same short awake period and thus all messages collide. This effect is indicated with
the discontinued dashed line in Figure 4(c).

Lastly, we investigate a combination of the above two topologies, namely the grid
shown in Figure 5(a). Nodes here need to synchronize with those that lie on the same
branch of the routing tree to ensure high throughput, while at the same time desyn-
chronize with neighboring routing branches to avoid communication interference. An
example of the wake-up schedule of the learning nodes at 5% duty cycle is displayed in
Figure 5(b). As expected, the four columns of nodes belong to four different coalitions,
where nodes in one coalition are synchronized with each other (being active nearly at
the same time) and desynchronized with the other coalitions (sleeping while others are
active). This is the state of (de)synchronicity. Nodes in one coalition exhibit comparable
behavior to those in a line topology, i.e. they have synchronized with each other (while
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(a) Grid topology.

(b) An example of a learned wake-up schedule for duty cycle

of 5%.

(c) Average end-to-end latency for different duty cycles.

Fig. 5. Experimental results for the grid topology

still slightly shifted in time). At the same time nodes on the same hop have learned to
desynchronize their active times similar to the mesh topology.

The result of applying our learning approach in a grid topology for various duty cy-
cles can be observed in Figure 5(c). It displays the average end-to-end latency of the
network when using synchronicity and (de)synchronicity respectively. Here again error
bars signify one standard deviation across 30 runs. Due to the high data rate, when us-
ing S-MAC nodes are incapable of delivering all packets for duty cycles lower than 2%.
This reduced performance at low duty cycles is due to the large number of collisions
and re-transmissions necessary when all nodes wake up at the same time. The learning
approach on the other hand drives nodes to coordinate their wake-up cycles and shift
them in time, such that nodes at neighboring coalitions desynchronize their awake pe-
riods. In doing so, nodes effectively avoid collisions and overhearing, leading to lower
end-to-end latency. When nodes coordinate their actions, they effectively reduce com-
munication interference with neighboring nodes. This behavior results in lower amount
of overheard packets, less collisions and therefore fewer retries to forward a message,
as compared to the fully synchronized network. Nevertheless, at very low duty cycles
the active time of nodes is too short to forward all messages and therefore, similar to
the line topology, the network experiences traffic congestion.

3.3 Discussion

We would like to discuss here the convergence time of the learning agents. The implicit
exploration scheme, described in subsection 2.5 makes nodes select different actions in
the beginning of the simulation in order to determine their quality. As time progresses,
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the Q-values of slots are updated sufficiently enough to make the policy of the agents
converge. We measured that after 80 iterations (or frames) on average the actions of
agents do not change any more and thus the state of (de)synchronicity has been reached.
In other words, after 800 seconds each node finds the wake-up schedule that improves
message throughput and minimizes communication interference. This duration is suffi-
ciently small compared to the lifetime of the system for a static WSN, which is in the
order of several days up to a couple of years depending on the duty cycle and the hard-
ware characteristics [4]. However, it is still unclear under which conditions convergence
proofs can be brought. Further research is therefore required to better characterize the
convergence criteria.

Despite the improvements that our approach offers over the standard S-MAC proto-
col, we discuss here two shortcomings that need to be addressed. First of all, the duty
cycle set by the user of the system affects all nodes equally. In other words, all nodes
are active for the same amount of time. Depending on their position in the network,
however, nodes require different duration for their active periods. Nodes close to the
sink are subject to heavier traffic load compared to leaf nodes, whose active time need
not be as high. The second shortcoming of our technique concerns the coordination of
actions among active agents. Clearly, being awake at the same time is not sufficient for
two nodes to successfully exchange messages. If two agents on the same routing branch
attempt to transmit at the same slot, their messages will collide. Agents therefore need
to learn not only the time of their active period within a frame, but also when to transmit
and when to listen during that active period.

The above two shortcomings are being addressed in an extension of our algorithm,
which we call DESYDE [9]. The three main differences to the proposed approach are
outlined below:

1. In DESYDE we let agents learn two quality values for each slot, instead of one.
One quality value indicates how beneficial it is for the node to transmit during that
slot, while the other value indicates how good it is to listen for messages. In slots
where it is neither good to transmit nor to listen, the node will turn off its antenna
and enter sleep mode. Thus, each node learns the quality of three actions: transmit,
listen and sleep, as opposed to only wake-up and sleep.

2. The algorithm in DESYDE differs from the one proposed in this paper also in the
value of the learning rate α. In DESYDE we set this value to 1, which dramatically
alters the learning behavior of nodes. With α = 1, nodes remember only the most
recently observed feedback signal for each slot and discard old observations. In this
way the behavior of nodes resembles a Win-Stay Lose-Shift strategy [13] where in
our setting agents at each slot repeat the action that was successful at the same slot
in the previous frame and try a different action if it was unsuccessful.

3. The last difference is the action selection method — in DESYDE nodes select at
each slot the action with the highest expected reward, rather than staying awake for
the slots with the highest sum of Q-values. If none of the two quality values are
above 0 for a given slot, the agent selects sleep in that slot in the next frame. In this
way nodes adapt their duty cycle to the traffic load of the network and may wake
up at different slots within a frame, as opposed to holding only one active period.
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(a) 2-by-2 grid topology.
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Fig. 6. Comparison between (De)synchronicity and DESYDE schedules on the 2-by-2 grid

To illustrate the effect of the above three differences, consider the 2 by 2 grid in Fig-
ure 6(a). An example of the resulting wake-up schedule of the four nodes is illustrated
in Figure 6(b) for both (De)synchronicity (top) and DESYDE (bottom). In this exam-
ple, the frame contains 10 slots, and the four schedules reported (for each approach) are
those of the four nodes in the grid, arranged in the same order as in Figure 6(a). Fig-
ure 6(b) (top) shows the schedules of nodes using the algorithm presented in this paper.
One can see that the left nodes are synchronized for communication at slots 2−4, while
the right ones are active at slots 5 − 7. In other words, upper nodes are synchronized
with lower ones (being active at the same slots) and left nodes are desynchronized with
right.

The schedules of nodes when using DESYDE are presented in Figure 6(b) (bottom).
Here upper transmission slots are synchronized with lower reception slots and left active
slots are desynchronized with right active slots. More precisely, at slot 2, the upper left
node transmits when the lower left node receives, while the right nodes are synchronized
for communication at slot 5. The lower left node sends its data to the base station at slot
7 and forwards that of the upper left node at slot 9. The lower right node does the
same at slots 4 and 6, respectively. Thus, with both approaches we observe the same
coalitions as in our schematic model in Figure 6(a). On the one hand, DESYDE allows
nodes to adapt their active time based on the (static) traffic load and therefore prolongs
the network lifetime. However, one disadvantage is that DESYDE is not well suited for
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irregular data traffic, since nodes tightly adapt their schedules to match the expected
traffic. For the same reason, DESYDE is also vulnerable to clock drifts. The approach
presented in this paper, on the other hand, is more flexible in these respects, since most
nodes remain active longer than it is necessary to forward their packets.

4 Conclusions

In this paper we presented a decentralized reinforcement learning (RL) approach for
self-organizing wake-up scheduling in wireless sensor networks (WSNs). Our approach
improves the throughput of the system even for very low duty cycles, as compared to
the standard S-MAC protocol. When using our RL policy, agents independently learn
to synchronize their active periods with nodes on the same routing branch, so that mes-
sage throughput is improved. At the same time, nodes desynchronize with other routing
branches in order to reduce communication interference. We demonstrated how initially
randomized wake-up schedules successfully converge to the state of (de)synchronicity
based only on local interactions and without any form of explicit coordination. As a re-
sult, our approach makes it possible that sensor node coordination emerges rather than
is agreed upon.

The proposed approach provides a basis for a number of extensions that we are cur-
rently investigating. In particular, the wake-up schedules of individual nodes may be
adapted on the basis of their own traffic load, as illustrated by the DESYDE strategy.
This adapted version of the protocol allows to further reduce the convergence time and
the end-to-end latency of the system.
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Abstract. Logistics networks face the contradictory requirements of achieving
high operational effectiveness and efficiency while retaining the ability to adapt to
a changing environment. Changing customer demands and network participants
entering or leaving the system cause these dynamics and hamper the
collection of information which is necessary for efficient process control. Decen-
tralized approaches representing logistics entities by autonomous artificial agents
help coping with these challenges. Coordination of these agents is a fundamental
task which has to be addressed in order to enable successful logistics operations.
This paper presents a novel approach to self-organization for multiagent system
coordination. The approach avoids a priori assumptions regarding agent charac-
teristics by generating expectations solely based on observable behavior. It is for-
malized, implemented, and applied to a logistics network scenario. An empirical
evaluation shows its ability to approximate optimal supply network configura-
tions in logistics agent coordination.

1 Introduction

Logistics plays a major role in globalized economy. Industrial production and trade
require efficient and reliable supply networks. Growing interrelations between these
networks and the inherent dynamics of the logistics domain result in a high complex-
ity of global supply processes [9]. The application of conventional centralized planning
and control approaches to these processes suffers from that complexity. Therefore, de-
centralized methods become necessary which employ autonomous actors representing
logistics entities and objects [10].

From the artificial intelligence point of view, these autonomous entities can be repre-
sented by intelligent software agents to model logistics networks as multiagent systems
(MAS). These systems enable simulations, evaluations, and actual implementations of
new approaches in autonomous logistics [17].

In order to develop the aforementioned approaches, coordination and cooperation of
autonomous entities is a challenging task. In the logistics domain, coordination faces the
contradictory requirements of achieving high operational efficiency while retaining the
system’s ability to adapt to a changing environment. On the one hand, supply networks
have to achieve high performance rates concerning asset utilization, cost reduction, and
customer satisfaction. On the other hand, they require flexible and robust structures in
order to react to unforeseen changes caused by the domain’s inherent dynamics.
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Fig. 1. Schematic diagram of a supply network showing all possible relationships between the
participants

This paper presents a novel approach for self-structuring multiagent systems. Sec-
tion 2 further explores the challenges in logistics network configuration and operation.
Section 3 examines agent coordination mechanisms for organizing decentralized be-
havior in logistics networks. Motivated by these considerations, Section 4 introduces
expectation-based self-organization as an adaptive structuring paradigm for multiagent
systems based on sociological theory. That approach is evaluated in Section 5 in a sim-
ulated supply network scenario with regard to coordination effort and logistics perfor-
mance. Finally, Section 6 recapitulates the achievements of this paper in a concluding
summary and gives an outlook on possible future work.

2 Self-Organizing Supply Networks

In order to efficiently solve repeatedly occurring coordination problems in decentralized
systems, organizational structures have to be established [8]. Yet, it is unclear which
kind of structure is applied best, given a particular coordination problem. Consider, for
instance, a logistics network as depicted in Figure 1. In this network, the participants
must choose which subset of the possible relationships between each two tiers (shown
as arrows in the direction of material flows) actually to establish. This decision has to
consider transaction costs (e.g., interaction effort and transportation costs) as well as the
responsiveness and reliability of possible business partners in order to enable efficient
operations within the network.

A supply network can be represented as a graph consisting of logistics entities as its
nodes and their possible business relationships as edges. Establishing an organizational
structure refers to the choice of a subgraph restricting the set of edges to a subset of
all possible ones. An efficient organizational structure furthermore minimizes the actu-
ally instantiated relationships while maximizing the achieved operations outcome with
regard to logistics performance measures.

However, due to the dynamics of logistics processes, conventional design time eval-
uation and optimization of these organizational structures is not sufficient in terms of
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flexibility and robustness. Increasing demands of the final consumers, for example, re-
quire structural modifications in the distribution part of the supply network in order to
fulfill those demands: Additional storage capacity has to be allocated and even com-
pletely new channels of product distribution must be established. Thus, the structures
in that part the supply network must be refined, i.e., additional or alternative options of
business relationships must be instantiated.

This is but an example for the dynamics in logistics that is further aggravated by
the openness of those systems [1]: Not only consumer demand changes as well as un-
foreseen failures of scheduled operations may happen (leading to the need of dynamic
replanning and reallocation of resources), but the logistics market itself may alter. New
competitors as well as new customers may enter, causing further changes in demand,
prices, and requirements of products and services. These developments evoke the neces-
sity for each participant to constantly adapt his relationships to customers and suppliers
in order to secure market shares and to fulfill the customers’ demands. Such an adap-
tion, furthermore, affects other business relationships within the network, requiring an
extended refinement of supply partnerships therein.

Thus, modeling and operating supply networks with multiagent systems requires the
agents’ ability to establish organizational configurations that allow for efficient oper-
ation, while being flexible enough (i.e., alterable) to cope with the dynamics of lo-
gistics processes. Hence, self-organizing MAS become necessary which autonomously
arrange their structure in accordance with dynamically changing conditions. In this con-
text, self-organization is therefore considered as the emergent evolvement and modifica-
tion of organizational structures defining business relationships between supply network
partners.

3 Agent Coordination

In order to be able to autonomously coordinate their activities (e.g., to establish and
operate logistics networks), artificial agents have to interact with each other. For this
purpose, agent communication languages modeling speech acts between the agents are
commonly used [4,5]. Based on these speech acts, a range of interaction and negotia-
tion protocols have been developed which coordinate agent behavior. Patterns of inter-
action reflect relationships between the participants and, thus, express the structure of
the multiagent system. Vice versa, structuring a supply network, modeled as a MAS,
means defining channels and modes of agent communication.

A wide variety of different structuring paradigms for MAS has been proposed [7].
These structures range from strict hierarchies [12] to market-based methods [2]. The
former use centralized decision-making at the top and distributed processing of specific
tasks at the bottom; the latter are completely decentralized and rely on negotiations for
each single task rather than on any middle or long term relationships. These predefined
mechanisms differ in their ability to handle changing conditions as well as in their
necessary effort for coordinating the actions of a network’s members [16]. Therefore,
the expected dynamics of the application domain must be estimated in order to make
use of them.



400 J.O. Berndt

However, choosing a prototypical organization approach for a whole network may
not be sufficient. In fact, heterogenous relationships may be required between agents in
different parts of the supply network. Moreover, predetermining agent interaction pat-
terns will necessarily lead to a compromise between efficient operation and adaptive be-
havior: For example, negotiation based interaction paradigms are highly adaptive when
it comes to changing behavior of participating agents (as they allow for determining the
best result under any given conditions). Nevertheless, they lead to a large overhead of
communication and computation effort as every interaction task involves all possible
participants among the agents.

In order to confine the interaction effort [18], a MAS can be subdivided into teams
of agents with similar properties or joint objectives [21,22]. Team building and joint
action among autonomous agents for distributed problem solving includes determina-
tion of potentials for cooperative acts, formation of teams, distributed planning, and the
actual processing of plans [22]. In the logistics domain, team formation methods have
shown benefits in terms of increased resource utilization efficiency while reducing the
communication effort of agents performing similar tasks [17,19].

However, clustering agents in teams usually focuses on short term behavior and
tasks, rather than on middle and long term structures in agent interaction. Furthermore,
team formation processes rely on the exchange of information about agent properties
and goals among the potential team members. Hence, they assume any participating
agents to behave benevolently, i.e., to be trustworthy. In an open system, however,
agents may be confronted with deceitfully behaving participants [13] or others, sim-
ply not willing to share information.

