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Abstract. A function f : v → {−1,+1} defined on the vertices of a
graph G is a signed dominating function if the sum of its function values
over any closed neighborhood is at least one. The weight of a signed
dominating function is f(V ) =

∑
f(v), over all vertices v ∈ V . The

signed domination number of a graph G, denoted by γs(G), equals the
minimum weight of a signed dominating function of G. The decision
problem corresponding to the problem of computing γs is an important
NP-complete problem derived from social network. A signed dominating
set is a set of vertices assigned the value +1 under the function f in
the graph. In this paper, we give some fixed parameter tractable results
for signed dominating set problem, specifically the kernels for signed
dominating set problem on general and special graphs. These results
generalize the parameterized algorithm for this problem. Furthermore we
propose a parameterized algorithm for signed dominating set problem on
planar graphs.

1 Introduction

Signed domination is a variation of dominating set problem, there is a variety of
applications for this variation. By assigning the values −1 or +1 to the vertices
of a graph, which can be modeled as networks of positive and negative electri-
cal charges, networks of positive and negative spins of electrons, and networks of
people or organizations in which global decisions must be made(e.g. yes-no, agree-
disagree, like-dislike, etc.). In such a context, the signed domination number repre-
sents the minimum number of people whose positive votes can assure that all local
groups of voters(represented by closed neighborhoods in graphs) have more posi-
tive than negative voters, even though the entire network may have far more peo-
ple whose vote negative than positive. Hence this variation of domination studies
situations in which, in spite of the presence of negative vertices, the closed neigh-
borhoods of all vertices are required to maintain a positive sum.
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Given a graph G = (V,E), for each vertex v ∈ V , let N(v) be all neighbors
of v, and N [v] = N(v) ∪ {v}, N(v) and N [v] are called the open and the closed
neighborhood of v. Similarly, for a set S of vertices, define the open neighborhood
N(S) = ∪N(v) over all v in S and the closed neighborhood N [S] = N(S) ∪ S.
A set S of vertices is a dominating set if N [S] = V . For an integer function
f : V → N , the weight of f is w(f) =

∑
v∈V f(v), and for S ⊆ V , we define

f(S) =
∑

v∈S f(v), therefore, w(f) = f(V ). For convenience, we use f(N [v]) to
denote

∑
u∈N [v] f(u).

A Dominating Set of a graph G = (V,E) is a vertex set D ⊆ V such that
each v ∈ V is contained in D or v is a neighbor of at least one vertex in D.
In other words, let f : V → {0, 1} be a function which assigns to each vertex
of a graph an element in the set {0, 1}. Then, f is called dominating function
if for every v ∈ V, f(N [v]) ≥ 1. The domination number, denoted by γ(G),
γ(G) =min{f(V ) : f is a dominating function of G}.

Let f : V → {−1, 1} be a function which assigns each vertex of a graph
an element in the set {−1, 1}. Then, f is called signed dominating function
if for every v ∈ V, f(N [v]) ≥ 1. The signed domination number, denoted by
γs(G), of G is the minimum weight of the

∑
v∈V f(v) over all such functions,

γs(G) =min{f(V ) : f is a signed dominating function of G}. We define P ⊆ V
the signed dominating set which is the set of vertices with value +1 assigned
by f .

Definition 1. (Parameterized Signed Dominating Set) Given a graph G = (V,E)
and a non-negative integer k, does there exist a signed dominating set P of size
at most k such that for each v ∈ V ,

∑
u∈N [v] f(u) > 0.

