
Finite Automata over Structures

(Extended Abstract)

Aniruddh Gandhi1, Bakhadyr Khoussainov1, and Jiamou Liu2

1 Department of Computer Science, University of Auckland, New Zealand
2 School of Computing and Mathematical Sciences
Auckland University of Technology, New Zealand

agan014@aucklanduni.ac.nz, bmk@cs.auckland.ac.nz,
jiamou.liu@aut.ac.nz

Abstract. We introduce a finite automata model for performing com-
putations over an arbitrary structure S . The automaton processes se-
quences of elements in S . While processing the sequence, the automaton
tests atomic relations, performs atomic operations of the structure S ,
and makes state transitions. In this setting, we study several problems
such as closure properties, validation problem and emptiness problems.
We investigate the dependence of deciding these problems on the under-
lying structures and the number of registers of our model of automata.
Our investigation demonstrates that some of these properties are related
to the existential first order fragments of the underlying structures.

1 Introduction

Most algorithms use methods, operations, and test predicates over an already
defined underlying structure. For instance, algorithms that use integer variables
assume that the underlying structure contains the set of integers Z and the usual
operations of addition +, multiplication ×, and the predicate ≤. Similarly algo-
rithms that work on graphs or trees assume that the underlying structure consists
of graphs and trees with operations such as adding or deleting a vertex or an edge,
merging trees or graphs, and test predicates such as the subtree predicate. Gen-
erally, an algorithm over an algebraic structure S = (D; f0, . . . , fn, R0, . . . , Rk),
where each fi is a total operation on D and each Ri is a predicate on D, is a
sequence of instructions that uses the operations and predicates of the structure.
This simple observation has led to the introduction of various models of com-
putations over arbitrary structures and their analysis. The first example here is
the class of Blum-Shub-Smale (BSS) machines [2], where the underlying struc-
ture is the ordered ring of the reals. The model is essentially a multiple register
machine that stores tuples of real numbers and that can evaluate polynomials
at unit cost. The second example is the work of O. Bournez, et al. [5], where
the authors introduce computations over arbitrary structures thus generalizing
the work of L. Blum, M. Shub and S. Smale [2]. In particular, among several
results, they prove that the set of all recursive functions over arbitrary structure
S is exactly the set of decision functions computed by BSS machines over S.

M. Agrawal, S.B. Cooper, and A. Li (Eds.): TAMC 2012, LNCS 7287, pp. 373–384, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

374 A. Gandhi, B. Khoussainov, and J. Liu

The third example is various classes of counter automata that use counters in
different ways [6,7,10,14,16].

In this paper, we introduce the notion of finite automata over algebraic struc-
tures which accept or reject finite sequences of elements from the domain of the
underlying structure. Our main motivation here is that our model is the finite
automata analogue of BSS machines over arbitrary structures. Namely, we define
finite state automata over any given structure S. Such an automaton is equipped
with a finite number of states, a fixed number of registers, a read only head that
always moves to the right in the tape and transitions between the states. The
automaton processes finite sequences of elements of S. During the computation,
given an input from the sequence, the automaton tests the input against the
values of the registers. Depending on the outcomes of the test, the automaton
updates the register values by performing basic operations on the input and the
register values and then makes a transition to a state. Given a structure S, we
use the term S-automata to denote the instantiation of this computation model
for S.

Another motivation is that our model can also be viewed as finite automata
over an infinite alphabet when the underlying structure S is infinite. We mention
that there has recently been a lot of interest in the study of finite automata over
infinite alphabets due to investigations in program verification and databases,
[1,3,4,9,19,21]. One goal of these investigations is to extend automata-theoretic
techniques to words and trees over data values. Several models of computations
have been proposed towards this goal. Examples of such automata models include
Kaminsky and Francez’s register automata [11], Neven, Schwentick and Vianu’s
pebble automata [17], Bojanczyk’s data automata [3] and Alur’s extended data
automata [1]. While all the above automata models allow only equality tests
between data values, there has also been automata model proposed for linearly
ordered data domains [20]. The existence of many such models of automata over
either structures or infinite alphabets calls for a general yet simple framework
to formally reason about such finite state automata. This paper addresses this
issue and suggests one such framework.