Thus, potential interaction partners in open MAS cannot be assumed a priori to ex-
hibit particular behavioral characteristics. In fact, they appear as black boxes and there-
fore must be observed by the other agents or the system designer in order to determine
their characteristics during runtime of the system. Based on such observations, a struc-
turing approach for MAS has been proposed, using explicit modeling of expectations
concerning communication flows [1,14]. This approach, which is inspired by the soci-
ological theory of communication systems [11], establishes a notion of communicative
agent behavior that is reflected by the modeled expectations.

Feeding those expectations back into the decision-making process of interacting
agents offers a promising foundation for self-structuring MAS, as they reflect other
agents’ characteristics inferred from their observable behavior. Customer demands, for
instance, can be observed from the incoming orders on the supplier’s side. The supplier
can establish expectations regarding the customers’ behavior and subsequently adapt
his own behavior with regard to these expectations. Hence, the system as a whole is
enabled to adapt to implicit characteristics and external impacts by the agents refining
their communication patterns in terms of business relationships, i.e., the system orga-
nizes itself.

To summarize, agent coordination refers to communication processes between these
agents. Prototypical coordination mechanisms lead to a compromise between opera-
tional efficiency and flexibility while dynamic team formation requires additional
behavioral assumptions to overcome this problem. However, the systems-theoretical
perspective of expectations structuring agent interaction (rather than assumptions and
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Fig. 2. Agent decision-making in a feedback loop of behavior observation, expectation, action
selection, and operation

commitments) provides a promising foundation for self-organization as a paradigm for
multiagent coordination.

Nevertheless, in the aforementioned approach [1,14], expectations reflecting and
guiding agent behavior are modeled by the system designer as an external observer.
However, self-organization requires organizational structures to emerge from the sys-
tem’s operations without external intervention; i.e., the mentioned feedback loop must
be closed within the multiagent system. Thus, the next section introduces the notion
of double contingency which describes the emergence of mutual expectations structur-
ing communication flows between agents appearing as black boxes. In the following,
this concept is operationalized in order to demonstrate its ability to enable autonomous
coordination of agent communication systems.

4 Expectation-Based Self-Organization

According to the sociologist Niklas Luhmann, double contingency denotes both the
fundamental problem of social order generation as well as its own solution leading to
the emergence of social order [11, pp. 103–136]. Referring to Parsons and Shils [15], he
points out: Given two entities alter and ego, mutually appearing as black boxes to each
other, ”if alter makes his action dependent on how ego acts, and ego wants to connect
his action to alter’s“ [11, p. 103], they reciprocally block their ability to act at all.

However, the solution to that problem lies in the interdependency of actions, as well.
As soon as alter or ego behave in whatever way, action becomes not only possible, but
social structures emerge from the self-referential circle of mutually dependent activi-
ties. Those structures consist of expectations evolving from, e.g., ego’s observation of
his own actions as well as of alter’s behavior. These expectations, in turn, guide ego’s
selection of subsequent actions. Hence, a feedback loop of observation, expectation,
selection, and operation (action) emerges as depicted in Figure 2.

In the context of multiagent systems, double contingency can be viewed analogically
as the problem of determining interaction opportunities. It also denotes its own solution
through the emergence of expectations guiding agent communication as the fundamen-
tal operation in MAS. As a starting point serves the simulation model by Dittrich et
al. [3]: They simulate and analyze Luhmann’s concept of double contingency in a sce-
nario of two agents interacting with each other by exchanging messages with varying
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content. The agents memorize a certain number of these messages and select their re-
sponse according to expectations calculated from the entries in their memories. That
approach shows the evolvement of stable interaction patterns from the agents’ behavior
under a wide range of parameter conditions [3, sec. 3 and 5].

In an extension of their own model, Dittrich et al. furthermore examine the emer-
gence of social order among an arbitrary number of agents [3, sec. 6]. To this end, they
introduce a random choice of two agents in each simulation step, letting them interact
in the same way as in the basic dyadic setting. Their results show that, for growing
numbers of agents, stable interaction patterns only evolve if alter’s behavior reflects the
average agent behavior within the system and if the agents are able to observe more
pairwise encounters than they are involved in themselves [3].

However, those requirements as well as their abstract model of message contents pre-
vent an application of that approach for self-organization in MAS following
particular purposes. Choosing agent pairs for interaction at random contradicts the ob-
jective of emerging agent relationships which define interaction channels. In fact, self-
organization refers to the systematic choice of interaction partners among the set of all
agents in a MAS in its very core. Thus, that selection must be based on expectations
regarding interaction outcomes. In applied self-organizing MAS (e.g., for modeling
supply networks), the semantics of message contents depending on the respective ap-
plication domain is a crucial factor for the determination of such outcomes. Hence, it
has to be considered when generating agent expectations.

Therefore, in the following, a model of double contingency is developed, based on
the basic approach by Dittrich et al. [3], allowing for the application of self-organizing
coordination of an arbitrary number of agents (Section 4.1). Moreover, the original
model using meaningless messages is enriched with semantics derived from the logis-
tics domain, being compatible with a standard agent interaction protocol (Section 4.2).

4.1 Modeling Double Contingency

In this model, agent operations consist of sending FIPA-ACL compliant messages [5].
Observing them refers to their storage in an agent’s memory which is used to calcu-
late expectations for possible further communicative acts. The observing agent subse-
quently selects its next message to be sent according to these expectations. Thus, an
agent’s communicative behavior exclusively depends on its memorized observations
of other agents’ behavior, avoiding any further assumptions of their internal properties
and characteristics. Hence, the basic steps enabling the agents to self-organize are as
follows.

1. The observation of incoming messages sent by other agents.
2. The selection of messages to be sent to other agents.

An agent’s memory is a vector MEM = (mem1, . . . ,memn) with a fixed length n, where
each entry memi denotes a tuple of messages m ∈ M (M being the set of all possi-
ble messages). The second message is the observed response to the first one: memi =

〈mreceived,i,msent,i〉. An agent possesses two of those memories, MEMego and MEMalter,
storing its own reactions to perceived messages and observed others’ reactions to its
own messages, respectively. Thus, observation takes place when sending a message
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msent by adding it to MEMego together with the last received message mreceived as well
as when receiving a message mreceived by adding it to MEMalter together with the last
message msent the agent sent itself. Each time, a tuple of messages is memorized, if this
would lead to a memory size > n the oldest entry is removed from the memory.

This way to model an agent’s memory is an important modification of that by Dittrich
et al. [3], differing in alter not only being considered one single agent, but the whole
community of agents other than ego. This reflects Luhmann’s understanding of double
contingency as a phenomenon not restricted to an encounter of two individuals, but oc-
curring between systems in a generalized manner [11, pp. 105–106]. Thus, expectations
may well be established regarding the behavior of the whole MAS, considering it as a
social system. The entries in its memory, therefore, reflect an agent’s observations of its
interactions with any of its fellow agents.

Moreover, this interpretation of double contingency between an agent and the whole
agent community allows not only for the content of a message to be selected according
to memorized experience from former agent interactions. In fact, it also enables the
agent to determine a message’s receivers (i.e., the interaction partners) in the selection
process. Hence, the advantages of the dyadic model by Dittrich et al. [3] regarding
structural emergence are retained while avoiding the aforementioned drawbacks of its
extension for an arbitrary number of agents.

In order to calculate expectations from an agent’s memory MEM, the memory access
function lookup : MEM∗ ×M×M −→ [0,1] (with MEM∗ denoting the set of all possible
agent memories MEM) estimates the probability of one message being observed as the
response to another:

lookup(MEM,mreceived ,msent) =
lmreceived ,msent
∑

mj∈M
lmreceived ,mj

(1)

where

lmreceived ,msent =
cM

|M| +
n∑

i=1

n+1− i
n

·
⎧
⎪⎪⎨
⎪⎪⎩

1 if 〈mreceived ,msent〉 ≡ memi ∈MEM

0 else
(2)

Here, ≡ is an equivalence relation on the message tuples 〈M,M〉 × 〈M,M〉. Therefore,
〈mreceived ,msent〉 ≡ memi denotes the pairwise equality of the received and sent mes-
sages, compared to those in memory entry memi, with regard to their performatives,
sets of receivers, and contents. This is the second major modification of the original
model, allowing for considering advanced message semantics (in contrast to the very
abstract message representation by Dittrich et al. [3]). Especially the content of mes-
sages depends on the application domain. Thus, domain dependent equality measures
(e.g., the distinction of orders for different product types) are required. The constant cM

is used to avoid message combinations to be regarded completely impossible in case of
missing observations [3, sec. 9.4]. With mem1 ∈MEM being the most recent observa-
tion, this function uses a linear discount model to reflect the agent gradually forgetting
past observations.

Two kinds of expectations are subsequently calculated for selecting an agent’s next
message. On the one hand, the expectation certainty (EC) denotes an agent’s assured-
ness about which reaction to expect from the MAS following its own message. On the
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other hand, the anticipated expectation (AE)1 reflects an agent’s estimation of other
agents’ expectations towards its own behavior.

The EC is calculated based on a modified version of the standard deviation, estimat-
ing an agent’s certainty over the possible reactions to its next message msent [3, sec. 2.1
and 9.5]:

ECmsent =

√√√ |M|
|M| −1

∑

mj∈M

(
1
|M| − lookup(MEMalter,msent,m j)

)2

(3)

This linear function returns a value of 0 for uniformly distributed probability estima-
tions over the others’ possible reactions to an agent’s message. Contrastingly, the most
inhomogenous distribution of those estimated probabilities leads to a value of 1. Thus,
the function reflects the certainty of the agent expecting a particular response to its mes-
sage. However, note that the lookup of each value for the possible reactions of the MAS
is used with the sent message as its first argument. This is because MEMalter contains
ego’s observations of himself from alter’s perspective. Thus, as ego’s msent is what alter
receives from him, it is treated as the received message in MEMalter.

On the other hand, the AE is calculated directly using the lookup-function as the
estimated probability of the agent’s next message msent in response to the last received
message mreceived [3, sec. 2.1]:

AEmsent = lookup(MEMego,mreceived ,msent) (4)

As MEMego stores all observations of ego’s responses to received messages, Equation 4
reflects ego’s anticipation of alter’s perception of his behavior. Hence, the AE denotes
an agent’s estimation of what is expected from itself by the community of its fellow
agents.

Finally, a weighted sum combines both types of expectations to a selection value V
for each possible next message msent ∈ M. This value represents the potential of a given
message to stabilize the interaction flows within the MAS. High selection values repro-
duce themselves when an agent chooses a corresponding message and thereby feeds it
back into the control loop. This leads to an emergence of interaction patterns (repeat-
edly occurring communication flows between the agents) which represent the social
structures in a MAS. However, differing from Luhmann’s theory and the model by
Dittrich et al. [3], goal-directed agent interaction requires social structures which facil-
itate the fulfillment of the agents’ objectives. Therefore, at this stage, a utility function
utility : M −→�+ is additionally introduced. This function enables V not only to reflect
communicative stability within the system, but also directs the agent’s behavior towards
domain dependent performance criteria. Thus, Vmsent is given by the following equation.

Vmsent = (αECmsent + (1−α)AEmsent ) ·utility(msent)+
c f

|M| (5)

1 Dittrich et al. [3] call this expectation-expectation (EE), literally translating Luhmann’s orig-
inal German term. Luhmann, however, uses anticipated expectation in the English edition of
his main work [11].
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Fig. 3. A simple supply network depicting agent roles and relationships in the logistics domain

The parameter α ∈ [0,1] weights the balance between EC and AE. The constant c f

avoids marginal differences in the weighted sum to cause overly high effects on the
message selection in order to retain an agent’s ability to try out alternative messages,
i.e., to occasionally explore the possibility space [3, sec. 9.1].

Calculating Vmsent for all possible message options msent ∈ M enables an agent to
select its operations (i.e., the messages to be sent) according to its expectations which
are based on observations of its interaction with other agents. As the selection of an
operation leads to further observations, the aforementioned feedback loop is closed.
However, the method of actually choosing an operation in accordance with the calcu-
lated selection values remains to be determined. That method depends on an agent’s
role in the MAS and is introduced in the next subsection.

4.2 Representing the Logistics Domain

When modeling supply network participants as autonomous agents, these agents may
have different capabilities. As shown in Figure 3, they can be classified in primary
producers that produce raw materials without consuming anything, final consumers that
only consume products, and manufacturers that consume materials and semi-finished
parts in order to transform them into new parts and products. Concerning the business
relationships between the entities, it is sufficient to distinguish the agents by their roles
as producers and/or consumers of certain goods (manufacturers acting both as producers
and consumers). Their respective possible relationships as suppliers and customers are
depicted by the edges between the entities in Figure 3 (with the left hand side of an edge
being attached to a supplier and its right hand side being connected to the respective
customer).

These relationships denote possible occurrences of order/delivery processes, that
form the fundamental operations of a logistics system. They are modeled using the
FIPA-REQUEST interaction protocol [6]: An order is placed by sending a REQUEST
message containing a product type and the requested amount of that good to any subset
of the possible suppliers for this product. An answer with the REFUSE or FAILURE
performative is considered a failure to deliver while an INFORM leads to the supplier
agent removing the specified amount of products from its inventory and the customer
adding it to its own one.
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For selecting their messages based on their expectations, the agents have different
objectives, according to their respective roles. These are represented in:

1. An agent’s utility function.
2. The selection method used by an agent.

From a customer’s point of view, there are two objectives. On the one hand, a customer
strives to maximize the number of fulfilled orders to enable continuous product con-
sumption. On the other hand, this role is also responsible for the amount of messages
occurring in the MAS which depends on the number of receivers per message. In order
to ensure a low communication effort, the second objective is to minimize the num-
ber of order receivers. Thus, for calculating the selection values for each message, the
following utility function is employed.

utility(msent) =
1

|rec(msent)| · eor(msent) (6)

In this function, rec(msent) denotes the set of receivers of message msent and eor(msent)
is the estimated order fulfillment rate, calculated as follows.

eor(msent) =
∑

mj∈M

lookup(MEMalter,msent,m j) ·
⎧
⎪⎪⎨
⎪⎪⎩

1 if perf (m j) = INFORM

0 else
(7)

As perf (m j) indicates the performative of message m j, the eor represents the estimated
probability of a positive answer to the given order. Hence, this utility function favors
those orders that have a small number of receivers while having a high estimated prob-
ability to be fulfilled.

Finally, a message msent is randomly chosen out of the set of all possible messages
with a probability based on its selection value. In order to be able to adjust the level of
randomness in this selection, the selection value is further modified by an exponent γ,
allowing for choosing from a range between completely random selection (γ = 0) and
deterministically selecting the maximum value (γ=∞). Therefore, following Dittrich et
al. [3, sec. 2.1] again, selection is done using a probability distribution over all possible
messages msent, calculated as follows.

p(msent) =
Vγmsent
∑

mj∈M
Vγmj

(8)

From a supplier’s point of view, on the other hand, the objectives are easier to represent.
A supplier is assumed to be generally interested in fulfilling an order, if possible. If it
is not possible to fulfill all orders, a supplier prefers to maximize the system’s stability
in terms of predictability of further incoming orders and anticipated expectations of the
customers. In other words, a supplier favors orders by his regular customers as he can
expect them to place further orders in the future and he can anticipate the expectation
of their orders being fulfilled. This setting is directly represented in the weighted sum
of EC and AE. Thus, the supplier’s utility function remains unused (utility(msent) = 1).
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For the choice of a message, the selection value Vmsent is calculated for each answer
msent ∈ M with perf (msent) = INFORM. Starting with the highest selection value, the
messages are processed in descending order. As long as the supplier’s inventory stock
level allows for fulfilling the processed order, an INFORM message is sent. If that is no
longer possible, all subsequent orders are refused.