The concept of signed domination in graphs was introduced by Zelinka[4] and
studied in [1][3][5][7]. The decision problem corresponding to the problem of
computing γs is NP-complete, even when the graph restricted to chordal graph
or bipartite graph. For a fixed k, the problem of determining if a graph has a
signed dominating function of weight at most k is also NP-complete. A linear
time algorithm for finding a minimum signed dominating function in an arbitrary
tree was presented in [2]. The research dealing with signed domination has many
focused on computing better upper and lower bounds on the signed domination
number γs for graphs. Dunbar et. al[1] investigated the properties of signed
domination number and established upper and lower bounds for γs. For r-regular
n-vertex graphs, γs ≥ n

r+1 when r is even, Henning and Slater[11] pointed out

that γs ≥ 2n
r+1 when r is odd. The upper bounds are given by Henning[12] and

Favaron[8], when r is odd, γs ≤ (r+1)2

r2+4r−1 · n, and when r is even, γs ≤ r+1
r+3 · n.

Since the research dealing with signed domination has mainly focused on
improving better upper and lower bounds on the signed domination number
γs, therefore, in this paper, we study this problem from the point of algorithm
complexity and present a variety of fixed parameter tractable(FPT) results for
signed dominating set problem. We study signed dominating set problem in
general graphs, particularly show that signed dominating set problem is NP-
complete even restricted to bipartite or chordal graphs. We also present a linear
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Table 1. FPT results for signed dominating set in general graphs and special graphs

Graph Class Parameterized Complexity Kernel

general FPT O(k2)
planar FPT O(k)

bipartite FPT O(k2)
r-regular FPT O(k)
Δ ≤ 5 FPT O(k)

kernel O(k) and an efficient FPT algorithm of time O((6
√
k)O(

√
k)|V |) for signed

dominating set problem on planar graphs. Finally we give the kernels for signed
dominating set on the following graph classes: bipartite graphs, Δ ≤ 5 graphs
and r-regular graphs. FPT results for signed dominating set problem are given
in Table 1.

2 Preliminaries

A signed dominating function is a labeling of the vertices by values −1,+1 such
that the sum of labels in N [v] is positive, for each v. For convenience, we will
also say that each v is “dominated” if the sum of labels in N [v] is positive.

Let P and M be the sets of vertices with labels +1 and −1, also called positive
and negative vertices, respectively. Let Pi denote the set of those positive vertices
having exactly i negative neighbors. Similarly Mi is defined to be the set of
those negative vertices having exactly i positive neighbors. It is easy to see that
M0 = M1 = ∅. Let Di be the set of all vertices with degree i. Δ is the maximum
degree of the graph. The symbols |P |, |M |, |Pi|, |Mi| denote the cardinalities of
the sets P , M , Pi, Mi respectively. If X , Y are disjoint sets of vertices of graph
G, K|X|,|Y | denotes the bipartite subgraph of G consisting of the parts X and
Y .

Definition 2. [6] The pair (T,X) is a tree decomposition of a graph G if
1. T is a tree,
2. X = {Xi|Xi ⊆ V (G), i ∈ V (T )}, and ⋃

Xi∈X = V (G), (Xi is called a bag),
3. (Containment) ∀u, v, (u, v) ∈ E(G),∃i ∈ V (T ) such that u, v ∈ Xi, and
4. (Connectivity) ∀i, j, k ∈ V (T ), if k is on the path from i to j in tree T , then
Xi ∩Xj ⊆ Xk.
The width of (T,X) is defined as maxi∈V (T ){|Xi|} − 1.

The treewidth of the graph G is the minimum width of all possible tree decom-
positions of the graph.

Definition 3. [9] A nice tree decomposition is a tree decomposition (T,X) in
which one node of T is considered to be the root, and each node i in T is of one
of the four following types.
-Leaf: node i is a leaf of T and |Xi| = 1.
-Join: node i has exactly two children, say j and k, and Xi = Xj = Xk.
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-Introduce: node i has exactly one child, say j, and there is a vertex v ∈ V (G)
with Xi = Xj ∪ {v}.
-Forget: node i has exactly one child, say j, and there is a vertex v ∈ V (G) with
Xi = Xj − {v}.
Every tree decomposition can be transformed into a nice tree decomposition[10].

Lemma 1. Given a tree decomposition of width k with O(n) nodes of a graph
G, where n is the number of vertices of G, one can find a nice tree decomposition
of G that has the same width k and O(n) nodes in linear time.