One important property of our model is that the class of all languages recog-
nized by deterministic S-automata is closed under all the Boolean operations.
Furthermore, every language recognized by an S-automaton over a (computable)
structure is decidable. Thus S-automata do not generate undecidable languages.
Another important implication of our definition is that one can recast many
decision problems about standard finite automata in our setting. For instance,
we address the emptiness problem for S-automata and investigate the interplay
between decidability and undecidability of the emptiness problem by varying
the structure S. In particular, we provide examples of fragments of arithmetic
over which the emptiness problem becomes decidable or undecidable. The third
implication is that our model recasts the emptiness problem for finite automata
by refining the problem as follows. One would like to design an algorithm that,
given an S-automaton over the structure S, and a path from an initial state to
an accepting state in the automaton, builds an input sequence from the structure

Finite Automata over Structures 375

S that validates the path. We call this the validation problem for S-automata.
We will investigate the validation problem for S-automata and connect it with
the first order existential fragment of the underlying structure S. Roughly, the
existential fragment of the structure S is equivalent to finding solutions to sys-
tems of equations and in-equations in the structure. We show that the validation
problem for S-automata is decidable if and only if the existential fragment of
the structure S is decidable.

It is still a speculation that our model provides a general framework for all
other known models of automata. However, generality of our model comes from
the following observations: (1) we can vary the underlying structures and thus
investigate models of finite automata over arbitrary structures, (2) in certain
precise sense our machines can simulate Turing machines, (3) many known au-
tomata models (e.g pushdown automata, Petri nets, visibly pushdown automata)
can easily be simulated by our model but whether decidability results for these
models can be derived from decidability results of our model remains to be seen.

The rest of the paper is organized as follows. Section 2 provides basic defi-
nitions and introduces the notion of S-automata over structures. Section 3 dis-
cusses some basic properties of S-automata. Section 4 investigates the validation
problem that we mentioned above. Section 5 investigates the emptiness prob-
lem and provides both negative and positive cases. The emphasis here is on the
study of S-automata when the structure S constitutes some natural fragments of
arithmetic. For instance we show that the emptiness problem for automata with
two registers over the structure (N; +1,−1,=, pr1, 0) is undecidable. In contrast
to this we show that the emptiness problem for automata with one register over
much richer structure (N; +,×,=,≤, pr1, pr2, c1, . . . , ck) is decidable. Section 6
discusses potential future work.

2 The Automata Model

A structure S consists of a (possibly infinite) domainD and finitely many atomic
operations f1, . . . , fm, relations R1, . . . , Rn and constants c1, . . . , c� on the set
D. We denote this by

S = (D; f1, . . . , fm, R1, . . . , Rn, c1, . . . , c�).

To simplify our notation, we consider structures whose operations and relations
have arity 2. Generally speaking, the structures under consideration can be ar-
bitrary structures. Therefore the operations and relations are not necessarily
computable. However, we will always assume that given two elements x1, x2 in
the domain, computing the value of fi(x1, x2) as well as checking Rj(x1, x2) can
be carried out effectively for all i and j. We denote the set of all atomic opera-
tions and the set of all atomic relations of S by Op(S) and Rel(S), respectively.

Definition 1. A D-word of length t is a sequence a1 . . . at of elements in the
domain D. A D-language is a set of D-words.

376 A. Gandhi, B. Khoussainov, and J. Liu

Given a structure S with domain D, we investigate a certain type of programs
that process D-words. Informally, such a program reads a D-word as input while
updating a fixed number of registers. Each register holds an element in D at
any given time. Whenever the program reads an element from the input D-
word, it first checks if some atomic relations hold on this input element and the
current values of the registers, then applies some atomic operations to update
the registers. The program stops when the last element in the D-word is read.