5 Empirical Evaluation

In order to validate the ability of expectation-based self-organization to efficiently struc-
ture and operate multiagent systems modeling supply networks, that approach will be
compared to the performance of a system with a previously defined communication
structure. For this purpose, the approach is implemented and applied to an example
scenario using the multiagent-based simulation system PlaSMA [20].

5.1 Experimental Setup

In this evaluation, a network with three tiers and three parallel operating entities is
modeled as depicted in Figure 3. Each agent produces and/or consumes an amount of
two units of the product types A and/or B (two A being transformed into two B by the
agents at the manufacturing tier). Furthermore, every agent has an outbound inventory
capacity of four units per product type, restricting the amount of goods that can be
produced and stored by a single logistics entity. The agents acting as customers pursue
a policy of ordering an amount of four units if the respective inventory stock level
reaches six or less.

In the simulation, a message sent by an agent can be received and processed in the
next time slice at the earliest. Therefore, sending an order and receiving the response
takes two simulation cycles. In that time, four units of the required type of products can
be consumed. Thus, the chosen order batch size enables maximal utilization of produc-
tion and consumption processes while requiring minimal outbound storage capacity on
the suppliers’ side. However, the threshold of six units for placing an order enables the
agents at the manufacturing tier to build up inbound safety stocks, allowing for contin-
ued production in case of supply shortfalls and thus compensating disturbances at the
early network tiers.

Knowing these mentioned capabilities of the participating agents, it is easy to pre-
structure this network by choosing an arbitrary bijection out of the possible relationships
between each two tiers. For each order following the mentioned policy, this ensures the
number of receivers being one (the possible minimum) and the supplier to be able to
fulfill that order as soon as enough raw material has been produced in an initialization
phase (as the amount of consumed goods equals that of produced ones). Thus, such
an arrangement of relationships necessarily leads to a maximized operation efficiency
of the modeled supply network using a minimal number of sent messages. Regarding
these objectives, it therefore guarantees optimal results making it especially suitable as
a reference for the self-organizing approach.

However, without prior knowledge of other agents’ capabilities and relationships,
the choice of interaction partners leading to an efficient and reliable network structure
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is not an obvious one. As the possible configurations of message receivers for each
order correspond to the power set of the set of available suppliers (without the empty
set), in a network with n tiers and m parallel actors at each tier, the total number of
potential relationships is (m ·(2m−1))n−1 (the possible communication paths through the
network)2. Thus, in the chosen scenario the self-organizing agents can choose between
441 possible interaction patterns leading to different performance rates. Therefore, in
this simple scenario, agent coordination is already complex enough to make it suitable
for evaluating the emergence of communication structures.

For this purpose, the expectation-based agents are configured as follows. The set
of possible orders to be sent by a customer is given by the possible combinations of
their receivers, their performatives, and their content. As there is only one type and a
fixed amount of units to order per customer, there is only one possible content. The
same holds for the performative, as an order is always a REQUEST message. Thus,
the set of possible orders is determined by the possible combinations of a message’s
receivers (the power set of the set of possible suppliers). For the replies, on the other
hand, the receiver as well as their contents are preassigned by the incoming orders.
Hence, a supplier’s only choice is between the message performatives according to the
FIPA-REQUEST interaction protocol.

For generating the results presented in the following subsection, the constant values
are based on those used by Dittrich et al. [3]: cM = 2 and c f = 0.02. The agent memory
size is set to n = 25 for both MEMego and MEMalter, the balance between EC and AE
to α = 0.5, and the customers’ selection value gain to γ = 3. All agent memories are
initially populated with randomly chosen messages in order to reflect the agents not
having any specific prior information about promising interaction channels.

In order to validate the approach to expectation-based self-organization, it is com-
pared with an optimal configuration as outlined above. The performance is measured
with regard to the number of receivers per order, the final consumers’ customer satisfac-
tion rate (i.e., the number of fulfilled orders), and the utilization of the final consumers’
product consumption. The first two criteria directly reflect the customers’ utility func-
tion. They give information about the communication effort needed to operate the net-
work (message receivers) as well as about the reliability of the emerging relationships
between the agents (customer satisfaction). Thus, these measures reflect the extend of
stability of the evolving network structures. The consumers’ utilization, on the other
hand, is an additional logistics performance measure that allows for validating the sup-
ply network’s overall operating efficiency in terms of product throughput rates.

5.2 Results and Discussion

The results depicted in Figures 4–6 show the number of receivers, the customer satisfac-
tion, and the consumer utilization as average values over 200 simulation runs. Each run
consists of 1000 production and/or consumption operations. For the calculation of the
order fulfillment rate, the last ten messages received are considered for each time slice

2 There are m agents at a tier with 2m−1 possible interaction partners, each. The potential paths
through the network are given by the combination of those options over all n−1 links between
two tiers.
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Fig. 4. Number of message receivers (orders of final consumers)

Fig. 5. Customer satisfaction among the final consumers

Fig. 6. Consumption rate (utilization) among the final consumers

while the utilization is measured over the last ten attempts to consume the respective
amount of products.

For the prestructured reference configuration, Figures 5 and 6 show that there is a
short initialization phase until the inventories of the suppliers are filled high enough to
be able to fulfill the customers’ orders. After that phase, the optimal values are reached
for the order fulfillment rate and the customers’ utilization while the number of receivers
per order is always one by definition (Figure 4).

In the self-organizing network, these levels are not reached completely. However,
the values converge near the optimum, showing that the agents autonomously establish
one to one interaction relationships (Figure 4) that still lead to a near optimal order
fulfillment rate of more than 97% (Figure 5). The process utilization (Figure 6) as a
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logistics performance indicator corresponds to these values. However, it shows slightly
higher fluctuations, which are caused by the agents always ordering the minimal amount
of products. This can lead to supply shortfalls even in the case of only partially refused
orders3.

These results reflect the capability of generating social order as it is observed by Dit-
trich et al. [3] in their original model. Thus, changing their interpretation of a dyadic
encounter between individuals to a more general understanding of double contingency
regarding alter a whole community of entities allows for transferring the properties of
their basic approach to a multiagent scenario. Therefore, an application of expectation-
based self-organization in MAS based on Luhmann’s notion of double contingency is
possible without the requirement for a reduction of interaction to pairwise communica-
tion processes or the need for extended agent observation activities.

Concerning the logistics application, the results demonstrate that the expectation-
based approach to self-organizing agent interaction is not only capable of efficiently
structuring and operating the modeled supply network. In fact, it is even able to estab-
lish an optimal configuration of agent communication channels (one to one relation-
ships), leading to similar performance rates compared to the benchmark arrangement
in the course of the simulation. As the agents occasionally explore alternative inter-
action options, delivery failures occur from time to time, leading to slightly less than
optimal customer satisfaction and utilization rates due to the minimal order size and
inventory capacities. Regarding these measures, safety stocks and increased order sizes
may compensate the disturbances to further improve logistics performance.

To summarize, the feedback loop of agent observation and expectation-based selec-
tion of operations shows the ability to reach near optimal results without the require-
ment for a priori assumptions about agent characteristics4 or repetitive negotiations
between several agents. Due to the dynamics of the logistics domain and the black box
nature of agents in open MAS, it is not generally possible to optimally prestructure a lo-
gistics network. In order to overcome this problem, expectation-based self-organization
provides a promising coordination method for supply systems, being adaptive as well
as operating efficiently.

6 Conclusions

This paper has identified the requirement for both adaptive and efficient supply net-
works. As multiagent systems provide a means for decentralized modeling of logistics
networks, possible coordination techniques have been investigated in terms of their ap-
plicability to address the challenges in supply network organization. In this context,

3 When exploring alternative sets of suppliers, an agent may split its orders over, e.g., two sup-
pliers. If one of the suppliers refuses that order and the other one sends a delivery message,
the production process utilization suffers from a supply shortage. The customer satisfaction,
however, is less affected by this partially refused order. Therefore, the product consumption
varies to a higher extend than the customer satisfaction.

4 In contrast to that, e.g., determining the benchmark configuration requires knowledge of the
agents’ production and consumption rates.
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expectations regarding observable behavior have been presented as a means for dynam-
ically structuring agent relationships, avoiding the necessity of a priori assumptions
regarding agent properties and behavior.

Based on theoretical foundations from sociology [11], a simulation approach to
emerging interaction patterns using expectations has been adapted and generalized to be
applicable in multiagent systems. That method has been evaluated in a supply network
scenario according to coordination efficiency and reliability as well as logistics per-
formance. The results illustrate that self-organized agent coordination based on mutual
expectations is able to establish organizational structures which allow for near opti-
mal performance rates regarding the evaluation criteria. Hence, the approach has been
shown to enable efficient interaction of autonomous entities to emerge solely based on
locally observable agent behavior.

However, there are still questions open for future examination. While the presented
approach performs very well in a stable agent community with repeating interaction
contents (i.e., a static supply network setup), it remains to be analyzed in a setting
with dynamically changing agent memberships and activities. In such a scenario, a
self-organizing network can be assumed to actually outperform a predefined structure
as the latter is not able to adapt to changing conditions. Furthermore, in that context,
an examination of the different parameters’ impact on the predictability and speed
of convergence (learning rate) and the limits of overall performance of the emerging
system structure will give further insights into the capabilities of expectation-based
self-organization. This may motivate further refinements of that approach to agent
coordination.
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Abstract. The Shapley-Shubik, Banzhaf, and Deegan-Packel indices are three
prominent power indices for measuring voters’ power in weighted voting games.
We consider two methods of manipulating weighted voting games, called annex-
ation and merging. These manipulations allow either an agent, called an annexer
to take over the voting weights of some other agents, or the coming together of
some agents to form a bloc of manipulators to have more power over the outcomes
of the games. We evaluate the extent of susceptibility to these forms of manipu-
lation and the effect of the quota of a game on these manipulation for the three
indices. Experiments on weighted voting games suggest that the three indices are
highly susceptible to annexation while they are less susceptible to merging. In
both annexation and merging, the Shapley-Shubik index is the most susceptible
to manipulation among the indices. Further experiments on the effect of quotas of
weighted voting games suggest the existence of an inverse relationship between
the susceptibility of the indices to manipulation and the quotas for both annexa-
tion and merging. Thus, weighted voting games with large quota values closer to
the total weight of agents in the games may be less vulnerable to annexation and
merging than those with corresponding smaller quota values.

keywords: Agents, Weighted voting games, Manipulation, Annexation, Merging,
Power indices.

1 Introduction

Weighted voting games (WVGs) are classical cooperative games which provide com-
pact representation for coalition formation models in multiagent systems. WVGs are
mathematical abstractions of voting systems. In a voting system, voters express their
opinions through their votes by electing candidates to represent them or influence the
passage of bills. Each member of the set of voters V , has an associated weight w :
V → Q+. A voter’s weight is the number of votes controlled by the voter, and this
is the maximum number of votes she is permitted to cast. A subset of agents, called
a coalition, wins in a WVG, if the sum of the weights of the individual agents in the
coalition meets or exceeds a certain threshold called the quota. Such coalitions whose
weight meets or exceeds the quota are referred to as the winning coalitions. It is natural
to naively think that the numerical weight of an agent directly determines the corre-
sponding strength of the agent in a WVG. The measure of the strength of an agent is

J. Filipe and A. Fred (Eds.): ICAART 2011, CCIS 271, pp. 413–428, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



414 R.O. Lasisi and V.H. Allan

termed its power. Consider, for example, a WVG of three voters, a1, a2, and a3 with
respective weights 6, 3, and 1. When the quota for the game is 10, then a coalition
consisting of the three voters is needed to win the game. Thus, each of the voters are
of equal importance in achieving the winning coalition. Hence, they each have equal
power irrespective of their weight distribution. The power of each agent in a WVG re-
flects its significance in the elicitation of winning coalitions. A widely accepted method
for measuring such power is using power indices [9,10,15,16]. Three prominent power
indices are the Shapley-Shubik, Banzhaf, and Deegan-Packel indices [15,16].

This paper discusses WVGs and two methods of manipulating those games, called
annexation and merging [2]. In annexation, a strategic agent, termed an annexer, may
alter a game by taking over the voting weights of some other agents in order to use
the weights in her favor. As a straightforward example of annexation, consider when
a shareholder buys up the voting shares of some other shareholders [15]. We refer to
agents whose voting shares were bought over as assimilated voters. The new game con-
sists of the previous agents in the original game whose weights were not annexed and
the bloc of agent made up of the annexer and the assimilated voters. The annexer also
incurs some annexation cost to allow purchasing the votes of the assimilated voters. In
this situation, only the annexer benefits from annexation as the power of the bloc in the
new game is compared to the power of the annexer in the original game. On the other
hand, merging is the voluntary coordinated action of would-be manipulators who come
together to form a bloc. The agents in the bloc are also assumed to be assimilated voters
since they can no more vote as individual voters in the new game, rather as a bloc. The
new game consists of the previous agents in the original game that were not assimilated
as well as the bloc formed by the assimilated voters. The power of the bloc in the new
game is compared to the sum of the individual powers of all members of the assimilated
bloc in the original game. No annexation costs occur as individual voters in the bloc are
compensated via increase of power. All the agents in the bloc benefit from the merg-
ing in the case of power increase, having agreed on how to distribute the gains of their
collusion. In both annexation and merging, strategic agents who agree to assimilation
anticipate that the value of their power in the new games to be at least the value of their
power in the original games.

We evaluate the susceptibility to manipulation via annexation and merging in WVGs
of the following power indices: Shapley-Shubik, Banzhaf, and Deegan-Packel indices.
Susceptibility to manipulation is the extent to which strategic agents may gain power
with respect to the original games they manipulate. We provide empirical analysis of
susceptibility to annexation and merging in WVGs among the three indices. The re-
mainder of the paper proceeds as follows. Section 2 discusses related work. Section 3
provides definitions and notations used in the paper. In Section 4, we provide examples
using the three indices to illustrate manipulation via annexation and merging. Section
5 considers unanimity and non unanimity WVGs. Section 6 provides empirical evalua-
tion of susceptibility of the indices to manipulation via annexation and merging for non
unanimity WVGs. In Section 7, we empirically evaluate the effects of quota of WVGs
on annexation and merging for non unanimity WVGs. We conclude in Section 8.
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2 Related Work

Weighted voting games and power indices are widely studied [1,2,5,14,16]. WVGs
have many applications, including economics, political science, neuroscience, threshold
logic, reliability theory, distributed systems [3], and multiagent systems [4]. Prominent
real-life situations where WVGs have found applications include the United Nations
Security Council, the Electoral College of the United States and the International Mon-
etary Fund [1,14]. The study of WVGs has also necessitated the need to fairly determine
the power of players in a game. This is because the power of a player in a game pro-
vides information about the relative importance of that player when compared to other
players. To evaluate players’ power, prominent power indices such as Shapley-Shubik,
Banzhaf, and Deegan-Packel indices are commonly employed [16]. These indices sat-
isfy the axioms that characterize a power index, have gained wide usage in political
arena, and are the main power indices found in the literature [10]. These power indices
have been defined on the framework of subsets of winning coalitions in the game they
seek to evaluate. A wide variation in the results they provide can be observed. Then,
comes the question of which of the power indices is the most resistant to manipulation
in a WVG. The choice of a power index depends on a number of factors, namely, the
a priori properties of the index, the axioms characterizing the index, and the context of
decision making process under consideration [10].