3 Signed Dominating Set in General Graph

The decision problem corresponding to the problem of computing γs is well-
known NP-complete [2]. We show that signed dominating set problem is NP-
complete even restricted to bipartite or chordal graphs.
Problem: Dominating Set
Instance: A graph G = (V,E) and a positive integer k.
Question: Does G have a dominating set of cardinality k or less.

Problem: Signed Dominating Set
Instance: A graph H = (V,E) and a positive integer j.
Question: Does H have a signed dominating set P of cardinality at most j.

Theorem 1. Signed dominating set problem is NP-complete, even restricted to
bipartite or chordal graphs.

Proof. It is obvious that signed dominating set problem is a member of NP
since we can in polynomial time verify that H has a signed dominating set of
size at most j for a function f : V → {−1,+1}. To show that signed dominating
set problem is NP-complete even restricted to bipartite or chordal graphs, we
establish a polynomial reduction from the NP-complete problem dominating set.
Let (G, k) be an instance of Dominating Set consisting of the dominating set of
size k. We construct an instance (H, j) of Signed Dominating Set as follows.

Given a graph G = (V,E) and a positive integer k, construct the graph H
by adding for each vertex v of G a set of degGv paths P2 on two vertices. Let
m = |E(G)| and n = |V (G)|. Then |V (H)| = n + 2

∑
v∈V degGv = n + 4m

and |E(H)| = m+ 2
∑

v∈V degGv = 5m. It is easy to see that graph H can be
constructed in polynomial time.

Next, we show the equivalence between the instances, that is, (G, k) is a
yes-instance of Dominating Set if and only if (H, j) is a yes-instance of Signed
Dominating Set.

Let D be a dominating set of graph G of size k. Let f : V (H) → {−1,+1}
be the function defined by f(v) = +1 if v ∈ (V (H)− V (G)) ∪D and f(v) = −1
if v ∈ V (G) − D. Then f is a signed dominating function of graph H , and
|P | ≤ j = |V (H)− V (G)|+ |D| = k + 4m.
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Let f be a signed dominating function of graph H . If x is a degree-1 vertex
and y is its neighbor, by the definition of the signed dominating function, then
f(x) = +1 and f(y) = +1. It follows that f(w) = +1 for everyw ∈ V (H)−V (G).
In other words, for the signed dominating function f , if f(v) = −1, then v ∈
V (G) ⊆ V (H). Furthermore, f : V (H) → {−1,+1}, v ∈ V (G), v has even
degree in graph H and f(N [v]) ≥ 1. Since exactly half the neighbors of v belong
to V (H)−V (G) and all those vertices are assigned the value +1, it follows that
at least one neighbor of v in G is assigned the value +1 under f . That is, if f is
a signed dominating function of H , then f(v) = +1 for v ∈ V (H) − V (G) and
the set of vertices D in graph G which are assigned the value +1 under f form a
dominating set in graph G. Since the signed dominating set P in graph H with
size at most j = k + 4m and |V (H)− V (G)| = 2

∑
v∈V degGv = 4m, therefore,

|D| ≤ k.
It is also easy to verify the reduction preserves the properties “bipartite”,

“chordal”. 
�
Kernelization can be seen as the strategy of analyzing preprocessing or data
reduction heuristics from a parameterized complexity perspective. Given a graph
G = (V,E), we propose to develop data reduction rules as follows.

Rule: If there exists a vertex v of degree larger than 2k in graph G, then
remove vertex v from graph G.

Theorem 2. Signed dominating set problem in general graphs admits a O(k2)
kernel.

Proof. It is easy to verify the correctness of this rule. If there is a vertex of
degree larger than 2k, then at least half of its neighbors should be assigned the
value +1 under the signed dominating function, it contradicts with the signed
dominating set of size bounded by k.