We model such programs using finite state machines and call our model (S, k)-
automata (k ∈ N). An (S, k)-automaton keeps k changing registers as well as
� constant registers. The � constant registers store the constants c = c1, . . . , c�
and their values are fixed. Each changing register stores an element of D at any
time. We normally use m1, . . . ,mk to denote the current values of the chang-
ing registers. Inputs to the automaton are written on a one-way read-only tape.
Every state q is associated with k + � atomic relations P1, . . . , Pk+� ∈ Rel(S).
Whenever the state q is reached, the (S, k)-automaton reads the next element x
of the input D-word and tests the predicate Pi(x,mi) for each i ∈ {1, . . . , k} and
Pk+j(x, cj) for each j ∈ {1, . . . , �}. The (S, k)-automaton then chooses a transi-
tion depending on the outcome of the tests and moves to the next state. Each
transition is labelled with k operations, say g1, . . . , gk ∈ Op(S). The automaton
changes the value of its ith register from mi to gi(mi, x). After all elements on
the input tape have been read, the (S, k)-automaton stops and decides whether
to accept the input depending on the current state. Here is a formal definition.

Definition 2. An (S, k)-automaton is a tuple A = (Q,α, x,Δ, q0, F) where Q
is a finite set of states, the mapping α is a function from Q to Relk+�(S), x ∈ Dk

are the initial values of the registers, q0 ∈ Q is the initial state, F ⊆ Q is the set
of accepting states and Δ ⊆ Q×{0, 1}k+�×Q×Opk(S) is the transition relation of
A. The (S, k)-automaton is deterministic if for each q ∈ Q, b ∈ {0, 1}k+�, there
is exactly one q′ and g ∈ Opk(S) such that (q, b, q′, g) ∈ Δ. A (deterministic)
S-automaton is a (deterministic) (S, k)-automaton for some k.

One can view each state q of an S-automaton as a test state and an operational
state; the state q is a test state because the predicates from α(q) are tested on
tuples of the form (a,m) where a is the input and m is a value from the registers.
The state q is an operational state because depending on the outcomes of the
tests, an appropriate list of operations are applied to the tuples (m, a).

To define runs of S-automata, we introduce the following notations. For any
k ∈ N, given a tuple P = (P1, . . . , Pk) ∈ Relk(S), m = (m1, . . . ,mk) ∈ Dk

and a ∈ D, we let χ(P ,m, a) = (b1, . . . , bk) ∈ {0, 1}k such that bi = 1 if
S |= Pi(a,mi) and bi = 0 otherwise, where 1 ≤ i ≤ k. Fix an (S, k)-automaton
A. A configuration of A is a tuple r = (q,m) ∈ Q × Dk. Given two config-
urations r1 = (q,m), r2 = (q′,m′) and a ∈ D, by r1 ↪→a r2 we denote that
(q, χ(α(q), (m, c), a), q′, g1, . . . , gk) ∈ Δ and m′

i = gi(mi, a) for all i ∈ {1, . . . , k}.

Finite Automata over Structures 377

Definition 3. A run of A on a D-word a1 . . . an is a sequence of configurations

r0, r1, r2, . . . , rn

where r0 = (q0, x1, . . . , xk) and ri−1 ↪→ai ri for all i ∈ {1, . . . , n}. The run
is accepting if the state in the last configuration rn is accepting. The (S, k)-
automaton A accepts the D-word a1 . . . an if A has an accepting run on a1 . . . an.
The language L(A) of the automaton is the set of all D-words accepted by A.

We say a D-language L is (deterministic) S-automata recognizable if L = L(A)
for some (deterministic) S-automata A. The next section presents several exam-
ples of S-automata recognizable languages and discuss some simple properties of
S-automata. These examples and properties provide justification to investigate
S-automata as a general framework for finite state machines.