The three indices we consider measure the influence of voters differently. There are
many situations where their values are the same for similar games. However, there ex-
ists an important example of the US federal system in using the Shapley-Shubik and
Banzhaf indices where they do not agree [9]. According to Laruelle and Valenciano
[11], and Kirsch [8], the decision of which index to use in evaluating a voting situ-
ation is largely dependent on the assumptions about the voting behavior of the vot-
ers. When the voters are assumed to vote completely independently of each other, the
Banzhaf index has been found to be appropriate. On the other hand, Shapley-Shubik
index should be employed when all voters are influenced by a common belief affecting
their choices. Deegan-Packel index is appealing in that it assigns powers based on size
of the winning coalition, thus giving preference to smaller coalitions (which may be
easier to form).

Very little work exists on manipulation via annexation and merging in WVGs, and
the more detailed analysis of players merging into blocs, until now, has remained unex-
plored [2]. Machover and Felsenthal [15] proved that if a player annexes other players,
then the annexation is always advantageous for the annexer using the Shapley-Shubik
index. Annexation can be advantageous or disadvantageous using the Banzhaf index. For
the case of merging, in both the Shapley-Shubik and Banzhaf indices, merging can be
advantageous or disadvantageous. Aziz and Paterson [2] show that for some classes of
WVGs, for both Shapley-Shubik and Banzhaf indices, it is disadvantageous for a coali-
tion to merge, while advantageous for a player to annex. They also prove some NP-
hardness results for annexation and merging. They show that for both Shapley-Shubik
and Banzhaf indices, finding a beneficial annexation is NP-hard. Also, determining if
there exists a beneficial merge is NP-hard for the Shapley-Shubik index. Machover and
Felsentha [15], and Aziz and Paterson [2] have shown that it can be advantageous for
agents to engage in annexation or merging for Shapley-Shubik and Banzhaf indices
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in some classes of WVGs. The authors stop short of addressing the question of upper
bounds on the extent to which strategic agents may gain with respect to the games they
manipulate. In view of this, our work differ from those of these authors. We extend
the work of Lasisi and Allan [12], as we study the susceptibility of the three power in-
dices to manipulation via annexation and merging. We empirically consider the extent
to which strategic agents may gain by engaging in such manipulation and show how the
susceptibility among the indices compares for different WVGs.

3 Definitions and Notations

Weighted Voting Game. Let I = {1, · · · , n} be a set of n agents. Let w = {w1, · · · , wn}
be the corresponding positive integer weights of the agents. Let a coalition S ⊆ I be a
non empty subset of agents. A WVG G with quota q involving agents I is represented
as G = [w1, · · · , wn; q]. Denote by w(S), the weight of a coalition S derived from the
summation of the individual weights of agents in S i.e., w(S) =

∑
i∈S wi. A coalition

S, wins in the game G if w(S) ≥ q otherwise it loses. q is constrained as follows
1
2w(I) < q ≤ w(I).

Simple Voting Game. Each coalition S, has an associated value function v : S →
{0, 1}. The value 1 implies a win for S and 0 a loss. In the WVG G above, v(S) = 1 if
w(S) ≥ q and 0 otherwise.

Dummy and Critical Agents. An agent i ∈ S is dummy if its weight in S is not needed
for S to be a winning coalition, i.e., w(S\{i}) ≥ q. Otherwise, it is critical to S, i.e.,
w(S) ≥ q and w(S\{i}) < q.

Unanimity Weighted Voting Game. A WVG in which there is a single winning coalition
and every agent is critical to the coalition is a unanimity WVG.

Shapley-Shubik Power Index. This index quantifies the marginal contribution of an
agent to the grand coalition. Each agent in a permutation is given credit for a win if the
agents preceding it do not form a winning coalition but, by adding the agent in question,
a winning coalition is formed. The index is dependent on the number of permutations
for which an agent is critical. Denote by Π the set of all permutations of n agents in a
WVG G. Let π ∈ Π define a one-to-one mapping onto itself where π(i) is the position
of the ith agent in the permutation order. Denote by Sπ(i), the predecessors of agent i
in π, i.e., Sπ(i) = {j : π(j) < π(i)}. The Shapley-Shubik index, ϕi(G), of agent i in
G is

ϕi(G) =
1

n!

∑
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))] (1)
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Banzhaf Power Index. Another index that has also gained wide usage in the political
arena is the Banzhaf power index. Unlike the Shapley-Shubik index, its computation
depends on the number of winning coalitions in which an agent is critical. There can
be more than one critical agent in a particular winning coalition. The Banzhaf index,
βi(G), of agent i in a game G, is given by

βi(G) =
ηi(G)∑
i∈I ηi(G)

(2)

where ηi(G) is the number of coalitions in which i is critical in G.

Deegan-Packel Power Index. The Deegan-Packel power index is also found in the lit-
erature for computing power indices. The computation of this power index for an agent
i takes into account both the number of all the minimal winning coalitions (MWCs) in
the game as well as the sizes of the MWCs having i as a member [16]. A winning coali-
tion C ⊆ I is a MWC if every proper subset of C is a losing coalition, i.e., w(C) ≥ q
and ∀T ⊂ C,w(T ) < q. The Deegan-Packel power index, γi(G), of an agent i in a
game G, is given by

γi(G) =
1

|MWC|
∑

S∈MWCi

1

|S| (3)

where MWCi are the sets of all MWCs in G that include i.

Susceptibility of Power Index to Manipulation. Consider a coalition S ⊂ I , let &S de-
fine a bloc of assimilated voters formed by agents in S. Let Φ be a power index. Denote
by Φi(G), the power of an agent i in a WVG G. Let G′ be the resulting game when a
WVG G is manipulated via annexation or merging.

Annexation: Let an agent i alter G by annexing a coalition S. We say that Φ is sus-
ceptible to manipulation via annexation if there exists a G′, such that Φ&(S∪{i})(G′) >
Φi(G); the annexation is termed advantageous. If Φ&(S∪{i})(G′) < Φi(G), then it is
disadvantageous.

Merging: Let a coalition S alter G by merging into a bloc &S. We say that Φ is
susceptible to manipulation via merging if there exists a G′, such that Φ&S(G

′) >∑
i∈S Φi(G); the merging is termed advantageous. If Φ&S(G

′) <
∑

i∈S Φi(G), then it
is disadvantageous.

Factor of Increment (Decrement). The factor of increment (resp. decrement) of the
original power from a manipulation is Φi(G

′)
Φi(G) . The value represents an increment (or

gain) if it is greater than 1 and decrement (or loss) if it is less than 1. The factor of
increment provides an indication of the extent of susceptibility of power indices to
manipulation. A higher factor of increment indicates that the index is more susceptible
to manipulation in that game.
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Domination of Manipulability. Let Θ be another power index other than Φ. Let agent
i alter a game G by annexing agents S. Suppose the power of the agent in a new game
G′ are Φ&(S∪{i})(G′) and Θ&(S∪{i})(G′) as determined by Φ and Θ respectively. We
say that the manipulability of one index say MΦi(G

′, G), dominates the manipulability
of another index MΘi(G

′, G) for a particular game G, if the factor by which i gain in
Φ is greater than the factor by which it gain in Θ, i.e., MΦi(G

′, G) > MΘi(G
′, G)

which implies that
Φ&(S∪{i})(G′)

Φi(G) >
Θ&(S∪{i})(G′)

Θi(G) . Hence, Φ is more susceptible to
manipulation via annexation in G than Θ. The domination of manipulability can be
similarly defined for manipulation via merging.

4 Annexations and Merging

This section provides examples illustrating manipulation via annexation and merging in
WVGs. The power of the strategic agents i.e., the annexer or the bloc of manipulators,
and the factor of increment (decrement) are also summarized in a table for each example
using the three power indices.

4.1 Manipulation via Annexation

Example 1. Annexation Advantageous.

Let G = [5, 8, 3, 3, 4, 2, 4; 18] be a WVG. The assimilated agents are shown in bold,
with agent 1 being the annexer. In the original game, the Deegan-Packel index of the
annexer is γ1(G) = 0.1722. In the new game, G′ = [9, 8, 3, 3, 2, 4; 18], its Deegan-
Packel index is γ1(G

′) = 0.2604, a factor of increase of 1.51.

Table 1. The annexer power in the game G = [5, 8, 3, 3, 4, 2, 4; 18], the altered game G′ =
[9, 8, 3, 3, 2, 4; 18], and the factor of increment for the three indices

Power Index G G′ Factor

Shapley-Shubik 0.1714 0.3500 2.04
Banzhaf 0.1712 0.3400 1.99
Deegan-Packel 0.1722 0.2604 1.51

Example 2. Annexation Disadvantageous.

Let G = [8, 9, 9, 5, 7, 3, 9; 29] be a WVG. The assimilated agents are shown in bold,
with agent 1 being the annexer. In the original game, the Deegan-Packel index of the
annexer is γ1(G) = 0.1711. In the new game, G′ = [11, 9, 9, 5, 7, 9; 29], its Deegan-
Packel index is γ1(G

′) = 0.1591, a factor of decrease of 0.93.
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Table 2. The annexer power in the game G = [8, 9, 9, 5, 7, 3, 9; 29], the altered game G′ =
[11, 9, 9, 5, 7, 9; 29], and the factor of increment (decrement) for the three indices

Power Index G G′ Factor

Shapley-Shubik 0.1786 0.2167 1.21
Banzhaf 0.1774 0.2167 1.22
Deegan-Packel 0.1711 0.1591 0.93

4.2 Manipulation via Merging

Example 3. Merging Advantageous.

Let G = [4, 2, 1, 1, 8, 7, 4; 17] be a WVG. The assimilated agents are shown in bold. In
the original game, the Deegan-Packel indices of these agents are, γ2(G) = 0.0926,γ6

(G ) = 0.1889, and γ7(G) = 0.1704. Their cummulative power is 0.4519. In the new
game,G′ = [13, 4, 1, 1, 8; 17], the Deegan-Packel index of the bloc is γ1(G

′) = 0.5000,
a factor of increase of 1.11.

Table 3. The cummulative power of the assimilated agents in the original game G =
[4, 2, 1, 1, 8, 7, 4; 17], the power of the bloc in the altered game G′ = [13, 4, 1, 1, 8; 17], and
the factor of increment for the three indices

Power Index G G′ Factor

Shapley-Shubik 0.4881 0.6667 1.37
Banzhaf 0.4851 0.6000 1.24
Deegan-Packel 0.4519 0.5000 1.11

Example 4. Merging Disadvantageous.

Let G = [5, 8, 3, 4, 9, 1, 5; 30] be a WVG. The assimilated agents are shown in
bold. In the original game, the Deegan-Packel indices of these agents are, γ2(G) =
0.1833,γ5(G) = 0.1333, and γ7(G) = 0.1417. Their cummulative power is 0.5083. In
the new game,G′ = [22, 5, 3, 4, 1; 30], the Deegan-Packel index of the bloc is γ1(G

′) =
0.3056, a factor of decrease of 0.60.

Table 4. The cumulative power of the strategic agents in the original game G =
[5, 8, 3, 4, 9, 1, 5; 30], the power of the bloc in the altered game G′ = [22, 5, 3, 4, 1; 30], and
the factor of decrement for the three indices

Power Index G G′ Factor

Shapley-Shubik 0.6762 0.4667 0.69
Banzhaf 0.5789 0.3684 0.64
Deegan-Packel 0.5083 0.3056 0.60
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5 Weighted Voting Games

5.1 Unanimity Weighted Voting Games

Recall that a WVG in which there is a single winning coalition and every agent is
critical to the coalition is a unanimity WVG. Manipulation via annexation and merg-
ing in unanimity WVGs is less interesting compared to the non unanimity WVGs that
provides more complex and realistic scenarios that are not well-understood. Aziz and
Paterson [2] show that for unanimity WVGs, for both the Shapley-Shubik and Banzhaf
indices: it is disadvantageous for a coalition to merge and advantageous for a player
to annex other players. These results extend to the Deegan-Packel index too [13]. Con-
trary to Aziz and Paterson [2] however, for the case of annexation, Lasisi and Allan [13]
contend that it is not true in its entirety that it is advantageous for an annexer to annex
other players in unanimity WVGs. They argue that apart from the fact that annexation
always increases the power of other agents that are not annexed by the same factor of
increment as the annexer achieved, the annexer also incurs annexation costs that reduce
the benefit the annexer thought it gained. Finally, Lasisi and Allan [13] bound the extent
to which a strategic agent may gain in annexation. They show that for any unanimity
WVG of n agents, the upper bound on the extent to which a strategic agent may gain
while annexing other agents is at most n times the power of the agent in the original
game using any of the three indices.

5.2 Non Unanimity Weighted Voting Games

For the sake of simplicity, we assume that only one of the agents is engaging in annex-
ation at a time. However, we are not oblivious of the fact that other agents also have
similar motivations to engage in annexation in anticipation of power increase. For the
case of manipulation via merging, we assume that the assimilated agents in the bloc can
easily distribute the gains from their collusion among themselves in a fair and stable
way. Thus, paving way for manipulation.

Consider a WVG G of I agents with quota q. If any agent i ∈ I has weight wi ≥ q,
then the agent will always win without forming coalitions with other agents. The more
interesting games we consider are those for which wi < q, and such that q satisfies the
inequality q ≤ w(I)−m, where m is chosen randomly to be the weight of exactly one
of the agents in the game. When the grand coalition (i.e., a coalition of all the agents)
emerges, it will always contain some agents that are not critical in the coalition. It is easy
to see that all the winning coalitions in this type of games are non unanimity. In order
to evaluate the behaviors of the power indices for non unanimity WVGs, we conduct
experiments to evaluate the effects of manipulation when a strategic agent annexes other
agents in the games or when manipulators merge to form blocs using each of the three
indices.

6 Experiments

This section provides detail descriptions of the simulation environment used for the
conduct of experiments and analysis of the experimental results used for the evaluation
of the effects of annexation and merging in non unanimity WVGs.
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6.1 Simulation Environment

We perform experiments to evaluate the effects of manipulation via annexation and
merging by agents using each of the three power indices. To facilitate comparison, we
have 15 agents in each of the original WVGs. The weights of agents in these games are
chosen so that all weights are integers not larger than ten. These weights are reflective
of realistic voting procedures as the weights of agents in real votings are not too large
[4]. When creating a new game, all agents are randomly assigned weights, and the
quota of the game is also generated to satisfy the inequality of non unanimity WVGs
of Subsection 5.2. For the case of manipulation via annexation, we randomly generate
WVGs and assume that only the first agent in the game is engaging in the manipulation,
i.e., the annexer. Then, we determine the power derived by each of the three power
indices (i.e., Shapley-Shubik, Banzhaf, and Deegan-Packel power index) for this agent
in the game. After this, we consider annexation of at least one agent in the game by the
annexer, while the weights of other agents not annexed remain the same in the altered
games. For a particular game, the annexer may annex 1 ≤ i ≤ 10 other agents; we refer
to i as the bloc size. The bloc size and the members of the bloc are randomly1 generated
for each game. The weight of the annexer in the new game is the sum of the weights of
the agents it annexed plus the annexer’s initial weight in the original game. We compute
the new power index of the annexer in the altered games next. Now, we determine the
factor of increment by which the annexer gains or loses in the manipulation for the
corresponding bloc sizes i, in the range 1 ≤ i ≤ 10.