The left graph has all vertices of degree smaller than 2k. Since each vertex
with value +1 has at most half neighbors assigned the value −1, now the graph
has at most k vertices with value +1, then the number of vertices with value −1
is less than k2. Then we can get |V | ≤ k(k+1), therefore, we can conclude that
|V | ≤ k2, the kernel is O(k2). 
�

4 Signed Dominating Set on Planar Graph

4.1 Linear Kernel for Signed Dominating Set

It is observed that for a fixed parameter tractable problem on planar graphs, if
some kernelization rules can be developed to bound the size of “lower degree”
vertices, then we can get a kernel of this problem soon. Next, we will analyze
the kernel for signed dominating set on planar graphs.

Lemma 2. Let v be a degree-1 vertex in G with N(v) = {u}, then G has a
signed dominating set of size bounded by k if and only if G \ v has a signed
dominating set bounded by k that contains v and u.
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Lemma 3. Let v be a degree-2 vertex in G with N(v) = {u,w} and (u,w) ∈
E(G). Then G has a signed dominating set of size bounded by k if and only if
G \ v has a signed dominating set of size bounded by k that contains u and w.

Based on Lemma 2 and lemma 3, we can get the following reduction rules.
Rule 1. If a vertex v is a degree-1 vertex, then remove v and decrease the

parameter k by two.
Rule 2. If a vertex v has two neighbors u and w and (u,w) ∈ E(G), remove v

and decrease the parameter k by two.
It is easy to verify that any rule can be applied at most polynomial times.

Following is a useful property of planar graphs.

Lemma 4. For a planar graph G, let S be a subset of V with at least 2 vertices,
and let J = {v|v ∈ V (G) \ S, |N(v) ∩ S| ≥ 3}, then |J | ≤ 2|S| − 4.

Proof. It is not hard to see that this lemma is true for |S| = 2. Then we suppose
|S| ≥ 3. Let B = G[S ∪ J ] \ (E(G[S]) ∪E(G[J ])). Since there is no K3 in B, by
Euler’s formula, |E(B)| ≤ 2(|S| + |J | − 2). Then |E(B)| ≥ 3|J |. Thus, we have
|J | ≤ 2|S| − 4. 
�
Lemma 5. [14] For a planar graph G = (V,E) with at least three vertices, then
|E| ≤ 3|V | − 6.

Lemma 6. Signed dominating set on planar graphs admit a 6k − 10 kernel.

Proof. For any instance (G, k) of signed domination set, we reduce the instance
by rule 1- rule 2. Let (G′, k′) is the reduced instance with k′ ≤ k. SupposeG′ has a
signed dominating set P of size k′. Let Ji = {v|v ∈ V (G′)\V (P ), |N(v)∩V (P )| =
i}, where i = 0, 1, 2, and let J+

3 = {v|v ∈ V (G′) \ V (P ), |N(v) ∩ V (P )| ≥ 3}.
It is clearly that |J0| = 0. Since G′ has already been reduced by rule 1- rule
2, there exists no degree-1 vertices and degree-2 vertices whose neighbors are
adjacent in V (G′) \ V (P ). Otherwise, assume that there is a degree-2 vertex v
in V (G′) \ V (P ) with N(v) = {u,w}. If (u,w) ∈ E(G′), then rule 2 can be
used, contradicting that (G′, k′) is reduced. Therefore, |J1| = 0. It is easy to see
that J2 induced an independent set. P is an induced graph of planar graph G′,
according to lemma 5 we obtain |E(P )| ≤ 3|V (P )| − 6. Each vertex in J2 has
exactly two neighbors in P and these two neighbors are not connected. Therefore,
|J2| ≤ 3|V (P )| − 6. Since G′ is a planar graph, by lemma 4, |J+

3 | ≤ 2|V (P )| − 4.
Thus |G′| = |V (P )|+ |J0|+ |J1|+ |J2|+ |J+

3 | ≤ 6|V (P )| − 10. Since |V (P )| ≤ k,
the size of the kernel is 6k − 10.