3 Simple Properties of S-Automata

We present several examples to establish some simple properties of S-automata
and S-automata recognizable D-languages. The first result shows that when S
is a finite structure, S-automata recognize regular languages. We use S[a] to
denote the structure obtained from S by adding constants a to the signature.
Suppose that the structure S contains an atomic equivalence relation ≡ of finite
index. Let Σ = {σ1, . . . , σk} be the set of all equivalence classes of ≡. For
every word w = w1 . . . wn over the alphabet Σ, let R(w) be the D-language
{a1 . . . an | ai ∈ wi for all i = 1, . . . , n}. For every language L over Σ, let R(L)
be the D-language

⋃
w∈LR(w).

Theorem 4. Let ai be an element from the ≡-equivalence class σi, where i =
1, . . . , k. Then each of the following is true.

– For every regular language L over Σ, the D-language R(L) is recognized by
an (S[a1, . . . , ak], 0)-automaton.

– Suppose S contains only one atomic relation ≡ and the atomic operations
of S are compatible with ≡. For every S-automata recognizable D-language
W , there is a regular language L over Σ such that W = R(L).

Example 5. Using Theorem 4 one can present many example of S-automata
recognizable D-languages.

(a) Regular languages over Σ = {σ1, . . . , σk} are recognized by (S, 0)-automata
where S = (Σ; =, σ1, . . . , σk).

(b) Let S be a finite structure with domain D where equality is part of the sig-
nature. Any D-language acceptable by an S-automaton is a regular language
over the alphabet D.

(c) Let S be (Z;≡) where ≡= {(i, j) | i = j = 0 or ij > 0}. The following
Z-languages is recognized by (S[−1, 0, 1], 0)-automata:

{n0 . . . nk | k ∈ N, nj > 0 when j is even and nj < 0 when j is odd}.
We now single out two functions that will be used throughout the paper.

378 A. Gandhi, B. Khoussainov, and J. Liu

Definition 6. For i ∈ {1, 2}, define projection on the ith coordinate as an
operation pri : D

2 → D such that pri(a1, a2) = ai for all a1, a2 ∈ D.

The next example shows that for infinite structures of the form S = (D; =
, pr1, pr2), the class of (S, k)-automata recognizable D-languages properly con-
tains the class of (S, k − 1)-automata recognizable D-languages.

Example 7 (Separation between (S, k)-automata and (S, k + 1)-automata). Let
S = (D; =, pr1, pr2) with D infinite. For k > 0, let Dk be the D-language

{a0 . . . ak | ∀i, j ∈ {0, . . . , k} : i �= j ⇒ ai �= aj}.
It is easy to see that an (S, k)-automaton recognizes the D-language Dk but no
(S, k − 1)-automaton recognizes Dk.

The next example shows that deterministic S-automata form a proper subclass
of S-automata. Furthermore, the class of S-automata recognizable D-languages
is not closed under Boolean operations in the general case.

Example 8 (Separation between deterministic and nondeterminstic S-automata).
Let S = (N; +, pr1,=, 1). Let L be the N-language {1nm | n,m ∈ N,m ≤ n}. It
is clear that an (S, 1)-automaton recognizes L. However, such an S-automaton is
necessarily nondeterministic. One may prove that no deterministic S-automaton
recognizes L. Now let L′ be the N-language {1nm | n,m ∈ N,m > n}. One may
prove that no S-automaton recognizes L′. Since N

∗ \ L = {ε} ∪ {1nmw | n,m ∈
N,m �= 1, w ∈ N

+}∪L′, it is easy to see that the class of S-automata recognizable
N-languages is not closed under the set operations.

The rest of the section focuses on deterministic S-automata. The next theorem
shows that the class of deterministic S-automata recognizableD-languages forms
a Boolean algebra.

Theorem 9 (Closure under Boolean operations). Let S be a structure.
The class of languages recognized by deterministic S-automata is closed under
union, intersection and complementation.