We use the same procedure as described above for the case of manipulation via merg-
ing with the following modifications. Since merging requires coordinated action of the
manipulators, we randomly select strategic agents among the agents in the WVGs to
form the blocs of manipulators. The bloc size 2 ≤ i ≤ 10, for mergng is also randomly
generated for each game. The weight of a bloc in a new game is the sum of the weights
of the assimilated agents in the bloc. The bloc participates in the new game as though a
single agent. We compute the new power index of the bloc in the altered games next. We
determine the factor of increment by which the bloc gains or loses in the manipulation
for the corresponding bloc sizes. Unlike in annexation, the power of the bloc is com-
pared with the sum of the original powers of the individual agents in the bloc. For our
study, we generate 2, 000 original WVGs for various bloc sizes and allow manipulation
by the annexer or the bloc of manipulators. For each game, we compute the factor of
increment by which the annexer or the bloc gains or loses. Finally, we compute the av-
erage value of these factors of increment over all the games for each bloc size. We use
2, 000 WVGs in order to capture a variety of games that are representative of the non
unanimity WVGs and to minimize the standard deviation from the true factors when
we compute the average values. The average value of the factors of increment provides
the extent of susceptibility to manipulation by each of the three indices. We estimate
the domination of manipulability among the three indices by comparing their average
factors of increment simultaneously in similar games.

1 We note that randomly generating members of the blocs fails to consider the benefits of a more
strategic approach to manipulation. We plan to address this in future work.
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6.2 Simulation Results

Experiments confirm the existence of advantageous annexation and merging for the non
unanimity WVGs when agents engage in manipulation using the three indices. How-
ever, the extent to which agents gain varies with both annexation and merging, and
among the indices. Consider manipulation via annexation first. We provide a compari-
son of susceptibility to manipulation among the three power indices by comparing the
population of factors of increment attained by strategic agents in different games for
each of the indices. A summary of susceptibility to manipulation via annexation among
the three indices for 2, 000 WVGs is shown in Figure 1. The x-axis indicates the bloc
sizes while the y-axis is the average factor of increment achieved by agents in the 2, 000
WVGs for corresponding bloc sizes.
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Fig. 1. Susceptibility to manipulation via annexation among Shapley-Shubik, Banzhaf, and
Deegan-Packel indices for non unanimity WVGs

The effect of manipulation via annexation is pronounced for the three power indices,
as all the indices are highly susceptible to manipulation. However, the higher suscep-
tibility of the Shapley-Shubik and Banzhaf indices than the Deegan-Packel index can
be observed from Figure 1. While the average factor of increment for manipulation
rapidly grows with the bloc sizes for the Shapley-Shubik and Banzhaf indices, that of
the Deegan-Packel index grows more slowly. By the average factor of increment, the
Shapley-Shubik index manipulability dominates that of Banzhaf index, which in turn
dominates that of Deegan-Packel index. Also, there is a positive correlation between the
average factor of increment and the bloc sizes for the three indices. The average factor
of increment increases with the bloc sizes. This analysis suggests that the Shapley-
Shubik and Banzhaf power indices are more susceptible to manipulation via annexation
than the Deegan-Packel power index. Since all the three power indices are susceptible
to manipulation via annexation, this provides some motivations for strategic agents to
generally engage in such manipulation for non unanimity WVGs when they are being
evaluated using any of the three power indices, and in particular, when the Shapley-
Shubik power index is employed.
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Fig. 2. Susceptibility to manipulation via merging among Shapley-Shubik, Banzhaf, and Deegan-
Packel indices for non unanimity WVGs

Figure 2 provides similar results for the non unanimity WVGs for manipulation via
merging. We again compare susceptibility to manipulation among the three power in-
dices. Unlike manipulation via annexation, only the Shapley-Shubik index appears to be
susceptible to manipulation for this type of game. Also, there appears not to be any cor-
relation between the average factor of increment achieved by the bloc of manipulators
and the bloc size for the three power indices. Thus, it is unclear to the would-be ma-
nipulators what bloc size would be advantageous or disadvantageous to the bloc, and to
what extent. It is easy to see from the trends of the three power indices in Figure 2, that,
using the average factor of increment over the games we consider, the Shapley-Shubik
index manipulability dominates that of the Banzhaf index, which in turn dominates that
of the Deegan-Packel index. Another positive result that is observable from Figure 2 is
that the highest average factor of increment for the three power indices is less than a fac-
tor of 1.2 as compared to a factor of 15, found for the Shapley-Shubik index, 12 for the
Banzhaf index, and 6 for the Deegan-Packel index under manipulation via annexation
(see Figure 1).

In Figure 3, examination of the 2, 000 non unanimity WVGs we consider reveals that
many of the games are advantageous for Shapley-Shubik index, few for the Banzhaf
index, and virtually none for the Deegan-Packel index. The figure shows the percentage
of advantageous and disadvantageous games for manipulation via merging among the
three indices. Even for the cases where the games are advantageous for the three indices,
the factor of increment achieved by the blocs of manipulators are not very high, and
in all cases are less than a factor of 2. The experimental evidence suggests that the the
Shapley-Shubik index is more susceptible to manipulation via merging than the Banzhaf
and Deegan-Packel power indices for non unanimity WVGs, even though the factor of
increment is not high. Now, since only the Shapley-Shubik index is more susceptible to
manipulations via merging, and also, since the factor by which the bloc of manipulators
gains is very low, we suspect that this may provide less motivation for strategic agents
to generally engage in manipulation via merging for the non unanimity WVGs when
they are being evaluated using any of the three power indices, and in particular, when
the Deegan-Packel index is employed.
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among the three indices for 2, 000 non unanimity WVGs

7 Effect of Quota on Annexation and Merging

The choice of the quota of a WVG is crucial in determining the distribution of power of
agents in a WVG [10]. Thus, this choice of the quota naturally extends to the determi-
nation of the effects of manipulation in WVGs. We conduct another set of experiments
and provide empirical evaluation of the effects of the quota of a game on annexation and
merging for non unanimity WVGs. Recall that the non unaninimty WVGs we consider
are those for which the weight of each agent wi < q, where q is the quota of the game;
and such that q satisfies the inequality q ≤ w(I) − m, where m is randomly chosen
to be the weight of exactly one of the agents, and w(I) is the total weight of all agents
in the game (see Subsection 5.2). Again, since the more interesting games are those
for which the quota is not too small [5], and in order to ensure that disjoint winning
coalitions does not emerge, q is constrained as 1

2w(I) < q ≤ w(I)−m.
The simulation environment for the set of experiments in this section is similar to our

previous environments with the following modifications. When creating a new game
(termed, original game), agents are randomly assigned weights and the quota q of the
game is set as q = 1

2w(I) + 1, where I is the set of agents in the game. As before, for
the altered WVGs, we allow the manipulation of the original game via annexation of
at least one agent by the annexer or merging of at least two agents by the assimilated
agents. The bloc size 1 ≤ i ≤ 10 and the members of the blocs in both cases are
randomly generated. Unlike in previous experiments where the quota of the altered
WVGs remain fixed while the weights of the blocs in annexation and merging vary,
we fix the weights and members of blocs for the altered WVGs and vary the quota as
follows q+1, q+2, · · · , w(I)−m, with q being the quota of the original game. Thus, the
number of altered games for different original games varies since q depends on the total
weight of agents in the original games. We compute the power index of the blocs in the
altered games, compare with the original game, and determine the factor of increment
or decrement as appropriate for annexation or merging.

In order to facilitate the ease of characterization of the effects of the quota of WVGs
on annexation and merging in our experiments, we partition the altered WVGs into four
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equal groups using the quotas. We refer to the groups as Range1, Range2, Range3,
and Range4. First, we consider the effect of the quota on annexation. We generate 400
original WVGs, which in turn generate approximately 3, 800 altered WVGs in each of
the four ranges. As expected for annexation (based on results of previous sections), all
the altered WVGs are advantageous for the three indices with variations in the factors
of increment achieved by annexers. So, we evaluate the factors of increment for the
ranges.

Fig. 4. Effect of quota on annexation for WVGs using average factor of increment

Figure 4 shows the average factor of increment for manipulation via annexation
among the three power indices in the altered WVGs for the four ranges. The x-axis
indicates the ranges while the y-axis is the average factor of increment. The figure
shows that the average factor of increment is high for the altered WVGs in Range1. Our
explanation for this is as follow. The quotas of all the altered WVGs in Range1 have
the least values compared to other ranges. So, it is easy for annexers to quickly acquire
the quota requirement of the games. More importantly, we observe many cases where
the weight of the blocs of assimilation due to annexation are greater than the quota for
this range. In such cases, an annexer claims the maximum power of 1 that is available
in the game. However, as the quota increases into other ranges, it becomes increasingly
difficult for an annexer to achieve high values since the annexer needs to form coalitions
with other agents to gain some power. Summarily, we observe a fairly uniform degra-
dation of the factors of increment from Range1 to Range4, and an inverse relationship
between the quotas of the games and the factors of increment using the three power
indices; at least for the non unanimity WVGs that we consider.

Now, we consider the effect of the quota on merging. Figure 5 provides similar re-
sults as above for manipulation via merging. Unlike annexation, where the factors of
increment is very high for Range1 i.e., greater than 15 for both Banzhaf and Shapley-
Shubik indices, the corresponding values for Range1 here is less than a factor of 1.5
for both Banzhaf and Shapley-Shubik indices. Similar explanations for degradation of
average factors of increment as the quotas increase into other ranges observed for an-
nexation above hold here too.
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Fig. 5. Effect of quota on merging for WVGs using average factor of increment

We do not have here such situation as found in annexation where all the games are
advantageuos. So, we also evaluate the effects of the quota in merging by considering
the proportion of advantageous or disadvantageous games in the four ranges. Figure 6
shows the percentage of advantageous games for manipulation via merging among the
indices in the altered WVGs for the ranges. The x-axis indicates the ranges while the y-
axis is the percentage of advantageous games. All the altered WVGs are advantageous
for Banzhaf index, Shapley-Shubik index, and about 30% of the games for Deegan-
Packel index in Range1. This we observe may be partly due to the lower quota values
for the games in this range. As the quotas of the altered WVGs increase into Range2, all
the games remain advantageous for Shapley-Shubik index while those of Banzhaf and
Deegan-Packel indices decrease to about 64% and 11% respectively. Further decrease
is noticed for Range3. Finally, in Range4 where the quotas of the altered WVGs are
the highest, virtually non of the games are advantageous for both Deegan-Packel and
Banzhaf indices with about 13% of the games still advantageous for Shapley-Shubik
index. As before, it appears that the proportion of the advantageous games decreases
with increasing quotas but no clear pattern can be observed except that the proportion

Fig. 6. Effect of quota on merging for WVGs using proportion of advantageous games
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of advantageous games for Shapley-Shubik index is the highest in all cases. This result
is consistent with our results of susceptibility of manipulation via merging of Subsection
6.2 (see Figure 2).

8 Conclusions

We consider two methods of manipulating weighted voting games, called annexa-
tion and merging while focusing on the susceptibility of three of the power indices
used in evaluating agents’ power in such games. The following prominent power in-
dices are used to evaluate agents’ power: Shapley-Shubik, Banzhaf, and Deegan-Packel
indices. We consider the extent to which strategic agents may gain by engaging in
such form of manipulation and show how the susceptibility among the three indices
compares for non unanimity weighted voting games. Experiments on weighted voting
games suggest that the games are less vulnerable to manipulation via merging, while
they are extremely vulnerable to manipulation via annexation for the three power in-
dices. Also, while the average factor of increment of power due to manipulation grows
with bloc sizes for manipulation via annexation, there appears to be no correlation be-
tween the average factor of increment and the bloc size for manipulation via merg-
ing. Again, the Shapley-Shubik index manipulability (i.e., the extent of susceptibility
to manipulation) dominates that of the Banzhaf index, which in turn dominates that of
the Deegan-Packel index for both manipulation via annexation and merging. Hence, the
Shapley-Shubik index is more susceptible to manipulation via annexation and merging
than the Banzhaf and the Deegan-Packel indices, with Deegan-Packel index being the
least susceptible among the three power indices.

Further experiments on the effect of quotas suggest the existence of an inverse re-
lationship between the susceptibility of the three power indices to manipulation and
the quotas of weighted voting games for both manipulation via annexation and merg-
ing. Thus, weighted voting games with large quota values closer to the total weight of
agents in the games may be less vulnerable to manipulation via annexation and merging
than those with corresponding smaller quota values.

Acknowledgements. This work is supported by NSF research grant #0812039 entitled
“Coalition Formation with Agent Leadership”.
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Abstract. When knowledge is physically distributed, information and knowl-
edge of individual agents may not be collected to one agent because they should
not be known to others for security and privacy reasons. We thus assume the sit-
uation that individual agents cooperate with each other to find useful information
from a distributed system to which they belong, without supposing any master or
mediate agent who collects all necessary information from the agents. Then we
propose two complete algorithms for distributed consequence finding. The first
one extends a technique of theorem proving in partition-based knowledge bases.
The second one is a more cooperative method than the first one. We compare
these two methods and other related approaches in the literature.

1 Introduction

There is a growing interest in building large knowledge bases. Dealing with a huge
amount of knowledge, two problems can be encountered in real domains. The first case
is that knowledge is originally centralized so that one can access the whole knowledge
but the size of the knowledge base is too huge to be handled. The second case is that
knowledge is distributed in several sources so that it is hard or impossible to immedi-
ately access the whole or part of knowledge. The former case is studied in the line of
research on parallel or partition-based reasoning. For example, partition-based theorem
proving by Amir and McIlraith [3] divide a knowledge base into several parts each of
which is easier to be handled so that the scalability of a reasoning system is improved.

On the other hand, in the second case we suppose multi-agent systems or peer-to-
peer systems [2], in which an agent does not want to expose all its information to other
agents for security and privacy reasons. Sometimes, it is inherently impossible to tell
what other agents want to know and to ask what can be obtained from others. In such a
case, each agent must give up gathering all necessary information from other agents, and
moreover, no master or mediate agent can be assumed to exist to collect all information
from agents. That is, we need to solve the problem with knowledge distributed as it is.
In this research, we mainly deal with such distributed knowledge bases, but hope that
those algorithms considered for distributed reasoning can be applied to the first case to
gain efficiency.
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In this work, we consider the problem of distributed consequence finding. Conse-
quence finding [18,12,20] is a problem to discover an interesting theorem derivable
from an axiom set, and is a promising method for problem solving in AI such as query
answering [17], abduction [12,16,22], induction [23,13], diagnosis, planning, recogni-
tion and understanding. There are some complete procedures for consequence finding
in first-order clausal theories [12,8] and efficient systems have also been developed
[21,22]. Our concern here is to design a complete method in the distributed setting, that
is, to obtain every consequence that would be derived from the whole knowledge base
if it were gathered together. In this paper, we propose two new methods for distributed
consequence finding.