The procedure of reduction just takes the operation of deleting vertices and
edges, therefore, the kernelization takes polynomial times. 
�

4.2 FPT Algorithm for Signed Dominating Set

In this section we will solve signed dominating set problem by dynamic program-
ming on the tree-decomposition. What we show is a FPT algorithm with respect
to the parameter treewidth.
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Given a graph G = (V,E) and V = {x1, ..., xn}, assume that the vertices
in the bags are given in increasing order when used as indices of the dynamic
programming tables, that is Xi = {xi1, ..., xini} with i1 ≤ ... ≤ ini, 1 ≤ i ≤
|V (T )|. We use eight different “colors” that will be assigned to the vertices in
bag.

– “blue”: represented by 1, meaning that the vertex xit satisfies f(N [xit]) > 1
at the current stage of the algorithm.

– “white”: represented by 1[, meaning that the vertex xit satisfies f(N [xit]) = 1
at the current stage of the algorithm.

– “grey”: represented by 1], meaning that the vertex xit satisfies f(N [xit]) = 0
at the current stage of the algorithm.

– “pink”: represented by 1∗, meaning that the vertex xit satisfies f(N [xit]) < 0
at the current stage of the algorithm.

– “black”: represented by -1, meaning that the vertex xit satisfies f(N [xit]) > 1
at the current stage of the algorithm.

– “red”: represented by −1[, meaning that the vertex xit satisfies f(N [xit]) = 1
at the current stage of the algorithm.

– “green”: represented by−1], meaning that the vertex xit satisfies f(N [xit]) =
0 at the current stage of the algorithm.

– “brown”: represented by−1∗, meaning that the vertex xit satisfies f(N [xit]) <
0 at the current stage of the algorithm.

It is worthy of note that there are |Xi| − 1 number of states for f(N [xit]) > 1,
those states f(N [xit]) = 2, ..., f(N [xit]) = |Xi| can be denoted by 12, ..., 1|Xi|
and −12, ...,−1|Xi| respectively. Moreover, there are |Xi| number of states for
f(N [xit]) < 0. Similarly we use 1−1, ..., 1−|Xi| and −1−1, ...,−1−|Xi| to denote
those states f(N [xit]) = −1, ..., f(N [xit]) = −|Xi| respectively. In order to ex-
press the dynamic programming algorithm easily, we still use 1, 1∗, −1 and −1∗
to denote those states. Therefore, mapping

Ci : {xi1, ..., xini} → {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}
is called a coloring for the bag Xi = {xi1, ..., xini}, and the color assigned to
vertex xit by Ci is given by Ci(xit). The colors in the bag can be represented as
(C(xi1), ..., C(xini )). For each bagXi with Xi = ni, the algorithm use a mapping

mi : {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni → N ∪+∞
For a coloring Ci, the value mi(Ci) stores how many vertices are needed for a
minimum signed dominating set of the graph visited up to the current stage of
the algorithm. A color is locally invalid if there is some vertex in the bag that
is colored −1 or −1[ but this vertex is not dominated by the vertices within
the bag. Note that a locally invalid coloring may still be a correct coloring if
this vertex is not dominated within the bag but dominated by some vertices
from bags that have been considered earlier. For a coloring c = (c1, ..., cm) ∈
{1, 1[, 1], 1∗,−1,−1[,−1],−1∗}m and a color d ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗},
let

�d(c) = |{t ∈ {1, ...,m}|ct = d}|
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Theorem 3. Given a graph G = (V,E) with tree decomposition (T,X), a min-
imum signed dominating set problem can be computed in O((6tw)tw · |V |) time,
where tw is the treewidth of the tree decomposition.

Proof. In order to describe the algorithm clearly, assume the dynamic program-
ming algorithm is based on the nice tree decomposition computing the minimum
signed dominating set.
Step 1: Table initialization.

For all tables Xi and each coloring c ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni let

mi(c) =

{
+∞ if c is locally invalid for Xi

�1,1[,1],1∗(c) otherwise

Since the check for local invalidity takesO(ni) time, this step take timeO((4ni)
ni ·

ni).
Step 2: Dynamic programming.