Below we present two examples of deterministic S-automata where the structure
S has the set of natural numbers N as its domain.

Example 10. Let S = (N; +, pr1,=). Let F contain all Fibonacci sequences, i.e.
N-words a1a2 . . . an (n ∈ N) where ai+2 = ai+1 + ai for i ∈ {1, . . . , n− 2}. Then
a deterministic (S, 2)-automaton accepting F is shown in Fig 1.

The next example shows how deterministic S-automata may be used to accept
execution sequences of algorithms.

Example 11. Let S = (N; +, /, pr2,=, 0) where / denotes the modulo operation
on natural numbers, where a/b = r means r < b and r+ bq = a for some q ∈ N.
Euclid’s algorithm computes the greatest common divisor of two given natural
numbers x, y ∈ N by repeatedly computing the sequence a1, a2, a3, . . . such that

Finite Automata over Structures 379

q0 := q1 := q2 := q3 :=

q4 :=

{ 0/1:pr1
0/1:+

{ 0/1:+
0/1:+

{ 0/1:+
1:pr1

{ 1:pr1
0/1:+

{ 0/1:pr1
0/1:pr1

{ 0:pr1
0/1:pr1

{ 0/1:pr1
0/1:pr1

Fig. 1. An (S , 2)-automaton accepting the Fibonacci sequences. The initial value is
(0, 0).

a1 = x, a2 = y, and ai = ai−2/ai−1 for i > 2. The procedure terminates when
ai = 0 and declares that ai−1 is gcd(x, y). We call such a sequence a1, a2, a3, . . .
an Euclidean path. For example, the N-word 384 270 114 42 30 12 6 0
is an Euclidean path. Note that if a1 . . . an is an Euclidean path, then an−1 =
gcd(a1, a2). Hence an Euclidean path can be thought of as a computation of
Euclid’s algorithm. Then a deterministic (S, 2)-automaton accepting the set of
all Euclidean paths is shown in Fig 2.

q0 q1 q2 q3

q5q4

⎧
⎪⎨

⎪⎩

0/1 : +

0/1 : pr1
0

⎧
⎪⎨

⎪⎩

0/1 : /

0/1 : +

0

⎧
⎪⎨

⎪⎩

1 : pr1
0/1 : /

0

⎧
⎪⎨

⎪⎩

0/1 : /

1 : pr1
0

⎧
⎪⎨

⎪⎩

0/1 : pr1
1 : pr1
1

⎧
⎪⎨

⎪⎩

0/1 : pr1
0/1 : pr1
1

⎧
⎪⎨

⎪⎩

0/1 : pr1
0/1 : pr1
1

⎧
⎪⎨

⎪⎩

1 : pr1
0/1 : pr1
1

⎧
⎪⎨

⎪⎩

0 : pr1
0/1 : pr1
0/1

⎧
⎪⎨

⎪⎩

0/1 : pr1
0 : pr1
0/1

⎧
⎪⎨

⎪⎩

0/1 : pr1
0/1 : pr1
0/1

⎧
⎪⎨

⎪⎩

0/1 : pr1
0/1 : pr1
0/1

Fig. 2. An ((N; +, /,pr1,=, 0), 3)-automaton accepting the Euclidean paths. The initial
value is (0, 0, 0). The mapping α maps every state q to the tuple (=,=,=).

380 A. Gandhi, B. Khoussainov, and J. Liu

4 The Validation Problem

This section discusses the validation problem for automata over a given structure
S. The main result is that deciding the validation problem on S-automata is
equivalent to deciding the existential theory of the structure S (see Theorem 13
below). The validation problem is formulated as follows.

Validation Problem. Design an algorithm that, given an S-automaton A and
a path p in A from the initial state to an accepting state, decides if there exists
a D-word a such that a run of A over a proceeds along p.