The first method here is a generalization of partition-based theorem proving by [3] to
consequence finding. The whole axiom set is partitioned into multiple sets called parti-
tions, each of which can be associated with one agent. In this method, a pair of partitions
must be connected with their communication language. The connections between parti-
tions constitute a graph, but cycles must be removed so that the graph are transferred to
a tree. Consequence finding is firstly performed in the leaves of the connection tree, and
its consequences are sent to the parent if they belong to the communication language.
This process is repeated until the root. To get a complete procedure in this method, it is
important to decide the communication languages between two partitions, so we pro-
pose the method to determine them. It should be stressed that, although partition-based
theorem proving by [3] also uses a consequence finding procedure in each individual
reasoning task of an agent, the aim of [3] is not consequence finding from the knowl-
edge base but is used for theorem proving tasks.

The second proposed method is a more cooperative one. In this method, we do not
presuppose graph structures of agents, but any agent has a chance to communicate with
other agents, hence the framework is more dynamic than the first method. Firstly, a
new clause is added to an agent A1, either as a top clause of the given problem or as
a newly sent message from other agents, then triggers consequence finding from that
clause with the axioms of A1. Then, for each such newly derived clause C, if there is a
clause D in the axiom set of another agentA2 such that C and D can be resolved, then
C is sent to A2 and is added there. This process is repeated until no more new clause
can be resolved with any clause of any other agent. We will compare these two methods
and centralized approaches, and discuss the merits and demerits of both methods. We
will also discuss relations with other previously proposed approaches to consequence
finding in distributed settings [14,1,2].

The rest of this paper is organized as follows. Section 2 reviews the background
of consequence finding and SOL resolution. Section 3 proposes partition-based con-
sequence finding. Section 4 proposes a more cooperative algorithm for consequence
finding and Section 5 compares the two proposed approaches. Section 6 discusses re-
lated work, and Section 7 gives a summary and future work.

2 Consequence Finding

In this section, we review consequence finding from an axiom set and a complete proce-
dure for it. The task of consequence finding is related with many AI reasoning problems,
and is indispensable in partition-based theorem proving in Section 3.1 too.
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A clause is a disjunction of literals. Let C and D be two clauses. C subsumes D if
there is a substitution θ such that Cθ ⊆ D. C properly subsumes D if C subsumes D
but D does not subsume C. A clausal theory is a set of clauses, which is often identified
with the conjunctive normal form (CNF) formula composed by taking the conjunction
of all clauses in it. Let Σ be a clausal theory. μΣ denotes the set of clauses in Σ not
properly subsumed by any clause in Σ. A consequence of Σ is a clause entailed by Σ.
We denote by Th(Σ) the set of all consequences of Σ.

The consequence finding problem was first addressed by Lee [18] in the context of
the resolution principle, which has the property that the consequences of Σ that are
derived by the resolution principle includes μTh(Σ). To find “interesting” theorems
for a given problem, the notion of consequence finding has been extended to the prob-
lem to find characteristic clauses [12]. Each characteristic clause is constructed over
a sub-vocabulary of the representation language called a “production field”. Formally,
a production field P is a pair, 〈L, Cond〉, where L is a set of literals closed under in-
stantiation, and Cond is a certain condition to be satisfied, e.g., the maximum length of
clauses, the maximum depth of terms, etc. When Cond is not specified, P = 〈L, ∅〉 is
simply denoted as 〈L〉. A production field P is stable if, for any two clauses C and D
such that C subsumes D, D belongs to P only if C belongs to P .

A clause C belongs to P = 〈L, Cond〉 if every literal in C belongs to L and C
satisfies Cond. For a set Σ of clauses, the set of logical consequence of Σ belonging
to P is denoted as ThP(Σ). Then, the characteristic clauses of Σ with respect to P
are defined as: Carc(Σ,P) = μThP(Σ). We here exclude any tautology ¬L ∨ L (≡
True) in Carc(Σ,P) even when both L and ¬L belong to P . When P is a stable
production field, it holds that the empty clause � is the unique clause in Carc(Σ,P)
if and only if Σ is unsatisfiable. This means that theorem proving is a special case of
consequence finding. The use of characteristic clauses enables us to characterize various
reasoning problems of interest to AI, such as nonmonotonic reasoning, diagnosis, and
knowledge compilation as well as abduction and induction. In the propositional case
[20], each characteristic clause of Σ is a prime implicate of Σ.

When a new clause C is added to a clausal theory Σ, further consequences are de-
rived due to this new information. Such a new and “interesting” clause is called a “new”
characteristic clause. Formally, the new characteristic clauses of C with respect to Σ
and P are: Newcarc(Σ,C,P) = μ [ThP(Σ ∧ C)− Th(Σ) ].

When a new formula is not a single clause but a clausal theory or a CNF formula
F = C1 ∧ · · · ∧ Cm, where each Ci is a clause, Newcarc(Σ,F,P) can be computed
as:

Newcarc(Σ,F,P) = μ [

m∧
i=1

Newcarc(Σi, Ci,P) ] , (1)

where Σ1 = Σ, and Σi+1 = Σi ∧ Ci, for i = 1, . . . ,m− 1. This incremental compu-
tation can be applied to get the characteristic clauses of Σ with respect to P as follows.

Carc(Σ,P) = Newcarc(True,Σ,P). (2)

Several procedures have been developed to compute (new) characteristic clauses. SOL
resolution [12] is an extension of the Model Elimination (ME) calculus to which Skip
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operation is introduced along with Resolve and Ancestry operations. With Skip opera-
tion, SOL resolution focuses on deriving only those consequences belonging to the pro-
duction field P . SFK resolution [8] is based on a variant of ordered resolution, which is
enhanced with Skip operation for finding characteristic clauses. SOL resolution is com-
plete for finding Newcarc(Σ,C,P) by treating an input clause C as the top clause and
derives those consequences relevant to C directly. SOLAR (SOL for Advanced Reason-
ing) [21,22] is a sophisticated deductive reasoning system based on SOL resolution [12]
and the connection tableaux, which avoids producing non-minimal consequences as
well as redundant computation using state-of-the-art pruning techniques. Consequence
enumeration is a strong point of SOLAR as an abductive procedure because it enables
us to compare many different hypotheses [16].

3 Partition-Based Consequence Finding

This section proposes partition-based consequence finding. We start from a review of
the basic terminology and the message passing algorithm between partitioned knowl-
edge bases in [3], whose basic idea is from Craig’s Interpolation Theorem [6,24].

3.1 Partitions and Message Passing

We suppose the whole axiom set A =
⋃

i≤nAi, in which each axiom set Ai (i ≤ n)
is called a partition. We denote as S(Ai) the set of (non-logical) symbols appearing in
Ai. A graph induced from the partitions

⋃
i≤nAi is a graph G = (V,E, l) such that (i)

the set V of nodes are the same as the partitions, that is, i ∈ V iff the partitionAi exists;
(ii) the set E of edges are constructed as E = {(i, j) | S(Ai)∩S(Aj) �= ∅}, that is, the
edge (i, j) ∈ E iff there is a common symbol betweenAi andAj ; and (iii) the mapping
l determines the label l(i, j) of each edge (i, j) called the communication language
between the partitions Ai and Aj . In partition-based theorem proving by [3], l(i, j) is
initially set to the common language ofAi andAj , which is C(i, j) = S(Ai)∩S(Aj).
The communication language l(i, j) is then updated by adding symbols from some
other partitions when cycles are broken (Algorithm 2). In Section 3.3, l(i, j) is further
extended by including the language for consequence finding.

Given the partitions
⋃

i≤nAi and its induced graph G = (V,E, l), we now consider
the query Q to be proved in the partition Ak (k ≤ n). Given a set S of non-logical
symbols, the set of formulas constructed from the symbols in S is denoted as L(S).

Definition 1 . For two nodes i, k ∈ V , the length of a shortest path between i and k is
denoted as dist(i, k). Given k, we define i ≺k j if dist(i, k) < dist(j, k). When k is
clear from the context, we simply denote i ≺ j instead of i ≺k j. For a node i ∈ V , a
node j ∈ V such that (i, j) ∈ E and j ≺k i is called a parent of i (with respect to ≺k).
In the ordering ≺k, the node k is called the root (with respect to ≺k), and a node i that
is not a parent of any node is called a leaf (with respect to ≺k).
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Fig. 1. Translation of a cyclic graph to a tree [3]

Algorithm 1 (Message Passing) [3]

1. Determine ≺k according to Definition 1.
2. Perform consequence finding in each Ai in parallel. If Ak |= Q, then return YES.
3. For every i, j ∈ V such that j is the parent of i, if there is a consequence ϕ of the

partitionAi such that ϕ ∈ L(l(i, j)), then add ϕ to the axiom set Aj .
4. Repeat Steps 2 to 3 until no more new consequence is found.

Algorithm 1 works well for theorem proving at Ak when the induced graph is a tree.
However, if there is a cycle, we need to break it to transform the graph to a tree.

Algorithm 2 (Cycle Cut) [3]

1. Find a shortest cycle v1, . . . , vc(= v1) (vi ∈ V ) in G. If there is no cycle, return G.
2. Select a such that a < c and Σj<c,j 	=a | l(vj , vj+1) ∪ l(va, va+1) | is smallest.
3. For every j < c, j �= a, let l(vj, vj+1) := l(vj , vj+1) ∪ l(va, va+1).
4. Put E := E \ {(va, va+1)} and l(va, va+1) := ∅, then go to Step 1.

When there are multiple shortest cycles, common edges should be removed. But if there
is no common edge, edges are removed so that the sum of the sizes of communication
languages becomes the smallest. It is important to decide the order to remove edges al-
though any ordering results in a translation to a tree. Cycle Cut Algorithm 2 is designed
to minimize the total size of the communication languages.

Figure 1 shows an example of cycle cut. The left figure is translated to the right
figure. Firstly, the shortest cycle (1,3), (3,4), (4,1) is considered, and then the edge (4,1)
is deleted. The communication language of (4,1) is then added to those of (1,3) and
(3,4). Next, from the cycle (1,3), (3,2), (2,1), the edge (3,2) is removed, and s is added
to l(1, 3) and l(2, 1). Then, the cycle (1,3), (3,4), (4,2), (2,1) is taken, and the edge (4,2)
is removed from it, but s is already in l(3, 4) and l(4, 2). Now Algorithm 1 is applied;
¬p∨s is sent fromA2 toA1, deducing q∨r∨s (as the resolvent of ¬p∨s and p∨q∨r),
which is then sent from A1 to A3, deducing r ∨ s (as the resolvent of q ∨ r ∨ s and
¬q ∨ s), which is sent fromA3 to A4. Finally, the conclusion s is obtained at A4.

Theorem 1 . [3] Suppose an axiom set and its partitions A =
⋃

i≤nAi and a formula
Q ∈ L(Ak) (k ≤ n). If the consequence finding procedure in each partition is sound
and complete, applying Algorithm 2 and then Algorithm 1 returns YES iff A |= Q.
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Fig. 2. Partitions for “Getting Money”

Partition-based theorem proving of [3] cannot be directly applied to consequence find-
ing problems for Q �∈ L(Ak) although [3, Section 2.3] briefly mentions how to apply
their MP algorithm to such a query constructed from languages in different partitions (a
more detailed discussion will be given later in Section 3.3). Hence, we will extend the
partition-based reasoning framework to a complete method for distributed consequence
finding.

3.2 Example

We now show an example to see that the partition-based theorem proving method cannot
be directly applied to consequence finding. The problem is to find means to withdraw
money from one’s bank account. The intended solution is that one must have either a
cash card or a bankbook, which is represented as card ∨ bankbook. The knowledge
base of this problem consists of the following clauses.

• ¬holiday ∨ closed (The bank is closed on holidays.)
• ¬weekday ∨ open (The bank is open on weekdays.)
• holiday ∨ weekday (Any day is either a holiday or a week day.)
• ¬need money ∨ ¬open∨ATM ∨ counter (If one needs money and the bank is

open, then (s)he goes to an ATM or a counter of the bank.)
• ¬need money ∨ ¬closed ∨ ATM (If one needs money and the bank is closed,

then (s)he goes to an ATM.)
• ¬ATM ∨ card ∨ ¬get money (One cannot get money if (s)he does not have a

cash card at an ATM.)
• ¬counter ∨ bankbook ∨ ¬get money (One cannot get money if (s)he does not

have a bankbook at a counter.)
• Input facts: need money (One needs money.)
• Input facts: get money (One gets money.)

Here we assume that the partitions are constructed as in Fig. 2, in which clauses are
distributed in a scattered way. Algorithm 2 removes the edge (1,3) and then adds ATM
to the labels of other edges. However, the clause card ∨ bankbook cannot be deduced
by Message Passing Algorithm 1: since l(1, 2) and l(1, 3) do not contain card, the
clause (1) cannot be resolved with any clause in other partitions. In fact, it is necessary
to resolve all clauses (1) to (7).
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3.3 Partition-Based Consequence Finding

We here propose a new method to construct the communication language so that Mes-
sage Passing Algorithm can be made complete for consequence finding.

Suppose the whole axiom set and its partitions A =
⋃

i≤nAi. Recall that the com-
mon language of Ai and Aj is C(i, j) = S(Ai) ∩ S(Aj) (i, j ≤ n i �= j). Here,
we construct the communication language l(i, j) between Ai and Aj for consequence
finding by extending C(i, j). Let P = 〈L〉 be the given production field. By adding the
literals appearing in L to the common language, each communication language in the
case of trees is defined as

l(i, j) = C(i, j) ∪ S(L). (3)

When there are cycles in the graph G, the final communication language is set after all
cycles are cut using Algorithm 2. For example, suppose that an edge (s, r) is removed
from a cycle. Then, the communication language of an edge (i, j) (�= (s, r)) in the cycle
is defined in the same way as before:

l(i, j) = C(i, j) ∪ l(s, r) ∪ S(L). (4)

Two remarks are noted here. Firstly, in (3) and (4), the polarity of each literal in L
from the production field P are lost within the symbols S(L). Although this does not
harm soundness and completeness of distributed consequence finding, there is some
redundancy in communication. Then, unlike the case of common language C(i, j), we
can keep the polarity of each literal in L in any l(i, j) so that unnecessary clauses
possessing literals that do not belong to P are not communicated between partitions.
Second, when C(i, j) = ∅ the edge (i, j) does not exist in the graph G. In this case,
l(i, j) need not be updated as S(L) using (3) and actually the edge is kept unnecessary.
In fact, if we could add the literals from the production field to those non-existent edges
in G, then the resulting graph G′ would become strongly connected. By applying Cycle
Cut Algorithm 2 to G′, the minimal way is to cut those added edges again. However,
other edges already have the literals S(L) so their communication languages do not
change. Hence, we do not have to reconsider non-existent edges in G.