After the initialization, the algorithm visits the bags of the tree decomposition
from the leaves to the root, there are three kinds of nodes during the dynamic
programming procedure should be considered. We evaluate the corresponding
mappings in each node according to the following rules.
Forget Nodes : Assume i is a forget node with child j and Xi = {xi1, ..., xini},
Xj = {xi1, ..., xini , x}.

For all colorings c ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni , let

mi(c) = min
d∈{1,1[,−1,−1[}

{mj(c× {d})}

Note that for Xj the vertex x is assigned color 1], −1], 1∗ and −1∗, that is,
x is not dominated by a graph vertex. But by the consistency property of tree
decompositions, the vertex x would never appear in a bag for the rest of the
algorithm, a coloring will not lead to a signed dominating set because x cannot
be dominated. That is why in the above equation x just takes colors 1, 1[,−1,−1[
only.
Introduce Nodes : Assume i is an introduce node with child node j, let Xj =
{xj1, ..., xjnj}, Xi = {xi1, ..., xini , x}. Suppose N(x) ∩ Xj = {xjp1 , ..., xjps} be
the neighbors of the vertex x which are contained in the bag Xi. Now define a
function on the set of colorings of Xj.

φ : {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}nj → {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}nj

For c = (c1, ..., cnj ) ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}nj , define φ(c) = (c′1, ..., c′nj
)

such that

c′t =

{
1](−1]) if t ∈ {p1, ..., ps} andct = 1[(−1[)

ct otherwise

Compute the mapping mi of Xi as follows: for all colorings c = (c1, ..., cnj ) ∈
{1, 1[, 1], 1∗,−1,−1[,−1],−1∗}nj , if we assign color 1 to vertex x, then the ver-
tices in {xjp1 , ..., xjps} with colors 1] or −1] can be assigned colors 1[ or −1[.
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The vertices in {xjp1 , ..., xjps} with colors 1∗ or −1∗ can be pushed to the “up-
per” colors, for example, 1−1 is changed into 1]. In the same way, if we assign
color −1 to vertex x, the vertices in {xjp1 , ..., xjps} with colors 1 or −1 can be
pulled to the “lower” colors, for example, 12 is changed into 1[.

mi(c× {−1],−1∗}) = mj(c)

mi(c× {−1,−1[}) = mj(c)if x has neighbors in Xj with colors 1, 1[

mi(c× {1, 1[, 1], 1∗}) = mj(φ(c)) + 1

Since it needs O(ni) time to check a coloring is locally invalid, the computation
of mi can be carried out in O((4ni)

ni · ni) time.
Join Nodes : Assume i is a join node with children j and k, let Xi = Xj = Xk =
{xi1, ..., xini}. Let c = (c1, ..., cni) ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni be a color-
ing for Xi. c

′ = (c′1, ..., c
′
ni
), c′′ = (c′′1 , ..., c

′′
ni
) ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni .

Since for a join node, we have to consider a child of colors 1, 1[ combined with
colors 1], 1∗ of another child. Similar with −1,−1[ combined with −1],−1∗. Then
ct = 1 ⇒ (c′t, c

′′
t ∈ {1, 1∗}) ∧ (c′t = 1 ∨ c′′t = 1)

ct = 1 ⇒ (c′t, c
′′
t ∈ {1, 1]}) ∧ (c′t = 1 ∨ c′′t = 1)

ct = 1[ ⇒ (c′t, c′′t ∈ {1[, 1∗}) ∧ (c′t = 1[ ∨ c′′t = 1[)
ct = 1[ ⇒ (c′t, c

′′
t ∈ {1[, 1]}) ∧ (c′t = 1[ ∨ c′′t = 1[)

ct = −1 ⇒ (c′t, c′′t ∈ {−1,−1∗}) ∧ (c′t = −1 ∨ c′′t = −1)
ct = −1 ⇒ (c′t, c

′′
t ∈ {−1,−1]}) ∧ (c′t = −1 ∨ c′′t = −1)

ct = −1[ ⇒ (c′t, c
′′
t ∈ {−1[,−1∗}) ∧ (c′t = −1[ ∨ c′′t = −1[)

ct = −1[ ⇒ (c′t, c′′t ∈ {−1[,−1]}) ∧ (c′t = −1[ ∨ c′′t = −1[)