Obviously the problem depends on the given structure S. For instance, if S is
a finite structure then, by Example 5(b), both the validation and the emptiness
problem are decidable. The validation problem for S-automata turns out to be
equivalent to solving systems of equations and in-equations over the structure.
More formally, we define the following:

Definition 12. The existential theory of S, denoted by Th∃(S) is the set of all
existential sentences true in S, that is,

Th∃(S) = {ϕ | S |= ϕ and ϕ is an existential sentence}.

The following is the main result of this section:

Theorem 13. The validation problem for S[pr1, pr2,=]-automata is decidable
if and only if Th∃(S) is decidable.

5 The Emptiness Problem

This section discusses the emptiness problem for S-automata.

Emptiness Problem. Design an algorithm that, given a structure S and an
(S, k)-automaton A, decides if A accepts at least one D-word.

A sink state in an S-automaton is a state whose all outgoing transitions loop
into the state itself. All accepting sink states can be collapsed into one accepting
sink state, and all non-accepting sink states can be collapsed into one non-
accepting sink state. Therefore we can always assume that every S-automaton
has at most 2 sink states.

Definition 14. We call an S-automaton acyclic if its state space without the
sink states is an acyclic graph.

Note that in any acyclic S-automaton, there are only finitely many paths from
the initial state to an accepting state. Hence the emptiness problem is compu-
tationally equivalent to the validation problem.

Theorem 15. The emptiness problem of acyclic S[pr1, pr2,=]-automata is de-
cidable if and only if S has decidable existential theory.

Finite Automata over Structures 381

The above theorem immediately provides a wide range of structures S for which
the emptiness problem of acyclic S[pr1, pr2,=]-automata is decidable. Below we
list several examples of such structures. The structures (a-c) are well-known to
have decidable first-order theory, (d) has decidable theory by [18], and (e,f) have
decidable theory since they are instances of automatic structures [12].

Example 16. The emptiness problem is decidable for acyclic S[pr1, pr2,=]-auto-
mata where S is the following structures and c1, . . . , ck are constants in the
respective domain:

(a) (N; +, <,≤, c1, . . . , c�).
(b) (N;×, c1, . . . , c�).
(c) Any finitely generated Abelian group.
(d) (N; +, pow2, c1, . . . , c�) where the function pow2 : N2 → N is the function

(x, y) → 2x.
(e) (Q; +,≤, c1, . . . , c�) where Q is the set of rational numbers.

(f) The Boolean algebra of finite and co-finite subsets of N.

Theorem 15 above poses the following question. Let S be a structure with un-
decidable existential theory, find k such that the emptiness problem for acyclic
(S, k)-automata is undecidable. Speculatively there might be a structure S with
undecidable existential theory (and hence undecidable emptiness problem for
acyclic S-automata) such that for each k the emptiness problem for acyclic
(S, k)-automata is decidable, but we don’t know any such example. Below we
provide an example of a structure S such that the emptiness problem for acyclic
(S, 1)-automata is undecidable.

Let G = (V,E) be a computable graph for which testing whether each node
is isolated is undecidable (the reader is referred to [8] for the existence of such a
graph). Then the following acyclic (G[pr2,=], 1)-automaton A has undecidable
emptiness problem. The (G, 1)-automaton A has four states q0, q1, qf , qs where
qf , qs are sink states and F = {qf}. The mapping α maps q0 to = and q1 to E.
The transitions on q0 and q1 are

{(q0, b, q1, pr2) | b = 0, 1} ∪ {(q1, 0, qs, pr2)} ∪ {(q1, 1, qf , pr2)}

We now give a more natural example of a structure S where emptiness problem
is undecidable for acyclic (S, k)-automata with small k. By a reduction from
Hilbert’s tenth problem[15], one obtain the following theorem.

Theorem 17. Consider the following structures:

SZ = (Z; +,×, pr1, pr2,=, 0) and SN = (N; +,×, pr1, pr2,=, 0).

(a) The emptiness problem for deterministic acyclic (SZ, 11)-automata is unde-
cidable.