Algorithm 3 (Partition-based Consequence Finding)

1. If there is a cycle in the induced graph G, select some k ≤ n and apply Cycle Cut
Algorithm 2 to G and transform it to a tree.

2. Determine the communication language between all pairs of partitions. For each
leaf partitionAi, do the following.

3. If Ai is the root partition, let Pi be the original production field P = 〈L〉. Oth-
erwise, let j be the parent of i, and define the production field of Ai as Pi =
〈 l(i, j)± 〉, where l(i, j)± is the set of literals constructed from l(i, j). Perform con-
sequence finding inAi with the production field Pi, and let Cni := Carc(Ai,Pi).
Output each characteristic clause C ∈ Cni if C belongs to the original production
field P = 〈L〉.

4. For each clause C ∈ Cni, check if C ∈ L(l(i, j)). If so, send C to Aj and let
Aj := μ(Aj ∪ {C}). Put i := j.

5. As long as there is a clause to be sent to the parent partition, repeat Steps 3 to 5.
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Fig. 3. Updating Communication Languages

Step 1 in Algorithm 3 can be run in parallel for each partition that is most distant from
the root partition. Step 4 can be computed in parallel for each characteristic clause.

For the example in Section 3.2, applying Cycle Cut and the decision method of the
communication language results in Fig. 3. By this way, the clause (1) consists of the
symbols in l(1, 2), then can be resolved with other clauses inA2. Applying Algorithm 3,
the intended consequence card ∨ bankbook can be obtained.

Termination of Algorithm 3 is guaranteed under some finiteness conditions. For this,
(1) if there is a finite number of cycles in the induced graphs, the maximum depth of a
tree is finite after applying Algorithm 2, and (2) if there are no recursive theories in each
partition, consequence finding in the partition produces a finite number of characteristic
clauses. The second condition is satisfied if ground consequences are only produced and
there are no function symbols in the language.

The correctness of a distributed consequence finding algorithm A is defined as fol-
lows. Suppose the whole knowledge baseA and a production field P . A is sound if any
clause derived by A is a logical consequence ofA and belongs to P . A is complete if it
holds for any partitioning of A that: for any clause C belonging to ThP(A), there is a
clause D derived by A such that D subsumes C.

Theorem 2 (Soundness and Completeness of Partition-based Consequence Find-
ing). Suppose an axiom set and its partitions A =

⋃
i≤nAi, its induced graph G =

(V,E, l), and a stable production field P = 〈L〉. We assume that every partitionAi has
a sound and complete algorithm for consequence finding. Then, Algorithm 3 is sound
and complete for distributed consequence finding.

Proof. Any clause derived by Algorithm 3 refers to a subset of A and belongs to P .
Then, soundness follows from the monotonicity of first-order logic. Completeness can
be proved by induction on the length of any clause C ∈ ThP(A). When |C| = 1, letAk

be a partition ofA such that C ∈ L(Ak). Then, by Theorem 1, a clause D subsumingC
can be derived by Algorithm 3, which works in the same way as Algorithm 1. Suppose
that completeness holds for |C| ≤ m, and we prove the case of |C| = m + 1. Let
C = C′ ∨L, where |C′| = m and L is a literal. Let A′ beA∪{¬L}. Since C′ belongs
to P and C ∈ ThP(A), C′ ∈ ThP(A′) holds. Then, assume a partitionA′ =

⋃
i≤nA′

i
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where A′
j = Aj for j �= k and A′

k = Ak ∪ {¬L} for some k ≤ n. By induction
hypothesis, a clause D′ subsuming C′ can be derived fromA′ atA′

k by Algorithm 3. In
fact, if D′ is derived at some A′

j (j �= k), then it can be sent toA′
k because D′ belongs

to P and hence D′ ∈ L(l(j, k)). We now construct a distributed proof of a clause D
subsuming C from A by adding L to C′ appearing in the distributed proof of D′ from
A′. This is possible because L ∈ L(l(i, j)) for any i, j ∈ V by the constructions (3)
and (4). Hence, D can be derived at Ak by Algorithm 3.

Algorithm 3 can be seen as a simple extension of partition-based theorem proving
by Amir and McIlraith [3] since the communication languages are extended to in-
clude the literals from the production field. However, this small change is essential for
consequence finding. For theorem proving, Amir and McIlraith [3, Section 2.3] have
mentioned how to deal with a query Q that comprise symbols drawn from multiple
partitions. For this, a new partition AQ is added with the language S(AQ) = S(Q)
and AQ consists of the clausal form of ¬Q. Following addition of this new partition,
Cycle Cut must be run on the new graph, and then refutation is performed at AQ. This
method, however, cannot be elegantly applied for consequence finding in general since
we do not know the exact theorems or even the possible candidates of theorems to be
found in consequence finding. Of course, we can consider the production field P = 〈L〉
for restricted consequence finding. But even with a small P , say L = {a, b, c}, to find
all consequences with theorem proving we need to query for a, b, c, then possibly a∨ b,
a ∨ c and b ∨ c, and eventually a ∨ b ∨ c (though querying the last clause a ∨ b ∨ c and
checking all possible proofs would also work but have high complexity too). Alterna-
tively, considering the new partitionAP with the language S(L) makes the graph more
tightly connected and cyclic. Applying Cycle Cut would then the resulting communi-
cation language of an existing edge to include S(L), which has a similar effect as the
equation (3).

Another important change from the MP algorithm by Amir and McIlraith [3] is to use
the production field Pi = 〈 l(i, j)± 〉 in Step 3 of Algorithm 3 for consequence finding.
This restricts the computations that needs to be done and thus improves efficiency. The
use of production fields also enables us to emulate default reasoning by adding each
default literal in a production field to be skipped [14,15]. Hence, our algorithm can be
extended to partition-based default reasoning.

4 Cooperative Consequence Finding

Partition-based distributed consequence finding is particularly useful when we have a
large knowledge base that should be divided to easily handle each piece of knowledge.
However, the algorithm can also be applied to naturally distributed knowledge-based
systems in which each theory of an agent grows individually so that multiple agents may
have the same knowledge and information simultaneously. Although such possessed
knowledge is considered to be redundant in partition-based theories, there is no problem
in decentralized, multi-agent and peer-to-peer systems. In such naturally distributed
systems, one problem would be to break cycles in the induced graph because no agent
should not know an optimal way to minimize the cost of cutting cycles (although we
could devise a decentralized version of Cycle Cut algorithm).
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In this section, we thus consider an alternative approach to distributed consequence
finding that is suitable for such autonomous agent systems. The new method is more
cooperative than the previous one in the sense that agents are always seeking other
agents who can accept new consequences for further inference. In this method, we
do not presuppose network structures of agents, but any agent can have a chance to
communicate with other agents. As the language and knowledge of each agent evolves
through interactions, this framework is more dynamic than the first method. Since the
method is not partition-based, we do not call each distributed component as a partition,
but call it an agent in this section.

Algorithm 4 (Cooperative Consequence Finding)

1. Suppose a set I of input clauses is given. This consists of a query or a goal clause
in the case of query answering or abduction as well as any clause input to the whole
systemA. LetAi be a newly created agent whose axiom set is I . Let PA = 〈LitA〉
be the (stable) production field, where LitA is the set of all literals in the language
of A. Perform consequence finding in Ai, and let N := Carc(Ai,PA).

2. For each clause C ∈ N , decide an agentAj to which C is sent fromAi. Put i := j.
3. In Ai, consequence finding is performed by SOL resolution with the top clause C.

Let N := Newcarc(Ai, C,PA). Put Ai := μ(Ai ∪N).
4. Repeat Steps 2 to 3 until no more new characteristic clause is derived.

Algorithm 4 repeats the process of (a) and (b): (a) new consequences obtained in
an agent are sent to others, and (b) then they trigger consequence finding in those
agents. An advantage of this method is that we only need to compute new characteris-
tic clauses Newcarc(Ai, C,PA) in Step 3. In fact, computation of new characteristic
clauses is easier than computation of the whole characteristic clauses by SOL resolu-
tion. The whole characteristic clauses are still obtained by accumulating the new ones
with subsumption checking by simulating (1) and (2) in Step 3. Note that computation
of Carc(Ai,PA) in Step 1 is not necessary when I is a single clause or contains no
complimentary literals.

In Step 2 of Algorithm 4, we assume that any agent can decide to which agent each
clause C ∈ N should be sent. One such implementation is to associate with each agent
Ai the set of predicates with their polarities appearing in the axiom set. This set must
be updated each time a new characteristic clause is computed in the agent. Then, it
becomes easier to find a literal that is complementary to a literal in C in other agents.
One can also use the current communication language l(i, j) between two agents: if
C ∩ l(i, j) �= ∅ holds, then C can be sent from Ai to Aj . Note here that we do not
need to break cycles, but l(i, j) needs to be updated whenever the axioms are updated.
In another way, a blackboard architecture like [5] can be considered as a place to store
new characteristic clauses deduced by agents. An agent should check whether (s)he has
a clause which can be resolved with a new characteristic clause.

Note that implementation of Steps 2 to 4 can be parallelized provided that synchro-
nization is properly done. The first message passing for unit clauses is illustrated in
Fig. 4 for the example of Section 3.2.

Termination of Algorithm 4 is similar to the case of Algorithm 3. For the correctness
of Algorithm 4, the following theorem holds.



Distributed Consequence Finding 439

Fig. 4. First Message Passing in Cooperative Consequence Finding

Theorem 3 (Soundness and Completeness of Cooperative Consequence Finding) .
Suppose an axiom set and its partitions A =

⋃
i≤nAi. We assume that every agent

Ai has a sound and complete algorithm for consequence finding. Then, Algorithm 4 is
sound and complete for distributed consequence finding of Newcarc(A, I,PA).

Proof. Soundness is proved in the same way as Theorem 2. For completeness, Newcar
c(A, I,AP ) can be decomposed into multiple clause-by-clause Newcarc operations
by (1). Since we use the production field PA in which all literals appearing inA can be
skipped, all Skip operations in any SOL deduction from the whole A are also applied
by Algorithm 4. On the other hand, all Resolve operations of SOL deductions can be
simulated by sending resolving clauses to other agents. Ancestor resolution in SOL
deductions can also be done by sending back to previous agents. As a result, any SOL
deduction can be simulated in a distributed setting by Algorithm 4.

5 Comparing Two Approaches

We here compare the two proposed methods for distributed consequence finding. We
first note that the two methods are not designed to compute the same consequences
as long as Theorems 2 and 3 are concerned. Given an axiom set A, partition-based
consequence finding computes Carc(A,P) belonging to a given production field P
in Theorem 2, while cooperative consequence finding computes Newcarc(A, I,PA)
for a given set of inputs I in Theorem 3. We could extend both methods to deal with
any case by considering the same conditions for them. However, the current conditions
are natural in both methods. The partition-based approach is based on Interpolation
Theorem [6], which refers to the set of consequences of an axiom set of one partition,
yet a language restriction can be used effectively. On the other hand, the cooperative
approach is more dynamic and reflective so that ramification from the new input is
propagated to other agents, but the language restriction is not easily set since every
agent could be related to any other. Nevertheless, an obvious merit of the cooperative
method is that we do not need to break cycles and assume no agent who does this.

We compare these two methods with the centralized approach with an accessibil-
ity problem in a metabolic networks (the citric acid cycle), depicted in Fig. 5. Given a
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Fig. 5. Decomposed metabolic pathway problem

source metabolite (here glucose, in red), some target metabolites (here, tmao, acetate
and transaconitate, in blue) and some possible additional metabolites (here arginine and
orthinine, in white), the problem is to determine whether the target metabolites can
be produced by the source metabolite (with eventual addition of the specified additional
metabolites). The production field is then[tmao, acetate, transaconitate,
-arginine, -orthinine], and the rules about the networks are divided among 6
agents as shown on Fig. 5. The problem is logically formalized with each reaction gives
one activation rule[-reactant, reaction], one production rule [-reaction,
product], plus some composition or decomposition rules if respectively the reactant
or the product is a compound (indicated by triangles on our depiction). Each agent’s
theory contains all the rules that concerns of one of its metabolites (so communication
languages initially contains only reaction symbols). A last clause indicates that glucose
is initially present ([glucose]. This clause can be used as a top-clause for computing
Newcarc, otherwise it is considered as a part of the initial theory. In this example, both
Carc and Newcarc contains 4 consequences:[acetate], [transconitate],
[-arginine, tmao], [-ornithine, tmao]. We then compare our two ap-
proaches (partition-base for computing Carc, and cooperative one for Newcarc) with
the centralized case (computing Carc).

Table 1 shows the number of resolution steps in each method. As partition-based
approach is affected by the choice of the root, and cooperative one by the order in
which agents are considered for sending of a clause1, we give here 6 sets of results,
considering in turn each agents as possible root (or first element in the agent ordering).

Comparing two distributed methods with the centralized one, the total number of
resolution steps becomes fewer in both methods. This is because (i) the partition-based

1 To limit variability, we consider that when sending a clause, an agent always check potentially
relevant neighbour in the same order.
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Table 1. Comparison of three methods for “Getting Money”

Approach # resolution steps

Centralized (Carc) 872 228

Root ag0 ag1 ag2 ag3 ag4 ag5
Partition-based 30 344 25 664 16 346 26 126 188 143 20 286

Order 0-1-2-3-4-5 1-0-2-3-4-5 2-1-0-3-4-5 3-2-1-0-4-5 4-3-2-1-0-5 5-1-0-4-2-3
Cooperative 12 381 6 290 10 851 10 851 10 908 10 908

method restricts clauses sent to its parent to those constructed with the communica-
tion language between those partitions and (ii) the cooperative method performs conse-
quence finding in each agent only with top clauses sent from other agents.

6 Comparison with Other Distributed Consequence Finding

Consequence finding has been investigated in a distributed setting [14,3,1]. Inoue and
Iwanuma [14] consider a multi-agent framework which performs speculative computa-
tion under incomplete communication environments. This is a master-slave style multi-
agent system, in which a master agent asks queries to slave agents in problem solving
and proceeds computation with default answers when answers from slave agents are
delayed. Speculative computation is implemented with SOL resolution with the condi-
tional answer method to update agents’ beliefs according to situation changes. On the
other hand, distributed consequence finding in this paper does not assume any master
agent to control the whole system. Amir and McIlraith [3] propose distributed theo-
rem proving to improve the efficiency of theorem proving for structured theories. Their
message-passing algorithm reasons over these theories using consequence-finding, and
our first (partition-based) approach in this paper also uses it. As already stated in Sec-
tion 3.3, the main difference between [3] and our partition-based approach is that the
goal of the former is theorem proving while our goal is consequence finding. Another
difference is that [3] considers how to partition a problem to minimize the intersection
of the languages, while we suppose the situation that such optimal partitioning cannot
be applied because of inherent distribution of knowledge and impossibility to collect all
information to one place. This last observation directed us to the second, cooperative
approach to distributed consequence finding, which is quite different from the first one.