Then, the computation of the mapping mi of Xi as follows: for all colorings
c ∈ {1, 1[, 1], 1∗,−1,−1[,−1],−1∗}ni , let

mi(c) = min{mj(c
′) +mk(c

′′)− �1,1[,1],1∗(c)}
Computing the valuemi, we should look up the corresponding values for coloring
c in mj and in mk, add the corresponding values and subtract the number of
color 1, 1[ in c. If color c of node i assigns the color 1], 1∗, −1] or −1∗ to a vertex
x from Xi, then in color c′ of Xj and color c′′ of Xk, we should assign the same
color to x. However, if c assigns color 1, 1[, −1 or −1[ to x, it is necessary to
justify this color by only one of the colorings c′ or c′′. Combine the states of c′

and c′′, therefore, computing mi can be done in O((6ni)
ni · ni) time.

Step 3 Let r be the root of T , the signed dominating set number is given by

min{mr(c)|c ∈ {1, 1[,−1,−1[}nr}
The minimum number of signed dominating set is taken only over colorings
containing colors 1, 1[,−1,−1[ since the colors 1], 1∗, −1] and −1∗ mean that
the corresponding vertex still needs to be dominated.

Since |Xi| = ni, if the given graph has treewidth tw, then computing the
minimum signed dominating number can be done in O((6tw)tw · |V |) time. 
�
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Theorem 4. [13] If a planar graph has a dominating set of size at most k, then
its treewidth is bounded by O(

√
k).

Lemma 7. Given a graph G = (V,E), if there exist a signed dominating set of
size at most k, then there must exist a dominating set of size at most k.

Proof. Assume there is a signed dominating set P with |P | ≤ k in graph G, then
for each v ∈ V , the signed dominating function makes each v satisfy f(N [v]) ≥ 1.
If we use 0 to replace all the −1 in the graph, it is easy to see that P is also a
dominating set of graph G. Each vertex with value −1 needs at least two vertices
with value +1 to dominate, but each vertex with value 0 just needs at least one
vertex with value +1 to dominate, therefore, a dominating set of graph G is of
size at most k. Conversely, it does not hold. 
�

By Theorem 3, Theorem 4 and Lemma 7, it is easy to see that signed dominating
set problem on a planar graph has fixed parameter tractable algorithm.

Corollary 1. Signed dominating set on planar graphs is solved in O((6
√
k)O(

√
k)·

|V |) time.

5 Signed Dominating Set in Special Graph

5.1 Polynomial Kernel in Bipartite Graph

For p ≥ 1, q ≥ 1, letKp,q be a bipartite graph with vertices {x1, . . . , xi,y1, . . . , yj}
by connecting all edges of the type (xiyj), where 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Theorem 5. In a bipartite graph Kp,q, the kernel for signed dominating set is
O(k2).

Proof. Let the X+ and X− be two sets of vertices in X which are assigned
with +1 and −1, respectively. Similarly define the Y + and Y −. Then |P | =
|X+|+ |Y +|, |M | = |X−|+ |Y −|. Every vertex in X− has to be connected to at
least two vertices in Y +, according to the pigeonhole principle, at least one vertex
in Y + has to be adjacent to at least |X−|/|Y +| vertices in X−. Since the vertex
yi in Y + should satisfy f(N [yi]) ≥ 1, it follows that |X+|− |X−|/|Y +| ≥ 1, then
|X−| ≤ |Y +|(|X+| − 1). Every vertex in Y − has to be connected to at least two
vertices in X+, then at least one vertex in X+ has to be adjacent to at least
|Y −|/|X+| vertices in Y −, therefore |Y −| ≤ |X+|(|Y +| − 1).