(b) The emptiness problem for deterministic acyclic (SN, 12)-automata is unde-
cidable.

382 A. Gandhi, B. Khoussainov, and J. Liu

A natural question is the decidability of the emptiness problem if we remove the
acyclicity constraint. We denote with +1 and −1 the binary operations on N

2

such that +1(x, y) = x+1 and −1(x, y) = x− 1 (Note that -1 is not total). The
next theorem shows that if we remove the acyclicity constraint, the emptiness
problem is undecidable for S-automata with a small number of registers.

Theorem 18. Let S1 = (N; +1,−1,=, pr1, 0) and S2 = (N,+1,=, pr1, pr2, 0).

(a) The emptiness problem for deterministic (S1, 2)-automata is undecidable.
(b) The emptiness problem for deterministic (S2, 4)-automata is undecidable.

The next question is whether the emptiness problem is undecidable if we lower
the number of register even further.

Theorem 19. Let S be the structure (N; +,×, pr1, pr2,=,≤, c1, . . . , c�) where
c1, . . . , c� are constants in N. The emptiness problem for (S, 1)-automata is de-
cidable.

Another way of restricting the automata is to put constraints on the allowable
transitions of the automata. We show in the following that by allowing only
those transitions that compare the input or a changing register with constants,
the emptiness problem may become decidable. Our motivation is to analyze
those algorithm in which comparisons occur only between variables and a fixed
number of constant values. For example we may allow the comparison a < 5 but
not the comparison a < b where a, b are variables. With this in mind, we now
introduce a class of automata which we call the constant comparing automata.
We would like to show such automata have a decidable emptiness problem. For
the sake of convenience we add the relation U = N

2 to our structures. This can
be done without any loss of generality.

Definition 20. Let S be a structure that contains = as an atomic relation and
� constants c1, . . . , c� in its signature. A constant comparing (S, k)-automaton is
A = (Q,α, y,Δ, q0, F) such that for every q ∈ Q, α(q) = (R1, . . . , Rk+�) satisfies
the following conditions:

– There is at most one i ∈ {1, . . . , k} such that Ri is the = relation.
– For all j ∈ {1, . . . , k} apart from i (if it exists) we have Rj = U .

The (S, k)-automaton A is a strongly constant comparing S-automaton if no
such i exists.

Note that by definition an (S, 1)-automaton is also a constant comparing
S-automaton. Hence the next theorem can be viewed as a generalization of
Theorem 19.

Theorem 21. Let S be the structure (N; +,×, pr1, pr2,=,≤, U, c1, . . . , c�) where
c1, . . . , c� are arbitrary constants in N. The emptiness problem for constant com-
paring S-automata is decidable.

Finite Automata over Structures 383

Note that the structure S in Theorem 21 does not contain subtraction as part of
the signature. If subtraction is added to the signature, one may show by slightly
modifying the proof of Theorem 18(a) that the emptiness problem becomes
undecidable. However, the emptiness problem becomes decidable if we restrict
to strongly constant comparing S-automata as shown by the following theorem.

Theorem 22. Let S = (N; +,−, pr1,=,≤, c1, . . . , c�) where c1, . . . , c� are con-
stants in N.

(a) The emptiness problem for constant comparing (S, 2)-automata is undecid-
able if � ≥ 2.

(b) The emptiness problem for strongly constant comparing S-automata is de-
cidable.

6 Discussion and Future Work

One natural direction for future work is to obtain more generic results on the
emptiness problem. This may require to identify the common properties of the
automata over different structures discussed in this paper, and see how differ-
ent existing types of automata with external memory (e.g. bounded reversal
counter machines, flat counter automata, pushdown automata) fit into this gen-
eral framework.

Another interesting direction for future work is to identify structures for which
this type of automata enjoy closure under the set operations (even in the nonde-
terministic case) and hence identify connections of these automata with certain
logic over the underlying structures.