The peer-to-peer (P2P) consequence finding system proposed by Adjiman et al. [1,2]
is perhaps closest to our work. Their method is related to our both first (partition-based)
and second (cooperative) approaches to consequence finding. [1] composes an acquain-
tance graph from the peers using information of shared symbols, which is similar to a
graph induced from the partitions in our first approach. The difference is that [1] does
not break cycles in a graph while we do. Also, [1] performs case splitting in goal-
oriented reasoning of a peer P1 by sending to other peer P2 only those subgoals con-
tained in the shared symbols between P1 and P2, then the new consequences of P2 are
returned to P1, which is then composed in P1 by replacing the subgoal. Combining the
results derived from the subgoals often would result in a huge combination of clauses
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when the length of the goal is long, yet [2] analyzes the scalability of large P2P sys-
tems. On the other hand, we send the clause itself without splitting and no recollection
is made. Our second approach can be regarded as a dynamic version of the first ap-
proach, in which messages are sent whenever new clauses are derived, and there is no
presupposed network structures of agents. Such dynamic aspects are not seen in the P2P
setting. Another difference is that [1] can only deal with propositional knowledge bases,
while SOL resolution and SOLAR in our paper can be used for consequence finding in
first-order clausal theories.

Although not in the context of consequence finding, abduction has also been con-
sidered in a distributed setting. Since abduction in clausal theories can be implemented
with consequence finding, such work is somehow related to distributed consequence
finding. Greco [10] considers how to build joint explanations from multiple agents in a
P2P setting like [1], but incorporates preference handling to have an agreement between
agents. By extending a blackboard architecture of [5], Ma et al. [19] address distribu-
tion of abductive logic programming agents by allowing agents to enter and exit proofs
done by other agents. Those works do not use consequence finding, and communica-
tion between agents are fully guaranteed. More recently, Bourgne et al. [4] propose the
learner-critique approach in which the role of each agent dynamically changes between
a generator and a tester of hypotheses when each agent never knows which symbols are
shared with other agents. In our methods, all agents work uniformly as a reflective in-
ference system that derives consequences upon input of new formulas, although shared
symbols are assumed to be known to both agents. Fisher [9] shows that certain forms
of negotiation can be characterized by distributed theorem proving in which agents act
as theorem-proving components. Analogously, distributed consequence finding might
contribute to extended types of negotiation between agents.

In this work, we have focused on distributed reasoning systems in which a clause set
is partitioned and the common symbols between partitions are associated with links. In
contrast, there is another formalization of distribution in which variables or symbols are
partitioned and clauses containing symbols from different partitions are associated with
links between those partitions. The former formalization is called clause-set partitioned
distribution, while the latter is called variable-set partitioned distribution. Most works
on distributed constraint satisfaction problems (DCSP) are based on the latter formal-
ization [25,11]. It is known that these two formalizations can be converted into each
other in the propositional case (cf., [7]), yet the effect of the latter case is unknown for
consequence finding and the former case can be seen more often in the real situations.

7 Conclusions

In this paper, we have proposed the two complete approaches for distributed conse-
quence finding. The first one extends the method of partition-based theorem proving
in a suitable way, and the second one is a more cooperative method for inherently dis-
tributed systems. This paper rather focuses on completeness of inference systems, and
both approaches have merits and demerits. Partition-based approaches can utilize com-
munication languages to realize restricted consequence finding between the partitions,
while the cooperative approach does not need Cycle Cut algorithm. On the negative
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side, it is important to determine an appropriate ordering in the partition-based method,
while the number of messages sent between agents tends to become larger in the coop-
erative approach.

We could consider a third approach by inheriting the merits of both approaches,
such that each agent is autonomous and cooperates each other like the cooperative ap-
proach, yet each consequence finder incorporates production fields and communication
languages between agents to enhance efficiency. Consideration of such a new approach
is left as an important future work. Another future task includes more experiments with
large distributed knowledge bases by refining details of two algorithms and by changing
topological properties of agent links.
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Kużelewska, Urszula 131

Lasisi, Ramoni O. 413
Lattner, Andreas D. 72, 255
Le Borgne, Yann-Aël 382
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Pérez-Pinillos, Daniel 146
Pini, Maria Silvia 319
Poursanidis, Georgios 72
Prepin, Ken 302

Quezada, Ariel 271

Reyna, A. 287
Ricanek, Karl 101
Rico, A. 56
Rico, F. 56
Rossi, Francesca 319

Saunier, Julien 192
Simmons, Susan J. 101
Stirling, Wynn 334

Timm, Ingo J. 72, 255
Turini, Franco 208
Tuyls, Karl 382

Venable, Kristen Brent 319
Veryzhenko, Iryna 350
Visser, Wietske 115
Vrakas, Dimitris 240

Walsh, Toby 319
Warwas, Stefan 11

Ziaka, Eva 240
Zinnikus, Ingo 11


	Title
	Preface
	Organization
	Table of Contents
	Invited Papers
	Using Incentives to Obtain Truthful Information
	Introduction
	Truthful Reporting through Scoring Rules
	The Peer Prediction Method
	Opinion Polls
	Applications
	Conclusions
	References

	Model Driven Design of Multiagent Systems
	Motivation
	Framework for Model Driven Design of Multiagent Systems
	The PIM4Agents Metamodel
	Taking a Closer Look at Interactions
	Use Cases
	Related Work
	Conclusions
	References


	Part I: Artificial Intelligence
	Probabilistic Connection between Cross-Validation and Vapnik Bounds
	Introduction and Notation
	Notation Related to Statistical Learning Theory
	Notation Related to Cross-Validation

	The Relationship for a Finite Set of Approximating Functions
	Classification Learning Task
	Regression Estimation Learning Task

	The Relationship for an Infinite Set of Approximating Functions
	Classification Learning Task (Infinite Set of Functions)
	Regression Estimation Learning Task (Infinite Set of Functions)

	Experiments — Bounds Checks
	Set of Functions
	System and Data Sets
	Algorithm of the Learning Machine
	Experiment Results and Comments

	Experiments — SRM
	Summary
	References

	A Time-Varying Model to Simulate a Collective  Decisional Problem
	Introduction
	Concepts and Notations
	Notion of Influence in a Debate
	Convictions and Preferences During a Debate

	Presentation of Our Dynamic Model
	Decisional Power and Capacities
	Time-Varying Probabilities
	Conviction State Equations

	Illustration
	Preference Calculus
	Simulations of Debateâ��s Outcome
	Debate as a Decision-Making Process

	Conclusions and Outlook
	References

	Setting Up Particle Swarm Optimization by Decision Tree Learning Out of Function Features
	Introduction
	Parameter Settings in Metaheuristics
	Particle Swarm Optimization
	Algorithm Configuration Problem

	Computation of Function Features
	Random Probing
	Incremental Probing
	Incremental Swarming

	Evaluation
	Experimental Setup
	Finding the Best Parameter
	Learning and Classification
	Computing Effort

	Discussion and Future Work
	References

	Collision Avoidance Using Partially Controlled Markov Decision Processes
	Introduction
	Related Work
	Markov Decision Processes
	Partial Control
	Assumptions
	Controlled Subproblem
	Uncontrolled Subproblem
	Online Solution

	Airborne Collision Avoidance System
	Assumptions
	Controlled Subproblem
	Uncontrolled Subproblem

	Results
	Encounter Initialization
	Example Encounter
	Performance Evaluation
	Safety Curve

	Conclusions and Further Work
	References

	A Restricted Model Space Approach for the Detection of Epistasis in Quantitative Trait Loci Using Markov Chain Monte Carlo Model Composition
	Introduction
	Bayesian Model Search
	Model Definition
	Bayesian Model Averaging
	Restricted Model Space

	Simulation Study
	Example
	Sensitivity Study

	Discussion
	References

	Reasoning about Interest-Based Preferences
	Introduction
	Concepts
	Related Work
	Qualitative Multi-criteria Preferences
	Modelling Interests
	Argumentation Framework
	Conclusions
	References

	Advantages of Information Granulation in Clustering Algorithms
	Introduction
	Data Granulation
	Clustering Algorithms 
	Partitioning Algorithms 
	Hierarchical Algorithms 
	Self-Organizing System for Information Granulation 

	Clustering Validation 
	Experiments 
	Description of Datasets
	Results of Experiments

	Conclusions
	References

	Modeling Motivations, Personality Traits and Emotional States in Deliberative Agents Based on Automated Planning
	Introduction
	Model Design
	Domain Description
	Drives
	Objects
	Personality Traits
	Emotional State
	Preferences
	Activations
	Actions
	Goals

	Experiments
	Experimental Setup
	Results

	Related Work
	Conclusions and Future Work
	Reference

	Symbolic State-Space Exploration and Guard Generation in Supervisory Control Theory
	Introduction
	Motivating Example
	Preliminaries
	Supervisory Control Theory
	Binary Decision Diagrams (BDD)

	BDD-Based Partitioning Computation
	Efficient State Space Search
	Workset Based Strategies

	Supervisor as Guards
	Computation of the Basic State Sets
	Guard Generation

	Case Studies
	Benchmark Examples
	Approach Evaluation

	Conclusions
	References

	Developing Goal-Oriented Normative Agents: The NBDI Architecture
	Introduction
	Norms
	Scenario: Rescue Operation
	NBDI Architecture
	Belief+Norm Review Function
	Norm Selection Function
	Norm Filter

	Implementing the NBDI Architecture
	Related Work
	Conclusions
	References

	Evaluation of Environment Contextual Services in Multiagent Systems
	Introduction
	Motivations
	Communication
	Agent-Based Simulation

	 Environment Modeling
	Theoretical Assessment
	Empirical Assessment
	Discussion and Conclusions
	References

	Data Streams Classification: A Selective Ensemble with Adaptive Behavior
	Introduction
	Data Streams Classification
	Requirements
	Related Work

	Adaptive Selective Ensemble
	The Snapshot
	The Frame
	Ensemble Management
	Adaptive Behavior

	Comparative Experimental Evaluation
	Data Sets
	Systems
	Results

	Conclusions
	References

	On kNN Classification and Local Feature Based Similarity Functions
	Introduction
	Related Work
	Local Features
	Image Similarity Based Classifier
	Single-Label Distance-Weighted kNN
	Image Similarity
	Similarity Measures

	Local Feature Based Image Classifier
	Local Feature Classifier
	Whole Image Classification

	Evaluation Settings
	The Dataset
	Performance Measures

	Experimental Results
	Image Similarity Based Classifiers
	Local Feature Based Classifier

	Conclusions
	References

	Web Service Composition Plans in OWL-S
	Introduction
	Related Work
	Translating PDDL to OWL-S
	Constructing the Composite WS
	Creating OWL-S Descriptions

	Conclusions and Future Work
	References

	Convergence Classification and Replication Prediction for Simulation Studies
	Introduction
	Related Work
	Control of Simulation Experiments
	Significance Estimation
	Analysis of Statistical Properties
	Convergence Classification
	Replication Prediction

	Evaluation
	Significance Classification for Fixed Distributions
	Significance Classification for Random Distributions
	Replication Prediction for Fixed Distributions

	Conclusions
	References


	Part II: Agents
	The Life of Concepts: An ABM of Conceptual Drift in Social Groups
	Introduction
	Conceptual Description of the ABM
	ABM Implementation
	Preliminary Results
	Convergence to Zero
	Convergence to One
	Bifurcation
	Map of Dynamics

	Probabilistic and Markov Chain Model
	Simple Conditional Probability Model
	Markov Chain Model
	Sensitivity of Models to Changes in Values of Some Parameters

	Conclusions
	References

	Improving File Sharing Experience with Incentive Based Coalitions
	Introduction
	Downloading with Coalitions
	P2P Network Type
	Coalition Formation Model
	Data and Bandwidth Distribution Model

	The Incentive Mechanism
	Performance Evaluation
	Modelling the User Behaviour
	Experimental Results

	Related Work
	Conclusions
	References

	Basics of Intersubjectivity Dynamics: Model of Synchrony Emergence When Dialogue Partners Underst and Each Other
	Introduction
	Model Principle
	Speak and Listen Modifies Internal State
	Non-verbal Behaviours Reflect Internal State
	Sensitivity to Synchrony
	Coupling between Dynamical Systems

	Test of the Model
	Implementation
	Test of Synchrony Emergence
	Test of Architecture Parameters

	Discussion
	References

	Stability and Optimality in Matching Problems with Weighted Preferences
	Introduction
	Background
	Stable Marriage Problems
	Stable Marriage Problems with Partially Ordered Preferences
	Stable Marriage Problems with Weighted Preferences

	-Stability
	Relations with Classical Stability Notions
	Dominance and Lex-Male-Optimality
	Finding the Lex-Male-Optimal -Stable Marriage

	Stability Notions Relying on Links
	Relations with Other Stability Notions
	Finding Link-Additive-Stable and Link-Maximal-Stable Marriages with the Highest Link

	Manipulation
	Conclusions and Future Work
	References

	A Conditional Game-Theoretic Approach to Cooperative Multiagent Systems Design
	Introduction
	 Preference Models
	Neoclassical Preference Models
	Social Influence Preference Models
	Group Preference

	 Aggregation of Preferences
	The Aggregation Theorem
	Utility Networks

	 Conditional Games
	 Partial Sociation
	Conclusions
	References

	On the Design of Agent-Based Artificial Stock Markets
	Introduction
	The Artificial Trading Open Market API
	Distinctive Features

	Artificial Market Design Issues
	Entities Organization
	A Unique Identity for Orders
	Time Handling and Scheduling System
	Human in the Loop

	Artificial Traders: From Basic Reactive Agents to Highly Sophisticated Entities
	Validation Tests
	Performance Test
	ATOM Reality-Check
	Stylized Facts

	Conclusions
	References

	Defining Virtual Organizations Following a Formal Approach
	Introduction
	Organizational Dimensions
	Related Work
	Formal Description of a Virtual Organization
	Organizational Specification
	Organizational Entity
	Organizational Dynamics
	Multi-Agent Systems Based on Virtual Organizations

	Discussion
	Conclusions and Future Work
	References

	Reinforcement Learning for Self-organizing Wake-Up Scheduling in Wireless Sensor Networks
	Introduction
	(De)synchronicity with Reinforcement Learning
	Motivations and Network Model
	Reinforcement Learning Approach: Methodology
	Actions and Rewards
	Updates and Action Selection
	Exploration

	Results
	Experimental Setup
	Evaluation
	Discussion

	Conclusions
	References

	Self-Organizing Logistics Process Control: An Agent-Based Approach
	Introduction
	Self-Organizing Supply Networks
	Agent Coordination
	Expectation-Based Self-Organization
	Modeling Double Contingency
	Representing the Logistics Domain

	Empirical Evaluation
	Experimental Setup
	Results and Discussion

	Conclusions
	References

	Manipulation of Weighted Voting Games and the Effect of Quota
	Introduction
	Related Work
	Definitions and Notations
	Annexations and Merging
	Manipulation via Annexation
	Manipulation via Merging

	Weighted Voting Games
	Unanimity Weighted Voting Games
	Non Unanimity Weighted Voting Games

	Experiments
	Simulation Environment
	Simulation Results

	Effect of Quota on Annexation and Merging
	Conclusions
	References

	Distributed Consequence Finding:Partition-Based and Cooperative Approaches
	Introduction
	Consequence Finding
	Partition-Based Consequence Finding
	Partitions and Message Passing
	Example
	Partition-Based Consequence Finding

	Cooperative Consequence Finding
	Comparing Two Approaches
	Comparison with Other Distributed Consequence Finding
	Conclusions
	References


	Author Index