For the whole graph, |V | = |X+| + |X−| + |Y +| + |Y −|, |V | ≤ |X+| +
|Y +|(|X+|−1)+|Y +|+|X+|(|Y +|−1) = 2|X+||Y +|, |X+||Y +| ≥ |V |

2 . |P |−|M | =
2(|X+| + |Y +|) − |V |, 2k − |V | ≥ 4

√|X+| · |Y +| − |V |, k ≥ √
2|V |, therefore,

the kernel is O(k2). 
�
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5.2 Linear Kernel in Δ ≤ d Graph

Lemma 8. Any signed dominating function in a Δ ≤ d graph satisfies

|P | − |M | = |P0|+ |P1|/2 + (
d

4
− 1

2
)|M d

2
+1|+ ...+ (

d

2
− 1)|Md| − 1

2
(|P3| − |M3|)

−...− (
d

4
− 1)(|P d

2
| − |M d

2
|)

where d is a constant.

Proof. If d is even, |P | = |P0| + |P1| + ... + |P d
2
|, and if d is odd, |P | = |P0| +

|P1|+ ...+ |P d−1
2
|. |M | = |M2|+ |M3|+ ...+ |Md|. For d even, the edge number

of K|P |,|M| is |P1|+ 2|P2|+ ...+ d
2 |P d

2
| = 2|M2|+ 3|M3|+ ...+ d|Md|. Then

|P1|+ 2(|P2| − |M2|) + ...+
d

2
(|P d

2
| − |M d

2
|) = (

d

2
+ 1)|M d

2+1|+ ...+ d|Md|

Then, in Δ ≤ d graph,

|P | − |M | = |P0|+ |P1|/2 + (
d

4
− 1

2
)|M d

2
+1|+ ...+ (

d

2
− 1)|Md| − 1

2
(|P3| − |M3|)

−...− (
d

4
− 1)(|P d

2
| − |M d

2
|)

The same with the case d is odd. 
�
Theorem 6. In a Δ ≤ 5 graph, the kernel for signed dominating set is O(k).

Proof. In a Δ ≤ 5 graph, according to lemma 8, |P | − |M | = |P0| + |P1|/2 +
|M3|/2+|M4|+ 3

2 |M5|. From the edge numberK|P1|,|M2|, we can see that 2|M2| ≤
|P1| and |P2| = |M2|+ 3

2 |M3|+2|M4|+ 5
2 |M5|− |P1|/2. Since |V | = |P0|+ |P1|+

|P2|+ |M2|+ |M3|+ |M4|+ |M5|, therefore, |V | = |P0|+ |P1|/2+2|M2|+ 5
2 |M3|+

3|M4|+ 7
2 |M5| ≤ 5(|P | − |M |). Since |P | ≤ k and |M | ≥ |V | − k, then we obtain

|V | ≤ 5
3k. 
�

5.3 Linear Kernel in r-Regular Graph

Theorem 7. In a r-regular graph, the kernel for signed dominating set is O(k).

Proof. According to the lower bound of γs in [11], for every r-regular graph,
γs ≥ 1

r+1 |V | for r is even, and γs ≥ 2
r+1 |V | for r is odd. Then 2k − |V | ≥ γs ≥

1
r+1 |V |, we get the kernel O(k).

6 Conclusion

In this paper, we study signed dominating set problem from the parameterized
perspective. There are still some problems deserved for further research. Firstly
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can we improve the kernel of the signed dominating set problem in general
graphs, if it can do, the new fixed parameter tractable algorithm for this problem
also follows naturally. Since for a fixed k, the problem of determining whether
a graph has a signed dominating function of weight at most k is NP-complete,
if signed domination problem is parameterized with the weight of the signed
dominating function, is this problem still fixed parameter tractable?
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