A third possible direction is to analyze automata over structures whose do-
mains are not natural numbers. Some interesting examples of such structures
include real closed fields, the boolean algebra of finite and co-finite subsets with
the subset predicate etc.

In this paper we have focused our attention on the decidability of emptiness
problem for our automata model. However other classical automata-theoretic
decidability problems such as the universality problem, the language inclusion
problem and the equivalence problem are also topics for future work.

References

1. Alur, R., Černý, P., Weinstein, S.: Algorithmic Analysis of Array-Accessing Pro-
grams. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 86–101.
Springer, Heidelberg (2009)

2. Blum, L., Shub, M., Smale, S.: On a Theory of Computation and Complexity over
the Real Numbers: NP-completeness, Recursive Functions and Universal Machines.
Bulletin of the American Mathematical Society 21(1), 1–46 (1989)

3. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-Variable
Logic on Words with Data. In: Proceedings of LICS 2006, pp. 7–16. IEEE Computer
Society (2006)

384 A. Gandhi, B. Khoussainov, and J. Liu

4. Bojanczyk, M., David, C., Muscholl, M., Schwentick, T., Segoufin, L.: Two-variable
logic on data trees and XML reasoning. In: Proceedings of PODS 2006, pp. 10–19.
ACM (2006)

5. Bournez, O., Cucker, F., Jacobé de Naurois, P., Marion, J.-Y.: Computability over
an Arbitrary Structure. Sequential and Parallel Polynomial Time. In: Gordon, A.D.
(ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 185–199. Springer, Heidelberg (2003)

6. Bozga, M., Iosif, R., Lakhnech, Y.: Flat Parametric Counter Automata. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 577–588. Springer, Heidelberg (2006)

7. Comon, S., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Pres-
burger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)

8. Ershov, Y., Goncharov, S., Marek, V., Nerode, A., Remmel, J.: Handbook of Recur-
sive Mathematics: Recursive Model Theory. Studies in Logic and the Foundations
of Mathematics. North-Holland (1998)

9. Figueira, D.: Reasoning on words and trees with data. Ph.D. Thesis, ENS Cachan,
France (2010)

10. Ibarra, O.: Reversal-bounded multicounter machines and their decision problems.
J. ACM 25(1), 116–133 (1978)

11. Kaminsky, M., Francez, N.: Finite memory automata. Theor. Comp. Sci. 134(2),
329–363 (1994)

12. Ishihara, H., Khousainov, B., Rubin, S.: Some Results on Automatic Structures.
In: Proceedings of LICS 2002, p. 235. IEEE Computer Society (2002)

13. Leroux, J.: The general vector addition system reachability problem by presburger
inductive invariants. In: Procedings of LICS 2009, pp. 4–13. IEEE Computer So-
ciety (2009)

14. Leroux, J., Sutre, G.: Flat Counter Automata Almost Everywhere! In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

15. Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
16. Minsky, M.: Recursive unsolvability of Post’s problem of “Tag” and other topics

in theory of Turing machines. Annals of Math. 74(3) (1961)
17. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite

alphabets. ACM Tran. Comput. Logic 15(3), 403–435 (2004)
18. Point, F.: On Decidable Extensions of Presburger Arithmetic: From A. Bertrand

Numeration Systems to Pisot Numbers. J. Symb. Log. 65(3), 1347–1374 (2000)
19. Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet.

In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg
(2006)

20. Segoufin, L., Torunczyk, S.: Automata based verification over linearly ordered data
domains. In: Proceedings of STACS 2011. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, pp. 81–92 (2011)

21. Tan, T.: Graph reachability and pebble automata over infinite alphabets. In: Pro-
ceedings of LICS 2009, pp. 157–166. IEEE Computer Society (2009)

	Finite Automata over Structures
	Introduction
	The Automata Model
	Simple Properties of S-Automata
	The Validation Problem
	The Emptiness Problem
	Discussion and Future Work
	References

